
Chapter 4
Regularity of Powers of Ideals and the
Combinatorial Framework

Castelnuovo-Mumford regularity (or simply regularity) is an important invariant in
commutative algebra and algebraic geometry. Computing or finding bounds for the
regularity is a difficult problem. In the next three chapters, we shall address the
regularity of ordinary and symbolic powers of squarefree monomial ideals.

Our interest in squarefree monomial ideals comes from their strong connections
to topology and combinatorics via the construction of Stanley-Reisner ideals
and edge ideals. In recent years advances in computer technology and speed
of computation have drawn significant attention toward problems and questions
involving this class of ideals.

The collection of problems and questions presented in these three chapters
originates from a celebrated result proved independently by Cutkosky, Herzog and
Trung [48] and Kodiyalam [127] (see also Trung and Wang [162] for the module
case and Bagheri, Chardin, and Hà,[6] and Whieldon [170] for the multigraded
case), which states that for a homogeneous ideal I in a standard graded algebra R

over a Noetherian commutative ring, the regularity of I q is asymptotically a linear
function. The problem of determining this linear function and the smallest value of
q starting from which reg I q becomes linear remains wide open and has evolved
into a highly active research area in the last few decades.

We shall discuss this problem primarily for the class of squarefree monomial
ideals. Our focus will be on studies of the asymptotic linear function reg I q

for a squarefree monomial ideal I via combinatorial data and structures of the
corresponding simplicial complex and/or hypergraph.

4.1 Regularity of Powers of Ideals: The General Question

The main object of our discussion in this part of the book is the Castelnuovo-
Mumford regularity. This notion can be defined in various ways. We shall first give
the definition for modules over polynomial rings as this situation is our focus. A
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more general definition in terms of local cohomology will also be given for the
more advanced interested reader. The motivating theorem and general question are
given at the end of the section.

Definition 4.1 Let R be a standard graded polynomial ring over a field and let m
be its maximal homogeneous ideal. Let M be a finitely generated graded R-module
and let

0 →
⊕

j∈Z
R(−j)βp,j (M) → · · · →

⊕

j∈Z
R(−j)β0,j (M) → M → 0

be its minimal free resolution. Then the regularity of M is given by

reg M = max{j − i | βi,j (M) �= 0}.

Remark 4.2 It is clear from the definition that the regularity of M gives an upper
bound for the generating degrees of M .

Example 4.3 Consider

I = 〈x2y − 2yz2 + 3z3, 2xw − 3yw, yw4 − y2z3 − 2x5〉 ⊆ R = Q[x, y, z,w].
Then I has the following minimal free resolution:

0 −→ R(−10) −→ R(−5) ⊕ R(−7) ⊕ R(−8) −→ R(−2) ⊕ R(−3) ⊕ R(−5) −→ I −→ 0.

Thus, reg I = 8.

If R is a general standard graded algebra over a ring, then the minimal free
resolution of an R-module M may not be finite. In this case, the regularity can still
be defined via local cohomology. See, for example, Chardin [35], and Eisenbud and
Goto [64] for the equivalence between the two definitions when R is a polynomial
ring over a field.

Definition 4.4 Let R be a standard graded algebra over a Noetherian commutative
ring with identity and let m be its maximal homogeneous ideal. Let M be a finitely
generated graded R-module. For i ≥ 0, let

ai(M) =
{

max
{
l ∈ Z

∣∣∣
[
Hi

m(M)
]
l
�= 0

}
if Hi

m(M) �= 0

−∞ otherwise.

The regularity of M is defined to be

reg M = max
i≥0

{ai(M)}.

Note that ai(M) = 0 for i > dim M , so the regularity of M is well-defined.
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Example 4.5 Consider R = K[x1, . . . , xn], a polynomial ring over a field K. Then
Hi

m(R) = 0 for all i < n, and an(R) = −n. Thus, reg R = 0.

This definition of regularity works especially well with short exact sequences.
For instance, the following lemma is well-known (cf. [63, Corollary 20.19]).

Lemma 4.6 Let 0 → M → N → P → 0 be a short exact sequence of graded
R-modules. Then

1. reg N ≤ max{reg M, reg P },
2. reg M ≤ max{reg N, reg P + 1},
3. reg P ≤ max{reg M − 1, reg N},
4. reg M = reg P + 1 if reg N < reg P ,
5. reg P = reg M − 1 if reg N < reg M ,
6. reg P = reg N if reg N > reg M , and
7. reg N = reg M if reg P + 1 < reg M .

The motivation of our discussion is the following celebrated result, which was
first independently proved by Cutkosky, Trung and Herzog [48] and Kodiyalam
[127] (the constant a was determined in Trung and Wang [162]).

Theorem 4.7 ([48, 127, 162]) Let R be a standard graded algebra over a Noethe-
rian commutative ring with identity. Let I ⊆ R be a homogeneous ideal. Then there
exist constants a and b such that

reg I q = aq + b for all q � 0.

Moreover,

a = min{d(J ) | J is a minimal homogeneous reduction of I }.

Here, J ⊆ I is a reduction of I if I s+1 = JI s for some (and all) s ≥ 0, and d(J )

denotes the maximal generating degree of J .
The following problem remains wide open despite much effort from researchers.

Problem 4.8 Determine b and q0 = min{t ∈ Z | reg I q = aq + b for all q ≥ t}.
In general, when I is generated in the same degree, the constant b can be related

to a local invariant, namely, the regularity of preimages of germs of schemes via
certain projection maps from the blowup of X = Proj R along I .

For the interested reader, we expanded upon the above comment; we do not refer
to this discussion in future sections. Let I = 〈F0, . . . , Fm〉, where F0, . . . , Fm are
homogeneous elements of degree d in R. Let π : X̃ → X be the blow up of
X = Proj R ⊆ Pn along the subscheme defined by I . Let R = R[I t] = ⊕

q≥0 I q tq

be the Rees algebra of I . By letting deg t = (0, 1) and deg Fit = (d, 1), the
Rees algebra R is naturally bi-graded with R = ⊕

p,q∈ZR(p,q), where R(p,q) =
(I q)p+qd tq . Under this bi-gradation of R, we can define the bi-projective scheme
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ProjR of R as follows (cf. Hà [92]):

ProjR = {p ∈ SpecR
∣∣ p is a bihomogeneous ideal and R++ �⊆ p},

where R++ = ⊕
p,q≥1 R(p,q). It can be seen that ProjR ⊆ Pn × Pm and X̃ 


ProjR.
Let φ : ProjR → Pm denote the natural projection from ProjR onto its second

coordinate, and let X = im(φ). Note that φ is the morphism given by the divisor
D = dE0 − E, where E is the exceptional divisor of π and E0 is the pullback of
a general hyperplane in X. For a point ℘ ∈ X, let X̃℘ = X̃ ×X SpecOX,℘ be the
preimage of φ over the affine scheme SpecOX,℘ .

Let S denote the homogeneous coordinate ring of X ⊆ Pm. For a homogeneous
prime ℘ ⊆ S (i.e., a point in X), let R℘ = R ⊗S S℘ be the localization of R
at ℘. The homogeneous localization of R at ℘, denoted by R(℘), is defined to
be the collection of elements in R℘ of degree 0 in terms of powers of t . Then
X̃℘ = ProjR(℘). We define the regularity of X̃℘ , denoted by reg X̃℘ , to be that of
its homogeneous coordinate ring R(℘), and let reg φ = max{reg X̃℘ | ℘ ∈ X}.

The following result follows from a series of work of Chardin [36], Eisendbud
and Harris [65], and Hà [92]. Partial results on the stability index q0 were obtained
by Eisenbud and Ulrich [66], when I is m-primary, and by Chardin [35] and Bisui,
Hà, and Thomas [18], when I is equi-generated.

Theorem 4.9 Let R be a standard graded algebra over a Noetherian commutative
ring with identity. Let I ⊆ R be a homogeneous ideal generated in degree d. For
q � 0, we have

reg I q = qd + reg φ.

The invariant reg φ, in practice, is difficult to compute. Even when I is generated
by “enough” (i.e., more than dim R) general linear forms, it is still an open problem
to compute reg φ.

In the next three chapters, we shall see a different approach to computing reg φ

(or equivalently, the free constant b) when I is a squarefree monomial ideal.

4.2 Squarefree Monomial Ideals and Combinatorial
Framework

Our aim in this part of the book is to study a restricted version of Problem 4.8, which
is applied to the class of squarefree monomial ideals. For this purpose, we shall now
fix some notation. From now on, K will denote an infinite field, R = K[x1, . . . , xn]
will be a polynomial ring over K, and m will denote the maximal homogeneous
ideal in R. For obvious reasons, we shall identify the variables x1, . . . , xn with
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the vertices of simplicial complexes and hypergraphs being discussed. By abusing
notation, we also often identify a subset V of the vertices X = {x1, . . . , xn} with
the squarefree monomial xV = ∏

x∈V x in the polynomial ring R.
The combinatorial framework we shall use is the construction of Stanley-Reisner

ideals and edge ideals corresponding to simplicial complexes and hypergraphs. The
notion of edge ideals of hypergraphs is the generalization of that of edge ideals of
graphs defined in Chap. 2.

4.2.1 Simplicial Complexes

A simplicial complex Δ over the vertex set X = {x1, . . . , xn} is a collection of
subsets of X such that if F ∈ Δ and G ⊆ F , then G ∈ Δ. Elements of Δ are
called faces. Maximal faces (with respect to inclusion) are called facets. For F ∈ Δ,
the dimension of F is defined to be dim F = |F | − 1. The dimension of Δ is
dim Δ = max{dim F | F ∈ Δ}. The complex is called pure if all of its facets are of
the same dimension. A graph can be viewed as a 1-dimensional simplicial complex.

Let Δ be a simplicial complex, and let Y ⊆ X be a subset of its vertices. The
induced subcomplex of Δ on Y , denoted by Δ[Y ], is the simplicial complex with
vertex set Y and faces {F ∈ Δ | F ⊆ Y }.
Definition 4.10 Let Δ be a simplicial complex over the vertex set X, and let σ ∈
Δ.

1. The deletion of σ in Δ, denoted by delΔ(σ), is the simplicial complex obtained
by removing σ and all faces containing σ from Δ.

2. The link of σ in Δ, denoted by linkΔ(σ), is the simplicial complex whose faces
are

{F ∈ Δ | F ∩ σ = ∅, σ ∪ F ∈ Δ}.

Definition 4.11 A simplicial complex Δ is recursively defined to be vertex decom-
posable if either

1. Δ is a simplex (or the empty simplicial complex); or
2. there is a vertex v in Δ such that both linkΔ(v) and delΔ(v) are vertex

decomposable, and all facets of delΔ(v) are facets of Δ.

A vertex satisfying condition (2) is called a shedding vertex, and the recursive choice
of shedding vertices are called a shedding order of Δ.

Definition 4.12 A simplicial complex Δ is said to be shellable if there exists
a linear order of its facets F1, F2, . . . , Ft such that for all k = 2, . . . , t , the

subcomplex
( ⋃k−1

i=1 Fi

) ⋂
Fk is pure and of dimension (dim Fk − 1). Here F

represents the simplex over the vertices of F .
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Fig. 4.1 A vertex
decomposable simplicial
complex

e

d c

a

b

It is a celebrated fact that pure shellable complexes give rise to Cohen-Macaulay
Stanley-Reisner rings. For more details on Cohen-Macaulay rings and modules,
we refer the reader to Bruns and Herzog [25]. The notion of Stanley-Reisner rings
will be discussed later in the section. Note also that a ring or module is sequentially
Cohen-Macaulay if it has a filtration in which the factors are Cohen-Macaulay and
their dimensions are increasing. This property corresponds to (nonpure) shellability
in general.

Vertex decomposability can be thought of as a combinatorial criterion for
shellability and sequentially Cohen-Macaulayness. In particular, for a simplicial
complex Δ,

Δ vertex decomposable ⇒ Δ shellable ⇒ Δ sequentially Cohen-Macaulay.

Example 4.13 The simplicial complex Δ in Fig. 4.1 is a nonpure simplicial complex
of dimension 2. It has 3 facets; the facet {a, b, c} is of dimension 2, the facet {c, d}
is of dimension 1, and the facet {e} is of dimension 0. The complex Δ is vertex
decomposable with {e, d} as a shedding order.

4.2.2 Hypergraphs

Hypergraphs are a generalization of graphs that where introduced in Chap. 2. We
now introduce this combinatorial object; note that some of graph theoretic terms
introduced in Chap. 2 have a hypergraph analog.

A hypergraph H = (X,E ) over the vertex set X = {x1, . . . , xn} consists of X

and a collection E of nonempty subsets of X; these subsets are called the edges of
H . A hypergraph H is simple if there is no nontrivial containment between any pair
of its edges. Simple hypergraphs are also referred to as clutters or Sperner systems.
All hypergraphs we consider will be simple.

When working with a hypergraph H , we shall use X(H) and E (H) to denote
its vertex and edge sets, respectively. We shall assume that hypergraphs under
consideration have no isolated vertices, those are vertices that do not belong to any
edge. An edge {v} consisting of a single vertex is often referred to as an isolated
loop (this is not to be confused with an isolated vertex).
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Let Y ⊆ X be a subset of the vertices in H . The induced subhypergraph of H on
Y , denoted by H [Y ], is the hypergraph with vertex set Y and edge set {E ∈ E | E ⊆
Y }. In Definition 2.23 we introduced a matching in a graph; we now extend this
definition to the hypergraph context.

Definition 4.14 Let H be a simple hypergraph.

1. A collection C of edges in H is called a matching if the edges in C are pairwise
disjoint. The maximum size of a matching in H is called its matching number.

2. A collection C of edges in H is called an induced matching if C is a matching,
and C consists of all edges of the induced subhypergraph H [∪E∈CE] of H .
The maximum size of an induced matching in H is called its induced matching
number.

Example 4.15 Figure 4.1 can be viewed as a hypergraph over the vertex set V =
{a, b, c, d, e} with edges {a, b, c}, {c, d} and {e}. The collection {{a, b, c}, {e}}
forms an induced matching in this hypergraph.

Note that a graph, as introduced in Chap. 2, is a hypergraph in which all edges
are of cardinality 2. We shall also need the following special family of graphs.

Definition 4.16 Let G be a simple graph on n vertices.

1. G is called chordal if it has no induced cycles of length ≥ 4.
2. G is called very well-covered if it has no isolated vertices and its minimal vertex

covers all have cardinality
n

2
.

A hypergraph H is d-uniform if all its edges have cardinality d. For an edge E

in H , let

N(E) = {x ∈ X | there exists F ⊆ E such that F ∪ {x} ∈ E }

be the set of neighbors of E, and let N [E] = N(E) ∪ E.

Definition 4.17 Let H = (X,E ) be a simple hypergraph and let E be an edge in
H .

1. Define H \ E to be the hypergraph obtained by deleting E from the edge set of
H . This is often referred to as the deletion of E from H .

2. Define HE to be the contraction of H to the vertex set X \ N [E] (i.e., edges of
HE are minimal nonempty sets of the form F ∩ (X \ N [E]), where F ∈ E ).

Definition 4.18 Let H = (X,E ) be a simple hypergraph.

1. A collection of vertices V in H is called an independent set if there is no edge
E ∈ E such that E ⊆ V .

2. The independence complex of H , denoted by Δ(H), is the simplicial complex
whose faces are independent sets in H .
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Fig. 4.2 A simple graph
whose independence complex
is in Fig. 4.1 a

d b

e c

Example 4.19 The simplicial complex Δ in Fig. 4.1 is the independence complex
of the graph in Fig. 4.2.

Remark 4.20 We call a hypergraph H vertex decomposable (shellable, sequentially
Cohen-Macaulay) if its independence complex Δ(H) is vertex decomposable
(shellable, sequentially Cohen-Macaulay).

4.2.3 Stanley-Reisner Ideals and Edge Ideals

The Stanley-Reisner ideal and edge ideal constructions are well-studied correspon-
dences between commutative algebra and combinatorics. Those constructions arise
by identifying minimal generators of a squarefree monomial ideal with the minimal
nonfaces of a simplicial complex or the edges of a simple hypergraph.

Stanley-Reisner ideals were developed in the 1970s and the early 1980s (cf.
[155]) and have led to many important homological results (cf. books of Bruns and
Herzog [25] and Peeva [146]).

Definition 4.21 Let Δ be a simplicial complex on X. The Stanley-Reisner ideal of
Δ is defined to be

IΔ = 〈
xF | F ⊆ X is not a face of Δ

〉
.

Example 4.22 Let Δ be the simplicial complex in Fig. 4.1, and we set R =
K[a, b, c, d, e]. Then the minimal nonfaces of Δ are {a, d}, {a, e}, {b, d}, {b, e},
{c, e} and {d, e}. Thus,

IΔ = 〈ad, ae, bd, be, ce, de〉.

Example 4.23 The simplicial complex Δ in Fig. 4.3 represents a minimal triangu-
lation of the real projective plane. Its Stanley-Reisner ideal is

IΔ = 〈abc, abe, acf, ade, adf, bcd, bdf, bef, cde, cef 〉.

The edge ideal construction for hypergraphs (first studied by Hà and Van
Tuyl [94]) generalizes that of graphs (already presented in Definition 2.10). This
construction is similar to that of facet ideals of Faridi [71].
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Fig. 4.3 A minimal
triangulation of the real
projective plane
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Definition 4.24 Let H be a simple hypergraph on X. The edge ideal of H is defined
to be

I (H) = 〈
xE | E ⊆ X is an edge in H

〉
.

The notions of a Stanley-Reisner ideal and an edge ideal give the following
one-to-one correspondences that allow us to pass back and forth from squarefree
monomial ideals to simplicial complexes and simple hypergraphs.

{
simplicial complexes

over X

}
←→

{
squarefree monomial

ideals in R

}
←→

{
simple hypergraphs

over X

}
.

In fact, every edge ideal is a Stanley-Reisner ideal and vice-versa via the notion
of the independence complex. The following lemma follows directly from the
definition of independence complexes and the construction of Stanley-Reisner and
edge ideals.

Lemma 4.25 Let H be a simple hypergraph and let Δ = Δ(H) be its independence
complex. Then

IΔ = I (H).

Example 4.26 The edge ideal of the graph G in Fig. 4.2 is the same as the Stanley-
Reisner ideal of its independence complex, the simplicial complex in Fig. 4.1.

Remark 4.27 For simplicity, if I = IΔ, then we sometimes write reg Δ for reg I ,
and if I = I (H), then we write reg H for reg I .

For a monomial ideal in general one can pass to a squarefree monomial ideal via
the polarization and still keep many important properties and invariants. We shall
briefly recall the notion of polarization; see Herzog and Hibi [106] for more details.

Definition 4.28 Let I ⊆ R = K[x1, . . . , xn] be a monomial ideal. For each i =
1, . . . , n let ai be the maximum power of xi appearing in the monomial generators
of I . The polarization of I , denoted by I pol, is constructed as follows.
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• Let Rpol = K[x11, . . . , x1a1 , . . . , xn1, . . . , xnan ].
• The ideal I pol is generated by monomials in Rpol that are obtained from genera-

tors of I under the following substitution, for each (γ1, . . . , γn) ≤ (a1, . . . , an),

x
γ1
1 . . . x

γn
n −→ x11 . . . x1γ1 . . . xn1 . . . xnγn .

Note, for example, that reg R/I = reg Rpol/I pol.

4.3 Hochster’s and Takayama’s Formulas

Hochster’s and Takayama’s formulas allow us to relate (multi)graded Betti numbers
of a monomial ideal to the dimension of reduced homology groups of simplicial
complexes. Hochster’s formula deals specifically with squarefree monomial ideals,
which are reflected in the next two lemmas, while Takayama’s formula works for an
arbitrary monomial ideal and is given later on.

The polynomial ring R = K[x1, . . . , xn] has a natural Nn-graded structure,
and for any monomial ideal I ⊂ R, the quotient ring R/I inherits this Nn-
graded structure from that of R. Therefore, the torsion TorRi (I,K) and the local
cohomology module Hi

m(R/I) has a Zn-graded structure. Let [1, n] denote the set
{1, . . . , n}. For a = (a1, . . . , an) ∈ Zn, set xa = x

a1
1 · · · xan

n . For a monomial m in
R, by abusing notation, we view degree m component of a Zn-graded R-module as
its degree supp m component. We shall introduce Hochster’s formula following, for
example, [106, Theorem 8.1.1].

Lemma 4.29 (Hochster’s Formula) Let Δ be a simplicial complex on the vertex
set X = {x1, . . . , xn} and let m be a monomial of R. Then,

dimK TorRi (IΔ,K)m =
{

dimK H̃ deg(m)−i−2(Δ[supp m];K) if m is squarefree
0 otherwise.

In particular,

βij (IΔ) =
∑

deg(m) = j,

m is squarefree

dimK H̃ j−i−2(Δ[supp m];K) for all i, j ≥ 0.

Here, Δ[supp m] is the induced subcomplex of Δ on the support of m.

Proof We shall outline the proof of Hochster’s formula following that given by
Herzog and Hibi [106, Theorem 8.1.1].

1. Let K be the Koszul complex of IΔ with respect to the variables x =
{x1, . . . , xn}, let Ki be the i-th module, and let Hi(K ) be the i-th homology
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group of K . Since K is a complex of Zn-graded modules, Hi(K ) is also a
Zn-graded K-vector space. Thus, for a monomial m in R, we have

TorRi (IΔ,K)m = Hi(K )m.

2. For F = {j0 < · · · < ji} ⊆ [1, n], set eF = ej0 ∧ · · · ∧ eji
. The elements

eF ’s with |F | = i form a basis for the i-th free module in the Koszul complex
of R with respect to x. The Zn-degree of eF is ε(F ) ∈ Zn, where ε(F ) is the
(0,1)-vector with support F .

3. A K-basis for (Ki)m is given by

xbeF , where b + ε(F ) = m and supp b �∈ Δ.

4. Define the simplicial complex

Δm =
{
F ⊆ [1, n] ∣∣ F ⊆ supp m, supp

m
xε(F )

�∈ Δ
}

.

Let C̃ (Δm)[−1] be the oriented augmented chain complex of Δm shifted by −1
in homological degree. Then, we have an isomorphism of complexes

C̃ (Δm)[−1] −→ Km

obtained by F = [j0, . . . , ji−2] �→ m
xε(F )

eF . This, in turn, gives

Hi(K )m 
 Hi(C̃ (Δm)[−1]).

5. If m is not squarefree, then there exists j such that xj appears with power greater
than 1 in m. Define m(r) = mxr

j for r ∈ N. It is easy to see that Δm = Δm(r)

for all r ∈ N. Moreover, for r � 0, Hi(K )m(r) = 0. Thus,

Hi(K )m 
 Hi(C̃ (Δm)[−1]) = Hi(C̃ (Δm(r))[−1]) = Hi(K )m(r) = 0.

6. Suppose that m is squarefree. It can be seen that F ⊆ Δm if and only if F ⊆
supp m and supp m \ F �∈ Δ[supp m]. That is, Δm = Δ[supp m]∨ where (−)∨
denotes the Alexander dual of a simplicial complex. Hence, we have

Hi(C̃ (Δm)[−1]) 
 H̃i−1(Δ[supp m]∨;K) 
 H̃ deg m−i−2(Δ[supp m];K)

where the second isomorphism is a standard fact about Alexander duality.
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Lemma 4.30 For a simplicial complex Δ, the following are equivalent:

1. reg R/IΔ ≥ d.
2. H̃d−1(Δ[S],K) �= 0, where Δ[S] denotes the induced subcomplex on some

subset S of vertices.
3. H̃d−1(linkΔ σ,K) �= 0 for some face σ of Δ.

Proof The equivalence of (1) and (2) follows directly from Definition 4.1, together
with Hochster’s formula in Lemma 4.29. The equivalence of (1) and (3) follows
directly from the local cohomology characterization of regularity, together with the
fact that Hi

m(R/IΔ,K)−σ 
 H̃ i−|σ |−1(linkΔ σ,K) (see Miller and Sturmfels book
[137, Chapter 13.2]).

We will also make use of a variation of Hochster’s formula following [137,
Theorem 1.34]. This variation of Hochster’s formula is given via upper-Koszul
simplicial complexes associated to monomial ideals.

Definition 4.31 Let I ⊆ R be a monomial ideal and let α = (α1, . . . , αn) ∈ Nn be
a Nn-graded degree. The upper-Koszul simplicial complex associated to I at degree
α, denoted by Kα(I ), is the simplicial complex over X = {x1, . . . , xn} whose faces
are:

⎧
⎪⎨

⎪⎩
W ⊆ X

∣∣∣∣∣∣∣

xα

∏
u∈W

u
∈ I

⎫
⎪⎬

⎪⎭
.

Theorem 4.32 ([137, Theorem 1.34]) Let I ⊆ R be a monomial ideal. Then its
Nn-graded Betti numbers are given as follows:

βi,α(I ) = dimK H̃i−1(K
α(I );K) for i ≥ 0 and α ∈ Nn. (4.1)

Takayama’s formula [160, Theorem 1] describes the the dimension of the Zn-
graded component Hi

m(R/I)a, for a ∈ Zn, in terms of a simplicial complex Δa(I ).
We shall recall the construction of Δa(I ), as given by Minh and Trung [138], which
is simpler than the original construction of [160].

For a = (a1, . . . , an) ∈ Zn, set Ga := {j ∈ [1, n] ∣∣ aj < 0}. For every subset
F ⊆ [1, n], let RF = R[x−1

j | j ∈ F ]. Define

Δa(I ) = {F \ Ga| Ga ⊆ F, xa �∈ IRF }.

We call Δa(I ) a degree complex of I .

Lemma 4.33 (Takayama’s Formula) For any a ∈ Zn, we have

dimK Hi
m(R/I)a = dimK H̃i−|Ga|−1(Δa(I ),K).
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The original formula in [160, Theorem 1] is slightly different. It contains
additional conditions on a for Hi

m(R/I)a = 0. However, the proof in [160] shows
that we may drop these conditions, which is more convenient for our investigation.

From Takayama’s formula we immediately obtain the following characteriza-
tions of depth and regularity of monomial ideals in terms of the degree complexes.

Lemma 4.34 Let I ⊆ R be a monomial ideal. Then

reg R/I = max{|a| + |Ga| + i
∣∣ a ∈ Zn, i ≥ 0, H̃i−1(Δa(I ),K) �= 0}.
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