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Preface

This volume contains 13 extended abstracts and 24 short abstracts representing a total
of 37 proceedings papers presented at the 24th International Conference on Research in
Computational Molecular Biology (RECOMB 2020), hosted by the University of
Padova, Italy, May 10–13, 2020. These 37 contributions were selected during a
rigorous peer-review process from 206 submissions to the conference. Each of these
206 submissions received reviews from at least three members of the Program
Committee or their designated sub-reviewers. Following an initial process of
independent reviewing, all submissions were opened to discussion by their reviewers
and the conference program chair through the EasyChair Conference Management
System. Final decisions were made based on reviewer assessments with some
adjustment to ensure the technical diversity of the conference program.

RECOMB 2020 allowed authors an option to publish their full extended papers in
the conference proceedings or to provide short abstracts for the proceedings and pursue
alternative arrangements for publishing the full paper. In addition, a select set of
accepted papers were invited to submit revised manuscripts, considered for publication
in Cell Systems. Authors who chose to publish only short abstracts in the proceedings
were required to deposit their full papers in the preprint servers arxiv.org or biorxiv.org
to be available before the meeting. All other papers that appear as extended abstracts in
the proceedings were invited for submission to the RECOMB 2020 special issue of the
Journal of Computational Biology.

RECOMB 2020 also featured highlight talks of computational biology papers that
were published in journals during the previous 18 months. Of the 25 submissions to the
Highlights Track, 10 were selected for oral presentation at RECOMB 2020.

In addition to presentations of these contributed papers, RECOMB 2020 featured six
invited keynote talks given by leading scientists. The keynote speakers were Manuela
Helmer-Citterich (University of Rome Tor Vergata), Eran Segal (Weizmann Institute),
Marie-France Sagot (Inria at University of Lyon), Satoru Miyano (University of
Tokyo), Pavel Pevzner (University of California at San Diego, Howard Hughes
Medical Institute, and U.S. NIH), and Maurizio Corbetta (University of Padova).

RECOMB 2020 also featured two special invited panel discussions. The first panel,
was on the Future of Algorithms in Biology, organized by Dan DeBlasio (University of
Texas at El Paso), Guillaume Marcais (Carnegie Mellon University), and Carl
Kingsford (Carnegie Mellon University). The second panel was on the DREAM
challenges, organized by Julio Saez-Rodriguez (Heidelberg University).

In addition, three RECOMB Satellite meetings took place in parallel directly pre-
ceding the main RECOMB meeting. The RECOMB Genetics Satellite was co-chaired
by Itsik Pe’er (Columbia University), Anna-Sapfo Malaspinas (Swiss Institute of
Bioinformatics), Sriram Sankararaman (University of California at Los Angeles), and
Gillian Belbin (Mt. Sinai Institute for Genomics Health). The RECOMB Satellite
Workshop on Massively Parallel Sequencing (RECOMB-Seq) was co-chaired by



Robert Patro (University of Maryland) and Leena Salmela (University of Helsinki).
The RECOMB-Computational Cancer Biology Satellite meeting (RECOMB-CCB)
was co-chaired by Ewa Szczurek (University of Warsaw) and Iman Hajirasouliha
(Weill Cornell Medicine). We thank them for organizing these great companion
meetings, as well as their respective Program Committees for the hard work in making
these meetings possible.

The organization of this conference was the work of many colleagues contributing
their time, effort, and expertise. I am especially grateful to the Local Organizing
Committee, particularly conference chair Fabio Vandin (University of Padova) and
co-organizers Matteo Comin (University of Padova), Barbara Di Camillo (University
of Padova), and Cinzia Pizzi (University of Padova). I also want to thank the members
of Sistema Congressi: Marisa Sartori, Sabrina De Poli, Linda Frasson, and Elisa
Quaggio. I am grateful to the many others who volunteered their time and work,
including those whose names were not yet known to us at the time of this writing. I also
want to thank the conference poster chair, Dario Ghersi (University of Nebraska
Omaha) and the conference highlights chair, Itsik Pe’er (Columbia University), for
their efforts in ensuring a high-quality technical program. I am also grateful to all of
those Program Committee members and sub-reviewers who took time out of their busy
schedules to review and discuss submissions on a very tight schedule. I also thank the
authors of the proceedings papers, the highlights, and the posters for contributing their
work to the meeting and for their attendance at the conference.

Finally, I would like to thank all our conference sponsors for their support, who at
press time for this volume included Akamai Technologies, Illumina, the University of
Padova, and the Department of Information Engineering (University of Padova), and
especially to the sponsors of our student travel awards: the US National Science
Foundation (NSF) and the International Society for Computational Biology (ISCB)1.

May 2020 Russell Schwartz

1 Please note that due to travel restrictions from the COVID-19 pandemic, RECOMB 2020 was
postponed and reorganized as an online-only meeting after this proceedings volume was finalized.
Details of this reorganization were still in progress as of the production time of the proceedings
volume. The text of the preface thus reflects the original conference plans rather than the rescheduled
conference as it actually occurred. We regret the inaccuracies in this description.
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Computing the Rearrangement Distance
of Natural Genomes

Leonard Bohnenkämper , Maŕılia D. V. Braga , Daniel Doerr ,
and Jens Stoye(B)

Faculty of Technology and Center for Biotechnology (CeBiTec),
Bielefeld University, Bielefeld, Germany

jens.stoye@uni-bielefeld.de

Abstract. The computation of genomic distances has been a very active
field of computational comparative genomics over the last 25 years. Sub-
stantial results include the polynomial-time computability of the inver-
sion distance by Hannenhalli and Pevzner in 1995 and the introduction
of the double-cut and join (DCJ) distance by Yancopoulos, Attie and
Friedberg in 2005. Both results, however, rely on the assumption that
the genomes under comparison contain the same set of unique mark-
ers (syntenic genomic regions, sometimes also referred to as genes). In
2015, Shao, Lin and Moret relax this condition by allowing for duplicate
markers in the analysis. This generalized version of the genomic dis-
tance problem is NP-hard, and they give an ILP solution that is efficient
enough to be applied to real-world datasets. A restriction of their app-
roach is that it can be applied only to balanced genomes, that have equal
numbers of duplicates of any marker. Therefore it still needs a delicate
preprocessing of the input data in which excessive copies of unbalanced
markers have to be removed.

In this paper we present an algorithm solving the genomic distance
problem for natural genomes, in which any marker may occur an arbi-
trary number of times. Our method is based on a new graph data struc-
ture, the multi-relational diagram, that allows an elegant extension of the
ILP by Shao, Lin and Moret to count runs of markers that are under- or
over-represented in one genome with respect to the other and need to be
inserted or deleted, respectively. With this extension, previous restric-
tions on the genome configurations are lifted, for the first time enabling
an uncompromising rearrangement analysis. Any marker sequence can
directly be used for the distance calculation.

The evaluation of our approach shows that it can be used to analyze
genomes with up to a few ten thousand markers, which we demonstrate
on simulated and real data.
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1 Introduction

The study of genome rearrangements has a long tradition in comparative
genomics. A central question is how many (and what kind of) mutations have
occurred between the genomic sequences of two individual genomes. In order
to avoid disturbances due to minor local effects, often the basic units in such
comparisons are syntenic regions identified between the genomes under study,
much larger than the individual DNA bases. We refer to such regions as genomic
markers, or simply markers, although often one also finds the term genes.

Following the initial statement as an edit distance problem [15], a compre-
hensive trail of literature has addressed the problem of computing the num-
ber of rearrangements between two genomes in the past 25 years. In a seminal
paper in 1995, Hannenhalli and Pevzner [12] introduced the first polynomial
time algorithm for the computation of the inversion distance of transforming
one chromosome into another one by means of segmental inversions. Later, the
same authors generalized their results to the HP model [11] which is capable of
handling multi-chromosomal genomes and accounts for additional genome rear-
rangements. Another breakthrough was the introduction of the double cut and
join (DCJ) model [2,18], that is able to capture many genome rearrangements
and whose genomic distance is computable in linear time. The model is based on
a simple operation in which the genome sequence is cut twice between two con-
secutive markers and re-assembled by joining the resulting four loose cut-ends
in a different combination.

A prerequisite for applying the DCJ model in practice to study rearrange-
ments in genomes of two related species is that their genomic marker sets must be
identical and that any marker occurs exactly once in each genome. This severely
limits its applicability in practice. Linear time extensions of the DCJ model allow
markers to occur in only one of the two genomes, computing a genomic distance
that minimizes the sum of DCJ and insertion/deletion (indel) events [5,9]. Still,
markers are required to be singleton, i.e., no duplicates can occur. When dupli-
cates are allowed, the problem is more intrincate and all approaches proposed so
far are NP-hard, see for instance [1,6,7,14,16,17]. From the practical side, more
recently, Shao et al. [17] presented an integer linear programming (ILP) formu-
lation for computing the DCJ distance in presence of duplicates, but restricted
to balanced genomes, where both genomes have equal numbers of duplicates. A
generalization to unbalanced genomes was presented by Lyubetsky et al. [13],
but their approach does not seem to be applicable to real data sets, see Sect. 4.1
for details.

In this paper we present the first feasible exact algorithm for solving the
NP-hard problem of computing the distance under a general genome model
where any marker may occur an arbitrary number of times in any of the two
genomes, called natural genomes. Specifically, we adopt the maximal matches
model where only markers appearing more often in one genome than in the
other can be deleted or inserted. Our ILP formulation is based on the one from
Shao et al. [17], but with an efficient extension that allows to count runs of
markers that are under- or over-represented in one genome with respect to the



Computing the Rearrangement Distance of Natural Genomes 5

other, so that the pre-existing model of minimizing the distance allowing DCJ
and indel operations [5] can be adapted to our problem. With this extension, once
we have the genome markers, no other restriction on the genome configurations
is imposed.

The evaluation of our approach shows that it can be used to analyze genomes
with up to a few ten thousand markers, provided the number of duplicates is
not too large.

An extended version of this paper containing omitted proofs and additional
results appeared as an arxiv preprint [3]. The complete source code of our ILP
implementation and the simulation software used for generating the benchmark-
ing data in Sect. 4.2 are available from https://gitlab.ub.uni-bielefeld.de/gi/ding.

2 Preliminaries

A genome is a set of chromosomes and each chromosome can be linear or circular.
Each marker in a chromosome is an oriented DNA fragment. The representation
of a marker m in a chromosome can be the symbol m itself, if it is read in direct
orientation, or the symbol m, if it is read in reverse orientation. We represent a
chromosome S of a genome A by a string s, obtained by the concatenation of
all symbols in S, read in any of the two directions. If S is circular, we can start
to read it at any marker and the string s is flanked by parentheses.

Given two genomes A and B, let U be the set of all markers that occur in
both genomes. For each marker m ∈ U, let ΦA(m) be the number of occurrences
of m in genome A and ΦB(m) be the number of occurrences of m in genome
B. We can then define ΔΦ(m) = ΦA(m) − ΦB(m). If both ΦA(m) > 0 and
ΦB(m) > 0, m is called a common marker. We denote by G ⊆ U the set of
common markers of A and B. The markers in U\G are called exclusive markers.
For example, if we have two unichromosomal linear genomes A = {13254354}
and B = {1623173413}, then U = {1, 2, 3, 4, 5, 6, 7} and G = {1, 2, 3, 4}.
Furthermore, ΔΦ(1) = 1− 3 = −2, ΔΦ(2) = 1− 1 = 0, ΔΦ(3) = 2− 3 = −1,
ΔΦ(4)=2−1=1, ΔΦ(5)=2, and ΔΦ(6) = ΔΦ(7) = −1.

2.1 The DCJ-Indel Model

A genome can be transformed or sorted into another genome with the following
types of mutations:

– A double-cut-and-join (DCJ) is the operation that cuts a genome at two dif-
ferent positions (possibly in two different chromosomes), creating four open
ends, and joins these open ends in a different way. This can represent many
different rearrangements, such as inversions, translocations, fusions and fis-
sions. For example, a DCJ can cut linear chromosome 124356 before and
after 43, creating the segments 12•, •43• and •56, where the symbol • rep-
resents the open ends. By joining the first with the third and the second with
the fourth open end, we invert 43 and obtain 123456.

https://gitlab.ub.uni-bielefeld.de/gi/ding
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– Since the genomes can have distinct multiplicity of markers, we also need
to consider insertions and deletions of segments of contiguous markers [5,9,
19]. We refer to insertions and deletions collectively as indels. For example,
the deletion of segment 5262 from linear chromosome 12352624 results
in 1234. Indels have two restrictions: (i) only markers that have positive ΔΦ
can be deleted; and (ii) only markers that have negative ΔΦ can be inserted.

In this paper, we are interested in computing the DCJ-indel distance between
two genomes A and B, that is denoted by did

DCJ(A,B) and corresponds to the
minimum number of DCJs and indels required to sort A into B. We separate
the instances of the problem in three types:

1. Singular genomes: the genomes contain no duplicate markers, that is, each
common marker1 is singular in each genome. Formally, we have that, for each
m ∈ G, ΦA(m) = ΦB(m) = 1. The distance between singular genomes can be
easily computed in linear time [2,5,9].

2. Balanced genomes: the genomes contain no exclusive markers, but can have
duplicates, and the number of duplicates in each genome is the same. For-
mally, we have U = G and, for each m ∈ U, ΦA(m) = ΦB(m). Computing
the distance for this set of instances is NP-hard, and an ILP formulation was
given in [17].

3. Natural genomes: these genomes can have exclusive markers and duplicates,
with no restrictions on the number of copies. Since these are generalizations
of balanced genomes, computing the distance for this set of instances is also
NP-hard. In the present work we present an efficient ILP formulation for
computing the distance in this case.

2.2 DCJ-Indel Distance of Singular Genomes

First we recall the problem when common duplicates do not occur, that is,
when we have singular genomes. We will summarize the linear time approach to
compute the DCJ-indel distance in this case that was presented in [5], already
adapted to the notation required for presenting the new results of this paper.

Relational Diagram. For computing a genomic distance it is useful to represent
the relation between two genomes in some graph structure [2,4,5,10,11]. Here we
adopt a variation of this structure, defined as follows. For each marker m, denote
its two extremities by mt (tail) and mh (head). Given two singular genomes A
and B, the relational diagram R(A,B) has a set of vertices V = V (A) ∪ V (B),
where V (A) has a vertex for each extremity of each marker of genome A and
V (B) has a vertex for each extremity of each marker of genome B. Due to the
1-to-1 correspondence between the vertices of R(A,B) and the occurrences of
marker extremities in A and B, we can identify each extremity with its corre-
sponding vertex. It is convenient to represent vertices in V (A) in an upper line,

1 The exclusive markers are not restricted to be singular, because it is mathematically
trivial to transform them into singular markers when they occur in multiple copies.
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respecting the order in which they appear in each chromosome of A, and the
vertices in V (B) in a lower line, respecting the order in which they appear in
each chromosome of B.

If the marker extremities γ1 and γ2 are adjacent in a chromosome of A, we
have an adjacency edge connecting them. Similarly, if the marker extremities γ′

1

and γ′
2 are adjacent in a chromosome of B, we have an adjacency edge connecting

them. Marker extremities located at chromosome ends are called telomeres and
are not connected to any adjacency edge. In contrast, each extremity that is
not a telomere is connected to exactly one adjacency edge. Denote by EA

adj

and by EB
adj the adjacency edges in A and in B, respectively. In addition, for

each common marker m ∈ G, we have two extremity edges, one connecting the
vertex mh from V (A) to the vertex mh from V (B) and the other connecting
the vertex mt from V (A) to the vertex mt from V (B). Denote by Eγ the set
of extremity edges. Finally, for each occurrence of an exclusive marker in U\G,
we have an indel edge connecting the vertices representing its two extremities.
Denote by EA

id and by EB
id the indel edges in A and in B. Each vertex is then

connected either to an extremity edge or to an indel edge.
All vertices have degree one or two, therefore R(A,B) is a simple collection

of cycles and paths. A path that has one endpoint in genome A and the other in
genome B is called an AB-path. In the same way, both endpoints of an AA-path
are in A and both endpoints of a BB-path are in B. A cycle contains either zero
or an even number of extremity edges. When a cycle has at least two extremity
edges, it is called an AB-cycle. Moreover, a path (respectively cycle) of R(A,B)
composed exclusively of indel and adjacency edges in one of the two genomes
corresponds to a whole linear (respectively circular) chromosome and is called a
linear (respectively circular) singleton in that genome. Actually, linear singletons
are particular cases of AA-paths or BB-paths. An example of a relational diagram
is given in Fig. 1.

······ ······ ······

······ ······ ······

�
�

�
�

······

······

�
�
�
�

�
�

�
�······ ······

� � � � � � � � � � � �
A 1t 1h6h 6t 5t 5h3t 3h 4t 4h2t 2h

� � � � � � � � � � � � � � � �

B 1t 1h7t 7h2t 2h3t 3h4t 4h5t 5h 7t 7h8h 8t

Fig. 1. For genomes A = {1653, 42} and B = {172345, 78}, the relational diagram
contains one cycle, two AB-paths (represented in blue), one AA-path and one BB-path
(both represented in red). Short dotted horizontal edges are adjacency edges, long
horizontal edges are indel edges, top-down edges are extremity edges.

The numbers of telomeres and of AB-paths in R(A,B) are even. The DCJ-
cost [5] of a DCJ operation ρ, denoted by ‖ρ‖, is defined as follows. If it either
increases the number of AB-cycles by one, or the number of AB-paths by two,
ρ is optimal and has ‖ρ‖ = 0. If it does not affect the number of AB-cycles and
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AB-paths in the diagram, ρ is neutral and has ‖ρ‖ = 1. If it either decreases the
number of AB-cycles by one, or the number of AB-paths by two, ρ is counter-
optimal and has ‖ρ‖ = 2.

Runs and Indel-Potential. The approach that uses DCJ operations to group
exclusive markers for minimizing indels depends on the following concepts.

Given two genomes A and B and a component C of R(A,B), a run [5] is a
maximal subpath of C, in which the first and the last edges are indel edges, and
all indel edges belong to the same genome. It can be an A-run when its indel
edges are in genome A, or a B-run when its indel edges are in genome B. We
denote by Λ(C) the number of runs in component C. If Λ(C) ≥ 1 the component
C is said to be indel-enclosing, otherwise Λ(C) = 0 and C is said to be indel-free.

While sorting components separately with optimal DCJs only, runs can be
merged (when two runs become a single one), and also accumulated together
(when all its indel edges alternate with adjacency edges only and the run can be
inserted or deleted at once) [5]. The indel-potential of a component C, denoted
by λ(C), is the minimum number of indels derived from C after this process and
can be directly computed from Λ(C):

λ(C) =

{
0 , if Λ(C) = 0 (C is indel-free);⌈

Λ(C)+1
2

⌉
, if Λ(C) ≥ 1 (C is indel-enclosing).

Let λ0 and λ1 be, respectively, the sum of the indel-potentials for the com-
ponents of the relational diagram before and after a DCJ ρ. The indel-cost
of ρ is then Δλ(ρ) = λ1 − λ0, and the DCJ-indel cost of ρ is defined as
Δd(ρ) = ‖ρ‖ + Δλ(ρ). While sorting components separately, it has been shown
that by using neutral or counter-optimal DCJs one can never achieve Δd < 0 [5].
This gives the following result:

Lemma 1 (from [2,5]). Given two singular genomes A and B, whose relational
diagram R(A,B) has c AB-cycles and i AB-paths, we have

did

DCJ(A,B) ≤ |G| − c − i

2
+

∑
C∈R(A,B)

λ(C).

Distance of Circular Genomes. For singular circular genomes, the graph
R(A,B) is composed of cycles only. In this case the upper bound given by
Lemma 1 is tight and leads to a simplified formula [5]:

did

DCJ(A,B) = |G| − c +
∑

C∈R(A,B)

λ(C).

Recombinations and Linear Genomes. For singular linear genomes, the
upper bound given by Lemma 1 is achieved when the components of R(A,B)
are sorted separately. However, there are optimal or neutral DCJ operations,
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called recombinations, that act on two paths and have Δd < 0. Such path
recombinations are said to be deducting. The total number of types of deducting
recombinations is relatively small. By exhaustively exploring the space of recom-
bination types, it is possible to identify groups of chained recombinations (listed
in Table 3 of the extended version of this manuscript [3]), so that the sources of
each group are the original paths of the graph. In other words, a path that is a
resultant of a group is never a source of another group. This results in a greedy
approach (detailed in [3,5]) that optimally finds the value δ ≥ 0 to be deducted.

Theorem 1 (adapted from [5]). Given two singular linear genomes A and B,
whose relational diagram R(A,B) has c AB-cycles and i AB-paths, and letting δ
be the value obtained by maximizing deductions of path recombinations, we have

did

DCJ(A,B) = |G| − c − i

2
+

∑
C∈R(A,B)

λ(C) − δ.

3 DCJ-Indel Distance of Natural Genomes

In this work we are interested in comparing two natural genomes A and B. First
we note that it is possible to transform A and B into matched singular genomes
A‡ and B‡ as follows. For each common marker m ∈ G, if ΦA ≤ ΦB, we should
determine which occurrence of m in B matches each occurrence of m in A, or
if ΦB < ΦA, which occurrence of m in A matches each occurrence of m in B.
The matched occurrences receive the same identifier (for example, by adding
the same index ) in A‡ and in B‡. Examples are given in Fig. 2 (top and center).
Observe that, after this procedure, the number of common markers between any
pair of matched genomes A‡ and B‡ is

n∗ =
∑
m∈G

min{ΦA(m), ΦB(m)}.

Let M be the set of all possible pairs of matched singular genomes obtained
from natural genomes A and B. The DCJ-indel distance of A and B is then
defined as

did

DCJ(A,B) = min
(A‡,B‡)∈M

{did

DCJ(A‡, B‡)}.

3.1 Multi-relational Diagram

While the original relational diagram clearly depends on the singularity of com-
mon markers, when they appear in multiple copies we can obtain a data struc-
ture that integrates the properties of all possible relational diagrams of matched
genomes. The multi-relational diagram MR(A,B) of two natural genomes A
and B also has a set V (A) with a vertex for each of the two extremities of each
marker occurrence of genome A and a set V (B) with a vertex for each of the
two extremities of each marker occurrence of genome B.
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2
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1
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1

1t
1

1h
1 7t 7h 3t

2
3h
2

4t
1

4h
1 1t 1h 3t 3h

didDCJ = 5 − 0 − 2
2 + 1 + 3 = 8
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1
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1t
1

1h
1 6t 6h 2t

1
2h
1

3t
2

3h
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1
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1

4t
1

4h
1 1t 1h 3t 3h

didDCJ = 5 − 2 − 2
2 + 1 + 2 + 2 = 7

··········· ··········· ··········· ··········· ··········· ···········

··········· ··········· ··········· ··········· ··········· ···········

··········· ··········· ··········· ···········

··········· ··········· ··········· ··········· ··········· ···········

···········

··········· ··········· ···········

··········· ··········· ···········

··········· ··········· ···········

� � � � � � � � � � � � � � � �

A 1t 1h 3t 3h 2t 2h 5h 5t 4h 4t 3t 3h 5t 5h 4t 4h

� � � � � � � � � � � � � � � � � � � �

B 1t 1h 6t 6h 2t 2h 3t 3h 1t 1h 7t 7h 3t 3h 4t 4h 1t 1h 3t 3h

Fig. 2. Natural genomes A = 13254354 and B = 1623173413 can give rise to
many distinct pairs of matched singular genomes. The relational diagrams of two of
these pairs are represented here, in the top and center. In the bottom we show the
multi-relational diagram MR(A,B). The decomposition that gives the diagram in the
top is represented in red/orange. Similarly, the decomposition that gives the diagram
in the center is represented in blue/cyan. Edges that are in both decompositions have
two colors.

Again, sets EA
adj and EB

adj contain adjacency edges connecting adjacent
extremities of markers in A and in B. But here the set Eγ contains, for each
marker m ∈ G, an extremity edge connecting each vertex in V (A) that repre-
sents an occurrence of mt to each vertex in V (B) that represents an occurrence
of mt, and an extremity edge connecting each vertex in V (A) that represents
an occurrence of mh to each vertex in V (B) that represents an occurrence of
mh. Furthermore, for each marker m ∈ U with ΦA(m) > ΦB(m), the set EA

id

contains one indel edge connecting the vertices representing the two extremi-
ties of the same occurrence of m in A. Similarly, for each marker m′ ∈ U with
ΦB(m′) > ΦA(m′), the set EB

id contains one indel edge connecting the vertices
representing the two extremities of the same occurrence of m′ in B. An example
of a multi-relational diagram is given in Fig. 2 (bottom).

Consistent Decompositions. Note that if A and B are singular genomes,
MR(A,B) reduces to the ordinary R(A,B). On the other hand, in the presence
of duplicate common markers, MR(A,B) may contain vertices of degree larger
than two. A decomposition is a collection of vertex-disjoint components, that can
be cycles and/or paths, covering all vertices of MR(A,B). There can be multiple
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ways of selecting a decomposition, and we need to find one that allows to match
occurrences of a marker in genome A with occurrences of the same marker in
genome B.

Let m(A) and m(B) be, respectively, occurrences of the same marker m in
genomes A and B. The extremity edge that connects mh

(A) to mh
(B) and the

extremity edge that connects mt
(A) to mt

(B) are called siblings. A set ED ⊆ Eγ

is a sibling-set if it is exclusively composed of pairs of siblings and does not
contain any pair of incident edges. Thus, a maximal sibling-set ED corresponds
to a maximal matching of occurrences of common markers in both genomes.

The set of edges D induced by a maximal sibling-set ED is said to be a
consistent decomposition of MR(A,B) and can be obtained as follows. In the
beginning, D is the union of ED with the sets of adjacency edges EA

adj and
EB

adj . Then, for each indel edge e, if its two endpoints have degree one or zero
in D, then e is added to D. Note that the consistent decomposition D covers
all vertices of MR(A,B) and is composed of cycles and paths, allowing us to
compute the value

did

DCJ(D) = n∗ − cD − iD
2

+
∑
C∈D

λ(C) − δD,

where cD and iD are the numbers of AB-cycles and AB-paths in D, respectively,
and δD is the optimal deduction of recombinations of paths from D. Since n∗
is constant for any consistent decomposition, we can separate the part of the
formula that depends on D, called weight of D:

w(D) = cD +
iD
2

−
∑
C∈D

λ(C) + δD.

Theorem 2. Given two natural genomes A and B, the DCJ-indel distance of
A and B can be computed by the following equation:

did

DCJ(A,B) = min
D∈D

{did

DCJ(D)} = n∗ − max
D∈D

{w(D)},

where D is the set of all consistent decompositions of MR(A,B).

Proof. In the extended version of this manuscript.

A consistent decomposition D such that did
DCJ(D) = did

DCJ(A,B) is said to be
optimal. Computing the DCJ-indel distance between two natural genomes A and
B, or, equivalently, finding an optimal consistent decomposition of MR(A,B) is
an NP-hard problem. In Sect. 4 we will describe an efficient ILP formulation to
solve it. Before that, we need to introduce a transformation of MR(A,B) that
is necessary for our ILP.

3.2 Capping

The ends of linear chromosomes produce some difficulties for the decomposi-
tion. Fortunately there is an elegant technique to overcome this problem, called
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capping [11]. It consists of modifying the genomes by adding artificial singular
common markers, also called caps, that circularize all linear chromosomes, so
that their relational diagram is composed of cycles only, but, if the capping is
optimal, the genomic distance is preserved.

Singular Genomes. An optimal capping that transforms singular genomes A
and B into singular circular genomes A◦ and B◦ can be obtained after greedily
identifying the recombination groups following a top-down order of Table 3 of the
extended version of this manuscript [3]. The optimal Δd for each recombination
group is achieved by linking the groups as indicated in Table 5 of the extended
version, where we also prove the following theorem.

Theorem 3. Let κA and κB be, respectively, the total numbers of linear chro-
mosomes in singular genomes A and B. We can obtain an optimal capping of
A and B with exactly

p∗ = max{κA, κB}
caps and a∗ = |κA − κB| artificial adjacencies between caps.

Capped Multi-relational Diagram. We can transform MR(A,B) into the
capped multi-relational diagram MR◦(A,B) as follows. First we need to create
4p∗ new vertices, named ◦1A, ◦2A, . . . , ◦2p∗

A and ◦1B , ◦2B , . . . , ◦2p∗
B , each one represent-

ing a cap extremity. Each of the 2κA telomeres of A is connected by an adjacency
edge to a distinct cap extremity among ◦1A, ◦2A, . . . , ◦2κA

A . Similarly, each of the
2κB telomeres of B is connected by an adjacency edge to a distinct cap extremity
among ◦1B , ◦2B , . . . , ◦2κB

B . Moreover, if κA < κB, for i = 2κA+1, 2κA+3, . . . , 2κB−1,
connect ◦i

A to ◦i+1
A by an artificial adjacency edge. Otherwise, if κB < κA, for

j = 2κB + 1, 2κB + 3, . . . , 2κA − 1, connect ◦j
B to ◦j+1

B by an artificial adjacency
edge. All these new adjacency edges and artificial adjacency edges are added to
EA

adj and EB
adj , respectively.

We also connect each ◦i
A, 1 ≤ i ≤ 2p∗, by a cap extremity edge to each ◦j

B ,
1 ≤ j ≤ 2p∗, and denote by E◦ the set of cap extremity edges. A set E′

D ⊆ E◦
is a capping-set if it does not contain any pair of incident edges. A consistent
decomposition D of MR◦(A,B) is induced by a maximal sibling-set ED ⊆ Eγ

and a maximal capping-set E′
D ⊆ E◦ and is composed of vertex disjoint cycles

covering all vertices of MR◦(A,B). We then have did
DCJ(D) = n∗ + p∗ − w(D),

where the weight of D can be computed by the simpler formula

w(D) = cD −
∑
C∈D

λ(C).

Finally, let D◦ be the set of all consistent decompositions of MR◦(A,B).
Then

did

DCJ(A,B) = n∗ + p∗ − max
D∈D◦

{w(D)}.

Note that the 2p∗ cap extremities added to each genome correspond to p∗
implicit caps. Furthermore, the number of artificial adjacency edges added to
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the genome with less linear chromosomes is a∗ = |κA − κB |. Since each pair
of matched singular genomes (A‡, B‡) ∈ M can be optimally capped with this
number of caps and artificial adjacencies, it is clear that at least one optimal
capping of each (A‡, B‡) corresponds to a consistent decomposition D ∈ D◦.

4 An Algorithm to Compute the DCJ-Indel Distance
of Natural Genomes

An ILP formulation for computing the distance of two balanced genomes A and
B was given by Shao et al. in [17]. In this section we describe an extension of that
formulation for computing the DCJ-indel distance of natural genomes A and B,
based on consistent cycle decompositions of MR◦(A,B). The main difference
is that here we need to address the challenge of computing the indel-potential
λ(C) for each cycle C of each decomposition. Note that a cycle C of R(A,B)
has either 0, or 1, or an even number of runs, therefore its indel-potential can
be computed as follows:

λ(C) =

{
Λ(C), if Λ(C) ≤ 1;

Λ(C)
2 + 1, if Λ(C) ≥ 2.

The formula above can be redesigned to a simpler one, that is easier to
implement in the ILP. First, let a transition in a cycle C be an indel-free segment
of C that is between a run in one genome and a run in the other genome and
denote by ℵ(C) the number of transitions in C. Observe that, if C is indel-free,
then obviously ℵ(C) = 0. If C has a single run, then we also have ℵ(C) = 0. On
the other hand, if C has at least 2 runs, then ℵ(C) = Λ(C). Our new formula is
then split into a part that simply tests whether C is indel-enclosing and a part
that depends on the number of transitions ℵ(C).

Proposition 1. Given the function r(C) defined as r(C) = 1 if Λ(C) ≥ 1,
otherwise r(C) = 0, the indel-potential λ(C) can be computed from the number
of transitions ℵ(C) with the formula

λ(C) =
ℵ(C)

2
+ r(C).

Note that
∑

C∈Dr(C) = cr
D + sD, where cr

D and sD are the number of indel-
enclosing AB-cycles and the number of circular singletons in D, respectively.
Now, we need to find a consistent decomposition D of MR◦(A,B) maximizing
its weight

w(D) = cD −
∑
C∈D

λ(C) = cD −
(

cr
D + sD +

∑
C∈D

ℵ(C)
2

)
= cr̃

D − sD −
∑
C∈D

ℵ(C)
2

,

where cr̃
D = cD − cr

D is the number of indel-free AB-cycles in D.
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4.1 ILP Formulation

Our formulation (shown in Algorithm 1) searches for an optimal consistent cycle
decomposition of MR◦(A,B) = (V,E), where the set of edges E is the union of
all disjoint sets of the distinct types of edges, E = Eγ∪E◦∪EA

adj∪EB
adj∪EA

id∪EB
id.

In the first part we use the same strategy as Shao et al. [17]. A binary
variable xe (D.01) is introduced for every edge e, indicating whether e is part
of the computed decomposition. Constraint C.01 ensures that adjacency edges
are in all decompositions, Constraint C.02 ensures that each vertex of each
decomposition has degree 2, and Constraint C.03 ensures that an extremity
edge is selected only together with its sibling. Counting the number of cycles in
each decomposition is achieved by assigning a unique identifier i to each vertex
vi that is then used to label each cycle with the numerically smallest identifier
of any contained vertex (see Constraint C.04, Domain D.02). A vertex vi is then
marked by variable zi (D.03) as representative of a cycle if its cycle label yi

is equal to i (C.06). However, unlike Shao et al., we permit each variable yi

to take on value 0 which, by Constraint C.05, will be enforced whenever the
corresponding cycle is indel-enclosing. Since the smallest label of any vertex is 1
(cf. D.02), any cycle with label 0 will not be counted.

The second part is our extension for counting transitions. We introduce
binary variables rv (D.04) to label runs. To this end, Constraint C.07 ensures
that each vertex v is labeled 0 if v is part of an A-run and otherwise it is labeled
1 indicating its participation in a B-run. Transitions between A- and B-runs in
a cycle are then recorded by binary variable te (D.05). If a transition occurs
between any neighboring pair of vertices u, v ∈ V of a cycle, Constraint C.08
causes transition variable t{u,v} to be set to 1. We avoid an excess of co-optimal
solutions by canonizing the locations in which such transitions may take place.
More specifically, Constraint C.09 prohibits label changes in adjacencies not
directly connected to an indel and Constraint C.10 in edges other than adjacen-
cies of genome A, resulting in all A-runs containing as few vertices as possible.

In the third part we add a new constraint and a new domain to our ILP,
so that we can count the number of circular singletons. Let K be the circular
chromosomes in both genomes and Ek

id be the set of indel edges of a circular
chromosome k ∈ K. For each circular chromosome we introduce a decision vari-
able sk (D.06), that is 1 if k is a circular singleton and 0 otherwise. A circular
chromosome is then a singleton if all its indel edges are set (see Constraint C.11).

The objective of our ILP is to maximize the weight of a consistent decomposi-
ton, that is equivalent to maximizing the number of indel-free cycles, counted by
the sum over variables zi, while simultaneously minimizing the number of tran-
sitions in indel-enclosing AB-cycles, calculated by half the sum over variables te,
and the number of circular singletons, calculated by the sum over variables sk.

Implementation. We implemented the construction of the ILP as a python
application, available at https://gitlab.ub.uni-bielefeld.de/gi/ding.

Comparison to the Approach by Lyubetsky et al. As mentioned in the
Introduction, another ILP for the comparison of genomes with unequal content

https://gitlab.ub.uni-bielefeld.de/gi/ding
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Algorithm 1. ILP for the computation of the DCJ-indel distance of natural
genomes
Objective:

Maximize
∑

1≤i≤|V |
zi − 1

2

∑

e∈E

te −
∑

k∈K

sk

Constraints:
(C.01) xe = 1 ∀ e ∈ EA

adj ∪ EB
adj

(C.02)
∑

{u,v}∈E

x{u,v} = 2 ∀ u ∈ V

(C.03) xe = xd ∀ e, d ∈ Eγ such that
e and d are siblings

(C.04) yi ≤ yj + i(1 − x{vi,vj}) ∀ {vi, vj} ∈ E ,

(C.05) yi ≤ i(1 − x{vi,vj}) ∀ {vi, vj} ∈ EA
id ∪ EB

id

(C.06) i · zi ≤ yi ∀ 1 ≤ i ≤ |V |

Domains:
(D.01) xe ∈ {0, 1} ∀ e ∈ E

(D.02) 0 ≤ yi ≤ i ∀ 1 ≤ i ≤ |V |
(D.03) zi ∈ {0, 1} ∀ 1 ≤ i ≤ |V |
(D.04) rv ∈ {0, 1} ∀ v ∈ V

(D.05) te ∈ {0, 1} ∀ e ∈ E

(D.06) sk ∈ {0, 1} ∀ k ∈ K

(C.07) rv ≤ 1 − x{u,v} ∀ {u, v} ∈ EA
id ,

rv′ ≥ x{u′,v′} ∀ {u′, v′} ∈ EB
id

(C.08) t{u,v} ≥ rv − ru − (1 − x{u,v}) ∀ {u, v} ∈ E

(C.09)
∑

{v,w}∈EA
id

x{v,w} − t{u,v} ≥ 0 ∀ {u, v} ∈ EA
adj

(C.10) te = 0 ∀ e ∈ E \ EA
adj

(C.11)
∑

e∈Ek
id

xe − |k| ≤ sk ∀k ∈ K

and paralogs was presented by Lyubetsky et al. [13]. In order to compare our
method to theirs, we ran our ILP using CPLEX on a single thread with the
two small artificial examples given in that paper on page 8. The results show
that both ILPs give the same correct distances and our ILP runs much faster,
as shown in Table 1.

Table 1. Comparison of running times and memory usage to the ILP in [13].

Dataset #Markers #Marker
occurrences

Running time as
reported in [13]

Our running
time

Our peak
memory

Example 1 5/5 9/9 “About 1.5 h” .16 s 13200 kb

Example 2 10/10 11/11 “About 3 h” .05 s 13960 kb

4.2 Performance Benchmark

For benchmarking purposes, we used Gurobi 9.0 as solver. In all our experiments,
we ran Gurobi on a single thread. Details on how the simulated data is generated
are given in the extended version of this manuscript.

In order to evaluate the impact of the number of duplicate occurrences on
the running time, we keep the number of simulated DCJ events fixed to 10,000
and vary parameters that affect the number of duplicate occurrences.
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Our ILP solves the decomposition problem efficiently for real-sized genomes
under small to moderate numbers of duplicate occurrences: the solving times for
genome pairs with less than 10,000 duplicate occurrences (∼50% of the genome
size) shown in Fig. 3 are with few exceptions below 5 min and exhibit a linear
increase, but the solving time is expected to boost dramatically with higher num-
bers of duplicate occurrences. To further exploit the conditions under which the
ILP is no longer solvable with reasonable compute resources we continued the
experiment with even higher amounts of duplicate occurrences and instructed
Gurobi to terminate within 1 h of computation. We then partitioned the simu-
lated data set into 8 intervals of length 500 according to the observed number
of duplicate occurrences. For each interval, we determined the average as well
as the maximal multiplicity of any duplicate marker and examined the average
optimality gap, i.e., the difference in percentage between the best primal and
the best dual solution computed within the time limit. The results are shown
in Table 2 and emphasize the impact of duplicate occurrences on the solving
time: below 14,000 duplicate occurrences, the optimality gap remains small and
sometimes even the exact solution is computed, whereas above that threshold
the gap widens very quickly.

Fig. 3. Solving times for genomes with
varying number of duplicate occurrences,
totaling 20,000 marker occurrences per
genome.

Table 2. Average optimality gap for
simulated genome pairs grouped by
number of duplicate occurrences after
1 h of running time.

#Dupl.

occurrences

Avg. mult.

of dupl.

markers

Max.

multiplicity

Avg.

opt.

gap (%)

11500..11999 2.206 8 0.000

12000..12499 2.219 8 0.031

12500..12999 2.217 7 0.025

13000..13499 2.233 9 0.108

13500..13999 2.247 8 0.812

14000..14499 2.260 8 1.177

14500..14999 2.274 8 81.865

15000..15499 2.276 9 33.102

Additionally, we ran three experiments, in each varying one of the following
parameters while keeping the others fixed: (i) genome size, (ii) number of sim-
ulated DCJs and indels, and (iii) number of linear chromosomes. The results,
given in the extended version of this manuscript, indicate that the number of
linear chromosomes also has a considerable impact in the running time, while
the other two have minor effect.

4.3 Real Data Analysis

Recently, the first three high-resolution haplotype-resolved human genomes have
been published [8]. The study reports an average number of 156 inversions per
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genome, of which 121 are characterized as simple and 35 as copy-variable inver-
sions. Here, we demonstrate the applicability of our approach to the study of
real data by calculating the DCJ-indel distance between one of these haplotypes
(HG00514.h0) and the human reference sequence (GRCh38). After the construc-
tion of a genomic marker set, we represented each chromosome of both genomes
as marker sequence, with the largest chromosome (chr. 1) comprising close to
18,000 markers. We then ran our ILP for the computation of the DCJ-indel
distance on each pair of chromosomes independently. We were able to obtain
exact solutions for 17 chromosomes within few minutes and two more within a
few days. However, the remaining four comparisons did not complete within a
timelimit of 3 days. Still, after that time, their optimality gaps were below 0.1%.
The calculated DCJ-indel distances ranged between 1.3% and 7.7% of the length
of the marker sequences, with the number of runs accounting for at least 48.7%
of the distance. Further details on the data set, the construction of the genomic
markers, and the calculated DCJ-indel distances are described in Appendix A
of the extended version of this paper.

5 Conclusion

By extending the DCJ-indel model to allow for duplicate markers, we intro-
duced a rearrangement model that is capable of handling natural genomes, i.e.,
genomes that contain shared, individual, and duplicated markers. In other words,
under this model genomes require no further processing nor manipulation once
genomic markers and their homologies are inferred. The DCJ-indel distance of
natural genomes being NP-hard, we presented a fast method for its calculation
in form of an integer linear program. Our program is capable of handling real-
sized genomes, as evidenced in simulation and real data experiments. It can be
applied universally in comparative genomics and enables uncompromising anal-
yses of genome rearrangements. We hope that such analyses will provide further
insights into the underlying mutational mechanisms. Conversely, we expect the
here presented model to be extended and specialized in future to reflect the
insights gained by these analyses.
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Abstract. Gene expressions profiling empowers many biological stud-
ies in various fields by comprehensive characterization of cellular status
under different experimental conditions. Despite the recent advances in
high-throughput technologies, profiling the whole-genome set is still chal-
lenging and expensive. Based on the fact that there is high correlation
among the expression patterns of different genes, the above issue can
be addressed by a cost-effective approach that collects only a small sub-
set of genes, called landmark genes, as the representative of the entire
genome set and estimates the remaining ones, called target genes, via the
computational model. Several shallow and deep regression models have
been presented in the literature for inferring the expressions of target
genes. However, the shallow models suffer from underfitting due to their
insufficient capacity in capturing the complex nature of gene expression
data, and the existing deep models are prone to overfitting due to the
lack of using the interrelations of target genes in the learning framework.
To address these challenges, we formulate the gene expression inference
as a multi-task learning problem and propose a novel deep multi-task
learning algorithm with automatically learning the biological interrela-
tions among target genes and utilizing such information to enhance the
prediction. In particular, we employ a multi-layer sub-network with low
dimensional latent variables for learning the interrelations among target
genes (i.e. distinct predictive tasks), and impose a seamless and easy to
implement regularization on deep models. Unlike the conventional com-
plicated multi-task learning methods, which can only deal with tens or
hundreds of tasks, our proposed algorithm can effectively learn the inter-
relations from the large-scale (∼10,000) tasks on the gene expression
inference problem, and does not suffer from cost-prohibitive operations.
Experimental results indicate the superiority of our method compared to
the existing gene expression inference models and alternative multi-task
learning algorithms on two large-scale datasets.

This work was partially supported by NSF IIS 1836938, DBI 1836866, IIS 1845666, IIS
1852606, IIS 1838627, IIS 1837956, and NIH AG049371.

c© Springer Nature Switzerland AG 2020
R. Schwartz (Ed.): RECOMB 2020, LNBI 12074, pp. 19–36, 2020.
https://doi.org/10.1007/978-3-030-45257-5_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45257-5_2&domain=pdf
https://doi.org/10.1007/978-3-030-45257-5_2


20 K. G. Dizaji et al.

1 Introduction

Characterizing the cellular status under various states such as disease condi-
tions, genetic perturbations and drug treatments is a fundamental problem in
biological studies. Gene expression profiling provides a powerful tool for compre-
hensive analysis of the cellular status by capturing the gene expression patterns.
The recent advances in high-throughput technologies make it possible to col-
lect extensive gene expression profiles in versatile cellular conditions, providing
invaluable large-scale databases of gene expressions for various biomedical stud-
ies [5,9]. For instance, Van et al. recognized the effective genes on the breast
cancer by studying gene expression patterns of different patients [43]. Stephens
et al. analyzed the relations between and within different cancer types by inves-
tigating the correlations of gene expression data among distinct types of tumors
[41]. Richiardi et al. examined the gene expression data in a post meortem brain
tissue, and showed correlation between resting-state functional brain networks
and activity of genes [34]. Radical change in expression levels of several immune-
related genes is identified in mice susceptible to influenza A virus infection using
a microarray analysis [45]. The gene expression patterns in response to drug
effects are also investigated on different tasks such as drug-target network con-
struction [48] and drug discovery [33].

Despite recent developments on gene expression profiling, constructing large-
scale gene expression archives under different experimental conditions is still
challenging and expensive [30]. But previous studies have shown high corre-
lations between gene expressions, indicating that the genes have similar func-
tions in response to various conditions [14,31,37]. The clustering analysis of
single cell RNA-Seq also shows similar expression pattern between intra-cluster
genes across different cellular states [31]. Based on this fact, a small group of
informative genes can be considered as the representative set of whole-genome
data. The researchers in the Library of Integrated Network-based Cell-Signature
(LINCS) program1 used this assumption and employed principle component
analysis (PCA) to choose ∼1000 genes, which contain ∼80% of the informa-
tion in the entire set of genes. Note that profiling these ∼1000 genes, called
landmark genes, instead of the whole-genomes drastically reduces the collection
costs (∼$5 per profile) [32]. Hence, a cost-effective strategy in profiling of large-
scale gene expressions data is to collect the landmark genes and predict the
remaining genes (i.e. target genes) using a computational model.

The linear regression models with different regularizations are the first can-
didate models for predicting target genes. Later there were some attempts to use
non-linear model to better capture the complex patterns of the gene expression
profiles [13]. Deep models generally have shown remarkable flexibility in captur-
ing the non-linear nature of biomedical data and high scalability in dealing with
the large-scale datasets. Following the successful application of deep models on
multiple biological problems [1,26,38,40,49], a few deep regression models have
been also introduced for the gene expression inference problem [7,11]. However,

1 http://www.lincsproject.org/.

http://www.lincsproject.org/
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these deep regression models do not utilize the interrelations among the target
genes. These models usually consist of multiple shared layers among the genes,
followed by a specific layer for each gene at the top. Therefore, these models
ignore the biological information related to the gene interactions in their train-
ing process which leads to their suboptimal predictions.

To address the above challenges and utilize the interrelations between target
genes to enhance the prediction task, we formulate the expression inference of
target genes from the landmark ones as a multi-task learning problem. Multi-
task learning algorithms generally aim to improve the generalization of multiple
task predictors using the knowledge transferred across the related tasks through
a joint learning framework [6]. We consider each gene expression prediction as a
learning task and employ the multi-task learning model to automatically learn
the interrelations of all tasks (i.e. all target genes) and utilize such information
to enhance the prediction. Although there are multiple studies in literature on
designing multi-task learning algorithms for deep models [35], they are designed
and applied to tens or hundreds of tasks, and are not effective and scalable to
deal with large number of tasks like the gene expression inference problem with
about 10,000 tasks.

In this paper, we propose a novel multi-task learning algorithm for training
a deep regression network with automatically learning the task interrelations
of the gene expression data. Our deep large-scale multi-task learning method,
denoted as Deep-LSMTL, can effectively learn the task interrelations from a large
number of tasks, and is also efficient without suffering from the cost-prohibitive
computational operations. In particular, our Deep-LSMTL model learns tasks
interrelations using subspace clustering of task-specific parameters. Considering
this clustering as the reconstruction of each task parameters by linear and sparse
combination of other task-specific parameters, Deep-LSMTL provides a seamless
regularization on deep models by approximating the reconstruction loss in the
stochastic learning paradigms (e.g. stochastic gradient descent). Deep-LSMTL
employs two-layer sub-network with low-dimension bottleneck to learn non-linear
low-rank representations of task interrelations. Meanwhile, as a multi-task learn-
ing model, Deep-LSMTL can transfer asymmetric knowledge across the tasks to
avoid the negative transfer issue, and enforce the task interrelations through
the latent variables instead of the model parameters. All these advantages help
Deep-LSMTL predict the target genes better than conventional approaches. We
evaluate Deep-LSMTL with several deep and shallow regression models on two
large-scale gene expression datasets. Experimental results indicate that our pro-
posed algorithm has significantly better results compared to the state-of-the-art
MTL methods and deep gene expression inference networks disregarding the
neural network size and architecture. Furthermore, we gain insights into genes
relations by visualizing the relevance of landmark and target genes in our infer-
ence model. The main contributions of this paper can be summarized as follows:

• Proposing a novel multi-task learning algorithm for training deep regression
models, which is scalable to the large-scale tasks and efficient for the non-
image data in the gene expression inference problem.
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• Introducing a seamless regularization for deep multi-task models by employ-
ing a multi-layer sub-network with low-rank latent variables for learning the
task interrelations.

• Outperforming existing gene expression inference models and alternative
MTL algorithms by significant margins on two datasets regardless of net-
works architecture.

The following sections are organized as follows. In Sect. 2, we briefly review
the related works on gene expression inference and recent multi-task learning
algorithms. In Sect. 3, we start with the general clustering-based multi-task learn-
ing method, and then propose our multi-task learning algorithm for deep regres-
sion models. Then, we show the experimental results in Sect. 4, and evaluate the
effectiveness of our algorithm in comparison with alternative models on multiple
experimental conditions. We also plot some visualization figures to confirm the
validity of our model. Finally, we conclude the paper in Sect. 5.

2 Related Work

2.1 Gene Expression Inference

Since archiving whole-genome expression profiles under various perturbations
and biological conditions is still difficult and expensive [30], finding a way to
reduce the costs while preserving the information is an important problem. The
previous studies have shown that gene expressions are highly correlated, and
even a small set of genes can contain rich information. For instance, Shah et
al. indicated that a random set of 20 genes contains ∼50% of the information
of the whole-genome [37]. Moreover, the recent studies in RNA-seq confirm the
assumption that a small set of genes is sufficient to indicate the comprehen-
sive information throughout the transcriptome [14,31]. In order to determine
the set of most informative genes, researchers of the LINCS program collected
GEO dataset2 based on Affymetrix HGU133A microarrays, and analyzed the
correlation of gene expression profiles. Given the total number of 12,063 genes,
they calculated the maximum percentage of information that can be recovered
by a subset genes based on the comparable rank in the Kolmogorov-Smirnov
statistic. According to the results of LINCS analysis, a subset of only 978 genes
is able recover 82% of the observed connections in the entire transcriptome [20].
These genes are landmark genes and can be utilized to infer the expression of
remaining genes referred as target genes.

Considering the gene expression inference as a multi-task regression problem,
the shallow models such as linear regression with �1-norm and �2-norm regu-
larizations and K-nearest neighbors (KNN) are used to infer the target genes
expression from the landmark ones [7,11]. There are also a few attempt to use
deep models on detecting and inferring gene expressions [7,11,22,44]. Using the
representation power of deep learning models, Chen et al. introduced a fully

2 https://cbcl.ics.uci.edu/public data/D-GEX/.

https://cbcl.ics.uci.edu/public_data/D-GEX/
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connected multi-layer perceptron network as a multi-task regression model for
the gene expression inference [7]. They justified the effectiveness of their deep
model by achieving better experimental results compared to shallow and linear
regression models. Recently, Dizaji et al. introduced a semi-supervised model,
called SemiGAN, based on generative adversarial networks (GAN) for the gene
expression inference problem [11]. Assuming a set of landmark genes as the unla-
beled data and a set of landmark and their corresponding target genes as the
labeled data, SemiGAN learns the joint and marginal distributions of landmark
and target genes, and then enhanced the training of a regression model using
the estimated target genes for the unlabeled data as pseudo-labels. Although
these deep inference models addressed the issue of insufficient capacity in shal-
low and linear regression models, they did not explore the task interrelations,
which indicate the biological knowledge of genes, in their training process. Thus,
we formulate the gene expression inference problem as a multi-task learning and
propose a new MTL method to explicitly learn the interrelations among the tar-
get genes in the learning framework and utilize these information to enhance the
prediction results and also improve the generalization of our multi-task inference
network.

2.2 Multi-task Learning Algorithms

The main goal of multi-task learning is to enhance the generalization of mul-
tiple task predictors using the knowledge transferred across the related tasks
in a joint training process [6]. The main assumption in MTL methods is that
the parameters of multiple tasks lie in a low-dimensional subspace due to their
correlation. Using this assumption, Argyriou et al. aimed to have common fea-
tures across tasks by imposing �(2,1)-norm regularization on the feature matrix,
and solved the convex equivalent of its objective function with this regular-
ization [2]. Kang et al. introduced a method to share the features only within
group of related tasks rather than all tasks [19]. Because the strict grouping
of tasks is infeasible in real-world problems, some studies suggested the over-
lapping groups of related tasks for sharing the parameters [23,28]. Asymmetric
multi-task learning (AMTL) provides a regularization loss by constructing the
parameters of each task using the sparse and linear combination of other tasks’
parameters, and penalizes the unreliable task predictors with higher loss to have
less chance for knowledge transfer compared to the reliable task predictors with
lower loss [24]. Furthermore, some works investigated the general idea of regu-
larizing parameters using the task interrelations obtained via clustering-based
approaches [4,10,17,42].

The common form of adopting multi-task learning methods on deep neural
network is to share multiple layers among all tasks, and stack a specific layer
for each task at the top. There are also some studies on designing the shared
structure in deep multi-task models [36,46,47]. Lee et al. extended AMTL to
deep models (Deep-AMTFL) by allowing asymmetric knowledge transfer across
tasks through latent features rather than parameters [25]. Our MTL method
for deep models differs from the previous studies, since it employs a multi-layer
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Fig. 1. Deep-LSMTL architecture. (a) This figure illustrates the architecture of our
DenseNet (F), where each layer receives the features of all preceding layers as the
input. The �1-norm loss (L) is applied on the output of this network. (b) This network
indicates the shallow and linear G function used on Eq. (4). The crosses on some wights
represents the zero diagonal elements constraint. (c) This network shows the two-layer
model G on Eq. (5), where β and (1 − β) filters are represented by the cross signs. The
regularization loss (R) is applied on the output of this layer.

sub-network with low-dimension latent representations for learning task inter-
relations, providing an effective and scalable multi-task learning algorithm for
gene expression problem with large number of tasks.

3 Deep Large-Scale Multi-task Learning Network

In the problem of gene expression inference, we consider D = {xi,yi}N
i=1 as

the training set with N samples, where xi ∈ R
D and yi ∈ R

T denoting the
landmark and target gene expression profiles for the i-th sample respectively. T
shows the number of target genes (i.e. output dimension) and D indicates the
number of landmark genes (i.e. input dimension). Considering that yi ∈ R

T , we
have T regression tasks and our goal is to learn a multi-task regression model to
estimate the target gene expressions from their corresponding landmark genes.
Unless specified otherwise, we use the following notations throughout the paper.
The lower and upper case letters denote the scalars (e.g. i, T ), bold lower case
letters indicate vectors (e.g. x,w), the upper case letters represent matrices (e.g.
X,W), and calligraphic letters indicate functions, sets and losses.

3.1 Clustered Multi-task Learning

Multi-task learning algorithms generally share the relevant knowledge among
tasks by proposing a joint learning framework for the tasks. This joint learning
framework usually contains a regularization term to improve generalization of
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the model as the following objective:

min
W

N∑

i=1

T∑

t=1

L(wt;xi, yit) + R(W) (1)

where the first term (L) is the loss function applied separately on each task,
and the second term (R) is the regularization employed to enforce sharing the
parameters according to the tasks relations. Note that wt shows task-specified
parameters as a column of W ∈ R

D×T , if we assume a shallow regression network
as our model. Although, the mean squared error (MSE) is the first choice for the
loss in regression tasks, we empirically find out that the �1-norm loss function
L(W;xi,yi) = ‖yi − F(xi)‖1 is a better candidate in our objective, where
F(xi) = Wxi is a regression model. There are also several studies in literature
advocating �1-norm loss rather than MSE in different applications due to its
robust performance in dealing with outliers and noisy data.

It has been shown that the shallow MTL models can be extended to deeper
models by sharing a set latent features across all tasks as W = LS, where
L ∈ R

D×K shows the shared parameters and S ∈ R
K×T denotes the task-

specific weights [2,23]. The same idea can be adopted in deep models to use
multiple layers of shared features followed by a task-specific layer. The multi-
layer perceptron (i.e. fully connected) network is the simplest form of a deep
MTL model as F(x) = σ(...σ(σ(xW(1))W(2))...W(L)), where the first L − 1
layers are shared across all tasks and the last one is a task-specific layer. However,
we employ a more efficient architecture for the shared layers by adopting the
densely connected convolutional network [15] in our inference model. Assuming
the input for each layer as x(l) where l ∈ {0, ..., L−1}, the output of our DenseNet
is computed by x(l+1) = σ([x(0),x(1), ...,x(l)]W(l+1)), where [x(0); ,x(1), ...,x(l)]
represents the concatenation of features from all the previous layers. Figure 1(a)
shows each layer of DenseNet receiving the features of all preceding layers as the
input. The DenseNet has several advantages compared to multi-layer perceptron
(MLP) such as reusing the features of previous layers, alleviating the vanishing-
gradient issue in deep models, and reducing the number of parameters. The
objective function in Eq. (1) can be written for our deep MTL network as follows:

min
W(1),...,W(L)

N∑

i=1

‖yi − F(xi)‖1 + R(W(1), ...,W(L)). (2)

To regularize the task-specific parameters, we can impose clustering-based
constraints according to the task relations [4,10,17,24,42]. While the cluster-
ing constraints enforce the related tasks to share information and have similar
parameters or features, they do not force all of the tasks to use shared features,
and avoid the negative transfer issue where unrelated tasks adversely affect the
features of correlated tasks [35]. Grouping the task-specific parameters using
subspace clustering is an effective example of the clustering constraints. In the
following equation, we replace the regularization term in Eq. (2) by the subspace
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clustering constraint:

min
W(1),...,W(L),V

N∑

i=1

‖yi − F(xi)‖1 + λ‖W(L) − W(L)V‖2F + γ‖V‖1 (3)

where V ∈ R
T×T is the self-representation coefficient matrix with zero diagonal

elements (i.e. vtt = 0), showing the correlation among the T tasks. This regular-
ization encourages the parameters of each task to be reconstructed by the linear
and sparse combination of other tasks, and avoids the negative transfer issue by
learning asymmetric similarity between the tasks. In order to implement Eq. (3)
in deep models seamlessly, we multiply the features of latest hidden layer into
the second term loss. Since our last layer has linear activation function, we can
reformulate the objective in Eq. (3) as:

min
W(1),...,W(L),V

N∑

i=1

‖yi − F(xi)‖1 + λ‖F(xi) − G(F(xi))‖2F + γ‖V‖1 (4)

where F(Xi) = [x(0),x(1), ...,x(L−1)]W(L) is the prediction of our DenseNet
model for the i-th sample, and G(F(xi)) = F(Xi)V can be considered as a layer
stacked at the top of our DenseNet. The architecture of this layer is illustrated
on Fig. 1(b).

3.2 Deep Large-Scale Multi-task Learning

The introduced model in the previous section has multiple drawbacks. First, it
is not scalable to large number of tasks. Specially, this is a critical issue in the
gene expression inference problem as the number of target genes (i.e. output
size) is very large (∼10,000) and consequently the number of parameters in
V. Moreover, the shallow and linear layer G(.) might not capture the complex
correlations among the tasks. In addition, while we know that the target genes
expressions are highly correlated, there is no explicit constraints to learn a low-
dimension manifold for the tasks relations.

In order to address the aforementioned issues, we introduce a new function for
G(.) to better capture the tasks correlations in our MTL algorithm. To increase
the capacity of G function, we replace the linear model with a two-layer network
as G(F(xi)) = V(2)σ(V(1)F(xi)), where V(1) and V(2) are the first and second
layer parameters respectively. Moreover, we are able to decrease the number of
parameters in G by setting the number of units in its hidden layer smaller than
the number of tasks. Specifically, while the shallow linear G function has T 2

parameters (∼ 104 × 104 = 108), the proposed G contains 2TK free parameters,
where K � T (∼ 2×104×100 = 2×106). In addition to addressing the scalability
issue, a low-dimension bottleneck in G helps learning a low-rank representation
for the tasks relations as shown in the hidden layer of Fig. 1(c). The following
equation shows the objective for the proposed method:

min
W(1),...,W(L),V(1),V(2)

‖F(x) − y‖1 + λ‖(1 − β) � [F(x) − G(β � F(x)))
]‖2F ,

(5)
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where β is a binary mask, and � indicates the element-wise multiplication. The
second term of this objective forces each task to be reconstructed by the other
tasks, learning the relations among the tasks. Note that reconstructing the out-
put of each task using the other ones in the multi-layer G function is not as
straight-forward as zeroing the diagonal elements of V in the subspace cluster-
ing constraint. To solve this problem, we use the random β mask to approximate
the reconstruction process in stochastic learning approaches (e.g. SGD). In par-
ticular, we randomly mask one or a few tasks outputs in each training iteration
(e.g. β = [1, 0, 0, ..., 0]), then compute the output of regularization sub-network
by G(β � F(x))), and finally apply the reconstruction loss only to the masked
tasks via (1−β) filter. Utilizing this approach, we seamlessly adopt the subspace
clustering regularization in our deep low-rank MTL network.

4 Experiments

In this section, we evaluate our model compared to the alternative deep and
shallow regression methods on multiple datasets. To do so, we first describe the
experimental setups, compare Deep-LSMTL with the state-of-the-art models,
and investigate the effectiveness of our MTL algorithm on neural network with
different architecture. Furthermore, we visualize the relevance of the landmark
and target genes in the inference problem, providing insights into the learned
knowledge in our model.

4.1 Experimental Setup

Datasets: In our experiments, we include the microarray-based GEO dataset,
the RNA-Seq-based GTEx dataset and the 1000 Genomes (1000G) RNA-Seq
expression data (see footnote 2). The original GEO dataset consists of 129,158
gene expression profiles corresponding to 22,268 probes (978 landmark genes
and 21,290 target genes) that are collected from the Affymetrix microarray plat-
form. The original GTEx dataset is composed of 2,921 profiles from the Illumina
RNA-Seq platform in the format of Reads Per Kilobase per Million (RPKM).
The original 1000G dataset includes 2,921 profiles from the Illumina RNA-Seq
platform in the format of RPKM.

Following the data pre-processing in [7], we remove duplicate samples, nor-
malize joint quantile and match cross-platform data. In particular, we first
remove duplicated samples. We then map the expression values in the GTEx
and 1000G datasets according to the quantile computed in the GEO data, after
which the expression value has been quantile normalized from 4.11 to 14.97.
Finally, we normalize the expression values of each gene to zero mean and unit
variance. After pre-processing, 943 landmark genes and 9520 target genes are
remained in each profile. Our datasets contain 111,009 profiles in GEO dataset,
2,921 profiles in GTEx dataset and 462 profiles in the 1000G dataset.
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Following the experimental protocol in [7], we evaluate the methods under
two different circumstances. First, we consider 80% of the GEO data for train-
ing, 10% of the GEO data for validation, and the other 10% of the GEO data
for testing. Second, we use the same 80% of the GEO data for training, the
1000G data for validation, and the GTEx data for testing. The second scenario
is useful for validating the regression models on cross-platform prediction, since
the training, validation and testing belong to the different distributions.

Alternative Methods: The most well-known linear inference model is the
least square regression, which has the following objective function: minW

∑n
i=1

||xiW − yi||22 + λ||W||2p, where W is the model parameters, and λ represents
the regularization hyper-parameter. When λ = 0, we call the model as the least
square regression (LSR). But when λ �= 0, we have two other linear models,
LSR-L2 with �2-norm regularization (i.e. p = 2) and LSR-L1 with �1-norm
regularization (i.e. p = 1). The regularization terms in LSR-L2 and LSR-L1
help the regression model to alleviate the overfitting issue.

We also include the k-nearest neighbors (KNN) method as a baseline method,
where the prediction of a given profile is calculated as the average of its k nearest
profiles. In addition, we compare with two deep learning methods, D-GEX [7]
and SemiGAN [11], for gene expression inference. Generally, D-GEX model uses
a multi-layer perception neural network as the inference model, while SemiGAN
is designed based on generative adversarial networks.

We also adopt a few multi-task learning algorithms for training deep inference
models in our problem. We review them in the following part very briefly, but
refer the readers to the original papers for more details. The CNMTL method
aims to cluster the task-specific (i.e. last layer) parameters using regularizations
based on the wights mean, and between-cluster and within-cluster variances as
follows [17]:

min
W

N∑

i=1

T∑

t=1

L(wt,xi,yi) + λM‖W‖2F + λB

K∑

k=1

‖Wk − W‖2F (6)

+ λW

K∑

k=1

∑

j∈J (k)

‖W(L)
j − Wk‖2F

where the second term is the weights mean regularization with λM as the hyper-
parameter and W = 1/T

∑T
t=1 W

(L)
t as the average of last layer weights across

tasks, the third term is the between-cluster variance regularization with λB as
the hyper-parameter and Wk as the average of last layer weights of the k-cluster,
and the last term is the within-cluster variance regularization with λW as the
hyper-parameter and J (k) representing a set of tasks belonging to the k-th
cluster. Note that we set L(W;xi,yi) = ‖yi − F(xi)‖1 for all the alternative
models for a fair comparison.
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The GO-MTL algorithm imposes �1-norm regularization on the task-specific
parameters and Frobenius-norm regularization on the shared wights [23]:

min
W

N∑

i=1

T∑

t=1

(L)(wt,xi,yi) + μ‖w(L)
t ‖1 + λ

L−1∑

l=1

‖W(l)‖2F (7)

where, μ and λ are the regularization hyper-parameters.
The AMTL method enforces each set of task-specific weights to be recon-

structed by the linear combination of other tasks parameters using the following
objective [25]:

min
W,V

N∑

i=1

T∑

t=1

αtL(wt,xi,yi) + λ‖W(L) − W(L)V‖22 (8)

where, λ is the regularization hyper-parameter, and αt is the coefficient repre-
senting the easiness level of the t-th task that makes the outgoing transfer from
hard tasks less than the easy tasks.

The AMTFL algorithm extends AMTL to regularize the features rather than
the parameters [24]:

min
W,V

N∑

i=1

T∑

t=1

αtL(wt,xi,yi) + μ‖w(L)
t ‖1 + γ‖Z − σ(ZW(L)V)‖2

F + λ

L−1∑

l=1

‖W(l)‖2
F

(9)

where, μ, λ and γ are the regularization hyper-parameters, αt is the task easiness
coefficient, and Z is the output of the last hidden layer.

Evaluation Metrics: We use mean absolute error (MAE) and concordance
correlation (CC) as the evaluation metrics. Given the testing data {(xi,yi)}M

i=1,
for a certain model, we denote the predicted expressions as {ŷi}M

i=1. The MAE
is then computed using MAEt = 1

M

∑M
i=1 |ŷit − yit|, where MAEt indicates the

mean absolute error for the t-th task, yit shows the ground truth expression value
for the t-th target gene in the i-th testing profile, and ŷit represents the corre-
sponding predicted value. The definition of CC is CCt = 2ρσytσŷt

σ2
yt

+σ2
ŷt

+(μyt−μŷt
)2

,

where CCt shows the concordance correlation for the t-th target gene. ρ is the
Pearson correlation, and μyt

, μŷt
, and σyt

, σŷt
are the mean and standard devi-

ation of yt and ŷt respectively. Note that in addition to the mean values of the
absolute error and concordance correlation via MAEmean = 1/T

∑T
t=1 MAEt

and CCmean = 1/T
∑T

t=1 CCt, we report the standard deviation across the tasks
for each inference model.
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Table 1. Comparison of different inference models on GEO and GTEx datasets based
on the MAE and CC evaluation metrics. The results of the shallow regression models in
the first part and the previous deep inference networks in the second part are reported
from the original papers or running their released codes. The MTL methods in the third
part and our proposed models in the forth part use densely connected architecture with
different number of hidden units. Better results correspond to lower MAE values or
higher CC values.

Methods GEO dataset GTEx dataset

MAE CC MAE CC

Shallow LSR 0.3763± 0.0844 0.8227± 0.0956 0.4704± 0.1235 0.7184± 0.2072

LSR-L1 0.3756± 0.0841 0.8221± 0.0960 0.4669± 0.1274 0.7163± 0.2188

LSR-L2 0.3758± 0.0842 0.8223± 0.0959 0.4682± 0.1233 0.7181± 0.2076

KNN 0.3708± 0.0958 0.8218± 0.1001 0.6225± 0.1469 0.5748± 0.2052

Deep D-GEX 0.3204± 0.0879 0.8514± 0.0908 0.4393± 0.1239 0.7304± 0.2072

SemiGAN 0.2997± 0.0869 0.8702± 0.0927 0.4223± 0.1266 0.7443± 0.2087

MTL Deep-GO-MTL 0.2931± 0.0934 0.8717± 0.1075 0.4201± 0.1391 0.7434± 0.2153

Deep-CNMTL 0.2946± 0.0928 0.8704± 0.1080 0.4199± 0.1393 0.7401± 0.2163

Deep-AMTL 0.2942± 0.0936 0.8719± 0.1072 0.4238± 0.1388 0.7368± 0.2164

Deep-AMTFL 0.2947± 0.0930 0.8703± 0.1081 0.4205± 0.1390 0.7428± 0.2154

Ours DenseNet 0.2924± 0.0945 0.8727± 0.1070 0.4227± 0.1388 0.7416± 0.2156

Deep-LSMTL 0.2887±0.0949 0.8753±0.1062 0.4162±0.1390 0.7510±0.2166

Implementation Details: In our model, we use a DenseNet structure with
three hidden layers and 9, 000 hidden units on each layer. Leaky rectified linear
unit [27] with leakiness ratio 0.2 is used as our activation function, and Adam
algorithm [21] is employed as our optimization method. Moreover, we decrease
our learning rates from 1 × 10−3 to 1 × 10−5 linearly from the first epoch to
the maximum epoch 500. The batch size is set to 100. We also utilize batch
normalization [16] as the layer normalization to speed up the convergence of
training process. The parameters of all layers are initialized by Xavier approach
[12]. We also select the dropout probability, λ, and number of hidden units
in subspace layer from dropoutset = {0.05, 0.1, 0.25}, λset = {0.1, 1, 10}, and
unitsset = {500, 1000, 2000} respectively based on the validation results. We use
Pytorch toolbox for writing our code, and run the algorithm in a machine with
one Titan X pascal GPU.

4.2 Performance Comparison

We compare the performance of Deep-LSMTL with other models on GEO and
GTEx datasets. As shown in Table 1, the alternative models are grouped as the
shallow regression models in the first part, the previous deep regression networks
in the second part, the MTL algorithms applied on deep regression models in the
third part, and our DenseNet baseline and Deep-LSMTL network in the forth
part of the table. Regarding the MTL methods and our Deep-LSMTL network,
we try to run the largest possible network with three hidden-layers on one GPU.
The number of hidden-units for Deep-Go-MTL, Deep-CNMTL, Deep-AMTFL,
Deep-AMTL and Deep-LSMTL are 8000, 4000, 5000, 7000 and 9000 respectively.
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Table 2. Comparison of MTL algorithms for the gene expression inference problems
on GEO and GTEx datasets. All of the models use a two hidden layers DenseNet as
their structure, but have different number of hidden units in each part of the table.
Better results correspond to lower MAE value or higher CC value.

Methods GEO dataset GTEx dataset # params # units

MAE CC MAE CC

Deep-GO-MTL 0.3087± 0.0912 0.8602± 0.1120 0.4264± 0.1384 0.7347± 0.2179 8.08× 107 3000

Deep-CNMTL 0.3070± 0.0912 0.8625± 0.1104 0.4263± 0.1390 0.7322± 0.2188 8.08× 107

Deep-AMTL 0.3073± 0.0912 0.8621± 0.1105 0.4265± 0.1385 0.7322± 0.0000 1.71× 108

Deep-AMTFL 0.3088± 0.0912 0.8599± 0.1121 0.4263± 0.1383 0.7346± 0.2180 1.47× 108

Deep-LSMTL 0.3034±0.0914 0.8626±0.1153 0.4258±0.1383 0.7377±0.2188 9.98× 107

Deep-GO-MTL 0.3014± 0.0922 0.8665± 0.1099 0.4267± 0.1388 0.7366± 0.2178 1.7× 108 6000

Deep-CNMTL 0.2992± 0.0923 0.8696± 0.1079 0.4260± 0.1388 0.7345± 0.2179 1.7× 108

Deep-AMTL 0.2999± 0.0924 0.8688± 0.1085 0.4262± 0.1388 0.7351± 0.2175 2.61× 108

Deep-AMTFL 0.3016± 0.0922 0.8664± 0.1100 0.4265± 0.1387 0.7371± 0.2172 2.94× 108

Deep-LSMTL 0.2951±0.0927 0.8692±0.1089 0.4234±0.1391 0.7397±0.2174 1.89× 108

Deep-GO-MTL 0.2983± 0.0929 0.8693± 0.1089 0.4268± 0.1386 0.7376± 0.2167 2.78× 108 9000

Deep-AMTL 0.2972± 0.0932 0.8713± 0.1077 0.4268± 0.1386 0.7367± 0.2170 3.69× 108

Deep-LSMTL 0.2919±0.0934 0.8717±0.1080 0.4201±0.1391 0.7439±0.2170 2.97× 108

Table 3. MAE comparison of D-GEX and Deep-LSMTL on GEO and GTEx datasets,
when the number of hidden layers varies from 1 to 3, and the number of hidden units
are 3000, 6000 or 9000. The structure of both models are based on the MLP network.

Methods GEO dataset GTEx dataset #
hidden
layers

# hidden units # hidden units

3000 6000 9000 3000 6000 9000

D-GEX 0.3421± 0.0858 0.3337± 0.0869 0.3300± 0.0874 0.4507± 0.1231 0.4428± 0.1246 0.4394± 0.1253 1

0.3377± 0.0854 0.3280± 0.0869 0.3224± 0.0879 0.4586± 0.1194 0.4446± 0.1226 0.4393± 0.1239 2

0.3362± 0.0850 0.3252± 0.0868 0.3204± 0.0879 0.5160± 0.1157 0.4595± 0.1186 0.4492± 0.1211 3

Deep-
LSMTL

0.3179± 0.0901 0.3097± 0.0903 0.3054± 0.0903 0.4363± 0.1368 0.4349± 0.1369 0.4295± 0.1380 1

0.3086± 0.0908 0.2985± 0.0915 0.2944± 0.0916 0.4338± 0.1374 0.4321± 0.1371 0.4289± 0.1379 2

0.3067± 0.0913 0.2965± 0.0922 0.2927 ± 0.0923 0.4301± 0.1379 0.4286± 0.1373 0.4253 ± 0.1383 3

The MAE and CC results show that Deep-LSMTL significantly and con-
sistently outperforms all of the alternative models on both GEO and GTEx
datasets. As expected, Deep-LSMTL has large improvements against the shallow
models, indicating the importance of deeper networks in capturing the complex
nature of gene expression data. Deep-LSMTL also achieves better results than
the existing deep inference models in the literature, proving the advantages of
using the task interrelations in our MTL algorithm. Moreover, Deep-LSMTL not
only shows better results compared to other MTL methods, but it also indicates
the need for far less GPU memory than the other MTL methods.

Since the expressions of target genes are normalized, the direct comparisons
of the errors may not be conclusive. In order to check if the improvement of Deep-
LSMTL over the alternative models is statistically significant, we use the 5 × 2
cross validation method in [8]. In particular, we repeat 2-fold cross-validation of
Deep-LSMTL and the best alternative model on GEO dataset (i.e. DenseNet)
5 times, and use a paired student’s t-test on the MAE results. Based on the
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Fig. 2. Visualization of the relevance score calculated for each landmark gene on GEO
dataset. (a) Relevance score of landmark genes w.r.t. cluster of profiles. We grouped
the gene expression profiles into 20 clusters using K-means, and plot the contribution
of each landmark gene to different clusters of profiles. (b) Cleaned version of landmark
gene score. For each profile cluster, only the top 20 landmark genes in (a) are kept for
clear visualization. (c) Relevance score of landmark genes w.r.t. cluster of target genes.
We divide the 9520 target genes into 20 clusters via K-means, and demonstrate the
contributions of cleaned landmark genes. (d) Relevance score of landmark gene clusters
w.r.t. cluster of target genes. The landmark genes are clustered into 10 clusters, and
their contributions in predicting of different clusters of target genes is plotted.

obtained p-values that is much less than 5%, we reject the null hypothesis that
the results of the two models have the same distribution. Thus we can claim that
Deep-LSMTL has statistically significant improvements compared to the other
alternative models.

4.3 Ablation Study

While the previous experiments confirms the effectiveness of Deep-LSMTL in
dealing with large-scale tasks by fitting a larger network on one GPU com-
pared to other MTL methods, we design another experiment to compare the
MTL methods with same structure. To do so, we consider the two-hidden-layer
DenseNet architecture for all the MTL methods in three different settings with
3000, 6000, and 9000 hidden units. Table 2 shows the results of Deep-GO-MTL,
Deep-CNMTL, Deep-AMTL, Deep AMTFL, and Deep-LSMTL on both GEO
and GTEx Datasets. Note that there are still out-of-memory issues for Deep-
CNMTL and Deep-AMTFL with 9000 hidden units. The results in Table 2 indi-
cate better performance for Deep-LSMTL compared to the other MTL models
on different architectures. Thus, Deep-LSMTL not only provides better scalable
model in our inference problem, it also shows better performance even when the
base network structure is similar.

In addition to investigate the effectiveness of Deep-LSMTL on the different
base network than DenseNet, we compare Deep-LSMTL and D-GEX with MLP
structure in Table 3. We report the results for the both models, where MLP net-
work has one, two or three hidden layers and the hidden layers have 3000, 6000 or
9000 hidden units. Deep-LSMTL again outperforms D-GEX in all architectures
consistently, and confirm its capability regardless of the base network structure.



Deep Large-Scale Multi-task Learning Network for Gene Expression 33

4.4 Visualization

We perform a qualitative study on Deep-LSMTL to show the role of differ-
ent landmark genes in the gene expression inference problem. In order to plot
visualization figures, we adopt the Layer-wise Relevance Propagation (LRP)
[3] method to calculate the importance of landmark genes that is learned in
our model. Figure 2 shows the results of Deep-LSMTL with DenseNet struc-
ture (in Table 1) on GEO dataset. First, we divide the gene expression profiles
into 20 clusters and then use LRP to calculate the relevance score of landmark
genes w.r.t. each profile cluster in Fig. 2(a) and (b). These figures show that
the landmark gene expression patterns are different for various profile groups,
replicating the findings in previous cancer sub-type discovery and cancer land-
scape study that different group of samples usually exhibit different expression
patterns [18,39].

Next, we analyze the relationship between landmark genes and target genes.
We cluster the target genes into 20 groups and calculate the overall relevance
score of landmark genes in the prediction of each target gene cluster in Fig. 2(c).
For the sake of better visualization, we also group the landmark genes into 10
clusters and display the association between landmark gene clusters and target
gene clusters in Fig. 2(d). We notice apparent difference in the relevance patterns
for different target gene clusters, yet some similarity among certain clusters. This
finding has also been validated by the previous gene cluster analysis [29], where
genes cluster information is related to the structure of biosynthetic pathways
and metabolites.

5 Conclusion

In this paper, we proposed a novel multi-task learning algorithm for training
deep regression models on the gene expression inference problem. Our proposed
method efficiently exploits the task interrelations to improve the generalizations
of the predictors. We introduced a regularization on our learning framework
that is easy to implement on deep models and scalable to large number of tasks.
We validated our model on two gene expression datasets, and found consistent
and significant improvements over all counterparts regardless of the base net-
work architecture. Furthermore, we interpreted the role of landmark genes in the
inference of target genes expression using visualization figures, providing insights
into the information captured by our model.
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Abstract. As the volume of next generation sequencing data increases,
an urgent need for algorithms to efficiently process the data arises. Uni-
versal hitting sets (UHS) were recently introduced as an alternative to
the central idea of minimizers in sequence analysis with the hopes that
they could more efficiently address common tasks such as computing
hash functions for read overlap, sparse suffix arrays, and Bloom filters.
A UHS is a set of k-mers that hit every sequence of length L, and can
thus serve as indices to L-long sequences. Unfortunately, methods for
computing small UHSs are not yet practical for real-world sequencing
instances due to their serial and deterministic nature, which leads to
long runtimes and high memory demands when handling typical values
of k (e.g. k > 13). To address this bottleneck, we present two algorithmic
innovations to significantly decrease runtime while keeping memory usage
low: (i) we leverage advanced theoretical and architectural techniques to
parallelize and decrease memory usage in calculating k-mer hitting num-
bers; and (ii) we build upon techniques from randomized Set Cover to
select universal k-mers much faster. We implemented these innovations
in PASHA, the first randomized parallel algorithm for generating near-
optimal UHSs, which newly handles k > 13. We demonstrate empirically
that PASHA produces sets only slightly larger than those of serial deter-
ministic algorithms; moreover, the set size is provably guaranteed to be
within a small constant factor of the optimal size. PASHA’s runtime
and memory-usage improvements are orders of magnitude faster than
the current best algorithms. We expect our newly-practical construc-
tion of UHSs to be adopted in many high-throughput sequence analysis
pipelines.
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1 Introduction

The NIH Sequence Read Archive [8] currently contains over 26 petabases of
sequence data. Increased use of sequence-based assays in research and clinical
settings creates high computational processing burden; metagenomics studies
generate even larger sequencing datasets [17,19]. New computational ideas are
essential to manage and analyze these data. To this end, researchers have turned
to k-mer-based approaches to more efficiently index datasets [7].

Minimizer techniques were introduced to select k-mers from a sequence
to allow efficient binning of sequences such that some information about the
sequence’s identity is preserved [18]. Formally, given a sequence of length L
and an integer k, its minimizer is the lexicographically smallest k-mer in it.
The method has two key advantages: selected k-mers are close; and similar k-
mers are selected from similar sequences. Minimizers were adopted for biological
sequence analysis to design more efficient algorithms, both in terms of memory
usage and runtime, by reducing the amount of information processed, while not
losing much or any information [12]. The minimizer method has been applied in
a large number of settings [4,6,20].

Orenstein and Pellow et al. [14,15] generalized and improved upon the min-
imizer idea by introducing the notion of a universal hitting set (UHS). For inte-
gers k and L, set Uk,L is called a universal hitting set of k-mers if every possible
sequence of length L contains at least one k-mer from Uk,L. Note that a UHS
for any given k and L only needs to be computed once. Their heuristic DOCKS
finds a small UHS in two steps: (i) remove a minimum-size set of vertices from a
complete de Bruijn graph of order k to make it acyclic; and (ii) remove additional
vertices to eliminate all (L − k)-long paths. The removed vertices comprise the
UHS. The first step was solved optimally, while the second required a heuristic.
The method is limited by runtime to k ≤ 13, and thus applicable to only a
small subset of minimizer scenarios. Recently, Marçais et al. [10] showed that
there exists an algorithm to compute a set of k-mers that covers every path of
length L in a de Bruijn graph of order k. This algorithm gives an asymptotically
optimal solution for a value of k approaching L. Yet this condition is rarely the
case for real applications where 10 ≤ k ≤ 30 and 100 ≤ L ≤ 300. The results of
Marçais et al. show that for k ≤ 30, the results are far from optimal for fixed L.
A more recent method by DeBlasio et al. [3] can handle larger values of k, but
with L ≤ 21, which is impractical for real applications. Thus, it is still desirable
to devise faster algorithms to generate small UHSs.

Here, we present PASHA (Parallel Algorithm for Small Hitting set Approx-
imation), the first randomized parallel algorithm to efficiently generate near-
optimal UHSs. Our novel algorithmic contributions are twofold. First, we
improve upon the process of calculating vertex hitting numbers, i.e. the number
of (L−k)-long paths they go through. Second, we build upon a randomized par-
allel algorithm for Set Cover to substantially speedup removal of k-mers for the
UHS—the major time-limiting step—with a guaranteed approximation ratio on
the k-mer set size. PASHA performs substantially better than current algorithms
at finding a UHS in terms of runtime, with only a small increase in set size; it is
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consequently applicable to much larger values of k. Software and computed sets
are available at: pasha.csail.mit.edu and github.com/ekimb/pasha.

2 Background and Preliminaries

Preliminary Definitions

For k ≥ 1 and finite alphabet Σ, directed graph Bk = (V,E) is a de Bruijn
graph of order k if V and E represent k- and (k + 1)-long strings over Σ,
respectively. An edge may exist from vertex u to vertex v if the (k − 1)-suffix of
u is the (k−1)-prefix of v. For any edge (u, v) ∈ E with label L, labels of vertices
u and v are the prefix and suffix of length k of L, respectively. If a de Bruijn
graph contains all possible edges, it is complete, and the set of edges represents
all possible (k + 1)-mers. An � = (L − k)-long path in the graph, i.e. a path of �
edges, represents an L-long sequence over Σ (for further details, see [1]).

For any L-long string s over Σ, k-mer set M hits s if there exists a k-mer
in M that is a contiguous substring in s. Consequently, universal hitting set
(UHS) Uk,L is a set of k-mers that hits any L-long string over Σ. A trivial
UHS is the set of all k-mers, but due to its size (|Σ|k), it does not reduce the
computational expense for practical use. Note that a UHS for any given k and
L does not depend on a dataset, but rather needs to be computed only once.

Although the problem of computing a universal hitting set has no known
hardness results, there are several NP-hard problems related to it. In particular,
the problem of computing a universal hitting set is highly similar, although
not identical, to the (k, L)-hitting set problem, which is the problem of finding a
minimum-size k-mer set that hits an input set of L-long sequences. Orenstein and
Pellow et al. [14,15] proved that the (k, L)-hitting set problem is NP-hard, and
consequently developed the near-optimal DOCKS heuristic. DOCKS relies on
the Set Cover problem, which is the problem of finding a minimum-size collection
of subsets S1, ..., Sk of finite set U whose union is U .

The DOCKS Heuristic

DOCKS first removes from a complete de Bruijn graph of order k a decycling
set, turning the graph into a directed acyclic graph (DAG). This set of vertices
represent a set of k-mers that hits all sequences of infinite length. A minimum-
size decycling set can be found by Mykkelveit’s algorithm [13] in O(|Σ|k) time.
Even after all cycles, which represent sequences of infinite length, are removed
from the graph, there may still be paths representing sequences of length L,
which also need to be hit by the UHS. DOCKS removes an additional set of k-
mers that hits all remaining sequences of length L, so that no path representing
an L-long sequence, i.e. a path of length � = L − k, remains in the graph.

However, finding a minimum-size set of vertices to cover all paths of length �
in a directed acyclic graph (DAG) is NP-hard [16]. In order to find a small, but
not necessarily minimum-size, set of vertices to cover all �-long paths, Orenstein

http://pasha.csail.mit.edu/
http://github.com/ekimb/pasha
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and Pellow et al. [14,15] introduced the notion of a hitting number, the number
of �-long paths containing vertex v, denoted by T (v, �). DOCKS uses the hitting
number to prioritize removal of vertices that are likely to cover a large number
of paths in the graph. This, in fact, is an application of the greedy method
for the Set Cover problem, thus guaranteeing an approximation ratio of O(1 +
log(maxv T (v, �))) on the removal of additional k-mers.

The hitting numbers for all vertices can be computed efficiently by dynamic
programming: For any vertex v and 0 ≤ i ≤ �, DOCKS calculates the number
of i-long paths starting at v, D(v, i), and the number of i-long paths ending at
v, F (v, i). Then, the hitting number is directly computable by

T (v, �) =
�∑

i=0

F (v, i) · D(v, � − i) (1)

and the dynamic programming calculation in graph G = (V ′, E′) is given by

∀v ∈ V ′, D(v, 0) = F (v, 0) = 1
D(v, i) =

∑
(v,u)∈E′ D(u, i − 1)

F (v, i) =
∑

(u,v)∈E′ F (u, i − 1)
(2)

Overall, DOCKS performs two main steps: First, it finds and removes a
minimum-size decycling set, turning the graph into a DAG. Then, it iteratively
removes vertex v with the largest hitting number T (v, �) until there are no �-long
paths in the graph. DOCKS is sequential: In each iteration, one vertex with the
largest hitting number is removed and added to the UHS output, and the hitting
numbers are recalculated. Since the first phase of DOCKS is solved optimally
in polynomial time, the bottleneck of the heuristic lies in the removal of the
remaining set of k-mers to cover all paths of length � = L − k in the graph,
which represent all remaining sequences of length L.

As an additional heuristic, Orenstein and Pellow et al. [14,15] developed
DOCKSany with a similar structure as DOCKS, but instead of removing the
vertex that hits the most (L−k)-long paths, it removes a vertex that hits the most
paths in each iteration. This reduces the runtime by a factor of L, as calculating
the hitting number T (v) for each vertex can be done in linear time with respect to
the size of the graph. DOCKSanyX extends DOCKSany by removing X vertices
with the largest hitting numbers in each iteration. DOCKSany and DOCKSanyX
run faster compared to DOCKS, but the resulting hitting sets are larger.

3 Methods

Overview of the Algorithm. Similar to DOCKS, PASHA is run in two phases:
First, a minimum-size decycling set is found and removed; then, an additional set
of k-mers that hits remaining L-long sequences is removed. The removal of the
decycling set is identical to that of DOCKS; however, in PASHA we introduce
randomization and parallelization to efficiently remove the additional set of k-
mers. We present two novel contributions to efficiently parallelize and randomize
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the second phase of DOCKS. The first contribution leads to a faster calculation
of hitting numbers, thus reducing the runtime of each iteration. The second con-
tribution leads to selecting multiple vertices for removal at each iteration, thus
reducing the number of iterations to obtain a graph with no (L − k)-long paths.
Together, the two contributions provide orthogonal improvements in runtime.

Improved Hitting Number Calculation

Memory Usage Improvements. We reduce memory usage through algorithmic
and technical advances. Instead of storing the number of i-long paths for 0 ≤
i ≤ � in both F and D, we apply the following approach (Algorithm1): We
compute D for all v ∈ V and 0 ≤ i ≤ �. Then, while computing the hitting
number, we calculate F for iteration i. For this aim, we define two arrays: Fcurr

and Fprev, to store only two instances of i-long path counts for each vertex: The
current and previous iterations. Then, for some j, we compute Fcurr based on
Fprev, set Fprev = Fcurr, and add Fcurr(v)·D(v, �−j) to the hitting number sum.
Lastly, we increase j, and repeat the procedure, adding the computed hitting
numbers iteratively. This approach allows the reduction of matrix F , since in
each iteration we are storing only two arrays, Fcurr and Fprev, instead of the
original F matrix consisting of � + 1 arrays. Therefore, we are able to reduce
memory usage by close to half, with no change in runtime.

To further reduce memory usage, we use float variable type (of size 4 bytes)
instead of double variable type (of size 8 bytes). The number of paths kept in F
and D increase exponentially with i, the length of the paths. To be able to use
the 8 bit exponent field, we initialize F and D to float minimum positive value.
This does not disturb algorithm correctness, as path counting is only scaled to
some arbitrary unit value, which may be 2−149, the smallest positive value that
can be represented by float. This is done in order to account for the high
numbers that path counts can reach. The remaining main memory bottleneck is
matrix D, whose size is 4 · 4k · (� + 1) bytes.

Lastly, we utilized the property of a complete de Bruijn graph of order k
being the line graph of a de Bruijn graph of order k − 1. While all k-mers are
represented as the set of vertices in the graph of order k, they are represented
as edges in the graph of order k − 1. If we remove edges of a de Bruijn graph
of order k − 1, instead of vertices in a graph of order k, we can reduce memory
usage by another factor of |Σ|. In our implementation we compute D and F for
all vertices of a graph of order k − 1, and calculate hitting numbers for edges.
Thus, the bottleneck of the memory usage is reduced to 4 · 4k−1 · (� + 1) bytes.

Runtime Reduction by Parallelization. We parallelize the calculation of the hit-
ting numbers to achieve a constant factor reduction in runtime. The calculation
of i-long paths through vertex v only depends on the previously calculated matri-
ces for the (i−1)-long paths through all vertices adjacent to v (Eq. 2). Therefore,
for some i, we can compute D(v, i) and F (v, i) for all vertices in V ′ in parallel,
where V ′ is the set of vertices left after the removal of the decycling set. In addi-
tion, we can calculate the hitting number T (v, �) for all vertices V ′ in parallel
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Algorithm 1. Improved hitting number calculation. Input: G = (V,E)
1: D ← [|V |][� + 1], with [|V |][0] initialized to 1
2: Fcurr ← [|V |]
3: Fprev ← [|V |] initialized to 1
4: T ← [|V |] initialized to 0
5: for 1 ≤ i ≤ � do:
6: for v ∈ V do:
7: for (v, u) ∈ E do:
8: D[v][i] += D[u][i − 1]

9: for 1 ≤ i ≤ � + 1 do:
10: for v ∈ V do:
11: Fcurr[v] = 0
12: for (u, v) ∈ E do:
13: Fcurr[v] += Fprev[u]

14: T [v] += Fprev[v] · D[v][� − i + 1]

15: Fprev = Fcurr

16: return T

(similar to computing D and F ), since the calculation does not depend on the
hitting number of any other vertex (we call this parallel variant PDOCKS for the
purpose of comparison with PASHA). We note that for DOCKSany and DOCK-
SanyX, the calculations of hitting numbers for each vertex cannot be computed
in parallel, since the number of paths starting and ending at each vertex both
depend on those of the previous vertex in topological order.

Parallel Randomized k-mer Selection

Our goal is to find a minimum-size set of vertices that covers all �-long paths.
We can represent the remaining graph as an instance of the Set Cover problem.
While the greedy algorithm for the second phase of DOCKS is serial, we will show
that we can devise a parallel algorithm, which is close to the greedy algorithm
in terms of performance guarantees, by picking a large set of vertices that cover
nearly as many paths as the vertices that the greedy algorithm picks one by one.

In PASHA, instead of removing the vertex with the maximum hitting number
in each iteration, we consider a set of vertices for removal with hitting numbers
within an interval, and pick vertices in this set independently with constant
probability. Considering vertices within an interval allows us to efficiently intro-
duce randomization while still emulating the deterministic algorithm. Picking
vertices independently in each iteration enables parallelization of the procedure.
Our randomized parallel algorithm for the second phase of the UHS problem
adapts that of Berger et al. [2] for the original Set Cover problem.

The UHS Selection Procedure. The input includes graph G = (V,E) and ran-
domization variables 0 < ε ≤ 1

4 , 0 < δ ≤ 1
� (Algorithm 2). Let function calcHit()

calculate the hitting numbers for all vertices, and return the maximum hitting
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number (line 2). We set t = �log1+ε Tmax� (line 3), and run a series of steps from
t, iteratively decreasing t by 1. In step t, we first calculate the hitting numbers
of all vertices (line 5); then, we define vertex set S to contain vertices with a
hitting number between (1+ ε)t−1 and (1+ ε)t for potential removal (lines 8–9).

Let PS be the sum of all hitting numbers of the vertices in S, i.e. PS =∑
v∈S T (v, �) (line 10). In each step, if the hitting number for vertex v is more

than a δ3 fraction of PS , i.e. T (v, �) ≥ δ3PS , we add v to the picked vertex set Vt

(lines 11–13). For vertices with a hitting number smaller than δ3PS , we pairwise
independently pick them with probability δ

� . We test the vertices in pairs to
impose pairwise independence: If an unpicked vertex u satisfies the probability
δ
� , we choose another unpicked vertex v and test the same probability δ

� . If both
are satisfied, we add both vertices to the picked vertex set Vt; if not, neither of
them are added to the set (lines 14–16). This serves as a bound on the probability
of picking a vertex. If the sum of hitting numbers of the vertices in set Vt is at
least |Vt|(1+ε)t(1−4δ−2ε), we add the vertices to the output set, remove them
from the graph, and decrease t by 1 (lines 17–20). The next iteration runs with
decreased t. Otherwise, we rerun the selection procedure without decreasing t.

Algorithm 2. The selection procedure. Input: G = (V,E), 0 < ε ≤ 1
4 , 0 < δ ≤ 1

�

1: R ← {}
2: Tmax ← calcHit()
3: t ← �log1+ε Tmax�
4: while t > 0 do
5: if calcHit() == 0 then break

6: S ← {}
7: Vt ← {}
8: for v ∈ V do:
9: if (1 + ε)t−1 ≤ T (v, �) ≤ (1 + ε)t then S ← S ∪ {v}

10: PS ← ∑
v∈S T (v, �)

11: for v ∈ S do:
12: if T (v, �) ≥ δ3PS then
13: Vt ← Vt ∪ {v}
14: for u, v ∈ S do:
15: if u /∈ Vt and unirand(0,1) ≤ δ

�
and v /∈ Vt and unirand(0,1) ≤ δ

�
then

16: Vt ← Vt ∪ {u, v}
17: if

∑
v∈Vt

T (v, �) ≥ |Vt| · (1 + ε)t(1 − 4δ − 2ε) then
18: R ← R ∪ Vt

19: G = G(V \ Vt, E)
20: t ← t − 1

21: return R

Performance Guarantees. At step t, we add the selected vertex set Vt to the
output set if

∑
v∈Vt

T (v, �) ≥ |Vt|(1 + ε)t(1 − 4δ − 2ε). Otherwise, we rerun
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the selection procedure with the same value of t. We show in AppendixA that
with high probability,

∑
v∈Vt

T (v, �) ≥ |Vt|(1 + ε)t(1 − 4δ − 2ε). We also show
that PASHA produces a cover α(1 + log Tmax) times the optimal size, where
α = 1/(1 − 4δ − 2ε). In AppendixB, we give the asymptotic number of the
selection steps and prove the average runtime complexity of the algorithm. Per-
formance summaries in terms of theoretical runtime and approximation ratio are
in Table 1.

Table 1. Summary of theoretical results for the second phase of different algorithms
for generating a set of k-mers hitting all L-long sequences. PDOCKS is DOCKS with
the improved hitting number calculation, i.e. greedy removal of one vertex at each
iteration. pD, pDA denote the total number of picked vertices for DOCKS/PDOCKS
and DOCKSany, respectively. m denotes the number of parallel threads used, Tmax the
maximum vertex hitting number, and ε and δ PASHA’s randomization parameters.

Algorithm DOCKS PDOCKS DOCKSany PASHA

Theoretical runtime O((1 + pD)|Σ|k+1 · L) O((1 + pD)|Σ|k+1 · L/m) O((1 + pDA)|Σ|k+1) O((L2 · |Σ|k+1 · log2(|Σ|k))/(εδ3m))

Approximation ratio 1 + log Tmax 1 + log Tmax N/A (1 + log Tmax)/(1 − 4δ − 2ε)

4 Results

PASHA Outperforms Extant Algorithms for k ≤ 13

We compared PASHA and PDOCKS to extant methods on several combinations
of k and L. We ran DOCKS, DOCKSany, PDOCKS, and PASHA over 5 ≤ k ≤
10, DOCKSanyX, PDOCKS, and PASHA for k = 11 and X = 10, and PASHA
and DOCKSanyX for X = 100, 1000 for k = 12, 13 respectively, for 20 ≤ L ≤
200. We say that an algorithm is limited by runtime if for some value of k ≤ 13
and for L = 100, its runtime exceeds 1 day (86400 s), in which case we stopped
the operation and excluded the method from the results for the corresponding
value of k. While running PASHA, we set δ = 1/�, and 1 − 4δ − 2ε = 1/2 to
set an emulation ratio α = 2 (see Sect. 3 and AppendixA). The methods were
benchmarked on a 24-CPU Intel Xeon Gold (2.10 GHz) with 754 GB of RAM.
We ran all tests using all available cores (m = 24 in Table 1).

Comparing Runtimes and UHS Sizes. We ran DOCKS, PDOCKS, DOCKSany,
and PASHA for k = 10 and 20 ≤ L ≤ 200. As seen in Fig. 1A, DOCKS has a
significantly higher runtime than the parallel variant PDOCKS, while producing
identical sets (Fig. 1B). For small values of L, DOCKSany produces the largest
UHSs compared to other methods, and as L increases, the differences in both
runtime and UHS size for all methods decrease, since there are fewer k-mers to
add to the removed decycling set to produce a UHS.

We ran PDOCKS, DOCKSany10, and PASHA for k = 11 and 20 ≤ L ≤ 200.
As seen in Fig. 1C, for small values of L, both PDOCKS and DOCKSany10 have
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significantly higher runtimes than PASHA; while for larger L, DOCKSany10 and
PASHA are comparable in their runtimes (with PASHA being negligibly slower).
In Fig. 1D, we observe that PDOCKS computes the smallest sets for all values
of L. Indeed, its guaranteed approximation ratio is the smallest among all three
benchmarked methods. While the set sizes for all methods converge to the same
value for larger L, DOCKSany10 produces the largest UHSs for small values of
L, in which case PASHA and PDOCKS are preferable.

PASHA’s runtime behaves differently than that of other methods. For all
methods but PASHA, runtime decreases as L increases. Instead of gradually
decreasing with L, PASHA’s runtime gradually decreases up to L = 70, at which
it starts to increase at a much slower rate. This is explained by the asymptotic
complexity of PASHA (Table 1). Since computing a UHS for small L requires a
larger number of vertices to be removed, the decrease in runtime with increasing
L up to L = 70 is significant; however, due to PASHA’s asymptotic complexity
being quadratic with respect to L, we see a small increase from L = 70 to
L = 200. All other methods depend linearly on the number of removed vertices,
which decreases as L increases.

Despite the significant decrease in runtime in PDOCKS compared to
DOCKS, PDOCKS was still limited by runtime to k ≤ 12. Therefore, we ran
DOCKSany100 and PASHA for k = 12 and 20 ≤ L ≤ 200. As seen in Figs. 1E
and F, both methods follow a similar trend as in k = 11, with DOCKSany100
being significantly slower and generating significantly larger UHSs for small val-
ues of L. For larger values of L, DOCKSany100 is slightly faster, while PASHA
produces sets that are slightly smaller.

At k = 13 we observed the superior performance of PASHA over DOCK-
Sany1000 in both runtime and set size for all values of L. We ran DOCKSany1000
and PASHA for k = 13 and 20 ≤ L ≤ 200. As seen in Figs. 1G and H, DOCK-
Sany1000 produces larger sets and is significantly slower compared to PASHA
for all values of L. This result demonstrates that the slow increase in runtime
for PASHA compared to other algorithms for k < 13 does not have a significant
effect on runtime for larger values of k.

PASHA Enables UHS for k = 14, 15, 16

Since all existing algorithms and PDOCKS are limited by runtime to k ≤ 13,
we report the first UHSs for 14 ≤ k ≤ 16 and L = 100 computed using PASHA,
run on a 24-CPU Intel Xeon Gold (2.10 GHz) with 754 GB of RAM using all 24
cores. Figure 2 shows runtimes and sizes of the sets computed by PASHA.

Density Comparisons for the Different Methods

In addition to runtimes and UHS sizes, we report values of another measure
of UHS performance known as density. The density of the minimizers scheme
d(M,S, k) is the fraction of selected k-mers’ positions over the number of k-mers
in the sequence. Formally, the density of scheme M over sequence S is defined
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Fig. 1. Runtimes (left) and UHS sizes (divided by 104, right) for values of k = 10 (A,
B), 11 (C, D), 12 (E, F), and 13 (G, H) and 20 ≤ L ≤ 200 for the different methods.
Note that the y-axes for runtimes are in logarithmic scale.

as

d(M,S, k) =
|M(S, k)|

|S| − k + 1
(3)

where M(S, k) is the set of positions of the k-mers selected over sequence S.
We calculate densities for a UHS by selecting the lexicographically smallest

k-mer that is in the UHS within each window of L − k + 1 consecutive k-mers,
since at least one k-mer is guaranteed to be in each such window. Marçais et al.
[11] showed that using UHSs for k-mer selection in this manner yields smaller
densities than lexicographic or random minimizer selection schemes. Therefore,
we do not report comparisons between UHSs and minimizer schemes, but rather
comparisons among UHSs constructed by different methods.

Marçais et al. [11] also showed that the expected density of a minimizers
scheme for any k and window size L − k + 1 is equal to the density of the
minimizers scheme on a de Bruijn sequence of order L. This allows for exact
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Fig. 2. Runtimes (A) and UHS sizes (divided by 106) (B) for 14 ≤ k ≤ 16 and L = 100
for PASHA. Note that the y-axis for runtime is in logarithmic scale.

calculation of expected density for any k-mer selection procedure. However, for
14 ≤ k ≤ 16 we calculated UHSs only for L = 100, and iterating over a de
Bruijn sequence of order 100 is infeasible. Therefore, we computed the approxi-
mate expected density on long random sequences, since the computed expected
density on these sequences converges to the expected density [11]. In addition,
we computed the density of different methods on the entire human reference
genome (GRCh38).

We computed the density values of UHSs generated by PDOCKS, DOCK-
Sany, and PASHA over 10 random sequences of length 106, and the entire human
reference genome (GRCh38), for 5 ≤ k ≤ 16 and L = 100, when a UHS was
available for such (k, L) combination.

As seen in Fig. 3, the differences in both approximate expected density and
density computed on the human reference genome are negligible when compar-
ing UHSs generated by the different methods. For most values of k, DOCKS
yields the smallest approximate expected density and human genome density
values, while DOCKSany generally yields lower human genome density values,
but higher expected density values than PASHA. For k ≤ 6, the UHS is only the
decycling set; therefore, density values for these values of k are identical for the
different methods.

Since there is no significant difference in the density of the UHSs generated
by the different methods, other criteria, such as runtime and set size, are rele-
vant when evaluating the performance of the methods: As k increases, PASHA
produces sets that are only slightly smaller or larger in density, but significantly
smaller in size and significantly faster than extant methods.

5 Discussion

We presented an efficient randomized parallel algorithm for generating a small
set of k-mers that hits every possible sequence of length L and produces a set that
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Fig. 3. Mean approximate expected density (A), and density on the human reference
genome (B) for different methods, for 5 ≤ k ≤ 16 and L = 100. Error bars represent one
standard deviation from the mean across 10 random sequences of length 106. Density
is the fraction of selected k-mer positions over the number of k-mers in the sequence.

is a small guaranteed factor away from the optimal set size. Since the runtime of
DOCKS variants and PASHA depend exponentially on k, these greedy heuristics
are eventually limited by runtime. However, using these heuristics in conjunction
with parallelization, we are newly able to compute UHSs for values of k and L
large enough for most biological applications.

The improvements in runtime for the hitting number calculation are due
to parallelization of the dynamic programming phase, which is the bottleneck
in sequential DOCKS variants. A minimum-size set that hits all infinite-length
sequences is optimally and rapidly removed; however, the remaining sequences
of length L are calculated and removed in time polynomial in the output size.
We show that a constant factor reduction is beneficial in mitigating this bottle-
neck for practical use. In addition, we reduce the memory usage of this phase by
theoretical and technical advancements. Last, we build on a randomized parallel
algorithm for Set Cover to significantly speed up vertex selection. The random-
ized algorithm can be derandomized, while preserving the same approximation
ratio, since it requires only pairwise independence of the random variables [2].

One main open problem still remains from this work. Although the random-
ized approximation algorithm enables us to generate a UHS more efficiently, the
hitting numbers still need to be calculated at each iteration. The task of com-
puting hitting numbers remains as the bottleneck in computing a UHS. Is there
a more efficient way of calculating hitting numbers than the dynamic program-
ming calculation done in DOCKS and PASHA? A more efficient calculation of
hitting numbers will enable PASHA to run over k > 16 in a reasonable time.

As for long reads, which are becoming more popular for genome assembly
tasks, a k-mer set that hits all infinite long sequences, as computed optimally
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by Mykkelveit’s algorithm [13], is enough due to the length of these long read
sequences. Still, due to the inaccuracies and high cost of long read sequencing
compared to short read sequencing, the latter is still the prevailing method to
produce sequencing data, and is expected to remain so for the near future.

We expect the efficient calculation of UHSs to lead to improvements in
sequence analysis and construction of space-efficient data structures. Unfortu-
nately, previous methods were limited to small values of k, thus allowing appli-
cation to only a small subset of sequence analysis tasks. As there is an inherent
exponential dependency on k in terms of both runtime and memory, efficiency
in calculating these sets is crucial. We expect that the UHSs newly-enabled by
PASHA for k > 13 will be useful in improving various applications in genomics.

6 Conclusion

We developed a novel randomized parallel algorithm PASHA to compute a small
set of k-mers which together hit every sequence of length L. It is based on two
algorithmic innovations: (i) improved calculation of hitting numbers through
paralleization and memory reduction; and (ii) randomized parallel selection of
additional k-mers to remove. We demonstrated the scalability of PASHA to
larger values of k up to 16. Notably, the universal hitting sets need to be com-
puted only once, and can then be used in many sequence analysis applications.
We expect our algorithms to be an essential part of the sequence analysis toolkit.
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B.E. was supported by the MISTI MIT-Israel program at MIT and Ben-Gurion Uni-
versity of the Negev. We gratefully acknowledge the support of Intel Corporation for
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A Emulating the Greedy Algorithm

The greedy Set Cover algorithm was developed independently by Johnson and
Lovász for unweighted vertices [5,9]. Lovász [9] proved:

Theorem 1. The greedy algorithm for Set Cover outputs cover R with |R| ≤
(1 + log Tmax)|OPT |, where Tmax is the maximum cardinality of a set.

We adapt a definition for an algorithm emulating the greedy algorithm for the
Set Cover problem to the second phase of DOCKS [2]. We say that an algorithm
for the second phase of DOCKS α-emulates the greedy algorithm if it outputs
a set of vertices serially, during which it selects a vertex set A such that

|A|
|PA| ≤ α

Tmax
,

where PA is the set of �-long paths covered by A. Using this definition, we come
up with a near-optimal approximation by the following theorem:
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Theorem 2. An algorithm for the second phase of DOCKS that α-emulates the
greedy algorithm produces cover R ⊆ V with |R| ≤ α(1+ log Tmax)|OPT |, where
OPT is the optimal cover.

Proof. We define the cost of covering path p as C(p) = |S|
|PS | , where S is the set

of vertices selected in the selection step in which p was covered, and PS the set
of �-long paths covered by S. Then,

∑
p∈PS

C(p) = |S|.
Let P� be the set of all �-long paths in G. A fractional cover of graph

G = (V,E) is function F : V → {0, 1} s.t. for all p ∈ P�,
∑

v∈p F(v) ≥ 1. The
optimal cover FOPT has minimum

∑
v∈V FOPT (v).

Let F be such an optimal fractional cover. The size of the cover produced is

|R| =
∑

p∈P�

C(p) ≤
∑

v∈V

(
F(v)

∑

p∈Pv

C(p)
)

where Pv is the set of all �-long paths through vertex v.

Lemma 1. There are at most α
k paths p ∈ Pv such that C(p) ≥ k for any v, k.

Proof. Assume the contrary: Before such a path p is covered, T (v, �) > α
k . Thus,

|S|
|PS | ≥ k > α/T (v, �) ≥ α/Tmax,

contradicting the definition.

Suppose we rank the T (v, �) paths p ∈ Pv by decreasing order of C(p). From
the above remark, if the ith path has cost k, then i ≤ α/k. Then, we can write

∑

p∈Pv

C(p) ≤
T (v,�)∑

i=1

α/i ≤ α

T (v,�)∑

i=1

1/i ≤ α(1 + log T (v, �)) ≤ α(1 + log Tmax)

Then, ∑

p∈P�

C(p) ≤
∑

v∈V

F(v)α(1 + log Tmax)

and finally
|R| ≤ α(1 + log Tmax)|OPT |.

In PASHA, we ensure that in step t, the sum of vertex hitting numbers of
selected vertex set Vt is at least |Vt|(1 + ε)t(1 − 4δ − 2ε). We now show that this
is satisfied with high probability in each step.

Theorem 3. With probability at least 1/2, the sum of vertex hitting numbers of
selected vertex set Vt at step t is at least |Vt|(1 + ε)t(1 − 4δ − 2ε).
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Proof. For any vertex v in selected vertex set Vt at step t, let Xv be an indicator
variable for the random event that vertex v is picked, and f(X) =

∑
v∈Vt

Xv.
Note that Var[f(X)] ≤ |Vt| · δ/�, and |Vt| ≥ �/δ3, since we are given that no

vertex covers a δ3 fraction of the �-long paths covered by the vertices in Vt. By
Chebyshev’s inequality, for any k ≥ 0,

Pr[|f(X) − E[f(X)]| ≥ k(|Vt| · δ/�)] ≤ 1
k2

and with probability 3/4,

(f(X) − E[f(X)])2 ≤ 4|Vt|2 · δ4

�2

and

|f(X) − E[f(X)]| ≤ 2|Vt| · δ2

�
.

Let PVt
denote the set of �-long paths covered by vertex set Vt. Then,

|PVt
| ≥

∑

u∈Vt

T (u, �)Xu −
∑

p∈PVt

∑

u,v∈p

XuXv

We know that
∑

u∈Vt
T (u, �)Xu ≥ |Vt|(1 + ε)t−1, which is bounded below by

((δ − 2δ2) · |Vt|(1 + ε)t−1)/�. Let g(X) =
∑

p∈PVt

∑
u,v∈p XuXv. Then,

E[g(X)] =
∑

p∈PVt

E[
∑

u,v∈p

XuXv] =
∑

p∈PVt

(
l

2

)

(δ/�)2 =
∑

p∈PVt

(� − 1) · δ2

2�
≤

∑

p∈PVt

δ2

2
.

Hence, with probability at least 3/4,

g(X) ≤ 4E[g(X)] ≤ 2δ2 · |Vt|(1 + ε)t

Both events hold with probability at least 1/2, and the sum of vertex hitting
numbers is at least

((δ − 2δ
2
) · |Vt|(1 + ε)

t−1
) · � − 2δ

2 · |Vt|(1 + ε)
t ≥ |Vt|(1 + ε)

t−1
(δ� − 2δ

2
� − 2δ

2 − 2δ
2
ε)

≥ |Vt|(1 + ε)
t
(δ� − 2δ

2
� − 2δ

2 − 2δ
2
ε)/(1 + ε)

≥ |Vt|(1 + ε)
t
(1 − 4δ − 2ε).

B Runtime Analysis

Here, we show the number of the selection steps and the average-time asymptotic
complexity of PASHA.

Lemma 2. The number of selection steps is O(log |V | log |P�|/(εδ3m)).
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Proof. The number of steps is O(log |V |/ε), and within each step, there are
O(log |PS |/(δ3m)) selection steps (where PS is the sum of vertex hitting numbers
of the vertex set S for that step and m the number of threads used), since we are
guaranteed to remove at least δ3 fraction of the paths during that step. Overall,
there are O(log |V | log |P�|/(εδ3m)) selection steps.

Theorem 4. For ϕ < 1, there is an approximation algorithm for the second
phase of DOCKS that runs in O((L2 · |Σ|k+1 · log2(|Σ|k))/(εδ3m)) average time,
where m is the number of threads used, and produces a cover of size at most
(1 + ϕ)(1 + log Tmax) times the optimal size, where 1 + ϕ = 1/(1 − 4δ − 2ε).

Proof. Follows immediately from Theorem 2 and Lemma 2.
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Abstract. Competition-based FDR control has been commonly used for
over a decade in the computational mass spectrometry community [5].
Recently, the approach has gained significant popularity in other fields
after Barber and Candés laid its theoretical foundation in a more gen-
eral setting that included the feature selection problem [1]. In both
cases, the competition is based on a head-to-head comparison between an
observed score and a corresponding decoy/knockoff. We recently demon-
strated some advantages of using multiple rather than a single decoy
when addressing the problem of assigning peptide sequences to observed
mass spectra [17]. In this work, we consider a related problem—detecting
peptides based on a collection of mass spectra—and we develop a new
framework for competition-based FDR control using multiple null scores.
Within this framework, we offer several methods, all of which are based
on a novel procedure that rigorously controls the FDR in the finite sam-
ple setting. Using real data to study the peptide detection problem we
show that, relative to existing single-decoy methods, our approach can
increase the number of discovered peptides by up to 50% at small FDR
thresholds.

Keywords: Multiple hypothesis testing · Peptide detection · Tandem
mass spectrometry · False discovery rate

1 Introduction

Proteins are the primary functional molecules in living cells, and tandem mass
spectrometry (MS/MS) currently provides the most efficient means of studying
proteins in a high-throughput fashion. Knowledge of the protein complement
in a cellular population provides insight into the functional state of the cells.
Thus, MS/MS can be used to functionally characterize cell types, differentiation
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stages, disease states, or species-specific differences. For this reason, MS/MS is
the driving technology for much of the rapidly growing field of proteomics.

Paradoxically, MS/MS does not measure proteins directly. Because proteins
themselves are difficult to separate and manipulate biochemically, an MS/MS
experiment involves first digesting proteins into smaller pieces, called “peptides.”
The peptides are then measured directly. A typical MS/MS experiment generates
∼10 observations (“spectra”) per second, so a single 30-min MS/MS experiment
will generate approximately 18,000 spectra. Canonically, each observed spectrum
is generated by a single peptide. Thus, the first goal of the downstream analysis
is to infer which peptide was responsible for generating each observed spectrum.
The resulting set of detected peptides can then be used, in a second analysis
stage, to infer what proteins are present in the sample.

In this work, we are interested in the first problem—peptide detection. This
problem is important not only as a stepping stone toward the downstream goal
of detecting proteins; in many proteomics studies, the peptides themselves are
of primary interest. For example, MS/MS is being increasingly applied to com-
plex samples, ranging from the microbiome in the human gut [21] to microbial
communities in environmental samples such as soil or ocean water [30]. In these
settings, the genome sequences of the species in the community are only par-
tially characterized, so protein inference is problematic. Nonetheless, observa-
tion of a particular peptide can often be used to infer the presence of a group of
closely related species (a taxonomic clade) or closely related proteins (a homology
group). Peptide detection is also of primary interest in studies that aim to detect
so-called “proteoforms”—variants of the same protein that arise due to differ-
ential splicing of the mature RNA or due to post-translational modifications
of the translated protein. Identifying proteoforms can be critically important,
for example, in the study of diseases like Alzheimer’s or Parkinson’s disease, in
which the disease is hypothesized to arise in part due to the presence of deviant
proteoforms [23,28,37].

Specifically, we focus on the task of assigning confidence estimates to pep-
tides that have been identified by MS/MS. As is common in many molecular
biology contexts, these confidence estimates are typically reported in terms of
the false discovery rate (FDR), i.e., the expected value of the proportion of false
discoveries among a set of detected peptides. For reasons that will be explained
below, rather than relying on standard methods for control of the FDR such
as the Benjamini-Hochberg (BH) procedure [2] the proteomics field employs a
strategy known as “target-decoy competition” (TDC) to control the FDR in the
reported list of detected peptides [5]. TDC works by comparing the list of pep-
tides detected with a list of artificial peptides, called “decoys,” detected using
the same spectra set. The decoys are created by reversing or randomly shuffling
the letters of the real (“target”) peptides. The TDC protocol, which is described
in detail in Sect. 2.2, estimates the FDR by counting the number of detected
decoy peptides and using this count as an estimate for the number of incorrectly
detected target peptides.
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One clear deficiency of TDC is its reliance on a single set of decoy peptides
to estimate the FDR. Thus, with ever increasing computational resources one
can ask whether we can gain something by exploiting multiple randomly drawn
decoys for each target peptide. We recently described such a procedure, called
“average target-decoy competition” (aTDC), that, in the context of the related
spectrum identification problem (described in Sect. 2.1), reduces the variability
associated with TDC and can provide a modest boost in power [17,18].

In this paper we propose a new approach to using multiple decoy scores. The
proposed procedure relies on a direct competition between the target and its
corresponding decoy scores, rather than on averaging single competitions. We
formulate our approach in the following more general setting. Suppose that we
can compute a test statistic Zi for each null hypothesis Hi, so that the larger
Zi is, the less likely is the null. However, departing from the standard multiple
hypotheses setup, we further assume that we cannot compute p-values for the
observed scores. Instead, we can only generate a small sample of independent
decoys or competing null scores for each hypothesis Hi: Z̃j

i j = 1, . . . , d (Defini-
tion 2). Note that the case d = 1 corresponds to the TDC setup described above.
We will show using both simulated and real data that the novel method we pro-
pose yields more power (more discoveries) than our aforementioned averaging
procedure.

In addition to the peptide detection problem, our proposed procedure is
applicable in several other bioinformatics applications. For example, the proce-
dure could be used when analyzing a large number of motifs reported by a motif
finder, e.g., [12], where creating competing null scores can require the time con-
suming task of running the finder on randomized versions of the input sets, e.g.,
[25]. In addition, our procedure is applicable to controlling the FDR in selecting
differentially expressed genes in microarray experiments where a small number
of permutations is used to generate competing null scores [36].

Our proposed method can also be viewed as a generalization of Barber and
Candés’ “knockoff” procedure [1], which is a competition-based FDR control
method that was initially developed for feature selection in a classical linear
regression model. The procedure has gained a lot of interest in the statistical and
machine learning communities, where it has been applied to various applications
in biomedical research [10,29,38] and has been extended to work in conjunction
with deep neural networks [22] and with time series data [9]. Despite the different
terminology, both knockoffs and decoys serve the same purpose in competition-
based FDR control; hence, for the ideas presented in this paper the two are
interchangeable. A significant part of Barber and Candés’ work is the sophis-
ticated construction of their knockoff scores; controlling the FDR then follows
exactly the same competition that TDC uses. Indeed, their Selective SeqStep+
(SSS+) procedure rigorously formalizes in a much more general setting the same
procedure described above in the context of TDC. Note that Barber and Candés
suggested that using multiple knockoffs could improve the power of their proce-
dure so the methods we propose here could provide a stepping stone toward that.
However, we would still need to figure out how to generalize their construction
from one to multiple knockoffs.



Multiple Competition-Based FDR Control and Its Application 57

2 Background

2.1 Shotgun Proteomics and Spectrum Identification

In a “shotgun proteomics” MS/MS experiment, proteins in a complex biological
sample are extracted and digested into peptides, each with an associated charge.
These charged peptides, called “precursors,” are measured by the mass spec-
trometer, and a subset is then selected for further fragmentation into charged
ions, which are detected and recorded by a second round of mass spectrometry
[26,27]. The recorded tandem fragmentation spectra, or spectra for short, are
then subjected to computational analysis.

This analysis typically begins with the spectrum identification problem,
which involves inferring which peptide was responsible for generating each
observed fragmentation spectrum. The most common solution to this problem is
peptide database search. Pioneered by SEQUEST [8], the search engine extracts
from the peptide database all “candidate peptides,” defined by having their mass
lie within a pre-specified tolerance of the measured precursor mass. The quality
of the match between each one of these candidate peptides and the observed frag-
mentation spectrum is then evaluated using a score function. Finally, the optimal
peptide-spectrum match (PSM) for the given spectrum is reported, along with
its score [24].

In practice, many expected fragment ions will fail to be observed for any given
spectrum, and the spectrum is also likely to contain a variety of additional,
unexplained peaks [26]. Hence, sometimes the reported PSM is correct—the
peptide assigned to the spectrum was present in the mass spectrometer when
the spectrum was generated—and sometimes the PSM is incorrect. Therefore, we
report a thresholded list of top-scoring PSMs, together with the critical estimate
of the fraction of incorrect PSMs in our reported list.

2.2 False Discovery Rate Control in Spectrum Identification

The general problem of controlling the proportion of false discoveries has been
studied extensively in the context of multiple hypotheses testing (MHT). We
briefly review this setup in Supplementary Sect. 6.1; however, these techniques
cannot be applied directly to the spectrum identification problem. A major rea-
son for that is the presence in any shotgun proteomics dataset of both “native
spectra” (those for which their generating peptide is in the target database) and
“foreign spectra” (those for which it is not). These create different types of false
positives, implying that we typically cannot apply FDR controlling procedures
that were designed for the general MHT context to the spectrum identification
problem [16].

Instead, the mass spectrometry community uses TDC to control the FDR in
the reported list of PSMs [3,5,6,15]. TDC works by comparing searches against a
target peptide database with searches against a decoy database of peptides. More
precisely, let Zi be the score of the optimal match (PSM) to the ith spectrum
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in the target database, and let Z̃i be the corresponding optimal match in the
decoy database. Each decoy score Z̃i directly competes with its corresponding
target score Zi for determining the reported list of discoveries. Specifically, for
each score threshold T we only report target PSMs that won their competition:
Zi > max{T, Z̃i}. Subsequently, the number of decoy wins (Z̃i > max{T,Zi}) is
used to estimate the number of false discoveries in the list of target wins. Thus,
the ratio between that estimate and the number of target wins yields an estimate
of the FDR among the target wins. To control the FDR at level α we choose
the smallest threshold T = T (α) for which the estimated FDR is still ≤ α.
It was recently shown that, assuming that incorrect PSMs are independently
equally likely to come from a target or a decoy match and provided we add 1
to the number of decoy wins before dividing by the number of target wins, this
procedure rigorously controls the FDR [13,20].

2.3 The Peptide Detection Problem

The spectrum identification is largely used as the first step in addressing the pep-
tide identification problem that motivates the research presented here. Indeed,
to identify the peptides we begin, just like we do in spectrum identification, by
assigning each spectrum to the unique target/decoy peptide which offers the
best match to this spectrum in the corresponding database. We then assign to
each target peptide a score Zj which is the maximum of all PSM scores of spec-
tra that were assigned to this peptide in the first phase. Similarly, we assign
to the corresponding decoy peptide a score Z̃j , which again is the maximum of
all PSM scores involving spectra that were assigned to that decoy peptide. The
rest continues using the same TDC protocol we outlined above for the spectrum
identification problem [11,31].

3 Controlling the FDR Using Multiple Decoys

3.1 Why Do We Need a New Approach?

A key feature of our problem is that due to computational costs the number
of decoys, d, is small. Indeed, if we are able to generate a large number of
independent decoys for each hypothesis, then we can simply apply the standard
FDR controlling procedures (Supplementary Sect. 6.1) to the empirical p-values.
These p-values are estimated from the empirical null distributions, which are
constructed for each hypothesis Hi using its corresponding decoys. Specifically,
these empirical p-values take values of the form (d1−ri+1)/d1, where d1 = d+1,
and ri ∈ {1, . . . , d1} is the rank of the originally observed score (“original score”
for short) Zi in the combined list of d1 scores:

(
Z̃0

i = Zi, Z̃
1
i , . . . , Z̃d

i

)
(ri = 1 is

the lowest rank). Using these p-values the BH procedure [2] rigorously controls
the FDR, and Storey’s method [32] will asymptotically control the FDR as the
number of hypotheses m → ∞.



Multiple Competition-Based FDR Control and Its Application 59

Unfortunately, because d is small, applying those standard FDR control pro-
cedures to the rather coarse empirical p-values may yield very low power. For
example, if d = 1, each empirical p-value is either 1/2 or 1, and therefore for
many practical examples both methods will not be able to make any discoveries
at usable FDR thresholds.

Alternatively, one might consider pooling all the decoys regardless of which
hypothesis generated them. The pooled empirical p-values attain values of the
form i/ (m · d + 1) for i = 1, . . . , md + 1; hence, particularly when m is large,
the p-values generally no longer suffer from being too coarse. However, other
significant problems arise when pooling the decoys. These issues — discussed
in Supplementary Sect. 6.2 — imply that in general, applying BH or Storey’s
procedure to p-values that are estimated by pooling the competing null scores
can be problematic both in terms of power and control of the FDR.

3.2 A Novel Meta-procedure for FDR Control Using Multiple
Decoys

The main technical contribution of this paper is the introduction of several
procedures that effectively control the FDR in our multiple competition-based
setup and that rely on the following meta-procedure.
Input: an original/target score Zi and d competing null scores Z̃j

i for each null
hypothesis Hi.
Parameters: an FDR threshold α ∈ (0, 1), two tuning parameters c = ic/d1
(d1 = d+1), the “original/target win” threshold, and λ = iλ/d1, the “decoy win”
threshold where iλ, ic ∈ {1, . . . , d} and c ≤ λ, as well as a (possibly randomized)
mapping function ϕ : {1, . . . , d1 − iλ} �→ {d1 − ic + 1, . . . , d1}.
Procedure:

1. Each hypothesis Hi is assigned an original/decoy win label:

Li =

⎧
⎪⎨
⎪⎩

1 ri ≥ d1 − ic + 1 (original win)
0 ri ∈ (d1 − iλ, d1 − ic + 1) (ignored hypothesis)
−1 ri ≤ d1 − iλ (decoy win)

, (1)

where ri ∈ {1, . . . , d1} is the rank of the original score when added to the list
of its d decoy scores.

2. Each hypothesis Hi is assigned a score Wi = Z̃
(si)
i , where Z̃

(j)
i is the jth

order statistic or the jth largest score among
(
Z̃0

i = Zi, Z̃
1
i , . . . , Z̃d

i

)
, and the

“selected rank”, si, is defined as

si =

⎧
⎨
⎩

ri Li = 1 (so Wi = Zi in an original win)

ui Li = 0 (where ui is randomly chosen uniformly in {d1 − ic + 1, . . . , d1})
ϕ(ri) Li = −1 (so Wi coincides with a decoy score in a decoy win)

(2)
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3. The hypotheses are reordered so that Wi are decreasing, and the list
of discoveries is defined as the subset of original wins D(α, c, λ) :=
{i : i ≤ iαcλ, Li = 1}, where

iαcλ := max
{

i :
1 + # {j ≤ i : Lj = −1}
# {j ≤ i : Lj = 1} ∨ 1

· c

1 − λ
≤ α

}
. (3)

We assume above that all ties in determining the ranks ri, as well as the order of
Wi, are broken randomly, although other ways to handle ties are possible (e.g.,
Sect. 8.3 in our technical report [7]).

Note that the hypotheses for which Li = 0 can effectively be ignored as they
cannot be considered discoveries nor do they factor in the numerator of (3).

Our procedures vary in how they define the (generally randomized) mapping
function ϕ (and hence si in (2)), as well as in how they set the tuning parameters
c, λ. For example, in the case d = 1 setting c = λ = 1/2 and ϕ(1) := 2 our meta-
procedure coincides with TDC. For d > 1 we have increasing flexibility with
d, but one obvious generalization of TDC is to set c = λ = 1/d1. In this case
Li = 1 if the original score is larger than all its competing decoys and otherwise
Li = −1. Thus, by definition, ϕ is constrained to the constant value d1 so si ≡ d1

and Wi is always set to Z
(d1)
i = max

{
Z̃0

i , . . . , Z̃d
i

}
. Hence we refer to this as the

“max method.” As we will see, the max method controls the FDR, but this does
not hold for any choice of c, λ and ϕ. The following section specifies a sufficient
condition on c, λ and ϕ that guarantees FDR control.

3.3 Null Labels Conditional Probabilities Property

Definition 1. Let N be the indices of all true null hypotheses. We say the null
labels conditional probabilities property (NLCP) is satisfied if conditional on all
the scores W = (W1, . . . Wm) the random labels {Li : i ∈ N} are (i) independent
and identically distributed (iid) with P (Li = 1 | W) = c and P (Li = −1 | W) =
1 − λ, and (ii) independent of the false null labels {Li : i /∈ N}.
Note that in claiming that TDC controls the FDR we implicitly assume that a
false match is equally likely to arise from a target win as it is from a decoy win
independently of all other scores [13]. This property coincides with the NLCP
with d = 1 and c = λ = 1/2. Our next theorem shows that the NLCP generally
guarantees the FDR control of our meta-procedure. Specifically, we argue that
with NLCP established step 3 of our meta-procedure can be viewed as a special
case of Barber and Candés’ SSS+ procedure [1] and its extension by Lei and
Fithian’s Adaptive SeqStep (AS) [19]. Both procedures are designed for sequen-
tial hypothesis testing where the order of the hypotheses is pre-determined – by
the scores Wi in our case.

Theorem 1. If the NLCP holds then our meta-procedure controls the FDR in
a finite-sample setting, that is, E (|D(α, c, λ) ∩ N |/|D(α, c, λ)|) ≤ α, where the
expectation is taken with respect to all the decoy draws.
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Why does Theorem 1 make sense? If the NLCP holds then a true null Hi is
an original win (Li = 1) with probability c and is a decoy win with probability
1−λ. Hence, the factor c

1−λ that appears in (3) adjusts the observed number of
decoy wins, # {j ≤ i : Lj = −1}, to estimate the number of (unobserved) false
original wins (those for which the corresponding Hi is a true null). Ignoring the
+1 correction, the adjusted ratio of (3) therefore estimates the FDR in the list
of the first i original wins. The procedure simply takes the largest such list for
which the estimated FDR is ≤ α.

Proof. To see the connection with SSS+ and AS we assign each hypothesis Hi

a p-value pi := P (Li ≥ l). Clearly, if the NLCP holds then

pi =

⎧
⎪⎨
⎪⎩

c l = 1
λ l = 0
1 l = −1

. (4)

Moreover, the NLCP further implies that for any u ∈ (0, 1) and i ∈ N ,
P (pi ≤ u | W) ≤ u, and that the true null labels Li, and hence the true null
p-values, pi, are independent conditionally on W. It follows that, even after sort-
ing the hypotheses by the decreasing order of the scores Wi, the p-values of the
true null hypotheses are still iid valid p-values that are independent from the
false nulls. Hence our result follows from Theorem 3 (SSS+) of [1] for c = λ, and
more generally for c ≤ λ from Theorem 1 (AS) of [19] (with s = c).

Remark 1. With the risk of stating the obvious we note that one cannot simply
apply SSS+ or AS by selecting Wi = Zi for all i with the corresponding empirical
p-values (d1 − ri + 1)/d1. Indeed, in this case the order of the hypotheses (by
Wi) is not independent of the true null p-values.

3.4 When Does the NLCP Hold for Our Meta-procedure?

To further analyze the NLCP we make the following assumption on our decoys.

Definition 2 (formalizing the multiple-decoy problem). If the d1 (orig-
inal and decoy) scores corresponding to each true null hypothesis are iid inde-
pendently of all other scores then we say we have “iid decoys”.

It is clear that if we have iid decoys then for each fixed i ∈ N the rank ri is
uniformly distributed on 1, . . . , d1, and hence P (Li = 1) = c and P (Li = −1) =
1 − λ. However, to determine whether or not ri is still uniformly distributed
when conditioning on W we need to look at the mapping function ϕ as well.

More specifically, in the iid decoys case the conditional distribution of {Li :
i ∈ N} given W clearly factors into the product of the conditional distribution of
each true null Li given Wi: a true null’s Li is independent of all {Lj ,Wj : j �= i}.
Thus, it suffices to show that Li is independent of Wi for each i ∈ N . Moreover,
because Wi is determined in terms of si and the set of scores

{
Z̃0

i , . . . , Z̃d
i

}
,

and because a true null’s label Li and si are independent of the last set (a set
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is unordered), it suffices to show that Li is independent of si. Of course, si is
determined by ϕ as specified in (2).

For example, consider the max method where si ≡ d1 (equivalently ϕ ≡ d1):
in this case, Li is trivially independent of si and hence by the above discussion
the method controls the FDR. In contrast, assuming d1 is even and choosing
ϕ ≡ d1 with c = λ = 1/2 we see that the scores {Wi : i ∈ N,Li = −1} will
generally be larger than the corresponding {Wi : i ∈ N,Li = 1}. Indeed, when
Li = −1 we always choose the maximal score Wi = Z

(d1)
i , whereas Wi is one of

the top half scores when Li = 1. Hence, P (Li = −1 | higher Wi) > 1/2.
So how can we guarantee that the NLCP holds for pre-determined values of

c = ic/d1 and λ = iλ/d1? The next theorem provides a sufficient condition on ϕ
(equivalently on si) to ensure the property holds.

Theorem 2. If the iid decoys assumption holds, and if for any i ∈ N and
j ∈ {d1 − ic + 1, . . . , d1}

P (si = j, ri ≤ d1 − iλ) = P (si = j, Li = −1) =
d1 − iλ
d1 · ic

, (5)

then the NLCP holds and hence our meta-procedure with those values of c, λ and
ϕ controls the FDR.

Proof. By (5), for any i ∈ N and j ∈ {d1 − ic + 1, . . . , d1},

P (Li = 1 | si = j) =
P (si = j, Li = 1)

∑
l∈{−1,0,1} P (si = j, Li = l)

=
1/d1

(d1 − iλ)/(d1 · ic) + (iλ − ic) /d1 · 1/ic + 1/d1
=

ic

d1
= c,

P (Li = −1 | si = j) =
(d1 − iλ) / (d1 · ic)

(d1 − iλ)/(di · ic) + (iλ − ic) /d1 · 1/ic + 1/d1
=

d1 − iλ

d1
= 1 − λ.

At the same time P (Li = 1 | si = j) = 1 for j ∈ {1, . . . , ic} always holds;
therefore, Li is independent of si and by the above discussion the NLCP holds.
Theorem 1 completes the proof.

For any fixed values of c, λ we can readily define a randomized ϕ = ϕu
so that the NLCP holds: randomly and uniformly map {1, . . . , d1 − iλ} onto
{d1 − ic + 1, . . . , d1}. Indeed, in this case (5) holds:

P (si = j, si �= ri) = P (ri ∈ {1, . . . , d1 − iλ}) ·P (si = j | ri ∈ {1, . . . , d1 − iλ}) = d1 − iλ

d1
· 1

ic
.

(6)

3.5 Mirroring and Mirandom

Using the above randomized uniform map ϕu we have a way to define an FDR-
controlling variant of our meta-procedure for any pre-determined c, λ. However,
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we can design more powerful procedures using alternative definitions of ϕ (for
the same values of c, λ).

For example, with c = λ = 1/2 and an even d1 we can consider, in addition to
ϕu, the mirror map: ϕm(j) := d1−j+1. It is easy to see that under the conditions
of Theorem 2, P (si = j, ri ≤ d1 − iλ) = 1/d1 hence (5) holds and the resulting
method, which we refer to as the “mirror method” (because when Li = −1, si

is the rank symmetrically across the median to ri), controls the FDR. Similarly,
we can choose to use a shift map ϕs: ϕs(j) = j + d1/2, which will result in a
third FDR-controlling variant of our meta-procedure for c = λ = 1/2.

Comparing the shift and the mirror maps we note that when Li = −1, ϕs

replaces middling target scores with high decoy scores, whereas ϕm replaces low
target scores with high decoy scores. Of course, the high decoy scores are the
ones more likely to appear in the numerator of (3), and generally we expect
the density of the target scores to monotonically decrease with the quality of the
score. Taken together, it follows that the estimated FDR will generally be higher
when using ϕs than when using ϕm, and hence the variant that uses ϕs will be
weaker than the mirror. By extension the randomized ϕu will fall somewhere
between the other two maps, as can be partly verified by the comparison of the
power using ϕm and ϕu in panel A of Supplementary Fig. 1.

We can readily extend the mirroring principle to other values of c and λ
where ic divides d1 − iλ, however when ic � d1 − iλ we need to introduce some
randomization into the map. Basically, we accomplish this by respecting the
mirror principle as much as we can while using the randomization to ensure
that (5) holds—hence the name mirandom for this map/procedure. It is best
described by an example.

Suppose d = 7. Then for ic = 3 (c = 3/8) and iλ = 4 (λ = 1/2) the mirandom
map, ϕmd, is defined as

ϕmd(j) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

8 j = 1
8 (with probability 1/3), or 7 (with probability 2/3) j = 2
7 (with probability 2/3), or 6 (with probability 1/3) j = 3
6 j = 4

Note the uniform coverage (4/3) of each value in the range, implying that if
j is randomly and uniformly chosen in the domain then ϕmd(j) is uniformly
distributed over {6, 7, 8}.

More generally the mirandom map ϕmd for a given c ≤ λ is defined in two
steps. In the first step it defines a sequence of d1−iλ distributions F1, . . . , Fd1−iλ

on the range {d1 − ic + 1, . . . , d1} so that

– each Fl is defined on a contiguous sequence of natural numbers, and
– if j < l then Fj stochastically dominates Fl and min support {Fj} ≥

max support {Fl}.

In practice, it is straightforward to construct this sequence of distributions and
to see that, when combined, they necessarily satisfy the following equal coverage



64 K. Emery et al.

property: for each j ∈ {d1 − ic + 1, . . . , d1},
∑d1−iλ

l=1 Fl (j) = d1−iλ

ic
. In the second

step, mirandom defines si for any i with ri ∈ {1, . . . , d1 − ic} by randomly
drawing a number from Fri

(independently of everything else).
It follows from the equal coverage property that for any i ∈ N and j ∈

{d1 − ic + 1, . . . , d1} (5) holds for ϕmd for essentially the same reason it held
for ϕu in (6). Hence, the mirandom map allows us to controls the FDR for any
pre-determined values of c, λ.

3.6 Data-Driven Setting of the Tuning Parameters c, λ

All the procedures we consider henceforth are based on the mirandom map.
Where they differ is in how they set c, λ. For example, choosing c = λ = 1/2 gives
us the mirror (assuming d1 is even), c = λ = 1/d1 yields the max, while choosing
λ = 1/2 and c = α ≤ 1/2 coincides with Lei and Fithian’s recommendation
in the related context of sequential hypothesis testing (technically we set c =
α · d1�/d1 and refer to this method as “LF”). All of these seem plausible;
however, our extensive simulations (Supplementary Sect. 6.3) show that none
dominates the others with substantial power to be gained/lost for any particular
problem (Supplementary Fig. 1, panels B-D). As the optimal values of c, λ seem
to vary in a non-trivial way with the nature of the data, as well as with d and
α, we turned to data-driven approaches to setting c, λ.

Lei and Fithian pointed out the connection between the (c, λ) (they refer
to c as s) parameters of their AS procedure and the corresponding parameters
in Storey’s procedure. Specifically, AS’s λ is analogous to the parameter λ of
[33] that determines the interval (λ, 1] from which π0, the fraction of true null
hypotheses, is estimated, and AS’s c is Storey’s rejection threshold (Supplemen-
tary Sect. 6.4).

We take this analogy one step further and essentially use the procedure of
[33] to determine c by applying it to the empirical p-values, p̃i := (d1−ri+1)/d1.
However, to do that, we first need to determine λ.

We could have determined λ by applying the bootstrap approach of [33]
to p̃i. However, in practice we found that using the bootstrap option of the
qvalue package [35] in our setup can significantly compromise our FDR control.
Therefore, instead we devised an alternative approach inspired by the spline-
based method of [34] for estimating π0, where we look for the flattening of the
tail of the p-value histogram as we approach 1. Because our p-values, p̃i, lie on
the lattice i/d1 for i = 1, . . . , d1, instead of threading a spline as in [34], we
repeatedly test whether the number of p-values in the first half of the considered
tail interval (λ, 1] is significantly larger than their number in the second half of
this interval (Supplementary Sect. 6.5).

Our finite-decoy Storey (FDS) procedure starts with determining λ as above
then essentially applies the methodology of [33] to p̃i to set c = tα before apply-
ing mirandom with the chosen c, λ (Supplementary Sect. 6.6). We defined FDS
as close as possible to Storey, Taylor and Siegmund’s recommended procedure
for guaranteed FDR control in the finite setting [33]. Indeed, as we argue in
Supplementary Sect. 6.7, FDS converges to a variant of Storey’s procedure once



Multiple Competition-Based FDR Control and Its Application 65

we let d −→ ∞ (the mirror and mirandom maps in general have an interesting
limit in that setup). However, we found that a variant of FDS that we denote as
FDS1 (Supplementary Sect. 6.6), often yields better power in our setting, so we
considered both variants.

FDS and FDS1 peek at the data to set c, λ hence they no longer fall under
mirandom’s guaranteed FDR control. Still, our extensive simulations show they
essentially control the FDR: their empirical violations of FDR control are roughly
in line with that of the max method, which provably controls the FDR (Sup-
plementary Fig. 2). Importantly, FDS1 seems to deliver overall more power than
the mirror, max, LF, FDS and TDC, and often substantially more (Supplemen-
tary Fig. 3). We note, however, that at times FDS1 has 10–20% less power than
the optimal method, and we observe similar issues with the examples mentioned
in Supplementary Sect. 6.2 where BH has no power (Supplementary Sect. 6.10).
These issues motivate our next procedure.

3.7 A Bootstrap Procedure for Selecting an Optimal Method

Our final, and ultimately our recommended multi-decoy procedure, uses a novel
resampling approach to choose the optimal procedure among several of the above
candidates. Our optimization strategy is indirect: rather than using the resam-
ples to choose the method that maximizes the number of discoveries, we use the
resamples to advise us whether or not such a direct maximization approach is
likely to control the FDR.

Clearly, a direct maximization would have been ideal had we been able to
sample more instances of the data. In reality, that is rarely possible all the more
so with our underlying assumption that the decoys are given and that it is for-
biddingly expensive to generate additional ones. Hence, when a hypothesis is
resampled it comes with its original, as well as its decoy scores, thus further
limiting the variability of our resamples. In particular, direct maximization will
occasionally fail to control the FDR. Our Labeled Bootstrap monitored Maxi-
mization (LBM) procedure tries to identify those cases.

In order to gauge the rate of false discoveries we need labeled samples. To
this end, we propose a segmented resampling procedure that makes informed
guesses (described below) about which of the hypotheses are false nulls before

resampling the indices. The scores
{

Z̃j
i

}d

j=0
associated with each resampled

conjectured true null index are then randomly permuted, which effectively boils
down to randomly sampling j ∈ {0, 1, . . . , d} and swapping the corresponding
original score Z̃0

i = Zi with Z̃j
i .

The effectiveness of our resampling scheme hinges on how informed are our
guesses of the false nulls. To try and increase the overlap between our guesses
and the true false nulls we introduced two modifications to the naive approach of
estimating the number of false nulls in our sample and then uniformly drawing
that many conjectured false nulls. First, we consider increasing sets of hypotheses
Hj ⊂ Hj+1 and verify that the number of conjectured false nulls we draw from
each Hj agrees with our estimate of the number of false nulls in Hj . Second,
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rather than being uniform, our draws within each set Hj are weighted according
to the empirical p-values so that hypotheses with more significant empirical p-
values are more likely to be drawn as conjectured false nulls. Our segmented
resampling procedure is described in detail in Supplementary Sect. 6.8.

In summary, LBM relies on the labeled resamples of our segmented resam-
pling approach to estimate whether we are likely to control the FDR when using
direct maximization (we chose FDS, mirror, and FDS1 as the candidate meth-
ods). If so, then LBM uses the maximizing method; otherwise, LBM chooses a
pre-determined fall-back method (here we consistently use FDS1, see Supple-
mentary Sect. 6.9 for details).

Our simulations suggest that LBM’s control of the FDR is on-par with that
of the, provably FDR-controlling, max: the overall maximal observed violation is
5.0% for LBM while it is 6.7% for max, and the number of curves (out of 1200)
in which the maximal violation exceeds 2% is 21 for LBM, and 24 for the max
(panels A and D, Supplementary Fig. 2). Power-wise LBM arguably offers the
best balance among our proposed procedures, offering substantially more power
in many of the experiments while never giving up too much power when it is not
optimal (Supplementary Fig. 4). Finally, going back to the examples where BH
and Storey’s procedure applied to the empirical p-values fail we find that all our
methods, including LBM, essentially control the FDR where Storey’s procedure
substantially failed to do so, and similarly that LBM delivers substantial power
where BH had none (Supplementary Sect. 6.10).

4 The Peptide Detection Problem

Our peptide detection procedure starts with a generalization of the WOTE pro-
cedure of [11]. We use Tide [4] to find for each spectrum its best matching peptide
in the target database as well as in the d decoy peptide databases. We then assign
to the ith target peptide the observed score, Zi, which is the maximum of all the
PSM scores that were optimally matched to this peptide. We similarly define
the maximal scores of each of that peptide’s d randomly shuffled copies as the
corresponding decoy scores: Z̃1

i , . . . , Z̃d
i . If no spectrum was optimally matched

to a peptide then that peptide’s score is −∞.
We then applied to the above scores TDC (d = 1, with the +1 finite sample

correction)—representing a peptide-level analogue of the picked target-decoy
strategy of [31]—as well as the mirror, LBM and the averaging-based aTDC1

each using d ∈ {3, 5, 7, 9}. Note that to ameliorate the effect of decoy-induced
variability on our comparative analysis we report the average of our analysis
over 100 applications of each method using that many randomly drawn decoy
sets (Supplementary Sect. 6.11).

We used three datasets in our analysis: “human”, “yeast” and “ISB18” (Sup-
plementary Sect. 6.11). Panel D of Supplementary Fig. 5 suggests that when

1 We used the version named aTDC+
1 , which was empirically shown to control the

FDR even for small thresholds/datasets [18].
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applied to the ISB18 dataset all our procedures seem to control the FDR:2 the
empirically estimated FDR is always below the selected threshold. In terms of
power, again we see that LBM is the overall winner: it typically delivers the
largest number of discoveries, and even in the couple of cases where it fails to do
so it is only marginally behind the top method (panels A–C). In contrast, each of
the other methods has some cases where it delivers noticeably fewer discoveries.

More specifically, for α = 0.01 LBM’s average of 142.0 ISB18 discoveries (d =
3) represents an 8.0% increase over TDC’s average of 131.5 ISB18 discoveries,
and we see a 9.4% increase over TDC when using d = 5 (143.3 discoveries). In
the human dataset and for the same α = 0.01 we see a 2.8% increase in power
going from TDC to LBM with d = 3 (532.4 vs. 547.1 discoveries), and a 4.2%
increase when using LBM with d = 5 (555.0 discoveries). LBM offers the biggest
gains in the yeast dataset where we see (again α = 0.01) a 45.5% increase in
power going from TDC to LBM with d = 3 (76.3 vs. 111.0 discoveries), and a
46.7% increase when using LBM with d = 5 (111.9 discoveries). Moreover, we
note that for this α = 0.01 TDC reported 0 yeast discoveries in 33 of the 100
runs (each using a different decoy database), whereas LBM reported a positive
number of discoveries in all 100 runs for each d > 1 we considered.

At the higher FDR thresholds of 0.05 and 0.1 LBM offers a much smaller
power advantage over TDC and is marginally behind for α = 0.1 and d = 3
in the human and yeast datasets. Also, consistent with our simulations, we find
that the mirror lags behind LBM, and in fact in these real datasets it is roughly
on par with TDC.

Finally, although aTDC was designed for the spectrum identification prob-
lem and in practice was never applied to the peptide detection problem, it
was instructive to add aTDC to this comparison. LBM consistently delivered
more detected peptides than aTDC did, although in some cases the difference
is marginal. Still, in the human dataset for α = 0.01 with d = 3 we see a 4.4%
increase in power going from aTDC to LBM (524.2 vs. 547.1 discoveries), and
with d = 5 a 4.6% increase when using LBM (530.8 vs. 555.0 discoveries). Sim-
ilarly, in the ISB18 dataset for α = 0.01 with d = 3 we see a 7.3% increase in
power going from aTDC to LBM (132.3 vs. 142.0 discoveries), and with d = 5 a
6.4% increase when using LBM (134.7 vs. 143.3 discoveries).

In Supplementary Sect. 6.12 we discuss a further analysis where we added two
more spectra runs to the yeast dataset representing a higher budget experiment.
In this case at 1% FDR the average number of TDC discoveries was 275.9 and
for LBM using d = 5 decoys it was 294. Subsequent Gene Ontology enrichment
test of the 54 proteins imputed from the peptide discovered by LBM yielded two
overrepresented biological process terms that were not present in the 50 proteins
imputed from TDC. The two missing terms—“cellular protein localization” and
“cellular macromolecule localization”—are closely related and imply that the
sample under investigation is enriched for proteins responsible in shuttling or
maintaining other proteins in their proper cellular compartments. Critically, an

2 Being a controlled experiment, the ISB18 dataset allows us to empirically gauge the
FDR.
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analysis based solely on the traditional TDC approach would entirely miss this
property of the sample being analyzed.

5 Discussion

We consider a new perspective on the peptide detection problem which can be
framed more broadly as multiple-competition based FDR control. The problem
we pose and the tools we offer can be viewed as bridging the gap between the
canonical FDR controlling procedures of BH and Storey and the single-decoy
approach of the popular TDC used in spectrum identification (ID). Indeed, our
proposed FDS converges to Storey’s method as the number of decoys d −→ ∞
(Supplementary Sect. 6.7).

The methods we propose here rely on our novel mirandom procedure, which
guarantees FDR control in the finite sample case for any pre-determined values
of the tuning parameters c, λ. Our extensive simulations show that which of our
methods delivers the maximal power varies with the properties of the experiment,
as well as with the FDR threshold α. This variation motivates our introduction
of LBM. LBM relies on a novel labeled resampling technique, which allows it to
select its preferred method after testing whether a direct maximization approach
seems to control the FDR. Our simulations, as well as our analysis of peptide
detection using real datasets, suggest that LBM largely controls the FDR and
seems to offer the best balance among our multi-decoy methods as well as a
significant power advantage over the single-decoy TDC.

Finally, as mentioned, our approach is applicable beyond peptide detec-
tion. Moreover, while we stated our results assuming iid decoys, the results
hold in a more general setting of “conditional null exchangeability” (Supple-
mentary Sect. 6.13). This exchangeability is particularly relevant for future work
on generalizing the construction of [1] to multiple knockoffs, where the iid decoys
assumption is unlikely to hold.

Related work. We recently developed aTDC in the context of spectrum ID. The
goal of aTDC was to reduce the decoy-induced variability associated with TDC
by averaging a number of single-decoy competitions [17,18]. As such, aTDC
fundamentally differs from the methods of this paper which simultaneously
use all the decoys in a single competition; hence, the methods proposed here
can deliver a significant power advantage over aTDC (panel F, Supplementary
Fig. 4 and Supplementary Fig. 5). Our new methods are designed for the iid (or
exchangeable) decoys case, which is a reasonable assumption for the peptide
detection problem studied here but does not hold for the spectrum ID for which
aTDC was devised. Indeed, as pointed out in [16], due to the different nature of
native/foreign false discoveries, the spectrum ID problem fundamentally differs
from the setup of this paper and even the above, weaker, null exchangeability
property does not hold in this case. Thus, LBM cannot replace aTDC entirely;
indeed, LBM is too liberal in the context of the spectrum ID problem. Note
that in practice aTDC has not previously been applied to the peptide detection
problem.
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While working on this manuscript we became aware of a related Arxiv sub-
mission [14]. The initial version of that paper had just the mirror method, which
as we show is quite limited in power. A later version that essentially showed up
simultaneously with the submission of our technical report [7] extended their
approach to a more general case; however, the method still consists of a subset
of our independently developed research in that: (a) they do not consider the λ
tuning parameter, (b) they use the uniform random map ϕu which, as we show,
is inferior to mirandom, and (c) they do not offer either a general deterministic
(FDS) or bootstrap based (LBM) data-driven selection of the tuning parame-
ter(s), relying instead on a method that works only in the limited case-control
scenario they consider.

Acknowledgement. This work was supported by National Institutes of Health award
R01GM121818.
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Abstract. Dimensionality reduction is an important first step in the
analysis of single cell RNA-seq (scRNA-seq) data. In addition to enabling
the visualization of the profiled cells, such representations are used by
many downstream analyses methods ranging from pseudo-time recon-
struction to clustering to alignment of scRNA-seq data from different
experiments, platforms, and labs. Both supervised and unsupervised
methods have been proposed to reduce the dimension of scRNA-seq.
However, all methods to date are sensitive to batch effects. When batches
correlate with cell types, as is often the case, their impact can lead to
representations that are batch rather than cell type specific. To over-
come this we developed a domain adversarial neural network model for
learning a reduced dimension representation of scRNA-seq data. The
adversarial model tries to simultaneously optimize two objectives. The
first is the accuracy of cell type assignment and the second is the inability
to distinguish the batch (domain). We tested the method by using the
resulting representation to align several different datasets. As we show,
by overcoming batch effects our method was able to correctly separate
cell types, improving on several prior methods suggested for this task.
Analysis of the top features used by the network indicates that by taking
the batch impact into account, the reduced representation is much better
able to focus on key genes for each cell type.

Keywords: Dimensionality reduction · Single-cell RNA-seq · Batch
effect removal · Domain adversarial training · Data integration

1 Introduction

Single-cell RNA sequencing (scRNA-seq) has revolutionized the study of gene
expression programs [16,27]. The ability to profile genes at the single-cell level
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has revealed novel specific interactions and pathways within cells [43], differences
in the proportions of cell types between samples [17,44], and the identity and
characterization of new cell types [39]. Several biological tissues, systems, and
processes have recently been studied using this technology [17,43,44].

While studies using scRNA-seq provide many insights, they also raise new
computational challenges. One of the major challenges involves the ability to
integrate and compare results from multiple scRNA-seq studies. There are sev-
eral different commercial platforms for performing such experiments, each with
their own biases. Furthermore, similar to other high throughput genomic assays,
scRNA-seq suffers from batch effects which can make cells profiled in one lab
look very different from the same cells profiled at another lab [37,38]. Moreover,
other types of high throughput transcriptomics profiling, including microscopy-
based techniques, are also generating single cell expression datasets [8,40]. The
goal of fully utilizing these spatial datasets motivates the development of meth-
ods that can combine them with scRNA-seq when studying specific biological
tissues and processes.

A number of recent methods have attempted to address this challenge by
developing methods for aligning scRNA-seq data from multiple studies of the
same biological system. Many of these methods rely on identifying nearest neigh-
bors between the different datasets and using them as anchors. Methods that use
this approach include Mutual Nearest Neighbors (MNN) [13] and Seurat [36].
Others including scVI and scAlign first embed all datasets into a common lower
dimensional space. scVI encodes the scRNA-seq data with a deep generative
model conditioning on the batch identifiers [24] while scAlign regularizes the
representation between two datasets by minimizing the random walk probabil-
ity differences between the original and embedding spaces. While these methods
were successful for some datasets, here we show that they are not always able to
correctly match all cell types. A key problem with these methods is the fact that
they are unsupervised and rely on the assumption that cell types profiled by
the different studies overlap. While this works for some datasets, it may fail for
studies in which cells do not fully overlap or for those containing rare cell types.
Unsupervised methods tend to group rare types with the larger types making it
hard to identify them in a joint space.

Recent machine learning work has focused on a related problem termed
“domain adaptation/generalization”. Methods developed for these problems
attempt to learn representations of diverse data that are invariant to technical
confounders [5,25,42]. These methods have been used for multiple applications
such as machine translation for domain specific corpus [4] and face detection [28].
Several methods proposed for domain adaptation rely on the use of adversarial
methods [5,10,21,41], which has been proved effective to align latent distribu-
tions. In addition to the original task such as classification, these methods apply
a domain classifier upon the learned representations. The encoder network is
used for both improving accurate classification while at the same time reducing
the impact of the domain (by “fooling” a domain classifier). This is achieved by
learning encoder weights that simultaneously perform gradient descent on the
label classification task and gradient ascent on the domain classification task.
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Fig. 1. Architecture of scDGN. The network includes three modules: scRNA encoder
fe (blue), label classifier fl (orange) and domain discriminator fd (red). Note that the
red and orange networks use the same encoding as input. Solid lines represent the
forward direction of the neural network while the dashed lines represent the backprop-
agation direction with the corresponding gradient it passes. Gradient Reversal Layers
(GRL) have no effect in forward propagation, but flip the sign of the gradients that flow
through them during backpropagation. This allows the combined network to simulta-
neously optimize label classification and attempt to “fool” the domain discriminator.
Thus, the encoder leads to representations that are invariant to the different domains
while still distinguishing cell types.

Here we extend these approaches, coupling them with Siamese network
learning [20] for overcoming batch effects in scRNA-seq analysis. We define a
“domain” in this paper as a standalone dataset profiled at a single lab using a
single platform. We define “label” as the cell type for each cell in the dataset.
Considering the specificity of the cell types in the scRNA-seq datasets, we pro-
pose a conditional pair sampling strategy that constrains input pair selection
when training the adversarial network. We discuss how to formulate a domain
adaptation network for scRNA-seq data, how to learn the parameters for the
network, and how to train it using available data.

We tested our method on several datasets ranging in size from 10 to 39 cell
types and from 4 to 155 batches. As we show, for all of the datasets our domain
adversarial method improves on previous methods, in some cases significantly.
Visualization of the learned representation from several different methods helps
highlight the advantages of the domain adversarial framework. As we show, the
framework is able to accurately mitigate the batch effects while maintaining the
grouping of cells from the same type across different batches. Biological analysis
of the resulting model identifies key genes that can correctly distinguish between
cell types across different experiments. Such batch invariant genes are promising
candidates for a cell type specific signature that can be used across different
studies to annotate cells.
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2 Methods

2.1 Problem Formulation

To formulate the problem we start with a few notation definitions. We assume
that the single cell RNA-seq data are drawn from the input space X ∈ R

p where
each sample (a cell) x has p features corresponding to the gene expression values.
Cells are also associated with the label y ∈ Y = {1, 2, ...,K} which represents
their cell types. We associate each sample with a specific domain/batch d ∈ D
that represents any standalone dataset profiled at a single lab using a single
platform. Note that we will use domain and batch interchangeably in this paper
for convenience. The data are divided into a training set and a test set that
are drawn from multiple studies. The domains used to collect training data are
not used for the test set and so batch effects can vary between the training
and test data. In practice, each of the domains only contains a small subset of
the cell types. This means that the distribution of cell types is correlated with
the distribution of domains. Thus, the methods that naively learn cell types
based on expression profile [3,18,22] may instead fit domain information and
not generalize well to the unobserved studies.

2.2 Domain Adversarial Training with Siamese Network

To overcome this problem and remove the domain impact when learning a cell
type representation we propose a neural network framework which includes three
modules as shown in Fig. 1: scRNA encoder, label classifier, and domain discrim-
inator. The encoder module fe(x; θe) is used to reduce the dimensions of the data
and contains fully connected layers which produce the hidden features, where θe

represents the parameters in these layers. The label classifier fl(fe; θl) attempts
to predict the label of input x1 whereas the goal of the domain discriminator
fd(fe; θd) is to determine whether a pair of inputs x1 and x2 are from the same
domain or not. Past work for classifying scRNA-seq data only attempted to
minimize the loss function for the label classifier Ll(fl(fe; θl)) [3,23]. Here, we
extend these methods by adding a regularization term based on the adversarial
loss of the domain discriminator Ld(fd(fe; θd)) which we will elaborate later.
The overall loss E on a pair of samples x1 and x2 is denoted by:

E(θe, θl, θd) = Ll

(
fl(fe(x1; θe); θl)

) − λLd

(
fd(fe(x1; θe); θd), fd(fe(x2; θe); θd)

)
,

where λ can control the trade-off between the goals of domain invariance and
higher classification accuracy. For convenience, we use z1 and z2 to denote
the hidden representations of x1 and x2 calculated from fe(x; θe). Inspired by
Siamese networks [20], we implement our domain discriminator by adopting a
contrastive loss [12]:
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Fig. 2. Conditional domain generalization strategy: Shapes represent different labels
and colors (or patterns) represent different domains. For negative pairs from different
domains, we only select those samples with the same label. For positive pairs from the
same domain, we only select the samples with different labels.

Ld

(
fd(z1; θd), fd(z2; θd)

)
= U

1
2
D

(
fd(z1), fd(z2)

)2

+ (1 − U)
1
2
(
max{0,m − D(fd(z1), fd(z2))})2,

where U = 1 indicates that two samples are from the same domain d and U = 0
indicates that they are not, D(·) is the euclidean distance, and m is the margin
that indicates the prediction boundary. The domain discriminator parameters,
θd, are updated using back propagation to maximize the total loss E while the
encoder and classifier parameters, θe and θl, are updated to minimize E. To
allow all three modules to be updated together end-to-end, we use a Gradient
Reversal Layer (Fig. 1) [10,29]. Specifically, Gradient Reversal Layers (GRL)
have no effect in forward propagation, but flip the sign of the gradients that
flow through them during backpropagation. The following provides the overall
optimization problems solved for the network parameters:

(θ̂e, θ̂l) = arg min
θe,θl

E(θe, θl, θ̂d)

(θ̂d) = arg max
θd

E(θ̂e, θ̂l, θd)

In other words, the goal of the domain discriminator is to tell if two samples
are drawn from the same or different batches. By optimizing the scRNA encoder
adversarially against the domain discriminator, we attempt to make sure that the
network representation cannot be used to classify based on domain knowledge.
During the training, the maximization and minimization tasks compete with
each other, which is achieved by adjusting the representations to improve the
accuracy of the label classifier and simultaneously fool the domain discriminator.
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2.3 Conditional Domain Generalization Strategy

Most prior domain adaption or generalization methods focused on the cases
where the distribution of labels is independent of the domains [5,25]. In con-
trast, as we show in Results, for scRNA-seq experiments different studies tend
to focus on certain cell types [17,43,44]. Consequently, it is not reasonable to
completely merge the scRNA-seq data from different batches. To be specific,
aligning the scRNA-seq data from two batches with different sets of cell types
would sacrifice its biological significance and prevent the cell classifier from pre-
dicting effectively. To overcome this issue, instead of arbitrarily choosing positive
pairs (samples from the same domain) and negative pairs (samples from different
domains), we constrain the selection as follows: (1) for positive pairs, only the
samples with different labels from the same domain are selected. (2) for negative
pairs, only the samples with the same label from different domains are selected.
Figure 2 provides a visual interpretation of this strategy. Formally, letting yi and
zi represent the i-th sample’s cell-type label and domain label respectively, we
have the following equations to define the value of U for sample pairs:

U =

{
0, z1 �= z2 and y1 = y2

1, z1 = z2 and y1 �= y2

This strategy prevents the domain adversarial training from aligning sam-
ples with different labels or separating samples with same labels. For example,
in order to fool the discriminator with a positive pair, the encoder must implic-
itly increase the distance of two samples with different cell types. Therefore,
combining this strategy with domain adversarial training allows the network to
learn cell type specific, focused representations. We term our model Single Cell
Domain Generalization Network (scDGN).

3 Results

3.1 Experiment Setups

Datasets. To test our method and to compare it to previous methods for
aligning and classifying scRNA-seq data, we used several recent datasets. These
datasets contain between 6,000 and 45,000 cells, and all include cells profiled in
multiple experiments by different labs and on different platforms.

scQuery: We use a subset of the dataset provided by scQuery, which includes
uniformly processed data from hundreds of studies [3]1. The dataset we use con-
tains 44,490 samples from 155 different experiments. scQuery assigns cells to 39
types spanning diverse categories ranging from immune cells to neurons to organ
specific cells. We use 99 of the 155 batches for training, 26 for validation, and
30 for testing. We provide a list of the studies used for each set in Appendix

1 https://scquery.cs.cmu.edu/processed data/.

https://scquery.cs.cmu.edu/processed_data/


78 S. Ge et al.

Table 1. Basic statistics for scQuery, Suerat pancreas, and PBMC datasets

scQuery Seurat pancreas Seurat pbmc

Data Cell type Domain Data Cell type Domain Data Cell type Domain

Training 37697 39 99 6321 13 3 25977 10 8

Validation 3023 19 26 – – – – – –

Test 3770 23 30 638 13 1 2992 10 1

A.1 [11]. Statistics for the different datasets are shown in Table 1. RPKM nor-
malization is applied to the 20,499 genes in each sample. Note that while there
are 39 cell-types in the training set, only 19 and 23 of them are included in the
validation and test set. This mimics the application of the methods to future
studies that may not profile all types of cells.

PBMC: The Peripheral Blood Mononuclear Cells (PBMC) dataset contains
28,969 cells assigned to 10 blood cell types. The data are profiled in 9 batches
(from 8 different sequencing technologies) [6]. We use the data from the
10xChromiumv2A platform as test data and the rest as training data. Following
the provided tutorial [2], we use the top 3000 variable genes for the analysis.

Seurat Pancreas: The Seurat pancreas dataset is designed for evaluating single
cell alignment algorithms and contains 6321 scRNA-seq samples of human pan-
creatic islet cell produced by four studies. We use the smallest study for the test
data and the other three for training as shown in Table 1. Thirteen canonical
labels of the pancreatic islet cell are assigned to cells in each study. Similar to
the Seurat PBMC dataset, we only used the 3000 most variable genes. To fur-
ther simulate the correlation between cell types and domains for this dataset
we randomly remove the data for 6 of the 13 cell types for each of the train-
ing domains. As a result, we construct 6 synthetic datasets based this strategy
to evaluate the alignment performance of different methods under a high label-
domain correlation setting. The specific cell type information of each dataset is
listed in Appendix A.3 [11].

Model Configurations. We used the network of Lin et al. [23] as the compo-
nents for the encoder and the label classifier in our model. The encoder contains
two hidden layers with 1136 and 100 units. The label classifier is directly con-
nected to the 100 unit layer and makes predictions based on these values. The
domain discriminator contains an additional hidden layer with 64 units and is
also connected to the 100 unit layer of the encoder (Fig. 1). For each layer, tanh()
is used as the non-linear activation function. We test several other possible con-
figurations but did not observe improvement in performance. As is commonly
done, we use a validation set to tune the hyperparameters for learning includ-
ing learning rates, decay, momentum, and the adversarial weight and margin
parameters λ and m. Generally, our analysis indicates that for larger datasets a
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Table 2. Overall performances of different methods. MI represents the mutual infor-
mation between batch and cell type in the corresponding dataset. The highest test
accuracy for each dataset is bolded.

Experiments MI NN [23] CaSTLe [22] MNN [13] scVI [24] Seurat [36] scDGN

scQuery 3.025 0.255 0.156 0.200 0.257 0.144 0.286

PBMC 0.112 0.861 0.865 0.859 0.808 0.830 0.868

Pancreas 1 0.902 0.720 0.705 0.591 0.855 0.812 0.856

Pancreas 2 0.733 0.891 0.764 0.764 0.852 0.825 0.918

Pancreas 3 0.931 0.545 0.722 0.722 0.651 0.751 0.663

Pancreas 4 0.458 0.927 0.914 0.914 0.925 0.881 0.925

Pancreas 5 0.849 0.928 0.882 0.932 0.895 0.865 0.923

Pancreas 6 0.670 0.944 0.917 0.946 0.893 0.907 0.950

Average – 0.826 0.817 0.842 0.845 0.840 0.872

lower weight λ and larger margin m for the adversarial training is preferred and
vice versa. More details about the hyperparameters and training are provided in
Appendix A.2 [11].

Baselines. We compared scDGN to several prior methods for classifying and
aligning scRNA-seq data. These included the neural network (NN) model of
Lin et al. [23] which is developed for classifying scRNA-seq data, CaSTLe [22]
which performs cell type classification based on transfer learning, and several
state-of-the-art alignment methods. For alignment, we compared to MNN [13]
which utilizes mutual nearest neighbors to align data from different batches,
scVI [24] which trains a deep generative model on the scRNA-seq data and uses
an explicit batch identifier to retain conditional independence property of the
representation, and Seurat [36] which first identifies the anchors among different
batches and then projects different datasets using a correction vector based on
the order defined by hierarchical clustering with pairwise distances. Our compar-
isons include both visual projection of the learned alignment (Figs. 4 and 5) and
quantitative analysis of the accuracy of the predicted test cell types (Table 2).
For the latter, to enable comparisons of the supervised and unsupervised meth-
ods, we used the resulting aligned data from the unsupervised methods to train a
neural network that has the same configuration as Lin et al. [23]. For scVI, which
results in a much lower dimensional representation, we used a smaller input vec-
tor and a smaller hidden layer. Note that these alignment methods actually use
the scRNA-seq test data to determine the final dimensionality reduction func-
tion while our method does not utilize the test data for any model decision
or parameter learning. To effectively apply Seurat to scQuery, we remove the
batches which have <100 samples. Also, for those datasets that the assumption
of overlapped cell types is not guaranteed such as scQuery, we find that the
performance of MNN highly depends on the order of alignment. Therefore, for
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MNN on the scQuery dataset, we use 10 random permutations of batch orders
and report the average accuracy.

3.2 Overall Performance

As mentioned above, we use the validation set to select the best model when
using the scQuery dataset. For the smaller datasets, we use the model obtained
after 250 epochs (all models converged after this number of epochs). Test accu-
racy for the different methods is presented in Table 2. We show both mean and
standard deviation of the accuracy for 10 randomly initialized experiments. We
also report the performances on different cell types in Appendix B [11]. In addi-
tion, Table 2 presents the Mutual Information (MI) between labels and domains
which corresponds to the difficulty of the dataset. A larger MI indicates that
models that do not account for the domain are likely to fit the domain informa-
tion rather than the cell type. For the scQuery dataset, we find the accuracy is
low for all methods indicating that this dataset is relatively difficult. This is cor-
roborated by the large MI value. For such data we see a clear advantage for the
scDGN: scDGN improves by over 10% over all other methods (p = 5.069 × 10−5

based on Student’s t-test when compared to the NN baseline which is tied for
second best). The improvements over other single cell alignment methods are
even more significant. scDGN also achieves the best performance on the second
largest dataset, the PBMC dataset. However, given the very low MI for this
dataset the performance of the other methods, including the baseline NN, is
almost as good as the performance of scDGN. The third dataset we test on is
the Seurat pancreas dataset. This is the smallest dataset and so it has the least
number of training samples. Still, of the 6 settings we tested (which differed in
the subset of cells that were excluded from training), we find that scDGN is the
top performer in 4 of them, comparable to the top performer for another 1 and in
only one setting (Pancreas 3, with the highest MI) is significantly outperformed
by Seurat. Note that even for the Pancreas 3 data the domain adversarial train-
ing helps: using this the scDGN is able to improve by more than 20% over the
baseline NN used for the label classifier.

3.3 Visualization of the Representation Learned by Alignment
and Classification Methods

To further explore the effectiveness of the batch removal provided by our pro-
posed domain adversarial training with conditional domain generalization strat-
egy, we visualize the 100-dimensional hidden representations learned by NN and
scDGN: Fig. 3 presents both PCA and t-SNE plots for several different cell types
across the three datasets. Points are colored using their batch IDs in order to
evaluate batch effects. As can be seen, using scDGN we obtain results that are
much better at mixing cells from the different batches when compared to the
baseline NN model. The impact is larger for the pancreas datasets which have
larger MI compared to the PBMC dataset, which helps explain the large increase
in performance for these two datasets.



Supervised Adversarial Alignment of Single-Cell RNA-seq Data 81

Beta Cell (NN)

CD4+T (NN)

Ductal (NN)

Natural killer (NN)

Beta Cell (scDGN)

CD4+T (scDGN)

Ductal (scDGN)

Natural killer (scDGN)
PCA t-SNE

Pa
nc

re
as

1 
M

I=
0.

90
16

Pa
nc

re
as

2 
M

I=
0.

73
27

PB
M

C
 

M
I=

0.
11

23

Acinar Cell (NN) Alpha (NN)Acinar Cell (scDGN) Alpha (scDGN)

Fig. 3. Visualization of learned representations for NN and scDGN: using PCA and
t-SNE Rows: The three datasets we tested the method on. Columns: Methods and cell
types. For each row, data from different batches are distinguished using different colors.
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Fig. 4. PCA visualizations of the representations learned by different models on the
full Pancreas2 dataset. Colors for different cell types and domains are shown in the
legend at the top.

We next extended this comparison and visualized the learned (aligned) rep-
resentations for all methods using data from both the Pancreas2 and scQuery
datasets (Figs. 4 and 5). For the Pancreas2 dataset, we visualize the entire
dataset. For scQuery, given the large number of cell types and domains, we
present PCA visualization of a subset of cell types and domains. As can be seen,
in addition to scDGN, Seurat is also able to successfully mix the data from dif-
ferent batches. However, as the results in Table 2 indicate this may come at the
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Fig. 5. PCA visualizations of the representations of certain cell types and batches by
different models for the scQuery dataset. Top two rows: Cell types. Colors represent
different batches. HSC = hematopoietic stem cell. Bottom two rows: Batches. Colors
represent different cell types.

expense of not correctly separating cell types. MNN and scVI are not always
effective at removing batch effects for the cell types. In contrast, scDGN is able
to do both domain mixing and cell type assignment, leading to its better perfor-
mance overall. For example, for the acinar and alpha cell types in the pancreas
dataset (Fig. 4), only scDGN , MNN, and Seurat are able to align the data from
different domains. However, MNN and Seurat over-correct the representation by
aligning different cell types from different domains, mixing acinar and gamma
cells. Additional visualizations for other cell types and domains can be found in
Appendix C [11], where the same advantages of scDGN over other methods can
be consistently observed.

3.4 Analysis of Key Genes

While NNs are often treated as black boxes, recent methods provide useful direc-
tions for making them more interpretable [31]. Here we use activation maximiza-
tion, which relies on the gradient of the correct category logit with respect to the
input vector to select the key inputs for each of the models [9,33,34]. Formally,
given a particular cell type i and a trained neural network φ, activation maxi-
mization looks for important input genes x′ by solving the following optimization
problem:

x′ = max
x

(φ(x) · ei),
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Table 3. GO analysis results for top 100 scQuery liver genes in the NN method.

term name term id padj − log10 padj

symbiotic process GO:0044403 1.16E-08 7.935246875

interspecies interaction between organisms GO:0044419 3.14E-08 7.503093471

viral process GO:0016032 3.69E-08 7.433145019

immune response GO:0006955 2.5491E-06 5.593613105

multi-organism process GO:0051704 1.40837E-05 4.851282542

immune effector process GO:0002252 4.53533E-05 4.34339136

response to stress GO:0006950 5.56335E-05 4.254663785

defense response GO:0006952 6.18759E-05 4.208478308

Table 4. GO analysis results for top 100 scQuery liver genes in the scDGN method.

term name term id padj − log10 padj

chylomicron remodeling GO:0034371 3.04042E-05 4.517066786

positive reg. of cholesterol esterification GO:0010873 3.04042E-05 4.517066786

negative reg. of cellular component organization GO:0051129 3.94437E-05 4.404022507

protein-lipid complex remodeling GO:0034368 7.34551E-05 4.133978335

plasma lipoprotein particle remodeling GO:0034369 7.34551E-05 4.133978335

protein-containing complex remodeling GO:0034367 8.8522E-05 4.052948555

where ei is the natural basis vector associated with the i-th category. This can
be solved through backpropagation, where the gradient of φ(x) with respect
to x, which can be viewed as the weight of the first-order Taylor expansion of
the neural network, are calculated to iteratively update the input. We follow a
previous method [33] and initialize the optimization with a zero vector. Given
this setting, we ran the optimization for 100 iterations with learning rate set to 1.
The important genes are selected as those inputs leading to the largest changes
compared with the initialization values. To compare scDGN and NN for certain
cell types, we select the top k genes with the largest changes and perform GO
analysis on these selected genes.

As an example, consider the genes identified for the liver cell type using
the scQuery dataset. We select the top 100 genes for this cell type from NN
and scDGN and present the enriched GO categories on Biological Process with
adjusted p-value <1.0×10−4 in Tables 3 and 4. We also list these genes by order
in Appendix A.3 [11]. As can be seen, while a number of significant GO cate-
gories are identified for the top 100 NN genes, these are generic and not liver
specific. They include general terms related to interactions between organs and
immune response categories that are active in multiple organs and cell types.
In sharp contrast, the categories identified for scDGN are much more specific
and highlight key pathways that are mainly utilized in the liver. For exam-
ple, the top category for the scDGN genes, “chylomicron remodeling”, refers
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to the main physiological purpose of chylomicron remnants: to facilitate the
return of bile lipoproteins and cholesterol to the liver [30]. Specifically, in this
pathway chylomicrons (lipoproteins) are broken down (remodeled via hydrol-
ysis) and converted to a form called “chylomicron remnant” that is taken up
by specific receptors that exist primarily on the surface of liver cells [14]. The
second term, “pos. regulation of cholesterol esterification” refers to cholesterol
esterification, a critical step in reverse cholesterol transport, the process in which
excess cholesterol is sent to the liver to be removed from the body [1,26]. Fur-
thermore, Cholesteryl Ester Transfer Protein (CETP) is a key enzyme involved
in this process and is highly expressed in liver cells, and variants of CETP are
associated with increased risk of atherosclerosis [1,32]. The fifth most significant
term, “lipoprotein remodeling” is part of the two aforementioned processes. The
top 100 genes identified by the scDGN include apoa1 (main protein component
of High-Density Lipoprotein cholesterol), apoa2, and apoc1, all of which encode
lipoproteins that are primarily expressed in the liver [7,19]. These genes were
not included in the top 100 genes by the NN. We present the GO analysis results
comparison for several additional cell types in Appendix D.2 [11].

4 Discussion

Single cell computational methods that do not account for batch effects are
likely to fit the noise introduced by the batches. Several recent methods have
been proposed for aligning scRNA-seq from multiple studies of the same tissues
or processes. Most of these methods are unsupervised and assume that the cell
types among different batches overlap. However, we show that these methods
would fail on the studies in which cell types do not fully overlap, which is often
the case when dealing with multiple datasets. To overcome this problem we
extend a supervised scRNA-seq cell type assignment method based on NN and
regularize its prediction to be invariant to batch effects.

Our method is based on the ideas of domain adversarial training. In such
training, two competing tasks are used to optimize the representation of scRNA-
seq data. The first focuses on the traditional goal of cell type identification while
the second attempts to construct representations that are not affected by specific
batch or experimental artifacts. This is accomplished by jointly minimizing a loss
function that takes into account both goals, accounting for the weight of each of
the goals using a gradient reversal layer. We also proposed a conditional strategy
to avoid over-correction. We presented efficient learning methods for this setting
and tested it on three large scale scRNA-seq datasets containing experiments
from several different platforms for partially overlapping cell types.

As we show, our scDGN method is able to correctly identify cell types in
the test datasets. For the largest dataset we tested on which contained close to
40 different cell types, scDGN significantly outperformed all prior methods. It
also ranked first for the 2nd largest dataset and for all but 1 of the 6 tests on
the third dataset. Importantly, it always outperformed the supervised learning
based method indicating that batch effects should be addressed when designing
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such methods for cell type assignments. In addition to accurately assigning cell
types, further analysis of significant genes indicates that by overcoming batch
effects scDGN is better able to focus on relevant sets of genes when compared
to prior supervised methods, explaining its improvement in accuracy.

While scDGN performed best on the data we analyzed, there are a number of
possible issues with this approach. First, it learns a large number of parameters
which require large input datasets. However, as we showed, scDGN is able to
perform well even for datasets with a few thousand cells which matches current
sizes of scRNA-seq datasets. Second, scDGN is based on NNs which are often
seen as a black box, making it hard to interpret the resulting model and its
biological relevance. Recent work provides a number of directions that can be
used to overcome this issue. As we showed, using activation maximization we
were able to identify several relevant cell type specific genes in the learned net-
work. Future work would include using additional NN interpretation methods,
including LIME [31] or ROAR and KAR [15], to further identify the set of genes
that play the largest role in the decisions the network makes. Third, as shown in
Third, as shown in Appendix C.13 [11], scDGN sometimes does not mix up the
representations from different batches for all cell types. Considering the visual-
ization results for NN in Appendix C.18 [11] and its competitive performance in
Table 2 together, it may indicate that it is not always necessary to remove batch
effects for the model to achieve high test accuracy. Therefore, it is worthwhile to
further study when the alignment is imperative. Finally, unlike prior scRNA-seq
alignment methods scDGN is supervised. While this is an advantage when it
comes to accuracy, as we have shown, it may be a problem for the new data.
We believe that as more scRNA-seq and other high throughput single cell data
accumulate, we would have labeled data for most cell types which would enable
training an scDGN for even more cell types. As we have shown with the scQuery
dataset, for which scDGN significantly outperformed all other methods, when
such data exists scDGN is able to correctly align experiments and platforms not
seen in the training set.

scDGN is implemented in Python with the PyTorch API [35] and users can
obtain the code and sampled data from https://github.com/SongweiGe/scDGN.
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Abstract. Accurate predictions of protein structure properties, e.g. sec-
ondary structure and solvent accessibility, are essential in analyzing the
structure and function of a protein. PSSM (Position-Specific Scoring
Matrix) features are widely used in the structure property prediction.
However, some proteins may have low-quality PSSM features due to
insufficient homologous sequences, leading to limited prediction accuracy.
To address this limitation, we propose an enhancing scheme for PSSM
features. We introduce the “Bagging MSA” method to calculate PSSM
features used to train our model, and adopt a convolutional network
to capture local context features and bidirectional-LSTM for long-term
dependencies, and integrate them under an unsupervised framework.
Structure property prediction models are then built upon such enhanced
PSSM features for more accurate predictions. Empirical evaluation of
CB513, CASP11, and CASP12 datasets indicate that our unsupervised
enhancing scheme indeed generates more informative PSSM features for
structure property prediction.

Keywords: Deep learning · Unsupervised learning · Enhancing
PSSM · Protein secondary structure prediction

1 Introduction

The function of a protein is closely related to its structure, which is largely deter-
mined by the amino-acid sequence. However, predicting one protein’s structure
based on its amino-acid sequence alone remains an open and challenging prob-
lem. An alternative approach is to firstly predict structure properties, includ-
ing secondary structure, solvent accessibility, and backbone dihedral angles [1].
Those predictions are combined eventually to help the final prediction of protein
structure.

PSSM (Position-Specific Scoring Matrix) features [3], which reflect per-
residue evolution patterns in the sequence profile, are commonly used in the
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structure property prediction [4,5]. The quality of PSSM features is basically
determined by the underlying multiple sequence alignments (MSA) [6]. MSA
requires searching the query amino-acid sequence through a large-scale sequence
database, e.g. UniRef [18] and UniClust [19]. The MSA quality of the pro-
tein can be evaluated by counting the number of homologous proteins, or
the non-redundant sequence homologs (Meff [2]) retrieved from the database.
However, for those proteins with a limited number of high-quality homologous
sequences, the prediction quality is often limited due to less informative PSSM
features [7]. One possible solution is to develop more efficient and accurate MSA
search algorithm, such as SABERTOOTH [8], hhblits [9], jackhmmer [10], and
HBLAST [11]. These algorithms have achieved certain performance improvement
by speeding up the searching process, as well as find more accurate homologous
protein sequences in the database. However, if the database did not contain
enough homologous protein sequences for the target protein, it is still inaccessi-
ble to obtain sufficient quantity or high quality of the MSA, yet the corresponding
high-quality PSSM features.

In this paper, we propose an unsupervised deep learning method to enhance
the low-quality PSSM features of proteins. To be specific, during the training of
our model, we randomly sample the MSA of each protein in a certain proportion
in each learning iteration, which we called “Bagging MSA”. Then, we use the
“Weak PSSMs” calculated by these bags and the “Original PSSM” calculated
by all MSA to train our network. In this way, our network can learn how to
generate high-quality PSSM from a protein that has low-quality PSSM features.

The most commonly predicted one-dimensional structural property of a pro-
tein is the secondary structure. Therefore, in order to evaluate our method on
different prediction networks, we use two widely used deep learning techniques
in the protein secondary prediction area, which are CNN and bi-LSTM mod-
els [26,27,33]. The knowledge of the secondary structure of proteins and the
network of validation of our method are described in Sects. 2 and 3.

The technical contributions of this paper are summarized as: (1) Our method
is the first attempt to enhance low quality PSSMs of proteins. According to the
experimental results, our method significantly improve the secondary structure
prediction task of proteins with weak PSSM. (2) In the unsupervised module,
our method calculate PSSM features by randomly sampling 10% to 20% MSA
in each training iteration as the input data, and use the original PSSM features
as unsupervised labels. This approach not only increases the diversity of the
data, but also make the network more flexible to learn different PSSM quality
differences so as to give full play to unsupervised learning. (3) Our method is
generalizable since it is capable for any prediction model with PSSM as the input
other than just secondary protein prediction task. (4) The unsupervised part of
our method is independent, so the output could be used as the input directly
for the inference phase of any prediction network, which is more flexible and
efficient.
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2 Related Work

2.1 Position-Specific Scoring Matrix

MSA. A multiple sequence alignment (MSA) is a sequence alignment of mul-
tiple homologous protein sequences for the target protein [6]. See Fig. 1 for an
example of MSA. MSA is an important step in comparative analyses and prop-
erty predicting of biological sequences, since a lot of information e.g. evolution
and co-evolution clusters, are displayed on the MSA and can be mapped to the
target sequence of choice or on the protein structure [12]. Almost all existing
approaches to studying proteins utilize MSAs indirectly, that is, they convert
MSAs into a position-specific scoring matrix (PSSM) that represents the distri-
bution of amino acid types on each column [13].

Fig. 1. An example of MSA.

PSSMs Calculation. PSSM scores are generally expressed as positive or neg-
ative integers. A positive score indicates that the frequency of substitutions in
a given amino acid sequence is higher than expected, while a negative score
indicates that the frequency of substitutions is lower than expected [14,15].

We extract the PSSM features of size n×21 based on Eqs. (1) and (2), where,
n is the protein sequence length, 21 is the sum of twenty known amino acids
appeared in the genetic code and one unknown amino acid marker. Frequency
is the count of occurrences of residue j (j = 1, 2, 3,. . . , 21) in column i (i= 1,
2, 3,. . . , n), 20 represents the known amino acids. A simple procedure called
pseudo-counts assigns minimal scores to residues which do not appear at a certain
position of the alignment according to the following Eq. (1), where we set the
Pseudocount equal to 1. N is the number of sequences in the multiple alignments.
The Background frequency in Eq. (2) is the frequency of each residue appearing
in the entire MSA of the protein.

scorei,j =
Frequency + Pseudocount

N + 20Pseudocount
(1)

PSSMi,j = log(score/Backgroundfrequency) (2)
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2.2 Scoring Criteria for PSSM

Count Score. The number of sequence homologs is recorded as the Count
score. As we mentioned before, PSSM is a matrix calculated from the MSA, and
the quality of the MSA directly determines the quality of the PSSM. We can
use the number of homologous proteins of the MSA to evaluate the quality of
the PSSM, which is represented as Count score. The larger Count score leads to
more reliable PSSM. Thus, the Count score is one important criteria to evaluate
the quality of the PSSM features.

Meff Score. We introduce the Meff score as the number of non-redundant
sequence homologs. As in [7], homologous sequence in MSA of proteins have some
redundancy, so we use Meff score as another criteria for PSSM to demonstrates
the superiority and stability of our model under various evaluation standards.

The calculation formula of Meff score is shown in Eq. (3). where both i and
j go over all the sequence homologs, Si,j is a binary number which describes
the similarity of two proteins. We use the hamming distance to compute the
similarity of two sequence homologs [2]: Si,j is 1 if the normalized hamming
distance is less than 0.3; otherwise Si,j is set to 0.

Meff =
∑

i

1∑
j Si,j

(3)

2.3 Protein Secondary Structure Prediction

The sequence space of proteins is vast, with perhaps 20 residues at each posi-
tion, and evolution has been sampling it over billions of years. One of the most
important sub-problems in protein studies is the secondary structure prediction.
Protein secondary structure refers to the local conformation of the polypeptide
backbone of proteins. There are two regular SS states: alpha-helix (H) and beta-
strand (E), and one irregular SS type: coil region (C) [16]. The other way is a
DSSP algorithm [17] to classify SS into 8 fine-grained states. In particular, the
algorithm assigns 3 types for helix (G, H and I), 2 types for strand (E and B),
and 3 types for coil (T, S and L). Overall, many computational methods have
been developed to predict both 3-state secondary structure and a few to predict
8-state secondary structure. Meanwhile, since a chain of 8-state secondary struc-
tures contains more precise structural information for a variety of applications
[23,35], the focus of secondary structure prediction has been shifted from 3-
state secondary structure (Q3) prediction to the prediction of 8-state secondary
structures (Q8). Because the Q8 problem is much more complicated than the
Q3 problem, deep learning methods would be more suitable for addressing the
Q8 problem.
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3 Method

3.1 Framework Overview

Our method consists of two stages: enhancing PSSM and secondary structure
prediction. The workflow of the inference phase is shown in Fig. 2. We input the
low-quality PSSM into the trained unsupervised model with the protein sequence
features to generate enhanced PSSM features. Then the enhanced PSSM features
with sequence features are concatenated as the input of the inference phase
for the prediction network. Finally, the results of the enhanced PSSM and the
original PSSM on the prediction model are compared for evaluation.

3.2 Unsupervised Learning to Enhance PSSM

The architecture of our unsupervised learning method is shown in Fig. 3, which
mainly contains four parts: Bagging MSA module, Local contexts feature encod-
ing module, Long-distance interdependencies feature encoding module and Gen-
eration module. For each amino acid in a protein sequence, its input features
are concatenated by its sequence features and PSSM features, which form a
2l (l= 21) dimensional vector. We denote the size of the entire input features
as N × 2l, and the size of the output from unsupervised learning network is
N × l, where N is the length of the protein sequence. The details regarding input
features are explained in the experiments section.

Fig. 2. Framework overview.

Bagging MSA. The main purpose of our enhancing PSSM module is to gen-
erate higher-quality PSSM features from low-quality PSSM features calculated
from MSA with fewer rows or lower quality. Here we introduce the concept
of ‘Bagging MSA’: As shown in Fig. 3, we randomly sample a small part of
MSA for a protein and repeat this operation in each training iteration and for
each protein. We bring in a hyper-parameter R to determine the proportion of
selected homologous proteins in MSA randomly per training iteration, e.g. when
R = [10%, 20%], a number greater than 10% and less than 20% would be ran-
domly selected for each batch, and the homologous proteins in MSA would be
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randomly sampled according to this proportion. In this way, we are able to get
many MSA bags, and each MSA bag would calculate a so-called ‘Weak PSSM’.
We used the weak PSSM calculated by these bags as a part of the input unsu-
pervised data, and the original PSSM calculated by the complete MSA as the
unsupervised labels. This module is ideal for unsupervised learning due to the
size of the PSSM matrix is always the same for the same protein, even though
the MSA size of each bag and label is different.

Local Contexts Feature Encoding Module. We introduce a fully convo-
lutional architecture as the local contexts feature encoding module. Recently,
CNN has been successfully used in the seq2seq model [21] and machine transla-
tion [22], as well as applied in several protein studies, which achieved remarkable
successes [23,24]. This one-dimensional convolution operation is usually used to
process sequence data, such as emotional analysis and sequence structure pre-
diction [25,26], so CNN would be a good fit for our prediction task.

In our method, the local contexts feature encoding module exploits the One-
dimensional convolution to extract the local hidden patterns and features of
adjacent amino-acid residues from the input matrix. This module contains three
1-d convolutional layers with the ReLU activation function, and the window size
is equal to three for each layer, as shown in AppendixA.1.

Fig. 3. Unsupervised learning model. (1) Bagging MSA module has two outputs: “Orig-
inal PSSM” calculated by all MSA are used as the unsupervised labels; “Weak PSSM”
calculated via the bags of MSA are fed into the two encoding networks. (2) The outputs
of the two encoding networks are local features and long-distance features respectively.
(3) The output of the generation module is the “Enhanced PSSM”, which is used to
calculate the loss from the “Original PSSM” to adjust the networks.

Long-Distance Interdependencies Feature Encoding Module. As we
mentioned before, CNNs have the ability to capture local relationships of spa-
tial or temporal structures, but we can not capture sufficient long-range sequence
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information by increasing the window size and network depth infinitely. However,
long-distance interdependencies [27] of amino-acid residues are also critical for
amino acid sequence information. Inspired by the success of some methods which
use a combination of multiple neural networks, for example, coupling residual
two-dimensional bidirectional long short-term memory with convolutional neu-
ral networks [28], ACLSTM [29] and CRRNNs [30], our method not only uses
convolutional neural network with a few layers but also another network to catch
Long-distance interdependencies feature.

RNN-based model has achieved remarkable results in sequence modeling;
however, the gradient vector may grow or degrade exponentially over a long
sequence during the training process. Thus LSTM neural networks are designed
to avoid this problem by introducing the gate structures, which is good at cap-
turing the long-range relations (from the first atom to the last one).

In our method, the long-distance interdependencies feature encoding mod-
ule includes two stacked bidirectional LSTM neural networks. As shown in
AppendixA.1, the input data are fed into the feature encoding model by its
original order as well as the reverse order, and then the two outputs are con-
catenated together as the final features representation.

Generation Module. Our method has one fully connected hidden layer in the
generation module. Moreover, in order to get the complete information of protein
sequence, as shown in Fig. 3, we directly concatenate the outputs of the previous
two modules and feed them into the fully connected (FC) layer with the ReLU
activation function to generate the enhanced PSSMs. We use the MSE loss [20]
to adjust our unsupervised network, as shown in Eq. 4.

Lossunsup = MSE(PSSMEnhanced, PSSMFull) (4)

3.3 Prediction Network

Since our unsupervised learning method is an independent enhancing PSSM
network, we are able to use any deep learning network for the prediction module
to verify the generalization of our method. In this study, we use two protein
secondary structure prediction networks to evaluate our method: CNN-based
network and LSTM-based network, which are two widely used deep learning
prediction networks. For CNN-based method, we use five CNN layers [26], and
fix the window size to 11 since the average length of an alpha-helix is around
eleven residues [31] and that of a beta-strand is around six [32]. For LSTM-based
method, we use two stacked bidirectional LSTM neural networks [33] and a fully
connected (FC) layer.

The input data for the prediction network is the same as the input for the
unsupervised learning model, which is the concatenation of sequence information
and PSSM features calculated by the complete MSA of the protein. The protein
secondary structure is used as the label. Based on the validation results, we select
the best model as the secondary structure predictor, then feed the enhanced
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PSSM features generated by our unsupervised network and the original PSSM
into the predictor respectively. Last, the prediction performances of the two
PSSM features are compared to evaluate the effectiveness of our enhanced PSSM
model.

4 Experiments

4.1 Experiments Set up

Dataset. We use four publicly available datasets: CullPDB [34] of 5926 pro-
teins, CB513 [35] of 513 proteins, CASP11 of 85 proteins, and CASP12 of 40
proteins. CASP11 and CASP12 datasets are downloaded from the official CASP
website [36]. 53 duplicated proteins observed in the CullPDB are removed and
591 proteins are randomly sampled for validation, then the remaining proteins
are used for training. The other three datasets are used as the test dataset. We
generate the position specific scoring matrix (PSSM) by searching the Uniref50
[37] database. And the labels used for the prediction network are 8-state protein
secondary structures which are generated by DSSP [17,41].

Input Features. The input features for the encoding networks of our method
are described in [35]. We extract the MSA from Uniref50 databases using
Jackhmmer [10], and set the parameters refer to their guide [38], details are
listed in AppendixA.3. We randomly sample 10% to 20% (R = [10%, 20%]) of
the MSA for each protein within each learning iteration (Bagging MSA), and
then we calculate PSSM using Eqs. (1) and (2). We transform those PSSMs by
the Sigmoid function 1/(1 + exp(−x)) where x is a PSSM entry to map each
PSSM value in between 0 and 1. As shown in Fig. 3, the input features of the
two encoding modules is a N × 2l matrix, where N is the length of the input
sequence and 2l is the dimension of the concatenated vectors. In our method,
the sequence feature vectors are sparse one-hot vectors of 21 elements (l = 21)
since there might be some unknown amino acids in a protein sequence. There-
fore, there are 42 input features in total for each residue, 21 from PSSM features
and the other 21 from sequence feature.

For the prediction part, there are 42 input features for each residue too, 21
of them are from PSSM features and the others are from sequence feature. We
compare the testing results of the enhanced input features with the original input
features to evaluate the effectiveness of our unsupervised model.

Neural Network Structure and Learning Hyper-parameters. The frame-
work of our unsupervised learning method is very flexible in the network struc-
ture selection.

In the long-distance interdependencies feature encoding module, we can set
different hidden layers and hidden dimensions (with different layers and layer
hidden sizes). Moreover, different types of network can be chosen in addition to
the bi-LSTM network, such as LSTM [39]. Due to the space limitation of this
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paper, two stacked bi-LSTM with 512 hidden units are used for all experiments.
Then, we use 1d-CNN of 3 hidden layers, and 100 neurons for each layer in the
local contexts feature encoding module. The window size at each layer is set to 3.

For optimization, we use multi-step LR (learning rate) descent with [30, 100,
200] for epoch indices. The multiplicative factor of learning rate decay is 0.1. We
use Adam [40] as the optimizer of our method. The initial learning rate for all
training models is 0.0001.

For the protein secondary structure prediction task, we have two kinds of
networks. For CNN network, we use five 1-dim CNN layers with window size
11, and neurons size 100 for each layer. For LSTM network, we use two stacked
bi-LSTM with 512 hidden units and one fully connected (FC) layer.

Evaluation Metric. For the unsupervised learning, we calculate the RMSE
of the Enhanced PSSM and the Original PSSM in the input feature as the
evaluation matrix. Q8 accuracy is the criterion of the prediction module.

Fig. 4. The average accuracy of proteins within Count score ranges (a) CNN-based
prediction model; (b) LSTM-based prediction model.

Fig. 5. The average accuracy of proteins within Meff score ranges (a) CNN-based
prediction model; (b) LSTM-based prediction model.
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4.2 Results

Relationship Between PSSM Quality and Performance. As we men-
tioned before, we use two methods to score the quality of the protein PSSM,
higher score represents better quality. Figures 4 and 5 show the relationship
between the quality of PSSM and the corresponding performance on the predic-
tion networks on CB513 dataset. Figure 4 shows the average accuracy obtained
by using Count score as the evaluation standard on the prediction network of
CNN and LSTM respectively, and Fig. 5 for the Meff score. We can find that
proteins with high-quality PSSM performs better than proteins with low-quality
PSSM both CNN-based and LSTM-based prediction network, as well as under
all evaluations including Count score or Meff score. Tables 1 and 2 show the
data distribution within the ranges Count and Meff Scores. Thus, our method
aims at improving the prediction performance for those proteins with original
low-quality PSSM by enhancing their PSSM features. See the gray-scale images
in AppendixA.2, which show the difference between “before” and “after” PSSM
enhancement.

Table 1. Number of proteins in certain Count score ranges.

range (0,20] (20,40] (40,60] (60,80] (80,120] (120,150] (150,200] (200,300] (300,500] (500,700] (700,900] (900,1000]
num 2 16 18 19 29 11 23 27 45 26 26 271

Table 2. Number of proteins in certain Meff score ranges.

range (0,15] (15,25] (25,35] (35,45] (45,55] (55,80] (80,120] (120,150] (150,200] (200,400] (400,600] (600,800] (800,1000]
num 12 23 18 9 16 18 19 15 23 68 89 89 114

Enhancement on Low-Quality PSSM Protein. Our method is used to
enhance the performance of proteins with low-quality PSSM in secondary struc-
ture prediction task. However, while improving the low-quality PSSM, noise
might have been added to the high-quality PSSM, which would end up with a
lower accuracy score. Therefore, we need to find a standard to determine the
definition of low-quality proteins for our method, which would be the thresholds
of the Count score and the Meff score. As shown in Fig. 6, our method increase
or decrease the accuracy of prediction tasks under certain ranges. Greater than 0
means that the average accuracy of our method has improved under the thresh-
old, while less than 0 means that it has decreased. Based on the accuracy results,
we are able to find a consistent trend for both CNN-based and LSTM-based mod-
els: our method shows significant superiority for proteins with a Count score less
than 60 and a Meff score less than 35.

In addition, in order to verify the threshold we selected is suitable for other
datasets, we also report the results of casp11 and casp12, which are shown
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Fig. 6. Our method has achieved significant improvement in all prediction tasks (CNN-
based and LSTM-based) when the Count score is less than 60 (a, b), and the Meff score
is less than 35 (c, d). These figures are the results on CB513 dataset.

Table 3. Comparison results (Q8 accuracy) of our enhanced PSSM vs. original PSSM.
Enhancement experiments are conducted for low-quality proteins (Count score ≤ 60,
Meff score ≤ 35) obtained from CB513, CASP11, and CASP12 datasets. Prediction
experiments are conducted on CNN-based model and LSTM-based model.

Prediction model Score range Datasets Original
PSSM

Enhanced
PSSM

Protein
num

CNN-based Count ≤ 60 CB513 59.106% 61.093% 36

CASP11 64.196% 67.781% 12

CASP12 53.300% 56.519% 3

Meff ≤ 35 CB513 55.973% 56.717% 53

CASP11 62.846% 65.732% 17

CASP12 52.353% 54.462% 7

LSTM-based Count ≤ 60 CB513 60.982% 63.041% 36

CASP11 64.037% 64.990% 12

CASP12 54.335% 55.865% 3

Meff ≤ 35 CB513 56.929% 57.831% 53

CASP11 63.216% 63.504% 17

CASP12 51.493% 53.921% 7



Bagging MSA Learning 99

in Table 3. The performances of extensive experiments demonstrate that our
method has a significant effect on enhancing low-quality PSSM for different
datasets.

5 Conclusion

We propose an innovative Bagging MSA model to enhance low-quality PSSM
features of proteins, which would help promote their performance in secondary
structure prediction task. We employ an unsupervised learning network to
enhance the PSSM features, and two conventional deep learning prediction mod-
els as the protein secondary structure prediction networks to prove the effective-
ness of our method on various datasets. Our method is the first attempt to
enhance PSSM features in the field of protein research. Moreover, the gener-
alization of our Bagging MSA makes it suitable for numerous PSSM related
protein prediction tasks. PSSM features are essential for studying proteins, our
method pioneer another way to address the prediction limitation for low-quality
proteins.

A Appendix

A.1 Encoding Networks

As shown in Figs. 7 and 8, we use 1d-CNN of 3 hidden layers, and 100 neurons
for each layer in the local contexts feature encoding module. The window size at
each layer is set to 3. And for long-distance module, two stacked bi-LSTM with
512 hidden units are used for all experiments.

Fig. 7. Local contexts feature encoding module includes three layers of 1d-CNN and
the top layer (3rd layer) is the output layer.
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Fig. 8. Long-distance interdependencies feature encoding module includes two stacked
BLSTM neural networks.

A.2 Gray-Scale Images of PSSM

As shown in Fig. 9, which is a set of gray-scale images of the original pssm (a) and
enhanced pssm (b) of a protein from cb513 dataset. Where, y-axis is the length
N of the protein sequence, the sample protein contains 26 residues (N = 26), x-
axis is l, 20 plus an unknown amino acids marker (l = 21). Lighter colors indicate

Fig. 9. Gray-scale images of the PSSMs. (a) Original PSSM of 6O4M protein; (b)
Enhanced PSSM of 6O4M protein.
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larger values, while darker colors indicate smaller values. See https://www.rcsb.
org for the structure information of the protein (6O4M) in the example.

A.3 Jackhmmer Options for Extracting MSA

In the per-target output, report target profiles with an E-value ≤1.0; In the
per-domain output, for target profiles that have already satisfied the per-profile
reporting threshold, report individual domains with a conditional E-value of
≤1.0; Use a conditional E-value of ≤0.03 as the per-domain inclusion thresh-
old, in targets that have already satisfied the overall per-target inclusion thresh-
old; Obtain residue alignment probabilities from the built-in substitution matrix
named BLOSUM62.

A.4 Infrastructure and Software

Our model was implemented through Pytorch package. And our models was
trained in a self-hosted 16-GPU cluster platform with Intel i7 6700K @ 4.00 GHz
CPU, 64 Gigabytes RAM and four Nvidia GTX 1080Ti GPUs on each worksta-
tion.
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Abstract. We present an algorithm for the optimal alignment of
sequences to genome graphs. It works by phrasing the edit distance min-
imization task as finding a shortest path on an implicit alignment graph.
To find a shortest path, we instantiate the A� paradigm with a novel
domain-specific heuristic function that accounts for the upcoming sub-
sequence in the query to be aligned, resulting in a provably optimal
alignment algorithm called AStarix.

Experimental evaluation of AStarix shows that it is 1–2 orders of
magnitude faster than state-of-the-art optimal algorithms on the task
of aligning Illumina reads to reference genome graphs. Implementations
and evaluations are available at https://github.com/eth-sri/astarix.

Keywords: Next-generation sequencing · Optimal alignment ·
Genome graph · Shortest path · A� algorithm

1 Introduction

The analysis and understanding of genetic variation encoded in the genome
of an organism lies at the center of computational biology and medicine. Varia-
tion is usually identified through matching sequences obtained from DNA/RNA-
sequencing back to a reference (genome) sequence in the process of variant call-
ing, making the alignment task a core problem in sequence bioinformatics.

Historically, a single linear reference sequence has been used to represent the
most common variants in a population. While providing a working abstraction
for most cases, rare or sub-population specific variation is especially hard to
model in this setting, creating a reference allele bias [4,35]. Consequently, in
the last few years, the field has shifted first towards using sets of reference
sequences, and more recently to graph data structures (so-called genome graphs),
to represent many genomes or haplotypes simultaneously [7,9,25].

Both for sequence-to-sequence alignment and sequence-to-graph alignment,
heuristics are employed to keep alignment tractable [2,9,21], especially for large
populations of human-sized genomes. While such heuristics find the correct align-
ment for simple references, they often perform poorly in regions of very high
complexity, such as in the human major histocompatibility complex (MHC) [7],
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in complex but rare genotypes arising from somatic-subclones in tumor sequenc-
ing data [10], or in the presence of frequent sequencing errors [29]. Importantly,
these cases can be of specific clinical or biological interest, and incorrect align-
ment can cause severe biases for downstream analyses. For instance, the com-
bination of high variability of MHC sequences in humans and small differences
between alleles [5] leads to a risk of misclassifications due to suboptimal align-
ment. Guaranteeing optimal alignment against all variations represented in a
graph is a major step towards alleviating those biases.

Formally, we consider the optimal sequence-to-graph alignment problem, the
task of finding an optimal base-to-base correspondence between a query sequence
and a (possibly cyclic) walk in the graph. Related alignment problems have
already been formulated as graph shortest path problems [3,16].

1.1 Related Work

Seed-and-Extend. Since optimal alignment is often intractable, many align-
ers use heuristics, most commonly the seed-and-extend paradigm [2,21,22]. In
this approach, alignment initiation sites (seeds) are determined, which are then
extended to form the alignments of the query sequence. The fundamental issue
with this approach, however, is that the seeding and extension phases are mostly
decoupled during alignment. Thus, an algorithm with a provably optimal exten-
sion phase may not result in optimal alignments due to the selection of a sub-
optimal seed in the first phase. In cases of high sequence variability, the seeding
phase may even fail to find an appropriate seed from which to extend.

Accounting for Variation. First attempts to include variation into the ref-
erence data structure were made by augmenting the local alignment method to
consider alternative walks during the extend step [17,30]. This approach has since
been extended from the linear reference case to graph references. To represent
non-reference variation of multiple references during the seeding stage, HISAT2
uses generalized compressed suffix arrays [33] to index walks in an augmented
reference sequence, forming a local genome graph [19]. VG [9] uses a similar
technique [32] to index variation graphs representing a population of references.

BrownieAligner, another recent work developed for local alignment of
sequences to de Bruijn graph representations of genomic variation, features
an optimal extension phase using a branch-and-bound-based early cutoff, while
employing a heuristic maximal-exact-match approach for seeding [11].

Optimal Alignment. Current optimal sequence-to-graph alignment algorithms
reach their worst-case O(nm) runtime [16]. In this light, approaches for improv-
ing the efficiency of optimal alignment have taken advantage of specialized fea-
tures of modern CPUs to improve the practical runtime of the Smith-Waterman
dynamic programming (DP) algorithm [34] considering all possible starting
nodes. These use modern SIMD instructions (e.g. VG [9] and PaSGAL [15])
or reformulations of edit distance computation to allow for bit-parallel compu-
tations in GraphAligner1 [27]. Many of these, however, are designed only for
1 We refer as BitParallel to the bit-parallel DP algorithm implemented in
GraphAligner tool [27].
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specific types of genome graphs, such as de Bruijn graphs [11,23,24] and vari-
ation graphs [9]. A compromise often made when aligning sequences to cyclic
graphs using algorithms reliant on directed acyclic graphs involves the compu-
tationally expensive “DAG-ification” of graph regions [9,18].

A� Algorithm. We aim to guarantee optimal alignment while optimizing the
average runtime to not reach its worst case complexity. While Dijkstra is an
algorithm that explores graph nodes in the order of their distance from the start,
A� is a generalization of Dijkstra that also accounts for their distance from the
target. A� prioritizes the exploration of nodes that seem to be closer to the target
nodes. This way, A� can sometimes dramatically improve on the performance of
Dijkstra while remaining optimal.

There has been one attempt to apply A� for optimal alignment [8] which uses
a heuristic function that accounts only for the length of the remaining query
sequence to be aligned. However, it does not significantly outperform Dijkstra
(in fact, it is equivalent for a zero matching cost). In contrast, the heuristic func-
tion we introduce is more informative and consistently outperforms Dijkstra.

1.2 Main Contributions

We introduce a novel approach, called AStarix, for optimal sequence-to-graph
alignment based on A�. As with any A� instantiation, the core difficulty lies in
developing an accurate domain-specific heuristic which is fast to compute. We
design a heuristic that accounts for the content of the upcoming query letters
to be aligned, which more effectively guides the search. Our proposed heuristic
has two advantages: (i) it is correctness-preserving, that is, it preserves the fact
that AStarix finds the best alignment, yet (ii) it is practically effective in that
the algorithm performs a near-optimal number of steps. Overall, this heuristic
enables AStarix to compute the best alignment while also scaling to larger
reference graph sizes when compared to existing state-of-the-art optimal aligners.

Our main contributions2 include:

1. AStarix. An algorithm for optimal sequence-to-graph alignment based on
a novel instantiation of A� with an accurate domain-specific heuristic that
accounts for the upcoming query letters to be aligned (Sect. 3).

2. Algorithmic optimizations. To ensure that AStarix is practical, we intro-
duce a number of algorithmic optimizations which increase performance and
decrease memory footprint (Sect. 4). We also prove that all optimizations are
correctness-preserving.

3. Thorough experimental evaluation of AStarix. We demonstrate that
AStarix is up to 2 orders of magnitude faster than other optimal aligners
on various reference graphs (Sect. 5).

2 The appendix with algorithms and evaluation details is included in the full version
of this paper: https://www.biorxiv.org/content/10.1101/2020.01.22.915496v1.

https://www.biorxiv.org/content/10.1101/2020.01.22.915496v1
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Fig. 1. Starting from the reference graph (left), we can construct the edit graph (mid-
dle) and the alignment graph Gq

a for query q = “A” (right). Edges are annotated with
labels and/or costs, where sets of labels represent multiple edges, one for each letter in
the set (indicated by “x3” and “x4”).

2 Task Description: Alignment to Reference Graphs

We now describe the task of aligning a query to a reference graph. To this end,
we (i) introduce the task of optimal alignment on a reference graph, (ii) formalize
this task in terms of an edit graph, and (iii) introduce an alternative formulation
in terms of an alignment graph, which is the basis for shortest path formulations
of the optimal alignment. Figure 1 summarizes these different graph types.

Reference Graph. We encode the collection of references to which we want
to align in a reference graph, which captures genomic variation that a linear
reference cannot express [9,25]. We formalize a reference graph as a tuple Gr =
(Vr, Er) of nodes Vr and directed, labeled edges Er ⊆ Vr × Vr × Σ, where the
alphabet Σ = {A, C, G, T} represents the four different nucleotides. Note that in
contrast to sequence graphs [28], we label edges instead of nodes.

Path, Spelling. Any path π = (e1, . . . , ek) in Gr induces a spelling σ(π) ∈ Σ∗

defined by σ(e1) · · · σ(ek), where σ(ei) is the label of edge ei and Σ∗ :=⋃
k∈N

Σk. We note that our approach naturally handles cyclic walks and does not
require cycle unrolling, a feature shared with BitParallel [27] and Brown-
ieAligner [11] but missing from VG [9], PaSGAL [15] and V-ALIGN [18].

Alignment on Reference Graph. An alignment of query q ∈ Σ∗ to a reference
graph Gr = (Vr, Er) consists of (i) a path π in Gr and (ii) a sequence of edit
operations (matches, substitutions, insertions, deletions) transforming σ(π) to q.

Optimal Alignment, Edit Distance. Each edit operation is associated with
a real-valued cost (Δmatch, Δsubst, Δins, and Δdel, respectively). An optimal
alignment minimizes the total cost of the edit operations converting σ(π) to q.
For optimal alignments, this total cost is equal to the edit distance between σ(π)
and q, i.e., the cheapest sequence of edit operations transforming σ(π) into q.

We make the (standard) assumption that 0 ≤ Δmatch ≤ Δsubst,Δins,Δdel,
which will be a prerequisite for the correctness of our approach.
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Edit Graph. Instead of representing alignments as pairs of (i) paths in the
reference graph and (ii) sequences of edit operations on these paths, we introduce
edit graphs whose paths intrinsically capture both. This way, we can formally
define an alignment more conveniently as a path in an edit graph.

Formally, an edit graph Ge := (Ve, Ee) has directed, labeled edges Ee ⊆
Ve × Ve × Σε × R≥0 with associated costs that account for edits. Here, Σε :=
Σ ∪ {ε} extends the alphabet Σ by ε to account for deleted characters (see
Fig. 1). The edit and reference graphs consist of the same vertices, i.e., Ve =
Vr. However, Ee contains more edges than Er to account for edits. Concretely,
for each edge (u, v, �) ∈ Er, Ee contains edges to account for (i) matches, by
an edge (u, v, �,Δmatch), (ii) substitutions, by edges (u, v, �′,Δsubst) for each
�′ ∈ Σ\�, (iii) deletions, by an edge (u, v, ε,Δdel), and (iv) insertions, by edges
(u, u, �′,Δins) for each �′ ∈ Σ. The spelling σ(π) ∈ Σ∗ of a path π ∈ Ge is defined
analogously to reference graphs, except that deleted letters (represented by ε)
are ignored. The cost cost(π) of a path π ∈ Ge is the sum of all its edge costs.

Alignment on Edit Graph. An alignment of query q to Gr is a path π in Ge
spelling q, i.e., q = σ(π). An optimal alignment is an alignment of minimal cost.

Alignment Graph. To find an optimal alignment of q to the edit graph Ge using
shortest path finding algorithms, we must ensure that only paths spelling q are
considered. To this end, we introduce an alternative but equivalent formulation
of alignments in terms of an alignment graph Gq

a = (V q
a , Eq

a ).
Here, each state 〈v, i〉 ∈ V q

a consists of a vertex v ∈ Ve and a query position
i ∈ {0, . . . , |q|} (equivalent to [28]). Traversing a state 〈v, i〉 ∈ V q

a represents
the alignment of the first i query characters ending at node v. In particular,
query position i = 0 indicates that we have not yet matched any letters from the
query. We note that the alignment graph explicitly depends on the query q. In
particular, the example alignment graph G“A”

a in Fig. 1 lacks substitution edges
from Ge, as their labels (C, G, T) do not match the query q = “A”.

We construct the alignment graph Gq
a to guarantee that any walk from a

source 〈u, 0〉 to a state 〈v, i〉 corresponds to an alignment of the first i letters of
query q to Gr. As a consequence, there is a one-to-one correspondence between
alignments πe of q to Ge and paths πq

a ∈ Gq
a from sources S := Vr × {0} to

targets T := Vr × {|q|}, with cost(πr) = cost(πq
a). To find the best alignment in

Ge, only paths in Gq
a (walks without repeating nodes) can be considered, since

repeating a node in Gq
a cannot lead to a lower cost (Δdel ≥ 0) for the same state.

The edges Eq
a ⊆ V q

a × V q
a × Σε × R≥0 are built based on the edges in Ee,

except that the former (i) keep track of the position in the query i, and (ii) only
contain empty edges or edges whose label matches the next query letter:

(u, v, �, w) ∈ Ee =⇒ (〈u, i〉, 〈v, i + 1〉, �, w) ∈ Eq
a for 0 ≤ i < |q| with q[i] = �(1)

(u, v, ε, w) ∈ Ee =⇒ (〈u, i〉, 〈v, i 〉, ε, w) ∈ Eq
a for 0 ≤ i < |q| (2)

Here, assuming 0-indexing, q[i] is the next letter to be matched after matching i
letters. Then, Eq. (1) represents matches, substitutions, and insertions (which advance
the position in the query by 1), while Eq. (2) represents deletions (which do not advance
the position in the query).
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Algorithm 1. AStarix including heuristic function.
1: Gr: Reference graph � Global variables
2: d: Upcoming sequence length

3: function AStarix(q : Query)
4: Gq

a ← DefineAlignmentGraph(Gr, q) � Following Sect. 2
5: S ← {〈v, i〉 ∈ V q

a | i = 0} � Sources: no letter matched
6: T ← {〈v, i〉 ∈ V q

a | i = |q|} � Targets: all letters matched
7: return A�(Gq

a , S, T,Heuristic) � A� provided in App. A.1

8: function Heuristic(〈u, i〉 : State) � Heuristic: Cost of upcoming sequence
9: d′ ← min(d, |q| − i) � Actual length of upcoming sequence

10: s ← q[i : i + d′] � Upcoming sequence (next d letters after current)
11: return h(u, s) � Cost of aligning s to Ge starting from u

12: function h(u, s) � Cost of aligning s starting from u
13: return RecursiveAlign(u, s, 0.0, ∞) � Simple branch-and-bound

Dynamic Construction. As the size of the alignment graph is O(|Gr|·|q|), it is expen-
sive to build it fully for every new query. Therefore, our implementation constructs the
alignment graph Gq

a on-the-fly: the outgoing edges of a node are only generated on
demand and are freed from memory after alignment.

3 AStarix: Finding Optimal Alignments Using A�

In this section, we first introduce the general A� algorithm for finding shortest paths,
and the notion of an optimistic heuristic, a sufficient condition for instantiations of
A� to be correct (i.e., to indeed find shortest paths). Then we instantiate A� with our
domain-specific heuristic that accounts for upcoming subsequences to be aligned, and
prove that this heuristic is optimistic.

3.1 Background: General A� Algorithm

Given a weighted graph G = (V, E) with E ⊆ V × V × R≥0, the A� algorithm (abbre-
viated as A�) searches for the shortest path from sources S ⊆ V to targets T ⊆ V . It
is an extension of Dijkstra’s algorithm that additionally leverages a heuristic function
h : V → R≥0 to decide which paths to explore first. If h(u) ≡ 0, A� is equivalent to
Dijkstra’s algorithm. We provide an implementation of A� and Dijkstra in App. A.1,
but do not assume knowledge of either algorithm in the following. At a high level, A�

maintains the set of all explored states, initialized with the set of sources S. Then, A�

iteratively expands the explored state with lowest estimated cost by exploring all its
neighbors, until it finds a target. Here, the cost for node u is estimated by the distance
from source, called g(u), plus the estimate from the heuristic h(u).
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Heuristic Function. The heuristic function h(u) estimates the cost h∗(u) of a shortest
path in G from u to a target t ∈ T . Intuitively, a good heuristic correlates well with
the distance from u to t.

To ensure that A� indeed finds the shortest path, h should be optimistic:

Definition 1 (Optimistic heuristic). A heuristic h is optimistic if it provides a
lower bound on the distance to the closest target: ∀u.h(u) ≤ h∗(u).

While any optimistic h ensures that A� finds optimal alignments [6, Res. 3], the
specific choice of h is critical for performance. In particular, decreasing the error
δ(u) = h∗(u) − h(u) can only improve the performance of A� [6, Res. 6]. Thus, a
key contribution of ours is a domain-specific heuristic h.

3.2 AStarix: Instantiating A�

Algorithm 1 shows an unoptimized version of AStarix and its heuristic function.
AStarix expects a reference graph (Line 1) and a query (Line 3) as input, and returns
an optimal alignment (Line 7) by searching for a shortest path from S to T in the
alignment graph Gq

a . It is parameterized by hyper-parameters (d in Line 2, more in
Sect. 4) and edit costs (implicitly provided).

The function Heuristic (Lines 8–11) computes a lower bound on the remaining
cost of a best alignment: the minimum cost h(u, s) of aligning the upcoming sequence
s (where |s| ≤ d) starting from node u. Importantly, s is limited to the next d′ ≤ d
letters of q, starting from query position i. Thus, computing h(u, s) is substantially
cheaper than aligning all remaining letters of q.

To compute h(u, s) we leverage a simple branch-and-bound algorithm, provided
in App. A.2. In the following, for convenience, we refer to the heuristic as h (which
is parameterized by (u, s)) instead of Heuristic (which is parameterized by 〈u, i〉).
Further, we say that h is optimistic if h(u, s) is a lower bound on the cost for aligning
all remaining letters (i.e., q[i : |q|]) starting from node u (note that s is a prefix of
q[i : |q|]).

Theorem 1. h is optimistic.

Proof. h only considers the next d′ letters of q instead of all remaining letters. Since
all costs are non-negative, the theorem follows. �

Benefit of A� Heuristic over Dijkstra. Figure 2 shows the benefit of using our
heuristic function compared to Dijkstra. Here, Dijkstra expands states based on
their distance g from the origin nodes 〈u, 0〉 and 〈v, 0〉. Hence, depending on tie-
breaking, Dijkstra may expand all states with h ≤ 1, as shown in Fig. 2. By contrast,
A� chooses the next state to expand by the sum of the distance from the origin g and
the heuristic h, expanding only states with g + h ≤ 1.

Memoization. Recall that the return value of h in Line 8 only depends on u and the
upcoming sequence s (which in turn depends on i and d). Thus, h(u, s) can be reused
for different positions across different queries in O(1) time, if it was computed for a
previous query.
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Fig. 2. The benefit of using our heuristic over Dijkstra. Alignment graph G“ATAA”
a

(right) is based on reference graph Gr (left), but omits insertion and deletion edges
for simplicity. The pink boxes g + h indicate the distance from the sources S =
{〈u, 0〉, 〈v, 0〉} (in g) and the cost of aligning the next d = 2 letters (in h). Dijkstra
(resp. A�) expands states circled in blue (resp. dashed red).

4 AStarix Algorithm: Optimizations

We now discuss several optimizations we developed to speed up AStarix while pre-
serving its optimality. These optimizations reduce preprocessing and alignment runtime
as well as memory footprint (in particular for memoization).

4.1 Reducing Semi-global to Local Alignment Using a Trie

To find an optimal alignment, we generally need to consider all reference graph nodes
u ∈ Gr as possible starting nodes. Thus, optimal aligners PaSGAL [15] and BitPar-
allel [27] brute-force through all possible starting nodes u ∈ Gr.

To more efficiently handle arbitrary starting positions for alignments, we extend
the reference graph with a trie (referred to as suffix tree in [8]) to effectively align from
all possible starting nodes simultaneously.

Single Starting State. In the trie approach, abstraction nodes are added to the
graph, each of which corresponds to a set of nodes in Gr that correspond to the same
prefix. In the following, we formalize this approach.

Concretely, we extend Gr by a trie of depth D, resulting in graph G+
r = (V +

r , E+
r).

Our goal is that all paths in Gr that have length D and end in v ∈ Vr correspond
to paths in G+

r starting from a single source ε to v ∈ V +
r , where ε represents the

empty string. This correspondence ensures that it suffices to consider only paths in G+
r

starting from the source ε. In particular, each alignment on G+
r can be translated into

an alignment on Gr (we omit this translation here).
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Fig. 3. G+
r enables semi-global alignment

by extending Gr with a trie.

Figure 3 shows an example trie. To
construct it, we first associate with every
node v ∈ Vr the set Sv of its D-mers
(orange boxes in Fig. 3): spells of paths
ending in v and of length D. Our goal is
then to use paths in the trie to spell these
D-mers.

Second, we construct the trie nodes
from all prefixes of these D-mers:

V +
r := Vr ∪

⋃

v∈Vr

{
s[0 : i]

∣∣∣∣
s ∈ Sv,

0 ≤ i < D

}
.

Third, we add edges within the trie,
which ensure that paths from ε to any
trie node s spell s. Formally, whenever
s·� ∈ V +

r , we add an edge (s, s·�, �) to
E+

r , where “·” denotes string concatena-
tion. Finally, we add edges between the
trie and the reference graph, which ensure
that any D-mer of any node v ∈ Vr can be spelled by a walk from ε to v. Formally, if
s·� ∈ Sv, then (s, v, �) ∈ E+

r .
Importantly, extending Gr to G+

r is compatible with the construction of the edit
graph Ge, the construction of the alignment graph and all other optimizations. In
particular, when searching for a shortest path in the alignment graph constructed from
G+

r, it suffices to only consider starting node 〈ε, 0〉.
Reducing Size of Trie. We can reduce the size of the trie by removing specific trie
nodes. In particular, we iteratively remove each trie leaf node s · � ∈ V +

r with a unique
outgoing edge (s ·�, v, �′) to a reference graph node v ∈ Vr. To compensate for removing
node s · �, we introduce a new edge (s, u, �) to a node u ∈ Vr with an edge (u, v, �′)
(such a node must exist according to the construction of G+

r). For example, in Fig. 3,
we (i) remove node AT including its edges (A, AT, T) and (AT, u3, C), but (ii) introduce
an edge (A, u2, T ).

This optimization is lossless, as the D-mer s · � · �′ ∈ Sv can still be spelled by the
path from ε to s, extended by (s, u, �) and (u, v, �′).

4.2 Greedy Match Optimization

We also employ an optimization originally developed for computing the edit distance
between two strings [1,31], but which has also been used in the context of string to
graph alignment [8]. We omit the correctness proof of this optimization, which is already
covered in [31], and only explain the intuition behind it.

Suppose there is only one outgoing edge e = (u, v, �) ∈ Er from a node u ∈ Vr.
Suppose also that while aligning a query q, we explore state 〈u, i〉 for which the next
query letter q[i] matches the label �. In this case, we do not need to consider the edit
outgoing edges, because any edit at this point can be postponed without additional
cost, as Δmatch ≤ min(Δsubst, Δins, Δdel). Thus, we can greedily explore state 〈v, i+1〉,
aligning q[i + 1] to e by using the edge (〈u, i〉, 〈v, i + 1〉, �, Δmatch) before continuing
with the A� search. We note that this optimization is only applicable when aligning
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in non-branching regions of the reference graph. In particular, it is not applicable for
most trie nodes (Sect. 4.1).

4.3 Speeding up Evaluation of Heuristic

In the following, we show how to reduce the runtime of evaluating the heuristic h(u, s),
by introducing two separate optimizations that compose naturally.

Capping Cost. We cap h(u, s) at c, replacing it by hc(u, s) := min(h(u, s), c). To
achieve this, we allow RecursiveAlign to ignore paths costing more than c. For large
enough c, this speeds up computation without significantly decreasing the benefit of the
heuristic, since nodes associated with a high heuristic value are typically not explored
anyways. We investigate the effect of c in App. A.3.

Theorem 2. hc is optimistic.

Proof. We have hc(u, s) ≤ h(u, s) and that h(u, s) is optimistic (Theorem 1). �

Capping Depth. We reduce the number of nodes that need to be considered by
h(u, s). To this end, we define a modified heuristic hd(u, s) that only considers nodes
Ru ⊆ Ve at distance at most d from u (cp. Line 2 in Algorithm 1): Ru := {v ∈ Vr |
∃ path π ∈ Ge from u to v with |π| ≤ d}.

If an alignment of s reaches the boundary of Ru, defined as

B(Ru) := {v ∈ Ru | ∃(v, v′, �) ∈ Ee with v′ /∈ Ru},

it is allowed to only spell a prefix of s, and the remaining unaligned letters of s are
considered aligned with zero cost:

hd(u, s) := min
π∈Π

cost(π), where

Π :=
{
π ∈ Gr

∣∣ start(π) = u, σ(π) = s ∨ (
end(π) ∈ B(Ru) ∧ ∃i.σ(π) = s[1..i]

)}

Theorem 3. hd is optimistic.

Proof. It suffices to show hd(u, s) ≤ h(u, s) since h(u, s) is optimistic. In the case
where all of s is aligned, hd(u, s) = h(u, s). Otherwise, the unaligned letters of s are
not penalized, so hd(u, s) ≤ h(u, s). �

4.4 Partitioning Nodes into Equivalence Classes

We have shown in Sect. 3.2 how to reuse an already computed h(u, s) for repeating s
across different queries and query positions. In the following, we additionally aim to
reuse h(u, s) across different nodes u, so that h(u, s) does not need to be computed for
all nodes u. Intuitively, we want to assign two nodes u and v to the same equivalence
class when the graph region considered by h(u, s) is equivalent to the graph region
considered by h(v, s), up to renaming of nodes.

Thus, h(u, s) = h(v, s) if u and v are from the same equivalence class. Therefore,
we can (arbitrarily) choose a representative node r ∈ Vr for every equivalence class,
and evaluate h(r, s) instead of h(u, s), where r is the representative of the equivalence
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class of u. To look up representative nodes in O(1), we define a helper array repr with
repr [u] = r.

Identifying Equivalence Classes. To identify the nodes belonging to the same equiv-
alence class, we assume the optimization from Sect. 4.3, i.e., that our heuristic only
considers nodes up to a distance d from u. Moreover, for performance reasons, our
implementation detects only the equivalence classes of nodes u with a single outgoing
path of length at least d. In this case, u and u′ are in the same equivalence class if
their outgoing paths spell the same sequence. In contrast, we leave nodes with forking
paths in separate equivalence classes.

Note that for smaller d, the number of equivalence classes gets smaller, the reuse
of the heuristic gets higher, and the memoization table has a lower memory footprint.
At the same time, however, the heuristic hd(u, s) is less informative.

5 Evaluation

In this section we present a thorough experimental evaluation3 of AStarix on simu-
lated Illumina reads. Our evaluation demonstrates that:

1. AStarix is faster than Dijkstra because the heuristic reduces the number of
explored states by an order of magnitude.

2. The runtime of AStarix scales better than state-of-the-art optimal aligners with
increasing graph size, on a variety of reference graphs.

5.1 Implementation of AStarix and Dijkstra

Our AStarix implementation uses an adjacency list graph data structure to repre-
sent the reference and the trie in a unified way, representing each letter by a separate
edge object. To represent the reverse complementary walks in Gr, the vertices are dou-
bled, connected in the opposite direction, and labeled with complementary nucleotides
(A ↔ T, C ↔ G). We do not limit the number of memoized heuristic function values
(Sect. 3.2), but note we could do so by resetting the memoization table periodically.
Our implementation of Dijkstra reuses the same AStarix codebase except the use
of a heuristic function (i.e., with h ≡ 0).

We apply all described optimizations to AStarix and Dijkstra, except Sects. 4.3
and 4.4 which are applicable only to AStarix.

While the optimality of AStarix is not affected by its parameters, its performance
is (see App. A.3 for analysis). To compare with other aligners, we use values d = 5,
c = 5, D = �logΣ |Gr|�.

5.2 Compared Aligners: PaSGAL and BitParallel

We compare the performance of AStarix to that of two state-of-the-art optimal align-
ers: PaSGAL and BitParallel, with their default parameters. We do not compare
to the exact aligner of VG as (i) its optimal alignment is intended for testing purposes
only, (ii) it does not provide an interface for aligning a set of reads, and (iii) it has
been consistently outperformed by PaSGAL [15].

3 https://github.com/eth-sri/astarix/tree/RECOMB2020_experiments.

https://github.com/eth-sri/astarix/tree/RECOMB2020_experiments
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PaSGAL is compiled with AVX2 SIMD support. The resulting alignments are not
expected to match exactly between the local aligner PaSGAL and the semi-global
aligners (AStarix and BitParallel) as they solve different tasks with different edit
costs. Nevertheless, in analogy with the evaluations of PaSGAL [15], it is still mean-
ingful to compare performance, assuming that the dynamic programming approach of
PaSGAL can be adapted to semi-global alignment with similar performance.

Both BitParallel and PaSGAL reach their worst-case runtime complexity inde-
pendent of the edit costs Δ = (Δmatch, Δsubst, Δins, Δdel). PaSGAL is evaluated using
its default costs Δ = (−1, 1, 1, 1) and BitParallel is evaluated using the only sup-
ported costs Δ = (0, 1, 1, 1).

5.3 Setting

All evaluations were executed singled-threaded on an Intel Core i7-6700 CPU running
at 3.40 GHz.

Reference Graphs and Reads. We designed three experiments utilizing three differ-
ent reference graphs (in Table 1). The first is a linear graph without variation based on
the E. coli reference genome (strain: K-12 substr. MG1655, ASM584v2 [13]). The other
two are variation graphs taken from the PaSGAL evaluations [15]: they are based on
the Leukocyte Receptor Complex (LRC, with 1 099 856 nodes and 1 144 498 edges),
and the Major Histocompatibility Complex (MHC1, with 5 138 362 nodes and 5 318
019 edges). We note that we do not evaluate on de Brujin graphs, since PaSGAL does
not support cyclic graphs.

For the E. coli dataset we used the ART tool [14] to simulate an Illumina single-end
read set with 10 000 reads of length 100. For the LCR and MHC1 datasets, we sampled
20 000 single-end reads of length 100 from the already generated sets in [15] using the
Mason2 [12] simulator.

For Dijkstra and AStarix, the runtime complexity depends not only on the
data size, but also on the data content, including edit costs. More accurate heuristics
lead to better A� performance [26], which is why we evaluate AStarix with costs
corresponding more closely to Illumina error profiles: Δ = (0, 1, 5, 5).

Metrics. As all aligners evaluated in this work are provably optimal, we are mostly
interested in their performance. To study the end-to-end performance of the optimal
aligners, we use the Snakemake [20] pipeline framework to measure the execution time

Table 1. Performance of optimal aligners for different reference graphs.

Genome graph Size Runtime and Memory
AStarix Dijkstra PaSGAL BitParallel

E. coli (linear) ∼4.7 Mbp 33 s 73 s 3 272 s 4 906 s
0.66GB 0.66 GB 0.55 GB 0.43 GB

LCR (variant) ∼1 Mbp 437 s 940 s 1 614 s SegFault
1.12 GB 1.09 GB 0.30 GB

MHC1 (variant) ∼5 Mbp 1 282 s 1588 s ≥7 200 s SegFault
4.35 GB 1.21 GB 0.87 GB
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of every aligner (including the time spent on reading and indexing the reference graph
input and outputting the resulting alignments). We note that the alignment phase
dominates for all tools and experiments.

To judge the potential of heuristic functions, we measure not only the runtime but
also the number of states explored by AStarix and Dijkstra. This number reflects the
quality of the heuristic function rather than the speed of computation of the heuristic,
the implementation and the system parameters.

5.4 Comparison of Optimal Aligners

Different Reference Graphs. Table 1 shows the performance of optimal aligners
across various references. On all references, AStarix is consistently faster than Dijk-
stra, which is consistently faster than PaSGAL and BitParallel. The memory
usage of Dijkstra is within a factor of 3 compared to PaSGAL and BitParallel.
Due to the heuristic memoization, the memory usage of AStarix can grow several
times compared to Dijkstra.

Scaling with Reference Graph Size. Figure 4 compares the performance of existing
optimal aligners. BitParallel and PaSGAL always explore all states, thus their
average-case reaches the worst-case complexity of O(|Gq

a |) = O(m·Gr). Due to the trie
indexing, the runtime of AStarix and Dijkstra scales in the reference size with a
polynomial of power around 0.2 versus the expected linear dependency of BitParallel
and PaSGAL.

The heuristic function of AStarix demonstrates a 2-fold speed-up over Dijkstra.
This is possible due to the highly branching trie structure, which allows skipping the
explicit exploration for the majority of starting nodes.

5.5 A� Speedup

To measure the speedup caused by the heuristic function, we compare the number of
not only the expanded, but also of explored states (the latter number is never smaller,
see Sect. 3.1 and the example in Fig. 2) between AStarix and Dijkstra on the MHC1
dataset.

Fig. 4. Comparison of overall runtime and memory usage of optimal aligners with
increasing prefixes of E. coli as references.
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Fig. 5. Comparison of A� and Dijkstra in terms of mean alignment runtime per read
and mean explored states depending on the best alignment cost on MHC1.

Figure 5 demonstrates the benefit of the heuristic function in terms of both align-
ment time and number of explored states. Most importantly, AStarix scales much bet-
ter with increasing number of errors in the read, compared to Dijkstra. More specifi-
cally, the number of states explored by Dijkstra, as a function of alignment cost, grows
exponentially with a base of around 10, whereas the base for AStarix is around 3 (the
empirical complexity is estimated as a best exponential fit exploredStates ∼ a · scoreb).

The horizontal black line in Fig. 5 denotes the total number of states |Gr|·|q|, which
is always explored by BitParallel and PaSGAL. On the other hand, any aligner
must explore at least m = |q| states, which we show as a horizontal dashed line. This
lower bound is determined by the fact that at least the states on a best alignment need
to be explored.

6 Conclusion

We presented AStarix, an A� algorithm to find optimal alignments, based on a
domain-specific heuristic and enhanced by multiple algorithmic optimizations. Impor-
tantly, our approach allows for both cyclic and acyclic graphs including variation and
de Bruijn graphs.

We demonstrated that AStarix scales exponentially better than Dijkstra with
increasing (but small) number of errors in the reads. Moreover, for short reads, both
AStarix and Dijkstra scale better and outperform current state-of-the-art optimal
aligners with increasing genome graph size. Nevertheless, scaling optimal alignment of
long reads on big graphs remains an open problem.

We expect that AStarix can be scaled further, to both (i) bigger graphs and
(ii) longer and noisier reads. Scaling AStarix may require a combination of (i) the
development of more clever heuristic functions (by leveraging existing work on A�

and edit distance) and (ii) algorithmic optimizations. We note that if desired, a (sub-
optimal) seeding step could speed up AStarix by pre-filtering the starting positions,
analogously to other practical aligners.
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Abstract. Phylogenomics—the estimation of species trees from multi-
locus datasets—is a common step in many biological studies. However,
this estimation is challenged by the fact that genes can evolve under pro-
cesses, including incomplete lineage sorting (ILS) and gene duplication
and loss (GDL), that make their trees different from the species tree.
In this paper, we address the challenge of estimating the species tree
under GDL. We show that species trees are identifiable under a stan-
dard stochastic model for GDL, and that the polynomial-time algorithm
ASTRAL-multi, a recent development in the ASTRAL suite of meth-
ods, is statistically consistent under this GDL model. We also provide a
simulation study evaluating ASTRAL-multi for species tree estimation
under GDL. All scripts and datasets used in this study are available on
the Illinois Data Bank: https://doi.org/10.13012/B2IDB-2626814 V1.

Keywords: Species trees · Gene duplication and loss · Identifiability ·
Statistical consistency · Estimation · ASTRAL

1 Introduction

Phylogeny estimation is a statistically and computationally complex estimation
problem, due to heterogeneity across the genome resulting from processes such
as incomplete lineage sorting (ILS), gene duplication and loss (GDL), rearrange-
ments, gene flow, horizontal gene transfer, introgression, etc. [20]. Much is known
about the problem of estimating species trees in the presence of ILS, as modelled
by the Multi-Species Coalescent (MSC) [17,34]. For example, because the most
probable unrooted tree for every four species is the species tree on those species
[1], the unrooted species tree topology is identifiable under the MSC from its gene
tree distribution, and quartet-based species tree estimation methods that oper-
ate by combining gene trees (such as BUCKy-pop [18] and ASTRAL [22,24,40])
are statistically consistent estimators of the unrooted species tree topology (i.e.,
as the number of sampled genes increases, almost surely the tree returned by
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these methods will be the true species tree). It is also known that concatenation
(whether partitioned or unpartitioned) is not statistically consistent, and can
even be positively misleading (i.e., converge to the wrong tree as the number of
loci increases) [29,31]. In general, establishing whether a method is statistically
consistent or not is important for understanding its performance guarantees.

Yet, correspondingly little has been established about species tree estimation
in the presence of GDL. For example, although likelihood-based approaches for
species tree estimation have been developed (e.g., PHYLDOG [7]), they have
not been established to be statistically consistent. Key to understanding the
performance of species tree estimation under GDL is whether the species tree
topology itself is identifiable from the distribution it defines on the gene trees
it generates. However, since gene trees can have multiple copies of each species
when gene duplication occurs, this question can be formulated as: “Is the species
tree identifiable from the distribution on MUL-trees?”, where a MUL-tree is a
tree with potentially multiple copies of each species.

In this paper, we prove that unrooted species tree topologies are identifi-
able from the distribution implied on MUL-trees (Sect. 3) under the simple GDL
model of [2]. Furthermore, we prove that the polynomial-time method ASTRAL-
multi [26], a recent variant of ASTRAL designed to enable analyses of datasets
with multiple individuals per species, is statistically consistent under this model
(Sect. 3). We then present an experimental study evaluating ASTRAL-multi on
16-taxon datasets simulated under the DLCoal model (a unified model of GDL
and ILS) [27]; the results of this study show that when given a sufficiently large
number of genes, ASTRAL-multi is competitive with other methods (e.g., Dup-
Tree [4], MulRF [9], and ASTRID-multi [36], the implementation of ASTRID for
multi-allele datasets) that also estimate species trees from MUL-trees (Sect. 4).
We conclude with remarks about future work and implications for large-scale
species tree estimation (Sect. 5).

2 Species Tree Estimation from Gene Families

Our input is a collection T of gene trees representing the inferred evolutionary
histories of gene families. In the presence of gene duplication and loss events,
such gene trees may be multi-labeled trees (MUL-trees), meaning that the same
species label may be assigned to several gene copies. Our goal is to reconstruct
a species tree T over the corresponding set S of species.

ASTRAL. We provide theoretical guarantees and empirically validate an app-
roach based on ASTRAL [22] in its variant for multiple alleles [26], which we
refer to as ASTRAL-multi. Following [12], the input consists of unrooted MUL-
trees T from all gene families, where copies of a gene in a species are treated as
multiple alleles within the species.

ASTRAL-multi proceeds as follows. Let S be the set of n species and let R
be the set of m individuals. The input are the gene trees T = {ti}ki=1, where ti
is labeled by individuals Ri ⊆ R. For any (unrooted) species tree ˜T labeled by
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S, an extended species tree ˜Text labeled by R is built by adding to each leaf of
˜T all individuals corresponding to that species as a polytomy. The quartet score
of ˜T with respect to T is then

Qk( ˜T ) =
k

∑

i=1

∑

J={a,b,c,d}⊆Ri

1( ˜TJ
ext, t

J
i ), (1)

where 1(T1, T2) is the indicator that T1 and T2 agree and TJ
1 is the restric-

tion of T1 to individuals J . Run in its exact version (i.e., an unrooted species
tree that maximizes the quartet score), ASTRAL-multi is guaranteed to find an
optimal solution, but can use exponential time. The default mode, which runs in
polynomial time, uses dynamic programming to solve a constrained version of
the problem, requiring that the output tree draw its bipartitions from a set Σ
of bipartitions that ASTRAL computes on the input, where Σ by construction
includes all the bipartitions on S that occur in any gene tree in T .

3 Theoretical Results

In this section, we provide theoretical guarantees for the reconstruction algo-
rithm discussed in Sect. 2. Specifically, we establish statistical consistency under
a standard model of GDL [2]. First we show that the species tree is identifiable.

3.1 Gene Duplication and Loss Model

We assume in this section that gene tree heterogeneity is due exclusively to GDL
(and so no ILS) and that the true gene trees are known. That is, there is no gene
tree estimation error (GTEE).

Birth-Death Process of Gene Duplication and Loss. The rooted n-species tree
T = (V,E) has vertices V and directed edges E with lengths (in time units) η
that depend on the edge. For ease of presentation, we assume that there is a single
copy of each gene at the root of T and that the rates of duplication λ and loss μ
are fixed throughout T (although our proofs do not use these assumptions). Each
gene tree is generated by a top-down birth-death process within the species tree.
That is, on each edge, each gene copy independently duplicates at exponential
rate λ and is lost at exponential rate μ; at speciation events, each gene copy
bifurcates and proceeds similarly in the descendant edges. Each duplication is
indicated in the gene tree by a bifurcation. The resulting gene tree is then pruned
of lost copies to give the observed unrooted gene tree ti. The gene trees {ti}ki=1

are assumed independent and identically distributed. See more details in [2].

3.2 Identifiability of the Species Tree Under the GDL Model

We first show that the unrooted species tree is identifiable from the distribution
of MUL-trees T under the GDL model over T . That is, that two distinct unrooted
species trees necessarily produce different gene tree distributions.
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We begin with a quick proof sketch. The idea is to show that, for each 4-tuple
of species Q = {A,B,C,D}, the corresponding species quartet topology can be
identified by taking an independent uniform random gene copy in each species in
Q and showing that the quartet topology consistent with the species tree is most
likely to result in the gene tree restricted to these copies. It should be noted that
the proof is not as straightforward as it is under the multispecies coalescent [1],
as we explain next. Assume the species tree restricted to Q is ((A,B), (C,D)),
let R be the most recent common ancestor of Q in T , and let a, b, c, d be random
gene copies in A,B,C,D respectively.

– When all ancestral copies of a, b, c, d in R are distinct, by symmetry all quartet
topologies are equally likely. The ancestral copy of x in R is the vertex of the
gene tree that is ancestral to x and corresponds to a speciation event at node
R of the species tree.

– When the ancestors of a and b (or c and d) in R are the same, the species
quartet topology results.

– However, there are further cases. For example, if the ancestors of a and c in R
coincide while being distinct from those of b and d, then the resulting quartet
topology differs from that of the species tree.

Hence, one must carefully account for all possible cases to establish that the
species quartet topology is indeed likeliest, which we do next. Our argument
relies primarily on the symmetries (i.e., exchangeability) of the process.

Theorem 1 (Identifiability). Let T be a species tree with n ≥ 4 leaves. Then
T , without its root, is identifiable from the distribution of MUL-trees T under
the GDL model over T .

Proof. It is known that the unrooted topology of a species tree is defined by its
set of quartet trees [3]. Let Q = {A,B,C,D} be four distinct species in T and
let TQ be the species tree restricted to Q. Assume without loss of generality that
the corresponding unrooted quartet topology is AB|CD. Let t be a MUL-tree
generated under the GDL model over T and let tQ be its restriction to the gene
copies from species in Q. Conditioning on having at least one gene copy in the
species Q, independently pick a uniformly random gene copy a, b, c, d in species
A,B,C,D respectively and let q be the corresponding quartet topology under
tQ. We show that the most likely outcome is q = ab|cd. There are two cases: TQ

is (1) balanced or (2) a caterpillar.
In case (1), let R be the most recent common ancestor of Q in T and let I

be the number of gene copies exiting (forward in time) R. By the law of total
probability, P′[q = ab|cd] = E′[P′

I [q = ab|cd]], where the primes indicate that
we are conditioning on having at least one gene copy in each species in Q and
the subscript I indicates conditioning on I. So it suffices to prove

P′
I [q = ab|cd] > max {P′

I [q = ac|bd],P′
I [q = ad|bc]} , (2)
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almost surely. Let ix ∈ {1, . . . , I} be the ancestral lineage of x ∈ {a, b, c, d} in
R. Then

P′
I [q = ab|cd] = P′

I [ia = ib] + P′
I [ic = id] − P′

I [ia = ib, ic = id]
+ P′

I [q = ab|cd and ia, ib, ic, id all distinct]. (3)

On the other hand,

P′
I [q = ac|bd] ≤ P′

I [ib �= ia = ic �= id] + P′
I [ia �= ib = id �= ic]

+ P′
I [q = ac|bd and ia, ib, ic, id all distinct], (4)

and similarly for P′
I [q = ac|bd], where note that we double-counted the case

ia = ic �= id = ib to simplify the expression. By symmetry of the GDL process
above R (which holds under P′

I), the last term on the RHS of (3) and (4) are
the same. The same holds for the first two terms on the RHS of (4) this time by
the independence and exchangeability of the pairs (ia, ib) and (ic, id) under P′

I ,
which further implies

P′
I [q = ab|cd] − P′

I [q = ac|bd]
≥ P′

I [ia = ib] + P′
I [ic = id] − P′

I [ia = ib, ic = id] − 2P′
I [ib �= ia = ic �= id]

= x + y − xy − 2(1 − x)(1 − y)P′
I [ia = ic | ia �= ib, ic �= id]

= x + y − xy − 2(1 − x)(1 − y)P′
I [ia = ic]

= x + y − xy − 2(1 − x)(1 − y)
1
I

≡ h(x, y).

where x = P′
I [ia = ib] and y = P′

I [ic = id].
For fixed y, h(x, y) is linear in x and h(1, y) = 1. So h(·, y) achieves its

minimum at the smallest value allowed for x. The same holds for y. Intuitively,
ia and ib are “positively correlated” so x ≥ 1/I. We prove this formally next.

Lemma 1. Almost surely, x, y ≥ 1/I.

Proof. For j ∈ {1, . . . , I}, let Nj be the number of gene copies at the most
recent common ancestor R′ of A and B that descend from copy j in R. Upon
conditioning on (Nj)j , the choice of a and b is independent, with ia and ib being
picked proportionally to the corresponding Nj ’s (i.e., the gene copies in R′ are
equally likely to have given rise to a). By the law of total probability and the
fact that the quadratic mean is greater than the arithmetic mean,

P′
I [ia = ib] = E′

I [P
′
I [ia = ib | (Nj)j ]] = E′

I

⎡

⎢

⎣

∑I
j=1 N2

j
(

∑I
j=1 Nj

)2

⎤

⎥

⎦
≥ 1

I
,

and similarly for P′
I [ic = id]. �	

Returning to the proof of the theorem, evaluating h at x, y = 1/I gives

h(1/I, 1/I) = 2
1
I

− 1
I2

− 2
(I − 1)2

I3
=

2I2 − I

I3
− 2I2 − 4I + 2

I3
=

3I − 2
I3

> 0.
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That establishes (2) in case (1), which implies

P′[q = ab|cd] > max {P′[q = ac|bd],P′[q = ad|bc]} , (5)

as desired. The proof in case (2) can be found in the appendix. �	
As a direct consequence of our identifiability proof, it is straightforward to

establish the statistical consistency of the following pipeline, which we refer to
as ASTRAL/ONE (see also [12]): for each gene tree ti, pick in each species a
random gene copy (if possible) and run ASTRAL on the resulting set of modified
gene trees t̃i. The proof can be found in the appendix.

Theorem 2 (Statistical Consistency: ASTRAL/ONE). ASTRAL/ONE
is statistically consistent under the GDL model. That is, as the number of input
gene trees tends toward infinity, the output of ASTRAL/ONE converges to T
almost surely, when run in exact mode or in its default constrained version.

3.3 Statistical Consistency of ASTRAL-multi Under GDL

The following consistency result is not a direct consequence of our identifiability
result, although the ideas used are similar.

Theorem 3 (Statistical Consistency: ASTRAL-multi). ASTRAL-multi,
where copies of a gene in a species are treated as multiple alleles within the
species, is statistically consistent under the GDL model. That is, as the number
of input gene trees tends toward infinity, the output of ASTRAL-multi converges
to T almost surely, when run in exact mode or in its default constrained version.

Proof. First, we show that ASTRAL-multi is consistent when run in exact mode.
The input are the gene trees T = {ti}ki=1 with ti labelled by individuals (i.e.,
gene copies) Ri ⊆ R. Then the quartet score of ˜T with respect to T is given
by (1). For any 4-tuple of gene copies J = {a, b, c, d}, we define m(J ) to be the
corresponding set of species. It was proved in [26] that those J ’s with fewer than
4 species contribute equally to all species tree topologies. As a result, it suffices
to work with a modified quartet score

˜Qk( ˜T ) =
k

∑

i=1

∑

J={a,b,c,d}⊆Ri

|m(J )|=4

1( ˜TJ
ext, t

J
i ).

By independence of the gene trees (and non-negativity), ˜Qk( ˜T )/k converges
almost surely to its expectation simultaneously for all unrooted species tree
topologies over S.
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The expectation can be simplified as

E
[

1
k

˜Qk( ˜T )
]

= E

⎡

⎢

⎢

⎣

∑

J={a,b,c,d}⊆R1
|m(J )|=4

1( ˜TJ
ext, t

J
1 )

⎤

⎥

⎥

⎦

=
∑

Q={A,B,C,D}
E

⎡

⎣

∑

J ⊆R1:m(J )=Q
1( ˜TJ

ext, t
J
1 )

⎤

⎦ . (6)

Let N Q
AB|CD (respectively N Q

AC|BD, N Q
AD|BC) be the number of choices consisting

of one gene copy in t1 from each species in Q whose corresponding restriction
tQ1 agrees with AB|CD (respectively AC|BD, AD|BC). Then each summand
in (6) may be written as E[N Q

˜TQ ]. We establish below that this last expression
is maximized at the true species tree TQ, that is,

E[N Q
AB|CD] > max

{

E[N Q
AC|BD],E[N Q

AD|BC ]
}

, (7)

when (without loss of generality) TQ = AB|CD. From (6) and the law of large
numbers, it will then follow that almost surely the quartet score is eventually
maximized by the true species tree as k → +∞.

It remains to establish (7). Fix Q = {A,B,C,D} a set of four distinct species
in T . Assume that the corresponding unrooted quartet topology in T is AB|CD.
Let t1 be a MUL-tree generated under the GDL model over T . Again, there are
two cases: TQ is (1) balanced or (2) a caterpillar.

In case (1), let R be the most recent common ancestor of Q in T and let I be
the number of gene copies exiting (forward in time) R. For j ∈ {1, . . . , I}, let Aj

be the number of gene copies in A descending from j in R, and similarly define
Bj , Cj and Dj . By the law of total probability, E[N Q

AB|CD] = E[EI [N Q
AB|CD]].

We show that, almost surely,

EI [N Q
AB|CD] > max

{

EI [N Q
AC|BD],EI [N Q

AD|BC ]
}

, (8)

which implies (7). By symmetry, we have X= ≡ EI [AjBj ] = EI [A1B1],
Y = ≡ EI [CjDj ] = EI [C1D1], X �= ≡ EI [AjBk] = EI [A1]EI [B1] as well as Y �= ≡
EI [CjDk] = EI [C1]EI [D1] for all j, k with j �= k. Hence, the expected number of
pairs consisting of a single gene copy from A and B is X = IX= + I(I − 1)X �=.
Arguing similarly to (3) and (4),

EI [N Q
AB|CD] − EI [N Q

AC|BD]

≥ (IX=)Y + X(IY =) − (IX=)(IY =) − I(I − 1)X �=[2(I − 1)Y �=]

= XY

[

x + y − xy − 2(1 − x)(1 − y)
1
I

]

,

where here we define x = IX=

X , y = IY =

Y . Following the argument in the proof
of Theorem 1, to establish (8) it suffices to show that almost surely, x, y ≥ 1/I.
That is implied by the following positive correlation result.
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Lemma 2. Almost surely, X= ≥ X �=.

Indeed, we then have: x = IX=

IX=+I(I−1)X �= ≥ IX=

IX=+I(I−1)X= = 1
I .

Proof (Lemma 2). For j ∈ {1, . . . , I}, let Nj be the number of gene copies at the
divergence of the most recent common ancestor of A and B that are descend-
ing from j in R. Then, for j ∈ {1, . . . , I}, since Aj and Bj are conditionally
independent given (Nj)j under EI , it follows that

X= = EI [EI [AjBj | (Nj)j ]] = EI [(Njα)(Njβ)] = αβEI [N2
j ],

where α (respectively β) is the expected number of gene copies in A (respectively
B) descending from a single gene copy in the most recent common ancestor of
A and B under EI . Similarly, for j �= k ∈ {1, . . . , I},

X �= = EI [EI [AjBk | (Nj)j ]] = EI [(Njα)(Nkβ)]= αβEI [NjNk] ≤ αβEI [N2
j ],

by Cauchy-Schwarz and EI [N2
j ] = EI [N2

k ]. �	

We establish (8) in case (2) in the appendix. Thus, ASTRAL-multi is statis-
tically consistent when run in exact mode, because it is guaranteed to return the
optimal tree, and that is realized by the species tree. To see why the default ver-
sion of ASTRAL-multi is also statistically consistent, note that the true species
tree will appear as one of the input gene trees, almost surely, as the number of
MUL-trees sampled tends to infinity. For instance, the probability of observing
no duplications or losses is strictly positive. Furthermore, when this happens,
the true species tree bipartitions are all contained in the constraint set Σ used
by the default version. Hence, as the number of sampled MUL-trees increases,
almost surely ASTRAL-multi will return the true species tree topology. �	

4 Experiments

We performed a simulation study to evaluate ASTRAL-multi and other species
tree estimation methods on 16-taxon datasets with model conditions charac-
terized by three GDL rates, five levels of gene tree estimation error (GTEE),
and four numbers of genes. Due to space constraints, we briefly describe the
study here and provide details sufficient to reproduce the study on bioRxiv:
https://doi.org/10.1101/821439. In addition, all scripts and datasets used in this
study are available on the Illinois Data Bank: https://doi.org/10.13012/B2IDB-
2626814V1.

Our simulation protocol uses parameters estimated from the 16-taxon fungal
dataset studied in [12,27]. First, we used the species tree and other parameters
estimated from the fungal dataset to simulate gene trees under the DLCoal [27]
model with three GDL rates (the lowest rate 1 × 10−10 reflects the GDL rate
estimated from the fungal dataset, so that the two higher rates reflect more
challenging model conditions). Specifically, for each GDL rate, we simulated
10 replicate datasets (each with 1000 model gene trees that deviated from the

https://doi.org/10.1101/821439
https://doi.org/10.13012/B2IDB-2626814V1
https://doi.org/10.13012/B2IDB-2626814V1
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strict molecular clock) using SimPhy [21]. Although we simulated gene trees
under a unified model of GDL and ILS, there was effectively no ILS in our
simulated datasets (Table 1 on bioRxiv: https://doi.org/10.1101/821439). Sec-
ond, for each model gene tree, we used INDELible [14] to simulate a multiple
sequence alignment under the GTR+GAMMA model with parameters based on
the fungal dataset. Third, we ran RAxML [32] to estimate a gene tree under
the GTR+GAMMA model from each gene alignment. By varying the length
of each gene alignment, four model conditions were created with 23% to 65%
mean GTEE, as measured by the normalized Robinson-Foulds (RF) distance [28]
between true and estimated gene trees, averaged across all gene trees. Fourth,
we ran species tree estimation methods given varying numbers of gene trees as
input. Finally, we evaluated species tree error as the normalized RF distance
between true and estimated species trees.

In our first experiment, we explored ASTRAL-multi on both true and esti-
mated gene trees (Fig. 1). ASTRAL-multi was very accurate on true gene trees;
even with just 25 true gene trees, the average species tree error was less than
1% for the two lower GDL rates and was less than 6% for the highest GDL
rate (5 × 10−10). As expected, species tree error increased with the GDL rate,
increased with the GTEE level, and decreased with the number of genes.
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Fig. 1. ASTRAL-multi on true and estimated gene trees generated from the fungal
species tree (16 taxa) under a GDL model using three different rates (subplot rows).
Estimated gene trees had four different levels of gene tree estimation error (GTEE), by
varying the sequence length (subplot columns). We report the average Robinson-Foulds
(RF) error rate between the true and estimated species trees. There are 10 replicate
datasets per model condition. Red dots indicate means, and bars indicated medians.
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Fig. 2. Average RF tree error rates of species tree methods on estimated gene trees
(mean GTEE: 53%) generated from the fungal 16-taxon species tree using three dif-
ferent GDL rates (subplot rows) and different numbers of genes (subplot columns).
STAG failed to run on some replicate datasets for model conditions indicated by “NA”,
because none of the input gene trees included at least one copy of every species.

In our second experiment, we compared ASTRAL-multi to four other species
tree methods (DupTree [38], MulRF [9], STAG [13], and ASTRID-multi, which
is ASTRID [36] run under the multi-allele setting) that take gene trees as input.
Figure 2 shows species tree error for model conditions with mean GTEE of 53%.
As expected, the error increased for all methods with the GDL rate and GTEE
level, and decreased with the number of genes. Differences between methods
depended on the model condition. When given 500 genes, all five methods were
competitive (with a slight disadvantage to STAG); a similar trend was observed
when methods were given 100 genes provided that the GDL rate was one of the
two lower rates. When given 50 genes, ASTRAL-multi, MulRF, and ASTRID-
multi were the best methods for the two lower GDL rates. On the remain-
ing model conditions, ASTRID-multi was the best method. Finally, STAG was
unable to run on some datasets when the GDL rate was high and the number of
genes was low; this result was due to STAG failing when none of the input gene
trees included at least one copy of every species. Results for other GTEE lev-
els are provided Table 2 on bioRxiv: https://doi.org/10.1101/821439, and show
similar trends.

5 Discussion and Conclusion

This study establishes the identifiability of unrooted species trees under the
simple model of GDL from [2] and that ASTRAL-multi is statistically consis-
tent under this model. In our simulation study, ASTRAL-multi was accurate

https://doi.org/10.1101/821439
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under challenging model conditions, characterized by high GDL rates and high
GTEE, provided that a sufficiently large number of genes is given as input. When
the number of genes was smaller, ASTRID-multi often had an advantage over
ASTRAL-multi and the other methods.

The results of this study can be compared to the previous study by Chaud-
hary et al. [8], who also evaluated species tree estimation methods under model
conditions with GDL. They found that MulRF and gene tree parsimony methods
had better accuracy than NJst [19] (a method that is similar to ASTRID). Their
study has an advantage over our study in that it explored larger datasets (up to
500 species); however, all genes in their study evolved under a strict molecular
clock, and they did not evaluate ASTRAL-multi.

Our study is the first study to evaluate ASTRAL-multi on estimated gene
trees, and we also explore model conditions with varying levels of GTEE. Eval-
uating methods under conditions with moderate to high GTEE is critical, as
estimated gene trees from four recent studies [6,15,16,33] all had mean boot-
strap support values below 50% (see Table 1 in [25]), suggesting high GTEE.

Our study is limited to one underlying species tree topology with 16 species.
Previous studies [37] have shown that MulRF (which uses a heuristic search
strategy to find solutions to its NP-hard optimization problem) is much slower
than ASTRAL on large datasets, suggesting that ASTRAL-multi may dominate
MulRF as the number of species increases. Hence, future studies should inves-
tigate ASTRAL-multi and other methods under a broader range of conditions,
including larger numbers of species. Future research should also consider empir-
ical performance and statistical consistency under different causes of gene tree
heterogeneity.

We note with interest that the proof that ASTRAL-multi is statistically
consistent is based on the fact that the most probable unrooted gene tree on
four leaves (according to two ways of defining it) under the GDL model is the
true species tree (equivalently, there is no anomaly zone for the GDL model for
unrooted four-leaf trees). This coincides with the reason ASTRAL is statistically
consistent under the MSC as well as under a model for random HGT [10,30].
Furthermore, previous studies have shown that ASTRAL has good accuracy in
simulation studies where both ILS and HGT are present [11]. Hence ASTRAL,
which was originally designed for species tree estimation in the presence of ILS,
has good accuracy and theoretical guarantees under different sources of gene
tree heterogeneity.

We also note the surprising accuracy of DupTree, MulRF, and ASTRID-
multi, methods that, like ASTRAL-multi, are not based on likelihood under a
GDL model. Therefore, DynaDup [5,23] is also of potential interest, as it is sim-
ilar to DupTree in seeking a tree that minimizes the duploss score (though the
score is modified to reflect true biological loss), but has the potential to scale
to larger datasets via its use of dynamic programming to solve the optimization
problem in polynomial time within a constrained search space. In addition, future
research should explore these methods compared to more computationally inten-
sive methods such as InferNetwork ML and InferNetwork MPL (maximum like-
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lihood and maximum pseudo-likelihood methods in PhyloNet [35,39]) restricted
so that they produce trees rather than reticulate phylogenies, or PHYLDOG [7],
a likehood-based method for co-estimating gene trees and the species tree under
a GDL model.
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A Additional Proofs

A.1 Proof of Theorem 1: case (2)

In case (2), assume that TQ = (((A,B), C),D), let R be the most recent common
ancestor of A,B,C (but not D) in TQ, and let I be the number of gene copies
exiting R. As in case 1), it suffices to prove (2) almost surely. Let ix ∈ {1, ..., I}
be the ancestral lineage of x ∈ {a, b, c} in R. Then

P′
I [q = ab|cd] = P′

I [ia = ib] + P′
I [q = ab|cd and ia, ib, ic all distinct]. (9)

On the other hand,

P′
I [q = ac|bd] = P′

I [ib �= ia = ic] + P′
I [q = ac|bd and ia, ib, ic all distinct], (10)

with a similar result for P′
I [q = ad|bc]. By symmetry again, the last term on the

RHS of (9) and (10) are the same. This implies

P′
I [q = ab|cd] − P′

I [q = ac|bd] = P′
I [ia = ib] − P′

I [ib �= ia = ic]

= x − (1 − x)P′
I [ia = ic|ia �= ib] = x − (1 − x)

1
I

≡ g(x),

where x = P′
I [ia = ib]. This function g attains its minimum value at the smallest

possible of x, which by Lemma 1 is x = 1/I. Evaluating at x = 1/I gives

g(1/I) =
1
I

− 1
I

+
1
I2

=
1
I2

> 0,

which establishes (2) in case (2).
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A.2 Proof of Theorem 2

First, we prove consistency for the exact version of ASTRAL. The input to the
ASTRAL/ONE pipeline is the collection of gene trees T = {ti}ki=1, where ti
is labeled by individuals (i.e., gene copies) Ri ⊆ R. For each species and each
gene tree ti, we pick a uniform random gene copy, producing a new gene tree t̃i.
Recall that the quartet score of ˜T with respect to ˜T = {t̃i}ki=1 is then

Qk( ˜T ) =
k

∑

i=1

∑

J={a,b,c,d}⊆Ri

1( ˜TJ
ext, t̃

J
i ).

We note that the score only depends on the unrooted topology of ˜T . Under the
GDL model, by independence of the gene trees (and non-negativity), Qk( ˜T )/k
converges almost surely to its expectation simultaneously for all unrooted species
tree topologies over S.

For a species A ∈ S and gene tree t̃i, let Ai be the gene copy in A on
t̃i if it exists and let EA

i be the event that it exists. For a 4-tuple of species
Q = {A,B,C,D}, let Qi = {Ai, Bi, Ci,Di} and EQ

i = EA
i ∩ EB

i ∩ EC
i ∩ ED

i . The
expectation can then be written as

E
[

1
k

Qk( ˜T )
]

=
∑

Q={A,B,C,D}
E

[

1( ˜TQ1
ext , t̃

Q1
1 )

∣

∣

∣ EQ
1

]

P[EQ
1 ], (11)

as, on the event (EQ
1 )c, there is no contribution from Q in the sum over the first

sample.
Based on the proof of Theorem 1, a different way to write E[1( ˜TQ1

ext , t̃
Q1
1 ) | EQ

1 ]
is in terms of the original gene tree t1. Let a, b, c, d be random gene copies on t1
in A,B,C,D respectively. Then if q is the topology of t1 restricted to a, b, c, d,

E
[

1( ˜TQ1
ext , t̃

Q1
1 )

∣

∣

∣ EQ
1

]

= P′[q = ˜TQ].

From (5), we know that this expression is maximized (strictly) at the true species
tree P′[q = TQ]. Hence, together with (11) and the law of large numbers, almost
surely the quartet score is eventually maximized by the true species tree as
k → +∞. This completes the proof for the exact version.

The default version is statistically consistent for the same reason as in the
proof of Theorem 3. As the number of MUL-trees sampled tends to infinity, the
true species tree will appear as one of the input gene trees almost surely. So
ASTRAL returns the true species tree topology almost surely as the number of
sampled MUL-trees increases.

A.3 Proof of Theorem 3: case (2)

In case (2), assume that TQ = (((A,B), C),D) and let R be the most recent
common ancestor of A,B,C (but not D) in T . We want to establish (8) in
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this case. For i = 1, 2, 3, let N Q,{i}
AB|CD (respectively N Q,{i}

AC|BD) be the number of
choices consisting of one gene copy from each species in Q whose correspond-
ing restriction on tQ agrees with AB|CD (respectively AC|BD) and where, in
addition, copies of A,B,C descend from i distinct lineages in R. We make five
observations:

– Contributions to N Q,{2}
AB|CD necessarily come from copies in A and B descending

from the same lineage in R, together with a copy in C descending from a
distinct lineage and any copy in D. Similarly for N Q,{2}

AC|BD

– Moreover N Q,{1}
AC|BD = 0 almost surely, as in that case the corresponding copies

from A and B coalesce (backwards in time) below R.
– Arguing as in the proof of Theorem 1, by symmetry we have the equality

EI [N Q,{3}
AB|CD] = EI [N Q,{3}

AC|BD].
– For j ∈ {1, . . . , I}, let Aj be the number of gene copies in A descending

from j in R, and similarly define Bj , Cj . Let D be the number of gene
copies in D. Then, under the conditional probability PI , D is independent of
(Aj ,Bj , Cj)Ij=1. Moreover, under PI , (Cj)Ij=1 is independent of (Aj ,Bj)Ij=1.

– Similarly to case 1), by symmetry we have X= ≡ EI [Aj1Bj1 ] = EI [A1B1],
X �= ≡ EI [Aj1Bk1 ] = EI [A1]EI [B1] for all j1, k1 with j1 �= k1. Define also
X = IX= + I(I − 1)X �=, Y ≡ EI [C1] and Z ≡ EI [D].

Putting these observations together, we obtain

EI [N Q
AB|CD] − EI [N Q

AC|BD]

= EI [N Q,{1}
AB|CD] + EI [N Q,{2}

AB|CD] − EI [N Q,{2}
AC|BD]

= IX=Y Z + I(I − 1)X=Y Z − I(I − 1)X �=Y Z

> 0,

where we used Lemma 2 on the last line.
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Abstract. Chromatin is the tightly packaged structure of DNA and
protein within the nucleus of a cell. The arrangement of different pro-
tein complexes along the DNA modulates and is modulated by gene
expression. Measuring the binding locations and level of occupancy of
different transcription factors (TFs) and nucleosomes is therefore crucial
to understanding gene regulation. Antibody-based methods for assay-
ing chromatin occupancy are capable of identifying the binding sites
of specific DNA binding factors, but only one factor at a time. On the
other hand, epigenomic accessibility data like ATAC-seq, DNase-seq, and
MNase-seq provide insight into the chromatin landscape of all factors
bound along the genome, but with minimal insight into the identities of
those factors. Here, we present RoboCOP, a multivariate state space model
that integrates chromatin information from epigenomic accessibility data
with nucleotide sequence to compute genome-wide probabilistic scores of
nucleosome and TF occupancy, for hundreds of different factors at once.
RoboCOP can be applied to any epigenomic dataset that provides quanti-
tative insight into chromatin accessibility in any organism, but here we
apply it to MNase-seq data to elucidate the protein-binding landscape
of nucleosomes and 150 TFs across the yeast genome. Using available
protein-binding datasets from the literature, we show that our model
more accurately predicts the binding of these factors genome-wide.
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1 Introduction

Chromatin is a tightly packaged structure of proteins and DNA in the nucleus of
a cell. The arrangement of different proteins along the DNA determines how gene
expression is regulated. Two important groups of DNA binding factors (DBFs)
are transcription factors (TFs) and nucleosomes. TFs are key gene regulatory
proteins that promote or suppress transcription by binding with specific sequence
preferences to sites along the DNA. Nucleosomes form when 147 base pairs
of DNA are wrapped around an octamer of histone proteins. They have lower
sequence specificity than TFs, but exhibit preferences for a periodic arrangement
of dinucleotides that facilitate DNA wrapping. Likened to beads on a string,
nucleosomes are positioned fairly regularly along the DNA, occupying about 81%
of the genome in the case of Saccharomyces cerevisiae (yeast) [14]. In taking up
their respective positions, nucleosomes allow or block TFs from occupying their
putative binding sites, thereby contributing to the regulation of gene expression.
Revealing the chromatin landscape—how all these DBFs are positioned along the
genome—is therefore crucial to developing a more mechanistic (and eventually
predictive) understanding of gene regulation.

Antibody-based methods have been used extensively to assay the binding
of particular DBFs at high resolution. However, such methods are limited to
assaying only one factor at a time. Chromatin accessibility datasets, on the
other hand, provide information about open regions of the chromatin, indirectly
telling us about the regions occupied by various proteins. Many protocols can
be used to generate chromatin accessibility data, including transposon insertion
(ATAC-seq), enzymatic cleavage (DNase-seq), or enzymatic digestion (MNase-
seq). In the latter, the endo-exonuclease MNase is used to digest unbound DNA,
leaving behind undigested fragments of bound DNA. Paired-end sequencing of
these fragments reveals not only their location but also their length, yielding
information about the sizes of the proteins bound in different genomic regions.
MNase-seq has been widely used to study nucleosome positions [3,4], but evi-
dence of TF binding sites has also been observed in the data [10].

Several chromatin segmentation methods use epigenomic data to infer the
locations of ‘states’ like promoters and enhancers, particularly in human and
mouse genomes [1,6,11,22], but identifying the precise binding locations of myr-
iad individual DBFs is more difficult. The high cost of repeated deep sequencing
of large genomes poses a major challenge. In comparison to the complex human
and mouse genomes, the problem is a bit simpler when working with the yeast
genome, because it is smaller and therefore more economical to sequence deeply.

In earlier work, we proposed COMPETE to compute a probabilistic occupancy
landscape of DBFs along the genome [23]. COMPETE considers DBFs binding to
the genome in the form of a thermodynamic ensemble, where the DBFs are in
continual competition to occupy locations along the genome and their chances of
binding are affected by their concentrations, akin to a repeated game of ‘musical
chairs’. COMPETE output depends only on genome sequence (static) and DBF
concentrations (dynamic); it is entirely theoretical, in that it makes no use of
experimental chromatin data to influence its predictions of the chromatin land-
scape. A modified version of COMPETE was later developed to estimate DBF
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concentrations by maximizing the correlation between COMPETE’s output and an
MNase-seq signal, improving the reported binding landscape [25]. However, it
still does not directly incorporate chromatin accessibility data into the model.

Here, we present RoboCOP, a new method that integrates epigenomic accessi-
bility data and genomic sequence to produce accurate chromatin occupancy pro-
files of the genome. With nucleotide sequence and chromatin accessibility data
as input, RoboCOP uses a multivariate hidden Markov model (HMM) to compute
a probabilistic occupancy landscape of hundreds of DBFs genome-wide at single-
nucleotide resolution. In this paper, we use paired-end MNase-seq data to predict
TF binding sites and nucleosome positions throughout the Saccharomyces cere-
visiae genome. We validate our TF binding site predictions using annotations
reported by ChIP [15], ChIP-exo [19], and ORGANIC [13] experiments, and our
nucleosome positioning predictions using high-precision annotations reported by
a chemical cleavage method [2]. We find that RoboCOP provides valuable insight
into the chromatin architecture of the genome, and can elucidate how it changes
in response to different environmental conditions.

2 Results

2.1 MNase-seq Fragments of Different Lengths Are Informative
About Different DNA Binding Factors

In Fig. 1a, we plot MNase-seq fragments around the transcription start sites
(TSSs) of all yeast genes [16]. Fragments of length 127–187 (which we call

Fig. 1. (a) Heatmap of MNase-seq fragments, centered on all TSSs. Each fragment is
plotted based on its length (y-axis) and the location of its midpoint (x-axis). Panels along
the side and bottom show marginal densities. Heatmap reveals strong enrichment (red)
of fragments corresponding to +1 nucleosomes (just downstream of TSS, lengths near
157). Upstream of TSS, in the promoter region, are many shortFrags (length ≤80). (b)
Heatmap of MNase-seq fragments, centered on dyads of top 2000 well-positioned nucleo-
somes [2]. Fragment midpoint counts are highest at the dyad and decrease symmetrically
in either direction. (c) Heatmap of MNase-seq fragments, centered on annotated Abf1
binding sites [15], showing an enrichment of shortFrags near Abf1 sites.
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nucleosomal fragments, or nucFrags for short) occur in tandem arrays within
gene bodies but are generally absent from promoters (Fig. 1a). Fragments are
particularly concentrated at the +1 nucleosome position, just downstream of
the TSS, because the +1 nucleosome is usually well-positioned. Furthermore, the
marginal density of the midpoints of these fragments around annotated nucle-
osome dyads [2] peaks precisely at the dyad, with counts dropping nearly sym-
metrically in either direction (Fig. 1b). This makes sense because MNase digests
linker regions, leaving behind undigested DNA fragments wrapped around his-
tone octamers. So the midpoint counts of these nucFrags would be highest at
the annotated dyads and decrease on moving away from the dyad.

In addition, it has been shown that shorter fragments in MNase-seq provide
information about TF binding sites [10]. To verify that we see this signal in our
data, Fig. 1a reveals that promoter regions are enriched with shorter fragments.
The promoter region is often bound by specific and general TFs that aid in the
transcription of genes. To ensure that the MNase-seq signal in these promoter
regions is not just noise, we plot the MNase-seq midpoints around annotated
TF binding sites. We choose the well-studied TF, Abf1, because it has multiple
annotated binding sites across the genome. On plotting the MNase-seq midpoint
counts around these annotated binding sites we notice a clear enrichment of short
fragments at the binding sites (Fig. 1c). We denote these short fragments of
length less than 80 as shortFrags. Unlike the midpoint counts of the nucFrags
which have a symmetrically decreasing shape around the nucleosome dyads,
the midpoint counts of shortFrags are more uniformly distributed within the
binding site (Fig. 1c). The shortFrags signal at the Abf1 binding sites is noisier
than the MNase signal associated with nucleosomes. One reason for this increased
noise is that fragments protected from digestion by bound TFs may be quite
small, and the smallest fragments (of length less than 27 in our case) are not
even present in the dataset due to sequencing and alignment limitations.

We ignore fragments of intermediate length (81–126) in our analysis, though
these could provide information about other kinds of complexes along the
genome, like hexasomes [18]. Such factors would also be important for a com-
plete understanding of the chromatin landscape, but we limit our analysis here to
studying the occupancy of nucleosomes and TFs. For the subsequent sections of
this paper, we only consider the midpoint counts of nucFrags and shortFrags.
A representative snapshot of MNase-seq fragments is shown in Fig. 2a. We further
simplify the two-dimensional plot in Fig. 2a to form two one-dimensional signals
by separately aggregating the midpoint counts of nucFrags and shortFrags, as
shown in Fig. 2b.

2.2 RoboCOP Computes Probabilistic Chromatin Occupancy Profiles

RoboCOP (robotic chromatin occupancy profiler) is a multivariate hidden
Markov model (HMM) that jointly models the nucleotide sequence and the mid-
point counts of nucFrags and shortFrags to learn the occupancy landscape
of nucleosomes and TFs across a genome at single-nucleotide resolution. We
apply RoboCOP on the Saccharomyces cerevisiae genome to predict nucleosome
positions and the binding sites of 150 TFs (listed in Table S1). The HMM is
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Fig. 2. (a) MNase-seq fragment midpoints in region chrI:61000–63500 of the yeast
genome. Each dot at position (x, y) (red for nucFrags; blue for shortFrags) represents
a fragment of length y centered on genomic coordinate x. (b) Aggregate numbers of
red and blue dots. (d) Nucleotide sequence for chrI:61000–63500. (f) Set of DBFs
(nucleosomes and TFs). (c) RoboCOP and (e) COMPETE outputs, with inputs depicted
using green and orange arrows respectively. The score on the y-axes of (c) and (e) is
the probability of that location being bound by each DBF.

structured such that each DBF corresponds to a collection of hidden states and
each hidden state corresponds to a single genome coordinate. The hidden states
of RoboCOP are inferred from a set of three observables at each coordinate: the
nucleotide and the midpoint counts of nucFrags and shortFrags (Fig. S1).
Based on these three observables, we estimate the posterior distribution over all
hidden states. The resulting posterior probability of each DBF at each position
in the genome provides a probabilistic profile of DBF occupancy at base-pair
resolution (Fig. 2c). The inputs to RoboCOP are a set of DBFs (Fig. 2f), MNase-
seq midpoint counts (Fig. 2b), and nucleotide sequence (Fig. 2d). From RoboCOP
output in Fig. 2c, we observe that the nucleosome predictions line up well with
the nucleosome signal in Figs. 2a,b.

RoboCOP’s emission probabilities are derived from published position weight
matrices [7] and MNase-seq signals around annotated DBF-occupied regions.
These emission probabilities are fixed, remaining unchanged during model opti-
mization. The transition probabilities among the DBFs, however, are unknown,
so we optimize these parameters using expectation maximization (EM).

Our model contains 150 TFs and nucleosomes, but that is not all possible
DBFs. Thus, factors not in the model could be responsible for the enrichment
in nucFrags and shortFrags at certain locations. We observe the midpoint
counts of shortFrags to be noisier, likely because of the binding of other small
complexes that are not a part of the model, including general TFs. We therefore
add an ‘unknown factor’ into the model to account for such DBFs. It is plotted
in light gray in Fig. 2c. Incorporating this unknown factor reduces false positives
among binding site predictions for the other TFs (Fig. S2).
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2.3 RoboCOP’s Use of Epigenomic Accessibility Data Improves the
Resulting Chromatin Occupancy Profiles

Our group’s previous work, COMPETE [23], is an HMM that computes a proba-
bilistic occupancy landscape of the DBFs in the genome using only nucleotide
sequence as input. The model output is theoretical in that it does not incorpo-
rate experimental data in learning the binding landscape of the genome. Perhaps
unsurprisingly, the nucleosome positions learned by COMPETE (Fig. 2e) do not line
up well with the nucleosomal signal apparent in MNase-seq data (Figs. 2a, b).
The nucleosome predictions of COMPETE (Fig. 2e) are more diffuse, which is under-
standable because it relies entirely on sequence information, and nucleosomes
have only weak and periodic sequence specificity. Because of a lack of chromatin
accessibility data, COMPETE fails to identify the clear nucleosome depleted regions
(all throughout the genome, as seen in Figs. 3a, b), as a result of which it fails to
recognize the two Abf1 binding sites known to exist in this locus (Fig. 2e) [15].
In contrast, RoboCOP utilizes the chromatin accessibility data to accurately learn
the nucleosome positions and the annotated Abf1 binding sites (Fig. 2c).

2.4 Predicted Nucleosome Positions

Nucleosomes have weak sequence specificity and can adopt alternative nearby
positions along the genome. It is therefore likely that the nucleosome positions
reported by one method do not exactly match those reported by another. How-
ever, since RoboCOP generates genome-wide probabilistic scores of nucleosome

Fig. 3. Probability that positions around NDRs correspond to a nucleosome dyad, as
computed by (a) COMPETE and (b) RoboCOP. Cyan lines depict experimentally deter-
mined NDR boundaries [5]. Note that Prob(dyad) computed by RoboCOP is appro-
priately almost always zero within NDRs, unlike COMPETE. Aggregate Prob(dyad), as
computed by (c) COMPETE and (d) RoboCOP across all annotated nucleosome dyads [2].
Note that Prob(dyad) computed by RoboCOP appropriately peaks at annotated dyads.
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occupancy, we can plot the probability of a nucleosome dyad, Prob(dyad), around
annotated nucleosome locations [2]. We find that the RoboCOP dyad score peaks
precisely at the annotated dyads (Fig. 3d), and decreases almost symmetrically
in either direction. In contrast, COMPETE does not provide accurate location pre-
dictions (Fig. 3c); the oscillatory nature of the score reported by COMPETE reflects
the periodic dinucleotide sequence specificity model for nucleosomes, and does
not correspond well with actual nucleosome locations. When evaluated genome-
wide using an F1-score (Fig. 4), the nucleosome positions called by RoboCOP are
far more similar to the nucleosome annotations in [2] than are the ones called
by COMPETE, which turn out to be not much better than random.

2.5 Predicted TF Binding Sites

MNase-seq is primarily used to study nucleosome positions; at present, no meth-
ods exist to predict TF binding sites from MNase-seq. It is challenging to extract
TF binding sites from the noisy signal of the shortFrags generated by MNase
digestion. TFs can sometimes be bound for an extremely short span of time [21]
in which case the entire region could be digested by MNase, leaving behind no
shortFrags signal. Nevertheless, MNase-seq data has been reported to provide
evidence of TF binding [10], so we explore how well RoboCOP is able to identify TF
binding sites. When we compare TF binding site predictions made by RoboCOP
to predictions made by COMPETE, we see consistent but slight improvement in
F1-score with RoboCOP (Fig. 4a). As a baseline, we compare these results to an
approach we call FIMO-MNase, in which we simply run FIMO [8] around the
peaks of midpoint counts of shortFrags. We find both RoboCOP and COMPETE
are better than FIMO-MNase (Figs. 4b, c). Abf1, Reb1, and Rap1 have the most
precise annotation datasets, and for these TFs in particular, both COMPETE and
RoboCOP make better predictions. Overall, the highest F1-score is for Rap1 bind-
ing site predictions made by RoboCOP.

Although RoboCOP predicts the binding of a set of 150 TFs, we can only
validate the binding sites of 81 of them, given available X-ChIP-chip [15], ChIP-

Fig. 4. Comparisons of F1-scores of TF binding site predictions by (a) RoboCOP and
COMPETE, (b) RoboCOP and FIMO-MNase, and (c) COMPETE and FIMO-MNase. TFs with
F1-score less than 0.1 in both methods of any given scatter plot are colored gray.
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exo [19], and ORGANIC [13] datasets (Table S1). We have more precise binding
sites from ChIP-exo and ORGANIC experiments for Abf1, Rap1, and Reb1. In
addition, the binding sites in X-ChIP-chip data for many TFs were generated
under multiple conditions [9] (Table S1) and the conditions are not specified for
the reported annotations. This makes the X-ChIP-chip dataset fairly unreliable
for validation purposes. In Fig. S3, we plot Venn diagrams showing the number
of overlaps in the computed binding sites with the annotated binding sites for all
three methods (RoboCOP, COMPETE, FIMO-MNase) and find that both COMPETE
and RoboCOP have high false positives for certain motifs that are AT-rich such as
Azf1 and Sfp1. Since the yeast genome is AT-rich and the shortFrags signal is
noisy, any enrichment of the midpoint counts could be identified as a potential
binding site. We believe prior knowledge about the occupancy of the TFs could
yield higher accuracy.

2.6 RoboCOP Reveals Chromatin Dynamics Under Cadmium Stress

One of the most powerful uses of RoboCOP is that it can elucidate the dynam-
ics of chromatin occupancy, generating profiles under changing environmental
conditions. As an example, we explore the occupancy profiles of yeast cells sub-
jected to cadmium stress for 60 minutes. We run RoboCOP separately on two
MNase-seq datasets: one for a cell population before it was treated with cad-
mium and another 60 minutes after treatment. Cadmium is toxic to the cells
and activates stress response pathways. Stress response related genes are heav-
ily transcribed under cadmium treatment, while ribosomal genes are repressed
[12]. We use RNA-seq to identify the 100 genes most up-regulated (top 100) and
the 100 most down-regulated (bottom 100). As a control, we choose 100 genes
with no change in transcription under cadmium treatment (mid 100) (see Table

Fig. 5. Aggregate of Prob(dyad) computed by RoboCOP around the TSSs of genes
most up-regulated (blue), most down-regulated (green), and unchanged in transcrip-
tion (red), (a) before and (b) 60min after treating cells with cadmium. After treatment,
we see the +1 nucleosome closing in on the promoters of repressed genes (green) but
opening up the promoters of highly transcribed genes (blue). MNase-seq fragment plot
and RoboCOP-predicted occupancy profile of HSP26 promoter at chrII:380700–382350,
(c, d) before and (e, f) after treatment with cadmium. HSP26 is highly expressed
under cadmium stress, and its promoter exhibits much TF binding after treatment,
most prominently by Rap1, known to bind the HSP26 promoter under stress response.
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S2 for the three gene lists). Plotting the RoboCOP-predicted Prob(dyad) around
the TSSs of the three gene groups, we notice that the nucleosomes in the top
100 genes are generally less well-positioned in comparison to the other groups of
genes (Fig. 5a, b). Because of the uncertainty in the nucleosome positions of the
top 100 genes, Prob(dyad) does not have any sharp peaks (blue curve in Fig. 5a,
b). On the other hand, Prob(dyad) has sharp peaks indicating well-positioned
nucleosomes for bottom 100 and mid 100 genes (green and red curves in Fig. 5a,
b). This suggests RoboCOP-predicted Prob(dyad) can be used to classify ‘fuzzy’
or less well-positioned nucleosomes in the genome. Additionally, we see that the
+1 nucleosomes of the top 100 genes move downstream after treatment with
cadmium, thereby opening up the promoter region. In contrast, the +1 nucle-
osomes of the bottom 100 genes move upstream and close in on the promoter
region to repress transcription.

HSP26, a key stress response gene, is among the top 100 most up-regulated
genes. We can use RoboCOP to study how the chromatin landscape changes in
the HSP26 promoter under cadmium stress. In Figs. 5c–f, we notice the HSP26
promoter opening up under stress, with shifts in nucleosomes leading to more
TF binding in the promoter. From the shortFrags midpoint counts, RoboCOP
identifies multiple potential TF binding sites, most prominently for Rap1. Rap1
is known to relocalize to the promoter region of HSP26 during general stress
response [17]; antibody-based methods could be used to validate whether Rap1
binds in the HSP26 promoter under cadmium treatment in particular.

In comparison, COMPETE fails to capture the dynamics of chromatin occu-
pancy because it does not incorporate chromatin accessibility information into
its model. We ran COMPETE with the RoboCOP-trained DBF weights for the two
time points of cadmium treatment and found that COMPETE generates binding
landscapes for the two time points that are nearly identical (Fig. S4). This is a
key difference between RoboCOP and COMPETE: being able to incorporate experi-
mental chromatin accessibility data allows RoboCOP to provide a more accurate
binding profile for cell populations undergoing dramatic chromatin changes.

The above analysis highlights the utility of RoboCOP. Because RoboCOP mod-
els DBFs competing to bind the genome, it produces a probabilistic prediction
of the occupancy level of each DBF at single-nucleotide resolution. As the chro-
matin architecture changes under different environmental conditions, RoboCOP
is able to elucidate the dynamics of chromatin occupancy. The cadmium treat-
ment experiment shows that the predictions made by RoboCOP can be used both
to study overall changes for groups of genes (Fig. 5a), and to focus on specific
genomic loci to understand their chromatin dynamics (Fig. 5b).

3 Methods

3.1 RoboCOP Model Structure and Transition Probabilities

RoboCOP is a multivariate hidden Markov model (HMM) for computing a
genome-wide chromatin occupancy profile using nucleotide sequence and epige-
nomic accessibility data (here MNase-seq) as observables. The HMM structure
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has been adapted from [23]. Let the number of TFs be K. Let π1, . . . ,πK denote
the models for the TFs, and let πK+1 denote the model for nucleosomes. To
simplify notation, we consider an unbound DNA nucleotide to be occupied by a
special ‘empty’ DBF [25]; suggestively, let π0 denote this model. In summary, we
have a total of K +2 DBFs in the model. We use a central non-emitting (‘silent’)
state to simplify state transitions among the DBFs in the model. The HMM may
transition from this central non-emitting state to any one of the DBF models
(including for unbound DNA); at the end of each DBF, the HMM always tran-
sitions back to the central silent state (Fig. S5). This approach assumes DBFs
bind independently of their neighbors, and each DBF therefore has just a single
transition probability associated with it. The transition probabilities from the
central state to the various DBFs are denoted {α0, . . . , αK+1}.

Each hidden state represents a single genome coordinate. An unbound DNA
nucleotide is length one, so its model π0 has just a single hidden state. The
other DBFs (nucleosomes and TFs) have binding sites of greater length and
are thus modeled using collections of multiple hidden states. For TF k with a
binding site of length Lk, the HMM either transitions through Lk hidden states
of its binding motif or Lk hidden states of the reverse complement of its binding
motif. An additional non-emitting state is added as the first hidden state of the
TF model πk, allowing the HMM to transition through the forward or reverse
complement of the motif with equal probability (Fig. S6a). The complete TF
model πk therefore has a total of 2Lk + 1 hidden states. Once the HMM enters
the hidden states for either the forward or reverse motif, it transitions through
the sequence of hidden states with probability 1 between consecutive hidden
states. On reaching the final hidden state of either motif, the HMM transitions
back to the central silent state with probability 1. Likewise, once the HMM enters
the nucleosome model πK+1, it transitions through a sequence of hidden states
corresponding to 147 nucleotides, after which it transitions back to the central
silent state (Fig. S6b). The nucleosome model differs from the TF models in that
the latter are modeled with simple PWM motifs, while the former is implemented
using a dinucleotide sequence specificity model.

Suppose the sequence of hidden states for the entire genome of length G is
denoted as z1, . . . , zG. Then the transition probabilities satisfy the following:

• P (zg+1 = πk,l+1|zg = πk,l) = 1 whenever l < Lk. Within a DBF, the HMM
only transitions to that DBF’s next state and not any other state, until it
reaches the end of the DBF.

• P (zg+1 = πk1,1|zg = πk2,Lk2
) = P (zg+1 = πk1,1) = αk1 . The transition

probability to the first state of a DBF is a constant, independent of which
DBF the HMM visited previously.

• P (zg+1|zg) = 0 for all other cases.

The HMM always starts in the central non-emitting state with probability 1;
this guarantees that it cannot start in the middle of a DBF.
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3.2 RoboCOP Emission Probabilities

The HMM employed by RoboCOP is multivariate, meaning that each hidden
state is responsible for emitting multiple observables per position in the genome.
In our case, these observables are modeled as independent, conditioned on the
hidden state, but adding dependence would be straightforward. For a genome
of length G, the sequences of observables being explained by the model are: (i)
nucleotide sequence {s1, . . . , sG}, (ii) midpoint counts of MNase-seq nucFrags
{l1, . . . , lG}, and (iii) midpoint counts of MNase-seq shortFrags {m1, . . . ,mG}.
For any position g in the genome, the hidden state zg is thus responsible for
emitting a nucleotide sg, a number lg of midpoints of nucFrags, and a number
mg of midpoints of shortFrags (Fig. S1). Since these three observations are
independent of one another given the hidden state zg, the hidden states have
an emission model for each of the three observables, and the joint probability
of the multivariate emission is the product of the emission probabilities of the
three observables.

For the TF models π1, . . . ,πK , emission probabilities for nucleotide
sequences are represented using PWMs. For each of our 150 TFs, we use the
PWM of its primary motif reported in [7] (except for Rap1, where we use the
more detailed motifs in [19]). For the nucleosome model πK+1, the emission
probability for a nucleotide sequence of length 147 can be represented using a
position-specific dinucleotide model [20]. To represent this dinucleotide model,
the number of hidden states in πK+1 is roughly 4× 147. We use the same dinu-
cleotide model that was used earlier in COMPETE [23].

As described earlier, the two-dimensional MNase-seq data is used to compute
two one-dimensional signals. The midpoint counts of nucFrags are primarily
used for learning nucleosome positions and the midpoint counts of shortFrags
are used for learning the TF binding sites. In both cases, a negative binomial
(NB) distribution is used to model the emission probabilities. We use two sets of
NB distributions to model the midpoint counts of nucFrags. One distribution,
NB(μnuc, φnuc), explains the counts of nucFrags at the nucleosome positions
and another distribution, NB(μlb , φlb), explains the counts of nucFrags else-
where in the genome. Since the midpoint counts of nucFrags within a nucleo-
some are not uniform (Fig. 1b), we model each of the 147 positions separately. To
obtain μnuc and φnuc, we collect the midpoint counts of nucFrags in a window
of size 147 centered on the annotated nucleosome dyads of the top 2000 well-
positioned nucleosomes [2] and estimate 147 NB distributions using maximum
likelihood estimate (MLE). The 147 estimated values of μ are denoted as μnuc.
The mean of the 147 estimated values of φ is denoted as φnuc (shared across all
147 positions). Quantile-quantile plots show the resulting NB distributions to be
a good fit (Fig. S7). To compute NB(μlb , φlb), we estimate an NB distribution
for the midpoint counts of nucFrags at the linker regions of the same set of
2000 nucleosomes using MLE. The linker length is chosen to be 15 bases long on
either side of the nucleosome [5].

Similarly, we model the midpoint counts of shortFrags using two distribu-
tions where one of them, NB(μTF , φTF ), explains the counts of shortFrags at
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the TF binding sites, while the other, NB(μmb
, φmb

), explains the counts else-
where. To estimate the parameters of NB(μTF , φTF ), we collect the midpoint
counts of shortFrags at the annotated Abf1 and Reb1 binding sites from [15]
and fit an NB distribution using MLE. A quantile-quantile plot shows the NB
distribution to be a good fit (Fig. S8). We chose Abf1 and Reb1 for fitting the
distribution because these TFs have many binding sites in the genome and the
binding sites are often less noisy. For parameterizing NB(μmb

, φmb
), we compute

the midpoint counts of shortFrags at the same linker regions used earlier and
estimate the NB distribution using MLE.

3.3 RoboCOP Parameter Updates

The transition probabilities between hidden states within a DBF can only be 0
or 1 (except for the two transition probabilities from each TF model’s first, non-
emitting state to either its forward or reverse motif, which are 0.5). Consequently,
only the transition probabilities {α0, . . . , αK+1} from the central silent state
to the first state of each DBF are unknown. We initialize these probabilities
as described below, and then iteratively update them using Baum-Welch until
convergence to a local optimum of the likelihood.

To initialize the probabilities, we assign weight 1 to the ‘empty’ DBF (repre-
senting an unbound DNA nucleotide) and 35 to the nucleosome. To each TF, we
assign a weight which is that TF’s dissociation constant KD (or alternatively,
a multiple thereof: 8KD, 16KD, 32KD, or 64KD). Finally, we transform these
weights into a proper probability distribution to yield the initial probabilities.

To update αk, the transition probability from the central silent state to the
first hidden state πk,1 of DBF k, we compute:

αk =

∑G
g=1 P (πk,1|θ∗, s, l,m)

∑K+1
k′=0

∑G
g=1 P (πk′,1|θ∗, s, l,m)

Here, θ∗ represents all the model parameters. We find the likelihood converges
within 10 iterations (Fig. S9) and the optimized transition probabilities for each
DBF almost always converge to the same final values regardless of how we ini-
tialize the weights (Fig. S10). We find convergence is faster for most DBFs when
we initialize TF weights to KD rather than multiples thereof (Fig. S10).

We do not use any prior information about the transition probabilities of the
DBFs. We find that a few TFs such as Azf1 and Smp1 can have a large number
of binding sites in the genome that are potential false positives. To curb the
number of binding site predictions for such TFs, we apply a threshold on the TF
transition probabilities. The threshold δ is chosen to be two standard deviations
more than the mean of the initial transition probabilities of the TFs (Fig. S11).
Therefore, after the Baum-Welch step in every iteration, an additional modified
Baum-Welch step is computed as follows:
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αk =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(1 − nδ)

G∑

g=1
P (πk,1|θ∗,s,l,m )

∑K+1
k′=0,α

k′ <δ

G∑

g=1
P (πk′,1|θ∗,s,l,m )

, if αk < δ

δ , otherwise

Here n is the number of TFs that have transition probability more than
δ. So, all the TFs whose transition probability would be more than δ are set
instead to δ, and the remaining TFs have a regular Baum-Welch update of their
transition probabilities. We find that this approach reduces the number of false
positives (Fig. S12). Using an informed prior might be an alternative mechanism
for yielding a more accurate binding profile for such TFs.

To ensure fair comparisons between RoboCOP and COMPETE, we ran COMPETE
using the same parameters estimated by RoboCOP. Therefore, the output profiles
of the two methods highlight the differences in the results that occur because of
the inclusion of chromatin accessibility data.

3.4 Implementation Details for Posterior Decoding

RoboCOP employs posterior decoding to infer probabilistic occupancy profiles
of protein-DNA binding. The motivation behind posterior decoding is that it
represents the thermodynamic ensemble of potential binding configurations; the
resulting probability distribution sheds light on the many different ways proteins
may be bound to the genome across a cell population (applying Viterbi decod-
ing would not provide a probabilistic landscape, but only a single, most likely
chromatin configuration).

As a multivariate HMM, RoboCOP has a time complexity of O(GN2) and a
space complexity of O(GN) (for a genome of length G and where N denotes the
total number of hidden states). The high complexity makes it difficult to decode
the entire genome at once. To reduce the computational complexity of RoboCOP,
we perform posterior decoding separately on blocks of the genome of length 5000,
with an overlap of 1000 bases, and stitch results together. This ensures that the
model has a sufficiently long sequence to learn an accurate chromatin landscape,
but not so long that we run out of space. In addition, we use only the longest
chromosome (chrIV) to train DBF transition probabilities with Baum-Welch,
and then undertake posterior decoding genome-wide.

3.5 TF and Nucleosome Predictions and Validation

We use posterior probabilities of TF occupancy from RoboCOP and COMPETE out-
put to identify binding sites, calling all sites whose probability is at least 0.1. In
the case of Rap1 which has multiple PWMs, the maximum probability among
the PWMs is chosen at every position. The same comparison is applied when
choosing between the forward and reverse complement of the motif. For valida-
tion, a site is considered a true positive (TP) if it overlaps with an annotated
binding site for that TF, and a false positive (FP) otherwise. If an annotated TF
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binding site does not overlap any of our predictions, it is a false negative (FN).
We use the sacCer2 (June 2008) genome version in our analyses.

We called nucleosomes from RoboCOP and COMPETE output using a greedy
algorithm, as described previously [24]. Briefly, nucleosome dyads with decreas-
ing probability were iteratively selected. A window of size 101 around the selected
dyad was removed from future rounds of dyad selection (this window size was
chosen to allow mild overlap between adjacent nucleosome locations). The nucle-
osome annotations in [2] contain 67548 nucleosomes. We selected the same num-
ber of top scoring nucleosomes from the output of RoboCOP and COMPETE. A
nucleosome position was considered to be a true positive (TP) if the distance
between the predicted and annotated dyad was less than 50 bases.

3.6 FIMO-MNase

MNase-seq midpoint counts of shortFrags (length less than 80) are smoothed
using a window of size 21. Peaks are detected if they have a value greater than 2
with consecutive peaks being at least 25 bases apart. Peaks for midpoint counts
of nucFrags are detected if they have a value greater than 1 and are at least 100
bases apart. To prevent nucleosomal peaks occluding peaks of shortFrags, peaks
of midpoint counts of shortFrags within 60 bases of peaks of midpoint counts of
nucFrags are removed. After these steps, we detect 4137 peaks of shortFrags
genome-wide. FIMO [8] is run using PWMs from [7] on 50-bp windows centered
on the peak sites with a p-value cutoff of 10−4.

3.7 Data Access

MNase-seq and RNA-seq of yeast cells before and after cadmium treatment is
available at https://doi.org/10.7924/r4hx1b43s. Code and supplementary mate-
rial may be downloaded from https://github.com/HarteminkLab/RoboCOP.

4 Discussion

RoboCOP is a novel method that utilizes a multivariate HMM to generate a
probabilistic occupancy profile of the genome by integrating chromatin acces-
sibility data with nucleotide sequence. We choose to apply the model to the
yeast genome because of the availability of high quality MNase-seq data and the
small size of the genome, which simplifies computation. Chromatin accessibility
data from MNase-seq, DNase-seq, and ATAC-seq are generally noisy, so it is a
challenging task to infer precise genome-wide DBF occupancy from the data,
particularly for TFs. While alternative approaches using peak identification or
footprint identification followed by TF-labeling with FIMO [8] can offer some
insight into protein-DNA binding, we observe that RoboCOP performs notably
better, presumably because it considers all DBFs together in a joint model
that incorporates the thermodynamic competition among DBFs (including
nucleosomes).

https://doi.org/10.7924/r4hx1b43s
https://github.com/HarteminkLab/RoboCOP
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RoboCOP improves upon COMPETE in a number of ways: it slightly improves
TF binding site predictions, it markedly improves nucleosome positioning pre-
dictions, and it uses experimental data to learn DBF transition probabilities
in a principled way. When these same transition probabilities are provided to
COMPETE, its TF binding site predictions are similar to RoboCOP’s because of the
generally high sequence specificity of TFs, but its nucleosome position predic-
tions are much worse because of the weak sequence specificity of nucleosomes. In
future work, it might be possible to improve the learned transition probabilities
further through the use of prior information.

Finally, we note that RoboCOP can be used to study the chromatin archi-
tecture of the genome under varying conditions, an important task to which
COMPETE is unsuited. Because RoboCOP uses data to model a collection of DBFs
competing to bind to the genome, we can observe dynamic levels of occupancy
for different DBFs under different environmental conditions. Since gene expres-
sion also varies in response to changing environmental conditions, we believe
RoboCOP will help elucidate how the dynamics of chromatin occupancy and the
dynamics of gene expression interrelate.
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Abstract. Given the popularity and elegance of k-mer based tools, find-
ing a space-efficient way to represent a set of k-mers is important for
improving the scalability of bioinformatics analyses. One popular app-
roach is to convert the set of k-mers into the more compact set of unitigs.
We generalize this approach and formulate it as the problem of finding a
smallest spectrum-preserving string set (SPSS) representation. We show
that this problem is equivalent to finding a smallest path cover in a com-
pacted de Bruijn graph. Using this reduction, we prove a lower bound
on the size of the optimal SPSS and propose a greedy method called
UST that results in a smaller representation than unitigs and is nearly
optimal with respect to our lower bound. We demonstrate the usefulness
of the SPSS formulation with two applications of UST. The first one is
a compression algorithm, UST-Compress, which we show can store a set
of k-mers using an order-of-magnitude less disk space than other lossless
compression tools. The second one is an exact static k-mer membership
index, UST-FM, which we show improves index size by 10–44% com-
pared to other state-of-the-art low memory indices. Our tool is publicly
available at: https://github.com/medvedevgroup/UST/.

1 Introduction

Algorithms based on k-mers are now amongst the top performing tools for many
bioinformatics analyses. Instead of working directly with reads or alignments,
these tools work with the set of k-mer substrings present in the data, often
relying on specialized data structures for representing sets of k-mers (for a survey,
see [1]). Since modern sequencing datasets are huge, the space used by such data
structures is a bottleneck when attempting to scale up to large databases. For
example, as part of our group’s work on building indices for RNA-seq data, we

A full version of this paper is available as a preprint https://doi.org/10.1101/2020.01.
07.896928.
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are storing gzipped k-mer set files from about 2,500 experiments [2]. Though
this is only a fraction of experiments in the SRA, it already consumes 6 TB
of space. For these and other applications, the development of space-efficient
representations of k-mer sets can improve scalability and enable novel biological
discoveries.

Conway and Bromage [3] showed that at least log
(
4k

n

)
bits are needed to

losslessly store a set of n k-mers, in the worst case. However, a set of k-mers
generated from a sequencing experiment typically exhibits the spectrum-like
property [1] and contains a lot of redundant information. Therefore, in practice,
most data structures can substantially improve on that bound [4].

A common way to reduce the redundancy in a k-mer set K is to convert it into
a set of maximal unitigs. A unitig is a non-branching path in the de Bruijn graph,
a graph whose nodes are the k-mers of K and edges are the overlaps between k-
mers. A unitig u can be written as a string spell(u) of length |u|+k−1, such that
the k-mers of u are exactly the k-mer substrings of spell(u). For example, the
unitig (AAC,ACG,CGT ) is spelled as AACGT . This gives a way to represent
|u| k-mers using |u|+k−1 characters, instead of k|u| characters used by a naive
approach. When unitigs are long, as they are in real data, the space savings are
significant. The idea can be extended to store the whole set K, because the set
of maximal unitigs U forms a decomposition of K, and, therefore, has the nice
property that x ∈ K iff x is a substring of spell(u), for some u ∈ U .

The maximal unitigs U can be computed efficiently [5–7] and combined with
an auxiliary index to obtain a membership data structure (i.e. one that can
efficiently determine if a k-mer belongs to K or not). In particular, Unitigs-
FM [4] and deGSM [7] uses the FM-index as the auxiliary index, Pufferfish [8]
and BLight [9] uses a minimum perfect hash function, and Bifrost [10] uses a
minimizer hash table. Alternatively, U can be compressed to obtain a compressed
disk representation of K, albeit without efficient support for membership queries
prior to decompression.

While unitigs conveniently fit the needs of those applications, we observe in
this paper that they are not necessarily the best that can be done. Concretely,
we claim that what makes U useful in these scenarios is that they are a type of
spectrum-preserving string set (SPSS) representation of K, which we define to
be a set of strings X such that a k-mer is in K iff it is a substring of a string in
X. (This is in contrast to the way unitigs are used in assembly, where it is crucial
that they are not chimeric [11].) The weight of X is the number of characters
it contains. In this paper, we explore the idea of low weight representations
and their applicability. In particular, are there representations with a smaller
weight than U that can be efficiently computed? What is the lowest weight that
is achievable by a representation? Can such representations seamlessly replace
unitig representations in downstream applications, and can they improve space
performance?

In this paper, we show that the problem of finding a minimum weight SPSS
representation is equivalent to finding a smallest path cover in a compacted de
Bruijn graph (Sect. 3). We use the reduction to give a lower bound on the weight
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which could be achieved by any SPSS representation (Sect. 4), and we give an
efficient greedy algorithm UST to find a representation that improves on U
(Sect. 5) and is empirically near-optimal. We demonstrate the usefulness of our
representation using two applications (Sect. 6). One, we combine it with an FM-
index into a membership data structure called UST-FM, and, two, we combine
it with a general compression algorithm to give a compression algorithm called
UST-Compress. Both applications result in a substantial space decrease over
state-of-the-art (Sect. 7), demonstrating the usefulness of SPSS representations.
Our software is freely available at https://github.com/medvedevgroup/UST/.

1.1 Related Work

The idea of using a SPSS for a membership index was previously independently
described in a PhD thesis [12] and questions similar to the ones in our paper
are simultaneously and independently studied in [13]. The idea of greedily glu-
ing unitigs (as UST does) has previously appeared in read compression [14],
where contigs greedily constructed from the reads and the reads were stored as
alignments to these contigs. The idea also appeared in the context of sequence
assembly, where a greedy traversal of an assembly graph was used as an inter-
mediate step during assembly [15,16].

The compression of k-mer sets has not been extensively studied, except in
the context of how k-mer counters store their output [17–20]. DSK [18] uses an
HDF5-based encoding, KMC3 [17] combines a dense storage of prefixes with a
sparse storage of suffixes, and Squeakr [20] uses a counting quotient filter [21].
The compression of read data, on the other hand, stored in either unaligned or
aligned formats, has received a lot of attention [22–24]. In the scenario where
the k-mer set to be compressed was originally generated from FASTA files by
a k-mer counter, an alternate to k-mer compression is to compress the original
FASTA file and use a k-mer counter as part of the decompression to extract the
k-mers on the fly. This approach is unsatisfactory because (1) as we show in this
paper, it takes substantially more space than direct k-mer compression, (2) k-
mer counting on the fly adds significant time and memory to the decompression
process, and (3) there are applications where the k-mer set cannot be reproduced
by simply counting k-mers in a FASTA file, e.g. when it is a product of a multi-
sample error correction algorithm [25]. Furthermore, there are applications where
the k-mer set is not related to sequence read data at all, e.g. a universal hitting
set [26], a chromosome-specific reference dictionary [27], or a winnowed min-hash
sketch (for example as in [28], or see [29,30] for a survey).

Membership data structures for k-mer sets were surveyed in a recent
paper [1]. In addition to the unitig-based approaches already mentioned,
other exact representations include succinct de Bruijn graphs (referred to as
BOSS [31]) and their variations [32,33], dynamic de Bruijn graphs [34,35], and
Bloom filter tries [36]. Some data structures are non-static, i.e. they provide
the ability to insert and/or delete k-mers. However, such operations are not
needed in many read-only applications, where the cost of supporting them can
be avoided. Membership data structures can be extended to associate additional

https://github.com/medvedevgroup/UST/
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information with each k-mer, for instance an abundance count (e.g. deBGR [37])
or a color class (for a short overview, see [1]).

2 Definitions

Strings: In this paper, we assume all strings are over the alphabet Σ =
{A,C,G, T}. The length of string x is denoted by |x|. A string of length
k is called a k-mer. For a set of strings S, weight(S) =

∑
x∈S |x| denotes

the total count of characters. We write x[i..j] to denote the substring of x
from the ith to the jth character, inclusive. We define sufk(x) (respectively,
prek(x)) to be the last (respectively, first) k characters of x. For x and y with
sufk−1(x) = prek−1(y), we define gluing x and y as x � y = x · y[k..|y|]. For
s ∈ {0, 1}, we define orient(x, s) to be x if s = 0 and to be the reverse comple-
ment of x if s = 1. A string x is canonical if x is the lexicographically smaller
of x and its reverse complement. To canonize x is to replace it by its canonical
version (i.e. mini(orient(x, i))). We say that x0 and x1 have a (s0, s1)-oriented-
overlap if sufk−1(orient(x0, 1 − s0) = prek−1(orient(x1, s1)). Intuitively, such
an overlap exists between two strings if we can orient them in such a way that
they are glueable. We define the k-spectrum spk(x) as the multi-set of all can-
onized k-mer substrings of x. The k-spectrum for a set of strings S is defined as
spk(S) =

⋃
x∈S spk(x).

Bidirected Graphs: A bidirected graph G is a pair (V,E) where the set V are
called vertices and E is a set of edges. An edge e is a 4-tuple (u0, s0, u1, s1),
where ui ∈ V and si ∈ {0, 1}, for i ∈ {0, 1}. Intuitively, every vertex has two
sides, and an edge connects to a side of a vertex. Note that there can be multiple
edges between two vertices, but only one edge once the sides are fixed. An edge
is a loop if u0 = u1. Given a non-loop edge e that is incident to a vertex u, we
denote side(u, e) as the side of u to which it is incident. We say that a vertex u
is isolated if it has no edge incident to it and is a dead-end if it has exactly one
side to which no edges are incident. Define ndead and niso as the number of dead-
end and isolated vertices, respectively. A sequence w = (u0, e1, u1, . . . , en, un) is
a walk if for all 1 ≤ i ≤ n, ei is incident to ui−1 and to ui, and for all 1 ≤ i ≤ n−1,
side(ui, ei) = 1 − side(ui, ei+1). Vertices u1, . . . , un−1 are called internal and u0

and un are called endpoints. A walk can also be a single vertex, in which case it
is considered to have no internal vertex and one endpoint. A path cover W of G
is a set of walks such that every vertex is in exactly one walk in W and no walk
visits a vertex more than once.

Bidirected DNA Graphs: A bidirected DNA graph is a bidirected graph G where
every vertex u has a string label lab(u), and for every edge e = (u0, s0, u1, s1),
there is a (s0, s1)-oriented-overlap between lab(u0) and lab(u1). G is said
to be overlap-closed if there is an edge for every such overlap. Let w =
(u0, e1, u1, . . . , en, un) be a walk. Define x0 = orient(lab(u0), 1 − side(u0, e1))
and, for 1 ≤ i ≤ n, xi = orient(lab(ui), side(ui, ei−1)). The spelling of a walk
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is defined as spell(w) = x0 � · · · � xn. (The fact that the xi’s are glueable in
this way can be derived from definitions.) If W is a set of walks, then define
spell(W ) =

⋃
w∈W spell(w).

De Bruijn Graphs: Let K be a set of canonical k-mers. The node-centric bidi-
rected de Bruijn graph, denoted by dBG(K), is the overlap-closed bidirected
DNA graph where the vertices and their labels correspond to K. Figure 1A
shows an example. In this paper, we will assume that dBG(K) is not just a
single cycle; such a case is easy to handle in practice but is a space-consuming
corner-case in all the analyses. A walk in dbG(K) is a unitig if all its vertices
have in- and out-degrees of 1, except that the first vertex can have any in-degree
and the last vertex can have any out-degree. A single vertex is also a unitig. A
unitig is maximal if it is not a sub-walk of another unitig. It was shown in [5] that
if dBG(K) is not a cycle, then a unitig cannot visit a vertex more than once,

(A)

(B) (C)

Fig. 1. (A) An example of a de Bruijn graph for a set K with 9 3-mers. The 0 side
of a vertex is drawn flat and the 1 side pointy. The text in each vertex is its label, i.e.
what is spelled by a walk going in the direction of the pointy end. The string below
the vertex is the reverse complement of its label, which is what is spelled by a walk
going in the opposite direction. The maximal unitigs are shown by filled in gray arrows.
(B) The compacted de Bruijn graph for the same set K. Each vertex corresponds to a
maximal unitig in the top graph. Each vertex’s label corresponds to the spelling of the
corresponding unitig and is shown inside the vertex; the reverse complement of the label
is written below in italics. One possible path cover is five walks, each corresponding
to a single vertex; the spelling of this cover is {AAAC,ACGG,ACTGG,GGA,ACC},
which is the unitig SPSS representation of K. A better path cover of size 2 that
could potentially be found by our UST algorithm is shown. It corresponds to SPSS
representation {AAACGGA,ACTGGT}. It is easy to verify that this path cover has
minimum size, and, by Theorem 1, the corresponding representation has minimum
weight (13). (C) Another path cover that could potentially be found by UST. It has
size 3 and is suboptimal.



Representation of K-Mer Sets Using Spectrum-Preserving String Sets 157

and the set of maximal unitigs forms a unique decomposition of the vertices in
dBG(K) into non-overlapping walks. The bidirected compacted de Bruijn graph
of K, denoted by cdBG(K), is the overlap-closed bidirected DNA graph where
the vertices are the maximal unitigs of dBG(K), and the labels of the vertices
are the spellings of the unitigs. Figure 1B shows an example.

3 Equivalence of SPSS Representations and Path Covers

For this section, we fix K to be a canonical set of k-mers. A set of strings X is
said to be a spectrum-preserving string set (SPSS) representation of K iff their
k-spectrums are equal and each string in X is of length ≥ k. For brevity, we
say X represents K. Note that because in our definitions K is a set (i.e. no
duplicates) and the k-spectrum is a multi-set, this effectively restricts X to not
contain duplicate k-mers. See Fig. 1BC for examples. In this paper, we consider
the problem of finding a minimum weight SPSS representation of K. In this
section, we will show that it is equivalent to the problem of finding a smallest
path cover of cdBG(K), in the following sense:

Theorem 1. Let Xopt be a minimum weight SPSS representation of K. Let
W opt be the smallest path cover on cdBG(K). Then, weight(Xopt) = |K| +
|W opt|(k − 1).

First, we show that the weight of a SPSS representation is a linear increasing
function of its size (i.e. the number of strings it contains) and, hence, finding a
SPSS representation of minimum weight is equivalent to finding one of min size.

Lemma 1. Let X be SPSS representing K. Then, weight(X) = |K|+|X|(k−1).

Proof. Every string x of length ≥ k contains |x| − k + 1 k-mers. X has |K|
k-mers, since X and K have the same k-spectrum. Combining these, |K| =∑

x∈X(|x| − k + 1) = weight(X) − |X|(k − 1).

The intuition behind Theorem 1 is that there is a natural size-preserving
bijection between path covers of dBG(K) and SPSS representations of K. Since
it is more efficient to work with compacted de Bruijn graphs, we would like
this to hold for cdBG(K) as well. However, the path covers with an endpoint
at an internal vertex of a unitig in dBG(K) do not project onto cdBG(K).
Nevertheless, this is not an issue since such covers are necessarily non-optimal.

Lemma 2. Let W be a path cover of cdBG(K). Then spell(W ) represents K.

Proof. By construction, all strings in spell(W ) are at least k-long, so we only
need to show that the spectrum of spell(W ) is K. Let W 0 be the path cover with
every vertex as its own walk. We can view W as being constructed from W 0 by
repeatedly taking a pair of walks that share endpoints and joining them together.
We prove the Lemma by induction. For the base case, spell(W 0) are the unitigs
of dBG(K), which, by definition, have the same spectrum as K [5]. Now let W i
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be the path cover after i walk-joins. Then W i+1 is the result of joining some two
walks w and w′ into w′′. Observe that joining walks preserves the k-spectrum of
their spellings, i.e spk(spell(w)) ∪ spk(spell(w′)) = spk(spell(w′′)). Combining
with the inductive hypothesis for W i, spk(spell(W i)) = spk(spell(W i+1)).

Lemma 3. Let X be a smallest SPSS representation of K. Then there exists a
path cover W of cdBG(K) with |W | = |X|.
Proof. Let X = {x1, . . . , xm}. Every string xi is spelled by a walk w′

i in dBG(K),
visiting the sequence of its canonized constituent k-mers. Since X is spectrum
preserving with respect to K, it contains every k-mer in K exactly once; there-
fore, {w′

1, . . . , w
′
m} is a path cover of dbG(K).

Since X has the smallest number of strings, the endpoints of w′
i cannot be

on internal vertices of unitigs, otherwise there would exist another string xj that
could be glued with xi to form a smaller SPSS representing K. Therefore, there
exists a corresponding walk wi in cdBG(K) such that spell(wi) = spell(w′

i) = xi.
Hence, the set of walks W = {w1, . . . , wm} is a path cover of cdBG(K).

Now we can prove Theorem 1.

Proof. By Lemma 1, Xopt has minimum size and, hence, by Lemma 3, there
exists a path cover W with |W | = |Xopt|. By the optimality of W opt, |W opt| ≤
|W | ≤ |Xopt|. Next, by Lemma 2, spell(W opt) represents K and, by definition,
|spell(W opt)| = |W opt|. Since Xopt has minimum size, |Xopt| ≤ |spell(W opt)| =
|W opt|. This proves |Xopt| = |W opt|. Lemma 1 then implies the Theorem.

4 Lower Bound on the Weight of a SPSS Representation

In this section, we will prove a lower bound on the size of a path cover of a
bidirected graph, which, by Theorem 1, gives a lower bound on the weight of
any SPSS representation. Finding the minimum size of a path cover in general
directed graphs is NP-hard, since a directed graph has a Hamiltonian path if and
only if it has a path cover of size 1. However, we do not know the complexity
of the problem when restricted to compacted de Bruijn graphs of k-mer sets.
The minimum size of a path cover is known to be bounded from above by
the maximum size of an independent set (at least for directed graphs [38]);
however, finding a maximum independent set is itself NP-hard. We therefore
take a different approach.

For this section, let G = (V,E) be a bidirected graph without loops and let W
be a path cover. A vertex-side is a pair (u, su), where u ∈ V and su ∈ {0, 1}. For
a non-isolated vertex u, we say (u, su) is a dead-side if there are no edges incident
to (u, 1 − su). Note that the number of dead-sides is by definition the number
of dead-end vertices. Consider a walk (v0, e1, . . . , en, vn) with n ≥ 1. Denote its
endpoint-sides as (v0, side(v0, e1)) and (vn, side(vn, en)). If a walk contains just
one vertex (v0), then denote its endpoint-sides as (v0, 0) and (v0, 1).

We observe that every walk in a path cover must have two unique endpoint-
sides. Our strategy is to give a lower bound on the number of endpoint-sides,
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thereby giving a lower bound on the size of a path cover. We know, for instance,
that dead-sides must be endpoint-sides and we also know that the sides of an
isolated vertex must be endpoint-sides. For other cases, we cannot predict exactly
the endpoint-sides, but we can create disjoint sets of vertex-sides (which we call
special neighborhoods) such that, for each set, we can guarantee that all but
one of its vertex-sides are endpoint-sides. Formally, for a vertex-side (u, su),
its special neighborhood Bu,su is the set of vertex-sides (v, sv) such that there
exists and edge between (u, su) and (v, 1 − sv) and it is the only edge incident
on (v, 1 − sv). A vertex-side which belongs to a special neighborhood is called
a special-side. Figure 2 shows an example. Our key lemma is that all but one
member of a special neighborhood must be an endpoint-side:

Lemma 4. For a vertex-side (u, su), there must be at least |Bu,su|−1 endpoint-
sides of W in Bu,su.

Proof. Assume without loss of generality that |Bu,su| > 1, since the lemma is
vacuous otherwise. Let (v, sv) ∈ Bu,su be a vertex-side that is not an endpoint
side in W , and let wv be the walk containing v. Since, in particular, (v, sv) is
not an endpoint-side of wv, then wv must contain an edge incident to (v, 1−sv).
By definition of special neighborhood, the only such edge is incident to (u, su).
By definition of a path cover, there can only be one walk in W that contains an
edge incident to (u, su) and it can contain only one such edge. Hence, there can
only be one (v, sv) ∈ Bu,su that is not an endpoint-side.

Next, we show that the special neighborhoods are disjoint, and we can therefore
define nsp =

∑
u∈V,su∈{0,1} max(0, |Bu,su| − 1) as a lower bound on the number

of special-sides that are endpoint-sides:

(A) (B)

Fig. 2. (A) An example compacted de Bruijn graph (labels not shown), with a distinct
ID for each vertex shown inside the vertex. The dashed hollow sides of the vertices are
dead sides and the solid gray sides are special-sides. Each special-side is additionally
labeled with the vertex-side to whose special neighborhoods it belongs. For example,
the special neighborhood of vertex-side (c, 0) contains two vertex-sides, namely the
blunt gray sides of vertices a and b, corresponding to |Bc,0| = 2. In this example,
ndead = 4, nsp = 6, and niso = 1. By Theorem 2, the minimum size of a path cover is
6, and one can indeed find a path cover of this size in the graph. (B) In this example,
ndead = 4, nsp = niso = 0, resulting in a lower bound of 2 on the size of a path cover.
However, a quick inspection tells us that the the optimal size of a path cover is 4. This
shows that our lower bound is not theoretically tight.
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Lemma 5. There are at least nsp special-sides that are endpoint-sides of W .

Proof. We claim that Bu,su ∩ Bv,sv = ∅ for all (u, su) 	= (v, su). Let (w, sw) ∈
Bu,su ∩Bv,sv. By definition of Bu,su, the only edge touching (w, 1 − sw) is inci-
dent to (u, su). Similarly, by definition of Bv, the only edge touching (w, 1−sw)
is incident to (v, sv). Hence, (u, su) = (v, sv). The Lemma follows by apply-
ing Lemma 4 to each Bu,su and summing the result.

Finally, we are ready to prove our lower bound on the size of path cover.

Theorem 2. |W | ≥ 
(ndead + nsp)/2� + niso.

Proof. Define a walk as isolated if it has only one vertex and that vertex is
isolated. There are exactly niso isolated walks in W . Next, dead-sides are trivially
endpoint-sides of a non-isolated walk in W . By Lemma 5, so are at least nsp of
the special-sides. Since the set of dead-sides and the set of special-sides are, by
their definition, disjoint, the number of distinct endpoint-sides of non-isolated
walks is at least ndead +nsp. Since every walk in a path cover must have exactly
two distinct endpoint-sides, there must be at least 
(ndead+nsp)/2� non-isolated
walks.

By applying Theorem 1 to Theorem 2 and observing that loops do not effect
path covers, we get a lower bound on the minimum weight of any SPSS repre-
sentation:

Corollary 1. Let K be a set of canonical k-mers and let Xopt be its
minimum weight SPSS representation. Then, weight(Xopt) ≥ |K| + (k −
1) (
(ndead + nsp)/2� + niso), where ndead, niso, and nsp are defined with respect
to the graph obtained by removing loops from cdBG(K).

We note that the lower bound is not tight, as in the example of Fig. 2B; it can
likely be improved by accounting for higher-order relationships in G. However,
the empirical gap between our lower bound and algorithm is so small (Sect. 7)
that we did not pursue this direction.

5 The UST Algorithm for Computing a SPSS
Representation

In this section, we describe our algorithm called UST (Unitig-STitch) for
computing a SPSS representation of a set of k-mers K. We first use the Bcalm2
tool [5] to construct cdBG(K), then find a path cover W of cdBG(K), and then
output spell(W ), which by Lemma 2 is a SPSS representation of K.

UST constructs a path cover W by greedily exploring the vertices, with each
vertex explored exactly once. We maintain the invariant that W is a path cover
over all the vertices explored up to that point, and that the currently explored
vertex is an endpoint of a walk in W . To start, we pick an arbitrary vertex u,
add a walk consisting of only u to W , and start an exploration from u.



Representation of K-Mer Sets Using Spectrum-Preserving String Sets 161

An exploration from u works as follows. First, we mark u as explored. Let wu

be the walk in W that contains u as an endpoint, and let su be the endpoint-side
of u in wu. We then search for an edge e = (u, 1−su, v, sv), for some v and sv. If
we find such an edge and v has not been explored, then we extend wu with e and
start a new exploration from v. If v has been explored and is an endpoint vertex
of a walk wv in W , then we merge wu and wv together if the orientations allow
(i.e. if 1−sv is the side at which wv is incident to v) and start a new exploration
from an arbitrary unexplored vertex. In all other cases (i.e. if e is not found,
if the orientations do not allow merging wv with wu, or if v in internal vertex
in wv), we start a new exploration from an arbitrary unexplored vertex. The
algorithm terminates once all the vertices have been explored. It follows directly
via the loop invariant that the algorithm finds a path cover, though we omit an
explicit proof.

In our implementation, we do not store the walks W explicitly but rather just
store a walk ID at every vertex along with some associated information. This
makes the algorithm run-time and memory linear in the number of vertices and
the number of edges, except for the possibility of needing to merge walks (i.e.
merging of wu and wv). But we implement these operations using a union-find
data structure, making the total time near-linear.

We note that UST’s path cover depends on the arbitrary choices of which
vertex to explore. Figure 1C gives an example where this leads to sub-optimal
results. However, our results indicate that UST cannot be significantly improved
in practice, at least for the datasets we consider (Sect. 7).

6 Applications

We apply UST to solve two problems. First, we use it to construct a compres-
sion algorithm UST-Compress. UST-Compress supports only compression and
decompression and not membership and is intended to reduce disk space. We
take K as input (in the binary output format of either DSK [18] or Jellyfish [19]),
run UST on K, and then compress the resulting SPSS using a generic nucleotide
compressor MFC [39]. UST-Compress can also be run in a mode that takes as
input a count associated with each k-mer. In this mode, it outputs a list of
counts in the order of their respective k-mers in the output SPSS representation
(this is a trivial modification to UST). This list is then compressed using the
generic LZMA compression algorithm. Note that we use MFC and LZMA due to
their superior compression ratios, but other compressors could be substituted.
To decompress, we simply run the MFC or LZMA decompressing algorithm.

Second, we use UST to construct an exact static membership data struc-
ture UST-FM. Given K, we first run UST on K, and then construct an FM-
index [40] (as implemented in [41]) on top of the resulting SPSS representation.
The FM-index then supports membership queries. In comparison to hash-based
approaches, the FM-index does not support insertion or deletion; on the other
hand, it allows membership queries of strings shorter than k.



162 A. Rahman and P. Medvedev

7 Empirical Results

We use different types of publicly available sequencing data because each type
may result in a de Bruijn graph with different properties and may inherently be
more or less compressible. Our datasets include human, bacterial, and fish sam-
ples; they also include genomic, metagenomic, and RNA-seq data Each dataset
was k-mer counted using DSK [18], using k = 31 with singleton k-mers removed.
While these are not the optimal values for each of the respective applications, it
allows us to have a uniform comparison across datasets. In addition, we k-mer
count one of the datasets with k = 61, removing singletons, in order to study
the effect of k-mer size. All our experiments were run on a server with a Intel(R)
Xeon(R) CPU E5-2683 v4 @ 2.10 GHz with 64 cores and 512 GB of memory. All
tested algorithms were verified for correctness in all datasets. Reproducibility
details are available at https://github.com/medvedevgroup/UST/tree/master/
experiments.

7.1 Evaluation of the UST Representation

We compare our UST representation against the unitig representation as well
as against the SPSS lower bound of Corollary 1 (the full paper has a deeper
breakdown). UST reduces the number of nucleotides (i.e. weight) compared to
the unitigs by 10–32%, depending on the dataset. The number of nucleotides
obtained is always within 3% of the SPSS lower bound; in fact, when considering
the gap between the unitig representation and the lower bound, UST closes 92–
99% of that gap. These results indicate that our greedy algorithm is a nearly
optimal SPSS representation, on these datasets. They also indicate that the
lower bound of Corollary 1, while not theoretically tight, is nearly tight on the
type of real data captured by our experiments.

Table 1. Comparison of different string set representations and the SPSS lower bound.
The second column shows |K|. For a representation X, the number of strings is |X| and
the number of nucleotides per distinct k-mer is weight(X)/|K|. Unitigs were computed
using BCALM2.

Dataset SPSS lower bound UST unitigs

# distinct k-mers # strings nt/k-mer # strings nt/k-mer # strings nt/k-mer

Zebrafish

RNA-seq

124,740,993 3,979,856 1.96 4,174,867 2.00 7,775,719 2.87

Human RNA-seq 101,017,526 3,924,803 2.17 4,132,115 2.23 7,665,682 3.28

Human

chromosome 14

99,941,572 2,235,267 1.67 2,386,324 1.72 4,871,245 2.46

Whole human

genome

391,766,120 13,964,825 2.07 14,423,449 2.10 19,581,835 2.50

Human gut

metagenome

103,814,001 1,517,107 1.34 1,522,139 1.34 2,187,669 1.49

Human RNA-seq

(k=61)

75,013,109 2,651,729 3.12 2,713,825 3.17 4,371,173 4.50

https://github.com/medvedevgroup/UST/tree/master/experiments
https://github.com/medvedevgroup/UST/tree/master/experiments
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7.2 Evaluation of UST-Compress

We measure the compressed space-usage (Table 2), compression time and mem-
ory (Table 3), and decompression time and memory. We compare against the
following lossless compression strategies: (1) the binary output of the k-mer
counters DSK [18], KMC [17], and Squeakr-exact [20]; (2) the original FASTA
sequences, with headers removed; (3) the maximal unitigs; and (4) the BOSS
representation [31] (as implemented in COSMO [42]). In all cases, the stored data
is additionally compressed using MFC (for nucleotide sequences, i.e. 2 and 3) or
LZMA (for binary data, i.e. 1 and 4). The second strategy (which we already
discussed in Sect. 1.1) is not a k-mer compression strategy per say, but it is how
many users store their data in practice. The fourth strategy uses BOSS, the
empirically most space efficient exact membership data structure according to
a recent comparison [35]. We include this comparison to measure the advantage
that can be gained by not needing to support membership queries. Note that
strategies 1 and 2 retain count information, unlike strategies 3 and 4. Squeakr-
exact also has an option to store only the k-mers, without counts.

Table 2. Space usage of UST-Compress and others. We show the average number of
bits per distinct k-mer in the dataset. All files are compressed with MFC or LZMA,
in addition to the tool shown in the column name. Squeakr-exact’s implementation is
limited to k < 32 [20] and so it could not be run for k = 61.

Dataset With counts Without counts

Squeakr KMC DSK FASTA UST-Compress Squeakr BOSS Unitigs UST-Compress

Zebrafish

RNA-seq

91 41 47 33 5.4 45 5.9 5.0 3.6

Human

RNA-seq

94 41 48 41 6.3 41 6.9 5.8 4.1

Human

chromosome

14

98 43 48 49 5.8 41 5.5 4.3 3.1

Whole

human

genome

85 41 43 17 4.7 40 7.0 4.7 4.1

Human gut

metagenome

90 46 51 23 4.2 44 5.3 3.0 2.7

Human

RNA-seq

(k=61)

– 82 77 41 6.4 – 9.0 5.5 4.3

First, we observe that compared to the compressed native output of k-mer
counters, UST-Compress reduces the space by roughly an order-of-magnitude;
this however comes at an expense of compression time. When the value of k is
increased, this improvement becomes even higher; as k nearly doubles, the UST-
Compress output size remains the same, however, the compressed binary files
output by k-mer counters approximately double in size. Our results indicate that
when disk space is a more limited resource than compute time, SPSS-based com-
pression can be very beneficial. Second, we observe a 4–8x space improvement
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compared to just compressing the reads FASTA file. In this case, however, the
extra time needed for UST compression is balanced by the extra time needed to
recount the k-mers from the FASTA file. Therefore, if all that is used downstream
are the k-mers and possibly their counts, then SPSS-based compression is again
very beneficial. Third, UST-Compress uses between 39 and 48% less space than
BOSS, with comparable construction time and memory. Fourth, compared to
the other SPSS-based compression (based on maximal unitigs), UST-Compress
uses 10 to 29% less space, but has 10 to 24% slower compression times (with the
exception of the k = 61 dataset, where it compresses 6% faster). The ratio of
space savings after compression closely parallels the ratio of the weights of the
two SPSS representations (Table 1). Fifth, we note that the best compression
ratios achieved are significantly better than the worst case Conway Bromage
lower bound of >35 bits per k-mer for the k = 31 datasets and 95 bits per k-mer
for the k = 61 dataset. Finally, we note that the differences in the peak con-
struction memory, and the total decompression run time and memory (<2 min
and <1 GB for UST-Compress, respectively, table not shown) were negligible.

We also compressed a subset of samples from a de-noised index of 450,000
microbial DNA data used recently in large scale indexing projects of BIGSI [43]
and COBS [44]. Each sample consists of error-corrected 31-mers (without abun-
dance information) from a corresponding sequencing experiment, natively stored
as bzipped McCortex binary file (see [43,44] for details). We downloaded 19,000
of these files from [45]. We ran UST-Compress, which reduced the disk space
from 507 GB to 14.7 GB, a 35x reduction. The compression took a total of 82
hours and a peak memory of 3 GB (using one core).

Table 3. Time and peak memory usage of UST-Compress (without counts) and others
during compression. For BOSS and unitigs, the times are separated according to the
two steps of compression: running the core algorithm (Cosmo and bcalm2) followed by
the generic compressor (respectively, LZMA and MFC). For UST-Compress, the first
step is exactly the same as for unitigs (Bcalm2), so the column is not repeated.

Dataset Time (minutes) Peak memory (GB)

BOSS unitigs UST-Compress BOSS unitigs UST-

Compress

Cosmo LZMA Total bcalm2 MFC Total UST MFC Total

Zebrafish

RNA-seq

6.3 0.7 7.0 3.0 1.5 4.4 1.5 0.9 5.3 4.0 3.1 3.1

Human

RNA-seq

4.0 0.8 4.8 4.7 1.3 5.9 1.6 0.8 7.1 3.6 3.4 3.4

Human

chromosome

14

4.9 0.5 5.4 2.1 1.0 3.1 1.1 0.7 3.9 4.2 3.4 3.4

Whole human

genome

17.3 3.0 20.3 10.4 2.2 12.5 4.1 1.9 16.3 4.0 4.3 4.3

Human gut

metagenome

6.6 0.7 7.3 3.2 0.9 4.0 0.5 0.8 4.5 3.3 3.9 3.9

Human

RNA-seq

(k=61)

4.4 0.6 5.0 3.6 3.9 7.5 1.1 2.4 7.1 4.3 2.3 2.3



Representation of K-Mer Sets Using Spectrum-Preserving String Sets 165

7.3 Evaluation of UST-FM

We measure the memory taken by the data structure (Table 4), the query
times (Table 5), and the time and memory taken during construction (table
in the full paper) We compare UST-FM against two other space-efficient exact
static membership data structures for k-mer sets. The first builds the FM index
on top of the maximal unitigs (we refer to this as unitig-FM, but it referred to
originally as dbgfm in [4]). The second is BOSS, which, as mentioned previously,
was shown [35] to have superior space usage. We did not compare against the
Bloom filter trie [36], which is fast but uses an order of magnitude more mem-
ory than BOSS [35]. Other data structures, such as Pufferfish [8], blight [9], and
Bifrost [10], implement more sophisticated operations and hence use significantly
more memory than BOSS. Moreover, these make use of a unitig SPSS represen-
tation and hence could potentially themselves incorporate the UST approach.

First, the UST-FM index is 25–44% smaller and the queries are 4 to 11 times
faster compared to BOSS; however, it takes 2 to 5 times longer to build. This
time is dominated by FM-index construction [41], rather than by UST. Second,
the UST-FM index is 10–32% smaller than the unitigs-FM index, with negligibly
faster query time. Finally, the memory use during construction was similar for
all approaches.

Table 4. UST-FM data structure size,
shown in the average number of bits per
distinct k-mer in the dataset. This was
measured by taking the peak memory
usage during membership queries.

Dataset BOSS unitigs-FM UST-FM

Zebrafish

RNA-seq

7.5 7.9 5.5

Human RNA-seq 9.0 9.2 6.3

Human

chromosome 14

8.7 6.9 4.8

Whole human

genome

7.7 6.8 5.7

Human gut

metagenome

8.8 5.4 4.9

Human RNA-seq

(k=61)

13.4 13.6 10.0

Table 5. UST-FM query time (in sec-
onds) for two sets of 10,000 k-mers each,
using the Human RNA-seq indices. The
first set contains k-mers drawn from the
dataset, so that UST-FM returns a hit.
The second set takes randomly gener-
ated k-mers which were verified to not be
present in the dataset. We measured the
query times (per k-mer) after the index
was already loaded into memory.

BOSS unitigs-FM UST-FM

k = 31 x ∈ K 3.80 0.51 0.49

x /∈ K 1.48 0.38 0.37

k = 61 x ∈ K 15.25 1.61 1.58

x /∈ K 5.10 0.35 0.37
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8 Conclusion

In this paper, we define the notion of a spectrum-preserving string set repre-
sentation of a set of k-mers, give a lower bound on what could be achieved by
such a representation, and give an algorithm to compute a representation that
comes close to the lower bound. We demonstrate the applicability of the SPSS
definition by using our algorithm to substantially improve space efficiency of the
state-of-the-art in two applications.

A natural question is why we limit ourselves to SPSS representations. One can
imagine alternative strategies, such as allowing a k-mer to appear more than once
in the string set, or allowing other types of characters. In fact, for any concrete
application, one might argue that a SPSS representation is too restrictive and can
be improved. However, we chose to focus on SPSS representations because they
are the common denominator in the applications of unitig-based representations
we have observed [4,8–10]. In this way, they retain broad applicability, as opposed
to more specialized representations.

One limitation of UST is the time and memory needed to run Bcalm2 as a
first step. Bcalm2 works by repeatedly gluing k-mers into longer strings, taking
care to never glue across a unitig boundary. However, this care is wasted in our
case, since UST then greedily glues across unitig boundaries anyway. Therefore,
a potentially significant speedup and memory reduction of UST would be to
implement it as a modification of Bcalm2, as opposed to running on top of it.
This can keep the high-level algorithm the same but change the implementation
to work directly on the k-mer set by incorporating algorithmic aspects of Bcalm2.
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34. Belazzougui, D., Gagie, T., Mäkinen, V., Previtali, M.: Fully dynamic de Bruijn
graphs. In: Inenaga, S., Sadakane, K., Sakai, T. (eds.) SPIRE 2016. LNCS, vol.
9954, pp. 145–152. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46049-9 14

35. Crawford, V.G., Kuhnle, A., Boucher, C., Chikhi, R., Gagie, T.: Practical dynamic
de Bruijn graphs. Bioinformatics 34(24), 4189–4195 (2018)

36. Holley, G., Wittler, R., Stoye, J.: Bloom Filter Trie: an alignment-free and
reference-free data structure for pan-genome storage. Algorithms Mol. Biol. 11(1),
3 (2016). https://doi.org/10.1186/s13015-016-0066-8

37. Pandey, P., Bender, M.A., Johnson, R., Patro, R.: deBGR: an efficient and near-
exact representation of the weighted de Bruijn graph. Bioinformatics 33(14), i133–
i141 (2017)

38. Diestel, R.: Graph Theory, vol. 101 (2005)
39. Pinho, A.J., Pratas, D.: MFCompress: a compression tool for FASTA and multi-

FASTA data. Bioinformatics 30(1), 117–118 (2013)
40. Ferragina, P., Manzini, G.: Opportunistic data structures with applications. In:

Proceedings 41st Annual Symposium on Foundations of Computer Science, pp.
390–398. IEEE (2000)

41. https://github.com/jts/dbgfm
42. https://github.com/cosmo-team/cosmo/tree/VARI
43. Bradley, P., den Bakker, H.C., Rocha, E.P., McVean, G., Iqbal, Z.: Ultrafast search

of all deposited bacterial and viral genomic data. Nat. Biotechnol. 37(2), 152 (2019)
44. Bingmann, T., Bradley, P., Gauger, F., Iqbal, Z.: COBS: a compact bit-sliced

signature index. arXiv preprint arXiv:1905.09624 (2019)
45. http://ftp.ebi.ac.uk/pub/software/bigsi/nat biotech 2018/ctx/

https://doi.org/10.1007/978-3-030-17083-7_14
https://doi.org/10.1007/978-3-030-17083-7_14
https://doi.org/10.1007/978-3-642-33122-0_18
https://doi.org/10.1007/978-3-662-49529-2_13
https://doi.org/10.1007/978-3-662-49529-2_13
https://doi.org/10.1007/978-3-319-46049-9_14
https://doi.org/10.1007/978-3-319-46049-9_14
https://doi.org/10.1186/s13015-016-0066-8
https://github.com/jts/dbgfm
https://github.com/cosmo-team/cosmo/tree/VARI
http://arxiv.org/abs/1905.09624
http://ftp.ebi.ac.uk/pub/software/bigsi/nat_biotech_2018/ctx/


NetMix: A Network-Structured Mixture
Model for Reduced-Bias Estimation

of Altered Subnetworks

Matthew A. Reyna1,2, Uthsav Chitra1, Rebecca Elyanow1,3,
and Benjamin J. Raphael1(B)

1 Department of Computer Science, Princeton University, Princeton, NJ 08544, USA
braphael@princeton.edu

2 Department of Biomedical Informatics, Emory University, Atlanta, GA 30306, USA
3 Department of Computer Science, Brown University, Providence, RI 02912, USA

Abstract. A classic problem in computational biology is the identifica-
tion of altered subnetworks: subnetworks of an interaction network that
contain genes/proteins that are differentially expressed, highly mutated,
or otherwise aberrant compared to other genes/proteins. Numerous
methods have been developed to solve this problem under various
assumptions, but the statistical properties of these methods are often
unknown. For example, some widely-used methods are reported to out-
put very large subnetworks that are difficult to interpret biologically. In
this work, we formulate the identification of altered subnetworks as the
problem of estimating the parameters of a class of probability distribu-
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statistically biased, explaining the large subnetworks output by jActive-
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1 Introduction

A standard paradigm in computational biology is to use interaction net-
works as prior knowledge in the analysis of high-throughput ’omics data, with
applications in protein function prediction [17,22,56,64,69], gene expression
[15,24,25,40,80], germline variants [11,35,37,46,47], somatic variants in can-
cer [34,48,55,57,74,76], and other data [9,12,18,27,31,51,67,78]. One classic
approach is to identify active, or altered, subnetworks of an interaction net-
work that contain outlier measurements. The altered subnetwork problem takes
as input: (1) an interaction network whose nodes are biological entities (e.g.,
genes or proteins) and whose edges represent biological interactions (e.g., phys-
ical or genetic interactions, co-expression, etc.); and (2) a measurement or
score for each node. The goal is to find high-scoring subnetworks that corre-
spond to functionally related or correlated alterations. This problem was intro-
duced in [40] for gene expression analysis, where gene scores were derived from
p-values of differential expression. [40] developed the jActiveModules algorithm
to solve this problem and identify altered subnetworks of differentially expressed
genes. Subsequently, [24] introduced heinz as “the first approach that really
tackles and solves the original problem raised by [40] to optimality.” jActive-
Modules and heinz have become widely-used tools with diverse applications; a
few recent examples include mass-spectrometry proteomics [43,49], damaging de
novo mutations in schizophrenia and other neurological disorders [16,28], and
single-cell RNA-seq [29,44,75].

In the past two decades, many algorithms have been developed to identify
altered subnetworks in biological data (reviewed in [18,23,54,55]). Each publica-
tion describing a new algorithm demonstrates the performance of their algorithm
on specific biological datasets, and many of these publications also benchmark
their algorithm against existing algorithms on real and/or simulated data. How-
ever, few of these publications prove theoretical guarantees for their algorithm’s
performance on a well-defined generative model of the data. Thus, the true per-
formance of these algorithms is often unknown. Indeed, recent benchmarking
studies (e.g., [8,32]) of several widely used network algorithms – including jAc-
tiveModules and heinz – show considerable disagreement between subnetworks
identified by different methods on the same biological datasets. Moreover, these
benchmarking studies (and many others) do not compare network algorithms
against single-gene tests that do not use the network; thus, the tacit assumption
that interaction networks always improve gene prioritization is often not tested.

Separately, many publications in the statistics and machine learning litera-
ture investigate the problem of detecting whether or not a network contains an
anomalous subnetwork, or a network anomaly, e.g., [1,3–6,70–73]. These papers
describe specific generative models of network anomalies and use a rigorous
hypothesis-testing framework to prove asymptotic results regarding the condi-
tions under which it is possible to detect a network anomaly. Importantly, these
papers also provide theoretical guarantees about conditions under which a net-
work contributes to anomaly detection. However, the network anomaly literature
does not specifically address the altered subnetwork problem studied in computa-
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tional biology, with three key differences. First, the detection problem of deciding
whether or not an altered subnetwork exists is not the same as the estimation
problem of identifying the nodes in an altered subnetwork. Second, biological
networks have a finite size, and it is unclear what guarantees the asymptotic
results provide for finite-size networks. Finally, the topological constraints on
network anomalies are different from those considered in computational biology.

In this paper, we aim to bridge the gap between the theoretical guarantees in
the network anomaly literature and the practical problem of identifying altered
subnetworks in biological data. We provide a rigorous formulation of the Altered
Subnetwork Problem, the problem that jActiveModules [40], heinz [24], and other
methods aim to solve. Our formulation of the Altered Subnetwork Problem is
inspired by the generative model used in the network anomaly literature, but
requires that the altered subnetwork is a connected subnetwork, a constraint
motivated by the topology of signaling pathways [10,42] and by the seminal
works of [40] and [24].

We show that the Altered Subnetwork Problem is equivalent to estimating
the parameters of a distribution which we define as the Altered Subset Distri-
bution (ASD). We prove that the jActiveModules problem [40] is equivalent to
finding a maximum likelihood estimator (MLE) of the parameters of the ASD
for connected subgraphs. At the same time, we demonstrate that if (1) the size
of the altered subnetwork is moderately small and (2) the scores of nodes inside
and outside of the altered subnetwork are not well-separated, then the MLE is
a biased estimator of the size of the altered subnetwork. This statistical bias
provides a rigorous explanation for the large subnetworks produced by jActive-
Modules [40]. We also show that the size of the altered subnetworks identified
by heinz [24] is biased for most choices of its user-defined parameter.

We introduce a new algorithm, NetMix, that combines a Gaussian mixture
model and a combinatorial optimization algorithm to identify altered subnet-
works. We show that NetMix is a reduced-bias estimator of the size of the altered
subnetwork. We demonstrate that NetMix outperforms other methods for identi-
fying altered subnetworks on simulated data, gene expression data, and somatic
mutation data.

2 Altered Subnetworks, Altered Subsets, and Maximum
Likelihood Estimation

2.1 Altered Subnetwork Problem

Let G = (V,E) be a biological interaction network with a measurement, or score,
Xv for each vertex v ∈ V . We assume that there is a connected subnetwork A
in G, the altered subnetwork, whose scores are derived from a different distribu-
tion than the scores of the vertices not in A (Fig. 1). The goal of the Altered
Subnetwork Problem is to find A. The problem is defined formally as follows.
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Fig. 1. Altered Subnetwork Problem. Measurements, or scores, X from a high-
throughput experiment are drawn from one of two distributions: genes/proteins in an
altered subnetwork A of an interaction network G = (V, E) have scores drawn from
an altered distribution N(μ, 1) with μ > 0, while genes/proteins not in A have scores
drawn from a background distribution N(0, 1). The difficulty in identifying A depends
on the separation μ between the distributions and the size |A| of the altered subnetwork.

Altered Subnetwork Problem (ASP). Let G = (V,E) be a graph with
vertex scores X = (Xv)v∈V , and let A ⊆ V be a connected subgraph of G.
Suppose that

Xv
i.i.d.∼

{
DA, if v ∈ A,

DB , if v ∈ V \ A,
(1)

where DA is the altered distribution and DB is the background distribution.
Given G and X, find A.

The seminal algorithm for solving the ASP is jActiveModules [40]. jActive-
Modules takes as input a p-value pv for each vertex v; e.g., a p-value of differ-
ential gene expression. Under the null hypothesis, the p-values pv across genes
are distributed according to the uniform distribution U(0, 1). jActiveModules
transforms the p-values into scores Xv = Φ−1(1 − pv), where Φ is the CDF of a
standard normal distribution. Thus, jActiveModules solves the ASP with back-
ground distribution DB = N(0, 1). jActiveModules aims to find a connected
subgraph Â that maximizes1 Γ (S) = 1√

|S|
∑

v∈S Xv, i.e.,

Â = argmax
connected S⊆V

Γ (S) = argmax
connected S⊆V

1√|S|
∑
v∈S

Xv. (2)

The presentation of jActiveModules in [40] does not specify the altered distribu-
tion DA. However, in Sect. 2.2, we argue that the choice of the objective function
in (2) implicitly assumes that DA = N(μ, 1) for some parameter μ > 0. Thus,
we define the normally distributed ASP as follows.
1 jActiveModules actually maximizes a normalized scan statistic Γnorm(S). We show

in the full paper [65] that maximizing Γnorm(S) is equivalent to maximizing the
unnormalized scan statistic Γ (S) when the data is generated from normal distribu-
tions.
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Normally Distributed Altered Subnetwork Problem. Let G = (V,E) be a
graph with vertex scores X = (Xv)v∈V , and let A ⊆ V be a connected subgraph
of G. Suppose that for some μ > 0,

Xv
i.i.d.∼

{
N(μ, 1), if v ∈ A,

N(0, 1), if v ∈ V \ A.
(3)

Given G and X, find A.
The Normally Distributed ASP has a sound statistical interpretation: if the

p-values pv of the genes are derived from an asymptotically normal test statis-
tic, as is often the case, then the transformed p-values Xv = Φ−1(1 − pv) are
distributed as N(0, 1) for genes satisfying the null hypothesis and N(μ, 1) for
genes satisfying the alternative hypothesis [38]. Normal distributions have been
used to model transformed p-values from differential gene expression experiments
[52,60,79].

More generally, the Normally Distributed Altered Subnetwork Problem is
related to a larger class of network anomaly problems, which have been studied
extensively in the machine learning and statistics literature [1,3–6,70–73]. To
better understand the relationships between these problems and the algorithms
developed to solve them, we will describe a generalization of the Altered Subnet-
work Problem. We start by defining the following distribution, which generalizes
the connected subnetworks in the Normally Distributed Altered Subnetwork
Problem to any family of altered subsets.

Normally Distributed Altered Subset Distribution (ASD). Let n > 0
be a positive integer, let S be a family of subsets of {1, . . . , n}, and let A ∈ S.
X = (X1, . . . , Xn) is distributed according to the Normally Distributed Altered
Subset Distribution ASDS(A,μ) provided

Xi
i.i.d.∼

{
N(μ, 1), if i ∈ A,

N(0, 1), if i �∈ A.
(4)

Here, μ > 0 is the mean of the ASD and A is the altered subset of the ASD.
More generally, the Altered Subset Distribution can be defined for any back-

ground distribution DB and altered distribution DA. We will restrict ourselves
to normal distributions in accordance with the Normally Distributed Altered
Subnetwork Problem, and we will subsequently assume normal distributions in
both the Altered Subset Distribution and the Altered Subnetwork Problem.

The distribution in the Altered Subnetwork Problem is the ASDS(A,μ),
where the family S of subsets are connected subgraphs of the network G. In
this terminology, the Altered Subnetwork Problem is the problem of estimating
the parameters A and μ of the Altered Subset Distribution given data X ∼
ASDS(A,μ) and knowledge of the parameter space S of altered subnetworks A.
Thus, we generalize the Altered Subnetwork Problem to the ASD Estimation
Problem, defined as follows.

ASD Estimation Problem. Let X = (X1, . . . , Xn) ∼ ASDS(A,μ). Given X
and S, find A and μ.
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The ASD Estimation Problem is a general problem of estimating the param-
eters of a structured alternative distribution. Different choices of S for the ASD
Estimation Problem yield a number of interesting problems, some of which have
been previously studied.

– S = Pn, the power set of all subsets of {1, . . . , n}. We call the distribution
ASDPn

(A,μ) the unstructured ASD.
– S = CG, the set of all connected subgraphs of a graph G = (V,E). We call

ASDCG
(A,μ) the connected ASD. The connected ASD Estimation Problem

is equivalent to the Altered Subnetwork Problem described above.
– S = DG(ρ), the set of all subgraphs of a graph G = (V,E) with edge density

≥ ρ. [7,30,77] identify altered subnetworks with high edge density, and [2]
identifies altered subnetworks with edge density ρ = 1, i.e., cliques.

– S = NG = {N (v) : v ∈ V }, the set of all first-order network neighborhoods of
a graph G = (V,E). [14,36] use first-order network neighborhoods to prioritize
cancer genes.

– S ⊂ Pn, a family of subsets. Typically, |S| 	 |Pn| and S is not defined in
terms of a graph. A classic example is gene set analysis; see [39] for a review.

2.2 Bias in Maximum Likelihood Estimation of the ASD

One reasonable approach for solving the ASD Estimation Problem is to compute
a maximum likelihood estimator (MLE) for the parameters of the ASD. We
derive the MLE below and show that it has undesirable statistical properties.
All proofs are in the supplement [65].

Theorem 1. Let X ∼ ASDS(A,μ). The maximum likelihood estimators
(MLEs) ÂASD and μ̂ASD of A and μ, respectively, are

ÂASD = argmax
S∈S

Γ (S) = argmax
S∈S

1√|S|
∑
v∈S

Xv and μ̂ASD =
1

|ÂASD|
∑

v∈ÂASD

Xv.

(5)

The maximization of Γ over S in (5) is a version of the scan statistic, a
commonly used statistic to study point processes on lines and rectangles under
various distributions [26,45]. Comparing (5) and (2), we see that jActiveModules
[40] computes the scan statistic over the family S = CG of connected subgraphs of
the graph G. Thus, although jActiveModules [40] neither specifies the anomalous
distribution DA nor provides a statistical justification for their subnetwork scor-
ing function, Theorem 1 above shows that jActiveModules implicitly assumes
that DA is a normal distribution, and that jActiveModules aims to solve the
Altered Subnetwork Problem by finding the MLE ÂASD.

Despite this insight that jActiveModules computes the MLE, it has been
observed that jActiveModules often identifies large subnetworks. [58] notes that
the subnetworks identified by jActiveModules are large and “hard to interpret
biologically”. They attribute the tendency of jActiveModules to identify large
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Fig. 2. Scores X ∼ ASDPn(A, μ) are distributed according to the unstructured ASD.
(A) Bias(|ÂASD|/n) in the maximum likelihood estimate of the altered subset size |A|/n
as a function of |A|/n and the mean μ for n = 104. (B) Bias(|ÂASD|/n) for n = 104 and
several values of |A|/n. Dotted lines indicate first and third quartiles in the estimate
of the bias. (C) Bias(|ÂASD|/n) as a function of n for μ = 3 and for several values of
|A|/n.

subnetworks to the fact that a graph typically has more large subnetworks than
small ones. While this observation about the relative numbers of subnetworks
of different sizes is correct, we argue that this tendency of jActiveModules to
identify large subnetworks is due to a more fundamental reason: the MLE ÂASD

is a biased estimator of A.
First, we recall the definitions of bias and consistency for an estimator θ̂.

Definition 1. Let θ̂ = θ̂(X) be an estimator of a parameter θ given observed
data X = (X1, . . . , Xn). (a) The bias in the estimator θ̂ of θ is Biasθ(θ̂) =
E[θ̂]−θ. We say that θ̂ is a biased estimator of θ if Biasθ(θ̂) �= 0 and is unbiased
otherwise. (b) We say that θ̂ is a consistent estimator of θ if θ̂

p→ θ, where
p→

denotes convergence in probability, and is inconsistent otherwise.

When it is clear from context, we omit the subscript θ and write Bias(θ̂) for
the bias of estimator θ̂.

Let X ∼ ASDPn
(A,μ) be distributed according to the unstructured ASD.

We observe that the estimators |ÂASD|/n and μ̂ASD are both biased and incon-
sistent when both |A|/n and μ are moderately small (Fig. 2). We summarize
these observations in the following conjecture.

Conjecture. Let X = (X1, . . . , Xn) ∼ ASDPn
(A,μ). Then there exist μ0 > 0

and β > 0 such that, if μ < μ0 and |A|/n < β, then |ÂASD|/n and μ̂ASD are
biased and inconsistent estimators of |A|/n and μ, respectively.

Although we do not have a proof of the above conjecture, we prove the fol-
lowing results that partially explain the bias and inconsistency of the estimators
|ÂASD/n| and μASD. For the bias, we prove the following.
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Theorem 2. Let X = (X1, . . . , Xn) ∼ ASDPn
(A,μ), where A = ∅. Then

|ÂASD| = cn for sufficiently large n and with high probability, where 0 < c < 0.35
is independent of n.

Empirically, we observe c ≈ 0.27, i.e., ÂASD contains more than a quarter of
the scores (Fig. 2). This closely aligns with the observation in [58] that jActive-
Modules reports subnetworks that contain approximately 29% of all nodes in
the graph. Based on Theorem 2, one may suspect that |ÂASD| ≈ cn when μ or
|A|/n is sufficiently small, providing some intuition for why |ÂASD|/n is biased.
For inconsistency, we prove that the bias is independent of n.

Theorem 3. Let X = (X1, . . . , Xn) ∼ ASDPn
(A,μ) with |A| = θ(n). For suffi-

ciently large n, Bias(|ÂASD|/n) and Bias(μ̂ASD) are independent of n.

3 The NetMix Algorithm

Following the observation that the maximum likelihood estimators of the dis-
tribution ASDPn

(A,μ) are biased, we aim to find a less biased estimator by
explicitly modeling the distribution of the scores X. In this section, we derive a
new algorithm, NetMix, that solves the Altered Subnetwork Problem by fitting
a Gaussian mixture model (GMM) to X.

3.1 Gaussian Mixture Model

We start by recalling the definition of a GMM.

Gaussian Mixture Model. Let μ > 0 and α ∈ (0, 1). X is distributed accord-
ing to the Gaussian mixture model GMM(α, μ) with parameters α and μ pro-
vided

X ∼ αN(μ, 1) + (1 − α)N(0, 1). (6)

Given data X = (X1, . . . , Xn), we define μ̂GMM and α̂GMM to be the MLEs
for μ and α, respectively, obtained by fitting a GMM to X. In practice, μ̂GMM

and α̂GMM are obtained by the EM algorithm, which is known to converge to the
MLEs as the number of samples goes to infinity [20,81]. Furthermore, if Xi

i.i.d.∼
GMM(μ, α) are distributed according to the GMM with α �= 0, then μ̂GMM and
α̂GMM are consistent (and therefore asymptotically unbiased) estimators of μ
and α, respectively [13].

Analogously, by fitting a GMM to data X ∼ ASDPn
(A,μ) from the unstruc-

tured ASD, we observe that α̂GMM is a less biased estimator of |A|/n than
|ÂASD|/n (Fig. 3A, B). We also observe that α̂GMM is a consistent estimator of
|A|/n (Fig. 3C). We summarize our findings in the following conjecture.

Conjecture. Let X ∼ ASDPn
(A,μ) with |A| > 0, and let ÂASD be the MLE of

A as defined in (5). Let α̂GMM and μ̂GMM be the MLEs of α and μ obtained by
fitting a GMM to X. Then Bias|A|/n(α̂GMM) < Bias|A|/n(|ÂASD|/n). Moreover,
α̂GMM and μ̂GMM are consistent estimators of |A|/n and μ, respectively.
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Fig. 3. Scores X ∼ ASDPn(A, μ) are distributed according to the unstructured ASD,
and parameters α̂GMM and μ̂GMM are obtained by the EM algorithm. (A) Bias(α̂GMM)
as a function of the mean μ and altered subnetwork size |A|/n for n = 104. Compare
with Fig. 2A. (B) Bias(α̂GMM) and Bias(|ÂASD|/n) as functions of the mean μ for
|A|/n = 0.05 and n = 104. (C) Bias(α̂GMM) as a function of n for mean μ = 3 and
several values of |A|/n. Compare with Fig. 2C.

3.2 NetMix Algorithm

We derive an algorithm, NetMix, that uses the maximum likelihood estimators
(MLEs) μ̂GMM and α̂GMM from the GMM to solve the Altered Subnetwork
Problem. Note that the GMM is not identical to ASD, the distribution that
generated the data. Despite this difference in distributions, the above conjecture
provides justification that the GMM will yield less biased estimators of A and μ
than the MLEs of the ASD distribution.

Given a graph G = (V,E) and scores X = (Xv)v∈V , NetMix first computes
the responsibility rv = Pr (v ∈ A | Xv), or the probability that v ∈ A, for each
vertex v ∈ V . The responsibilities rv are computed from the GMM MLEs μ̂GMM

and α̂GMM (which are estimated by the EM algorithm [21]) by:

r̂v =
α̂GMMφ(Xv − μ̂GMM)

α̂GMMφ(Xv − μ̂GMM) + (1 − α̂GMM)φ(Xv)
, (7)

where φ is the PDF of the standard normal distribution.
Next, NetMix aims to find a connected subgraph C of size |C| ≈ nα that

maximizes
∑

v∈C rv. In order to find such a subgraph, NetMix assigns a weight
w(v) = r̂v − τ to each vertex v, where τ is chosen so that approximately nα̂GMM

nodes have non-negative weights. NetMix then computes the maximum weight
connected subgraph (MWCS) ÂNetMix in G by adapting the integer linear pro-
gram in [24]. The use of τ is motivated by the observation that, if α̂GMM ≈ α,
then we expect |ÂNetMix| ≈ nα̂GMM ≈ nα ≈ |A|. The formal description of the
NetMix algorithm is in the full version of the paper [65], and the implementation
is available online at https://github.com/raphael-group/netmix.

NetMix bears some similarities to heinz [24], another algorithm to identify
altered subnetworks. However, there are two important differences. First, heinz
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does not solve the Altered Subnetwork Problem defined in the previous section.
Instead, heinz models the vertex scores (assumed to be p-values) with a beta-
uniform mixture (BUM) distribution. The motivation for the BUM is based on
an empirical goodness-of-fit in [63]; however, later work by the same author [62]
observes that the BUM tends to underestimate the number of p-values drawn
from the altered distribution. Second, heinz requires that the user specify a
False Discovery Rate (FDR) and shifts the p-values according to this FDR. We
show below that nearly all choices of the FDR lead to a biased estimate of |A|.
Moreover, the manually selected FDR allows users to selectively tune the value
of this parameter to influence which genes are in the inferred altered subnetwork,
analogous to “p-hacking” [33,41,59]. Indeed, published analyses using heinz [16,
32,44] use a wide range of FDR values. See the full version [65] for more details
on the differences between heinz and NetMix. Despite these limitations, the ILP
given in heinz to solve the MWCS problem is useful for implementing NetMix
and for computing the scan statistic (2) used in jActiveModules (see below).

4 Results

We compared NetMix to jActiveModules [40] and heinz [24] on simulated
instances of the Altered Subnetwork Problem and on real datasets, including dif-
ferential gene expression experiments from the Expression Atlas [61] and somatic
mutations in cancer. The details of our experiments on real datasets are in the
full version of the paper [65].

Since jActiveModules is accessible only through Cytoscape [68] and not a
command-line interface, we implemented jActiveModules*, which computes the
scan statistic (5) by adapting the ILP in heinz2. jActiveModules* outputs the
global optimum of the scan statistic, while jActiveModules relies on heuristics
(simulated annealing and greedy search) and may output a local optimum.

4.1 Simulated Data

We compared NetMix, jActiveModules*, and heinz on simulated instances of
the Altered Subnetwork Problem using the HINT+HI interaction network [48],
a combination of binary and co-complex interactions in HINT [19] with high-
throughput derived interactions from the HI network [66] as the graph G. For
each instance, we randomly selected a connected subgraph A ⊆ V with size
|A| = 0.05n using the random walk method of [50], and drew a sample X ∼
ASDCG

(A,μ). We ran each method on X and G to obtain an estimate Â of
the altered subnetwork A. We ran heinz with three different choices of the FDR
parameter (FDR = 0.001, 0.1, 0.5) to reflect the variety of FDRs used in practice.

2 The scan statistic (2) is the maximization of a non-linear objective function, but
for fixed subnetwork size |S| the objective function is linear. We computed the scan
statistic by modifying the ILP in heinz [24] to find a subnetwork of a fixed size, and
running this ILP over all possible subnetwork sizes.



NetMix: A Network-Structured Mixture Model 179

Fig. 4. Comparison of altered subnetwork identification methods on simulated
instances of the Altered Subnetwork Problem using the HINT+HI interaction net-
work with n = 15074 nodes, and where the altered subnetwork A has size |A| = 0.05n.
[Dashed vertical line (μ = 1) represents the smallest μ such that one can detect whether
G contains an altered subnetwork (Formally, μ is the smallest mean such that the
hypotheses H0 : X ∼ ASDCG(∅, 0) and H1 : X ∼ ASDCG(A, μ) are asymptotically
distinguishable. See [73] for details.). (A) Size |Â|/n of identified altered subnetwork Â
as a function of mean μ. (B) F -measure for Â as a function of μ. (C) F -measure for Â
at μ = 1, comparing performance with the network (left series for each method) and
without the network (right series for each method).

We found that NetMix output subnetworks whose size |ÂNetMix| was very
close to the true size |A| across all values of μ in the simulations (Fig. 4A). In
contrast, jActiveModules* output subnetworks that were much larger than the
implanted subnetwork for μ < 5. This behavior is consistent with our conjectures
above about the large bias in the maximum likelihood estimator ÂASD for the
unstructured ASD. Note that μ > 5 corresponds to a large separation between
the background and alternative distributions, and the network is not needed to
separate these two distributions.

We also quantified the overlap between the true altered subnetwork A and
the subnetwork Â output by each method using the F -measure, finding that
NetMix outperforms other methods across the full range of μ (Fig. 4B). heinz
requires the user to select an FDR value, and we find that the size of the out-
put subnetwork and the F -measure vary considerably for different FDR values
(Fig. 4A, 4B). When μ was small, a high FDR value (FDR = 0.5) yielded the
best performance in terms of F -measure. However, when μ was large, a low
FDR value (FDR = 0.001) gave better performance. While there are FDR val-
ues where the performance of heinz is similar to NetMix, the user does not know
what FDR value to select for any given input, as the values of μ and the size |A|
of the altered subnetwork are unknown.

The bias in |Â|/n observed using jActiveModules* with the interaction net-
work (Fig. 4A) was similar to the bias for the unstructured ASD (Fig. 2A). Thus,
we also evaluated how much benefit the network provided for each method. For
small μ, we found that NetMix had a small but noticeable gain in performance
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when using the network; in contrast, other methods had nearly the same per-
formance with or without the network (Fig. 4C). These results emphasize the
importance of evaluating network methods on simulated data and demonstrat-
ing that a network method outperforms a single-gene test; neither of these were
done in the jActiveModules [40] and heinz [24] papers, nor are they common in
many other papers on biological network analysis.

5 Discussion

In this paper, we revisit the classic problem of identifying altered subnetworks in
high-throughput biological data. We formalize the Altered Subnetwork Problem
as the estimation of the parameters of the Altered Subset Distribution (ASD).
We show that the seminal algorithm for this problem, jActiveModules [40], is
equivalent to a maximum likelihood estimator (MLE) of the ASD. At the same
time, we show that the MLE is a biased estimator of the altered subnetwork, with
especially large positive bias for small altered subnetworks. This bias explains
previous reports that jActiveModules tends to output large subnetworks [58].

We leverage these observations to design NetMix, a new algorithm for the
Altered Subnetwork Problem. We show that NetMix outperforms existing meth-
ods on simulated and real data. NetMix fits a Gaussian mixture model (GMM)
to observed node scores and then finds a maximum weighted connected sub-
graph using node weights derived from the GMM. heinz [24], another widely
used method for altered subnetwork identification, also derives node weights
from a mixture model (a beta-uniform mixture of p-values) and finds a maxi-
mum weighted connected subgraph. However, heinz does not solve the Altered
Subnetwork Problem in a strict sense; rather, heinz requires users to choose
a parameter (an FDR estimate for the mixture fit) that implicitly constrains
the size of the identified subnetwork. This user-defined parameter encourages
p-hacking [33,41,59], and we find that nearly all values of this parameter lead
to biased estimates of the size of the altered subnetwork.

We note a number of directions for future work. The first is to generalize our
theoretical contributions to the identification of multiple altered subnetworks,
a situation which is common in biological applications where multiple biologi-
cal processes may be perturbed [53]. While it is straightforward to run NetMix
iteratively to identify multiple subnetworks – as jActiveModules does – a rig-
orous assessment of the identification of multiple altered subnetworks would be
of interest. Second, our results on simulated data (Sect. 4.1) show that altered
subnetwork methods have only marginal gains over simpler methods that rank
vertices without information from network interactions. We hypothesize that
this is because connectivity is not a strong constraint for biological networks;
indeed the biological interaction networks that we use have both small diameter
and small average shortest path between nodes (see the supplement for specific
statistics). Specifically, we suspect that most subsets of nodes are “close” to a
connected subnetwork in such biological networks, and thus the MLE of con-
nected altered subnetworks has similar bias as the MLE of the unstructured
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altered subset distribution. In contrast, for other network topologies like the line
graph, connectivity is a much stronger topological constraint (see the supplement
for a brief comparison of different topologies). It would be useful to investigate
this hypothesis and characterize the conditions when networks provide benefit
for finding altered subnetworks. In particular, other topological constraints such
as dense subgraphs [7,30], cliques [2], and subgraphs resulting from heat diffusion
and network propagation processes [18,48,76,77] have been used used to model
altered subnetworks in biological data. Generalizing the theoretical results in
this paper to these other topological constraints may be helpful for understand-
ing the parameter regimes where these topological constraints provide signal for
identification of altered subnetorks. Finally, we note that biological networks
often have substantial ascertainment bias, with more interactions annotated for
well-studied genes [36,66], and these well-studied genes in turn may also be more
likely to have outlier measurements/scores. Thus, any network method should
carefully quantify the regime where it outperforms straightforward approaches –
e.g., methods based on ranking nodes by gene scores or node degree – both on
well-calibrated simulations and on real data.
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31. Halldórsson, B.V., Sharan, R.: Network-based interpretation of genomic variation
data. J. Mol. Biol. 425(21), 3964–3969 (2013)

32. He, H., Lin, D., Zhang, J., Wang, Y., Deng, H.W.: Comparison of statistical meth-
ods for subnetwork detection in the integration of gene expression and protein
interaction network. BMC Bioinformatics 18(1), 149 (2017)

https://doi.org/10.1007/978-1-4757-3460-7


NetMix: A Network-Structured Mixture Model 183

33. Head, M.L., Holman, L., Lanfear, R., Kahn, A.T., Jennions, M.D.: The extent and
consequences of P-Hacking in science. PLoS Biol. 13(3), e1002106 (2015)

34. Hofree, M., Shen, J.P., Carter, H., Gross, A., Ideker, T.: Network-based stratifica-
tion of tumor mutations. Nat. Methods 10(11), 1108–1115 (2013)

35. Hormozdiari, F., et al.: The discovery of integrated gene networks for autism and
related disorders. Genome Res. 25(1), 142–154 (2015)

36. Horn, H., Lawrence, M.S., et al.: NetSig: network-based discovery from cancer
genomes. Nat. Methods 15(1), 61–66 (2017)

37. Huang, J.K., Carlin, D.E., et al.: Systematic evaluation of molecular networks for
discovery of disease genes. Cell Syst. 6(4), 484–495 (2018)

38. Hung, H.M.J., O’Neill, R.T., Bauer, P., Kohne, K.: The behavior of the P-value
when the alternative hypothesis is true. Biometrics 53(1), 11–22 (1997)

39. Hung, J.H., et al.: Gene set enrichment analysis: performance evaluation and usage
guidelines. Brief. Bioinform. 13(3), 281–291 (2011)

40. Ideker, T., et al.: Discovering regulatory and signalling circuits in molecular inter-
action networks. Bioinformatics 18(suppl 1), S233–S240 (2002)

41. Ioannidis, J.P.: Why most published research findings are false. PLoS Med. 2(8),
e124 (2005)

42. Kelley, B.P., Yuan, B., Lewitter, F., Sharan, R., Stockwell, B.R., Ideker, T.: Path-
BLAST: a tool for alignment of protein interaction networks. Nucleic Acid Res.
32(suppl 2), W83–W88 (2004)

43. Kim, M., Hwang, D.: Network-based protein biomarker discovery platforms.
Genomics Inform. 14(1), 2 (2016)

44. Klimm, F., et al.: Functional module detection through integration of single-cell
RNA sequencing data with protein-protein interaction networks. bioRxiv (2019)

45. Kulldorff, M.: A spatial scan statistic. Commun. Stat. Theor. Methods 26(6), 1481–
1496 (1997)

46. Lee, I., et al.: Prioritizing candidate disease genes by network-based boosting of
genome-wide association data. Genome Res. 21(7), 1109–1121 (2011)

47. Leiserson, M.D., Eldridge, J.V., Ramachandran, S., Raphael, B.J.: Network anal-
ysis of GWAS data. Curr. Opin. Genet. Dev. 23(6), 602–610 (2013)

48. Leiserson, M.D., et al.: Pan-cancer network analysis identifies combinations of rare
somatic mutations across pathways and protein complexes. Nat. Genet. 47(2),
106–114 (2015)

49. Liu, J.J., Sharma, K., Zangrandi, L., et al.: In vivo brain GPCR signaling eluci-
dated by phosphoproteomics. Science 360(6395) (2018)

50. Lu, X., Bressan, S.: Sampling connected induced subgraphs uniformly at random.
In: Ailamaki, A., Bowers, S. (eds.) SSDBM 2012. LNCS, vol. 7338, pp. 195–212.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31235-9 13

51. Luo, Y., Zhao, X., et al.: A network integration approach for drug-target interaction
prediction and computational drug repositioning from heterogeneous information.
Nat. Commun. 8(1), 573 (2017)

52. McLachlan, G., et al.: A simple implementation of a normal mixture approach
to differential gene expression in multiclass microarrays. Bioinformatics 22(13),
1608–1615 (2006)

53. Menche, J., et al.: Disease networks. Uncovering disease-disease relationships
through the incomplete interactome. Science 347(6224), 1257601–1257601 (2015)

54. Mitra, K., et al.: Integrative approaches for finding modular structure in biological
networks. Nat. Rev. Genet. 14, 719 (2013)

https://doi.org/10.1007/978-3-642-31235-9_13


184 M. A. Reyna et al.

55. Mutation Consequences and Pathway Analysis Working Group of the Interna-
tional Cancer Genome Consortium, et al.: Pathway and network analysis of cancer
genomes. Nat. Methods 12, 615 (2015)

56. Nabieva, E., et al.: Whole-proteome prediction of protein function via graph-
theoretic analysis of interaction maps. Bioinformatics 21, i302–i310 (2005)

57. Nibbe, R.K., Koyutürk, M., Chance, M.R.: An integrative-omics approach to iden-
tify functional sub-networks in human colorectal cancer. PLoS Comput. Biol. 6(1),
e1000639 (2010)

58. Nikolayeva, I., Pla, O.G., Schwikowski, B.: Network module identification-a
widespread theoretical bias and best practices. Methods 132, 19–25 (2018)

59. Nuzzo, R.: How scientists fool themselves-and how they can stop. Nat. News
526(7572), 182 (2015)

60. Pan, W., et al.: A mixture model approach to detecting differentially expressed
genes with microarray data. Funct. Integr. Genomics 3(3), 117–124 (2003). https://
doi.org/10.1007/s10142-003-0085-7

61. Petryszak, R., et al.: Expression atlas update: an integrated database of gene and
protein expression in humans, animals and plants. Nucleic Acids Res. 44(D1),
D746–D752 (2015)

62. Pounds, S., Cheng, C.: Improving false discovery rate estimation. Bioinformatics
20(11), 1737–1745 (2004)

63. Pounds, S., Morris, S.W.: Estimating the occurrence of false positives and false
negatives in microarray studies by approximating and partitioning the empirical
distribution of p-values. Bioinformatics 19(10), 1236–1242 (2003)

64. Radivojac, P., Clark, W.T., et al.: A large-scale evaluation of computational protein
function prediction. Nat. Methods 10(3), 221 (2013)

65. Reyna, M.A., Chitra, U., et al.: Netmix: a network-structured mixture model
for reduced-bias estimation of altered subnetworks. bioRxiv (2020). https://www.
biorxiv.org/content/early/2020/01/19/2020.01.18.911438

66. Rolland, T., et al.: A proteome-scale map of the human interactome network. Cell
159(5), 1212–1226 (2014)

67. Roy, S., Ernst, J.O.: Identification of functional elements and regulatory circuits
by drosophila modencode. Science 330(6012), 1787–1797 (2010)

68. Shannon, P., et al.: Cytoscape: a software environment for integrated models of
biomolecular interaction networks. Genome Res. 13(11), 2498–2504 (2003)

69. Sharan, R., Ulitsky, I., Shamir, R.: Network-based prediction of protein function.
Mol. Syst. Biol. 3(1), 88 (2007)

70. Sharpnack, J., Singh, A.: Near-optimal and computationally efficient detectors for
weak and sparse graph-structured patterns. In: IEEE GlobalSIP (2013)

71. Sharpnack, J., Singh, A., Rinaldo, A.: Changepoint detection over graphs with the
spectral scan statistic. In: Artificial Intelligence and Statistics, pp. 545–553 (2013)

72. Sharpnack, J., et al.: Detecting anomalous activity on networks with the graph
Fourier scan statistic. IEEE Trans. Signal Process. 64(2), 364–379 (2016)

73. Sharpnack, J.L., et al.: Near-optimal anomaly detection in graphs using Lovasz
extended scan statistic. In: Advance Neural Information Processing Systems (2013)

74. Shrestha, R., Hodzic, E., et al.: Hit’ndrive: patient-specific multidriver gene prior-
itization for precision oncology. Genome Res. 27(9), 1573–1588 (2017)

75. Soul, J., et al.: PhenomeExpress: a refined network analysis of expression datasets
by inclusion of known disease phenotypes. Sci. Rep. 5, 8117 (2015)

76. Vandin, F., Upfal, E., Raphael, B.J.: Algorithms for detecting significantly mutated
pathways in cancer. J. Comput. Biol. 18(3), 507–522 (2011)

https://doi.org/10.1007/s10142-003-0085-7
https://doi.org/10.1007/s10142-003-0085-7
https://www.biorxiv.org/content/early/2020/01/19/2020.01.18.911438
https://www.biorxiv.org/content/early/2020/01/19/2020.01.18.911438


NetMix: A Network-Structured Mixture Model 185

77. Vanunu, O., et al.: Associating genes and protein complexes with disease via net-
work propagation. PLoS Comput. Biol. 6(1), e1000641 (2010)

78. Wang, X., et al.: HTSanalyzeR: an R/Bioconductor package for integrated network
analysis of high-throughput screens. Bioinformatics 27(6), 879–880 (2011)

79. Wang, Y.H., Bower, N.I., et al.: Gene expression patterns during intramuscular fat
development in cattle. J. Anim. Sci. 87(1), 119–130 (2009)

80. Xia, J., et al.: Networkanalyst for statistical, visual and network-based meta-
analysis of gene expression data. Nat. Protoc. 10, 823 (2015)

81. Xu, J., Hsu, D., Maleki, A.: Global analysis of expectation maximization for mix-
tures of two gaussians. In: Advances in Neural Information Processing (2016)



Stochastic Sampling of Structural
Contexts Improves the Scalability
and Accuracy of RNA 3D Module

Identification

Roman Sarrazin-Gendron1 , Hua-Ting Yao1,2 , Vladimir Reinharz3,4 ,
Carlos G. Oliver1, Yann Ponty2 , and Jérôme Waldispühl1(B)
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Abstract. RNA structures possess multiple levels of structural organi-
zation. Secondary structures are made of canonical (i.e. Watson-Crick
and Wobble) helices, connected by loops whose local conformations are
critical determinants of global 3D architectures. Such local 3D struc-
tures consist of conserved sets of non-canonical base pairs, called RNA
modules. Their prediction from sequence data is thus a milestone toward
3D structure modelling. Unfortunately, the computational efficiency and
scope of the current 3D module identification methods are too limited
yet to benefit from all the knowledge accumulated in modules databases.
Here, we introduce BayesPairing 2, a new sequence search algorithm
leveraging secondary structure tree decomposition which allows to reduce
the computational complexity and improve predictions on new sequences.
We benchmarked our methods on 75 modules and 6380 RNA sequences,
and report accuracies that are comparable to the state of the art, with
considerable running time improvements. When identifying 200 modules
on a single sequence, BayesPairing 2 is over 100 times faster than its
previous version, opening new doors for genome-wide applications.

Keywords: RNA structure prediction · RNA 3D modules · RNA
modules identification in sequence

1 Introduction

RNAs use complex and well organized folding processes to support their many
non-coding functions. The broad conservation of structures across species high-
lights the importance of this mechanism [14,35]. RNAs can operate using folding
dynamics [25] or hybridization motifs [2]. Yet, many highly specific interactions
need sophisticated three dimensional patterns to occur [11,13,15].
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RNAs fold hierarchically [36]. First, Watson-Crick and Wobble base pairs
are rapidly assembled into a secondary structure that determine the topology
the RNA. Then, unpaired nucleotides form non-canonical base pairs interactions
[16], stabilizing the loops while shaping the tertiary structure of the molecule.
These non-canonical base pairing networks have thus been identified as crit-
ical components of the RNA architecture [4] and several catalogs of recur-
rent networks along with their characteristic 3D geometries are now available
[7,10,12,27,28,30]. They act has structural organizers and ligand-binding cen-
ters [8] and we call them RNA 3D modules.

In contrast to well-established secondary structure prediction tools [20,22],
we are still lacking efficient computational methods to leverage the information
accumulated in the module databases. Software such as RMDetect [8], JAR3D [34]
and our previous contribution BayesPairing 1 [32] have been released, but their
precision and scalability remains a major bottleneck.

The significance of a module occurrence is typically assessed from recurrence:
substructures that are found in distinct RNA structures are assumed to be func-
tionally significant [30]. Based on this hypothesis, three approaches have been
developed so far for the retrieval and scoring of 3D modules from sequence. The
first one, RMDetect, takes advantage of Bayesian Networks to represent base
pairing tendencies learned from sequence alignments. Candidate modules found
in an input sequence are then scored with Bayesian probabilities. However, while
showing excellent accuracy, RMDetect suffers from high computational costs, and
minimal structure diversity among modules predicted [32]. Another option is
JAR3D [34], which refined the graphical model-based scoring approach introduced
by RMDetect and represents the state of the art for module scoring. However, it
was not designed to maximize input sequence scanning efficiency and is limited
in module diversity, only being applied to hairpin and internal loops. Finally,
BayesPairing 1 [32], a recently introduced tool combining the Bayesian scoring
of RMDetect to a regular expression based sequence parsing, is able to identify
junction modules in input sequences and showed improved computational costs
compared to RMDetect, which it was inspired from. Unfortunately, none of the
aforementioned software can be used for the discovery of many RNA 3D modules
in new sequences at the genome scale.

In this paper, we present BayesPairing 2, an efficient tool for high-
throughput search of RNA modules in sequences. BayesPairing 2 analyzes the
structural landscape of an input RNA sequence through secondary structure
stochastic sampling and uses this information to identify candidate module
insertion sites and select modules occurring in a favorable structural context.
This pre-scoring stage enables us to dramatically reduce the number of putative
matches and thus to (i) simultaneously search for multiple modules at once and
(ii) eliminate false positives. BayesPairing 2 shows comparable performance to
the state of the art while scaling gracefully with the number of modules searched.
It also supports alignment search, a feature of RMDetect which could not be
integrated in the BayesPairing 1 framework. All these improvements support
potential applications at the genome scale (Fig. 1).
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Fig. 1. The BayesPairing 2 workflow addresses the identification of non-canonical 3D
modules, i.e. arrangements of canonical and non canonical base pairs that are essential
to the 3D architecture of RNAs. It takes as input either an RNA transcript or a multiple
sequence alignment, possibly supplemented with a (shared) secondary structure, and
returns an ordered list of occurrences for candidate modules. Its key idea is to match
predicted secondary structure loops, highly likely to occur in thermodynamically-stable
models, against a database of local modules learned from sequence data filtered for
isostericity [19]. In this figure, we show the identification pipeline for one module on
one structure of the ensemble. This is then repeated for all modules, for all structures.

2 Methods

Concepts and Model. A non-canonical 3D module consists in a set of
non-canonical base pairs [17]. Modules occur within a secondary structure
loop, consisting of one or several stretches of unpaired positions within an RNA
transcript, also called regions, delimited by classic Watson-Crick/Wobble base
pairs.

At the thermodynamic equilibrium, an RNA sequence w is expected to
behave stochastically and adopt any of its secondary structure S, compati-
ble with w with respect to canonical Watson-Crick/Wobble base pairing rules,
with probability proportional to its Boltzmann factor [23]. The Boltzmann
probability of a secondary structure S for an RNA sequence w is then

P(S | w) =
e−ES,w/RT

Zw

where ES,w represents the free-energy assigned to the (S,w) pair by the exper-
imentally established Turner energy model [37], Zw =

∑
S′ e−ES′,w/RT is the

partition function [23], R is the Boltzmann constant and T the absolute temper-
ature. By extension, the Boltzmann probability of a given loop to occur within
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P(p3 = x), ∀x ∈ B = {A,C,G,U}
P(p6 = x | p3 = y), ∀(x, y) ∈ B2
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′
, y
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(c) Conditional probabilities

Fig. 2. An RNA 3D module (a), here the three-way junction of the TPP riboswitch,
represented in green, drawn in its structural context. Dashed and dotted lines respec-
tively represent non-canonical base pairs and stacking interactions. A tree decompo-
sition (b) of the module represents the dependencies between the module positions,
leading to conditional probabilities (c), estimated from available sequence data

a sequence w is simply defined as

P(loop | w) =
∑

S compatible with w
loop∈S

P(S | w).

In the current absence of thermodynamic data for non-canonical base-pairs
and modules, we adopt a probabilistic approach, and model the sequence prefer-
ences associated with a module statistically as a Bayesian network, following
Cruz et al. [8]. The structures of Bayesian networks are systematically derived
from the base pairs occurring within recurrent 3D motifs [30]. Such motifs
are typically mined within available 3D RNA structures in the PDB [5], and
clustered geometrically.

Networks are then decomposed in a way that minimizes direct dependen-
cies between individual positions of the module, while transitively preserving
the emission probabilities. As illustrated in Fig. 2, we use a tree decomposi-
tion [6] of the network to minimize the maximum number of prior observations
at each position, a strategy shared by instances of the junction tree methods [3].
Maximum likelihood conditional emission probabilities are then learned for each
module using pseudo-counts.

The emission probability for the positions of a module m to be assigned
to a nucleotide content A is then given by

P(assignment A | module m) =
∏

i∈m

P(pi = Ai | pj = Aj ∧ pj′ = Aj′ ∧ . . .). (1)

where pj , pj′ , . . . represent the content of positions j, j′, . . ., the positions condi-
tioning the content pi of position i, as derived using the tree decomposition,
and Ai represents the content of the i-th position in A. Using Bayes The-
orem while assuming uniform priors for both assignments and modules (i.e.
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P(m) = 1/|M|,P(A) = 1/4|m|), we obtain

P(module m | assignment A) =
P(A | m) × P(m)

P(A)

=
4|m| ∏

i∈m P(pi = Ai | pj = Aj ∧ . . .)
|M| .

where M represents the set of admissible modules.
The final match log-odds score MS associated with a motif m being

embedded within a given loop (i.e. at a given position) for an RNA sequence w
is given by

MS = λ log
(
P(loop | w)

)
+

∑

i∈m

log
(
P(pi = Ai | pj = Aj ∧ . . .)

)

+|m| log 4 − log (|M|)
(2)

where λ is a term that allows to control the weight of the structure and local
sequence composition.

Algorithmic Considerations and Complexity. On an algorithmic level, for
given sequence w and module m, we remark that it suffices to optimize for the
first two terms of the above equations, the others being constant for a given
module. A list of loops having highest Boltzmann probability P(loop | w) is first
estimated from a statistical sample, generated using (non-redundant) stochastic
backtrack [9,24,31]. The second term, i.e. the probability of the module content,
is only evaluated for the loops that are compatible with the size constraints of the
module, with tolerance for a size mismatch of up to one base per strand (−∞
otherwise). Its evaluation uses conditional probabilities, learned from a tree-
decomposition of the module, as described in Fig. 2. Matches featuring scores
higher than a cut-off α are then reported as candidates.

The overall complexity of the method, when invoked with a module m
and a transcript w of length n is in O(n3 +kn log n+min(k, n2h(m))×n×|m|)),
where k denotes the number of sampled secondary structures and h(m) is the
total number of helices in m. It follows a sequence-agnostic precomputation in
O(4w(m)+|m|×D), where w(m) represents the tree-width of m, and D represents
the overall size of the dataset used for training the model.

Remark that, while our reliance on sampling formally makes our method
a heuristic in the context of optimizing the objective in Eq. (2), it must be
noted that sampling provides a statistically consistent estimator for the prob-
abilities of loops. Moreover, the probabilities associated with all possible loops
could be computed exactly using constrained dynamic programming in time
O(n3+2h(m)) [20].

Implementation. Secondary structures are non-redundantly sampled from the
whole ensemble if the structure is not provided in the input, using RNAsubopt
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for a single sequence, or RNAalifold for a set of pre-aligned sequences [20,24,
31]. Tree decompositions of modules are computed by the htd library [21] and
conditional probabilities are learned using pgmpy [1]. BayesPairing 2 is freely
available as a downloadable software at (http://csb.cs.mcgill.ca/BP2).

Positioning Against Prior Work. Using stochastic sampling in
BayesPairing 2 allows to efficiently score all modules of a dataset in a sin-
gle sequence search, unlike the previous version, which requires multiple regex
searches on the sequence for each module. While searching structure-first
improves the sensitivity, especially on modules without a strong sequence signal,
it can add potential false positives, especially for small modules which appear a
lot in secondary structures. This translates into more candidates scored, but scor-
ing a candidate is much faster than scanning a sequence. Thus, BayesPairing 2
is much more efficient when searching for many modules. In addition, the abil-
ity to sample with RNAalifold allows BayesPairing 2 to take full advantage of
aligned sequences.

3 Results

3.1 Rna3Dmotif Dataset

In order to assess the performance of BayesPairing 2 on its own and in con-
text with that of BayesPairing 1, we assembled a representative sequence-based
dataset of local RNA 3D modules. We ran Rna3Dmotif on the non-redundant
RNA PDB structure database [18]. Identified modules were then matched to
Rfam family alignments via 3D structure positions. Sequences from these align-
ments were filtered to remove poorly aligned sequences, using isostericity substi-
tution cutoffs ensuring that the extracted sequences could adopt their hypoth-
esized structure. Modules matched to at least 35 sequences were added to the
dataset. 75 modules, totaling 20 125 training sequences, were collected. To assess
the presence and potential impact of false positives (FP) and true negatives
(TN), a negative dataset was assembled. To build this dataset, each sequence
in the true positive dataset was shuffled while preserving its dinucleotide distri-
bution. We assume motif occurrences to be homogeneous in length.

3.2 Validation on the Rna3Dmotif Dataset

Validating Searches on Sequences with Known Structure. A first aspect
to validate is the ability of our method to retrieve the module when the native
secondary structure is provided, ensuring the availability of a suitable loop for
the module. For this test, the sequences were obtained from the positive dataset,
and the structures accommodating their respective modules were generated with
RNAfold hard constraint folding. As expected, structure-informed BP2 recovers
every existing module.

http://csb.cs.mcgill.ca/BP2
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Table 1. BayesPairing 2 module identification accuracy on Rna3Dmotif dataset

F1 score MCC FDR Sensitivity
(top score)

Sensitivity
(top 5 scores)

BayesPairing 2

performance
0.932 0.863 0.061 0.745 0.855

Joint Prediction of Secondary Structure Loops and Module Occur-
rences. To assess the performance of BayesPairing 2 on sequences of unknown
structure, we performed two-fold cross-validation on 100 randomly sampled
unique sequences (or on all sequences when fewer were available), for each mod-
ule, amounting to a total of 6380 sequences. For each sequence-module pair, the
candidate with highest score S through 20000 sampled structures was consid-
ered a true positive (TP) if its match score MS was above the score cutoff
T = −2.16, and if its predicted position matched its real three-dimensional struc-
ture location. A sequence containing a module on which no accurate prediction
was called above the cutoff was considered a true negative (TN). We tested
all λ values between 0 and 1 and cutoff values between −10 and 10, and found
dataset-dependent optimal values of λ = 0.35 and a cutoff of −2.16 for this
dataset. For the top 5 scores sensitivity, any correct prediction within the top 5
candidates could be considered a TP, whereas the top score test only accepted
the highest score output. We also report the F1 score, the Matthews correla-
tion coefficient (MCC), and the false discovery rate (FDR) associated with this
cutoff. Formally the equations of those scores are:

F1 =

(
TP/(TP + FP)

)(
TP/(TP + FN)

)

(
TP/(TP + FP)

)
+

(
TP/(TP + FN)

) FDR =
FP

TP + FP

MCC =
TP × TN − FP × FN

√
(TP + FP) (TP + FN) (TP + FP) (TN + FN)

Prediction Score Distribution and False Discovery Rate. We exe-
cuted the same two-fold cross-validation experiment on the shuffled sequences
described in Sect. 3.1. BayesPairing 2 found no hit on 92% of the 6380
sequences. It should be noted that it is not impossible for a shuffled sequence to
contain a good hit for a module.

We obtained distributions of true and false hit scores from the cross-
validation dataset. The score distributions, presented in Fig. 3a, are clearly dis-
tinct, and a score cutoff of −2.16 produced a false discovery rate of 0.061, as
reported along with other common metrics in Table 1.
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(a) Identification probabilistic scores out-
put by BayesPairing 2 for 4500 true hits
and 4500 false hits

(b) Prediction accuracy on sub-
alignments for the kink-turn and g-bulged
modules, by size of sub-alignment

Fig. 3. Evaluating BayesPairing 2 scores and accuracy.

Table 2. Rfam cross-family results for kink-turn (left) and G-bulged (right)

Trained Identified on/with

Family RF00162 RF02540 RF02541

Software BP1 BP2 BP1 BP2 BP1 BP2

RF00162 0.96 0.97 0.47 0.83 0.66 0.73

RF02540 0.30 0.99 0.99 0.91 0.67 0.89

(a) Kink-Turn

Trained Identified on/with

Family RF02540 RF02541

Software BP1 BP2 BP1 BP2

RF02540 0.98 1.0 0.91 0.98

RF02541 0.82 0.99 0.93 0.99

(b) G-bulged

3.3 Validation on Known Module Alignments from Rfam

Sequence Search. To complement our cross-validation experiments, we also
tested BayesPairing 2 on Rfam alignments of the kink-turn and G-bulged inter-
nal loop modules. In these experiments, the modules were associated with their
respective families through the Rfam motif database, then trained on one family
and tested on the other. The results, for BayesPairing 1 and BayesPairing 2,
are displayed in Tables 2a and b. We used standard parameters and selected the
cutoffs associated to the same false discovery rate of 0.1 for both methods.

As observed in Sect. 3.2, BayesPairing 2 is slightly weaker at identifying
modules with a strong sequence signal than BayesPairing 1, but consider-
ably stronger when there is significant sequence variation as its signal appears
to be more robust. This is particularly well illustrated by the capacity of
BayesPairing 2 to identify the ribosomal kink-turn module on SAM riboswitch
sequences. While the considerable sequence difference between the ribosome and
riboswitch causes a sharp drop of 47% in BayesPairing 1 accuracy when pre-
dicting off-family, BayesPairing 2 only loses 25%.
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Fig. 4. Execution time of BayesPairing 2, as a function of numbers of modules and
sequences (left), and compared to BayesPairing 1 (right)

Alignment Search Improvement. Despite positive results in module identifi-
cation on sequences taken from Rfam, sequence-based methods cannot fully take
advantage of the common structure of an alignment. We show the relevance of
including module identification on alignments in BayesPairing 2 by improving
the results presented in Sect. 3.3. If, instead of parsing individual sequences for
modules, we parse randomly sampled sub-alignments, the predictions rise with
the size of the sub-alignment until they reach 100%, up from 50 to 95% with
sequence predictions by both software tools. Despite very low sample size (500
secondary structure sampled with RNAalifold), the alignment quickly outper-
forms the sequence predictions for all modules, on all tested families, as shown
in Fig. 3b.

3.4 Time Benchmark

The execution time of BayesPairing 2 was measured on 15 sequences (average
size of ∼200 nucleotides) containing a module each, with 5 hairpins, 5 internal
loops and 5 multi-branched loops. We searched for 1, 3, 9 and 15 modules, and
the execution time as a function of the sequence length and number of modules
is displayed in Fig. 4. While the software typically requires 2–3 s to identify a
module in a sequence of length 200, increasing the number of modules searched
by a factor of fifteen only doubles its execution time.

Tests were executed on an Intel(R) Xeon(R) CPU E5-2667 @ 2.90 GHz,
Ubuntu 16.0.4 with 23 cores, with a total physical memory of 792 gigabytes.

3.5 Comparison to the State of the Art

The first software to tackle the specific task of identifying 3D motifs in full RNA
sequences was RMDetect (2011) [8], which showed good accuracy but was severely
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Table 3. Performances of BayesPairing versions on Rna3Dmotif dataset

F1 score MCC FDR Sensitivity (1
candidate)

Sensitivity (5
candidates)

BP1 0.715 0.510 0.178 0.219 0.348

BP2 0.932 0.863 0.061 0.745 0.855

limited in the variety of motifs it could identify. BayesPairing 1 improved on
this method by adding more flexibility and improving its search efficiency [32].
Another method, JAR3D, does not undertake full sequence searches but scores
hairpin and internal loops against a database of models from the RNA 3D Motif
Atlas. BayesPairing 2 can be adapted to fulfill the same task, and their pur-
poses are close enough to be comparable. Because BayesPairing 1 has been
shown to be a clear improvement on RMDetect, we focus our comparison on the
former and JAR3D.

The good performances of BayesPairing 1 [32] relies on the assumption that
the structural motif searched has a strong sequence signal. Indeed, the tool identi-
fies motif location candidates through regular expressions. Thus, BayesPairing 1
struggles with motifs trained on a large number of distinct sequences with no
dominant sequence pattern.

While it performed well on structure-based datasets with high sequence con-
servation, our Rfam-based dataset, with an average of 268 sequences from mul-
tiple Rfam families for each module, appears challenging for the method and is
clearly outperformed by BayesPairing 2 on the dataset described in Sect. 3.1,
as shown in Table 3. We also show in Fig. 4 that BayesPairing 2 scales much
better in the number of modules searched.

JAR3D was also shown to outperform RMDetect in the identification of new
variants of RNA 3D modules [40]. However, it does not perform a search on the
input sequence, but only takes loops as input. As such, it executes a task that
only accounts for a small proportion of BayesPairing 2’s execution time. Indeed,
scoring a loop against a model is very rapid, and both tools can score 10, 000

Table 4. BayesPairing 2 and JAR3D performances on hairpins (363 seq. in 33 loops),
and internal loops (127 seq. in 28 loops) from the RNA 3D Motif Atlas.

Software Average Identification TPR and
FDR on RNA 3D Motif Atlas

Loop type Hairpin loops Internal loops

Software TPR FDR TPR FDR

BayesPairing 2 0.9819 0.0020 1.00 0.0016

JAR3D 0.9685 0.0509 0.957 0.0205
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module candidates in less than 10 s, while the total runtime of BayesPairing 2
when searching for motifs in a single sequence of length 200 is greater than
∼40 s. Therefore, we focus our comparison between BayesPairing 2 and JAR3D
on true positive rate and false discovery rate, which contribute to the overall
performance of both software.

In order to compare the software, we isolated the scoring component of
BayesPairing 2, a function which takes as input a loop and a module and returns
a match score between the two, the same input and output as JAR3D. We trained
BayesPairing 2 on 51 motifs from the RNA 3D Motif Atlas, including 28 inter-
nal loops and 33 hairpin loops. Motifs which constituted full loops and only
had occurrences of the same size, the two core assumptions of BayesPairing 2,
were selected. Then, internal loops with fewer than three occurrences, and hair-
pin loops with fewer than 5 occurrences were removed from the dataset. True
positive rates (TPR) were computed from predictions on RNA 3D Motif Atlas
sequences. False discovery rates (FDR) were estimated from averaged predic-
tions on 100 random sequences per true positive sequences (total 49000). Each
random sequence was generated from the nucleotide distribution of the true pos-
itive sequences for that module. Default cutoffs were used. For BayesPairing 2,
a cutoff of 3.5 was obtained by repeating the process presented in Sect. 3.2 after
setting the weight of the secondary structure to 0, as the secondary structure is
only considered in the context of the full sequence which is not part of the input
for this specific task. The results are presented in Table 4. While the two software
present comparable sensitivities, BayesPairing 2 achieves this high sensitivity
with higher specificity.

4 Discussion

Applications. The most obvious application for an efficient and parallelizable
motif identification framework is to parse sequences for local 3D structure signal.
Modular approaches for RNA 3D structure construction like RNA-MoIP [29] have
been shown to successfully take advantage of local tertiary structure informa-
tion. In particular, RNA-MoIP leverages 3D module matches to select the most
stable secondary structures to use as a scaffold for the full structure. Indeed,
secondary structures that can accommodate known 3D modules are often more
predictive of the real structure than those who cannot [8]. To this day, RMDetect,
BayesPairing 1 and BayesPairing 2 are the only known full sequence proba-
bilistic module identification tools to be able to identify hairpins, internal loops
and junctions, which are key components of many well-known structures, namely
several riboswitches. Of the three, BayesPairing 2 is the most scalable. This
scalability is essential as many datasets include hundreds of modules [27,30],
and this number will keep increasing as more structures are crystallized and
mining methods improve.

While the tertiary structure signal encodes information that can be lever-
aged to build a full 3D structure, its implied functional significance can be taken
advantage to refine tasks like sequence classification. Traditional methods for
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sequence classification include k-mer based techniques [38], as well as sequence
and structure motifs [39], but those only use the sequence and secondary struc-
ture signals. 3D modules are highly complementary to those methods.

Identifying Multi-branched Loops in Sequences; Applications to Ribo-
Switch Discovery. One of the distinctive characteristics of BayesPairing 2 is
its ability to identify multi-branched loops. These motifs happen to be very com-
mon in riboswitches, in which they are often closely related to function, namely
in the tyrosine pyrophosphate (TPP) riboswitch, the Cobalamin riboswitch, and
the S-adenosyl methionine I (SAM-I) riboswitch [33]. We can use sequences from
Rfam riboswitch families to train 3D module models, and then use those models
to label new sequences as putative riboswitches.

The software also provides insight on the role of those of 3D modules in the
folding dynamics of the riboswitch. Because BayesPairing 2 searches secondary
structure ensembles for loops matching known structural modules, it can be used
to observe, within the assumptions of the RNAfold library, how easily riboswitch
sequences appear to fold into their junction. For instance, the TPP riboswitch’s
junction is very present in its Boltzmann ensemble, as its small (13 bases) three-
way junction was correctly identified by our software on 81% of the sequences
from the TPP Rfam family.

Because we could hypothesize the frequency of identification of a specific loop
to be correlated with its size, it could be expected that the SAM-I riboswitch
four-way junction, which counts 28 bases, would be identified less frequently.
This is indeed the case as it was identified on 35% of the sequences of its family
with a similar pipeline (Fig. 5).
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4GXY [26]. The adjacent structural motifs used to refine the structural search are
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The much smaller (17 bases) cobalamin riboswitch junction would then be
expected to be found with a frequency somewhere in between 35% and 81%,
based on this size assumption. Surprisingly, it was only successfully identified on
3.5% of the Rfam cobalamin family sequences.

However, interestingly, identifying small structural modules (two hairpins and
one internal loop) around the junction with a first run of BayesPairing 2 and
then using the position of those modules as constraints for a second run raises
the frequency of identification of the multi-loop to 32%. The more adjacent
motifs are found, the higher the identification confidence was observed to be.
In contrast, applying the same method to the SAM riboswitch, or on shuffled
cobalamin riboswitch sequences, does not leave to a significant improvement.

This difference in behavior between riboswitches could be rooted in different
factors like co-transcriptional folding, RNA-RNA and RNA-protein interactions
and/or the intrinsic difficulty of predicting riboswitch structural element with
models learned from bound structures. However, the contrast between the con-
strained and unconstrained results in the cobalamin riboswitch tends to indicate
that some, but not all multi-branched structure are strongly correlated with
surrounding loops conformations.

Limitations and Future Work. Our approaches presents two main limita-
tions. First, the assumption that motif occurrences have a consistent size is not
a trivial one to make. For small modules, it is a reasonable assumption that the
vast majority of occurrences will have the same size since adding or removing a
base would have a large impact on the local 3D structure. However, for larger
motifs, and especially junctions, the size constraint can prevent us from identify-
ing some variants. This is something we alleviate in BayesPairing 2 by allowing
imperfect matches, with a tolerated difference of up to one base per strand, but
further work remains to be done to fully identify motifs bigger than 20 bases,
for which this fuzzy matching might not be sufficient.

Second, a consequence of searching secondary structures before sequence is
that in the rare cases when the sequence is better conserved than its secondary
structure, the accuracy of the tool will suffer. It could however be argued that not
overfitting to currently known sequences could be worth losing a bit of accuracy,
although this can only be evaluated quantitatively as new structures and module
occurrences become available, since the current structure datasets do not show
sufficient sequence variability.

Interestingly, a large majority of the modules that cannot be predicted from
sequence only by BayesPairing 2 occur in secondary structures that are never
generated by RNAsubopt. In many of those cases, a base pair stacking was
removed to allow the insertion of the module, at a considerable energy cost. We
hypothesize that those small modifications, although not energetically favorable
at the secondary structure level, are stabilized by 3D interactions which can-
not be inferred from sequence. Going further with this hypothesis, differences in
performances are then indicative of the stabilizing effect of non-canonical mod-
ules. This assumption could be tested in the future using coarse-grain molecular
dynamics to correlate those two metrics.
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The other notable limitation of the method is that the loop-based module
definition used in our study does not allow the prediction of pseudoknots, nor
canonical helices.

5 Conclusion

We presented BayesPairing 2, a software for efficient identification of RNA mod-
ules in sequences and alignments. BayesPairing 2 strictly outperforms its pre-
vious version in execution time, search on provided secondary structures, and
sequence search accuracy. It also appears to have complementary strengths to
JAR3D, the state of the art for scoring. Finally, its structure-based approach
brings a perspective on the place of the motif in the sequence’s Boltzmann
ensemble. This added context helps improve identification accuracy, but also the
interpretation of the results, and can provide additional information about the
role of a module in the folding process. Moreover, the time complexity improve-
ment opens new doors for genome-wide sequence mining for local 3D structure
patterns. As new RNA structures and sequences become available, more mod-
ules will be discovered, and BayesPairing 2 is fast enough to take advantage of
its customizability to contribute to filling the gap between secondary and ter-
tiary structure prediction tool by associating a wide selection of RNA modules
of interest to those new sequences.

Acknowledgements. The authors are greatly indebted to Anton Petrov for providing
us with alignments between RNA PDB structures and Rfam families, which helped us
match 3D modules to sequence alignments.
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31. Rovetta, C., Michálik, J., Lorenz, R., Tanzer, A., Ponty, Y.: Non-redundant
sampling and statistical estimators for RNA structural properties at the ther-
modynamic equilibrium (2019, under review). Preprint: https://hal.inria.fr/hal-
02288811

32. Sarrazin-Gendron, R., Reinharz, V., Oliver, C.G., Moitessier, N., Waldispühl, J.:
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Abstract. Universal hitting sets are sets of words that are unavoidable:
every long enough sequence is hit by the set (i.e., it contains a word from
the set). There is a tight relationship between universal hitting sets and
minimizers schemes, where minimizers schemes with low density (i.e.,
efficient schemes) correspond to universal hitting sets of small size. Local
schemes are a generalization of minimizers schemes which can be used
as replacement for minimizers scheme with the possibility of being much
more efficient. We establish the link between efficient local schemes and
the minimum length of a string that must be hit by a universal hitting
set. We give bounds for the remaining path length of the Mykkeltveit
universal hitting set. Additionally, we create a local scheme with the
lowest known density that is only a log factor away from the theoretical
lower bound.

Keywords: de Bruijn graph · Minimizers · Universal hitting set ·
Depathing set

1 Introduction

We study the problem of finding Universal Hitting Sets [13] (UHS). A UHS is a
set of words, each of length k, such that every long enough string (say of length
L or longer) contains as a substring an element from the set. We call such a set a
universal hitting set for parameters k and L. They are sets of unavoidable words,
i.e., words that must be contained in any long strings, and we are interested in
the relationship between the size of these sets and the length L.

More precisely, we say that a k-mer a (a string of length k) hits a string S if
a appears as a substring of S. A set A of k-mers hits S if at least one k-mer of
A hits S. A universal hitting set for length L is a set of k-mers that hits every
string of length L. Equivalently, the remaining path length of a universal set is
the length of the longest string that is not hit by the set (L − 1 here).

The study of universal hitting sets is motivated in part by the link between
UHS and the common method of minimizers [14,15,17]. The minimizers method
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is a way to sample a string for representative k-mers in a deterministic way by
breaking a string into windows, each window containing w k-mers, and selecting
in each window a particular k-mer (the “minimum k-mer”, as defined by a preset
order on the k-mers). This method is used in many bioinformatics software
programs (e.g., [2,4–6,18]) to reduce the amount of computation and improve
run time (see [11] for usage examples). The minimizers method is a family of
methods parameterized by the order on the k-mers used to find the minimum.
The density is defined as the expected number of sampled k-mers per unit length
of sequence. Depending on the order used, the density varies.

In general, a lower density (i.e., fewer sampled k-mers) leads to greater
computational improvements, and is therefore desirable. For example, a read
aligner such a Minimap2 [7] stores all the locations of minimizers in the ref-
erence sequence in a database. It then finds all the minimizers in a read and
searches in the database for these minimizers. The locations of these minimizers
are used as seeds for the alignment. Using a minimizers scheme with a reduced
density leads to a smaller database and fewer locations to consider, hence an
increased efficiency, while preserving the accuracy.

There is a two-way correspondence between minimizers methods and univer-
sal hitting sets: each minimizers method has a corresponding UHS, and a UHS
defines a family of compatible minimizers methods [9,10]. The remaining path
length of the UHS is upper-bounded by the number of bases in each window
in the minimizers scheme (L ≤ w + k − 1). Moreover, the relative size of the
UHS, defined as the size of UHS over the number of possible k-mers, provides
an upper-bound on the density of the corresponding minimizers methods: the
density is no more than the relative size of the universal hitting set. Precisely,
1
w ≤ d ≤ |U |

σk , where d is the density, U is the universal hitting set, σk is the
total number of k-mers on an alphabet of size σ, and w is the window length.
In other words, the study of universal hitting sets with small size leads to the
creation of minimizers methods with provably low density.

Local schemes [12] and forward schemes are generalizations of minimizers
schemes. These extensions are of interest because they can be used in place
of minimizers schemes while sampling k-mers with lower density. In particular,
minimizers schemes cannot have density close to the theoretical lower bound of
1/w when w becomes large, while local and forward schemes do not suffer from
this limitation [9]. Understanding how to design local and forward schemes with
low density will allow us to further improve the computation efficiency of many
bioinformatics algorithms.

The previously known link between minimizers schemes and UHS relied on
the definition of an ordering between k-mers, and therefore is not valid for local
and forward scheme that are not based on any ordering. Nevertheless, UHSs play
a central role in understanding the density of local and forward schemes.

Our first contribution is to describe the connection between UHSs, local and
forward schemes. More precisely, there are two connections: first between the
density of the schemes and the relative size of the UHS, and second between the
window size w of the scheme and the remaining path length of the UHS (i.e., the
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maximum length L of a string that does not contain a word from the UHS). This
motivates our study of the relationship between the size of a universal hitting
set U and the remaining path length of U .

There is a rich literature on unavoidable word sets (e.g., see [8]). The setting
for UHS is slightly different for two reasons. First, we impose that all the words
in the set U have the same length k, as a k-mer is a natural unit in bioinformatics
applications. Second, the set U must hit any string of a given finite length L,
rather than being unavoidable only by infinitely long strings.

Mykkeltveit [12] answered the question of what is the size of a minimum
unavoidable set with k-mers by giving an explicit construction for such a set.
The k-mers in the Mykkeltveit set are guaranteed to be present in any infinitely
long sequence, and the size of the Mykkeltveit set is minimum in the sense that
for any set S with fewer k-mers there is an infinitely long sequence that avoids
S. On the other hand, the construction gives no indication on the remaining
path length.

The DOCKS [13] and ReMuVal [3] algorithms are heuristics to generate
unavoidable sets for parameters k and L. Both of these algorithms use the
Mykkeltveit set as a starting point. In many practical cases, the longest sequence
that does not contain any k-mer from the Mykkeltveit set is much larger than the
parameter L of interest (which for a compatible minimizers scheme correspond
to the window length). Therefore, the two heuristics extend the Mykkeltveit set
in order to cover every L-long sequence. These greedy heuristics do not provide
any guarantee on the size of the unavoidable set generated compared to the the-
oretical minimum size and are only computationally tractable for limited ranges
of k and L.

Our second contribution is to give upper and lower bounds on the remaining
path length of the Mykkeltveit sets. These are the first bounds on the remaining
path length for minimum size sets of unavoidable k-mers.

Defining local or forward schemes with density of O(1/w) (that is, within a
constant factor of the theoretical lower bound) is not only of practical interest
to improve the efficiency of existing algorithms, but it is also interesting for
a historical reason. Both Roberts et al. [14] and Schleimer et al. [17] used a
probabilistic model to suggest that minimizers schemes have an expected density
of 2/(w + 1). Unfortunately, this simple probabilistic model does not correctly
model the minimizers schemes outside of a small range of values for parameters
k and w, and minimizers do not have an O(1/w) density in general. Although
the general question of whether a local scheme with O(1/w) exists is still open,
our third contribution is an almost optimal forward scheme with density of
O(ln(w)/w) density. This is the lowest known density for a forward scheme,
beating the previous best density of O(

√
w/w) [9], and hinting that O(1/w)

might be achievable.
Understanding the properties of universal hitting sets and their many interac-

tions with selection schemes (minimizers, forward and local schemes) is a crucial
step toward designing schemes with lower density and improving the many algo-
rithms using these schemes. In Sect. 2, we give an overview of the results, and in
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Sect. 3 we give proofs sketches. Full proofs are available in the extended version
of the paper on arXiv: https://arxiv.org/abs/2001.06550.

2 Results

2.1 Notation

Universal Hitting Sets. Consider a finite alphabet Σ = {0, . . . , σ−1} with σ ≥ 2
elements. If a ∈ Σ, ak denotes the letter a repeated k times. We use Σk to denote
the set of strings of length k on alphabet Σ, and call them k-mers. If S is a string,
S[n, l] denotes the substring starting at position n and of length l. For a k-mer
a ∈ Σk and an l-long string S ∈ Σl, we say “a hits S” if a appears as substring
of S (a = S[i, k] for some i). For a set of k-mers A ⊆ Σk and S ∈ Σl, we say
“A hits S” if there exists at least one k-mer in A that hits S. A set A ⊆ Σk is
a universal hitting set for length L if A hits every string of length L.

de Bruijn Graphs. Many questions regarding strings have an equivalent formu-
lation with graph terminology using de Bruijn graphs. The de Bruijn graph BΣ,k

on alphabet Σ and of order k has a node for every k-mer, and an edge (u, v) for
every string of length k + 1 with prefix u and suffix is v. There are σk vertices
and σk+1 edges in the de Bruijn graph of order k.

There is a one-to-one correspondence between strings and paths in BΣ,k:
a path with w nodes corresponds to a string of L = w + k − 1 characters. A
universal hitting set A corresponds to a depathing set of the de Bruijn graph:
a universal hitting set for k and L intersects with every path in the de Bruijn
graph with w = L − k + 1 vertices. We say “A is a (α, l)-UHS” if A is a set
of k-mers that is a universal hitting set, with relative size α = |A|/σk and hits
every walk of l vertices (and therefore every string of length L = l + k − 1).

A de Bruijn sequence is a particular sequence of length σk+k−1 that contains
every possible k-mer once and only once. Every de Bruijn graph is Hamiltonian
and the sequence spelled out by a Hamiltonian tour is a de Bruijn sequence.

Selection Schemes. A local scheme [17] is a method to select positions in a
string. A local scheme is parameterized by a selection function f . It works by
looking at every w-mer of the input sequence S: S[0, w], S[1, w], . . ., and selecting
in each window a position according to the selection function f . The selection
function selects a position in a window of length w, i.e., it is a function f :
Σw → [0 : w − 1]. The output of a forward scheme is a set of selected positions:
{i + f(S[i, w]) | 0 ≤ i < |S| − w}.

A forward scheme is a local scheme with a selection function such that the
selected positions form a non-decreasing sequence. That is, if ω1 and ω2 are two
consecutive windows in a sequence S, then f(ω2) ≥ f(ω1) − 1.

A minimizers scheme is scheme where the selection function takes in the
sequence of w consecutive k-mers and returns the “minimum” k-mer in the
window (hence the name minimizers). The minimum is defined by a predefined

https://arxiv.org/abs/2001.06550
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(a)

CACTGCTGTACCTCTTCT

CACTGCT-----------
-ACTGCTG----------
--CTGCTGT---------
---TGCTGTA--------
----GCTGTAC-------
-----CTGTACC------
------TGTACCT-----
-------GTACCTC----
--------TACCTCT---
---------ACCTCTT--
----------CCTCTTC-
-----------CTCTTCT

(b)

CACTGCTGTACCTCTTCT

CACTGCT-----------
-ACTGCTG----------
--CTGCTGT---------
---TGCTGTA--------
----GCTGTAC-------
-----CTGTACC------
------TGTACCT-----
-------GTACCTC----
--------TACCTCT---
---------ACCTCTT--
----------CCTCTTC-
-----------CTCTTCT

(c)

CACTGCTGTACCTCTTCT

CACTGCT-----------
-ACTGCTG----------
--CTGCTGT---------
---TGCTGTA--------
----GCTGTAC-------
-----CTGTACC------
------TGTACCT-----
-------GTACCTC----
--------TACCTCT---
---------ACCTCTT--
----------CCTCTTC-
-----------CTCTTCT

Fig. 1. (a) Example of selecting minimizers with k = 3, w = 5 and the lexicographic
order (i.e., AAA < AAC < AAG < . . . < TTT). The top line is the input sequence, each
subsequent line is a 7-bases long window (the number of bases in a window is w+k−1 =
7) with the minimum 3-mer highlighted. The positions {1, 2, 5, 9, 10, 11} are selected for
a density d = 6/(18−3+1) = 0.375. (b) On the same sequence, an example of a selection
scheme for w = 7 (and k = 1 because it is a selection scheme, hence the number of
bases in a window is also w). The set of positions selected is {1, 6, 7, 8, 11, 13, 14}. This
is not a forward scheme as the sequence of selected position is not non-decreasing.
(c) A forward selection scheme for w = 7 with selected positions {1, 7, 8, 12, 13}. Like
the minimizers scheme, the sequence of selected positions is non-decreasing.

order on the k-mers (e.g., lexicographic order) and the selection function is f :
Σw+k−1 → [0 : w − 1].

See Fig. 1 for examples of all 3 schemes. The local scheme concept is the most
general as it imposes no constraint on the selection function, while a forward
scheme must select positions in a non-decreasing way. A minimizers scheme is
the least general and also selects positions in a non-decreasing way.

Local and forward schemes were originally defined with a function defined
on a window of w k-mers, f : Σw+k−1 → [0 : w − 1], similarly to minimizers.
Selection schemes are schemes with k = 1, and have a single parameter w as
the word length. While the notion of k-mer is central to the definition of the
minimizers schemes, it has no particular meaning for a local or forward scheme:
these schemes select positions within each window of a string S, and the sequence
of the k-mers at these positions is no more relevant than sequence elsewhere in
the window to the selection function.

There are multiple reasons to consider selection schemes. First, they are
slightly simpler as they have only one parameter, namely the window length
w. Second, in our analysis we consider the case where w is asymptotically large,
therefore w � k and the setting is similar to having k = 1. Finally, this simplified
problem still provides information about the general problem of local schemes.
Suppose that f is the selection function of a selection scheme, for any k > 1 we
can define gk : Σw+k−1 → [0, w − 1] as gk(ω) = f(ω[0, w]). That is, gk is defined
from the function f by ignoring the last k − 1 characters in a window. The
functions gk define proper selection functions for local schemes with parameter
w and k, and because exactly the same positions are selected, the density of gk
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is equal to the density of f . In the following sections, unless noted otherwise, we
use forward and local schemes to denote forward and local selection schemes.

Density. Because a local scheme on string S may pick the same location in two
different windows, the number of selected positions is usually less than |S|−w+1.
The particular density of a scheme is defined as the number of distinct selected
positions divided by |S| − w + 1 (see Fig. 1). The expected density, or simply
the density, of a scheme is the expected density on an infinitely long random
sequence. Alternatively, the expected density is computed exactly by computing
the particular density on any de Bruijn sequence of order ≥2w − 1. In other
words, a de Bruijn sequence of large enough order “looks like” a random infinite
sequence with respect to a local scheme (see [10] and Sect. 3.1).

2.2 Main Results

The density of a local scheme is in the range [1/w, 1], as 1/w corresponds to
selecting exactly one position per window, and 1 corresponds to selecting every
position. Therefore, the density goes from a low value with a constant number
of positions per window (density is O(1/w), which goes to 0 when w gets large),
to a high with constant value (density is Ω(1)) where the number of positions
per window is proportional to w. When the minimizers and winnowing schemes
were introduced, both papers used a simple probabilistic model to estimate the
expected density to 2/(w + 1), or about 2 positions per window. Under this
model, this estimate is within a constant factor of the optimal, it is O(1/w).

Unfortunately, this simple model properly accounts for the minimizers behav-
ior only when k and w are small. For large k—i.e., k � w—it is possible to create
almost optimal minimizers scheme with density ∼ 1/w. More problematically,
for large w—i.e., w � k—and for all minimizer schemes the density becomes
constant (Ω(1)) [9]. In other words, minimizers schemes cannot be optimal or
within a constant factor of optimal for large w, and the estimate of 2/(w + 1) is
very inaccurate in this regime.

This motivates the study of forward schemes and local schemes. It is known
that there exists forward schemes with density of O(1/

√
w) [9]. This density

is not within a constant factor of the optimal density but at least shows that
forward and local schemes do not have constant density like minimizers schemes
for large w and that they can have much lower density.

Connection Between UHS and Selection Schemes. In the study of selection
schemes, as for minimizers schemes, universal hitting sets play a central role.
We describe the link between selection schemes and UHS, and show that the
existence of a selection scheme with low density implies the existence of a UHS
with small relative size.

Theorem 1. Given a local scheme f on w-mers with density df , we can con-
struct a (df , w) − UHS on (2w − 1)-mers. If f is a forward scheme, we can
construct a (df , w) − UHS on (w + 1)-mers.
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Almost-Optimal Relative Size UHS for Linear Path Length. Conversely, because
of their link to forward and local selection schemes, we are interested in universal
hitting set with remaining path length O(w). Necessarily a universal hitting hits
any infinitely long sequences. On de Bruijn graphs, a set hitting every infinitely
long sequences is a decycling set : a set that intersects with every cycle in the
graph. In particular, a decycling set must contain an element in each of the cycles
obtained by the rotation of the w-mers (e.g., cycle of the type 001 → 010 →
100 → 001). The number of these rotation cycles is known as the “necklace
number” Nσ,w = 1

n

∑
d|w ϕ(d)σw/d = O(σw/w) [16], where ϕ(d) is the Euler’s

totient function.
Consequently, the relative size of a UHS, which contains at least one element

from each of these cycles, is lower-bounded by O(1/w). The smallest previously
known UHS with O(w) remaining path length has a relative size of O(

√
w/w) [9].

We construct a smaller universal hitting set with relative size O(ln(w)/w):

Theorem 2. For every sufficiently large w, there is a forward scheme with den-
sity of O(ln(w)/w) and a corresponding (O(ln(w)/w), w)-UHS.

Remaining Path Length Bounds for the Mykkeltveit Sets. Mykkeltveit [12] gave
an explicit construction for a decycling set with exactly one element from each of
the rotation cycles, and thereby proved a long standing conjecture [16] that the
minimal size of decycling sets is equal to the necklace number. Under the UHS
framework, it is natural to ask what the remaining path length for Mykkeltveit
sets is. Given that the de Bruijn graph is Hamiltonian, there exists paths of
length exponential in w: the Hamiltonian tours have σw vertices. Nevertheless,
we show that the remaining path length for Mykkeltveit sets is upper- and lower-
bounded by polynomials of w:

Theorem 3. For sufficiently large w, the Mykkeltveit set is a (Nσ,w/σw, g(w))-
UHS, having the same size as minimal decycling sets, while g(w) = O(w3) and
g(w) > cw2 for some constant c.

3 Methods and Proofs

Due to page limits, we provide proof sketches of the results. Full proofs are
available in the extended paper on arXiv.

3.1 UHS from Selection Schemes

Contexts and Densities of Selection Schemes. We derive another way of
calculating densities of selection schemes based on the idea of contexts.

Recall a local scheme is defined as a function f : Σw → [0, w − 1]. For any
sequence S and scheme f , the set of selected locations are {f(S[i, w]) + i} and
the density of f on the sequence is the number of selected locations divided by
|S| − w + 1. Counting the number of distinct selected locations is the same as
counting the number of w-mers S[i, w] such that f picks a new location from
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all previous w-mers. f can pick identical locations on two w-mers only if they
overlap, so intuitively, we only need to look back (w−1) windows to check if the
position is already picked. Formally, f picks a new position in window S[i, w] if
and only if f(S[i, w]) + i 
= f(S[i − d,w]) + (i − d) for all 1 ≤ d ≤ w − 1.

For a location i in sequence S, the context at this location is defined as
ci = S[i − w + 1, 2w − 1], a (2w − 1)-mer whose last w-mer starts at i. Whether
f picks a new position in S[i, w] is entirely determined by its context, as the
conditions only involve w-mers as far back as S[i−w +1, w], which are included
in the context. This means that instead of counting selected positions in S, we
can count the contexts c satisfying f(c[w − 1, w]) + w − 1 
= f(c[j, w]) + j for all
0 ≤ j ≤ w − 2, which are the contexts such that f on the last w-mer of c picks
a new location. We denote by Cf ⊂ Σ2w−1 the set of contexts that satisfy this
condition.

The expected density of f is computed as the number of selected positions
over the length of the sequence for a random sequence, as the sequence becomes
infinitely long. For a sufficiently long random sequence (|S| � w), the distribu-
tion of its contexts converges to a uniform random distribution over (2w − 1)-
mers. Because the distribution of these contexts is exactly equal to the uniform
distribution on a circular de Bruijn S sequence of order at least 2w − 1, we can
calculate the expected density of f as the density of f on S, or as |Cf |/σ2w−1.

UHS from Selection Schemes. The set Cf over (2w − 1)-mers is the UHS
needed for Theorem 1. Cf is a UHS with remaining path length of at most w −1
as in a walk of length w of (2w − 1)-mers, the first and last w-long window do
not share a k-mer. Therefore, one of the contexts among these w must pick a
new location and by definition belongs to Cf .

When f is a forward scheme, to determine if a new location is picked in
a window, looking back one window is sufficient. This is because if we do not
pick a new location, we have to pick the same location as in last window. This
means context with two w-mers, or as a (w + 1)-mer, is sufficient, and our
other arguments involving contexts still hold. Combining the pieces, we prove
the following theorem:

Theorem 1. Given a local scheme f on w-mers with density df , we can construct
a (df , w) − UHS on (2w − 1)-mers. If f is a forward scheme, we can construct
a (df , w) − UHS on (w + 1)-mers.

3.2 Forbidden Word Depathing Set

Construction and Path Length. In this section, we construct a set that is a
(O(ln(w)/w), w) − UHS.

Definition 1 (Forbidden Word UHS). Let d = �logσ(w/ ln(w))−1. Define
Fσ,w as the set of w-mers that satisfies either of the following clauses: (1) 0d is
the prefix of x (2) 0d is not a substring of x.
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We assume that w is sufficiently large such that d ≥ 1. The longest remaining
path after removing Fσ,w is w − d as a w-mer m either does not have 0d as a
substring (then by clause 2, m is in Fσ,w), or 0d is a substring of m and in at
most (w−d) steps 0d would become the prefix of current w-mer (and in Fσ,w by
clause 1). The number of w-mer satisfying clause 1 is σw−d = O(ln(w)σw/w).

For the rest of this section, we focus on counting w-mers satisfying clause 2
in Definition 1, that is, the number of w-mers not containing 0d.

Number of w-mers Not Containing 0d . We construct a finite state machine
(FSM) that recognizes 0d as follows. The FSM consists of d + 1 states labeled
“0” to “d”, where “0” is the initial state and “d” is the terminal state. The state
“i” with 0 ≤ i ≤ d − 1 means that the last i characters were 0 and d − i more
zeroes are expected to match 0d. The terminal state “d” means that we have
seen a substring of d consecutive zeroes. If the machine is at non-terminal state
“i” and receives the character 0, it moves to state “i + 1”, otherwise it moves to
state “0”; once the machine reaches state “d”, it remains in that state forever.

Now, assume we feed a random w-mer to the finite state machine. The proba-
bility that the machine does not reach state “d” for the input w-mer is the relative
size of the set of w-mer satisfying clause 2. Denote pk ∈ R

d such that pk(j) is
the probability of feeding a random k-mer to the machine and ending up in state
“j”, for 0 ≤ j < d (note that the vector does not contain the probability for the
terminal state “d”). The answer to our problem is then ‖pw‖1 =

∑d−1
i=0 pw(i),

that is, the sum of the probabilities of ending at a non-terminal state.
Define μ = 1/σ. Given that a randomly chosen w-mer is fed into the FSM,

i.e., each base is chosen independently and uniformly from Σ, the probabilities
of transition in the FSM are: “i” → “i + 1” with probability μ, “i” → “0” with
probability 1 − μ. The probability matrix to not recognize 0d is a d × d matrix,
as we discard the row and column associated with terminal state “d”:

Ad =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 − μ 1 − μ . . . 1 − μ 1 − μ
μ 0 . . . 0 0
0 μ . . . 0 0
...

...
. . .

...
...

0 0 . . . μ 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

d×d

=
[
(1 − μ)1T

d−1 1 − μ
μId−1 0d−1

]

Starting with p0 = (1, 0, . . . , 0) ∈ R
d as initially no sequence has been parsed

and the machine is at state “0” with probability 1, we can compute the proba-
bility vector pw as pw = Adpw−1 = Aw

d p0.

Bounding ‖pw‖1. To bound ‖pw‖1, we find bounds on the largest eigenvalue
λ0 of Ad and of the norm of its eigenvector ν0. For λ 
= μ, the characteristic
polynomial is pAd

(λ) = (−1)d(λd+1 − λd − μd+1 + μd)/(λ − μ). The largest
eigenvalue by norm is real and satisfies λ0 ≤ 1 − μd+1, and its eigenvector
satisfies ‖ν0‖1 ≤ 3. Because of the special relation between λ0 and p0, and the
choice of d, we have ‖pw‖1 = ‖Aw

d p0‖1 < λw
0 ‖ν0‖1 < 3(1 − μd+1)w = O(1/w).
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These lemma implies that the relative size for the set Fσ,w is dominated
by the w-mers satisfying clause 1 of Definition 1 and Fσ,w is of relative size
O(ln(w)/w). This completes the proof that Fσ,w is a (O(ln(w)/w), w) − UHS.

3.3 Construction of the Mykkeltveit Sets

Fig. 2. (a) Mykkeltveit embedding of the de Bruijn graph of order 5 on the binary
alphabet. The nodes of a conjugacy class have the same color and form a circle (there
is more than one class per circle). The pure rotations are represented by the red edges.
A non-pure rotation Sa(x) is a red edge followed by a horizontal shift (blue edge). The
set of nodes circled in gray is the Mykkeltveit set. (b) Weight-in embedding of the same
graph. Multiple w-mers map to the same position in this embedding and each circle
represent a conjugacy class. The gray dots on the horizontal axis are the w centers of
rotations and the vertical gray lines going through the centers separate the space in
sub-regions of interest.

In this section, we construct the Mykkeltveit set Mσ,w and prove some important
properties of the set. We start with the definition of the Mykkeltveit embedding
of the de Bruijn graph.

Definition 2 (Modified Mykkeltveit Embedding). For a w-mer x, its
embedding in the complex plane is defined as P (x) =

∑w−1
i=0 xir

i+1
w , where rw is

a wth root of unity, rw = e2πi/w.

Intuitively, the position of a w-mer x is defined as the following center of
mass. The w roots of unity form a circle in the complex plane, and a weight
equal to the value of the base xi is set at the root ri+1

w . The position of x is the
center of mass of these w points and associated weights. Originally, Mykkeltveit
defined the embedding with weight ri

w [12]. This extra factor of rw in our modified
embedding rotates the coordinate and is instrumental in the proof.

Define the successor function Sa(x) = x1x2 · · · xw−1a, where a ∈ Σ. The
successor function gives all the neighbors of x in the de Bruijn graph. A pure
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rotation of x is the particular neighbor R(x) = Sx0(x), i.e., the sequence of R(x)
is a left rotation of x.

We focus on a particular kind of cycle in the de Bruijn graph. A pure cycle
in the de Bruijn graph, also known as conjugacy class is the sequence of w-mers
obtained by repeated rotation: (x,R(x), R2(x), . . .). Each pure cycle consists of
w distinct w-mers, unless x0x1 · · · xw−1 is periodic, and in this case the size of
the cycle is equal to its shortest period.

The embeddings from pure rotations satisfy a curious property:

Lemma 1 (Rotations and Embeddings). P (R(x)) on the complex plane is
P (x) rotated clockwise around origin by 2π/w. P (Sa(x)) is P (R(x)) shifted by
δ = a − x0 on the real part, with the imaginary part unchanged.

Proof. By Definition 2 and the definition of successor function Sa(x):

P (Sa(x)) =
∑w−1

i=0 (Sa(x))ir
i+1
w

=
∑w−2

i=0 xi+1r
i+1
w + arw−1+1

w

= r−1
w

∑w−1
i=0 xir

i+1
w + (a − x0)

= r−1
w P (x) + δ

Note that for pure rotations δ = 0, and r−1
w P (x) is exactly P (x) rotated clockwise

by 2π/w. ��
The range for δ is [−σ + 1, σ − 1]. In particular, δ can be negative. In a

pure cycle, either all w-mer satisfy P (x) = 0, or they lie equidistant on a circle
centered at origin. Figure 2(a) shows the embeddings and pure cycles of 5-mers.
It is known that we can partition the set of all w-mers into Nσ,k disjoint pure
cycles. This means any decycling set that breaks every cycle of the de Bruijn
graph will be at least this large. We now construct our proposed depathing set
with this idea in mind.

Definition 3 (Mykkeltveit Set). We construct the Mykkeltveit set Mσ,w as
follows. Consider each conjugacy class, we will pick one w-mer from each of
them by the following rule:

1. If every w-mer in the class embeds to the origin, pick an arbitrary one.
2. If there is one w-mer x in the class such that Re(P (x)) < 0 and Im(P (x)) = 0

(on the negative real axis), pick that one.
3. Otherwise, pick the unique w-mer x such that Im(P (x)) < 0 and

Im(P (R(x))) > 0. Intuitively, this is the w-mer in the cycle right below the
negative real axis.

3.4 Upper Bounding the Remaining Path Length in Mykkeltveit
Sets

In this section, we show the remaining path after removing Mσ,w is at most
O(w3) long. This polynomial bound is a stark contrast to the number of remain-
ing vertices after removing the Mykkeltveit set—i.e., σw − Nσ,w ∼ (1 − 1

w )σw,
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which is exponential in w. Our main argument involves embedding a w-mer to
point in the complex plane, similar to Mykkeltveit’s construction.

Weight-in Embedding. Let W (x) =
∑w−1

i=0 xi be the weight of the w-mer x. The
weight satisfies 0 ≤ W (x) ≤ Wmax = w(σ − 1). The weight of a successor is
W (Sa(x)) = W (x) + δ where δ = a − x0 as in Lemma 1.

We defined the weight-in embedding of w-mer x by Q(x) = P (x)−W (x). In
this embedding, the position of the successor Sa(x) is obtained by a rotation of
angle −2π/w around the point (−W (x), 0): Q(Sa(x)) = P (Sa(x))−W (Sa(x)) =
r−1
w (Q(x) + W (x)) − W (x).

Figure 2(b) shows the weight-in embedding of a de Bruijn graph. The set
Cσ,w = {(−j, 0) | 0 ≤ j ≤ Wmax} is the set of all the possible center of rotations,
and is shown by large gray dots on Fig. 2(b). Because all the w-mer in a given
conjugacy class have the same weight, say j, the conjugacy classes form a circle
around a particular center (−j, 0).

Embedding Mykkeltveit Set. Consider a w-mer x and a successor Sa(x) such that
their embeddings Q(x) and Q(Sa(x)) are both in the upper half-plane (positive
imaginary part). Because Q(Sa(x)) is obtained by a rotation around a point
(W (x), 0) on the x-axis from Q(x), it has a larger real part (moving to the
right). Similarly, if both Q(x) and Q(Sa(x)) are both in the lower half-plane,
the real part will decrease. Hence, any long enough walk in the de Bruijn graph
travels to the right on the upper half-plane, then cross to the lower half-plane
and travels to the left, to eventually return to the upper half-plane.

Because the imaginary part of Q(x) and P (x) are identical, by definition of
the Mykkeltveit set, every edge going from the lower half-plane to the upper
half-plane has a node in the set. Therefore, Mσ,w hits every long enough path,
and, by symmetry of the de Bruijn graph, to upper-bound the longest remaining
path it suffices to upper-bound the longest path in the upper half-plane.

Relaxations. We consider the following problem: what is the longest sequence
of complex numbers (z0, z1, . . .) that stays in the upper half-plane, where zi is
obtained from zi−1 by a rotation around one of the centers from Cσ,w? This
is a relaxation of the original problem in the sense that any valid walk in the
de Bruijn graph in the upper half-plane is a valid sequence of complex numbers
in the relaxed formulation, but the converse is not true.

This problem is broken down in different regions of the complex plane (see
Fig. 2):

1. If zi is to the right of all rotation centers (i.e., Re(zi) > 0), then any rotation
will decrease the polar angle by at least 2π/w, and after at most w/4 steps
the sequence leaves the upper-half plane.

2. If zi is to the left of all rotation centers (i.e., Re(zi) < −Wmax), then the
situation is similar as in the previous case and after at most w/4 steps the
sequence must satisfy Re(z) ≥ −Wmax.
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3. If zi is in between two rotation centers (i.e., −j ≤ Re(zi) < −j + 1 for some
1 ≤ j ≤ Wmax), let’s define L as an an upper-bound on the number of steps
before the sequence reach the next region (i.e., Re(zi+L) ≥ −j + 1).

Because there are Wmax = O(w) regions in case 3, the total number of steps
is upper bounded by O(w + Lw). The extended paper gives a simple argument
to bound L = O(w3) for a total bound of O(w4), then a refined and longer
potential-based argument that yields L = O(w2), for a final bound of O(w3).

3.5 Lower Bounding the Remaining Path Length in Mykkeltveit
Sets

We provide here a constructive proof of the existence of a Ω(w2) long path in
the de Bruijn graph after removing Mσ,w. Since all w-mers in Mσ,w satisfy
Im(P (x)) ≤ 0, a path satisfying Im(P (x)) > 0 at every step is guaranteed to
avoid Mσ,w and our construction will satisfy this criteria. It suffices to prove the
theorem for binary alphabet as the path constructed will also be a valid path in
a graph with larger alphabet. We present the constructions for even w here.

We need an alternative view of w-mers in this section, close to a shift register.
Imagine a paper ring with w slots, labelled tag 0 to tag w − 1 with content
y = y0y1 · · · yw−1, and a pointer initially at 0. The w-mer from the ring is
yjyj+1 · · · yw−1y0 · · · yj−1 = y[j, w − j] · y[0, j], assuming pointer is at tag j. A
pure rotation R(x) on the ring is simply moving the pointer one base forward,
and an impure one Sa(x) is to write a to yj before moving the pointer forward.

Let w = 2m. We create �w/8� ordered quadruples of tags taken modulo w:
Qj = {a − j, a + j, b − j, b + j} where j ∈ [1, �w/8�], a = m − 1, and b = w − 1.
In each quadruple Qj , the set of associated root of unity ri+1

w for the 4 tags
are of form {−e−iθ,−eiθ, e−iθ, eiθ}, adding up to 0. Consequently, changing yk

for each k in Qj from 1 to 0 does not change the resulting embedding. The
strategy consists of creating “pseudo-loops”: start from a w-mer, rotate it a
certain number of times and switch the bit of the w-mer corresponding to the
index in a quadruple to 0 to return to almost the starting position (the same
position in the plane but a different w-mer with lower weight).

More precisely, the initial w-mer x is all ones but xw−1 set to zero, with
paper ring content y = x and pointer at tag 0. The resulting w-mer satisfies
P (x) = −1. The sequence of operations is as follows. First, do a pure rotation
on x. Then, for each quadruple Qj from j = 1 to j = �w/8�, we perform the
following actions on x: pure rotations until the pointer is at tag a − j, impure
rotation S0, pure rotations until the pointer is at tag a + j, impure rotation
S0, pure rotations until pointer is at tag b − j, impure S0, pure rotations until
pointer is at tag b + j, impure S0.

Each round involves exactly w+1 rotations since the last step is to an impure
rotation S0 at tag b+ j which increases by one between quadruple Qj and Qj+1.
The total length of the path over all Qi is at least cw2 for some constant c.
Figure 3 shows an example of quadruples and a generated long path that fits in
the upper halfplane.
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(a) (b)

Fig. 3. (a) For w = 40, each set of 4 arrows of the same color represent a quadruple
set of root of unity. There are a total of 5 sets. They were crafted so that the 4 vector
in each set cancel out. (b) The path generated by these quadruple sets. The top circle
of radius 1 is traveled many times (between tags r1 and r2 in each quadruple), as after
setting the 4 bits to 0, the w-mer has the same norm as the starting point.

The correctness proof, alongside with the construction for odd w (by approx-
imating movements from w′ = 2w) can be found in the full paper.

4 Discussion

Relationship of UHS and Selection Schemes. Our construction of a UHS of
relative size O(ln(w)/w) and remaining path length w also implies the existence
of a forward selection scheme with density O(ln(w)/w), only a ln(w) factor away
from the lower bound on density achievable by forward scheme and local schemes.

Unfortunately this construction does not apply for arbitrary UHS. In general,
given a UHS with relative size d and remaining path length w, it is still unknown
how to construct a forward or local scheme with density O(d). As described in
Sect. 3.1, we can construct a UHS from a scheme by taking the set Cf of contexts
that yields new selections. But it is not always possible to go the other way:
there are universal hitting sets that are not equal to a set of contexts Cf for any
function f .

We are thus interested in the following questions. Given a UHS U with rel-
ative size d, is it possible to create another UHS U ′ from U that has the same
relative size d and correspond to a local scheme (i.e., there exists f such that
U ′ = Cf )? If not, what is the smallest price to pay (extra density compared to
relative size of the UHS) to derive a local scheme from UHS U?

Existence of “Perfect” Selection Schemes. One of the goal in this research is
to confirm or deny the existence of asymptotically “perfect” selection schemes
with density of 1/w, or at least O(1/w). Study of UHS might shed light on this
problem. If such perfect selection scheme exists, asymptotic perfect UHS defined
as (O(1/w), w)-UHS would exist. On the other hand, if we denied existence of
an asymptotic perfect UHS, this would imply nonexistence of “perfect” forward
selection scheme with density O(1/w).

Remaining Path Length of Minimum Decycling Sets. There is more than one
decycling set of minimum size (MDS) for given w. The Mykkeltveit [12] set is
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one possible construction, and a construction based on very different ideas is
given in Champarnaud et al. [1]. The number of MDS is much larger than the
two sets obtained by these two methods. Empirically, for small values of w, we
can exhaustively search all the MDS on the binary alphabet: for 2 ≤ w ≤ 7 the
number of MDS is respectively 2, 4, 30, 28, 68 288 and 18 432.

While experiments suggest the longest remaining path in a Mykkeltveit
depathing set defined in the original paper is around Θ(w3), matching our upper
bound, we do not know if such bound is tight across all possible minimal decy-
cling sets. The Champarnaud set seems to have a longer remaining path than the
Mykkeltveit set, although it is unknown if it is within a constant factor, bounded
by a polynomial of w of different degree, or is exponential. More generally, we
would like to know what is the range of possible remaining path lengths as a
function of w over the set of all MDSs.
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Extended Abstract
Introduction. The goal of strain-aware genome assembly is to reconstruct all
individual haplotypes from a mixed sample at the strain level and to provide
abundance estimates for the strains. Given that the use of a reference genome can
introduce significant biases, de novo approaches are most suitable for this task.
So far, reference-genome-independent assemblers have been shown to reconstruct
haplotypes for mixed samples of limited complexity and genomes not exceeding
10000 bp in length. This renders such approaches applicable to viral quasispecies,
but one cannot use them for bacterial sized genomes. In experiments presented
here, we notice that even reference-dependent approaches tend to struggle with
bacterial sized genomes.

We present VG-Flow, a de novo approach that enables full-length haplo-
type reconstruction from pre-assembled contigs of complex mixed samples. Our
method increases contiguity of the input assembly and, at the same time, it per-
forms haplotype abundance estimation. VG-Flow is the first approach to require
polynomial, and not exponential runtime in terms of the underlying graphs.
Since runtime increases only linearly in the length of the genomes in practice, it
enables the reconstruction also of genomes that are longer by orders of magni-
tude, thereby establishing the first de novo solution to strain-aware full-length
genome assembly applicable to bacterial sized genomes.

Methods. The methodical novelty that underlies VG-Flow’s advances is to
derive flow variation graphs from the (common) variation graphs that one con-
structs from the input contigs. General variation graphs [2,3] derived from input
contigs had been presented in earlier work as a means for overcoming linear
reference induced biases and aiming at the reconstruction of full-length strain-
level haplotypes [1]. We introduce the concept of a flow variation graph and cast
the relevant computational problem in terms of this graph, which renders the
problem polynomial-time solvable for the first time.
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Our approach consists of five steps, depicted in Fig. 1. As input it takes a
data set of next-generation sequencing reads and a collection of strain-specific
contigs assembled from the data. The final output is presented as a genome vari-
ation graph capturing all haplotypes present, along with the estimated relative
abundances. While the already efficient or practially feasible steps (1) and (5)
correspond to prior work [1], steps (2), (3) and (4) are novel, and replace the
exponential-runtime procedure presented earlier.

Fig. 1. Algorithm overview

Results. We demonstrate that VG-flow scales approximately linearly in genome
size in practice, which allows to process mixtures of genomes that are longer on
orders of magnitude. In this, VG-Flow presents the first comprehensive solution
to assembling haplotypes from mixed samples at the strain level, also for small
bacterial genomes and samples of considerably increased complexity. Benchmark-
ing experiments show that our method outperforms state-of-the-art approaches
on mixed samples from viral genomes in terms of assembly accuracy as well as
abundance estimation. Experiments on longer, bacterial sized genomes demon-
strate that VG-Flow is the only current approach that can reconstruct full-length
haplotypes from mixed samples at the strain level in human-affordable runtime.

A full version of this paper is available at https://doi.org/10.1101/645721
and the software can be downloaded from https://bitbucket.org/jbaaijens/vg-
flow.
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A key step in many genomic analysis pipelines is the identification of regions of
similarity between pairs of DNA sequencing reads. This task, known as pairwise
sequence alignment, is a heavy computational burden, particularly in the con-
text of third-generation long-read sequencing technologies, which produce noisy
reads. This issue is commonly addressed via a two-step approach: first, we filter
pairs of reads which are likely to have a large alignment, and then we perform
computationally intensive alignment algorithms only on the selected pairs. The
Jaccard similarity between the set of k-mers of each read can be shown to be
a proxy for the alignment size, and is usually used as the filter. This strategy
has the added benefit that the Jaccard similarities don’t need to be computed
exactly, and can instead be efficiently estimated through the use of min-hashes.
This is done by hashing all k-mers of a read and computing the minimum hash
value (the min-hash) for each read. For a randomly chosen hash function, the
probability that the min-hashes are the same for two distinct reads is precisely
their k-mer Jaccard similarity (JS). Hence, one can estimate the Jaccard sim-
ilarity by computing the fraction of min-hash collisions out of the set of hash
functions considered.

However, when the k-mer distribution of the reads being considered is signif-
icantly non-uniform, Jaccard similarity is no longer a good proxy for the align-
ment size. In particular, genome-wide GC biases and the presence of common
k-mers increase the probability of a min-hash collision, thus biasing the estimate
of alignment size provided by the Jaccard similarity. In this work, we introduce a
min-hash-based approach for estimating alignment sizes called Spectral Jaccard
Similarity which naturally accounts for an uneven k-mer distribution in the reads
being compared. The Spectral Jaccard Similarity is computed by considering a
min-hash collision matrix (where rows correspond to pairs of reads and columns
correspond to different hash functions), removing an offset, and performing a sin-
gular value decomposition. The leading left singular vector provides the Spectral
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(a) (b)

Fig. 1. SJS has uniformly higher area under the ROC curve for experiments on 40
PacBio bacterial datasets from the NCTC library [1]. In these experiments, Spectral
Jaccard Similarity and Jaccard Similarity were used to filter pairs of reads with an
overlap of at least 30%. SJS was computed based on 1000 hash functions, while the
Jaccard similarity was computed exactly. (a) We show the AUC values using Daligner
alignments as ground truth. (b) The higher the min-hash collision probability is, the
worse both methods perform, indicating a “harder” dataset. However, the performance
of the SJS filter degrades less than that of the JS filter.

Jaccard Similarity (SJS) for each pair of reads, while the corresponding right
singular vector can be understood as a measure of the “unreliability” of each
hash function. Intuitively, a hash function that assigns low values to common
k-mers is more unreliable for estimating alignment size, since it is more likely
to create spurious min-hash collisions. Implicitly, this approach leads to a kind
of weighted Jaccard similarity, where the weight of different hash functions is
learned from the dataset.

In Fig. 1(a), we demonstrate improvements in performance of the Spec-
tral Jaccard Similarity based filters over Jaccard Similarity based filters on 40
datasets of PacBio reads from the NCTC collection.

Given a dataset with average read length L and a value of k, we define the
mean collision probability over the dataset as the probability that a randomly
selected read from the dataset has a min-hash collision with a bag of L ran-
domly sampled k-mers from the k-mer distribution of the data set. This gives
us a measure of the hardness of the dataset to compute pairwise alignments. In
Fig. 1(b) we show that the performance of both Spectral Jaccard Similarity and
Jaccard Similarity degrades as the collision probability of the dataset increases,
but the Spectral Jaccard Similarity degrades much more gracefully.

In order to address the increased computational complexity associated with
computing the Spectral Jaccard Similarities, we develop an approximation to
SJS that can be computed with a single matrix-vector product, instead of a full
singular value decomposition. Empirically, we show that the loss in performance
due to this approximation is negligible on most real datasets.

The full version of the manuscript is available at [2]. The code is available at
https://github.com/TavorB/spectral jaccard similarity.

https://github.com/TavorB/spectral_jaccard_similarity
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Although long-read sequencing technologies opened a new era in genome assembly,
the problem of resolving unbridged repeats (i.e., repeats that are not spanned by any
reads) such as long segmental duplications in the human genome remains largely
unsolved, making it a major obstacle towards achieving the goal of complete genome
assemblies. Thus, long-read assemblers currently face the same repeat-resolution
challenge that short-read assemblers faced a decade ago (albeit at a different scale of
repeat lengths).

Long error-prone reads and short accurate reads have their strengths and weak-
nesses, e.g., short reads may resolve some long repeats that are difficult to resolve with
long reads. For example, diverged copies of a long repeat (e.g., copies differing by 3%)
often don’t share k-mers (for a typical k-mer size used in short-read assemblers) and
thus are automatically resolved by the de Bruijn graph-based assemblers. In contrast,
long-read assemblers face difficulties resolving such repeats since repeat copies with a
3% divergence are difficult to distinguish using the error-prone reads with error rates
exceeding 10%. Thus, long-read assemblers trade the ability to resolve the unbridged
but divergent repeat copies for the ability to resolve bridged repeats.

Vollger et al. 2019 used variations between repeat copies for reconstructing all
copies of a divergent repeat based on its consensus. However, segmental duplications
(SDs) have a mosaic structure (Pu et al. 2018) that prevents the utilization of a single
consensus sequence as a template for aligning all repeat copies. Such difficult cases
were not considered in Vollger et al. 2019. Our mosaicFlye algorithm reconstructs each
copy of a mosaic repeat based on differences between various copies.

Given a parameter k, we define the genome graph by representing each chromo-
some of length n as a path on n − k + 1 vertices. The de Bruijn graph DB(Genome, k)
is constructed by “gluing” identical k-mers in the genome graph. Given a read-set
Reads sampled from Genome, one can view each read as a “mini-chromosome” and
construct the de Bruijn graph of the resulting genome (Pevzner et al. 2004). Since the
resulting graph DB(Reads, k) encodes all errors in reads, it is much more complex than
the graph DB(Genome, k). Various short-read assembly tools transform the graph DB
(Reads, k) into the assembly graph that approximates DB(Genome, k) (Pevzner et al.
2004). However, constructing an accurate assembly graph from long error-prone reads
is a challenging problem.
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Kolmogorov et al. 2019 developed a Flye assembler that solves this problem by
making some concessions. Flye constructs the repeat graph of long reads with the goal
to approximate the de Bruijn graph DB(Genome, k) in the case of a large k, e.g.,
k = 1500. Since this task proved to be difficult in the case of error-prone reads, the Flye
assembler collapses similar (rather than only identical as in the de Bruijn graph) k-mers
in the genome graph into a single vertex in the repeat graph. To construct the repeat
graph of a genome, Flye generates all local self-alignments of the genome against itself
that have divergence below a threshold d%. Pevzner et al. 2004 defined the repeat
graph RG(Genome, k, d) as the graph obtained from the genome graph by collapsing all
aligned positions (vertices) into a single vertex.

Kolmogorov et al. 2019 defined the repeat graph RG(Reads, k, d) similarly to RG
(Genome, k, d) by applying the same approach to a “genome” formed by all reads (each
read is viewed as a “mini-chromosome”). They further described how to construct RG
(Reads, k, d) in the case when d is not too small (e.g., exceeds 5%) and demonstrated
that RG(Reads, k, d) approximates RG(Genome, k, d). However, although the problem
of constructing the repeat graph from long error-prone reads has been solved, it remains
unclear how to construct the de Bruijn graph from such reads. Solving this problem is
arguably one of the most pressing needs in the long-read assembly since it would result
in assemblies of the same quality as assemblies of long error-free reads. mosaicFlye
uses variations between various copies of a mosaic repeat for resolving these copies
and thus untangling the repeat graph of reads RG(Reads,k,d). We show that mosaicFlye
improves assemblies of the human genome as well as bacterial genomes and meta-
genomes. Below we describe only one application of mosaiFlye to a long segmental
duplication (SD) on human chromosome 6 that has only two unassembled regions: the
centromere and a 300 kb long SD. The mosaicFlye code is available at https://
antonbankevich.github.io/mosaic/. The full paper is available at https://biorxiv.org/cgi/
content/short/2020.01.15.908285v1.

Recently, the Telomere-To-Telomere consortium (Miga et al. 2019) initiated an
effort to generate a complete assembly of the human genome from ultralong ONT reads
by assembling them using Canu (Koren et al. 2017) and Flye assemblers. We applied
mosaicFlye to the only unresolved SD on chromosome 6. Since two copies of this SD
flank the centromere, the chromosome 6 can be represented as ARCRB, where A and
B refer to the arms of the chromosome, R refers to the unresolved SD, and C refers to
the centromere. Canu incorrectly resolved the repeat R (resulting in a misassembly
ARB, while Flye represented the repeat R as a single edge in the assembly graph (no
misassembly). mosaicFlye recruited 3500 reads from the repeat R and resolved this
repeat by leveraging the small divergence in the repeat copies and several insertions of
size 1–3 kb that distinguish two copies of this repeat. Thus, combining the Flye
assembly with the mosaicFlye repeat resolution resulted in a complete assembly of both
arms of chromosome 6.
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Cancer is an evolutionary process characterized by the accumulation of muta-
tions that drive tumor initiation, progression, and treatment resistance. The
underlying evolutionary process can follow different modes but ultimately leads
to multiple coexisting cell populations differing in their genotype. This genomic
heterogeneity, known as intra-tumor heterogeneity (ITH), poses major challenges
for cancer treatment as treatment-surviving populations are likely to cause can-
cer recurrence. The high resolution of single-cell DNA sequencing (scDNA-seq)
offers great potential to resolve ITH by distinguishing clonal populations based
on their accumulated mutations. However, technical limitations of scDNA-seq,
such as high error rates and a large proportion of missing values introduced
through necessary DNA amplification processes, complicate this task. Generic
clustering algorithms, such as centroid- or density-based methods, do not account
for these characteristics and are therefore unsuitable for scDNA-seq data. Hence,
a variety of tailored methods was introduced recently, varying in the main
objective, model choice, and inference. For example, tools like SCITE [1] and
SPhyR [2] focus on resolving the phylogenetic relationship among cells and in
doing so can also provide clusters and genotypes. SCG [3] employs a parametric
model and variational inference to predict clonal composition and genotypes.
SiCloneFit [4] infers the phylogenetic relation and clonal composition jointly.
However, approaches that use a tree structure are computationally expensive
due to the difficulties of tree search.

Here we introduce BnpC, a novel non-parametric method to determine the
clonal composition and genotypes of scDNA-seq data, which is applicable to data
sets with thousands of cells. As a prior for the unknown number of clusters, BnpC
employs a representation of the Dirichlet Process known as a Chinese Restau-
rant Process (CRP). The joint posterior space of all parameters is explored by
a Markov chain Monte Carlo sampling scheme consisting of a mixture of Gibbs
sampling, a modified non-conjugate split-merge move, and Metropolis-Hastings
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updates. BnpC can either sample clusters and genotypes from the posterior dis-
tribution, or provide a point estimate that can be used in downstream analysis.

We compared our method with the state-of-the-art methods SCG and Si-
CloneFit on synthetic and biological data. The simulated data sets contained
1250, 2500, 5000, and 10000 cells with 200, 350, and 500 mutations each. On
large data sets (≥5000 cells), we were not able to run SCG due to memory
requirements larger than 128 GB. The runtime of SiCloneFit varied widely and
we were not able to run it for more than 10 steps on most of the data sets
within a 24 h time limit. On the smaller data sets, SCG and BnpC achieved
similar clustering accuracy, whereas SiCloneFit performed less accurately in a
comparable runtime. For genotype prediction, BnpC outperformed the other
two methods in all cases. BnpC’s runtime scaled nearly linearly with data size
and optimal results on the largest data sets could be obtained after only two
hours. On biological data, our method did not only reproduce previous findings
for three different data sets [5–7] but also identified additional clones missed in
the original analysis but confirmed by additional experiments in Patient 4 [5]
and Patient CRC0907 [6]. For patient 9 [7], we were able to recapitulate the
previous results without requiring the manual pre-processing step conducted in
the original analysis.

In summary, our model and inference scheme result in robust and scalable
predictions of clonal composition and genotype. Thus far, BnpC is the only
method to provide accurate clonal genotypes on large data sets within a rea-
sonable time. Besides the biological insights and the potential clinical benefit,
the inferred clusters and genotypes can be used to reduce data size to facilitate
downstream analyses. As scDNA-seq data size continues to grow due to biotech-
nological progress, scalable and accurate inference, as provided by BnpC, will
be increasingly relevant. A preprint of the full paper is available at https://doi.
org/10.1101/2020.01.15.907345. BnpC is freely available under MIT license at
https://github.com/cbg-ethz/BnpC.
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Motivation. The pharmaceutical industry has experienced a significant pro-
ductivity decline: Less than 0.01% of drug candidates obtain market approval,
with an estimated 10–15 years until market release and costs that range between
one [2] to three billion dollars per drug [3]. With the advent of deep genera-
tive models in computational chemistry, de-novo drug design is undergoing an
unprecedented transformation. While state-of-the-art deep learning approaches
have shown potential in generating compounds with desired chemical properties,
they entirely disregard the biomolecular characteristics of the target disease.

Approach. Here, we introduce the first molecule generator that can be driven
through a disease context deemed to represent the target environment in which
the drug has to act. Showcased at the daunting task of de-novo anticancer
drug discovery, our generative model is demonstrated being capable of tailor-
ing anticancer candidate compounds for a specific biomolecular profile. Using a
RL framework, the transcriptomic profiles (bulk RNA-seq) of cancer cells are
used as a context for the generation of candidate molecules. Our molecule gener-
ator combines two separately pretrained variational autoencoders (VAEs). The
first VAE encodes transcriptomic profiles into a smooth, latent space which in
turn is used to condition a second VAE to generate novel molecular structures
(represented as SMILES sequences) on the given transcriptomic profile. The gen-
erative process is optimized through PaccMann [1], a previously developed drug
sensitivity prediction model, to obtain effective anticancer compounds for the
given context (see Fig. 1).

Results. Starting from a molecule generator that has been pretrained on bioac-
tive compounds from ChEMBL but never exposed to anticancer drugs, we
demonstrate how the de-novo generation can be biased towards compounds with
high predicted inhibitory effect against individual cell lines or specific cancer
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Fig. 1. Graphical abstract of the proposed framework for designing anti-
cancer compounds against specific cancer profiles. Treating conditional molec-
ular generation in an actor-critic-setting. (A) The actor is composed of a biomolecular
profile VAE (top row) and a molecule VAE (bottom row) that are combined to obtain
a conditional molecule generator. Both VAEs as well as the predictive critic (B) are
pretrained independently. To sample compounds against a cancer site, a biomolecu-
lar profile is encoded into the latent space of the first VAE. The latent embedding is
decoded (see (C)) through the molecular decoder to yield a candidate compound. The
proposed compound is then evaluated through the critic, a multimodal drug sensitivity
prediction model that ingests the compound and the target profile of interest. (A) aims
for maximizing the reward given by (B), so that over time, (A) will learn to produce
candidate compounds with higher predicted efficacy against the given cancer profile.

sites. We provide initial verification of our approach by investigating candidate
drugs generated against specific cancer types and find the highest structural sim-
ilarity to existing compounds with known efficacy against these cancer types. We
envision our approach to transform in silico anticancer drug design by leveraging
the biomolecular characteristics of the disease in order to increase success rates
in lead compound discovery.

Availability. The full preprint is available at https://arxiv.org/abs/1909.05114.
The omics data (TCGA) and the molecular (ChEMBL) used to train the
two VAEs and can be found on https://ibm.box.com/v/paccmann-pytoda-data.
All code to reproduce the experiments is available on https://github.com/
PaccMann/ with a detailed example at https://github.com/PaccMann/
paccmann rl. To assess the critic, see [1].
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Genome-wide association studies (GWAS) have been extensively used to esti-
mate the signed effects of trait-associated alleles. One of the key challenges in
GWAS are confounding factors, such as population stratification, which can
lead to spurious genotype-trait associations. Recent independent studies [1,8,10]
failed to replicate the strong evidence of previously reported signals of directional
selection on height in Europeans in the UK Biobank cohort, and attributed the
loss of signal to cryptic relatedness in populations. Population structure causes
genuine genetic signals in causal variants to be mirrored in numerous non-causal
loci due to linkage disequilibrium (LD) [3], resulting in spurious associations.
Thus, it is important to account for LD in the computation of the distance
matrix [6]. One way to account for the LD structure is to use the squared Maha-
lanobis distance [5]. Here, we present CluStrat, a stratification correction algo-
rithm for complex population structure that leverages the LD-induced distances
between individuals. It performs agglomerative hierarchical clustering using the
Mahalanobis distance based Genetic Relationship Matrix (GRM) which captures
the population-level covariance of the genotypes. Thereafter, we apply sketching-
based randomized ridge regression on the clusters and perform a meta-analysis
to obtain the association statistics.

With the growing size of data, computing and storing the genome wide GRM
is a non-trivial task. We get around this overhead by computing the Mahalanobis
distance between two vectors efficiently without storing or inverting the covari-
ance matrix, but instead computing the corresponding rank-k leverage and cross-
leverage scores. We compute the rank-k Mahalanobis distance with respect to
the top k-left singular vectors of the genotype matrix, thus making the compu-
tation feasible for UK Biobank-scale datasets using methods such as TeraPCA [2]
to approximate the left singular vectors accurately and efficiently.
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We test CluStrat on a large simulation study of arbitrarily-structured,
admixed sub-populations by generating 100 GWAS datasets (with 1,000 indi-
viduals genotyped on one million genetic markers) from a quantitative trait
model (and it’s equivalent binary trait) based on previous work [9]. We simu-
lated 30 different scenarios, varying proportions of true genetic effect and admix-
ture and compared it’s performance to standard population structure correction
approaches such as EIGENSTRAT [7], GEMMA [11], and EMMAX [4]. We iden-
tified two to three-fold more true causal variants when compared to the above
methods for almost all scenarios, while trading off for a slightly higher spurious
associations, but, far less than the uncorrected Armitage trend χ2 test. Applying
CluStrat on WTCCC2 Parkinson’s disease (PD) data with a p-value threshold
set to 10−7, we identified loci mapped to a host of genes known to be associated
with PD such as BACH2, MAP2, NR4A2, SLC11A1, UNC5C to name a few.
In summary, CluStrat highlights the advantages of biologically relevant distance
metrics, such as the Mahalanobis distance, which seems to capture the cryptic
interactions within populations in the presence of LD better than the Euclidean
distance. Of independent interest is a simple, but not necessarily well-known,
connection between the regularized Mahalanobis distance-based GRM and the
leverage and cross-leverage scores of the genotype matrix. CluStrat source code
and user manual is available at: https://github.com/aritra90/CluStrat and the
full version is available at https://doi.org/10.1101/2020.01.15.908228.
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Abstract. Over the last two decades, Genome-Wide Association Study (GWAS)
has become a canonical tool for exploratory genetic research, generating countless
gene-phenotype associations. Despite its accomplishments, several limitations
and drawbacks still hinder its success, including low statistical power and
obscurity about the causality of implicated variants. We introduce PWAS
(Proteome-Wide Association Study), a new method for detecting protein-coding
genes associated with phenotypes through protein function alterations. PWAS
aggregates the signal of all variants jointly affecting a protein-coding gene and
assesses their overall impact on the protein’s function using machine-learning and
probabilistic models. Subsequently, it tests whether the gene exhibits functional
variability between individuals that correlates with the phenotype of interest. By
collecting the genetic signal across many variants in light of their rich proteomic
context, PWAS can detect subtle patterns that standard GWAS and other methods
overlook. It can also capture more complex modes of heritability, including
recessive inheritance. Furthermore, the discovered associations are supported by a
concrete molecular model, thus reducing the gap to inferring causality. To
demonstrate its applicability for a wide range of human traits, we applied PWAS
on a cohort derived from the UK Biobank (*330K individuals) and evaluated it
on 49 prominent phenotypes. 23% of the significant PWAS associations on that
cohort (2,998 of 12,896) were missed by standard GWAS. A comparison between
PWAS to existing methods proves its capacity to recover causal protein-coding
genes and highlighting new associations with plausible biological mechanism.

Keywords: GWAS � Machine learning � Protein function � UK Biobank �
Recessive heritability

1 Background

GWAS is limited by a number of crucial factors. Insufficient statistical power is often
caused, partly, by the large number of tested variants across the genome, especially
when rare variants of small effect sizes are involved. Due to Linkage Disequilibrium
(LD) and population stratification, even when a genomic locus is robustly implicated
with a phenotype, pinning the exact causal variant(s) is a convoluted task. To arrive at
more interpretable, actionable discoveries, some methods seeks to implicate genes
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directly, by carrying the association tests at the level of annotated functional elements
in the first place. The most commonly used gene-level method is SKAT [1], which
aggregates the signal across an entire genomic region, be it a gene or any other
functional entity. Another approach, recently explored by methods such as PrediXcan
[2] and TWAS [3], tests whether the studied phenotypes correlate with gene expression
levels predicted from genetic variants.

2 Methods

A natural enhancement to existing gene-based association studies would be a protein-
centric method that considers the effects of genetic variants on the functionality of
genes, rather than their abundance (be it at the transcript or protein level). We present
PWAS: Proteome Wide Association Study (Fig. 1). PWAS is based on the premise that
causal variants in coding regions affect phenotypes by altering the biochemical func-
tions of the genes’ protein products (Fig. 1a). PWAS takes the same inputs as GWAS
(Fig. 1b): (i) called genotypes of m variants across n individuals, (ii) a vector of
n phenotype values (binary or continuous), and (iii) a covariate matrix for the n indi-
viduals with possible confounders (e.g. sex, age, principal components, batch). By
exploiting a rich proteomic knowledgebase, a pre-trained machine-learning model [4]
estimates the extent of damage caused to each of the k proteins in the human proteome,
as a result of the m observed variants, for each of the n individuals (typically k � m).
To calculate these effect scores, PWAS considers any variant that affects the coding-
regions of genes (e.g. missense, nonsense, frameshift). The per-variant damage pre-
dictions are aggregated at the gene level, in view of each sample’s genotyping, gen-
erating protein function effect score matrices. PWAS generates two such matrices,
reflecting either a dominant or a recessive effect on phenotypes. Intuitively, the
dominant effect score is intended to express the probability of at least one hit damaging
the protein function, while the recessive score attempts to express the probability of at
least two damaging hits. PWAS identifies significant associations between the phe-
notype values to the effect score values (comprising columns of the matrices, each
representing a distinct protein-coding gene), while accounting for the provided

Fig. 1. The PWAS framework: (a) Assumed causal model. (b) The method’s workflow.
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covariates. Each gene can be tested by the dominant model, the recessive model, or a
generalized model that uses both the dominant and recessive values.

3 Results

Using a dataset derived from the UK Biobank [5] (*330K samples), we tested PWAS
on 49 prominent phenotypes (including major metabolic, psychiatric and autoimmune
diseases, various cancer types, blood tests, and a variety of physical measurements such
as height and BMI). Altogether, PWAS discovered 12,896 gene-phenotype associa-
tions, only 5,338 of which (41%) contain a GWAS-significant non-synonymous variant
within the gene’s coding region. In other words, although PWAS considers the same
set of variants, in 59% of the associations it is able to recover an aggregated signal that
is overlooked by GWAS when considering each of the variants individually. Even
when considering all the variants in proximity of the gene to account for LD (up to
500,000 bp to each side of the coding region), 2,998 of the 12,896 PWAS associations
(23%) are still missed by GWAS. We further compared PWAS to SKAT, the most
commonly used method for detecting genetic associations at the gene level. Impor-
tantly, whereas SKAT attempts to recover all existing genetic associations, PWAS
focuses specifically on protein-coding genes that are associated with a phenotype
through protein function. We found PWAS to be superior to SKAT in the number of
discovered associations for most phenotypes.

4 Conclusion

Like other gene-based approaches, PWAS benefits from a reduced burden of multiple-
testing correction and is able to uncover associations spread across multiple variants. In
addition, it provides concrete functional interpretations for the protein-coding genes it
discovers, and can determine whether the proposed causal effect appears to be dominant,
recessive or some mixture of the two (e.g. additive). PWAS is an open-source Python
project, available as a command-line tool at https://github.com/nadavbra/pwas. A pre-
liminary of the manuscript is available on bioRxiv at https://doi.org/10.1101/812289.
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Cells die at different rates as a function of disease state, age, environmental
exposure, and behavior [8,10]. Knowing the rate at which cells die is a funda-
mental scientific question, with direct translational applicability. A quantifiable
indication of cell death could facilitate disease diagnosis and prognosis, prioritize
patients for admission into clinical trials, and improve evaluations of treatment
efficacy and disease progression [1,4,14,16]. Circulating cell-free DNA (cfDNA)
in the bloodstream originates from dying cells and is a promising non-invasive
biomarker for cell death.

To understand what drives changes in the biology of people with disease, we
can decompose the cfDNA mixture into the cell types from which the cfDNA
originates. This can give a non-invasive picture of cell death, which can be used
to characterize an individual’s disease, or health, at a particular moment. While
each cell type has the same DNA sequence, which does not give us information
on where a cfDNA fragment arises from, DNA methylation is cell type infor-
mative [7]. Subsequently, there is a rich literature of cell type decomposition
approaches using DNA methylation, often focusing on estimating the contribu-
tion of immunological cell types to whole blood [2,3,11,12].

Recent work has attempted to use cfDNA methylation patterns to decom-
pose tissue of origin for cfDNA [5,6,9,13]. These approaches, however, do not
address some of the unique challenges of cfDNA, or were designed for different
purposes. Several were designed for reference and input data from a methyla-
tion chip, which are high coverage and have relatively low noise. Since cfDNA
is only present in the blood in small amounts, as an onerous amount of blood
must be extracted from a patient to get the required amount of input DNA for

c© Springer Nature Switzerland AG 2020
R. Schwartz (Ed.): RECOMB 2020, LNBI 12074, pp. 240–242, 2020.
https://doi.org/10.1007/978-3-030-45257-5_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45257-5_21&domain=pdf
https://doi.org/10.1007/978-3-030-45257-5_21


Estimating the Rate of Cell Type Degeneration 241

methylation chips, which may not be practical for clinical use. While increasingly
powerful, these approaches can not provide biomarker discovery, especially for
unknown cell types, or comprehensive deconvolution. In this work, we turn to
using whole genome bisulfite sequencing (WGBS) to assess the methylation of
cfDNA. Unlike methylation chips that target specific genomic locations, WGBS
covers the entire genome, typically resulting in lower coverage per-site, and
increased noise relative to chip data. Current methods are ill-equipped to handle
such noise in either the reference or input.

Here, we develop a method to accurately estimate the relative abundances
of cell types contributing to cfDNA. We leverage the distinct DNA methylation
profile of each cell type throughout the body. Decomposing the cfDNA mixture
is difficult, as fragments from relevant cell types may only be present in a small
amount. We propose an algorithm, CelFiE, that estimates cell type proportion
from both whole genome cfDNA input and reference data. CelFiE accommodates
low coverage data, does not rely on CpG site curation, and estimates contribu-
tions from multiple unknown cell types that are not available in reference data.

We show in realistic simulations that we can accurately estimate known and
unknown cell types even at low coverage and relatively few sites. We also can esti-
mate rare cell types that contribute to only a small fraction of the total cfDNA.
Decomposition of real WGBS complex mixtures demonstrates that CelFiE is
robust to several violations of our model assumptions. Specifically, the real data
allow: correlation across regions and between cell types, read counts that are
drawn from heavy-tailed distributions, and reference samples that are actually
heterogeneous mixtures of many cell types. Additionally, we develop an approach
for unbiased site selection.

Finally, we apply CelFiE to two real cfDNA data sets. First, we apply CelFiE
to cfDNA extracted from pregnant women and non-pregnant women. Since pla-
centa is not expected in non-pregnant women, this data enables validation for
our method. CelFiE estimates a large placenta component specifically in preg-
nant women (p = 9.1×10−5). We also apply CelFiE to cfDNA from amyotrophic
lateral sclerosis (ALS) patients and age matched controls. Specifically, CelFiE
estimates increased skeletal muscle component in the cfDNA of ALS patients
(p = 2.6×10−3), which is consistent with muscle impairment characterizing ALS.
Currently, there are no established biomarkers for ALS. Subsequently, it is dif-
ficult to monitor disease progression and efficiently evaluate treatment response
[15]. CfDNA provides an opportunity to measure cell death in ALS that could
fill these gaps. Differences in the cfDNA of ALS patients is a novel observa-
tion, and along with successful decomposition of cfDNA from pregnant women,
demonstrates that CelFiE has the potential to meaningfully decompose cfDNA
in realistic conditions. CfDNA decomposition has broad translational potential
for understanding the biology of cell death, and in applications such as quan-
titative biomarker discovery or in the non-invasive monitoring and diagnosis of
disease.

The full version of the paper is available at https://www.biorxiv.org/content/
10.1101/2020.01.15.907022v1.
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Extended Abstract
Genome-wide association studies (GWAS) have been an important tool for sus-
ceptibility gene discovery in genetic disorders and investigating the interplay
among multiple loci has played an imporatant role. Such interactions between
two or more loci is called epistasis and it has a major role in complex genetic
traits.

Exhaustive identification of interacting loci, even just pairs, is potentially
intractable for large GWAS [1]. Moreover, such an approach lacks statistical
power due to multiple hypothesis testing. Another approach is to reduce the
search space by filtering pairs based on a type of statistical threshold. However
this apporach does not follow a biological reasoning and tends to detect interac-
tions that are in linkage disequilibrium (LD). On another track, incorporating
biological background and testing the SNP pairs that are annotated has also
proven useful. Yet, this approach requires most SNPs to be discarded as many
are quite far away from any gene to be associated. Moreover, this introduces a
literature bias in the selections of the algorithms. A rather more popular app-
roach is to prioritize the tests to be performed rather than discarding pairs from
the search space and controlling for Type-I error. In this approach, the user
can keep performing tests in the order specified by the algorithm until a desired
number of significant pairs are found. The idea is to provide the user with a man-
ageable number of true positives (statistically significant epistatic pairs) while
minimizing the number of tests to ensure statistical power. Despite using various
heuristics, all methods still have high false discovery rates.

Linkage disequilibrium is an important source of information for epistasis
prioritization algorithms. Two SNPs that appear to be interacting statistically,
might not be biologically meaningful if they are on the same haplotype block.
In an orthogonal study, Yilmaz et al. propose a feature (SNP) selection algo-
rithm which avoids LD for better phenotype prediction [2]. Authors show that
while looking for a small set of loci (i.e., 100) that is the most predictive of a
continuous phenotype, selecting SNPs that are far away from each other, results
in better predictive power. This method, SPADIS, is designed for feature selec-
tion for multiple regression. As the SNP set it generates contains diverse and
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complementary SNPs, it results in better R2 values by covering more biological
functions.

Inspired by this idea, we conjecture that selecting pairs of SNPs from genomic
regions that (i) harbor individually informative SNPs, and (ii) are diverse in
terms of genomic location would avoid LD better and yield more functionally
complementing and more epistatic SNP pairs compared to the current state of
the art since no other algorithm exploits this information. We propose a new
method that for the first time incorporates the genome location diversity with
the population coverage density. Specifically, our proposed method, Potpourri,
maximizes a submodular set function to select a set of genomic regions (i) that
include SNPs which are individually predictive of the cases, and (ii) that are
topologically distant from each other on the underlying genome. Epistasis tests
are performed for pairs across these regions, such that pairs that densely co-cover
the case cohort are given priority.

We validate our hypothesis and show that Potpourri is able to detect statis-
tically significant and biologically meaningful epistatic SNP pairs. We perform
extensive tests on three Wellcome Trust Case Control Consortium (WTCCC)
GWA studies and compare our method with the state-of-the-art LINDEN algo-
rithm [1]. First, we guide LINDEN by pruning its search space using Potpourri-
selected-SNPs to show that (i) it is possible to significantly improve the preci-
sion (from 0.003 up to 0.302) and (ii) that our diversification approach is sound.
Then, we show that the ranking of the diverse SNPs by the co-coverage of the case
cohort further improves the prediction power and the precision (up to 0.652 in the
selected setting). Potpourri drastically reduces the number of hypothesis tests to
perform (from ∼380k to ∼15k), and yet is still able to detect more epistatic pairs
with similar significance levels in all there GWA studies considered. The running
time is also cut by 4 folds in the selected settings. Another problem with the
current techniques is the biological interpretation of the obtained epistatic pairs.
Once the most significant SNP pairs returned are in the non-coding regions and
are too isolated to be associated with any gene, the user can hardly make sense
of such a result despite statistical significance. We investigate the advantage
of promotion of SNPs falling into regulatory and non-coding regions for testing
and propose three techniques. We show that these techniques further improve the
precision (up to 0.8) with similar number of epistatic pairs detected. Potpourri is
available at http://ciceklab.cs.bilkent.edu.tr/potpourri and the preprint is avail-
able at https://www.biorxiv.org/content/10.1101/830216v3. This research has
been supported by TUBITAK grant #116E148 to AEC.
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1 Introduction

Sharing data across research groups is an essential driver of biomedical research.
In particular, biomedical databases with interactive query-answering systems
allow users to retrieve information from the database using restricted types of
queries. For example, medical data repositories allow researchers designing clin-
ical studies to query how many patients in the database satisfy certain criteria,
a workflow known as cohort discovery. In addition, genomic “beacon” services
allow users to query whether or not a given genetic variant is observed in the
database, a workflow we refer to as variant lookup. While these systems aim to
facilitate the sharing of aggregate biomedical insights without divulging sensitive
individual-level data, they can still leak private information about the individuals
through the query answers. To address these privacy concerns, existing studies
have proposed to perturb query results with a small amount of noise in order to
reduce sensitivity to underlying individuals [1,2]. However, these existing efforts
either lack rigorous guarantees of privacy or introduce an excessive amount of
noise into the system, limiting their effectiveness in practice.

2 Methods

Here, we build upon recent advances in differential privacy (DP) to introduce
query-answering systems with formal privacy guarantees while ensuring that
the query results are as accurate as theoretically possible. We newly propose to
leverage the truncated α-geometric mechanism (α-TGM), previously developed
for a limited class of count queries in a theoretical context [3], to limit disclosure
risk in both cohort discovery and variant lookup workflows. We show that α-
TGM, combined with a post-processing step performed by the user, provably
maximizes the expected utility (encompassing accuracy) of the system for a
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Fig. 1. Our approach improves the utility of medical cohort discovery and
genomic variant lookup with differential privacy. We compared the performance
of our optimal differential privacy mechanisms to the exponential and Laplace mecha-
nisms for (a) cohort discovery and (b) variant lookup queries with different choices of
loss functions. We used uniform prior for cohort discovery and a real-world query dis-
tribution from the ExAC database as prior for variant lookup. Overall, our mechanisms
achieve consistently higher accuracy of query results compared to existing approaches.

broad range of user-defined notions of utility and for any desired level of privacy.
Notably, the optimality of α-TGM was previously known for only symmetric
utility functions, which are insufficient for workflows we typically encounter in
biomedical databases [1]. We extend this result to a more general class of utility
functions including asymmetric functions, thereby answering an open question
posed in the original publication of α-TGM [3]. Moreover, we demonstrate that
α-TGM can be transformed to obtain an optimal DP mechanism for the variant
lookup problem, a novel result enabled by our generalized notion of utility.

3 Results

We compared the effectiveness of our proposed approach for cohort discovery
and variant lookup queries to the exponential and Laplace mechanisms proposed
by earlier studies [1,2]. Our mechanisms consistently improved the accuracy of
query results across all values of privacy parameter ε and different types of loss
functions (Fig. 1). Furthermore, we observed that using an appropriate prior can
further increase query accuracy and that our improved queries can be used to
enhance downstream analyses, such as association tests. Given the optimality
of our schemes, our results illustrate the theoretical boundaries of leveraging
DP for mitigating privacy risks in biomedical query-answering systems. A full
version of this work is available on bioRxiv.1

1 https://doi.org/10.1101/2020.01.16.909010.
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Abstract. Recent experimental advances have enabled high-throughput single-
cell measurement of gene expression, chromatin accessibility and DNA methy-
lation. We previously employed integrative non-negative matrix factorization
(iNMF) to jointly align multiple single-cell datasets (Xi) and learn interpretable
low-dimensional representations using dataset-specific (Vi) and shared metagene
factors (W ) and cell factor loadings (Hi). We developed an alternating nonnega-
tive least squares (ANLS) algorithm to solve the iNMF optimization problem [2]:

min
W,Vi,Hi≥0
i∈1,..,N

N∑

i=1

‖Xi − (W + Vi)Hi‖2F + λ

N∑

i=1

‖ViHi‖2F (1)

The resulting metagenes and cell loadings provide a principled, quantitative def-
inition of cellular identity and how it varies across biological contexts. However,
datasets exceeding 1 million cells are now widely available, creating computa-
tional barriers to scientific discovery. For instance, it is no longer feasible to
use the entire available datasets as inputs to implement standard pipelines on
a personal computer with limited memory capacity. Moreover, there is a need
for an algorithm capable of iteratively refining the definition of cellular identity
as efforts to create a comprehensive human cell atlas continually sequence new
cells.

To address these challenges, we developed an online learning algorithm for
integrating massive and continually arriving single-cell datasets. The key innova-
tion that makes it possible to perform online learning [1] is to optimize a “surro-
gate function”, given by (2), that asymptotically converges to the same solution
as the original iNMF objective (1). We can then perform matrix factorization in
an online fashion by iteratively minimizing the expected cost f̂t(H,W, V ) as new
data points xt (or points randomly sampled from a large fixed training set) arrive.

f̂t(W,V1, ..., VN ,H1, ...,HN ) =
1
t

t∑

i=1

‖xi − (W + Vdi
)hdi

‖2F + λ ‖Vdi
hdi

‖2F (2)

where di indicates which dataset the ith data point belongs to.
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Intuitively, this strategy allows online learning because it expresses a for-
mula for incorporating a new observation xt given the factorization result
(H(t−1),W (t−1), V (t−1)) for previously seen data points. Thus, we can iterate
over the data points one-by-one or in “mini-batches”—and also rapidly update
the factorization when new data points arrive. We also derived a novel hierar-
chical alternating least squares (HALS) algorithm for iNMF and incorporated it
into an efficient online algorithm.

Our online approach accesses the training data as mini-batches, decoupling
memory usage from dataset size and allowing on-the-fly incorporation of new
data as it is generated. Because the online algorithm does not require all of the
data on each iteration (only a single data point or fixed-size mini-batch), we
used the rhdf5 package to load each mini-batch from disk on the fly. For a mini-
batch size of 5,000 cells, we found that reading each mini-batch from disk added
minimal overhead (less than 0.35 s per iteration).

We first investigated the performance of the online learning algorithm on
aligning the single-cell RNA-seq datasets. For this purpose, we benchmarked
the online learning algorithm with three other batch algorithms, ANLS, HALS,
and the multiplicative update method, using several datasets from different tis-
sues, including human PBMCs, human pancreas, and the adult mouse brain. By
evaluating each method on the training and testing sets, we confirmed that the
online implementation of iNMF converges much more quickly using a fraction of
the memory required for the batch implementation, without sacrificing solution
quality. We also found that the time required for the online iNMF algorithm to
converge does not grow steadily with increasing dataset size, but stabilizes once
the number of cells crosses a minimum size threshold. Thus, the advantage of the
online algorithm compared to the batch algorithm increases with dataset size.
Our new approach enables factorization of 691962 single cells from 9 regions of
the mouse brain on a standard laptop in ∼20 min using about 500 MB of RAM.
In comparison, we estimate that carrying out the same analysis using our previ-
ous batch iNMF approach would have taken 4–5 h and required over 40 GB of
RAM.

Secondly, we demonstrated that our online algorithm allows for iterative
refinement of cell identity from continually arriving datasets. We constructed
a cell atlas of the mouse motor cortex by iteratively incorporating 6 single-cell
RNA-seq datasets generated by the BRAIN Initiative Cell Census Network over
a period of two years. We found that by accessing the data in a true online
fashion—seeing each cell only once during training—we could accurately inte-
grate the datasets as they arrived. In order to assess the robustness of this
approach, we investigated how both random data ordering and random initial-
ization affect the results. We found that different orders of dataset arrival have
only minimal effect on the final objective function value: different orders resulted
in a standard deviation of 1.2% in the final iNMF objective, compared to 0.2%
from random initializations. Furthermore, the clustering results derived from
online iNMF are stable even under different orders of dataset arrival, with an
adjusted Rand index of (ARI) 0.7—only slightly larger than the variation from
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different random initializations (ARI of 0.74). We also attempted to incorpo-
rate single-nucleus ATAC-seq data in true online fashion after processing the 6
scRNA-seq datasets, but found that the alignment quality is lower than when
we process all of the modalities at once.

In summary, our new online learning algorithm shows several promising char-
acteristics in different contexts. Given multiple finite single-cell datasets, our
approach offers rapid convergence speed without sacrificing solution quality.
It also obviates the need to recompute results each time additional cells are
sequenced and allows for processing of datasets too large to fit in memory. Most
importantly, it facilitates continual refinement of cell identity as new single-cell
datasets from different biological contexts and data modalities are generated
chronologically. We also found that our newly developed batch HALS algorithm
can converge nearly as rapidly as online iNMF on smaller datasets, though it
does not offer the benefits of memory usage independent of dataset size or iter-
ative incorporation of new data. We anticipate that online iNMF will prove
increasingly useful for assembling a comprehensive atlas of cell types and states
as single-cell dataset sizes increase.

Full text: Preprint version of the full manuscript is available at https://www.
biorxiv.org/content/10.1101/2020.01.16.909861v2.
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Summary. A major challenge in biomedical data science is to identify the causal
genes underlying complex genetic diseases. Despite the massive influx of genome
sequencing data, identifying disease-relevant genes remains difficult as individu-
als with the same disease may share very few, if any, genetic variants. Protein-
protein interaction networks provide a means to tackle this heterogeneity, as
genes causing the same disease tend to be proximal within networks. Previously,
network propagation approaches have spread “signal” across the network from
either known disease genes or genes that are newly putatively implicated in the
disease. Here we introduce a general framework that considers both sources of
data within a network context. Specifically, we use prior knowledge of disease-
associated genes to guide random walks initiated from genes that are newly
identified as perhaps disease-relevant. In rigorous, large-scale testing across 24
cancer types, we demonstrate that our approach for integrating both prior and
new information not only better identifies cancer driver genes than using either
source of information alone but also readily outperforms other state-of-the-art
network-based approaches. To demonstrate the versatility of our approach, we
also apply it to genome-wide association data to identify genes functionally rel-
evant for several complex diseases. Overall, our work suggests that guided net-
work propagation approaches that utilize both prior and new data are a powerful
means to identify disease genes.

Methods. At a high level, our approach uKIN (using Knowledge In Networks)
propagates new information across a network, while using prior information to
guide this propagation. While our approach is generally applicable, we focus on
the case of propagating information across biological networks in order to find
disease genes. In the scenario of uncovering cancer genes, prior information comes
from the set of known cancer genes, and new information corresponds to those
genes that are found to be somatically mutated across patient tumors. For other
complex diseases, new information may arise from (say) genes weakly associated
with a disease via GWAS studies or found to have de novo mutations in a patient
population of interest. As we expect the genes that are actually disease-relevant
to be proximal in the network to each other and to the previously known set of
disease genes, we spread the signal from the newly implicated genes biasing it to
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move towards genes that are closer to the known disease genes. We accomplish
this by performing random walks with restarts (RWRs), where with probability
α, the walk jumps back to one of the starting genes. That is, α controls the
extent to which we use new versus prior information, where higher values of α
weigh the new information more heavily. With probability 1−α, the walk moves
to a neighboring node, but instead of moving from one gene to one of its neigh-
bors uniformly at random as is typically done, the probability instead is higher
for neighbors that are closer to the prior knowledge set of genes. We show that
the walk has a stationary distribution that can be computed numerically. The
genes whose nodes have high scores are most frequently visited and, therefore,
are more likely disease-relevant as they are close to both the mutated starting
nodes as well as to already known disease genes.

Results. We apply our method to 24 different TCGA cancer types. First, we
show that uKIN successfully integrates prior knowledge and new information
across all cancer types by comparing uKIN’s performance when using both prior
and new knowledge (RWRs with α = 0.5), to versions of uKIN using either
only new information (α = 1) or only prior information (α = 0). Second,
we demonstrate that uKIN readily outperforms frequency-based methods such
as MutSigCV 2.0 as well as other state-of-the-art network-based methods. Our
results are consistent across both networks that we tested (HPRD and Biogrid),
showing the robustness of our method with respect to the underlying network.
Further, we demonstrate that using more accurate prior knowledge such as
cancer-type specific driver genes yields better performance. We examine the
genes that are highly ranked by uKIN and observe that they display diverse
mutational rates. We uncover potential oncogenic roles of several infrequently
mutated novel genes. Finally, we showcase uKIN’s versatility by applying it to
GWAS data for three complex diseases: age-related macular degeneration, amy-
otrophic lateral sclerosis and epilepsy.

Conclusion. We present uKIN, a network propagation method that incorpo-
rates both existing knowledge as well as diverse types of new information, and
demonstrate that it is highly effective in uncovering disease genes. As our knowl-
edge of disease-associated genes continues to grow and be refined, and as new
experimental data becomes more abundant, we expect that the power of uKIN
for accurately prioritizing disease genes will continue to increase. uKIN can be
freely downloaded at: http://compbio.cs.princeton.edu/ukin/ and the full paper
can be found at https://arxiv.org/abs/2001.06135.
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A key question in human genetics is understanding the proportion of SNPs
modulating a particular phenotype or the proportion of susceptibility SNPs for a
disease, termed polygenicity . Previous studies have observed that complex traits
tend to be highly polygenic, opposing the previous belief that only a handful
of SNPs contribute to a trait [1–4]. Beyond these genome-wide estimates, the
distribution of polygenicity across genomic regions as well as the genomic factors
that affect regional polygenicity remain poorly understood.

A reason for this gap is that methods for estimating polygenicity utilize
SNP effect sizes from GWAS. However, due to LD and noise from the regres-
sion performed in GWAS, all effect sizes estimated from GWAS are non-zero,
but not every SNP is truly a susceptibility SNP. Estimating polygenicity from
GWAS while accounting for LD requires fully conditioning on the “susceptibility
status” of every SNP and explicitly enumerating all possible configurations of
susceptibility SNPs. This creates an exponential search space of 2M , where M is
the number of SNPs, which is intractable even when analyses are within small
regions in the genome.

To circumvent the large computational bottleneck, existing methods that
estimate polygenicity from GWAS do not explicitly condition on the susceptibil-
ity status of every SNP [5]. We expect these methods to lead to a downward bias
when estimating polygenicity since only partially modeling the LD structure pre-
vents these methods from fully re-capturing SNPs’ effects that have been spread
throughout the region due to LD. At a regional level, we expect the impact
of a bias to be more pronounced since underestimating the polygenicity in a
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region with a small fraction of susceptibility SNPs can be the difference between
estimating the absence of susceptibility SNPs or the presence of only a few.

In this work, we propose a statistical framework, Bayesian EstimAtion of
Variants in Regions (BEAVR), which relies on (MCMC) to estimate the regional
polygenicities of a complex trait from GWAS while fully modeling the correla-
tion structure due to LD. We present a fully generative Bayesian statistical
model that estimates, for a given region, the regional polygenicity. Our model
inherently allows for a variety of genetic architectures as it does not make prior
assumptions on the number of susceptibility SNPs for a trait. A straightforward
implementation of the MCMC sampler still presents a computational bottleneck
since each iteration of the sampler is O(M2) due to the full conditioning on
each SNP, where M is the number of SNPs. To address this, we introduce a new
inference algorithm that leverages the intuition that the majority of SNPs are
not susceptibility SNPs. The runtime of our algorithm is O(MK) for M SNPs
and K susceptibility SNPs, where the number of susceptibility SNPs is typically
K << M , allowing us to perform efficient inference that scales approximately
linearly with the number of SNPs analyzed in a region. Through comprehensive
simulations and an analysis of BMI, eczema, and high cholesterol from the UK
Biobank [6], we show that our method can accurately estimate regional poly-
genicity across many settings and provides insight into the genetic architecture
for a variety of traits that is consistent with previous knowledge as well as pro-
vides novel information about the physical distribution of susceptibility SNPs
across the genome.

The full version of the paper can be accessed at:
http://biorxiv.org/content/10.1101/2020.01.15.908095v1.
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Introduction. The human body is home to trillions of microbial cells that play
an essential role in health and disease [2]. The gut microbiome, for instance,
is responsible for a variety of normal physiological processes such as the reg-
ulation of immune response and breakdown of xenobiotics [3]. Disturbances in
gut communities have been associated with several diseases, notably obesity [7]
and colitis [8]. Moreover, changes to the vaginal microbiome during pregnancy
are associated with risk of preterm birth [4]. Consequently, investigating the
human microbiome can provide insight into biological processes and the etiology
of disease.

The recently completed second phase of the Human Microbiome Project [9]
has highlighted the relationship between dynamic changes in the microbiome
and disease, motivating new microbiome study designs based on longitudinal
sampling and 16S rRNA gene sequencing. Nonetheless, analysis of 16S datasets
faces multiple domain-specific challenges. First, 16S datasets are inherently com-
positional [5]: they only contain information about the relative proportions of
taxa in a sample. In addition, technical noise, such as uneven amplification dur-
ing PCR, can produce read counts that differ substantially from the underlying
community structure [6]. In particular, species near the detection threshold may
fail to appear in a sample, necessitating a distinction between a biological zero—
where a species is absent in the community—from a technical zero where it drops
below the detection threshold [1]. Finally, the number of taxa and time points in
a sample may be large, requiring methods that scale to high dimensional data.

Methods. To address these challenges, we propose LUMINATE (LongitUdinal
Microbiome INference And zero deTEction), a fast and accurate method for
inferring relative abundances from noisy read count data. LUMINATE takes as
input time-stamped read counts from multiple samples, and an optional a list
of external perturbations. It outputs denoised relative abundances and posterior
probabilities of biological zeros. Our contribution is two-fold. First, we reformu-
late the problem of posterior inference in a state-space model as an optimization
problem with special structure using variational inference, allowing for efficient
inference. Second, we propose a novel approach to differentiate between biolog-
ical zeros and technical zeros.
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We benchmarked LUMINATE in comparison to three other models repre-
senting the current state of the art. We evaluated how well each model recon-
structed community trajectories by simulating ground truth trajectories with
varying amounts of sequencing noise. We then performed simulations to evalu-
ate how each model scales with increasing number of observed time points. We
further used simulations to assess LUMINATE’s ability to distinguish biological
from technical zeros. Finally, we demonstrated the utility of LUMINATE on real
data by using estimated relative abundances to infer the parameters of a dynam-
ical system, leading to more accurate predictions of community trajectories.

Results. Our results demonstrate that LUMINATE is as accurate or better
than the current state of the art. LUMINATE further constitutes a significant
advancement as it runs orders of magnitude faster, facilitating previously infea-
sible scale-up of analysis to datasets with multiple longitudinal samples and
many observed taxa. Furthermore, LUMINATE accurately detects biological
zeros, providing insightful interpretation, rather than just inference, while also
simplifying downstream parameter fitting.

Code availability: https://github.com/tyjo/luminate.
bioRχiv: https://doi.org/10.1101/2020.01.10.902163.
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Genome-Wide Association Studies (GWAS) have successfully identified numer-
ous genetic variants associated with a variety of complex traits in humans. How-
ever, most of these associated variants are not causal, and are simply in Linkage
Disequilibrium (LD) with the true causal variants. This problem is addressed by
statistical “fine mapping” methods, which attempt to prioritize a small subset
of variants for further testing while accounting for LD structure [1]. CAVIAR [2]
introduced a widely-adopted Bayesian approach that accounted for uncertainty
in association statistics using a multivariate normal (MVN) model and allowed
for potentially multiple causal SNPs at a locus. There is growing interest in
improving fine-mapping by leveraging information from multiple studies. One
example of this is trans-ethnic fine mapping, which can significantly improve
fine mapping power and resolution by leveraging the distinct LD structures in
each population. However, existing methods either assume a single causal SNP
at each locus or do not explicitly model heterogeneity, limiting their power.

In this abstract, we present MsCAVIAR, a novel method that addresses these
challenges. We retain the Bayesian MVN framework of CAVIAR while introduc-
ing a novel approach to explicitly account for the heterogeneity of effect sizes
between studies using a Random-Effects (RE) model. MsCAVIAR takes as input
the association statistics for SNPs at the same locus in multiple studies and the
linkage disequilibrium (LD) structure between variants obtained from in-sample
genotyped data. MsCAVIAR computes and outputs a minimal-sized “causal set”
of SNPs that, with probability at least ρ, contains all causal SNPs.

By our definition of a causal set, every causal SNP must be contained in
the set with high probability, but not every SNP in the set needs to be causal.
Concretely, each SNP can be assigned a binary causal status: 1 for causal or 0
for non-causal. So long as none of the SNPs outside of the causal set are set to
1, the assignments are compatible with our definition of a causal set. We can
represent these causal status assignments in a binary vector with one entry for
each SNP denoting its causal status; we call such a vector a “configuration”
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and denote it as C. For each configuration C compatible with the causal set,
we compute its (posterior) probability in a Bayesian manner: the probability
of a configuration of SNPs being causal given the association statistics can be
computed by modeling a prior probability for that configuration and a likelihood
function for the association statistics given the assumed causal SNPs from C.

The overall likelihood function can be decomposed into a product over the
likelihood function for each study, since we assume that the studies are inde-
pendent. More specifically, we assume that there is a true global effect size for a
SNP over all possible populations, around which the effect sizes for that SNP in
different studies are independently drawn according to a heterogeneity variance
parameter. This allows MsCAVIAR to model the fact that effect sizes of a SNP
across different studies are related, but not equal. Because we expect the sum-
mary statistics to be a function of their LD with the causal SNPs, the parameters
of the likelihood function for each study are different, assuming the studies have
different LD patterns. By computing the product over the likelihood of each
study, we account for all of their LD patterns in determining the likelihood over
all the studies. The posterior probability for a causal set is then computed by
summing the posterior probabilities of all compatible configurations.

In order to evaluate MsCAVIAR and compare its performance with other
methods, we performed a simulation study. We chose two chromosome regions
from the 1000 Genomes project [3], one with low LD (20% of the SNPs have
LD equal or higher than 0.5), and one with higher LD (80% of the SNPs are
in association equal or higher than 0.5). We combined the two populations for
a total of 1000 simulations and set the posterior probability threshold to 0.95.
We then implanted 3 causal SNPs in each locus and simulated genomewide-
significant association statistics for each of those SNPs, calculating the associa-
tion statistics of the non-causal SNPs by their LD with causal SNPs. In addition
to MsCAVIAR, we tested another trans-ethnic fine mapping method, PAINTOR
[4], as well as running CAVIAR [2] on each population individually. We found
that, while all methods were well-calibrated, in that their accuracy was equal to
or greater than 0.95, MsCAVIAR achieved better fine-mapping resolution, e.g.
it returned smaller causal sets on average.

MsCAVIAR is freely available at: https://github.com/nlapier2/MsCAVIAR.
The full paper is available at: https://www.biorxiv.org/content/10.1101/

2020.01.15.908517v1.
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Extended Abstract
Background. Computational approaches for inferring the mechanisms of
compound-protein interactions (CPIs) can greatly facilitate drug development.
Recently, although a number of deep learning based methods have been pro-
posed to predict binding affinities of CPIs and attempt to capture local inter-
action sites in compounds and proteins through neural attentions, they still
lack a systematic evaluation on the interpretability of the identified local fea-
tures [1–3]. In this work, we constructed the first benchmark dataset contain-
ing the pairwise inter-molecular non-covalent interactions for more than 10,000
compound-protein pairs. Our comprehensive evaluation suggested that current
neural attention based approaches have difficulty in automatically capturing the
accurate local non-covalent interactions between compounds and proteins.

Method. Motivated by the above observation, we developed a multi-objective
neural network, called MONN, to effectively learn both local atom-level interac-
tions (i.e., pairwise non-covalent interactions) and global binding strengths (i.e.,
affinities) between compounds and proteins.

MONN is a structure-free model that takes only graph representations of
compounds and primary sequences of proteins as input. A graph convolution
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network with a warp unit [4] is employed to capture both local features for atoms
of a compound and a global representation for the whole compound. In addition,
a convolution neural network (CNN) is used to effectively extract features from
the local contexts of residues along a protein sequence. Then, MONN learns the
pairwise non-covalent interactions between atoms of the compound and residues
of the protein from labels derived from the high-quality 3D structure of the
compound-protein complex. Finally, MONN integrates information from both
the compound and the protein to predict their binding affinity. During this
process, the predicted pairwise non-covalent interactions are also incorporated
to enable information sharing between the components of both molecules to
benefit the prediction of binding affinity.

Results. Comprehensive evaluation demonstrated that while the previous neu-
ral attention based approaches trained using only binding affinity labels fail
to exhibit satisfactory interpretability results, MONN can successfully predict
non-covalent interactions between compounds and proteins from our benchmark
dataset. The generalization ability of MONN was further validated by an addi-
tional test dataset constructed from the Protein Data Bank (PDB) [5].

Moreover, MONN can outperform the state-of-the-art baseline methods in
predicting compound-protein binding affinities on our constructed benchmark
dataset. Additional tests on a much larger dataset suggested that MONN can
achieve better performance than the baseline methods even without extra super-
vision from structural data.

These results suggested that MONN can offer a powerful tool in predicting
binding affinities of compound-protein pairs and also provide useful insights
into understanding the molecular mechanisms of compound-protein interactions,
which thus can greatly advance the drug discovery process.

Availability
Source code and data: https://github.com/lishuya17/MONN.
Full-text preprint: https://www.biorxiv.org/content/10.1101/2019.12.30.89151
5v1.
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1 Introduction

Protein engineering seeks to design proteins with improved or novel func-
tions. Compared to rational design and directed evolution approaches, machine
learning-guided approaches traverse the fitness landscape more effectively and
hold the promise for accelerating engineering and reducing the experimental cost
and effort. A critical challenge here is whether we are capable of predicting the
function or fitness of unseen protein variants. By learning from the sequence
and large-scale screening data of characterized variants, machine learning mod-
els predict functional fitness of sequences and prioritize new variants that are
very likely to demonstrate enhanced functional properties, thereby guiding and
accelerating rational design and directed evolution. While existing generative
models and language models have been developed to predict the effects of muta-
tion and assist protein engineering, the accuracy of these models is limited due
to their unsupervised nature of the general sequence contexts they captured that
is not specific to the protein being engineered. The full paper describing ECNet
is available on bioRxiv at https://doi.org/10.1101/2020.01.16.908509.

2 Methods

We developed ECNet, a supervised deep learning model that guides protein
engineering by predicting protein fitness from the sequence. We constructed a
sequence representation that incorporated the local evolutionary context spe-
cific to the protein to be engineered. This representation explicitly encodes the
residue interdependencies of all residue pairs in the sequence, which informs our
prediction model to quantify the effects of mutations – especially higher-order
mutations – in the sequence. We further incorporated with global evolutionary
context from an LM model trained on large sequence databases to model the
semantic grammar within protein sequences as well as other structure and stabil-
ity relevant contexts. Finally, a recurrent neural network model, trained on the
c© Springer Nature Switzerland AG 2020
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Fig. 1. Overview of ECNet. Our method, ECNet, integrates global and local evolu-
tionary contexts to represent the protein sequence of interest. First, a language model
is used to learn global semantic-rich global sequence representations from the protein
sequence databases such as UniProt or Pfam. Next, a direct coupling analysis model is
used to capture the dependencies between residues in protein sequences, which encodes
the local evolutionary context. The global and local evolutionary representations are
then combined as sequence representations and used as the input of a deep learning
model that predicts the fitness of proteins. Quantitative fitness data measured by deep
mutagenesis scans (DMS) are used to supervise the training of the deep learning model.
(MSA: multiple sequence alignment; Dim. reduction: dimensionality reduction; LSTM:
long short-term memory network; FC layers: fully-connected layers; Evo. contexts: evo-
lutionary contexts; Evo. representations: evolutionary representations.)

fitness data of screened variants, is used for the sequence-to-function modeling
with both representations.

3 Results

We performed multiple benchmarking experiments to assess the ability of ECNet
in predicting the functional fitness from protein sequences. Through extensive
benchmark experiments, we showed that our method outperforms existing meth-
ods, including unsupervised methods and supervised methods using handcrafted
features, on ∼50 deep mutagenesis scanning and random mutagenesis datasets,
demonstrating its potential of guiding and expediting protein engineering. We
also assessed ECNet’s performance on predicting the fitness of higher-order vari-
ants when lower-order data were used for model training. We collected the fitness
measurements of both single and double mutants of six proteins from previous
DMS studies. We then trained our prediction model using single mutants data
only and tested its performance on double mutants. The model achieved Spear-
man correlation ranging from 0.73 to 0.94 for the six proteins and outperformed
the Supervised LM and the EVmutation baselines, suggesting its generalizability
to the prediction of higher-order variants from low-order data.
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Extended Abstract
The level of divergence between species represented by sequence data is a func-
tion of unknown time and mutation rates. Therefore, sequence data do not reveal
exact timing of evolutionary events, and inferred phylogenies often have branch
lengths estimated in the unit of the expected number of substitutions. Dating
a phylogeny is the process of translating branch lengths from this unit to time
unit. Such a process requires soft or hard constraints for the timing of some
nodes and infers the divergence times of the remaining nodes. Dating is crucial
for understanding evolutionary processes [2] and is necessary in many down-
stream applications of phylogenetics and phylodynamics. Many methods have
been developed for phylogenetic dating, but none is universally accepted [3,5].
While some of these methods assume a parametric model for mutation rates
and use maximum likelihood or Bayesian inference (e.g., [1,4,8,9]), other non-
parametric methods rely on optimization problems based on assumed properties
of the distribution of the rates (e.g., [4,6–8]). Parametric methods tend to work
well for correct models but can be sensitive to model misspecification.

We introduce a non-parametric dating method called LogDate. We define
mutation rates necessary to compute time unit branch lengths as the product
of a single global rate and a set of rate multipliers, one per branche. Let μi be
the rate specific to a branch i, then μi = μνi where μ is the global rate and
νi is the rate multiplier for branch i. We find the global rate μ and all rate
multipliers such that the log-transformed rate multipliers have the minimum
variance, subject to the constraints defined by the calibration points or sampling
times. We further weight the terms of the objective function to define weighted
LogDate (wLogDate) as the solution to:

argminν

2n−1∑

i=1

√
b̂i log2(νi) subject to sampling point constraints (1)
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where b̂i is the inferred mutation unit branch length (plus a fixed pseudo-count).
This formulation gives us a constrained optimization problem that can be solved
efficiently using standard numerical techniques. Our main insight is the realiza-
tion that log transformation of the rate multipliers results in more accurate
dates. Our objective function, unlike related methods Least-Squares Dating [8]
and Langley-Fitch [4], assigns symmetrical penalties for increased or decreased
rates, a property which we refer to as “symmetry of ratios”. Moreover, the Log-
Date method corresponds to the ML estimate under a specific statistical model.

We compare wLogDate to several alternatives, including computationally
expensive Bayesian methods. Through simulation of varied clock and tree
models, wLogDate often infers more accurate node ages than other methods.
Improvements are most visible under the hardest conditions with high variance
clock models and inter-host tree models. We test wLogDate on three biolog-
ical datasets of 892 sequences from H1N1 2009 pandemic, 904 sequences from
San Diego HIV, and 1610 sequences from West African Ebola epidemic. For each
dataset, LogDate computes the time tree in minutes and estimates tMRCA close
to the reported literature.

LogDate is open-source and available at https://github.com/uym2/LogDate.
The preprint version of the paper can be found at https://www.biorxiv.org/
content/10.1101/2019.12.20.885582v1.
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Genomic researchers are already aware that some forms of aggregate data from
their databases should not be released publicly, because there is a risk that an
attacker may be able to determine whether a particular individual is a mem-
ber of the database (a membership inference attack). These kinds of aggregate
statistics about the frequency or presence/absence of a particular SNP might be
useful to release to the broader research community, but it is not an essential
output of the research process. However, the main research findings—i.e. the
SNPs associated with the trait of interest and their strength of association—are
essential to publish since the entire purpose of these genomic research projects
is to uncover the relationship between genetic variants and phenotypic traits.
Here, we demonstrate that it is possible to recover the SNPs of individuals
in the database (a reconstruction attack), using Genetic Risk Scores (GRS), a
common research output. GRS models describe the relationship between a par-
ticular phenotype of interest and particular SNPs. First, a reduced set of SNPs
is selected; then, this reduced set is used as the independent variables in a linear
regression analysis.

We begin by investigating a simple scenario: two GWAS studies for the same
trait are performed on the same set of N SNPs and M participants, except that
the second study includes one extra individual. We assume that both studies
publish the coefficients associated with the GRS models that they infer as part
of the analysis (β̂M and β̂M+1). Our approach centres on the use of the vector
we define as d1,

d1 � K(β̂M+1 − β̂M ) = Cφ0, (1)

where K is a matrix in which Kii corresponds to the frequency of SNP i in the
private database and Ki,j corresponds to the frequency of SNP i and j occurring
simultaneously in the same individual. C is a scalar value and φ0 is the vector
of genotypes of the individual who was found in the first study, but not the

Full article available here: https://doi.org/10.1101/2020.01.15.907808.
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second. Here we assume that φ0 is binary, having a value of 1 if the individual
has the SNP and 0 otherwise. If K is known precisely, then φ0 is known with
perfect accuracy, because the vector d1 will contain 0 at positions in which φ0 is
0 (and 1/C otherwise). Often, K will not be known, but can be estimated based
on public databases. We have developed a custom expectation-maximisation
algorithm that predicts φ0 based on an estimated K̂. We have experimentally
demonstrated that this performs better than a baseline, using the Cornell Dog
Database [1].

We additionally consider the case where m additional individuals have been
included in the second study, yielding a new GRS model β̂M+m including these
M + m participants. The analog to Eq. (1) for multiple individuals is:

dm � K(β̂M+m − β̂M ) = ΦmCm, (2)

where Cm is now a vector. For sufficiently small m (relative to N), exact recon-
struction of all m added individual genomes is also possible in this setting,
following an algorithm we introduce.

We provide a number of simple suggestions for good practice that would
help limit this attack. Firstly, precise aggregate statistics about the frequency of
SNPs in the database or the frequency of co-occurrence of SNPs should never be
released. Secondly, when multiple individuals are added in between two studies,
then the ability to reconstruct the genomes depends on the number of SNPs
being large relative to the number of individuals (Fig. 1).

Fig. 1. The scenario under investigation.

In particular, if m new indi-
viduals are added, exact recon-
struction is only possible if
the number of SNPs N >
2m, so we suggest that sim-
ilar studies should differ by
more than log2 N individuals.
Another potential countermea-
sure could consist of randomly
perturbing the GRS models
before releasing them, as done
in differentially private linear
regression [2].
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Durbin’s positional Burrows-Wheeler transform (PBWT) [1] is a scalable foun-
dational data structure for modeling population haplotype sequences. It offers
efficient algorithms for matching haplotypes that approach theoretically optimal
complexity. The original PBWT paper described an array version of the PBWT,
and a set of basic algorithms: Algorithms 1 and 2 for construction, Algorithms
3 and 4 for reporting all versus all long matches and set maximal matches, and
Algorithm 5 for reporting set maximal matches between an out-of-panel query
against a constructed PBWT panel. Recently, Naseri et al. [2] presented a new
algorithm, L-PBWT-Query, that reports all long matches between an out-of-
panel query against a constructed PBWT panel in time complexity linear to
the length of the haplotypes and constant to the size of the panel. Naseri et al.
introduced Linked Equal/Alternating Positions (LEAP) arrays, an additional
data structure allowing direct jumping to boundaries of matching blocks. This
algorithm offers efficient long matches, a more practical target for genealogi-
cal search. Arguably, L-PBWT-Query makes PBWT search more practical as
it returns all long enough matches rather than merely the best matching ones.
L-PBWT-Query represents a missing piece of the PBWT algorithms.

However, all above algorithms are based on arrays, which do not support
dynamic updates. That means, if new haplotypes are to be added to, or some
haplotypes are to be deleted from an existing PBWT data structure, one has to
rebuild the entire PBWT, an expensive effort linear to the number of haplotypes.
This will be inefficient for large databases hosting millions of haplotypes as
they may face constant update requests per changing consent of data donors.
Moreover, lack of dynamic updates prohibits PBWT to be applied to large-scale
genotype imputation and phasing, which typically go through the panel multiple
times and update individual’s haplotypes in turn. It is much more efficient to
allow updating the PBWT with an individual’s new haplotypes while keeping
others intact.

In this work we introduce d-PBWT, a dynamic version of the PBWT data
structure. At each position k, instead of keeping track of sequence order using
an array, we use a linked list, whose nodes encapsulate all pointers needed for
traversing PBWT data structures. Our main results are: We developed efficient
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Table 1. Summary of algorithms on PBWT and d-PBWT

Data structure Functions Time complexity

Durbin [1] PBWT Construction O(MN)

All vs. All long matches
and set maximal matches

O(MN)

Set maximal match query Avg. O(N)

Naseri et al. [2] PBWT Long match query
(L-PBWT-Query)

Avg. O(N)

This work d-PBWT Insertion Avg. O(N)

Deletion Avg. O(N)

Set maximal match query O(N)

Long match query O(N)

Construction O(MN)

All vs. All long matches
and set maximal matches

O(MN)

Conversion O(MN)

M is the number of sequences. N is the number of sites. c is the number of matches
found. Time complexities assume c < N .

insertion and deletion algorithms that dynamically update all PBWT data struc-
tures. In addition, we established that d-PBWT can run Durbin’s Algorithms
1–5 and L-PBWT-Query with the same time complexity as the static PBWT.
While Durbin’s Algorithm 5 and L-PBWT-Query are independent of the number
of haplotypes in the average case, we showed that they are not in the worst case.
Lastly, we developed new set maximal match and long match query algorithms
with worst case linear time complexity. The long match query algorithm does
not use LEAP arrays, which reduces memory consumption over L-PBWT-Query.
These algorithms can also be applied to the static PBWT. Table 1 summarizes
the major contributions of this work. The preprint of the full manuscript is
available at https://www.biorxiv.org/content/10.1101/2020.01.14.906487v1.
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Extended Abstract

Each cancer genome is shaped by a combination of processes that introduce
mutations over time. The incidence and etiology of these mutational processes
may provide insight into tumorigenesis and personalized therapy. It is thus
important to uncover the characteristic signatures of active mutational processes
in patients from their patterns of single base substitutions [1]. Some such muta-
tion signatures have been linked to exposure to specific carcinogens, such as
tobacco smoke and ultraviolet radiation. Other mutation signatures arise from
deficient DNA damage repair pathways. By serving as a proxy for the functional
status of the repair pathway, mutational signatures provide an avenue around
traditional driver mutation analyses. This is important for personalizing cancer
therapies, many of which work by causing DNA damage or inhibiting DNA dam-
age response or repair genes [2], because the functional effect of many variants
is hard to predict. Indeed, a recent study [3] estimated a >4-fold increase in the
number of breast cancer patients with homologous recombination repair defi-
ciency – making them eligible for PARP inhibitors [4] – when using mutational
signatures compared to current approaches.

Statistical models for discovering and characterizing mutational signatures
are crucial for realizing their potential as biomarkers in the clinic. A broad
catalogue of mutational signatures in cancer genomes was only recently revealed
through computational analysis of mutations in thousands of tumors. Alexandrov
et al. [1] were the first to use non-negative matrix factorization (NMF) to discover
mutation signatures. Subsequent methods have used different forms of NMF [5],
or focused on inferring the exposures (aka refitting) given the signatures and
mutation counts [6,7]. A more recent class of approaches borrows from the world
of topic modeling, aiming to provide a probabilistic model of the data so as to
maximize the model’s likelihood [8,9].

These previous methods are applicable for whole-genome or even whole-
exome sequencing. However, they cannot handle very sparse data as obtained
routinely in targeted (gene panel) sequencing assays [10]. There is only a single
method that attempted to address this challenge [10] by relying on whole-genome
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training data to interpret sparse samples and predict their homologous recom-
bination deficiency status.

Here we report the Mix model that is the first to handle sparse targeted
sequencing data without pre-training on rich data. Our model simultaneously
clusters the samples and learns the mutational landscape of each cluster, thereby
overcoming the sparsity problem. Using synthetic and real targeted sequencing
data, we show that our method is superior to current non-sparse approaches
in signature discovery, signature refitting and patient stratification. A full ver-
sion of this paper is available at http://www.cs.tau.ac.il/∼roded/mix.pdf and in
bioRxiv.
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Motivation: Single-cell DNA sequencing enables the measurement of somatic
mutations in individual tumor cells, and provides data to reconstruct the evo-
lutionary history of the tumor. Nearly all existing methods to construct phy-
logenetic trees from single-cell sequencing data use single-nucleotide variants
(SNVs) as markers. However, most solid tumors contain copy-number aberra-
tions (CNAs) which can overlap loci containing SNVs. Particularly problematic
are CNAs that delete an SNV, thus returning the SNV locus to the unmutated
state. Such mutation losses are allowed in some models of SNV evolution, but
these models are generally too permissive, allowing mutation losses without evi-
dence of a CNA overlapping the locus.

Results: We introduce a novel loss-supported evolutionary model, a generaliza-
tion of the infinite sites and Dollo models, that constrains mutation losses to loci
with evidence of a decrease in copy number. We design a new algorithm, Scar-
let (Single-Cell Algorithm for Reconstructing the Loss-supported Evolution of
Tumors), that infers phylogenies from single-cell tumor sequencing data using
the loss-supported model and a probabilistic model of sequencing errors and
allele dropout. On simulated data, we show that Scarlet outperforms current
single-cell phylogeny methods, recovering more accurate trees and correcting
errors in SNV data. On single-cell sequencing data from a metastatic colorectal
cancer patient, Scarlet constructs a phylogeny that is both more consistent
with the observed copy-number data and also reveals a simpler monoclonal seed-
ing of the metastasis, contrasting with published reports of polyclonal seeding in
this patient. Scarlet substantially improves single-cell phylogeny inference in
tumors with CNAs, yielding new insights into the analysis of tumor evolution.

Availability: Software is available at github.com/raphael-group/scarlet
Preprint: A preprint of the manuscript is available at
https://www.biorxiv.org/content/10.1101/840355v1
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Extended Abstract

Gene Regulatory Networks (GRNs) control many aspects of cellular processes
including cell differentiation, maintenance of cell type specific states, signal trans-
duction, and response to stress. Since GRNs provide information that is essential
for understanding cell function, the inference of these networks is one of the key
challenges in systems biology. Leading algorithms to reconstruct GRN utilize,
in addition to gene expression data, prior knowledge such as Transcription Fac-
tor (TF) DNA binding motifs or results of DNA binding experiments. However,
such prior knowledge is typically incomplete hence resulting in missing values
and current methods do not directly account for the issue of missing values [1–5].
Therefore, the integration of such incomplete prior knowledge with gene expres-
sion to elucidate the underlying GRNs remains difficult.

To address this challenge we introduce NetREX-CF – Regulatory Network
Reconstruction using EXpression and Collaborative Filtering – a GRN recon-
struction approach that brings together a modern machine learning strategy
(Collaborative Filtering model) and a biologically justified model of gene expres-
sion (sparse Network Component Analysis based model). The Collaborative Fil-
tering (CF) model [6,7] is able to overcome the incompleteness of the prior
knowledge and make edge recommends for building the GRN. Complementing
CF, the sparse Network Component Analysis (NCA) model [8] can use gene
expression data and biologically supported mathematical gene expression model
to validate the recommended edges. Here we combine these two approaches using
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a novel data integration method and show that the new approach outperforms
the currently leading GRN reconstruction methods.

Furthermore, our mathematical formalization of the model has lead to a com-
plex optimization problem of a type that has not been attempted before. Specif-
ically, the formulation contains �0 norm that can not be separated from other
variables. To fill this gap, we extend Proximal Alternating Linearized Minimiza-
tion (PALM) method [9] and introduce here the Generalized PALM (GPALM)
that allows us to solve a broad class of non-convex optimization problems and
prove its convergence. The full version of this paper can be found on https://
www.biorxiv.org/content/10.1101/2020.01.07.898031v1.full.
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Advances in high-throughput mapping of 3D genome organization have enabled
genome-wide characterization of chromatin interactions. However, proximity lig-
ation based mapping approaches for pairwise chromatin interaction such as Hi-C
cannot capture multi-way interactions, which are informative to delineate higher-
order genome organization and gene regulation mechanisms at single-nucleus
resolution. The very recent development of ligation-free chromatin interaction
mapping methods such as SPRITE and ChIA-Drop has offered new opportunities
to uncover simultaneous interactions involving multiple genomic loci within the
same nuclei. Unfortunately, methods for analyzing multi-way chromatin inter-
action data are significantly underexplored. In particular, existing methods for
analyzing multi-way chromatin interaction data have limited capability of han-
dling data noise. In addition, existing methods typically decompose each multi-
way contact into pairwise ones and directly apply previous methods developed
for pairwise interactions, leading to a dramatic loss of higher-order information.

Here we develop a new computational method, called MATCHA, based
on hypergraph representation learning where multi-way chromatin interactions
are represented as hyperedges. The overview of MATCHA is shown in Fig. 1.
Specifically, MATCHA takes multi-way chromatin interaction data as input and
extracts patterns from the corresponding hypergraph. The patterns are repre-
sented as embedding vectors for genomic bins that reflect the 3D chromatin
organization properties. The model can further predict the probability for a
group of genomic bins forming a simultaneous interaction. We demonstrate the
effectiveness of MATCHA by applying it to recent SPRITE and ChIA-Drop
datasets. The results suggest that MATCHA is able to achieve accurate pre-
dictions of multi-way chromatin interactions (i.e., hyperedges), which could be
used for data denoising and de novo hyperedge prediction, reducing the poten-
tial false positives and false negatives from the original data. We also show that
MATCHA is able to distinguish between multi-way interaction in a single nucleus
and the combination of pairwise interactions in a cell population. In addition, the
embeddings from MATCHA reflect 3D genome spatial localization and function.

MATCHA provides a promising framework to significantly improve the anal-
ysis of multi-way chromatin interaction data and has the potential to offer unique
insights into higher-order chromosome organization and function.
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Fig. 1. Overview of MATCHA. There are four main components of MATCHA (1)
Constructing hypergraphs based on multi-way chromatin interaction data where non-
overlapping genomic bins are defined as nodes, and bins in the same multi-way inter-
actions are connected by hyperedges. (2) Generating node features for the hypergraph
based on decomposed pairwise contact matrix from multi-way interaction data. The
decomposed pairwise contact matrix further passes through the Mix-n-Match autoen-
coder, which makes the non-linear transformation of the contact matrix. (3) Generating
labeled data for the training of the hypergraph representation learning model, where
positive samples are defined as existing hyperedges and negative samples are unob-
served ones. The negative samples are generated through an efficient and biologically
meaningful negative sampling strategy. (4) Training the hypergraph representation
learning model Hyper-SAGNN that takes both labeled data and node features as input.
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