
Maurizio Gabbrielli (Ed.)
LN

CS
 1

20
42

29th International Symposium, LOPSTR 2019
Porto, Portugal, October 8–10, 2019
Revised Selected Papers

Logic-Based
Program Synthesis
and Transformation

Lecture Notes in Computer Science 12042

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Maurizio Gabbrielli (Ed.)

Logic-Based
Program Synthesis
and Transformation
29th International Symposium, LOPSTR 2019
Porto, Portugal, October 8–10, 2019
Revised Selected Papers

123

Editor
Maurizio Gabbrielli
University of Bologna
Bologna, Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-45259-9 ISBN 978-3-030-45260-5 (eBook)
https://doi.org/10.1007/978-3-030-45260-5

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-0609-8662
https://doi.org/10.1007/978-3-030-45260-5

Preface

This volume contains a selection of the papers presented at LOPSTR 2019, the 29th
International Symposium on Logic-Based Program Synthesis and Transformation, held
during September 7–10, 2019, in Porto, Portugal.

It was co-located with the 21th International ACM SIGPLAN Symposium on
Principles and Practice of Declarative Programming (PPDP 2019), with the
Symposium on Formal Methods (FM 2019), and with other events in the context of the
FM Week. Previous LOPSTR symposia were held in Frankfurt am Main (2018) Namur
(2017), Edinburgh (2016), Siena (2015), Canterbury (2014), Madrid (2013 and 2002),
Leuven (2012 and 1997), Odense (2011), Hagenberg (2010), Coimbra (2009), Valencia
(2008), Lyngby (2007), Venice (2006 and 1999), London (2005 and 2000), Verona
(2004), Uppsala (2003), Paphos (2001), Manchester (1998, 1992 and 1991), Stockholm
(1996), Arnhem (1995), Pisa (1994), and Louvain-la-Neuve (1993). More information
about the symposium can be found at: http://www.cs.unibo.it/projects/lopstr19/.

The aim of the LOPSTR series is to stimulate and promote international research
and collaboration on logic-based program development. LOPSTR is open to contri-
butions on all aspects of logic-based program development, all stages of the software
life cycle, and issues of both programming-in-the-small and programming-in-the-large.
LOPSTR traditionally solicits contributions, in any language paradigm, in the areas of
synthesis, specification, transformation, analysis and verification, specialization, testing
and certification, composition, program/model manipulation, optimization, transfor-
mational techniques in software engineering, inversion, applications, and tools. This
year, LOPSTR extended its traditional topics to include also logic-based program
development based on integration of sub-symbolic and symbolic models, on machine
learning techniques, and on differential semantics.

LOPSTR has a reputation for being a lively, friendly forum that allows for the
presentation and discussion of both finished work and work in progress. Formal
proceedings are produced only after the symposium so that authors can incorporate the
feedback from the conference presentation and discussion. In response to the calls for
papers, 32 contributions were submitted from 16 different countries. The Program
Committee accepted 6 full papers for immediate inclusion in the formal proceedings,
and 9 more papers presented at the symposium were accepted after a revision and
another round of reviewing. Each submission was reviewed by at least three Program
Committee members or external referees. The paper “On fixpoint/iteration/variant
induction principles for proving total correctness of programs with denotational
semantic” by Patrick Cousot won the Best Paper Award, sponsored by Springer. In
addition to the 15 contributed papers, this volume includes the abstracts of the invited
talks by two outstanding speakers whose talks where shared with PPDP: German Vidal
(Universitat Politècnica de València) and John Gallagher (Roskilde University).

http://www.cs.unibo.it/projects/lopstr19/

I would like to thank the Program Committee members, who worked diligently to
produce high-quality reviews for the submitted papers, as well as all the external
reviewers involved in the paper selection. We are very grateful to the local organizer,
José Nuno Oliveira, and his team for the great job they did in managing the FM week.
Many thanks also to Ekaterina Komendantskaya, the Program Committee chair of
PPDP, with whom I interacted with for coordinating the events. I would also like to
thank Andrei Voronkov for his excellent EasyChair conference management system
that automates many of the tasks involved in chairing a conference, and Tong Liu for
his work as publicity chair. Special thanks go to the invited speakers and to all the
authors who submitted and presented their papers at LOPSTR 2019. We also thank our
sponsor, Springer, for the cooperation and support in the organization of the
symposium.

December 2019 Maurizio Gabbrielli

vi Preface

Organization

General Chair

José Nuno Oliveira University of Minho, Portugal

Program Committee Chair

Maurizio Gabbrielli University of Bologna, Italy, and Inria, France

Program Committee

Sabine Broda University of Porto, Portugal
Manuel Carro Technical University of Madrid and IMDEA, Spain
Ugo Dal Lago University of Bologna, Italy, and Inria, France
Daniel De Schreye KU Leuven, Belgium
Santiago Escobar Polytechnic University of València, Spain
Moreno Falaschi University of Siena, Italy
Laurent Fribourg CNRS, France
Arnaud Gotlieb SIMULA Research Laboratory, Norway
Gopal Gupta The University of Texas at Dallas, USA
Andy King University of Kent, UK
Herbert Kuchen University of Münster, Germany
Jacopo Mauro University of Southern Denmark, Denmark
Hernan Melgratti University of Buenos Aires, Argentina
Maria Chiara Meo University G.D’Annunzio of Chieti Pescara, Italy
Carlos Olarte Federal University of Rio Grande do Norte, Brazil
Hirohisa Seki Nagoya Institute of Technology, Japan
Caterina Urban Inria, France
Herbert Wiklicky Imperial College London, UK

Additional Reviewers

Jesus M. Almendros-Jimenez
Gianluca Amato
João Barbosa
Benoit Barbot
Kinjal Basu
Guillaume Burel
Zhuo Chen
Federico Chesani
Marco Comini

Jan C. Dageförde
Emanuele De Angelis
Marco Eilers
Fabio Fioravanti
Andreas Fuchs
Roberto Giacobazzi
Saverio Giallorenzo
Line Jakubiec-Jamet
Jean-Pierre Jouannaud

Marius Kühnemund
Raphaël Monat
Naoki Nishida
Christoph Rieger
Vítor Santos Costa

Tom Seed
Helge Spieker
Sarat Chandra Varanasi
Enea Zaffanella
Noam Zeilberger

viii Organization

Invited Papers

Reversibilization in Functional and Concurrent
Programming

Germán Vidal

MiST, VRAIN, Universitat Politècnica de València, Spain
gvidal@dsic.upv.es

Landauer’s seminal work [4] states that a computation principle can be made reversible
by adding the history of the computation—a so-called Landauer embedding—to each
state. Although it may seem impractical at first, there are several useful reversibilization
techniques that are roughly based on this idea (e.g., [1, 8, 11, 13]).

In this talk, we first introduce a Landauer embedding for a simple (first-order) eager
functional language [9, 11] and illustrate its usefulness to define an automatic
bidirectionalization technique [12] in the context of bidirectional programming. This
framework often considers two representations of some data and the functions that
convert one representation into the other and vice versa (see, e.g., [3] for an overview).
For instance, we may have a function called “get” that takes a source and returns a
view. In turn, a function “put” takes a possibly updated view (together with the original
source) and returns the corresponding, updated source. In this context,
bidirectionalization [8] usually aims at automatically producing a function put from the
corresponding function get (but the opposite approach is also possible, see, e.g., [2]).

Then, we extend the language with some primitives for message-passing concur-
rency and present an appropriate Landauer embedding to make its computations
reversible [6, 10]. In this case, we consider reversible debugging as a promising
application of reversible computing. Essentially, we allow the user to record an
execution of a running program and, then, use the reversible semantics to reproduce
some visible misbehavior inside the debugger. Here, the user can explore a compu-
tation back and forth in a causal-consistent way (i.e., so that an action is not undone
until all the actions that depend on it have already been undone) until the source of a
misbehavior is found [5, 7].

References

1. Danos, V., Krivine, J.: Reversible communicating systems. In: Gardner, P., Yoshida, N. (eds.)
CONCUR 2004 - Concurrency Theory. CONCUR 2004. LNCS, vol. 3170, pp. 292–307.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28644-8_19

This work has been partially supported by the EU (FEDER) and the Spanish Ministerio de Ciencia
e Innovación under grant TIN2016-76843-C4-1-R, by the Generalitat Valenciana under grant Prometeo/
2019/098 (DeepTrust), and by the COST Action IC1405 on Reversible Computation - extending horizons
of computing.

https://orcid.org/0000-0002-1857-6951
https://doi.org/10.1007/978-3-540-28644-8_19

2. Fischer, S., Hu, Z., Pacheco, H.: The essence of bidirectional programming. Sci. China Inf.
Sci. 58(5), 1–21 (2015)

3. Hu, Z., Schürr, A., Stevens, P., Terwilliger, J.F.: Bidirectional transformation “bx” (dagstuhl
seminar 11031). Dagstuhl Reports 1(1), 42–67 (2011)

4. Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev.
5, 183–191 (1961)

5. Lanese, I., Nishida, N., Palacios, A., Vidal, G.: CauDEr: A causal-consistent reversible
debugger for erlang. In: Gallagher, J., Sulzmann, M. (eds.) Functional and Logic Program-
ming. FLOPS 2018. LNCS, vol. 10818, pp. 247–263. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-90686-7_16

6. Lanese, I., Nishida, N., Palacios, A., Vidal, G.: A theory of reversibility for Erlang. J. Log.
Algebr. Methods Program. 100, 71–97 (2018)

7. Lanese, I., Palacios, A., Vidal, G.: Causal-consistent replay debugging for message passing
programs. In: Pérez, J., Yoshida, N. (eds.) Formal Techniques for Distributed Objects,
Components, and Systems. FORTE 2019. LNCS, vol. 11535, pp. 167–184. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-21759-4_10

8. Matsuda, K., Hu, Z., Nakano, K., Hamana, M., Takeichi, M.: Bidirectionalization transfor-
mation based on automatic derivation of view complement functions. In: Hinze, R., Ramsey, N.
(eds.) Proceedings of the 12th ACM SIGPLAN International Conference on Functional
Programming. ICFP 2007, pp. 47–58. ACM (2007)

9. Nishida, N., Palacios, A., Vidal, G.: Reversible term rewriting. In: Kesner, D., Pientka, B.
(eds.) Proceedings of the 1st International Conference on Formal Structures for Computation
and Deduction (FSCD’16). LIPIcs, vol. 52, pp. 28:1–28:18. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik (2016)

10. Nishida, N., Palacios, A., Vidal, G.: A reversible semantics for erlang. In: Hermenegildo, M.,
Lopez-Garcia, P. (eds.) Logic-Based Program Synthesis and Transformation. LOPSTR
2016. LNCS, vol. 10184, pp. 259–274. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-63139-4_15

11. Nishida, N., Palacios, A., Vidal, G.: Reversible computation in term rewriting. J. Log.
Algebr. Meth. Program. 94, 128–149 (2018)

12. Nishida, N., Vidal, G.: Characterizing compatible view updates in syntactic bidirectional-
ization. In: Thomsen, M., Soeken, M. (eds.) Reversible Computation. RC 2019. LNCS, vol.
11497, pp. 67–83. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21500-2_5

13. Phillips, I.C., Ulidowski, I.: Reversing algebraic process calculi. J. Log. Algebr. Program. 73
(1–2), 70–96 (2007)

xii G. Vidal

https://doi.org/10.1007/978-3-319-90686-7_16
https://doi.org/10.1007/978-3-319-90686-7_16
https://doi.org/10.1007/978-3-030-21759-4_10
https://doi.org/10.1007/978-3-319-63139-4_15
https://doi.org/10.1007/978-3-319-63139-4_15
https://doi.org/10.1007/978-3-030-21500-2_5

Horn Clauses and Tree Automata
for Imperative Program Verification

John P. Gallagher1,2

1 Roskilde University, Denmark
2 IMDEA Software Institute, Madrid, Spain

Automatic program verification is one of the oldest challenges in computer science. The
formalism of constrained Horn clauses (CHCs) has emerged in recent years as a com-
mon representation language for the semantics of imperative programming languages
and the modelling of sequential, concurrent and reactive systems. This has opened up
possibilities for using CHCs in verification tools [1, 3, 7]. A number of software veri-
fication tools based on CHCs have been developed in recent years [2, 4, 8, 11, 12].

Since CHCs are syntactically and semantically the same as constraint logic pro-
grams (CLP) we look at how techniques for analysis and transformation of CLP can
play a role in verification of imperative programs. These techniques include partial
evaluation and abstract interpretation of logic programs, and the exploitation of the
connection between tree automata and Horn clauses.

The talk summarises recent work exploiting tools, techniques and theory developed
for the analysis of constraint logic programs. A set of CHCs corresponds directly to a
finite tree automaton that recognises the set of derivation trees based on the CHCs.
Well established properties and operations on tree automata can then be exploited to
manipulate sets of CHCs. We examine how infeasible derivations can be pruned from a
set of CHCs by computing the difference of tree automata. This leads to a refinement
operation in a CHC verification tool [9, 11]. Secondly we show how partial evaluation
can be used to specialise a set of CHCs with respect to a property to be verified. In this
way, verification problems can be simplified by eliminating derivations that are irrel-
evant to the property being verified. Furthermore, CHCs that require disjunctive
invariants can often be transformed by polyvariant specialisation [6] to CHCs that can
be verified with simpler invariants [10].

The same technique is applied to achieve control flow refinement of CHCs; the
resulting transformed CHCs often allow termination proofs that use simple ranking
functions instead of requiring more complex ranking functions such as lexicographic
ranking functions, and can improve the results of automatic complexity analysis [5].

References

1. Bjørner, N., Gurfinkel, A., McMillan, K., Rybalchenko, A.: Horn clause solvers for program
verification. In: Beklemishev, L., Blass, A., Dershowitz, N., Finkbeiner, B., Schulte, W.
(eds) Fields of Logic and Computation II. LNCS, vol. 9300, pp. 24–51. Springer, Cham
(2015) .https://doi.org/10.1007/978-3-319-23534-9_2

https://doi.org/10.1007/978-3-319-23534-9_2

2. Champion, A., Kobayashi, N., Sato, R.: HoIce: An ICE-based non-linear horn clause solver.
In: Ryu, S. (eds.) Programming Languages and Systems. APLAS 2018. LNCS, vol. 11275,
pp. 146–156. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02768-1_8

3. Angelis, E.De., Fioravanti, F., Pettorossi, A., Proietti, M.: Program verification via iterated
specialization. Sci. Comput. Program. 95, 149–175, (2014)

4. Dietsch, D., Heizmann, M., Hoenicke, J., Nutz, A., Podelski, A.: Ultimate Tree Automizer
(CHC-COMP tool description). In: Angelis, E.D., Fedyukovich, G. Tzevelekos, N.
Ulbrich, M., (eds.) Proceedings of the Sixth Workshop on Horn Clauses for Verification and
Synthesis and Third Workshop on Program Equivalence and Relational Reasoning,
HCVS/PERR@ETAPS 2019. vol. 296, pp. 42–47. EPTCS (2019)

5. Doménech, J.J., Gallagher, J.P., Genaim, S.: Control-flow refinement by partial evaluation,
and its application to termination and cost analysis. TPLP 19(5–6), 990–1005 (2019)

6. Gallagher, J.P.: Polyvariant program specialisation with property-based abstraction. In:
Lisitsa, A., Nemytykh, A.P. (eds.) VPT-19, EPTCS, vol. 299 (2019)

7. Grebenshchikov, S., Lopes, N.P., Popeea, C., Rybalchenko, A.: Synthesizing software ver-
ifiers from proof rules. In: Vitek, J., Lin, H., Tip, F. (eds.) ACM SIGPLAN Conference on
Programming Language Design and Implementation. PLDI 2012, pp. 405–416. ACM (2012)

8. Hojjat, H., Rümmer, P.: The ELDARICA Horn solver. In: Bjørner, N., Gurfinkel, A. (eds.)
2018 Formal Methods in Computer Aided Design. FMCAD 2018, Austin, TX, USA,
October 30 - November 2, 2018, pp. 1–7. IEEE (2018)

9. Kafle, B., Gallagher, J.P.: Horn clause verification with convex polyhedral abstraction and
tree automata-based refinement. Comput. Lang. Syst. Struct. 47, 2–18 (2015)

10. Kafle, B., Gallagher, J.P., Gange, G., Schachte, P., Søndergaard, H., Stuckey, P.J.: An
iterative approach to precondition inference using constrained Horn clauses. TPLP, 18(3–4),
553–570 (2018)

11. Kafle, B., Gallagher, J.P., Morales, J.F.: RAHFT: A tool for verifying horn clauses using
abstract interpretation and finite tree automata. In: Chaudhuri, S., Farzan, A. (eds.) Computer
Aided Verification. CAV 2016. LNCS, vol. 9779, pp. 261–268. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-41528-4_14

12. Komuravelli, A., Gurfinkel, A., Chaki, S.: SMT-based model checking for recursive pro-
grams. In: Biere, A., Bloem, R. (eds.) Computer Aided Verification. CAV 2014. LNCS, vol.
8559. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9_2

xiv J. P. Gallagher

https://doi.org/10.1007/978-3-030-02768-1_8
https://doi.org/10.1007/978-3-319-41528-4_14
https://doi.org/10.1007/978-3-319-08867-9_2

Contents

Static Analysis

On Fixpoint/Iteration/Variant Induction Principles for Proving Total
Correctness of Programs with Denotational Semantics 3

Patrick Cousot

A General Framework for Static Cost Analysis of Parallel
Logic Programs . 19

Maximiliano Klemen, Pedro López-García, John P. Gallagher,
José F. Morales, and Manuel V. Hermenegildo

Incremental Analysis of Logic Programs with Assertions
and Open Predicates . 36

Isabel Garcia-Contreras, Jose F. Morales, and Manuel V. Hermenegildo

Computing Abstract Distances in Logic Programs . 57
Ignacio Casso, José F. Morales, Pedro López-García,
Roberto Giacobazzi, and Manuel V. Hermenegildo

Program Synthesis

Synthesizing Imperative Code from Answer Set
Programming Specifications . 75

Sarat Chandra Varanasi, Elmer Salazar, Neeraj Mittal,
and Gopal Gupta

Verified Construction of Fair Voting Rules . 90
Karsten Diekhoff, Michael Kirsten, and Jonas Krämer

Constraints and Unification

Solving Proximity Constraints. 107
Temur Kutsia and Cleo Pau

A Certified Functional Nominal C-Unification Algorithm. 123
Mauricio Ayala-Rincón, Maribel Fernández, Gabriel Ferreira Silva,
and Daniele Nantes-Sobrinho

Modeling and Reasoning in Event Calculus Using Goal-Directed Constraint
Answer Set Programming. 139

Joaquín Arias, Zhuo Chen, Manuel Carro, and Gopal Gupta

Debugging and Verification

An Integrated Approach to Assertion-Based Random Testing in Prolog 159
Ignacio Casso, José F. Morales, Pedro López-García,
and Manuel V. Hermenegildo

Trace Analysis Using an Event-Driven Interval Temporal Logic 177
María-del-Mar Gallardo and Laura Panizo

The Prolog Debugger and Declarative Programming 193
Włodzimierz Drabent

Program Transformation

A Port Graph Rewriting Approach to Relational Database Modelling 211
Maribel Fernández, Bruno Pinaud, and János Varga

Generalization-Driven Semantic Clone Detection in CLP 228
Wim Vanhoof and Gonzague Yernaux

Semi-inversion of Conditional Constructor Term Rewriting Systems 243
Maja Hanne Kirkeby and Robert Glück

Author Index . 261

xvi Contents

Static Analysis

On fixpoint/iteration/variant induction principles
for proving total correctness of programs

with denotational semantics

Patrick Cousot

Courant Institute of Mathematical Sciences, New York University
and IMDEA Software Institute

Abstract. We study partial and total correctness proof methods based on generalized fix-
point/iteration/variant induction principles applied to the denotational semantics of first-
order functional and iterative programs.

Keywords: Induction principles · Denotational semantics · Partial and total correctness
· Verification

1 Introduction

Imperative and functional programming are very often separate worlds, even in languages like OCaml
[18] which combines both styles. Most programmers definitely prefer one style to the other. This
reflects in semantics mostly denotational for functional and operational for imperative. This also
reflects on verification, mostly Turing/Floyd/Naur/Hoare for invariance and Turing/Floyd/Manna-
Pnueli variant/convergence function for termination of imperative languages while Scott proof
method is preferred for functional programming.

We show that after appropriate generalization the principles underlying the verification of these
programming styles boils down to the same unified verification (hence analysis) methods.

2 Basic notions in denotational semantics

The denotational semantics of first-order functions 𝑓 ∈ D → D⊥ uses a complete partial order
(cpo) ⟨D⊥, ⊑, ⊥, ⊔⟩ where ⊥ denotes non-termination and D⊥ = D ∪ {⊥} is the flat domain ordered
by ⊥ ⊑ ⊥ ⋤ 𝑑 ⊑ 𝑑 for all 𝑑 ∈ D. ⊔ is the least upper bound (lub) in D⊥. This is extended
pointwise to ⟨D → D⊥, ⊑̇, ⊥̇, ⊔̇⟩ by 𝑓 ⊑̇ 𝑔 if and only if ∀𝑑 ∈ D . 𝑓(𝑑) ⊑ 𝑔(𝑑), ⊥̇ ≜ 𝜆 𝑥 .⊥, and
⨆̇
𝑖∈Δ
𝑓𝑖 ≜ 𝜆𝑥 . ⨆

𝑖∈Δ
𝑓𝑖(𝑥). First-order functions 𝑓 are defined recursively 𝑓(𝑥) = 𝐹(𝑓)𝑥 as least fixpoints

𝑓 = lfp ⊑̇ 𝐹 of continuous transformers 𝐹 ∈ (D → D⊥) 𝑢𝑐−−−→ (D → D⊥). The iterates of 𝐹 from 𝑓 are
𝐹0(𝑓) = 𝑓 and 𝐹𝑖+1(𝑓) = 𝐹(𝐹𝑖(𝑓)). 𝐹 is continuous if and only iff for every denumerable increasing
chain 𝑓0 ⊑̇ 𝑓1 ⊑̇ … ⊑̇ 𝑓𝑖 ⊑̇ …, ⨆̇

𝑖∈N
𝐹(𝑓𝑖) = 𝐹(⨆̇

𝑖∈N
𝑓𝑖). Continuity implies monotonically increasing

(𝑓 ⊑̇ 𝑔 ⇒ 𝐹(𝑓) ⊑̇ 𝐹(𝑔)). Since 𝐹0(⊥̇) = ⊥̇ and 𝐹 is monotonically increasing, it follows that the
iterates of 𝐹 from ⊥̇ form an increasing chain. Then continuity guarantees that lfp ⊑̇ 𝐹 = ⨆̇

𝑖∈N
𝐹𝑖(⊥̇)

is the limit of the iterates 𝐹𝑖(⊥̇) of 𝐹 from ⊥̇. By def. of ⊑̇ and ⊔̇, (lfp ⊑̇ 𝐹)𝑥 = 𝑦 if and only if
∃𝑖 ∈ N . (∀𝑗 < 𝑖 . 𝐹𝑗(⊥̇)(𝑥) = ⊥) ∧ (∀𝑗 ⩾ 𝑖 . 𝐹𝑗(⊥̇)(𝑥) = 𝑦).

c© Springer Nature Switzerland AG 2020
M. Gabbrielli (Ed.): LOPSTR 2019, LNCS 12042, pp. 3–18, 2020.
https://doi.org/10.1007/978-3-030-45260-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45260-5_1&domain=pdf

Example 1 (while iteration). The iteration W = while (B) S operating on a vector 𝑥 ∈ D of values
of variables has denotational semantics JWK = lfp ⊑̇ 𝐹W where 𝐹W(𝑓)𝑥 = (¬𝐵(𝑥) ? 𝑥 : 𝑓(𝑆(𝑥))), 𝐵 ∈ D→
{tt, ff} is the semantics of boolean expression B, 𝑆 ∈ D→ D⊥ that of statement S (which, by structural
induction, may contain conditionals and inner loop), and (tt ? 𝑎 : 𝑏) = 𝑎 and (ff ? 𝑎 : 𝑏) = 𝑏 is the
conditional. The iterates of 𝐹W from ⊥̇ are
𝐹0W (⊥̇)𝑥 = ⊥
𝐹1W (⊥̇)𝑥 = 𝐹W(𝐹0W (⊥̇))𝑥 = (¬𝐵(𝑥) ? 𝑥 : ⊥)
𝐹2W (⊥̇)𝑥 = 𝐹W(𝐹1W (⊥̇))𝑥 = (¬𝐵(𝑥) ? 𝑥 : 𝐹1W (⊥̇)(𝑆(𝑥))) = (¬𝐵(𝑥) ? 𝑥 : (¬𝐵(𝑆(𝑥)) ? 𝑆(𝑥) : ⊥))

= (¬𝐵(𝑥) ? 𝑥 : ⊥) ⊔ (𝐵(𝑥) ∧ ¬𝐵(𝑆(𝑥)) ? 𝑆(𝑥) : ⊥)
…

𝐹𝑛W (⊥̇)𝑥 =
𝑛−1
⨆
𝑖=0

(
𝑖−1
⋀
𝑗=0
𝐵(𝑆𝑗(𝑥)) ∧ ¬𝐵(𝑆𝑖(𝑥)) ? 𝑆𝑖(𝑥) : ⊥) Hwhere 𝑆0(𝑥) ≜ 𝑥, 𝑆𝑖+1(𝑥) ≜ 𝑆(𝑆𝑖(𝑥)), and ⋀∅ = ttI

…

(lfp⊑ 𝐹W)𝑥 = ⨆
𝑛∈N
𝐹𝑛W (⊥̇)𝑥 = ⨆

𝑛∈N

𝑛−1
⨆
𝑖=0

(
𝑖−1
⋀
𝑗=0
𝐵(𝑆𝑗(𝑥)) ∧ ¬𝐵(𝑆𝑖(𝑥)) ? 𝑆𝑖(𝑥) : ⊥) Hwhere ⨆∅ = ⊥I

= ⨆
𝑛∈N

(
𝑛−1
⋀
𝑗=0
𝐵(𝑆𝑗(𝑥)) ∧ ¬𝐵(𝑆𝑛(𝑥)) ? 𝑆𝑛(𝑥) : ⊥)

Note that in the lub, at most one condition is true, none if the iteration does not terminate.
Moreover, if (lfp⊑ 𝐹W)𝑥 ≠ ⊥, then, by def. ⊔, ∃𝑗 ∈ N . (lfp⊑ 𝐹W)𝑥 = 𝐹

𝑗
W (⊥̇)𝑥 and so ¬𝐵(𝐹𝑊𝑗(⊥̇)𝑥) holds

proving ¬𝐵(lfp⊑ 𝐹W). ⊓⊔

3 Termination specification

The termination of function 𝑓 ∈ D → D⊥ on a termination domain 𝑇 ∈ ℘(D) can be specified as
𝑓 ∈ P𝑇 where P𝑇 ≜ {𝑓 ∣ ∀𝑥 ∈ 𝑇 . 𝑓(𝑥) ≠ ⊥}. So P𝑇 is the property of functions that terminate on
domain 𝑇.

Example 2 (termination). For imperative program, the termination problem is usually solved by
the Turing [29]/Floyd [12]/Manna-Pnueli [20] variant/convergence function method. For first-order
functions, one can consider Jones size-change termination method [13,17]. ⊓⊔

4 Fixpoint induction principle

In case ⟨D⊥, ⊑, ⊥, ⊔, ⊓⟩ is a complete lattice (e.g. by adding a supremum ⊤ as in Scott’s original
papers [27]), we can make proofs by fixpoint induction. [7, 3.4.1] and [23, (2.3)] observed that
fixpoint induction directly follows from Tarski’s fixpoint theorem [28].

Theorem 1 (Tarski fixpoint theorem [28]) A monotonically increasing function 𝐹 ∈ 𝐿 ↗⟶𝐿
on a complete lattice ⟨𝐿, ⊑, ⊥, ⊤, ⊓, ⊔⟩ has a least fixpoint lfp⊑ 𝐹 = ⨅{𝑥 ∈ 𝐿 ∣ 𝐹(𝑥) ⊑ 𝑥}.

Fixpoint induction relies on properties of 𝐹 above its least fixpoint i.e. the 𝑥 ∈ 𝐿 such that 𝐹(𝑥) ⊑ 𝑥
and therefore lfp⊑ 𝐹 ⊑ 𝑥.

4 P. Cousot

Theorem 2 (Fixpoint induction) Let 𝐹 ∈ L ↗⟶L be a monotonically increasing function
on a complete lattice ⟨L, ⊑, ⊥, ⊤, ⊓, ⊔⟩ and 𝑃 ∈ L. We have

lfp⊑ 𝐹 ⊑ 𝑃 ⇔ ∃𝐼 ∈ L . 𝐹(𝐼) ⊑ 𝐼 (2.a)
∧ 𝐼 ⊑ 𝑃 (2.b) ⊓⊔

𝐽 ∈ L is called an invariant of 𝐹 when lfp⊑ 𝐹 ⊑ 𝐽 and an inductive invariant when satisfying 𝐹(𝐽) ⊑ 𝐽.
Soundness (⇐) states that if a statement is proved by the proof method then that statement is

true. Completeness (⇒) states that the proof method is always applicable to prove a true statement.
Proof (of Th. 2). By Tarski fixpoint Th. 1, lfp⊑ 𝐹 = ⨅{𝑥 ∈ 𝐿 ∣ 𝐹(𝑥) ⊑ 𝑥}.

Soundness (⇐): If 𝐼 ∈ L satisfies 𝐹(𝐼) ⊑ 𝐼 then 𝐼 ∈ {𝑥 ∈ 𝐿 ∣ 𝐹(𝑥) ⊑ 𝑥} so by definition of the glb
⨅, lfp⊑ 𝐹 = ⨅{𝑥 ∈ 𝐿 ∣ 𝐹(𝑥) ⊑ 𝑥} ⊑ 𝐼 ⊑ 𝑃 by (2.b).

Completeness (⇒): If lfp⊑ 𝐹 ⊑ 𝑃 then take 𝐼 = lfp⊑ 𝐹 then 𝐼 = 𝐹(𝐼) so 𝐹(𝐼) ⊑ 𝐼 by reflexivity and
𝐼 ⊑ 𝑃 by hypothesis, proving ∃𝐼 ∈ L . 𝐹(𝐼) ⊑ 𝐼 ∧ 𝐼 ⊑ 𝑃. ⊓⊔

Usually, proofs are done using logics of limited expressive power so completeness is relative
to the existence of a logic formula expressing the stronger invariant 𝐼 = lfp⊑ 𝑓 [5,6]. In Th. 2, we
consider invariants to be sets in order to make expressivity a separate problem.

The fixpoint induction principle Th. 2 has been used to justify invariance proof methods
for small-step operational semantics/transition systems, including their contrapositive, backward,
etc. variants [9]. It can also be used with a denotational semantics.
Example 3 (Partial correctness of the factorial). Define 𝐹!(𝑓) ≜ 𝜆 𝑛 . (𝑛 = 0 ? 1 : 𝑛 × 𝑓(𝑛 − 1)). Let
us prove that lfp ⊑̇ 𝐹! ⊑̇ 𝑓! ≜ 𝜆 𝑛 . (𝑥 ⩾ 0 ? 𝑛! : ⊥) where 𝑛! is the mathematical factorial function.
Applying Th. 2 with 𝐼 = 𝑃 = 𝑓! so that (2.b) holds, we have
𝐹!(𝑓!)𝑛

= (𝑛 = 0 ? 1 : 𝑛 × 𝑓!(𝑛 − 1)) Hdef. 𝐹!I
= (𝑛 = 0 ? 𝑓!(𝑛) : 𝑓!(𝑛)) Hdef. 𝑓!I
⊑ 𝑓!(𝑛) Hdef. conditional and ⊑ reflexiveI
so 𝐹!(𝑓!) ⊑̇ 𝑓! by pointwise def. of ⊑̇, proving (2.a). By definition of ⊑̇, we have ∀𝑛 ∈ Z . (lfp ⊑̇ 𝐹!)𝑛 ≠
⊥ ⇒ lfp ⊑̇ 𝐹!(𝑛) = 𝑓!(𝑛) i.e. if a call (lfp ⊑̇ 𝐹!)𝑛 terminates then it returns 𝑛!. Obviously this is a partial
correctness proof since e.g. the proof does not exclude that lfp ⊑̇ 𝐹! = 𝜆 𝑛 .⊥ ⊑̇ 𝑓!! ⊓⊔
Notice that if 𝑃 = lfp⊑ 𝑓, fixpoint induction requires to prove that 𝑓(lfp⊑ 𝑓) ⊑ lfp⊑ 𝑓 and lfp⊑ 𝑓 ⊑ 𝑃.
So to prove lfp⊑ 𝑓 ⊑ 𝑃, we have to prove lfp⊑ 𝑓 ⊑ 𝑃! In that case fixpoint induction cannot help. In
general, we have to prove lfp⊑ 𝐹 ⋤ 𝑃 but nevertheless the only inductive invariant might be lfp⊑ 𝐹,
as shown below where 𝑃 is not inductive.

�� 1SPWJOH UFSNJOBUJPO CZ HFOFSBMJ[FE JUFSBUJPO JOEVDUJPO
#Z DPNQMFUFOFTT UIF UFSNJOBUJPO PG H7T Т֕ ৮ PO B UFSNJOBUJPO EPNBJO ৬ ó Û	ං
 DBO BMXBZT
CF QSPWFE CZ HFOFSBMJ[FE JUFSBUJPO JOEVDUJPOćFPSFN �� JG H7T Т֕ ৮ ó P৬ EPFT IPME�
&YBNQMF �� 	5PUBM DPSSFDUOFTT **
 $POUJOVJOH &YBNQMF � 50%0� 7PJS MF DIBQJUSF �� !

�� 1SPWJOH UFSNJOBUJPO CZ B WBSJBOU GVODUJPO
'PMMPXJOH 5VSJOH <��> BOE 'MPZE <�> NPTU UFSNJOBUJPO QSPPGT BSF EPOF VTJOH B WBSJBOU GVOD�
UJPO JO B XFMM�GPVOEFE TFU XIJDI TUSJDUMZ EFDSFBTFT BU FBDI SFDVSTJWF DBMM 	PS FRVJWBMFOUMZ B
XFMM�GPVOEFE SFMBUJPO
� ćJT JT F�H� UIF DBTF PG UIF iTJ[F DIBOHF QSJODJQMFw <�>� ćF WBSJBOU
GVODUJPO UFSNJOBUJPO QSPPG QSJODJQMF DBO CF GPSNVMBUFE BT GPMMPXT�

" SFMBUJPO ܹ৬ ⩿ܺ TVDI UIBU ⩿ ó Û	৬ s ৬
 JT XFMM�GPVOEFE PS /PFUIFSJBO JG BOE POMZ JG
UIFSF JT OP JOĕOJUF TUSJDUMZ �EFTDFOEJOHח DIBJO PG FMFNFOUT PG৬�

ćF GBDU UIBU UIF FWBMVBUJPO PG ৮	ਈ
ਙ GPS ਙ ó ං NBLFT B SFDVSTJWF DBMM UP ਈ	ਚ
 XJUI
QBSBNFUFS ਚ ó ං XSJUUFO ਙ ৮	ਈ
ݍ ਚ JT VTVBMMZ EFĕOFE TZOUBDUJDBMMZ� *OTUFBE XF EFĕOF JU
TFNBOUJDBMMZ BT ਈ<ਚ ҽ ਆ>	ਚ
 թ ਚਈ<ਚ ҽ ਆ>	ਛ
 թ ਈ	ਛ
 XIFO ਛ ă ਚਙ ৮	ਈ
ਚݍ թ ðਆ óං � ৮	ਈ
ਙ ă ৮	ਈ<ਚ ҽ ਆ>
ਙ
ćF QSPPG QSJODJQMF SFNBJOT TPVOE XIFO UIJT TFNBOUJD EFQFOEFODZ SFMBUJPO JT PWFS�BQQSPY�
JNBUFE TZOUBDUJDBMMZ 	CVU NBZCF OPU DPNQMFUF BT TIPXO CZ ৮	ਈ
ਙ թ (ii ? ਙ : ਈ	ਙ
) XIFSF
TZOUBDUJDBMMZ ਙ ৮	ਈ

ਙݍ�
ćFPSFN �� 	ćF WBSJBOU GVODUJPO QSJODJQMF GPS UFSNJOBUJPO
 -FU ৮ ó L ਖਅ÷÷÷Ҿ L CF BO
VQQFS�DPOUJOVPVT GVODUJPO PO B DQP ܹL ֕ Ď ֘ܺ৬ ó Û	ං
 BOE P৬ թ \ਈ Է îਙ ó ৬ �ਈ	ਙ
 ă Ď^� ćFO

H7T֕ ৮ ó P৬ í ð ⩿ ó Û	৬ s ৬
 � ܹ৬ ⩿ܺ JT XFMM�GPVOEFE ü 	B
ü îਊ ó <� ਏ> � îਙ ó ৬ � 	ਙ ৮	ਈ

ਚݍ ë 	ਙ ח ਚ
 	C
 !

*OUVJUJWFMZ H7T֕ ৮NVTU UFSNJOBUF TJODF CZ DPOUSBEJDUJPO BO JOĕOJUF DBMM TFRVFODF XPVME DSF�
BUF BO JOĕOJUF EFTDFOU BMPOH UIF DBMMFE QBSBNFUFST� $PNQMFUFOFTT GPMMPXT GSPN UIF GBDU UIBU ח
DBO CF DIPTFO BT ৮	ਈ
ݍ XIJDI JT BMXBZT XFMM�GPVOEFE GPS UFSNJOBUJOH QSPHSBNT�ćJT JT QSPWFE
GPSNBMMZ JO $PSPMMBSZ ���

�

�� 1SPWJOH UFSNJOBUJPO CZ HFOFSBMJ[FE JUFSBUJPO JOEVDUJPO
#Z DPNQMFUFOFTT UIF UFSNJOBUJPO PG H7T Т֕ ৮ PO B UFSNJOBUJPO EPNBJO ৬ ó Û	ං
 DBO BMXBZT
CF QSPWFE CZ HFOFSBMJ[FE JUFSBUJPO JOEVDUJPOćFPSFN �� JG H7T Т֕ ৮ ó P৬ EPFT IPME�
&YBNQMF �� 	5PUBM DPSSFDUOFTT **
 $POUJOVJOH &YBNQMF � 50%0� 7PJS MF DIBQJUSF �� !

�� 1SPWJOH UFSNJOBUJPO CZ B WBSJBOU GVODUJPO
'PMMPXJOH 5VSJOH <��> BOE 'MPZE <�> NPTU UFSNJOBUJPO QSPPGT BSF EPOF VTJOH B WBSJBOU GVOD�
UJPO JO B XFMM�GPVOEFE TFU XIJDI TUSJDUMZ EFDSFBTFT BU FBDI SFDVSTJWF DBMM 	PS FRVJWBMFOUMZ B
XFMM�GPVOEFE SFMBUJPO
� ćJT JT F�H� UIF DBTF PG UIF iTJ[F DIBOHF QSJODJQMFw <�>� ćF WBSJBOU
GVODUJPO UFSNJOBUJPO QSPPG QSJODJQMF DBO CF GPSNVMBUFE BT GPMMPXT�

" SFMBUJPO ܹ৬ ⩿ܺ TVDI UIBU ⩿ ó Û	৬ s ৬
 JT XFMM�GPVOEFE PS /PFUIFSJBO JG BOE POMZ JG
UIFSF JT OP JOĕOJUF TUSJDUMZ �EFTDFOEJOHח DIBJO PG FMFNFOUT PG৬�

ćF GBDU UIBU UIF FWBMVBUJPO PG ৮	ਈ
ਙ GPS ਙ ó ං NBLFT B SFDVSTJWF DBMM UP ਈ	ਚ
 XJUI
QBSBNFUFS ਚ ó ං XSJUUFO ਙ ৮	ਈ
ݍ ਚ JT VTVBMMZ EFĕOFE TZOUBDUJDBMMZ� *OTUFBE XF EFĕOF JU
TFNBOUJDBMMZ BT ਈ<ਚ ҽ ਆ>	ਚ
 թ ਚਈ<ਚ ҽ ਆ>	ਛ
 թ ਈ	ਛ
 XIFO ਛ ă ਚਙ ৮	ਈ
ਚݍ թ ðਆ óං � ৮	ਈ
ਙ ă ৮	ਈ<ਚ ҽ ਆ>
ਙ
ćF QSPPG QSJODJQMF SFNBJOT TPVOE XIFO UIJT TFNBOUJD EFQFOEFODZ SFMBUJPO JT PWFS�BQQSPY�
JNBUFE TZOUBDUJDBMMZ 	CVU NBZCF OPU DPNQMFUF BT TIPXO CZ ৮	ਈ
ਙ թ (ii ? ਙ : ਈ	ਙ
) XIFSF
TZOUBDUJDBMMZ ਙ ৮	ਈ

ਙݍ� ৮
ćFPSFN �� 	ćF WBSJBOU GVODUJPO QSJODJQMF GPS UFSNJOBUJPO
 -FU ৮ ó L ਖਅ÷÷÷Ҿ L CF BO
VQQFS�DPOUJOVPVT GVODUJPO PO B DQP ܹL ֕ Ď ֘ܺ৬ ó Û	ං
 BOE P৬ թ \ਈ Է îਙ ó ৬ �ਈ	ਙ
 ă Ď^� ćFO

H7T֕ ৮ ó P৬ í ð ⩿ ó Û	৬ s ৬
 � ܹ৬ ⩿ܺ JT XFMM�GPVOEFE ü 	B
ü îਊ ó <� ਏ> � îਙ ó ৬ � 	ਙ ৮	ਈ

ਚݍ ë 	ਙ ח ਚ
 	C
 !

*OUVJUJWFMZ H7T֕ ৮NVTU UFSNJOBUF TJODF CZ DPOUSBEJDUJPO BO JOĕOJUF DBMM TFRVFODF XPVME DSF�
BUF BO JOĕOJUF EFTDFOU BMPOH UIF DBMMFE QBSBNFUFST� $PNQMFUFOFTT GPMMPXT GSPN UIF GBDU UIBU ח
DBO CF DIPTFO BT ৮	ਈ
ݍ XIJDI JT BMXBZT XFMM�GPVOEFE GPS UFSNJOBUJOH QSPHSBNT�ćJT JT QSPWFE
GPSNBMMZ JO $PSPMMBSZ ���

�

ਈ	ਆ
 ֕ ਉ	ਆ
� 'JSTU�PSEFS GVODUJPOT ਈ BSF EFĕOFE SFDVSTJWFMZ BT MFBTU ĕYQPJOUT ਈ � H7T Т֕ ৮ PG
DPOUJOVPVT USBOTGPSNFST ৮ ó 	ං Ҿ ංĎ
 ਖਅ÷÷÷Ҿ 	ං Ҿ ංĎ
� ৮ JT DPOUJOVPVT JG BOE POMZ JČ
GPS FWFSZ EFOVNFSBCMF DIBJO ਈ� Т֕ ਈ� Т֕ ¼ Т֕ ਈਊ Т֕ ¼ Тࡗਊó�৮	ਈਊ
 � ৮	 Тࡗਊó�ਈਊ
� ćJT HVBSBOUFFT

UIBU H7T Т֕ ৮ � Тࡗਊó�৮ਊ	 ਆ �Ď
 JT UIF MJNJU PG UIF JUFSBUFT ৮�	ਈ
 � ਈ BOE ৮ਊ��	ਈ
 � ৮	৮ਊ	ਈ

 PG৮�
&YBNQMF � 	XIJMF JUFSBUJPO
 ćF JUFSBUJPO � 2#$' ρ�	 Ѵ3
ς Ѵ3 ҅ �	 Ѵ3
 Δ IBT EFOPUBUJPOBM
TFNBOUJDT !" � H7T Т֕ ৮!" XIFSF ৮!"	 Ѵਙ
 � (!�"	 Ѵਙ
 ? ৮!"	!�"	 Ѵਙ

 : Ѵਙ) XIFSF !�"
JT UIF TFNBOUJDT PG CPPMFBO FYQSFTTJPO � !�" UIBU PG FYQSFTTJPO � 	XIJDI NBZ DPOUBJO DPO�
EJUJPOBMT BOE JOOFS MPPQ
 BOE (ii ? ਃ :) � ਃ BOE (77 ? ਃ :) � JT UIF DPOEJUJPOBM�
!

� ЅF UFSNJOBUJPO QSPCMFN
ćF UFSNJOBUJPO QSPCMFN DPOTJTUT JO QSPWJOH UIBU B GVODUJPO ਈ ó ං Ҿ ංĎ BMXBZT UFSNJ�
OBUFT PO B TQFDJĕFE UFSNJOBUJPO EPNBJO৬ ó Û	ං
 UIBU JT îਆ ó ৬ � ਈ	ਆ
 ă Ď�
&YBNQMF � 	UFSNJOBUJPO
 'PS JNQFSBUJWF QSPHSBN UIF UFSNJOBUJPO QSPCMFN JT VTVBMMZ TPMWFE
CZ UIF 5VSJOH <��>�'MPZE <�>�.BOOB�1OVFMJ <�> WBSJBOU GVODUJPO NFUIPE� 'PS ĕSTU�PSEFS
GVODUJPOT POF DBO DPOTJEFS +POFT TJ[F�DIBOHF UFSNJOBUJPO NFUIPE <� �>� !

� 'JYQPJOU JOEVDUJPO QSJODJQMF
*O DBTF ܹංĎ ֕ Ď ֘ ֗ܺ JT B DPNQMFUF MBUUJDF 	F�H� CZ BEEJOH B TVQSFNVN ֦ BT JO 4DPUU�T
PSJHJOBM QBQFST <��>
 XF DBO NBLF QSPPGT CZ ĕYQPJOU JOEVDUJPO� <� Q� �����> BOE <�� 	���
>
PCTFSWFE UIBU ĕYQPJOU JOEVDUJPO EJSFDUMZ GPMMPXT GSPN 5BSTLJ�T ĕYQPJOU UIFPSFN <��>�

ćFPSFN � 	5BSTLJ ĕYQPJOU UIFPSFN
 "O JODSFBTJOH GVODUJPO ৮ ó ৴ Ӏ݇ ৴ PO B DPNQMFUF
MBUUJDF ܹ৴ ֕ Ď ֦ ֗ ֘ܺ IBT B MFBTU ĕYQPJOU H7T֕ ৮ � ਙ\ࡖ ó ৴ Է ৮	ਙ
 ֕ ਙ^� !

'JYQPJOU JOEVDUJPO SFMJFT PO QSPQFSUJFT PG ৮ BCPWF JUT MFBTU ĕYQPJOU J�F� UIF ਙ ó ৴ TVDI UIBU৮	ਙ
 ֕ ਙ BOE UIFSFGPSF H7T֕ ৮ ֕ ਙ�
ćFPSFN � 	'JYQPJOU JOEVDUJPO *
 -FU৮ ó L Ӏ݇ L CF BO JODSFBTJOH GVODUJPO PO B DPNQMFUF
MBUUJDF ܹL ֕ Ď ֦ ֗ ֘ܺ BOE ৸ ó L� 8F IBWF

H7T֕ ৮ ֕ ৸ í ðৱ ó L � ৮	ৱ
 ֕ ৱ 	B
ü ৱ ֕ ৸ 	C
 !

�

ਈ	ਆ
 ֕ ਉ	ਆ
� 'JSTU�PSEFS GVODUJPOT ਈ BSF EFĕOFE SFDVSTJWFMZ BT MFBTU ĕYQPJOUT ਈ � H7T Т֕ ৮ PG
DPOUJOVPVT USBOTGPSNFST ৮ ó 	ං Ҿ ංĎ
 ਖਅ÷÷÷Ҿ 	ං Ҿ ංĎ
� ৮ JT DPOUJOVPVT JG BOE POMZ JČ
GPS FWFSZ EFOVNFSBCMF DIBJO ਈ� Т֕ ਈ� Т֕ ¼ Т֕ ਈਊ Т֕ ¼ Тࡗਊó�৮	ਈਊ
 � ৮	 Тࡗਊó�ਈਊ
� ćJT HVBSBOUFFT

UIBU H7T Т֕ ৮ � Тࡗਊó�৮ਊ	 ਆ �Ď
 JT UIF MJNJU PG UIF JUFSBUFT ৮�	ਈ
 � ਈ BOE ৮ਊ��	ਈ
 � ৮	৮ਊ	ਈ

 PG৮�
&YBNQMF � 	XIJMF JUFSBUJPO
 ćF JUFSBUJPO � 2#$' ρ�	 Ѵ3
ς Ѵ3 ҅ �	 Ѵ3
 Δ IBT EFOPUBUJPOBM
TFNBOUJDT !" � H7T Т֕ ৮!" XIFSF ৮!"	 Ѵਙ
 � (!�"	 Ѵਙ
 ? ৮!"	!�"	 Ѵਙ

 : Ѵਙ) XIFSF !�"
JT UIF TFNBOUJDT PG CPPMFBO FYQSFTTJPO � !�" UIBU PG FYQSFTTJPO � 	XIJDI NBZ DPOUBJO DPO�
EJUJPOBMT BOE JOOFS MPPQ
 BOE (ii ? ਃ :) � ਃ BOE (77 ? ਃ :) � JT UIF DPOEJUJPOBM�
!

� ЅF UFSNJOBUJPO QSPCMFN
ćF UFSNJOBUJPO QSPCMFN DPOTJTUT JO QSPWJOH UIBU B GVODUJPO ਈ ó ං Ҿ ංĎ BMXBZT UFSNJ�
OBUFT PO B TQFDJĕFE UFSNJOBUJPO EPNBJO৬ ó Û	ං
 UIBU JT îਆ ó ৬ � ਈ	ਆ
 ă Ď�
&YBNQMF � 	UFSNJOBUJPO
 'PS JNQFSBUJWF QSPHSBN UIF UFSNJOBUJPO QSPCMFN JT VTVBMMZ TPMWFE
CZ UIF 5VSJOH <��>�'MPZE <�>�.BOOB�1OVFMJ <�> WBSJBOU GVODUJPO NFUIPE� 'PS ĕSTU�PSEFS
GVODUJPOT POF DBO DPOTJEFS +POFT TJ[F�DIBOHF UFSNJOBUJPO NFUIPE <� �>� !

� 'JYQPJOU JOEVDUJPO QSJODJQMF
*O DBTF ܹංĎ ֕ Ď ֘ ֗ܺ JT B DPNQMFUF MBUUJDF 	F�H� CZ BEEJOH B TVQSFNVN ֦ BT JO 4DPUU�T
PSJHJOBM QBQFST <��>
 XF DBO NBLF QSPPGT CZ ĕYQPJOU JOEVDUJPO� <� Q� �����> BOE <�� 	���
>
PCTFSWFE UIBU ĕYQPJOU JOEVDUJPO EJSFDUMZ GPMMPXT GSPN 5BSTLJ�T ĕYQPJOU UIFPSFN <��>�

ćFPSFN � 	5BSTLJ ĕYQPJOU UIFPSFN
 "O JODSFBTJOH GVODUJPO ৮ ó ৴ Ӏ݇ ৴ PO B DPNQMFUF
MBUUJDF ܹ৴ ֕ Ď ֦ ֗ ֘ܺ IBT B MFBTU ĕYQPJOU H7T֕ ৮ � ਙ\ࡖ ó ৴ Է ৮	ਙ
 ֕ ਙ^� !

'JYQPJOU JOEVDUJPO SFMJFT PO QSPQFSUJFT PG ৮ BCPWF JUT MFBTU ĕYQPJOU J�F� UIF ਙ ó ৴ TVDI UIBU৮	ਙ
 ֕ ਙ BOE UIFSFGPSF H7T֕ ৮ ֕ ਙ�
ćFPSFN � 	'JYQPJOU JOEVDUJPO *
 -FU৮ ó L Ӏ݇ L CF BO JODSFBTJOH GVODUJPO PO B DPNQMFUF
MBUUJDF ܹL ֕ Ď ֦ ֗ ֘ܺ BOE ৸ ó L� 8F IBWF

H7T֕ ৮ ֕ ৸ í ðৱ ó L � ৮	ৱ
 ֕ ৱ 	B
ü ৱ ֕ ৸ 	C
 !

�

ਈ	ਆ
 ֕ ਉ	ਆ
� 'JSTU�PSEFS GVODUJPOT ਈ BSF EFĕOFE SFDVSTJWFMZ BT MFBTU ĕYQPJOUT ਈ � H7T Т֕ ৮ PG
DPOUJOVPVT USBOTGPSNFST ৮ ó 	ං Ҿ ංĎ
 ਖਅ÷÷÷Ҿ 	ං Ҿ ංĎ
� ৮ JT DPOUJOVPVT JG BOE POMZ JČ
GPS FWFSZ EFOVNFSBCMF DIBJO ਈ� Т֕ ਈ� Т֕ ¼ Т֕ ਈਊ Т֕ ¼ Тࡗਊó�৮	ਈਊ
 � ৮	 Тࡗਊó�ਈਊ
� ćJT HVBSBOUFFT

UIBU H7T Т֕ ৮ � Тࡗਊó�৮ਊ	 ਆ �Ď
 JT UIF MJNJU PG UIF JUFSBUFT ৮�	ਈ
 � ਈ BOE ৮ਊ��	ਈ
 � ৮	৮ਊ	ਈ

 PG৮�
&YBNQMF � 	XIJMF JUFSBUJPO
 ćF JUFSBUJPO � 2#$' ρ�	 Ѵ3
ς Ѵ3 ҅ �	 Ѵ3
 Δ IBT EFOPUBUJPOBM
TFNBOUJDT !" � H7T Т֕ ৮!" XIFSF ৮!"	 Ѵਙ
 � (!�"	 Ѵਙ
 ? ৮!"	!�"	 Ѵਙ

 : Ѵਙ) XIFSF !�"
JT UIF TFNBOUJDT PG CPPMFBO FYQSFTTJPO � !�" UIBU PG FYQSFTTJPO � 	XIJDI NBZ DPOUBJO DPO�
EJUJPOBMT BOE JOOFS MPPQ
 BOE (ii ? ਃ :) � ਃ BOE (77 ? ਃ :) � JT UIF DPOEJUJPOBM�
!

� ЅF UFSNJOBUJPO QSPCMFN
ćF UFSNJOBUJPO QSPCMFN DPOTJTUT JO QSPWJOH UIBU B GVODUJPO ਈ ó ං Ҿ ංĎ BMXBZT UFSNJ�
OBUFT PO B TQFDJĕFE UFSNJOBUJPO EPNBJO৬ ó Û	ං
 UIBU JT îਆ ó ৬ � ਈ	ਆ
 ă Ď�
&YBNQMF � 	UFSNJOBUJPO
 'PS JNQFSBUJWF QSPHSBN UIF UFSNJOBUJPO QSPCMFN JT VTVBMMZ TPMWFE
CZ UIF 5VSJOH <��>�'MPZE <�>�.BOOB�1OVFMJ <�> WBSJBOU GVODUJPO NFUIPE� 'PS ĕSTU�PSEFS
GVODUJPOT POF DBO DPOTJEFS +POFT TJ[F�DIBOHF UFSNJOBUJPO NFUIPE <� �>� !

� 'JYQPJOU JOEVDUJPO QSJODJQMF
*O DBTF ܹංĎ ֕ Ď ֘ ֗ܺ JT B DPNQMFUF MBUUJDF 	F�H� CZ BEEJOH B TVQSFNVN ֦ BT JO 4DPUU�T
PSJHJOBM QBQFST <��>
 XF DBO NBLF QSPPGT CZ ĕYQPJOU JOEVDUJPO� <� Q� �����> BOE <�� 	���
>
PCTFSWFE UIBU ĕYQPJOU JOEVDUJPO EJSFDUMZ GPMMPXT GSPN 5BSTLJ�T ĕYQPJOU UIFPSFN <��>�

ćFPSFN � 	5BSTLJ ĕYQPJOU UIFPSFN
 "O JODSFBTJOH GVODUJPO ৮ ó ৴ Ӏ݇ ৴ PO B DPNQMFUF
MBUUJDF ܹ৴ ֕ Ď ֦ ֗ ֘ܺ IBT B MFBTU ĕYQPJOU H7T֕ ৮ � ਙ\ࡖ ó ৴ Է ৮	ਙ
 ֕ ਙ^� !

'JYQPJOU JOEVDUJPO SFMJFT PO QSPQFSUJFT PG ৮ BCPWF JUT MFBTU ĕYQPJOU J�F� UIF ਙ ó ৴ TVDI UIBU৮	ਙ
 ֕ ਙ BOE UIFSFGPSF H7T֕ ৮ ֕ ਙ�
ćFPSFN � 	'JYQPJOU JOEVDUJPO *
 -FU৮ ó L Ӏ݇ L CF BO JODSFBTJOH GVODUJPO PO B DPNQMFUF
MBUUJDF ܹL ֕ Ď ֦ ֗ ֘ܺ BOE ৸ ó L� 8F IBWF

H7T֕ ৮ ֕ ৸ í ðৱ ó L � ৮	ৱ
 ֕ ৱ 	B
ü ৱ ֕ ৸ 	C
 !

�

In such cases fixpoint induction is not useful but it is possible to reason on the iterates of 𝐹, as
shown in Sect. 8.

Induction principles for denotational total correctness 5

5 Impossibility to prove termination by fixpoint induction with a
denotational semantics

One can use a function 𝑃 ∈ D → D⊥ to specify a termination domain dom(𝑃) ≜ {𝑥 ∈ D ∣ 𝑃(𝑥) ≠
⊥}. However, by definition of ⊑̇, lfp ⊑̇ 𝐹 ⊑̇ 𝑃 means that lfp ⊑̇ 𝐹 terminates less often that 𝑃 that
is dom(lfp ⊑̇ 𝐹) ⊆ dom(𝑃). This is not a specification of definite termination but of definite non-
termination. So fixpoint induction can be used to prove non-termination but not termination. Of
course 𝑃 ⊑̇ lfp ⊑̇ 𝐹 would do but this is not what fixpoint induction is intended to prove. Considering
the order-dual of Th. 2 will not work either (although it would work for greatest fixpoints) since,
in general, gfp ⊑̇ 𝐹 ≠ lfp ⊑̇ 𝐹.

Example 4 (Termination/total correctness of the factorial). Continuing Ex. 3, termination of the
factorial lfp ⊑̇ 𝐹! where 𝐹!(𝑓) ≜ 𝜆 𝑛 . (𝑛 = 0 ? 1 : 𝑛 ×𝑓(𝑛 − 1)) is 𝑓! ⊑̇ lfp ⊑̇ 𝐹! where 𝑓! ≜ 𝜆 𝑛 . (𝑥 ⩾ 0 ? 𝑛! :
⊥) but this is not provable by fixpoint induction Th. 2. ⊓⊔

6 Iteration induction principle

As observed by [19,21,26], iteration induction directly follows from Kleene/Scott’s fixpoint theorem
below (which we used in Sect. 2 with L = D → D⊥). (Th. 3 is often attributed to Stephen Cole
Kleene, after its first recursion theorem [16, p. 348] and appears in [2].)

Theorem 3 (Kleene/Scott iterative fixpoint theorem [26]) If 𝐹 ∈ L 𝑢𝑐−−−→ L is an upper con-
tinuous function on a cpo ⟨L, ⊑, ⊥, ⊔⟩ then 𝐹 has a least fixpoint lfp⊑ 𝐹 = ⨆

𝑛∈N
𝐹𝑛(⊥).

Since 𝐹0(⊥) = ⊥ is the infimum and 𝐹 is upper continuous hence monotonically increasing, the
iterates ⟨𝐹𝑛(⊥), 𝑛 ∈ N⟩ form a non-empty, infinite, denumerable, and maximally increasing chain
which is either first strictly increasing and then stationary (when the iterates converge in finitely
many steps) or else is strictly increasing.

Remark 1. Th. 3 generalizes to chain-𝛼-complete posets (where every 𝛼-chain that is increasing
chain of cardinality less than or equal to 𝛼 has a lub) and 𝛼-continuous functions (preserving the
lubs of 𝛼-chains), and to monotonically increasing functions on complete lattices, using transfinite
iterations 𝐹0(⊥) = ⊥, 𝐹𝛿+1 = 𝐹(𝐹𝛿) for successor ordinals and 𝐹𝜆 = ⨆𝛿<𝜆 𝐹𝛿 for limit ordinals less
than or equal to 𝛼 [22], respectively all ordinals [8]. Th. 3 is then a corollary for the first infinite
ordinal 𝛼 = 𝜔. ⊓⊔

Iteration induction relies on properties of 𝐹 below its least fixpoint. It is usually referred to as
Scott induction or De Bakker and Scott or computational induction and formalized as

“If P ∈ ℘(D) is an admissible predicate, ⊥̇ ∈ P, and ∀𝑑 ∈ P . 𝐹(𝑑) ∈ P then lfp⊑ 𝐹 ∈ P”. (4)

The predicate P is said to be admissible [19] or inclusive [25, p. 118] if and only if it holds for an
increasing enumerable chain, it also holds for its limit, that is for all increasing enumerable chains
𝐹0 ⊑ 𝐹1 ⊑ … ⊑ 𝐹𝑖 ⊑ …, if ∀𝑖 ∈ N . 𝐹𝑖 ∈ P then ⨆

𝑖∈N
𝐹𝑖 ∈ P.

6 P. Cousot

7 Impossibility to prove termination by iteration induction

The termination specification of functions 𝑓 ∈ D → D⊥ is the set P ≜ {𝑓 ∈ D → D⊥ ∣ ∀𝑥 ∈ D .
𝑓(𝑥) ∈ D} = D→ D of all functions that always terminate on the domain D of their argument. To
prove lfp ⊑̇ 𝐹 ∈ P by structural induction (4) requires ⊥̇ ∈ P, which is not true since, unless D = ∅,
∀𝑥 ∈ D . ⊥̇(𝑥) = ⊥ ∈ D is false. So Scott’s iteration induction principle is incomplete since it cannot
be used to prove termination.

8 Generalized iteration induction principle

This incompleteness calls for a generalization of iteration induction where the characterization Q
of the iterations differs from that of their limit P.

Example 5. For the factorial of Ex. 3, the iterates 𝐹𝑛! (⊥̇), 𝑛 ∈ N are partial functions (characterized
by Q) while the limit 𝑓! is a total function on D = N (characterized by P). ⊓⊔
Let 𝐹 ∈ 𝑆 → 𝑆 and ⟨𝑥𝑖, 𝑖 ∈ Δ⟩ be a family of elements of 𝑆. The family is non-empty if and
only if Δ ≠ ∅. It is infinite when the cardinality of Δ is greater than or equal to that of N. It is
denumerable if and only if Δ ⊆ N (up to an isomorphism). It is a ⊑-increasing chain if and only if
∀𝑖, 𝑗 ∈ Δ . (𝑖 ⩽ 𝑗) ⇒ (𝑥𝑖 ⊑ 𝑥𝑗). It is a strictly increasing chain if and only if ∀𝑖, 𝑗 ∈ Δ . (𝑖 < 𝑗) ⇒ (𝑥𝑖 ⋤ 𝑥𝑗).
It is in 𝑆′ ⊆ 𝑆 if and only if ∀𝑖 ∈ Δ . 𝑥𝑖 ∈ 𝑆′. The sequence ⟨𝑥𝑖, 𝑖 ∈ N⟩ is 𝐹-maximally increasing
when it is infinite (hence non-empty), denumerable, iterating 𝐹 (i.e. ∀𝑖 ∈ N . 𝑥𝑖+1 = 𝐹(𝑥𝑖)), and
either strictly increasing (i.e. ∀𝑖, 𝑗 ∈ N . (𝑖 < 𝑗) ⇒ (𝑥𝑖 ⋤ 𝑥𝑗)) or is first strictly increasing and then
stationary (i.e. ∃𝑘 ∈ N . ∀𝑖, 𝑗 ∈ N . (𝑖 < 𝑗 ⩽ 𝑘) ⇒ (𝑥𝑖 ⋤ 𝑥𝑗) ∧ (𝑘 ⩽ 𝑖) ⇒ (𝑥𝑘 = 𝑥𝑖)).

Theorem 5 (Iteration induction) Let 𝐹 ∈ L 𝑢𝑐−−−→ L be a continuous function on a cpo ⟨L,
⊑, ⊥, ⊔⟩ and P ∈ ℘(L).

lfp⊑ 𝐹 ∈ P⇔ ∃Q ∈ ℘(L) . ⊥ ∈ Q (5.a)
∧ ∀𝑥 ∈ Q . 𝐹(𝑥) ∈ Q (5.b)
∧ for any 𝐹-maximally ⊑-increasing chain ⟨𝑥𝑖, 𝑖 ∈ N⟩ in Q, (5.c)

⨆
𝑖∈N
𝑥𝑖 ∈ P ⊓⊔

The proof below shows that the hypotheses (a), (b), and (c) are necessary only for the iterates of
𝐹. The soundness proof shows that Q is a valid property of the iterates of 𝐹 from ⊥ while P is
a property of their least upper bound, that is of the fixpoint. Offering the possibility of choosing
Q ≠ P is essential to solve the incompleteness problem of Scott induction (4) mentioned in the
above Sect. 7. But of course Th. 5 can be used with Q = P so that it is a generalization of Scott
induction (4) and a proof that (4) is sound.

Condition (5.c) corresponds to the “admissible predicates” in Scott induction. However, (5.c) is
requested for maximally ⊑-increasing chains only since requiring it for all increasing chains would
amount to Scott induction (4). The quantification over chains iterating 𝐹 in (5.c) can be relaxed
since this condition could also be imposed by an appropriate choice of Q.

Proof (of Th. 5). Soundness (⇐): Let 𝐹𝑖+1(⊥) = 𝐹(𝐹𝑖(⊥)) be the iterates of 𝐹 from 𝐹0(⊥) = ⊥.
𝐹0(⊥) ∈ Q by (5.a). By recurrence, ∀𝑖 ∈ N . 𝐹𝑖(⊥) ∈ Q by (5.b). 𝐹 is continuous hence monotonically

Induction principles for denotational total correctness 7

increasing so ⟨𝐹𝑖(⊥) ∈ Q, 𝑖 ∈ N⟩ is a ⊑-increasing enumerable chain iterating 𝐹. If it is finite then
𝐹0(⊥) ⊏ 𝐹1(⊥) ⊏ … ⊏ 𝐹𝑛−1(⊥) = 𝐹𝑛(⊥) = … = … for some 𝑛 ∈ N proving that the chain is 𝐹-
maximally increasing in Q. So, by (5.c), lfp⊑ 𝐹 = 𝐹𝑛−1(⊥) = ⨆𝑖∈N 𝐹𝑖(⊥) ∈ P. Otherwise, the chain is
infinite and strictly increasing so 𝐹-maximally increasing in Q. By Th. 3 and (5.c), we conclude
that lfp⊑ 𝐹 = ⨆𝑖∈N 𝐹𝑖(⊥) ∈ P.

Completeness (⇒): Let 𝐹𝑖+1(⊥) = 𝐹(𝐹𝑖(⊥)) be the iterates of 𝐹 from 𝐹0(⊥) = ⊥. Choosing Q =
{𝐹𝑖(⊥) ∣ 𝑖 ∈ N}, we have (5.a) and (5.b). By Th. 3, ⟨𝐹𝑖(⊥) ∈ Q, 𝑖 ∈ N⟩ is a ⊑-increasing chain in Q.
It is enumerable and the only 𝐹-maximally increasing one so {𝑥𝑖 ∈ Q ∣ 𝑖 ∈ N} = {𝐹𝑖(⊥) ∈ Q ∣ 𝑖 ∈ N}.
By Th. 3, lfp⊑ 𝐹 = ⨆𝑖∈N 𝐹𝑖(⊥). By hypothesis, lfp⊑ 𝐹 ∈ P, and so ⨆𝑖∈N 𝐹𝑖(⊥) = ⨆𝑖∈N 𝑥𝑖 ∈ P, proving
(5.c). ⊓⊔

Remark 2. The same way that the inductive invariant in fixpoint induction need not necessarily be
the strongest possible one, Q need not necessarily be the strongest possible one Q = {𝐹𝑖(⊥) ∣ 𝑖 ∈ N}
in Th. 5, as used in the completeness proof. An example is L = {⊥, 𝑎, 𝑏, 𝑐} with ⊥ ⋤ 𝑎 ⋤ 𝑏 ⋤ 𝑐,
𝐹(⊥) = 𝐹(𝑎) = 𝑎, 𝐹(𝑐) = 𝐹(𝑏) = 𝑏, and P = {𝑎, 𝑏}. Take Q = {𝑎, 𝑏, 𝑐} so that the only 𝐹-maximally
⊑-increasing chains in Q are ⊥𝑎𝜔, 𝑎𝜔, and 𝑏𝜔 which lubs 𝑎 and 𝑏 belong to P, proving lfp⊑ 𝐹 ∈ P. ⊓⊔

Remark 3. Following Rem. 1, Th. 5 generalizes to 𝛼-continuous functions on chain-𝛼-complete
posets and monotonically increasing functions on complete lattices, with Th. 5 holding for 𝛼 = 𝜔.

⊓⊔

Example 6 (Hoare logic). Let JWK = lfp ⊑̇ 𝐹W be the denotational semantics of the iteration W =
while (B) S where 𝐹W(𝑓)𝑥 = (¬𝐵(𝑥) ? 𝑥 : 𝑓(𝑆(𝑥))) as defined in Ex. 1. Given 𝑃,𝑄 ∈ ℘(D), Hoare
notation for partial correctness [14] is ⦃𝑃⦄ W ⦃𝑄⦄ denoting ∀𝑥 ∈ 𝑃 . (JWK𝑥 ≠ ⊥) ⇒ (JWK𝑥 ∈ 𝑄). Hoare
partial correctness rule for the while iteration is

⦃𝐼 ∩ 𝐵⦄ S ⦃𝐼⦄
⦃𝐼⦄ W ⦃𝐼 ∩ ¬𝐵⦄

(6)

[25, Sect. 6.6.6, p. 115] proves the soundness of the Hoare partial correctness rule for the while
iteration based on its denotational semantics. The ad-hoc proof proceeds by induction on the
semantics of the loop iterates and, assuming termination, passes to the limit. Formally, this consists
in proving soundness by applying Th. 5, as follows.

Take Q ≜ {𝑓 ∈ D→ D⊥ ∣ ∀𝑥 ∈ 𝐼 . 𝑓(𝑥) ≠ ⊥ ⇒ 𝑓(𝑥) ∈ 𝐼}.
⊥̇ ∈ Q by def. Q, proving (5.a).
Assume that 𝑓 ∈ Q. To prove (5.b), we must show that the premiss of Hoare rule (6) implies that
𝐹W(𝑓) ∈ Q.

If 𝑥 ∈ 𝐼 and ¬𝐵(𝑥) then obviously 𝑥 ∈ 𝐼. Otherwise if 𝑥 ∈ 𝐼∩𝐵(𝑥) and 𝐹W(𝑓)𝑥 ≠ ⊥ then ⦃𝐼∩𝐵⦄ S ⦃𝐼⦄
implies 𝑆(𝑥) ∈ 𝐼 so if 𝑆(𝑥) ≠ ⊥ then 𝑓(𝑆(𝑥)) ∈ 𝐼 since 𝑓 ∈ Q proving that 𝐹W(𝑓)𝑥 = 𝑓(𝑆(𝑥)) ∈ 𝐼 that is
𝐹W(𝑓) ∈ Q.

Let ⟨𝑓𝑖 ∈ Q, 𝑖 ∈ N⟩ be any 𝐹W-maximally ⊑-increasing enumerable chain. Assume that 𝑥 ∈ 𝐼 and
(⨆̇
𝑖∈N
𝑓𝑖)𝑥 ≜ ⨆𝑖∈N 𝑓𝑖(𝑥) ≠ ⊥. By def. lub ⊑, ∃𝑗 ∈ N . ⨆𝑖∈N 𝑓𝑖(𝑥) = 𝑓𝑗(𝑥) ≠ ⊥. Since 𝑓𝑗 ∈ Q, 𝑓𝑗(𝑥) ∈ 𝐼,

proving ⨆𝑖∈N 𝑓𝑖(𝑥) ∈ 𝐼 that is ⨆̇
𝑖∈N
𝑓𝑖 ∈ Q which is (5.c).

By Th. 5, we conclude that JWK = lfp⊑ 𝐹W ∈ Q so ∀𝑥 ∈ 𝐼 . JWK(𝑥) ≠ ⊥ ⇒ JWK(𝑥) ∈ 𝐼. Moreover, if
(lfp⊑ 𝐹W)𝑥 ≠ ⊥ then ¬𝐵(lfp⊑ 𝐹W), as shown in Ex. 1, proving ⦃𝐼⦄ W ⦃𝐼 ∧ ¬𝐵⦄.

Obviously, this rule is incomplete since 𝐼 may not be inductive (so, for completeness, [5,6] has
to ensure that 𝐼 is inductive and use the consequence rule). ⊓⊔

8 P. Cousot

9 Proving total correctness by generalized iteration induction

By completeness, the termination of lfp ⊑̇ 𝐹 on a termination domain 𝑇 ∈ ℘(D) can always be proved
by generalized iteration induction Th. 5, if lfp ⊑̇ 𝐹 ∈ P𝑇 does hold.

Example 7 (Total correctness II). Continuing Ex. 3, let us define PN ≜ {𝑓 ∈ N → N⊥ ∣ ∀𝑛 ∈ N .
𝑓(𝑛) ≠ ⊥} and apply Th. 5 to prove that prove that lfp⊆ 𝐹! ∈ PN (which, together with Ex. 3, shows
that lfp⊆ 𝐹! = 𝑓!).

Let us define ∀𝑖 ∈ N . Q𝑖 ≜ {𝑓 ∈ N → N⊥ ∣ ∀𝑛 ∈ [0, 𝑖[. 𝑓(𝑛) ≠ ⊥ ∧ ∀𝑛 ⩾ 𝑖 . 𝑓(𝑛) = ⊥} and
Q ≜ ⋃
𝑖∈N
Q𝑖.

We have ⊥̇ ∈ {⊥̇} = Q0 ⊆ Q, proving (5.a).
Assume that 𝑖 ∈ N and 𝑓 ∈ Q𝑖. We have
𝐹!(𝑓)

= 𝜆 𝑛 . (𝑛 = 0 ? 1 : 𝑛 × 𝑓(𝑛 − 1)) Hdef. 𝐹! in Ex. 3I
⇒ 𝐹!(𝑓)0 ≠ ⊥ ∧ ∀𝑛 − 1 ∈ [0, 𝑖[. 𝐹!(𝑓)(𝑛) ≠ ⊥ H𝑓 ∈ Q𝑖I
⇒ 𝐹!(𝑓) ∈ Q𝑖+1 Hdef. Q𝑖+1I

It follows, by def. of Q, that if 𝑓 ∈ Q then 𝑓 ∈ Q𝑖 for some 𝑖 ∈ N and therefore 𝐹!(𝑓) ∈ Q𝑖+1 ⊆ Q,
so that (5.b) holds.

Let ⟨𝑓𝑛, 𝑛 ∈ N⟩ be 𝐹!-maximally increasing chain of elements of 𝑄. So, by def. Q, we have
𝑓0 ∈ Q𝑗0 , 𝑓1 ∈ Q𝑗1 , …, 𝑓𝑛 ∈ Q𝑗𝑛 , 𝑓𝑛+1 ∈ Q𝑗𝑛+1 , ….

Assume that the chain is stationary at some rank 𝑖 such that 𝑓0 ⋤ 𝑓𝑖−1 ⋤ … ⋤ 𝑓𝑖 = 𝑓𝑖+1 = ….
Then 𝑓𝑖 ∈ Q𝑗 for some 𝑗 ∈ N. So 𝑓𝑖+1 = 𝑓𝑖 ∈ Q𝑗 and 𝑓𝑖+1 = 𝐹!(𝑓𝑖) ∈ Q𝑗+1, a contradiction since
Q𝑗 ∩Q𝑗+1 = ∅.1

It follows that the chain 𝑓0 ⋤ 𝑓1 ⋤ … ⋤ 𝑓𝑛 ⋤ … is strictly increasing and we have 𝑗0 < 𝑗1 < … <
𝑗𝑛 < 𝑗𝑛+1 < … so 𝑗𝑛+1 > 𝑛 + 1. Since 𝑓𝑛+1 ∈ Q𝑗𝑛+1 , 𝑓𝑛+1(𝑛) ≠ ⊥.

To prove that ⨆̇
𝑖∈N
𝑓𝑖 ∈ PN, assume by contradiction, that ∃𝑛 ∈ N . (⨆

𝑖∈N
𝑓𝑖)𝑛 = ⊥ so, by def. ⊔̇,

∃𝑛 ∈ N . ∀𝑖 ∈ N . 𝑓𝑖(𝑛) = ⊥. In particular 𝑓𝑛+1(𝑛) = ⊥, a contradiction.
We have proved (5.c) hence lfp⊆ 𝐹! ∈ PN, that is ∀𝑛 ∈ N . (lfp⊆ 𝐹!)𝑛 ≠ ⊥. ⊓⊔

A much simpler way of proving termination of lfp⊆ 𝐹! for positive parameters is to observe that
parameters strictly decreases on recursive call and remains positive which can be done only a finite
number of times since ⟨N, <⟩ is well-founded. Such termination proofs using a variant/convergence
function are formalized in Th. 10. Th. 11 shows that this proof is equivalent to the above proof
based on Th. 5.

10 Parameter dependency

The fact that the evaluation of 𝑓(𝑥) = 𝐹(𝑓)𝑥 for parameter 𝑥 ∈ D where 𝑓 = lfp⊑ 𝐹 makes a recursive
call to 𝑓(𝑦) with parameter 𝑦 ∈ D, written 𝑥 𝐹⟼𝑦, is usually defined syntactically.
1 Notice that with our choice of Q, this is not necessarily true for chains that are not 𝐹W-iterations.

Induction principles for denotational total correctness 9

Example 8. Define 𝑓(𝑛) = 𝐹(𝑓)𝑛 ≜ (𝑛 ∈ [0, 1] ? 0 : 𝑓(𝑛 − 1) + 𝑓(𝑛 − 2)). A call of 𝑓 for 𝑛 ∉ [0, 1] will
recursively call 𝑓(𝑛 − 1) and 𝑓(𝑛 − 2) in the expression 𝑓(𝑛 − 1) + 𝑓(𝑛 − 2). So 𝐹⟼ = {⟨𝑛, 𝑛 − 1⟩, ⟨𝑛,
𝑛 − 2⟩ ∣ 𝑛 ∈ Z ⧵ [0, 1]}:

!1

0 1

2

3
…

-4

-3

-2 -1

…
…
…

4

…

… ⊓⊔

Since we don’t want to provide a specific syntax for defining 𝐹, we have to define the call relation
𝐹⟼ semantically. We let 𝑓[𝑦 ← 𝑑] ∈ D→ D⊥ be the function 𝑓 except for paramater 𝑦 for which

it has value 𝑑 ∈ D⊥.

𝑓[𝑦 ← 𝑑](𝑦) ≜ 𝑑
𝑓[𝑦 ← 𝑑](𝑧) ≜ 𝑓(𝑧) when 𝑧 ≠ 𝑦

The call relation is semantically defined as follows.

𝑥 𝐹⟼𝑦 ≜ let𝑓 = lfp ⊑̇ 𝐹 and 𝑓′(𝑧) = (𝑓(𝑧) = ⊥ ? 0 : 𝑓(𝑧)) in (7)
𝐹(𝑓′[𝑦 ← ⊥])𝑥 = ⊥ ∧ 𝐹(𝑓′)𝑥 ≠ ⊥

For simplicity, we assume 𝐹 to be always well-defined so choosing 𝑓′(𝑧) = 0 can never lead to a
runtime error. The idea is that forcing 𝑓 to terminate for all its parameters but for 𝑦 for which 𝑓
does not terminate, the main call to 𝑥 will not terminate so this can only come from a recursive
call to 𝑓(𝑦) (or the body of 𝐹 does not terminate independently of its recursive calls to 𝑓, which
we exclude by 𝐹(𝑓′)𝑥 ≠ ⊥).

Example 9. Continuing Ex. 8, let 𝑓(𝑛) = 𝐹(𝑓)𝑛 ≜ (𝑛 ∈ [0, 1] ? 0 : 𝑓(𝑛 − 1) + 𝑓(𝑛 − 2)). The semantics
is 𝑓 = lfp⊑ 𝐹 = 𝜆 𝑛 . (𝑛 ⩾ 0 ? 0 : ⊥) and 𝑓′ = 𝜆 𝑛 . 0. We have
𝐹(𝑓′[𝑛 − 1 ← ⊥])𝑛

= (𝑛 ∈ [0, 1] ? 0 : 𝑓′[𝑛 − 1 ← ⊥](𝑛 − 1) + 𝑓′[𝑛 − 1 ← ⊥](𝑛 − 2)) Hdef. 𝐹I
= (𝑛 ∈ [0, 1] ? 0 : ⊥ + 0) Hdef. 𝑓′[𝑛 − 1 ← ⊥]I
= (𝑛 ∈ [0, 1] ? 0 : ⊥) Hdef. + assumed to be strictI
Similarly 𝐹(𝑓′[𝑛 − 2 ← ⊥])𝑛 = (𝑛 ∈ [0, 1] ? 0 : ⊥). In conclusion, 𝐹⟼ = {⟨𝑛, 𝑛 − 1⟩, ⟨𝑛, 𝑛 − 2⟩ ∣ 𝑛 ∈
Z ⧵ [0, 1]}. ⊓⊔

11 Recursive non-termination

Since we are interested in the termination of recursive functions 𝑓(𝑥) = 𝐹(𝑓)𝑥, we exclude non-
termination of the function due to causes other than recursive calls in 𝐹:

Definition 1 (function body termination hypothesis).

∀𝑓 ∈ D→ D⊥ . ∀𝑥 ∈ D . (𝐹(𝑓)𝑥 = ⊥) ⇒ (∃𝑦 ∈ D . 𝑥 𝐹⟼𝑦∧ 𝑓(𝑦) = ⊥) (8)

10 P. Cousot

Example 10 (function body non-termination). Define 𝐹(𝑓)𝑥 = if (𝑥 = 0) 1 else while (tt) ;𝑓(0),
we have 𝐹(𝑓)1 = ⊥ since the iteration is entered and never exited so the function body termination
hypothesis (8) is not satisfied. This is because the non-termination is not due to the recursive calls
but only to the loop body.

For 𝐹(𝑓)𝑥 = 𝑓(𝑓(𝑥)), if ∀𝑥 ∈ D . 𝑓(𝑥) ≠ ⊥ is assumed to always terminate then 𝐹(𝑓)𝑥 = 𝑓(𝑓(𝑥)) ≠
⊥ does terminate, so satisfies the function body termination hypothesis (8). ⊓⊔

A recursive function definition satisfying the function body termination hypothesis (8) does not
terminate for a given parameter if and only if it makes a recursive call that does not terminate.

Lemma 9 Let 𝑓 = lfp⊑ 𝐹 where 𝐹 is continuous and satisfies the function body termination
hypothesis (8). Then 𝑓(𝑥) = ⊥ if and only if ∃𝑦 ∈ D . 𝑥 𝐹⟼𝑦∧ 𝑓(𝑦) = ⊥. ⊓⊔

Proof. Let 𝐹 satisfying the function body termination hypothesis (8) and 𝑓 = lfp⊑ 𝐹. We have
𝑓(𝑥) = ⊥ if and only if 𝐹(𝑓)𝑥 = ⊥ which, by (8), implies ∃𝑦 ∈ D . 𝑥 𝐹⟼𝑦∧ 𝑓(𝑦) = ⊥.

Conversely, let 𝑓′(𝑧) = (𝑓(𝑧) = ⊥ ? 0 : 𝑓(𝑧)). Assume that ∃𝑦 ∈ D . 𝑥 𝐹⟼𝑦∧ 𝑓(𝑦) = ⊥. By (7),
𝑥 𝐹⟼𝑦 implies 𝐹(𝑓′[𝑦 ← ⊥])𝑥 = ⊥. Since ⊥ ⊑ 0 and 𝑓(𝑦) = ⊥, 𝑓 ⊑̇ 𝑓′[𝑦 ← ⊥] pointwise. Moreover,
𝐹 is continuous hence monotonically increasing so 𝑓(𝑥) = 𝐹(𝑓)𝑥 ⊑ 𝐹(𝑓′[𝑦 ← ⊥]) = ⊥ so 𝑓(𝑥) = ⊥
since ⊥ is the infimum. ⊓⊔

The function body termination hypothesis (8) is not restrictive. It simply means that, assuming
that all recursive calls to 𝑓 do terminate, the function body 𝐹(𝑓) must be proved to terminate.
Depending on the considered programming language, this can be done e.g. by structural induction,
using variant/convergence functions (as in Th. 10), etc. This may involve a preliminary partial
correctness proof (e.g. using Th. 2) to restrict the values that can be taken by variables.

12 Proving termination by a variant/convergence function
Following Turing [29] and Floyd [12], most termination proofs are done using a variant/convergence
function in a well-founded set which strictly decreases at each recursive call (or, equivalently, a well-
founded relation). This is the case e.g. of the “size change principle” [13]. The variant/convergence
function termination proof principle can be formulated as follows.

A relation ⟨𝐷, ⋅⩽⟩ such that ⋅⩽ ∈ ℘(𝐷×𝐷) is well-founded or Noetherian if and only if there is no
infinite strictly ⋗-decreasing chain of elements of 𝐷.

Theorem 10 (variant/convergence function proof principle for termination) Let 𝐹 ∈
(D→ D⊥) 𝑢𝑐−−−→ (D→ D⊥) be a continuous function on the cpo ⟨D→ D⊥, ⊑̇, ⊥̇, ⊔̇⟩ satisfying the
function body termination hypothesis (8), 𝑇 ∈ ℘(D), and P𝑇 ≜ {𝑓 ∈ D→ D⊥ ∣ ∀𝑥 ∈ 𝑇 . 𝑓(𝑥) ≠ ⊥}.
Then

lfp⊑ 𝐹 ∈ P𝑇 ⇔ ∃𝐷 ∈ ℘(D) . 𝑇 ⊆ 𝐷 (10.a)
∧ ∃ ⋅⩽ ∈ ℘(𝐷 × 𝐷) . ⟨𝐷, ⋅⩽⟩ is well-founded (10.b)
∧ ∀𝑥 ∈ 𝐷 . ∀𝑦 ∈ D . (𝑥 𝐹⟼𝑦) ⇒ (𝑦 ∈ 𝐷 ∧ 𝑥 ⋗ 𝑦) (10.c) ⊓⊔

Intuitively lfp⊑ 𝐹 must terminate since, by contradiction, an infinite call sequence would create an
infinite descent along the called parameters. Completeness follows from the fact that ⋗ can be
chosen as 𝐹⟼, which is always well-founded for terminating programs. This is proved formally in
Cor. 12.

Induction principles for denotational total correctness 11

Example 11. Continuing Ex. 8, the well-founded relation ⋖ can be chosen as follows

!1

0 1

2

3 4
……

-1-2

Termination follows from the fact that 𝐹⟼ restricted to the naturals in included in ⋗, which is
well-founded. ⊓⊔

The variant/convergence function proof principle remains sound when this semantic dependency
relation is over-approximated syntactically (but maybe not complete, as shown by 𝐹(𝑓)𝑥 ≜ (tt ?
𝑥 : 𝑓(𝑥)) where 𝑥 𝐹⟼ 𝑥 syntactically, but not semantically because the recursive call 𝑓(𝑥) is not
reachable).

13 Equivalence of the termination proof by generalized iteration
induction and by variant/convergence function principle

Theorem 11 Let L = D → D⊥ and 𝐹 ∈ L 𝑢𝑐−−−→ L satisfying the function body termination
hypothesis (8). There exists a termination proof by the generalized iteration induction of Th. 5
for 𝐹 if and only if there exists one by the variant/convergence function principle of Th. 10. ⊓⊔

The proof is constructive in that it shows how to construct a proof by one method knowing a proof
by the other method.

Proof. Let us first show that the existence of a termination proof of lfp⊑ 𝐹 by Th. 5 implies the
existence of a termination proof of lfp⊑ 𝐹 by Th. 10.

If lfp⊑ 𝐹 ∈ P𝑇 has been proved by Th. 5, then, as shown by the completeness proof of this
theorem, this can also be done by Th. 5 with ∀𝑖 ∈ N . Q𝑖 ≜ {𝐹𝑖} where 𝐹0 = 𝜆𝑥 .⊥ and 𝐹𝑖+1 = 𝐹(𝐹𝑖)
are the iterates of 𝐹 from 𝜆𝑥 .⊥ and Q ≜ ⋃

𝑖∈N
Q𝑖 so that (5.a) and (5.b) are satisfied. The only

𝐹-maximal ⊑-increasing enumerable chain ⟨𝑥𝑖 ∈ Q, 𝑖 ∈ N⟩ is ⟨𝐹𝑖, 𝑖 ∈ N⟩. By Th. 3, it is such that
⨆̇
𝑖∈N
𝐹𝑖 = lfp⊑ 𝐹, By hypothesis lfp⊑ 𝐹 ∈ P𝑇 and so ⨆̇

𝑛∈N
𝐹𝑖 ∈ P𝑇, proving (5.c).

Let us define 𝐷0 ≜ ∅, 𝐷𝑖 ≜ {𝑥 ∣ 𝐹𝑖−1(𝑥) = ⊥ ∧ 𝐹𝑖(𝑥) ≠ ⊥} for all 𝑖 > 0, and 𝐷 ≜ ⋃
𝑖∈N
𝐷𝑖. Let us prove

that 𝑇 ⊆ 𝐷.
By def. ⊔̇ and lfp⊑ 𝐹 = ⨆̇

𝑖∈N
𝐹𝑖, for all 𝑛 ∈ D, we have (lfp⊑ 𝐹)𝑛 ≠ ⊥ ⇔ ∃𝑖 ∈ N . 𝐹𝑖(𝑛) ≠ ⊥ ⇔

∃𝑖 ∈ N . 𝑛 ∈ 𝐷𝑖 ⇔ 𝑛 ∈ 𝐷. Since lfp⊑ 𝐹 ∈ P𝑇, for all 𝑛 ∈ 𝑇, we have (lfp⊑ 𝐹)𝑛 ≠ ⊥ ⇔ 𝑛 ∈ 𝐷, proving
𝑇 ⊆ 𝐷, that is (10.a).

Let us define 𝑥 > 𝑦 if and only if ∃𝑖 ∈ N . 𝑥 ∈ 𝐷𝑖+1 ∧ 𝑦 ∈ 𝐷𝑖. Let ⋗ be the irreflexive transitive
closure of >. Let us prove that ⟨𝐷, ⋅⩽⟩ is well-founded. By def. of ⋅⩽, for an infinite strictly decreasing
chain for ⋅⩽ there exists one 𝑥0 > 𝑥1 > 𝑥2… for <, and so there would exists 𝑥0 ∈ 𝐷𝑖0 , 𝑥1 ∈ 𝐷𝑖1 ,
𝑥2 ∈ 𝐷𝑖2 , … with 𝑖0 > 𝑖1 > 𝑖2 > … which is impossible since this chain on N cannot be infinite
decreasing. This implies (10.b).

Let 𝑥 be any 𝑥 ∈ 𝐷 and 𝑦 ∈ D satisfies 𝑥 𝐹⟼𝑦.
Since 𝑥 ∈ 𝐷, there exists 𝑖 ∈ N such that 𝑥 ∈ 𝐷𝑖. Let 𝑖 be the minimal such 𝑖. Since 𝑥 𝐹⟼ 𝑦,

we have lfp ⊑̇ 𝐹(𝑥) ≠ 𝐹(lfp ⊑̇ 𝐹[𝑦 ← ⊥])𝑥. Therefore (lfp⊑ 𝐹)𝑦 ≠ ⊥ since otherwise 𝐹(lfp ⊑̇ 𝐹[𝑦 ← ⊥]) =

12 P. Cousot

𝐹(lfp ⊑̇ 𝐹) = lfp ⊑̇ 𝐹, in contradiction with 𝐹(lfp ⊑̇ 𝐹[𝑦 ← ⊥])𝑥 ≠ lfp ⊑̇ 𝐹(𝑥). It follows that ∃𝑗 ∈ N . 𝑦 ∈
𝐷𝑗 ⊆ 𝐷.

If 𝑗 < 𝑖 then there exist 𝑧0 = 𝑦 ∈ 𝐷𝑗, 𝑧1 ∈ 𝐷𝑗+1, …, 𝑧𝑖−𝑗 = 𝑥 ∈ 𝐷𝑖 such that, by def. of 𝐷𝑘,
∀𝑘 ∈ [0, 𝑖 − 𝑗] . 𝐹𝑘−1(𝑧𝑘) = ⊥ ∧ 𝐹𝑘(𝑧𝑘) ≠ ⊥. By def. <, we have 𝑦 = 𝑧0 < 𝑧1 < … < 𝑧𝑖−𝑗 = 𝑥 proving that
𝑥 ⋗ 𝑦 ∈ 𝐷 i.e. (10.c).

Else 𝑗 ⩾ 𝑖. By def. ⊑̇ 𝐹𝑖−1(𝑥) = ⊥, 𝐹𝑖(𝑥) = 𝐹𝑗(𝑥) = (lfp ⊑̇ 𝐹)𝑥 ≠ ⊥, 𝐹𝑖−1(𝑦) = 𝐹𝑖(𝑦) = 𝐹𝑗−1(𝑦) = ⊥, and
𝐹𝑗(𝑦) = (lfp ⊑̇ 𝐹)𝑦 ≠ ⊥. Since 𝐹𝑗(𝑥) = 𝐹(𝐹𝑗−1(𝑥)) and 𝐹𝑗−1(𝑦) = ⊥, we have 𝐹𝑗(𝑥) = 𝐹(𝐹𝑗−1[𝑦 ← ⊥](𝑥))
so (lfp ⊑̇ 𝐹)(𝑥) = 𝐹((lfp ⊑̇ 𝐹)[𝑦 ← ⊥](𝑥)), a contradiction. This case is impossible and so (10.c) holds
vacuously.

Conversely, let us first show that the existence of a termination proof of 𝑓 = lfp⊑ 𝐹 by Th. 10
implies the existence of a termination proof of 𝑓 = lfp⊑ 𝐹 by Th. 5. So assume the existence of
𝐷 ∈ ℘(D) satisfying (10.a), (10.b), and (10.c).

Define Q𝑖 = {𝐹𝑖(⊥̇)} and Q ≜ ⋃
𝑖∈N
Q𝑖 so (5.a) and (5.b) do hold. It remains to prove (5.c) that is

⨆̇
𝑖∈N
𝐹𝑖(⊥̇) ∈ P𝑇. By reductio ad absurdum, assume that ∃𝑥0 ∈ 𝑇 . (⨆̇

𝑖∈N
𝐹𝑖(⊥̇))𝑥0 = ⊥, that is, by (10.a)

and Th. 3, 𝑥0 ∈ 𝐷 and (lfp ⊑̇ 𝐹)𝑥0 = ⊥. Assume ∃𝑥𝑗 ∈ 𝐷 . 𝑓(𝑥𝑗) = ⊥ where 𝑓 = lfp ⊑̇ 𝐹. Then, by the
function body termination hypothesis (8), Lem. 9 implies that ∃𝑥𝑗+1 . 𝑥𝑗 𝐹⟼𝑥𝑗+1 ∧ 𝑓(𝑥𝑗+1) = ⊥. In
this way, we can built an infinite sequence 𝑥0 𝐹⟼𝑥1 𝐹⟼𝑥2 𝐹⟼… such that ∀𝑗 ∈ N . (lfp ⊑̇ 𝐹)𝑥𝑗 = ⊥.
By recurrence and (10.c), this sequence is in 𝐷 and ⋗-decreasing. This is in contradiction with the
well-foundness (10.b) of ⟨𝐷, ⋅⩽⟩. ⊓⊔

Corollary 12 The variant/convergence function principle (10) is sound and complete for
proving termination. ⊓⊔

Proof. By Th. 11 and Th. 5. ⊓⊔

14 Extension to total correctness

The proof by [4] that Hoare logic does not exists for functional languages is based on the restriction
of predicates to first-order logic with program variables only. But this is no longer the case without
this restriction [11,24] and can be extended to total correctness.

Induction principles for denotational total correctness 13

Theorem 13 (The total correctness proof principle) Let 𝐹 ∈ D 𝑢𝑐−−−→ D⊥ satisfying the
function body termination hypothesis (8) be a continuous function on the cpo ⟨D⊥, ⊑, ⊥, ⊔⟩
where ⊥ ∉ D, D⊥ = D ∪ {⊥}, ∀𝑥 ∈ D . ⊥ ⊑ ⊥ ⋤ 𝑥 ⊑ 𝑥, 𝑃 ∈ ℘(D), 𝑄 ∈ ℘(D × D), and
P𝑃,𝑄 ≜ {𝑓 ∈ D→ D⊥ ∣ ∀𝑥 ∈ 𝑃 . ⟨𝑥, 𝑓(𝑥)⟩ ∈ 𝑄}. Then

lfp ⊑̇ 𝐹 ∈ P𝑃,𝑄 ⇔ ∃𝐷 ∈ ℘(D) . ∃𝐼 ∈ ℘(D ×D) .
𝑃 ⊆ 𝐷 (13.a)
∧ {⟨𝑥, 𝑦⟩ ∈ 𝐼 ∣ 𝑥 ∈ 𝑃} ⊆ 𝑄 (13.b)
∧ ∃ ⋅⩽ ∈ ℘(D ×D) . ⟨𝐷, ⋅⩽⟩ is well-founded (13.c)
∧ ∀𝑥, 𝑦 ∈ D . (𝑥 ∈ 𝐷 ∧ 𝑥 𝐹⟼𝑦) ⇒ (𝑦 ∈ 𝐷 ∧ 𝑥 ⋗ 𝑦) (13.d)
∧ let P𝐷,𝐼 ≜ {𝑓 ∈ D→ D⊥ ∣ ∀𝑥 ∈ 𝐷 . (𝑓(𝑥) ≠ ⊥ ⇒ ⟨𝑥, 𝑓(𝑥)⟩ ∈ 𝐼)} in (13.e)

∀𝑓 ∈ P𝐷,𝐼 . 𝐹(𝑓) ∈ P𝐷,𝐼 ⊓⊔

Example 12 (Total correctness of the factorial). Define 𝐹!(𝑓) ≜ 𝜆 𝑛 . (𝑛 = 0 ? 1 : 𝑛×𝑓(𝑛−1)), 𝑃 = N,
𝑄 = {⟨𝑛, 𝑛!⟩ ∣ 𝑛 ∈ N} So that lfp ⊑̇ 𝐹 ∈ P𝑃,𝑄 expresses that 𝐹!(𝑓)𝑛 terminates for 𝑛 ∈ N and returns
the factorial 𝑛! of 𝑛. Take 𝐷 = 𝑃 and 𝐼 = 𝑄 so that (13.a), (13.b), (13.c) are trivially satisfied since
𝐷 = N and ⟨N, ⩽⟩ is well-founded. If 𝑛 ∈ 𝐷 and 𝑛 𝐹⟼𝑦 then 𝑛 ≠ 0 and 𝑦 = 𝑛 − 1 so 𝑛 > 𝑛 − 1 ∈ 𝐷,
proving (13.d). If 𝑓 ∈ P𝐷,𝐼 and 𝑛 ∈ 𝐷 = N then 𝑓(𝑛) = 𝑛!. So 𝐹!(𝑓)𝑛 = 𝑛! since either 𝑛 = 0 and
𝐹!(𝑓)0 = 1 = 0! or 𝑛 > 0 so 𝑛 − 1 ∈ N, 𝑓(𝑛 − 1) = (𝑛 − 1)! so 𝐹!(𝑓)𝑛 = 𝑛 × (𝑛 − 1)! = 𝑛!. Therefore
𝐹!(𝑓) ∈ P𝐷,𝐼, proving (13.e). By Th. 13, lfp ⊑̇ 𝐹! ∈ P𝑃,𝑄. ⊓⊔

Proof (of Th. 13). Soundness (⇐): Take 𝑇 = 𝐷 in Th. 10. Then (13.a) implies (10.a), (13.c) implies
(10.b), and (13.d) implies (10.c). By Th. 10, this implies ∀𝑥 ∈ 𝑃 . (lfp⊑ 𝐹)𝑥 ≠ ⊥.

Ta ke L = D→ D⊥, P = Q = P𝐷,𝐼. By def. P𝐷,𝐼, ⊥̇ ∈ Q proving (5.a). By (13.d), ∀𝑓 ∈ Q . 𝐹(𝑓) ∈
Q, proving (5.b). Let {𝑓𝑖 ∈ Q ∣ 𝑖 ∈ N} be any 𝐹-maximal ⊑-increasing chain of elements of Q. If 𝑥 ∈ D
and (⨆̇

𝑖∈N
𝑓𝑖)𝑥 ≠ ⊥, then (⨆̇

𝑖∈N
𝑓𝑖)𝑥 = 𝑑 ∈ D so, by def. lub ⨆̇, there exists 𝑗 ∈ N . (⨆̇

𝑖∈N
𝑓𝑖)𝑥 = 𝑓𝑗(𝑥) = 𝑑.

But 𝑓𝑗 ∈ Q = P𝐷,𝐼 so ⟨𝑥, 𝑑⟩ = ⟨𝑥, (⨆̇
𝑖∈N
𝑓𝑖)𝑥⟩ ∈ 𝐼. If follows that (⨆̇

𝑖∈N
𝑓𝑖) ∈ P𝐷,𝐼 = P. By Th. 5,

lfp⊑ 𝐹 ∈ P𝐷,𝐼.
Since lfp⊑ 𝐹 ∈ P𝐷,𝐼 and ∀𝑥 ∈ 𝑃 . (lfp⊑ 𝐹)𝑥 ≠ ⊥, we conclude that lfp⊑ 𝐹 ∈ P𝑃,𝑄.

Completeness (⇒): Assume that lfp⊑ 𝐹 ∈ P𝑃,𝑄 so ∀𝑥 ∈ 𝑃 . (lfp⊑ 𝐹)𝑥 ≠ ⊥. Applying Th. 10 with
𝑇 = 𝑃, there exists 𝐷 ∈ ℘(D) satisfying (10.a), (10.b), and (10.c). Applying Th. 5 with L = D→ D⊥,
there exists Q ∈ ℘(D→ D⊥) satisfying (5.a), (5.b), (5.c). Moreover, the completeness proof of Th. 5
shows that one can choose Q = {𝐹𝑖(⊥) ∣ 𝑖 ∈ N}.

Choose 𝐼 ≜ {⟨𝑥, 𝑓(𝑥)⟩ ∈ D ×D ∣ 𝑓 ∈ Q ∨ 𝑓 = ⨆Q}, where, as shown in the completeness proof of
Th. 5, ⨆Q is well-defined and equal to lfp ⊑̇ 𝐹.

We have 𝑃 = 𝑇 ⊆ 𝐷 by (10.a), proving (13.a);
If ⟨𝑥, 𝑦⟩ ∈ 𝐼 then 𝑦 ≠ ⊥ and 𝑦 = 𝑓(𝑥) where 𝑓 ∈ Q or 𝑓 = ⨆Q. In both cases, byQ = {𝐹𝑖(⊥) ∣ 𝑖 ∈ N}

and 𝑓(𝑥) ≠ ⊥, we have 𝑦 = lfp⊑ 𝐹)𝑥 so, by hypothesis lfp ⊑̇ 𝐹 ∈ P𝑃,𝑄, if 𝑥 ∈ 𝑃, then ⟨𝑥, 𝑦⟩ ∈ 𝑄, proving
(13.b);

(10.b) is exactly (13.c);
(10.c) is exactly (13.d);

14 P. Cousot

Assume that 𝑓 ∈ P𝐷,𝐼 = {𝑓 ∈ D→ D⊥ ∣ ∀𝑥 ∈ 𝐷 . (𝑓(𝑥) ≠ ⊥ ⇒ ⟨𝑥, 𝑓(𝑥)⟩ ∈ 𝐼)}. Then either 𝑓 ∈ Q
so, by (5.b), 𝐹(𝑓) ∈ Q and therefore 𝐹(𝑓) ∈ P𝐷,𝐼 or 𝑓 = ⨆Q = lfp ⊑̇ 𝐹 so 𝐹(𝑓) = 𝑓 ∈ P𝐷,𝐼, proving
(13.e). ⊓⊔

15 Application to the while iteration

Manna and Pnueli [20] generalized Hoare partial correctness rule for total correctness ⦇ 𝑃 ⦈ W ⦇ 𝑄 ⦈
denoting ∀𝑥 ∈ 𝑃 . JWK𝑥 ∈ 𝑄 which is traditionally decomposed in partial correctness ⦃𝑃⦄ W ⦃𝑄⦄
and termination ∀𝑥 ∈ 𝑃 . JWK𝑥 ≠ ⊥. They rely on the idea of relating the initial and final values of
variables in 𝑄, writing 𝑃(𝑥) for 𝑥 ∈ 𝑃 ∈ ℘(D) and 𝑄(𝑥, 𝑥′) for ⟨𝑥, 𝑥′⟩ ∈ 𝑄 ∈ ℘(D × D), so that the
rule are written in the form ⦇ 𝑃(𝑥) ⦈ W ⦇ 𝑄(𝑥, 𝑥′ ⦈ where 𝑥 is the value before execution and 𝑥′ that
upon termination.
⦇ 𝑃(𝑥) ⦈ W ⦇ 𝑄(𝑥, 𝑥′ ⦈ is equivalent to lfp ⊑̇ 𝐹W ∈ P𝑃,𝑄. So, by the soundness and completeness of

Th. 13, this is equivalent to the existence of 𝐷 ∈ ℘(D) and 𝐼 ∈ ℘(D ×D) satisfying the conditions.

𝑃(𝑥) ⇒ 𝐷(𝑥) (14.a)
∧ 𝑃(𝑥) ∧ 𝐼(𝑥, 𝑦) ⇒ 𝑄(𝑥, 𝑦) (14.b)
∧ ∃ ⋅⩽ ∈ ℘(D ×D) . ⟨𝐷, ⋅⩽⟩ is well-founded (14.c)
∧ ∀𝑥 ∈ 𝐷 . 𝑆(𝑥) ∈ 𝐷 ∧ 𝑥 ⋗ 𝑆(𝑥) (14.d)
∧ ∀𝑥 ∈ 𝐷, 𝑥″ ∈ D . (𝐵(𝑥) ∧ 𝐼(𝑆(𝑥), 𝑥″) ⇒ 𝐼(𝑥, 𝑥″) (14.e)
∧ ∀𝑥 ∈ 𝐷 . ¬𝐵(𝑥) ⇒ 𝐼(𝑥, 𝑥) (14.e′)

since for (13.d), 𝑥 𝐹⟼ 𝑦 if and only if 𝑦 = 𝑆(𝑥), by def. 𝐹W(𝑓)𝑥 = (¬𝐵(𝑥) ? 𝑥 : 𝑓(𝑆(𝑥))) and for
(13.e/e′), given P𝐷,𝐼 ≜ {𝑓 ∈ D→ D⊥ ∣ ∀𝑥 ∈ 𝐷 . 𝑓(𝑥) ≠ ⊥ ⇒ ⟨𝑥, 𝑓(𝑥)⟩ ∈ 𝐼}, we have
∀𝑓 ∈ P𝐷,𝐼 . 𝐹W(𝑓) ∈ P𝐷,𝐼
⇔ ∀𝑓 ∈ D → D⊥ . (∀𝑥 ∈ 𝐷 . (𝑓(𝑥) ≠ ⊥) ⇒ (⟨𝑥, 𝑓(𝑥)⟩ ∈ 𝐼)) ⇒ (∀𝑥 ∈ 𝐷 . (¬𝐵(𝑥) ? ⟨𝑥,
𝑥⟩ ∈ 𝐼 : (𝑓(𝑆(𝑥)) ≠ ⊥) ⇒ (⟨𝑥, 𝑓(𝑆(𝑥))⟩ ∈ 𝐼))) Hdef. P𝐷,𝐼 and 𝐹WI
⇔ ∀𝑓 ∈ D→ D . (∀𝑥 ∈ 𝐷 . (⟨𝑥, 𝑓(𝑥)⟩ ∈ 𝐼)) ⇒ (∀𝑥 ∈ 𝐷 . (¬𝐵(𝑥) ? ⟨𝑥, 𝑥⟩ ∈ 𝐼 : (⟨𝑥, 𝑓(𝑆(𝑥))⟩ ∈ 𝐼)))Hsince the ⊥ case is excludedI
⇔ (∀𝑥 ∈ 𝐷 . ¬𝐵(𝑥) ⇒ ⟨𝑥, 𝑥⟩ ∈ 𝐼) ∧ (∀𝑥 ∈ 𝐷 . (𝐵(𝑥) ∧ ⟨𝑆(𝑥), 𝑥″⟩ ∈ 𝐼) ⇒ ⟨𝑥, 𝑥′⟩ ∈ 𝐼)Hsince 𝑓 is defined by 𝐼 and letting 𝑥′ = 𝑓(𝑆(𝑥))I ⊓⊔
Rewriting (14) in Manna-Pnueli style, we get the sound and complete rule (which incorporate the
consequence rule):

𝑃(𝑥) ⇒ 𝐷(𝑥), 𝑃(𝑥) ∧ 𝐼(𝑥, 𝑦) ⇒ 𝑄(𝑥, 𝑦), (15.a/b)
∃ ⋅⩽ ∈ ℘(D ×D) . ⟨𝐷, ⋅⩽⟩ is well-founded, (15.c)
⦇𝐷(𝑥) ⦈ S ⦇𝐷(𝑥′) ∧ 𝑥 ⋗ 𝑥′ ⦈, (15.d)

⦇𝐷(𝑥) ∧ 𝐵(𝑥) ⦈ S ⦇ 𝐼(𝑥, 𝑥′) ∧ ∀𝑥″ . 𝐼(𝑥′, 𝑥″) ⇒ 𝐼(𝑥, 𝑥″) ⦈, (15.e)
∀𝑥 . 𝐷(𝑥) ∧ ¬𝐵(𝑥) ⇒ 𝐼(𝑥, 𝑥) (15.e′)

⦇ 𝑃(𝑥) ⦈ W ⦇ 𝑄(𝑥, 𝑥′) ∧ ¬𝐵(𝑥′) ⦈

(The conjunction with the post-condition ¬𝐵(𝑥′) is explained in Ex. 6).
The original Manna and Pnueli rule [20, Sect. 8.3] is slightly different, as follows.

Induction principles for denotational total correctness 15

⦇ 𝑃(𝑥) ∧ 𝐵(𝑥) ⦈ S ⦇ 𝑃(𝑥′) ∧ 𝑄(𝑥, 𝑥′) ∧ 𝑥 ⋗ 𝑥′ ⦈, (16.i)
∀𝑥, 𝑥′, 𝑥″ . 𝑄(𝑥, 𝑥′) ∧ 𝑄(𝑥′, 𝑥″) ⇒ 𝑄(𝑥, 𝑥″), (16.ii)
∀𝑥 . 𝑃(𝑥) ∧ ¬𝐵(𝑥) ⇒ 𝑄(𝑥, 𝑥) (16.iii)

⦇ 𝑃(𝑥) ⦈ W ⦇ 𝑄(𝑥, 𝑥′) ∧ ¬𝐵(𝑥′) ⦈

As in [14], the proof rules are postulated so no soundness or completeness proof is given. A soundness
and completeness proof is provided in [1] based on Scott induction (using transfinite iterates in
absence of continuity due to the consideration of unbounded nondeterminism).

Assume the hypotheses of Manna-Pnueli inference rule (16), and define (with informal notations)

– 𝑃′ = 𝐷 ≜ 𝑃(𝑥);
– 𝑄′ = 𝐼(𝑥, 𝑦) ≜ 𝑄(𝑥, 𝑦);

so that

– (14.a) holds trivially by reflexivity;
– (14.b) holds trivially since 𝑃(𝑥) ∧ 𝐼(𝑥, 𝑦) ⇒ 𝑄′(𝑥, 𝑦). Moreover, the conjunction with the term
𝐵(𝑥′) follows from the semantics of the while iteration, as shown in Ex. 1;

– (14.c) is a side condition in Manna-Pnueli rule (there should be a convergence function 𝑢 into a
well-founded set ⟨W, ⪯⟩ with 𝑥 ⋅⩽ 𝑦 if and only if 𝑢(𝑥) ⪯ 𝑢(𝑦));

– Since ⦇ 𝑃′(𝑥) ⦈ S ⦇ 𝑄′(𝑥, 𝑥′) ⦈ denotes ∀𝑥 . 𝑃′(𝑥) ⇒ (𝑄′(𝑥, 𝑆(𝑥)) ∧ 𝑆(𝑥) ≠ ⊥) where 𝑆 = JSK is the
denotational semantics of S, (16.i) implies both
– ∀𝑥 . (𝑃(𝑥) ∧ 𝐵(𝑥)) ⇒ (𝑃(𝑆(𝑥)) ∧ 𝑥 ⋗ 𝑆(𝑥)), which is (14.d);
– and
∀𝑥 . (𝑃(𝑥) ∧ 𝐵(𝑥)) ⇒ 𝑄(𝑥, 𝑆(𝑥))

which together with (16.ii)
∀𝑥, 𝑥″ . (𝑄(𝑥, 𝑆(𝑥)) ∧ 𝑄(𝑆(𝑥), 𝑥″) ⇒ 𝑄(𝑥, 𝑥″)

yields
∀𝑥 . (𝑃(𝑥) ∧ 𝐵(𝑥) ∧ 𝑄(𝑆(𝑥), 𝑥″)) ⇒ 𝑄(𝑥, 𝑥″), which is (14.e);

– (14.e′) is exactly (16.ii).

By Th. 13, Moreover, if (lfp⊑ 𝐹W)𝑥 ≠ ⊥ then ¬𝐵(lfp⊑ 𝐹W), as shown in Ex. 1, we conclude that Manna-
Pnueli rule is sound.

Obviously Manna-Pnueli rule (16) is not complete (since 𝑄(𝑥, 𝑥′) might not be inductive), but
it can be applied to the strongest invariant and the conclusion derived by the consequence rule.

16 Conclusion

Park/fixpoint induction is useful to reason on post-fixpoints, above the least fixpoint. Scott/iteration
induction is useful to reason on iterates, below the least fixpoint. Traditional Park/fixpoint induc-
tion can prove invariance/partial correctness but not termination (at least without introducing
auxiliary variables such as bounded loop counters [15]). The traditional Scott/iteration induction
cannot prove termination either. We generalized the iteration induction principles to prove termina-
tion/total correctness. For termination they are equivalent to the Turing/Floyd termination proof

16 P. Cousot

method using variant/convergence functions (which itself is equivalent [10] to Burstall’s intermit-
tent assertions induction principle [3]). This applies both to (first-order) functional and imperative
programming. In particular, the Manna-Pnueli method for proving the total correctness of while
loops is equivalent to Scott induction for the denotational semantics of these loops.

Acknowledgements

I thank Francesco Ranzato for comments and suggestions on earlier versions of the paper. Work
supported in part by NSF Grant CCF-1617717.

References

1. Apt, K.R., Plotkin, G.D.: Countable nondeterminism and random assignment. J. ACM 33(4), 724–767
(1986)

2. de Bakker, J.W., Scott, D.S.: A theory of programs (Aug 1969), IBM Seminar Vienna, Austria (Un-
published notes)

3. Burstall, R.M.: Program proving as hand simulation with a little induction. In: IFIP Congress. pp.
308–312. North-Holland (1974)

4. Clarke Jr., E.M.: Programming language constructs for which it is impossible to obtain good hoare
axiom systems. J. ACM 26(1), 129–147 (1979)

5. Cook, S.A.: Soundness and completeness of an axiom system for program verification. SIAM J. Comput.
7(1), 70–90 (1978)

6. Cook, S.A.: Corrigendum: Soundness and completeness of an axiom system for program verification.
SIAM J. Comput. 10(3), 612 (1981)

7. Cousot, P.: Méthodes itératives de construction et d’approximation de points fixes d’opérateurs mono-
tones sur un treillis, analyse sémantique de programmes (in French). Thèse d’État ès sciences mathé-
matiques, Université de Grenoble Alpes, Grenoble, France (21 March 1978)

8. Cousot, P., Cousot, R.: Constructive versions of Tarski’s fixed point theorems. Pacific Journal of Math-
ematics 82(1), 43–57 (1979)

9. Cousot, P., Cousot, R.: Induction principles for proving invariance properties of programs. In: Néel,
D. (ed.) Tools & Notions for Program Construction: an Advanced Course. pp. 75–119. Cambridge
University Press, Cambridge, UK (Aug 1982)

10. Cousot, P., Cousot, R.: ”a la burstall” intermittent assertions induction principles for proving inevitable
ability properties of programs. Theor. Comput. Sci. 120(1), 123–155 (1993)

11. Damm, W., Josko, B.: A sound and relatively* complete hoare-logic for a language with higher type
procedures. Acta Inf. 20, 59–101 (1983)

12. Floyd, R.W.: Assigning meaning to programs. In: Schwartz, J. (ed.) Proc. Symp. in Applied Math.,
vol. 19, pp. 19–32. Amer. Math. Soc. (1967)

13. Heizmann, M., Jones, N.D., Podelski, A.: Size-change termination and transition invariants. In: SAS.
Lecture Notes in Computer Science, vol. 6337, pp. 22–50. Springer (2010)

14. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM 12(10), 576–580 (1969),
http://doi.acm.org/10.1145/363235.363259

15. Katz, S., Manna, Z.: A closer look at termination. Acta Inf. 5, 333–352 (1975)
16. Kleene, S.C.: Introduction to Meta-Mathematics. Elsevier North-Holland Pub. Co. (1952)
17. Lee, C.S., Jones, N.D., Ben-Amram, A.M.: The size-change principle for program termination. In:

POPL. pp. 81–92. ACM (2001)
18. Leroy, X., Doligez, D., Frisch, A., Garrigue, J., Rémy, D., Vouillon, J.: The OCaml system, release

4.08, Documentation and user’s manual (Feb 2019), http://caml.inria.fr/pub/docs/manual-ocaml/,
copyright © 2013 Institut National de Recherche en Informatique et en Automatique

Induction principles for denotational total correctness 17

http://doi.acm.org/10.1145/363235.363259
http://caml.inria.fr/pub/docs/manual-ocaml/

19. Manna, Z., Ness, S., Vuillemin, J.: Inductive methods for proving properties of programs. Commun.
ACM 16(8), 491–502 (1973)

20. Manna, Z., Pnueli, A.: Axiomatic approach to total correctness of programs. Acta Inf. 3, 243–263 (1974)
21. Manna, Z., Vuillemin, J.: Fix point approach to the theory of computation. Commun. ACM 15(7),

528–536 (1972)
22. Markowsky, G.: Chain-complete posets and directed sets with applications. Algebra Universalis 6(1),

53–68 (Nov 1976)
23. Park, D.M.R.: On the semantics of fair parallelism. In: Abstract Software Specifications. Lecture Notes

in Computer Science, vol. 86, pp. 504–526. Springer (1979)
24. Régis-Gianas, Y., Pottier, F.: A Hoare logic for call-by-value functional programs. In: MPC. Lecture

Notes in Computer Science, vol. 5133, pp. 305–335. Springer (2008)
25. Schmidt, D.W.: Denotational Semantics: A Methodology for Language Development. William

C. Brown Publishers, Dubuque, IA, USA (Jun 1988), http://people.cs.ksu.edu/~schmidt/text/
DenSem-full-book.pdf

26. Scott, D.S.: Outline of a mathematical theory of computation. In: Proceedings of the Fourth Annual
Princeton Conference on Information Sciences and Systems. pp. 169–176. Princeton University (Mar
1970)

27. Scott, D.S.: The lattice of flow diagrams. In: Symposium on Semantics of Algorithmic Languages,
Lecture Notes in Mathematics, vol. 188, pp. 311–366. Springer (1971)

28. Tarski, A.: A lattice theoretical fixpoint theorem and its applications. Pacific J. of Math. 5, 285–310
(1955)

29. Turing, A.: Checking a large routine. In: Report of a Conference on High Speed Automatic Calculating
Machines, University of Cambridge Mathematical Laboratory, Cambridge, England. pp. 67–69 (1949),
http://www.turingarchive.org/browse.php/b/8

18 P. Cousot

http://people.cs.ksu.edu/~schmidt/text/DenSem-full-book.pdf
http://people.cs.ksu.edu/~schmidt/text/DenSem-full-book.pdf
http://www.turingarchive.org/browse.php/b/8

A General Framework for Static Cost
Analysis of Parallel Logic Programs

Maximiliano Klemen1,2(B) , Pedro López-Garćıa1,3 , John P. Gallagher1,4 ,
José F. Morales1 , and Manuel V. Hermenegildo1,2

1 IMDEA Software Institute, Madrid, Spain
{maximiliano.klemen,pedro.lopez,john.gallagher,
josef.morales,manuel.hermenegildo}@imdea.org

2 ETSI Informáticos, Universidad Politécnica de Madrid (UPM), Madrid, Spain
3 Spanish Council for Scientific Research (CSIC), Madrid, Spain

4 Roskilde University, Roskilde, Denmark

Abstract. The estimation and control of resource usage is now an
important challenge in an increasing number of computing systems. In
particular, requirements on timing and energy arise in a wide variety of
applications such as internet of things, cloud computing, health, trans-
portation, and robots. At the same time, parallel computing, with (het-
erogeneous) multi-core platforms in particular, has become the dominant
paradigm in computer architecture. Predicting resource usage on such
platforms poses a difficult challenge. Most work on static resource analy-
sis has focused on sequential programs, and relatively little progress has
been made on the analysis of parallel programs, or more specifically on
parallel logic programs. We propose a novel, general, and flexible frame-
work for setting up cost equations/relations which can be instantiated
for performing resource usage analysis of parallel logic programs for a
wide range of resources, platforms, and execution models. The analysis
estimates both lower and upper bounds on the resource usage of a par-
allel program (without executing it) as functions on input data sizes.
In addition, it also infers other meaningful information to better exploit
and assess the potential and actual parallelism of a system. We develop
a method for solving cost relations involving the max function that arise
in the analysis of parallel programs. Finally, we instantiate our general
framework for the analysis of logic programs with Independent And-
Parallelism, report on an implementation within the CiaoPP system,
and provide some experimental results. To our knowledge, this is the
first approach to the cost analysis of parallel logic programs.

Keywords: Resource usage analysis · Parallelism · Static analysis ·
Complexity analysis · (Constraint) Logic programming · Prolog

Research partially funded by Spanish MINECO TIN2015-67522-C3-1-R TRACES
project, and the Madrid P2018/TCS-4339 BLOQUES-CM program. We are also grate-
ful to the anonymous reviewers for their useful comments.

c© Springer Nature Switzerland AG 2020
M. Gabbrielli (Ed.): LOPSTR 2019, LNCS 12042, pp. 19–35, 2020.
https://doi.org/10.1007/978-3-030-45260-5_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45260-5_2&domain=pdf
http://orcid.org/0000-0002-8503-8379
http://orcid.org/0000-0002-1092-2071
http://orcid.org/0000-0001-6984-7419
http://orcid.org/0000-0001-9782-8135
http://orcid.org/0000-0002-7583-323X
https://doi.org/10.1007/978-3-030-45260-5_2

20 M. Klemen et al.

1 Introduction

Estimating in advance the resource usage of computations is useful for a num-
ber of applications; examples include granularity control in parallel/distributed
systems, automatic program optimization, verification of resource-related speci-
fications and detection of performance bugs, as well as helping developers make
resource-related design decisions. Besides time and energy, we assume a broad
concept of resources as numerical properties of the execution of a program,
including the number of execution steps, the number of calls to a procedure, the
number of network accesses, number of transactions in a database, and other
user-definable resources. The goal of automatic static analysis is to estimate
such properties without running the program with concrete data, as a function
of input data sizes and possibly other (environmental) parameters.

Due to the heat generation barrier in traditional sequential architectures,
parallel computing, with (heterogeneous) multi-core processors in particular,
has become the dominant paradigm in current computer architecture. Predict-
ing resource usage on such platforms poses important challenges. Most work on
static resource analysis has focused on sequential programs, and relatively little
progress has been made on the analysis of parallel programs, or on parallel logic
programs in particular. The significant body of work on static analysis of sequen-
tial logic programs has already been applied to the analysis of other programming
paradigms, including imperative programs. This is achieved via a transformation
into Horn clauses [22]. In this paper we concentrate on the analysis of parallel
Horn clause programs, which could be the result of such a translation from a
parallel imperative program or be themselves the source program. Our starting
point is the well-developed technique of setting up recurrence relations represent-
ing resource usage functions parameterized by input data sizes [2,7–9,24–26,29],
which are then solved to obtain (exact or safely approximated) closed forms of
such functions (i.e., functions that provide upper or lower bounds on resource
usage). We build on this and propose a novel, general, and flexible framework
for setting up cost equations/relations which can be instantiated for perform-
ing static resource usage analysis of parallel logic programs for a wide range
of resources, platforms, and execution models. Such an analysis estimates both
lower and upper bounds on the resource usage of a parallel program as functions
on input data sizes. We have instantiated the framework for dealing with Inde-
pendent And-Parallelism (IAP) [10,14], which refers to the parallel execution of
conjuncts in a goal. However, the results can be applied to other languages and
types of parallelism, by performing suitable transformations into Horn clauses.

The main contributions of this paper can be summarized as follows:

– We have extended a general static analysis framework for the analysis of
sequential Horn clause programs [24,26], to deal with parallel programs.

– Our extensions and further generalizations support a wide range of resources,
platforms, and parallel/distributed execution models, and allow the inference
of both lower and upper bounds on resource usage. This is the first approach,
to our knowledge, to the cost analysis of parallel logic programs that can deal

A General Framework for Static Cost Analysis of Parallel Logic Programs 21

with features such as backtracking, multiple solutions (i.e., non-determinism),
and failure.

– We have instantiated the developed framework to infer useful information for
assessing and exploiting the potential and actual parallelism of a system.

– We have developed a method for finding closed-form functions of cost relations
involving the max function that arise in the analysis of parallel programs.

– We have developed a prototype implementation that instantiates the frame-
work for the analysis of logic programs with Independent And-Parallelism
within the CiaoPP system [13,24,26], and provided some experimental
results.

2 Overview of the Approach

Prior to explaining our approach, we provide some preliminary concepts. Inde-
pendent And-Parallelism arises between two goals when their corresponding exe-
cutions do not affect each other. For pure goals (i.e., without side effects) a suf-
ficient condition for the correctness of IAP is the absence of variable sharing at
run-time among such goals. IAP has traditionally been expressed using the &/2
meta-predicate as the constructor to represent the parallel execution of goals. In
this way, the conjunction of goals (i.e., literals) p & q in the body of a clause will
trigger the execution of goals p and q in parallel, finishing when both executions
finish.

Given a program P and a predicate p ∈ P of arity k and a set Π of k-tuples
of calling data to p, we refer to the (standard) cost of a call p(ē) (i.e., a call to
p with actual data ē ∈ Π), as the resource usage (under a given cost metric)
of the complete execution of p(ē). The standard cost is formalized as a function
Cp : Π → R∞, where R∞ is the set of real numbers augmented with the special
symbol ∞ (which is used to represent non-termination). We extend the function
Cp to the powerset of Π, i.e., Ĉp : 2Π → 2R∞ , where Ĉp(E) = {Cp(ē) | ē ∈ E}.
Our goal is to abstract (safely approximate, as accurately as possible) Ĉp (note
that Cp(ē) = Ĉp({ē})). Intuitively, this abstraction is the composition of two
abstractions: a size abstraction and a cost abstraction. The goal of the analysis
is to infer two functions Ĉ↓

p and Ĉ↑
p : N m

� → R∞ that give lower and upper
bounds respectively on the cost function Ĉp, where N m

� is the set of m-tuples
whose elements are natural numbers or the special symbol �, meaning that the
size of a given term under a given size metric is undefined. Such bounds are
given as a function of tuples of data sizes (representing the concrete tuples of
data of the concrete function Ĉp). Typical size metrics are the actual value of a
number, the length of a list, the size (number of constant and function symbols)
of a term, etc. [24,26].

We now enumerate different metrics used to evaluate the performance of par-
allel logic programs, compared against its corresponding sequential version [27].
Here, these metrics are parameterized with respect to the resource in which
the cost is expressed (e.g., number of resolution steps, execution time, or energy
consumption):

22 M. Klemen et al.

– Sequential cost (Work): It is the standard cost of executing a program,
assuming no parallelism.

– Parallel cost (Depth): It is the cost of executing a program in parallel,
considering an unbounded number of processors.

– Maximum number of processes running in parallel: It is the maximum
number of processes that may run simultaneously in a program. This is useful
to determine what is the minimum number of processors that are required to
guarantee that all the processes run in parallel.

The following example illustrates our approach.

Example 1. Consider the predicate scalar/3 below, and a calling mode to it
with the first argument bound to an integer n and the second one bound to a
list of integers [x1, x2, . . . , xk]. Upon success, the third argument is bound to the
list of products [n · x1, n · x2, . . . , n · xk]. Each product is recursively computed
by predicate mult/3. The calling modes are automatically inferred by CiaoPP
(see [13] and its references): the first two arguments of both predicates are input,
and their last arguments are output.

scalar(_,[] ,[]).
scalar(N,[X|Xs],[Y|Ys]):-

mult(N,X,Y) & scalar(N,Xs,Ys).

mult(0,_,0).
mult(N,X,Y):-

N>1,
N1 is N - 1,
mult(N1,X,Y0),
Y is Y0 + X.

The call to the parallel &/2 operator in the body of the second clause of scalar/3
causes the calls to mult/3 and scalar/3 to be executed in parallel. We want to
infer the cost of such a call to scalar/3, in terms of the number of resolution
steps, as a function of its input data sizes. We use the CiaoPP system to infer size
relations for the different arguments in the clauses, as well as dealing with a rich
set of size metrics (see [24,26] for details). Assume that the size metrics used in
this example are the actual value of N (denoted int(N)), for the first argument,
and the list-length for the second and third arguments (denoted length(X) and
length(Y), respectively). Since size relations are obvious in this example, we
focus only on the setting up of cost relations for the sake of brevity. Regarding
the number of solutions, in this example all the predicates generate at most
one solution. For simplicity we assume that all builtin predicates, such as is/2
and the comparison operators have zero cost (in practice they have a “trust”
assertion that specifies their cost as if it had been inferred by the system). As
the program contains parallel calls, we are interested in inferring both total
resolution steps, i.e., considering a sequential execution (represented by the seq
identifier), and the number of parallel steps, considering a parallel execution,
with an unbounded number of processors (represented by par). In the latter
case, the definition of this resource establishes that the aggregator of the costs
of the parallel calls that are arguments of the &/2 meta-predicate is the max/2
function. Thus, the number of resolution steps performed in parallel for p & q is
the maximum between the parallel steps performed by p and the ones performed
by q. However, for computing the total resolution steps, the aggregation operator
we use is the addition, both for parallel and sequential calls. For brevity, in this
example we only infer upper bounds on resource usages.

A General Framework for Static Cost Analysis of Parallel Logic Programs 23

We now set up the cost relations for scalar/3 and mult/3. Note that the
cost functions have two arguments, corresponding to the sizes of the input argu-
ments.1 In the equations, we underline the operation applied as cost aggregator
for &/2.

For the sequential execution (seq), we obtain the following cost relations:

Cscalar(n, l) = 1 if l = 0
Cscalar(n, l) = 1 + Cmult(n)+Cscalar(n, l − 1) if l > 0

Cmult(n) = 1 if n = 0
Cmult(n) = 1 + Cmult(n − 1) if n > 0

After solving these equations and composing the closed-form solutions, we obtain
the following closed-form functions:

Cscalar(n, l) = (n + 2) × l + 1 if n ≥ 0 ∧ l ≥ 0
Cmult(n) = n + 1 if n ≥ 0

For the parallel execution (par), we obtain the following cost relations:

Cscalar(n, l) = 1 if l = 0
Cscalar(n, l) = 1 + max(Cmult(n), Cscalar(n, l − 1)) if l > 0

Cmult(n) = 1 if n = 0
Cmult(n) = 1 + Cmult(n − 1) if n > 0

Similarly, we obtain the following closed-form functions:

Cscalar(n, l) = n + l + 1 if n ≥ 0 ∧ l ≥ 0
Cmult(n) = n + 1 if n ≥ 0

By comparing the complexity order (in terms of resolution steps) of the sequen-
tial execution of scalar/3, O(n · l), with the complexity order of its parallel
execution (assuming an ideal parallel model with an unbounded number of pro-
cessors) O(n+l), we can get a hint about the maximum achievable parallelization
of the program.

Another useful piece of information about scalar/3 that we want to infer
is the maximum number of processes that may run in parallel, considering all
possible executions. For this purpose, we define a resource named sthreads.
The operation count process/3 aggregates the cost of both arguments of the
meta-predicate &/2 for the sthreads resource, by adding the maximum number
of processes for each argument plus one additional process, corresponding to
the one created by the call to &/2. The sequential cost aggregator is now the
maximum operator, in order to keep track of the maximum number of processes
created along the different instructions of the program executed sequentially.
Note that if the instruction p executes at most Prp processes in parallel, and

1 For the sake of clarity, we abuse notation in the examples when representing the cost
functions that depend on data sizes.

24 M. Klemen et al.

the instruction q executes at most Prq processes, then the program p, q will
execute at most max(Prp, P rq) processes in parallel, because all the parallel
processes created by p will finish before the execution of q. Note also that for
the sequential execution of both p and q, the cost in terms of the sthreads
resource is always zero, because no additional process is created. The analysis
sets up the following recurrences for the sthreads resource and the predicates
scalar/3 and mult/3 of our example:

Cscalar(n, l) = 0 if l = 0
Cscalar(n, l) = Cmult(n) + Cscalar(n, l − 1) + 1 if l > 0

Cmult(n) = 0 if n ≥ 0

For which we obtain the following closed-form functions:

Cscalar(n, l) = l if n ≥ 0 ∧ l ≥ 0
Cmult(n) = 0 if n ≥ 0

As we can see, this predicate will execute, in the worst case, as many processes
as there are elements in the input list.

3 The Parametric Cost Relations Framework
for Sequential Programs

The starting point of our work is the standard general framework described
in [24] for setting up parametric relations representing the resource usage (and
size relations) of programs and predicates.2 The analysis infers size relations
for each predicate in a program: arithmetic expressions that provide the size of
output arguments of the predicate as a function of its input data sizes. It also
infers size relations for each clause, which give the input data sizes of the body
literals as functions of the input data sizes to the clause head. Such size relations
are instrumental for setting up cost relations.

The framework is doubly parametric: first, the costs inferred are functions of
input data sizes, and second, the framework itself is parametric with respect to
the type of approximation made (upper or lower bounds), and to the resource
analyzed. Each concrete resource r to be tracked is defined by two sets of (user-
provided) functions, which can be constants, or general expressions of input data
sizes:

1. Head cost ϕ[ap,r](H): a function that returns an approximation of type ap of
the amount of resource r used by the unification of the calling literal (subgoal)
p and the head H of a clause matching p, plus any preparation for entering
a clause (i.e., call and parameter passing cost).

2 We give equivalent but simpler descriptions than in [24], which are allowed by assum-
ing that programs are the result of a normalization process that makes all unifications
explicit in the clause body, so that the arguments of the clause head and the body
literals are all unique variables. We also change some notation for readability and
illustrative purposes.

A General Framework for Static Cost Analysis of Parallel Logic Programs 25

2. Predicate cost Ψ[ap,r](p, x̄): it is also possible to define the full cost for a
particular predicate p for resource r and approximation ap, i.e., the function
Ψ[ap,r](p) : N m

� → R∞ (with the sizes of p’s input data as parameters, x̄)
that returns the usage of resource r made by a call to this predicate. This is
especially useful for built-in or external predicates, i.e., predicates for which
the source code is not available and thus cannot be analyzed, or for providing
a more accurate function than analysis can infer. In the implementation,
this information can be provided by the user to the analyzer through trust
assertions.

For simplicity we only show the equations related to our standard definition of
cost. However, our framework has also been extended to allow the inference of
a more general definition of cost, called accumulated cost, which is useful for
performing static profiling, obtaining more detailed information regarding how
the cost is distributed among a set of user-defined cost centers. See [11,21] for
more details. In order to infer the resource usage functions, all predicates in the
program are processed in a single traversal of the call graph in reverse topological
order. Consider a predicate p defined by clauses C1, . . . , Cm. Assume x̄ are the
sizes of p’s input parameters. Then, the resource usage (expressed in units of
resource r with approximation ap) of a call to p, for an input of size x̄, denoted
as Cpred[ap,r](p, x̄), can be expressed as:

Cpred[ap,r](p, x̄) =
⊙

1≤i≤m

(Ccl[ap,r](Ci, x̄)) (1)

where
⊙

= ClauseAggregator(ap, r) is a function that takes an approximation
identifier ap and returns a function that applies over the cost of all the clauses,
Ccl[ap,r](Ci, x̄), for 1 ≤ i ≤ m, in order to obtain the cost of a call to the predicate
p. For example, if ap is the identifier for approximation “upper bound” (ub),
then a possible conservative definition for ClauseAggregator(ub, r) is the

∑

function. In this case, and since the number of solutions generated by a predicate
that will be demanded is generally not known in advance, a conservative upper
bound on the computational cost of a predicate is obtained by assuming that
all solutions are needed, and that all clauses are executed (thus the cost of the
predicate is assumed to be the sum of the costs of all of its clauses). However, it
is straightforward to take mutual exclusion into account to obtain a more precise
estimate of the cost of a predicate, using the maximum of the costs of mutually
exclusive groups of clauses, as done in [26].

Let us see now how to compute the resource usage of a clause. Consider a
clause C of predicate p of the form H :- L1, . . . , Lk where Lj , 1 ≤ j ≤ k, is
a literal (either a predicate call, or an external or builtin predicate), and H is
the clause head. Assume that ψj(x̄) is a tuple with the sizes of all the input
arguments to literal Lj , given as functions of the sizes of the input arguments
to the clause head. Note that these ψj(x̄) size relations have previously been
computed during size analysis for all input arguments to literals in the bodies of
all clauses. Then, the cost relation for clause C and a single call to p (obtaining
all solutions), is:

26 M. Klemen et al.

Ccl[ap,r](C, x̄) = ϕ[ap,r](H) +

lim(ap,C)∑

j=1

solsj(x̄) × Clit[ap,r](Lj , ψj(x̄)) (2)

where lim(ap,C) gives the index of the last body literal that is called in the
execution of clause C, and solsj represents the product of the number of solutions
produced by the predecessor literals of Lj in the clause body:

solsj(x̄) =

j−1∏

i=1

spred(Li, ψi(x̄)) (3)

where spred(Li, ψi(x̄)) gives the number of solutions produced by Li, with argu-
ments of size ψi(x̄). The number of solutions and size relations are both inferred
automatically by the framework (we refer the reader to [7–9,26] for a descrip-
tion).

Finally, Clit[ap,r](Lj , ψj(x̄)) is replaced by one of the following expressions,
depending on Lj :

– If Lj is a call to a predicate q which is in the same strongly connected compo-
nent as p (the predicate under analysis), then Clit[ap,r](Lj , ψj(x̄)) is replaced
by the symbolic call Cpred[ap,r](q, ψj(x̄)), giving rise to a recurrence relation
that needs to be bounded with a closed-form expression by the solver after-
wards.

– If Lj is a call to a predicate q which is in a different strongly connected
component than p, then Clit[ap,r](Lj , ψj(x̄)) is replaced by the closed-form
expression that bounds Cpred[ap,r](q, ψj(x̄)). The analysis guarantees that this
expression has been inferred beforehand, due to the fact that the analysis is
performed for each strongly connected component, in a reverse topological
order.

– If Lj is a call to a predicate q, whose cost is specified (with a trust asser-
tion) as Ψ[ap,r](q, ȳ), then Clit[ap,r](Lj , ψj(x̄)) is replaced by the expression
Ψ[ap,r](q, ψj(x̄)).

4 Our Extended Resource Analysis Framework
for Parallel Programs

In this section, we describe how we extend the resource analysis framework
detailed above, in order to handle logic programs with Independent And-
Parallelism, using the binary parallel &/2 operator. First, we introduce a new
general parameter that indicates the execution model the analysis has to con-
sider. For our current prototype, we have defined two different execution models:
standard sequential execution, represented by seq, and an abstract parallel exe-
cution model, represented by par(n), where n ∈ N ∪{∞}. The abstract execution
model par(∞) is similar to the work and depth model, presented in [6] and used

A General Framework for Static Cost Analysis of Parallel Logic Programs 27

extensively in previous work such as [16]. Basically, this model is based on con-
sidering an unbounded number of available processors to infer bounds on the
depth of the computation tree. The work measure is the amount of work to be
performed considering a sequential execution. These two measures together give
an idea on the impact of the parallelization of a particular program. The abstract
execution model par(n), where n ∈ N , assumes a finite number n of processors.

In order to obtain the cost of a predicate, Eq. (1) remains almost identical, the
only difference being the addition of the new parameter to indicate the execution
model.

Now we address how to set up the cost for clauses. In this case, Eq. (2) is
extended with the execution model ex, and also the default sequential cost aggre-
gation,

∑
, is replaced by a parametric associative operator

⊕
, that depends on

the resource being defined, the approximation, and the execution model. For
ex ≡ par(∞) or ex ≡ seq, the following equation is set up:

Ccl[ap,r,ex](C, x̄) = ϕ[ap,r](H) +

lim(ap,ex,C)⊕

j=1

(solsj(x̄) × Clit[ap,r,ex](Lj , ψj(x̄))) (4)

Note that the cost aggregation operators must depend on the resource r
(besides the other parameters). For example, if r is execution time, then the cost
of executing two tasks in parallel must be aggregated by taking the maximum
of the execution times of the two tasks. In contrast, if r is energy consumption,
then the aggregation is the addition of the energy of the two tasks.

Finally, we extend how the cost of a literal Li, expressed as
Clit[ap,r,ex](Li, ψi(x̄)), is set up. The previous definition is extended consider-
ing the new case where the literal is a call to the meta-predicate &/2. In this
case, we introduce a new parallel aggregation associative operator, denoted by⊗

. Concretely, if Li = B1&B2, where B1 and B2 are two sequences of goals,
then:

Clit[ap,r,ex](B1&B2, x̄) = Cbody[ap,r,ex](B1, x̄)
⊗

Cbody[ap,r,ex](B2, x̄) (5)

Cbody[ap,r,ex](B, x̄) =

lim(ap,ex,B)⊕

j=1

(solsj(x̄) × Clit[ap,r,ex](L
B
j , ψj(x̄))) (6)

where B = LB
1 , . . . , LB

m.
Consider now the execution model ex ≡ par(n), where n ∈ N (i.e., assuming

a finite number n of processors), and a recursive parallel predicate p that creates
a parallel task qi in each recursion i. Assume that we are interested in obtaining
an upper bound on the cost of a call to p, for an input of size x̄. We first infer
the number k of parallel tasks created by p as a function of x̄. This can be easily
done by using our cost analysis framework and providing the suitable assertions
for inferring a resource named “ptasks.” Intuitively, the “counter” associated
to such resource must be incremented by the (symbolic) execution of the &/2
parallel operator. More formally, k = Cpred[ub,ptasks](p, x̄). To this point, an

28 M. Klemen et al.

upper bound m on the number of tasks executed by any of the n processors is
given by m = � k

n�. Then, an upper bound on the cost (in terms of resolution
steps, i.e., r = steps) of a call to p, for an input of size x̄ can be given by:

Cpred[ub,r,par(n)](p, x̄) = Cu + Spawnu (7)

where Cu can be computed in two possible ways: Cu =
∑m

i=1 Cu
i ; or Cu = m Cu

1 ,
where Cu

i denotes an upper bound on the cost of parallel task qi, and Cu
1 , . . . , Cu

k

are ordered in descending order of cost. Each Cu
i can be considered as the sum

of two components: Cu
i = Schedu

i + Tu
i , where Schedu

i denotes the cost from
the point in which the parallel subtask qi is created until its execution is started
by a processor (possibly the same processor that created the subtask), i.e. the
cost of task preparation, scheduling, communication overheads, etc. Tu

i denotes
the cost of the execution of qi disregarding all the overheads mentioned before,
i.e., Tu

i = Cpred[ub,r,seq](q, ψq(x̄)), where ψq(x̄) is a tuple with the sizes of all
the input arguments to predicate q in the body of p. Spawnu denotes an upper
bound on the cost of creating the k parallel tasks qi. It will be dependent on
the particular system in which p is going to be executed. It can be a constant,
or a function of several parameters, (such as input data size, number of input
arguments, or number of tasks) and can be experimentally determined.

4.1 Solving Cost Recurrence Relations Involving max Operation

We propose a method for finding closed-form functions for cost relations that use
the parallel and sequential cost aggregation operators

⊗
and

⊕
, which include

the max function in their definitions.
Automatically finding closed-form upper and lower bounds for recurrence

relations is an uncomputable problem. For some special classes of recurrences,
exact solutions are known, for example for linear recurrences with one variable.
For some other classes, it is possible to apply transformations to fit a class of
recurrences with known solutions, even if this transformation obtains an appro-
priate approximation rather than an equivalent expression.

Particularly for the case of analyzing independent and-parallel logic pro-
grams, recurrences involving the max operator are quite common. For example,
if we are analyzing elapsed time of a parallel logic program, a proper parallel
aggregation operator is the maximum between the times elapsed for each literal
running in parallel. To the best of our knowledge, no general solution exists for
recurrences of this particular type. However, in this paper we identify some com-
mon classes of this type of recurrences, for which we obtain closed forms that are
proven to be correct. In this section, we present these different classes, together
with the corresponding method to obtain a correct bound.

Consider the following function f : N m → N , defined as a general form of a
first-order recurrence equation with a max operator:

f(x̄) =

{
max(C, f(x̄|i − 1)) + D xi > a

B xi ≤ a
(8)

A General Framework for Static Cost Analysis of Parallel Logic Programs 29

where a ∈ N , and C, D, and B are arbitrary expressions possibly depending on
x̄. Note that x̄ = x1, x2, . . . , xm. We define x̄|i − 1 = x1, . . . , xi − 1, . . . , xm, for
a given i, 1 ≤ i ≤ m. If C and D do not depend on xi, then C and D do not
change through the different recursive instances of f . In this case, an equivalent
closed form is defined by the following theorem:

Theorem 1. Given f : N m → N as defined in (8), where C and D are func-
tions of x̄ \ xi (i.e., they do not depend on xi). Then, ∀x̄:

f(x̄) = f
′
(x̄) =

{
max(C, B) + (xi − a) · D xi > a

B xi ≤ a

For the case where C = g(x̄) and D = h(x̄) are functions non-decreasing on
xi, then the upper bound is given by the following closed form:

Theorem 2. Given f : N m → N as defined in (8), where g and h are functions
of x̄, non-decreasing on xi. Then, ∀x̄:

f(x̄) ≤ f ′(x̄) =
{

max(g(x̄), B) + (xi − a − 1) × max(g(x̄), h(x̄|i − 1)) + h(x̄) xi > a

B xi ≤ a

The proofs of both theorems are available in [18]. If the recurrence is not included
in the classes defined by Theorems 1 and 2, we try to eliminate the max opera-
tor by simplification. Consider an expression max(e1, e2) appearing in a recur-
rence relation. First, we use the function comparison capabilities of CiaoPP, pre-
sented in [19,20]. If an ei contains non-closed recurrence function calls, we use
an SMT solver [23] representing non-closed functions as uninterpreted functions,
assuming that they are positive and non-decreasing. Concretely, for each non-
closed function call f(x̄) appearing in ei, we add the properties ∀x̄.f(x̄) ≥ 0 and
∀x̄, ȳ.x̄ ≤ ȳ ⇐⇒ f(x̄) ≤ f(ȳ) to a set M . Then, we check if either M |= e1 ≤ e2
or M |= e2 ≤ e1 hold.3

Finally, if no proof is found, we replace the max operator with an addition,
losing precision but still finding safe upper bounds.

Table 1. Description of the benchmarks.

map add1/2 Parallel increment by one of each element of a list

fib/2 Parallel computation of the nth Fibonacci number

add mat/3, mmatrix/3 Parallel matrix multiplication and addition

blur/2 Generic parallel image filter

intersect/3, union/3, diff/3 Set operations

dyade/3, dyade map/3 Dyadic product of two vectors (and on a set of vectors)

append all/3 Appends a prefix to each list of a list of lists

3 As the algorithm used by SMT solvers in this case is not guaranteed to terminate,
we set a timeout.

30 M. Klemen et al.

5 Implementation and Experimental Results

We have implemented a prototype of our approach, leveraging the existing
resource usage analysis framework of CiaoPP. The implementation basically
consists of the parameterization of the operators used for sequential and par-
allel cost aggregation, i.e., for the aggregation of the costs corresponding to the
arguments of ,/2 and &/2, respectively. This allows the user to define resources
in a general way, taking into account the underlying execution model. We use
off-the-shelf Computer Algebra Systems, as well as a builtin recurrence solver
extended with the techniques presented in this paper, in order to solve recur-
rence relations that arise during analysis. We also use an external SMT Solver
(Z3 [23]), for the simplification of some recurrences with a max operator.

We selected a set of benchmarks that exhibit different common parallel
patterns, briefly described in Table 1, together with the definition of a set of
resources that help understand the overall behavior of the parallelization. Table 2
shows some results of the experiments that we have performed with our proto-
type implementation. Column Bench shows the main predicates analyzed for
each benchmark. Set operations (intersect, union and diff), as well as the pro-
grams append all, dyade and add mat, are Prolog versions of the benchmarks
analyzed in [16], which is the closest related work we are aware of. Column Res
indicates the name of each of the resources inferred for each benchmark: sequen-
tial resolution steps (SCost), parallel resolution steps assuming an unbounded
number of processors (PCost), and maximum number of processes executing in
parallel (SThreads). The latter gives an indication of the maximum parallelism
that can potentially be exploited. We are considering a resolution step as the
overhead of spawning a new thread. Column Bound Inferred shows the upper
bounds obtained for each of the resources indicated in Column Res. While in the
experiments both upper and lower bounds were inferred, for the sake of brevity,
we only show upper-bound functions. Column BigO shows the complexity order,
in big O notation, corresponding to each resource. For all the benchmarks in
Table 2 we obtain the exact complexity orders. We also obtain the same com-
plexity order as in [16] for the Prolog versions of the benchmarks taken from
that work. Finally, Column TA(ms) shows the analysis times in milliseconds.
The results show that most of the benchmarks have different asymptotic behav-
ior in the sequential and parallel execution models. In particular, for fib(x),
the analysis infers an exponential upper bound for sequential execution steps,
and a linear upper bound for parallel execution steps. As mentioned before, this
is an upper bound for an ideal case, assuming an unbounded number of pro-
cessors. Nevertheless, such upper-bound information is useful for understanding
how the cost behavior evolves in architectures with different levels of parallelism.
In addition, this dual cost measure can be combined together with a bound on
the number of processors in order to obtain a general asymptotic upper bound
(see for example Brent’s Theorem [12], which is also mentioned in [16]). The
program map add1(l) exhibits a different behavior: both sequential and parallel
upper bounds are linear. This happens because we are considering resolution
steps, i.e., we are counting each head unification produced from an initial call

A General Framework for Static Cost Analysis of Parallel Logic Programs 31

Table 2. Resource usage inferred for independent and-parallel programs.

Bench Res Bound Inferred BigO TA(ms)

map add1(x) SCost 2 · lx + 1 O(lx) 31.17

PCost 2 · lx + 1 O(lx)

SThreads lx O(lx)

fib(x) SCost F (ix) + L(ix) − 1 O(2ix) 127.81

PCost 2 · ix + 1 O(ix)

SThreads F (ix) + L(ix) − 1 O(2ix)

mmatrix(m1,

n1,m2, n2)

SCost in2 · im2 · im1 + 2 · im2 · im1 + 2 · im1 + 1 O(in2 · im2 · im1) 194.45

PCost in2 + 2 · im2 + 2 · im1 + 1 O(in1 + im1 + im2)

SThreads im2 · im1 + im1 O(im2 · im1)

blur(m, n) SCost 2 · im · in + 2 · in + 1 O(im · in) 126.63

PCost 2 · im + 2 · in + 1 O(im + in)

SThreads in O(in)

add mat(m, n) SCost im · in + 2 · in + 1 O(im · in) 128.93

PCost im + 2 · in + 1 O(im + in)

SThreads in O(in)

intersect(a, b) SCost la · lb + 3 · la + 3 O(la · lb) 233.14

PCost lb + 3 · la + 3 O(la + lb)

SThreads la O(la)

union(a, b) SCost la · lb + 3 · la + 3 O(la · lb) 218.31

PCost 2 · lb + 3 · la + 3 O(la + lb)

SThreads la O(la)

diff(a, b) SCost la · lb + 3 · la + 3 O(la · lb) 232.55

PCost lb + 3 · la + 3 O(la + lb)

SThreads la O(la)

dyade(a, b) SCost la · lb + 2 · la + 1 O(la · lb) 82.71

PCost lb + 2 · la + 1 O(la + lb)

SThreads la O(la)

dyade map(l,m) SCost imax(m) · lm · ll + 2 · lm · ll + 2 · lm + 1 O(imax(m) · lm · ll) 177.91

PCost imax(m) + 2 · lm + 2 · ll + 1 O(imax(m) + lm + ll)

SThreads ll · lm + ll O(lm · ll)
append all(l,m) SCost ll · lm + 2 · lm + 1 O(ll · lm) 81.97

PCost ll + 2 · lm + 1 O(ll + lm)

SThreads lm O(lm)

F (n), L(n) represent the nth. element of the Fibonacci sequence and the nth. Lucas number, respectively.

ln, in represent the size of n in terms of the metrics length and int, respectively.

map add1(l). Even under the parallel execution model, we have a chain of head
unifications whose length depends linearly on the length of the input list. It
follows from the results of this particular case that this simple, non-associative
parallelization will not be useful for improving the number of resolution steps
performed in parallel.

Another useful information inferred in our experiments is the maximum num-
ber of processes that can be executed in parallel, represented by the resource
named SThreads. We can see that for most of our examples the analysis obtains
a linear upper bound for this resource, in terms of the size of some of the inputs.
For example, the execution of intersect(a,b) (parallel set intersection) will
create at most la processes, where la represents the length of the list a. For
other examples, the analysis shows a quadratic upper bound (as in mmatrix),
or even exponential bounds (as in fib). The information about upper bounds

32 M. Klemen et al.

Table 3. Resource usage inferred for a bounded number of processors.

Bench Bound Inferred BigO TA(ms)

map add1(x) 2 · � lx
p

� + 1 O(� lx
p

�) 54.36

blur(m, n) 2 · � in
p

� · im + 2 · � in
p

� + 1 O(� in
p

� · im) 205.97

add mat(m, n) � in
p

� · im + 2 · � in
p

� + 1 O(� in
p

� · im) 185.89

intersect(a, b) � la
p

� · lb + 2 · � la
p

� + la + 2 O(� la
p

� · lb) 330.47

union(a, b) � la
p

� · lb + 2 · � la
p

� + la + lb + 2 O(� la
p

� · lb) 311.3

diff(a, b) � la
p

� · lb + 2 · � la
p

� + la + 2 O(� la
p

� · lb) 339.01

dyade(a, b) � la
p

� · lb + 2 · � la
p

� + 1 O(� la
p

� · lb) 120.93

append all(l, m) � lm
p

� · ll + 2 · � lm
p

� + 1 O(� lm
p

� · ll) 117.8

p is defined as the minimum between the number of processors and
SThreads.

on the maximum level of parallelism required by a program is useful for under-
standing its scalability in different parallel architectures, or for optimizing the
number of processors that a particular call will use, depending on the size of the
input data.

Finally, the results of our experiments considering a bounded number of
processors are shown in Table 3.

6 Related Work

Our approach is an extension of an existing cost analysis framework for sequential
logic programs [9,11,20], which extends the classical cost analysis techniques
based on setting up and solving recurrence relations, pioneered by [29], with
solutions for relations involving max and min functions. The framework handles
characteristics such as backtracking, multiple solutions (i.e., non-determinism),
failure, and inference of both upper and lower bounds including non-polynomial
bounds. These features are inherited by our approach, and are absent from other
approaches to parallel cost analysis in the literature.

The most closely-related work to our approach is [16], which describes an
automatic analysis for deriving bounds on the worst-case evaluation cost of first
order functional programs. The analysis derives bounds under an abstract dual
cost model based on two measures: work and depth, which over-approximate the
sequential and parallel evaluation cost of programs, respectively, considering an
unlimited number of processors. Such an abstract cost model was introduced
by [6] to formally analyze parallel programs. The work is based on type judg-
ments annotated with a cost metric, which generate a set of inequalities which
are then solved by linear programming techniques. Their analysis is only able
to infer multivariate resource polynomial bounds, while non-polynomial bounds
are left as future work. In [15] the authors propose an automatic analysis based
on the work and depth model, for a simple imperative language with explicit
parallel loops.

A General Framework for Static Cost Analysis of Parallel Logic Programs 33

There are other approaches to cost analysis of parallel and distributed sys-
tems, based on different models of computation than the independent and-
parallel model in our work. In [3] the authors present a static analysis which
is able to infer upper bounds on the maximum number of active (i.e., not fin-
ished nor suspended) processes running in parallel, and the total number of
processes created for imperative async-finish parallel programs. The approach
described in [1] uses recurrence (cost) relations to derive upper bounds on the
cost of concurrent object-oriented programs, with shared-memory communica-
tion and future variables. They address concurrent execution for loops with
semi-controlled scheduling, i.e., with no arbitrary interleavings. In [4] the authors
address the cost of parallel execution of object-oriented distributed programs.
The approach is to identify the synchronization points in the program, use serial
cost analysis of the blocks between these points, and then, exploiting the tech-
niques mentioned, construct a graph structure to capture the possible parallel
execution of the program. The path of maximal cost is then computed. The allo-
cation of tasks to processors (called “locations”) is part of the program in these
works, and thus, although independent and-parallel programs could be modeled
in this computation style, it is not directly comparable to our more abstract
model of parallelism.

Solving, or safely bounding recurrence relations with max and min functions
has been addressed mainly for recurrences derived from divide-and-conquer algo-
rithms [5,17,28]. In [2] the authors present solutions for Cost Relation Systems
by obtaining upper bounds for both the number of nodes and the cost added in
each node in the derived evaluation tree. These bounds are then combined in
order to obtain a closed-form upper-bound expression. This closed form possibly
contains maximization operations to express upper bounds for a set of subex-
pressions. However, each cost relation is defined as a summatory of costs, while
in our approach, in addition to summations, we also consider other operations
for aggregating the costs, including max operators. The presence of these opera-
tors often produces recurrence relations where the recursive calls are under the
scope of such a max operator, for which we present a method to obtain a closed-
form bound. This class of recurrences are not handled by most of the current
computer algebra systems, as the authors in [2] mention.

7 Conclusions

We have presented a novel, general, and flexible analysis framework that can
be instantiated for estimating the resource usage of parallel logic programs, for
a wide range of resources, platforms, and execution models. To the best of our
knowledge, this is the first approach to the cost analysis of parallel logic programs.
Such estimations include both lower and upper bounds, given as functions on
input data sizes. In addition, our analysis also infers other information which
is useful for improving the exploitation and assessing the potential and actual
parallelism of a program. We have also developed a method for solving the cost
relations that arise in this particular type of analysis, which involve the max

34 M. Klemen et al.

function. Finally, we have developed a prototype implementation of our general
framework, instantiated it for the analysis of logic programs with Independent
And-Parallelism, and performed an experimental evaluation, obtaining encour-
aging results w.r.t. accuracy and efficiency.

References

1. Albert, E., Arenas, P., Genaim, S., Gómez-Zamalloa, M., Puebla, G.: Cost analysis
of concurrent OO programs. In: Yang, H. (ed.) APLAS 2011. LNCS, vol. 7078, pp.
238–254. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25318-
8 19

2. Albert, E., Arenas, P., Genaim, S., Puebla, G.: Closed-form upper bounds in static
cost analysis. J. Autom. Reason. 46(2), 161–203 (2011)

3. Albert, E., Arenas, P., Genaim, S., Zanardini, D.: Task-level analysis for a language
with async-finish parallelism. In: Proceedings of LCTES 2011, pp. 21–30. ACM
Press (2011)

4. Albert, E., Correas, J., Johnsen, E., Pu, K., Román-Dı́ez, G.: Parallel cost analysis.
ACM Trans. Comput. Logic 19(4), 1–37 (2018)

5. Alonso, L., Reingold, E., Schott, R.: Multidimensional divide-and-conquer maximin
recurrences. SIAM J. Discret. Math. 8(3), 428–447 (1995)

6. Blelloch, G.E., Greiner, J.: A provable time and space efficient implementation of
NESL. In: ACM International Conference on Functional Programming, pp. 213–
225, May 1996

7. Debray, S.K., Lin, N.W.: Cost analysis of logic programs. ACM TOPLAS 15(5),
826–875 (1993)

8. Debray, S.K., Lin, N.W., Hermenegildo, M.V.: Task granularity analysis in logic
programs. In: Proceedings of the PLDI 1990, pp. 174–188. ACM, June 1990

9. Debray, S.K., Lopez-Garcia, P., Hermenegildo, M.V., Lin, N.W.: Lower bound cost
estimation for logic programs. In: ILPS 1997, pp. 291–305. MIT Press (1997)

10. Gupta, G., Pontelli, E., Ali, K., Carlsson, M., Hermenegildo, M.V.: Parallel exe-
cution of prolog programs: a survey. ACM TOPLAS 23(4), 472–602 (2001)

11. Haemmerlé, R., López-Garćıa, P., Liqat, U., Klemen, M., Gallagher, J.P.,
Hermenegildo, M.V.: A transformational approach to parametric accumulated-cost
static profiling. In: Kiselyov, O., King, A. (eds.) FLOPS 2016. LNCS, vol. 9613, pp.
163–180. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29604-3 11

12. Harper, R.: Practical Foundations for Programming Languages, 2 edn. Cambridge
University Press (2016). https://doi.org/10.1017/CBO9781316576892

13. Hermenegildo, M., Puebla, G., Bueno, F., Garcia, P.L.: Integrated program debug-
ging, verification, and optimization using abstract interpretation (and the Ciao
system preprocessor). Sci. Comput. Program. 58(1–2), 115–140 (2005)

14. Hermenegildo, M., Rossi, F.: Strict And non-strict independent and-parallelism in
logic programs: correctness, efficiency, and compile-time conditions. J. Log. Pro-
gram. 22(1), 1–45 (1995)

15. Hoefler, T., Kwasniewski, G.: Automatic complexity analysis of explicitly parallel
programs. In: 26th ACM Symposium on Parallelism in Algorithms and Architec-
tures, SPAA 2014, pp. 226–235 (2014)

16. Hoffmann, J., Shao, Z.: Automatic static cost analysis for parallel programs. In:
Vitek, J. (ed.) ESOP 2015. LNCS, vol. 9032, pp. 132–157. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46669-8 6

https://doi.org/10.1007/978-3-642-25318-8_19
https://doi.org/10.1007/978-3-642-25318-8_19
https://doi.org/10.1007/978-3-319-29604-3_11
https://doi.org/10.1017/CBO9781316576892
https://doi.org/10.1007/978-3-662-46669-8_6

A General Framework for Static Cost Analysis of Parallel Logic Programs 35

17. Hwang, H., Tsai, T.H.: An asymptotic theory for recurrence relations based on
minimization and maximization. Theoret. Comput. Sci. 290(3), 1475–1501 (2003)

18. Klemen, M., Lopez-Garcia, P., Gallagher, J., Morales, J., Hermenegildo, M.V.:
Towards a general framework for static cost analysis of parallel logic programs.
Technical report CLIP-1/2019.0, The CLIP Lab, IMDEA Software Institute and
T.U. Madrid, July 2019. http://arxiv.org/abs/1907.13272

19. Lopez-Garcia, P., Darmawan, L., Bueno, F.: A framework for verification and
debugging of resource usage properties. In: Technical Communications of ICLP.
LIPIcs, vol. 7, pp. 104–113. Schloss Dagstuhl, July 2010

20. Lopez-Garcia, P., Darmawan, L., Klemen, M., Liqat, U., Bueno, F., Hermenegildo,
M.V.: Interval-based resource usage verification by translation into Horn clauses
and an application to energy consumption. TPLP 18, 167–223 (2018)

21. Lopez-Garcia, P., Klemen, M., Liqat, U., Hermenegildo, M.V.: A general framework
for static profiling of parametric resource usage. TPLP 16(5–6), 849–865 (2016)

22. Méndez-Lojo, M., Navas, J., Hermenegildo, M.V.: A flexible, (C)LP-based app-
roach to the analysis of object-oriented programs. In: King, A. (ed.) LOPSTR
2007. LNCS, vol. 4915, pp. 154–168. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-78769-3 11

23. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

24. Navas, J., Mera, E., López-Garćıa, P., Hermenegildo, M.V.: User-definable resource
bounds analysis for logic programs. In: Dahl, V., Niemelä, I. (eds.) ICLP 2007.
LNCS, vol. 4670, pp. 348–363. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-74610-2 24

25. Rosendahl, M.: Automatic complexity analysis. In: Proceedings of FPCA 1989, pp.
144–156. ACM Press (1989)

26. Serrano, A., Lopez-Garcia, P., Hermenegildo, M.V.: Resource usage analysis of
logic programs via abstract interpretation using sized types. TPLP 14(4–5), 739–
754 (2014). ICLP 2014 Special Issue

27. Shen, K., Hermenegildo, M.: High-level characteristics of or- and Independent and-
parallelism in Prolog. Int. J. Parallel Prog. 24(5), 433–478 (1996). https://doi.org/
10.1007/BF02583023

28. Wang, B.F.: Tight bounds on the solutions of multidimensional divide-and-conquer
maximin recurrences. Theoret. Comput. Sci. 242(1), 377–401 (2000)

29. Wegbreit, B.: Mechanical program analysis. Comm. ACM 18(9), 528–539 (1975)

http://arxiv.org/abs/1907.13272
https://doi.org/10.1007/978-3-540-78769-3_11
https://doi.org/10.1007/978-3-540-78769-3_11
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-74610-2_24
https://doi.org/10.1007/978-3-540-74610-2_24
https://doi.org/10.1007/BF02583023
https://doi.org/10.1007/BF02583023

Incremental Analysis of Logic Programs
with Assertions and Open Predicates

Isabel Garcia-Contreras1,2(B) , Jose F. Morales1 ,
and Manuel V. Hermenegildo1,2

1 IMDEA Software Institute, Madrid, Spain
{isabel.garcia,josef.morales,manuel.hermenegildo}@imdea.org

2 Universidad Politécnica de Madrid (UPM), Madrid, Spain

Abstract. Generic components are a further abstraction over the con-
cept of modules, introducing dependencies on other (not necessarily avail-
able) components implementing specified interfaces. They have become a
key concept in large and complex software applications. Despite undeni-
able advantages, generic code is also anti-modular. Precise analysis (e.g.,
for detecting bugs or optimizing code) requires such code to be instan-
tiated with concrete implementations, potentially leading to expensive
combinatorial explosion. In this paper we claim that incremental, whole
program analysis can be very beneficial in this context, and alleviate the
anti-modularity nature of generic code. We propose a simple Horn-clause
encoding of generic programs, using open predicates and assertions, and
we introduce a new incremental, multivariant analysis algorithm that
reacts incrementally not only to changes in program clauses, but also to
changes in the assertions, upon which large parts of the analysis graph
may depend. We also discuss the application of the proposed techniques
in a number of practical use cases. In addition, as a realistic case study,
we apply the proposed techniques in the analysis of the LPdoc documen-
tation system. We argue that the proposed traits are a convenient and
elegant abstraction for modular generic programming, and that our pre-
liminary results support our thesis that the new incrementality-related
features added to the analysis bring promising advantages in this context.

Keywords: Incremental static analysis · Verification · Assertions ·
Generic code · Specifications · Abstract interpretation · Horn clauses ·
Logic programs

1 Introduction

When developing large, real-life programs it is important to ensure application
reliability and coding convenience. An important component in order to achieve

Research partially funded by MINECO TIN2015-67522-C3-1-R TRACES project, FPU
grant 16/04811, and the Madrid P2018/TCS-4339 BLOQUES-CM program. We are
also grateful to the anonymous reviewers for their useful comments.

c© Springer Nature Switzerland AG 2020
M. Gabbrielli (Ed.): LOPSTR 2019, LNCS 12042, pp. 36–56, 2020.
https://doi.org/10.1007/978-3-030-45260-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45260-5_3&domain=pdf
http://orcid.org/0000-0001-6098-3895
http://orcid.org/0000-0001-9782-8135
http://orcid.org/0000-0002-7583-323X
https://doi.org/10.1007/978-3-030-45260-5_3

Incremental Analysis of Logic Programs with Assertions 37

these goals is the availability in the language (and use in the development pro-
cess) of some mechanism for expressing specifications, combined with a way of
determining if the program meets the specifications or locate errors. This deter-
mination is usually achieved through some combination of compile-time analysis
and verification with testing and run-time assertion checking [7,9,12,22,23].

Another relevant aspect when developing large programs is modularity. In
modern coding it is rarely necessary to write everything from scratch. Modules
and interfaces allow dividing the program in manageable and interchangeable
parts. Interfaces, including specifications and dependencies, are needed in order
to connect with external code (including specifications of such code), to connect
self-developed code that is common with other applications, and as a placeholder
for different implementations of a given functionality, in general referred to as
generic code.

Despite undeniable advantages, generic code is known to be in fact anti-
modular, and the analysis of generic code poses challenges: parts of the code are
unavailable, and the interface specifications may not be descriptive enough to
allow verifying the specifications for the whole application. Several approaches
are possible in order to balance separate compilation with precise analysis and
optimization. First, it is possible to analyze generic code by trusting its interface
specifications, i.e., analyzing the client code and the interface implementations
independently, flattening the analysis information inferred at the boundaries
to that of the interface descriptions. This technique can reduce global analysis
cost significantly at the expense of some loss of precision. Some of it may be
regained by, e.g., enriching specifications manually for the application at hand.
Alternatively, for a closed set of interface implementations, it may be desirable
to analyze the whole application together with these implementations, keeping
different specialized versions of the analysis across the interfaces. This allows
getting the most precise information, specializations, compiler optimizations,
etc., but at a higher cost.

Multivariant analyses maintain different information for each predicate call,
depending on the caller predicate and the sequence of calls to this call. For imper-
ative programs this implies the notions of “context-” and “path-”sensitivity. We
believe that this information is specially beneficial when dealing with generic
code, both for precision of the analysis results and for efficiency of the algorithm.
Thus, our starting point is a (whole program) analysis that is multivariant. To
treat generic code we propose a simple Horn-clause encoding, using open pred-
icates and assertions, and introduce a novel extension for logic programming
(traits) that is translated using open predicates. This abstraction addresses typ-
ical use cases of generic code in a more elegant and analysis-friendly way than
the traditional alternative in LP of using multifile predicates. Then, we introduce
a new, multivariant analysis algorithm that, in addition to supporting and tak-
ing advantage of assertions during analysis, reacts incrementally to changes not
only in the program clauses but also in the assertions, upon which large parts of
the analysis graph may depend, while also supporting natively open predicates.
Generic code offers many opportunities for the application of this new analysis

38 I. Garcia-Contreras et al.

technique. We study a number of use cases, including editing a client (of an inter-
face), while keeping the interface unchanged (e.g., analyzing a program reusing
the analysis of a –family of– libraries) and keeping the client code unchanged,
but editing the interface implementation(s) (e.g., modifying one implementation
of an interface). In addition, we provide experimental results in a realistic case
study: the analysis of the LPdoc documentation system and its multiple backends
for generating documentation in different formats. Related work is discussed in
Sect. 7.

2 Background

Logic Programs. A definite Logic Program, or program, is a finite sequence of
Horn clauses (clauses for short). A clause is of the form H:-B1, . . . , Bn where
H, the head, is an atom, and B1, . . . , Bn is the body, a possibly empty finite
conjunction of atoms. Atoms are also called literals. An atom is of the form
p(V1, . . . , Vn), where p is a symbol of arity n. It is normalized if the V1, . . . , Vn

are all distinct variables. Normalized atoms are also called predicate descriptors.
Each maximal set of clauses in the program with the same descriptor as head
(modulo variable renaming) defines a predicate (or procedure). p/n refers to a
predicate p of arity n. Body literals can be predicate descriptors, which repre-
sent calls to the corresponding predicates, or built-ins. A built-in is a predefined
relation for some background theory. Note that built-ins are not necessarily nor-
malized. In the examples we may use non-normalized programs. We denote with
vars(A) the set of variables that appear in the atom A.

For presentation purposes, the heads of the clauses of each predicate in the
program will be referred to with a unique subscript attached to their predicate
name (the clause number), and the literals of their bodies with dual subscript
(clause number, body position), e.g., Pk:-Pk,1, . . . Pk,nk

. The clause may also be
referred to as clause k of predicate P . For example, for the predicate app/3:

�

1 app(X,Y,Z):- X=[], Y=Z.
2 app(X,Y,Z):- X=[U|V], Z=[U|W], app(V,Y,W).

� �

app/31 denotes the head of the first clause of app/3, app/32,1 denotes the first
literal of the second clause of app/3, i.e., the unification X=[U|V].

Assertions. Assertions allow stating conditions on the state (current substi-
tution) that hold or must hold at certain points of program execution. We
use for concreteness a subset of the syntax of the pred assertions of [12,21],
which allow describing sets of preconditions and conditional postconditions on
the state for a given predicate. These assertions are instrumental for many pur-
poses, e.g., expressing the results of analysis, providing specifications, and doc-
umenting [9,12,22]. A pred assertion is of the form:

:- pred Head [: Pre] [=> Post].

Incremental Analysis of Logic Programs with Assertions 39

where Head is a predicate descriptor that denotes the predicate that the assertion
applies to, and Pre and Post are conjunctions of property literals, i.e., literals cor-
responding to predicates meeting certain conditions which make them amenable
to checking, such as being decidable for any input [21]. Pre expresses properties
that hold when Head is called, namely, at least one Pre must hold for each call
to Head . Post states properties that hold if Head is called in a state compatible
with Pre and the call succeeds. Both Pre and Post can be empty conjunctions
(meaning true), and in that case they can be omitted.

Example 1. The following assertions describe different behaviors of an imple-
mentation of a hashing function dgst: (1) states that, when called with argu-
ment Word a string and N a variable, then, if it succeeds, N will be a number, (2)
states that calls for which Word is a string and N is an integer are allowed, i.e.,
it can be used to check if N is the hash of Word.

�

1 :- pred dgst(Word,N) : (string(Word), var(N)) => num(N). % (1)
2 :- pred dgst(Word,N) : (string(Word), int(N)). % (2)
3 dgst(Word,N) :-
4 % implementation of the hashing function

� �

Definition 1 (Meaning of a Set of Assertions for a Predicate). Given
a predicate represented by a normalized atom Head, and a corresponding set of
assertions {a1 . . . an}, with ai = “:- pred Head : Prei => Post i.” the set of
assertion conditions for Head is {C0, C1, . . . , Cn}, with:

Ci =
{
calls(Head ,

∨n
j=1 Prej) i = 0

success(Head ,Prei,Post i) i = 1..n

where calls(Head ,Pre)1 states conditions on all concrete calls to the predicate
described by Head , and success(Head ,Prej ,Postj) describes conditions on the
success substitutions produced by calls to Head if Prej is satisfied.

3 An Approach to Modular Generic Programming:
Traits

In this section we present a simple approach to modular generic programming
for logic programs without static typing. To that end we introduce the concept
of open predicates. Then we show how they can be used to deal with generic
code, by proposing a simple syntactic extension for logic programs for writing
and using generic code (traits) and its translation to plain clauses.

Open vs. Closed Predicates. We consider a simple module system for logic pro-
gramming where predicates are distributed in modules (each predicate symbol
belongs to a particular module) and where module dependencies are explicit
in the program [2]. An interesting property, specially for program analysis, is

1 We denote the calling conditions with calls (plural) for historic reasons, and to
avoid confusion with the higher order predicate in Prolog call/2.

40 I. Garcia-Contreras et al.

that we can distinguish between open and closed predicates.2 Closed predicates
within a module are those whose complete definition is available in the module. In
contrast, the definition of open predicates (traditionally declared as multifile

in many Prolog systems) can be can be scattered across different modules, and
thus not known until all the application modules are linked (note that programs
still use the closed world assumption). Despite its flexibility, open predicates are
“anti-modular” (in a similar way to typeclasses in Haskell).

Open as “multifile.” The following example shows an implementation of a generic
password-checking algorithm in Prolog:

�

1 :- multifile dgst/3.
2

3 check_passwd(User) :-
4 get_line(Plain), % Read plain text password
5 passwd(User,Hasher,Digest,Salt), % Consult password database
6 append(Plain,Salt,Salted), % Append salt
7 dgst(Hasher,Salted,Digest). % Compute and check digest

� �

The code above is generic w.r.t. the selected hashing algorithm (Hasher). Note
that there is no explicit dependency between check passwd/1 and the different
hashing algorithms. The special multifile predicate dgst/3 acts as an interface
between implementations of hashing algorithms and check passwd/1. While this
type of encoding is widely used in practice, the use of multifile predicates is
semantically obscure and error-prone. Instead we propose traits as a syntactic
extension that captures the essential mechanisms necessary for writing generic
code.3

Traits. A trait is defined as a collection of predicate specifications (as predicate
assertions). For example:

�

1 :- trait hasher { :- pred dgst(Str, Digest) : string(Str) => int(Digest). }.
� �

defines a trait hasher, which specifies a predicate dgst/2, which must be called
with an instantiated string, and obtains an integer in Digest.

As a minimalistic syntactic extension, we introduce a new head and literal
notation (X as T).p(A1, . . . , An), which represents the predicate p for X imple-
menting trait T . Basically, this is equivalent to p(X,A1, . . . , An), where X is
used to select the trait implementation. In literals, X is annotated with a trait,
which can be different for each call due to dynamic typing and multiple trait
implementations for the same data. When X (the implementation) is unknown

2 For space reasons we only consider static predicates and modules. Predicates whose
definition may change during execution, or modules that are dynamically loaded/un-
loaded at run time can also be dealt with, using various techniques, and in particular
the incremental analysis proposed.

3 In this paper we only focus on traits as interfaces. The actual design in Ciao supports
default implementations, which makes them closer to traits in Rust.

Incremental Analysis of Logic Programs with Assertions 41

at compile-time, this is equivalent to dynamic dispatch. The check passwd/1

predicate using the trait above is:
�

1 check_passwd(User) :-
2 get_line(Plain),
3 passwd(User,Hasher,Digest,Salt),
4 append(Plain,Salt,Salted),
5 (Hasher as hasher).dgst(Salted,Digest).

� �

The following translation rules convert code using traits to plain predicates.
Note that we rely on the underlying module system to add module qualification
to function and trait (predicate) symbols. Calls to trait predicates are done
through the interface (open) predicate, which also carries the predicate assertions
declared in the trait definition:

�

1 % open predicates and assertions for each p/n in the trait
2 :- multifile ’T.p’/(n + 1).
3 :- pred ’T.p’(X, A1, . . . , An) : . . . =>
4 % call to p/n for X implementing T
5 . . . :- . . ., ’T.p’(X, A1, . . . , An), . . . % (X as T).p(A1, . . . , An)

� �

A trait implementation is a collection of predicates that implements a given
trait, indexed by a specified functor associated with that implementation. E.g.:

�

1 :- impl(hasher, xor8/0).
2 (xor8 as hasher).dgst(Str, Digest) :- xor8_dgst(Xs, 0, Digest).
3

4 xor8_dgst([], D, D).
5 xor8_dgst([X|Xs], D0, D) :- D1 is D0 # X, xor8_dgst(Xs, D1, D).

� �

declares that xor8 implements a hasher. In this case xor8 is an atom, but trait
syntax allows arbitrary functors. The implementation for the dgst/2 predicate
is provided by (xor8 as hasher).dgst(Str, Digest).

The translation rules to plain predicates are as follows:
�

1 % the implementation is a closed predicate (head renamed)
2 ’<f/k as T>.p’(f(. . .), A1, . . . , An) :- . . . % (f(. . .) as T).p(A1, . . . , An)
3

4 % bridge from interface (open predicate) to the implementation
5 ’T.p’(X, A1, . . . , An) :- X=f(. . .), ’<f/k as T>.p’(X, A1, . . . , An).

� �

Adding new implementations is simple:
�

1 :- impl(hasher, sha256/0).
2 (sha256 as hasher).dgst(Str, Digest) :- . . .

� �

This approach still preserves some interesting modular features: trait names can
be local to a module (and exported as other predicate/function symbols), and
trait implementations (e.g., sha256/0) are just function symbols, which can also
be made local to modules in the underlying module system.

42 I. Garcia-Contreras et al.

4 Goal-Dependent Abstract Interpretation

We recall some basic concepts of abstract interpretation of logic programs.

Program Analysis with Abstract Interpretation. Our approach is based on
abstract interpretation [4], a technique in which the execution of the program is
simulated (over-approximated) on an abstract domain (Dα) which is simpler than
the actual, concrete domain (D). Although not strictly required, we assume that
Dα has a lattice structure with meet (�), join (�), and less than (�) operators.
Abstract values and sets of concrete values are related via a pair of monotonic
mappings 〈α, γ〉: abstraction α : D → Dα, and concretization γ : Dα → D, which
form a Galois connection. A description (or abstract value) d ∈ Dα approximates
a concrete value c ∈ D if α(c) � d where � is the partial ordering on Dα.

Concrete Semantics. In out context, running a program consists of making
a query. Executing (answering) a query is determining for which substitutions
(answers) the query is a logical consequence of the program if any. A query is
a pair 〈G, θ〉 with G an atom and θ a substitution over the variables of G. For
concreteness, we focus on top-down, left-to-right SLD-resolution. We base our
semantics on the well-known notion of generalized and trees [1]. The concrete
semantics of a program P for a given set of queries Q, �P �Q , is the set of
generalized and trees that results from the execution of the queries in Q for P .
Each node 〈G, θc, θs〉 in the tree represents a call to a predicate G (an atom), with
the substitution (state) for that call, θc, and the success substitution θs (answer).
The calling context(G,P,Q) of a predicate given by the predicate descriptor G
defined in P for a set of queries Q is the set {θc | 〈G′, θ′c, θ′s〉 ∈ T ∀ T ∈
�P �Q ∧ ∃σ, σ(G′) = G ∧ σ(θ′c) = θc}, where σ is a renaming substitution. I.e., a
substitution that replaces each variable in the term with distinct, fresh variables.
We denote by answers(P,Q) the set of success substitutions computed by P for
queries Q.

Graphs and Paths. We denote by G = (V,E) a finite directed graph (hence-
forward called simply a graph) where V is a set of nodes and E ⊆ V × V is an
edge relation, denoted with u → v. A path P is a sequence of edges (e1, . . . , en)
and each ei = (xi, yi) is such that x1 = u, yn = v, and for all 1 ≤ i ≤ n − 1 we
have yi = xi+1, we also denote paths with u � v ∈ G. We use n ∈ P and e ∈ P
to denote, respectively, that a node n and an edge e appear in P .

4.1 Goal-Dependent Program Analysis

We perform goal-dependent abstract interpretation, whose result is an abstrac-
tion of the generalized and tree semantics. This technique derives an analysis
result from a program P , an abstract domain Dα, and a set of initial abstract
queries Q = {〈Ai, λ

c
i〉}, where Ai is a normalized atom, and λc

i ∈ Dα. An
analysis result encodes an abstraction of the nodes of the generalized and trees
derived from all the queries 〈G, θ〉 s.t. 〈G,λ〉 ∈ Q ∧ θ ∈ γ(λ).

Incremental Analysis of Logic Programs with Assertions 43

Analysis Graphs. We use graphs to overapproximate all possible executions
of a program given an initial query. Each node in the graph is identified by
a pair (P, λ) with P a predicate descriptor and λ ∈ Dα, an element of the
abstract domain, representing the possibly infinite set of calls encountered. The
analysis result defines a mapping function ans : Pred×Dα → Dα, denoted with
〈P, λc〉 �→ λs which over-approximates the answer to that abstract predicate
call. It is interpreted as “calls to predicate P with calling pattern λc have the
answer pattern λs” with λc, λs ∈ Dα. The analysis graph is multivariant. Thus,
it may contain a number of nodes for the same predicate capturing different
call situations, for different contexts or different paths. As usual, ⊥ denotes the
abstract description such that γ(⊥) = ∅. A call mapped to ⊥ (〈P, λc〉 �→ ⊥)
indicates that calls to predicate P with any description θ ∈ γ(λc) either fail or
loop, i.e., they never succeed.

Edges in the graph represent a call dependency among two predicates. An
edge is of the form 〈P, λ1〉c,l

λp−−→
λr

〈Q,λ2〉, and is interpreted as “calling predicate

P with substitution λ1 causes predicate Q (literal l of clause c) to be called with
substitution λ2”. Substitutions λp and λr are, respectively, the call and return
context of the call. These values are introduced to ease the presentation of the
algorithm, but they can be reconstructed with the identifiers of the nodes (i.e.,
predicate descriptor and abstract value) and the source code of the program.
For simplicity, we may write • to omit the values when they are not relevant to
the discussion. Note that the edges that represent the calls to a literal l and the
following one l + 1, 〈P, λ1〉c,l

•−−→
λ

〈Q,λ2〉 the result at the return of the literal is

the call substitution of the next literal: 〈P, λ1〉c,l+1
λ−−→• 〈Q′, λ′

2〉. Figure 1 shows

a possible analysis graph for a program that checks/computes the parity of a
message. The following operations defined over an analysis result g allow us to
inspect and manipulate analysis results to partially reuse or invalidate.

Graph Consultation Operations

〈P, λc〉 ∈ g : there is a node in the call graph of g with key 〈P, λc〉.
〈P, λc〉 �→ λs ∈ g : there is a node in g with key 〈P, λc〉 and the answer

mapped to that call is λs.

〈P, λc〉c,l
λp−−→
λr

〈Q, λc′〉 ∈ g : there are two nodes (k = 〈P, λc〉 and k′ = 〈Q, λc′〉) in g

and there is an annotated edge from k to k′.

Graph Update Operations

add(g, {kc,l
λr−−→
λp

k′}) : adds an edge from node k to k′ (creating node k′ if
necessary) annotated with λp and λr for clause c and
literal l.

del(g, {kc,l
•−−→• k′}) : removes the edge from node k to k′ annotated for clause

c and literal l.

44 I. Garcia-Contreras et al.

Fig. 1. A program that implements a parity function and a possible analysis result for
domain Dα.

5 Incremental Analysis of Programs with Assertions

Baseline Incremental Analysis Algorithm. We want to take advantage
of the existing algorithms to design an analyzer that is sensible to changes
in assertions also. We will use as a black box the combination of the algo-
rithms to analyze incrementally a logic program [13], and the analyzer that
is guided by assertions [8]. We will refer to it with the function A ′ =
IncAnalyze(P,Qα,ΔCls ,A), where the inputs are:

– A program P = (Cls,As) with Cls a set of clauses and As a set of assertions.
– A set of changes ΔCls in the form of added or deleted clauses.
– A set Qα of initial queries that will be the starting point of the analyzer.
– A previous result of the algorithm A which is a well formed analysis graph.

The algorithm produces a new A ′ that correctly abstracts the behavior of the
program reacting incrementally to changes in the clauses. It is parametric on the
abstract domain Dα, given by implementing (1) the domain-dependent opera-
tions �,�,�, Aproj(λ,Vs), which restricts the abstract substitution to the set of
variables Vs, Aextend(Pk,n, λp, λs) propagates the success abstract substitution
over the variables of Pk,n, λs to the substitution of the variables of the clause λp,
Acall(λ, P, Pk) performs the abstract unification of predicate descriptor P with
the head of the clause Pk, including in the new substitution abstract values for
the variables in the body of clause Pk, and Ageneralize(λ, {λi}) performs the
generalization of a set of abstract substitutions {λi} and λ; and (2) transfer func-
tions for program built-ins, that abstract the meaning of the basic operations
of the language. Functions apply call(P, λc,As) and apply succ(P, λc, λs,As)
abstract the meaning of the assertion conditions (respectively calls and success
conditions). Further details of these functions are described in Appendix A and
in [8]. These operations are assumed to be monotonic and to correctly over-
approximate their correspondent concrete version.

Incremental Analysis of Logic Programs with Assertions 45

Operation of the Algorithm. The algorithm is centered around processing
events. It starts by queueing a newcall event for each of the call patterns that
need to be recomputed. This triggers process(newcall(〈P, λc〉)), which processes
the clauses of predicate P . For each of them an arc event is added for the first
literal. The initial guess function returns a guess of the λs to 〈P, λc〉. If possible,
it reuses the results in A , otherwise returns ⊥. Procedure reanalyze updated

propagates the information of new computed answers across the analysis graph
by creating arc events with the literals from which the analysis has to be
restarted. process(arc(〈Pk, λc〉l,c

λp−−→ 〈P, λc〉)) performs a single step of the left-
to-right traversal of a clause body. First, the meaning of the assertion conditions
of P is computed by apply call. Then, if the literal Pk,i is a built-in, its transfer
function is computed; otherwise, an edge is added to A and the λs is looked up
(a process that includes creating a newcall event for 〈P, λc〉 if the answer is not
in the analysis graph). The answer is combined with the description λp from the
literal immediately before Pk,i to obtain the description (return) for the literal
after Pk,i. This is used either to generate an arc event to process the next literal,
or to update the answer of the predicate in insert answer info. This function
combines the new answer with the semantics of any applicable assertions (in
apply succ), and the previous answers, propagating the new answer if needed.

Procedure add clauses adds arc events for each of the new clauses. These
trigger the analysis of each clause and the later update of A by using the edges
in the graph.

The delete clauses function selects the information to be kept in order to
obtain the most precise semantics of the program, by removing all information
which is potentially inaccurate (Fig. 2).

Definition 2 (Correct analysis). Given a program P and initial concrete
queries Q, an analysis result A is correct for P,Q if:

– ∀G, θc ∈ calling context(G,P,Q) ∃〈G,λc〉 �→ λs ∈ A s.t. θc ∈ γ(λc).
– ∀〈G,λc〉 �→ λs ∈ A ,∀θc ∈ γ(λc) if θs ∈ answers(P, {〈G, θc〉}) then θs ∈

γ(λs).

From [13] and [8] we have that:

Theorem 1 (Correctness of IncAnalyze from scratch). Let P be a
program, and Qα a set of abstract queries. Let Q be the set of concrete
queries: Q = {〈G, θ〉 | θ ∈ γ(λ) ∧ 〈G,λ〉 ∈ Qα}. The analysis result
A = IncAnalyze(P,Qα, ∅, ∅) for P with Qα is correct for P,Q.

Additionally, assertions ensure that certain executions never occur. This
information is included in the analysis in the following way (adapted from [8]):

Theorem 2 (Applied assertion conditions). Let P be a program, and Qα

a set of abstract queries. Let A = IncAnalyze(P,Qα, ∅, ∅).

(a). The call assertion conditions cover all the inferred states:
∀〈P, λc〉 �→ λs ∈ A .λc � apply call(P,�,As).

46 I. Garcia-Contreras et al.

Fig. 2. The generic context-sensitive, incremental fixpoint algorithm using (not chang-
ing) assertion conditions.

Fig. 3. High-level view of the proposed algorithm

(b). The inferred abstract success states are covered by the success assertion
conditions: ∀〈P, λc〉 �→ λs ∈ A . λs � apply succ(P, λc,�,As)

We introduce a new proposition about the algorithm that will be of use later.

Incremental Analysis of Logic Programs with Assertions 47

Proposition 1 (Correctness starting from a partial analysis). Let P
be a program, Qα a set of abstract queries, and A0 any analysis graph. Let
A = IncAnalyze(P,Qα,ΔCls ,A0). A is correct for P and a query Q ∈ Qα if
for any node N ∈ A0 such that there is a path Q � N in �P �γ(Q), N ∈ Qα.

Proof. This follows from the creation of a newcall event for each of the queries,
which will trigger the recomputation and later update of all the nodes of the
analysis graph that are potentially under the fixpoint.

Note that here we are not assuming that A0 is the (correct) output of a
previous analysis, it can be any partial analysis (below the fixpoint).

5.1 The Incremental Analyzer of Programs with Assertions

We propose to inspect and update the analysis graph to guarantee that a call
to IncAnalyze produces results that are correct and precise. We call this new
analyzer IAwAC, short for IncAnalyze-w/AssrtChanges (Fig. 3). The pre-
process phase consists in inspecting all the literals affected by the changes in the
assertions, collecting which call patterns need to be reanalyzed by the incremen-
tal analysis, i.e., it may be different from the set of initial queries Q originally
requested by the user. In addition, after the analysis phase, the unreachable
abstract calls that were safe to reuse may not be reachable anymore, so they
need to be removed from the analysis result.

Detecting the Affected Parts in the Analysis Results. The steps to find
potential changes in the analysis results when assertions are changed are detailed
in Fig. 4 with procedures update calls pred and update successes pred. The
goal is to identify which edges and nodes of the analysis graph are not precise
or correct. Since assertions may affect the inferred call or the inferred success of
predicates, we have split the procedure into two functions. However, the over-
all idea is to obtain the current substitution, which encodes the semantics of
the assertions in the previous version of the program, and the abstract substi-
tution that would have been inferred if no assertions were present. Then func-
tions apply call and apply success obtain the meaning of the new assertions.
Finally, we call a general procedure to treat the potential changes, treat change

(see Fig. 5). Specifically, in the case of call conditions, we review all the pro-
gram points from which it is called, by checking the incoming edges of the nodes
of that predicate. For each node we project the substitution of the clause (λp) to
the variables of the literal to obtain the call patterns if no assertions would be
specified (line 4). We then detect if the call pattern produced by the new mean-
ing of the assertions already existed in the analysis graph to reuse its result, and,
last, we call the procedure to treat the change. In the case of success conditions
we obtain the substitution including the new meaning of the assertion by joining
the return substitution at the last literal of each of the clauses of the predicate,
previously projected to the variables of the head (line 16).

Amending the Analysis Results. The procedure treat change (Fig. 5), given
an edge that points to a literal whose success potentially changed, updates the

48 I. Garcia-Contreras et al.

Fig. 4. Changes in assertions (split by assertion conditions)

analysis result, and decides which predicates and call patterns need to be recom-
puted. After updating the annotation of the edge (line 4), we study how the
abstract substitution changed. If the new substitution (λr ′) is more general than
the previous one (λr), this means that the previous assertions where pruning
more concrete states than the new one, and, thus, this call pattern needs to be
reanalyzed. Else, if λr �� λr ′, i.e., the new abstract substitution is more concrete
or incompatible, some parts of the analysis graph may not be accurate. There-
fore, we have to eliminate from the graph the literals that were affected by the
change (i.e., the literals following the program point with a change) and all the
dependent code from this call pattern. Also, the analysis has to be restarted from
the original entry points that were affected by the deletion of these potentially
imprecise nodes. In the last case (line 3) the old and the new substitutions are
the same, and, thus, nothing needs to be reanalyzed (the ∅ is returned).

Fig. 5. Procedure to determine how the analysis result needs to be recomputed.

Incremental Analysis of Logic Programs with Assertions 49

Correctness of the Algorithm

Proposition 2 (IAwAC from scratch). Let P be a program, Qα a set of
abstract queries. Let Q be the set of concrete queries: Q = {〈G, θ〉 | θ ∈ γ(λ) ∧
〈G,λ〉 ∈ Qα}. The analysis A = IAwAC(P,Qα, ∅, ∅, ∅) for P with Qα is correct
for P,Q.

Proof. Since the preprocessing phase only modifies information that is already
in the initial analysis and it is empty, correctness follows from Theorem 1.

In terms of precision, we want to ensure that the meaning of the new asser-
tions is precisely included in the analysis result.

Proposition 3 (Precision after). Let Cls be a set of
clauses, As be a set of assertions, and A any analysis graph. For any predicate
G of Cls, let A ′ be the state of A after update calls pred(G,As ,A). Then,
for any 〈G,λc〉 �→ λs ∈ A ′.λc � apply call(G,�,As).

Proof. Given a predicate G, the function update calls pred looks at each edge
that finishes in a node G, and obtains the new meaning of the conditions (line 5).
Then, in line 4 of treat change, the node is removed if it is different. Because
apply call is assumed to be monotonic, for any λc. apply call(G,λc,As) �
apply call(G,�,As).

Proposition 4 (Precision after). Under the condi-
tions of Proposition 3, for any predicate G of Cls, let A ′ be the state of A after
update successes pred(G,As ,A). Then, for any 〈G,λc〉 �→ λs ∈ A ′.λs �
apply succ(G,λc,�,As).

Proof. Given a predicate G, the function update successes pred looks at the
last literal of each clause of G, and obtains the new meaning of the conditions
(line 16). Then, in line 4 of treat change, the node is removed if it is dif-
ferent. Because apply call is assumed to be monotonic, for any pair (λc, λs).
apply succ(G,λc, λs,As) � apply call(G,λc, λs,As).

As shown in Proposition 1, given any partial analysis result, we can ensure
correctness of the reanalysis if we guarantee that all literals that need to be
reanalyzed are included in Qα. We want to show that the set Q of queries
collected in treat change is enough to guarantee the correctness of the result.

Proposition 5 (Queries collected in preprocess). Let P = (Cls,As0)
be a program, Qα a set of abstract queries. Let Q be the set of con-
crete queries: Q = {〈G, θ〉 | θ ∈ γ(λ) ∧ 〈G,λ〉 ∈ Qα}. Let A =
IAwAC(P,Qα, ∅, ∅, ∅) be the correct analysis for P,Q. If P changes to
P ′ = (Cls,As), Qα

′ = preprocess(Cls,As,A) guarantees that A ′ =
IncAnalyze((Cls,As),Qα

′, ∅,A) is correct for P ′ and Q.

50 I. Garcia-Contreras et al.

Proof. We split the proof into two cases: (a) The assertions change only for one
predicate: because A is correct, by Theorem 1, since A is an over-approximation
of �P �Q , and Proposition 1 is true.

(b) The assertions change for more than one predicate: after processing the
first predicate A may not be correct, as treat change removes nodes. However,
every node that is removed is added to the set of queries. This means that
the nodes that are unreachable when processing the following predicates were
already stored before, and therefore, Proposition 1 also holds.

Theorem 3 collects all correctness and precision properties of the algorithm.

Theorem 3 (Correctness of IAwAC). Let P0 and P = (Cls,As) be pro-
grams that differ in ΔCls and ΔAs , Qα be a set of abstract queries. Let Q be
the set of concrete queries Q = {〈G, θ〉 | θ ∈ γ(λ) ∧ 〈G,λ〉 ∈ Qα}. Given A0 =
IAwAC(P0,Qα, ∅, ∅, ∅), and the analysis A = IAwAC(P,Qα,ΔCls ,ΔAs ,A0).

(a). A is correct or P and Q.
(b). ∀〈G,λc〉 �→ λs ∈ A .λc � apply call(G,�,As).
(c). ∀〈G,λc〉 �→ λs ∈ A . λs � apply succ(G,λc,�,As)

Proof. (a) follows from Theorem 2 and Proposition 5. (b) and (c) follow from
Lemma 2 and Propositions 3 and 4.

5.2 Use Cases

We show some examples of the algorithm. We assume that we analyze with a shape
domain in which the properties in the assertions can be exactly represented.

Example 2 (Reusing a preanalyzed generic program). Consider a slightly mod-
ified version the program that checks a password as shown earlier, that only
allows the user to write passwords with lowercase letters. Until we have a con-
crete implementation for the hasher we will not be able to analyze precisely this
program. However, we can preanalyze it by using the information of the assertion
of the trait to obtain the following simplified analysis graph:

The node for dgst/2 represents the call 〈dgst(S, D), (S/lowercase,D/num)〉
�→ (S/lowercase,D/int), in this case, D was inferred to be a number because
of the success of passwd/4. If we add a very naive implementation that consists
on counting the number of some letters in the password, reanalyzing will cause
adding to the graph some new nodes, shown with a dashed line:

Incremental Analysis of Logic Programs with Assertions 51

We detect that none of the previous nodes need to be recomputed
due to tracking dependencies for each literal. The analysis was per-
formed by going directly to the program point of dgst/2 and inspect-
ing the new clause (that was generated automatically by the translation)
that calls naive count/2. By analyzing naive count/2 we obtain nodes
〈naive count(S, D), (S/lowercase,D/num)〉 �→ (S/lowercase,D/int), and
〈count(L, C, N), (S/lowercase, C/char)〉 �→ (S/lowercase, C/char, N/int). As
no information needs to be propagated because the head does not contain any
of the variables of the call to digest, we are done, and we avoided reanalyzing
any caller to check passwd/2, if existed.

Example 3 (Weakening assertion properties). Consider the program and anal-
ysis result of Example 2. We realize that allowing the user to write a password
only with lowercase letters is not very secure. We can change the assertion of
the trait to allow any string as a valid password.

�

1 :- trait hasher { :- pred dgst(Str, Digest) : string(Str) => int(Digest). }.
� �

When reanalyzing, node 〈dgst(S, D), (S/lowercase,D/num)〉 will disappear to
become 〈dgst(S, D), (S/string,D/num)〉, and the same for naive count/3. A
new call pattern will appear for count/3 〈count(L, C, N), (S/string, C/char)〉 �→
(S/string, C/char, N/int), leading to the same result for dgst/2. I.e., we only
had to partially analyze the library, instead of the whole program.

Table 1. Analysis time for LPdoc adding one backend at a time (time in seconds).

Domain No backend + texinfo + man + html

reachability 1.7 2.1 3.4 3.9

reachability inc 1.7 1.2 1.0 1.6

gr 2.1 2.2 2.3 2.6

gr inc 2.1 1.4 0.9 1.8

def 6.0 7.1 7.8 9.7

def inc 6.0 2.2 1.3 3.5

sharing 27.2 28.1 24.2 28.5

sharing inc 27.2 3.9 1.4 5.1

52 I. Garcia-Contreras et al.

6 Experiments

We have implemented the proposed analysis algorithm within the CiaoPP sys-
tem [9] and performed some preliminary experiments to test the use case
described in Example 2. Our test case is the LPdoc documentation generator
tool [10,11], which takes a set of Prolog files with assertions and machine-
readable comments and generates a reference manual from them. LPdoc con-
sists of around 150 files, of mostly (Ciao) Prolog code,with assertions (most of
which, when written, were only meant for documentation generation), as well as
some auxiliary scripts in Lisp, JavaScript, bash, etc. The Prolog code analyzed
is about 22 K lines. This is a tool in everyday use that generates for example
all the manuals and web sites for the Ciao system (http://ciao-lang.org, http://
ciao-lang.org/documentation.html) and as well as for all the different bundles
developed internal or externally, processing around 20 K files and around 1M
lines of Prolog and interfaces to another 1M lines of C and other miscellaneous
code). The LPdoc code has also been adapted as the documentation generator
for the XSB system [24].

LPdoc is specially relevant in our context because it includes a number of
backends in order to generate the documentation in different formats such as
texinfo, Unix man format, html, ascii, etc. The front end of the tool generates
a documentation tree with all the content and formatting information and this
is passed to one out of a number of these backends, which then does the actual,
specialized generation in the corresponding typesetting language. We analyzed
all the LPdoc code with a reachability domain, a groundness domain (gr), a
domain tracking dependencies via propositional clauses [6] (def), and a sharing

domain with cliques [19]. The experiment consisted in preanalyzing the tool with
no backends and then adding incrementally the backends one by one. In Table 1
we show how much time it took to analyze in each setting, i.e., for the different
domains and with the incremental algorithm or analyzing from scratch. The
experiments were run on a MacBook Pro with an Intel Core i5 2.7 GHz processor,
8GB of RAM, and an SSD disk. These preliminary results support our hypothesis
that the proposed incremental analysis brings performance advantages when
dealing with these use cases of generic code.

7 Related Work

Languages like C++ require specializing all parametric polymorphic code (e.g.,
templates [25]) to monomorphic variants. While this is more restrictive than
runtime polymorphism (variants must be statically known at compile time), it
solves the analysis precision problem, but not without additional costs. First, it is
known to be slow, as templates must be instantiated, reanalized, and recompiled
for each compilation unit. Second, it produces many duplicates which must be
removed later by the linker. Rust [15] takes a similar approach for unboxed types.

Runtime polymorphism or dynamic dispatch can be used in C++ (virtual
methods), Rust (boxed traits), Go [5] (interfaces), or Haskell’s [14] type classes.

http://ciao-lang.org
http://ciao-lang.org/documentation.html
http://ciao-lang.org/documentation.html

Incremental Analysis of Logic Programs with Assertions 53

However, in this case compilers and analyzers do not usually consider the par-
ticular instances, except when a single one can be deduced (e.g., in C++ devir-
tualization [18]).

Mora et al. [17] perform modular symbolic execution to prove that some
(versions of) libraries are equivalent with respect to the same client. Chatterjee
et al. [3] analyze libraries in the presence of callbacks incrementally for data
dependence analysis. I.e., they preanalyze the libraries and when a client uses it
reuses the analysis and adds incrementally possible calls made by the client. We
argue that when using our Horn clause encoding, both high analysis precision
and compiler optimizations can be achieved more generally by combining the
incremental static global analysis that we have proposed with abstract special-
ization [20].

8 Conclusions

While logic programming can intrinsically handle generic programming, we have
illustrated a number of problems that appear when handling generic code with
the standard solutions provided by current (C)LP module systems, namely, using
multifile predicates. We argue that the proposed traits are a convenient and ele-
gant abstraction for modular generic programming, and that our preliminary
results support the conclusion that the novel incremental analysis proposed
brings promising analysis performance advantages for this type of code. Our
encoding is very close to the underlying mechanisms used in other languages for
implementing dynamic dispatch or run-time polymorphism (like Go’s interfaces,
Rust’s traits, or a limited form of Haskell’s type clases), so we believe that our
techniques and results can be generalized to other languages. This also includes
our proposed algorithm for incremental analysis with assertion changes, which
can be applied to different languages through the standard technique of trans-
lation to Horn-clause representation [16]. Traits are also related to higher-order
code (e.g., a “callable” trait with a single “call” method). We also claim that
our work contributes to the specification and analysis of higher-order code.

A Assertions

Assertions may not be exactly represented in the abstract domain used by the
analyzer. We recall some definitions (adapted from [22]) which are instrumental
to correctly approximate the properties of the assertions during the analysis
(Fig. 6).

Definition 3 (Set of Calls for which a Property Formula Trivially Suc-
ceeds (Trivial Success Set)). Given a conjunction L of property literals and
the definitions for each of these properties in P , we define the trivial success set
of L in P as:

TS(L,P) = {θ|V ar(L) s.t. ∃θ′ ∈ answers(P, {〈L, θ〉}), θ |= θ′}

54 I. Garcia-Contreras et al.

Fig. 6. Applying assertions.

where θ|V ar(L) above denotes the projection of θ onto the variables of L, and
|= denotes that θ′ is a more general constraint than θ (entailment). Intuitively,
TS(L,P) is the set of constraints θ for which the literal L succeeds without
adding new constraints to θ (i.e., without constraining it further). For example,
given the following program P :

�

1 list([]).
2 list([_|T]) :- list(T).

� �

and L = list(X), both θ1 = {X = [1, 2]} and θ2 = {X = [1, A]} are in the trivial
success set of L in P , since calling (X = [1, 2], list(X)) returns X = [1, 2] and
calling (X = [1, A], list(X)) returns X = [1, A]. However, θ3 = {X = [1|]} is
not, since a call to (X = [1|Y], list(X)) will further constrain the term [1|Y],
returning X = [1|Y], Y = []. We define abstract counterparts for Definition 3:

Definition 4 (Abstract Trivial Success Subset of a Property Formula).
Under the same conditions of Definition 3, given an abstract domain Dα,
λ−

TS(L,P) ∈ Dα is an abstract trivial success subset of L in P iff γ(λ−
TS(L,P)) ⊆

TS(L,P).

Definition 5 (Abstract Trivial Success Superset of a Property For-
mula). Under the same conditions of Definition 4, an abstract constraint
λ+

TS(L,P) is an abstract trivial success superset of L in P iff γ(λ+
TS(L,P)) ⊇

TS(L,P).

I.e., λ−
TS(L,P) and λ+

TS(L,P) are, respectively, safe under- and over-approximations
of TS(L,P). These abstractions come useful when the properties expressed in
the assertions cannot be represented exactly in the abstract domain.

References

1. Bruynooghe, M.: A practical framework for the abstract interpretation of logic
programs. J. Logic Program. 10, 91–124 (1991)

Incremental Analysis of Logic Programs with Assertions 55

2. Cabeza, D., Hermenegildo, M.: A new module system for prolog. In: Lloyd, J.,
et al. (eds.) CL 2000. LNCS (LNAI), vol. 1861, pp. 131–148. Springer, Heidelberg
(2000). https://doi.org/10.1007/3-540-44957-4 9

3. Chatterjee, K., Choudhary, B., Pavlogiannis, A.: Optimal Dyck reachability for
data-dependence and alias analysis. PACMPL 2(POPL), 1–30 (2018)

4. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of POPL 1977, pp. 238–252. ACM Press (1977)

5. Donovan, A.A.A., Kernighan, B.W.: The Go Programming Language, Professional
Computing. Addison-Wesley, Boston (2015)

6. Dumortier, V., Janssens, G., Simoens, W., Garćıa de la Banda, M.: Combining a
definiteness and a freeness abstraction for CLP languages. In: Workshop on LP
Synthesis and Transformation (1993)

7. Flanagan, C.: Hybrid type checking. In: 33rd ACM Symposium on Principles of
Programming Languages (POPL 2006), pp. 245–256, January 2006

8. Garcia-Contreras, I., Morales, J.F., Hermenegildo, M.V.: Multivariant assertion-
based guidance in abstract interpretation. In: Mesnard, F., Stuckey, P.J. (eds.)
LOPSTR 2018. LNCS, vol. 11408, pp. 184–201. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-13838-7 11

9. Hermenegildo, M., Puebla, G., Bueno, F., Lopez-Garcia, P.: Integrated program
debugging, verification, and optimization using abstract interpretation (and The
Ciao System Preprocessor). Sci. Comput. Program. 58(1–2), 115–140 (2005)

10. Hermenegildo, M.: A documentation generator for (C)LP systems. In: Lloyd, J.,
et al. (eds.) CL 2000. LNCS (LNAI), vol. 1861, pp. 1345–1361. Springer, Heidelberg
(2000). https://doi.org/10.1007/3-540-44957-4 90

11. Hermenegildo, M.V., Morales, J.: The LPdoc documentation generator. Ref. Man-
ual (v3.0). Technical report, July 2011. http://ciao-lang.org

12. Hermenegildo, M.V., Puebla, G., Bueno, F.: Using global analysis, partial specifica-
tions, and an extensible assertion language for program validation and debugging.
In: Apt, K.R., Marek, V.W., Truszczynski, M., Warren, D.S. (eds.) The Logic Pro-
gramming Paradigm, pp. 161–192. Springer, Heidelberg (1999). https://doi.org/
10.1007/978-3-642-60085-2 7

13. Hermenegildo, M.V., Puebla, G., Marriott, K., Stuckey, P.: Incremental analysis
of constraint logic programs. ACM TOPLAS 22(2), 187–223 (2000)

14. Hudak, P., et al.: Report on the programming language Haskell. Haskell special
issue. ACM SIGPLAN Not. 27(5), 1–164 (1992)

15. Klabnik, S., Nichols, C.: The Rust Programming Language. No Starch Press, San
Francisco (2018)

16. Méndez-Lojo, M., Navas, J., Hermenegildo, M.V.: A flexible, (C)LP-based app-
roach to the analysis of object-oriented programs. In: King, A. (ed.) LOPSTR
2007. LNCS, vol. 4915, pp. 154–168. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-78769-3 11

17. Mora, F., Li, Y., Rubin, J., Chechik, M.: Client-specific equivalence checking. In:
33rd ACM/IEEE International Conference on Automated Software Engineering,
pp. 441–451. ASE (2018)

18. Namolaru, M.: Devirtualization in GCC. In: Proceedings of the GCC Developers’
Summit, pp. 125–133 (2006)

19. Navas, J., Bueno, F., Hermenegildo, M.: Efficient top-down set-sharing analysis
using cliques. In: Van Hentenryck, P. (ed.) PADL 2006. LNCS, vol. 3819, pp. 183–
198. Springer, Heidelberg (2005). https://doi.org/10.1007/11603023 13

https://doi.org/10.1007/3-540-44957-4_9
https://doi.org/10.1007/978-3-030-13838-7_11
https://doi.org/10.1007/978-3-030-13838-7_11
https://doi.org/10.1007/3-540-44957-4_90
http://ciao-lang.org
https://doi.org/10.1007/978-3-642-60085-2_7
https://doi.org/10.1007/978-3-642-60085-2_7
https://doi.org/10.1007/978-3-540-78769-3_11
https://doi.org/10.1007/978-3-540-78769-3_11
https://doi.org/10.1007/11603023_13

56 I. Garcia-Contreras et al.

20. Puebla, G., Albert, E., Hermenegildo, M.: Abstract interpretation with specialized
definitions. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 107–126. Springer,
Heidelberg (2006). https://doi.org/10.1007/11823230 8

21. Puebla, G., Bueno, F., Hermenegildo, M.: An assertion language for constraint logic
programs. In: Deransart, P., Hermenegildo, M.V., Ma�luszynski, J. (eds.) Analysis
and Visualization Tools for Constraint Programming. LNCS, vol. 1870, pp. 23–61.
Springer, Heidelberg (2000). https://doi.org/10.1007/10722311 2

22. Puebla, G., Bueno, F., Hermenegildo, M.: Combined static and dynamic assertion-
based debugging of constraint logic programs. In: Bossi, A. (ed.) LOPSTR 1999.
LNCS, vol. 1817, pp. 273–292. Springer, Heidelberg (2000). https://doi.org/10.
1007/10720327 16

23. Siek, J.G., Taha, W.: Gradual typing for functional languages. In: Scheme and
Functional Programming Workshop, pp. 81–92 (2006)

24. Swift, T., Warren, D.: XSB: extending prolog with tabled logic programming.
TPLP 12(1–2), 157–187 (2012). https://doi.org/10.1017/S1471068411000500

25. Vandevoorde, D., Josuttis, N.M.: C++ Templates. Addison-Wesley Longman Pub-
lishing Co. Inc., Boston (2002)

https://doi.org/10.1007/11823230_8
https://doi.org/10.1007/10722311_2
https://doi.org/10.1007/10720327_16
https://doi.org/10.1007/10720327_16
https://doi.org/10.1017/S1471068411000500

Computing Abstract Distances in Logic

Programs

Ignacio Casso1,2(B) , José F. Morales1 , Pedro López-Garćıa1,3 ,
Roberto Giacobazzi1,4 , and Manuel V. Hermenegildo1,2

1 IMDEA Software Institute, Madrid, Spain
{ignacio.decasso,josef.morales,pedro.lopez,manuel.hermenegildo}@imdea.org

2 T. University of Madrid (UPM), Madrid, Spain
3 Spanish Council for Scientific Research (CSIC), Madrid, Spain

4 University of Verona, Verona, Italy

Abstract. Abstract interpretation is a well-established technique for
performing static analyses of logic programs. However, choosing the
abstract domain, widening, fixpoint, etc. that provides the best precision-
cost trade-off remains an open problem. This is in a good part because of
the challenges involved in measuring and comparing the precision of dif-
ferent analyses. We propose a new approach for measuring such precision,
based on defining distances in abstract domains and extending them to
distances between whole analyses of a given program, thus allowing com-
paring precision across different analyses. We survey and extend existing
proposals for distances and metrics in lattices or abstract domains, and
we propose metrics for some common domains used in logic program
analysis, as well as extensions of those metrics to the space of whole pro-
gram analyses. We implement those metrics within the CiaoPP frame-
work and apply them to measure the precision of different analyses on
both benchmarks and a realistic program.

Keywords: Abstract interpretation · Static analysis · Logic
programming · Metrics · Distances · Complete lattices · Program
semantics

1 Introduction

Many practical static analyzers for (Constraint) Logic Programming ((C)LP)
are based on the theory of Abstract Interpretation [8]. The basic idea behind
this technique is to interpret (i.e., execute) the program over a special abstract
domain to obtain some abstract semantics of the program, which will over-
approximate every possible execution in the standard (concrete) domain. This

Research partially funded by MINECO TIN2015-67522-C3-1-R TRACES project, and
the Madrid P2018/TCS-4339 BLOQUES-CM program. We are also grateful to the
anonymous reviewers for their useful comments.

c© Springer Nature Switzerland AG 2020
M. Gabbrielli (Ed.): LOPSTR 2019, LNCS 12042, pp. 57–72, 2020.
https://doi.org/10.1007/978-3-030-45260-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45260-5_4&domain=pdf
http://orcid.org/0000-0001-9196-7951
http://orcid.org/0000-0001-6098-3895
http://orcid.org/0000-0002-1092-2071
http://orcid.org/0000-0002-9582-3960
http://orcid.org/0000-0002-7583-323X
https://doi.org/10.1007/978-3-030-45260-5_4

58 I. Casso et al.

makes it possible to reason safely (but perhaps imprecisely) about the proper-
ties that hold for all such executions. As mentioned before, abstract interpreta-
tion has proved practical and effective for building static analysis tools, and in
particular in the context of (C)LP [4,5,12,16,21,26,30,32,40]. Recently, these
techniques have also been applied successfully to the analysis and verification
of other programming paradigms by using (C)LP (Horn Clauses) as the inter-
mediate representation for different compilation levels, ranging from source to
bytecode or ISA [2,3,10,17,19,25,27,29,31,35].

When designing or choosing an abstract interpretation-based analysis, a cru-
cial issue is the trade-off between cost and precision, and thus research in new
abstract domains, widenings, fixpoints, etc., often requires studying this trade-
off. However, while measuring analysis cost is typically relatively straightforward,
having effective precision measures is much more involved. There have been a
few proposals for this purpose, including, e.g., probabilistic abstract interpreta-
tion [13] and some measures in numeric domains [28,39],1 but they have limita-
tions and in practice most studies come up with ad-hoc measures for measuring
precision. Furthermore, there have been no proposals for such measures in (C)LP
domains.

We propose a new approach for measuring the precision of abstract
interpretation-based analyses in (C)LP, based on defining distances in abstract
domains and extending them to distances between whole analyses of a given
program, which allow comparison of precision across different analyses. Our con-
tributions can be summarized as follows: We survey and extend existing propos-
als for distances in lattices and abstract domains (Sect. 3). We then build on
this theory and ideas to propose distances for common domains used in (C)LP
analysis (Sect. 3.2). We also propose a principled methodology for comparing
quantitatively the precision of different abstract interpretation-based analyses
of a whole program (Sect. 4). This methodology is parametric on the distance
in the underlying abstract domain and only relies in a unified representation of
those analysis results as AND-OR trees. Thus, it can be used to measure the
precision of new fixpoints, widenings, etc. within a given abstract interpretation
framework, not requiring knowledge of its implementation. Finally, we also pro-
vide experimental evidence about the appropriateness of the proposed distances
(Sect. 5).

2 Background and Notation

Lattices: A partial order on a set X is a binary relation � that is reflexive,
transitive, and antisymmetric. The greatest lower bound or meet of a and b,
denoted by a � b, is the greatest element in X that is still lower than both of
them (a � b � a, a � b � b, (c � a ∧ c � b =⇒ c � a � b)). If it exists,
it is unique. The least upper bound or join of a and b, denoted by a � b, is
1 Some of these attempts (and others) are further explained in the related work section

(Sect. 6).

Computing Abstract Distances in Logic Programs 59

the smallest element in X that is still greater than both of them (a � a � b,
b � a � b, (a � c ∧ b � c =⇒ a � b � c)). If it exists, it is unique. A
partially ordered set (poset) is a couple (X,�) such that the first element X is
a set and the second one is a partial order relation on X. A lattice is a poset
for which any two elements have a meet and a join. A lattice L is complete if,
extending in the natural way the definition of supremum and infimum to subsets
of L, every subset S of L has both a supremum sup(S) and an infimum inf(S).
The maximum element of a complete lattice, sup(L) is called top or �, and the
minimum, inf(L) is called bottom or ⊥.

Galois Connections: Let (L1,�1) and (L2,�2) be two posets. Let f : L1 −→ L2

and g : L2 −→ L1 be two applications such that:

∀x ∈ L1, y ∈ L2 : f(x) �2 y ⇐⇒ x �1 g(y)

Then the quadruple 〈L1, f, L2, g〉 is a Galois connection, written L1 −−−→←−−−
f

g
L2.

If f ◦ g is the identity, then the quadruple is called a Galois insertion.

Abstract Interpretation and Abstract Domains: Abstract interpretation [8] is a
well-known static analysis technique that allows computing sound over-approx-
imations of the semantics of programs. The semantics of a program can be
described in terms of the concrete domain, whose values in the case of (C)LP
are typically sets of variable substitutions that may occur at runtime. The idea
behind abstract interpretation is to interpret the program over a special abstract
domain, whose values, called abstract substitutions, are finite representations of
possibly infinite sets of actual substitutions in the concrete domain. We will
denote the concrete domain as D, and the abstract domain as Dα. We will
denote the functions that relate sets of concrete substitutions with abstract
substitutions as the abstraction function α : D −→ Dα and the concretization
function γ : Dα −→ D. The concrete domain is a complete lattice under the
set inclusion order, and that order induces an ordering relation in the abstract
domain herein represented by “�.” Under this relation the abstract domain is
usually a complete lattice and (D,α,Dα, γ) is a Galois insertion. The abstract
domain is of finite height or alternatively it is equipped with a widening operator,
which allows for skipping over infinite ascending chains during analysis to a
greater fixpoint, achieving convergence in exchange for precision.

Metric: A metric on a set S is a function d : S × S → R satisfying:

– Non-negativity: ∀x, y ∈ S, d(x, y) ≥ 0.
– Identity of indiscernibles: ∀x, y ∈ S, d(x, y) = 0 ⇐⇒ x = y.
– Symmetry: ∀x, y ∈ S, d(x, y) = d(y, x).
– Triangle inequality: ∀x, y, z ∈ S, d(x, z) ≤ d(x, y) + d(y, z).

A set S in which a metric is defined is called a metric space. A pseudometric
is a metric where two elements which are different are allowed to have distance

60 I. Casso et al.

0. We call the left implication of the identity of indiscernibles, weak identity of
indiscernibles. A well-known method to extend a metric d : S × S −→ R to a
distance in 2S is using the Hausdorff distance, defined as:

dH(A,B) = max
{

sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)
}

3 Distances in Abstract Domains

As anticipated in the introduction, our distances between abstract
interpretation-based analyses of a program will be parameterized by a distance
in the underlying abstract domain, which we assume to be a complete lattice.
In this section we propose a few such distances for relevant logic programming
abstract domains. But first we review and extend some of the concepts that arise
when working with lattices or abstract domains as metric spaces.

3.1 Distances in Lattices and Abstract Domains

When defining a distance in a partially ordered set, it is necessary to consider
the compatibility between the metric and the structure of the lattice. This
relationship will suggest new properties that a metric in a lattice should sat-
isfy. For example, a distance in a lattice should be order-preserving, that is,
∀a, b, c ∈ D with a � b � c, then d(a, b), d(b, c) ≤ d(a, c). It is also reasonable
to expect that it fulfills what we have called the diamond inequality, that is,
∀a, b, c, d ∈ D with c � d � a � b, a � b � c � d, then d(a, b) ≤ d(c, d). But
more importantly, this relationship will suggest insights for constructing such
metrics.

One such insight is precisely defining a partial metric d� only between
elements which are related in the lattice, which is arguably easier, and to
extend it later to a distance between arbitrary elements x, y, as a function of
d�(x, x � y), d�(y, x � y), d�(x, x � y), d�(x, x � y) and d�(x � y, x � y).
Ramon et al. [38] show under which circumstances d�(x, x � y) + d�(y, x � y)
is a distance, that is, when d� is order-preserving and fulfills d�(x, x � y) +
d�(y, x � y) ≤ d�(x, x � y) + d�(y, x � y).

In particular, one could define a monotonic size size : L → R in the lattice
and define d�(a, b) as size(b)−size(a). Gratzer [18] shows that if the size fulfills
size(x)+size(y) = size(x � y)+size(x � y), then d(x, y) = size(x � y)−size(x �
y) is a metric. De Raedt [11] shows that d(x, y) = size(x)+size(y)−2·size(x � y)
is a metric iff size(x) + size(y) ≤ size(x � y) + size(x � y), and an analogous
result with d(x, y) = size(x)+size(y)−2 ·size(x � y) and ≥ instead of ≤. Note
that the first distance is the equivalent of the symmetric difference distance
in finite sets, with � instead of ⊆ and size instead of the cardinal of a set.
Similar distances for finite sets, such as the Jaccard distance, can be translated
to lattices in the same way. Another approach to defining d� that follows from
the idea of using the lattice structure, is counting the steps between two elements

Computing Abstract Distances in Logic Programs 61

(i.e., the number of edges between both elements in the Hasse diagram of the
lattice). This was used by Logozzo [28].

When defining a distance not just in any lattice, but in an actual abstract
domain (abstract distance from now on), it is also necessary to consider the
relation of the abstract domain with the concrete domain (i.e., the Galois con-
nection), and how an abstract distance is interpreted under that relation. In
that sense, we can observe that a distance dDα

: Dα × Dα → R
+ in an

abstract domain will induce a distance dα
D : D × D → R

+ in the concrete
one, as dα

D(A,B) = dDα
(α(A), α(B)), and the other way around: a distance

dD : D × D → R
+ in the concrete domain induces an abstract distance

dγ
Dα

: Dα × Dα → R
+ in the abstract one, as dγ

Dα
(a, b) = dD(γ(a), γ(b)). Thus,

an abstract distance can be interpreted as an abstraction of a distance in the
concrete domain, or as a way to define a distance in it, and it is clear that it is
when interpreted that way that an abstract distance makes most sense from a
program semantics point of view.

It is straightforward to see (and we show in [6]) that these induced distances
inherit most metric and order-related properties. In particular, if a distance dD

in the concrete domain is a metric, its abstraction dDα
is a pseudo-metric in

the abstract domain, and a full metric if the Galois connection between D and
Dα is a Galois insertion. This allows us to define distances dα in the abstract
domain from distances d the concrete domain, as dα(a, b) = d(γ(a), γ(b)). This
approach might seem of little applicability, due to the fact that concretizations
will most likely be infinite and we still need metrics in the concrete domain. But
in the case of logic programs, such metrics for Herbrand terms already exist (e.g.,
[23,36,38]), and in fact we show later a distance for the regular types domain
that can be interpreted as an extension of this kind, of the distance proposed by
Nienhuys-Cheng [36] for sets of terms.

Finally, recall that a metric in the Cartesian product of lattices can be easily
derived from existing distances in each lattice, for example as the 2-norm or
any other norm of the vector of distances component to component. This is
relevant because many abstract domains, such as those that are combinations
of two different abstract domains, or non-relational domains which provide an
abstract value from a lattice for each variable in the substitution, are of such form
(modulo equivalent abstract values, i.e., those with the same concretization). It
is straightforward to see that in this case those classical extensions of distances
to the Cartesian product will still be metrics and will also inherit lattice-related
properties such as being order-preserving.

3.2 Distances in Logic Programming Domains

We now propose some distances for two well-known abstract domains used in
(C)LP, following the considerations presented in the previous section.

Sharing Domain: The sharing domain [24,32] is a well-known domain for ana-
lyzing the sharing (aliasing) relationships between variables and grounding in

62 I. Casso et al.

logic programs. It is defined as 22
P var

, that is, an abstract substitution for a
clause is defined to be a set of sets of program variables in that clause, where
each set indicates that the terms to which those variables are instantiated at run-
time might share a free variable. More formally, we define Occ(θ, U) = {X|X ∈
dom(θ), U ∈ vars(Xθ)}, the set of all program variables X ∈ Pvar in the clause
such that the variable U ∈ Uvar appears in Xθ. We define the abstraction of a
substitution θ as Asharing(θ) = {Occ(θ, U) | U ∈ Uvar}, and extend it to sets
of substitutions. The order induced by this abstraction in 22

P var

is the set inclu-
sion, the join, the set union, and the meet, the set intersection. As an example,
� = 2Pvar, a program variable that does not appear in any set is guaranteed to
be ground, or two variables that never appear in the same set are guaranteed to
not share. The complete definition can be found in [24,32].

Following the approach of the previous section, we define this monotone size
in the domain: size(a) = |a| + 1, size(⊥) = 0. It is straightforward to check
that ∀a, b ∈ 22

P var

, size(a) + size(b) = size(a � b) + size(a � b). Therefore the
following distance is a metric and order-preserving:

dshare(Sh1, Sh2)

= size(Sh1 ∪ Sh2) − size(Sh1 ∩ Sh2) = |Sh1 ∪ Sh2| − |Sh1 ∩ Sh2|

We would like our distance to be in a normalized range [0, 1], and for that
we divide it between d(⊥,�) = 2n + 1, where n = |V | denotes the number
of variables in the domain of the substitutions. This yields the following final
distance, which is a metric by construction:

dshare(Sh1, Sh2) = (|(Sh1 ∪ Sh2)| − |size(Sh1 ∩ Sh2)|)/(2n + 1)

Regular-Type Domain: Another well-known domain for logic programs is the
regular types domain [9], which abstracts the shape or type of the terms to which
variables are assigned at run time. It associates each variable with a deterministic
context free grammar that describes its shape, with the possible functors and
atoms of the program as terminal symbols. A more formal definition can be
found in [9]. We will write abstract substitutions as tuples 〈G1, . . . , Gn〉, where
Gi = (Ti,Fi,Ri, Si) is the grammar that describes the term associated to the
i-th variable in the substitution. We propose to use as a basis the Hausdorff
distance in the concrete domain, using the distance between terms proposed in
[36], i.e.,

dterm(f(x1, . . . , xn), g(y1, . . . , ym)) =
{

1 if f/n �= g/m
else : p

∑n
i=1

1
ndterm(xi, yi)

where p is a parameter of the distance. As the derived abstract version, we
propose the following recursive distance between two types or grammars Ga, Gb,
where G|T is the grammar G with initial symbol T instead of S:

d′(Ga, Gb) =

⎧
⎪⎨

⎪⎩

1 if ∃ (Sa → f(T1, . . . , Tn)) ∈ Ra ∧ �(Sb → f(T ′
1, . . . , T

′
n)) ∈ Rb

1 if ∃ (Sb → f(T1, . . . , Tn)) ∈ Rb ∧ �(Sa → f(T ′
1, . . . , T

′
n)) ∈ Ra

else : max{p
∑n

i=1
1
n
d′(Ga|Ti , Gb|T ′

i
) | (Sa → f(T1, . . . , Tn)) ∈ Ra,

(Sb → f(T ′
1, . . . , T

′
n)) ∈ Rb}

Computing Abstract Distances in Logic Programs 63

We also extend this distance between types to distance between sub-
stitutions in the abstract domain as follows: d(〈T1, . . . , Tn〉, 〈T ′

1, . . . , T
′
n〉) =√

d′(T1, T ′
1)2 + . . . + d′(Tn, T ′

n)2. Since d′ is the abstraction of the Hausdorff dis-
tance with dterm, which it is proved to be a metric in [36], d′ is a metric too.2

Therefore d is also a metric, since it is its extension to the cartesian product.

4 Distances Between Analyses

We now attempt to extend a distance in an abstract domain to distances between
results of different abstract interpretation-based analyses of the same program
over that domain. In the following we will assume (following most “top-down”
analyzers for (C)LP programs [4,16,26,32]) that the result of an analysis for a
given entry (i.e., an initial predicate P, and an initial call pattern or abstract
query λc), is an AND-OR tree, with root the OR-node 〈P, λc, λs〉∨, where λs is
the abstract substitution computed by the analysis for that predicate given that
initial call pattern. An AND-OR tree alternates AND-nodes, which correspond
to clauses in the program, and OR-nodes, which correspond to literals in those
clauses. An AND-node is a triplet 〈C, βentry, βexit〉∧, with C a clause Head :
−L1, ..., Ln and with βentry, βexit the abstract entry and exit substitutions for
that clause. It has an OR-node 〈Li, λ

i
c, λ

i
s〉∨ as child for each literal Li in the

clause, where λ1
c = βentry, λi+1

c = λi
s for i = 2 . . . n, and βexit = λn

s . An OR-
node is a triplet 〈L, λc, λs〉∨, with L a literal in the program, which is a call
to a predicate P, and λc, λs the abstract call and success substitutions for that
goal. It has one AND-node 〈Cj , β

j
entry, βj

exit〉∧ as child for each clause Cj in the
definition of P, where βj

entry is derived from λc by projecting and renaming to
the variables in the clause Cj , and λs is obtained from {βj

exit} by extending
and renaming each exit substitution to the variables in the calling literal L
and computing the least upper bound of the results. This tree is the abstract
counterpart of the resolution trees that represent concrete top-down executions,
and represents a possibly infinite set of those resolution trees at once. The tree
will most likely be infinite, but can be represented as a finite cyclic tree. We
denote the children of a node T as ch(T) and its triplet as val(T).

Example 1. Let us consider as an example the simple quick-sort program (using
difference lists) in Fig. 1, which uses an entry assertion to specify the initial
abstract query of the analysis [37]. If we analyze it with a simple groundness
domain (with just two values g and ng, plus � and ⊥), the result can be repre-
sented with the cyclic tree shown in Fig. 1. That tree is a finite representation of
an infinite abstract AND-OR tree. The nodes in layers 1, 3 and 5 represent OR-
nodes, and the ones in layers 2,4 and 6, AND-nodes, where p/i/j corresponds
to the j-th clause of predicate p/i. The actual values of the nodes are specified
above the tree. �

2 Actually that only guarantees that d′ is a pseudo-metric. Proving that it is indeed
a metric is more involved and not really relevant to our discussion.

64 I. Casso et al.

We propose three distances between AND-OR trees S1, S2 for the same entry,
in increasing order of complexity, and parameterized by a distance dα in the
underlying abstract domain. We also discuss which metric properties are inher-
ited by these distances from dα. Note that a good distance for measuring preci-
sion should fulfill the identity of indiscernibles.

Top Distance. The first consists in considering only the roots of the top trees,
〈P, λc, λ

1
s〉∨ and 〈P, λc, λ

2
s〉∨, and defining our new distance as d(S1, S2) =

dα(λ1
s, λ

2
s). This distance ignores too much information (e.g., if the entry point

is a predicate main/0, the distance would only distinguish analyses that detect
failure from analysis which do not), so it is not appropriate for measuring anal-
ysis precision, but it is still interesting as a baseline. It is straightforward to see
that it is a pseudometric if dα is, but will not fulfill the identity of indiscernibles
even if dα does.

Fig. 1. Analysis of quicksort/2 (using difference lists).

Computing Abstract Distances in Logic Programs 65

Flat Distance. The second distance considers all the information inferred by the
analysis for each program point, but forgetting about its context in the AND-
OR tree. In fact, analysis information is often used this way, i.e., considering
only the substitutions with which a given literal in the program can be called or
succeeds, and not which traces lead to those calls (path insensitivity). We define
a distance between a program point or literal PP in two analysis S1, S2

dPP (S1, S2) =
1
2
(dα(

⊔
λ∈PP 1

c

λ,
⊔

λ∈PP 2
c

λ) + dα(
⊔

λ∈PP 1
s

λ,
⊔

λ∈PP 2
s

λ))

where PP i
c = {λc | 〈PP, λc, λs〉∨ ∈ Si}, PP i

s = {λs | 〈PP, λc, λs〉∨ ∈ Si}.
If we denote P as the set of all program points in the program, that dis-
tance can later be extended to a distance between analyses as d(S1, S2) =
1

|P |
∑

PP∈P dPP (S1, S2), or any other combination of the distances dPP (S1, S2)
(e.g, weighted average, || · ||2). This distance is more appropriate for measur-
ing precision than the previous one, but it will still inherit all metric properties
except the identity of indiscernibles. An example of this distance can be found
in [6].

Tree Distance. For the third distance, we propose the following recursive defini-
tion, which can easily be translated into an algorithm:

d(T1, T2) =

{
μ 1

2
(dα(λ1

c , λ
2
c) + dα(λ1

s, λ
2
s)) + (1 − μ) 1

|C|
∑

(c1,c2)∈C d(c1, c2) if C �= ∅
else 1

2
(dα(λ1

c , λ
2
c) + dα(λ1

s, λ
2
s))

where T1 = 〈P, λ1
c , λ

1
s〉, T2 = 〈P, λ2

c , λ
2
s〉, μ ∈ (0, 1] and C = {(c1, c2) | c1 ∈

ch(T1), c2 ∈ ch(T2), val(c1) = 〈X, , 〉, val(c2) = 〈Y, , 〉,X = Y }.
This definition is possible because the two AND-OR trees, when considering

their infinite, non cyclic representation, will necessarily have the same shape, and
therefore we are always comparing a node with its correspondent node in the
other tree. That shape could only differ for real analysis if one of them detects
and unreachable trace (e.g., a clause not applicable or a literal after another that
fails), but not the other, thus having one subtree in the second not occurring
in the first. But that can also be modelled as that subtree occurring also in the
first with every abstract substitution being ⊥.

This distance is well defined, even if the trees, and therefore the recursions,
are infinite, since the expression above always converges. To back up that claim
we provide the following argument, which also shows how that distance can be
easily computed in finite time. Since the AND-OR trees always have a finite
representation as cyclic trees with n and m nodes respectively, there are at most
n ∗ m different pairs of nodes to visit during the recursion. Assigning a variable
to each pair that is actually visited, the recursive expression can be expressed
as a linear system of equations. That system has a unique solution since there
is an equation for each variable and the associated matrix, which is therefore
squared, has strictly dominant diagonal. An example of this can be found in [6].

66 I. Casso et al.

The idea of this distance is that we consider more relevant the distance
between the upper nodes than the distance between the deeper ones, but we still
consider all of them and do not miss any of the analysis information. As a result,
this distance will directly inherit the identity of indiscernibles (apart from all
other metric properties) from dα.

5 Experimental Evaluation

To evaluate the usefulness of the program analysis distances, we set up a practical
scenario in which we study quantitatively the cost and precision tradeoff for
several abstract domains. We propose the following methodology to measure
that precision:

Base Domain. Recall that in the distances defined so far, we assume that we
compare two analyses using the same abstract domain. We relax this requirement
by translating each analysis to a common base domain, rich enough to reflect
a particular program property of interest. An abstract substitution λ over a
domain Dα is translated to a new domain Dα′ as λ′ = α′(γ(λ)), and the AND-
OR tree is translated by just translating any abstract substitution occurring in
it. The results still over-approximates concrete executions, but this time all over
the same abstract domain.

Program Analysis Intersection. Ideally we would compare each analysis with the
actual semantics of a program for a given abstract query, represented also as an
AND-OR tree. However, this semantics is undecidable in general, and we are
seeking an automated process. Instead, we approximated it as the intersection
of all the computed analyses. The intersection between two trees, which can be
easily generalized to n trees, is defined as inter(T1, T2) = T , with

val(T1) = 〈X,λ1
c , λ

2
s〉, val(T2) = 〈X,λ2

c , λ
2
s〉, val(T) = 〈X,λ1

c � λ2
c , λ

1
s � λ2

s〉
ch(T) = { inter(c1, c2) | c1 ∈ ch(T1), c2 ∈ ch(T2), val(c1) = 〈X, , 〉,

val(c2) = 〈Y, , 〉, X = Y }

That is, a new AND-OR tree with the same shape as those computed by the
analyses, but where each abstract substitution is the greatest lower bound of
the corresponding abstract substitutions in the other trees. The resulting tree is
the least general AND-OR tree we can obtain that still over-approximates every
concrete execution. We can now use that tree to measure the (loss of) precision
of an analysis as its distance to the tree, being that distance 0 is the analysis is
as precise as the intersection, and growing up to 1 as it gets more imprecise.

Case Study: Variable Sharing Domains. We have applied the method above
on a well known set of (micro-)benchmarks for CLP analysis, and a number of
modules from a real application (the LPdoc documentation generator). The pro-
grams are analyzed using the CiaoPP framework [20] and the domains shfr [33],

Computing Abstract Distances in Logic Programs 67

Fig. 2. (a) Precision using flat distance and (b) tree distance (micro-benchmarks)

share [24,32], def [1,15], and sharefree clique [34] with different widenings. All
these domains express sharing between variables among other things, and we
compare them with respect to the base share domain. All experiments are run
on a Linux machine with Intel Core i5 CPU and 8 GB of RAM.

Figures 2 and 3 show the results for the micro-benchmarks. Figures 4 and 5
show the same experiment on LPdoc modules. In both experiments we measure
the precision using the flat distance, tree distance, and top distance. In general,
the results align with our a priori knowledge: that shfr is strictly more precise
than all other domains, but can sometimes be slower; while gr is less precise
and generally faster. As expected, the flat and tree distances show that share is
in all cases less precise than shfr, and not significantly cheaper (sometimes even
more costly). The tree distance shows a more pronounced variation of precision
when comparing share and widenings. While this can also be appreciated in the
top distance, the top distance fails to show the difference between share and
shfr. Thus, the tree distance seems to offer a good balance. For small programs
where analysis requires less than 100 ms in shfr, there seems to be no advantage
in using less precise domains. Also as expected, for large programs widenings
provide significant speedups with moderate precision lose. Small programs do
not benefit in general from widenings. Finally, the def domain shows very good
precision w.r.t. the top distance, representing that the domain is good enough

Fig. 3. (a) Precision using top distance and (b) Analysis time (micro-benchmarks)

68 I. Casso et al.

Fig. 4. (a) Precision using flat distance and (b) tree distance (LPdoc benchmark)

Fig. 5. (a) Precision using top distance and (b) Analysis time (LPdoc benchmarks)

to capture the behavior of predicates at the module interface for the selected
benchmarks.

Figure 6 reflects the size of the AND-OR tree and experimentally it is corre-
lated with the analysis time. The size measures the cost of representing abstract
substitutions as Prolog terms (roughly as the number of functor and constant
symbols).

Fig. 6. (a) Analysis size (micro-benchmarks) and (b) Analysis size (LPdoc benchmark)

Computing Abstract Distances in Logic Programs 69

6 Related Work

Distances in lattices: Lattices and other structures that arise from order relations
are common in many areas of computer science and mathematics, so it is not
surprising that there have been already some attempts at proposing metrics in
them. E.g., [18] has a dedicated chapter for metrics in lattices, Horn and Tarski
[22] studied measures in boolean algebras. Distances among terms: Hutch [23],
Nienhuys-Cheng [36] and Ramon [38] all propose distances in the space of terms
and extend them to distances between sets of terms or clauses. Our proposed dis-
tance for regular types can be interpreted as the abstraction of the distance pro-
posed by Nienhuys-Cheng. Furthermore, [38] develop some theory of metrics in
partial orders, as also does De Raedt [11]. Distances among abstract elements and
operators: Logozzo [28] proposes defining metrics in partially ordered sets and
applying them to quantifying the relative loss of precision induced by numeric
abstract domains. Our work is similar in that we also propose a notion of distance
in abstract domains. However, they restrict their proposed distances to finite or
numeric domains, while we focus instead on logic programming-oriented, possi-
ble infinite, domains. Also, our approach to quantifying the precision of abstract
interpretations follows quite different ideas. They use their distances to define a
notion of error induced by an abstract value, and then a notion of error induced
by a finite abstract domain and its abstract operators, with respect to the con-
crete domain and concrete operators. Instead, we work in the context of given
programs, and quantify the difference of precision between the results of different
analyses for those programs, by extending our metrics in abstract domains to
metrics in the space of abstract executions of a program and comparing those
results. Sotin [39] defines measures in R

n that allow quantifying the difference
in precision between two abstract values of a numeric domain, by comparing
the size of their concretizations. This is applied to guessing the most appro-
priate domain to analyse a program, by under-approximating the potentially
visited states via random testing and comparing the precision with which differ-
ent domains would approximate those states. Di Pierro [13] proposes a notion
of probabilistic abstract interpretation, which allows measuring the precision of
an abstract domain and its operators. In their proposed framework, abstract
domains are vector spaces instead of partially ordered sets, and it is not clear
whether every domain, and in particular those used in logic programming, can
be reinterpreted within that framework. Cortesi [7] proposes a formal methodol-
ogy to compare qualitatively the precision of two abstract domains with respect
to some of the information they express, that is, to know if one is strictly more
precise that the other according to only part of the properties they abstract. In
our experiments, we compare the precision of different analyses with respect to
some of the information they express. For some, we know that one is qualita-
tively more precise than the other in Cortesi’s paper’s sense, and that is reflected
in our results.

70 I. Casso et al.

7 Conclusions

We have proposed a new approach for measuring and comparing precision across
different analyses, based on defining distances in abstract domains and extend-
ing them to distances between whole analyses. We have surveyed and extended
previous proposals for distances and metrics in lattices or abstract domains,
and proposed metrics for some common (C)LP domains. We have also proposed
extensions of those metrics to the space of whole program analysis. We have
implemented those metrics and applied them to measuring the precision of differ-
ent sharing-related (C)LP analyses on both benchmarks and a realistic program.
We believe that this application of distances is promising for debugging the pre-
cision of analyses and calibrating heuristics for combining different domains in
portfolio approaches, without prior knowledge and treating domains as black
boxes (except for the translation to the base domain). In the future we plan to
apply the proposed concepts in other applications beyond measuring precision
in analysis, such as studying how programming methodologies or optimizations
affect the analyses, comparing obfuscated programs, giving approximate results
in semantic code browsing [14], program synthesis, software metrics, etc.

References

1. Armstrong, T., Marriott, K., Schachte, P., Søndergaard, H.: Boolean functions
for dependency analysis: algebraic properties and efficient representation. In: Le
Charlier, B. (ed.) SAS 1994. LNCS, vol. 864, pp. 266–280. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-58485-4 46

2. Banda, G., Gallagher, J.P.: Analysis of linear hybrid systems in CLP. In: Hanus,
M. (ed.) LOPSTR 2008. LNCS, vol. 5438, pp. 55–70. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00515-2 5

3. Bjørner, N., Gurfinkel, A., McMillan, K., Rybalchenko, A.: Horn clause solvers for
program verification. In: Beklemishev, L.D., Blass, A., Dershowitz, N., Finkbeiner,
B., Schulte, W. (eds.) Fields of Logic and Computation II. LNCS, vol. 9300, pp.
24–51. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23534-9 2

4. Bruynooghe, M.: A practical framework for the abstract interpretation of logic
programs. J. Logic Program. 10, 91–124 (1991)

5. Bueno, F., Garćıa de la Banda, M., Hermenegildo, M.V.: Effectiveness of global
analysis in strict independence-based automatic program parallelization. In: Inter-
national Symposium on Logic Programming, pp. 320–336. MIT Press, November
1994

6. Casso, I., Morales, J.F., Lopez-Garcia, P., Hermenegildo, M.V.: Computing
abstract distances in logic programs. Technical report CLIP-2/2019.0, The CLIP
Lab, IMDEA Software Institute and T.U., Madrid, July 2019. http://arxiv.org/
abs/1907.13263

7. Cortesi, A., Filé, G., Winsborough, W.: Comparison of abstract interpretations. In:
Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 521–532. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-55719-9 101

8. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of POPL 1977, pp. 238–252. ACM Press (1977)

https://doi.org/10.1007/3-540-58485-4_46
https://doi.org/10.1007/978-3-642-00515-2_5
https://doi.org/10.1007/978-3-319-23534-9_2
http://arxiv.org/abs/1907.13263
http://arxiv.org/abs/1907.13263
https://doi.org/10.1007/3-540-55719-9_101

Computing Abstract Distances in Logic Programs 71

9. Dart, P., Zobel, J.: A Regular type language for logic programs. In: Pfenning, F.
(ed.) Types in Logic Programming, pp. 157–187. MIT Press, Cambridge (1992)

10. De Angelis, E., Fioravanti, F., Pettorossi, A., Proietti, M.: VeriMAP: a tool for
verifying programs through transformations. In: Ábrahám, E., Havelund, K. (eds.)
TACAS 2014. LNCS, vol. 8413, pp. 568–574. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54862-8 47

11. De Raedt, L., Ramon, J.: Deriving distance metrics from generality relations. Pat-
tern Recogn. Lett. 30(3), 187–191 (2009). https://doi.org/10.1016/j.patrec.2008.
09.007

12. Debray, S.K.: Static inference of modes and data dependencies in logic programs.
ACM Trans. Program. Lang. Syst. 11(3), 418–450 (1989)

13. Di Pierro, A., Wiklicky, H.: Measuring the precision of abstract interpreta-
tions. LOPSTR 2000. LNCS, vol. 2042, pp. 147–164. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45142-0 9

14. Garcia-Contreras, I., Morales, J.F., Hermenegildo, M.V.: Semantic code browsing.
TPLP (ICLP 2016 Special Issue) 16(5–6), 721–737 (2016)

15. Garćıa de la Banda, M., Hermenegildo, M.V.: A practical application of sharing
and freeness inference. In: 1992 Workshop on Static Analysis, WSA 1992, pp. 118–
125. No. 81–82 in BIGRE. IRISA, Beaulieu, September 1992

16. de la Banda, M.G., Hermenegildo, M.V., Bruynooghe, M., Dumortier, V., Janssens,
G., Simoens, W.: Global analysis of constraint logic programs. ACM TOPLAS
18(5), 564–614 (1996)

17. Grebenshchikov, S., Gupta, A., Lopes, N.P., Popeea, C., Rybalchenko, A.: HSF(C):
a software verifier based on Horn clauses. In: Flanagan, C., König, B. (eds.) TACAS
2012. LNCS, vol. 7214, pp. 549–551. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-28756-5 46

18. Grätzer, G.: General Lattice Theory, 2nd edn. (1998). https://doi.org/10.1007/
978-3-0348-7633-9

19. Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The SeaHorn verification
framework. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206,
pp. 343–361. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-
4 20

20. Hermenegildo, M., Puebla, G., Bueno, F., Lopez-Garcia, P.: Integrated program
debugging, verification, and optimization using abstract interpretation (and the
Ciao system preprocessor). Sci. Comput. Progr. 58(1–2), 115–140 (2005)

21. Hermenegildo, M., Warren, R., Debray, S.K.: Global flow analysis as a practical
compilation tool. JLP 13(4), 349–367 (1992)

22. Horn, A., Tarski, A.: Measures in Boolean algebras. Trans. Am. Math. Soc. 64(3),
467–497 (1948)

23. Hutchinson, A.: Metrics on terms and clauses. In: van Someren, M., Widmer, G.
(eds.) ECML 1997. LNCS, vol. 1224, pp. 138–145. Springer, Heidelberg (1997).
https://doi.org/10.1007/3-540-62858-4 78

24. Jacobs, D., Langen, A.: Accurate and efficient approximation of variable aliasing
in logic programs. In: North American Conference on Logic Programming (1989)

25. Kafle, B., Gallagher, J.P., Morales, J.F.: Rahft: a tool for verifying horn clauses
using abstract interpretation and finite tree automata. In: Chaudhuri, S., Farzan,
A. (eds.) CAV 2016. LNCS, vol. 9779, pp. 261–268. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-41528-4 14

https://doi.org/10.1007/978-3-642-54862-8_47
https://doi.org/10.1007/978-3-642-54862-8_47
https://doi.org/10.1016/j.patrec.2008.09.007
https://doi.org/10.1016/j.patrec.2008.09.007
https://doi.org/10.1007/3-540-45142-0_9
https://doi.org/10.1007/978-3-642-28756-5_46
https://doi.org/10.1007/978-3-642-28756-5_46
https://doi.org/10.1007/978-3-0348-7633-9
https://doi.org/10.1007/978-3-0348-7633-9
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1007/3-540-62858-4_78
https://doi.org/10.1007/978-3-319-41528-4_14
https://doi.org/10.1007/978-3-319-41528-4_14

72 I. Casso et al.

26. Kelly, A.D., Macdonald, A., Marriott, K., Søndergaard, H., Stuckey, P.J., Yap,
R.H.C.: An optimizing compiler for CLP R. In: Montanari, U., Rossi, F. (eds.) CP
1995. LNCS, vol. 976, pp. 222–239. Springer, Heidelberg (1995). https://doi.org/
10.1007/3-540-60299-2 14

27. Liqat, U., et al.: Energy consumption analysis of programs based on XMOS ISA-
level models. In: Gupta, G., Peña, R. (eds.) LOPSTR 2013. LNCS, vol. 8901, pp.
72–90. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-14125-1 5

28. Logozzo, F., Popeea, C., Laviron, V.: Towards a quantitative estimation of abstract
interpretations (extended abstract). In: Workshop on Quantitative Analysis of Soft-
ware, June 2009

29. Madsen, M., Yee, M., Lhoták, O.: From Datalog to FLIX: a declarative language
for fixed points on lattices. In: PLDI, pp. 194–208. ACM (2016)

30. Marriott, K., Søndergaard, H., Jones, N.: Denotational abstract interpretation of
logic programs. ACM Trans. Program. Lang. Syst. 16(3), 607–648 (1994)

31. Méndez-Lojo, M., Navas, J., Hermenegildo, M.V.: A flexible, (C)LP-based app-
roach to the analysis of object-oriented programs. In: King, A. (ed.) LOPSTR
2007. LNCS, vol. 4915, pp. 154–168. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-78769-3 11

32. Muthukumar, K., Hermenegildo, M.: Determination of variable dependence infor-
mation at compile-time through abstract interpretation. In: NACLP 1989, pp.
166–189. MIT Press, October 1989

33. Muthukumar, K., Hermenegildo, M.: Combined determination of sharing and free-
ness of program variables through abstract interpretation. In: ICLP 1991, pp. 49–
63. MIT Press, June 1991

34. Navas, J., Bueno, F., Hermenegildo, M.: Efficient top-down set-sharing analysis
using cliques. In: Van Hentenryck, P. (ed.) PADL 2006. LNCS, vol. 3819, pp. 183–
198. Springer, Heidelberg (2005). https://doi.org/10.1007/11603023 13

35. Navas, J., Méndez-Lojo, M., Hermenegildo, M.V.: User-definable resource usage
bounds analysis for Java bytecode. In: BYTECODE 2009. ENTCS, vol. 253. Else-
vier, March 2009

36. Nienhuys-Cheng, S.-H.: Distance between Herbrand interpretations: a measure for
approximations to a target concept. In: Lavrač, N., Džeroski, S. (eds.) ILP 1997.
LNCS, vol. 1297, pp. 213–226. Springer, Heidelberg (1997). https://doi.org/10.
1007/3540635149 50

37. Puebla, G., Bueno, F., Hermenegildo, M.: An assertion language for constraint logic
programs. In: Deransart, P., Hermenegildo, M.V., Ma�luszynski, J. (eds.) Analysis
and Visualization Tools for Constraint Programming. LNCS, vol. 1870, pp. 23–61.
Springer, Heidelberg (2000). https://doi.org/10.1007/10722311 2

38. Ramon, J., Bruynooghe, M.: A framework for defining distances between first-order
logic objects. In: Page, D. (ed.) ILP 1998. LNCS, vol. 1446, pp. 271–280. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0027331

39. Sotin, P.: Quantifying the precision of numerical abstract domains. Research
report, INRIA, February 2010. https://hal.inria.fr/inria-00457324

40. Van Roy, P., Despain, A.: High-performance logic programming with the aquarius
prolog compiler. IEEE Comput. Mag. 25, 54–68 (1992)

https://doi.org/10.1007/3-540-60299-2_14
https://doi.org/10.1007/3-540-60299-2_14
https://doi.org/10.1007/978-3-319-14125-1_5
https://doi.org/10.1007/978-3-540-78769-3_11
https://doi.org/10.1007/978-3-540-78769-3_11
https://doi.org/10.1007/11603023_13
https://doi.org/10.1007/3540635149_50
https://doi.org/10.1007/3540635149_50
https://doi.org/10.1007/10722311_2
https://doi.org/10.1007/BFb0027331
https://hal.inria.fr/inria-00457324

Program Synthesis

Synthesizing Imperative Code from
Answer Set Programming Specifications

Sarat Chandra Varanasi(B) , Elmer Salazar , Neeraj Mittal ,
and Gopal Gupta

Department of Computer Science, The University of Texas at Dallas,
Richardson, TX, USA

{sxv153030,elmer.salazar,neerajm,gupta}@utdallas.edu

Abstract. We consider the problem of obtaining an implementation of
an algorithm from its specification. We assume that these specifications
are written in answer set programming (ASP). ASP is an ideal formal-
ism for writing specifications due to its highly declarative and expressive
nature. To obtain an implementation from its specification, we utilize
the operational semantics of ASP implemented in the s(ASP) system.
This operational semantics is used to transform the declarative specifi-
cation written in ASP to obtain an equivalent efficient program that uses
imperative control features. This work is inspired by our overarching goal
of automatically deriving efficient concurrent algorithms from declara-
tive specifications. This paper reports our first step towards achieving
that goal where we restrict ourselves to simple sequential algorithms.
We illustrate our ideas through several examples. Our work opens up a
new approach to logic-based program synthesis not explored before.

Keywords: Program synthesis · Program transformation · Answer Set
Programming · Partial evaluation · Symbolic execution

1 Introduction

Program synthesis concerns generating programs according to given specifi-
cations. This problem has been tackled in various ways. One of the earliest
approaches was to use theorem proving to generate imperative programs from
a given logical input-output specification [10]. Extensive work using logical
approaches are surveyed [2]. More recently synthesis has been reduced to the task
of verification [15]. In this paper, we provide a method to extract programs from
executable specifications written in a particular class of datalog answer set pro-
grams, by means of program transformation. Answer Set Programming (ASP)
is a declarative, logic-based programming paradigm for solving combinatorial
search and knowledge representation problems [6]. In ASP, specification and

Work partially supported by US NSF grants IIS 1718945, CNS-1115733 and CNS-
1619197.

c© Springer Nature Switzerland AG 2020
M. Gabbrielli (Ed.): LOPSTR 2019, LNCS 12042, pp. 75–89, 2020.
https://doi.org/10.1007/978-3-030-45260-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45260-5_5&domain=pdf
http://orcid.org/0000-0002-4620-4266
http://orcid.org/0000-0002-3042-474X
http://orcid.org/0000-0002-8734-1400
http://orcid.org/0000-0001-9727-0362
https://doi.org/10.1007/978-3-030-45260-5_5

76 S. C. Varanasi et al.

computation are synonymous, which is highly desirable to rapidly prototype sys-
tems [4]. However the implementations of ASP are quite complex [5]. It is rather
difficult to justify why a specification computes what it computes. On the other
hand, imperative programs are relatively easier to trace and in general enjoy
faster run-times than their declarative program counterparts. This is because
imperative programs often represent computationally faster implementations of
a specification without directly being concerned about the specification. This
makes deriving imperative programs from ASP specifications highly desirable.
Our main insight is to employ the recently-developed operational semantics for
ASP realized in the s(ASP) system [1,11]. s(ASP) is a query-driven answer set
programming system which computes the (partial) stable models of a query of
an answer set program without grounding the program first. Traditional imple-
mentations of ASP are based on grounding the program to its propositional
equivalent and then using SAT solvers to compute the answer sets. Using the
operational semantics of s(ASP), one can follow how the stable models are com-
puted for a query in a step-by-step manner. This provides us the right playground
to extract an imperative program while simplifying all the machinery that makes
s(ASP) work.

Our key contribution is the following. We demonstrate how program trans-
formation, based on s(ASP)-style operational semantics, can be used to realize
efficient imperative programs from their declarative ASP specifications. We illus-
trate our approach through several sequential algorithms. Our major contribu-
tion is the novel use of the forall mechanism that is part of s(ASP)’s operational
semantics. The forall directly translates into a for-loop in the derived imperative
program. Eventually, we plan to employ partial evaluation obeying the s(ASP)
operational semantics to further improve efficiency.

Answer set programming is essentially logic programming with negation as
failure (NAF) under the stable model semantics [6]. Answer set programs consist
of even loops that act as generators of worlds and odd loops (or constraints)
that act as destroyer of worlds. ASP provides a paradigm where each rule can
be written and understood in isolation from others. Due to presence of negation
as failure, ASP permits specification of a concept by stating what it is not. ASP
thus serves as a very high-level and expressive specification language.

Our main idea is as follows: Programs are written as abstractions over certain
allowed primitives and there could be more abstractions built on top of existing
abstractions. This applies to specifications as well, particularly for the specifica-
tions we are interested in this paper. In logic programs, a specification contains
either positive terms or negated terms. However, in a corresponding imperative
program, there are only function-calls and constraints (if-checks). We eliminate
negated terms in the imperative program by making them implicit. In doing so,
the meaning of negated terms is propagated downward from the abstractions to
the primitives. In ASP, combinations of possibilities or situations that are not
permitted are expressed as constraints that a consistent world (answer set) must
obey; those that are permitted or desired are represented through simple rules,
even loops, etc. Our insight behind obtaining an imperative algorithm from an

Synthesizing Imperative Code from Answer Set Programming Specifications 77

ASP specification involves simply following the s(ASP) operational semantics,
to orchestrate the calls to predicates so that constraints end up as if-then-else
checks in the imperative execution. In addition, s(ASP) semantics creates uni-
versally quantified variables in the body of negated rules that translate directly
into an imperative for-loop. These ideas are illustrated in more detail later.

Our ultimate goal is to synthesize efficient concurrent algorithms from their
declarative specifications. Concurrent algorithms are notoriously difficult to
design. They are also equally difficult to verify. ASP provides the right formal-
ism to represent concepts of concurrency in an elegant, straightforward way. For
instance, the ASP program that describes the behaviour of a concurrent linked
list is no different than the ASP program for blocks world planning [6]. Thus,
to be able to synthesize imperative code from a concurrent specification, will
greatly aide designers of concurrent algorithms. Further, our work corroborates
the idea of writing programs that are correct by construction.

Rest of the paper is organized as follows: We give an overview of s(ASP) and
its features used for synthesis in Sect. 2. We then provide two examples, one in
Sect. 3 for motivating the idea of synthesis and the second in Sect. 4 to elaborate
in detail. Section 5 describes the assumptions on which our technique is based.
Section 6 outlines the entire algorithm followed by concluding remarks in Sect. 7.

2 Background

The ASP Paradigm: We assume basic familiarity with ASP syntax [6] and
its applications in building intelligent systems [3,6]. The sets of satisfiable truth
assignments to the propositional variables of an answer set program constitute
its answer sets under the stable model semantics [6,8]. In general, ASP pro-
grams have predicates with variables. Most of the ASP solvers [5] ground the
predicated program into propositions and find stable models by SAT solving.
The s(ASP) system takes a different path by finding stable models relevant to
a given query such as ?- p(X). s(ASP) finds the stable models for the issued
query operationally without grounding the program. In short, stable models are
solved in traditional ASP solvers, whereas the models are proved in s(ASP). For
every answer set, there is a justification tree (proof tree) produced by the s(ASP)
system describing all the sub-goals that lead up to the query. The s(ASP) sys-
tem employs coinductive SLD Resolution [14] to execute even loops in a top
down manner. Odd loops and constraints (NMR checks) serve as an extension
of the top-level query in order to constrain the answers. For instance, a query
?- p(X) issued by the user is extended with a constraint {chk :- ...} as ?-
p(X), chk. The goal-directed s(ASP) algorithm can be found elsewhere [11].

Prominent Features of s(ASP): We next summarize the salient features of
the s(ASP) system that are relevant to our work here. The operational semantics
of s(ASP) is a Prolog style execution of an issued query adhering to the stable
model semantics. The query triggers a search where all clauses that are consistent
are resolved and backtracking happens when inconsistent goals are encountered.
All the terms encountered in the consistent goals constitute the “partial” stable

78 S. C. Varanasi et al.

model associated with the query. At a basic level, the current resolvent is invalid
when during expansion it leads to a stable model that has both a goal and its
negation. This is, in fact, how stable models are constructed in the propositional
variant of s(ASP), namely Galliwasp [13]. Note that the execution algorithm of
s(ASP) relies on corecursion [14] to handle even loops [11], but this feature is
not as important for the work reported here.

Handling Negation with Dual Rules: In s(ASP), negated goals are executed
through dual rules. The dual rule of a predicate p systematically negates the
literals in a rule body defining p. Dual rules of all predicates together with the
rules in the original program represent its completion [9]. For instance, the dual
rule of the predicate p with the following definition is shown below:

%definition of p %dual of p/0

p :- not q. not p :- np1 , np2

p :- r, not s. %negating of not q yields q

np1 :- q.

%negating r, not s yields

disjunction (not r) ∨ s
np2 :- not r.

np2 :- s.

Forall Mechanism: We have just shown dual rules for propositions which are
simple enough. However, writing dual rules for predicates is more involved. One
complication is due to implicit quantifiers in predicate rules. For a rule such as:

p(X) :- q(Y), r(X).

X is universally quantified over the whole formula, whereas Y is existentially
quantified in the body only. Therefore, negating p(X) results in Y being univer-
sally quantified in the body as follows:

not p(X) :- np1(X) ; np2(X).

np1(X) :- forall(Y, not q(Y)).

np2(X) :- not r(X).

Notice that the universal quantifier for Y in not q(Y) is enclosed within a
forall(...). The forall represents a proof procedure that runs through all val-
ues in the domain of Y and verifies if the goal enclosed within it is satisfied.
In our example, the forall checks that not q(Y) holds for all values in the
domain of Y . No such mechanism existed in prior Prolog based systems. It is
this forall mechanism coupled with dual rules that we make extensive use of in
our synthesis procedure. Because they treat negated predicates constructively
[11], we turn them into computations in our synthesis procedure.

3 Motivating Example

Consider the program that finds the maximum of n numbers, which is naturally
specified in ASP as shown below:

Synthesizing Imperative Code from Answer Set Programming Specifications 79

max(X) :- num(X), not smaller(X).

smaller(X) :- num(X), num(Y), X < Y.

num(X) provides the domain of numbers over which the input values range.
smaller(X) defines when a number X is dominated by another number Y .
max(X) gives the definition for X to be the maximum. The main predicate
from where the computation to decide whether a given number X is the maxi-
mum begins with max(X). The negation of smaller(X) can be translated to a
forall as shown below:

not smaller(X) :- forall(Y, not (num(X), num(Y), X < Y)).

Assuming that num(X) and num(Y) are true, the negation only applies to
X < Y . Therefore, replacing the definition of not smaller(X) in max(X) gives
us the following:

max(X) :- forall(Y, num(X), num(Y), not (X < Y)).

The forall definition of max(X) makes apparent the operational flavor
involved in finding the maximum of n numbers: enumerate all numbers Y and
compare them with X. If X is not smaller than any Y , i.e., X < Y is false
for all Y , then X is maximum. The forall can be translated to a for-loop in
imperative languages if the domains of the variables involved in the scope of
forall are finite. From an Answer Set Programming point of view, max(X) is
present in the answer set if the forall succeeds (if X is the maximum), other-
wise it is not present in the answer set. The abstract code synthesized through
program transformation, thus looks like:

def max(x):

for y in num:

if x < y:

return False

return True

The interpretation shown above is not sufficient to translate ASP programs
written to solve graph-coloring or sorting an array. We illustrate our idea further
in the following section taking the example of graph-coloring.

4 Synthesizing Code for Graph Coloring

We first provide an ASP program and then provide an operational interpretation
which is still a logic program. Finally, we show how the various fragments of the
“intermediate” logic program1 can be transformed into an imperative program.

The Graph Coloring Problem: Graph coloring involves selecting a color c
for every node v in an input graph such that no two adjacent (edge-connected)
nodes (x, y) have the same color c. The ASP program is shown below:

1 Both intermediate logic program and intermediate ASP program are used inter-
changeably.

80 S. C. Varanasi et al.

color(X, C) :- node(X), color(C), not another_color (X,C),

not conflict(X,C).

another_color (X, C) :- node(X), color(C), color(C1), C != C1 ,

color(X, C1).

conflict(X, C) :- node(X), color(C), node(Y), X != Y, edge(X, Y),

color(X, C), color(Y, C).

The domain of nodes and colors come from the predicates node/1 and color/1.
The predicate color(X, C) provides the definition of what it means to color
a node X with color C: Color X with C provided there is no other choice for X
other than C and, the choice of color C does not conflict with the color C′ of all
nodes Y edge-connected to X. The two conditions stated now are represented by
predicates another color/2 and conflict/2, respectively.

Operational Interpretation for Predicates in Graph Coloring: Consider-
ing color(X, C) to start off a computation for coloring node X (and subsequently
the entire graph), we follow the definition of color(X, C) in a top-down, left-
right manner while simplifying all intervening negations until we either reach an
assertion about a domain variable (or) reach a recursive definition of color/2.

In the definition of color(X, C), the dual clause synthesized by s(ASP) for
another color(X, C) will be used for the call not another color(X, C). This
clause contains a forall with disjunction of negated terms as follows:

not another_color(X, C) :-

forall(C1,node(X),color(C),(not (C!= C1) or not color(X,C1)).

Operationally, not another color(X, C) checks two constraints over all colors
C1. For the first constraint we check if C != C1 is false, an assertion on the
domain variables C and C1. The second constraint checks if the negation of not
color(X, C1) is true, which is the negation of the predicate that started the
computation, but with a possibly different binding for C1 than C. In order to
compute the negation of color(X, C1) we generate the following dual rule:

not color(X, C) :- node(X), color(C), another_color(X, C).

not color(X, C) :- node(X), color(C), conflict(X, C).

Similarly, not conflict(X, C) is translated in terms of forall :

not_conflict(X, C) :- forall(Y,node(X),color(C),node(Y),

(not (X != Y)) or not edge(X,Y) or

not color(Y,C)).

Notice that the negation is not applied to node(X), color(C) and node(Y)
as we are not concerned about bindings for X, C, Y that are neither nodes nor
colors. Further, not color(X, C) is skipped in the disjunction. This is because
expanding negation of color(X, C) in the expansion of color(X, C) leads to
a direct contradiction.

Once we have the intermediate logic program generated by the s(ASP) com-
piler (s(ASP) automatically generates dual rules), we have to transform the pro-
gram further in a top-down, left-right manner, using s(ASP) semantics, starting

Synthesizing Imperative Code from Answer Set Programming Specifications 81

from color(X, C) while generating imperative code for each of the predicates
found in the body of color(X, C) (while excluding domain predicates). For our
current research, the language of choice is Python. The choice could as well be
any other imperative language as long as it supports recursion. Again, support
for recursion is also not strictly necessary as the lack of it thereof would increase
the size of the generated code to explicitly handle it.

Translating Graph Coloring to Imperative Code: The intermediate ASP
program for graph coloring is broken down into its constituent syntactic parts
and the translation for each of them is discussed in turn:

1. Main Rule-Head maps to Function call (Abstraction): color(X, C)
is our starting point which is in fact the rule-head defining color(X, C).
Rule heads represent abstractions in Logic Programming [9], and hence an
obvious choice is to map them to a function prototype such as: def color(x,
c). But it is not clear what the “function” color(x, c) should compute. At
this point we can treat the call to color(x, c) as a query in the s(ASP)
system: ?- color(X, C). The query immediately finds bindings for node X,
color C and also relevant bindings color(X′, C′) for other node, color pairs
X′, C′ that are consistent with color(X, C) in the ASP program.
In other words, the s(ASP) system finds the first answer set (partial stable
model) of the program. If s(ASP) cannot find an answer set, it returns false.
Further, imperative languages can only operate on ground values (unlike logic
program queries). Thus, the call color(x, c) in Python has ground values
for parameters x, c at run-time. With these arguments, it makes sense that
def color(x, c) should return all “terms” consistent with the choice x, c
taken at run-time. Also, at run-time, the function should be able to track the
consistent terms computed thus far. Therefore every function call color(x,
c) is designated an additional parameter named context, which stores set of
the consistent terms. Thus the complete function prototype is: def color(x,
c, context) with the initial context being the empty set {}. In addition to
returning consistent terms, the function should also report failure. There-
fore, the function color(x, c, {}) returns a pair (success, set). success is a
boolean variable taking the value True upon success and False upon failure.
set is the set of consistent terms found.

2. Domains map to Dictionary objects (Domain mapping): Domains
are represented by Dictionary objects. A dictionary object can be viewed as
a set of key-value pairs and it is iterable over the keys. If the colors in the
coloring problem are color(red), color(green) and color(blue) then the
corresponding domain of colors is represented as:

colors = {‘red ’ : True , green ’ : True , ‘blue ’ : True}

Domains in rule-bodies, such as color(X) translate to if color[x]: ...
3. Predicates in the rule-body map to a sequence of statements

(Sequencing): As stated previously, we follow the intermediate logic pro-
gram in a top-down, left-right manner. For graph coloring, the forall for not
another color(X, C) is followed by the forall for not conflict(X, C) in

82 S. C. Varanasi et al.

the body of the function color(x, c, context). Note that there are recur-
sive calls to color in both the foralls. Now that there are a sequence of
statements following other statements, the context is passed and returned
from any recursive calls to color. The context is always passed-by-value
because we might have to backtrack if any recursive call fails for some reason.
Although dictionary objects are always passed-by-reference, we emulate this
by use of a copy function which always copies the value of the context before
passing it to a recursive call.

4. Assertions on domain variables map to if-else conditions (Con-
straint checking): From the intermediate logic program, we can identify
three assertions on the domain variables. The first one is the check not
(C != C1) in not another color(X, C) and the other two are not (X !=
Y) and not edge(X, Y) in not conflict(X, C). All these constraints are
trivially translated into simple if-conditions. For example, the check not
edge(X, Y) is translated to if not edge(x, y):.... Failure to satisfy this
assertion would explore any other assertion in the disjunction. If all assertions
are not satisfied, then the program returns (false, context) where context is
the set of consistent terms explored upto failure.

5. Forall maps to a for-loop on the domain variable (Forall trans-
formation): At first glance, it is easy to see the forall map exactly to the
for-loop (this is in fact the case for max(X) as shown in Sect. 3). However, this
is not always the case. There needs to be additional code added to handle
recursive calls within the forall . For graph coloring, consider the following
input graph:

node(a). node(b). node(c). edge(a,b). edge(b,c).edge(c,a).

color(red). color(green). color(blue).

It is clear that all the colors assigned to the nodes should be unique as the
graph is a complete graph. If we translated the forall for not conflict(X,
C) exactly to a for-loop, then the for-loop would look like:

1 def color(x, c, context):

2 ...

3 # forall corresponding to not conflict(X, C)

4 for y in node:

5 if(not (x != y):

6 # nothing else to check , continue

7 else:

8 if not edge(x, y):

9 # again nothing to check , continue

10 else:

11 ctx = not_color(y, c, copy(context))

12 if ctx[‘success ’]:

13 context = ctx

14 else:

15 return {‘success ’: False , ‘context ’: context}

16 ...

Synthesizing Imperative Code from Answer Set Programming Specifications 83

The above for-loop, starting at line 5 and ending at line 15, checks for nodes
y that are consistent with the choice of color(x, c). Say the choice is x
= a, c = green, the iteration for y = a succeeds with the not (x != y)
succeeding. The iteration for y = b fails the check at line 4 and the check
at line 8 resulting in the execution of line 11. The dual not color(y, c,
copy(context)) selects the first color c′ which is not c = green. Say the first
color that is not green is c′ = red. Then, not color(y, c, context)2 adds
color(b, red) to ctx. Similary, for y = c the color selected would be red.
The entire context is now {color(a, green), color(b, red), color(c,
red)}. It is clear that the constraints are satisfied locally but are inconsistent
globally.
To address this and thus to ensure global consistency, we check y with all pairs
of choices (x′,c′) which are in the current context. If there is no violation,
we proceed. Otherwise, there must be some choice (x′′, c′′) in the current
context that is globally inconsistent and the recursive program reports failure
while making another choice c′′′ for x′′ upon backtracking. The rectified code
now looks like:

1 def color(x, c, context):

2 ...

3 # forall corresponding to not conflict(X, C)

4 for y in node:

5 for(color(x1,c1) in context):

6 if(not (x1 != y)):

7 # nothing else to check , continue

8 else:

9 if not edge(x1, y):

10 # again nothing to check , continue

11 else:

12 ctx = not_color(y, c, copy(context))

13 if ctx[‘success ’]:

14 context = ctx

15 else:

16 return {‘success ’: False , ‘context ’: context

}

17 ...

Notice that line 5 now ensures the variable y is checked against all terms in
the current context. Since we are in the scope of color(x, c), it is assumed
that color(x, c) is already added to the context. This is done in the first
statement of color(x, c, context){...} as def color(x, c, context){
context[‘color(x, c)’] = true ... }.

5 Synthesis Assumptions

The program synthesis process we have illustrated is confined to a class of answer
set programs. The source ASP program should be a safe program (datalog
2 not color(y, c, copy(context)).

84 S. C. Varanasi et al.

program) and cannot have head-less rules (constraints). Further, the program
should consist of a unique main predicate. The program structure is as follows:

%main_predicate is defined in terms of abstractions

main_predicate(X1 ,..,Xn) :-

dom1(X1) ,..,domn(Xn), abstraction1(..) ,..,abstractionm(..)

.

%abstractions define constraints on domain variables

abstraction1(X1 ,..,Xp) :- domα1 (X1) ,..,domαp (Xp),constraintα1

.

%or , abstractions can recursively call main_predicate

abstraction1(X1 ,..,Xp) :-

domα1 (X1) ,..domαp (Xp),constraintα2 ,main_predicate (..).

...

abstractionm(X1 ,..,Xq) :- domμ1 (X1) ,..,domμq (Xq),constraintμ1

.

abstractionm(X1 ,.., Xq) :-

domμ1 (X1) ,.., domμq (Xq),constraintμ2 ,main_predicate (..).

Abstractions can be either positive literals or NAF literals (dual rules). Con-
straints are traditional relational operators found in most imperative languages.
Notice that the abstractions do not call other abstractions directly. This is
required of the source ASP program. Because if they do call other abstractions
directly, constraint propagation through negation becomes non-trivial and most
of the s(ASP) machinery would have to be exposed in the imperative program.
These restrictions are discussed more in Sect. 7.

6 Synthesis Task

Every rule-head in the ASP program stands for an abstraction and defines more
abstractions that eventually reduce to constraints on domain variables. For the
synthesis algorithm, it is useful to see the intermediate ASP program as a gram-
mar with associated attributes for each of the non-terminal symbols. Each rule-
head represents its own non-terminal symbol including the dual rules. Every
rule-head (non-terminal symbol) has a set of attributes which are relevant for
translation. If the rule-head is R, then R.arity and R.arglist represent the
number of arguments and the list of arguments with their associated domains.
R.callsMain is a boolean attribute that signifies R directly calls the main predi-
cate. This helps us in adding extra code required for global consistency checking
within a forall as illustrated in the graph coloring example. R.bodyVariables
represents the set of body variables that appear in the definition of the rule
represented by the rule-head R. Body variables give rise to choice-points and
R.bodyVariables enables us to add backtracking code. Constraints on domain
variables such as X < Y are treated as terminal symbols in the grammar. We
assume the rule-head R stands for its own name. This is useful when R represents
a domain or an input fact (such as edge relation for graphs). Next, we give a
syntax-directed translation of all syntactic fragments found in the intermediate
logic program.

Synthesizing Imperative Code from Answer Set Programming Specifications 85

6.1 Syntax-Directed Translation

We provide a top-down translation of ASP code (grammar symbols at this junc-
ture) into imperative code. The translation function T maps syntax of intermedi-
ate ASP to Python code. Letters p, q, .. are used to denote predicates. Predicates
get mapped to function-calls. Letters Xi, Yj , ... denote arguments of predicates.
The arguments get translated to variables xi, yj , ... with their respective asso-
ciated domains Dxi

,Dyj
, ... and so on. The notation X̄ stands for an arbitrary

list of arguments. It is also used in the Python translation as x̄, representing an
arbitrary list of arguments in a function-call. The context, which is the set of
consistent terms of the main predicate, is taken to be visible in all code frag-
ments and is universally passed as the last argument at every function-call. The
call associated with the predicate q(Ȳ) would be q(ȳ, context). Dual rules are
prefixed with not . For instance, if p(x̄, context) is a function-call associated with
the predicate p(X̄), then not p(x̄, context) stands for the call associated with the
dual rule not p(X̄). We list important rules for translation and explain the ones
that are not obvious. More general rules can be found elsewhere [17].

6.2 Synthesis Procedure

The procedure Gen Intermediate generates the dual rules and foralls on body
variables (if any). This procedure is quite straightforward and not further eluci-
dated. Likewise, Gen Attribute Grammar associates the intermediate program
with grammar symbols and annotates them with appropriate attributes. Again,
it is easy to determine the body variables of a rule, to check if an abstraction
calls the main predicate directly. The algorithm is given below:

Algorithm 1. Synthesizing Imperative code from source ASP
1: Code ← ∅
2: Pint ← Gen Intermediate(Pinput) � generate dual rules and foralls
3: G ← Gen Attribute Grammar(Pint)
4: for every fact F ∈ Pinput do
5: Code ← Code ∪ T [[F]] � add code for input facts and domains
6: end for
7: for every rule R ∈ G do
8: Code ← Code ∪ T [[R]] � where T is the translation function
9: end for

6.3 Transformation Rules

I. Domain mapping:
T [[domain(constant)]] = domain[str(constant)] = True

II. Constraint Checking:

T [[X relop Y]] =
if not x relop y:

return {‘success’:False,‘context’:ctx}

where relop is relational operator

86 S. C. Varanasi et al.

III. Sequencing:

T [[p1(X̄1), p2(X̄2)]] =

ctx_p1 = p1(x1,..,copy(ctx))

if ctx[‘success’]:

ctx = ctx_p1

T [[p2(X̄2)]]
else:

return{‘success’:False,‘context’:ctx_p1}

IV. Double negations cancel out:
T [[not not p(X̄)]] = T [[p(X̄)]]

V. Forall transformation (global consistency):

T [[forall(Y, p(X1, .., Y, ..,Xn)]] =

for y in Dy:

for main_pred(xα1,..,xαm) in ctx:

ctx_p = p(xβ1,..y,..,xβm,copy(ctx))

if ctx_p[‘success’]:

ctx = ctx_p

else:

return {‘success’:False‘context’:ctx}

where p.callsMain is true, Xβ1 , ..,Xβm
are some variables in p(X1,..,

Y ,..,Xn) which unify with main pred(Xα1,..,Xαm
). Also, the choice

p(x1, .., xn, ctx) is checked against all terms in the context explored thus far.
VI. Disjunction translates to nested if-else condition:

T [[p1(X̄1) ∨ p2(X̄2)]] =

context = p1(x1, ..., copy(context))

if not context[‘success’]:

T [[p2(X̄2)]]
else:

pass

VII. Abstraction (positive rule-heads):

T [[p(X̄) : − q1(X̄1), .., qm(X̄m)]] =

def p(x̄,ctx):
if ctx[p(x̄)]:
return {‘success’: True, ‘context’: ctx}

ctx[p(x̄)] = true

T [[q1(X̄1), q2(X̄2), ..., qm(X̄m)]]
return {‘success’: False, ‘context’: ctx}

The if-check in the beginning signals the function to report success if it already
part of the context. Otherwise, it is added to the context contingent on the
success of the rule body.
VIII. Abstraction (dual rule-heads):

T [[not p(X̄) : −q1(X̄1), .., qm(X̄m)]] =

def not_p(x̄,ctx):
if ctx[p(x̄)]:
return {‘success’:False,‘context’:ctx}

T [[q1(X̄1), .., qm(X̄m)]]
return {‘success’: False,‘context’:ctx}

Synthesizing Imperative Code from Answer Set Programming Specifications 87

If the positive term corresponding to the dual is already part of the context,
then we report failure. Else, it would be a contradiction to have both the
positive term and its NAF term in the same answer set (context).

6.4 Efficiency of the Synthesized Code

Since the synthesized code has the s(ASP) logic encoded within and due to the
fact that it is imperative in nature, the execution time is expected to be faster.
This is, in fact, the case. We ran the synthesized graph coloring code on complete
graphs of size 3, 4, 5 respectively. A complete graph of size n is labelled Kn. The
running times are shown in the table below. The programs were run on an Intel
i7 Processor at 2.90 GHz with 8 GB RAM. Average of 10 runs is shown:

Kn Graph colorable Graph not colorable

Python

basic

Python

optimized

s(ASP) Speedup

optimized

Python

basic

Python

optimized

s(ASP) Speedup

optimized

K3 0.109 s 0.043 s 1.14 s 26.51 0.109 s 0.039 s 0.359 s 9.21

K4 0.135 s 0.05 s 4.80 s 96 0.129 s 0.046 s 3.330 s 72.39

K5 0.334 s 0.071 s 34.63 s 487.64 0.444 s 0.074 s 62.295 s 841.82

K10 ≈3 h 772.05 s >15 h Large ≈3 h 79.78 s >15 h Large

The speedup as the graph sizes increase is significant. Although asymptoti-
cally both the synthesized code and the s(ASP) execution suffer from the same
exponential time complexity (in the size of the input graph), the improvement
in the constant factor cannot be ignored. This echoes the idea that program
transformation by partial evaluation results in program speedup [7]. Although
we have very minimal partial evaluation, we eliminate the NMR checks that
s(ASP) appends to every query. The NMR checks are implicitly handled by
reducing them to a simple check of asserting whether both a proposition and its
negation are present in the same context (partial stable model). For larger graph
sizes such as K10, the imperative program found a solution in 3 h in whereas
s(ASP) did not produce even after 15 h. This again confirms the effectiveness of
our program transformation. Nonetheless, it should also be noted that s(ASP) is
still experimental and can handle any answer set program. Another point that
should be highlighted is that the imperative program just produces one stable
model as opposed to producing all stable models. This is well suited for ASP
programs that have at most one answer set. The top-down translation can admit
optimization in the imperative program by having the program maintain a set of
inconsistent models in its computation. It can also be improved by user-provided
heuristics. We leave this for future work. An optimization of the graph-coloring
and n-queens can be found elsewhere [17]. The entire transformation is auto-
mated in our tool called PySasp [16].

88 S. C. Varanasi et al.

6.5 Proof of Correctness

The first proof obligation is to ensure that the synthesized program is adherent
to the stable model semantics. For this, we need to ensure that the steps taken
by the imperative algorithm correspond to the steps taken by s(ASP) given a
query. The imperative program represents on-the-fly grounding. This is stated
in the following theorem as follows:

Theorem 1. Goal-directed on-the-fly grounding is equivalent to goal-directed
grounded execution.

Proof Outline. The proof can be found in the paper on s(ASP) [11]. �

Next we state two lemmas. The first lemma justifies having just the main predicate
in the context, the second lemma proves the equivalence of the forall and for-loop.
Let P represent the class of answer set programs from Sect. 5.

Lemma 1. For every program Π ∈ P that is satisfiable, every partial stable
model consists of at least one grounded term of the main predicate. �

Lemma 2. The translated for-loop is equivalent to the forall . �

Theorem 2. For every query Q of main predicate of every program Π ∈ P,
the synthesized imperative program returns a context corresponding to some
partial stable model of Q in Π. The program returns an empty context if Q is
unsatisfiable in Π.

Proof Outline. Follows directly from Theorem 1, Lemmas 1 and 2. �
Note: The proofs of Lemmas 1, 2 can be found elsewhere [17].

7 Conclusion

In this paper, we described a way to synthesize imperative code from (a class
of) ASP program specification under the goal-directed operational semantics of
s(ASP). The work reported here is the first step towards obtaining efficient imple-
mentation from high level specifications. Our eventual goal is to specify algorithms
for concurrent data structures as answer set programs and automatically be able
to obtain the efficient, imperative versions of those algorithms. Achieving such a
goal requires making extensive use of partial evaluation and semantics-preserving
re-arrangement of goals in the current resolvent. It is part of our future work.
Essentially, we should be able to take constraints and move them up in the resol-
vent to the earliest point where this constraint can be executed. Note that this is
essential for efficiency since constraints could be specified globally as in this dif-
ferent version of the graph-coloring answer set program below:

color(X, C) :- node(X), color(C), not another_color(X, C).

another_color(X, C) :- node(X), color(C), node(Y), X != Y, color(Y,C).

:- color(X, C), color(Y, C), edge(X, Y).

Handling global constraints is closely related to dynamic consistency check-
ing (DCC) in goal-directed answer set programs [12,13]. DCC ensures only the

Synthesizing Imperative Code from Answer Set Programming Specifications 89

necessary constraints, that are relevant to a rule and the possible bindings vari-
ables could take, are checked along with the rule-body. All other constraints not
relevant to the rule can be ignored. This would also enable synthesis of programs
specifying data structures and planning problems.

References

1. Arias, J., et al.: Constraint answer set programming without grounding. Theory
Pract. Logic Program. 18(3–4), 337–354 (2018)

2. Basin, D., Deville, Y., Flener, P., Hamfelt, A., Fischer Nilsson, J.: Synthesis of
programs in computational logic. In: Bruynooghe, M., Lau, K.-K. (eds.) Program
Development in Computational Logic. LNCS, vol. 3049, pp. 30–65. Springer, Hei-
delberg (2004). https://doi.org/10.1007/978-3-540-25951-0 2

3. Chen, Z., et al.: A physician advisory system for chronic heart failure management.
TPLP 16(5–6), 604–618 (2016)

4. Eiter, T.: Data integration and answer set programming. In: Baral, C., Greco, G.,
Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 13–25.
Springer, Heidelberg (2005). https://doi.org/10.1007/11546207 2

5. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: clasp: a conflict-driven
answer set solver. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS
(LNAI), vol. 4483, pp. 260–265. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-72200-7 23

6. Gelfond, M., Kahl, Y.: Knowledge Representation, Reasoning, and the Design of
Intelligent Agents: The Answer-set Programming Approach. Cambridge University
Press, New York (2014)

7. Jones, N.: Constant time factors do matter. In: STOC 1993. 6-2-611
8. Leone, N., et al.: The DLV system. In: Flesca, S., Greco, S., Ianni, G., Leone, N.

(eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 537–540. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-45757-7 50

9. Lloyd, J.W.: Foundations of Logic Programming. Symbolic Computation. Springer,
Cham (1987). https://doi.org/10.1007/978-3-642-83189-8

10. Manna, Z., Waldinger, R.J.: Towards automatic program synthesis. In: Engeler, E.
(ed.) Symposium on Semantics of Algorithmic Languages. LNM, vol. 188, pp. 270–
310. Springer, Heidelberg (1971). https://doi.org/10.1007/BFb0059702

11. Marple, K., Salazar, E., Gupta, G.: Computing stable models of normal logic pro-
grams without grounding. arXiv:1709.00501 (2017)

12. Marple, K., Gupta, G.: Dynamic consistency checking in goal- directed answer set
programming. TPLP 14(4–5), 415–427 (2014)

13. Marple, K., et al.: Goal-directed execution of answer set programs. In: Proceedings
of the 14th PPDP Symposium, pp. 35–44. ACM (2012)

14. Simon, L., Mallya, A., Bansal, A., Gupta, G.: Coinductive logic programming.
In: Etalle, S., Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079, pp. 330–345.
Springer, Heidelberg (2006). https://doi.org/10.1007/11799573 25

15. Srivastava, S., Gulwani, S., Foster, J.S.: From program verification to program
synthesis. ACM SIGPLAN Not. 45(1), 313–326 (2010)

16. Varanasi, S.C.: PySasp (2019). https://github.com/sarat-chandra-varanasi/pysasp
17. Varanasi, S.C., et al.: Synthesizing imperative code from answer set programming

specifications (extended). UT Dallas CS Technical report (2019). www.utdallas.
edu/∼gupta/aspsynthesis.pdf

https://doi.org/10.1007/978-3-540-25951-0_2
https://doi.org/10.1007/11546207_2
https://doi.org/10.1007/978-3-540-72200-7_23
https://doi.org/10.1007/978-3-540-72200-7_23
https://doi.org/10.1007/3-540-45757-7_50
https://doi.org/10.1007/978-3-642-83189-8
https://doi.org/10.1007/BFb0059702
http://arxiv.org/abs/1709.00501
https://doi.org/10.1007/11799573_25
https://github.com/sarat-chandra-varanasi/pysasp
www.utdallas.edu/~gupta/aspsynthesis.pdf
www.utdallas.edu/~gupta/aspsynthesis.pdf

Verified Construction of Fair Voting Rules

Karsten Diekhoff, Michael Kirsten(B) , and Jonas Krämer

Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
{karsten.diekhoff,jonas.kraemer}@student.kit.edu, kirsten@kit.edu

Abstract. Voting rules aggregate multiple individual preferences in
order to make collective decisions. Commonly, these mechanisms are
expected to respect a multitude of different fairness and reliability prop-
erties, e.g., to ensure that each voter’s ballot accounts for the same pro-
portion of the elected alternatives, or that a voter cannot change the elec-
tion outcome in her favor by insincerely filling out her ballot. However,
no voting rule is fair in all respects, and trade-off attempts between such
properties often bring out inconsistencies, which makes the construction
of arguably practical and fair voting rules non-trivial and error-prone. In
this paper, we present a formal and systematic approach for the flexible
and verified construction of voting rules from composable core modules
to respect such properties by construction. Formal composition rules
guarantee resulting properties from properties of the individual compo-
nents, which are of generic nature to be reused for various voting rules.
We provide a prototypical logic-based implementation with proofs for
a selected set of structures and composition rules within the theorem
prover Isabelle/HOL. The approach can be readily extended in order
to support many voting rules from the literature by extending the set
of basic modules and composition rules. We exemplarily construct the
well-known voting rule sequential majority comparison (SMC) from sim-
ple generic modules, and automatically produce a formal proof that SMC
satisfies the fairness property monotonicity. Monotonicity is a well-known
social-choice property that is easily violated by voting rules in practice.

Keywords: Social choice · Higher-order logic · Modular verification

1 Introduction

In an election, voters cast ballots to express their individual preferences about
eligible alternatives. From these individual preferences, a collective decision, i.e.,
a set of winning alternatives, is determined using a voting rule. Throughout the
literature and in practice, there are many different voting rules each of which
exhibit different behaviors and properties. Depending on the specific applications
and regulations, voting rules are devised for a variety of different design goals
towards carefully selected behaviors and properties. Imagine, for instance, one
situation where a village wants to elect a local council, or another one where a
group of friends wants to choose a destination to go on vacation based on each
c© Springer Nature Switzerland AG 2020
M. Gabbrielli (Ed.): LOPSTR 2019, LNCS 12042, pp. 90–104, 2020.
https://doi.org/10.1007/978-3-030-45260-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45260-5_6&domain=pdf
http://orcid.org/0000-0001-9816-1504
https://doi.org/10.1007/978-3-030-45260-5_6

Verified Construction of Fair Voting Rules 91

of the friend’s preferences. In the former case, the village might prefer to be
represented by a larger council rather than having only few representatives who
are elected by a majority, but are strongly disliked by everybody else. For the
latter, it is clearly undesirable to choose multiple destinations, but rather settle
for one so that the group can spend the vacation together.

Indeed, there is no general rule which caters for every requirement, and any
voting rule shows paradoxical behavior for some voting situation [1]. There-
fore, an approach to analyze voting rules for their behavior by clear-cut formal
properties, the so-called axiomatic method, has emerged. The axiomatic method
advocates the use of rules that provide rigorous guarantees (which we call prop-
erties), and compares them based on guarantees that they do, or do not, satisfy.
These properties capture very different requirements of fairness or reliability,
e.g., principles that each vote is counted equally, that the electees proportion-
ally reflect the voters’ preferences, or that they are preferred by a majority of the
voters. Devising voting rules towards such properties is generally cumbersome as
their trade-off is inherently difficult and error-prone. Attempting to prove prop-
erties for specific voting rules often exhibits design errors, but is cumbersome
as well [4]. As of yet, there exists no general formal approach to systematically
devise voting rules towards formal properties without being either error-prone
or extremely cumbersome.

Contribution. In this paper, we present a formal systematic approach for the
flexible and verified construction of voting rules from compact composable mod-
ules with guaranteed formal properties. Indeed, when taking an abstract view,
many voting rules share similar structures, e.g., aggregating the individual votes
by calculating the sum or some other aggregator function. Based on this obser-
vation, our approach enables flexible, intuitive and verified construction of inter-
esting voting rules from a small number of compositional structures. These struc-
tures exhibit precise and general interfaces such that their scope may easily be
extended with further modules. We devise a general component type as well as
special types, e.g., for aggregation functions, and compositional structures, e.g.,
for sequential, parallel and loop composition. The resulting properties, e.g., com-
mon social choice properties from the literature, are guaranteed from composing
modules with given individual properties by rigorous composition rules.

We demonstrate the logic-based application with proofs for a selected set of
composition structures and rules, and composable modules within the theorem
prover Isabelle/HOL [13]. Thereby, the approach is amenable both for exter-
nal scrutiny as compositions are rigorously and compactly defined, and for an
integration in larger automatic voting rule design or verification frameworks. As
case study, we define composition rules for the common social choice property
monotonicity, and demonstrate a formal correct-by-construction verification of
the rule sequential majority comparison (SMC). The construction produces a
proof that SMC fulfills the monotonicity property using a set of basic modules.

Outline. The rest of this paper is structured as follows: Sect. 2 introduces formal
concepts and definitions from social choice theory for our construction approach.
We present the core framework in Sect. 3 and demonstrate the verified construc-

92 K. Diekhoff et al.

tion framework within Isabelle/HOL in Sect. 4. In Sect. 5, we apply our approach
to the case study of constructing the monotone voting rule sequential majority
comparison, and give an overview of related work to our approach in Sect. 6. We
finally conclude and discuss future work in Sect. 7.

2 Concepts and Definitions from Social Choice Theory

We consider a fixed finite set A of eligible alternatives and a finite (possibly
ordered) set K of voters (with cardinality k). In an election, each voter i casts a
ballot �i ∈ L(A), which is a linear order1, ranking the alternatives A according
to i’s preference. We collect all votes in a profile, i.e., a sequence � = (�1, . . . ,�k)
of k ballots. Given the set L(A) of linear orders on A, L(A)k defines the set
of all profiles on A of length k, i.e., for all voters. Hence, we have L(A)+ =⋃

k∈N+ L(A)k, the set of all finite, nonempty profiles on A, i.e., the input domain
for a voting rule. Voting rules (see Definition 1) elect a nonempty subset C(A)
of the alternatives as (possibly tied) winners, given C(X) denotes the set of all
nonempty subsets of a set X.

Definition 1 (Voting Rule). Given a finite set of alternatives A, a voting
rule f maps each possible profile �∈ L(A)+ to a nonempty set of winning alter-
natives in C(A):

f : L(A)+ → C(A).

In practice and in literature, a multitude of voting rules are in use. A com-
mon example is the function that returns all alternatives that are ranked at
first position by a plurality of the voters, hence called plurality voting. Another
common kind of voting rules assigns values for every ballot to each alternative
according to her position occupied on the ballot, and elects the alternatives with
the maximal score, i.e., the sum of all such values for her. Such rules are called
scoring rules, e.g., the Borda rule, where the value of an alternative on a ballot
is the number of alternatives ranked below her on that ballot.

Social Choice Properties. Within social choice theory, the axiomatic method
has established a number of general fairness and reliability properties called
(axiomatic) social choice properties. They formally capture intuitively desirable
or in other ways useful properties to compare, evaluate, or characterize voting
rules. Such properties are applicable in a general way as they are defined on
abstract voting rules only with respect to profiles and returned sets of winning
alternatives. For the sake of simplicity, the examples illustrated in this paper only
address properties of universal nature, i.e., they require that all mappings of a
given voting rule belong to some set of admissible ways, as formally described
by the property of interest, for associating sets of winners to profiles. Besides
properties which functionally limit the possible sets of winning alternatives for
any one given profile, properties may also relationally limit combinations (of
finite arity) of mappings, e.g., certain (hypothetical) changes of a profile may
1 A linear order is a transitive, complete, and antisymmetric relation.

Verified Construction of Fair Voting Rules 93

only lead to certain changes of the winning alternatives. Relational properties
capture a voter’s considerations such as how certain ways of (not) filling out her
ballot may or may not affect the chances of winning for some alternatives.

Within this paper, we use Condorcet consistency and monotonicity as run-
ning examples. The functional property Condorcet consistency (see Definition 3)
requires that if there is an alternative w that is the Condorcet winner (see
Definition 2), the rule elects w as unique winner. A Condorcet winner is an alterna-
tive that wins every pairwise majority comparison against all other alternatives,
i.e., for any other alternative, there is a majority of voters who rank the Condorcet
winner higher than that alternative.

Definition 2 (Condorcet Winner). For a set of alternatives A and a profile
� ∈ L(A)+, an alternative w ∈ A is a Condorcet winner iff the following holds:

∀a ∈ A \ {w} : |{i ∈ K : a �i w}| < |{i ∈ K : w �i a}|.
Note that, if a Condorcet winner exists, it is unique by the above definition.

Definition 3 (Condorcet Consistency). For a set of alternatives A, a vot-
ing rule f is Condorcet consistent iff for every profile � ∈ L(A)+ and (if exist-
ing) the respective Condorcet winner w ∈ A, the following holds:

w is Condorcet winner for � ⇒ f(�) = {w}.

Note here that for profiles for which no Condorcet winner exists, the prop-
erty imposes no requirements on the election outcome. The relational property
monotonicity expresses that if a voter were to change her vote in favor of some
other alternative, the outcome could never change to the disadvantage of that
alternative. Monotone voting rules are resistant to some forms of strategic manip-
ulation where a voter could make their preferred alternative the (unique) winner
by misrepresenting her actual preferences and assigning a higher rank to another
alternative on her ballot. A voting rule is monotone (see Definition 5) iff for any
two profiles � and �′ which are identical except for one alternative a that is
ranked higher in �′ (while preserving all remaining pairwise-relative rankings),
the election of a for � always implies her election for �′. We define this “ranking
higher” as lifting an alternative (see Definition 4).

Definition 4 (Lifting). For a set of alternatives A and two profiles �,�′ ∈
L(A)k, �′ is obtained from � by lifting an alternative a ∈ A iff there exists a
ballot i ∈ [1, k] such that �i �=�′

i and for each such i the following holds:

i. There exists some alternative x ∈ A such that x �i a and a �′
i x, and

ii. we have y �i z ⇔ y �′
i z for all other alternatives y, z ∈ A \ {a}.

We may thus define the monotonicity property as follows.

Definition 5 (Monotonicity). For a set of alternatives A and an alternative
a ∈ A, a voting rule f is monotone iff for all profiles �,�′ ∈ L(A)+ where �′

is obtained from lifting a in �, the following implication holds:

a ∈ f(�) ⇒ a ∈ f(�′).

94 K. Diekhoff et al.

3 Composable Modules and Compositional Structures

The verified construction approach consists of two structural and two semantic
concepts, namely (i) component types that specify structural interfaces wherein
components can be implemented, and (ii)compositional structures that spec-
ify structural contracts which combine components to create new components
that are again composable. Moreover, semantic aspects for constructing con-
crete voting rules are addressed by (iii) composition rules that define semantic
rules which compositions can contractually depend on, i.e., if components fulfill
a rule’s requirements, the composition guarantees the rule’s semantics, as well as
(iv) composable modules that define concrete semantics of either directly imple-
mented or constructed modules from which other modules can be composed using
the composition rules. In the following, we give details on component types and
compositional structures for composing voting rules based on the ideas in [9].

3.1 Electoral Modules

The structural foundation of our approach are electoral modules, a generalization
of voting rules as in Definition 1. We define electoral modules (see Definition 6)
so that they act as the principal component type (cf. (i)) within our framework.
In contrast to a voting rule, an electoral module does not need to make final
decisions for all the alternatives, i.e., partition2 them (only) into winning and
losing alternatives, but can instead defer the decision for some or all of them to
other modules. Hence, electoral modules partition the received (possibly empty)
set of alternatives A ⊆ A into elected, rejected and deferred alternatives. In par-
ticular, any of those sets, e.g., the set of winning (elected) alternatives, may also
be left empty, as long as they collectively still hold all the received alternatives.
Just like a voting rule, an electoral module also receives a profile which holds
the voters’ preferences, which, unlike a voting rule, consider only the (sub-)set of
alternatives that the module receives. We take this into account by the following
definition of our input domain DA

mod:

DA
mod := {(A,�) | A ⊆ A,� ∈ L(A)+}

DA
mod contains all subsets of A paired with matching profiles. We can hence

define electoral modules as follows:

Definition 6 (Electoral Module). For eligible alternatives A and a (sub-)set
A ⊆ A, we define an electoral module as a function m with

m : DA
mod → P(A)3.

The function m maps a set of alternatives with a matching profile to the set-
triple (e, r, d) of sets of elected (e), rejected (r), and deferred (d) alternatives
such that

(A,�) ∈ DA
mod ⇒ (m(A,�) = (e, r, d) partitions A).

2 We say that a sequence of sets s1, . . . , sn partitions a set S if and only if S equals
the union

⋃
i∈[1,n] si over all sets si for i ∈ [1, n] and all their pairwise intersections

are empty, i.e., ∀i �= j ∈ [1, n] : si ∩ sj = ∅.

Verified Construction of Fair Voting Rules 95

In the following, we denote the set of electoral modules by MA, as well
as me(A,�), mr(A,�), and md(A,�) for the elected, rejected and deferred
alternatives, respectively, of an electoral module m for (A,�).

Moreover, we can easily translate voting rules to electoral modules by return-
ing a triple of empty sets in case the module receives an empty set. Otherwise,
we return an empty deferred set, an elected set with exactly the winning alter-
natives, and a rejected set with the complement of the winning alternatives (we
remove the alternatives which are not contained in the received set of alterna-
tives). Note that, as a consequence, social choice properties can also be easily
translated in order to conform to electoral modules.

3.2 Sequential Composition

Sequential composition (see Definition 7) is a compositional structure (cf. (ii))
for composing two electoral modules m,n into a new electoral module (m � n)
such that the second module n only decides on alternatives which m defers and
cannot reduce the set of alternatives already elected or rejected by m. In this
composition, n receives only m’s deferred alternatives md(A,�) and a profile
�|(md(A,�)) which only addresses alternatives contained in md(A,�).

Definition 7 (Sequential Composition). For any set of alternatives A and
a (sub-)set A ⊆ A, electoral modules m,n ∈ MA and input (A,�) ∈ DA

mod, we
define the sequential composition function (�) : M2

A → MA as

(m � n)(A,�) := (me(A,�) ∪ ne(md(A,�),�|(md(A,�))),

mr(A,�) ∪ nr(md(A,�),�|(md(A,�))),

nd(md(A,�),�|(md(A,�))))

3.3 Revision Composition

Mostly for convenience, we define a revision composition (see Definition 8) for
situations in which we want to revise the alternatives already elected by a prior
module, e.g., for enabling sequential composition with a tie-breaking module. For
an electoral module m, the revision composition removes m’s elected alternatives
and attaches them to the previous deferred alternatives, while the rejected alter-
natives are kept unchanged. Whereas this composition can also be achieved by
parallel composition, this dedicated structure turns out to be beneficial in our
implementation due to its frequent uses.

Definition 8 (Revision Composition). For any set of alternatives A and a
(sub-)set A ⊆ A, electoral module m ∈ MA, and input (A,�) ∈ DA

mod, we define
the revision composition (↓) : MA → MA as

(m↓)(A,�) := (∅, mr(A,�), me(A,�) ∪ md(A,�)).

96 K. Diekhoff et al.

3.4 Parallel Composition

The parallel composition (see Definition 11) lets two electoral modules make two
independent decisions for the given set of alternatives. Their two decisions are
then aggregated by an aggregator (see Definition 9), which is another component
type that combines two set-triples of elected, rejected and deferred alternatives
(as well as the set of alternatives) into a single such triple (we define the input
domain DA

agg accordingly).

Definition 9 (Aggregator). For a set of alternatives A, a (sub-)set A ⊆ A
and input (A, p1, p2) ∈ DA

agg, an aggregator is a function

agg : DA
agg → P(A)3 such that agg(A, p1, p2) partitions A.

A useful instance of such an aggregator is the max-aggregator aggmax:

Definition 10 (Max-Aggregator). Given two set-triples (e1, r1, d1), (e2, r2,
d2) of elected (e), rejected (r) and deferred (d) alternatives, aggmax picks, for each
alternative a and the sets containing a, the superior one of the two sets (assuming
the order e > d > r).

aggmax((e1, r1, d1), (e2, r2, d2))
= (e1 ∪ e2, (r1 ∪ r2) \ (e1 ∪ e2 ∪ d1 ∪ d2), (d1 ∪ d2) \ (e1 ∪ e2))

Based on the notion of aggregators, we can now define the parallel com-
position as a function mapping two electoral modules m,n and an aggregator
agg ∈ GA (the set of all aggregators) to a new electoral module (m ||agg n):

Definition 11 (Parallel Composition). For a set of alternatives A and a
(sub-)set A ⊆ A, electoral modules m,n, and an aggregator agg we define the
parallel composition (||) : (MA × GA × MA) → MA as

(m ||agg n)(A,�) := agg(A, m(A,�), n(A,�)).

3.5 Loop Composition

Based on sequential composition (Sect. 3.2) for electoral modules, we define the
more general loop composition for sequential compositions of dynamic length. A
loop composition (m�t) repeatedly composes an electoral module m sequentially
with itself until either a fixed point is reached or a termination condition t
is satisfied. Within our framework, termination conditions, technically another
component type, are boolean predicates on set-triples such that they are suitable
for electoral modules. The full definition can be found within the Isabelle/HOL
theories provided with this paper.

Verified Construction of Fair Voting Rules 97

3.6 A Simple Example

As a simple example, we illustrate the construction of a voting rule using struc-
tures from above. Consider the well-known Baldwin’s rule, which is a voting rule
based on sequential elimination [2]. The rule repeatedly eliminates the alterna-
tive with the lowest Borda score (see Sect. 2) until only one alternative remains.

As basic modules (cf. (iv)), we use (a) a module that computes the Borda
scores, rejects the alternative with the lowest such score, and defers the rest, as
well as (b) a module that attaches all deferred alternatives to the elected set.

Moreover, we choose a termination condition such that the loop of interest
stops when the set of (deferred) alternatives has reached size one.

Therefore, Baldwin’s rule can be obtained by

1. composing (a) by a loop structure with above mentioned termination condi-
tion, and

2. sequentially composing the loop composition with (b).

Moreover, loop composition can be directly used for many voting rules of a
category called tournament solutions. Tournament solutions typically consist of
multiple rounds, in each comparing a pair of alternatives based on their profile
rankings, and the winner of a comparison advances to the next round.

4 Verified Modular Construction Framework

In the following, we describe how we model the concepts defined in Sect. 3 within
a modular proof framework for the verified construction of voting rules.

4.1 Isabelle and Higher-Order Logic (HOL)

We implemented and proved our logical concepts within the interactive the-
orem prover Isabelle/HOL [13]. The Isabelle/HOL system provides a generic
infrastructure for implementing deductive systems in higher-order logics and
enabling to write tactics for human-readable and machine-checked proofs to
show that the deductive conclusions are indeed correct. We decided to use
Isabelle/HOL, because higher-order logic (HOL) allows to define very expres-
sive, rigorous and general theorems. By this means, a theorem is –once proven
correct within Isabelle– re-checked and confirmed by Isabelle/HOL within a few
seconds every time the theorem is loaded. Proofs within Isabelle/HOL are based
on the employed theories at the core of the Isabelle system. We made use of the
possibility to define very general theorems to be reused for the construction of
various voting rules and sorts of composition. Moreover, the framework allows
for easy application and extension potentially within a larger framework for the
automatic discovery and construction of voting rules, provided that the voting
rule of interest can be composed from the given compositional rules and com-
posable modules using the given composition structures and component types.

The definitions and theorems within our framework are mostly self-contained,
i.e., for the most part they only rely on basic set theory as well as the theories of

98 K. Diekhoff et al.

finite lists, relations, and order relations for defining the profiles and linear orders
used within our notion of profiles and modules as seen in Listing 1. Therein,
we introduce a handy type abbreviation (Line 1) for profiles which are lists of
relations and therefrom define profiles on alternatives (Lines 3 to 4) based on
the theory of order relations, and moreover finite profiles (Lines 5 to 6) which
we use in a number of structures and concepts. Moreover, type abbreviations
for results of electoral modules (Line 8), i.e., set-triples, are introduced, and
electoral modules (Line 10) as defined in Sect. 3. We capture the partitioning
with the two functions to express disjointness of the three sets in an electoral
module result (Lines 20 to 21) and that their union yields the set of alternatives
of the input (Lines 17 to 18). Finally, at the end of Listing 1, we can essentially
define electoral modules on finite profiles and partitionings of the alternatives
(Lines 23 to 25). We did not require any additional theories besides the ones
provided off-the-shelf with the Isabelle system.

1 type_synonym 'a Profile = "('a rel) list"

2

3 definition profile_on :: "'a set ⇒ 'a Profile ⇒ bool" where

4 "profile_on A p ≡ (∀ b ∈ (set p). linear_order_on A b)"

5 abbreviation finite_profile :: "'a set ⇒ 'a Profile ⇒ bool" where

6 "finite_profile A p ≡ finite A ∧ profile_on A p"

7

8 type_synonym 'a Result = "'a set * 'a set * 'a set"

9

10 type_synonym 'a Electoral_module = "'a set ⇒ 'a Profile ⇒ 'a Result"

11

12 fun disjoint :: "'a Result ⇒ bool" where "disjoint (e, r, d) =

13 ((e ∩ r = {}) ∧
14 (e ∩ d = {}) ∧
15 (r ∩ d = {}))"

16

17 fun unify_to :: "'a set ⇒'a Result ⇒ bool"

18 where "unify_to A (e, r, d) ↔ (e ∪ r ∪ d = A)"

19

20 definition partition_of :: "'a set ⇒ 'a Result ⇒ bool" where

21 "partition_of A result ≡ disjoint result ∧ unify_to A result"

22

23 definition electoral_module :: " 'a Electoral_module ⇒ bool"

24 where "electoral_module m ≡
25 ∀A p. finite_profile A p → partition_of A (m A p)"

Listing 1. Central Isabelle/HOL definitions for electoral modules.

As of yet, our verified construction framework comprises concepts and proofs
for 18 composition rules with ten reusable auxiliary properties and eight prop-
erties which translate directly to common social choice properties from the lit-
erature. Thereof, we implemented the auxiliary properties and the monotonicity
property with respective proofs within the Isabelle/HOL framework.

Verified Construction of Fair Voting Rules 99

4.2 Verified Construction Based on Composition Rules

From devising composition rules and properties as described in the beginning
of this section together with the component types and structures as described
in Sect. 3, our framework now only requires a small set of basic components in
order to construct interesting voting rules for the desired social choice properties
which have been defined as properties and included in the rules for composing
electoral modules. The power of our approach lies both in the generality of the
composition rules and compositional structures such that various voting rules
may be constructed for various properties, and in the reduction of complexity
such that compositions for complex social choice properties can be defined by
predominantly local composition rules in a step-by-step manner.

In general, the verified construction using composition rules works as follows:
When we want to obtain a voting rule with a set of properties p from some
basic components c and d which satisfy sets of properties pc and pd respectively,
we might make use of a compositional structure X which guarantees that a
composed module mcXmd satisfies the properties p. Hence, we can get a desired
voting rule by instantiating mc and md by c and d respectively, which gives us the
induced voting rule fcXd. Note that, when we specify a set of target properties
p, any voting rule induced by our framework (if a suitable one can be induced)
from a set of basic components and compositional structures, necessarily comes
with an Isabelle proof which establishes the validity of p for the induced voting
rule. By design, these proofs are short and can in most cases be automatically
inferred. Hence, given the soundness of the Isabelle/HOL theorem prover, we
obtain a formal proof that the resulting voting rule indeed satisfies the required
properties without the need to re-check the obtained rule.

Example. One such example using structures from Sect. 3 and properties
defined in this section is that p consists of the property Condorcet consistency,
X is the sequential composition, pc also consists of Condorcet consistency, and
pd is empty. Thus, we have no requirements for properties of any component
d, since sequential composition cannot revoke any alternatives that are already
elected. If a Condorcet winner exists, this alternative is already elected by the
first module, and if not, Condorcet consistency trivially holds. On its own, this
composition rule might not be very sensible, but may be used in combination
with other rules to preserve Condorcet consistency of composed voting rules. A
voting rule from the literature which is constructed in such a manner is Black’s
rule. Black’s rule is a sequential composition of (a component which induces)
the Condorcet rule and (a component which induces) the Borda rule.

5 Case Study

As a case study for demonstrating the applicability of our approach to exist-
ing voting rules and the merits of composition, we constructed the voting rule
sequential majority comparison (SMC) from the literature (e.g., from Brandt
et al. [5]), thereby producing a compositional proof that the rule is monotone.

100 K. Diekhoff et al.

Sequential Majority Comparison (SMC). The voting rule of sequential
majority comparison, also known as sequential pairwise majority, is simple
enough for understanding, but still complex enough such that it demonstrates
interesting properties such as monotonicity. Essentially, SMC fixes some (poten-
tially arbitrary) order on all alternatives and then consecutively performs pair-
wise majority elections. We start by doing pairwise comparisons of the first and
the second alternative, then compare the winner of this pairwise comparison
to the third alternative, whose winner is then compared to the fourth alterna-
tive, and so on. SMC belongs to a category of voting rules called tournament
solutions, for which we outline a possible construction pattern in the following.

Verified Construction of Tournament Solution. As indicated in Sect. 3,
loop composition appears sensible for tournament solutions, as a list of alter-
natives is processed by multiple rounds, whereof in each, the previously chosen
alternative is compared to the next alternative on the list regarding their rank-
ings in the profile, and the winner of a comparison advances to the next round.

To compare alternatives, we use any electoral module m which elects one
alternative and rejects the rest (for example via plurality voting). To limit com-
parisons to two alternatives, we use the electoral module pass2>, which defers
the two alternatives ranked highest in some fixed order > and rejects the rest.
Similarly, drop2> rejects these two alternatives and defers the rest.

We can now describe a single comparison in our tournament as

c = (pass2> � m) ||aggmax drop2>

The first part of the parallel composition elects the winner of the current com-
parison and rejects all other alternatives. The second part defers all alternatives
which are not currently being compared and therefore stay in the tournament.

The termination condition t|d|=0 is satisfied iff the set of deferred alternatives
passed to it is empty. Then we describe a single round of our tournament as

r = (c�t|d|=0)↓
Now, for the case of sequential majority comparison (SMC), we proceed as

follows.

Verified Construction of SMC. Every single comparison elects a single alter-
native to advance to the next round and rejects the other. As long as alternatives
are left, the next c compares the next two alternatives. If there ever is only a
single alternative left, it advances to the next round automatically. At the end
of the round, we need to revise to defer all winners to the next round instead of
electing them.

Let melect be the electoral module which elects all alternatives passed to it
and t|d|=1 the termination condition that is satisfied when exactly one alternative
is deferred. We can now define the whole tournament as

t = (r�t|d|=1) � melect.

Verified Construction of Fair Voting Rules 101

t repeats single rounds as long as there is more than one alternative left and
then elects the single survivor.

Implementing the Construction of SMC in Isabelle/HOL. After having
described a general pattern for the verified construction of tournament solutions
and sequential majority comparison, we give only structural information on the
implemented construction proofs for SMC as the details are rather lengthy, but
instead refer the reader to the Isabelle/HOL proofs.

We can construct SMC by combining six different basic components by using
all of our composition structures, i.e., the sequential, parallel, loop, and revision
structure, and thereby produce a proof that SMC is a monotone voting rule.

1 definition SMC :: "'a rel ⇒ 'a Electoral_module" where

2 "SMC x ≡ let a = Max_aggregator; t = Defer_eq_condition 1 in

3 ((((Pass_module 2 x) � ((Plurality_module↓) � (Pass_module 1 x))) ||a
4 (Drop_module 2 x)) �t) � Elect_module"

5

6 theorem SMC_sound:

7 assumes order: "linear_order x"

8 shows "electoral_module (SMC x)"

9

10 theorem SMC_monotone:

11 assumes order: "linear_order x"

12 shows "monotone (SMC x)"

Listing 2. The modular construction of SMC in Isabelle/HOL.

The high-level modular construction can be seen in Listing 2, where SMC
stands for sequential majority comparison composed of a number of simple com-
ponents. Each component, the largest of which is an electoral module inducing
plurality voting (see Sect. 2), consists of not more than three lines in higher-order
logic and we provided proofs within our Isabelle/HOL framework for easy reuse
and modification for similar voting rules.

Moreover, Listing 2 shows the simplicity of the abstract proof obligations
both that SMC is again an electoral module and satisfies the monotonicity prop-
erty. Both tasks are proven fully modularly and are hence a direct result of SMC’s
composition, and is apt for an automated integration within a potential future
logic-based synthesis tool. We omit the proofs at this point, but they are available
for download3 and can be inspected and re-played for inspection and automat-
ically checked using Isabelle/HOL. The full proof comprises 26 compositions
using a set of six basic components within the theorem prover Isabelle/HOL.

6 Related Work

We base the core component type in our verified construction framework on the
electoral modules from the unified description of electoral systems in [7]. Therein,
3 https://github.com/VeriVote/verifiedVotingRuleConstruction/.

https://github.com/VeriVote/verifiedVotingRuleConstruction/

102 K. Diekhoff et al.

Grilli di Cortona et al. devise a complex component structure for describing
hierarchical electoral systems with a focus on proportional voting rules including
notions for electoral districts and concepts of proportionality. Note, however,
that the component type within this work is already quite different from the
structures in [7]. In the current state, essentially, both concepts only share the
concept of reducing and partitioning the set of alternatives.

General informal advice on voting rule design is given by Taagepera [15].
Moreover, a first approach for composing voting rules in a limited setting is
given by Narodytska et al. [12] that is readily expressible by our structures.
Other work designs voting rules less modularly for statistically guaranteeing
social choice properties by machine learning [17]. Prior modular approaches also
target verification [10,16] or declarative combinations of voting rules [6], but
ignore the social choice or fairness properties targeted by our work.

We have defined our compositional approach within Isabelle/HOL [13], a
theorem prover for higher-order logic. Isabelle/HOL provides interactive theorem
proving for rigorous systems design. Further work on computer-aided verification
of social choice properties for voting rules using HOL4 has been done by Dawson
et al. [8]. More light-weight approaches with some loss of generality, but the
merit of generating counterexamples for failing properties has been devised by
Beckert et al. [3] and Kirsten and Cailloux [11]. Therein, techniques for relational
verification of more involved social choice properties have been applied. Another
interesting approach has been followed by Pattinson and Schürmann [14], where
voting rules are directly encoded into HOL rules within tactical theorem provers.

7 Conclusion

Within this work, we introduced an approach to systematically construct voting
rules from compact composable modules to satisfy formal social choice proper-
ties. We devised composition rules for a selection of common social choice prop-
erties, such as monotonicity or Condorcet consistency, as well as for reusable
auxiliary properties. By design, these composition rules give formal guarantees,
in the form of an Isabelle proof based on the properties satisfied by the compo-
nent properties, that a constructed voting rule fulfills the social choice property
of interest as long as its components satisfy specific properties, which we have
proved within Isabelle/HOL for the scope of our case study.

Currently, the construction capabilities of our framework are not fully auto-
matic, as in order to construct a voting rule with a specific property, the concrete
assembly structure (in the form of a chain of composition structures and core
modules) needs to be given. However, this can already be easily turned into a
(simple) synthesis tool by a simple Prolog program. This program holds (only)
a collection of which core components satisfy (as proven in Isabelle/HOL within
the framework presented in this paper) which individual properties, together
with the composition rules, i.e., how the composition of components requires
and establishes formal properties). As a result, this program comes up with
(albeit simple) proposals for concrete compositions in order to obtain a voting

Verified Construction of Fair Voting Rules 103

rule which (provenly) satisfies the requested properties, with the proofs provided
by our framework within Isabelle/HOL.

Our approach is applicable to the construction of a wide range of voting rules
which use sequential or parallel modular structures, notably voting rules with
tie-breakers, elimination procedures, or tournament structures. This includes
well-known rules such as instant-runoff voting, Nanson’s method, or sequential
majority comparison (SMC). We constructed SMC from simple components,
which we presume to be reusable for the construction of further rules, and auto-
matically by construction produced a proof that SMC satisfies monotonicity from
basic formal proofs for the structures, compositions and components which we
compositionally constructed. This case study and all required definitions were
implemented and verified with the theorem prover Isabelle/HOL. Finally, our
approach can be safely extended with additional modules, compositional struc-
tures, and rules, for integration into voting rule design or verification frameworks.

Outlook. So far, composition is realized mostly by transferring sets of deferred
alternatives between modules. We also intend to inspect the more involved mod-
ular structures already incorporated in some more complicated voting rules,
in order to achieve a more flexible notion of composition. This, however, also
involves making more detailed assumptions on how exactly information is passed
between modules, which might come with a loss of generality. This however,
seems to be necessary for voting rules such as Single-Transferable Vote (STV),
which are not composable for sensible social choice properties with our strong
notion of locality in composition rules.

Moreover, it would be interesting to make use of the code generation function-
ality of Isabelle/HOL in order to, besides the abstract specifications of the com-
ponents and composition structures, produce actual executable program code
for the constructed voting rules. Furthermore, we envision an automatic synthe-
sis tool built on top of the provided framework such that construction can be
provided fully automatically. This could be done by, e.g., a Prolog program as
described above, together with SMT or Horn solvers to manage larger and more
complex compositions.

References

1. Arrow, K.J.: Social Choice and Individual Values, 3rd edn. Yale University Press,
New Haven (2012)

2. Baldwin, J.M.: The technique of the Nanson preferential majority system of elec-
tion. Trans. Proc. R. Soc. Vic. 39, 42–52 (1926)

3. Beckert, B., Bormer, T., Kirsten, M., Neuber, T., Ulbrich, M.: Automated verifica-
tion for functional and relational properties of voting rules. In: Sixth International
Workshop on Computational Social Choice (COMSOC 2016) (2016)

4. Beckert, B., Goré, R., Schürmann, C.: Analysing vote counting algorithms via
logic. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 135–144.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38574-2 9

5. Brandt, F., Conitzer, V., Endriss, U., Lang, J., Procaccia, A.D.: Handbook of
Computational Social Choice. Cambridge University Press, Cambridge (2016)

https://doi.org/10.1007/978-3-642-38574-2_9

104 K. Diekhoff et al.

6. Charwat, G., Pfandler, A.: Democratix: a declarative approach to winner deter-
mination. In: Walsh, T. (ed.) ADT 2015. LNCS (LNAI), vol. 9346, pp. 253–269.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23114-3 16

7. Grilli di Cortona, P., Manzi, C., Pennisi, A., Ricca, F., Simeone, B.: Evaluation
and optimization of electoral systems. In: SIAM (1999)

8. Dawson, J.E., Goré, R., Meumann, T.: Machine-checked reasoning about complex
voting schemes using higher-order logic. In: Haenni, R., Koenig, R.E., Wikström,
D. (eds.) VOTELID 2015. LNCS, vol. 9269, pp. 142–158. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-22270-7 9

9. Diekhoff, K., Kirsten, M., Krämer, J.: Formal property-oriented design of voting
rules using composable modules. In: Venable, K., Pekec, S. (eds.) 6th International
Conference on Algorithmic Decision Theory (ADT 2019). LNAI (2019)

10. Ghale, M.K., Goré, R., Pattinson, D., Tiwari, M.: Modular formalisation and ver-
ification of STV algorithms. In: Krimmer, R., et al. (eds.) E-Vote-ID 2018. LNCS,
vol. 11143, pp. 51–66. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
00419-4 4

11. Kirsten, M., Cailloux, O.: Towards automatic argumentation about voting rules.
In: Bringay, S., Mattioli, J. (eds.) 4ème conférence sur les Applications Pratiques
de l’Intelligence Artificielle (APIA 2018), Nancy, France, 2–6 July 2018 (2018)

12. Narodytska, N., Walsh, T., Xia, L.: Combining voting rules together. In: De Raedt,
L., et al. (eds.) 20th European Conference on Artificial Intelligence (ECAI 2012),
vol. 242. IOS Press (2012)

13. Nipkow, T., Wenzel, M., Paulson, L.C.: Isabelle/HOL. LNCS, vol. 2283. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45949-9

14. Pattinson, D., Schürmann, C.: Vote counting as mathematical proof. In:
Pfahringer, B., Renz, J. (eds.) AI 2015. LNCS (LNAI), vol. 9457, pp. 464–475.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26350-2 41

15. Taagepera, R.: Designing electoral rules and waiting for an electoral system to
evolve. The Architecture of Democracy: Institutional Design, Conflict Manage-
ment, and Democracy in the Late Twentieth Century (2002)

16. Verity, F., Pattinson, D.: Formally verified invariants of vote counting schemes. In:
Australasian Computer Science Week Multiconference (ACSW 2017). ACM (2017)

17. Xia, L.: Designing social choice mechanisms using machine learning. In: Gini, M.L.,
et al. (eds.) International Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS 2013). IFAAMAS (2013)

https://doi.org/10.1007/978-3-319-23114-3_16
https://doi.org/10.1007/978-3-319-22270-7_9
https://doi.org/10.1007/978-3-030-00419-4_4
https://doi.org/10.1007/978-3-030-00419-4_4
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/978-3-319-26350-2_41

Constraints and Unification

Solving Proximity Constraints

Temur Kutsia(B) and Cleo Pau

Research Institute for Symbolic Computation, Johannes Kepler University Linz,
Linz, Austria

kutsia@risc.jku.at

Abstract. Proximity relations are binary fuzzy relations that sat-
isfy reflexivity and symmetry properties, but are not transitive. They
induce the notion of distance between function symbols, which is further
extended to terms. Given two terms, we aim at bringing them “suffi-
ciently close” to each other, by finding an appropriate substitution. We
impose no extra restrictions on proximity relations, allowing a term in
unification to be close to two terms that themselves are not close to each
other. Our unification algorithm works in two phases: first reducing the
equation solving problem to constraints over sets of function symbols,
and then solving the obtained constraints. Termination, soundness and
completeness of both algorithms are shown. The unification problem has
finite minimal complete set of unifiers.

1 Introduction

Proximity relations are reflexive and symmetric fuzzy binary relations. Intro-
duced in [2], they generalize similarity relations (a fuzzy version of equivalence),
by dropping transitivity. Proximity relations help to represent fuzzy informa-
tion in situations, where similarity is not adequate, providing more flexibility in
expressing vague knowledge. For unification, working modulo proximity or sim-
ilarity means to treat different function symbols as if they were the same when
the given relation asserts they are “close enough” to each other.

Unification for similarity relations was studied in [3,4,11] in the context of
fuzzy logic programming. In [1], the authors extended the algorithm from [11]
to full fuzzy signature (permitting arity mismatches between function symbols)
and studied also anti-unification, a dual technique to unification.

A constraint logic programming schema with proximity relations has been
introduced in [10]. The similarity-based unification algorithm from [11] was gen-
eralized for proximity relations in [5], where the authors introduced the notion
of proximity-based unification under a certain restriction imposed on the prox-
imity relation. The restriction requires that the same symbol can not be close to
two symbols at the same time, when those symbols are not close to each other.
One of them should be chosen as the proximal candidate to the given symbol.

Supported by Austrian Science Fund (FWF) under project 28789-N32 and by the
strategic program “Innovatives OÖ 2020” by the Upper Austrian Government.

c© Springer Nature Switzerland AG 2020
M. Gabbrielli (Ed.): LOPSTR 2019, LNCS 12042, pp. 107–122, 2020.
https://doi.org/10.1007/978-3-030-45260-5_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45260-5_7&domain=pdf
https://doi.org/10.1007/978-3-030-45260-5_7

108 T. Kutsia and C. Pau

Essentially, proximal neighborhoods of two function symbols are treated as being
either identical or disjoint. Looking at the proximity relation as an undirected
graph, this restriction implies that maximal cliques in the graph are disjoint.
From the unification point of view, it means that p(x, x) can not be unified with
p(a, c) when a and c are not close to each other, even if there exists a b which is
close both to a and c. Anti-unification for such kind of proximity relations, and
its subalgorithm for computing all maximal partitions of a graph into maximal
cliques have been considered in [7,8].

In this paper we consider the general case of unification for a proximity
relation without any restrictions, and develop an algorithm which computes a
compact representation of the set of solutions. Considering neighborhoods of
function symbols as finite sets, we work with term representation where in place
of function symbols we permit neighborhoods or names. The latter are some
kind of variables, which stand for unknown neighborhoods. The algorithm is
split into two phases. In the first one, which is a generalization of syntactic
unification for proximity relations, we produce a substitution together with a
constraint over neighborhoods and their names. A crucial step in the algorithm
is variable elimination, which is done not with a term to which a variable should
be unified, but with a copy of that term with fresh names and variables. This
step also introduces new neighborhood constraints to ensure that the copy of
the term remains close to its original.

In the second phase, the constraint is solved by a constraint solving algorithm.
Combining each solution from the second phase with the substitution computed
in the first phase, we obtain a compact representation of the minimal complete
set of unifiers of the original problem. We prove termination, soundness and
completeness of both algorithms. To the best of our knowledge, this is the first
detailed study of full-scale proximity-based unification.

In the rest of the paper, the necessary notions and terminology are introduced
in Sect. 2, and both algorithms are developed and studied in Sect. 3. Some proofs,
which are only sketched here, can be found in the technical report [9].

2 Preliminaries

Proximity Relations. We define basic notions about proximity relations following
[5]. A binary fuzzy relation on a set S is a mapping from S × S to the real interval
[0, 1]. If R is a fuzzy relation on S and λ is a number 0 ≤ λ ≤ 1, then the λ-cut of R
on S, denoted Rλ, is an ordinary (crisp) relation on S defined as Rλ := {(s1, s2) |
R(s1, s2) ≥ λ}. In the role of T-norm ∧ we take the minimum.

A fuzzy relation R on a set S is called a proximity relation on S iff it is
reflexive and symmetric. The λ-proximity class of s ∈ S (a λ-neighborhood of s)
is a set pc(s,R, λ) = {s′ | R(s, s′) ≥ λ}.

Terms and Substitutions. Given a set of variables V and a set of fixed arity
function symbols F , terms over F and V are defined as usual, by the grammar
t := x | f(t1, . . . , tn), where x ∈ V and f ∈ F is n-ary. The set of terms over V

Solving Proximity Constraints 109

and F is denoted by T (F ,V). We denote variables by x, y, z, arbitrary function
symbols by f, g, h, constants by a, b, c, and terms by s, t, r.

Substitutions are mappings from variables to terms, where all but finitely
many variables are mapped to themselves. The identity substitution is denoted
by Id . We use the usual set notation for substitutions, writing, e.g., a substitu-
tion σ as {x �→ σ(x) | x �= σ(x)}. Substitution application and composition are
defined in the standard way. We use the postfix notation for substitution applica-
tion, e.g., tσ, and juxtaposition for composition, e.g., σϑ means the composition
of σ and ϑ (the order matters).

Extended Terms, Extended Substitutions, Name-Neighborhood Mappings.
Assume that N is a countable set of names, which are symbols together with
associated arity (like function symbols). We use the letters N,M,K for them. It
is assumed that N ∩ F = ∅ and N ∩ V = ∅.

Neighborhood is either a name, or a finite subset of F , where all elements have
the same arity. Since in the construction of extended terms below neighborhoods
will behave like function symbols, we will use the letters F and G to denote them.
arity(F) is defined as the arity of elements of F. The set of all neighborhoods is
denoted by Nb.

An extended term (or, shortly, an X-term) t over F , N , and V is defined by
the grammar:

t := x | F(t1, . . . , tn), where arity(F) = n.

The set of X-terms is denoted by T (F ,N ,V). X-terms, in which every neigh-
borhood set is a singleton, are called singleton X-terms or, shortly, SX-terms.
Slightly abusing the notation, we assume that a term (i.e., an element of T (F ,V))
is a special case of an SX-term (as an SX-term without names), identifying a
function symbol f with the singleton neighborhood {f}. We will use this assump-
tion in the rest of the paper.

The notion of head is defined as head(x) = x and head(F(t1, . . . , tn)) = F.
The set of variables (resp. names) occurring in an X-term t is denoted by

V(t) (resp. N (t)). Approximate extended equations (X-equations) are pairs of
X-terms.

The notion of substitution (and the associated relations and operations) are
extended to X-terms straightforwardly. We use the term “X-substitution” and
denote them by upright Greek letters μ, ν, and ξ. When we want to emphasize
that we are talking about substitutions for terms, we use the letters σ, ϑ, and ϕ.

The restriction of an X-substitution μ to a set of variables V is denoted by
μ|V := {x �→ xμ | x ∈ dom(μ) ∩ V }.

A name-neighborhood mapping Φ : N −→ Nb \ N is a finite mapping from
names to non-name neighborhoods (i.e., finite sets of function symbols of the
same arity) such that if N ∈ dom(Φ) (where dom is the domain of mapping),
then arity(N) = arity(Φ(N)). They are also represented as finite sets, writing Φ
as {N �→ Φ(N) | N ∈ dom(Φ)}.

A name-neighborhood mapping Φ can apply to an X-term t, resulting in
anbreak X-term Φ(t), which is obtained by replacing each name N in t by the

110 T. Kutsia and C. Pau

neighborhood Φ(N). The application of Φ to a set of X-equations P , denoted
by Φ(P), is a set of equations obtained from P by applying Φ to both sides of
each equation in P .

Proximity Relations over X-Terms. The proximity relation R is defined on the
set Nb∪ V (where neighborhoods are assumed to be nonempty) in such a way
that it satisfies the following conditions (in addition to reflexivity and symmetry):

(a) R(F,G) = 0 if arity(F) �= arity(G);
(b) R(F,G) = min{R(f, g) | f ∈ F, g ∈ G}, if F = {f1, . . . , fn}, G = {g1, . . . ,

gm}, and arity(F) = arity(G);
(c) R(N,F) = 0, if F /∈ N .
(d) R(N,M) = 0, if N �= M;
(e) R(x, y) = 0, if x �= y for all x, y ∈ V.
(f) R(F,G) is undefined, if F = ∅ or G = ∅.

We write F ≈R,λ G if R(F,G) ≥ λ. Note that for F = {f1, . . . , fn} and G =
{g1, . . . , gm}, F ≈R,λ G is equivalent to R(f, g) ≥ λ for all f ∈ F and g ∈ G. It is
easy to see that the obtained relation is again a proximity relation. Furthermore,
it can be extended to X-terms (which do not contain the empty neighborhood):

1. R(s, t) := 0 if R(head(s), head(t)) = 0.
2. R(s, t) := 1 if s = t and s, t ∈ V.
3. R(s, t) := R(F,G) ∧ R(s1, t1) ∧ · · · ∧ R(sn, tn), if s = F(s1, . . . , sn), t = G(t1,

. . . , tn).
4. R(s, t) is not defined, if s or t contains the empty neighborhood ∅.

Two X-terms s and t are (R, λ)-close to each other, written s R,λ t, if R(s, t) ≥
λ. We say that s is (R, λ)-more general than t and write s �R,λ t, if there exists
a substitution σ such that sσ R,λ t.

Neighborhood Equations, Unification Problems. We introduce the notions of
problems we would like to solve.

Definition 1 (Neighborhood equations). Given R and λ, an (R, λ)-neigh-
borhood equation is a pair of neighborhoods, written as F ≈?

R,λ G. The question
mark indicates that it has to be solved.

A name-neighborhood mapping Φ is a solution of an (R, λ)-neighborhood
equation F ≈?

R,λ G if Φ(F) R,λ Φ(G). The notation implies that R(Φ(F),Φ(G))
is defined, i.e., neither Φ(F) nor Φ(G) contains the empty neighborhood.

An (R, λ)-neighborhood constraint is a finite set of (R, λ)-neighborhood equa-
tions. A name-neighborhood mapping Φ is a solution of an (R, λ)-neighborhood
constraint C if it is a solution of every (R, λ)-neighborhood equation in C.

We shortly write “an (R, λ)-solution to C” instead of “a solution to an (R, λ)-
neighborhood constraint C”.

Solving Proximity Constraints 111

To each X-term t we associate a set of SX-terms Singl(t) defined as follows:

Singl(x) := {x},

Singl(N(t1, . . . , tn)) := {N(s1, . . . , sn) | si ∈ Singl(ti), 1 ≤ i ≤ n}.

Singl(F(t1, . . . , tn)) := {f(s1, . . . , sn) | f ∈ F, si ∈ Singl(ti), 1 ≤ i ≤ n}.

The notation extends to substitutions as well:

Singl(μ) := {ϑ | xϑ ∈ Singl(xμ) for all x ∈ V}.

Definition 2 (Approximate X-unification). Given R and λ, a finite set P
of (R, λ)-equations between X-terms is called an (R, λ)-X-unification problem.
A mapping-substitution pair (Φ,μ) is called an (R, λ)-solution of an (R, λ)-X-
equation t ?

R,λ s, if Φ(tμ) R,λ Φ(sμ). An (R, λ)-solution of P is a pair (Φ,μ)
which solves each equation in P .

If (Φ,μ) is an (R, λ)-solution of P , then the X-substitution Φ(μ) is called an
(R, λ)-X-unifier of P .

SX-unification problems, SX-solutions and SX-unifiers are defined analo-
gously. For unification between terms, we do not use any prefix, talking about
unification problems, solutions, and unifiers.

Instead of writing “a · · · -unifier of an (R, λ)-unification problem P”, we often
shortly say “an (R, λ)-· · · -unifier of P”.

The notion of more generality for substitutions is defined with the help of
syntactic equality: μ is more general than ν, written μ � ν, if there exists ξ such
that μξ = ν. In this case, ν is called an instance of μ.

Remark 1. Note that we did not use proximity in the definition of this notion.
The reason is that in our definition, � is a quasi-order and preserves good prop-
erties of unifiers. In particular, if μ is an (R, λ)-X-unifier of P , then so is any ν

for which μ � ν holds.
If we defined this notion as “μ �R,λ ν if there exists a substitution ξ such

that xμν R,λ xξ for all x”, it would not be a quasi-order, because it is not
transitive. Therefore, it might happen that μ is an (R, λ)-X-unifier of P , but
ν with μ �R,λ ν is not. A simple example is P = {x ?

R,λ a} and Rλ =
{(a, b), (b, c)}. Then μ = {x �→ b} is an (R, λ)-unifier of P , but ν = {x �→ c} is
not. However, μ �R,λ ν.

Two substitutions μ and ν are called equigeneral iff μ � ν and ν � μ. In this
case we write μ ν. It is an equivalence relation.

Unification Between Terms. Our unification problem will be formulated between
terms, and we would like to have a characterization of the set of its unifiers.
(Extended terms and substitutions will play a role in the formulating of algo-
rithms, proving their properties, and representing the mentioned unifier set com-
pactly).

112 T. Kutsia and C. Pau

Definition 3 (Complete set of unifiers). Given a proximity relation R, a cut
value λ, and an (R, λ)-proximity unification problem P , the set of substitutions
Σ is a complete set of (R, λ)-unifiers of P if the following conditions hold:

Soundness: Every substitution σ ∈ Σ is an (R, λ)-unifier of P .
Completeness: For any (R, λ)-unifier ϑ of P , there exists σ ∈ Σ such that

σ � ϑ.

Σ is a minimal complete set of unifiers of P if it is its complete set of unifiers
and, in addition, the following condition holds:

Minimality: No two elements in Σ are comparable with respect to �: For all
σ, ϑ ∈ Σ, if σ � ϑ, then σ = ϑ.

Under this definition, {x R,0.5 b} for R(a, b) = 0.6, R(b, c) = 0.5 has a
minimal complete set of unifiers {{x �→ a}, {x �→ b}, {x �→ c}}. Note that the
substitutions {x �→ a} and {x �→ b} are �-incomparable, but �R,λ-comparable.
The same is true for {x �→ a} and {x �→ c}.

Given an approximate unification problem P , our goal is to obtain a compact
representation of its minimal complete set of (R, λ)-unifiers. The representation
will be constructed as a set of X-unifiers UX

R,λ(P) = {Φ1(μ), . . . ,Φn(μ)}. The
algorithms below construct this representation.

3 Solving Unification Problems

We start with a high-level view of the process of solving an approximate unifi-
cation problem s ?

R,λ t between terms s and t (we omit R and λ below):

– First, we treat the input equation as an SX-equation and apply rules of the
pre-unification algorithm. Pre-unification works on SX-equations. It either
fails (in this case the input terms are not unifiable) or results in a neighbor-
hood constraint C and a substitution μ over T (∅,N ,V).

– Next, we solve C by the neighborhood constraint solving algorithm. If the
process fails, then the input terms are not unifiable. Otherwise, we get a
finite set of name-neighborhood mappings M = {Φ1, . . . ,Φn}. Note that Φ’s
do not necessarily map names to singleton sets here.

– For each Φi ∈ M, the pair (Φi,μ) solves the original unification problem, i.e.,
the X-substitution Φi(μ) is an X-unifier of it.

– From the obtained set {Φ1(μ), . . . ,Φn(μ)} of computed (R, λ)-X-unifiers of
s and t we can construct a minimal complete set of unifiers mcsuR,λ(s, t) of
s and t as the set mcsuR,λ(s, t) = Singl(Φ(μ1)) ∪ · · · ∪ Singl(Φ(μ1)).

Hence, the algorithm consists of two phases: pre-unification and constraint
solving. They are described in separate subsections below.

Solving Proximity Constraints 113

3.1 Pre-unification Rules

We start with the definition of a technical notion needed later:

Definition 4. We say that a set of SX-equations {x ?
R,λ t} � P contains

an occurrence cycle for the variable x if t /∈ V and there exist SX-term-pairs
(x0, t0), (x1, t1), . . . , (xn, tn) such that x0 = x, t0 = t, for each 0 ≤ i ≤ n P con-
tains an equation xi ?

R,λ ti or ti ?
R,λ xi, and xi+1 ∈ V(ti) where xn+1 = x0.

Lemma 1. If a set of SX-equations P contains an occurrence cycle for some
variable, then it has no (R, λ)-solution for P for any R and λ.

Proof. The requirement that neighborhoods of different arity are not (R, λ)-close
to each other guarantees that an SX-term can not be (R, λ)-close to its proper
subterm. Therefore, equations containing an occurrence cycle can not have an
(R, λ)-solution. ��

In the rules below we will use the renaming function ρ : T (F ,N ,V) →
T (N ,V). Applied to a term, ρ gives its fresh copy, obtained by replacing each
occurrence of a symbol from F ∪ N by a new name and each variable occurrence
by a fresh variable. For instance, if the term is f(N(a, x, x, f(a))), where f, a ∈
F and N ∈ N , then ρ(f(N(a, x, x, f(a))) = N1(N2(N3, x1, x2,N4(N5))), where
N1,N2,N3,N4,N5 ∈ N are new names and x1, x2 are new variables.

Given R and λ, an equational (R, λ)-configuration is a triple P ;C;μ, where

– P is a finite set of (R, λ)-SX-equations. It is initialized with the unification
equation between the original terms;

– C is a (R, λ)-neighborhood constraint;
– μ is an X-substitution over T (∅,N ,V), initialized by Id . It serves as an accu-

mulator, keeping the pre-unifier computed so far.

The pre-unification algorithm takes given terms s and t, creates the initial
configuration {s ?

R,λ t}; ∅; Id and applies the rules given below exhaustively.
The rules are very similar to the syntactic unification algorithm with the

difference that here the function symbol clash does not happen unless their arities
differ, and variables are not replaced by other variables until the very end. (The
notation expn in the rules below abbreviates the sequence exp1, . . . , expn).

(Tri) Trivial: {x ?
R,λ x} � P ; C; μ =⇒ P ; C; μ.

(Dec) Decomposition:

{F(sn) ?
R,λ G(tn)} � P ;C;μ =⇒ {sn ?

R,λ tn} ∪ P ; {F ≈?
R,λ G} ∪ C;μ,

where each of F and G is a name or a function symbol treated as a
singleton neighborhood.

(VE) Variable Elimination:

{x ?
R,λ t} � P ; C; μ =⇒ {t′ ?

R,λ t} ∪ P{x �→ t′}; C; μ{x �→ t′},

where t /∈ V, there is no occurrence cycle for x in {x ?
R,λ t} � P , and

t′ = ρ(t).

114 T. Kutsia and C. Pau

(Ori) Orient: {t ?
R,λ x} � P ; C; μ =⇒ {x ?

R,λ t} ∪ P ; C; μ, if t /∈ V.

(Cla) Clash: F(sn) ?
R,λ G(tm)} � P ; C; μ =⇒ ⊥, where n �= m.

(Occ) Occur Check: {x ?
R,λ t} � P ; C; μ =⇒ ⊥,

if there is an occurrence cycle for x in {x ?
R,λ t} � P .

(VO) Variables Only:

{x ?
R,λ y, xn ?

R,λ yn};C;μ =⇒ {xn ?
R,λ yn}{x �→ y};C;μ{x �→ y}.

Informally, in the (VE) rule, we imitate the structure of t in t′ by ρ, replace
x by t′, and then try to bring t′ close to t by solving the equation t′ ?

R,λ t.

Theorem 1 (Termination of pre-unification). The pre-unification algo-
rithm terminates either with ⊥ or with a configuration of the form ∅;C;μ.

Proof. The rules (Tri) and (Dec) strictly decrease the size of P . (Ori) does not
changes the size, but strictly decreases the number of equations of the form
t ?

R,λ x, where t /∈ V. (VO) stands separately, because once it starts applying,
no other rule is applicable and (VO) itself is terminating. So are the failure rules.

To see what is decreased by (VE), we need some definitions. First, with
each variable occurring in the initial unification problem we associate the set of
its copies, which is initialized with the singleton set consisting of the variables
themselves. For instance, if the problem contains variables x, y, z, and u, we will
have four copy sets: {x}, {y}, {z}, and {u}. Rules may add new copies to these
sets, or remove some copies from them. However, the copy sets themselves are
fixed. None of them will be removed, and no new copy sets will be created.

In the process of rule applications, we will maintain a directed acyclic graph,
whose vertices are labeled by copy sets, and there is an edge from a vertex V1 to
a vertex V2 if we have encountered an equation of the form x ?

R,λ t such that
x ∈ V1 and t contains a variable y ∈ V2.

One can notice that the graph is a variable dependency graph. If it contains
a cycle, the algorithm stops with failure by the (Occ) rule. From the beginning,
the vertices (i.e. the copy sets) are isolated. In the process of rule applications,
assume that we reach a configuration that is transformed by the (VE) rule,
applied to an equation x ?

R,λ t, where t contains variables y, z′, and z′′ (the
latter two are copies of z). The rule creates a fresh copy of t, which contains
copies of variables: ρ(y), ρ(z′), and ρ(z′′). They are added to the corresponding
copy sets (graph vertices): ρ(y) to the copy set of y, and ρ(z′) and ρ(z′′) to the
copy set of z. Let us call those vertices Vy and Vz. Besides, if there was no edge
connecting the vertex Vx (containing the copy set of x) to the vertices Vy and
Vz, the edges are created. Finally, x is removed from Vx.

Hence, after each application of the (VE) rule, the copy set decreases in one
vertex V (in the example above it is Vx), and stays unchanged in all vertices that
are not reachable from V . We say in this case that the graph measure decreases.

Solving Proximity Constraints 115

This ordering can be seen as a generalization of lexicographic ordering to graphs.
It is well-founded. (VE) strictly decreases it, and the other rules have no effect.

Hence, if we take the lexicographic combination of three measures: copy set
dags, the size of the set of equations, and the number of equations with non-
variable term in the left and variable in the right, each rule except (VO) strictly
decrease it. After finitely many steps, either failure will occur, or one reaches the
variable-only equations, which are solved in finitely many steps by (VO). Then
it stops with the configuration ∅;C;μ. ��

We say that a mapping-substitution pair (Φ, ν) is a solution of an equational
(R, λ)-configuration P ;C;μ if the following conditions hold:

– (Φ, ν) is an (R, λ)-solution of P ;
– Φ is an (R, λ)-solution of C;
– For each x ∈ dom(μ), we have xν = xμν (syntactic equality).

Lemma 2. 1. If P ;C;μ =⇒ ⊥ by (Cla) or (Occ) rules, then P ;C;μ does not
have a solution.

2. Let P1;C1;μ1 =⇒ P2;C2;μ2 be a step performed by a pre-unification rule
(except (Cla) and (Occ)). Then every solution of P2;C2;μ2 is a solution of
P1;C1;μ1.

Proof. See [9]. ��

Theorem 2 (Soundness of pre-unification). Let s and t be two terms, such
that the pre-unification algorithm gives {s ?

R,λ t}; ∅; Id =⇒∗ ∅;C;μ. Let Φ be
an (R, λ)-solution of C. Then the X-substitution Φ(μ) contains no names and
is an (R, λ)-X-unifier of {s ?

R,λ t}.

Proof. Note that (Φ,μ) is an (R, λ)-solution of ∅;C;μ, since Φ solves C. From
{s ?

R,λ t}; ∅; Id =⇒∗ ∅;C;μ, by induction on the length of the derivation, using
Lemma 2, we get that (Φ,μ) is a solution of {s ?

R,λ t}; ∅; Id .
Since s and t do not contain names, Φ has no effect on them: Φ(sμ) =

sΦ(μ) and Φ(tμ) = tΦ(μ). From these equalities and Φ(sμ) R,λ Φ(tμ) we get
sΦ(μ) R,λ tΦ(μ), which implies that Φ(μ) is an (R, λ)-X-solution of {s ?

R,λ

t}. By construction of pre-unification derivations, all the names in μ are in the
domain of Φ. Hence, Φ(μ) contains no names. ��

Corollary 1. Let s and t be two terms, such that the pre-unification algorithm
gives {s ?

R,λ t}; ∅; Id =⇒∗ ∅;C;μ. Let Φ be an (R, λ)-solution of C. Then every
substitution in Singl(Φ(μ)) is an (R, λ)-unifier of s and t.

Proof. Direct consequence of Theorem 2 and the definition of Singl. Note that
Singl(Φ(μ)) in this case is a set of substitutions, not a set of SX-substitutions,
because Φ(μ) does not contain names. ��

For any solution of an approximate unification problem, we can not always
compute a solution which is more general than the given one. For instance, for

116 T. Kutsia and C. Pau

the problem x ?
R,λ y we compute {x �→ y}, but the problem might have a

solution, e.g., {x �→ a, y �→ b} (when a and b are close to each other). Strictly
speaking, {x �→ y} is not more general than {x �→ a, y �→ b}, because there is no
substitution σ such that {x �→ y}σ = {x �→ a, y �→ b}, but we have the relation
{x �→ a, y �→ b} ∈ Singl({x �→ y}{y �→ {a, b}}) = Singl({x �→ {a, b}, y �→ {a, b}}).

The Completeness Theorem below proves a more general statement. It states
that for any solution of an approximate unification problem, we can always
compute a solution which is more general than a solution close to the given one.

Theorem 3 (Completeness of pre-unification). Let a substitution ϑ be an
(R, λ)-unifier of two terms s and t. Then any maximal derivation that starts
at {s ?

R,λ t}; ∅; Id must end with an equational configuration ∅;C;μ, such that
for some (R, λ)-solution Φ of C, which maps names to singleton neighborhoods,
and some substitution ν such that ϑ R,λ σ for some σ ∈ Singl(ν), we have
Φ(μ|V(s)∪V(t)) � ν.

Proof. The full proof can be found in [9]. Here we sketch the idea.
Since {s ?

R,λ t} is solvable, the derivation can not end with ⊥ by soundness
of pre-unification. Since for every equation there is a rule, and the algorithm
terminates, the final configuration should have a form ∅;C;μ.

Let V be V(s) ∪ V(t). In the construction of Φ, we need the proposition:

Proposition: Assume P1;C1;μ1 =⇒ P2;C2;μ2 is a single step rule application in
the above mentioned derivation. Let Φ1 map names occurring in μ1 to single-
ton neighborhoods such that equations in Φ1(P1) and in Φ1(C1) remain solv-
able. Assume that there exists a substitution ν1 such that ϑ R,λ σ1 for some
σ1 ∈ Singl(ν1) and Φ1(μ1|V) � ν1. Then there exist a substitution ν2 such
that ϑ R,λ σ2 for some σ2 ∈ Singl(ν2), and a name-neighborhood mapping
Φ2 which maps names occurring in μ2 to singleton neighborhoods such that
equations in Φ2(P2) and in Φ2(C2) remain solvable, and Φ2(μ2|V) � ν2.

In the constructed derivation, for the initial configuration P0;C0;μ0 = {s ?
R,λ

t}; ∅; Id we take Φ0 = ∅. Then Φ0(P0) = P0 = {s ?
R,λ t} and Φ0(C0) = ∅ are

solvable, and Φ0(μ0|V) = Id , Singl(Id) = {Id}, and Id � ϑ. By applying the
proposition iteratively, we get that for the final configuration ∅;C;μ, there exists
Φ which maps names to singleton neighborhoods such that Φ(C) is solvable. By
the way how Φ is constructed, we have dom(Φ) = N (μ), but N (μ) = N (C).
Hence, N (Φ(C)) = ∅ and its solvability means that it is already solved (trivially
solvable). It implies that Φ is a solution of C. Besides, again by an iterative
application of the proposition, we show the existence of ν such that ϑ R,λ σ
for some σ ∈ Singl(ν) and Φ(μ|V) � ν. ��

From Theorems 2 and 3, by definition of Singl we get

Theorem 4. Given R, λ and two terms s and t, let the pre-unification algo-
rithm produce a derivation {s ?

R,λ t}; ∅; Id =⇒+ ∅;C;μ. Let {Φ1, . . . ,Φn} be a
complete set of solutions of C, restricted to N (C). Then the set Singl(Φ1(μ)) ∪
· · · ∪ Singl(Φ1(μ)) is a minimal complete set of unifiers of s and t.

Solving Proximity Constraints 117

We should be careful in interpreting Theorem4. If σ ∈ mcsuR,λ(s, t) and ξ is
an X-substitution, then Singl(σξ) contains at least one (R, λ)-unifier of s and t,
but it may contain non-unifiers as well. If we restrict ξ to be an SX-substitution,
then all elements of Singl(σξ) are (R, λ)-unifiers of s and t, but SX-substitution
instances are too weak to capture all unifiers. See [9, Example 1].

We introduce a neighborhood constraint solving algorithm in the next
section. Before that we illustrate the pre-unification rules with a couple of
examples:

Example 1. Let s = p(x, y, x) and t = q(f(a), g(d), y). Then the pre-unification
algorithm gives ∅;C,μ, where C = {p ≈?

R,λ q, N1 ≈?
R,λ f, N2 ≈?

R,λ a, N3 ≈?
R,λ

g, N4 ≈?
R,λ d, N1 ≈?

R,λ N3, N2 ≈?
R,λ N4} and μ = {x �→ N1(N2), y �→ N3(N4)}.

Assume that for the given λ-cut, the proximity relation consists of pairs
Rλ = {(a, b), (b, c), (c, d), (a, b′), (b′, c′), (c′, d), (f, g), (p, q)}. The obtained con-
straint can be solved, e.g., by the name-neighborhood mappings Φ = [N1 �→
{f, g}, N2 �→ {b},N3 �→ {f, g}, N4 �→ {c}] and Φ′ = [N1 �→ {f, g}, N2 �→
{b′},N3 �→ {f, g}, N4 �→ {c′}]. From them and μ we can get the sets Φ(μ)
and Φ′(μ) of (R, λ)-unifiers of s and t.

If we did not have the VO rule and allowed the use of VE rule instead, we
might have ended up with the unification problem {y ?

R,λ f(a), y ?
R,λ g(d)},

which does not have a solution, because the neighborhoods of a and d do not
have a common element. Hence, we would have lost a solution.

Example 2. Let s = p(x, x) and t = q(f(y, y), f(a, c)). The pre-unification algo-
rithm stops with ∅;P ;μ, where P = {p ≈?

R,λ q, N1 ≈?
R,λ f, N2 ≈?

R,λ a, N3 ≈?
R,λ

c, M ≈?
R,λ N2, N3 ≈?

R,λ M} and μ = {x �→ N1(N2,N3), y1 �→ N2, y2 �→
N3, y �→ M}. Let Rλ = {(a, a1), (a1, b), (b, c1), (c1, c), (p, q)}. Then C is solved
by Φ = [N1 �→ {f}, N2 �→ {a1}, M �→ {b}, N3 �→ {c1}] and Φ(μ|V(s)∪V(t)) con-
tains only one element, an (R, λ)-unifier σ = {x �→ f(a1, c1), y �→ b} of s and t.
Indeed, sσ = p(f(a1, c1), f(a1, c1)) R,λ q(f(b, b), f(a, c)) = tσ.

This example illustrates the necessity of introducing a fresh variable for each
occurrence of a variable by the renaming function in the VE rule. If we used
the same new variable, say y′, for both occurrences of y in f(y, y) (instead of
using y1 and y2 as above), we would get the configuration ∅; {p ≈?

R,λ q, N1 ≈?
R,λ

f, N2 ≈?
R,λ a, N3 ≈?

R,λ c, N3 ≈?
R,λ N2}; {x �→ N1(N2,N2), y′ �→ N2, y �→ N2}.

But for the given Rλ, the constraint {p ≈?
R,λ q, N1 ≈?

R,λ f, N2 ≈?
R,λ a, N3 ≈?

R,λ

c, N3 ≈?
R,λ N2} does not have a solution (because the neighborhoods of a and c

are not close to each other). Hence, we would lose a unifier.

3.2 Rules for Neighborhood Constraints

Let Φ be a name-neighborhood mapping. The combination of two mappings Φ
and Ψ, denoted by Φ � Ψ, is defined as

118 T. Kutsia and C. Pau

Φ � Ψ := {N �→ Φ(N) | N ∈ dom(Φ) \ dom(Ψ)} ∪
{N �→ Ψ(N) | N ∈ dom(Ψ) \ dom(Φ)} ∪
{N �→ Φ(N) ∩ Ψ(N) | N ∈ dom(Ψ) ∩ dom(Φ)}.

We call Φ and Ψ compatible, if (Φ � Ψ)(N) �= ∅ for all N ∈ dom(Φ � Ψ).
Otherwise they are incompatible.

A constraint configuration is a pair C; Φ, where C is a set of (R, λ)-neighbor-
hood constraints to be solved, and Φ is a name-neighborhood mapping (as a set
of rules), representing the (R, λ)-solution computed so far. We say that Ψ is an
(R, λ)-solution of a constraint configuration C; Φ if Ψ is an (R, λ)-solution to
C, and Ψ and Φ are compatible.

The constraint simplification algorithm CS transforms constraint configura-
tions, exhaustively applying the following rules (⊥ indicates failure):

(FFS) Function Symbols: {f ≈?
R,λ g} � C; Φ; =⇒ C; Φ, if R(f, g) ≥ λ.

(NFS) Name vs Function Symbol:

{N ≈?
R,λ g} � C; Φ =⇒ C; Φ � {N �→ pc(g,R, λ)}.

(FSN) Function Symbol vs Name: {g ≈?
R,λ N} � C; Φ =⇒ {N ≈?

R,λ g} ∪ C; Φ.

(NN1) Name vs Name 1:

{N ≈?
R,λ M} � C; Φ =⇒ C; Φ � {N �→ {f},M �→ pc(f,R, λ)},

where N ∈ dom(Φ), f ∈ Φ(N).

(NN2) Name vs Name 2: {M ≈?
R,λ N} � C; Φ =⇒ {N ≈?

R,λ M} ∪ C; Φ,

where M /∈ dom(Φ), N ∈ dom(Φ).

(Fail1) Failure 1: {f ≈?
R,λ g} � C; Φ =⇒ ⊥, if R(f, g) < λ.

(Fail2) Failure 2: C; Φ =⇒ ⊥, if there exists N ∈ dom(Φ) with Φ(N) = ∅.

The NN1 rule causes branching, generating n branches where n is the number
of elements in Φ(N). (Remember that by definition, the proximity class of each
symbol is finite.) When the derivation does not fail, the terminal configuration
has the form {N1 ≈?

R,λ M1, . . . ,Nn ≈?
R,λ Mn}; Φ, where for each 1 ≤ i ≤ n,

Ni,Mi /∈ dom(Φ). Such a constraint is trivially solvable.

Theorem 5. The constraint simplification algorithm CS is terminating.

Proof. With each configuration C; Φ we associate a complexity measure, which is
a triple of natural numbers (n1, n2, n3): n1 is the number of symbols occurrences

Solving Proximity Constraints 119

in C, n2 is the number of equations of the form g ≈?
R,λ N in C, and n3 is

the number of equations of the form M ≈?
R,λ N in C, where M /∈ dom(Φ)

and N ∈ dom(Φ). Measures are compared by the lexicographic extension of the
ordering > on natural numbers. It is a well-founded ordering. The rules (FFS),
(NFS), (NN1) decrease n1. The rule (FSN) does not change n1 and decreases
n2. The rule (NN2) does not change n1 and n2 and decreases n3. The failing
rules cause termination immediately. Hence, each rule reduces the measure or
terminates. It implies the termination of the algorithm. ��
In the statements below, we assume R and λ to be given and the problems are
to be solved with respect to them.

Lemma 3. 1. If C; Φ =⇒ ⊥ by (Fail1) or (Fail2) rules, then (C,Φ) does not
have an (R, λ)-solution.

2. Let C1; Φ1 =⇒ C2; Φ2 be a step performed by a constraint solving (nonfailing)
rule. Then any (R, λ)-solution of C1; Φ2 is also an (R, λ)-solution of C1; Φ1.

Proof. 1. For (Fail1), the lemma follows from the definition of (R, λ)-solution.
For (Fail2), no Ψ is compatible with Φ which maps a name to the empty set.

2. The lemma is straightforward for (FFS), (FSN), and (NN2). To show it for
(NFS), we take Ψ, which solves C; Φ�{N �→ pc(g,R, λ)}. By definition of �,
we get Ψ(N) ⊆ pc(g,R, λ). But then Ψ is a solution to {N ≈?

R,λ g} � C; Φ.
To show the lemma holds for (NN1), we take a solution Ψ of C; Φ � {N �→
{f},M �→ pc(f,R, λ)}. It implies that Ψ(N) = {f} and Ψ(M) ⊆ pc(f,R, λ).
But then we immediately get that Ψ solves {N ≈?

R,λ M} � C; Φ. ��
Theorem 6 (Soundness of CS). Let C be an (R, λ)-neighborhood constraint
such that CS produces a maximal derivation C; ∅ =⇒∗ C ′; Φ. Then Φ is an
(R, λ)-solution of C \ C ′, and C ′ is a set of constraints between names which is
trivially (R, λ)-satisfiable.

Proof. If a neighborhood equation is not between names, there is a rule in CS
which applies to it. Hence, a maximal derivation can not stop with a C ′ that
contains such an equation. As for neighborhood equations between names, only
two rules deal with them: (NN1) and (NN2). But they apply only if at least one of
the involved names belongs to the domain of the corresponding mapping. Hence,
it can happen that an equation of the form N ≈?

R,λ M is never transformed by CS.
When the algorithm stops, such equations remain in C ′ and are trivially solvable.
We can remove C ′ from each configuration in C; ∅ =⇒∗ C ′; Φ without affecting
any step, getting a derivation C \ C ′; ∅ =⇒∗ ∅; Φ. Obviously, Φ is an (R, λ)-
solution of ∅; Φ. By induction on the length of the derivation and Lemma3, we
get that Φ is an (R, λ)-solution of C \ C ′; ∅ and, hence, it solves C \ C ′. ��
Remark 2. When a neighborhood constraint C is produced by the pre-unification
algorithm, then every maximal CS-derivation starting from C; ∅ ends either in
⊥ or in the pair of the form ∅; Φ. This is due to the fact that the VE rule (which
introduces names in pre-unification problems) and the subsequent decomposition
steps always produce chains of neighborhood equations of the form N1 ≈R,λ

N2,N2 ≈R,λ N3, . . . ,Nn ≈R,λ f , n ≥ 1, for the introduced N’s and for some f .

120 T. Kutsia and C. Pau

Theorem 7 (Completeness of CS). Let C be an (R, λ)-neighborhood con-
straint produced by the pre-unification algorithm, and Φ be one of its solutions.
Let dom(Φ) = {N1, . . . ,Nn}. Then for each n-tuple c1 ∈ Φ(N1), . . . , cn ∈ Φ(Nn)
there exists a CS-derivation C; ∅ =⇒∗ ∅; Ψ with ci ∈ Ψ(Ni) for each 1 ≤ i ≤ n.

Proof. We fix c1, . . . , cn such that c1 ∈ Φ(N1), . . . , cn ∈ Φ(Nn).
First, note that dom(Φ) coincides with N (C). It is implied by the assumption

that C is produced by pre-unification, and Remark 2 above.
The desired derivation is constructed recursively, where the important step is

to identify a single inference. To see how such a single step is made, we consider
a configuration Ci; Φi in this derivation (i ≥ 0, C0 = C, Φ0 = ∅). We have
dom(Φi) ⊆ dom(Φ). During construction, we will maintain the following two
invariants for each i ≥ 0 (easy to check that they hold for i = 0):

(I1) Φ is an (R, λ)-solution of (Ci,Φi), and
(I2) for all 1 ≤ j ≤ n, if Nj ∈ dom(Φi), then cj ∈ Φi(Nj).

We consider the following cases:

– Ci contains an equation of the form f ≈?
R,λ g. By (I1), R(f, g) ≥ λ. Then we

make the (FFS) step with f ≈?
R,λ g, obtaining Ci+1 = Ci \ {f ≈?

R,λ g} and
Φi+1 = Φi. Obviously, (I1) and (I2) hold also for the new configuration.

– Otherwise, assume Ci contains an equation Nk ≈?
R,λ g, where 1 ≤ k ≤ n.

Since Φ solves C; Φi, we have Φi(N) �= ∅ for all N ∈ dom(Φi) and there is only
one choice to make the step: the (NFS) rule. It gives Ci+1 = Ci \{Nk ≈?

R,λ g}
and Φi+1 = Φi�{Nk �→ pc(g,R, λ)}. Since Φ solves, in particular, Nk ≈?

R,λ g,
we have Φ(Nk) ⊆ pc(g,R, λ) and, hence, ck ∈ pc(g,R, λ). First, assume
Nk /∈ dom(Φi). Then Φi+1(Nk) = pc(g,R, λ) and both (I1) and (I2) hold
for i+1. Now, assume Nk ∈ dom(Φi). Then Φi+1(Nk) = Φi(Nk)∩pc(g,R, λ).
Besides, (I2) implies ck ∈ Φi(Nk). Hence, ck ∈ Φi+1(Nk), which implies that
(I2) holds for i + 1. From ck ∈ Φi+1(Nk) and ck ∈ Φ(Nk) we get that Φ is
compatible with Φi+1. Moreover, Φ solves Ci, therefore, it solves Ci+1. Hence,
Φ solves Ci+1; Φi+1 and (I1) holds for i + 1 as well.

– Otherwise, assume Ci contains an equation of the form Nk ≈?
R,λ Nj , where

1 ≤ k, j ≤ n and Nk ∈ dom(Φi). By (I1), we have Nk,Nj ∈ dom(Φ), Φ(Nk)∩
Φ(Nj) �= ∅, and Φ(Nk)∩Φi(Nk) �= ∅. By (I2), we have ck ∈ Φi(Nk). But since
ck ∈ Φ(Nk), we have ck ∈ Φ(Nk) ∩ Φi(Nk). We make the step with (NN1)
rule, choosing the mapping Nk �→ {ck}. It gives Ci+1 = Ci \ {Nk ≈?

R,λ Nj}
and Φi+1 = Φi � {Nk �→ {ck}, Nj �→ pc(ck,R, λ)}.
To see that (I1) holds for i+1, the only nontrivial thing is to check that Φ and
Φi+1 are compatible. For this, Φi+1(Nk)∩Φ(Nk) �= ∅ and Φi+1(Nj)∩Φ(Nj) �=
∅ should be shown.
Proving Φi+1(Nk) ∩ Φ(Nk) �= ∅: By construction, Φi+1(Nk) = {ck}. By
assumption, ck ∈ Φ(Nk). Hence, Φi+1(Nk) ∩ Φ(Nk) �= ∅.
Proving Φi+1(Nj)∩Φ(Nj) �= ∅: Since Φ solves Nk ≈?

R,λ Nj and ck ∈ Φ(Nk), we
have Φ(Nj) ⊆ pc(ck,R, λ). If Nj /∈ dom(Φi), then Φi+1(Nj) = pc(ck,R, λ)
and Φi+1(Nj) ∩ Φ(Nj) �= ∅. If Nj ∈ dom(Φi), then by (I2), cj ∈ Φi(Nj).

Solving Proximity Constraints 121

On the other hand, cj ∈ Φ(Nj) and, therefore, cj ∈ pc(ck,R, λ). Since
Φi+1(Nj) = Φi(Nj) ∩ pc(ck,R, λ), we get cj ∈ Φi+1(Nj) and, hence,
Φi+1(Nj) ∩ Φ(Nj) �= ∅.
To see that (I2) holds is easier. In fact, we have already shown above that
Φi+1(Nk) = {ck}. As for Nj , we have Nj ∈ dom(Φi+1) iff Nj ∈ dom(Φi). In
the latter case, we have seen in the proof of (I1) that cj ∈ Φi+1(Nj).

– The other cases will be dealt by the rules (FSN) and (NN2). The invariants
for them trivially hold, since these rules do not change the problem.

By (I1), the configurations in our derivation are solvable. Therefore, the failing
rules do not apply. Hence, the derivation ends with ∅; Ψ for some Ψ. By construc-
tion, dom(Ψ) = {N1, . . . ,Nn}. By (I2), ci ∈ Ψ(Ni) for each 1 ≤ i ≤ n. ��

Example 3. The pre-unification derivation in Example 1 gives the neighbor-
hood constraint C = {p ≈?

R,λ q,N1 ≈?
R,λ f, N2 ≈?

R,λ a, N3 ≈?
R,λ g, N4 ≈?

R,λ

d, N1 ≈?
R,λ N3, N2 ≈?

R,λ N4}. For Rλ = {(a, b), (b, c), (c, d), (a, b′), (b′, c′), (c′, d),
(f, g), (p, q)}, the algorithm CS gives four solutions:

Φ1 = {N1 �→ {f},N2 �→ {b}, N3 �→ {f, g},N4 �→ {c}}
Φ2 = {N1 �→ {f},N2 �→ {b′},N3 �→ {f, g},N4 �→ {c′}}.

Φ3 = {N1 �→ {g},N2 �→ {b}, N3 �→ {f, g},N4 �→ {c}}
Φ4 = {N1 �→ {g},N2 �→ {b′},N3 �→ {f, g},N4 �→ {c′}}.

Referring to the mappings Φ and Φ′ and the substitution μ in Example 1, it
is easy to observe that Φ(μ) ∪ Φ′(μ) = Φ1(μ) ∪ Φ2(μ) ∪ Φ3(μ) ∪ Φ4(μ).

4 Final Remarks

We described an algorithm that solves unification problems over unrestricted
proximity relations. It is terminating, sound, complete, and computes a com-
pact representation of a minimal complete set of unifiers. A next step is to
incorporate the computation of unification degree into the procedure and use it
to characterize the “best” unifiers. Another future work involves a combination
of unranked unification [6] and proximity relations to permit proximal function
symbols with possibly different arities, similarly to the analogous extension of
similarity-based unification described in [1].

References

1. Aı̈t-Kaci, H., Pasi, G.: Fuzzy unification and generalization of first-order terms
over similar signatures. In: Fioravanti, F., Gallagher, J.P. (eds.) LOPSTR 2017.
LNCS, vol. 10855, pp. 218–234. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-94460-9 13

2. Dubois, D., Prade, H.: Fuzzy Sets and Systems: Theory and Applications. Mathe-
matics in Science and Engineering, vol. 144. Academic Press, Cambridge (1980)

https://doi.org/10.1007/978-3-319-94460-9_13
https://doi.org/10.1007/978-3-319-94460-9_13

122 T. Kutsia and C. Pau

3. Formato, F., Gerla, G., Sessa, M.I.: Extension of logic programming by similarity.
In: Meo, M.C., Ferro, M.V. (eds.) 1999 Joint Conference on Declarative Program-
ming, AGP 1999, L’Aquila, Italy, 6–9 September 1999, pp. 397–410 (1999)

4. Formato, F., Gerla, G., Sessa, M.I.: Similarity-based unification. Fundam. Inform.
41(4), 393–414 (2000)

5. Julián-Iranzo, P., Rubio-Manzano, C.: Proximity-based unification theory. Fuzzy
Sets Syst. 262, 21–43 (2015)

6. Kutsia, T.: Unification with sequence variables and flexible arity symbols and
its extension with pattern-terms. In: Calmet, J., Benhamou, B., Caprotti, O.,
Henocque, L., Sorge, V. (eds.) AISC/Calculemus -2002. LNCS (LNAI), vol. 2385,
pp. 290–304. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45470-
5 26

7. Kutsia, T., Pau, C.: Proximity-based generalization. In: Ayala Rincón, M.,
Balbiani, P. (eds.) Proceedings of the 32nd International Workshop on Unifica-
tion, UNIF 2018 (2018)

8. Kutsia, T., Pau, C.: Computing all maximal clique partitions in a graph. RISC
Report 19–04, RISC, Johannes Kepler University Linz (2019)

9. Kutsia, T., Pau, C.: Solving proximity constraints. RISC Report 19–06, RISC,
Johannes Kepler University Linz (2019)

10. Rodŕıguez-Artalejo, M., Romero-Dı́az, C.A.: A declarative semantics for CLP with
qualification and proximity. TPLP 10(4–6), 627–642 (2010)

11. Sessa, M.I.: Approximate reasoning by similarity-based SLD resolution. Theor.
Comput. Sci. 275(1–2), 389–426 (2002)

https://doi.org/10.1007/3-540-45470-5_26
https://doi.org/10.1007/3-540-45470-5_26

A Certified Functional Nominal
C-Unification Algorithm

Mauricio Ayala-Rincón1(B), Maribel Fernández2(B), Gabriel Ferreira Silva1(B),
and Daniele Nantes-Sobrinho1(B)

1 Departments of Computer Science and Mathematics, Universidade de Braśılia,
Braśılia, Brazil

{ayala,dnantes}@unb.br, gabrielfsilva1995@mail.com
2 Department of Informatics, King’s College London, London, UK

maribel.fernandez@kcl.ac.uk

Abstract. The nominal approach allows us to extend first-order syn-
tax and represent smoothly systems with variable bindings, using nom-
inal atoms instead of variables and dealing with renaming through per-
mutations of atoms. Nominal unification is, therefore, the extension of
first-order unification modulo α-equivalence by taking into account this
nominal setting. In this work, we present a specification of a nominal
C-unification algorithm (nominal unification with commutative opera-
tors) in PVS and discuss the proofs of soundness and completeness.
Additionally, the algorithm has been implemented in Python. In relation
to the only known specification of nominal C-unification, there are two
novel features in this work: first, the formalization of a functional algo-
rithm that can be directly executed (not just a set of non-deterministic
inference rules); second, simpler proofs of termination, soundness and
completeness, due to the reduction in the number of parameters of the
lexicographic measure, from four parameters to only two.

Keyword: Nominal terms · Nominal C-unification · Verification of
functional specifications

1 Introduction

The nominal approach allows us to extend first-order syntax and represent
smoothly systems with bindings, which are frequent in computer science and
mathematics. However, in order to represent bindings correctly, α-equivalence
must be taken into account. For instance, despite their syntactical difference,
the formulas ∃x : x < 0 and ∃z : z < 0 should be considered equivalent. The
nominal theory allows us to deal with these bindings in a natural way, using
atoms, atom permutations and freshness constraints, instead of using indices as
in explicit substitutions à la de Bruijn (e.g. [14,19]).

Work supported by FAPDF grant 193001369/2016.
M. Ayala-Rincón—partially funded by CNPq research grant number 307672/2017-4.
G. F. Silva—funded by CNPq scholarship number 139271/2017-1.

c© Springer Nature Switzerland AG 2020
M. Gabbrielli (Ed.): LOPSTR 2019, LNCS 12042, pp. 123–138, 2020.
https://doi.org/10.1007/978-3-030-45260-5_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45260-5_8&domain=pdf
https://doi.org/10.1007/978-3-030-45260-5_8

124 M. Ayala-Rincón et al.

Unification is an important problem in first-order theories, with applications
to logic programming systems, type inference algorithms, theorem provers and
so on (e.g. [12]). Since unification is essential for equational reasoning, the devel-
opment of unification techniques for nominal logic has been an attractive area
of research since the invention of the nominal approach.

The problem of nominal unification has been solved by Urban et al. [22], with
further research devoted to algorithm improvements (e.g. [10,17]). Extensions of
nominal unification have also been studied (e.g [9,16,20]), among them nominal
unification modulo equational theories (e.g. [1–3,5]). Here, we consider nominal
unification modulo commutative function symbols (nominal C-unification, for
short).

Related Work. Nominal unification was first solved by Urban et al. in [22], by
proposing a set of transformation rules and showing, using Isabelle/HOL, their
correctness and completeness [21]. An alternative specification of nominal unifi-
cation, as a function that maps (solvable) problems to solutions, was formalised
in PVS and proved sound and complete [6]. This work brought two new perspec-
tives to the problem. The first is the specification of a functional algorithm for
nominal unification, not a set of inference rules, which made the specification
closer to the implementation. The second is the separate treatment of freshness
constraints and equational constraints. Both ideas are used in this paper.

Nominal C-unification extends nominal unification to handle commutative
function symbols. In previous work, a set of non-deterministic transformation
rules to solve nominal C-unification problems, in the style of Urban et al. [21],
was shown correct and complete using the Coq proof assistant [2].

Contribution. In this paper, we present the first (to our knowledge) functional
nominal C-unification algorithm and formalize its correctness and completeness
using the proof assistant PVS. We emphasize the most interesting aspects of its
formalization.

Although there is one other specification [2] for nominal C-unification, the
approaches taken are different. In [2], a set of rules that gradually transforms the
nominal C-unification problem into simpler ones is presented. Here, by contrast,
we develop a recursive algorithm, specified and formalized in PVS and imple-
mented in Python, not a set of inference rules. The advantage of this approach
is that the algorithm can be executed, while the set of inference rules, specified
through inductive definitions cannot, because it is non-deterministic.

As mentioned previously, [6] gave us a nominal unification algorithm and a
new insight about the problem: the possibility to handle freshness constraints
and equational constraints separately. We adapt a significant portion of the
formalization in [6], adding and formalizing the necessary lemmas to obtain a
sound and complete algorithm for nominal C-unification and keep the separate
treatment of freshness constraints and equational constraints. This insight, along
with a trick of separating fixed point equations (see Definition 9) from the uni-
fication problem, allowed us to reduce the lexicographic measure found in [2],

A Certified Functional Nominal C-Unification Algorithm 125

from 4 parameters to only 2 parameters which made the proofs of termination,
soundness and completeness simpler.

Finally, the formalization of soundness and completeness was done in PVS
and is available at http://nominal.cic.unb.br. PVS was chosen partly in order to
reuse the definitions and lemmas previously used in [6] and partly because its
specification language provides great support for the definition (and formaliza-
tion) of functional recursive algorithms.

Possible Applications. As remarked before, nominal unification is used in
logic programming. Therefore, the nominal C-unification algorithm could be
used in a logic programming language that uses the nominal setting, such as
α-Prolog [12]. Another application is related to matching (see [7,8]). Matching
two terms t and s can be seen as unification where one of the terms (suppose
t, without loss of generality) is not affected by substitutions [2]. This can be
accomplished by adding as an additional parameter to the algorithm a set of
variables that are forbidden to be instantiated. Then, matching boils down to
unifying, using as this additional parameter the set of variables in t [2]. The
C-matching algorithm proposed could then, for instance, be used to extend the
nominal rewriting relation introduced in [14] modulo commutativity. Also, nom-
inal C-unification and matching are relevant to implement nominal narrowing
introduced in [4] allowing commutative symbols.

Organization. The paper is organized as follows. First, in Sect. 2, we provide the
necessary background. The nominal setting is explained and the problem of nom-
inal C-unification is defined. In Sect. 3, we present and explain the pseudocode for
the algorithm specified in PVS and implemented in Python. In Sect. 4, we discuss
the main aspects of the formalization: the principal lemmas, the hardest cases, how
introducing commutativity made the problem more complex and so on. Finally, in
Sect. 6, we conclude the paper and offer possible paths of future work. An extended
version of this paper is available at http://nominal.cic.unb.br.

2 Background

In this section, we provide the necessary background in nominal theory.

2.1 Nominal Terms, Permutations and Substitutions

In nominal theory, we consider disjoint countable sets of atoms A = {a, b, c, ...}
and of variables X = {X,Y,Z, ...}. A permutation π is a bijection of the form
π : A → A such that the domain of π (i.e., the set of atoms that are modified by
π) is finite. Permutations are usually represented as a list of swappings, where
the swapping (a b) exchanges the atoms a and b and fixes the other atoms.
Therefore, a permutation is represented as π = (a1 b1) :: ... :: (an bn) ::nil. π−1,
the inverse of this permutation, is computed by simply reversing the list.

http://nominal.cic.unb.br
http://nominal.cic.unb.br

126 M. Ayala-Rincón et al.

Definition 1 (Nominal Terms). Let Σ be a signature with function symbols
and commutative function symbols. The set T (Σ,A,X) of nominal terms is
generated according to the grammar:

s, t : := 〈〉 | a | π · X | [a]t | 〈s, t〉 | f t | fC〈s, t〉 (1)

where 〈〉 is the unit, a is an atom term, π·X is a moderated variable or suspension
(the permutation π is suspended on the variable X), [a]t is an abstraction (a term
with the atom a abstracted), 〈s, t〉 is a pair, f t is a function application and
fC〈s, t〉 is a commutative function application over a pair.

Remark 1. Pairs can be used to encode tuples with an arbitrary number of
arguments. For instance, the tuple (t1, t2, t3) could be constructed as 〈t1, 〈t2, t3〉〉.

Remark 2. Following [2], we impose that commutative functions receive a pair
as their argument. No generality is lost with this restriction and the analysis is
simplified.

Definition 2 (Permutation Action). The permutation action on atoms is
defined recursively: nil ·c = c and ((a b) ::π) ·c = a, if π ·c = b; ((a b) ::π) ·c = b,
if π · c = a; ((a b) ::π) · c = π · c otherwise. The action of permutations on terms
is defined recursively:

π · 〈〉 = 〈〉 π · (π′ · X) = (π :: π′) · X

π · [a]t = [π · a]π · t π · 〈s, t〉 = 〈π · s, π · t〉
π · f t = f π · t π · fC〈s, t〉 = fC〈π · s, π · t〉

Remark 3. We follow Gabbay’s permutative convention, which says that atoms
differ in their names. Therefore, if we consider atoms a and b, it is redundant to
say a �= b.

Example 1. To illustrate the action of a permutation on a term, consider π =
(a b) :: (c d) ::nil and t = f(a, c). Then, the result of the permutation action is
π · t = f(b, d).

Definition 3 (Nuclear Substitution). A nuclear substitution is a pair [X →
t], where X is a variable and t is a term. Nuclear substitutions act over terms:

〈〉[X → t] = 〈〉 a[X → t] = a

([a]s)[X → t] = [a](s[X → t]) π · Y [X → t] =
{

π · Y if X �= Y
π · t otherwise

〈s1, s2〉[X → t] = 〈s1[X → t], s2[X → t]〉 (f s)[X → t] = f (s[X → t])

(fC〈s1, s2〉)[X → t] = fC〈s1[X → t], s2[X → t]〉

Definition 4 (Substitution Action on Terms). A substitution σ is a list of
nuclear substitutions, which are applied consecutively to a term:

s id = s, where id is the empty list s(σ :: [X → t]) = (s[X → t])σ (2)

A Certified Functional Nominal C-Unification Algorithm 127

Remark 4. The notion of substitution defined here differs from the more tra-
ditional view of a substitution as a simultaneous application of nuclear substi-
tutions, although both are correct [6]. In our representation, the nuclear sub-
stitution applied first is the furthest from the term, i.e, the last one in the list
of nuclear substitutions. The notion here presented is closer to the concept of
triangular substitutions [15].

Example 2. Let σ = [X → a] :: [Y → f(X, b)] and t = [a]Y . Then, tσ =
[a]f(a, b).

2.2 Freshness and α-equality

Two valuable notions in nominal theory are freshness and α-equality, which are
represented, respectively, by the predicates # and ≈α.

– a#t means, intuitively, that if a occurs in t then it does so under an abstractor
[a].

– s ≈α t means, intuitively, that s and t are α-equivalent, i.e, they are equal
modulo the renaming of bound atoms.

These concepts are formally defined in Definitions 5 and 6.

Definition 5 (Freshness). A freshness context ∇ is a set of constraints of the
form a#X. An atom a is said to be fresh on t under a context ∇, denoted by
∇ 	 a#t, if it is possible to build a proof using the rules:

(#〈〉)∇ 	 a#〈〉 (#atom)∇ 	 a#b
(π−1 · a#X) ∈ ∇

(#X)∇ 	 a#π · X

(#[a]a)∇ 	 a#[a]t
∇ 	 a#t

(#[a]b)∇ 	 a#[b]t
∇ 	 a#s ∇ 	 a#t

(#pair)∇ 	 a#〈s, t〉
∇ 	 a#t

(#app)∇ 	 a#f t

∇ 	 a#s ∇ 	 a#t
(#c-app)

∇ 	 a#fC 〈s, t〉
Example 3. Notice that a#X 	 a#〈[a]〈X, a〉, [b]h〈X, b〉〉, by application of rules
(#pair), (#[a]a), (#[a]b), (#app), (#X) and (#atom).

Definition 6 (α-equality with commutative operators). Two terms t and
s are said to be α-equivalent under the freshness context Δ (Δ 	 t ≈α s) if it is
possible to build a proof using the rules:

Δ 	 s0 ≈α ti, Δ 	 s1 ≈α ti+1(mod2) (≈α C)
i = 0, 1Δ 	 fC〈s0, s1〉 ≈α fC〈t0, t1〉

(≈α atom)
Δ 	 a ≈α a

Δ 	 s ≈α t
(≈α app)

Δ 	 f s ≈α f t

Δ 	 s ≈α t
(≈α [a]a)

Δ 	 [a]s ≈α [a]t

Δ 	 s ≈α (a b) · t, Δ 	 a#t
(≈α [a]b)

Δ 	 [a]s ≈α [b]t
ds(π, π′)#X ⊆ Δ

(≈α var)
Δ 	 π · X ≈α π′ · X

Δ 	 s0 ≈α t0, Δ 	 s1 ≈α t1 (≈α pair)
Δ 	 〈s0, s1〉 ≈α 〈t0, t1〉

(≈α 〈〉)
Δ 	 〈〉 ≈α 〈〉

128 M. Ayala-Rincón et al.

Notation: We define the difference set between two permutations π and π′ as
ds(π, π′) = {a ∈ A|π ·a �= π′ ·a}. By extension, ds(π, π′)#X is the set containing
every constraint of the form a#X for a ∈ ds(π, π′).

Example 4. Notice that [a]a ≈α [b]b:

(≈α atom)
a ≈α (a b) · b

(#atom)
a#b

(≈α [a]b)
[a]a ≈α [b]b

2.3 Nominal C-Unification

Definition 7 (Unification Problem). A unification problem is a pair 〈∇, P 〉
where ∇ is a freshness context and P is a finite set of equations and freshness
constraints of the form s ≈? t and a#?t, respectively.

Remark 5. Consider ∇ and ∇′ freshness contexts and σ and σ′ substitutions.
We need the following notation to define a solution to a unification problem:

– ∇′ 	 ∇σ denotes that ∇′ 	 a#Xσ holds for each (a#X) ∈ ∇.
– ∇ 	 σ ≈ σ′ denotes that ∇ 	 Xσ ≈α Xσ′ for all X in dom(σ) ∪ dom(σ′).

Definition 8 (Solution for a Triple or Problem). Let δ be a substitution.
A solution for a triple P = 〈Δ, δ, P 〉 is a pair 〈∇, σ〉 that fulfills the following
four conditions:

1. ∇ 	 Δσ
2. ∇ 	 a#tσ, if a#?t ∈ P

3. ∇ 	 sσ ≈α tσ, if s ≈? t ∈ P
4. There exists λ such that ∇ 	 δλ ≈ σ

Then, a solution for a unification problem 〈Δ,P 〉 is a solution for the asso-
ciated triple 〈Δ, id, P 〉.

Definition 9 (Fixed Point Equation). An equation of the form π · X ≈α

π′ · X is called a fixed point equation.

Remark 6. Fixed point equations are not solved in C-unification because they
may have an infinite number of independent solutions. Instead, they are carried
on, as part of the solution to the unification problem [1].

Remark 7. One of the original features of this work is the separate treatment
of fixed point equations from the set of equational and freshness constraints.
There is a trivial extension of Definition 8 in order to consider this detachment.
Let FP be a set of fixed point equations. 〈∇, σ〉 is a solution to the quadruple
P = 〈Δ, δ, P, FP 〉 if all conditions of Definition 8 are satisfied and additionally:

– ∇ 	 π · Xσ ≈α π′ · Xσ, if π · X ≈? π′ · X ∈ FP

Remark 8. The problem of nominal C-unification, as the problem of first-order
C-unification, is NP-complete (see [7] and [2]).

A Certified Functional Nominal C-Unification Algorithm 129

3 Specification

We developed a functional nominal C-unification algorithm for unifying the
terms t and s. The algorithm is recursive and needs to keep track of the current
context, the substitutions made so far, the remaining terms to unify and the cur-
rent fixed point equations. Therefore, the algorithm receives as input a quadruple
(Δ,σ, PrbLst, FPEqLst), where Δ is the context we are working with, σ is a
list of the substitutions already done, PrbLst is a list of unification problems
which we must still unify (each equational constraint t ≈? s is represented as
a pair (t, s) in Algorithm 1) and FPEqLst is a list of fixed point equations we
have already computed.

The first call to the algorithm, in order to unify the terms t and s is simply:
UNIFY(∅, id, [(t, s)], ∅). The algorithm eventually terminates, returning a list (pos-
sibly empty) of solutions, where each solution is of the form (Δ,σ, FPEqLst).

Although extensive, the algorithm is simple. It starts by analysing the list
of terms it needs to unify. If PrbLst is an empty list, then it has finished and
can return the answer computed so far, which is the list: [(Δ,σ, FPEqLst)]. If
PrbLst is not empty, then there are terms to unify, and the algorithm starts by
trying to unify the terms t and s that are in the head of the list and only after
that it goes to the tail of the list. The algorithm is recursive, calling itself on
progressively simpler versions of the problem until it finishes.

3.1 Auxiliary Functions

Following the approach of [6], freshness constraints are treated separately from
the main function. This has the advantage of making the main function UNIFY
smaller, handling only equational constraints. To deal with the freshness con-
straints, the following auxiliary functions, which come from [6], were used:

– fresh subs?(σ,Δ) returns the minimal context (Δ′ in Algorithm 1) in which
a#?Xσ holds, for every a#X in the context Δ.

– fresh?(a, t) computes and returns the minimal context (Δ′ in Algorithm 1)
in which a is fresh for t.

Both functions also return a boolean (bool1 in Algorithm 1), indicating if it was
possible to find the mentioned context.

3.2 Main Algorithm

The pseudocode of the algorithm is presented in Algorithm 1.

Remark 9. When trying to unify fC〈t1, t2〉 with fC〈s1, s2〉 there are two possible
paths to take: try to unify t1 with s1 and t2 with s2, or try to unify t1 with s2 and
t2 with s1. This means that there are two branches that we must consider, and
since each branch can generate a solution, we may have more than one solution.
This is the reason why the algorithm here presented gives a list of solutions
as output. In nominal unification, by contrast, only one most general unifier is
given as solution.

130 M. Ayala-Rincón et al.

3.3 Examples

A simple example of the algorithm is given in Example 5. In this example, it is
possible to see how commutativity introduces branches and how the algorithm
calls itself with progressively simpler versions of the problem until it finishes.
Example 6 is a slightly more complex example, which uses Example 5.

Algorithm 1 - First Part - Functional Nominal C-Unification
1: procedure unify(Δ, σ, PrbLst, FPEqLst)
2: if nil?(PrbLst) then
3: return list((Δ, σ, FPEqLst))
4: else
5: cons((t, s), PrbLst′) = PrbLst
6: if (s matches π · X) and (X not in t) then

7: σ′ = {X → π−1 · t}
8: σ′′ = σ′ ◦ σ
9: (Δ′, bool1) = fresh subs?(σ′, Δ)
10: Δ′′ = Δ ∪ Δ′

11: PrbLst′′ = append((PrbLst′)σ′, (FPEqLst)σ′)
12: if bool1 then return unify(Δ′′, σ′′, PrbLst′′, nil)
13: else return nil
14: end if
15: else
16: if t matches a then
17: if s matches a then
18: return unify(Δ, σ, PrbLst′, FPEqLst)
19: else
20: return nil
21: end if
22: else if t matches π · X then
23: if (X not in s) then
24: � Similar to case above where s is a suspension
25: else if (s matches π′ · X) then
26: FPEqLst′ = FPEqLst ∪ { π · X ≈α π′ · X}
27: return unify(Δ, σ, PrbLst′, FPEqLst′)
28: else return nil
29: end if
30: else if t matches 〈〉 then
31: if s matches 〈〉 then
32: return unify(Δ, σ, PrbLst′, FPEqLst)
33: else return nil
34: end if
35: else if t matches 〈t1, t2〉 then
36: if s matches 〈s1, s2〉 then
37: PrbLst′′ = cons((s1, t1), cons((s2, t2), PrbLst′))
38: return unify(Δ, σ, PrbLst′′, FPEqLst)
39: else return nil
40: end if

Example 5. Suppose f is a commutative function symbol. This example shows
how the algorithm proceeds in order to unify f〈(a b) · X, c〉 with f〈X, c〉.

A Certified Functional Nominal C-Unification Algorithm 131

unify(∅, id, [f〈(a b) · X, c〉 ≈α f〈X, c〉], ∅)

unify(∅, id, [(a b) · X ≈α X, c ≈α c], ∅)

unify(∅, id, [c ≈α c], (a b) · X ≈α X)

unify(∅, id, nil, (a b) · X ≈α X)

(∅, id, (a b) · X ≈α X)

unify(∅, id, [(a b) · X ≈α c, X ≈α c], ∅)

unify(∅, {X → c}, [c ≈α c], ∅)

unify(∅, {X → c}, nil, ∅)

(∅, {X → c}, ∅)

Algorithm 1 - Second Part - Functional Nominal C-Unification
41: else if t matches [a]t1 then
42: if s matches [a]s1 then
43: PrbLst′′ = cons((t1, s1), PrbLst′)
44: return unify(Δ, σ, PrbLst′′, FPEqLst)
45: else if s matches [b]s1 then
46: (Δ′, bool1) = fresh?(a, s1)
47: Δ′′ = Δ ∪ Δ′

48: PrbLst′′ = cons((t1, (a b) s1), PrbLst′)
49: if bool1 then
50: return unify(Δ′′, σ, PrbLst′′, FPEqLst)
51: else return nil
52: end if
53: else return nil
54: end if
55: else if t matches f t1 then � f is not commutative
56: if s matches f s1 then
57: PrbLst′′ = cons((t1, s1), PrbLst′)
58: return unify(Δ, σ, PrbLst′′, FPEqLst)
59: else return nil
60: end if
61: else � t is of the form fC(t1, t2)

62: if s matches fC(s1, s2) then
63: PrbLst1 = cons((s1, t1), cons((s2, t2), PrbLst′))
64: sol1 = unify(Δ, σ, PrbLst1, FPEqLst)
65: PrbLst2 = cons((s1, t2), cons((s2, t1), PrbLst′))
66: sol2 = unify(Δ, σ, PrbLst2, FPEqLst)
67: return append(sol1, sol2)
68: else return nil
69: end if
70: end if
71: end if
72: end if
73: end procedure

Example 6. Suppose f and g are commutative function symbols, and h is a non-
commutative function symbol. This example shows how the algorithm would
unify g〈h d, f〈(a b) · X, c〉〉 with g〈f〈X, c〉, h d). Because g is commutative, the
algorithm explores two branches:

– On the first branch, the algorithm tries to unify h d with f〈X, c〉 and f〈(a b) ·
X, c) with h d. However, since it is impossible to unify h d with f〈X, c〉
(different function symbols), the algorithm returns an empty list, indicating
that no solution is possible for this branch.

132 M. Ayala-Rincón et al.

– On the second branch, the algorithm tries to unify h d with h d and
f〈(a b) · X, c〉 with f〈X, c〉. First, h d unifies with h d without any alter-
ations on the context Δ, the substitution σ or the list of fixed point equations
FPEqLst. Finally, the unification of f〈(a b) · X, c〉 with f〈X, c〉 was shown
in Example 5, and gives two solutions, which are also the solutions to this
example: (∅, id, (a b) · X ≈α X) and (∅, {X → c}, ∅).

4 Formalization

4.1 Termination

Termination of the algorithm was proved by proving the type-correctness condi-
tions (TCCs) generated by PVS [18]. In order to do that, a lexicographic measure
was defined:

lex2(|V ars(PrbLst) ∪ V ars(FPEqLst)|, size(PrbLst)) (3)

The first component in the lexicographic measure is the cardinality of the set
of variables which occur in PrbLst (the list of remaining unification problems)
or in FPEqLst (the list of fixed point equations). To compute the variables in
a list, we consider the variables in all terms of the list. Finally, the variables in
a term are computed recursively, as can be seen in Definition 10.

Definition 10 (Set of Variables). The set of variables in a term is recursively
defined as:

V ars(a) = ∅ V ars(〈〉) = ∅
V ars(π · X) = {X} V ars([a]t) = V ars(t)

V ars(〈t0, t1〉) = V ars(t0) ∪ V ars(t1) V ars(f t) = V ars(t)
V ars(fC〈t0, t1〉) = V ars(t0) ∪ V ars(t1)

The second component in the lexicographic measure is the sum of the size of
every unification problem. To calculate the size of the unification problem (t, s),
we only calculate the size of the first term t. This was an arbitrary choice, as the
measure would still work if we had taken the size of s or even the size of t plus
the size of s (in each recursive call, both the size of t and the size of s decrease).
Finally, the size of t is computed recursively according to Definition 11.

Definition 11 (Size of Terms). The size of terms is recursively computed as:

size(a) = 1 size(〈〉) = 1
size(π · X) = 1 size([a]t) = 1 + size(t)

size(〈t0, t1〉) = 1 + size(t0) + size(t1) size(f t) = 1 + size(t)
size(fC〈t0, t1〉) = 1 + size(t0) + size(t1)

The lexicographic measure decreases in each recursive call. The component
that decreases depends on the type of the terms t and s that are in the head of
the list of problems to unify. If one of them is a variable X, and we are not dealing
with a fixed point equation, then the algorithm will instantiate this variable X,
and the first component, |V ars(PrbLst) ∪ V ars(FPEqLst)|, will decrease. In
any other case, the second component, size(PrbLst), will decrease.

A Certified Functional Nominal C-Unification Algorithm 133

Remark 10. It was possible to reduce the lexicographic measure used in [2], from
4 parameters to only 2 parameters. The measure adopted in [2] was:

|P| = 〈|V ar(P≈)|, |P≈|, |Pnfp|, |P#|〉 (4)

where P≈ is the set of equation constraints in P , Pnfp is the set of non fixed
point equations in P and P# is the set of freshness constraints in P . Two ideas
were used in order to accomplish this reduction. The first was to separate the
treatment of freshness constraints from equational constraints, and treat the
freshness constraints with the help of the auxiliary functions of Sect. 3.1. This
idea comes from [6]. The second one is to separate the fixed point equations
from the equational constraints. This way, when a fixed point equation is found
in PrbLst, it is moved to FPEqLst, which makes size(PrbLst) diminish.

4.2 Soundness and Completeness

To state the main theorems that allow us to prove soundness and completeness,
we must first define the notion of a valid quadruple. A valid quadruple is an
invariant of the UNIFY function in Algorithm 1 with useful properties.

Definition 12 (Valid Quadruple). Let Δ be a freshness context, σ a substi-
tution, P a list of unification problems and FP a list of fixed point equations.
P = 〈Δ,σ, P, FP 〉 is a valid quadruple if the following two conditions hold:

− V ars(im(σ)) ∩ dom(σ) = ∅ − dom(σ) ∩ (V ars(P) ∪ V ars(FP)) = ∅

where im(σ) is the image of σ and dom(σ) is the domain of σ.

Remark 11. A valid quadruple has two desirable properties: the substitution is
idempotent (condition 1) and applying the substitution to P or FP produces
no effect.

Soundness. Corollary 1 states that UNIFY is sound. It follows directly by appli-
cation of Theorem 1.

Theorem 1 (Main Theorem for Soundness of UNIFY Algorithm). Sup-
pose (Δsol, σsol, FPEqLstsol) ∈ UNIFY (Δ,σ, PrbLst, FPEqLst), (∇, δ) is a
solution to 〈Δsol, σsol, ∅, FPEqLstsol〉 and 〈Δ,σ, PrbLst, FPEqLst〉 is a valid
quadruple. Then (∇, δ) is a solution to 〈Δ,σ, PrbLst, FPEqLst〉.

Proof. The proof is by induction on the lexicographic measure, according to the
form of the terms t and s that are in the head of PrbLst, the list of remain-
ing unification problems. The hardest cases are the ones of suspended variables
and abstractions (see Remark 14). Below we explain the case of commutative
functions.

In the case of commutative function symbols f〈t1, t2〉 and f〈s1, s2〉, there are
no changes in the context or the substitution from one recursive call to the next.

134 M. Ayala-Rincón et al.

Therefore, it is trivial to check that we remain with a valid quadruple and it
is also trivial to check all but the third condition of Definition 8. For the third
condition we have either ∇ 	 t1δ ≈α s1δ and ∇ 	 t2δ ≈α s2δ or ∇ 	 t1δ ≈α s2δ
and ∇ 	 t2δ ≈α s1δ. In any case, we are able to deduce ∇ 	 (f〈t1, t2〉)δ ≈α

(f〈s1, s2〉)δ by noting that (f〈t1, t2〉)δ = f〈t1δ, t2δ〉, (f〈s1, s2〉)δ = f〈s1δ, s2δ〉
and then using rule (≈α c−app) for alpha equivalence of commutative function
symbols.

Corollary 1 (Soundness of UNIFY Algorithm). Suppose (∇, δ) is a solu-
tion to 〈Δsol, σsol, ∅, FPEqLstsol〉, and (Δsol, σsol, FPEqLstsol) ∈ UNIFY
(∅, id, [(t, s)], ∅). Then (∇, δ) is a solution to 〈∅, id, [(t, s)], ∅〉.

Proof. Notice that 〈∅, id, [(t, s)], ∅〉 is a valid quadruple. Then, we apply
Theorem 1 and prove the corollary.

Remark 12. An interpretation of Corollary 1 is that if (∇, δ) is a solution to one
of the outputs of the algorithm UNIFY, then (∇, δ) is a solution to the original
problem.

Completeness. Corollary 2 states that UNIFY is complete. It follows directly
by application of Theorem 2.

Theorem 2 (Main Theorem for Completeness of UNIFY). Suppose (∇, δ)
is a solution to 〈Δ,σ, PrbLst, FPEqLst〉 and that 〈Δ,σ, PrbLst, FPEqLst〉 is a
valid quadruple. Then, there exists a computed output (Δsol, σsol, FPEqLstsol) ∈
UNIFY (Δ,σ, PrbLst, FPEqLst) such that the solution (∇, δ) is also a solution
to 〈Δsol, σsol, ∅, FPEqLstsol〉.

Proof. The proof is by induction on the lexicographic measure, according to the
form of the terms t and s that are in the head of PrbLst, the list of remaining
unification problems. The hardest cases are again the ones of suspended variables
and abstractions (see Remark 14). Below we explain the case of commutative
functions.

In the case of commutative function symbols f〈t1, t2〉 and f〈s1, s2〉, there
are no changes in the context or the substitution from one recursive call to the
next. Therefore, it is trivial to check that we remain with a valid quadruple
and it is also trivial to check all but the third condition of Definition 8. For
the third condition we have ∇ 	 (f〈t1, t2〉)δ ≈α (f〈s1, s2〉)δ and must prove
that either (∇ 	 t1δ ≈α s1δ and ∇ 	 t2δ ≈α s2δ) or (∇ 	 t1δ ≈α s2δ and
∇ 	 t2δ ≈α s1δ) happens. This again is solved by noting that (f〈t1, t2〉)δ =
f〈t1δ, t2δ〉, (f〈s1, s2〉)δ = f〈s1δ, s2δ〉 and then using rule (≈α c− app) for alpha
equivalence of commutative function symbols.

Corollary 2 (Completeness of UNIFY). Suppose (∇, δ) is a solution to the
input quadruple 〈∅, id, [(t, s)], ∅〉. Then, there exists (Δsol, σsol, FPEqLstsol) ∈
UNIFY (∅, id, [(t, s)], ∅) such that (∇, δ) is a solution to 〈Δsol, σsol, ∅, FPEqLstsol〉.

A Certified Functional Nominal C-Unification Algorithm 135

Proof. Notice that 〈∅, id, [(t, s)], ∅〉 is a valid quadruple. Then, we apply
Theorem 2 and prove the corollary.

Remark 13. An interpretation of Corollary 2 is that if (∇, δ) is a solution to the
initial problem, then (∇, δ) is also a solution to one of the outputs of UNIFY.

5 Interesting Points of Formalization and Implementation

We discuss interesting points of the formalization and implementation here.

Remark 14. To prove correctness and completeness of the algorithm, we work
with the terms t and s that are in the head of PrbLst. We divide the proof by
cases. The most interesting case is when t or s is a suspension π · X and X does
not occur in the other term (see Algorithm 1).

In this case, the algorithm receives as arguments Δ, σ, PrbLst and FPEqLst
and the next recursive call is made with four different parameters: Δ′′, σ′′,
PrbLst′′ and nil (see Algorithm 1). Therefore, all of the four conditions of the
Definition 8 are not trivially satisfied. Moreover, since in the next recursive call
we will be working with a new substitution σ′′ we must prove that the quadruple
we are working with remains valid (this is proved by noting that when a variable
X is added to the domain of the substitution, all occurrences of it in PrbLst
and in FPEqLst are instantiated, maintaining the validity of the quadruple).

The case of unifying t = [a]t1 with s = [b]s1 is also interesting, since both
the context and the list of problems to unify suffer modifications in the recursive
call. In all the remaining cases, there are no changes in the context nor in the
substitution, making them easier. In these remaining cases, only one condition
(the third) of the four in Definition 8 is not trivially satisfied.

Remark 15. Introducing commutative function symbols to the nominal unifica-
tion algorithm presented in [6] meant we had to:

– Unify terms rooted by commutative function symbols (for instance, f(t1, t2)
with f(s1, s2)). First, the algorithm tries to unify t1 with s1 and t2 with s2,
generating a list of solutions sol1 (see Algorithm 1). Then, the algorithm tries
unifying t1 with s2 and t2 with s1, generating a list of solutions sol2. The final
result is then simply the concatenation of both lists.

– Handle fixed point equations. This was also straightforward. We keep a sep-
arate list of fixed point equation (FPEqLst), and when the algorithm recog-
nizes a fixed point equation in PrbLst it takes this equation out of PrbLst
and puts it on FPEqLst.

– Define an appropriate data structure for the problem and the solutions. This
was not straightforward. As mentioned before, since commutativity intro-
duced branches, the recursive calls of the algorithm can be seen as a tree
(see Example 5). Therefore, initially, an approach using a tree data structure
was planned (which would have complicated the analysis). However, since the
algorithm simply solves one branch and then the other, we realized all that

136 M. Ayala-Rincón et al.

was needed was to do two recursive calls (one for each branch) and append
the two lists of solutions generated. Therefore, we were able to avoid the tree
data structure, working instead with lists, which simplified the specification.

Remark 16. Since PVS does not support automatic extraction of Python code,
the translation of the PVS specification for the Python implementation was done
manually. The code follows strictly the lines of the specification (Algorithm 1)
with small adjustments, such as the inclusion of two parameters in the algo-
rithm implementation, in order to support a verbose mode that prints the tree
of recursive calls. This, and the representation of atoms, variables and terms
in the implementation is discussed in the extended version. An OCaml imple-
mentation of a nominal C-unification algorithm was previously developed [2],
but in contrast to the current Python implementation, the OCaml implemen-
tation does not correspond in a direct way to the formalized non-deterministic
inductive specification [2].

6 Conclusion and Future Work

In this paper, we explained the problem of nominal C-unification and presented a
functional algorithm for doing this task. We observed how nominal C-unification
has applications on logic programming languages and how the algorithm here
presented could be straightforwardly converted to a matching algorithm, which
in turn would have applications in nominal rewriting.

Our approach differs from the only other work in nominal C-unification ([2])
in two main points. First, we do not present a set of non-deterministic trans-
formation rules, instead, we opt for a recursive specification, implemented in
Python. Second, we follow the approach in [6] and deal with freshness contexts
separately. This simplifies the main function and, along with the idea of using a
different parameter to represent fixed point equations, allowed us to reduce the
lexicographic measure used in [2] from four parameters to only two parameters,
thus simplifying the formalizations of termination, soundness and completeness.

We are currently working in running executable code from PVS (using the
PVSIO feature that lets you execute verified algorithms inside the PVS environ-
ment and provides input and output operators) and comparing this approach
with the Python implementation. Further details are discussed in the extended
version of the paper.

Finally, a future study would be extending the formalization to handle the
more general case of Mal’cev permutative theories, which include n-ary functions
with permutative arguments [13]. Other possible path, as indicated in [11], is
expanding the algorithm to handle other equational theories such as unification
modulo associative and associative-commutative function symbols (A- and AC-
unification).

A Certified Functional Nominal C-Unification Algorithm 137

References

1. Ayala-Rincón, M., de Carvalho-Segundo, W., Fernández, M., Nantes-Sobrinho, D.:
On solving nominal fixpoint equations. In: Dixon, C., Finger, M. (eds.) FroCoS
2017. LNCS (LNAI), vol. 10483, pp. 209–226. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-66167-4 12

2. Ayala-Rincón, M., de Carvalho-Segundo, W., Fernández, M., Nantes-Sobrinho, D.:
Nominal C-unification. In: Fioravanti, F., Gallagher, J.P. (eds.) LOPSTR 2017.
LNCS, vol. 10855, pp. 235–251. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-94460-9 14

3. Ayala-Rincón, M., de Carvalho-Segundo, W., Fernández, M., Nantes-Sobrinho, D.,
Rocha-Oliveira, A.: A formalisation of nominal alpha-equivalence with A, C, and
AC function symbols. Theoret. Comput. Sci. 781, 3–23 (2019)

4. Ayala-Rincón, M., Fernández, M., Nantes-Sobrinho, D.: Nominal narrowing. In:
1st International Conference on Formal Structures for Computation and Deduction
(FSCD). LIPIcs, vol. 52, pp. 11:1–11:17 (2016)

5. Ayala-Rincón, M., Fernández, M., Nantes-Sobrinho, D.: Fixed-point constraints
for nominal equational unification. In: 3rd International Conference on Formal
Structures for Computation and Deduction (FSCD). LIPIcs, vol. 108, pp. 7:1–7:16
(2018)

6. Ayala-Rincón, M., Fernández, M., Rocha-Oliveira, A.: Completeness in PVS of a
nominal unification algorithm. Elect. Notes Theor. Comp. Sci. 323, 57–74 (2016)

7. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1999)

8. Baader, F., Snyder, W.: Unification theory. In: Handbook of Automated Reasoning
(in 2 volumes), pp. 445–532. Elsevier and MIT Press (2001)

9. Baumgartner, A., Kutsia, T., Levy, J., Villaret, M.: Nominal anti-unification. In:
26th International Conference on Rewriting Techniques and Applications (RTA).
LIPIcs, vol. 36, pp. 57–73 (2015)

10. Calvès, C., Fernández, M.: A polynomial nominal unification algorithm. Theoret.
Comput. Sci. 403(2–3), 285–306 (2008)

11. de Carvalho Segundo, W.L.R.: Nominal equational problems modulo associativ-
ity, commutativity and associativity-commutativity. Ph.D. thesis, Universidade de
Brasilia (2019)

12. Cheney, J., Urban, C.: αProlog: a logic programming language with names, binding
and α-equivalence. In: Demoen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol.
3132, pp. 269–283. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-27775-0 19

13. Comon, H.: Complete axiomatizations of some quotient term algebras. Theoret.
Comput. Sci. 118(2), 167–191 (1993)

14. Fernández, M., Gabbay, M.: Nominal rewriting. Inf. Comput. 205(6), 917–965
(2007)

15. Kumar, R., Norrish, M.: (Nominal) unification by recursive descent with triangular
substitutions. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172,
pp. 51–66. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14052-
5 6

16. Levy, J., Villaret, M.: Nominal unification from a higher-order perspective. In:
Voronkov, A. (ed.) RTA 2008. LNCS, vol. 5117, pp. 246–260. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-70590-1 17

https://doi.org/10.1007/978-3-319-66167-4_12
https://doi.org/10.1007/978-3-319-66167-4_12
https://doi.org/10.1007/978-3-319-94460-9_14
https://doi.org/10.1007/978-3-319-94460-9_14
https://doi.org/10.1007/978-3-540-27775-0_19
https://doi.org/10.1007/978-3-540-27775-0_19
https://doi.org/10.1007/978-3-642-14052-5_6
https://doi.org/10.1007/978-3-642-14052-5_6
https://doi.org/10.1007/978-3-540-70590-1_17

138 M. Ayala-Rincón et al.

17. Levy, J., Villaret, M.: An efficient nominal unification algorithm. In: Proceedings
of the 21st International Conference on Rewriting Techniques and Applications
(RTA). LIPIcs, vol. 6, pp. 209–226 (2010)

18. Owre, S., Shankar, N., Rushby, J.M., Stringer-Calvert, D.W.J.: PVS System Guide
- Version 2.4 (2001). http://pvs.csl.sri.com/documentation.shtml

19. Pitts, A.: Nominal Sets: Names and Symmetry in Computer Science. Cambridge
University Press, Cambridge (2013)

20. Schmidt-Schauß, M., Kutsia, T., Levy, J., Villaret, M.: Nominal unification of
higher order expressions with recursive let. In: Hermenegildo, M.V., Lopez-Garcia,
P. (eds.) LOPSTR 2016. LNCS, vol. 10184, pp. 328–344. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63139-4 19

21. Urban, C.: Nominal techniques in Isabelle/HOL. J. Autom. Reasoning 40(4), 327–
356 (2008)

22. Urban, C., Pitts, A., Gabbay, M.: Nominal unification. Theoret. Comput. Sci.
323(1–3), 473–497 (2004)

http://pvs.csl.sri.com/documentation.shtml
https://doi.org/10.1007/978-3-319-63139-4_19

Modeling and Reasoning in Event
Calculus Using Goal-Directed Constraint

Answer Set Programming

Joaqúın Arias1,2(B) , Zhuo Chen3 , Manuel Carro1,2 , and Gopal Gupta3

1 IMDEA Software Institute, Madrid, Spain
{joaquin.arias,manuel.carro}@imdea.org

2 Universidad Politécnica de Madrid, Madrid, Spain
manuel.carro@upm.es

3 University of Texas at Dallas, Richardson, USA
{zhuo.chen,gupta}@utdallas.edu

Abstract. Automated commonsense reasoning is essential for building
human-like AI systems featuring, for example, explainable AI. Event Cal-
culus (EC) is a family of formalisms that model commonsense reasoning
with a sound, logical basis. Previous attempts to mechanize reasoning
using EC faced difficulties in the treatment of the continuous change
in dense domains (e.g., time and other physical quantities), constraints
among variables, default negation, and the uniform application of differ-
ent inference methods, among others. We propose the use of s(CASP), a
query-driven, top-down execution model for Predicate Answer Set Pro-
gramming with Constraints, to model and reason using EC. We show
how EC scenarios can be naturally and directly encoded in s(CASP)
and how its expressiveness makes it possible to perform deductive and
abductive reasoning tasks in domains featuring, for example, constraints
involving both dense time and dense fluents.

Keywords: ASP · Goal-directed · Event Calculus · Constraints

1 Introduction

The ability to model continuous characteristics of the world is essential for Com-
monsense Reasoning (CR) in many domains that require dealing with continu-
ous change: time, the height of a falling object, the gas level of a car, the water
level in a sink, etc.

Event Calculus (EC) is a formalism based on many-sorted predicate logic
[13,23] that can represent continuous change and capture the commonsense law
of inertia, whose modeling is a pervasive problem in CR. In EC, time-dependent
properties and events are seen as objects and reasoning is performed on the truth
values of properties and the occurrences of events at a point in time.

Work partially supported by EIT Digital, MINECO project TIN2015-67522-C3-1-R
(TRACES), Comunidad de Madrid project S2018/TCS-4339 BLOQUES-CM co-
funded by EIE Funds of the European Union, and US NSF Grant IIS 1718945.

c© Springer Nature Switzerland AG 2020
M. Gabbrielli (Ed.): LOPSTR 2019, LNCS 12042, pp. 139–155, 2020.
https://doi.org/10.1007/978-3-030-45260-5_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45260-5_9&domain=pdf
http://orcid.org/0000-0003-4148-311X
http://orcid.org/0000-0003-2322-9070
http://orcid.org/0000-0001-5199-3135
http://orcid.org/0000-0001-9727-0362
https://doi.org/10.1007/978-3-030-45260-5_9

140 J. Arias et al.

Answer Set Programming (ASP) is a logic programming paradigm that was
initially proposed to realize non-monotonic reasoning [17]. ASP has also been
used to model the Event Calculus [15,16]. Classical implementations of ASP are
limited to variables ranging over discrete and bound domains and use mech-
anisms such as grounding and SAT solving to find out models (called answer
sets) of ASP programs. However, non-monotonic reasoning often needs variables
ranging over dense domains (e.g., those involving time or physical quantities) to
faithfully represent the properties of these domains.

This paper presents an approach to modeling Event Calculus using
s(CASP) [1] as the underlying reasoning infrastructure. The s(CASP) system is
an implementation of Constraint Answer Set Programming over first-order pred-
icates which combines ASP and constraints. It features predicates, constraints
among non-ground variables, uninterpreted functions, and, most importantly, a
top-down, query-driven execution strategy. These features make it possible to
return answers with non-ground variables (possibly including constraints among
them) and to compute partial models by returning only the fragment of a stable
model that is necessary to answer a given query. Thanks to its interface with
constraint solvers, sound non-monotonic reasoning with constraints is possible.

This approach achieves more conciseness and expressiveness than other
related approaches because dense domains can be faithfully modeled as con-
tinuous quantities, while in other proposals such domains [15,20] had to be dis-
cretized, therefore losing precision or even soundness. Additionally, in our app-
roach the amalgamation of ASP and constraints and its realization in s(CASP)
is considerably more natural: under s(CASP), answer set programs are executed
in a goal-directed manner so constraints encountered along the way are collected
and solved dynamically as execution proceeds—this is very similar to the way in
which Prolog has been extended with constraints. The implementation of other
ASP systems featuring constraints is considerably more complex.

2 Related Work

Previous work translated discrete EC into ASP [15,16] by reformulating the
EC models as first-order stable models and translating the (almost universal)
formulas of EC into a logic program that preserves stable models. Given a finite
domain, EC2ASP (and its evolution, F2LP) compile (discrete) Event Calculus
formulas into ASP programs [15,16]. This translation scheme relies on two facts:
second order circumscription and first order stable model semantics coincide
on canonical formulas, and almost-universal formulas can be transformed into a
logic program while preserving the stable models. As a result, computing models
of Event Calculus descriptions can be done by computing the stable models of
an appropriately generated program.

Clearly, approaches featuring discrete domains cannot faithfully handle con-
tinuous quantities such as time. In addition, because of their reliance on SAT
solvers to find the stable models, they can only handle safe programs. In con-
trast, the s(CASP) system, because of its direct support for predicates with

Event Calculus Using Goal-Directed Constraint ASP 141

arbitrary terms, constructive negation, and the novel forall mechanism [1,18],
program safety is not a requirement. Thus, s(CASP) can model Event Calculus
axioms much more directly and elegantly.

The approaches mentioned above assume discrete quantities and do not sup-
port reasoning about continuous time or change. As long as SAT-based ASP sys-
tems are used to model Event Calculus, continuous fluents cannot be straightfor-
wardly expressed since they require unbounded, dense domains for the variables.
The work closest to incorporating continuous time makes use of SMT solvers. In
this approach, constraints are incorporated into ASP and the grounded the-
ory is executed using an SMT solver [14]. However, this approach has not
been directly applied to modeling the Event Calculus. The closest tool chain
is ASPMT2SMT [3] that uses gringo to partially ground the ASPMT theories
and generate constraints that are processed by Z3. However, regular, discrete
ASP variables are at the heart of the model, and these are grounded and used to
generate the constraints. Therefore, if these discrete variables approximate con-
tinuous variables in the model, the constraints generated will only approximate
the conditions of the original problem and therefore their solutions will also be
an approximation (or a subset) of the solutions for the real problem. In other
words, the initial discretization done for the ASP variables will be propagated
via the generated constraints to the final solutions that will, in the best case, be
a discretized version of the actual solutions. As an example, if time is discretized,
the solutions to the model will suffer from this discretization.

Other ASP-based approaches to deal with planning in continuous domains
include, for example, action languages [10] which were developed to model the
elements of natural language that are used to describe the effects of actions,
and PDDL+ [6], which was developed to allow reasoning with continuous time-
dependent effects. Action languages have been implemented using answer set
programming [8] and there have been extensions of action languages to accom-
modate time: for example, the action language C+ has been extended to accom-
modate continuous time [14]. PPDL+ models temporal behavior in terms of
the initiation and termination of processes, which in turn act upon the numeric
components of states. Processes are initiated and terminated instantaneously by
actions or exogenous events. Continuous changes are made by concurrent pro-
cesses. In PDDL+, reasoning is monotonic and thus the degree of elaboration
tolerance is low. There are implementations of PDDL+ using constraint answer
set programming (CASP) [2] though these have not been applied to modeling
the Event Calculus and requires the use of discrete variables to model some
quantities, e.g., time.

EC can be written as a (Horn-clause) logic program, but it cannot be executed
directly by Prolog [25], as it lacks some necessary features, such as constructive
negation, deduction of negative literals, and (to some extent) detection of infinite
failure [21]. A common approach is to write a metainterpreter specific to the EC
variant at hand. This can be as complex as writing a (specialized) theorem
prover or, more often, a specialized interpreter whose correctness is difficult to
ascertain (see the code at [4]). Therefore, some Prolog implementations of EC

142 J. Arias et al.

do not completely formalize the calculus or implement a reduced version. In our
case, we leverage on the capabilities of s(CASP) to provide constructive, sound
negation, negative rule heads, and loop detection [1].

3 Background

Answer Set Programming is a logic programming and modelling language
that evaluates normal logic programs under the stable model semantics [9].
s(ASP) [18] is a top-down, goal-driven ASP system that can evaluate ASP pro-
grams with function symbols (functors) without grounding them either before
or during execution. Grounding is a procedure that substitutes program vari-
ables with the possible values from their domain. For most classical ASP solvers,
grounding is a necessary pre-processing phase. Grounding, however, requires pro-
gram variables to be restricted to take values in a finite domain. As a result, ASP
solvers cannot be used to model continuous time or change.

3.1 s(CASP)

s(CASP) [1] extends s(ASP) similarly to how CLP extends Prolog. s(CASP)
adds constraints to s(ASP); these constraints are kept and used both during
execution and in the answer sets. Constraints have historically proved to be
effective in improving both expressiveness and efficiency in logic programming, as
constraints can succinctly express properties of a solution and reduce the search
space. As a result, s(CASP) is more expressive and faster than s(ASP), while
retaining the capability of executing non-ground predicate answer set programs.
An s(CASP) program is a set of clauses of the following form:

a :- ca, b1, . . ., bm, not bm+1, . . ., not bn.

where a and b1, . . ., bn are atoms and not corresponds to default negation. The
difference w.r.t. an ASP program is ca, a simple constraint or a conjunction of
constraints.

In s(CASP), and unlike Prolog’s negation as failure, not p(X) can return
bindings for X on success. This is possible thanks to the use of constructive
negation [18] and coinduction [11]. This highlights two differences w.r.t. Prolog:
first, s(CASP) resolves negated atoms not bi against dual rules of the program
[1,18], which makes it possible for a non-ground call not p(X) to return the bind-
ings for X for which the positive call p(X) would have failed, therefore supporting
constructive negation. Second, the dual program is not interpreted under SLD
semantics in order to handle the different kinds of loops that can appear in
s(CASP) [1,18].

The execution of an s(CASP) program starts with a query of the form
?- cq, l1,. . ., lm, where li are (negated) literals and cq is a conjunction of

constraint(s). The answers to the query are partial stable models where each
partial model is a subset of a stable model [9] including only the literals neces-
sary to support the query (see [1] for details). Additionally, for each partial stable
model s(CASP) returns on backtracking the justification tree and the bindings

Event Calculus Using Goal-Directed Constraint ASP 143

Predicate Meaning

InitiallyN(f) fluent f is false at time 0
InitiallyP (f) fluent f is true at time 0
Happens(e, t) event e occurs at time t
Initiates(e, f, t) if e happens at time t, f is true and not released

from the commonsense law of inertia after t
Terminates(e, f, t) if e occurs at time t, f is false and not released

from the commonsense law of inertia after t
Releases(e, f, t) if e occurs at time t, f is released from the com-

monsense law of inertia after t
T rajectory(f1, t1, f2, t2) if f1 is initiated by an event that occurs at t1,

then f2 is true at t2

StoppedIn(t1, f, t2) f is stopped between t1 and t2
StartedIn(t1, f, t2) f is started between t1 and t2

HoldsAt(f, t) fluent f is true at time t

Fig. 1. Basic event calculus (BEC) predicates (e = event, f , f1, f2 = fluents, t, t1, t2
= timepoints)

for the free variables of the query that correspond to the most general unifier
(mgu) of a successful top-down derivation consistent with this stable model.

3.2 Event Calculus

EC is a formalism for reasoning about events and change [23], of which there
are several axiomatizations. There are three basic, mutually related, concepts
in EC: events, fluents, and time points (see Fig. 1). An event is an action or
incident that may occur in the world: for instance, a person dropping a glass is
an event. A fluent is a time-varying property of the world, such as the altitude of
a glass. A time point is an instant in time. Events may happen at a time point;
fluents have a truth value at any time point or over an interval, and their truth
values are subject to change upon the occurrence of an event. In addition, fluents
may have (continuous) quantities associated with them when they are true. For
example, the event of dropping a glass initiates the fluent that captures that
the glass is falling, and perhaps its height above the ground, and the event of
holding a glass terminates the fluent that the glass is falling. An EC description
consists of a universal theory and a domain narrative. The universal theory is a
conjunction of EC axioms and the domain narrative consists of the causal laws
of the domain and the known events and fluent properties.

Circumscription [19] is applied to EC domain narratives to minimize the
extension of predicates and has two effects: the only events that happen are
those defined and the only effects of events are those defined.

The original EC (OEC) was introduced by Kowalski and Sergot in 1986 [13].
OEC has sorts for event occurrences, fluents, and time periods. In this paper

144 J. Arias et al.

BEC1. StoppedIn(t1, f, t2) ≡
∃e, t (Happens(e, t) ∧ t1 < t < t2 ∧ (Terminates(e, f, t) ∨ Releases(e, f, t)))

BEC2. StartedIn(t1, f, t2) ≡
∃e, t (Happens(e, t) ∧ t1 < t < t2 ∧ (Initiates(e, f, t) ∨ Releases(e, f, t)))

BEC3. HoldsAt(f2, t2) ←
Happens(e, t1) ∧ Initiates(e, f1, t1) ∧ Trajectory(f1, t1, f2, t2) ∧ ¬StoppedIn(t1, f1, t2)

BEC4. HoldsAt(f, t) ← InitiallyP (f) ∧ ¬StoppedIn(0, f, t)
BEC5. ¬HoldsAt(f, t) ← InitiallyN(f) ∧ ¬StartedIn(0, f, t)
BEC6. HoldsAt(f, t2) ←

Happens(e, t1) ∧ Initiates(e, f, t1) ∧ t1 < t2 ∧ ¬StoppedIn(t1, f, t2)
BEC7. ¬HoldsAt(f, t2) ←

Happens(e, t1) ∧ Terminates(e, f, t1) ∧ t1 < t2 ∧ ¬StartedIn(t1, f, t2)

Fig. 2. Formalization of BEC axioms [23].

we use the Basic Event Calculus (BEC) formulated by Shanahan [21]. Figure 2
summarizes the seven BEC axioms. An explanation of these axioms follows:

– Axiom BEC1. A fluent f is stopped between time points t1 and t2 iff it is
terminated or released by some event e that occurs after t1 and before t2.

– Axiom BEC2. A fluent f is started between time points t1 and t2 iff it is
initiated or released by some event e that occurs after t1 and before t2.

– Axiom BEC3. A fluent f2 is true at time t2 if a fluent f1 initiated at t1 does
not finish before t2 and it makes fluent f2 be true.1

– Axiom BEC4. A fluent f is true at time t if it is true at time 0 and is not
stopped on or before t.

– Axiom BEC5. A fluent f is false at time t if it is false at time 0 and it is
not started on or before t.

– Axiom BEC6. A fluent f is true at time t2 if it is initiated at some earlier
time t1 and it is not stopped before t2.

– Axiom BEC7. A fluent f is false at time t2 if it is terminated at some earlier
time t1 and it is not started on or before t2.

4 From Event Calculus to s(CASP)

4.1 Modeling BEC with s(CASP)

Two key factors contribute to s(CASP)’s ability to model Event Calculus: the
preservation of non-ground variables during the execution and the integration
with constraint solvers.
1 For implementation convenience, and without loss of expressiveness, we assume that

argument t2 in Trajectory(f1, t1, f2, t2) is not a time difference w.r.t. t1, but an
absolute time after t1.

Event Calculus Using Goal-Directed Constraint ASP 145

1 %% BEC1

2 stoppedIn(T1,F,T2) :-

3 T1 #< T, T #< T2,

4 terminates(E,F,T),

5 happens(E,T).

6 stoppedIn(T1,F,T2) :-

7 T1 #< T, T #< T2,

8 releases(E,F,T),

9 happens(E,T).

10 %% BEC2

11 startedIn(T1,F,T2) :-

12 T1 #< T, T #< T2,

13 initiates(E,F,T),

14 happens(E,T).

15 startedIn(T1,F,T2) :-

16 T1 #< T, T #< T2,

17 releases(E,F,T),

18 happens(E,T).

19 %% BEC3

20 holdsAt(F2,T2) :-

21 initiates(E,F1,T1),

22 happens(E,T1),

23 trajectory(F1,T1,F2,T2),

24 not stoppedIn(T1,F1,T2).

25 %% BEC4

26 holdsAt(F,T) :-

27 0 #< T,

28 initiallyP(F),

29 not stoppedIn(0,F,T).

30 %% BEC5

31 -holdsAt(F,T) :-

32 0 #< T,

33 initiallyN(F),

34 not startedIn(0,F,T).

35 %% BEC6

36 holdsAt(F,T) :-

37 T1 #< T,

38 initiates(E,F,T1),

39 happens(E,T1),

40 not stoppedIn(T1,F,T).

41 %% BEC7

42 -holdsAt(F,T) :-

43 T1 #< T,

44 terminates(E,F,T1),

45 happens(E,T1),

46 not startedIn(T1,F,T).

47 %% Consistency

48 :- -holdsAt(F,T), holdsAt(F,T).

Fig. 3. Basic Event Calculus (BCE) modeled in s(CASP)

Treatment of Variables in s(CASP): Thanks to the usage of non-ground
variables, s(CASP) is able to directly model Event Calculus axioms that would
otherwise require “unsafe” rules. In classical ASP, a rule is safe when every
variable that appears in its head or in a negated literal in its body also appears
in a positive literal in the body of the rule, and it is unsafe otherwise. Safety
guarantees that every variable can be grounded. For example, BEC4 is unsafe
since parameter t, which appears in the head, does not appear in a positive
literal in the body (i.e., it only appears in ¬StoppedIn(0, f, t)). A SAT-based
ASP solver such as clingo [7] will not be able to directly process unsafe rules like
this. However, the top-down execution strategy of s(CASP) makes it possible to
keep logical variables both during execution and in answer sets and therefore
free (logical) variables can be handled in heads and in negated literals.

Integration with Constraint Solvers: The s(CASP) system has a generic
interface to enable plugging in constraint solvers. s(CASP) currently uses
Holzbaur’s CLP(Q) linear constraints solver [12], that supports the constraints
<,>, =, �=, ≤, ≥. As we saw, the definitions and axioms of BEC require inequal-
ity comparisons over time points, and the ability of s(CASP) to make use of
constraint solvers makes it ideal to model continuous time in EC.

146 J. Arias et al.

4.2 Translating the BEC Axioms into s(CASP)

Our translation of the BEC axioms into s(CASP) is similar to that of the systems
EC2ASP and F2LP [15,16], but we differ in some key aspects that improve per-
formance and are relevant for expressiveness: the treatment of rules with negated
heads, the possibility of generating unsafe rules, and the use of constraints over
rationals. We describe below, with the help of a running example, the transla-
tion that turns logic statements (as found in BEC) into an s(CASP) program.
The code corresponding to the translations of the axioms of BEC in Fig. 2 can
be found in Fig. 3. s(CASP) code follows the syntactical conventions of logic
programming: constants (including function names) and predicate symbols start
with a lowercase letter and variables start with an uppercase letter. In addition,
logic constraints are written as constraints in s(CASP), (e.g., #<) to make it clear
that they do not correspond to Prolog’s arithmetic comparisons:

– Atoms and Constants: Their names are preserved. Uniqueness of
Names [24] is assumed by default (and enforced) in logic programming.

– Constraints: Predicates that represent constraints (e.g., on time) are
directly translated to their counterparts in s(CASP). E.g., t1 < t2 becomes
T1 #< T2, which is handled by CLP(Q), one of the available constraint solvers.
The translation (and s(CASP) itself) is parametric on the constraint domain.

– Definitions: The axiomatization of BEC uses definitions of the form
D(x) ≡ ∃yB(x, y), where B(x, y) is a conjunction of (negated) atoms, dis-
junctions of atoms, and constraints (e.g., BEC1). The use of definitions
makes it easier to build conceptual blocks out of basic predicates. How-
ever, for performance reasons we treat them as if they were written as
∀x(D(x) ← ∃yB(x, y)), following [15]. Intuitively, if we ignore the truth value
of D in the (partial) models that s(CASP) generates, the models returned
using implication and/or equivalence are the same, and the literal D can
be ignored because if were expanded where it is used, it would have dis-
appeared. Additionally, s(CASP) internally performs Clark’s completion [5]
to the s(CASP) program, and therefore, we can assume that s(CASP) rules
expresses all possible ways in which heads can be true.

– Rules with Positive Heads: A rule (e.g., BEC6)

∀x(H(x) ← ∃y(A(y) ∧ ¬B(x, y) ∧ x < y))

where x < y is a constraint, is translated into

1 h(X) :- X #< Y, a(Y), not b(X,Y).

s(CASP) performs left-to-right evaluation, and since constraint solvers are
deterministic, constraining variables as soon as possible helps reduce the size
of the search tree.

– Rules with Negated Heads: BEC rules 5 and 7 infer negated heads
¬HoldsAt(f, t) while rules 4 and 6 infer positive heads HoldsAt(f, t), i.e.,
they follow, respectively, the scheme

∀x(H(x) ← ∃yA(x, y)) ∧ ∀x(¬H(x) ← ∃yB(x, y))

Event Calculus Using Goal-Directed Constraint ASP 147

The standard approach to translate rules with negated heads is to convert
them into global constraints [16]:

1 :- b(X,Y), h(X).

Our approach is to define instead a rule for the literal -h(X) that captures
the explicit evidence that h(X) is false:

1 -h(X) :- b(X,Y).

which makes it possible to call -h(X) in a top-down execution. This construct
was termed classical negation in [18]
and behaves as a regular predicate, except that the s(CASP) compiler, to
ensure that -h(X) and h(X) cannot be simultaneously true, automatically
adds the global constraint :- -h(X),h(X). Therefore, s(CASP) can detect an
inconsistency (and will return an empty model) if both HoldsAt(f, t) and
¬HoldsAt(f, t) can be simultaneously derived from an BEC narrative. Since
circumscription is not applied to the EC theory, not being able to derive
HoldsAt(f, t) does not immediately determine that its negation is true. We
will see how this is connected with the translation of the narrative.

– Rules with Disjunctive Bodies: A rule (e.g., BEC1)

∀x[H(x) ← ∃y((A(x, y) ∨ B(x, y)) ∧ C(x, y))]

is translated into two separate clauses:

1 h(X) :- a(X,Y), c(X,Y).

2 h(X) :- b(X,Y), c(X,Y).

4.3 Translation of the Narrative

The definition of a given scenario (its narrative part) states the basic actions
and effects using the predicates in Fig. 1. EC assumes circumscription of the
predicates defined in the narrative: the events (resp., effects) known to occur
are the only events (resp., effects) that occur. Note that this is automatic in
s(CASP), since it produces the Clark’s completion of s(CASP) programs when
generating the dual program. In addition, global constraints can restrict the
admissible states of the system.

Every basic BEC predicate P (x) (where P can stand for an event occur-
rence, an effect of an event on a fluent, etc.) is translated into an s(CASP) rule
P (x) ← γ, where γ states all the cases where P (x) is true. In many cases, these
are facts, but in other cases γ captures the conditions for P (x) to hold.

Let us consider example 14 in [23], which reasons about turning a light switch
on and off. Figure 4 shows the encoding of this example under s(CASP).

– Events: The description below (translated in lines 1–3 of Fig. 4):

Happens(e, t) ≡ (e = TurnOn ∧ (t = 2 ∨ t = 6)) ∨
(e = TurnOff ∧ t = 4)

states that the TurnOn event will happen at time t = 2 and t = 6, and that
TurnOff will happen at t = 4.

148 J. Arias et al.

1 happens(turn_on, 2).

2 happens(turn_off, 4).

3 happens(turn_on, 6).

4

5 initiates(turn_on, on, T).

6 terminates(turn_off, on, T).

7 trajectory(on, T1, red, T2) :-

8 T1#<T2, T2#<T1 + 1.

9 trajectory(on, T1, green, T2) :-

10 T2#>=T1 + 1.

11 releases(turn_on, red, T).

12 releases(turn_on, green, T).

Fig. 4. Narrative of the light scenario modeled in s(CASP)

– Event effects: When the event TurnOn happens, the light is put in on
status; similarly, when the event TurnOff happens, the on status of the
light is terminated. In both cases, this can happen at any time t (lines 5 and
6 in Fig. 4)

– Release from Inertia: When turned on, the light emits red light within
the first second, and then green light is emitted. Trajectory expresses how
this change depends on the time elapsed since an event occurrence. The
Trajectory formula has the shape P (x) ← γ, as we need to state the
(time) conditions for the fluent to become activated (see lines 7–10 in Fig. 4).
Releases states that the color of the light is released from the commonsense
law of inertia. After a fluent is released, its truth value is not determined by
BEC and it can change. Thus, there may be models in which the fluent is
true, and models in which the fluent may be false. Releasing a fluent (see lines
11 and 12 in Fig. 4) frees it up so that other axioms in the domain descrip-
tion can be used to determine its truth value, thus allowing us to represent
continuous change of the fluent.

– State Constraints: State constraints usually contain HoldsAt(f, t)
or ¬HoldsAt(f, t) and represent restrictions on the models. In our
running example, a light cannot be red and green at the same
time: ∀t.¬(HoldsAt(Red, t) ∧ HoldsAt(Green, t)). This is translated as
:- holdsAt(red,T),holdsAt(green,T) Adding this constraint to the program
in Fig. 4 does not change its models. However, if we change line 8 stating that
the light is red for 2 s (i.e., T2 #< T1+2), the state constraint is violated and
therefore there are no valid models.

– A Note on using ¬HoldsAt(f, t) in γ: The basic BEC predicates may
depend on what the BEC theory can deduce, e.g., γ may depend on
HoldsAt(f, t) or ¬HoldsAt(f, t) (see Fig. 5). HoldsAt(f, t) can be invoked
directly, but ¬HoldsAt(f, t) ought to be called using classical negation, e.g.,
-holdsAt(F,T). The reason is that since BEC does not apply circumscrip-
tion to its axioms, we can deduce only the truth (or falsehood) of a predi-
cate when we have direct evidence of either of them—i.e., what the positive
(holdsAt(F,T)) and negative (-holdsAt(F,T)) heads provide.

4.4 Continuous Change: A Complete Encoding

We consider now an example from [24]: a water tap fills a vessel, whose water
level is subject to continuous change. When the level reaches the bucket rim, it

Event Calculus Using Goal-Directed Constraint ASP 149

1 #include bec_theory.

2

3 max_level(10):- not max_level(16).

4 max_level(16):- not max_level(10).

5

6 initiallyP(level(0)).

7 happens(overflow,T).

8 happens(tapOn,5).

9

10 initiates(tapOn,filling,T).

11 terminates(tapOff,filling,T).

12 initiates(overflow,spilling,T):-

13 max_level(Max),

14 holdsAt(level(Max), T).

15 releases(tapOn,level(0),T):-

16 happens(tapOn,T).

17

18 trajectory(filling,T1,level(X2),T2):-

19 T1 #< T2, X2 #= X + T2-T1,

20 max_level(Max), X2 #=< Max,

21 holdsAt(level(X),T1).

22 trajectory(filling,T1,level(overflow),T2):-

23 T1 #< T2, X2 #= X + T2-T1,

24 max_level(Max), X2 #> Max,

25 holdsAt(level(X),T1).

26 trajectory(spilling,T1,leak(X),T2):-

27 holdsAt(filling, T2),

28 T1 #< T2, X #= T2-T1.

Fig. 5. Encoding of an Event Calculus narrative with continuous change

starts spilling. We will present the main ideas behind its encoding (Fig. 5) and
will show some queries we can ask about its state and behavior.

– Continuous Change: The fluent Level(x) represents that the water is at
level x in the vessel. The first Trajectory formula (lines 18–21) determines the
time-dependent value of the Level(x) fluent,2 which is active as long as the
Filling fluent is true and the rim of the vessel is not reached. Additionally,
the second Trajectory formula (lines 22–25) allows us to capture the fact
that the water reached the rim of the vessel and overflowed.

– Triggered Fluent: The fluent Spilling is triggered (lines 12–14) when the
water level reaches the rim of the vessel. As a consequence, the Trajectory
formula in lines 26–28 starts the fluent Leak(x) and captures the amount of
water leaked while the fluent Spilling holds.

– Different Worlds: The clauses in lines 3–4 force the vessel capacity to be
either 10 or 16, i.e., they create two possible worlds/models: {max_level(10),
not max_level(16), . . .} and {max_level(16), not max_level(10), . . .}. The
same mechanism can be used to state whether an event happens or not. For
this, a keyword #abducible is provided as a shortcut in s(CASP). We will use
it in the Abduction subsection later on.

5 Examples and Evaluation

The benchmarks used in this section are available as part of the s(CASP) distri-
bution at https://gitlab.software.imdea.org/ciao-lang/sCASP/. They were run
on a MacOS 10.14.3 laptop with an Intel Core i5 at 2 GHz.

2 For simplicity the amount of water filled/leaked correspond directly to how long the
water has been pouring in/spilling from the vessel.

https://gitlab.software.imdea.org/ciao-lang/sCASP/

150 J. Arias et al.

Deduction: Deduction determines whether a state of the world is possible given
a theory (in our case, BEC) and an initial narrative. We can perform deduction
in BEC for the previous examples through queries to the corresponding s(CASP)
program. For the lights scenario (Fig. 4):

?- holdsAt(on,3) succeeds: it deduces that the light is on at time 3.
?- -holdsAt(on,5) succeeds: the light is not on at time 5.
?- holdsAt(F,3) is true in one stable model containing holdsAt(green,3) and
holdsAt(on,3), meaning that at time 3, the light is on and green.

In the water level scenario (Fig. 5) we can make queries involving time and
the water level:

?- holdsAt(level(H),15/2) is true when H=5/2.
?- holdsAt(level(5/2),T) is true when T=15/2.

Note that, as explained with more detail in the Evaluation subsection below,
s(CASP) can operate and answer correctly queries involving rationals without
having to modify the original program to introduce domains for the relevant
variables or to scale the constants to convert rationals into integers.

Abduction: Abductive reasoning tries to determine a sequence of events/ac-
tions that reaches a final state. In the case of ASP, actions are naturally captured
as the set of atoms that are true in a model which includes the initial and final
states and are consistent with BEC. For the water scenario, (Fig. 5), let us assume
we want to reach water level 14 at time 19. The query ?- holdsAt(level(14),19)

will return a single model with a vessel size of 16 and the rest of the atoms in
the model capturing what must (not) happen to reach this state.

More interesting abductive tasks can be performed: adding the line
#abducible happens(tapOff,U) to the program, we specify that it is possible (but
not necessary) for the tap to close at some time U. As we mentioned in Sect. 4.4,
this directive is translated into code that creates different worlds/models. The
query ?- holdsAt(spilling,T) determines if the water may overspill and under
which conditions. s(CASP) returns two models:

– One containing T>15, holdsAt(spilling,T), happens(tapOn,5), 5<U<15,

not happens(TapOff,U), max_level(10) meaning that the water will spill at
T=15 if the vessel has a capacity of 10, the tap is open at T=5, and it is not
closed between times 5 and 15.

– Another similar model, with the water spilling at T=21 in a vessel with capacity
of 16 and where the tap was not closed before U=21.

Note that s(CASP) determined the truth value of Happens and, more impor-
tantly, performed constraint solving to infer the time ranges during which some
events ought (and ought not) to take place, represented by the negated atoms
in the models inferred by constructive negation. Since all relevant atoms have
a time parameter, they actually represent a timed plan. Due to the expressive-
ness of constraints, this plan contains information on time points when events

Event Calculus Using Goal-Directed Constraint ASP 151

Table 1. Run time (ms) comparison for the light scenario.

Queries s(CASP) F2LP+clingo

?-holdsAt(red,6.9). 216 73

?-holdsAt(red,6.99). 217 8,798

?-holdsAt(red,6.999). 213 >5 min.

must (not) happen and also on time windows (sometimes in relation with other
events) during which events must (not) take place. Note that it would be impos-
sible to (finitely) represent this interval with ground atoms, as it corresponds to
an infinite number of points.

Evaluation: Comparing directly our implementation of BEC in s(CASP) with
implementations in other systems is not easy: most previous systems imple-
mented discrete Event Calculus (DEC) and they do not support continuous
quantities. One of them is F2LP [15], an ASP-based system that according to [16]
outperforms DEC reasoner [22], reported by [16] as the more efficient SAT-based
implementation. F2LP is a tool that executes DEC by turning first order formu-
las under the stable model semantics into a logic program w.o. constraints that
is evaluated using an ASP solver.

We compared the light scenario in Fig. 4 running under s(CASP) with the
F2LP translation under clingo 5.1.1, the current version of the state-of-the-art
ASP system. Since the directive #domain is no longer available in clingo, we had
to adapt the translation of F2LP adding timestep(1..10) and timestep/1 to
make the clauses safe (Appendix A). While under s(CASP) we can reason about
time points in an unbounded continuous domain, the previous encoding of F2LP
will make time belong to the integers from 1 to 10. Therefore, since the light
is red for t > 2, t < 3 and for t > 6, t < 7, there are no integer time points
from 1 to 10 when the emitted light is red. I.e., for the query ?- holdsAt(red,T)

the execution under clingo fails and the execution under s(CASP) returns the
constraint T #> 2, T #<3 and T #> 6, T #<7.

In order to find at what time point the light red is on under clingo, we
had to modify the program generated by F2LP to refine the timestep domain
with timestep(1..10*P):- precision(P), where the new predicate precision(P)

makes it possible to have a finer grain for the possible values of timestep by
increasing the value of P. E.g, for P = 10 it is possible to check if the light is
red at time t = 6.9 by querying ?- holdsAt(red,69), for P=100 it is possible to
check for t = 6.99 by querying ?- holdsAt(red,699), and so on. This modifi-
cation (Appendix B) obfuscates the resulting encoding (and for more complex
narratives it would be harder or even infeasible) and also impact negatively its
performance. Table 1 shows that additional precision in the F2LP encoding (to
handle each of the queries) increases the execution run-time of clingo by orders
of magnitude. On the other hand, s(CASP) does not have to adapt its encod-
ing/queries and its performance does not change.

152 J. Arias et al.

6 Conclusions

We showed how Event Calculus can be modeled in s(CASP), a goal-directed
implementation of constraint answer set programming with predicates, with
much fewer limitations than other approaches. s(CASP) can capture the notion
of continuous time (and, in general, fluents) in Event Calculus thanks to its
grounding-free top-down evaluation strategy. It can also represent complex mod-
els and answer queries in a flexible manner thanks to the use of constraints.

The main contribution of the paper is to show how Event Calculus can be
directly modeled using s(CASP), an ASP system that seamlessly supports con-
straints. The modeling of Event Calculus using s(CASP) is more elegant and
faithful to the original axioms compared to other approaches such as F2LP, where
time has to be discretized. While other approaches such as ASPMT do support
continuous domains, their reliance on SMT solvers makes their implementation
really complex as associations among variables are lost during grounding. The
use of s(CASP) brings other advantages: for example, the justification for the
answers to a query is obtained for free, since in a query-driven system, the justi-
fication is merely the trace of the proof. Likewise, explanations for observations
via abduction are also generated for free, thanks to the goal-directed, top-down
execution of s(CASP).

To the best of the authors’ knowledge, our approach is the only one that
faithfully models continuous-time Event Calculus under the stable model seman-
tics. All other approaches discretize time and thus do not model EC in a sound
manner. Our approach supports both deduction and abduction with little or no
additional effort.

The work reported in this paper can be seen as the first serious application of
s(CASP) [1]. It illustrates the advantages that goal-directed ASP systems have
over grounding and SAT solver-based ones for certain applications. Our future
work includes applying the s(CASP) system to solving planning problems where
a generated plan must obey real-time constraints.

A F2LP Encoding of the Light Scenario

The next figure shows the F2LP [15] program for the light scenario described
in Sect. 5 using discrete Event Calculus. Since the directive #domain is not
available in clingo 5.1.1 [7], we had to adapt the translation of F2LP adding
timestep(1..10) and timestep/1 to make the clauses safe.

1 timestep(0..10).

2

3 % If a light is turned on, it will be on:

4 initiates(turn_on,on,T) :- timestep(T).

5

6 % If a light is turned on, whether it is red or green will be released

7 % from the commonsense law of inertia:

8 releases(turn_on,red,T) :- timestep(T).

Event Calculus Using Goal-Directed Constraint ASP 153

9 releases(turn_on,green,T) :- timestep(T).

10

11 % If a light is turned off, it will not be on

12 terminates(turn_off,on,T) :- timestep(T).

13

14 % After a light is turned on, it will emit red for up to 1 second

15 % and green after at least 1 second

16 trajectory(on, T1, red, T2) :-

17 timestep(T1), timestep(T2),
18 T1 < T2, T2 < T1 + 1.

19 trajectory(on, T1, green, T2) :-

20 timestep(T1), timestep(T2),
21 T2 >= T1 + 1.

22

23 initiallyN(on).

24

25 %% Actions

26 happens(turn_on,2).
27 happens(turn_off,4).
28 happens(turn_on,6).
29

30 %% Query

31 :- not query.

32 query :- holdsAt(red,_).

B Adapted F2LP Translation of the Light Scenario with
Increased Precision

The next figure shows an F2LP [15] program for the light scenario described in
Sect. 5, where the new predicate precision/1 makes it possible to have a finer
grain for the possible values of timestep by increasing the value of P.

1 timestep(0..10*P) :- precision(P).

2

3 % If a light is turned on, it will be on:

4 initiates(turn_on,on,T) :- timestep(T).

5

6 % If a light is turned on, whether it is red or green will be released

7 % from the commonsense law of inertia:

8 releases(turn_on,red,T) :- timestep(T).

9 releases(turn_on,green,T) :- timestep(T).

10

11 % If a light is turned off, it will not be on

12 terminates(turn_off,on,T) :- timestep(T).

13

14 % After a light is turned on, it will emit red for up to 1 second

15 % and green after at least 1 second

16 trajectory(on, T1, red, T2) :-

17 timestep(T1), timestep(T2), precision(P),
18 T1 < T2, T2 < T1 + (1*P).

19 trajectory(on, T1, green, T2) :-

154 J. Arias et al.

20 timestep(T1), timestep(T2), precision(P),
21 T2 >= T1 + (1*P).

22

23 initiallyN(on).

24

25 %% Actions

26 happens(turn_on,2*P) :- precision(P).

27 happens(turn_off,4*P) :- precision(P).

28 happens(turn_on,6*P) :- precision(P).

29

30 %% Query

31 :- not query.

32

33 precision(10).

34 query :- holdsAt(red,69).

References

1. Arias, J., Carro, M., Salazar, E., Marple, K., Gupta, G.: Constraint answer set
programming without grounding. Theory Pract. Logic Program. 18(3–4), 337–354
(2018)

2. Balduccini, M., Magazzeni, D., Maratea, M.: PDDL+ planning via constraint
answer set programming. In: 9th Workshop on Answer Set Programming and Other
Computing Paradigms, October 2016

3. Bartholomew, M., Lee, J.: System aspmt2smt: computing ASPMT theories by
SMT solvers. In: Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS (LNAI), vol. 8761,
pp. 529–542. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11558-
0 37

4. Chittaro, L., Montanari, A.: Efficient temporal reasoning in the cached event cal-
culus. Comput. Intell. 12, 359–382 (1996)

5. Clark, K.L.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and Data
Bases, pp. 293–322. Springer, Boston (1978). https://doi.org/10.1007/978-1-4684-
3384-5 11

6. Fox, M., Long, D.: PDDL+: modeling continuous time dependent effects. In: Pro-
ceedings of the 3rd International NASA Workshop on Planning and Scheduling for
Space, vol. 4, p. 34 (2002)

7. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Clingo = ASP + control:
preliminary report. arXiv preprint arXiv:1405.3694 (2014)

8. Gelfond, M., Kahl, Y.: Knowledge Representation, Reasoning, and the Design of
Intelligent Agents: The Answer-Set Programming Approach. Cambridge University
Press, Cambridge (2014)

9. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
5th International Conference on Logic Programming, pp. 1070–1080 (1988)

10. Gelfond, M., Lifschitz, V.: Representing action and change by logic programs. J.
Logic Program. 17(2–4), 301–321 (1993)

11. Gupta, G., Bansal, A., Min, R., Simon, L., Mallya, A.: Coinductive logic program-
ming and its applications. In: Dahl, V., Niemelä, I. (eds.) ICLP 2007. LNCS, vol.
4670, pp. 27–44. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
74610-2 4

https://doi.org/10.1007/978-3-319-11558-0_37
https://doi.org/10.1007/978-3-319-11558-0_37
https://doi.org/10.1007/978-1-4684-3384-5_11
https://doi.org/10.1007/978-1-4684-3384-5_11
http://arxiv.org/abs/1405.3694
https://doi.org/10.1007/978-3-540-74610-2_4
https://doi.org/10.1007/978-3-540-74610-2_4

Event Calculus Using Goal-Directed Constraint ASP 155

12. Holzbaur, C.: OFAI CLP(Q, R) manual, edition 1.3.3. Technical report TR-95-09,
Austrian Research Institute for Artificial Intelligence, Vienna (1995)

13. Kowalski, R., Sergot, M.: A logic-based calculus of events. In: Schmidt, J.W.,
Thanos, C. (eds.) Foundations of Knowledge Base Management. Topics in Infor-
mation Systems, pp. 23–55. Springer, Heidelberg (1989). https://doi.org/10.1007/
978-3-642-83397-7 2

14. Lee, J., Meng, Y.: Answer set programming modulo theories and reasoning about
continuous changes. IJCAI 2013, 990–996 (2013)

15. Lee, J., Palla, R.: F2LP: Computing Answer Sets of First Order Formulas (2009).
http://reasoning.eas.asu.edu/f2lp/. Accessed on Feb 2020

16. Lee, J., Palla, R.: Reformulating the situation calculus and the event calculus in
the general theory of stable models and in answer set programming. J. Artif. Intell.
Res. 43, 571–620 (2012)

17. Lifschitz, V.: What is answer set programming? In: 23rd National Conference on
Artificial Intelligence, vol. 3, pp. 1594–1597. AAAI Press (2008)

18. Marple, K., Salazar, E., Gupta, G.: Computing stable models of normal logic pro-
grams without grounding. CoRR eprint arXiv:1709.00501 (2017)

19. McCarthy, J.: Circumscription - a form of non-monotonic reasoning. Artif. Intell.
13(1–2), 27–39 (1980)

20. Mellarkod, V.S., Gelfond, M., Zhang, Y.: Integrating answer set programming and
constraint logic programming. Ann. Math. Artif. Intell. 53(1–4), 251–287 (2008)

21. Mueller, E.T.: Chapter 17: Event calculus. In: Handbook of Knowledge Represen-
tation, Foundations of AI, vol. 3, pp. 671–708. Elsevier (2008)

22. Mueller, E.T.: Discrete event calculus reasoner documentation. Software docu-
mentation, IBM Thomas J. Watson Research Center (2008). http://decreasoner.
sourceforge.net/. Accessed Feb 2020

23. Mueller, E.T.: Commonsense Reasoning: An Event Calculus Based Approach. Mor-
gan Kaufmann, Burlington (2014)

24. Shanahan, M.: The event calculus explained. In: Wooldridge, M.J., Veloso, M.
(eds.) Artificial Intelligence Today. LNCS (LNAI), vol. 1600, pp. 409–430. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48317-9 17

25. Shanahan, M.: An abductive event calculus planner. J. Logic Program. 44(1–3),
207–240 (2000)

https://doi.org/10.1007/978-3-642-83397-7_2
https://doi.org/10.1007/978-3-642-83397-7_2
http://reasoning.eas.asu.edu/f2lp/
http://arxiv.org/abs/1709.00501
http://decreasoner.sourceforge.net/
http://decreasoner.sourceforge.net/
https://doi.org/10.1007/3-540-48317-9_17

Debugging and Verification

An Integrated Approach to
Assertion-Based Random Testing in Prolog

Ignacio Casso1(B) , José F. Morales1 , Pedro López-García1,3 ,
and Manuel V. Hermenegildo1,2

1 IMDEA Software Institute, Madrid, Spain
{ignacio.decasso,josef.morales,pedro.lopez,manuel.hermenegildo}@imdea.org

2 ETSI Informática, Universidad Politécnica de Madrid (UPM), Madrid, Spain
3 Spanish Council for Scientific Research (CSIC), Madrid, Spain

Abstract. We present an approach for assertion-based random testing
of Prolog programs that is tightly integrated within an overall assertion-
based program development scheme. Our starting point is the Ciao
model, a framework that unifies unit testing and run-time verification,
as well as static verification and static debugging, using a common asser-
tion language. Properties which cannot be verified statically are checked
dynamically. In this context, the idea of generating random test val-
ues from assertion preconditions emerges naturally since these precondi-
tions are conjunctions of literals, and the corresponding predicates can
in principle be used as generators. Our tool generates valid inputs from
the properties that appear in the assertions shared with other parts of
the model, and the run time-check instrumentation of the Ciao frame-
work is used to perform a wide variety of checks. This integration also
facilitates the combination with static analysis. The generation process
is based on running standard predicates under non-standard (random)
search rules. Generation can be fully automatic but can also be guided
or defined specifically by the user. We propose methods for supporting
(C)LP-specific properties, including combinations of shape-based (regu-
lar) types and variable sharing and instantiation, and we also provide
some ideas for shrinking for these properties. We also provide a case
study applying the tool to the verification and checking of the code of
some of the abstract domains used by the Ciao system.

1 Introduction and Motivation

Code validation is a vital task in any software development cycle. Tradition-
ally, two of the main approaches used to this end are verification and testing.
The former uses formal methods to prove automatically or interactively some
specification of the code, while the latter mainly consists in executing the code
for concrete inputs or test cases and checking that the program input-output
relations (and behaviour, in general) are the expected ones.

Research partially funded by MINECO TIN2015-67522-C3-1-R TRACES project, and
the Madrid P2018/TCS-4339 BLOQUES-CM program. We are also grateful to the
anonymous reviewers for their useful comments.
c© Springer Nature Switzerland AG 2020
M. Gabbrielli (Ed.): LOPSTR 2019, LNCS 12042, pp. 159–176, 2020.
https://doi.org/10.1007/978-3-030-45260-5_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45260-5_10&domain=pdf
http://orcid.org/0000-0001-9196-7951
http://orcid.org/0000-0001-6098-3895
http://orcid.org/0000-0002-1092-2071
http://orcid.org/0000-0002-7583-323X
https://doi.org/10.1007/978-3-030-45260-5_10

160 I. Casso et al.

The Ciao language [11] introduced a novel development workflow [12,13,21]
that integrates the two approaches above. In this model, program assertions are
fully integrated in the language, and serve both as specifications for static analy-
sis and as run-time check generators, unifying run-time verification and unit test-
ing with static verification and static debugging. This model represents an alter-
native approach for writing safe programs without relying on full static typing,
which is specially useful for dynamic languages like Prolog, and can be considered
an antecedent of the popular gradual- and hybrid-typing approaches [5,22,24].

The Ciao Model: For our purposes, assertions in the Ciao model can be seen
as a shorthand for defining instrumentation to be added to programs, in order
to check dynamically preconditions and postconditions, including conditional
postconditions, properties at arbitrary program points, and certain computa-
tional (non-functional) properties. The run-time semantics implemented by the
translation of the assertion language ensures that execution paths that violate
the assertions are captured during execution, thus detecting errors. Optionally,
(abstract interpretation-based [4]) compile-time analysis is used to detect asser-
tion violations, or to prove (parts of) assertions true, verifying the program or
reducing run-time checking overhead. As an example, consider the following Ciao
code (with the standard definition of quick-sort):

�

1 :- pred qs(Xs,Ys) : (list(Xs), var(Ys)) => (list(Ys), sorted(Ys)) + not_fails.
2
3 :- prop list/1.
4 list([]).
5 list([_|T]) :- list(T).
6
7 :- prop sorted/1.
8 ...

� �

The assertion has a calls field (the conjunction after ‘:’), a success field (the
conjunction after ‘=>’), and a computational properties field (after ‘+’), where all
these fields are optional. It states that a valid calling mode for qs/2 is to invoke
it with its first argument instantiated to a list, and that it will then return
a list in Ys, that this list will be sorted, and that the predicate will not fail.
Properties such as list/1 or sorted/1 are normal predicates, but which meet
certain conditions (e.g., termination) [13] and are marked as such via prop/1
declarations. Other properties like var/1 or not_fails are builtins.

Compile-time analysis with a types/shapes domain can easily detect that, if
the predicate is called as stated in the assertion, the list(Ys) check on success
will always succeed, and that the predicate itself will also succeed. If this pred-
icate appears within a larger program, analysis can also typically infer whether
or not qs/2 is called with a list and a free variable. However, perhaps, e.g.,
sorted(Ys) cannot be checked statically (this is in fact often possible, but let
us assume that, e.g., a suitable abstract domain is not at hand). The assertion
would then be simplified to:
�

:- pred qs(Xs,Ys) => sorted(Ys).
� �

An Integrated Approach to Assertion-Based Random Testing in Prolog 161

At run time, sorted(Ys) will be called within the assertion checking-harness,
right after calls to qs/2. This harness ensures that the variable bindings (or
constraints) and the whole checking process are kept isolated from the normal
execution of the program (this can be seen conceptually as including a Prolog
copy_term, or calling within a double negation, \+\+, executing in a separate
process, etc.).

Testing vs. Run-Time Checking: The checking of sorted/1 in the example
above will occur in principle during execution of the program, i.e., in deployment.
However, in many cases it is not desirable to wait until then to detect errors.
This is the case for example if errors can be catastrophic or perhaps if there is
interest in testing, perhaps for debugging purposes, more general properties that
have not been formally proved and whose main statements are not directly part
of the program (and thus, will never be executed), such as, e.g.:

�

1 :- pred revrev(X) : list(X) + not_fails.
2 revrev(X) :- reverse(X,Y),reverse(Y,X).

� �

This implies performing a testing process prior to deployment. The Ciao
model includes a mechanism, integrated with the assertion language, that allows
defining test assertions, which will run (parts of) the program for a given input
and check the corresponding output, as well as driving the run-time checks inde-
pendently of concrete application data [16]. For example, if the following (unit)
tests are added to qs/2:

�

1 :- test qs(Xs,Ys) : (Xs = []) => (Ys = []).
2 :- test qs(Xs,Ys) : (Xs = [3,2,4,1]) => (Ys = [1,2,3,4]).

� �

qs/2 will be run with, e.g., [3,2,4,1] as input in Xs, and the output generated
in Ys will be checked to be instantiated to [1,2,3,4]. This is done by extracting
the test drivers [16]:

�

1 :- texec qs([],_).
2 :- texec qs([3,2,4,1],_).

� �

and the rest of the work (checking the assertion fields) is done by the standard
assertion run-time checking machinery. In our case, this includes checking at run
time the simplified assertion “:- pred qs(Xs,Ys) => sorted(Ys).”, so that
the output in Ys will be checked by calling the implementation of sorted/1.
This overall process is depicted in Fig. 1 and will be discussed further in Sect. 2.

Towards Automatic Generation: Hand-written test cases such as those
above are quite useful in practice, but they are also tedious to write and even
when they are present they may not cover some interesting cases. An aspect
that is specific to (Constraint-)Logic Programming (CLP) and is quite relevant
in this context is that predicates in general (and properties in particular) can
be used as both checkers and generators. For example, calling list(X) from the

162 I. Casso et al.

revrev/1 example above with X uninstantiated generates lazily, through back-
tracking, an infinite set of lists, Xs = []; Xs = [_]; Xs = [_,_,_] . . . , which
can be used to catch cases in which an error in the coding of reverse/2 makes
revrev/1 fail. This leads naturally to the idea of generating systematically and
automatically test cases by running in generation mode (i.e., “backwards”) the
properties in the calls fields of assertions.

While this idea of using properties as test case generators has always been
present in the descriptions of the Ciao model [12,21], it has not really been
exploited significantly to date. Our purpose in this paper is to fill this gap. We
report on the development of LPtest, an implementation of random testing [8]
with a more natural connection with Prolog semantics, as well as with the Ciao
framework. Due to this connection and the use of assertions, this assertion-based
testing allows supporting complex properties like combinations of shape-based
(regular) types, variable sharing, and instantiation, and also non-functional
properties.

Our contributions can be summarized as follows:

– We have developed an approach and a tool for assertion-based random test
generation for Prolog and related languages. It has a number of character-
istics in common with property-based testing from functional languages, as
exemplified by QuickCheck [3], but provides the assertions and properties
required in order to cover (C)LP features such as logical variables and non-
ground data structures or non-determinism, with related properties such as
modes, variables sharing, non-failure, determinacy and number of solutions,
etc. In this, LPtest is most similar to PrologTest [1], but we argue that our
framework is more general and we support richer properties.

– Our approach offers a number of advantages that stem directly from framing
it within the Ciao model. This includes the integration with compile-time
checking (static analysis) and the combination with the run-time checking
framework, etc. using a single assertion language. This for example greatly
simplifies error reporting and diagnosis, which can all be inherited from these
parts of the framework. It can also be combined with other test-case genera-
tion schemes. To the extent of our knowledge, this has only been attempted
partially by PropEr [20]. Also, since Erlang is in many ways closer to a func-
tional language, PropEr does not support Prolog-relevant properties and it is
not integrated with static analysis. In comparison to PrologTest, we provide
combination with static analysis, through an integrated assertion language,
whereas the assertions of PrologTest are specific to the tool, and we also
support a larger set of properties.

– In our approach the automatic generation of inputs is performed by run-
ning in generation mode the properties (predicates) in those preconditions,
taking advantage of the specialized SLD search rules of the language (e.g.,
breadth first, iterative deepening, and, in particular, random search) or imple-
mentations specialized for such generation. In particular, we perform auto-
matic generation of instances of Prolog regular types, instantiation modes,
sharing relations among variables and grounding, arithmetic constraints, etc.

An Integrated Approach to Assertion-Based Random Testing in Prolog 163

Fig. 1. The Ciao assertion framework (CiaoPP’s verification/testing architecture).
(Color figure online)

To the extent of our knowledge all previous tools only supported generation
for types, while we also consider the latter.

– We have enhanced assertion and property-based test generation by combining
it with static analysis and abstract domains. To the extent of our knowledge
previous work had at most discarded properties that could be proved stat-
ically (which in LPtest comes free from the overall setting, as mentioned
before), but not used static analysis information to guide or improve the
testing process.

– We have implemented automatic shrinking for our tool, and in particular we
have developed an automatic shrinking algorithm for Prolog regular types.

The rest of this paper is organized as follows. In Sect. 2 we review our app-
roach to assertion-based testing in the context of Prolog and Ciao. In Sect. 3 we
introduce our test input generation schema. In Sect. 4, we show how assertion-
based testing can be combined with and enhanced by static analysis. Sect. 5 is
dedicated to shrinking of test cases in LPtest. In Sect. 6 we show some prelimi-
nary results of a case study in which our tool is applied to checking some of the
domain operations in the static analyses of CiaoPP (the Ciao “preprocessor”).
Finally, we review the related work in Sect. 7 and provide our conclusions in
Sect. 8.

2 Using LPtest Within the Ciao Model

As mentioned before, the goal of LPtest is to integrate random testing of
assertions within Ciao’s assertion-based verification and debugging framework
(Fig. 1). Given an assertion for a predicate, we want to generate goals for that
predicate satisfying the assertion precondition (i.e., valid call patterns for the

164 I. Casso et al.

predicate) and execute them to check that the assertion holds for those cases or
find errors. As also mentioned in the introduction, the Ciao framework already
provides most of the components needed for this task: the run-time checking
framework allows us to check at runtime that the assertions for a predicate are
not violated, and the unit-test framework allows us to specify and run concrete
goals to check those assertions. We only need to be able to generate terms sat-
isfying the assertion preconditions and feed them into the other parts of the
framework (the new yellow box in Fig. 1). This generation of test cases is dis-
cussed in Sect. 3, and the following example shows how everything is integrated
step by step.

Consider again a similar assertion for the qs/2 predicate, and assume that
the program has a bug and fails for lists with repeated elements:

�

1 :- module(qs,[qs/2],[assertions, nativeprops]).
2 ...
3 :- pred qs(Xs,Ys) : (list(Xs,int), var(Ys))
4 => (list(Ys,int), sorted(Ys)) + not_fails.
5 ...
6 partition([],_,[],[]).
7 partition([X|Xs],Pv,[X|L],R) :- X < Pv, !, partition(Xs,Pv,L,R). % should be =<
8 partition([X|Xs],Pv,L,[X|R]) :- X > Pv, partition(Xs,Pv,L,R).

� �

Following Fig. 1, the assertions of the qs module are verified statically [13].
As a result, parts of each assertion may be proved true or false (in which case
no testing is needed for them), and, if any other parts are left after this process,
run-time checking and/or testing is performed for them. CiaoPP generates a new
source file which includes the original assertions marked with status checked,
false, or, for the ones that remain for run-time checking, check. LPtest starts
by reporting a simple adaptation of CiaoPP’s output. E.g., for our example,
LPtest will output:

�

1 Testing assertion:
2 :- pred qs(Xs,Ys) : (list(Xs,int), var(Ys))
3 => (list(Ys,int), sorted(Ys)) + not_fails.
4
5 Assertion was partially verified statically:
6 :- checked pred qs(Xs,Ys) (list(Xs,int), var(Ys)) => list(Ys,int).
7 Left to check::
8 :- check pred qs(Xs,Ys) => sorted(Ys) + not_fails.

� �

LPtest will then try to test dynamically the remaining assertion. For that,
it will first collect the Ciao properties that the test case must fulfill (i.e., those
in the precondition of the assertion, which is taken from the original assertion,
which is also output by CiaoPP), and generate a number of test case drivers
(texec’s) satisfying those properties. Those test cases will be pipelined to the
unit-test framework, which, relying on the standard run-time checking instru-
mentation, will manage their execution, capture any error reported during run-
time checking, and return them to LPtest, which will output:

An Integrated Approach to Assertion-Based Random Testing in Prolog 165

�

1 Assertion
2 :- check pred qs(Xs,Ys) => sorted(Ys) + not_fails.
3 proven false for test case:
4 :- texec qs([5,9,-3,8,9,-6,2],_).
5 because:
6 call to qs(Xs,Ys) fails for
7 Xs = [5, 9,-3,8,9,-6,2]

� �

Finally, LPtest will try to shrink the test cases, enumerating test cases that
are progressively smaller and repeating the steps above in a loop to find the
smallest test case which violates the assertion. LPtest will output:

�

1 Test case shrinked to:
2 :- texec qs([0,0],_).

� �

The testing algorithm for a module can thus be summarized as follows:
�

�

�

�

1. (CiaoPP) Use static analysis to check the assertions. Remove proved asser-
tions, simplify partially proved assertions.

2. (LPtest) For each assertion, generate N test cases from the properties in
the precondition, following the guidelines in Sect. 3. For each test case, go
to 3. Then go to 4.

3. (RTcheck) Use the unit-test framework to execute the test case and cap-
ture any run-time checking error (i.e., assertion violation).

4. (LPtest) Collect all failed test cases from RTcheck. For each of them, go
to 5 to shrink them, and then report them (using RTcheck).

5. (LPtest) Generate a simpler test case not generated yet.
• If not possible, finalize and return current test case as shrinked test

case. If possible, go to 3 to run the test.
∗ If the new test case fails, go to 5 with the new test case.
∗ If it succeeds, repeat this step.

The use of the Ciao static verification and run-time checking framework in this
(pseudo-)algorithm, together with the rich set of native properties in Ciao, allows
us to specify and check a wide range of properties for our programs. We provide
a few examples of the expressive power of the approach:

(Conditional) Postconditions. We can write postconditions using the success
(=>) field of the assertions. Those postconditions can range from user-defined
predicates to properties native to CiaoPP, for which there are built-in checkers
in the run-time checking framework. These properties include types, which can be
partially instantiated, i.e., contain variables, and additional features particular to
logic programming such as modes and sharing between variables. As an example,
one can test with LPtest the following assertions, where covered(X,Y) means
that all variables occurring in X also occur in Y:

166 I. Casso et al.

�

1 :- pred rev(Xs,Ys) : list(Xs) => list(Ys).
2 :- pred sort(Xs,Ys) : list(Xs,int) => (list(Ys,int), sorted(Ys)).
3 :- pred numbervars(Term,N,M) => ground(Term).
4 :- pred varset(Term,Xs) => (list(Xs,var), covered(Term,Xs)).

� �

For this kind of properties, LPtest tries to ensure that at least some of the
test cases do not succeed trivially (by the predicate just failing), and warns
otherwise.

Computational Properties. LPtest can also be used to check properties regarding
the computation of a predicate. These properties are typically native and talk
about features that range from determinism and multiplicity of solutions to
resource usage (cost). They can be checked with LPtest, as long as the run-time
checking framework supports it (e.g., some properties, like termination, are not
decidable). Examples of this would be:

�

1 :- pred rev(X,Y) : list(X) + (not_fails, is_det, no_choicepoints).
2 :- pred append(X,Y,Z) : list(X) => cost(steps,ub,length(X)).

� �

Rich Generation. The properties supported for generation include not only
types, but also modes and sharing between variables, and arithmetic constraints,
as well as a restricted set of user-defined properties. As an example, LPtest can
test the following assertion:

�

1 :- prop sorted_int_list(X).
2
3 sorted_int_list([]).
4 sorted_int_list([N]) :- int(N).
5 sorted_int_list([N,M|Ms]) :- N =< M, sorted_int_list([M|Ms]).
6
7 :- pred insert_ord(X,Xs,XsWithX)
8 : (int(X), sorted_int_list(X))
9 => sorted_int_list(XsWithX).

� �

3 Test Case Generation

The previous section illustrated specially the parts that LPtest inherits from the
Ciao framework, but a crucial step was skipped: the generation of test cases from
the calls field of the assertions, i.e., the generation of Prolog terms satisfying a
conjunction of Ciao properties. This was obviously one of the main challenges
we faced when designing and implementing LPtest. In order for the tool to be
integrated naturally within the Ciao verification and debugging framework, this
generation had to be as automatic as possible. However, full automation is not
always possible in the presence of arbitrary properties potentially using the whole
Prolog language (e.g., cuts, dynamic predicates, etc.). The solution we arrived
at is to support fully automatic and efficient generation for reasonable subsets
of the Prolog language, and provide means for the user to guide the generation
in more complex scenarios.

An Integrated Approach to Assertion-Based Random Testing in Prolog 167

Pure Prolog. The simplest and essential subset of Prolog is pure Prolog. In
pure Prolog every predicate, and, in particular, every Ciao property, is itself
a generator: if it succeeds with some terms as arguments, those terms will be
(possibly instances of) answers to the predicate when called with free variables
as arguments. The problem is that the classic depth-first search strategy used in
Prolog resolution, with which those answers will be computed, is not well suited
for test-case generation. One of Ciao’s features comes here to the rescue. Ciao
has a concept of packages, syntactic and/or semantic extensions to the language
that can be loaded module-locally. This mechanism is used to implement lan-
guage extensions such as functional syntax, constraints, higher order, etc., and,
in particular alternative search rules. These include for example (several versions
of) breadth first, iterative deepening, Andorra-style execution, etc. These rules
can be activated on a per-module basis. For example, the predicates in a module
that starts with the following header:

�

1 :- module(myprops, _, [bf]).
� �

(which loads the bf package) will run in breadth-first mode. While breadth-
first is useful mostly for teaching, other alternative search rules are quite useful
in practice. Motivated by the LPtest context, i.e., with the idea of running
properties in generation mode, we have developed also a randomized alternative
search strategy package, rnd, which can be described by the following simplified
meta-interpreter:

�

1 solve_goal(G) :- random_clause(G,Body), solve_body(Body).
2
3 random_clause(Head,Body) :-
4 findall(cl(Head,B),meta_clause(Head,B),ClauseList),
5 once(shuffle(ClauseList ,ShuffleList)),
6 member(cl(Head,Body),ShuffleList). % Body=[] for facts
7
8 solve_body([]).
9 solve_body([G|Gs]) :- solve_goal(G), solve_body(Gs).

� �

The actual algorithm used for generation is of course more involved. Among
other details, it only does backtracking on failure (on success it starts all over
again to produce the next answer, without repeating traces), and it has a growth
control mechanism to avoid getting stuck in traces that lead to non-terminating
generations.

Using this search strategy, a set of terms satisfying a conjunction of pure Pro-
log properties can be generated just by running all those properties sequentially
with unbounded variables. This is implemented using different versions of each
property (generation, run-time check) which are generated automatically from
the declarative definition of the property using instrumentation. In particular,
this simplest subset of the language allows us to deal directly with regular types
(e.g., list/1).

Mode, Sharing, and Arithmetic Constraints. We extend the subset of the
language for which generation is supported with arithmetic (e.g., int/1, flt/1,

168 I. Casso et al.

</2), mode-related extralogical predicates and properties (e.g., free/1, gnd/1),
and sharing-related native properties (e.g., mshare/1, which describes the shar-
ing –aliasing– relations of a set of variables using sharing sets [15], and indep/2,
that states that two variable do not share). When a goal or a property of this kind
appears during generation, the variables occurring in it are constrained using a
constraints domain. The domain ensures that those constraints are satisfiable
during all steps of generation, failing and backtracking otherwise. There is a last
step in generation in which all free variables are randomly further intantiated in
a way that those constraints are satisfied.

This can be seen conceptually as choosing first a trace at random for each
property and collecting constraints in the trace, and then randomly sampling
(enumerating) the constrains. However, since the constraints introduced by uni-
fication are terms, it is equivalent to solving a predicate with the random search
strategy and treating each builtin or native property as a constraint. In practice,
we support more builtins for generation in properties (e.g., ==/2 just unifies two
variables, we have shape constraints that handle =../2, and support negation to
some extent), but the approach has only been tested significantly for the subset
of Prolog presented so far.

In the last phase of constraints (random sampling), unconstrained free vari-
ables can be further instantiated with some probability, using random shape and
sharing constraints, chosen among native properties and properties defined by
the users on modules that are loaded at the time. This way, random terms are
still generated for an assertion without precondition, or the generated term for
list(X) is not always a list of free variables. This is also the technique used to
further instantiate a free variable constrained as ground but for which no shape
information is available.

Generation for Other Properties. For the remaining properties which use
Prolog features not covered so far (e.g., dynamic predicates), there is a last
step in the generation algorithm in which they are simply checked for the terms
generated so far. User-defined generators are encouraged for assertions with pre-
conditions that are complex enough to reach this step. There is a limit to how
many times generation can reach this step and fail, to avoid getting stuck in
an inefficient or non-terminating generate-and-check loop. To recognize these
properties without inspecting the code (left as future work), users are trusted
to mark the properties suitable for generation, and only the native properties
discussed and the regular types are considered suitable by default.

4 Integration with Static Analysis

The use of a unified assertion framework for testing and analysis allows us to
enhance LPtest random testing by combining it with static analysis.

First of all, as illustrated in Sect. 2 and Fig. 1, CiaoPP first performs a series of
static analyses through which some of the assertions may be verified statically,
possibly partially. Thus, only some parts of some assertions may need to be
checked in the testing phase [13].

An Integrated Approach to Assertion-Based Random Testing in Prolog 169

Beyond this, and perhaps more interestingly in our context, statically inferred
information can also help while testing the remaining assertions. In particular,
it is used to generate more relevant test cases in the generation phase. Consider
for example the following assertion:
�

:- pred qs(Xs,Ys) => sorted(Ys).
� �

Without the usual precondition, LPtest would have to generate arbitrary
terms to test the assertion, most of which would not be relevant test cases
since the predicate would fail for them, and therefore the assertion would be
satisfied trivially. However, static analysis typically infers the output type for
this predicate:
�

:- pred qs(Xs,_) => list(Xs,int).
� �

I.e., analysis infers that on success Xs must be a list, and so on call it must be
compatible with a list if it is to succeed (inputs that generate failure are also
interesting of course, but not to check properties that should hold on success).
Therefore the assertion can also be checked as follows:
�

:- pred qs(Xs,_) : compat(Xs,list(int)) => sorted_int_list(Xs).
� �

where compat(Xs,list(int)) means that Xs is either a list of integers or can
be further instantiated to one. Now we would only generate relevant inputs
(generation for compat/2 is implemented by randomly uninstantiating a term),
and LPtest is able to prove the assertion false. The same can be done for modes
and sharing to some extent: variables that are inferred to be free on success must
also be free on call, and variables inferred to be independent must be independent
on call too. Also, when a predicate is not exported, the calls assertions inferred
for it can be used for generation. In general, the idea here is to perform some
backwards analysis. However, this can also be done without explicit backwards
analysis by treating testing and (forward) static analysis independently and one
after the other, which makes the integration conceptually simple and easy to
implement.

A Finer-Grain Integration. We now propose a finer-grained integration of
assertion-based testing and analysis, which still treats analysis as a black box,
although not as an independent step. So far our approach has been to try to check
an assertion with static analysis, and if this fails we perform random testing.
However, the analysis often fails to prove the assertion because its precondition
(i.e., the entry abstract substitution to the analysis) is too general, but it can
prove it for refinements of that entry, i.e., refinements of the precondition. In
that case, all test cases satisfying that refined precondition are guaranteed to
succeed, and therefore useless in practice. We propose to work with different
refined versions of an assertion, by adding further, exhaustive constraints in a

170 I. Casso et al.

native domain to the precondition, and performing testing only on the versions
which the analysis cannot verify statically, thus pruning the test case input
space. For example, for an assertion of a predicate of arity one, without mode
properties, a set of assertions equivalent to the original one would result by
generating three different assertions with the same success but preconditions
ground(X), var(X), and (nonground(X), nonvar(X)). The idea is to generalize
this to arbitrary, maybe infinite abstract domains, for which a given abstract
value is not so easily partitioned as in the example above. Alternatively, the test
exploration can be limited to subsets of the domain, since in any case the testing
process cannot achieve completeness in general. The core of an algorithm for this
domain partition would be the following: to test an assertion for a given entry
A ∈ Dα, the assertion is proved by the analysis or tested recursively for a set
of abstract values S ⊆ {B|B ∈ Dα, B � A} lower than that entry, and random
test cases are generated in the “space” between the entry and those lower values
γ(A) \ ⋃

γ(B), where γ is the concretization function in the domain. For this it
is only necessary to provide a suitable sampling function in the domain, and a
rich generation algorithm for that domain. But note that, e.g., for the sharing-
freeness domain, we already have the latter: we already have generation for
mode and sharing constraints, and a transformation scheme between abstract
values and mode/sharing properties. Note also that all this can still be done
while treating the static analysis as a black box, and that if the enumeration of
abstract values is fine-grained enough, this algorithm also ensures coverage of
the test input space during generation.

5 Shrinking

One flaw of random testing is that often the failed test cases reported are unnec-
essary complex, and thus not very useful for debugging. Many property-based
tools introduce shrinking to solve this problem: after one counter-example is
found, they try to reduce it to a simpler counter-example that still fails the test
in the same way. LPtest supports shrinking too, both user-guided and auto-
matic. We present the latter.

The shrinking algorithm mirrors that of generation, and in fact reuses most
of the generation framework. It can be seen as a new generation with further
constraints: bounds on the shape and size of the generated goal. The traces fol-
lowed to generate the new term from a property must be “subtraces” of the ones
followed to generate the original one. The random sampling of the constraints
for the new terms must be “simpler” than for the original ones. The final step in
which the remaining properties are checked is kept.

We present the algorithm for the first step. Generation for the shrinked value
follows the path that leads to the to-be-shrinked value, but at any moment it
can non-deterministically stop following that trace and generate a new subterm
using size parameter 0. Applying this method to shrink lists of Peano numbers
is equivalent to the following predicate, where the first argument is the term to
be shrinked and the second a free variable to be the shrinked value on success:

An Integrated Approach to Assertion-Based Random Testing in Prolog 171

�

1 shrink_peano_list([X|Xs],[Y|Ys]) :-
2 shrink_peano_number(X,Y),
3 shrink_peano_list(Xs,Ys).
4 shrink_peano_list(_,Ys) :-
5 gen_peano_list(0,Ys). % X=[]
6
7 shrink_peano_number(s(X),s(Y)) :-
8 shrink_peano_number(X,Y).
9 shrink_peano_number(_,Y) :-

10 gen_peano_number(0,Y). % Y=0.
� �

This method can shrink the list [s(0),0,s(s(s(0)))] to [s(0),0] or
[s(0),0,s(s(0))], but never to [s(0),s(s(s(0)))]. To solve that, we allow
the trace of the to-be-shrinked term to advance non-deterministically at any
moment to an equivalent point, so that the trace of the generated term does not
have to follow it completely in parallel. It would be as if the following clauses
were added to the the previous predicate (the one which sketches the actual
workings of the method during meta-interpretation):

�

1 shrink_peano_list([_|Xs],Ys) :-
2 shrink_peano_list(Xs,Ys).
3
4 shrink_peano_number(s(X),Y) :-
5 shrink_peano_number(X,Y).

� �

With this method, [s(0),s(s(s(0)))] would now be a valid shrinked value.
This is implemented building shrinking versions of the properties, similarly to

the examples presented, and running them in generation mode. However, since
we want shrinking to be an enumeration of simpler values, and not random, the
search strategy used is the usual depth-first strategy and not the randomized
one presented in Sect. 3. The usual sampling of constraints is used too, instead
of the random one.

The number of potential shrinked values grows exponentially with the size of
the traces. To mitigate this problem, LPtest commits to a shrinked value once
it checks that it violates the assertion too, and continues to shrink that value,
but never starts from another one on backtracking. Also, the enumeration of
shrinked values returns first the values closer to the original term, i.e., if X is
returned before Y, then shrinking Y could never produce X. Therefore we never
repeat a shrinked value1 in our greedy search for the simplest counterexample.

6 A Case Study

In order to better illustrate our ideas, we present now a case study which consists
in testing the correctness of the implementation of some of CiaoPP’s abstract
domains. In particular, we focus herein on the sharing-freeness domain [19] and

1 Actually, we do not repeat subtraces, but two different subtraces can represent the
same value (e.g., there are two ways to obtain s(0) from s(s(0))).

172 I. Casso et al.

the correctness of its structure as a lattice and its handling of builtins. Tested
predicates include leq/2, which checks if an abstract value is below another in
the lattice, lub/3 and glb/3, which compute the least upper bound and greatest
lower bound of two abstract values, builtin_success/3, which computes the
success substitution of a builtin from a call substitution, and abstract/2, which
computes the abstraction for a list of substitutions.

Generation. Testing these predicates required generating random values for
abstract values and builtins. The latter is simple: a simple declaration of the
property builtin(F,A), which simply enumerates the builtins together with
their arity, is itself a generator, and using the generation scheme proposed in
Sect. 3 it becomes a random generator, while it can still be used as a checker
in the run-time checking framework. The same happens for a simple declarative
definition of the property shfr(ShFr,Vs), which checks that ShFr is a valid
sharing-freeness value for a list of variables Vs. This is however not that trivial
and proves that our generation scheme works and is useful in practice, since that
property is not a regular type, and among others it includes sharing constraints
between free variables. These two properties allowed us to test assertions like
the following:

�

1 :- pred leq_reflexive(X) : shfr(X,_) + not_fails.
2 leq_reflexive(X) :- leq(X,X).
3
4 :- pred lub(X,Y,Z) : (shfr(X,Vs), shfr(Y,Vs)) => (leq(X,Z), leq(Y,Z)).
5
6 :- pred builtin_sucess(Func,Ar,Call,Succ)
7 : (builtin(Func,Ar), length(Vs,A), shfr(Call,Vs))
8 + (not_fails, is_det, not_further_inst([Call]))}

� �

To check some assertions we needed to generate related pairs of abstract
values. That is encoded in the precondition as a final literal leq(ShFr1,ShFr2),
as in the next assertion:

�

1 :- pred builtins_monotonic(F, A, X, Y)
2 : (builtin(F,A), length(Vs,A), shfr(X,Vs), shfr(Y,Vs), leq(X,Y))
3 + not_fails.
4
5 builtins_monotonic(F,A,X,Y) :-
6 builtin_success(F,A,X,X2), builtin_success(F,A,Y,Y2), leq(X2,Y2).

� �

In our framework the generation is performed by producing first the two
values independently, and checking the literal. This became inefficient, so we
decided to write our own generator for this particular case. Finally, we tested
the generation for arbitrary terms with the following assertion, which checks
that the abstract value resulting from executing a builtin and abstracting the
arguments on success is lower than the one resulting of abstracting the arguments
on call and calling builtin_success/3:

An Integrated Approach to Assertion-Based Random Testing in Prolog 173

�

1 :- pred builtin_soundness(Blt, Args)
2 : (builtin(Blt), Blt=F/A, length(Args,A), list(Args, term))
3 + not_fails.
4
5 builtin_soundess(Blt,Args) :- ...

� �

Analysis. Many properties used in our assertions were user-defined, complex,
and not native to CiaoPP, so there were many cases in which the analysis could
not abstract them precisely. However, the analysis did manage to simplify or
prove some of the remaining ones, particularly regular types and those dealing
with determinism (+ is_det) and efficiency (no_choicepoints). Additionally,
we successfully did the experiment of not defining the regular type builtin/2,
and letting the analysis infer it on its own and use it for generation. We also
tested by hand the finer integration between testing and analysis proposed in
Sect. 4: some assertions involving builtins could not be proven for the general
case, but this could be done for some of the simpler builtins, and thus testing
could be avoided for those particular cases.

Bugs Found. We did not find any bugs in the implementations for different
domains of the lattice operations leq/2, lub/2, and glb/2. This was not sur-
prising: they are relatively simple and commonly used in CiaoPP. However, we
found several bugs in builtin_success/2 (part of the description of the “trans-
fer function” for some language built-ins) in some domains. Some of them were
minor and thus had never been found or reported before: some builtin handlers
left unnecessary choicepoints, or failed for the abstract value ⊥ (with which they
are never called in CiaoPP). Others were more serious: we found bugs for less
commonly-used builtins, and even two larger bugs for the builtins =/2 and ==/2.
The handler failed for the literal X=X and for literals like f(X)==g(Y), both of
which do not normally appear in realistic programs and thus were not detected
before.

7 Related Work

Random testing has been used for a long time in Software Engineering [8]. As
mentioned before, the idea of using properties and assertions as test case gen-
erators was proposed in the context of the Ciao model [12,21] for logic pro-
grams, although it had not really been exploited significantly until this work.
QuickCheck [3] provided the first full implementation of a property-based ran-
dom test generation system. It was first developed for Haskell and functional pro-
gramming languages in general and then extended to other languages, and has
seen significant practical use [14]. It uses a domain-specific language of testable
specifications and generates test data based on Haskell types. ErlangQuickCheck
and PropEr [20] are closely related systems for Erlang, where types are dynam-
ically checked and the value generation is guided by means of functions, using
quantified types defined by these generating functions. We use a number of ideas

174 I. Casso et al.

from QuickCheck and the related systems, such as applying shrinking to reduce
the test cases. However, LPtest is based on the ideas of the (earlier) Ciao model
and we do not propose a new assertion language, but rather use and extend that
of the Ciao system. This allows supporting Prolog-relevant properties, which deal
with non-ground data, logical variables, variable sharing, etc., while QuickCheck
is limited to ground data. Also, while QuickCheck offers quite flexible control
of the random generation, we argue that using random search strategies over
predicates defining properties is an interesting and more natural approach for
Prolog.

The closest related work is PrologTest [1], which adapts QuickCheck and
random property-based testing to the Prolog context. We share many objectives
with PrologTest but we argue that our framework is more general, with richer
properties (e.g., variable sharing), and is combined with static analysis. Also, as
in QuickCheck, PrologTest uses a specific assertion language, while, as men-
tioned before, we share the Ciao assertions with the other parts of the Ciao
system. PrologTest also uses Prolog predicates as random generators. This can
also be done in LPtest, but we also propose an approach which we argue is
more elegant, based on separating the code of the generator from the random
generation strategy, using the facilities present in the Ciao system for running
code under different SLD search rules, such as breadth first, iterative deepening,
or randomized search.

Other directly related systems are EasyCheck [2] and CurryCheck [9] for the
Curry language. In these systems test cases are generated from the (strong)
types present in the language, as in QuickCheck. However, they also deal with
determinism and modes. To the extent of our knowledge test case minimization
has not been implemented in these systems.

There has also been work on generating test cases using CLP and partial
evaluation techniques, both for Prolog and imperative languages (see, e.g., [6,7]
and its references). This work differs from (and is complementary to) ours in
that the test cases are generated via a symbolic execution of the program, with
the traditional aims of path coverage, etc., rather than from assertions and with
the objective of randomized testing.

Other related work includes fuzz testing [18], where “nonsensical” (i.e.,
fully random) inputs are passed to programs to trigger program crashes, and
grammar-based testing, where inputs generation is based on a grammatical def-
inition of inputs (similar to generating with regular types) [10]. Schrijvers pro-
posed Tor [23] as a mechanism for supporting the execution of predicates using
alternative search rules, similar in spirit to Ciao’s implementation of search-
strategies via packages. Midtgaard and Moller [17] have also applied property-
based testing to checking the correctness of static analysis implementations.

8 Conclusions and Future Work

We have presented an approach and a tool, LPtest, for assertion-based random
testing of Prolog programs that is integrated with the Ciao assertion model.

An Integrated Approach to Assertion-Based Random Testing in Prolog 175

In this context, the idea of generating random test values from assertion precon-
ditions emerges naturally since preconditions are conjunctions of literals, and the
corresponding predicates can conceptually be used as generators. LPtest gener-
ates valid inputs from the properties that appear in the assertions shared with
other parts of the model. We have shown how this generation process can be
based on running the property predicates under non-standard (random) search
rules and how the run time-check instrumentation of the Ciao framework can
be used to perform a wide variety of checks. We have proposed methods for sup-
porting (C)LP-specific properties, including combinations of shape-based (regu-
lar) types and variable sharing and instantiation. We have also proposed some
integrations of the test generation system with static analysis and provided a
number of ideas for shrinking in our context. Finally, we have shown some results
on the applicability of the approach and tool to the verification and checking of
the implementations of some of Ciao’s abstract domains. The tool has already
proven itself quite useful in finding bugs in production-level code.

References

1. Amaral, C., Florido, M., Santos Costa, V.: PrologCheck – property-based testing
in prolog. In: Codish, M., Sumii, E. (eds.) FLOPS 2014. LNCS, vol. 8475, pp. 1–17.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07151-0_1

2. Christiansen, J., Fischer, S.: EasyCheck — test data for free. In: Garrigue, J.,
Hermenegildo, M.V. (eds.) FLOPS 2008. LNCS, vol. 4989, pp. 322–336. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78969-7_23

3. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
Haskell programs. In: Fifth ACM SIGPLAN International Conference on Func-
tional Programming, ICFP 2000, pp. 268–279. ACM (2000)

4. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of POPL 1977, pp. 238–252. ACM Press (1977)

5. Flanagan, C.: Hybrid type checking. In: 33rd ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL 2006, pp. 245–256, January
2006

6. Gómez-Zamalloa, M., Albert, E., Puebla, G.: On the generation of test data for
prolog by partial evaluation. In: Proceedings of WLPE 2008, pp. 26–43 (2008)

7. Gómez-Zamalloa, M., Albert, E., Puebla, G.: Test case generation for object-
oriented imperative languages in CLP. Theor. Pract. Logic Prog. 10(4–6), 659–674
(2010). ICLP 2010 Special Issue

8. Hamlet, D.: Random testing. In: Marciniak, J. (ed.) Encyclopedia of Software
Engineering, pp. 970–978. Wiley, New York (1994)

9. Hanus, M.: CurryCheck: checking properties of curry programs. In: Hermenegildo,
M.V., Lopez-Garcia, P. (eds.) LOPSTR 2016. LNCS, vol. 10184, pp. 222–239.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63139-4_13

10. Hennessy, M., Power, J.F.: An analysis of rule coverage as a criterion in generating
minimal test suites for grammar-based software. In: 20th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE 2005), pp. 104–113,
November 2005

https://doi.org/10.1007/978-3-319-07151-0_1
https://doi.org/10.1007/978-3-540-78969-7_23
https://doi.org/10.1007/978-3-319-63139-4_13

176 I. Casso et al.

11. Hermenegildo, M.V., et al.: An overview of ciao and its design philosophy. TPLP
12(1–2), 219–252 (2012). http://arxiv.org/abs/1102.5497

12. Hermenegildo, M.V., Puebla, G., Bueno, F.: Using global analysis, partial specifica-
tions, and an extensible assertion language for program validation and debugging.
In: Apt, K.R., Marek, V.W., Truszczynski, M., Warren, D.S. (eds.) The Logic Pro-
gramming Paradigm: A 25-Year Perspective, pp. 161–192. Springer, Heidelberg
(1999). https://doi.org/10.1007/978-3-642-60085-2_7

13. Hermenegildo, M.V., Puebla, G., Bueno, F., Lopez-Garcia, P.: Integrated pro-
gram debugging, verification, and optimization using abstract interpretation (and
the Ciao system preprocessor). Sci. Comput. Program. 58(1–2), 115–140 (2005).
https://doi.org/10.1016/j.scico.2005.02.006

14. Hughes, J.: QuickCheck testing for fun and profit. In: Hanus, M. (ed.) PADL 2007.
LNCS, vol. 4354, pp. 1–32. Springer, Heidelberg (2006). https://doi.org/10.1007/
978-3-540-69611-7_1

15. Jacobs, D., Langen, A.: Accurate and efficient approximation of variable aliasing
in logic programs. In: North American Conference on Logic Programming (1989)

16. Mera, E., Lopez-García, P., Hermenegildo, M.: Integrating software testing and
run-time checking in an assertion verification framework. In: Hill, P.M., Warren,
D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 281–295. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-02846-5_25

17. Midtgaard, J., Møller, A.: QuickChecking static analysis properties. Softw. Test.
Verif. Reliab. 27(6) (2017). https://doi.org/10.1002/stvr.1640

18. Miller, B.P., Fredriksen, L., So, B.: An empirical study of the reliability of UNIX
utilities. Commun. ACM 33(12), 32–44 (1990). https://doi.org/10.1145/96267.
96279

19. Muthukumar, K., Hermenegildo, M.: Combined determination of sharing and free-
ness of program variables through abstract interpretation. In: ICLP 1991, pp. 49–
63. MIT Press (June 1991)

20. Papadakis, M., Sagonas, K.: A PropEr integration of types and function specifica-
tions with property-based testing. In: 10th ACM SIGPLAN Workshop On Erlang,
pp. 39–50, September 2011

21. Puebla, G., Bueno, F., Hermenegildo, M.: Combined static and dynamic assertion-
based debugging of constraint logic programs. In: Bossi, A. (ed.) LOPSTR 1999.
LNCS, vol. 1817, pp. 273–292. Springer, Heidelberg (2000). https://doi.org/10.
1007/10720327_16

22. Rastogi, A., Swamy, N., Fournet, C., Bierman, G., Vekris, P.: Safe & efficient
gradual typing for typescript. In: 42nd POPL, pp. 167–180. ACM, January 2015

23. Schrijvers, T., Demoen, B., Triska, M., Desouter, B.: Tor: modular search with
hookable disjunction. Sci. Comput. Program. 84, 101–120 (2014)

24. Siek, J.G., Taha, W.: Gradual typing for functional languages. In: Scheme and
Functional Programming Workshop, pp. 81–92 (2006)

https://doi.org/10.1007/978-3-642-60085-2_7
https://doi.org/10.1016/j.scico.2005.02.006
https://doi.org/10.1007/978-3-540-69611-7_1
https://doi.org/10.1007/978-3-540-69611-7_1
https://doi.org/10.1007/978-3-642-02846-5_25
https://doi.org/10.1002/stvr.1640
https://doi.org/10.1145/96267.96279
https://doi.org/10.1145/96267.96279
https://doi.org/10.1007/10720327_16
https://doi.org/10.1007/10720327_16

Trace Analysis Using an Event-Driven
Interval Temporal Logic

Maŕıa-del-Mar Gallardo and Laura Panizo(B)

Departamento de Lenguajes y Ciencias de la Computación, Universidad de Málaga,

Andalućıa Tech, Campus de Teatinos s/n, 29071 Málaga, Spain

{gallardo,laurapanizo}@lcc.uma.es

Abstract. Nowadays, many critical systems can be characterized as

hybrid ones, combining continuous and discrete behaviours that are

closely related. Changes in the continuous dynamics are usually fired

by internal or external discrete events. Due to their inherent complex-

ity, it is a crucial but not trivial task to ensure that these systems sat-

isfy some desirable properties. An approach to analyze them consists of

the combination of model-based testing and run-time verification tech-

niques. In this paper, we present an interval logic to specify proper-

ties of event-driven hybrid systems and an automatic transformation of

the logic formulae into networks of finite-state machines. Currently, we

use Promela/Spin to implement the network of finite-state machines,

and analyze non-functional properties of mobile applications. We use the

TRIANGLE testbed, which implements a controllable network environ-

ment for testing, to obtain the application traces and monitor network

parameters.

1 Introduction

In the last years, the improvement of sensor technology has led to the devel-
opment of different software systems that monitor some physical magnitudes
to control many everyday tasks. Water resource management systems [8], or
aeronautics [9] are some examples of this type of systems. As it is well known,
hybrid systems are composed of the so-called discrete and continuous compo-
nents, which are strongly interrelated. Usually, the role of the discrete part is
to control the continuous one, modifying its behaviour when necessary accord-
ing to some system conditions. The continuous component may follow complex
dynamics, which are usually represented by differential equations. The verifica-
tion of critical properties on these systems is crucial since they may carry out
critical tasks that affect the health of people or with a great economic impact. In
the literature, hybrid automata constitute the best known mechanism to model
hybrid systems. For example, tools like Uppaal [2] focus on the verification by

This work has been supported by the Spanish Ministry of Science, Innovation and

Universities project RTI2018-099777-B-I00 and the European Union’s Horizon 2020

research and innovation programme under grant agreement No. 777517 (EuWireless).

c© Springer Nature Switzerland AG 2020
M. Gabbrielli (Ed.): LOPSTR 2019, LNCS 12042, pp. 177–192, 2020.
https://doi.org/10.1007/978-3-030-45260-5_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45260-5_11&domain=pdf
https://doi.org/10.1007/978-3-030-45260-5_11

178 M.M. Gallardo and L. Panizo

model checking of some hybrid automata subclasses (timed automata). However,
not all hybrid systems can be easily represented as hybrid automata, not only
because of their complex dynamics but also because of their interaction with
an unpredictable environment. For this reason, in the last decades, other com-
putational hybrid models have appeared such as extended hybrid systems [4] in
which the hybrid systems are parameterized to incorporate the influence of the
environment, or sampled-data control systems [12] in which the continuous and
discrete components alternate their execution using a fixed time duration.

Fig. 1. Approach for testing event-driven hybrid systems

In a previous work [6], we proposed a framework to test event-driven hybrid
systems using a combination of model-based testing (to automatically generate
test cases) and runtime verification (to check the traces obtained against the
desirable properties). The framework, shown in Fig. 1, was implemented in the
context of the TRIANGLE project to analyze non-functional properties on traces
produced by the execution of mobile applications. In this work, we implemented
an ad-hoc trace monitoring system that was able to analyze some non-functional
properties of interest.

In this paper, we concentrate on the trace analysis using runtime verifica-
tion. In particular, we propose an event-driven linear temporal logic (eLTL) that
allows us to extend the set of non-functional properties that can be specified and
analyzed in the framework described above. The motivation for the definition
of the new logic is twofold. On the one hand, we need a logic in which prop-
erties on monitored magnitudes are evaluated on time intervals determined by
internal or external events that have occurred during the execution trace. For
instance, in the context of mobile applications (apps), in a video streaming app,
the video resolution can vary depending on network parameters (e.g. radio tech-
nology, signal strength, etc.). The exact moment when the video starts playing is
a priori unknown, but during video playback, determined, for instance, by events
vstart and vstop, different network and device parameters must be monitored
to determine the suitable video resolution. On the other hand, we also need a
logic whose formulae can be transformed into monitors that act as listeners of
the trace events to dynamically evaluate the specified property. Thus, the con-
tributions of the paper are both the definition of the event-driven linear time
logic eLTL and the transformation of the logic formulae into finite-state machines
(FSM) that act as observers of the execution traces. A preliminary version of

Trace Analysis Using an Event-Driven Interval Temporal Logic 179

the logic was presented in a Spanish workshop [7]. With respect to this former
paper, the current version has been extended with a more formal presentation
of the logic, and with the implementation section which is completely new.

The paper is organized as follows. Section 2 summarizes some work related to
interval logics. Section 3 presents the syntax and semantics of the event-driven
interval logic. We also show its expressiveness with some examples and briefly
compare eLTL and LTL. Section 4 describes the transformation of each eLTL
formula into a network of FSM and proves the correctness of the transformation.
Finally, Sect. 5 gives the conclusions and future work. Appendices contain the
proof of all the results presented in the paper, along with the current Promela
implementation of the network of FSM which allows us to check the satisfaction
of eLTL formulae on traces using Spin [11].

2 Related Work

In Linear Temporal Logic (LTL) is not easy to express requirements to be held
in a bounded future. Thus, the extension of LTL with intervals seems a natural
idea to easily express these other type of properties. This is the approach fol-
lowed in [20], where the authors use events to determine the intervals on which
formulae must be evaluated, although they do not deal with real-time. The tem-
poral logic FIL is also defined with similar purposes but the formulae are written
using a graphical representation. Real-time FIL [19] is an extension of FIL that
incorporates a new predicate len(d1, d2] that bounds the length of the intervals
on which properties have to be evaluated. In other context, the duration calcu-
lus [3] (DC) was defined to verify real-time systems. In DC system states have
a duration in each time interval that can be measured taking into account the
presence of the state in the interval. DC includes modalities (temporal opera-
tors) able to express relations between intervals and states, which constitute the
basis of the logic.

The Metric Interval Logic (MITL) [1] is a real-time temporal logic that
extends LTL by using modal operators of the form ◻I , ◇I where I is an open/-
close, bounded/unbounded interval of R. MITL[a,b] [13] is a bounded version of
MITL with all temporal modalities restricted to bounded intervals of the form
[a, b]. MITL[a,b] formulae can be translated into deterministic timed automata.
More recently, MITL[a,b] was extended to Signal Temporal Logic STL [14]
including numerical predicates that allow analogue and mixed-signal proper-
ties to be specified. Lately, the MITL logic has been extended to xSTL [16]
by adding timed regular expressions to express behaviour patterns to be met by
signals.

Finally, the differential dynamic logic (dL) [18] is a specification language to
describe safety and liveness properties of hybrid systems. In dL, formulae are of
the form [α]φ or 〈α〉φ meaning that the behaviour of hybrid system α always
(eventually) is inside the region defined by φ.

180 M.M. Gallardo and L. Panizo

Fig. 2. Synchronization of trace π and continuous variable c using τ(π)

3 Event-Driven Systems and Logic eLTL

In this section, we introduce a general model of event-driven hybrid systems,
which is characterized by containing continuous variables whose values can be
monitored. From a very abstract perspective, the behaviour of such a system may
be given by a transition system P = 〈Σ,

−�−→, L, s0〉 where Σ is a non-enumerable
set of observable states, L is a finite set of labels, −�−→ ⊆Σ × L × Σ is the
transition relation, and s0 ∈ Σ is the initial state. Transitions labels represent
the external/internal system events or system instructions that make the system
evolve. In addition, we assume that ι ∈ L is an special label that represents the
time passing between two successive states during which no event or instruction
is executed. Thus, transitions may take place when an event arrives, when a
system discrete instruction is carried out, or when a continuous transition occur
in which the only change in the state is the passing of time.

We denote with Of (P) the set of execution traces of finite length determined

by P . The elements of Of (P) are traces of the form π=s0
l0�−→ s1

l1�−→ · · · ln−2�−→ sn−1

where each li ∈L is the event/instruction/ι that fired the transition. The length

of a trace π = s0
l0�−→ s1

l1�−→ · · · ln−2�−→ sn−1 is the number of its states n. Given a
trace π of length n, we define the set Obs(π) of observable states of π; that is,
Obs(π) = {s0, · · · , sn−1}. It is worth noting that although event-driven hybrid
systems have continuous variables, we assume that their values are only visible
at observable states. In addition, we assume that the time instant in which each
state occurs is given by function τ : Σ −→ R

≥0 which relates each state s with
the moment it happens τ(s) ∈ R≥0.

In the following, given a trace π of length n and t ∈ {τ(s0), · · · τ(sn−1)},
we denote with 〈π, t〉 the observable state si of the trace at time instant t.
In addition, we use function σ : {τ(s0), · · · τ(sn−1)} → Obs(π) as the inverse
function of τ , i.e., ∀0 ≥ i < n.τ(σ(ti)) = ti and σ(τ(si)) = si.

Each continuous variable c of the system is a function c : R≥0 −→ R that gives
the value of c, c(t), at each time instant t. Figure 2 shows the relation between
the states in a trace, the time instants where they occur and the corresponding
values of continuous variable c at these instants. By abuse of notation, in the
figure and in the rest of the section, we use τ(π) to denote set {τ(s0), · · · τ(sn−1)}.

We have decided to define the behaviour of event-driven hybrid systems by
means of the simple notion of transition systems on purpose. The definition is

Trace Analysis Using an Event-Driven Interval Temporal Logic 181

highly general in the sense that it is able to capture the behaviour of hybrid event-
driven systems described by hybrid automata or other formalisms. Transitions
correspond to changes of the system variables producing observable states in the
traces that can be the result of the system that accepts an event or executes
an instruction, or the result of an internal evolution ι where time passing is the
only change in the trace. Anyway, the number of observable states in each trace
is finite. In practice, in our current implementation, the time instants and the
value of continuous variables in traces is recorded in log files, although other
time models could also be managed by the logic presented below.

3.1 Syntax and Semantics of eLTL

We consider two types of state formulae to be analyzed on states of Σ. On
the one hand, we have those that can be evaluated on single states as used in
propositional linear temporal logic LTL, for instance. On the other hand, we
assume that events of L are also state formulae that can be checked on states.
Thus, let F be the set of all state formulae to be evaluated on elements of Σ. As
usual, we suppose that state formulae may be constructed by combining state
formulae and Boolean operators. Relation ⊢⊆Σ × F associates each state with
the state formulae it satisfies, that is, given s ∈ Σ, and p ∈ F , s ⊢ p iff the state
s satisfies the state formula p. In the following, given π ∈ Of (P), ti ∈ τ(π) and
p ∈ F , we write 〈π, ti〉 ⊢ p iff σ(ti) ⊢ p. When li ∈ L is an event occurred at state

si that evolves to si+1 in trace π = s0
l0�−→ s1

l1�−→ · · · ln−2�−→ sn−1, we assume that
state si+1 records the fact that li has just occurred and, in consequence, we have
that si+1 ⊢ li, or equivalently, 〈π, ti+1〉 ⊢ li. Other logics such as HML [10] or
ACTL [5] focus on actions versus state formulae. We have decided to keep them
at the same level to allow the use of both in the logic.

In order to analyze the behaviour of continuous variables, it is useful to
observe them not only in a given time instant, but also during time intervals
to know, for example, whether their values hold inside some expected limits or
whether they never exceed a given threshold. To this end, we use intervals of
states (inside the traces) to determine the periods of time during which continu-
ous variables should be observed. Our proposal is inspired in the interval calculus
introduced by [3], where the domain of interval logic is the set of time intervals
I defined as {[t1, t2]|t1, t2 ∈R≥0, t1 ≤ t2}. Considering this, we define the so-called
interval formulae as functions of the type φ : I → {true, false} to represent
the formulae that describe the expected behaviour of continuous variables on
time intervals. For instance, assume that c : R≥0 → R is a continuous variable
of our system. Given a constant K ∈ R≥0, function φc : I → {true, false} given
as φc([t1, t2]) = |c(t2) − c(t1)| <K defines an interval formula that is true on an
interval [t1, t2] iff the absolute value of difference between c in the interval end-
points t1 and t2 is less than K. Let us denote with Φ the set of interval formulae.
We assume that Φ contains the special interval formula True : I → {true, false}
that returns true for all positive real intervals, that is, ∀I ∈ I.True(I) = true.

In the following, given two state formulae p, q ∈ F , we use expressions of the
form [p, q], that we call event intervals, to delimit intervals of states in traces.

182 M.M. Gallardo and L. Panizo

Intuitively, given a trace π = s0
l0�−→ s1

l1�−→ · · · ln−2�−→ sn−1, [p, q] represents time
intervals [ti, tj] with ti, tj ∈ τ(π) such that 〈π, ti〉 ⊢ p and 〈π, tj〉 ⊢ q; that is,
si ⊢ p and sj ⊢ q. We also consider simple state formulae p to denote states in π
satisfying p. Now, we formally define relation ⊩ that relates event intervals with
intervals of states in traces.

Definition 1. Given a trace π ∈Of (P), two state formulae p, q ∈F and two time
instants tp, tq ∈ τ(π) such as tp < tq, we say that the time interval [tp, tq] satisfies
the event interval [p, q], and we denote it as π ↓ [tp, tq] ⊩ [p, q], iff the following
four conditions hold: (1) 〈π, tp〉⊢p; (2) ∀tj ∈(tp, tq)∩τ(π), 〈π, tj〉⊬q; (3) 〈π, tq〉⊢q;
and (4) there exists no interval [t′p, tq] ≠ [tp, tq], verifying conditions 1–3 of this
definition, such that [tp, tq] ⊂ [t′p, tq].

That is, π ↓ [tp, tq]⊩ [p, q] iff σ(tp)=sp satisfies p and σ(tq)=sq is the first state
following sp that satisfies q. In addition, the fourth condition ensures that the
interval of states from sp until sq is maximal in the sense that it is not possible to
find a larger interval ending at sq satisfying the previous conditions. This notion
of maximality guarantees that the evaluation of interval formulae starts at the
state when event p first occurs, although it could continue being true in some
following states. In the previous definition, the time instants tp and tq must be
different elements of τ(π), that is, [tp, tq] cannot be a point.

Example 1. The following trace (π) tries to clarify Definition 1. Given
p, q ∈ F , and assuming that τ(si) = ti for all states, we have that π ↓
[tp, tq] ⊩ [p, q], but π ↓ [tr, tq] ⊮ [p, q], since condition (4) does not hold.
¬p

s0

p

sp

¬q p ∧ ¬q

sr

¬q q

sq sn

[p, q]

Definition 2 [eLTL formulae]. Given p, q ∈ F , and φ ∈ Φ, the formulae of eLTL
logic are recursively constructed as follows:

ψ ::= φ | ¬ψ | ψ1 ∨ ψ2 | ψ1U[p,q]ψ2 | ψ1Upψ2

The rest of the temporal operators are accordingly defined as:
◇[p,q]ψ ≡ True U[p,q]ψ, ◻[p,q]ψ ≡ ¬(◇[p,q] ¬ ψ),
◇pψ ≡ True Upψ, ◻pψ ≡ ¬(◇p ¬ ψ)

The following definition gives the semantics of eLTL formulae given above.
Given a trace π ∈ Of (P), and ti, tf ∈ τ(π) with ti ≤ tf , we use 〈π, ti, tf 〉 to
represent the subtrace of π from state si = σ(ti) to state sf = σ(tf).

Trace Analysis Using an Event-Driven Interval Temporal Logic 183

Definition 3 (Semantics of eLTL formulae). Given p, q ∈ F , φ ∈ Φ, and the
eLTL formulae ψ,ψ1, ψ2, the satisfaction relation ⊧ is defined as follows:

〈π, ti, tf 〉 |= φ iff φ([ti, tf]) (3.1)
〈π, ti, tf 〉 |= ¬ψ iff 〈π, ti, tf 〉≠ |= ψ (3.2)
〈π, ti, tf 〉 |= ψ1 ∨ ψ2 iff 〈π, ti, tf 〉 |= ψ1 or 〈π, ti, tf 〉 |= ψ2 (3.3)
〈π, ti, tf 〉 |= ψ1U[p,q]ψ2 iff ∃I = [tp, tq] ⊆ [ti, tf] such that π ↓ [tp, tq] (3.4)

[p, q]and〈π, ti, tp〉 |= ψ1, 〈π, tp, tq〉 |= ψ2

〈π, ti, tf 〉 |= ψ1Upψ2 iff ∃tp. ti ≤ tp ≤ tf and 〈π, ti, tp〉 |= ψ1, 〈π, tp, tp〉 |= ψ2

(3.5)

The semantics given by ⊧ is similar to that of LTL, except that ⊧ manages
interval formulae instead of state formulae. For instance, case 3.1 states that the
subtrace 〈π, ti, tf 〉 of π satisfies an interval formula φ iff φ([ti, tf]) holds. Case 3.4
establishes that U[p,q] holds on the subtrace 〈π, ti, tf 〉 iff there exists an interval
[tp, tq] ⊂ [ti, tf] such that ψ1 and ψ2 hold on [ti, tp] and [tp, tq], respectively.
Case 3.5 is similar except for the interval in which ψ2 has to be true is [tp, tp],
which represents the time instant tp.

Proposition 1. The semantics of operators ◻[p,q],◇[p,q],◻p and ◇p, given in
Definition 2, is the following:

〈π, ti, tf 〉 |= ◇[p,q]ψ iff ∃I = [tp, tq] ⊆ [ti, tf], such that π ↓ [tp, tq] ⊩ [p, q] (3.6)
and〈π, tp, tq〉 |= ψ

〈π, ti, tf 〉 |= ◻[p,q]ψ iff ∀I = [tp, tq] ⊆ [ti, tf], if π ↓ [tp, tq] ⊩ [p, q] then (3.7)
〈π, tp, tq〉 |= ψ

〈π, ti, tf 〉 |= ◇pψ iff ∃tp ∈ [ti, tf] such that 〈π, tp〉 ⊢ p (3.8)
and 〈π, tp, tp〉 |= ψ

〈π, ti, tf 〉 |= ◻pψ iff ∀tp ∈ [ti, tf] if 〈π, tp〉 ⊢ p then 〈π, tp, tp〉 |= ψ (3.9)

3.2 Examples

We now give some examples to show the use of the logic. In [6,17], we proposed a
model-based testing approach to test mobile applications (apps) under different
network scenarios. We automatically generated app user flows, that is, differ-
ent interactions of the user with the app, using model-based testing techniques.

184 M.M. Gallardo and L. Panizo

Then, we executed these app user flows in the TRIANGLE testbed, which pro-
vides a controlled mobile network environment, to obtain measurements and
execution traces in order to evaluate the performance of the apps.

In this section, we make use of eLTL to describe desirable properties regard-
ing to the values of continuous variables of the ExoPlayer app, a video streaming
mobile app that implements different adaptive video streaming protocols. Using
the current implementation of the eLTL operators, and with the execution traces
provided by the evaluation presented in [17], we can determine if the execution
traces of ExoPlayer satisfy the properties. The execution traces of the app con-
tain the following events: the start of video playback (stt), the load of the first
complete picture (fp), the end of the video playback (stp), and the changes in
the video resolution (low, high). In addition, the TRIANGLE testbed measures
every second (approximately) the amount and rate of transmitted and received
data, as well as different parameters of the network (e.g. signal strength and
signal quality) and the device (e.g. RAM, CPU and radio technology).

Property 1: We can write the property “during video playback, the first picture
must be loaded at least once in all network conditions” which may be specified
using the formula ◻[stt,stp] ◇fp True. The following trace satisfies this property,
where the expressions over each state represent the state formulae it holds.

¬stt

s0

stt

sstt

¬stp ∧ fp

sfp

¬stp stp

sstp

stt

s′
stt

¬stp ∧ fp

s′
fp

stp

s′
stp

sn−1

Property 2: We can also specify the property “during video playback, if the
video resolution is high, the average received data rate is greater than 5 Mbps,
and if the video resolution is low the average data rate is below 1Mbps.” The
video resolution is high in the time interval between h and l events. Similarly,
the video resolution is low between the events l and h. The eLTL formula is

◻[stt,stp](◻[high,low]φ1 ∧ ◻[low,high]φ2)

where φ1 and φ2 are defined as: φ1([ti, tf]) = RxRate(ti, tf) ≥ 5Mbps and
φ2([ti, tf]) =RxRate(ti, tf) ≤ 1Mbps.

This formula uses function RxRate(ti, tf) that accesses to the file of the
trace and workouts the average in the corresponding time interval. In the current
implementation on Spin, it is calculated using Promela embedded C code.

Property 3: The eLTL formula for property “during video playback, if the video
resolution changes from High to Low, the peak signal strength (rssi) is less than
−45 dBm” can be written as:

◻[stt,stp] (◻[high,low]φ), where φ([ti, tf]) =

⎧
⎪⎨

⎪⎩

true if ∃t ∈ [ti, tf],
maxRSSI(t) ≤−45 dBm

false otherwise

Trace Analysis Using an Event-Driven Interval Temporal Logic 185

Using this formula with different thresholds for the peak rssi, we can deter-
mine whether the adaptive protocols take into consideration the signal strength
in the terminal to make a decision and change the video resolution.

Other Examples. In the health field, eLTL can also be useful. For instance,
patients with type 1 diabetics should be monitored to assure that their glucose
levels are always inside safe limits. Related to this problem, we could describe
different properties of interest. Given the interval formula ψK([t1, t2])=t2−t1≥K
with K ∈ R, and events sleep, awake, run, end, break, endBreak, drink and
over 70 that denote when the patient goes to sleep, awakes, starts running, stops
running, drinks and his/her glucose level is over 70 mg/l:

– Property “while sleeping, the glucose level is never below 70 mg/l” can be
expressed as ◻[sleep,awake] ◻true over 70. Observe that in this property over70
acts as a simple interval formulae that holds on each state inside [sleep, awake]
iff the glucose level is over 70.

– Property “if the patient is running more than 60 min, he/she has to make a
stop of more than 5 min to drink” can be written as

◻[run,end](ψ60 → (◇[break,endBreak](ψ5 ∧ ◇drinkTrue)))

3.3 Comparison with LTL

In this section, we briefly compare the expressiveness of logics LTL and eLTL.
One important difference between both logics is that LTL is evaluated on infi-
nite traces while, on the contrary, eLTL deals with finite traces. This makes
some LTL properties hard to specify in eLTL. In addition, eLTL is thought to
analyze extra-functional properties on traces, that is, properties that refer to
the behaviour of certain magnitudes in subtraces (as in the examples presented
above), which cannot easily be expressed in LTL. The context where eLTL for-
mulae are checked is determined by the event intervals [p, q] associated to the
modal operators. However, this context is implicit in LTL since formulae are eval-
uated on the whole infinite trace. In conclusion, we can say that although both
logic have similarities, they are different regarding expressiveness. The following
table shows some usual patterns of LTL formulae with its corresponding eLTL
versions. The inverse transformation is not so easy. For instance, eLTL formula
◻[a,b] ◇p True, which forces that p occurs between each pair of a and b events,
is hard to write in LTL. In the table, we use interval formulae φp (p ∈F) defined
as φp([ti, tf]) = σ(ti) ⊢ p. In addition, a, b, q ∈ F are events used to delimit finite
subtraces.

186 M.M. Gallardo and L. Panizo

LTL eLTL Comments

◇p ◇pTrue In both cases, p has to be true eventually, but in eLTL,

p must be true inside of the finite trace.

◻p ◻trueφp in both cases, p has to be always true, but in eLTL

It is limited to the states of the finite trace.

◻ ◇ p ◻[a,b] ◇p True In LTL, p has to be true infinitely often. In eLTL, p has to

Occur always inside the subtraces determined by [a, b].

◇ ◻ p ◇[a,b] ◻true φp The LTL formula says that p has to be always true

from some unspecified state. The eLTL says the same,

but limited by the extreme states of the finite trace [a, b].

p Uq (◻trueφp)UqTrue In this case, the LTL formula is clearly easier to write,

since eLTL is thought to evaluate magnitudes on subtraces.

(◇p)Uq (◇pTrue)UqTrue the LTL formula could be true even if p occur after p in

the trace. However, in the eLTL version, p has to occur before p.

4 Implementation

In this section, we describe the translation of eLTL formulae into a network
of state machines M that check the satisfiability of the property on execution
traces. As described in Sect. 3, formulae are evaluated against time bounded
traces π that execute in time intervals of the form [ti, tf]. Formulae can include
nested temporal operators whose evaluation can be restricted to subintervals.
The implementation described below assumes that traces are analyzed offline,
i.e., given a particular trace, for each state, we have stored the time instant when
it occurred and the set of state formulae of F which it satisfies. In consequence,
we can use the trace to build a simple state machine T that runs concurrently
with the network of machines M. T sends to M events to start and finalize the
analysis, and also the events included in the formula which are of interest for
the correct execution of the network.

Fig. 3. Example of a network of state machines

We use an example to intuitively explain how the network of machines M
is constructed. Assume we want to evaluate 〈π, ti, tf 〉 ⊧◇[p,q] ◻[r,s] φ. The outer
operator ◇[p,q] must find the different time intervals [tp, tq] ⊆ [ti, tf], delimited
by events p and q, to check if there exists at least one satisfying the sub-formula
◻[r,s]φ. Similarly, given one of the time intervals [tp, tq], the inner operator ◻[r,s]

Trace Analysis Using an Event-Driven Interval Temporal Logic 187

has to find all time intervals [tr, ts] ⊆ [tp, tq], determined by events r and s, to
check whether φ holds in all of them.

The network M is composed of the parallel composition of finite-state
machines, each one monitoring a different sub-formula. The network is hier-
archized, that is, each state machine communicates through channels with the
trace T being analysed and with the state machine of the formula in which it
is nested. The state machine of the outer eLTL temporal operator starts and
ends the evaluation, reporting the analysis result to T . Each state machine has
a unique identifier id which allows it to access the different input/output chan-
nels. Thus, channel cm[id] is a synchronous channel through which the state
machine id is started and stopped. Channel rd[id] is used by machine id to
send the result of its evaluation. Finally, ev[id] is an asynchronous channel
through which each state machine receives from T the events in which it is
interested along with the time instant they have occurred ([te,e]).

Figure 3 gives an intuition about how the network of state machines of the
example is constructed. The network of the example is composed by three state
machines M0‖M1‖M2. M0 is the highest level state machine that monitors
operator ◇[p,q]. Thus, it should receive from T events p and q each time they
occur in the trace. Similarly, M1 monitors ◻[r,s], and it should be informed
when events r or s occur. Finally, M2 is devoted to checking φ. It is worth
noting that all machines are initially active, although they are blocked until the
reception of the start message STT. Machine A0 is started when T begins its
execution. Each machine id receives the start and stop messages STT and STP
though channel cm[id]. Events arrive to machine id via channel ev[id] and
it returns the result of its evaluation (true or false) using channel rd[id]. In
the example, when M0 receives event p, it sends a STT message to the nested
machine M1. Similarly, when M1 receives event r, it sends message STT to M2.
Each time M1 receives event s sends STP to M2.When M2 receives STP, it ends
its execution, evaluates the interval formula and sends the result through channel
rd[2]. Similarly, when M0 receives event q via channel ev[0], it sends STP to
M1. When a machine receives STP, it tries to finish its execution immediately.
But, before stopping, it has to process all the events stored in its ev channel
since they could have occurred before the STP were sent. To know this, each
message contains a timestamp with the time instant when the event took place.
This is needed since events and STP are sent via different channels. Thus, it is
possible for a machine to read STP before reading a previous event in the trace.

Finite-State Machine Templates. We now show finite-state machines tem-
plates that implement eLTL operators. In these machines, id refers to the state
machine being implemented, and c1, c2 are, respectively, the identifiers of the
state machines of the first and the second nested operators, if they exist. All
machines described below follow the same pattern. First, each machine starts
after receiving message STT, and initiates its sub-machines, if necessary. Then, it
continues processing the input events in which it is interested. These events are
directly sent from the instrumented trace T that is being monitored. When the

188 M.M. Gallardo and L. Panizo

initstart wait end

send

cm id ? ti, STT cm id ? tf , STP

ϕ
φ

ti,
tfrd id !ϕ

Fig. 4. State machine of an interval formulae

machine receives STP, it returns the result of its evaluation via channel rd. To
simplify the diagrams, we have used sometimes guarded transitions of the form
G|Action. When guard G is a message reception via a synchronous channel, it
is executable iff it is possible to read the message and, as a side effect, the mes-
sage is extracted from the channel. Due to lack of space, we have not included
operator Up since its machine is a simplified version of that of U[p,q].

Interval formula (φ): Figure 4 shows the state machine for an interval formula
φ without eLTL operators. An interval formula is evaluated on a time interval
[ti, tf] that is communicated to the process via the channel cm[id] with mes-
sages [ti,STT] and [tf ,STP]. After detecting the interval end, the state machine
evaluates the expression φ([ti, tf]) and sends the result to the parent machine
through rd[id].

Fig. 5. State machine of the not operator

Negation (¬ψ): Figure 5 shows the negation operator. The state machine syn-
chronizes with the machine of its nested formula (ψ) as soon as it receives the
STT and STP commands. Observe that, in this case, to simplify the diagram, we
have used guarded transitions. When the nested machine finishes, the machine
negates the result and returns it through the rd channel.
Or (ψ1 ∨ψ2): Figure 6 shows the state machine of the or operator. This machine
checks if any of the two sub-formulae ψ1 and ψ2 holds on the same interval [ti, tf]
over which the or operator is being evaluated. Similarly to the NOT machine, this
machine waits the successive reception of the STT and STP messages and resends
them to the machines of its sub-formulae to start and stop them.

Trace Analysis Using an Event-Driven Interval Temporal Logic 189

Fig. 6. State machine for or operator

Fig. 7. State machine for until operator

190 M.M. Gallardo and L. Panizo

Until (ψ1U[p,q]ψ2): Figure 7 shows the state machine template of the until oper-
ator. As can be observed, it is much more complex than the previous templates.
Assuming that the whole formula is evaluated on interval [ti, tf], the first sub-
formula ψ1 must be true on an interval [ti, tp] (tp being a time instant when
event p has occurred), and the second one ψ2 must be true on the time inter-
val [tp, tq] (tq being the time instant when event q has first occurred after p).
The machine id starts accepting the message STT from its parent and, then, it
resends the message to the state machine of ψ1. In state wait p, the machine is
waiting for the p event to occur or for the STP message to arrive. If p arrives at
a correct time instant (after ti), the machine sends STP to machine c1 and waits
for its result in state wait c1. If ψ1 is not valid in the interval [ti, tp], machine
id records false in variable res1 and waits in state wait q the following event
q, then it transits to wait p and restarts machine c1. This is because machine
id has found that formula does not hold on a time interval determined by the
occurrence of p and q and, in consequence, it starts searching for the following
interval given by [p, q] in the trace. Otherwise, if ψ1 holds on [ti, tp], machine
sends STT to machine c2 and waits for its result in state wait c2. In this state,
machine id behaves in a similar way as in state wait p. If c2 returns false, it
restarts again machine c1 and goes back to state wait p to search for the follow-
ing time interval determined by events p and q. Conversely, if c2 returns true,
machine id waits for message STP to send its result. Note that it only sends true
if event q has occurred before the end of the interval tf . Otherwise, the machine
returns false, since ψ2 could not be evaluated in time. Observe that in states
wait p and wait q, message STP is only accepted when the event channel is
empty (emp(ev[id])). This is to prioritize reading events p and q before STP
and simplify the implementation.

Theorem 1. Let f be an eLTL formula, and Mid the network of state machines
implementing f , then given a finite trace 〈π, ti, tf 〉, 〈π, ti, tf 〉 ⊧ f if and only if
Mid finishes its execution by sending true via channel rd[id] (rd[id] ! true).

5 Conclusions

In this paper, we have presented an event-driven interval logic (eLTL) suitable
for describing properties in terms of time intervals determined by trace events.
We have transformed each eLTL formula into network of finite state machines to
evaluate it using runtime verification procedures, and have proved the correctness
of the transformation. We have constructed a prototype implementation of these
machines in Promela to be executed on Spin.

Our final goal is to apply the approach to analyze execution traces of real
systems against extra-functional properties, such as evaluating the performance
of mobile apps in different network scenarios [17]. Currently, the transformation
from eLTL formula into Promela code, and the transformation of the traces
are manually done, although the automatic transformation will be carried out in
the near future. We also plan to use the approach in other domains such as the

Trace Analysis Using an Event-Driven Interval Temporal Logic 191

EuWireless project [15]. This project is designing an architecture to dynamically
create network slices to run experiments. In this context, it is of great impor-
tance to monitor the different network slices and the underlying infrastructure
to ensure safety (e.g. isolation of slices) and extra-functional properties related
to performance and quality of service.

References

1. Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. J. ACM

43(1), 116–146 (1996)

2. Behrmann, G., David, A., Larsen, K.G.: A Tutorial on Uppaal. In: Bernardo,

M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,

Heidelberg (2004). https://doi.org/10.1007/978-3-540-30080-9 7

3. Chaochen, Z., Hansen, M.R.: Duration Calculus - A Formal Approach to Real-

Time Systems. Monographs in TCS. EATCS Series. Springer, Heidelberg (2004).

https://doi.org/10.1007/978-3-662-06784-0

4. Dang, T., Nahhal, T.: Coverage-guided test generation for continuous and hybrid

systems. Form. Methods Syst. Des. 34(2), 183–213 (2009)

5. De Nicola, R., Vaandrager, F.: Action versus state based logics for transition sys-

tems. In: Guessarian, I. (ed.) LITP 1990. LNCS, vol. 469, pp. 407–419. Springer,

Heidelberg (1990). https://doi.org/10.1007/3-540-53479-2 17

6. Espada, A.R., Gallardo, M.M., Salmeron, A., Panizo, L., Merino, P.: A formal app-

roach to automatically analyze extra-functional properties in mobile applications.

Soft. Test. Verif. Rel. (2019). https://doi.org/10.1002/stvr.1699

7. Gallardo, M.M., Panizo, L.: An event-driven interval temporal logic for hybrid

systems. In: Actas de las XVIII Jornadas de Programación y Lenguajes (PROLE

2018). (Work in progress)

8. Gallardo, M.M., Merino, P., Panizo, L., Linares, A.: A practical use of model

checking for synthesis: generating a dam controller for flood management. Softw.

Pract. Experience 41(11), 1329–1347 (2011)

9. Goodloe, A.E., Muñoz, C., Kirchner, F., Correnson, L.: Verification of Numerical

Programs: From Real Numbers to Floating Point Numbers. In: Brat, G., Rungta,

N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 441–446. Springer, Heidelberg

(2013). https://doi.org/10.1007/978-3-642-38088-4 31

10. Hennessy, M., Milner, R.: On observing nondeterminism and concurrency. In: de

Bakker, J., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 299–309.

Springer, Heidelberg (1980). https://doi.org/10.1007/3-540-10003-2 79

11. Holzmann, G.: The model checker SPIN. IEEE Trans. Software Eng. 23(5), 279–

295 (1997)

12. Lerda, F., Kapinski, J., Maka, H., Clarke, E.M., Krogh, B.H.: Model checking

in-the-loop: finding counterexamples by systematic simulation. In: 2008 American

Control Conference, pp. 2734–2740 (2008)

13. Maler, O., Nickovic, D., Pnueli, A.: Real Time Temporal Logic: Past, Present,

Future. In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp.

2–16. Springer, Heidelberg (2005). https://doi.org/10.1007/11603009 2

14. Maler, O., Ničković, D.: Monitoring properties of analog and mixed-signal circuits.

STTT 15(3), 247–268 (2013)

15. Merino, P., Panizo, L., Dı́az, A., et al.: EuWireless: design of a pan-European

mobile network operator for research. In: European Conference on Networks and

Communications (EuCNC2018), pp. 392–393 (2018)

https://doi.org/10.1007/978-3-540-30080-9_7
https://doi.org/10.1007/978-3-662-06784-0
https://doi.org/10.1007/3-540-53479-2_17
https://doi.org/10.1002/stvr.1699
https://doi.org/10.1007/978-3-642-38088-4_31
https://doi.org/10.1007/3-540-10003-2_79
https://doi.org/10.1007/11603009_2

192 M.M. Gallardo and L. Panizo

16. Ničković, D., Lebeltel, O., Maler, O., Ferrère, T., Ulus, D.: AMT 2.0: qualita-

tive and quantitative trace analysis with extended signal temporal logic. In: 24th

International Conference of TACAS, pp. 303–319 (2018)

17. Panizo, L., Dı́az-Zayas, A., Garćıa, B.: Model-based testing of apps in real network

scenarios. STTT, 1–10 (2019)

18. Platzer, A.: A temporal dynamic logic for verifying hybrid system invariants.

In: Artemov, S.N., Nerode, A. (eds.) LFCS 2007. LNCS, vol. 4514, pp. 457–471.

Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72734-7 32

19. Ramakrishna, Y., Melliar-Smith, P., Moser, L., Dillon, L., Kutty, G.: Interval logics

and their decision procedures: Part ii: a real-time interval logic. Theoret. Comput.

Sci. 170(1), 1–46 (1996)

20. Schwartz, R.L., Melliar-Smith, P.M., Vogt, F.H.: An interval logic for higher-level

temporal reasoning. In: Proceedings of the 2nd Annual ACM Symposium on Prin-

ciples of Distributed Computing. PODC 1983, pp. 173–186 (1983)

https://doi.org/10.1007/978-3-540-72734-7_32

The Prolog Debugger and Declarative
Programming

W�lodzimierz Drabent1,2(B)

1 Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland
drabent@ipipan.waw.pl

2 IDA, Linköping University, Linköping, Sweden

Abstract. Logic programming is a declarative programming paradigm.
Programming language Prolog makes logic programming possible, at
least to a substantial extent. However the Prolog debugger works solely
in terms of the operational semantics. So it is incompatible with declar-
ative programming. This report discusses this issue and tries to find how
the debugger may be used from the declarative point of view. The results
are rather not encouraging. Also, the box model of Byrd, used by the
debugger, is explained in terms of SLD-resolution.

Keywords: Declarative diagnosis/Algorithmic debugging · Prolog ·
Declarative programming · Program correctness · Program
completeness

1 Introduction

The idea of logic programming is that a program is a set of logic formulae,
and a computation means producing logical consequences of the program. So
it is a declarative programming paradigm. The program is not a description
of any computation, it may be rather seen as a description of a problem to
solve. Answers of a given program (the logic) may be computed under various
strategies (the control), the results depend solely on the former. This semantics
of programs, based on logic, is called declarative semantics.

Programming language Prolog is a main implementation of logic program-
ming. Its core, which may be called “pure Prolog”, is an implementation of
SLD-resolution under a fixed control. (SLD-resolution with Prolog selection rule
is called LD-resolution.) For a given program P and query Q, Prolog computes
logical consequences of P which are instances of Q. If the computation is finite
then, roughly speaking, all such consequences are computed1.

On the other hand, Prolog may be viewed without any reference to logic, as
a programming language with a specific control flow, the terms as the data, and
1 See e.g. [1] for details. We omit the issue of unification without occur-check; it

may lead to incorrect answers (i.e. not being logical consequences of the program).
Technically, by an answer of a program we mean the result of applying a (correct or
computed) answer substitution to a query.

c© Springer Nature Switzerland AG 2020
M. Gabbrielli (Ed.): LOPSTR 2019, LNCS 12042, pp. 193–208, 2020.
https://doi.org/10.1007/978-3-030-45260-5_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45260-5_12&domain=pdf
http://orcid.org/0000-0002-4700-7272
https://doi.org/10.1007/978-3-030-45260-5_12

194 W. Drabent

a certain kind of term matching as the main primitive operation. Such a view
is even necessary when we deal with non logical features of full Prolog, like the
built-ins dealing with input/output. Of course such operational view loses all the
advantages of declarative programming.

In the author’s opinion, Prolog makes declarative programming possible in
practice. A Prolog program treated as a set of logical clauses is a logic pro-
gram. The logic determines the answers of the program. At a lower level, the
programmer can influence the control. This can be done by setting the order of
program clauses and the order of premises within a clause (and by some addi-
tional Prolog constructs). Changing the control keeps the logic intact, and thus
the program’s answers are unchanged; the logic is separated from the control
[9]. What is changed is the way they are computed, for instance the computa-
tion may be made more efficient. In particular, an infinite computation may be
changed into a finite one.

In some cases, programs need to contain some non-logical fragments, for
instance for input-output. But the practice shows that Prolog makes possible
building programs which are to a substantial extent declarative; in other words,
a substantial part of such program is a logic program. Numerous examples are
given in the textbooks, for instance [14]. For a more formal discussion of this
issue see [6].

It should be noted that the operational, low-level approach to Prolog pro-
gramming is often overused. In such programs it is not the declarative semantics
that matters. A typical example is the red cut [14] – a programming technique
which is based on pruning the search space; the program has undesired logi-
cal consequences, which are however not computed due to the pruning. Under-
standing such program substantially depends on its operational semantics. And
understanding the operational semantics is usually more difficult than that of the
declarative semantics. In particular, examples of programs with the red cut are
known, for which certain choices of the initial query lead to unexpected results
[14, p. 202–203], [3, Chapter 4]. In seems that some Prolog textbooks over-use
such style of programming (like [2,3], at least in their earlier editions).

Debugging Tools of Prolog. We begin with a terminological comment. Often the
term “debugging” is related to locating errors in programs. However its meaning
is wider; it also includes correcting errors. So a better term for locating errors
is diagnosis. However this text still does not reject the first usage, as it is quite
common.

Despite Prolog has been designed mainly as an implementation of logic pro-
gramming, its debugging tools work solely in terms of the operational seman-
tics. So all the advantages of declarative programming are lost when it comes
to locating errors in a program. The Prolog debugger is basically a tracing
tool. It communicates with the programmer only in terms of the operational
semantics. She (the programmer) must abandon the convenient high abstraction
level of the declarative semantics and think about her program in operational
terms.

The Prolog Debugger and Declarative Programming 195

Declarative Diagnosis. In principle, it is well known how to locate errors in
logic programs declaratively, i.e. abstracting from the operational semantics (see
e.g. [4, Section 7] and the references therein). The approach is called declarative
diagnosis (and was introduced under a name algorithmic debugging by Shapiro
[13]). Two kinds of errors of the declarative semantics of a program are dealt
with: incorrectness – producing results which are wrong according to the spec-
ification, and incompleteness – not producing results which are required by the
specification. We learn about an error by encountering a symptom – a wrong
or missing answer obtained at program testing. Given a symptom, an incor-
rectness (respectively incompleteness) diagnosis algorithm semi-automatically
locates an error in the program, asking the user some queries about the
specification.

Unfortunately, declarative diagnosis was not adapted in practice. No tools
for it are included in current Prolog systems.

Intended Model Problem. A possibly main reason for lack of acceptance of declar-
ative diagnosis was discussed in [4, Section 7]. Namely, declarative diagnosis
requires that the programmer exactly knows the relations to be defined by the
program. Formally this means that the programmer knows the least Herbrand
model of the intended program. (In other words, the least Herbrand model is
the specification.) This requirement turns out to be unrealistic. For instance,
in an insertion sort program we do not know how inserting an element into an
unsorted list should be performed. This can be done in any way, as the algorithm
inserts elements only into sorted lists. Moreover, this can be done differently in
various versions of the program. See [6] for a more realistic example2. Let us call
this difficulty intended model problem.

Usually the programmer knows the intended least Herbrand model of her
program only approximately. She has an approximate specification: she knows
a certain superset Scorr and a certain subset Scompl of the intended model.
The superset tells what may be computed, and the subset – what must be
computed. Let us call the former, Scorr, the specification for correctness and
the latter, Scompl , the specification for completeness. Thus the program should
be correct with respect to the former specification and complete with respect
to the latter: Scompl ⊆ MP ⊆ Scorr (where MP is the least Herbrand model
of the program). In our example, it is irrelevant how an element is inserted
into an unsorted list; thus the specification for correctness would include all
such possible insertions (and the specification for completeness would include
none).

Now it is obvious that when diagnosing incorrectness the programmer should
use the specification for correctness instead of the intended model, and the spec-
ification for completeness should be used when diagnosing incompleteness [4].
The author believes that this approach can make declarative diagnosis useful in
practice.

2 In the main example of [6], the semantics of a particular predicate differs at various
steps of program development.

196 W. Drabent

Intended model problem was possibly first noticed by Pereira [12]. He intro-
duced the notion of inadmissible atomic queries. A formal definition is not given3.
We may suppose that ground inadmissible atoms are those from Scorr \ Scompl .
Generally, this notion is not declarative; an inadmissible atom seems to be one
that should not appear as a selected atom in an LD-tree of the program.

Naish [11] proposed a 3-valued diagnosis scheme. The third value, inadmis-
sible, is related to the search space of a diagnosis algorithm, and to its queries.
The form of queries depends on the particular algorithm, e.g. it may be an atom
together with its computed answers. So the third value is not (directly) related
to the declarative semantics of programs. It turns out that applying the scheme
to incorrectness diagnosis ([11, Section 5.1]) boils down to standard diagnosis
w.r.t. Scorr, and applying it to incompleteness diagnosis ([11, Section 5.2]) – to
the standard diagnosis w.r.t. Scompl (where Scompl is the set of correct atoms,
and Scorr is the set of correct or inadmissible ones). So introducing the 3-valued
scheme seems unnecessary (at least for incorrectness and incompleteness diag-
nosis).

This Paper. The role of this paper is to find if, how, and to which extent the
Prolog debugger can be used as a tool for declarative logic programming. We
focus on the debugger of SICStus Prolog. We omit its advanced debugging fea-
tures, which are sophisticated, but seem not easy to learn and not known by
most of programmers.

The paper is organized as follows. The next section deals with the Prolog
debugger and the information it can provide. Section 3 discusses applying the
debugger for diagnosing incorrectness and incompleteness. The last section con-
tains conclusions.

2 Prolog Debugger

In this section we present the Prolog debugger and try to find out how to use
it to obtain the information necessary from the point of view of declarative
programming. First we relate the computation model used by the debugger
to the standard operational semantics (LD-resolution). We also formalize the
information needed for incorrectness and incompleteness diagnoses. For incor-
rectness diagnosis, given an atomic answer A we need to know which clause
H ← B1, . . . , Bn have been used to obtain the answer A (A is an instance of
H), and which top-level atomic answers (instances of B1, . . . , Bn) have been
involved. For incompleteness diagnosis, the related information is which answers
have been computed for each selected instance of each body atom Bi of each
clause H ← B1, . . . , Bn resolved with a given atomic query A. In Sect. 2.2 we
describe the messages of the debugger. Section 2.3 investigates how to extract
from the debugger’s output the information of interest.
3 “a goal is admissible if it complies with the intended use of the procedure for it –

i.e. it has the correct argument types – irrespective of whether the goal succeeds or
not” (p. 6 of the extended version of [12]).

The Prolog Debugger and Declarative Programming 197

2.1 Byrd Box Model and LD-Resolution

The debugger refers to the operational semantics of Prolog in terms of a “Byrd
box model”. Roughly speaking, the model assigns four ports to each atom
selected in LD-resolution. From a programmer’s point of view such atom can
be called a procedure call. The model is usually easily understood by program-
mers. However it will be useful to relate it here to LD-resolution, and to introduce
some additional notions. In this paper, we often skip “LD-” and by “derivation”
we mean “LD-derivation” (unless stated otherwise).

Structuring LD-derivations. Let us consider a (finite or infinite) LD-derivation D
with queries Q0, Q1, Q2 . . ., the input clauses C1, C2, . . ., and the mgu’s θ1, θ2,
By a procedure call of D we mean the atom selected in a query of D. Following
[5,7], we describe a fragment of D which may be viewed as the evaluation of a
given procedure call A.

Definition 1. Consider a query Qk−1 = A,B1, . . . , Bm (m ≥ 0) in a derivation
D as above. If D contains a query Ql = (B1, . . . , Bm)θk · · · θl, k ≤ l, then the
call A (of Qk−1) succeeds in D.

In such case, by the subderivation for A (of Qk−1 in D) we mean the frag-
ment of D consisting of the queries Qi where k − 1 ≤ i ≤ l, and for k − 1 ≤ i < l
each Qi contains more than m atoms4. We call such subderivation successful.
The (computed) answer for A (of Qk−1 in D) is Aθk · · · θl.

If A (of Qk−1) does not succeed in D then the subderivation for A (of Qk−1

in D) is the fragment of D consisting of the queries Qi where k − 1 ≤ i.
By a subderivation (respectively an answer) for A of Q in an LD-tree T we

mean a subderivation (answer) for A of Q in a branch D of T .

Now we structure a subderivation D for an atom A by distinguishing in D
top-level procedure calls. Assume A is resolved with a clause H ← A1, . . . , An

in the first step of D. If then an instance of Ai becomes a procedure call, we call
it a top-level call. More precisely:

Definition 2. Consider a subderivation D for A, with first two queries
Qk−1 = A, Q′ and Qk = (A1, . . . , An, Q′)θk, where n > 0. So A1, . . . , An is
the body of the clause used in the first step of the subderivation. Let |Qk| be
the length of Qk (the number of atoms in Qk).

Consider an index j, 1 ≤ j ≤ n. If there exists in D a query of the length
|Qk| + 1 − j and Qij = (Aj , . . . , An, Q′)θk · · · θij is the first such query then we
say that Ajθk · · · θij (of Qij) is a top-level call of D, and the subderivation D′

for Ajθk · · · θij (of Qij) in D is a top-level subderivation of D.

A top-level call of a subderivation D for A will be also called a top-level call
for A.

4 Thus each such Qi is of the form A1, . . . , Ami , (B1, . . . , Bm)θk · · · θi where mi > 0.This
implies that the least l > k is taken such that Ql is of the form (B1, . . . , Bm)θk · · · θl.

198 W. Drabent

Notice that if A is resolved with a unary clause (n = 0, and D consists of two
queries) then D has no top-level subderivations. Also, if a top-level subderivation
D′ of D is successful then the last query of D′ is the first query of the next
subderivation, or it is the last query of D.

We are ready to describe what information to obtain from the debugger in
order to facilitate incorrectness and incompleteness diagnosis. First we describe
which top-level answers correspond to an answer for A; we may say that they
have been used to obtain the answer for A.

Definition 3. If subderivation D for A as in Definition 2 is successful then it has
n top-level subderivations, for atoms Ajθk · · · θij (j = 1, . . . , n). Their answers
in D are, respectively, A′

j = Ajθk · · · θij+1 (where in+1 is the index of the last
query Qin+1 = Q′θk · · · θin+1 of D). In such case, by the top-level success trace
for A (in D) we mean the sequence A′

1, . . . , A
′
n of the answers.

Top-level success traces will be employed in incorrectness diagnosis. For diag-
nosing incompleteness, we need to collect all the answers for each top-level call.

Definition 4. Consider an LD-tree T with a node Q. Let A be the first atom
of Q. By the top-level search trace (or simply top-level trace) for A (of Q in
T) we mean the set of pairs

⎧
⎪⎪⎨

⎪⎪⎩

(B, {B1, . . . , Bk})

∣
∣
∣
∣
∣
∣
∣
∣

B is the first atom of a node Q′ of T ,
Q′ occurs in a subderivation D′ for A of Q in T ,
B is a top-level call of D′,
B1, . . . , Bk are the answers for B of Q′ in T

⎫
⎪⎪⎬

⎪⎪⎭

.

2.2 Debugger Output

For the purposes of this paper, this section should provide a sufficient description
of the debugger. We focus on the debugger of SICStus. For an introduction and
further information about the Prolog debugger see e.g. the textbook [3] or the
manual http://sicstus.sics.se/.

Prolog computation can be seen as traversal of an LD-tree. The Prolog debug-
ger reports the current state of the traversal by displaying one-line items; such
an item contains a single atom augmented by other information. A procedure
call A is reported as an item

n d Call: A

and a corresponding answer A′ = Aθk · · · θi as

n d Exit: A′

Here n, d are, respectively, the unique invocation number and the current depth
of the invocation; we skip the details. What is important is that, given an Exit
item, the invocation number uniquely determines the corresponding Call item.

Note that a node in an LD-tree may be visited many times, and usually more
than one item correspond to a single visit. For instance, to the last node Ql of a

http://sicstus.sics.se/

The Prolog Debugger and Declarative Programming 199

successful subderivation for A (say that from Definition 1) there correspond, at
least, an Exit item with atom Aθk · · · θl and a Call item with atom B1θk · · · θl
(provided m > 0). Note that such a node is often the last query of more than
one successful subderivations (cf. Definition 2). In such case other Exit items
correspond to Ql. They are displayed in the order which may be described as
leaving nested procedure calls. More formally, the order of displaying the Exit
items is that of the increasing lengths of the corresponding successful subderiva-
tions. (The displayed invocation depths of these items are decreasing consecutive
natural numbers.)

An Exit item is preceded by ? when backtrack-points exist between the cor-
responding Call and the given Exit. Thus more answers are possible for (the
atom of) this Call.

At backtracking the debugger displays Redo items of the form

n d Redo: A′

Such item corresponds to an Exit item with the same numbers n, d and atom A′.
Both items correspond to the same node of the LD-tree. The Redo item appears,
speaking informally, when the answer A′ is abandoned, and the computation of
a new answer for the same query begins. SICStus usually does not display a
Redo item when the corresponding Exit item was not preceded by ?.

A Fail item
n d Fail: A

is displayed when no (further) answer is obtained for A. This means that a node
with A selected is being left (and will not be visited anymore). The numbers and
the atom in a Fail item are the same as those in the corresponding Call item.
Both the Call and Fail items correspond to the same node of the LD-tree.

We described the output of the debugger of SICStus. Commands of the
debugger will be described when necessary. The debuggers of most Prolog sys-
tems are similar. However important differences happen. For instance the debug-
ger of SWI-Prolog (http://swi-prolog.org/) does not display the invocation num-
bers. This may make difficult e.g. finding the Call item corresponding to a given
Exit item. On the other hand, the debuggers or Ciao (http://ciao-lang.org/) and
Yap (https://github.com/vscosta/yap-6.3) seem to display such numbers.

2.3 Obtaining Top-Level Traces

We are ready to describe how to obtain top-level traces using the Prolog debug-
ger. We first deal with the search trace.

Algorithm 1 (All answers). Assume that we are at a Call port; the debugger
displays

n d Call: B

We show how to obtain all the answers for B. Do repetitively the following.

1. Type s to skip the details of processing the query B and to go to the corre-
sponding Exit or Fail port.

http://swi-prolog.org/
http://ciao-lang.org/
https://github.com/vscosta/yap-6.3

200 W. Drabent

2. If the obtained port is n d Exit: B′ then B′ is a computed answer for B.
Type jr (to jump to the Redo port; n d Redo: B′ is displayed). Repeat
(step 1) to compute further answers
If the obtained port is a Fail then all the answers have been obtained. To
come back to the initial Call port, type r.

An alternative to using this algorithm is to simply run Prolog on query B
(e.g. using the “break” option of the debugger).

Algorithm 2 (Top-level trace). Assume that we are at a Call port

n d Call: A

We show a way of obtaining the top-level search trace for A. Repetitively do the
following.

1. If an item
n d Call: A or n d Redo: A′

is displayed then type enter to make one step of computation.5
2. If

n d Fail: A

is displayed then the search is completed. The trace has been obtained.
3. If

n d Exit: A′

is displayed then type jr (to jump to the Redo port of A, in order to continue
the search).

4. If
ni d+1 Call: Bi

is displayed then employ Algorithm 1 to obtain the answers for Bi. Query Bi

together with the answers is an element of the top-level trace for A.
Now we are again at the same Call:Bi item. Type s to arrive at the first
answer for Bi, (or to a Fail if there is none).

5. If
ni d+1 Exit: B′

i or ni d+1 Fail: Bi

is displayed then type enter , to make a single step.6

5 In the case of Call there are three possibilities. If the result is an item
n1 d+1 Call: B1 then B1 is an instance of the first atom of the body of the
clause used in the resolution step. Obtaining n d Exit: A′ means that a unary
clause was used and A succeeded immediately. Obtaining n d Fail: A means that
A failed immediately, as it was not unifiable with any clause head.
In the case of Redo:A′, we deal with backtracking after having obtained an answer
A′ for A. Then there is a fourth possibility: obtaining a Redo:B′

j item, where B′
j

is an answer obtained for (an instance of) an atom Bj from the body of the clause
used to obtain the answer A′.

6 After an Exit, this leads to a Call:Bi+1 item, or to an Exit:A′ item; the latter
when Bi is (an instance of) the last atom of the used clause. After a Fail, this leads
(in a simple case) to a Redo:Bi−1.
Here Bi−1, Bi, Bi+1 are instances of three consecutive atoms of the used clause.

The Prolog Debugger and Declarative Programming 201

6. If
ni d+1 Redo: B′

i

is displayed then type s to arrive at the next answer for Bi (or to a Fail if
there is none).

The algorithm outputs the same answers (Exit items) twice (by Algorithm 1
and after an s at steps 4 and 6). So all the details of the trace are displayed even
if we do not invoke Algorithm 1. But obtaining the top-level trace from such
output seems too tedious; we need to group each query with its answers (e.g. by
sorting by the invocation numbers), and remove unnecessary items. This can be
done by a shell command cut -b 2- | sort -nk 1 | egrep ’Call:|Exit:’ .

Algorithm 3 (Top-level success trace). Assume that we obtained an Exit
item containing an answer A′. The item corresponds to the last query of a
successful subderivation D for an atom A. In order to extract from the debugger
output the top-level success trace for A in D, we need that the debugger has
displayed the Call and Exit items containing the top-level calls of D and the
corresponding answers. If this is not the case then, at the n d Exit: A′ item,
type r to arrive to the corresponding Call item, n d Call: A. Then perform
Algorithm 2 until arriving again to the Exit:A′ item (all the invocations of
Algorithm 1 may be skipped).

To select a top-level success trace from the printed debugger items, do repeti-
tively the following. The trace will be constructed backwards. Initially the cur-
rent item is n d Exit: A′. Repetitively do the following:

The current item is

n d Exit: A′ or nj d+1 Call: Bj

Consider the preceding item. If the immediately preceding item is

nj′ d+1 Exit: B′
j′

then B′
j′ is obtained as an element of the success trace. Find the corre-

sponding
nj′ d+1 Call: Bj′

item, and make it the current item.
Otherwise, the preceding item is

n d Call: A or n d Redo: A′′

and all the elements of the top-level success trace for A have been found.

The construction of a top-level success trace can be made more efficient, by
re-starting the computation with A′ as the initial query. Then the search space
to obtain a success of A′ (and the corresponding top-level success trace) may be
substantially smaller than that for original atomic query from the Call item.

202 W. Drabent

3 Diagnosis

This section first discusses diagnosis of incorrectness, and then that of incom-
pleteness. In each case we first present the diagnosis itself, and then discuss how
it may be performed employing the Prolog debugger.

3.1 Diagnosing Incorrectness

A symptom of incorrectness is an incorrect answer of the program. More for-
mally, consider a program P and an Herbrand interpretation Scorr, which is our
specification for correctness. A symptom is an answer Q such that Scorr �|= Q,
where Scorr is the specification for correctness. (In other words, Q has a ground
instance Qθ such that Q �∈ Scorr.) When testing finds such a symptom, the role
of diagnosis is to find the error, this means the reason of incorrectness. An error
is a clause of the program which out of correct (w.r.t. Scorr) premises produces
an incorrect conclusion. More precisely:

Definition 5. Given a definite program P and a specification Scorr (for cor-
rectness), an incorrectness error is an instance

H ← B1, . . . , Bn (n ≥ 0)

of a clause of P such that Scorr |= Bi for all i = 1, . . . , n, but Scorr �|= H.
An incorrect clause is a clause C having an instance Cθ which is an incor-

rectness error.

In other words, C is an incorrect clause iff Scorr �|= C. In what follows, by a
correct atom we consider an atom A such that Scorr |= A (where Scorr is the
considered specification for correctness).

Note that we cannot formally establish which part of the clause is erroneous.
Easy examples can be constructed showing that an incorrect clause C can be cor-
rected in various ways; and each atom of C remains unchanged in some corrected
version of C [4, Section 7.1].

The incorrectness diagnosis algorithm is based on the notion of a proof tree,
called also implication tree.

Definition 6. Let P be a definite program and Q an atomic query. A proof tree
for P and Q is a finite tree in which the nodes are atoms, the root is Q and

if B1, . . . , Bn are the
children of a node B

then B ← B1, . . . , Bn is an
instance of a clause of P

(n ≥ 0).

Note that the leaves of a proof tree are instances of unary clauses of P .
Now diagnosing incorrectness is rather obvious. If an atom Q is a symptom

then there exists a proof tree for P , Q. The tree must contain an incorrectness
error (otherwise the root of the tree is correct, i.e. Scorr |= Q). A natural way of
searching for the error, in other words an incorrectness diagnosis algorithm, is
as follows: Begin from the root and, recursively, check the children B1, . . . , Bn

The Prolog Debugger and Declarative Programming 203

of the current node whether they are correct (formally, whether Scorr |= Bi). If
all of them are correct, the error is found; it is B ← B1, . . . , Bn (where B the
parent of B1, . . . , Bn). Otherwise take an incorrect child Bi, and continue the
search taking Bi as the current node.

Obviously, such search locates a single error. So correcting the error does not
guarantee correctness of the program.7

3.2 Prolog Debugger and Incorrectness

Now we try to find out to which extent the algorithm described above can be
mimicked by the standard Prolog debugger. Unfortunately, the debugger does
not provide a way to construct a proof tree for a given answer. We can however
employ top-level success traces to perform a search similar to that done by the
incorrectness diagnosing algorithm described in Sect. 3.1.

A Strategy for Incorrectness Errors. Here we describe how to locate incorrectness
errors using the Prolog debugger.

Algorithm 4. Assume that while tracing the program we found out an incor-
rect answer A′ (for a query A). So we are at an Exit item containing A′. Type
r to arrive to the corresponding Call item n d Call: A. Do repetitively the
following:

1. Construct the top-level success trace B′
1, . . . , B

′
m for the subderivation D (for

an atom A, where A′ is the answer for A in D), as described in Algorithm 3.
2. Check whether the atoms of the trace are correct (formally, whether Scorr |=

B′
i). If all of them are, then the search ends.

Otherwise take an item ni d+1 Exit: B′
i, in which B′

i is incorrect, and
find the corresponding Call item ni d+1 Call: B. Now repeat the search,
with A,A′ replaced by, respectively, B,B′

i, by typing a command jcni, or by
starting new tracing from query B (in some cases jcni does not lead to the
expected Call item).

The last obtained top-level success trace B′
1, . . . , B

′
m points out the incorrect

clause (Definition 5) of the program. The clause is C = H ← B1, . . . , Bm such
that the obtained answers are instances of the body atoms of C: each B′

j is an
instance of Bj , for j = 1, . . . ,m. The head H of C is unifiable with the last call
B for which the top-level success trace was built.

Obviously, the algorithm can be improved by checking the correctness of each
element B′

i of the trace as soon as it is located. (So the success trace needs to
be constructed only until an incorrect element is found.)

The approach of Algorithm 4 is rather tedious. A more natural way to locate
incorrectness errors is as follows.

7 This does not even guarantee that the symptom we began with would disappear –
there may be some other errors involved.

204 W. Drabent

Algorithm 5

1. Assume, as above, that an incorrect answer A′ was found. Begin as in Algo-
rithm 4: arrive to the Call:A that resulted in the incorrect answer, and
start constructing a top-level search trace.

2. For each obtained item ni d+1 Exit: B′ check if B′ is correct.
3. If B′ is an incorrect answer, then restart the search from B′.
4. If no incorrect answer has appeared until arriving to the incorrect answer A′

then the error is found. It is the last clause C whose head was unified with
A in the computation. (Formally, an instance of C is an incorrectness error.)
The clause may be identified, as previously, by extracting the top-level suc-
cess trace (for the subderivation that produced A′).

Comments. In Algorithms 4 and 5, it is often not necessary to know the (whole)
top-level success trace to identify the incorrect clause in the program. In many
cases, knowing the last one or two answers of the trace is sufficient. For instance,
let n′ d′ Call: B be the last call for which top-level trace was inspected. The
last item displayed by the debugger is n′ d′ Exit: B′ (where B′ is incorrect).
Assume that the previous item is nj d′+1 Exit: B′

j . Then the top-level trace of
interest is not empty, B′

j is its last atom and is an instance of the last body atom
of an erroneous clause. If the program has only one such clause, then finding the
rest of the top-level success trace is unnecessary.

The error located by the second approach (Algorithm 5) may be not the one
that caused the initial incorrect answer A′. This is because the search may go
into a branch of the LD-tree distinct from the branch in which A′ is produced.
Anyway, an actual error has been discovered in the program. This outcome is
useful, as each error in the program should be corrected.

Note that the approach is complete, in the sense that the error(s) responsible
for A′ can be found. This is due to the nondeterministic search performed by the
algorithm. The error(s) will be located under some choice of incorrect answers
in the top-level search traces.

The search may be made more efficient if, instead of tracing the original com-
putation, we re-start it with an incorrect answer as a query. The corresponding
modification (of both algorithms) is as follows. Whenever an incorrect answer B′

is identified, instead of continuing the search for the corresponding call B, one
interrupts the debugger session and begins a new one by starting Prolog with
query B′. The query will succeed with B′ (i.e. itself) as an answer, but the size
of the trace may be substantially smaller (and is never greater). Moreover, any
incorrect instance of B′ may be used instead of B′.

The Prolog debugger does not facilitate searching for the reason of incorrect-
ness. Finding a top-level success trace is tedious and not obvious. In particular,
there seems to be no way of skipping the backtracking that precedes obtain-
ing the wrong answer. The abilities of the debugger make Algorithm 5 prefer-
able; this approach in a more straightforward way uses what is offered by the
debugger.

The Prolog Debugger and Declarative Programming 205

Looking for the reason of an incorrect answer is a basic task. It is strange
that such a task is not conveniently facilitated by the available debugging tools.

3.3 Diagnosing Incompleteness

A specification for completeness is, as already stated, an Herbrand interpretation
which is the set of all required ground answers of the program. A symptom of
incompleteness is lack of some answers of the program. More formally, given a
program P and a specification Scompl , by an incompleteness symptom we may
consider a ground atom A such that Scompl |= A but P �|= A. As a symptom is
to be obtained out of an actual computation, we additionally require that the
LD-tree for A is finite. We will consider a more general notion of a symptom:

Definition 7. Consider a definite program P and a specification Scompl (for
completeness). Let A be an atomic query for which an LD-tree is finite and let
Aθ1, . . . , Aθn be the computed answers for A from the tree. If there exists an
instance Aσ ∈ Scompl such that Aσ is not an instance of any Aθi (i = 1, . . . , n)
then A,Aθ1, . . . , Aθn is an incompleteness symptom (for P w.r.t. Scompl).

We will often skip the sequence of answers, and say that A alone is the symptom.
The definition can be generalized to non-atomic queries in an obvious way.

Definition 8. Let P be a definite program, and Scompl a specification. A ground
atom A is covered by a clause C w.r.t. Scompl if there exists a ground instance
A ← B1, . . . , Bn of C (n ≥ 0) such that all the atoms B1, . . . , Bn are in Scompl .

A is covered by the program P (w.r.t. Scompl) if A is covered by some clause
C ∈ P .

Informally, A is covered by P if it can be produced by a rule from P out of some
atoms from the specification.

If there exists an incompleteness symptom for P w.r.t. Scompl then there
exists an atom p(t) ∈ Scompl uncovered by P w.r.t. Scompl [4,13]. Such an atom
locates the error in P . This is because no rule of P can produce p(t) out of atoms
required to be produced. This shows that the procedure p (the set of clauses
beginning with p) is the reason of the incompleteness and has to be modified,
to make the program complete. Note that similarly to the incorrectness case, we
cannot locate the error more precisely. Various clauses may be modified to make
p(t) covered, or a new clause may be added. An extreme case is adding to P a
fact p(t).

Incompleteness diagnosis means looking for an uncovered atom, or – more
generally – for an atom with an instance which is uncovered: Such atom localizes
the procedure of the program which is responsible for incompleteness.

Definition 9. Let P be a definite program, and Scompl a specification. An
incompleteness error (for P w.r.t. Scompl) is an atom that has an instance
which is not covered (by P w.r.t. Scompl).

206 W. Drabent

Name “incompleteness error” may seem unnatural, but we find it convenient.
A class of incompleteness diagnosis algorithms employs the following idea.

Start with an atomic query A (which is a symptom) and construct a top level
trace for it. Inspect the trace, whether it contains a symptom B. If so then
invoke the search recursively with B. Otherwise A is an incompleteness error; we
located in the program the procedure that is responsible for the incompleteness.
Such approach (see e.g. [8,12]) is sometimes called Pereira-style incompleteness
diagnosis [10].

3.4 Prolog Debugger and Incompleteness

We show how Pereira-style diagnosis may be done using the Prolog debugger.

Algorithm 6 (Incompleteness diagnosis). Begin with a symptom A. Obtain
the top-level search trace for A. In the trace, check if the atom B from a Call
item together with the answers B1, . . . , Bn from the corresponding Exit items is
an incompleteness symptom. If yes, invoke the same search starting from B. If
the answer is no for all Call items of the trace, the search is ended as we located
A as an incompleteness error.

Comments. Standard comments about incompleteness diagnosis apply here. To
decrease the search space, it is useful to start the diagnosis from a ground
instance Aθ /∈ Scompl of the symptom A (instead of A itself). The same for
each symptom B found during the search – re-start the computation and the
diagnosis from an appropriate instance of B.

Often an incorrectness error coincides with an incompleteness error – a wrong
answer is produced instead of a correct one. The programmer learns about this
when facing an incorrect answer Bi (appearing in a top-level trace). A standard
advice in such case [8,10] is to switch to incorrectness diagnosis. This is because
incorrectness diagnosis is simpler, and it locates an error down to a program
clause (not to a whole procedure, as incompleteness diagnosis does). The gain
of such switch is less obvious in our case, since the effort needed for incorrect-
ness diagnosis (Algorithm 5) may be not smaller than that for incompleteness
(Algorithm 6).

4 Conclusions

Prolog makes declarative logic programming possible – programs may be written
and reasoned about in terms of their declarative semantics, to a substantial
extent abstracting from the operational semantics. This advantage is lost when
it comes to locating errors in programs, as the Prolog debugger works solely in
terms of the operational semantics. We may say that logic programming would
not deserve to be called a declarative programming paradigm if debugging had
to be based on the operational semantics.

This paper is an attempt to study if and how the Prolog debugger can be
used for declarative programming. It presents how the debugger can be used to

The Prolog Debugger and Declarative Programming 207

perform incorrectness and incompleteness diagnosis8. Examples, missing here,
are available at http://arxiv.org/abs/2003.01422/. The debugger used is that of
SICStus; the presented approach may be difficult to apply with the debugger of
SWI-Prolog, as the latter does not display unique invocation numbers (needed
in incorrectness diagnosis, Algorithms 3 and 4).

The results are rather disappointing. Declarative diagnosis based on the Pro-
log debugger is tedious and unnatural. Rather obvious information (like the proof
tree leading to a given answer, or a top-level success trace) is impossible or dif-
ficult to obtain. Possibly, this drawback is a substantial obstacle for employing
declarative logic programming in practice.

This drawback particularly concerns incorrectness diagnosis. Additionally,
debugging of incorrectness seems more important than that of incompleteness.
This is because incompleteness is often caused by producing incorrect answers
instead of correct ones. Also, incorrectness diagnosis is more precise, as it locates
a smaller erroneous fragment of the program than incompleteness diagnosis does.
Hence the first step towards making Prolog debugging declarative is to imple-
ment a tool supporting incorrectness diagnosis. Experiments show that it is
sufficient to provide a tool for convenient browsing of a proof tree (which pro-
vides an abstraction of the part of computation responsible for the considered
incorrect answer).

The Introduction contains a discussion about how to avoid the “intended
model problem”, which is possibly the main reason why declarative diagnosis of
logic programs was abandoned. The author believes that the proposed solution
[4] can make declarative diagnosis useful in practice. What is missing are tools.

References

1. Apt, K.R.: From Logic Programming to Prolog. International Series in Computer
Science, Prentice-Hall (1997)

2. Bratko, I.: Prolog Programming for Artificial Intelligence, 4th edn. Addison-Wesley,
New York (2012)

3. Clocksin, W., Mellish, C.: Programming in Prolog: Using the ISO Standard, 5th
edn. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-642-55481-0

4. Drabent, W.: Correctness and completeness of logic programs. ACM Trans. Com-
put. Log. 17(3), 18:1–18:32 (2016). https://doi.org/10.1145/2898434

5. Drabent, W.: Proving completeness of logic programs with the cut. Formal Aspects
Comput. 29(1), 155–172 (2017). https://doi.org/10.1007/s00165-016-0392-0

6. Drabent, W.: Logic + control: on program construction and verification.
Theory Pract. Logic Program. 18(1), 1–29 (2018). https://doi.org/10.1017/
S1471068417000047

8 We may informally present the underlying idea of this paper in a different way: To
understand what the Prolog debugger can tell us about the declarative semantics
of the program, we need to be able to obtain the following information. 1. For a
given atomic answer A, what are the top-level answers that have lead to A? (This is
formalized as top-level success trace.) 2. For a given atomic query Q, and for each
top-level atomic query B in the computation for Q, what are all the answers for B?

http://arxiv.org/abs/2003.01422/
https://doi.org/10.1007/978-3-642-55481-0
https://doi.org/10.1145/2898434
https://doi.org/10.1007/s00165-016-0392-0
https://doi.org/10.1017/S1471068417000047
https://doi.org/10.1017/S1471068417000047

208 W. Drabent

7. Drabent, W., Ma�luszyński, J.: Inductive assertion method for logic pro-
grams. Theor. Comput. Sci. 59, 133–155 (1988). https://doi.org/10.1016/0304-
3975(88)90099-0

8. Drabent, W., Nadjm-Tehrani, S., Ma�luszyński, J.: Algorithmic debugging with
assertions. In: Abramson, H., Rogers, M.H. (eds.) Meta-Programming in Logic
Programming, pp. 501–522. The MIT Press, Cambridge (1989)

9. Kowalski, R.A.: Algorithm = logic + control. Commun. ACM 22(7), 424–436
(1979). https://doi.org/10.1145/359131.359136

10. Naish, L.: Declarative diagnosis of missing answers. New Generation Comput.
10(3), 255–286 (1992). https://doi.org/10.1007/BF03037939

11. Naish, L.: A three-valued declarative debugging scheme. In: 23rd Australasian
Computer Science Conference (ACSC 2000), pp. 166–173. IEEE Computer Society
(2000). https://doi.org/10.1109/ACSC.2000.824398

12. Pereira, L.M.: Rational debugging in logic programming. In: Shapiro, E. (ed.) ICLP
1986. LNCS, vol. 225, pp. 203–210. Springer, Heidelberg (1986). https://doi.org/
10.1007/3-540-16492-8 76. Extended version at https://userweb.fct.unl.pt/∼lmp/

13. Shapiro, E.: Algorithmic Program Debugging. The MIT Press, Cambridge (1983)
14. Sterling, L., Shapiro, E.: The Art of Prolog, 2nd edn. The MIT Press, Cambridge

(1994)

https://doi.org/10.1016/0304-3975(88)90099-0
https://doi.org/10.1016/0304-3975(88)90099-0
https://doi.org/10.1145/359131.359136
https://doi.org/10.1007/BF03037939
https://doi.org/10.1109/ACSC.2000.824398
https://doi.org/10.1007/3-540-16492-8_76
https://doi.org/10.1007/3-540-16492-8_76
https://userweb.fct.unl.pt/~lmp/

Program Transformation

A Port Graph Rewriting Approach
to Relational Database Modelling

Maribel Fernández1, Bruno Pinaud2 , and János Varga1(B)

1 Department of Informatics, King’s College London,
Bush House, London WC2B 4BG, UK

janos.varga@kcl.ac.uk
2 LaBRI, Université de Bordeaux,

351 Cours de la Libération, 33405 Talence Cedex, France

Abstract. We present new algorithms to compute the Syntactic Closure
and the Minimal Cover of a set of functional dependencies, using strategic
port graph rewriting. We specify a Visual Domain Specific Language to
model relational database schemata as port graphs, including an exten-
sion to port graph rewriting rules. Using these rules we implement strate-
gies to compute a syntactic closure, analyse it and find minimal covers,
essential for schema normalisation. The graph program provides a visual
description of the computation steps coupled with analysis features not
available in other approaches. We show soundness and completeness of
the computed closure, and implement it in PORGY.

Keywords: Relational databases · Database design · Port graph ·
Graph transformation · Functional dependency · Minimal cover

1 Introduction

Relational database design includes conceptual and logical modelling, as well as
physical modelling. The theory behind these steps is well-understood (it is part
of the syllabus of many databases courses [16]), and highlights the advantages of
developing normalised database designs. Yet, database professionals often con-
sider normalisation too cumbersome and do not apply normalisation theory, due
to the lack of adequate tools to support logical modelling [6].

Formal, graph-based approaches to database design have used labelled graphs
or hypergraphs [1,5,7]. We advocate a new approach to database modelling using
attributed port graphs, which are graphs where edges are connected to nodes at
specific points, called ports. Attributes of nodes, edges and ports are used to
represent properties of the system modelled. Port graphs were introduced to
model biochemical systems [2] and were later used in various domains [14].

Port graphs are a good data structure to store and to visualise relational
schema: ports provide additional visual information about the design. We pro-
pose to represent relational attributes and functional dependencies as nodes,
and use edges to link attributes and dependencies; ports indicate the role
of the attribute in the dependency. This representation has advantages when
c© Springer Nature Switzerland AG 2020
M. Gabbrielli (Ed.): LOPSTR 2019, LNCS 12042, pp. 211–227, 2020.
https://doi.org/10.1007/978-3-030-45260-5_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45260-5_13&domain=pdf
http://orcid.org/0000-0003-4814-3273
http://orcid.org/0000-0001-5386-4652
https://doi.org/10.1007/978-3-030-45260-5_13

212 M. Fernández et al.

computing properties of the schema, such as syntactic closure of the set of
dependencies, a crucial step in schema normalisation. We specify an algorithm to
compute closures using port graph rewriting rules controlled by strategies. Our
system has been implemented in Porgy [3] – a visual, interactive modelling
tool. Porgy provides a graphical interface to specify an initial model, port
graph rewriting rules and strategies. It displays the set of rewrite derivations
(a derivation tree) and includes features such as cycle detection, to facilitate
debugging.

Summarising, our main contributions are:

1. a Visual Domain Specific Language (VDSL) specifically tailored to model
relational database schemata (Sect. 3);

2. a new visual representation of Armstrong’s axioms to infer functional depen-
dencies, using the port graph VDSL mentioned above (Sect. 4.1);

3. a sound and complete strategic graph program to compute the syntactic clo-
sure of a set of functional dependencies, with examples (Sects. 4.2, 4.3);

4. an implementation1 in Porgy, together with a set of techniques to query
the relational database design, using Porgy’s derivation tree and graphical
interface to analyse properties of the model: in particular, we show how to
solve the membership problem (Sect. 4.4);

5. a strategy and a set of transformation rules to simplify sets of dependencies,
as required to compute a minimal cover (Sect. 5).

Related Work. Hypergraphs are used for relational database design in [7,13].
Using directed graphs candidate keys of a relation are computed in polynomial
time [24]. A special family of labelled graphs, FD-graphs, were introduced in [5]
to obtain closures of functional dependencies. In terms of graph transformations
for database modelling we highlight two works. Hypergraph rewriting was used
for the representation of functional dependencies [7] and Triple Graph Grammars
were used to optimise a database schema [17].

Our contribution and main difference with respect to these works is the design
of a domain-specific visual language with emphasis on interactive modelling,
including strategies to control the application of rules, and the use of the deriva-
tion tree as part of the visualisation framework, giving the modeller access to all
the sequences of transformation steps, to facilitate the analysis of the system. Port
graphs were used to compute transitive closures in [27]. Here we compute the full
Armstrong closure (not just transitive closure), and show how to use the deriva-
tion tree to analyse closures and answer queries about the database model, such
as whether a given functional dependency is in the closure of a set of dependencies
(the membership problem), and compute minimal covers.

Porgy’s strategy language is strongly inspired by PROGRES [25], GP [23]
and by strategy languages developed for term rewriting [11,19]. None of the
available graph rewriting tools permits users to visualise the derivation tree, as
in Porgy, where users can interactively visualise alternative derivations, fol-
low the development of specific redexes, etc. When computing the closure of
1 github.com/janos-varga/Porgy.

https://github.com/janos-varga/Porgy

Port Graph Rewriting for Database Modelling 213

a set of dependencies, the derivation tree permits to see how each dependency
is generated, offering a direct visualisation of the inference steps according to
Armstrong’s axioms.

2 Background

2.1 Relational Databases

We assume familiarity with the theory of logical design of relational databases,
in particular, the definitions of: relation schema, attribute, candidate key and
functional dependency (FD) [22]. We refer to a single attribute with a letter from
the beginning of the alphabet A,B, . . . and to attribute sets with letters from
the end of the alphabet W,X, Y, Z. Let R(A) = {R1, . . . , Rk} be a set of relation
schemata over a set A of attributes. Let FD = {Σ1, . . . , Σk} be the respective
sets of functional dependencies and CK = {C1, . . . , Ck} be the respective sets of
candidate keys. A relational database schema is a tuple DB = (R(A),FD, CK).

The syntactic closure Σ+ of a set Σ of FDs is the set of all FDs that can be
inferred from Σ using Armstrong’s Axioms [4,9], or equivalently, using the sound
and complete subset consisting of Reflexivity, Transitivity and Augmentation [9].

(A1) Reflexivity: if Y ⊆ X then X → Y .
(A2) Augmentation: if Z ⊆ W and X → Y then XW → Y Z.
(A3) Transitivity: if X → Y and Y → Z then X → Z.

Syntactic closures are used to compute minimal covers of sets of FDs [21]. The
minimal cover Σmin of Σ is a set of dependencies that fully represent Σ and:

1. all the FDs in Σmin have singleton right-hand sides;
2. Σmin is left-reduced: if one attribute is removed from any left-hand side then

Σ can no longer be inferred from Σmin;
3. Σmin is nonredundant: if any FD is removed from Σmin then Σ can no longer

be inferred from it.

Our goal is to provide visual algorithms to compute syntactic closures and
minimal covers. This work assumes that (a) FDs have singleton right sides and
(b) there are no cyclical dependencies. Assumption (a) is standard in the rela-
tional database literature, without loss of generality, under Armstrong’s Decom-
position rule. The problem of finding cyclical dependencies reduces to kernel
search in a directed graph, which is NP-complete.

2.2 Port Graph Rewriting and Porgy

We recall the notion of attributed port graph rewriting (see [14] for more details).

Definition 1 (Attributed port graph). An attributed port graph G =
(V, P,E,D)F is a tuple (V, P,E,D) of pairwise disjoint sets where:

– V is a finite set of nodes; n, n1, . . . range over nodes;

214 M. Fernández et al.

– P is a finite set of ports; p, p1, . . . range over ports;
– E is a finite set of edges between ports; e, e1, . . . range over edges; two ports

may be connected by more than one edge;
– D is a set of records, which are sets of pairs attribute-value (values can include

variables);

and a set F of functions Connect, Attach and Label such that:

– for each edge e ∈ E, Connect(e) is the pair (p1, p2) of ports connected by e;
– for each port p ∈ P , Attach(p) is the node n to which the port belongs;
– Label : V ∪ P ∪ E �→ D is a labelling function that returns a record for each

element in V ∪ P ∪ E.

A port graph rewrite rule is itself a port graph L ⇒C R consisting of two sub-
graphs L and R, called left-hand side and right-hand side, respectively, together
with an arrow node that links them. Each rule is characterised by its arrow
node, which has a unique name (the rule’s label), an optional attribute Where
defining a Boolean condition C that restricts the rule’s matching, and ports to
control the rewiring operations when rewriting steps are computed. Each port
in the arrow node has an attribute Type. A port of type bridge must have edges
connecting it to L and to R (one edge to L and one or more to R): it thus
connects a port from L to ports in R. A port of type blackhole must have edges
connecting it only to L (one edge or more). The ports and edges associated with
the arrow node specify a mapping between ports in the left and right-hand sides
of the rule, following the Single-PushOut approach [20].

For examples of rewrite rules, we refer the reader to Sect. 4. It is possible to
specify a rule condition requiring that a particular edge does NOT exist in the
graph to be rewritten. In Porgy such conditions are graphically represented as
a double line grey edge with an X, which is called an anti-edge [15].

A redex g(L) is found in G if there is a total port graph morphism g from L
to G such that if the arrow node has an attribute Where with value C, then g(C)
is true in G (g is a matching morphism). C is of the form saturated(p1) ∧ ... ∧
saturated(pn)∧B, and saturated(g(pi)) holds if there are no edges between g(pi)
and ports outside g(L) in G – this ensures that no edges will be left dangling in
rewriting steps. B is a Boolean expression such that all its variables occur in L.

Let G be a port graph. A rewrite step G ⇒ H via the rule L ⇒C R is
obtained by replacing in G a redex g(L) by g(R), and connecting g(R) to the
rest of the graph as indicated by the arrow-node edges in the rule: Any edges
arriving to a port in g(L) connected by a bridge arrow port to R are transferred
to the corresponding ports in g(R); edges connecting to ports in g(L) that are
connected to a blackhole port in the arrow node are deleted.

A sequence of rewriting steps is called a derivation. A derivation tree is a
collection of rewriting derivations with a common root.

In Porgy [14] rules are displayed as graphs, and edges that run between ports
of L, R and the arrow node are coloured red to distinguish them from normal
edges. Porgy also provides a visual representation of the rewriting derivations,
which can be used to analyse the rewriting system. Porgy’s strategy language

Port Graph Rewriting for Database Modelling 215

allows us to control the way derivations are generated. We can specify the rule to
be used in a rewriting step and also the position where the rule should (or should
not) be applied. Formally, the rewriting engine works with graph programs.

Definition 2 (Graph Program). A graph program consists of a located port
graph, a set of port graph rewriting rules, and a strategy expression. A located
port graph is a port graph with two distinguished subgraphs: a position subgraph
and a banned subgraph, denoted GP

Q. Rewrite rules can only be applied to G if
they match a subgraph which superposes P and does not superpose Q.

We briefly describe below the strategy constructs that we use in our programs
(see [14] for more details). The keywords crtGraph, crtPos, crtBan denote,
respectively, the current graph being rewritten and its Position and Banned
subgraphs. For example, the strategy expression setPos(crtGraph) sets the
position graph as the full current graph. If T is a rule, then the strategy one(T)
randomly selects one possible redex for rule T in the current graph G, which
should superpose the position subgraph P and not overlap the banned subgraph
Q. This strategy fails if the rule cannot be applied. Constants id and fail denote
success and failure, respectively. while(S)[(n)]do(S′) executes strategy S′ (not
exceeding n iterations if the optional parameter n is specified) while S succeeds.
repeat(S)[max n] repeatedly executes a strategy S, not exceeding n times. It
can never fail (when S fails, it returns id).

3 Port Graphs for Database Modelling

We present a visual domain specific language (VDSL) for logical design of rela-
tional databases. It includes a class of attributed port graphs to represent objects
of a relational database, and a language to specify rewrite rules and strategies
for those graphs. We also define Database Port Graphs, to represent a relational
database schema DB = (R(A),FD, CK) (see Sect. 2.1).

3.1 A Visual Domain Specific Language for Database Modelling

The visual building blocks of the language correspond to those of relational
databases. Port graph nodes will have an attribute DbType whose value indicates
the role of the node. To avoid confusion, we will use Upper Case for relational
database concepts (e.g., Attribute) and lower case for port graph concepts (e.g.,
attributed port graph).

We note here that an Attribute can occur in multiple relations. To this end,
we can define a conceptual attribute node. Then we can define an attribute
occurrence node to distinguish between appearances in different Relations. In
this work, from now on, we only use occurrences and we call them Attribute.

Definition 3 (Relational Database Port Graph VDSL, RDPG-VDSL).
A Relational Database Port Graph VDSL consists of attributed port graphs
GRDB = (V, P,E,D)F , such that

216 M. Fernández et al.

– V includes the following pairwise disjoint sets of nodes (as well as applica-
tion specific nodes): VR: relation nodes (DbType = REL); VA: attribute nodes
(DbType = ATTR); VFD: functional dependency nodes (DbType = FD); VCK :
candidate key nodes (DbType = CK).

– P includes the following pairwise disjoint sets of ports: PATT : contained
attribute ports pATT; PREL: parent relation ports pREL; PDA: depen-
dency attribute ports pFD; PFD: functional dependency ports pFDLHS and
pFDRHS; PCK : relation candidate key ports pCK; PKEY : (candidate) key
attribute ports pKEY.

– and the functions Attach and Connect are such that:
• if p ∈ PATT , Attach(p) ∈ {VR ∪ VCK};
• if p ∈ PREL, Attach(p) ∈ {VA ∪ VCK};
• if p ∈ PDA, Attach(p) ∈ VA;
• if p ∈ PFD, Attach(p) ∈ VFD; each node in VFD has two ports, pFDLHS

and pFDRHS;
• if p ∈ PCK , Attach(p) ∈ VR;
• if p ∈ PKEY , Attach(p) ∈ VA.

Connect includes the following pairs of ports (and associated edges):
• Functional Dependency: (pFD, pFDLHS) and (pFDRHS, pFD), where

pFD ∈ PDA and pFDLHS, pFDRHS ∈ PFD.Given a dependency ϕ :
X → A the pFD port of every attribute node corresponding to X will be
connected to the pFDLHS port of the dependency node corresponding to
ϕ and the pFDRHS port of the FD node representing ϕ will be connected
to the pFD port of the attribute node representing A.

• Attribute in relation: (pATT, pREL),where pATT ∈ PA and pREL ∈
PREL.Given a relation Ri and its attribute A, the pATT port of the node
representing Ri will be connected to the pREL port of the node represent-
ing A.

• Attribute in candidate key: (pATT, pKEY),where pATT ∈ PA and
pKEY ∈ PCK .Given a candidate key CKi and every attribute Aj ∈ CKi,
the pKEY port of the node corresponding to Aj will be connected to the
pATT port of the node corresponding to CKi.

• Candidate Key of Relation: (pREL, pCK), where pREL ∈ PREL and pCK
∈ PCK .Given a relation Ri and its candidate key CKj,the pCK port of
the node representing Ri will be connected to the pREL port of the node
representing CKj.

As a particular case of the above defined class, we now define the Database
Port Graph (DBPG) that represents DB = (R(A),FD, CK). Most importantly,
we constrain that one Relation is represented by only one relation node, each
Attribute occurrence is represented by one attribute node and each FD occur-
rence by one FD node. This design decision is based on the separation of concerns
principle and will be required for the addition of Foreign Keys in future work.

Definition 4 (Database Port Graph, DBPG). A Database Port Graph is
an RDPG such that the following constraints are satisfied:

Port Graph Rewriting for Database Modelling 217

– VR: one node DbType = REL per Relation schema in R;
– VA: one node DbType = ATTR per Attribute occurrence in any of the Ri;
– VFD: one node DbType = FD per Functional Dependency occurrence in FD;
– VCK : one node DbType = CK per Candidate Key in CK.

The Functional Dependency Port Graph (FDPG) [27] is a particular case of
DBPG, with single occurrences of Attribute and FD nodes only (VR = VCK = ∅).

3.2 Variadic Rewriting Rules

To deal with functional dependencies of various arities, previous works used
multiple rules [27] or internal data structures (e.g. compound node in [5]). Here,
we present an extension to the port graph rewriting rule language, called variadic
rewriting rules (VRRs), inspired by Variadic Interaction Nets [18]. A variadic
rule represents a family of rules that differ only in the number of times a subgraph
is repeated. First, we propose a container structure that clearly identifies in a
port graph the subgraph that will be repeated.

Definition 5 (Pattern Container). A pattern container is a subgraph within
a port graph such that if an edge links two ports that belong to the container, the
edge also belongs to the container.

A pattern container has two attributes: a name, and a multiplicity that spec-
ifies the maximum number of times the encapsulated pattern will be repeated.

Edges that connect a port in a pattern container and a port in the outside
graph are called variadic edges. Variadic edges also have an attribute multiplicity
to control the number of repetitions.

Definition 6 (Variadic Port Graph Rewrite Rule, VRR). A variadic
port graph rewrite rule, denoted L ⇒V R, is a port graph rewrite rule with at
least one pattern container on the LHS. Multiple pattern containers must not
overlap. Pattern container names must be unique on the LHS.

Given a VRR, we obtain its family of rules by running the Expansion algo-
rithm defined below.

Definition 7 (Variadic Pattern Expansion). For each pattern container,
we generate i copies, where i is the value of the multiplicity attribute, as follows:

1. Synchronised Expansion:
If a pattern container is present on both sides of a VRR (i.e. their names are
identical), then the pattern is expanded in an iterative way on both sides of
the rule until i number of copies of the encapsulated subgraph are generated. If
variables are used in attributes then a different variable should be used in each
copy. The expansion iterator works pairwise; that is, not all combinations of
expansions are generated on LHS and RHS, but only the same number of
repetitions on the two sides.

2. LHS-only Expansion:
If the pattern container is defined on LHS only, the expansion happens on
LHS only, in the same iterative way.

218 M. Fernández et al.

If multiple patterns are defined, they are expanded independently, i.e. all com-
binations are generated, by nested iteration. Generally, the order in which the
combinations are generated, does not matter.

A variadic edge is expanded based on the value j of its multiplicity attribute. If
it equals the multiplicity i of the container it belongs to, then it is fully expanded,
i.e. it is created in all i instances of the container. A partially expanded variadic
edge (j < i) is only created in the first 1 . . . j instances. In other words, in the
nth iteration of the expansion of the pattern container the variadic edge belongs
to, if n < j then n copies are created; otherwise j copies are created.

In Porgy, which does not have a mechanism to define variadic rules, Def-
inition 7 can be implemented as a macro expansion. The pattern container is
visually represented by an enclosing rectangle (a metanode): attributes name
and i are displayed at the top of the rectangle; and, on the LHS, also a + sign
in its upper-right corner as shown in Fig. 1. Fully expanded variadic edges are
also marked with a + sign over them and partially expanded variadic edges have
the attribute value j displayed over them. In this example, because the pattern
appears in both sides, the expansion will generate a rule version with one node
Y, another with 2 and another with 3; we show in Fig. 2 the version correspond-
ing to 3. If the node Y has an attribute a whose value is an expression containing
variables, for example x, then each copy of the node Y will have attribute a with
values x1, x2, x3.

Fig. 1. VRR example (Color figure
online)

Fig. 2. VRR example expanded, i = 3
(Color figure online)

4 Computing the Syntactic Closure of Σ

Given an FDPG representing set of functional dependencies Σ, we compute its
syntactic closure by applying the rules Reflexivity, Augmentation and Transi-
tivity, defined below, controlled by Strategy 1: Syntactic Closure. From now on,
we colour-code nodes, as a visual aid. Attribute nodes are green, FD nodes are
purple and ports are dark blue. We use other colours for highlighting purposes.

4.1 Rewriting Rules

In the rules below, x, y, . . . represent name variables for attribute nodes, and
f1, f2, . . . are name variables for FD nodes.

Port Graph Rewriting for Database Modelling 219

Augmentation. The Augmentation rule (see Fig. 3) finds every attribute node
y not connected to the FDLHS port of f1, regardless of what other attributes
are connected there already. All non-connected attribute nodes are found by
using the anti-edge feature [26] of Porgy. An anti-edge is represented by a grey
double line with an X on top. The matching algorithm deems the candidate
sub-graph isomorphic if no edge is found between the two ports connected by
the anti-edge.

f1

x

y

f1

x

y Banned=T

IsTrivial=f1.IsTrivial

FDLHS.FunctionalArity=

f1.FDLHS.FunctionalArity+1

FDRHS.FunctionalArity=1

FDLHS.FunctionalArity>=1

FDRHS.FunctionalArity=1

Fig. 3. Augmentation rule. (Color figure online)

The rule creates a new FD node and assigns all pre-existing attributes and y
to the left side of f1. The original f1 dependency node is kept and y is banned
to avoid augmenting f1 again with y. We use bridge ports (red edges) to keep
and copy the already existing edges into the FDLHS ports of f1 and NEW. If
f1 was trivial then the new dependency will also be marked trivial. The rule
also increases the FunctionalArity counter by 1 indicating that a new attribute
is connected to the FDLHS port.

xx

Banned=T

TRIV

Fig. 4. Reflexivity rule. (Color
figure online)

Reflexivity. The Reflexivity rule (Fig. 4)
applies to a node representing the attribute
x and generates a trivial dependency x → x.
Then the attribute node x is banned so the rule
cannot apply again on the same attribute.

The red edges in the arrow node indicate
that when applying the rule, any edges con-
nected to the pFD port of x in the left-hand
side should be transferred to the correspond-
ing pFD port of x in the right-hand side.

Transitivity. A family of Transitivity rules was described in [27] to detect tran-
sitive functional dependency chains f1 : X → Y and f2 : Y → A. Instead, here
we provide a compact representation of the transitivity axiom in the form of a
variadic rule, shown in Fig. 5. This rule subsumes the family of Transitivity rules
used in previous work.

As mentioned in Sect. 3.2, |Y | = k ≥ 1 means that f1 turns into a set of
dependencies f1

1 . . . fk
1 . The connections between the pFD ports of X attribute

220 M. Fernández et al.

nodes and the pFDLHS ports of f1
1 . . . fk

1 nodes have to be preserved as well
as copied onto the pFDLHS port of the newly created FD node (called NEW
in Fig. 5). We achieve this without needing to include the attribute nodes rep-
resenting X in the rule, thanks to the bridge ports of the arrow node and the
connecting red edges, as explained in Definition 6. Then, to cover all cases, we
define a VRR pattern over f1 and Y , with i = 1 . . . k. By definition the bridge
ports, red edges and the normal edges into y1.pFD, . . . , yk.pFD will be repeated
during the expansion.

Fig. 5. Variadic Transitivity rule. (Color figure online)

We show an example expansion of the Transitivity VRR to Transitivity-3,
i.e. with 3 repetitions, in Fig. 6.

Fig. 6. An example expansion: Transitivity-3 rule. (Color figure online)

FD nodes are labelled by records containing an attribute UID that uniquely
identifies the Functional Dependency, except for trivial dependencies that are all
given UID = 1. Nodes representing non-trivial FDs are given a prime number
as UID. This offers extra, domain-specific backtracking functionality for depen-
dencies, as explained below.

Note that the Reflexivity, Augmentation and Transitivity rules never remove
the matching subgraph. Therefore, these rules could run for ever. To prevent

Port Graph Rewriting for Database Modelling 221

this, we use conditional rules and focusing constructs in Sect. 4.2 to define the
Syntactic Closure strategy. To ensure that the iteration of the Transitivity rule
terminates when no new transitive dependencies can be inferred, we use the UID
attribute of FD nodes. When the Transitivity rule creates a transitive depen-
dency node, it multiplies the UIDs of the contributing FDs and assigns the
result as UID of the new FD node. We forbid the application of the rule if a
node already exists with that UID (using NotNode() in the rule condition).

4.2 Syntactic Closure Strategy

The Strategy 1: Syntactic Closure applies first the Reflexivity rule as much as
possible in the current graph. Each application bans an Attribute node, which
ensures termination since matching is not allowed on banned nodes.

Strategy 1: Syntactic Closure
1 //———– Reflexivity ———–
2 setPos(all(crtGraph));
3 repeat(one(Reflexivity));
4 //———– Augmentation ———–
5 setPos(all(crtGraph));
6 setBan(all([emptySet]));
7 while(match(AugIterOn))do(
8 one(AugIterOn);
9 repeat(one(Augmentation));

10 one(AugIterOff);
11 setBan(all([emptySet]))
12);
13 update(”GenerateNextPrime”{result : UID});
14 //———– Transitivity ———–
15 while(match(IterOn))do(
16 one(IterOn);
17 repeat(one(Transitivity);#Augmentation#);
18 update(”GenerateNextPrime”{result : UID});
19 one(IterOff)
20);
21 repeat(one(ResetV isitedF lags));
22 //———– Cleanup ———–
23 repeat(one(Cleanup));
24 repeat(one(CleanupTriv))

In lines 5–6, we set the Position subgraph to be the whole graph and the
Banned subgraph to empty. Then, while there is at least one FD node the Aug-
mentation rule hasn’t visited and iterated, one(AugIterOn) sets AugIter and
AugVisit flags to true on a randomly selected FD node. The Augmentation rule
will be applied on this FD node and all attribute nodes that are not connected
to the FDLHS port of said FD node. Every attribute node used by this rule is
banned to prevent re-application. Once all possible applications are processed,

222 M. Fernández et al.

AugIter flag is set to false and the Banned subgraph to empty. The iteration
proceeds to the next, not yet visited, FD node. All new FD nodes, created by
the Augmentation rule, are assigned a unique UID using the update() construct
to call the function, GenerateNextPrime(), using Porgy’s Python API.

Next, we compute transitive dependencies (lines 15–21), calling the Augmen-
tation strategy (lines 5–12) after each application of the Transitivity variadic
rewriting rule in line 17.

Since the rewrite rules may generate functional dependencies that already
exist in the graph (despite the condition in the Transitivity rule), we add
CleanUp variadic rules to remove duplicates (line 23).

4.3 Example of Application

Our strategy computed the syntactic closure of Σ = {AB → C,ABC → D};
the resulting FDPG can be seen in Fig. 7.

Fig. 7. Syntactic closure of Σ = {AB → C, ABC → D}. (Color figure online)

Attributes A,B,C and D and their trivial dependencies can be seen in the
four corners of the graph. As an example, we highlighted two FD nodes. The first
one, in orange on the right hand side of the image, represents the dependency

Port Graph Rewriting for Database Modelling 223

ABD → C which was created by augmenting AB → C with D. The second one
represents AB → D. This FD, shown on the left side of Fig. 7 in yellow, was found
by the Transitivity rule, matching on dependencies A → A,B → B,AB → C
and ABC → D.

4.4 Visual Analysis of the Closure

We now turn our attention to usual questions about Σ+. For example, using
the derivation tree in Porgy, it is possible to track how and when a particular
dependency was generated: If we alter the colour of any FD node in a leaf node
of the derivation tree, Porgy will back-propagate this change up the tree. This
way, we can identify the exact step where the FD was created, and by zooming
on the edges of the derivation tree we can see which of Armstrong’s axioms
generated the dependency.

Strategy 2: Membership Problem
1 setPos(all(
2 property(crtGraph, port,DbType == ”FDLHS” && FunctionalArity == 3)
3 ∩ ngb(property(crtGraph, node,DbType == ”ATTR”
4 && viewLabel == ”A”), edge,DbType == ”L”)
5 ∩ ngb(property(crtGraph, node,DbType == ”ATTR”
6 && viewLabel == ”B”), edge,DbType == ”L”)
7 ∩ ngb(property(crtGraph, node,DbType == ”ATTR”
8 && viewLabel == ”D”), edge,DbType == ”L”)
9 ∩ ngb(property(crtGraph, node,DbType == ”ATTR”

10 && viewLabel == ”C”), edge, DbType == ”R”))); //end setPos
11 (isEmpty(crtPos))orelse(repeat(one(Highlight)))

Another important question in database design is the Membership Prob-
lem [8]: given a set of FDs Σ, and an FD, ϕ, determine if ϕ ∈ Σ+. Two groups
of algorithms were developed to solve the membership problem: 1. generate a
syntactic closure and check if ϕ : X → A is in it, or 2. compute the closure
of X, X+ and check if A is in it. Following the first approach, we can solve
the problem by running a strategy to find and highlight the FD node that rep-
resents ϕ in the syntactic closure, if it exists, and fail if ϕ �∈ Σ+. For exam-
ple, Strategy 2 was used to find the dependency ABD → C, highlighted in
Fig. 7 (due to space constraints, we refer the reader to [14] for explanations of
the constructs used). Following the second approach, we can simply use Strat-
egy 1 but focusing on the set X of attributes. We only need to replace the
expression setPos(all(crtGraph)) in Strategy 1 with one that describes X,
then the rewriting steps will apply on the attribute set in question. For example,
if X = B, we write setPos(all(property(crtGraph, node, DbType==”ATTR”
&& viewLabel==”B”))).

224 M. Fernández et al.

4.5 Correctness

The strategic program Cl = [F , closure] consisting of an initial port graph
F representing a set of functional dependencies Σ, and the syntactic closure
strategy defined in Strategy 1, correctly computes the syntactic closure Σ+.

Proposition 1 (Termination). For any initial FDPG F , the strategic pro-
gram Cl = [F , closure] terminates.

To prove the correctness of our program, we first show that the three rules
Reflexivity, Augmentation and Transitivity are sound and complete, that is,
given Σ, we can compute Σ+ by applying these three rules exhaustively.

Proposition 2 (Soundness and Completeness of the Rules). The Reflex-
ivity, Augmentation and Transitivity rules stated below are sound and complete:

1. Reflexivity: for any attribute A, A → A.
2. Augmentation: If X → A then XY → A for any attribute A and sets X,Y

of attributes.
3. Transitivity: If X → Ai (1 ≤ i ≤ n) and A1, . . . , An → B then X → B.

Since the Reflexivity, Augmentation and Transitivity port graph rewriting
rules implement the rules stated in Proposition 2, to prove that Cl is sound and
complete it suffices to show that any sequence of applications of these three rules
can be transformed into a sequence in the order defined by the closure strategy.

Definition 8 (Canonical Form). A sequence of applications of Reflexivity,
Augmentation and Transitivity is in canonical form if it consists of applications
of Reflexivity, followed by Augmentation, followed by Transitivity and Augmen-
tation: (Reflexivity)∗(Augmentation)∗(Transitivity;Augmentation∗)∗

Proposition 3 (Soundness and Completeness of Strategy 1). Canonical
sequences are sound and complete.

5 Finding a Minimal Cover

To generate a Minimal Cover (see Sect. 2 for the definition) we have to ensure
that there are no extraneous attributes on FD left sides and there are no redun-
dant FDs (we already have singleton right sides). Standard algorithms check
this by running the Membership algorithm on an altered Σ: remove X → A and
replace it with X \ B → A. If this still yields the same Σ+ then B is extrane-
ous in X. Instead, since we have Σ+ at hand, it suffices to check if there exists
Z ⊂ X → A, for all proper subsets Z. We use a variadic rewriting rule (Sect. 3.2)
to specify a family of rules for every possible subset pair (n, k), where n = |X|
and k = |Z|. Since Z ⊂ X, we make use of the partially expanded variadic
edge feature by restricting one variadic edge to only k expansions. We show the
variadic rule (parameterised already with n = 3, k = 2) in Fig. 8.

Port Graph Rewriting for Database Modelling 225

Fig. 8. Extraneous variadic rule. (Color figure online)

Next, we have to remove redundant FDs. A functional dependency ϕ : X → A
is redundant, if (Σ \ ϕ)+ = Σ+ [21]. Previously published algorithms detected
this by running a Membership check on (Σ \ ϕ) to see if it yields ϕ. We note
that in an FDPG representing (Σ \ ϕ)+ there is an FDPG-Path from X to A.
This path exists as an FD node created by the Syntactic Closure strategy, and
if a dependency can be inferred in multiple ways, it is present multiple times.
Since |X| ≥ 1, we use a VRR to detect and remove the redundant FD nodes.
We present the rule and an expansion in Figs. 9 and 10.

Fig. 9. Nonredundancy VRR. (Color
figure online)

Fig. 10. Nonredundancy rule, i1 = 3,
i2 = 2. (Color figure online)

Using the Extraneous and Nonredundancy rules, Strategy 3 computes a Mini-
mal Cover under the assumption that there are no FD-cycles. We reuse the Syn-
tactic Closure strategy, but without the Clean Up rules. The Nonredundancy
rule gets rid of duplicates. Lastly, we remove trivial dependencies (FD nodes
where UID = 1), as they are not in the minimal cover.

Strategy 3: Minimal Cover
1 #Syntactic Closure without Cleanup#
2 setPos(all(crtGraph)); setBan(all([emptySet]));
3 repeat(one(Extraneous)); repeat(one(Nonredundancy));
4 repeat(one(RemoveTrivial));

226 M. Fernández et al.

6 Conclusion and Future Work

We introduced variadic rewriting rules and used these rules to define strategies
that compute and analyse the syntactic closure of a set of Functional Dependen-
cies. These strategies are terminating, sound and complete. We have also defined
additional rules and a strategy to compute Minimal Covers.

A minimal cover is the input of algorithms to find candidate keys [24] and
of Bernstein’s 3NF Synthesis Algorithm [10]. The strategies that find these will
make use of the already defined CK and Relation nodes. Furthermore, 3NF
Relations will require the introduction of the notion of Foreign Key.

References

1. Abrial, J.: Data semantics. In: Klimbie, J.W., Koffeman, K.L. (eds.) Proceeding of
the IFIP Working Conference Data Base Management, Cargèse, Corsica, France,
1–5 April 1974, pp. 1–60. North-Holland (1974)

2. Andrei, O.: Rewriting calculus for graphs: applications to biology and autonomous
systems. Ph.D. thesis, Institut National Polytechnique de Lorraine, Nancy, France,
November 2008

3. Andrei, O., Fernández, M., Kirchner, H., Melançon, G., Namet, O., Pinaud, B.:
Porgy: strategy-driven interactive transformation of graphs. In: Echahed, R. (ed.)
TERMGRAPH. EPTCS, vol. 48, pp. 54–68 (2011)

4. Armstrong, W.W.: Dependency structures of data base relationships. In: Proceed-
ings of IFIP Congress, Information processing, vol. 74, pp. 580–583, North-Holland,
Amsterdam (1974)

5. Ausiello, G., D’Atri, A., Saccà, D.: Graph algorithms for functional depen-
dency manipulation. J. ACM 30(4), 752–766 (1983). https://doi.org/10.1145/2157.
322404

6. Badia, A., Lemire, D.: A call to arms: revisiting database design. SIGMOD Rec.
40(3), 61–69 (2011). https://doi.org/10.1145/2070736.2070750

7. Batini, C., D’Atri, A.: Rewriting systems as a tool for relational data base design.
In: Claus, V., Ehrig, H., Rozenberg, G. (eds.) Graph Grammars 1978. LNCS, vol.
73, pp. 139–154. Springer, Heidelberg (1979). https://doi.org/10.1007/BFb0025717

8. Beeri, C., Bernstein, P.A.: Computational problems related to the design of normal
form relational schemas. ACM Trans. Database Syst. 4(1), 30–59 (1979)

9. Beeri, C., Fagin, R., Howard, J.H.: A complete axiomatization for functional and
multivalued dependencies in database relations. In: Smith, D.C.P. (ed.) SIGMOD
Conference, pp. 47–61. ACM (1977)

10. Bernstein, P.A.: Synthesizing third normal form relations from functional depen-
dencies. ACM Trans. Database Syst. 1(4), 277–298 (1976)

11. Borovanský, P., Kirchner, C., Kirchner, H., Moreau, P., Ringeissen, C.: An overview
of ELAN. Electr. Notes Theor. Comput. Sci. 15, 55–70 (1998). https://doi.org/10.
1016/S1571-0661(05)82552-6

12. Ehrig, H., Engels, G., Kreowski, H., Rozenberg, G. (eds.): Handbook of Graph
Grammars and Computing by Graph Transformation: Applications, Languages
and Tools, vol. 2. World Scientific, River Edge (1999)

13. Embley, D.W., Mok, W.Y.: Mapping conceptual models to database schemas.
In: Embley, D.W., Thalheim, B. (eds.) Handbook of Conceptual Modeling, vol.
XIX, pp. 123–164. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-15865-0 5

https://doi.org/10.1145/2157.322404
https://doi.org/10.1145/2157.322404
https://doi.org/10.1145/2070736.2070750
https://doi.org/10.1007/BFb0025717
https://doi.org/10.1016/S1571-0661(05)82552-6
https://doi.org/10.1016/S1571-0661(05)82552-6
https://doi.org/10.1007/978-3-642-15865-0_5
https://doi.org/10.1007/978-3-642-15865-0_5

Port Graph Rewriting for Database Modelling 227

14. Fernández, M., Kirchner, H., Pinaud, B.: Strategic Port Graph Rewriting: an Inter-
active Modelling Framework. Math. Struct. Comput. Sci. 1–48 (2018). https://doi.
org/10.1017/S0960129518000270. https://hal.inria.fr/hal-01251871

15. Fernández, M., Kirchner, H., Pinaud, B., Vallet, J.: Labelled graph strategic rewrit-
ing for social networks. J. Log. Algebr. Meth. Program. 96, 12–40 (2018). https://
doi.org/10.1016/j.jlamp.2017.12.005

16. Garcia-Molina, H., Ullman, J.D., Widom, J.: Database Systems - The Complete
Book, 2nd edn. Pearson Education, Harlow (2014)

17. Jahnke, J.H., Zündorf, A.: Applying graph transformations to database re-
engineering. In: Ehrig et al., vol. 12, pp. 267–286 (1999)

18. Jiresch, E.: Extending the interaction nets calculus by generic rules. In: Alves,
S., Mackie, I. (eds.) Proceedings 2nd International Workshop on Linearity, LIN-
EARITY 2012, Tallinn, Estonia, 1 April 2012. EPTCS, vol. 101, pp. 12–24 (2012).
https://doi.org/10.4204/EPTCS.101.2

19. Kalleberg, K.T.: Stratego: a programming language for program manipulation.
ACM Crossroads 12(3), 4 (2006). https://doi.org/10.1145/1144366.1144370

20. Löwe, M.: Algebraic approach to single-pushout graph transformation. Theor.
Comput. Sci. 109(1 and 2), 181–224 (1993). https://doi.org/10.1016/0304-
3975(93)90068-5

21. Maier, D.: Minimum covers in relational database model. J. ACM 27(4), 664–674
(1980). https://doi.org/10.1145/322217.322223

22. Maier, D.: The Theory of Relational Databases. Computer Science Press, Rockville
(1983)

23. Plump, D.: The design of GP 2. In: Escobar, S. (ed.) Proceedings 10th International
Workshop on Reduction Strategies in Rewriting and Programming, WRS 2011,
Novi Sad, Serbia, 29 May 2011. EPTCS, vol. 82, pp. 1–16 (2011). https://doi.org/
10.4204/EPTCS.82.1

24. Saiedian, H., Spencer, T.: An efficient algorithm to compute the candidate keys of
a relational database schema. Comput. J. 39(2), 124–132 (1996). https://doi.org/
10.1093/comjnl/39.2.124

25. Schürr, A., Winter, A.J., Zündorf, A.: The PROGRES approach: language and
environment. In: Ehrig et al., vol. 12, pp. 551–603 (1999)

26. Vallet, J.: Where social networks, graph rewriting and visualisation meet: applica-
tion to network generation and information diffusion. Ph.D. thesis, University of
Bordeaux, France (2017). https://tel.archives-ouvertes.fr/tel-01691037

27. Varga, J.: Finding the transitive closure of functional dependencies using strategic
port graph rewriting. In: Fernández, M., Mackie, I. (eds.) Proceedings Tenth Inter-
national Workshop on Computing with Terms and Graphs, Oxford, UK, 7th July
2018. Electronic Proceedings in Theoretical Computer Science, vol. 288, pp. 50–62.
Open Publishing Association (2019). https://doi.org/10.4204/EPTCS.288.5

https://doi.org/10.1017/S0960129518000270
https://doi.org/10.1017/S0960129518000270
https://hal.inria.fr/hal-01251871
https://doi.org/10.1016/j.jlamp.2017.12.005
https://doi.org/10.1016/j.jlamp.2017.12.005
https://doi.org/10.4204/EPTCS.101.2
https://doi.org/10.1145/1144366.1144370
https://doi.org/10.1016/0304-3975(93)90068-5
https://doi.org/10.1016/0304-3975(93)90068-5
https://doi.org/10.1145/322217.322223
https://doi.org/10.4204/EPTCS.82.1
https://doi.org/10.4204/EPTCS.82.1
https://doi.org/10.1093/comjnl/39.2.124
https://doi.org/10.1093/comjnl/39.2.124
https://tel.archives-ouvertes.fr/tel-01691037
https://doi.org/10.4204/EPTCS.288.5

Generalization-Driven Semantic Clone
Detection in CLP

Wim Vanhoof and Gonzague Yernaux(B)

Faculty of Computer Science, Namur Digital Institute University of Namur,
Namur, Belgium

{wim.vanhoof,gonzague.yernaux}@unamur.be

Abstract. In this work we provide an algorithm capable of searching
for semantic clones in CLP program code. Two code fragments are con-
sidered semantically cloned (at least to some extent) when they can both
be transformed into a single code fragment thus representing the func-
tionality that is shared between the fragments. While the framework of
what constitutes such semantic clones has been established before, it
is parametrized by a set of admissible program transformations and no
algorithm exists that effectively performs the search with a concrete set
of allowed transformations. In this work we use the well-known unfolding
and slicing transformations to establish such an algorithm, and we show
how the generalization of CLP goals can be a driving factor both for
controlling the search process (i.e. keeping it finite) as for guiding the
search (i.e. choosing what transformation(s) to apply at what moment).

1 Introduction and Motivation

Clone detection refers to the process of finding source code fragments that exhibit
a sufficiently similar computational behavior, independent of them being textu-
ally equal or not. Such fragments are often called clones. While there is no
standard definition of what constitutes a clone [16], in the literature one often
distinguishes between four different classes, or types, of clones. The simplest
class, sometimes called type-1 clones, refers to code fragments that differ only in
layout and whitespace, whereas type-2 and type-3 clones allow for more (syntac-
tical) variation such as renamed identifiers and statements and/or expressions
that are different or lacking in one of the fragments. Type-4 clones on the other
hand refer to fragments that are semantically equivalent, even if the respective
source code fragments are quite different and seemingly unrelated [16]. This type
of clones, also known as semantic clones, is arguably the most interesting albeit
the most difficult type to find by automatic analysis.

While detecting semantic clones is an undecidable problem in general, it
has applications in different domains such as program comprehension [6,15,18],
plagiarism detection [24] and malware detection [23]. When approximated by
program analysis, the resulting knowledge can also be used to drive advanced
program transformations such as removal of redundant functionality from source

c© Springer Nature Switzerland AG 2020
M. Gabbrielli (Ed.): LOPSTR 2019, LNCS 12042, pp. 228–242, 2020.
https://doi.org/10.1007/978-3-030-45260-5_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45260-5_14&domain=pdf
http://orcid.org/0000-0003-3769-6294
http://orcid.org/0000-0001-6430-8168
https://doi.org/10.1007/978-3-030-45260-5_14

Generalization-Driven Semantic Clone Detection in CLP 229

code [14] and the automatic detection of a suitable parallelization strategy for a
given code fragment [10,12]. Unsurprisingly, most current clone detection tech-
niques are based on somehow comparing the syntactical structure of two code
fragments and, consequently, are limited to detecting type-3 clones at best.
Examples include the abstract syntax-tree based approaches for Erlang [9] and
Haskell [2], as well as our own work [4] in the context of logic programming. Some
approaches try to capture the essence of the algorithm at hand such as [1], where
algorithms are converted into a system of recurrence equations or [20,21] where
programs are abstracted by means of software metrics and program schemas.

In previous work, we have devised a framework for detecting semantic clones
in logic programming [3]. The basic idea in that work is that two predicates are
considered semantic clones if they can each be transformed – by a sequence of
semantics-preserving program transformations – into a single common predicate
definition. This is in line with other approaches towards semantic clone detec-
tion [16] where fragments are often considered implementing the same function-
ality if one can be transformed in the other. This framework was generalized
to handle CLP in [11], which is of particular interest since CLP (or constrained
Horn clauses in general) has been recognized before as a suitable abstraction to
represent algorithmic logic [5]. As such, the framework for detecting semantic
clones is lifted to a framework for characterizing algorithmic equivalence between
the code fragments that were translated into CLP. However, in neither of these
works an attempt was made to formulate how the search for a suitable series
of program transformations could be performed or controlled. The question is
far from trivial, given the literally enormous search space involved and the fact
that the set of admissible transformations isn’t known, being one of the frame-
work’s parameters. The use of CLP as the representation language for the input
programs nevertheless allows us to restrict our attention to a limited number of
powerful transformations such as slicing and unfolding, whereas more traditional
approaches [12] usually consider a wide variety of more low-level transformations
as they are working on the program’s source code (such as renaming variables,
loop unrolling, array manipulations, etc.). In this work, we present an algorithm
capable of controlling the search for semantic clones when only the usual unfold-
ing and slicing transformations are allowed. When concretized, it thus represents
a workable decision procedure to test whether two given CLP fragments are
(at least partially) algorithmically equivalent.

2 Semantic Clones: Setting the Stage

While in practice CLP is typically used over a concrete domain, we will in this
work make abstraction of the concrete domain over which the constraints are
expressed. A program P is defined as a set of constraint Horn clause definitions
where each clause definition is of the form p(V1, . . . , Vn) ← G with p(V1, . . . , Vn)
an atom called the head of the clause, and G a goal called the body of the clause.
When necessary, we will decompose the body G in a set of domain constraints
{C} and a set of atoms {B}. For simplicity we suppose that all arguments in

230 W. Vanhoof and G. Yernaux

the head are variables (represented, as usual, by uppercase letters) and that all
clauses defining a predicate have the same head (i.e. use the same variables to
represent the arguments). A goal is a set of atoms and/or constraints. When we
say “a predicate p”, it will be clear from the context whether we mean the symbol
p or the set of clauses defining p. When the arity of the predicate is relevant, we
will use p/n to represent the fact that the predicate p has n arguments.

As usual substitutions, being mappings from variables to terms, will be
denoted by Greek letters. The application of a substitution θ to a term t will be
represented by tθ and the composition of substitutions θ and σ will be denoted
θσ. A renaming is a substitution mapping variables to variables. We say that
terms t1 and t2 are variants, denoted t1 ≈ t2 iff they are equal modulo a bijective
renaming.

While different semantics have been defined for CLP programs, for the
remainder of this paper we can stick to the basic non-ground declarative seman-
tics [7]. However, since the CLP predicates we wish to relate may originate from
different sources, they potentially have a different number of arguments and,
even if the predicates basically compute the same results, they may use different
argument positions for storing what may essentially be the same values. The
following definition captures what it means for two such predicates to compute
the same result. It states that both predicates must have a subsequence of their
argument positions (both sequences having the same size but containing possibly
different argument positions and not necessarily in the same order) such that
when the predicates are invoked with the corresponding arguments initialized
with the same terms, then each predicate computes the same result. This means
that for each pair of corresponding argument positions, the terms represented
by these arguments must be the same (modulo a variable renaming) both at the
moment the predicates are invoked (condition 1 in the definition) and at the
moment the predicates return (condition 2 in the definition). As for notation,
given a sequence R, we denote by Ri the i’th element of R.

Definition 1. Given CLP programs P1 and P2, let ps/ns and pq/nq denote
predicates in, respectively, P1 and P2 and let R and R′ denote sequences of
argument positions from respectively {1, . . . ns} and {1, . . . nq} such that |R| =
|R′| = n. We say that (ps, R) computes in P1 a subset of (pq, R

′) in P2 if and only
if for each call of the form ps(V0, . . . , Vns

)θ with computed answer substitution
θ′, there also exists a call pq(V0, . . . , Vnq

)σ with computed answer substitution σ′

such that the following holds for all k ∈ 1 . . . n:

1. (VRk
)θ ≈ (VR′

k
)σ

2. (VRk
)θθ′ ≈ (VR′

k
)σσ′

Moreover, we say that (ps, R) computes the same in P1 as does (pq, R
′) in P2,

denoted by �ps�
P1
R = �pq�

P2
R′ if and only if (ps, R) computes a subset of (pq, R

′)
and vice versa in their respective programs.

The above definition allows us to characterize predicates as computing the
same results, even if these predicates only partially exhibit the same behavior.

Generalization-Driven Semantic Clone Detection in CLP 231

Indeed, what matters is that they compute the same values when restricted to
the arguments in R, respectively R′. The values computed by arguments not
comprised in either R or R′ are not concerned and may be different. When the
programs are clear from the context, we will drop the superscript notation and
simply write �ps�R = �pq�R′

Example 1. Consider the predicate p/3 computing in its third argument the
product of its first two arguments

p(A,B, P) ← B = 1, P = A
p(A,B, P) ← B′ = B − 1, p(A,B′, P ′), P = P ′ + A

and sp/4 computing in its third and four arguments the sum, respectively, the
product of its first two arguments:

sp(A,B, S, P) ← A = 1, S = B + 1, P = B.
sp(A,B, S, P) ← A′ = A − 1, sp(A′, B, S′, P ′), S = S′ + 1, P = P ′ + B.

Note how both predicates share the functionality of computing the product of
their first two arguments (although the role of A and B is switched). Therefore,
we have that �sp�〈1,2,4〉 = �p�〈2,1,3〉.

In order to further define our notion of semantic clones, we first need to intro-
duce the following notions. First, we define the notion of an Rα-transformation
sequence as follows, based on [13].

Definition 2. Let P be a CLP program and R be a set of CLP program trans-
formations. Then a R-transformation sequence of P is a finite sequence of CLP
programs, denoted 〈P0, P1, . . . , Pn〉, where P0 = P and ∀i (0 < i ≤ n) : Pi is
obtained by the application of a transformation in R on Pi−1.

Given CLP programs P and Q, we will often use P �∗
R Q to represent the

fact that there exists an R-transformation sequence 〈P0, P1, . . . , Pn〉 with P0 = P
and Pn = Q. We are only interested in transformation sequences that preserve
the semantics of the original predicate, at least partially, i.e. with respect to a
given sequence of argument positions.

Definition 3. Let p and p′ be predicates, and R and R′ sequences of argu-
ment positions. A R-transformation sequence 〈P0, P1, . . . , Pn〉 correctly trans-
forms (p,R) into (p′, R′) if and only if (p,R) computes the same result in P0 as
(p′, R′) in Pn.

An example of transformation that could be part of the set R is the well-
known slicing transformation, defined as an operation removing the constraints
and/or atoms that concern a given argument of the predicate on which it is
applied (based on [19]):

Definition 4. Given the definition of a predicate p/n in a program P with head
p(X1, . . . , Xn). Then slicing the argument Xi ∈ {X1, . . . , Xn} of p/n consists
in removing from each clause of p/n all the constraints, atoms and arguments
having a (direct or indirect) impact on Xi.

232 W. Vanhoof and G. Yernaux

The slicing operation, when part of R, allows to transform a predicate into
a lighter version where some of its arguments have been disregarded.

Example 2. Reconsider the definitions from Example 1 as well as a set of can-
didate transformations R containing at least the slicing transformation. It is
not hard to see that there exists an R-transformation sequence that correctly
transforms (sp,〈1, 2, 4〉) into (p,〈2, 1, 3〉). Indeed, it suffices to remove the third
argument (S) from sp and slice away the literals that manipulate S to obtain

sp(A,B, P) ← A = 1, P = B.
sp(A,B, P) ← A′ = A − 1, sp(A′, B, P ′), P = P ′ + B.

which is, basically, a variant of p where the role of the first and second argument
has been switched.

Definition 3 essentially defines what we will see as a correct transformation
sequence: one that preserves the computation performed by a predicate of inter-
est, at least with respect to a subset of its arguments. Note that the definition
is parametrized with respect to the set R of allowed transformations. Also note
that the definition is quite liberal, in the sense that it allows predicates to be
renamed, arguments (and thus computations) to be left out of the equation, and
arguments to be permuted. We are now in a position to define what we mean for
the predicates to be semantic clones, at least with respect to a subset of their
computations. The definition is loosely based on the notion of a semantic clone
pair [3].

Definition 5. Let p and q be predicates defined in, respectively the programs P
and Q, and let R and S be sequences of argument positions. Then we define
(p,R) and (q, S) R-clones in P and Q if and only if there exists a program T ,
predicate t and sequence of argument positions T such that P �∗

R T correctly
transforms (p,R) into (t, T) and Q �∗

R T correctly transforms (q, S) into (t, T).

Example 3. Reconsider the definitions from Example 1. If we permute, in the
definition of p, the first and second arguments we obtain a predicate, say p′,
defined as follows:

p′(B,A, P) ← B = 1, P = A
p′(B,A, P) ← B′ = B − 1, p′(B′, A, P ′), P = P ′ + A

which is a variant of the predicate in which sp was transformed using the trans-
formation sequence from Example 2. Hence (sp,〈1, 2, 4〉) and (p,〈2, 1, 3〉) can be
considered a clone pair since each can be correctly transformed into (p′,〈1, 2, 3〉).

Our approach towards defining semantic clones is somewhat different from
other transformation-based approaches in the sense that we consider (parts of)
programs to be semantic clones if each of them can be transformed into a third,
common, program while preserving the semantics (with respect to a subset of
argument positions). As such, the third program captures the essence of the

Generalization-Driven Semantic Clone Detection in CLP 233

computations performed by the two given programs. Essentialy this corresponds
to defining a family of semantic clones, depending on the instanciation of the
set of allowable transformations R.

In the following we study a first concrete incarnation of this framework for
semantic code clones detection. We therefore define Rα as the set composed only
of slicing and unfolding. The unfolding transformation [13] allows to replace
a call to a predicate with the body (or bodies) of the predicate in question
as defined in the program, thereby unrolling (i.e. unfolding) the atom under
scrutiny. Formally ([11]):

Definition 6. Given a program P , let c be a clause H ← {C}, {B} in P, Bs

one of the atoms in {B}, and
H1 ← {C1}, {L1}
...
Hn ← {Cn}, {Ln}
the (renamed apart) set of clauses in P such that C∧Ci∧(Bs = Hi) is satisfiable
for all 1 ≤ i ≤ n. Then unfolding the atom Bs in the clause c consists in replacing
c by the set of clauses

{
H ← {C ∧ Ci ∧ (Bs = Hi)}, {B′

i|1 ≤ i ≤ n}
}

where
B′

i represents the conjunction obtained by replacing, in B, the atom Bs by the
conjunction Li.

Example 4. Let us consider the following predicates

p(X,Y,Z) ← X > Z, f(Y).
f(A) ← A < 5.

Unfolding the atom f(Y) in the first predicate transforms its clause into:

p(X,Y,Z) ← X > Z, Y < 5.

In this clause, as the first and third arguments of p/3 are dependent on each
other, slicing X away results in the following predicate (the same holds if it is
Z that is sliced away):

p(Y) ← Y < 5.

As suggested above, our framework instanciated with the set Rα defines a
class of clones, namely the pairs of predicates that can be reduced to a third,
common predicate through the application of only slicing and unfolding opera-
tions (modulo renaming). Although this class of clones is in essence restricted
by Rα, it still constitutes a representative categorization, slicing and unfolding
having proven to be powerful tools for transforming (constraint) logic programs.

3 Generalization-Driven Clone Detection Process

Searching whether two predicates p ∈ P0 and q ∈ Q0 are considered cloned
necessitates thus to construct two transformation sequences, one for each pro-
gram in the hope to arrive at a common program T . Two problems present

234 W. Vanhoof and G. Yernaux

themselves: (1) even when limiting the allowed transformations to slicing and
unfolding, there might be a considerable number of ways in which a partial
transformation sequence 〈P0, . . . , Pk−1〉 can be extended into 〈P0, . . . , Pk〉. And
(2), since we don’t know the target program T in advance, it is hard to steer
the search process. To tackle these problems, we first organize the constructed
transformation sequences into a tree structure composed of the successive trans-
formed programs, where each node is labeled by the argument positions that are
preserved by the sequence of transformations thus far:

Definition 7. Given a program P0 along with a predicate p/n ∈ P0, a Rα-
transformation tree (sometimes abbreviated to Rα-tree) for p in P0 is a tree in
which each node has the form (P,R,R′) where P is a program and R and R′ are
sequences over {1, . . . , n}. The root of the tree is (P0, 〈1, . . . , n〉, 〈1, . . . , n〉) and
for each node (P,R,R′) it holds that P0 �∗

Rα
Pk correctly transforms (p,R) into

(p,R′). For a Rα-transformation tree τ we use leafs(τ) to represent the leaves
of the tree.

In other words, a Rα-transformation tree can be constructed by repeatedly
extending one of its leaves by transforming the program contained in the leaf
using one of the program transformations from Rα.

Next, we introduce the concept of abstraction that allows both to keep the
tree finite and to guide the choice of the successive transformations to apply.
We assume given a quasi-order
 defined on goals such that for goals G and
G′, G
 G′ denotes that G is more general than G′. We furthermore assume an
abstraction operator based on
.

Definition 8. Given a quasi-order
 on goals, an abstraction operator A allows
to compute a generalization of two goals. Given goals G1, G2 then A(G1, G2)
represents a goal G such that G
 G1 and G
 G2.

While different incarnations of such a quasi-order can be defined, one typical
definition could be the following: G
 G′ if and only if there exists a substitution
θ such that Gθ ⊆ G′. This is a straightforward adaption of the well-known “more
general than” relation defined on atoms and (ordered) conjunctions (e.g. ([17])
and the one we use in this work. Given an abstraction operator on goals, it is
possible to define the generalization of clauses and predicates as illustrated by
the following example.

Example 5. Consider the predicate s/3 computing in its third argument the sum
of its first two arguments.

s(A,B, S) ← B = 0, S = A
s(A,B, S) ← B′ = B − 1, s(A,B′, P ′), S = S′ + 1

Then it is not hard to see that

s′(A,B, S,N, I) ← B = N,S = A
s′(A,B, S,N, I) ← B′ = B − 1, s′(A,B′, S′, N, I), S = S′ + I

Generalization-Driven Semantic Clone Detection in CLP 235

can be considered a generalization of the s/3 predicate defined in the present
example and the p/3 predicate defined in Example 1. Indeed, it can be obtained
by pairwise considering the predicates’ clauses, constructing a new (generalized)
clause by generalizing the respective body goals using the abstraction operator,
introducing (a subset of) the new variables as arguments and carefully renaming
these arguments so that all clauses share the same head.

In previous work, we have showed that computing these generalizations – in
particular the most specific, or most precise, generalization – is not a straightfor-
ward problem, and have proposed an algorithm for computing a generalization
that approximates the most specific generalization of two sets of atoms in poly-
nomially bounded time [22]. In this work we take such an abstraction algorithm
for granted (formalized by our abstraction operator A) and we study how such
an abstraction operator can be used for steering the search for Rα-clone pairs.
First we introduce the notion of a size measure, represented by |.|, being a func-
tion that defines the size of a syntactic construction (be it a goal, clause, or
predicate definition). The size measure is such that:

• for any syntactical constructs a and b that are variants of each other, then
|a| = |b|;

• for any syntactical constructs a and b, if a is more general than b (a
 b),
then |a| ≤ |b|.

Such a size measure can be used to define a distance between two predicate
definitions as in the following definition.

Definition 9. Given an abstraction operator A and a size measure |.| measuring
the size of a predicate definition, then we define the distance between predicates
p and q as follows:

δ(p, q) = 1 − 2 × |A(p, q)|
|p| + |q|

Since, by definition, |A(p, q)| ≤ |p| and |A(p, q)| ≤ |q|, we have that δ(p, q) is a
value between 0 and 1. If the generalization A(p, q) is empty (meaning there is no
pair of atoms that can be generalized by a single atom in the generalization), the
distance will be 1. On the other hand, the distance will be zero if the predicates
are variants of each other. Now, given programs P0 and Q0 and predicates p/n ∈
P0 and q/m ∈ Q0, we can use this distance to steer a process that transforms
p and q so that the distance between the (transformed) predicates becomes
smaller. If, at some point, the distance becomes zero, we can conclude that the
predicates are Rα-cloned, at least with respect to a subset of their arguments.
The process is depicted in Algorithm 1. The main loop of the algorithm will
extend the transformation trees τ1 for p in P0 and τ2 for q in Q0 and is repeated
as long as at least one pair of leafs from the respective trees gets closer than the
minimum distance obtained between leaves at the previous iteration. In other
words, the process is repeated as long as some progress is achieved in making
the predicate definitions closer through the application of transformations on the

236 W. Vanhoof and G. Yernaux

versions of p and q contained in the tree leaves. Since the distances are bounded
by zero, the algorithm is necessarily terminating.

The idea of the algorithm is thus to select at each iteration the most promising
candidates for extension, which are the couples of leaves for which the defini-
tions of p and q are the closest in distance. For readability we use the nota-
tion closest leaves(τ1, τ2, n) to denote the n pairs ((Pi, Ri, R

′
i), (Qj , Sj , S

′
j)) in

leafs(τ1)× leafs(τ2) for which the corresponding definitions of p ∈ Pi and q ∈ Qj

are closest in distance. Slightly abusing notation, to refer to this distance we will
use δ((Pi, Ri, R

′
i), (Qj , Sj , S

′
j)).

The algorithm will extend each of those selected pairs by applying a judicious
transformation to pairwise corresponding clauses in the predicates. However, the
predicates can be composed of several clauses and we yet have to determine
which of those should be considered to be pairwise corresponding clauses. Once
again, we will tackle this problem by computing the pairs of clauses for which
the distance δ is minimal. For two nodes (Pi, Ri, R

′
i) and (Qj , Sj , S

′
j) we denote

the K closest independent pairs of clauses of p and q in the respective programs
Pi and Qj by closest clauses((Pi, Ri, R

′
i), (Qj , Sj , S

′
j),K). Each of these pairs of

clauses will be transformed in either Pi, Qj or both, giving rise to a new child
node of (Pi, Ri, R

′
i), respectively (Qj , Sj , S

′
j), or both. When unfolding is applied,

the argument sequences Ri and R′
i (resp. Sj and S′

j) will stay untouched, while
slicing might rearrange the sequences, resulting in R′

i (resp. S′
j) denoting the

new positions of the unsliced arguments in the target programs.
The trees constructed by the algorithm are correct Rα-trees in the sense of

Definition 7.

Proposition 1. Given predicates and programs p/n ∈ P0 and q/m ∈ Q0. Let
(τ1, τ2) be transformation trees created by Algorithm 1. Then for each node
(P,R,R′) in τ1 it holds that P0 �∗

Rα
P correctly transforms (p,R) into (p,R′)

and for each node (Q,S, S′) in τ2 it holds that Q0 �∗
Rα

Q correctly transforms
(q, S) into (q, S′).

Proof. We prove the result for τ1 by induction; the proof is analogous for τ2.
Note that the root of τ1, namely (P0, 〈1, . . . , n〉, 〈1, . . . , n〉) trivially satisfies the
condition in the proposition with the empty Rα-transformation sequence. Now
let (P,R,R′) be a non-root node in τ1 with parent node (Pi, Ri, R

′
i), such that

P0 �∗
Rα

Pi correctly transforms (p,Ri) into (p,R′
i). The node (P,R,R′) has

either been obtained with the application of unfolding or by slicing on p in
(Pi, Ri, R

′
i). Unfolding being known to be a sound transformation in the most

general and usual sense, all the computations of p are strictly preserved after
having unfolded an atom in one of its clauses. Therefore in the case of unfolding,
the child node has the same argument sequences as its parent, i.e. R = Ri and
R′ = R′

i. As for the slicing of an argument, it has by definition no incidence
on the remaining (untouched) arguments. In that case the algorithm sets R to
the subsequence of Ri denoting the arguments that are left unsliced, and R′ to
their new positions in the resulting predicate. It follows that the sequences of
arguments that are preserved after the application of the transformations are
correctly identified in the successive nodes, hence the result.

Generalization-Driven Semantic Clone Detection in CLP 237

Algorithm 1. Construction of Rα-transformation trees τ1 and τ2
τ1 ← (P0, 〈1, . . . , n〉, 〈1, . . . , n〉)
τ2 ← (Q0, 〈1, . . . , m〉, 〈1, . . . , m〉)
δ1 ← 2
while δ(closest leaves(τ1, τ2, 1)) > 0 and δ(closest leaves(τ1, τ2, 1)) < δ1 do

δ1 ← δ(closest leaves(τ1, τ2, 1))
for all ((Pi, Ri, R

′
i), (Qj , Sj , S

′
j)) in closest leaves(N) do

extend((Pi, Ri, R
′
i), (Qj , Sj , S

′
j))

end for
end while

function extend((Pi, Ri, R
′
i), (Qj , Sj , S

′
j))

for all (Hp ← Gp, Hq ← Gq) in closest clauses((Pi, Ri, R
′
i), (Qj , Sj , S

′
j), K) do

G ← A(Gp, Gq) such that Gp = Gθp ∪ Δp and Gq = Gθq ∪ Δq

if Δp = ∅ then
apply slicing on q in such a way that literals from Δq are eliminated

else if Δq = ∅ then
apply slicing on p in such a way that literals from Δp are eliminated

else if unfolding atoms in Δp gives rise to variants of constraints in Δq then
apply unfolding on these atoms

else if unfolding atoms in Δq gives rise to variants of constraints in Δp then
apply unfolding on these atoms

else
apply slicing on p and/or q in such a way that literals from Δp and/or Δq

are eliminated
end if
if p has been transformed then

Create (P, R, R′) as a child of (Pi, Ri, R
′
i) where P is a variation of Pi with

the transformed version of p replacing p, and where in case of unfolding, R = Ri and
R′ = R′

i and in case of slicing, R denotes the arguments that are left unsliced, and
R′ denotes their new positions in the transformed version of p.

end if
if q has been transformed then

Create (Q, S, S′) as a child of (Qj , Sj , S
′
j) similarly

end if
end for

end function

Note that the process is parametrized by N and K. If N = 1 the process
continues by transforming in each step the most promising couple of leaves.
While this might be efficient, it is in no way guaranteed that the search finds
the “right” transformation sequences as it can be stuck in a local optimum.
Using a larger value for N is a rudimentary way of eliminating this problem.
The parameter K on the other hand allows to explore the transformation of
different pairs of clauses (at least when K > 1) in order to extend a single leaf.

While the main loop of Algorithm 1 details how the search is controlled (it
specifies how to guarantee termination while extending the N most promising

238 W. Vanhoof and G. Yernaux

pairs of leafs in each round), the extend procedure specifies how to choose which
of slicing or unfolding to apply to a couple of clauses in two nodes (Pi, Ri, R

′
i)

and (Qj , Sj , S
′
j). In order to steer this selection, we search for the program

transformation that, again, lowers the distance between the current definitions
of predicates p and q as they are defined in Pi and Qj respectively. For this,
once more information from the generalization process can be used to guide the
selection. Indeed, the generalization G represents the part that is common to p
and q while Δp and Δq represent the parts specific to the current definition of
p, respectively q. Information from these structures can be exploited in order to
select the most promising transformation to apply on one of the predicates (i.e.
the transformation that will bring the two predicates’ definitions closer). Such
a strategy is outlined in the extend operation. The two first conditions check
whether the generalization A(p, q) is of maximal size. In that case, the only
meaningful way in which the search can continue is by slicing parts of the non-
empty delta. If neither Δp nor Δq are empty, the search should focus on making
Δp and Δq more similar, in order to enlarge the common part G shared by both
clauses (with the use of unfolding) or, less preferably, render both Δp and Δq

smaller (by slicing). Although the extend function relies on the analysis of pairs
of corresponding clauses, its application effectively modifies the definition of the
considered predicate as a whole, yielding new nodes containing the modified
programs and the corresponding argument positions.

Corollary 1. Let P0 and Q0 be programs, p ∈ P0 and q ∈ Q0 predicates, τ1 and
τ2 the transformation trees created by Algorithm 1. Let closest leaves(τ1, τ2, 1) =
{((P,R,R′), (Q,S, S′))}. If δ((P,R,R′), (Q,S, S′)) = 0, then (p,R) and (q, S)
are Rα-clones in P0 and Q0.

Proof. If the distance between the two nodes is zero, the code of p in P and
q in Q is equivalent at least with respect to the argument sequences R and S.
Because of Proposition 1 we have that P0 �∗

Rα
P correctly transforms (p,R) into

(p,R′) and Q0 �∗
Rα

Q correctly transforms (q, S) into (q, S′). Now, p ∈ P and
q ∈ Q is essentially the same predicate (modulo renaming and reordering of the
arguments) and so they can be considered Rα-clones in the sense of Definition 5.

Given the limited search space explored by Algorithm 1, it is trivial to see
that the process is incomplete, in the sense that there exist Rα-clones that are
not detected by the process.

We conclude this section with the following (simplified) example serving as
an illustration for the ideas driving the process described above.

Example 6. Let us consider the following predicates defined in some program
P0:

max(X,Y,Z,M) ← X ≥ Y,m(X,Z,M).
max(X,Y,Z,M) ← Y > X,m(Y,Z,M).
m(A,B,M) ← A ≥ B,M = A.
m(A,B,M) ← B > A,M = B.

Generalization-Driven Semantic Clone Detection in CLP 239

as well as the following predicates defined in some program Q0:

minmax(U, V,W,Min,Max) ← U ≥ V,U ≥ W,Max = U,min(V,W,Min).
minmax(U, V,W,Min,Max) ← U ≥ V,W > U,Max = W,min(U, V,Min).
minmax(U, V,W,Min,Max) ← V > U, V ≥ W,Max = V,min(U,W,Min).
minmax(U, V,W,Min,Max) ← V > U,W ≥ V,Max = W,min(U, V,Min).
min(A,B,M) ← A > B,M = B.
min(A,B,M) ← B ≥ A,M = A.

Suspicious that max/4 in P0 and minmax/5 in Q0 might exhibit some com-
mon functionality, let us apply Algorithm 1 to the two predicates. First, we
need to compute A(max,minmax), which yields (a variant of) the following
predicate:

g(G1, G2, G3, G4, G5) ← X ≥ Y.
g(G1, G2, G3, G4, G5) ← Y > X.

Obviously for each clause from max, Δmax (the differences between pairwise
clauses from max and g) is not empty, as the clauses from g harbor less infor-
mation than the corresponding clauses from max. The same holds for Δminmax.
We will thus try to apply unfolding on one of the input predicates in the hope of
bringing the predicate definitions closer to each other. It is easy to see that
unfolding the calls to min/3 in minmax would not lead to the generaliza-
tion being any larger; on the other hand, unfolding the calls to m/3 in max
is an adequate way to enlarge the common parts of both predicates. Indeed,
after unfolding all the calls to m/3, the predicate max becomes defined as the
following:

max(X,Y,Z,M) ← X ≥ Y,X ≥ Z,M = X.
max(X,Y,Z,M) ← X ≥ Y,Z > X,M = Z.
max(X,Y,Z,M) ← Y > X, Y ≥ Z,M = Y.
max(X,Y,Z,M) ← Y > X,Z > Y,M = Z.

Now computing the most specific generalization of this new version of the
max predicate and the unchanged minmax predicate yields (a variant of) the
following:

g(G1, G2, G3, G4, G5) ← G1 ≥ G2, G1 ≥ G3, G5 = G1.
g(G1, G2, G3, G4, G5) ← G1 ≥ G2, G3 > G1, G5 = G3.
g(G1, G2, G3, G4, G5) ← G2 > G1, G2 ≥ G3, G5 = G2.
g(G1, G2, G3, G4, G5) ← G2 > G1, G3 > G2, G5 = G3.

which is easily identified as a variant of max (with one variable, namely G4,
having no correspondence with a variable of max).

Therefore by computing the differences between g and our input predicates
we get empty Δmax values while the corresponding Δminmax values contain the
calls to min/3. In this situation the extend procedure prescribes to use slicing
on those parts of minmax that are part of the Δminmax sets (including the Min
variable only used in the call to min/3). This yields a new version of minmax:

240 W. Vanhoof and G. Yernaux

minmax(U, V,W,Max) ← U ≥ V,U ≥ W,Max = U
minmax(U, V,W,Max) ← U ≥ V,W > U,Max = W.
minmax(U, V,W,Max) ← V > U, V ≥ W,Max = V.
minmax(U, V,W,Max) ← V > U,W ≥ V,Max = W.

This time, the most specific generalization of max and minmax is of maximal
size as it is a variant of both predicates. In this setting we have achieved a
distance of 0 between the predicates and their common generalization g, thus
exiting the loop of Algorithm 1 with the conclusion that (max, 〈1, 2, 3, 4〉) and
(minmax, 〈1, 2, 3, 5〉) are Rα-clones in P0 and Q0 (at least modulo renaming).

4 Conclusions and Future Work

While the theoretical framework of semantic clones in logic programming has
been established before, this work is – to the best of our knowledge – the first
attempt in devising a practical algorithm capable of searching for a series of
unfolding and slicing transformations that reduce two given CLP fragments to
a single code fragment representing the functionality that is common to the
two fragments; as such proving that the fragments are (at least to some extent)
semantic clones. Slicing and unfolding are powerful transformations; yet the set
Rα constitutes a somewhat restricted incarnation of the general set of allow-
able transformations R defined as a parameter in the framework from [11]. Of
course, this limitation narrows down the degree of clone detection that can be
achieved. Working out a way to generalize our search procedure, e.g. by incorpo-
rating other candidate transformations in the process, is a topic of ongoing and
future research. Transformations such as arguments reordering and folding [13]
for instance constitute a first natural extension of our set Rα, the consequences
of which yet have to be explored. In particular, studying transformations that
are specific to certain domains, such as numeric constraints normalization, is
also an open field for future research.

The search algorithm that we propose is essentially comprised of two control
levels: one level that controls the termination of the process and a second one
that considers what transformation to apply next. In that respect, it is not unlike
control techniques used in partial deduction [8] where a global control level is
used to ensure termination of the process and a local control is concerned by
constructing a suitable SLD tree for an atom or a conjunction of atoms.

A key ingredient in our approach is a generalization operator that allows
to generalize two goals and that can, additionally, be used to compute a dis-
tance between these goals. Generalization (or anti-unification) is a simple and
well-known syntactical process, at least as far as single atoms or (ordered) con-
junctions are concerned. It becomes more complicated when, as is the case in our
setting, sets of atoms and/or constraints need to be considered. We have for this
reason recently devised an approximation algorithm for computing most specific
generalizations of sets of literals [22], and aim to incorporate this further into the
algorithm developed above. Another topic of future work is to include higher-
order anti-unification capabilities in the algorithm, which is currently restricted
to first-order generalizations only.

Generalization-Driven Semantic Clone Detection in CLP 241

Acknowledgements. We thank anonymous reviewers and the participants of LOP-
STR 2019 for their constructive input and remarks.

References

1. Alias, C., Barthou, D.: Algorithm recognition based on demand-driven data-flow
analysis. In: Proceedings of the 10th Working Conference on Reverse Engineering
(WCRE), pp. 296–305 (2003). https://doi.org/10.1109/WCRE.2003.1287260

2. Brown, C., Thompson, S.: Clone detection and elimination for Haskell. In: Pro-
ceedings of the 2010 SIGPLAN Workshop on Partial Evaluation and Program
Manipulation (PEPM 2010), pp. 111–120. ACM (2010). https://doi.org/10.1145/
1706356.1706378

3. Dandois, C., Vanhoof, W.: Semantic code clones in logic programs. In: Albert,
E. (ed.) LOPSTR 2012. LNCS, vol. 7844, pp. 35–50. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38197-3 4

4. Dandois, C., Vanhoof, W.: Clones in logic programs and how to detect them. In:
Vidal, G. (ed.) LOPSTR 2011. LNCS, vol. 7225, pp. 90–105. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-32211-2 7

5. Gange, G., Navas, J.A., Schachte, P., Søndergaard, H., Stuckey, P.J.: Horn clauses
as an intermediate representation for program analysis and transformation. TPLP
15(4–5), 526–542 (2015). https://doi.org/10.1017/S1471068415000204

6. Green, C., Luckham, D., Balzer, R., Cheatham, T., Rich, C.: Report on a
knowledge-based software assistant. Technical report, Kestrel Institute (1983).
https://doi.org/10.5555/31870.31893

7. Jaffar, J., Maher, M.J., Marriott, K., Stuckey, P.J.: The semantics of constraint
logic programs. J. Logic Program. 37(1–3), 1–46 (1998). https://doi.org/10.1016/
S0743-1066(98)10002-X

8. Leuschel, M., Bruynooghe, M.: Logic program specialisation through partial deduc-
tion: control issues. Theory Pract. Logic Program. 2(4–5), 461–515 (2002). https://
doi.org/10.1017/S147106840200145X

9. Li, H., Thompson, S.: Clone detection and removal for Erlang/OTP within a refac-
toring environment. In: Proceedings of the 2009 SIGPLAN Workshop on Partial
Evaluation and Program Manipulation (PEPM 2009), pp. 169–178. ACM (2009).
https://doi.org/10.1145/1480945.1480971

10. Martino, B.D., Iannello, G.: PAP recognizer: a tool for automatic recognition of
parallelizable patterns. In: 4th International Workshop on Program Comprehension
(WPC), p. 164 (1996). https://doi.org/10.1109/WPC.1996.501131

11. Mesnard, F., Payet, E., Vanhoof, W.: Towards a framework for algorithm recog-
nition in binary code. In: Proceedings of the 18th International Symposium on
Principles and Practice of Declarative Programming, pp. 202–213. PPDP 2016,
ACM, New York (2016). https://doi.org/10.1145/2967973.2968600

12. Metzger, R., Wen, Z.: Automatic Algorithm Recognition and Replacement. MIT
Press, Cambridge (2000)

13. Pettorossi, A., Proietti, M.: Transformation of logic programs. In: Gabbay, D.M.,
Hogger, C.J., Robinson, J.A. (eds.) Handbook of Logic in Artificial Intelligence and
Logic Programming, vol. 5, pp. 697–787. Oxford University Press, Oxford (1998)

14. Rattan, D., Bhatia, R.K., Singh, M.: Software clone detection: a systematic review.
Inf. Softw. Technol. 55(7), 1165–1199 (2013). https://doi.org/10.1016/j.infsof.
2013.01.008

https://doi.org/10.1109/WCRE.2003.1287260
https://doi.org/10.1145/1706356.1706378
https://doi.org/10.1145/1706356.1706378
https://doi.org/10.1007/978-3-642-38197-3_4
https://doi.org/10.1007/978-3-642-32211-2_7
https://doi.org/10.1017/S1471068415000204
https://doi.org/10.5555/31870.31893
https://doi.org/10.1016/S0743-1066(98)10002-X
https://doi.org/10.1016/S0743-1066(98)10002-X
https://doi.org/10.1017/S147106840200145X
https://doi.org/10.1017/S147106840200145X
https://doi.org/10.1145/1480945.1480971
https://doi.org/10.1109/WPC.1996.501131
https://doi.org/10.1145/2967973.2968600
https://doi.org/10.1016/j.infsof.2013.01.008
https://doi.org/10.1016/j.infsof.2013.01.008

242 W. Vanhoof and G. Yernaux

15. Rich, C., Shrobe, H.E., Waters, R.C.: Overview of the programmer’s apprentice. In:
Proceedings of the Sixth International Joint Conference on Artificial Intelligence
(IJCAI), pp. 827–828 (1979). https://doi.org/10.5555/1623050.1623101

16. Roy, C.K., Cordy, J.R., Koschke, R.: Comparison and evaluation of code clone
detection techniques and tools: a qualitative approach. Sci. Comput. Program.
74(7), 470–495 (2009). https://doi.org/10.1016/j.scico.2009.02.007

17. Sørensen, M.H., Glück, R.: An algorithm of generalization in positive supercompi-
lation. In: Logic Programming, Proceedings of the 1995 International Symposium,
Portland, Oregon, USA, 4–7 December 1995, pp. 465–479 (1995). https://doi.org/
10.7551/mitpress/4301.003.0048

18. Storey, M.D.: Theories, methods and tools in program comprehension: past, present
and future. In: 13th International Workshop on Program Comprehension (IWPC),
pp. 181–191 (2005). https://doi.org/10.1007/s11219-006-9216-4

19. Szilágyi, G., Gyimóthy, T., Ma�luszyński, J.: Static and dynamic slicing of con-
straint logic programs. Autom. Softw. Eng. 9(1), 41–65 (2002). https://doi.org/
10.1023/A:1013280119003

20. Taherkhani, A.: Using decision tree classifiers in source code analysis to recognize
algorithms: an experiment with sorting algorithms. Comput. J. 54(11), 1845–1860
(2011). https://doi.org/10.1093/comjnl/bxr025

21. Taherkhani, A., Malmi, L.: Beacon- and schema-based method for recognizing
algorithms from students’ source code. J. Educ. Data Min. 5(2), 69–101 (2013).
https://doi.org/10.5281/zenodo.3554635

22. Yernaux, G., Vanhoof, W.: Anti-unification in constraint logic programming. The-
ory Pract. Logic Program. 19(5–6), 773–789 (2019). https://doi.org/10.1017/
S1471068419000188

23. Zhang, F., Huang, H., Zhu, S., Wu, D., Liu, P.: Viewdroid: towards obfuscation-
resilient mobile application repackaging detection. In: Proceedings of the 2014
ACM Conference on Security and Privacy in Wireless and Mobile Networks, WiSec
2014, pp. 25–36. ACM (2014). https://doi.org/10.1145/2627393.2627395

24. Zhang, F., Jhi, Y.C., Wu, D., Liu, P., Zhu, S.: A first step towards algorithm plagia-
rism detection. In: Proceedings of the 2012 International Symposium on Software
Testing and Analysis, ISSTA 2012, pp. 111–121. ACM (2012). https://doi.org/10.
1145/2338965.2336767

https://doi.org/10.5555/1623050.1623101
https://doi.org/10.1016/j.scico.2009.02.007
https://doi.org/10.7551/mitpress/4301.003.0048
https://doi.org/10.7551/mitpress/4301.003.0048
https://doi.org/10.1007/s11219-006-9216-4
https://doi.org/10.1023/A:1013280119003
https://doi.org/10.1023/A:1013280119003
https://doi.org/10.1093/comjnl/bxr025
https://doi.org/10.5281/zenodo.3554635
https://doi.org/10.1017/S1471068419000188
https://doi.org/10.1017/S1471068419000188
https://doi.org/10.1145/2627393.2627395
https://doi.org/10.1145/2338965.2336767
https://doi.org/10.1145/2338965.2336767

Semi-inversion of Conditional
Constructor Term Rewriting Systems

Maja Hanne Kirkeby1(B) and Robert Glück2

1 Roskilde University, Roskilde, Denmark
kirkebym@acm.org

2 DIKU, University of Copenhagen, Copenhagen, Denmark
glueck@acm.org

Abstract. Inversion is an important and useful program transformation
and has been studied in various programming language paradigms. Semi-
inversion is more general than just swapping the input and output of a
program; instead, parts of the input and output can be freely swapped. In
this paper, we present a polyvariant semi-inversion algorithm for condi-
tional constructor term rewriting systems. These systems can model logic
and functional languages, which have the advantage that semi-inversion,
as well as partial and full inversion, can be studied across different pro-
gramming paradigms. The semi-inverter makes use of local inversion and
a simple but effective heuristic and is proven to be correct. A Prolog
implementation is applied to several problems, including inversion of a
simple encrypter and of a program inverter for a reversible language.

Keywords: Program transformation · Program inversion ·
Conditional term rewriting systems · Logic and functional programs

1 Introduction

Programs that are inverse to each other are widely used, such as encoding and
decoding of data. The transformation of an encoder into a decoder, or vice
versa, is called full inversion. Semi-inversion, the most general type of program
inversion, transforms one relation into a new relation that takes a subset of the
original input and output as the new input. For example, the transformation of
a symmetric encrypter into a decrypter cannot be achieved by conventional full
inversion because both programs take the same key as input.

In this paper, we present a polyvariant semi-inversion
algorithm for an oriented conditional constructor term
rewriting system (CCS) [22]. The algorithm makes use of
local inversion and a simple but effective heuristic and is
proven to be correct. A Prolog implementation is applied
to several transformation problems, including the inversion
of a simple symmetric encrypter. As a special transforma-
tion challenge, a program inverter for a reversible imperative
language was inverted into a copy of itself modulo variable
renaming.
c© Springer Nature Switzerland AG 2020
M. Gabbrielli (Ed.): LOPSTR 2019, LNCS 12042, pp. 243–259, 2020.
https://doi.org/10.1007/978-3-030-45260-5_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45260-5_15&domain=pdf
https://doi.org/10.1007/978-3-030-45260-5_15

244 M. H. Kirkeby and R. Glück

We distinguish between three forms of program inversion: Full inversion
turns a program p into a new program p−1, where the original inputs and outputs
are exchanged. If p is injective, then p−1 implements a function. Partial inversion
yields a program p−1 that inputs the original output (u, v) and some of the orig-
inal input (x) and then returns the remaining input (y). Semi-inversion yields a
program p−1 that, given some of the original input (x) and some of the original
output (v), returns the remaining input (y) and output (u). The programs p
and p−1 may implement functions or more general relations. Full inversion is a
subproblem of partial inversion, which is a subproblem of semi-inversion:

full inversion ⊆ partial inversion ⊆ semi-inversion.

Dijkstra was the first to study the full inversion of programs in a guarded
command language [6]. Subsequently, some program inversion algorithms were
developed for different forms of inversion and for different programming lan-
guages. Of those, only Nishida et al. [19] and Almendros-Jiménez et al. [2] have
considered term rewriting systems, where the latter constrained the systems
such that terms have a unique normal form, i.e., the systems express functional
input-output relations. Mogensen [14,15], who developed the first semi-inversion
algorithm, did so for a deterministic guarded equational language, i.e., with func-
tional input-output relations. Methods for inversion have been studied in the
context of functional languages [7–11]. The motivation for using program inver-
sion instead of inverse interpretation, such as [1,13], is similar to the motivation
for using translation instead of interpretation.

The main advantage of oriented conditional constructor term rewriting sys-
tems is that they can model both logic and functional languages [5], and, hence,
functional logical languages [12]. When modeling logic languages, an efficient
evaluation requires narrowing (unification) [5,12], which typically has a larger
search space than standard rewriting (matching). By requiring that the rewrite
rules be not only left-orthogonal but also right-orthogonal and non-deleting, we
can also model reversible languages [23]. This enables us to focus on the essence
of semi-inversion without considering language-specific details. The semantics of
functions and relations can be expressed and efficiently calculated in the same
formalism (cf., Ex. 2). The idea to use CCSs to investigate semi-inversion for
different language paradigms was inspired by the partial inverter developed by
Nishida et al. [19].

The new semi-inverter relates to some of the mentioned inversion algorithms:

Functions Relations

Full inversion Glück and Kawabe [8] Nishida et al. [17,20]

Partial inversion Almendros-Jiménez et al. [2] Nishida et al. [19]

Semi-inversion Mogensen [14] This algorithm

This paper provides (1) a polyvariant semi-inversion algorithm for CCSs
that uses local inversion and is proven correct; (2) a simple but effective heuris-
tic to avoid narrowing and to minimize the search space; and (3) an experimen-
tal evaluation by applying the Prolog implementation to a simple encryption

Semi-inversion of Conditional Constructor Term Rewriting Systems 245

algorithm, a physical discrete-event simulation, and a program inverter for a
reversible language.

Overview: After an brief overview of the semi-inverter (Sect. 2), we formally
define conditional term rewriting systems and semi-inversion (Sect. 3). Then, we
present our algorithm (Sect. 4) and report on the experimental results (Sect. 5).1

2 The Semi-inversion Algorithm—An Overview

This section gives an informal overview of semi-inversion and illustrates the semi-
inversion algorithm with a short, familiar example. Both semi-inversion and the
algorithm will be formalized and defined in the following sections.

We let semi-inversion cover rewritings of the form

f(s1, . . . , sn) →∗
R 〈t1, . . . , tm〉,

where f is an n-ary function symbol with co-arity m defined in the conditional
term rewriting system R; input and output terms s1, . . . , sn and t1, . . . , tm are
ground constructor terms; and 〈...〉 is a special m-ary constructor containing the
m output terms. The transformation of f into a semi-inverse f is w.r.t. indices
of known input and output terms. If we assume that the first a input and b
output terms are the known arguments, then the semi-inverse f{1,...,a}{1,...,b} takes
the form

f{1,...,a}{1,...,b}(s1, . . . , sa, t1, . . . , tb) →∗
R 〈sa+1, . . . , sn, tb+1, . . . , tm〉.

The input-output index sets {1, . . . , a} and {1, . . . , b} label the new function
symbol f and serve to distinguish different semi-inverses of the same f . The semi-
inversion algorithm locally inverts each rule needed for the rewriting sequence in
the semi-inverted rewriting system R such that the known parameters specified
by the two index sets occur on the left-hand side and all others occur on the
right-hand side of the semi-inverted rules of f . Semi-inversion is polyvariant
because R may include several different semi-inversions of the rules defining f
in R, while, in contrast, full inversion is monovariant, as it requires only one
variant per f .

Example 1. Take as an example the multiplication x · y = z of two unary num-
bers x and y defined by adding y x times (s1–s4, Fig. 1), which is similar to the
unconditional system (r1–r4, Fig. 1) suggested by [19]. Inversion of multiplica-
tion mul is w.r.t. the second input y and the first (and only) output z. That is,
input-output index sets I = {2} and O = {1} yield the rewrite rules for division
z/y = x and, as a subtask, partially inverts addition x + y = z into subtraction
z − x = y (t1–t4, as shown in Fig. 1). Multiplication mul(x,y) and addition
add(x,y) are inverted into division mul{2}{1}(y,z) and subtraction add{1}{1}(x,z)
and are replaced by the forms div(z,y) and sub(z,x) for readability. Some of
1 The extended abstract of a talk, Nordic Workshop on Programming Theory, Univ.

of Bergen, Dept. of Informatics, Report 403, 2012, is partially used in Sects. 1 and 5.

246 M. H. Kirkeby and R. Glück

the inverted rules have a conditional part (the conjunction to the right of ⇐),
which must be satisfied to apply a rule and may bind variables, e.g., y, in rule t4.

The algorithm is illustrated in Fig. 2 by the stepwise inversion of rule s2.
First, all function symbols are labeled with index sets, starting with the given
index sets on the left-hand side and then repeatedly (from left to right) labeling
the function symbols in the conditions with indices of the known arguments
(Step 1). Variable w is known after add is rewritten, so the rightmost mul
is labeled mul{2}{1}. Finally, local inversion brings all known parts to the left-
hand side according to the index sets (Step 2), e.g., mul{2}{1}(s(x),y)→〈z〉 into
mul{2}{1}(y,z)→〈s(x)〉.

We note that in Fig. 1, division by zero, div(z,0), is undefined (due to
infinite rewriting by repeatedly subtracting 0 from z). Division of zero, div(0,y),
where y > 0, correctly defines zero as a result. Both rules t1 and t2 match,
but only rule t1 can be applied. The pre-processing and post-processing that
transform between unconditional and flat conditional constructor systems are
standard techniques and not discussed here; see, e.g., [19,21,22].

Unconditional rules:
r1: mul(0,y)→ 0 r2: mul(s(x),y)→ add(y,mul(x,y))

r3: add(0,y)→ y r4: add(s(x),y)→ s(add(x,y))

Flat rules:
s1: mul(0,y)→ 〈0〉 s2: mul(s(x),y)→ 〈z〉 ⇐ add(y,w)→ 〈z〉 ∧ mul(x,y)→ 〈w〉
s3: add(0,y)→ 〈y〉 s4: add(s(x),y)→ 〈s(z)〉 ⇐ add(x,y)→ 〈z〉
Inverted rules (after renaming):
t1: div(0,y)→ 〈0〉 t2: div(z,y)→ 〈s(x)〉 ⇐ sub(z,y)→ 〈w〉 ∧ div(w,y)→ 〈x〉
t3: sub(y,0)→ 〈y〉 t4: sub(s(z),s(x))→ 〈y〉 ⇐ sub(z,x)→ 〈y〉

Fig. 1. Partial inversion of multiplication into division.

Label all function symbols (index set propagation):

Step 1
{

mul(s(x),y)→ 〈z〉 ⇐ add(y,w)→ 〈z〉 ∧ mul(x,y)→ 〈w〉
mul{2}{1}(s(x),y)→ 〈z〉 ⇐ add{1}{1}(y,w)→ 〈z〉 ∧ mul{2}{1}(x,y)→ 〈w〉

Local inversion:

Step 2
{

mul{2}{1}(s(x),y)→ 〈z〉 ⇐ add{1}{1}(y,w)→ 〈z〉 ∧ mul{2}{1}(x,y)→ 〈w〉
mul{2}{1}(y,z)→ 〈s(x)〉 ⇐ add{1}{1}(y,z)→ 〈w〉 ∧ mul{2}{1}(y,w)→ 〈x〉

Fig. 2. Stepwise inversion of rule s2 in Fig. 1 w.r.t. the input-output index sets {2} {1}.

3 Conditional Constructor Systems and Semi-inversion

First, we recall the basic concepts of conditional term rewriting systems fol-
lowing the terminology of Ohlebusch [22] and their ground constructor-based

Semi-inversion of Conditional Constructor Term Rewriting Systems 247

relation [20]. Then, we define what we call conditional constructor term rewrit-
ing systems (CCSs) and describe how they model a series of language paradigms.
We also describe the properties for when they can be evaluated efficiently, which
relates to the design goals for our semi-inverter. Finally, we define semi-inversion
of such systems and give the first insights into the nature of semi-inversion.

3.1 Preliminaries for Conditional Term Rewriting

We assume a countable set of variables V. A finite signature F is assumed to
be partitioned into two disjoint sets: a set of defined function symbols D, each
f ∈ D with an arity n and a co-arity m, written f/n/m, and a set of constructor
symbols C, each a ∈ C with an arity n. We denote the set of all terms over F
and V by T (F ,V). A term s is a ground term if it has no variables, a constructor
term if it contains no function symbols, and a ground constructor term if it is
both a ground term and a constructor term. Every subterm s of a term t has
at least a position p, and we denote this subterm by t|p = s, with the root
symbol denoted root(t). Furthermore, we let t[s′]p denote a new term where the
subterm at position p in t is replaced by a new (sub)term s′. A substitution σ
is a mapping from variables to terms, a ground substitution is a mapping from
variables to ground terms, and a constructor substitution is a mapping from
variables to constructor terms.

A conditional rewrite rule is of the form l → r ⇐ c, where the left-hand side
l is a non-variable and root(l) ∈ D, the right-hand side r is a term, and the con-
ditions c are a (perhaps empty) conjunction of conditions l1 → r1∧ . . .∧ lk → rk.

A conditional term rewriting system R over a signature F , abbreviated
CTRS, is a finite set of conditional rewrite rules l0 → r0 ⇐ l1 → r1∧. . .∧lk → rk
over all terms in T (F ,V) such that the defined functions D = {root(l) | l → r ⇐
c ∈ R} and constructors C = F \ D. The conditions are interpreted as reacha-
bility, defining a so-called oriented CTRS, e.g., [22].

A ground constructor-based rewrite relation →R associated with a CTRS over
F →R is the smallest binary relation for a pair of ground terms s, t ∈ T (F , ∅),
where there is a position p, a ground constructor substitution σ and a rewrite rule
l → r ⇐ c such that s|p = lσ, s[rσ]p = t and, for each condition (li → ri) ∈ c,
liσ →∗

R riσ.

3.2 Conditional Constructor Systems

In this study, we focus on a subclass of CTRSs we call conditional constructor
term rewriting systems. These systems are both input to and output from the
semi-inversion algorithm. They are also referred to as pure constructor CTRSs in
the literature [16] and are a subset of 4-CTRSs [22]. They can model first-order
functional programs, logic programs, and functional logic programs [5] and are
suitable for observing and discussing common problems arising from inversion
without considering different language specifications.

248 M. H. Kirkeby and R. Glück

The purpose of these systems is to describe relations f from n ground con-
structor terms to m ground constructor terms, that is,

f(s1, . . . , sn) →∗
R 〈t1, . . . , tm〉.

We assume that the signature includes special constructors 〈〉/m intended
to contain the m output and function symbols of the form mul/2/1 and
mul{2}{1}/2/1.

Definition 1 (CCS). A conditional constructor term rewriting system R,
abbreviated CCS, is a CTRS over F = C
 D if each rule in R is of the form

l0 → r0 ⇐ l1 → r1 ∧ . . . ∧ lk → rk,

where each li → ri (0 ≤ i ≤ k) is of the form f i(pi1, . . . , p
i
ni

) → 〈qi1, . . . , qimi
〉

such that f i/ni/mi ∈ D, 〈 〉/mi ∈ C, and pij and qij′ are constructor terms.

We shall only consider the associated ground constructor-based rewrite rela-
tion [20] described in Sect. 3.1. The reductions f(s1, . . . , sn) →∗

R 〈t1, . . . , tm〉,
where all si and tj are ground constructor terms, specified by a CCS, can only
be 1-step reductions, that is, f(s1, . . . , sn) →R 〈t1, . . . , tm〉. The left- and right-
hand side of the rules are not unifiable, prohibiting 0-step reductions; there is one
function symbol in the initial term, and each rule-application removes exactly
one function symbol, prohibiting reductions with more than one step. This also
simplifies the correctness proof of the semi-inversion algorithm, which can be
proven by induction over the depth of the rewrite steps [22, Def. 7.1.4].

The next example defines a rewrite relation by overlapping rules.

Example 2. This CCS defines a one-to-many rewrite relation perm/1/1 between
a list and all its permutations, e.g., perm([1|[2|[]]]) → 〈[1|[2|[]]]〉 and
perm([1|[2|[]]]) → 〈[2|[1|[]]]〉. It has two defined function symbols
perm/1/1 and del/1/2 and a set of constructors, including two list construc-
tors, []/0 and [·|·]/2, and two special output constructors, 〈·〉/1 and 〈·, ·〉/2.
The defined function symbol perm depends on del, which removes an arbitrary
element from a list and returns the removed element and the remaining list. The
nondeterministic relation is caused by the overlapping rules r3 and r4.

r1: perm([]) → 〈[]〉
r2: perm(x) → 〈[y|z]〉 ⇐ del(x) → 〈y,u〉 ∧ perm(u) → 〈z〉
r3: del([x|y]) → 〈x,y〉
r4: del([x|y]) → 〈z, [x|u]〉 ⇐ del(y) → 〈z,u〉

A CCS can be nondeterministic by overlapping rules, as in Example 2, and by
what we call extra variables2, i.e., variables occurring on the right-hand side r
of a rule but neither in its left-hand l side nor in its conditions c, i.e., Var(r) \
(Var(l) ∪ Var(c)). In case a system has no extra variables, we call it extra-
variable free, abbreviated EV-free. EV-free CCSs are a subset of 3-CTRSs [22],
and pcDCTRSs [18] are a subset of EV-free CCSs.
2 In this case, we follow the terminology of [19] —these are not to be confused with

“extra variables” as defined by Ohlebusch [22], i.e., (Var(r) ∪ Var(c)) \ Var(l).

Semi-inversion of Conditional Constructor Term Rewriting Systems 249

The extra variables cause infinite branching in the ground constructor-based
rewrite relation; for example, a rule f() → 〈x〉 represents an infinite ground
constructor-based rewrite relation {f() →R 〈a〉, f() →R 〈b〉, . . .}. Intuitively,
these variables can be interpreted as logic variables subsuming all possible
ground constructor terms. Extra variables require efficient implementations that
do not naively produce the entire ground constructor-based rewrite relation.
Narrowing is a well-established rewriting method, where matching is replaced
by unification; see, e.g., [5] for further details, [3,12] for a survey, and [19] for
the use in partial inversion.

3.3 Semi-inverse

The reader has already seen an example of semi-inversion in Sect. 2. Next, we
define semi-inversion formally and illustrate it with examples of the algorithm.

Definition 2 (semi-inverse). Let R and R be CCSs over F = C
 D
and F = C
 D, respectively, with f/n/m ∈ D and f

IO
/n/m ∈ D, where

I = {i1, . . . , ia} and O = {o1, . . . , ob} are index sets such that n = a + b and
m = m + n − n. Then, R is a semi-inverse of R w.r.t. f , I, and O if for all
ground constructor terms s1, . . . , sn, t1, . . . , tm ∈ T (C\{〈〉}, ∅),

f(s1, . . . , sn) →R 〈t1, . . . , tm〉 ⇔
f
IO

(si1 , . . . , sia , to1 , . . . , tob) →R 〈sia+1 , . . . , sin , tob+1 , . . . , tom〉

where divisions {i1, . . . , ia}
 {ia+1, . . . , in} = {1, . . . , n} and {o1, . . . , ob}

{ob+1, . . . , om} = {1, . . . , m}. We assume that the name and the parameters
of f

IO
are ordered according to <-order on the indices.

The reason the semi-inversion algorithm produces a CCS and not an EV-free
CCS lies in the nature of full-inversion, i.e., the most specific inversion problem,
as demonstrated by the next example.

Example 3. Full inversion of the EV-free CCS fst(x,y) → 〈x〉 unavoidably
creates a CCS with extra variables, namely, fst∅,{1}(x) → 〈x,y〉.

Sometimes the semi-inverted system and its original system define the same
rewrite relation but are defined differently, as in the following examples.

Example 4 (Ex. 2, continued). The semi-inverse of perm w.r.t. index sets I = ∅
and O = {1}, i.e., a full inversion, is a CCS that defines the same permutation
relation by different rules. Here, del∅,{1,2} inserts an element randomly into a
list, whereas the original del removes an arbitrary element from the list.
r1: perm∅,{1}([]) → 〈[]〉
r2: perm∅,{1}([y|z]) → 〈x〉 ⇐ perm∅,{1}(z) → 〈u〉 ∧ del∅,{1,2}(y,u) → 〈x〉
r3: del∅,{1,2}(x,y) → 〈[x|y]〉
r4: del∅,{1,2}(z,[x|u]) → 〈[x|y]〉 ⇐ del∅,{1,2}(z,u) → 〈y〉

250 M. H. Kirkeby and R. Glück

3.4 Modeling Programming Languages and Evaluation Strategies

EV-free CCSs are suitable for modeling logic languages such as Prolog, as seen
in the next example, where predicates are modeled by function symbols with
co-arity 0. In general, logic programs require narrowing, as we shall see below.

Example 5. The classic predicate append can be modeled by the two rules
app([],y,y) → 〈〉 and app([h|t],y,[h|z]) → 〈〉 ⇐ app(t,y,z) → 〈〉.

The evaluation order of the conditions, i.e., the strategy, does not affect the
correctness of a rewriting, but the conditions and their order may require nar-
rowing. Instead of describing when there exists an evaluation order, which would
only require the faster term rewriting, it is standard to fix the order to be from
left to right and to define for which systems there is an order that would only
require term rewriting. We follow [16] and define these properties for CCSs, and
not only EV-free CCSs as in [22]. For a rule l → r ⇐ l1 → r1∧. . .∧lk → rk, a vari-
able x in a condition li, i.e., x ∈ Var(li), is known if x ∈ Var(l, r1, . . . , ri−1), and
unknown otherwise. The rule is left-to-right deterministic3 if all variables on the
left-hand sides of the conditions are known, i.e., Var(li) ⊆ Var(l, r1, . . . , ri−1),
and a CCS is left-to-right deterministic if all its rules are left-to-right determin-
istic.

A left-to-right deterministic and EV-free CCS does not require narrowing,
and it is desirable for a semi-inverter to produce such systems [22, Sect. 7.2.5].
In addition, these systems provide a good basis for modeling functional pro-
grams [5]. However, other requirements include orthogonal rules, i.e., non-over-
lapping rules and left-linearity. These requirements will not be a part of our
design focus for the semi-inversion algorithm, but we will comment on where to
check for such paradigm-specific properties in the algorithm in Sect. 4.

Moreover, an EV-free CCS can model reversible languages by ensuring right-
orthogonality and non-deletion. Nishida et al. [18] performed a reversibilization
of a possibly irreversible pcDCTRS4 by labeling each right-hand side of a rule
with a unique constructor, i.e., right-orthogonality, and recording all deleted val-
ues in a trace, i.e., non-deletion. Thus, their resulting pcDCTRSs are reversible.

4 The Semi-inversion Algorithm

The polyvariant semi-inverter is presented in a modular way, including the local
inversion and a heuristic to improve the semi-inversion by reordering the condi-
tions. The algorithm semi-inverts a CCS w.r.t. a given function symbol and a
pair of input-output index sets into a new CCS. It terminates and yields correct
semi-inverse systems, as shown at the end of this section.

3 Left-to-right determinism is referred to as “determinism” in term rewriting litera-
ture, but we make a rather clear distinction between this property, deterministic
computations, and deterministic input-output relations, i.e., functions.

4 Equivalent to left-to-right deterministic EV-free CCSs with orthogonal rules.

Semi-inversion of Conditional Constructor Term Rewriting Systems 251

The semi-inverter labels all function symbols with two index sets, I and O,
that contain the indices of the known terms of the left-hand and right-hand
sides of a rule, respectively, and locally inverts every rule after reordering the
conditions such that all known variables given by the index sets occur on the left-
hand side and the rest occur on the right-hand side of the new rule. The control
of rule generation, the heuristic and indices O extend the partial inverter [19].

4.1 Control of Rule Generation

The recursive semi-inversion algorithm (Fig. 3) controls the local inversion
(Fig. 4) of the conditional rewrite rules. Given a rewrite system R, an initial func-
tion symbol f and the initial input-output index sets I and O, the algorithm
produces the semi-inverse rewrite system Rf

IO
. It keeps track of the function

symbols that have been semi-inverted (in set Done) and those that are pending
semi-inversions (in set Pend) to address circular dependencies between rules.

A pending task (f,I,O) ∈ Pend is selected, and each of the rules defining f
in R is semi-inverted, which may lead to new semi-inversion tasks. The auxiliary
procedure getdep collects all function symbols and their input-output index sets
on which the conditions of a set of inverted rules depend. This procedure helps
determine new reachable tasks after semi-inverting the rules. Using reachability
for semi-inversion reduces the risk of exponentially increasing the size of Rf

IO
;

semi-inversion is polyvariant inversion of R in that it may produce several semi-
inversions of the same function symbol, namely, one for each input-output index
set. Eventually, all reachable semi-inverses are generated then no pending task
exist and the algorithm returns the self-contained semi-inverted system Rf

IO
.

At this point, as an add-on, the type of the new rewrite system can be syntac-
tically checked. For example, if none of the semi-inverted rules contains an extra
variable, then the system is marked as EV-free, and if all function symbols in the
CSS are defined by orthogonal rules, then this system corresponds to a first-order

seminv(Pend, Done) =

if Pend = ∅ then ∅ else

// choose a pending task for semi-inversion
(f,I,O) ∈ Pend;

// semi-invert all rules of f with index sets I and O

f-Rulesoriginal := { ρ | ρ : l → r ⇐ c ∈ R, root(l) = f };
f-Rulesinverted := { localinv(ρ,I,O) | ρ ∈ f-Rulesoriginal };
// update the pending and done sets
NewDep := getdep(f-Rulesinverted) \ Done;

f-Rulesinverted ∪ seminv((Pend ∪ NewDep) \ {(f,I,O)}, Done ∪ {(f,I,O)});
getdep(Rules) =

{ (f,I,O) | l → r ⇐ c ∈ Rules, li → ri ∈ c, root(li) = fIO };

Fig. 3. Recursive semi-inversion algorithm.

252 M. H. Kirkeby and R. Glück

functional program. This is the strength of using conditional term rewriting sys-
tems as a foundation for studying semi-inversion: they smoothly model inversion
problems across a range of different important programming paradigms.

The algorithm terminates for any (f,I,O) because the numbers of function
symbols and their possible index sets are finite for any given R. In each recursion,
a task is semi-inverted and moved from Pend to Done. Eventually, no more tasks
can be added to Pend that are not already in Done, and the algorithm terminates.

Invocation of the semi-inverter in Fig. 3 is done by seminv({(f,I,O)}, ∅)R,
where the read-only R is global for the sake of simplicity. A new system Rf

IO
with

all semi-inverted functions reachable from the initial task (f,I,O) is returned.

Definition 3 (Semi-inverter). Given a CCS R, a defined function symbol
f/n/m ∈ D, and two index sets I ⊆ {1, . . . , n} and O ⊆ {1, . . . , m}, the semi-
inverter in Fig. 3 yields the CCS

Rf
IO

= seminv({(f,I,O)},∅)R.

Note that if the initial pending set contains two or more tasks, they are semi-
inverted together by seminv, which may be useful for practical reasons.

Rf
IO

∪ Rg
I′O′

= seminv({(f,I,O)} ∪ {(g,I ′,O′)},∅)R.

4.2 Local Semi-inversion of Conditional Rules

The form of the rules with a rule head followed by a sequence of flat conditions
considerably simplifies the local inversion. Given the index sets I and O, a rule

(l → r ⇐ l1 → r1 ∧ . . . ∧ lk → rk)

is locally semi-inverted into a left-to-right deterministic rule

(l′ → r′ ⇐ l′1 → r′
1 ∧ . . . ∧ l′k → r′

k),

i.e., satisfying Var(l′, r′
1, . . . , r

′
i−1) ⊇ Var(l′i) for all 1 ≤ i ≤ k.

Local inversion (Fig. 4) first generates the new head l′ → r′ by rearranging
the terms of l and r according to I and O as required for semi-inversion (Def. 2).
After heuristic reorders the conditions, localinvc ensures that the new rule is left-
to-right deterministic by transforming the conditions l1 → r1∧ . . .∧lk → rk from
left to right such that all terms in the ith condition (li → ri) that depend only on
the already known variables Var(l, r1, . . . , ri−1) are moved to the new left-hand
side l′i and all other terms are moved to the new right-hand side r′

i (ordered by
increasing index). Therefore, l′i contains terms that depend on known variables
(including ground terms), and r′

i contains all the other terms. At the same time,
the function symbol fi at the root of l′i is labeled with the corresponding input-
output sets. This transformation is repeated recursively from left to right for
each condition while updating the set of known variables. In this way, the semi-
inverted rule becomes left-to-right deterministic, and each new condition l′i → r′

i

uses the maximum number of known terms in l′i. This step is not necessary for
correctness but reduces the search space of the intended reduction strategy.

Semi-inversion of Conditional Constructor Term Rewriting Systems 253

localinv(f(p1,...,pn)→ 〈q1,...,qm〉 ⇐ c, {i1,...,ia}, {o1,...,ob}) =

// semi-invert the rule head and label the function symbol
{ia+1,..., in} := {1,...,n} \ {i1,...,ia}
{ob+1,..., om} := {1,...,m} \ {o1,...,ob}
lhs := f{i1,...,ia}{o1,...,ob}(pi1,...,pia,qo1,...,qob)
rhs := 〈pia+1,...,pin,qob+1,...,qom〉
// locally invert the conditions after reordering
Var := Var(lhs)
c’ := heuristic(c, Var) // reorder conditions of rule
c’’ := localinvc(c’,Var) // local inversion of conditions
// return the inverted rule
lhs → rhs ⇐ c’’

localinvc(c, Var) = case c of

// if no condition, then return the empty condition
ε => ε
// else invert the left-most condition
f(p1,...,pn) → 〈q1,...,qm〉 ∧ Restc =>

// build the index sets
{i1, ..., ia} := {i | i ∈ {1,...,n}, Var(pi) ⊆ Var}
{ia+1,..., in} := {1,...,n} \ {i1,...,ia}
{o1, ..., ob } := {o | o ∈ {1,...,m}, Var(qo) ⊆ Var}
{ob+1,..., om} := {1,...,m} \ {o1,...,ob}
// locally invert and label the left-most condition
lhs := f{i1,...,ia}{o1,...,ob}(pi1,...,pia,qo1,...,qob)
rhs := 〈pia+1,...,pin,qob+1,...,qom〉
// return the inverted conditions
lhs→ rhs ∧ localinvc(Restc, Var ∪ Var(rhs))

Fig. 4. Local inversion of a conditional rule.

4.3 A Heuristic Approach to Reordering Conditions

We have chosen a greedy heuristic to reorder the conditions in a rule before semi-
inverting them, which works surprisingly well. The procedure heuristic (shown in
Fig. 5) reorders the conditions according to the percentages of known parameters
such that the condition with the highest percentage comes first. This procedure
dynamically updates the set of known variables each time a condition is moved to
the head of the sequence and recursively applies the reordering to the remaining
conditions. Clearly, different sets of known variables can lead to different orders
of the conditions. The intention with this heuristic is to syntactically exploit as
much known information as possible without having to rely on an extra analysis.

Other reordering methods could be used instead. The algorithm by
Mogensen [14], which semi-inverts non-overlapping rules in a guarded equational
language without extra variables, searches through all possible semi-inversions
and uses additional semantic information about primitive operators. An exhaus-
tive search will find better orders than a local heuristic, but the search will take
more time. This is the familiar trade-off between the accuracy and run time of

254 M. H. Kirkeby and R. Glück

heuristic(c, KnownVar) = case c of

// if no condition, then return the empty condition
ε => ε

// else find condition with highest percentage of known parameters
l1 → r1 ∧ ...∧ lk → rk =>

// determine percentages
Percent1 := percent(l1 → r1, KnownVar)
.

Percentk := percent(lk → rk, KnownVar)

(Pi,i) := maxPercent((Percent1,1),...,(Percentk,k))

// select condition, reorder remaining conditions in updated variable set
li → ri ∧ heuristic(c \ (li → ri), KnownVar ∪ Var(li,ri))

percent(f(p1, ..., pn) → 〈q1, ..., qm〉, KnownVar) =

// determine index sets of known parameters
I := {i | i ∈ {1, ..., n}, Var(pi) ⊆ KnownVar }
O := {j | j ∈ {1, ..., m}, Var(qj) ⊆ KnownVar }
// return percentage of known parameters
(|I| + |O|) / (m + n) // known = |I| + |O|, total = m + n

Fig. 5. A greedy heuristic for reordering conditions.

a program analysis. The heuristic always finds a reordering (perhaps leading to
extra variables), while the semi-inverter [14] may halt with no answer due to the
limitations of the language —a later inverter [15] allows functional parameters.

There is no fixed order of conditions that avoids extra variables for all possible
semi-inversions of a given rewrite system. Our experiments show that the heuris-
tic usually improves the resulting semi-inversion, but it can also be deceived, as
shown in the following example.

Example 6. Given a system consisting of r1–r3, the semi-inversion of test w.r.t.
I = {1} and O = {2} yields the system s1–s3, which has an extra variable in
function fst{1}{1}, whereas one produced without the heuristic would be EV-free.
r1: test(x,y) → 〈w,z〉 ⇐ copy(x,y) → 〈w,z〉 ∧ fst(x,y) → 〈z〉
r2: fst(x,y) → 〈x〉 r3: copy(x,y) → 〈x,y〉
s1: test{1}{2}(x,z) → 〈y,w〉 ⇐ fst{1}{1}(x,z) → 〈y〉 ∧ copy{1,2}{2}(x,y,z) → 〈w〉
s2: fst{1}{1}(x,x) → 〈y〉 s3: copy{1,2}{2}(x,y,y) → 〈x〉

4.4 Correctness of the Semi-inversion Algorithm

The correctness of the semi-inversion algorithm is proven by first defining Rall

by semi-inverting all possible semi-inversion tasks for the function symbols in R.

Definition 4 (Rall). Let R be a CCS, and let P = {(f, I,O) | f/n/m ∈ D, I ⊆
{1, . . . , n}, O ⊆ {1, . . . ,m}} be the pending set consisting of all semi-inversion
tasks of all function symbols defined in R. Then, we define

Rall = seminv(P, ∅)R.

Semi-inversion of Conditional Constructor Term Rewriting Systems 255

The following theorem can be proven in two steps: First, the rewrite steps of f
are in R if and only if the rewrite steps of its semi-inverse f

IO
are in Rall , and

secondly, the rewrite steps of f
IO

are in Rall if and only if they are in Rf
IO

. The
proofs are omitted due to lack of space.

Theorem 1. Let R be a CCS, and let Rf
IO

= seminv({(f, I,O)}, ∅)R for a
function symbol f/n/m ∈ D and index sets I ⊆ {1, . . . , n} and O ⊆ {1, . . . , m}.
Then, Rf

IO
is a semi-inverse of R w.r.t. f , I, and O.

5 Application of the Semi-inverter

The semi-inverter has been fully implemented (in Prolog), and in the following,
we will present the results: a series of semi-inversions of a discrete simulation of
a free fall, each solving a different problem, a decrypter from a simple encrypter,
and the inversion of an inverter for a reversible programming language.

5.1 Discrete Simulation of a Free Fall

We consider a discrete simulation of an object that falls through a vacuum [4] and
use semi-inversion to generate four new programs, each solving a different aspect.
The simulation is defined by the equations vt = vt−1+g and ht = ht−1−vt+g/2,
where g ≈ 10m/s2 is the approximate gravitational acceleration. The following
system fall0 yields the object’s velocity vt (v) and height ht (h) at time t, given
t (t) and initial velocity v0 (v0) and height h0 (h0).
fall0(v,h,0) → 〈v,h〉
fall0(v0,h0,s(t))→ 〈v,h〉 ⇐
add(v0, s

5(0))→ 〈vn〉∧
height(h0,vn)→ 〈hn〉∧
fall0(vn,hn,t)→ 〈v,h〉

height(h0,vn)→ 〈hn〉 ⇐
add(h0,s

5(0))→ 〈htemp〉 ∧ sub(htemp,vn)→ 〈hn〉

Original fall0 : (v0, h0, t) → (v, h)

Full inv. fall1 : (v, h) → (v0, h0, t)
Partial inv. fall2 : (t, v, h) → (v0, h0)

Semi-inv. #1 fall3 : (v0, t, h) → (h0, v)
Semi-inv. #2 fall4 : (v0, t, v) → (h0, h)

The system fall0 is geared towards solving the ‘forward’ problem, while finding
a solution to the ‘backward’ problem of determining the origin of a fall may be
equally interesting, it requires a new set of rules. Full inversion algorithms can
transform fall0 into a new system fall1 solving the backward problem, while other
problems require partial or semi-inversion.

These four programs fall1 to fall4 are successfully generated by the semi-
inversion algorithm as shown in Fig. 6 (dependency functions are omitted for
clarity). The difference between the order of the conditions in the four inversions
indicates that the heuristic has taken action.

5.2 Encrypter and Decrypter

The automatic generation of decrypters is fascinating. The following symmet-
ric encrypter is a modification of a simple encryption method suggested by

256 M. H. Kirkeby and R. Glück

fall1(v, h) → 〈v, h, 0〉
fall1(v, h) → 〈v0, h0, s(t)〉 ⇐

fall1(v, h) → 〈vn, hn, t〉∧
add{2}{1}(s

10(0), vn) → 〈v0〉∧
height{2}{1}(vn, hn) → 〈h0〉

fall3(v, 0, h) → 〈h, v〉
fall3(v0, s(t), h) → 〈h0, v〉 ⇐

add(v0, s
10(0)) → 〈vn)〉∧

fall3(vn, t, h) → 〈hn, v〉∧
height{2}{1}(vn, hn) → 〈h0〉

fall2(0, v, h) → 〈v, h〉
fall2(s(t), v, h) → 〈v0, h0〉 ⇐

fall2(t, v, h) → 〈vn, hn〉∧
add{2}{1}(s

10(0), vn) → 〈v0〉∧
height{2}{1}(vn, hn) → 〈h0〉

fall4(v, 0, v) → 〈h, h〉
fall4(v0, s(t), v) → 〈h0, h〉 ⇐

add(v0, s
10(0)) → 〈vn〉∧

fall4(vn, t, v) → 〈hn, h〉∧
height{2}{1}(vn, hn) → 〈h0〉

Fig. 6. The fall0, its full inversion fall1, the partial inversion fall2 and the two
semi-inversions fall3 and fall4.

Mogensen. It produces an encrypted text z:zs given a text formed as an integer
list x:xs and a key key. Encryption cleans the key by mod 4, adds the new value
to the first character, and repeats the process recursively for the rest of the text
(the modification is that we use mod 4 instead of mod 256, as mod 256 consists
of 257 rules). The encrypter is given in Fig. 7 (on the left), and the decrypter is
a partial inversion of it with respect to I = {2} and O = {1}, as shown in Fig. 7
(on the right). The decrypter (encrypt{2}{1}) produces the decrypted text x:xs
given the key key and the encrypted text z:zs. Note that mod4 is equivalent to
mod4{1}∅.

Original encrypter:

encrypt(nil,key) → 〈nil〉
encrypt(x:xs,key) → 〈z:zs〉 ⇐

mod4(key) → 〈y〉,
add(x,y) → 〈z〉,
encrypt(xs,key) → 〈zs〉

mod4(0)→ 〈0〉
mod4(s(0))→ 〈s(0)〉
mod4(s2(0))→ 〈s2(0)〉
mod4(s3(0))→ 〈s3(0)〉
mod4(s4(x))→ 〈w0〉 ⇐ mod4(x)→ 〈w0〉

Generated decrypter:

encrypt{2}{1}(key,nil)→ 〈nil〉
encrypt{2}{1}(key,z:zs) → 〈x:xs〉 ⇐

mod4{1}∅(key) → 〈y〉,
add{2}{1}(y,z) → 〈x〉,
encrypt{2}{1}(key,zs) → 〈xs〉

mod4{1}∅(0)→ 〈0〉
mod4{1}∅(s(0))→ 〈s(0)〉
mod4{1}∅(s

2(0))→ 〈s2(0)〉
mod4{1}∅(s

3(0))→ 〈s3(0)〉
mod4{1}∅(s

4(x))→ 〈w0〉 ⇐ mod4{1}∅(x)→ 〈w0〉

Fig. 7. Inversion of a simple symmetric encrypter into a decrypter.

5.3 Inverted Inverter

The Janus language is a reversible language [23] where functions can be both
called (executed in a forward direction) and uncalled (executed in a backward
direction). An inverter for the Janus language creates procedures that are equal

Semi-inversion of Conditional Constructor Term Rewriting Systems 257

to uncalling the original procedure. Since Janus is a reversible language, the full
inversion of such a Janus-inverter is equivalent to itself. A Janus-inverter can
be described as a left-to-right deterministic EV-free CCS, and in Fig. 8 (on the
left), we have given such an inverter for a subset of the language.

A full inversion of the inverter for the reversible Janus language is equivalent
to itself. The result of the semi-inversion algorithm is the Janus inverter shown in
Fig. 8 (on the right). If we assume that invName and its full inversion invName
are equivalent, then the produced and original rules are equivalent up to the
variable naming and order of the parameters.

Janus-Inverter
inv(proc(name,progr)) → 〈proc(u,v)〉 ⇐

invName(name) → 〈u〉 ∧ inv(progr) → 〈v〉

inv(+=(x,y)) → 〈-=(x,y)〉
inv(-=(x,y)) → 〈+=(x,y)〉
inv(<=>(x,y)) → 〈<=>(x,y)〉

inv(if(x1,y1,y2,x2)) → 〈if(x2,z1,z2,x1)〉 ⇐
inv(y1) → 〈z1〉∧ inv(y2) → 〈z2〉

inv(loop(x1,y1,y2,x2))→ 〈loop(x2,z1,v2,x1)〉 ⇐
inv(y1) → 〈z1〉 ∧ inv(y2) → 〈z2〉

inv(call(name)) → 〈call(u)〉 ⇐
invName(name) → 〈u〉

inv(uncall(name)) → 〈uncall(u)〉 ⇐
invName(name) → 〈u〉

inv(sequence(x,y)) → 〈sequence(u,v)〉 ⇐
inv(y) → 〈u〉 ∧ inv(x) → 〈v〉

inv(skip) → 〈skip〉

Fully inverted Janus-inverter
inv(proc(u,v)) → 〈proc(name,progr)〉 ⇐

invName(u) → 〈name〉 ∧ inv(v) → 〈progr〉

inv(-=(x,y)) → 〈+=(x,y)〉
inv(+=(x,y)) → 〈-=(x,y)〉
inv(<=>(x,y)) → 〈<=>(x,y)〉

inv(if(x2,z1,z2,x1)) → 〈if(x1,y1,y2,x2)〉 ⇐
inv(z1) → 〈y1〉 ∧ inv(z2) → 〈y2〉

inv(loop(x2,z1,z2,x1))→ 〈loop(x1,y1,y2,x2)〉 ⇐
inv(z1) → 〈y1〉 ∧ inv(z2) → 〈y2〉

inv(call(u)) → 〈call(name)〉 ⇐
invName(u) → 〈name〉

inv(uncall(u)) → 〈uncall(name)〉 ⇐
invName(u) → 〈name〉

inv(sequence(u,v)) → 〈sequence(x,y)〉 ⇐
inv(u) → 〈y〉 ∧ inv(v) → 〈x〉

inv(skip) → 〈skip〉

Fig. 8. The Janus-inverter inv expressed as CCS rules, and its full inverse inv.

6 Conclusion

We have shown that polyvariant semi-inversion can be performed for conditional
constructor systems (CCSs) that are highly useful for modeling several language
paradigms, including logic, functional, and reversible languages. Notably, we
have shown that local inversion and a straightforward heuristics suffice for per-
forming the general form of inversion with interesting results. This approach
can be used for transformation problems ranging from the inversion of a sim-
ple encryption algorithm or a physical discrete-event simulation to a program
inverter for a reversible language. We have also implemented the algorithm and
shown its correctness. The algorithm makes use of a simple syntactic heuristic
that produces good results in our experiments. In full inversion, some auxil-
iary functions may be partially inverted [17, p. 145], that is, their inversion may
also benefit from the algorithm in this paper. Furthermore, the structure of the
algorithm is modular such that the heuristic can be easily replaced. In regard
to future work, it could be interesting to vary the heuristics with respect to

258 M. H. Kirkeby and R. Glück

the type of inversion considering that reversing conditions suffices for full inver-
sion; e.g., by parameterization, we might capture other inversion algorithms in
this framework.

Acknowledgment. The authors wish to thank German Vidal and the anonymous
reviewers. Support by the EU COST Action IC1405 is acknowledged.

References

1. Abramov, S.M., Glück, R.: The universal resolving algorithm and its correctness:
inverse computation in a functional language. Sci. Comput. Program. 43(2–3),
193–229 (2002)

2. Almendros-Jiménez, J.M., Vidal, G.: Automatic partial inversion of inductively
sequential functions. In: Horváth, Z., Zsók, V., Butterfield, A. (eds.) IFL 2006.
LNCS, vol. 4449, pp. 253–270. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-74130-5 15

3. Antoy, S.: Programming with narrowing: a tutorial. J. Symb. Comput. 45(5), 501–
522 (2010). (version: June 2017, update)

4. Axelsen, H.B., Glück, R., Yokoyama, T.: Reversible machine code and its abstract
processor architecture. In: Diekert, V., Volkov, M.V., Voronkov, A. (eds.) CSR
2007. LNCS, vol. 4649, pp. 56–69. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-74510-5 9

5. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1998)

6. Dijkstra, E.W.: Program inversion. In: Bauer, F.L., et al. (eds.) Program Con-
struction. LNCS, vol. 69, pp. 54–57. Springer, Heidelberg (1979). https://doi.org/
10.1007/BFb0014657

7. Eppstein, D.: A heuristic approach to program inversion. In: Joshi, A.K. (ed.)
IJCAI-85. Proceedings, vol. 1, pp. 219–221. Morgan Kaufmann Inc (1985)

8. Glück, R., Kawabe, M.: A program inverter for a functional language with equality
and constructors. In: Ohori, A. (ed.) APLAS 2003. LNCS, vol. 2895, pp. 246–264.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-40018-9 17

9. Glück, R., Kawabe, M.: A method for automatic program inversion based on LR(0)
parsing. Fundamenta Informaticae 66, 367–395 (2005)

10. Glück, R., Kawabe, M.: Revisiting an automatic program inverter for Lisp. SIG-
PLAN Notices 40(5), 8–17 (2005)

11. Glück, R., Turchin, V.F.: Application of metasystem transition to function inver-
sion and transformation. In: Proceedings of the ISSAC, pp. 286–287. ACM Press
(1990)

12. Hanus, M.: The integration of functions into logic programming: from theory to
practice. J. Logic Program. 19–20(Suppl. 1), 583–628 (1994)

13. McCarthy, J.: The inversion of functions defined by Turing machines. In: Shannon,
C., McCarthy, J. (eds.) Automata Studies, pp. 177–181. Princeton University Press,
Princeton (1956)

14. Mogensen, T.Æ.: Semi-inversion of guarded equations. In: Glück, R., Lowry, M.
(eds.) GPCE 2005. LNCS, vol. 3676, pp. 189–204. Springer, Heidelberg (2005).
https://doi.org/10.1007/11561347 14

15. Mogensen, T. Æ.: Semi-inversion of functional parameters. In: Proceedings of the
PEPM, pp. 21–29. ACM (2008)

https://doi.org/10.1007/978-3-540-74130-5_15
https://doi.org/10.1007/978-3-540-74130-5_15
https://doi.org/10.1007/978-3-540-74510-5_9
https://doi.org/10.1007/978-3-540-74510-5_9
https://doi.org/10.1007/BFb0014657
https://doi.org/10.1007/BFb0014657
https://doi.org/10.1007/978-3-540-40018-9_17
https://doi.org/10.1007/11561347_14

Semi-inversion of Conditional Constructor Term Rewriting Systems 259

16. Nagashima, M., Sakai, M., Sakabe, T.: Determinization of conditional term rewrit-
ing systems. Theor. Comput. Sci. 464, 72–89 (2012)

17. Nishida, N.: Transformational approach to inverse computation in term rewriting.
Ph.D. thesis, Graduate School of Engineering, Nagoya University (2004)

18. Nishida, N., Palacios, A., Vidal, G.: Reversible computation in term rewriting. J.
Logic. Algebr. Methods Program. 94, 128–149 (2018)

19. Nishida, N., Sakai, M., Sakabe, T.: Partial inversion of constructor term rewriting
systems. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 264–278. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-32033-3 20

20. Nishida, N., Vidal, G.: Program inversion for tail recursive functions. In: Proceed-
ings RTA, LIPIcs, vol. 10, pp. 283–298. Schloss Dagstuhl (2011)

21. Ohlebusch, E.: Transforming conditional rewrite systems with extra variables into
unconditional systems. In: Ganzinger, H., McAllester, D., Voronkov, A. (eds.)
LPAR 1999. LNCS (LNAI), vol. 1705, pp. 111–130. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48242-3 8

22. Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer, New York (2002).
https://doi.org/10.1007/978-1-4757-3661-8

23. Yokoyama, T., Glück, R.: A reversible programming language and its invertible
self-interpreter. In: Proceedings of the PEPM, pp. 144–153. ACM (2007)

https://doi.org/10.1007/978-3-540-32033-3_20
https://doi.org/10.1007/3-540-48242-3_8
https://doi.org/10.1007/978-1-4757-3661-8

Author Index

Arias, Joaquín 139
Ayala-Rincón, Mauricio 123

Carro, Manuel 139
Casso, Ignacio 57, 159
Chen, Zhuo 139
Cousot, Patrick 3

Diekhoff, Karsten 90
Drabent, Włodzimierz 193

Fernández, Maribel 123, 211

Gallagher, John P. 19
Gallardo, María-del-Mar 177
Garcia-Contreras, Isabel 36
Giacobazzi, Roberto 57
Glück, Robert 243
Gupta, Gopal 75, 139

Hermenegildo, Manuel V. 19, 36, 57, 159

Kirkeby, Maja Hanne 243
Kirsten, Michael 90

Klemen, Maximiliano 19
Krämer, Jonas 90
Kutsia, Temur 107

López-García, Pedro 19, 57, 159

Mittal, Neeraj 75
Morales, José F. 19, 36, 57, 159

Nantes-Sobrinho, Daniele 123

Panizo, Laura 177
Pau, Cleo 107
Pinaud, Bruno 211

Salazar, Elmer 75
Silva, Gabriel Ferreira 123

Vanhoof, Wim 228
Varanasi, Sarat Chandra 75
Varga, János 211

Yernaux, Gonzague 228

	Preface
	Organization
	Invited Papers
	Reversibilization in Functional and Concurrent Programming
	Horn Clauses and Tree Automata for Imperative Program Verification
	Contents
	Static Analysis
	1On fixpoint/iteration/variant induction principles for proving total correctness of programs with denotational semantics
	1 Introduction
	2 Basic notions in denotational semantics
	3 Termination specification
	4 Fixpoint induction principle
	5 Impossibility to prove termination by fixpoint induction with a denotational semantics
	6 Iteration induction principle
	7 Impossibility to prove termination by iteration induction
	8 Generalized iteration induction principle
	9 Proving total correctness by generalized iteration induction
	10 Parameter dependency
	11 Recursive non-termination
	12 Proving termination by a variant/convergence function
	13 Equivalence of the termination proof by generalized iteration induction and by variant/convergence function principle
	14 Extension to total correctness
	15 Application to the while iteration
	16 Conclusion
	Acknowledgements
	References

	A General Framework for Static Cost Analysis of Parallel Logic Programs
	1 Introduction
	2 Overview of the Approach
	3 The Parametric Cost Relations Framework for Sequential Programs
	4 Our Extended Resource Analysis Framework for Parallel Programs
	4.1 Solving Cost Recurrence Relations Involving max Operation

	5 Implementation and Experimental Results
	6 Related Work
	7 Conclusions
	References

	Incremental Analysis of Logic Programs with Assertions and Open Predicates
	1 Introduction
	2 Background
	3 An Approach to Modular Generic Programming: Traits
	4 Goal-Dependent Abstract Interpretation
	4.1 Goal-Dependent Program Analysis

	5 Incremental Analysis of Programs with Assertions
	5.1 The Incremental Analyzer of Programs with Assertions
	5.2 Use Cases

	6 Experiments
	7 Related Work
	8 Conclusions
	A Assertions
	References

	Computing Abstract Distances in Logic Programs
	1 Introduction
	2 Background and Notation
	3 Distances in Abstract Domains
	3.1 Distances in Lattices and Abstract Domains
	3.2 Distances in Logic Programming Domains

	4 Distances Between Analyses
	5 Experimental Evaluation
	6 Related Work
	7 Conclusions
	References

	Program Synthesis
	Synthesizing Imperative Code from Answer Set Programming Specifications
	1 Introduction
	2 Background
	3 Motivating Example
	4 Synthesizing Code for Graph Coloring
	5 Synthesis Assumptions
	6 Synthesis Task
	6.1 Syntax-Directed Translation
	6.2 Synthesis Procedure
	6.3 Transformation Rules
	6.4 Efficiency of the Synthesized Code
	6.5 Proof of Correctness

	7 Conclusion
	References

	Verified Construction of Fair Voting Rules
	1 Introduction
	2 Concepts and Definitions from Social Choice Theory
	3 Composable Modules and Compositional Structures
	3.1 Electoral Modules
	3.2 Sequential Composition
	3.3 Revision Composition
	3.4 Parallel Composition
	3.5 Loop Composition
	3.6 A Simple Example

	4 Verified Modular Construction Framework
	4.1 Isabelle and Higher-Order Logic (HOL)
	4.2 Verified Construction Based on Composition Rules

	5 Case Study
	6 Related Work
	7 Conclusion
	References

	Constraints and Unification
	Solving Proximity Constraints
	1 Introduction
	2 Preliminaries
	3 Solving Unification Problems
	3.1 Pre-unification Rules
	3.2 Rules for Neighborhood Constraints

	4 Final Remarks
	References

	A Certified Functional Nominal C-Unification Algorithm
	1 Introduction
	2 Background
	2.1 Nominal Terms, Permutations and Substitutions
	2.2 Freshness and -equality
	2.3 Nominal C-Unification

	3 Specification
	3.1 Auxiliary Functions
	3.2 Main Algorithm
	3.3 Examples

	4 Formalization
	4.1 Termination
	4.2 Soundness and Completeness

	5 Interesting Points of Formalization and Implementation
	6 Conclusion and Future Work
	References

	Modeling and Reasoning in Event Calculus Using Goal-Directed Constraint Answer Set Programming
	1 Introduction
	2 Related Work
	3 Background
	3.1 s(CASP)
	3.2 Event Calculus

	4 From Event Calculus to s(CASP)
	4.1 Modeling BEC with s(CASP)
	4.2 Translating the BEC Axioms into s(CASP)
	4.3 Translation of the Narrative
	4.4 Continuous Change: A Complete Encoding

	5 Examples and Evaluation
	6 Conclusions
	A F2LP Encoding of the Light Scenario
	B Adapted F2LP Translation of the Light Scenario with Increased Precision
	References

	Debugging and Verification
	An Integrated Approach to Assertion-Based Random Testing in Prolog
	1 Introduction and Motivation
	2 Using LPtest Within the Ciao Model
	3 Test Case Generation
	4 Integration with Static Analysis
	5 Shrinking
	6 A Case Study
	7 Related Work
	8 Conclusions and Future Work
	References

	Trace Analysis Using an Event-Driven Interval Temporal Logic
	1 Introduction
	2 Related Work
	3 Event-Driven Systems and Logic eLTL
	3.1 Syntax and Semantics of eLTL
	3.2 Examples
	3.3 Comparison with LTL

	4 Implementation
	5 Conclusions
	References

	The Prolog Debugger and Declarative Programming
	1 Introduction
	2 Prolog Debugger
	2.1 Byrd Box Model and LD-Resolution
	2.2 Debugger Output
	2.3 Obtaining Top-Level Traces

	3 Diagnosis
	3.1 Diagnosing Incorrectness
	3.2 Prolog Debugger and Incorrectness
	3.3 Diagnosing Incompleteness
	3.4 Prolog Debugger and Incompleteness

	4 Conclusions
	References

	Program Transformation
	A Port Graph Rewriting Approach to Relational Database Modelling
	1 Introduction
	2 Background
	2.1 Relational Databases
	2.2 Port Graph Rewriting and Porgy

	3 Port Graphs for Database Modelling
	3.1 A Visual Domain Specific Language for Database Modelling
	3.2 Variadic Rewriting Rules

	4 Computing the Syntactic Closure of
	4.1 Rewriting Rules
	4.2 Syntactic Closure Strategy
	4.3 Example of Application
	4.4 Visual Analysis of the Closure
	4.5 Correctness

	5 Finding a Minimal Cover
	6 Conclusion and Future Work
	References

	Generalization-Driven Semantic Clone Detection in CLP
	1 Introduction and Motivation
	2 Semantic Clones: Setting the Stage
	3 Generalization-Driven Clone Detection Process
	4 Conclusions and Future Work
	References

	Semi-inversion of Conditional Constructor Term Rewriting Systems
	1 Introduction
	2 The Semi-inversion Algorithm—An Overview
	3 Conditional Constructor Systems and Semi-inversion
	3.1 Preliminaries for Conditional Term Rewriting
	3.2 Conditional Constructor Systems
	3.3 Semi-inverse
	3.4 Modeling Programming Languages and Evaluation Strategies

	4 The Semi-inversion Algorithm
	4.1 Control of Rule Generation
	4.2 Local Semi-inversion of Conditional Rules
	4.3 A Heuristic Approach to Reordering Conditions
	4.4 Correctness of the Semi-inversion Algorithm

	5 Application of the Semi-inverter
	5.1 Discrete Simulation of a Free Fall
	5.2 Encrypter and Decrypter
	5.3 Inverted Inverter

	6 Conclusion
	References

	Author Index

