
A Randomized Parallel Algorithm
for Efficiently Finding Near-Optimal

Universal Hitting Sets

Barış Ekim1,2 , Bonnie Berger1,2(B) , and Yaron Orenstein3(B)

1 Computer Science and Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, Cambridge, MA 02139, USA

2 Department of Mathematics, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA

bab@mit.edu
3 School of Electrical and Computer Engineering,

Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel
yaronore@bgu.ac.il

Abstract. As the volume of next generation sequencing data increases,
an urgent need for algorithms to efficiently process the data arises. Uni-
versal hitting sets (UHS) were recently introduced as an alternative to
the central idea of minimizers in sequence analysis with the hopes that
they could more efficiently address common tasks such as computing
hash functions for read overlap, sparse suffix arrays, and Bloom filters.
A UHS is a set of k-mers that hit every sequence of length L, and can
thus serve as indices to L-long sequences. Unfortunately, methods for
computing small UHSs are not yet practical for real-world sequencing
instances due to their serial and deterministic nature, which leads to
long runtimes and high memory demands when handling typical values
of k (e.g. k > 13). To address this bottleneck, we present two algorithmic
innovations to significantly decrease runtime while keeping memory usage
low: (i) we leverage advanced theoretical and architectural techniques to
parallelize and decrease memory usage in calculating k-mer hitting num-
bers; and (ii) we build upon techniques from randomized Set Cover to
select universal k-mers much faster. We implemented these innovations
in PASHA, the first randomized parallel algorithm for generating near-
optimal UHSs, which newly handles k > 13. We demonstrate empirically
that PASHA produces sets only slightly larger than those of serial deter-
ministic algorithms; moreover, the set size is provably guaranteed to be
within a small constant factor of the optimal size. PASHA’s runtime
and memory-usage improvements are orders of magnitude faster than
the current best algorithms. We expect our newly-practical construc-
tion of UHSs to be adopted in many high-throughput sequence analysis
pipelines.

Keywords: Universal hitting sets · Parallelization · Randomization

c© Springer Nature Switzerland AG 2020
R. Schwartz (Ed.): RECOMB 2020, LNBI 12074, pp. 37–53, 2020.
https://doi.org/10.1007/978-3-030-45257-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45257-5_3&domain=pdf
http://orcid.org/0000-0002-4040-403X
http://orcid.org/0000-0002-2724-7228
http://orcid.org/0000-0002-3583-3112
https://doi.org/10.1007/978-3-030-45257-5_3

38 B. Ekim et al.

1 Introduction

The NIH Sequence Read Archive [8] currently contains over 26 petabases of
sequence data. Increased use of sequence-based assays in research and clinical
settings creates high computational processing burden; metagenomics studies
generate even larger sequencing datasets [17,19]. New computational ideas are
essential to manage and analyze these data. To this end, researchers have turned
to k-mer-based approaches to more efficiently index datasets [7].

Minimizer techniques were introduced to select k-mers from a sequence
to allow efficient binning of sequences such that some information about the
sequence’s identity is preserved [18]. Formally, given a sequence of length L
and an integer k, its minimizer is the lexicographically smallest k-mer in it.
The method has two key advantages: selected k-mers are close; and similar k-
mers are selected from similar sequences. Minimizers were adopted for biological
sequence analysis to design more efficient algorithms, both in terms of memory
usage and runtime, by reducing the amount of information processed, while not
losing much or any information [12]. The minimizer method has been applied in
a large number of settings [4,6,20].

Orenstein and Pellow et al. [14,15] generalized and improved upon the min-
imizer idea by introducing the notion of a universal hitting set (UHS). For inte-
gers k and L, set Uk,L is called a universal hitting set of k-mers if every possible
sequence of length L contains at least one k-mer from Uk,L. Note that a UHS
for any given k and L only needs to be computed once. Their heuristic DOCKS
finds a small UHS in two steps: (i) remove a minimum-size set of vertices from a
complete de Bruijn graph of order k to make it acyclic; and (ii) remove additional
vertices to eliminate all (L − k)-long paths. The removed vertices comprise the
UHS. The first step was solved optimally, while the second required a heuristic.
The method is limited by runtime to k ≤ 13, and thus applicable to only a
small subset of minimizer scenarios. Recently, Marçais et al. [10] showed that
there exists an algorithm to compute a set of k-mers that covers every path of
length L in a de Bruijn graph of order k. This algorithm gives an asymptotically
optimal solution for a value of k approaching L. Yet this condition is rarely the
case for real applications where 10 ≤ k ≤ 30 and 100 ≤ L ≤ 300. The results of
Marçais et al. show that for k ≤ 30, the results are far from optimal for fixed L.
A more recent method by DeBlasio et al. [3] can handle larger values of k, but
with L ≤ 21, which is impractical for real applications. Thus, it is still desirable
to devise faster algorithms to generate small UHSs.

Here, we present PASHA (Parallel Algorithm for Small Hitting set Approx-
imation), the first randomized parallel algorithm to efficiently generate near-
optimal UHSs. Our novel algorithmic contributions are twofold. First, we
improve upon the process of calculating vertex hitting numbers, i.e. the number
of (L−k)-long paths they go through. Second, we build upon a randomized par-
allel algorithm for Set Cover to substantially speedup removal of k-mers for the
UHS—the major time-limiting step—with a guaranteed approximation ratio on
the k-mer set size. PASHA performs substantially better than current algorithms
at finding a UHS in terms of runtime, with only a small increase in set size; it is

Efficiently Finding Near-Optimal Universal Hitting Sets 39

consequently applicable to much larger values of k. Software and computed sets
are available at: pasha.csail.mit.edu and github.com/ekimb/pasha.

2 Background and Preliminaries

Preliminary Definitions

For k ≥ 1 and finite alphabet Σ, directed graph Bk = (V,E) is a de Bruijn
graph of order k if V and E represent k- and (k + 1)-long strings over Σ,
respectively. An edge may exist from vertex u to vertex v if the (k − 1)-suffix of
u is the (k−1)-prefix of v. For any edge (u, v) ∈ E with label L, labels of vertices
u and v are the prefix and suffix of length k of L, respectively. If a de Bruijn
graph contains all possible edges, it is complete, and the set of edges represents
all possible (k + 1)-mers. An � = (L − k)-long path in the graph, i.e. a path of �
edges, represents an L-long sequence over Σ (for further details, see [1]).

For any L-long string s over Σ, k-mer set M hits s if there exists a k-mer
in M that is a contiguous substring in s. Consequently, universal hitting set
(UHS) Uk,L is a set of k-mers that hits any L-long string over Σ. A trivial
UHS is the set of all k-mers, but due to its size (|Σ|k), it does not reduce the
computational expense for practical use. Note that a UHS for any given k and
L does not depend on a dataset, but rather needs to be computed only once.

Although the problem of computing a universal hitting set has no known
hardness results, there are several NP-hard problems related to it. In particular,
the problem of computing a universal hitting set is highly similar, although
not identical, to the (k, L)-hitting set problem, which is the problem of finding a
minimum-size k-mer set that hits an input set of L-long sequences. Orenstein and
Pellow et al. [14,15] proved that the (k, L)-hitting set problem is NP-hard, and
consequently developed the near-optimal DOCKS heuristic. DOCKS relies on
the Set Cover problem, which is the problem of finding a minimum-size collection
of subsets S1, ..., Sk of finite set U whose union is U .

The DOCKS Heuristic

DOCKS first removes from a complete de Bruijn graph of order k a decycling
set, turning the graph into a directed acyclic graph (DAG). This set of vertices
represent a set of k-mers that hits all sequences of infinite length. A minimum-
size decycling set can be found by Mykkelveit’s algorithm [13] in O(|Σ|k) time.
Even after all cycles, which represent sequences of infinite length, are removed
from the graph, there may still be paths representing sequences of length L,
which also need to be hit by the UHS. DOCKS removes an additional set of k-
mers that hits all remaining sequences of length L, so that no path representing
an L-long sequence, i.e. a path of length � = L − k, remains in the graph.

However, finding a minimum-size set of vertices to cover all paths of length �
in a directed acyclic graph (DAG) is NP-hard [16]. In order to find a small, but
not necessarily minimum-size, set of vertices to cover all �-long paths, Orenstein

http://pasha.csail.mit.edu/
http://github.com/ekimb/pasha

40 B. Ekim et al.

and Pellow et al. [14,15] introduced the notion of a hitting number, the number
of �-long paths containing vertex v, denoted by T (v, �). DOCKS uses the hitting
number to prioritize removal of vertices that are likely to cover a large number
of paths in the graph. This, in fact, is an application of the greedy method
for the Set Cover problem, thus guaranteeing an approximation ratio of O(1 +
log(maxv T (v, �))) on the removal of additional k-mers.

The hitting numbers for all vertices can be computed efficiently by dynamic
programming: For any vertex v and 0 ≤ i ≤ �, DOCKS calculates the number
of i-long paths starting at v, D(v, i), and the number of i-long paths ending at
v, F (v, i). Then, the hitting number is directly computable by

T (v, �) =
�∑

i=0

F (v, i) · D(v, � − i) (1)

and the dynamic programming calculation in graph G = (V ′, E′) is given by

∀v ∈ V ′, D(v, 0) = F (v, 0) = 1
D(v, i) =

∑
(v,u)∈E′ D(u, i − 1)

F (v, i) =
∑

(u,v)∈E′ F (u, i − 1)
(2)

Overall, DOCKS performs two main steps: First, it finds and removes a
minimum-size decycling set, turning the graph into a DAG. Then, it iteratively
removes vertex v with the largest hitting number T (v, �) until there are no �-long
paths in the graph. DOCKS is sequential: In each iteration, one vertex with the
largest hitting number is removed and added to the UHS output, and the hitting
numbers are recalculated. Since the first phase of DOCKS is solved optimally
in polynomial time, the bottleneck of the heuristic lies in the removal of the
remaining set of k-mers to cover all paths of length � = L − k in the graph,
which represent all remaining sequences of length L.

As an additional heuristic, Orenstein and Pellow et al. [14,15] developed
DOCKSany with a similar structure as DOCKS, but instead of removing the
vertex that hits the most (L−k)-long paths, it removes a vertex that hits the most
paths in each iteration. This reduces the runtime by a factor of L, as calculating
the hitting number T (v) for each vertex can be done in linear time with respect to
the size of the graph. DOCKSanyX extends DOCKSany by removing X vertices
with the largest hitting numbers in each iteration. DOCKSany and DOCKSanyX
run faster compared to DOCKS, but the resulting hitting sets are larger.

3 Methods

Overview of the Algorithm. Similar to DOCKS, PASHA is run in two phases:
First, a minimum-size decycling set is found and removed; then, an additional set
of k-mers that hits remaining L-long sequences is removed. The removal of the
decycling set is identical to that of DOCKS; however, in PASHA we introduce
randomization and parallelization to efficiently remove the additional set of k-
mers. We present two novel contributions to efficiently parallelize and randomize

Efficiently Finding Near-Optimal Universal Hitting Sets 41

the second phase of DOCKS. The first contribution leads to a faster calculation
of hitting numbers, thus reducing the runtime of each iteration. The second con-
tribution leads to selecting multiple vertices for removal at each iteration, thus
reducing the number of iterations to obtain a graph with no (L − k)-long paths.
Together, the two contributions provide orthogonal improvements in runtime.

Improved Hitting Number Calculation

Memory Usage Improvements. We reduce memory usage through algorithmic
and technical advances. Instead of storing the number of i-long paths for 0 ≤
i ≤ � in both F and D, we apply the following approach (Algorithm1): We
compute D for all v ∈ V and 0 ≤ i ≤ �. Then, while computing the hitting
number, we calculate F for iteration i. For this aim, we define two arrays: Fcurr

and Fprev, to store only two instances of i-long path counts for each vertex: The
current and previous iterations. Then, for some j, we compute Fcurr based on
Fprev, set Fprev = Fcurr, and add Fcurr(v)·D(v, �−j) to the hitting number sum.
Lastly, we increase j, and repeat the procedure, adding the computed hitting
numbers iteratively. This approach allows the reduction of matrix F , since in
each iteration we are storing only two arrays, Fcurr and Fprev, instead of the
original F matrix consisting of � + 1 arrays. Therefore, we are able to reduce
memory usage by close to half, with no change in runtime.

To further reduce memory usage, we use float variable type (of size 4 bytes)
instead of double variable type (of size 8 bytes). The number of paths kept in F
and D increase exponentially with i, the length of the paths. To be able to use
the 8 bit exponent field, we initialize F and D to float minimum positive value.
This does not disturb algorithm correctness, as path counting is only scaled to
some arbitrary unit value, which may be 2−149, the smallest positive value that
can be represented by float. This is done in order to account for the high
numbers that path counts can reach. The remaining main memory bottleneck is
matrix D, whose size is 4 · 4k · (� + 1) bytes.

Lastly, we utilized the property of a complete de Bruijn graph of order k
being the line graph of a de Bruijn graph of order k − 1. While all k-mers are
represented as the set of vertices in the graph of order k, they are represented
as edges in the graph of order k − 1. If we remove edges of a de Bruijn graph
of order k − 1, instead of vertices in a graph of order k, we can reduce memory
usage by another factor of |Σ|. In our implementation we compute D and F for
all vertices of a graph of order k − 1, and calculate hitting numbers for edges.
Thus, the bottleneck of the memory usage is reduced to 4 · 4k−1 · (� + 1) bytes.

Runtime Reduction by Parallelization. We parallelize the calculation of the hit-
ting numbers to achieve a constant factor reduction in runtime. The calculation
of i-long paths through vertex v only depends on the previously calculated matri-
ces for the (i−1)-long paths through all vertices adjacent to v (Eq. 2). Therefore,
for some i, we can compute D(v, i) and F (v, i) for all vertices in V ′ in parallel,
where V ′ is the set of vertices left after the removal of the decycling set. In addi-
tion, we can calculate the hitting number T (v, �) for all vertices V ′ in parallel

42 B. Ekim et al.

Algorithm 1. Improved hitting number calculation. Input: G = (V,E)
1: D ← [|V |][� + 1], with [|V |][0] initialized to 1
2: Fcurr ← [|V |]
3: Fprev ← [|V |] initialized to 1
4: T ← [|V |] initialized to 0
5: for 1 ≤ i ≤ � do:
6: for v ∈ V do:
7: for (v, u) ∈ E do:
8: D[v][i] += D[u][i − 1]

9: for 1 ≤ i ≤ � + 1 do:
10: for v ∈ V do:
11: Fcurr[v] = 0
12: for (u, v) ∈ E do:
13: Fcurr[v] += Fprev[u]

14: T [v] += Fprev[v] · D[v][� − i + 1]

15: Fprev = Fcurr

16: return T

(similar to computing D and F), since the calculation does not depend on the
hitting number of any other vertex (we call this parallel variant PDOCKS for the
purpose of comparison with PASHA). We note that for DOCKSany and DOCK-
SanyX, the calculations of hitting numbers for each vertex cannot be computed
in parallel, since the number of paths starting and ending at each vertex both
depend on those of the previous vertex in topological order.

Parallel Randomized k-mer Selection

Our goal is to find a minimum-size set of vertices that covers all �-long paths.
We can represent the remaining graph as an instance of the Set Cover problem.
While the greedy algorithm for the second phase of DOCKS is serial, we will show
that we can devise a parallel algorithm, which is close to the greedy algorithm
in terms of performance guarantees, by picking a large set of vertices that cover
nearly as many paths as the vertices that the greedy algorithm picks one by one.

In PASHA, instead of removing the vertex with the maximum hitting number
in each iteration, we consider a set of vertices for removal with hitting numbers
within an interval, and pick vertices in this set independently with constant
probability. Considering vertices within an interval allows us to efficiently intro-
duce randomization while still emulating the deterministic algorithm. Picking
vertices independently in each iteration enables parallelization of the procedure.
Our randomized parallel algorithm for the second phase of the UHS problem
adapts that of Berger et al. [2] for the original Set Cover problem.

The UHS Selection Procedure. The input includes graph G = (V,E) and ran-
domization variables 0 < ε ≤ 1

4 , 0 < δ ≤ 1
� (Algorithm 2). Let function calcHit()

calculate the hitting numbers for all vertices, and return the maximum hitting

Efficiently Finding Near-Optimal Universal Hitting Sets 43

number (line 2). We set t = �log1+ε Tmax� (line 3), and run a series of steps from
t, iteratively decreasing t by 1. In step t, we first calculate the hitting numbers
of all vertices (line 5); then, we define vertex set S to contain vertices with a
hitting number between (1+ ε)t−1 and (1+ ε)t for potential removal (lines 8–9).

Let PS be the sum of all hitting numbers of the vertices in S, i.e. PS =∑
v∈S T (v, �) (line 10). In each step, if the hitting number for vertex v is more

than a δ3 fraction of PS , i.e. T (v, �) ≥ δ3PS , we add v to the picked vertex set Vt

(lines 11–13). For vertices with a hitting number smaller than δ3PS , we pairwise
independently pick them with probability δ

� . We test the vertices in pairs to
impose pairwise independence: If an unpicked vertex u satisfies the probability
δ
� , we choose another unpicked vertex v and test the same probability δ

� . If both
are satisfied, we add both vertices to the picked vertex set Vt; if not, neither of
them are added to the set (lines 14–16). This serves as a bound on the probability
of picking a vertex. If the sum of hitting numbers of the vertices in set Vt is at
least |Vt|(1+ε)t(1−4δ−2ε), we add the vertices to the output set, remove them
from the graph, and decrease t by 1 (lines 17–20). The next iteration runs with
decreased t. Otherwise, we rerun the selection procedure without decreasing t.

Algorithm 2. The selection procedure. Input: G = (V,E), 0 < ε ≤ 1
4 , 0 < δ ≤ 1

�

1: R ← {}
2: Tmax ← calcHit()
3: t ← �log1+ε Tmax�
4: while t > 0 do
5: if calcHit() == 0 then break

6: S ← {}
7: Vt ← {}
8: for v ∈ V do:
9: if (1 + ε)t−1 ≤ T (v, �) ≤ (1 + ε)t then S ← S ∪ {v}

10: PS ← ∑
v∈S T (v, �)

11: for v ∈ S do:
12: if T (v, �) ≥ δ3PS then
13: Vt ← Vt ∪ {v}
14: for u, v ∈ S do:
15: if u /∈ Vt and unirand(0,1) ≤ δ

�
and v /∈ Vt and unirand(0,1) ≤ δ

�
then

16: Vt ← Vt ∪ {u, v}
17: if

∑
v∈Vt

T (v, �) ≥ |Vt| · (1 + ε)t(1 − 4δ − 2ε) then
18: R ← R ∪ Vt

19: G = G(V \ Vt, E)
20: t ← t − 1

21: return R

Performance Guarantees. At step t, we add the selected vertex set Vt to the
output set if

∑
v∈Vt

T (v, �) ≥ |Vt|(1 + ε)t(1 − 4δ − 2ε). Otherwise, we rerun

44 B. Ekim et al.

the selection procedure with the same value of t. We show in AppendixA that
with high probability,

∑
v∈Vt

T (v, �) ≥ |Vt|(1 + ε)t(1 − 4δ − 2ε). We also show
that PASHA produces a cover α(1 + log Tmax) times the optimal size, where
α = 1/(1 − 4δ − 2ε). In AppendixB, we give the asymptotic number of the
selection steps and prove the average runtime complexity of the algorithm. Per-
formance summaries in terms of theoretical runtime and approximation ratio are
in Table 1.

Table 1. Summary of theoretical results for the second phase of different algorithms
for generating a set of k-mers hitting all L-long sequences. PDOCKS is DOCKS with
the improved hitting number calculation, i.e. greedy removal of one vertex at each
iteration. pD, pDA denote the total number of picked vertices for DOCKS/PDOCKS
and DOCKSany, respectively. m denotes the number of parallel threads used, Tmax the
maximum vertex hitting number, and ε and δ PASHA’s randomization parameters.

Algorithm DOCKS PDOCKS DOCKSany PASHA

Theoretical runtime O((1 + pD)|Σ|k+1 · L) O((1 + pD)|Σ|k+1 · L/m) O((1 + pDA)|Σ|k+1) O((L2 · |Σ|k+1 · log2(|Σ|k))/(εδ3m))

Approximation ratio 1 + log Tmax 1 + log Tmax N/A (1 + log Tmax)/(1 − 4δ − 2ε)

4 Results

PASHA Outperforms Extant Algorithms for k ≤ 13

We compared PASHA and PDOCKS to extant methods on several combinations
of k and L. We ran DOCKS, DOCKSany, PDOCKS, and PASHA over 5 ≤ k ≤
10, DOCKSanyX, PDOCKS, and PASHA for k = 11 and X = 10, and PASHA
and DOCKSanyX for X = 100, 1000 for k = 12, 13 respectively, for 20 ≤ L ≤
200. We say that an algorithm is limited by runtime if for some value of k ≤ 13
and for L = 100, its runtime exceeds 1 day (86400 s), in which case we stopped
the operation and excluded the method from the results for the corresponding
value of k. While running PASHA, we set δ = 1/�, and 1 − 4δ − 2ε = 1/2 to
set an emulation ratio α = 2 (see Sect. 3 and AppendixA). The methods were
benchmarked on a 24-CPU Intel Xeon Gold (2.10 GHz) with 754 GB of RAM.
We ran all tests using all available cores (m = 24 in Table 1).

Comparing Runtimes and UHS Sizes. We ran DOCKS, PDOCKS, DOCKSany,
and PASHA for k = 10 and 20 ≤ L ≤ 200. As seen in Fig. 1A, DOCKS has a
significantly higher runtime than the parallel variant PDOCKS, while producing
identical sets (Fig. 1B). For small values of L, DOCKSany produces the largest
UHSs compared to other methods, and as L increases, the differences in both
runtime and UHS size for all methods decrease, since there are fewer k-mers to
add to the removed decycling set to produce a UHS.

We ran PDOCKS, DOCKSany10, and PASHA for k = 11 and 20 ≤ L ≤ 200.
As seen in Fig. 1C, for small values of L, both PDOCKS and DOCKSany10 have

Efficiently Finding Near-Optimal Universal Hitting Sets 45

significantly higher runtimes than PASHA; while for larger L, DOCKSany10 and
PASHA are comparable in their runtimes (with PASHA being negligibly slower).
In Fig. 1D, we observe that PDOCKS computes the smallest sets for all values
of L. Indeed, its guaranteed approximation ratio is the smallest among all three
benchmarked methods. While the set sizes for all methods converge to the same
value for larger L, DOCKSany10 produces the largest UHSs for small values of
L, in which case PASHA and PDOCKS are preferable.

PASHA’s runtime behaves differently than that of other methods. For all
methods but PASHA, runtime decreases as L increases. Instead of gradually
decreasing with L, PASHA’s runtime gradually decreases up to L = 70, at which
it starts to increase at a much slower rate. This is explained by the asymptotic
complexity of PASHA (Table 1). Since computing a UHS for small L requires a
larger number of vertices to be removed, the decrease in runtime with increasing
L up to L = 70 is significant; however, due to PASHA’s asymptotic complexity
being quadratic with respect to L, we see a small increase from L = 70 to
L = 200. All other methods depend linearly on the number of removed vertices,
which decreases as L increases.

Despite the significant decrease in runtime in PDOCKS compared to
DOCKS, PDOCKS was still limited by runtime to k ≤ 12. Therefore, we ran
DOCKSany100 and PASHA for k = 12 and 20 ≤ L ≤ 200. As seen in Figs. 1E
and F, both methods follow a similar trend as in k = 11, with DOCKSany100
being significantly slower and generating significantly larger UHSs for small val-
ues of L. For larger values of L, DOCKSany100 is slightly faster, while PASHA
produces sets that are slightly smaller.

At k = 13 we observed the superior performance of PASHA over DOCK-
Sany1000 in both runtime and set size for all values of L. We ran DOCKSany1000
and PASHA for k = 13 and 20 ≤ L ≤ 200. As seen in Figs. 1G and H, DOCK-
Sany1000 produces larger sets and is significantly slower compared to PASHA
for all values of L. This result demonstrates that the slow increase in runtime
for PASHA compared to other algorithms for k < 13 does not have a significant
effect on runtime for larger values of k.

PASHA Enables UHS for k = 14, 15, 16

Since all existing algorithms and PDOCKS are limited by runtime to k ≤ 13,
we report the first UHSs for 14 ≤ k ≤ 16 and L = 100 computed using PASHA,
run on a 24-CPU Intel Xeon Gold (2.10 GHz) with 754 GB of RAM using all 24
cores. Figure 2 shows runtimes and sizes of the sets computed by PASHA.

Density Comparisons for the Different Methods

In addition to runtimes and UHS sizes, we report values of another measure
of UHS performance known as density. The density of the minimizers scheme
d(M,S, k) is the fraction of selected k-mers’ positions over the number of k-mers
in the sequence. Formally, the density of scheme M over sequence S is defined

46 B. Ekim et al.

Fig. 1. Runtimes (left) and UHS sizes (divided by 104, right) for values of k = 10 (A,
B), 11 (C, D), 12 (E, F), and 13 (G, H) and 20 ≤ L ≤ 200 for the different methods.
Note that the y-axes for runtimes are in logarithmic scale.

as

d(M,S, k) =
|M(S, k)|

|S| − k + 1
(3)

where M(S, k) is the set of positions of the k-mers selected over sequence S.
We calculate densities for a UHS by selecting the lexicographically smallest

k-mer that is in the UHS within each window of L − k + 1 consecutive k-mers,
since at least one k-mer is guaranteed to be in each such window. Marçais et al.
[11] showed that using UHSs for k-mer selection in this manner yields smaller
densities than lexicographic or random minimizer selection schemes. Therefore,
we do not report comparisons between UHSs and minimizer schemes, but rather
comparisons among UHSs constructed by different methods.

Marçais et al. [11] also showed that the expected density of a minimizers
scheme for any k and window size L − k + 1 is equal to the density of the
minimizers scheme on a de Bruijn sequence of order L. This allows for exact

Efficiently Finding Near-Optimal Universal Hitting Sets 47

Fig. 2. Runtimes (A) and UHS sizes (divided by 106) (B) for 14 ≤ k ≤ 16 and L = 100
for PASHA. Note that the y-axis for runtime is in logarithmic scale.

calculation of expected density for any k-mer selection procedure. However, for
14 ≤ k ≤ 16 we calculated UHSs only for L = 100, and iterating over a de
Bruijn sequence of order 100 is infeasible. Therefore, we computed the approxi-
mate expected density on long random sequences, since the computed expected
density on these sequences converges to the expected density [11]. In addition,
we computed the density of different methods on the entire human reference
genome (GRCh38).

We computed the density values of UHSs generated by PDOCKS, DOCK-
Sany, and PASHA over 10 random sequences of length 106, and the entire human
reference genome (GRCh38), for 5 ≤ k ≤ 16 and L = 100, when a UHS was
available for such (k, L) combination.

As seen in Fig. 3, the differences in both approximate expected density and
density computed on the human reference genome are negligible when compar-
ing UHSs generated by the different methods. For most values of k, DOCKS
yields the smallest approximate expected density and human genome density
values, while DOCKSany generally yields lower human genome density values,
but higher expected density values than PASHA. For k ≤ 6, the UHS is only the
decycling set; therefore, density values for these values of k are identical for the
different methods.

Since there is no significant difference in the density of the UHSs generated
by the different methods, other criteria, such as runtime and set size, are rele-
vant when evaluating the performance of the methods: As k increases, PASHA
produces sets that are only slightly smaller or larger in density, but significantly
smaller in size and significantly faster than extant methods.

5 Discussion

We presented an efficient randomized parallel algorithm for generating a small
set of k-mers that hits every possible sequence of length L and produces a set that

48 B. Ekim et al.

Fig. 3. Mean approximate expected density (A), and density on the human reference
genome (B) for different methods, for 5 ≤ k ≤ 16 and L = 100. Error bars represent one
standard deviation from the mean across 10 random sequences of length 106. Density
is the fraction of selected k-mer positions over the number of k-mers in the sequence.

is a small guaranteed factor away from the optimal set size. Since the runtime of
DOCKS variants and PASHA depend exponentially on k, these greedy heuristics
are eventually limited by runtime. However, using these heuristics in conjunction
with parallelization, we are newly able to compute UHSs for values of k and L
large enough for most biological applications.

The improvements in runtime for the hitting number calculation are due
to parallelization of the dynamic programming phase, which is the bottleneck
in sequential DOCKS variants. A minimum-size set that hits all infinite-length
sequences is optimally and rapidly removed; however, the remaining sequences
of length L are calculated and removed in time polynomial in the output size.
We show that a constant factor reduction is beneficial in mitigating this bottle-
neck for practical use. In addition, we reduce the memory usage of this phase by
theoretical and technical advancements. Last, we build on a randomized parallel
algorithm for Set Cover to significantly speed up vertex selection. The random-
ized algorithm can be derandomized, while preserving the same approximation
ratio, since it requires only pairwise independence of the random variables [2].

One main open problem still remains from this work. Although the random-
ized approximation algorithm enables us to generate a UHS more efficiently, the
hitting numbers still need to be calculated at each iteration. The task of com-
puting hitting numbers remains as the bottleneck in computing a UHS. Is there
a more efficient way of calculating hitting numbers than the dynamic program-
ming calculation done in DOCKS and PASHA? A more efficient calculation of
hitting numbers will enable PASHA to run over k > 16 in a reasonable time.

As for long reads, which are becoming more popular for genome assembly
tasks, a k-mer set that hits all infinite long sequences, as computed optimally

Efficiently Finding Near-Optimal Universal Hitting Sets 49

by Mykkelveit’s algorithm [13], is enough due to the length of these long read
sequences. Still, due to the inaccuracies and high cost of long read sequencing
compared to short read sequencing, the latter is still the prevailing method to
produce sequencing data, and is expected to remain so for the near future.

We expect the efficient calculation of UHSs to lead to improvements in
sequence analysis and construction of space-efficient data structures. Unfortu-
nately, previous methods were limited to small values of k, thus allowing appli-
cation to only a small subset of sequence analysis tasks. As there is an inherent
exponential dependency on k in terms of both runtime and memory, efficiency
in calculating these sets is crucial. We expect that the UHSs newly-enabled by
PASHA for k > 13 will be useful in improving various applications in genomics.

6 Conclusion

We developed a novel randomized parallel algorithm PASHA to compute a small
set of k-mers which together hit every sequence of length L. It is based on two
algorithmic innovations: (i) improved calculation of hitting numbers through
paralleization and memory reduction; and (ii) randomized parallel selection of
additional k-mers to remove. We demonstrated the scalability of PASHA to
larger values of k up to 16. Notably, the universal hitting sets need to be com-
puted only once, and can then be used in many sequence analysis applications.
We expect our algorithms to be an essential part of the sequence analysis toolkit.

Acknowledgments. This work was supported by NIH grant R01GM081871 to B.B.
B.E. was supported by the MISTI MIT-Israel program at MIT and Ben-Gurion Uni-
versity of the Negev. We gratefully acknowledge the support of Intel Corporation for
giving access to the Intel R©AI DevCloud platform used for part of this work.

A Emulating the Greedy Algorithm

The greedy Set Cover algorithm was developed independently by Johnson and
Lovász for unweighted vertices [5,9]. Lovász [9] proved:

Theorem 1. The greedy algorithm for Set Cover outputs cover R with |R| ≤
(1 + log Tmax)|OPT |, where Tmax is the maximum cardinality of a set.

We adapt a definition for an algorithm emulating the greedy algorithm for the
Set Cover problem to the second phase of DOCKS [2]. We say that an algorithm
for the second phase of DOCKS α-emulates the greedy algorithm if it outputs
a set of vertices serially, during which it selects a vertex set A such that

|A|
|PA| ≤ α

Tmax
,

where PA is the set of �-long paths covered by A. Using this definition, we come
up with a near-optimal approximation by the following theorem:

50 B. Ekim et al.

Theorem 2. An algorithm for the second phase of DOCKS that α-emulates the
greedy algorithm produces cover R ⊆ V with |R| ≤ α(1+ log Tmax)|OPT |, where
OPT is the optimal cover.

Proof. We define the cost of covering path p as C(p) = |S|
|PS | , where S is the set

of vertices selected in the selection step in which p was covered, and PS the set
of �-long paths covered by S. Then,

∑
p∈PS

C(p) = |S|.
Let P� be the set of all �-long paths in G. A fractional cover of graph

G = (V,E) is function F : V → {0, 1} s.t. for all p ∈ P�,
∑

v∈p F(v) ≥ 1. The
optimal cover FOPT has minimum

∑
v∈V FOPT (v).

Let F be such an optimal fractional cover. The size of the cover produced is

|R| =
∑

p∈P�

C(p) ≤
∑

v∈V

(
F(v)

∑

p∈Pv

C(p)
)

where Pv is the set of all �-long paths through vertex v.

Lemma 1. There are at most α
k paths p ∈ Pv such that C(p) ≥ k for any v, k.

Proof. Assume the contrary: Before such a path p is covered, T (v, �) > α
k . Thus,

|S|
|PS | ≥ k > α/T (v, �) ≥ α/Tmax,

contradicting the definition.

Suppose we rank the T (v, �) paths p ∈ Pv by decreasing order of C(p). From
the above remark, if the ith path has cost k, then i ≤ α/k. Then, we can write

∑

p∈Pv

C(p) ≤
T (v,�)∑

i=1

α/i ≤ α

T (v,�)∑

i=1

1/i ≤ α(1 + log T (v, �)) ≤ α(1 + log Tmax)

Then, ∑

p∈P�

C(p) ≤
∑

v∈V

F(v)α(1 + log Tmax)

and finally
|R| ≤ α(1 + log Tmax)|OPT |.

In PASHA, we ensure that in step t, the sum of vertex hitting numbers of
selected vertex set Vt is at least |Vt|(1 + ε)t(1 − 4δ − 2ε). We now show that this
is satisfied with high probability in each step.

Theorem 3. With probability at least 1/2, the sum of vertex hitting numbers of
selected vertex set Vt at step t is at least |Vt|(1 + ε)t(1 − 4δ − 2ε).

Efficiently Finding Near-Optimal Universal Hitting Sets 51

Proof. For any vertex v in selected vertex set Vt at step t, let Xv be an indicator
variable for the random event that vertex v is picked, and f(X) =

∑
v∈Vt

Xv.
Note that Var[f(X)] ≤ |Vt| · δ/�, and |Vt| ≥ �/δ3, since we are given that no

vertex covers a δ3 fraction of the �-long paths covered by the vertices in Vt. By
Chebyshev’s inequality, for any k ≥ 0,

Pr[|f(X) − E[f(X)]| ≥ k(|Vt| · δ/�)] ≤ 1
k2

and with probability 3/4,

(f(X) − E[f(X)])2 ≤ 4|Vt|2 · δ4

�2

and

|f(X) − E[f(X)]| ≤ 2|Vt| · δ2

�
.

Let PVt
denote the set of �-long paths covered by vertex set Vt. Then,

|PVt
| ≥

∑

u∈Vt

T (u, �)Xu −
∑

p∈PVt

∑

u,v∈p

XuXv

We know that
∑

u∈Vt
T (u, �)Xu ≥ |Vt|(1 + ε)t−1, which is bounded below by

((δ − 2δ2) · |Vt|(1 + ε)t−1)/�. Let g(X) =
∑

p∈PVt

∑
u,v∈p XuXv. Then,

E[g(X)] =
∑

p∈PVt

E[
∑

u,v∈p

XuXv] =
∑

p∈PVt

(
l

2

)

(δ/�)2 =
∑

p∈PVt

(� − 1) · δ2

2�
≤

∑

p∈PVt

δ2

2
.

Hence, with probability at least 3/4,

g(X) ≤ 4E[g(X)] ≤ 2δ2 · |Vt|(1 + ε)t

Both events hold with probability at least 1/2, and the sum of vertex hitting
numbers is at least

((δ − 2δ
2
) · |Vt|(1 + ε)

t−1
) · � − 2δ

2 · |Vt|(1 + ε)
t ≥ |Vt|(1 + ε)

t−1
(δ� − 2δ

2
� − 2δ

2 − 2δ
2
ε)

≥ |Vt|(1 + ε)
t
(δ� − 2δ

2
� − 2δ

2 − 2δ
2
ε)/(1 + ε)

≥ |Vt|(1 + ε)
t
(1 − 4δ − 2ε).

B Runtime Analysis

Here, we show the number of the selection steps and the average-time asymptotic
complexity of PASHA.

Lemma 2. The number of selection steps is O(log |V | log |P�|/(εδ3m)).

52 B. Ekim et al.

Proof. The number of steps is O(log |V |/ε), and within each step, there are
O(log |PS |/(δ3m)) selection steps (where PS is the sum of vertex hitting numbers
of the vertex set S for that step and m the number of threads used), since we are
guaranteed to remove at least δ3 fraction of the paths during that step. Overall,
there are O(log |V | log |P�|/(εδ3m)) selection steps.

Theorem 4. For ϕ < 1, there is an approximation algorithm for the second
phase of DOCKS that runs in O((L2 · |Σ|k+1 · log2(|Σ|k))/(εδ3m)) average time,
where m is the number of threads used, and produces a cover of size at most
(1 + ϕ)(1 + log Tmax) times the optimal size, where 1 + ϕ = 1/(1 − 4δ − 2ε).

Proof. Follows immediately from Theorem 2 and Lemma 2.

References

1. Berger, B., Peng, J., Singh, M.: Computational solutions for omics data. Nat. Rev.
Genet. 14(5), 333 (2013)

2. Berger, B., Rompel, J., Shor, P.W.: Efficient NC algorithms for set cover with
applications to learning and geometry. J. Comput. Syst. Sci. 49(3), 454–477 (1994)

3. DeBlasio, D., Gbosibo, F., Kingsford, C., Marçais, G.: Practical universal k-mer
sets for minimizer schemes. In: Proceedings of the 10th ACM International Con-
ference on Bioinformatics, Computational Biology and Health Informatics, pp.
167–176. ACM (2019)

4. Deorowicz, S., Kokot, M., Grabowski, S., Debudaj-Grabysz, A.: KMC 2: fast and
resource-frugal k-mer counting. Bioinformatics 31(10), 1569–1576 (2015)

5. Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput.
Syst. Sci. 9(3), 256–278 (1974)

6. Kawulok, J., Deorowicz, S.: CoMeta: classification of metagenomes using k-mers.
PLoS ONE 10(4), e0121453 (2015)

7. Kucherov, G.: Evolution of biosequence search algorithms: a brief survey. Bioin-
formatics 35(19), 3547–3552 (2019)

8. Leinonen, R., Sugawara, H., Shumway, M., Collaboration, I.N.S.D.: The sequence
read archive. Nucleic Acids Res. 39, D19–D21 (2010)

9. Lovász, L.: On the ratio of optimal integral and fractional covers. Discret. Math.
13(4), 383–390 (1975)

10. Marçais, G., DeBlasio, D., Kingsford, C.: Asymptotically optimal minimizers
schemes. Bioinformatics 34(13), i13–i22 (2018)

11. Marçais, G., Pellow, D., Bork, D., Orenstein, Y., Shamir, R., Kingsford, C.: Improv-
ing the performance of minimizers and winnowing schemes. Bioinformatics 33(14),
i110–i117 (2017)

12. Marçais, G., Solomon, B., Patro, R., Kingsford, C.: Sketching and sublinear data
structures in genomics. Ann. Rev. Biomed. Data Sci. 2, 93–118 (2019)

13. Mykkeltveit, J.: A proof of Golomb’s conjecture for the de Bruijn graph. J. Comb.
Theory 13(1), 40–45 (1972)

14. Orenstein, Y., Pellow, D., Marçais, G., Shamir, R., Kingsford, C.: Compact uni-
versal k -mer hitting sets. In: Frith, M., Storm Pedersen, C.N. (eds.) WABI 2016.
LNCS, vol. 9838, pp. 257–268. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-43681-4 21

https://doi.org/10.1007/978-3-319-43681-4_21
https://doi.org/10.1007/978-3-319-43681-4_21

Efficiently Finding Near-Optimal Universal Hitting Sets 53

15. Orenstein, Y., Pellow, D., Marçais, G., Shamir, R., Kingsford, C.: Designing small
universal k-mer hitting sets for improved analysis of high-throughput sequencing.
PLoS Comput. Biol. 13(10), e1005777 (2017)

16. Paindavoine, M., Vialla, B.: Minimizing the number of bootstrappings in fully
homomorphic encryption. In: Dunkelman, O., Keliher, L. (eds.) SAC 2015. LNCS,
vol. 9566, pp. 25–43. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
31301-6 2

17. Qin, J., et al.: A human gut microbial gene catalogue established by metagenomic
sequencing. Nature 464(7285), 59 (2010)

18. Roberts, M., Hayes, W., Hunt, B.R., Mount, S.M., Yorke, J.A.: Reducing storage
requirements for biological sequence comparison. Bioinformatics 20(18), 3363–3369
(2004)

19. Turnbaugh, P.J., Ley, R.E., Hamady, M., Fraser-Liggett, C.M., Knight, R., Gordon,
J.I.: The human microbiome project. Nature 449(7164), 804 (2007)

20. Ye, C., Ma, Z.S., Cannon, C.H., Pop, M., Douglas, W.Y.: Exploiting sparseness in
de novo genome assembly. BMC Bioinform. 13(6), S1 (2012)

https://doi.org/10.1007/978-3-319-31301-6_2
https://doi.org/10.1007/978-3-319-31301-6_2

	A Randomized Parallel Algorithm for Efficiently Finding Near-Optimal Universal Hitting Sets
	1 Introduction
	2 Background and Preliminaries
	3 Methods
	4 Results
	5 Discussion
	6 Conclusion
	A Emulating the Greedy Algorithm
	B Runtime Analysis
	References

