
Highly Automated Formal Proofs over Memory

Usage of Assembly Code

Freek Verbeek1,2 , Joshua A. Bockenek1 , and
Binoy Ravindran1

1 Virginia Tech, Blacksburg VA, USA
2 Open University of The Netherlands, Heerlen, The Netherlands

Abstract. We present a methodology for generating a characterization
of the memory used by an assembly program, as well as a formal proof
that the assembly is bounded to the generated memory regions. A for-
mal proof of memory usage is required for compositional reasoning over
assembly programs. Moreover, it can be used to prove low-level security
properties, such as integrity of the return address of a function. Our ver-
ification method is based on interactive theorem proving, but provides
automation by generating pre- and postconditions, invariants, control-
flow, and assumptions on memory layout. As a case study, three binaries
of the Xen hypervisor are disassembled. These binaries are the result
of a complex build-chain compiling production code, and contain vari-
ous complex and nested loops, large and compound data structures, and
functions with over 100 basic blocks. The methodology has been success-
fully applied to 251 functions, covering 12,252 assembly instructions.

Keywords: Formal Verification · Assembly · x86-64 · Memory Usage

1 Introduction

This paper presents a formal methodology for reasoning over the memory usage

of functions in a software suite. Various security properties require knowledge
on memory usage. For example, proving absence of buffer overflows requires
proving that a function does not write outside certain memory regions. Control-
flow integrity requires showing, among other things, that the return address
cannot be overwritten [61]. The security property called non-interference requires
reasoning over which parts of the memory are used by which functions [50].

Moreover, memory usage is crucial for compositional reasoning over assembly
code. Typically, compositional reasoning requires proving that certain code frag-
ments are spatially independent [45,47]. A proof of memory usage can be used to
prove such independence, thereby allowing composition. Consider a function g

that at some point calls function f . Compositional reasoning means that a veri-
fication effort over f can be reused for verification of g without unfolding it. This
at least requires that the verification effort over f establishes that f does not
modify the stack frame of g. More generally, compositional reasoning requires

c© The Author(s) 2020
A. Biere and D. Parker (Eds.): TACAS 2020, LNCS 12079, pp. 98–117, 2020.
https://doi.org/10.1007/978-3-030-45237-7_6

TACAS
Evaluation
Artifact

2020
Accepted

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45237-7_6&domain=pdf
http://orcid.org/0000-0002-6625-1123
http://orcid.org/0000-0002-1055-8003
http://orcid.org/0000-0002-8663-739X
https://doi.org/10.1007/978-3-030-45237-7_6

Highly Automated Formal Proofs over Memory Usage of Assembly Code 99

at least knowing that f restricts itself to certain parts of the memory. This is
exactly what is established by proving memory usage.

Memory usage cannot satisfactorily be expressed at the source-code level. As
an illustration, consider formulating a property that a function cannot overwrite
its own return address. This requires knowledge on the values of the stack and
frame pointers, making it an assembly-level property. At the assembly level, one
can easily express a property formulating that the memory at the top of the
stack frame (where the return address is stored) should remain unmodified.

Reasoning over assembly, however, is complicated due to the semantical gap
between assembly and source code. In assembly code, ostensibly simple com-
putations can be implemented using complex sequences of low-level operations.
For example, a simple integer division by 10 can be implemented with a series of
bit-level operations. Assembly code does not have types. It is common to, e.g.,
mix logical bitwise operators with signed integer arithmetic, or floating-point
operations with bitvector operations. Assembly code does not have a clear dis-
tinction between stack frame and heap. Whether some address refers to a local
variable stored in the stack, a global variable, or part of the heap, is provable
only by adding assumptions on memory layout. Finally, assembly does not have
a clear notion of scoping. Function calls are not necessarily clearly delineated,
and instead of assuming that a function cannot write to a variable it has no
access to (such as a local variable of another function), this has to be proven.

The contribution of this paper consists of a formal, compositional and highly
automated methodology for reasoning over memory usage at the assembly-level.3

Our approach first uses untrusted tools to generate a formal memory usage cer-

tificate (see Section 2). This certificate contains 1.) theorems on memory us-
age, 2.) the preconditions under which memory usage can be shown, and 3.)
proof ingredients. These proof ingredients contain assumptions on memory lay-
out, control-flow information, and invariants. Section 2 provides an example of a
function that theoretically can overwrite its own return address. We show that
the certificate provides preconditions and a formal proof that a return-address-
based exploit is not possible under those preconditions.

The certificate and the original assembly are loaded into an interactive the-
orem prover (ITP). Memory usage in general is an undecidable property (Rice’s
theorem [48]), which is why we aim for an ITP environment to allow user in-
teraction when necessary. Using the proof ingredients, the certificate is formally
proven correct with minimal user interaction, making use of customized proof
strategies. Section 3 describes certificate verification and composition.

To demonstrate applicability and scalability, we apply the methodology to
x86-64 binaries of the Xen hypervisor [13] (see Section 4). The binaries are ob-
tained via the standard Xen build process, including optimizations. The binaries
are decompiled to assembly using off-the-shelf disassembly tools. Our method-
ology is applied to 251 functions; for each function a certificate is automatically
generated, and a proof is finished in the Isabelle/HOL theorem prover [44]. With-

3 All code and proofs are publicly available [57].

100 F. Verbeek et al.

out exception, the manual interaction consists of elementary interactive theorem
proving such as applying the proper proof method.

While past work [38,41,25] on assembly-level formal verification exists, the
degree of either scalability or automation is limited. As example of interactive
theorem proving, Boyer and Yu verified machine-code implementations of vari-
ous standard sort- and string functions, requiring over 19,000 lines of manually
written proof code for the verification of roughly 900 instructions [8]. As exam-
ple of automated theorem proving, Tan et al. presented an approach which takes
about 6 hours for a 533-instruction string search algorithm [56]. In constrast, this
paper involves a degree of user interaction of ≈85 lines of proof code per 1,000
lines of assembly. Our work is able to almost fully automatically verify 12,252
instructions from real world industrial binaries compiled by a real world build
process. Section 5 discusses prior art, its contrast with the paper’s work, and
the paper’s contributions. To the best of our knowledge, there is no related work
that is able to achieve similar scalablity and automation on real world binaries.

2 Formal Memory Usage Certificates

Figure 1 provides an example of a formal memory usage certificate (FMUC).
The FMUC is generated automatically from an assembly file. This assembly file
may be produced from a binary using a disassembler such as objdump, IDA,4

Ghidra’s decompiler,5 or Capstone [46]. In case source code is available, the
assembly code can also be produced directly by a compiler. In this example,
the C code of Figure 1a is used solely for presentation, the input to the FMUC
generation is the assembly created by decompiling the corresponding binary. For
each function in the assembly file, an FMUC is produced. External functions,
for example due to dynamic linking, are treated as black boxes (see Section 3.4).

An FMUC consists of two parts: a memory usage theorem and its proof (see
Figure 1c). The theorem consists of assumptions implying a Hoare triple [28,40]
over the function. The Hoare triple is specific to memory usage. Intuitively,
it means that from a state satisfying precondition P , after execution of code
fragment f , the state satisfies postcondition Q (as in normal Hoare triples). The
Hoare triple also contains a memory region set M . Besides its regular meaning,
the Hoare triple expresses that any write that occurs during execution of f occurs
within one of the memory regions in this set.

The term memory usage formally denotes an overapproximation of the mem-
ory written to by a function. Thus, any address that is not enclosed in one of the
regions of M , is guaranteed to be preserved. Set M , however, will also include
the memory regions read by the function, for verification purposes.

The precondition P expresses that the instruction pointer rip is at the entry
point of the function. It also provides initial symbolic values for all registers and
memory regions that are read (e.g.,: rsp = rsp

0
). Finally, it formulates that

the return address is stored at the top of the stack frame. The postcondition Q

4 https://www.hex-rays.com/products/ida/index.shtml
5 https://ghidra-sre.org/

https://www.hex-rays.com/products/ida/index.shtml
https://ghidra-sre.org/

Highly Automated Formal Proofs over Memory Usage of Assembly Code 101

int main(int argc , char* argv []) {
int* a = (int*)argv;
int* b = (int*)(argv + 4);
(int)(argv + 2) = *a + *b;
(char)argv = ’a’;

int array[argc];

for (int i = 0; i < argc; i++) {
array[i] = argv[i][0] * 2;

}

if (is_even(argc)) {
return array[argc];

}
return array [0];

}

(a) C Code

Block 1149−>120b;
Loop

Block 123e−>1244;
If SF �= OF Then

Block 120d−>123a
Else Break Fi

Pool;
Block 1246−>1249;
Block 124b−>124b; – call to is_even

Block 1250−>1252;
If ZF Then

Block 1263−>1267
Else Block 1254−>1261 Fi;
Block 1269−>1279;
If ZF Then

Block 1280−>1285
Else Block 127b−>127b Fi

(b) Syntactic Control Flow f

thm: MRR =⇒ {P}f{Q;M}
proof:

apply (check_scf_step)+
apply (check_scf_while "P123e || P1246")
apply (check_scf_step)+

where:
P ≡ rip = 1149 ∧ rsp = rsp0 ∧ . . . ∧ ∗[rsp, 8] = ret_addr

Q ≡ rip = ret_addr ∧ rsp = rsp0 + 8 ∧ . . . ∧ ∗[rsp0, 8] = ret_addr

(c) Theorem and proof code

M = {a = [rsp0, 8], b = [fs0 + 40, 8], c = [rsi0 + 36, 4], d = [rsp0 − 8, 8], . . .}
MRR = {a, b, c, d, . . .} are separate

(d) The memory regions and their relations for block 123e−>1244.

P123e(σ) = rip = 123e

rbp = rsp0 − 8
rdi = rdi0
rsp = rsp0 − (88 + 16 ∗ ((15 + 4 ∗ sextend(〈31, 0〉rdi0)) / 16))
∗[rsp0 − 40, 8] = rsp0 − (85 + 16 ∗ ((15 + 4 ∗ sextend(〈31, 0〉rdi0)) / 16)) >> 2 << 2
∗[rsp0 − 48, 8] = sextend(〈31, 0〉rdi0)− 1
∗[rsp0 − 56, 8] = rsi0 + 32

. . .

(e) Invariant at line 0x123e (only 7 out of 23 equations shown)

{P124b} is_even {P1250;Mis_even}

(f) Assumption due to call of function is_even

Fig. 1: An FMUC. Region [a, s] denotes a region of s bytes starting at 64-bit
address a. Notation ∗r denotes reading region r in little-endian fashion. Notation
〈31, 0〉rdi0 takes the lower 32 bits of the register.

102 F. Verbeek et al.

expresses that the function has returned, i.e., the instruction pointer is equal to
the return address and the stack pointer rsp is equal to its original value plus
eight. For any callee-saved register, i.e., any register whose value is assumed to
be preserved by the function call, it will say that its value is unchanged.

The component f of the memory usage theorem is a representation of the
control flow of the function in terms of syntactic structures such as basic blocks,
loops and if-then-else statements (see Figure 1b). We call this the syntactic
control flow (SCF). The SCF is automatically generated from the control flow
graph (CFG). The reason that a syntactic structure is required, is because the
proof is done using Hoare logic, which is guided by syntax. The proof of an FMUC
of an entire function is based on FMUCs per basic block. Thus one FMUC is
generated per basic block, and one corollary FMUC for the entire function.

The proof consists of two further proof ingredients: memory region relations

and invariants. We zoom in on block 123e−>1244 to explain both of these. The
FMUC provides 13 regions for this block, of which 4 are shown (see Figure 1d).
Region a stores the return address. Region b depends on the segment register
fs and stores the canary [15]. Region c is based on the pointer passed as second
argument to the function. Finally, region d is part of the stack frame. The gener-
ated memory region relations assume that all these regions are separate. Out of
the per-block memory regions and their relations, memory regions and relations
for the function as a whole are composed.

For each basic block, an invariant is generated. Stronger invariants can lead
to a tighter approximation of memory usage. The invariant assigned to block
123e−>1244 is effectively a loop invariant (see Figure 1e). The frame pointer
rbp is equal to the original stack pointer minus eight. Register rdi has not
been touched. We also show some of the more complex invariants, such as the
value of the stack pointer. In total, the loop invariant provides information on
11 registers and 12 memory locations for this basic block. Note that the FMUC
provides preconditions in terms of the initial state of the corresponding basic
block. In Section 3.2 these are lifted to preconditions in terms of the initial state
of the function.

For this example, we treated is_even as an external function (see Figure 1f).
An assumption was thus generated, that expresses that the memory usage of that
function suffices to show that the invariant at line 124b implies the invariant at
line 1250. This means, among others, that the memory used by is_even (denoted
Mis_even) should not overlap with regions a through d. Section 3.4 provides more
information on composition.

The FMUC is generated automatically, except for the three line proof in Fig-
ure 1c. Due to the undecidability of memory usage, interaction may be required.
Isabelle/HOL proof strategies are provided to assist in that interaction. Sec-
tion 3 provides more details. The manual effort required in proving the FMUC
for this function, consists simply of calling the proper proof strategies. First,
check_scf_step is run, applying Hoare logic rules and proving correctness of the
memory usage until the loop. Then, the proof strategy for dealing with the loop

Highly Automated Formal Proofs over Memory Usage of Assembly Code 103

is called, with the invariant generated from the FMUC. Finally, check_scf_step
is called again, which is able to verify the remainder of the function.

Finally, note that without any assumptions the function could overwrite its
own return address at various places. The memory region relations MRR are
sufficiently strong to exclude this. These relations thus form the preconditions
under which a return-address exploit is impossible. As example, they assume that
regions a and c are separate. This means that the address stored in parameter
argv (reflected as rsi0 at the assembly level) is not allowed to point to a region
within the stack frame of function main.

Due to space restriction, we omit details on the algorithms that generate an
FMUC. In general, none of the FMUC generation is part of the trusted comput-
ing base. That is, none of the algorithms need to be backed up by formal proofs.
The output of the FMUC generation is imported into Isabelle/HOL, where it is
proven correct. If there is an error in CFG generation, control flow extraction,
symbolic execution, or in the generated invariants, then the certificate cannot
be proven in Isabelle/HOL. One exception is the memory region relations. They
are assumptions, and if they are internally inconsistent this leads to a vacuous
truth. For that reason, Z3 is used to generate them [39], making it impossible to
introduce, e.g., a relation where two overlapping regions are considered separate.

3 FMUC Verification

This section presents the verification of an FMUC. Both the FMUC and the
original assembly are loaded into Isabelle/HOL. The theorem is then proven
using the proof ingredients stored in the FMUC. This means that given a step
function that models the semantics of the assembly instructions, the Hoare triple
is verified.

Let step :: I × S × S 7→ B be a transition relation. It takes as input an
instruction of type I and two states σ and σ′. It returns true if and only if
execution of the instruction in state σ can produce state σ′. Undefined behavior,
such as null-pointer dereferencing, is modeled by relating a state to any successor
state. The semantics of a syntactic control flow (SCF) are straightforwardly
defined by a function exec_scf :: SCF ×S×S 7→ B (here SCF denotes the type
of a syntactic control flow object). In case of loops the function is defined using
a least fixed point construction. This way, if the halting condition is never met,
there exists no related σ′.

First, we define the notion of memory usage wrt. a certain state change:

Definition 1. The set of memory regions M is the memory usage wrt. the state

change from σ to σ′, if and only if, any byte at an address a not inside one of

the regions is unchanged.

usage(M,σ, σ′) ≡ ∀a · (∀r ∈ M · [a, 1] ⊲⊳ r) =⇒ σ′ : ∗[a, 1] = σ : ∗[a, 1]

Here, notation σ : ∗[a, s] means reading in little-endian fashion s bytes from
memory address a in state σ. Notation r0 ⊲⊳ r1 denotes that two regions are
separate.

104 F. Verbeek et al.

Definition 2. A memory usage Hoare triple is defined as:

{P} f {Q;M} ≡ ∀σ σ′ · P (σ) ∧ exec_scf(f, σ, σ′) −→ Q(σ′) ∧ usage(M,σ, σ′)

In words, Definition 2 states the following: if precondition P holds on the
initial state σ and σ′ can be obtained by executing f , postcondition Q holds on
the produced state and the values stored in all memory regions outside set M

are preserved.

3.1 Verification Tools Used

Isabelle/HOL The theorem prover utilized in this work was Isabelle 2018 [44].
It is a generic tool with a flexible, extensible syntactic framework. Isabelle also
utilizes a powerful proof language known as intelligible semi-automated reason-
ing (Isar) [59] and a proof strategy language called Eisbach [37]. We made heavy
use of Word library [17]. This library provides a limited-precision integer type,
’a word, where ’a is the number of bits in the integer. Various operations are
provided for manipulation of and arithmetic involving formal words, including bit
indexing, bit shifting, setting specific bits, and signed and unsigned arithmetic.
Operators for inequality are also included, as well as operations for converting
between word sizes.

Machine Model and Instruction Semantics Heule et al. provide seman-
tics of the x86-64 architecture [27]. Instead of manually codifying instruction
semantics, they applied machine learning to derive semantics from a live x86
machine. This produced highly reliable semantics: they compared the seman-
tics to manually written semantics based on the Intel reference manuals, and
found that in the few cases where they differed the Intel manuals were wrong.
Roessle et al. embedded these semantics into the Isabelle/HOL theorem prover
and tested the formal Isabelle semantics against live x86 hardware [49]. This
formal machine model is the base of our verification effort.

Symbolic Execution Bockenek et al. provide an Isabelle/HOL symbolic
execution engine based on the above semantics [6]. Effectively, this provides a
function symb_exec that symbolically runs basic blocks. Let a0 and a1 be the
start- and end-addresses of the block. A call to symb_exec(a0, a1, σ, σ

′) returns
true if and only if state σ′ is the result of symbolically executing the block from
state σ. The symbolic execution is completely written in Isabelle/HOL, meaning
that every rewrite rule has been formally proven correct.

3.2 Per-block Verification

Verification occurs by first verifying per basic block. Figure 2a shows an introduc-
tion rule for establishing a Hoare triple over a basic block. The first assumption
requires the symbolic execution method to run over a universally quantified sym-
bolic state σ that satisfies the precondition. Any resulting state σ′ should satisfy
the postcondition Q, and the set of memory regions M generated for the block
should be correct.

Highly Automated Formal Proofs over Memory Usage of Assembly Code 105

The second assumption is required because of an important subtlety: the
regions generated in the FMUC are expressed in terms of the initial state of
their basic block. However, it makes no sense to express the regions used by
individual blocks within a larger function in terms of their own initial state. If a
region of a basic block somewhere within a function body depends on, e.g., the
value of register rdi at the start of that block, then it is unsound to express that
memory region in terms of rdi0, i.e., the value of rdi at the start of the function.
Therefore, the Hoare triples are defined based on a set of memory regions M ′

that solely depends on the initial state of the function. For each block, that set is
obtained by taking the generated set of memory regions M (expressed in terms
of the initial state of the block) and applying it to any state that satisfies the
current invariant. This produces a set of regions expressed in terms of the initial
state of the function.

An Isabelle proof strategy has been implemented that, given the proof ingre-
dients from the FMUC, discharges this introduction rule. The proof strategy runs
symbolic execution within Isabelle/HOL, proves the postcondition and proves
the memory usage. The open variables P , Q, a0, a1 and M are all provided by
the FMUC. No interaction is required; for basic blocks the proof is automated.

3.3 Verification of Function Body

∀σ σ′ · P (σ) ∧ symb_exec(a0, a1, σ, σ
′) =⇒ Q(σ′) ∧ usage(M(σ), σ, σ′)

M ′ = { r | ∃σ · P (σ) ∧ r ∈ M(σ) }

{P} Block a0−>a1 {Q;M ′}

(a) Introduction rule

{P} f {Q;M1} {Q} g {R;M2} M = M1 ∪M2

{P} f ; g {R;M}

(b) Sequence rule

{I ∧B} f {I ′;M} I ′ =⇒ I I ∧ ¬B =⇒ Q

{I} While B DO f OD {Q;M}

(c) While rule

Fig. 2: Hoare rules for memory usage

For each syntactic construct, a Hoare rule is defined (see Figure 2). The
sequence and conditional rules (only first is shown) are straightforward: the
memory usage is the union of the memory usage of the constituents. Note that
the sequence rule is sound only because the memory predicates are independent
of the initial state of the basic blocks, as discussed above.

The while rule is based on a loop invariant I. If the memory usage of one
iteration of function body f is constrained to the set of memory regions M , then

106 F. Verbeek et al.

that holds for the entire loop. This sounds counterintuitive. Consider a simple C-
like loop iterating from i = 0 while i < 10 and as body the assignment a[i] = 0,
i.e., it writes to the ith element of an array. Verification of the loop requires
the invariant I(σ) = i(σ) < 10. The FMUC of the loop body will have a set of
memory regions M(σ) = {[a+ i(σ), 1]}, i.e, one region of one byte, expressed in
terms of the initial state of the basic block. Now consider the application of the
introduction rule to the block of the loop body. It will introduce a Hoare triple
with:

M ′ = { r | ∃σ · I(σ) ∧ r ∈ M(σ)}
= { r | ∃σ · i(σ) < 10 ∧ r = [a+ i(σ), 1]}
= { [a′, 1] | a ≤ a′ ≤ a+ 10}

The set M ′ is actually the memory used by the entire loop. This is because
the introduction rule applies the state-dependent set of memory regions to any
state that satisfies the invariant. This shows that the strength of the generated
invariants influences the tightness of the overapproximation of memory usage. A
weaker invariant, e.g., i < 20, would produce a larger set of memory regions.

An Isabelle/HOL proof strategy is implemented that automatically applies
the proper Hoare logic rule. It is driven by the syntactic control flow provided
by the FMUC. For function bodies without loops, this proof strategy requires
no further interaction. For each loop entry, it is required to manually apply the
weaken rule to show that the postcondition of the block before entry implies the
loop invariant. Without exception, each of these proofs could be finished using
standard off-the-shelf Isabelle/HOL tools. The part that is usually the most
involved – defining the invariants – is taken care of by the FMUC generation.

3.4 Composition

Let f be a function body. Assume that the function has been verified, i.e., a Hoare
triple has been proven of the form: {Pf} f {Qf ;Mf}. In order to composably
reuse that verification effort, function f is considered to be a black box once it
is verified. Now consider a function g calling function f :

a0: push rbp

a1: call f

a2: pop rbp

a3: ret

Let P denote the precondition right before executing the assembly instruction
call. Precondition P contains the equality ∗[rspg

0
− 8, 8] = rbp

g
0
, expressing

that function g has pushed frame pointer rbp into its own local stack frame. Let
Q denote the postcondition just after returning, but before executing pop. The
postcondition of g expresses that callee-saved register rbp is properly restored,
i.e., rbp = rbp

g
0
. That is indeed done by the pop instruction. In order to prove

proper restoration of rbp, it must be proven that function f did not overwrite
any byte in region [rspg

0
− 8, 8]. Additionally, function f must be proven not to

overwrite region [rspg
0
, 8] which stores the return address of g. For this particular

instance of calling f , it thus must be proven that f preserves these two regions.

Highly Automated Formal Proofs over Memory Usage of Assembly Code 107

More generically, function f can be called by various functions other than g.
For each call the specific requirements on which memory regions are required to
be preserved differ. Thus, to be able to verify function f once, and reuse that
verification effort for each call, the verification effort must at least contain an
overapproximation of the memory written to by function f . Note that this is
exactly the requirement when using separation logic [45,47,33]. Separation logic
provides a frame rule for compositional reasoning. This frame rule informally
states that if a program can be confined to a certain part of a state, properties
of this program carry over when the program is part of a bigger system.

We thus provide a version of the frame rule of separation logic, specific to
memory usage verification (see Figure 3). Effectively, this rule is used to prove
that the memory usage of a caller function g is equal to the memory it uses
itself, plus the memory used by function f . It requires four assumptions. First,
it assumes function f has been verified for memory usage, with Mf denoting that
memory usage. Second, it assumes that precondition P can be split up into two
parts: precondition Pf required to verify function f , and a separate part Psep.
The separate part is specific to the actual call of the function. In the example,
Psep will contain the equality [rspg

0
− 8, 8] = rbp

g
0
. Third, the correctness of the

set of memory regions Mf should suffice to prove that the separated part Psep

is preserved. In the example, this effectively means that Mf should not overlap
with the two regions of g. Fourth, Psep and Qf should imply postcondition Q.

{Pf} f {Qf ;Mf}
P =⇒ Pf ∧ Psep

∀σ σ′ · usage(Mf , σ, σ
′) ∧ Psep(σ) −→ Psep(σ

′)
Qf ∧ Psep =⇒ Q

{P} Call f {Q;Mf}

Fig. 3: Frame rule for composition of memory usage

In practice, many functions will not be part of the assembly code under veri-
fication (e.g., external calls). We thus have to generate the assumptions required
to proceed with verification. To this end, we introduce the following notation:

{P} f {Q;Mf} ≡ ∃ Pf Qf Psep · four assumptions of frame rule are satisfied

Making this assumption informally expresses that function f is assumed to have
been verified. Its memory usage Mf is assumed to suffice to prove that we could
step from states satisfying P to states satisfying Q.

4 Case Study: Xen Project

The Xen Project [13] is a mature, widely-used virtual machine monitor (VMM),
also known as a hypervisor. Hypervisors provide a method of managing multiple

108 F. Verbeek et al.

virtual instances of operating systems (called guests or domains) on a physical
host. The Xen hypervisor is a suitable case study because of its security rele-
vance and its complex build process involving real production code. Security is a
significant issue in environments where hypervisors are used, such as the Ama-
zon Elastic Compute Cloud (Amazon EC2), Rackspace Cloud, and many other
cloud service providers. For example, when one or more physical hosts support
virtual guests for any number of distinct users, ensuring isolation of the guest
operating systems (OSs) is important. The Xen build process produces multi-
ple binaries that contain functions not present in the Xen source itself. This is
due to the inclusion of external static libraries and programs. We used Xen 4.12
compiled with GCC 8.2 via the standard Xen build process. This build process
uses various optimization levels, ranging from O1 to O3.

Of the binaries produced by the Xen build process, we considered three:
xenstore, xen-cpuid, and qemu-img-xen. The xenstore binary is involved in
the functionality of XenStore,6 a hierarchical data structure shared amongst
all Xen domains. The xen-cpuid utility queries the underlying processors and
displays information about the features they support. The third binary, qemu-
img-xen, consists of over three hundred functions that are not present in the Xen
source code. It provides some of the functionality of Quick Emulator (QEMU).
QEMU is a free, open-source emulator.7 Xen uses it to emulate device models
(DMs), which provide an interface for hardware storage.

Binaries Function Count Instruction Count Loops Manual Lines of Proof

xenstore 2/6 100 0 6
xen-cpuid 2/3 210 2 39
qemu-img-xen 247/343 11,942 64 1,002
Total 251/352 12,252 65 1,047

Verified Indirection Address
Computation

repz cmps RecursionSCF explosion

0

100

200

300
71.31

18.75
5.4 2.84 0.57 1.14

C
o
u
n
ts

a
n
d

P
er

ce
n
ta

g
es

Fig. 4: Case Study Overview

6 https://wiki.xen.org/wiki/XenStore
7 https://www.qemu.org/

https://wiki.xen.org/wiki/XenStore
https://www.qemu.org/

Highly Automated Formal Proofs over Memory Usage of Assembly Code 109

Our methodology is currently capable of dealing with 71% of the functions
present in these binaries (see Figure 4). The supported features include (nested)
loops, subcalls, variable argument lists, jumps into other function bodies, string
instructions with the rep prefix. There is no particular limit on function size.
The average number of instructions per function analyzed is 49. Some of the
functions analyzed have over 300 instructions and over 100 basic blocks.

There are five categories of features we do not support. The first and most
common is indirection, accounting for 19%. Indirection involves a call or jump
instruction that loads the target address from a register or memory location
rather than using a static value. Switch statements and certain uses of goto are
the most common causes of indirect jumps. Indirect calls generally result from
usage of function pointers. For example, the main functions of all three verified
binaries used switch statements in loops in the process of parsing command line
options. These statements introduced indirect branches.

The second category involves issues related to generating the memory region
relations. This step requires solving linear arithmetic over symbolically computed
addresses. Sometimes, addresses are computed using a combination of arithmetic
operators with bitwise logical operators. In some of these cases, our translation
to Z3 does not produce an answer. As an example, function qcow_open uses
the rotate-left function to compute an address. As another example, function
AES_set_encrypt_key produces addresses that are obtained via combinations
of bit-shifting, bit masking, and xor-ing.

The instruction repz cmps is currently not supported for technical reasons. It
is the assembly equivalent of the function strncmp, but instead writes its result to
a flag. Various other string-related instructions with the rep prefix are supported.
Functions with recursion, a minority in systems code, are also not supported.
Recursive stack frames in our framework are not well-suited to automation.
The two recursive functions we encountered both perform file-system-like tasks.
Functions do_chmod and do_ls are similar respectively to the permission-setting
chmod utility, and directory-displaying ls. The final category is functions whose
SCF explodes. The issue occurs mostly when loops have multiple entries.

The table in Figure 4 provides an overview of the verification effort. The
table shows the absolute counts of functions verified as well as the total number
of instructions for those functions. Alongside that information is the number of
functions with loops that were verified and how many manual lines of proof were
required in total. The vast majority of those manual proof lines were related to
the loop count.

5 Related Work

Assembly verification has been an active research field for decades. Table 1 pro-
vides an inexhaustive overview of related work. We first address some formal
verification efforts at the assembly level. Then we discuss work in which assem-
bly verification played a role in a larger verification context. Finally, verified
compilation and static binary analysis tools are discussed.

110 F. Verbeek et al.

Assembly-level Verification. Clutterbuck et al. [14] performed formal ver-
ification of assembly code using SPACE-8080, a verifiable subset of the Intel 8080
instruction set architecture (ISA) that is analyzable and formally verifiable [12].
Not long after, Bevier et al. presented a systems approach to software verification
[5,7]. Their work laid out a methodology for verifying the correctness of all com-
ponents necessary to execute a program correctly, including compiler, assembler
and linker. The methodology was applied to a small OS kernel, Kit [4]. Similarly,
Yu and Boyer [60,8] presented operational semantics and mechanized reasoning
for approximately 80% of the instructions of the MC68020 microprocessor, over
85 instructions. Their approach utilized symbolic execution of operational se-
mantics. These early efforts required significant interaction. For example, the
approach of Yu and Boyer required over 19,000 lines of manually written proof
to verify approximately 900 assembly instructions.

Matthews et al. targeted a simple machine model called TINY as well as
Java virtual machine (JVM) bitcode using the M5 operational model [38]. Their
approach utilizes symbolic execution of code annotated with manually written
invariants. It also used verification condition generation to increase automa-
tion. This reduced the number of manually written invariants. Both of these
assembly-style languages feature a stack for handling scratch variables rather
than a register file as x86, ARM, and most other mainstream ISAs do.

Goel et al. presented an approach for modeling and verifying non-deterministic
programs on the binary level [25,24]. In addition to formulating the semantics of
most user-mode x86 instructions, they provided semantics for common system
calls. System call semantics increase the spread of programs that can be fully
verified. Their work was applied to multiple small case studies, including a word
count program and two kernel-mode memory copying examples.

Bockenek et al. provide an approach to proving memory usage over x86
code [6]. They used a Floyd-style reasoning framework to prove Floyd invari-
ants over functions [21]. They have applied it to functions of the HermitCore
unikernel, covering 2,613 assembly instructions. Their approach required a sig-
nificant amount of manual effort: pre- and postconditions, invariants, the actual
regions of memory used and their relations all need to be manually defined.

The main difference between these existing approaches and the methodol-
ogy presented in this paper concerns automation. Generally, interactive theorem
proving over semantics of assembly instructions does not scale due to the amount
of intricate user interaction involved. Figure 1e shows, e.g., the complexity of
defining an assembly-level invariant even for a small example. Fully automated
approaches to formal verification, however, do not scale either. The recent au-
tomated approach AUSPICE takes about 6 hours for a 533-instruction string
search algorithm [56]. To the best of our knowledge, our methodology is the first
that is able to deal with optimized x86-64 binaries produced by production code,
with a “manual effort vs. instruction count ratio” of roughly 1 to 11.

Myreen et al. developed decompilation-into-logic [40,41,42]. That work, de-
veloped in the HOL4 theorem prover [54], uses operational semantics of machine
code to lift programs into a functional form. That functional form can then be

Highly Automated Formal Proofs over Memory Usage of Assembly Code 111

Table 1: Overview of Related Work.

Work Target Approach Applications Verified code

Clutterbuck & Carré SPACE-8080 ITP N/A
Bevier et al. PDP-11-like ITP Kit
Yu & Boyer MC68020 ITP String functions 863 insts
Matthews et al. Tiny/JVM ITP+VCG CBC enc/dec 631 insts
Goel et al. x86-64 ITP word-count 186 insts
Bockenek et al. x86-64 ITP HermitCore 2,613 insts
Tan et al. ARMv7 ATP String search 983 insts
Myreen et al. ARM/x86 DiL seL4 9,500 SLoC
Feng et al. MIPS-like ITP Example functions
This paper x86-64 ITP+CG Xen 12,252 insts

Sewell et al. C TV+DiL seL4 9,500 SLoC
Shi et al. C/ARM9 ATP+MC ORIENTAIS 8,000 SLoC, 60 insts
Dam et al. ARMv7 ATP+UC PROSPER 3,000 insts

VCG = Verification Condition Generation DiL = Decompilation-into-Logic
SLoC = Source Lines of Code ATP = Automated Theorem Proving
UC = User Contracts CG = Certificate Generation
TV = Translation Validation MC = Model Checking

used in a Hoare logic framework for program analysis [40]. Decompilation-into-
logic has been used for both ARM and x86 ISA machine models, and applied
to various large examples, including benchmarks such as a garbage collector,
and the Skein hash function. Decompilation-into-logic covers – formally – the
gap between machine code and a HOL model. It is not a verification method in
itself, i.e., it does not verify properties over the machine code. It can be used as
a component in a binary-level verification methodology [51].

Feng et al. presented stack abstractions for modular verification of assembly
code [20,19]. Their work allows for integration of various proof-carrying code
systems [43]. As with our work, it utilizes a Hoare-style framework for its veri-
fication. The authors applied their work to multiple example functions, such as
two factorial implementations. In constrast to our approach, manual annotations
are required to provide information regarding invariants and memory layout.

Integrated Assembly-Level Verification Efforts. A major verification
effort, based on decompilation-into-logic, is the verification of the seL4 ker-
nel [32,31]. The seL4 project provides a microkernel written in formally proven
correct C code. The tool AutoCorres [26] is used for C code verification. Sewell
et al. verified a refinement relation between the C source code and an ARM
binary for both non-optimized and optimized at O2 [51]. The major differences
with respect to our work is that our methodology targets existing production
code, instead of code written with verification in mind. For example, the seL4
source code does not allow taking the addresses of stack variables (such as in
Figure 1a): their approach requires a static separation of stack and heap. Neither
the seL4 proof effort nor our methodology support function pointers.

112 F. Verbeek et al.

Shi et al. formally verified a real-time operating system (RTOS) for auto-
motive use called ORIENTAIS [52]. Part of their approach involved source-level
verification using a combination of Hoare logic and abstract communicating se-
quential processes (CSP) model analysis [29]. Binary verification was done by
lifting the RTOS binary to xBIL, a related hardware verification language [53].
They translated requirements from the OSEK automotive industry standard to
source code annotations.

Targeting a similar case study as this paper, Dam et al. formally verified a
tiny ARMv7 hypervisor, PROSPER [16,3] at the assembly level. Their methodol-
ogy integrated HOL4 with the Binary Analysis Platform (BAP) [9]. BAP utilizes
a custom intermediate language that provides an architecture-agnostic represen-
tation of machine instructions and their side effects. HOL4 was used to translate
the ARM binary into BAP’s intermediate language, using the formal model of
the ARM ISA by Fox et al.[22]. The SMT solver Simple Theorem Prover (STP)
[23] was used to determine the targets of indirect branches and to discharge the
generated verification conditions. While the approach was generally automated,
user input was still required to describe software contracts of the hypervisor.

Verified Compilation. In contrast to directly verifying machine or assem-
bly code, one can verify source code and then use verified compilation. Verified
compilation establishes a refinement relation between assembly and source code.
The CompCert project [36] provides a compiler for a subset of C. Its output has
been verified to have the same semantics as the C source code. The seL4 project
used CompCert to reduce its trusted code base [31]. Another example of verified
compilation is CakeML [35]. It utilizes a subset of Standard ML modeled with
big-step operational semantics. The main purpose of verified compilation, how-
ever, is not to verify properties over the code. For example, if the source code is
vulnerable to a return-address exploit, then the assembly code is vulnerable as
well. Verified compilation is thus often accompanied by source code verification.
We have argued that for memory usage, assembly-level verification is necessary.

Static Analysis. Static analysis of binary code has been an active research
field for decades [34,9,58]. The BitBlaze project [55] provides a tool called Vine
which constructs control flow graphs for supplied programs and lifts x86 instruc-
tions to its own intermediate language (IL). Though Vine itself is not formally
verified, it does support interfacing with the SMT solver STP as well as CVC
[1,2]. The tool Infer [10], developed at Facebook, provides in-depth static analy-
sis of LLVM code to detect bugs in C and C++ programs. It utilizes separation
logic [47] and bi-abduction [11] to perform its analyses in an automated fashion.
It is designed to be integrated into compiler toolchains, in order to provide im-
mediate feedback even in continuous integration scenarios. FindBugs is a static
analysis tool for Java code [30]. Rather than relying on formal methods, it uses
searches for common code idioms to detect likely bugs. Common errors it high-
lights include null pointer dereferences, objects that compare equal not having
equal hash codes, and inconsistent synchronization. The tool Splint [18] detects
buffer overflows and similar potential security flaws in C code. It relies on anno-
tated preconditions to derive postconditions.

Highly Automated Formal Proofs over Memory Usage of Assembly Code 113

The main difference between these static analysis tools and formal verification
is that these tools generally are highly suited to find bugs, but are not able
to prove absence of them. They generally apply techniques that are formally
unsound, such as depth-bounded searches.

6 Conclusion

This paper presents an approach to formal verification of memory usage of func-
tions in a compiled program. Memory usage is a property that expresses an
overapproximation of the memory used by assembly code. Memory usage is fun-
damental to compositional verification of assembly code, as compositionality at
least requires to prove that functions do not unexpectedly interfere with each
others’ stack frame. It can also be used to show security-related properties, such
as integrity of the return address.

Our approach automatically generates a formal memory usage certificate that
includes 1.) a set of memory regions read from and written to, 2.) postconditions
that express sanity constraints over the function (e.g., the return address has not
been overwritten, callee-saved registers are restored), 3.) proof ingredients such
as the preconditions necessary for formal verification. The certificate is loaded
into a theorem prover, where it is verified. Since the problem of memory usage
is undecidable, we use an interactive theorem prover. The proof ingredients,
combined with custom proof strategies, provide a large degree of automation.
They deal with memory aliasing, the control flow of the function, and invariants.

The approach is applied to three binaries of the Xen hypervisor. These bina-
ries contain production code and are the result of a complex build chain. They
contain, among others, various nested loops, large and compound data struc-
tures, variadic functions, and both in- and external function calls. For 71% of
the functions of these binaries, a certificate could be generated and verified. For
each of these functions, it has at least been formally proven that the return ad-
dress is not overwritten. The amount of user interaction is roughly 85 lines of
proof code per 1,000 lines of assembly code. The greatest bottleneck is in indirect
branching, which accounts for 19% of the functions.

In the near future we aim to support indirect branching. This would allow
support of switches, callbacks, and pointers to functions. Additionally, we aim to
strengthen the invariant generation. Stronger invariants lead to a tighter overap-
proximation of memory usage. The challenge here is not only to generate these
invariants, but to automate their proof as well. Finally, we want to leverage the
certificate to target high-level security properties, such as noninterference.

Data Availability Statement and Acknowledgments All code and proofs are avail-
able in the Zenodo repository: 10.5281/zenodo.3676687. Distribution statement:
Approved for public release; distribution is unlimited. This material is based
upon work supported by the Defense Advanced Research Projects Agency (DARPA)
under Agreement No. HR.00112090028, ONR under grant N00014-17-1-2297,
and NAVSEA/NEEC under grant N00174-16-C-0018.

10.5281/zenodo.3676687
https://doi.org/10.5281/zenodo.3676687

114 F. Verbeek et al.

References

1. Barrett, C., Berezin, S.: CVC Lite: A new implementation of the cooperating va-
lidity checker. In: International Conference on Computer Aided Verification. pp.
515–518. Springer (2004)

2. Barrett, C., Tinelli, C.: CVC3. In: International Conference on Computer Aided
Verification. pp. 298–302. Springer (2007)

3. Baumann, C., Näslund, M., Gehrmann, C., Schwarz, O., Thorsen, H.: A high assur-
ance virtualization platform for armv8. In: 2016 European Conference on Networks
and Communications (EuCNC). pp. 210–214. IEEE (2016)

4. Bevier, W.R.: Kit and the short stack. Journal of Automated Reasoning 5(4),
519–530 (1989)

5. Bevier, W.R., Hunt, W.A., Moore, J.S., Young, W.D.: An approach to sys-
tems verification. Journal of Automated Reasoning 5(4), 411–428 (Dec 1989).
10.1007/BF00243131

6. Bockenek, J.A., Verbeek, F., Lammich, P., Ravindran, B.: Formal verification of
memory preservation of x86-64 binaries (Sep 2019)

7. Boyer, R.S., Moore, J.S.: A Computational Logic. Academic Press, Inc. (1979)

8. Boyer, R.S., Yu, Y.: Automated proofs of object code for a widely used micropro-
cessor. Journal of the ACM 43(1), 166–192 (1996)

9. Brumley, D., Jager, I., Avgerinos, T., Schwartz, E.J.: BAP: A binary analysis plat-
form. In: Gopalakrishnan, G., Qadeer, S. (eds.) International Conference on Com-
puter Aided Verification. pp. 463–469. Springer Berlin Heidelberg, Berlin, Heidel-
berg (2011). 10.1007/978-3-642-22110-1_37

10. Calcagno, C., Distefano, D.: Infer: An automatic program verifier for memory
safety of C programs. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R.
(eds.) NASA Formal Methods. pp. 459–465. Springer Berlin Heidelberg, Berlin,
Heidelberg (2011). 10.1007/978-3-642-20398-5_33, https://fbinfer.com/

11. Calcagno, C., Distefano, D., O’Hearn, P., Yang, H.: Compositional shape analysis
by means of bi-abduction. In: Proceedings of the 36th annual ACM SIGPLAN-
SIGACT symposium on Principles of programming languages. pp. 289–300. POPL
’09 (2009)

12. Carré, B.A., O’Neill, I.M., Clutterbuck, D.L., Debney, C.W.: SPADE–the
southampton program analysis and development environment. In: Software En-
gineering Environments. Peter Peregrinus, Ltd. Stevenage (1986)

13. Chisnall, D.: The Definitive Guide to the Xen Hypervisor. Pearson Education
(2008)

14. Clutterbuck, D.L., Carré, B.A.: The verification of low-level code. Software Engi-
neering Journal 3(3), 97–111 (May 1988). 10.1049/sej.1988.0012

15. Cowan, C., Pu, C., Maier, D., Walpole, J., Bakke, P., Beattie, S., Grier, A., Wagle,
P., Zhang, Q., Hinton, H.: Stackguard: Automatic adaptive detection and pre-
vention of buffer-overflow attacks. In: USENIX Security Symposium. vol. 98, pp.
63–78. San Antonio, TX (1998)

16. Dam, M., Guanciale, R., Nemati, H.: Machine code verification of a tiny ARM
hypervisor. In: Proceedings of the 3rd International Workshop on Trustworthy
Embedded Devices. pp. 3–12. TrustED ’13, ACM Press, New York, NY, USA
(2013). 10.1145/2517300.2517302

17. Dawson, J., Graunke, P., Huffman, B., Klein, G., Matthews, J.: Machine words in
Isabelle/HOL (Aug 2018)

10.1007/BF00243131
https://doi.org/10.1007/BF00243131
10.1007/978-3-642-22110-1_37
https://doi.org/10.1007/978-3-642-22110-1_37
10.1007/978-3-642-20398-5_33
https://doi.org/10.1007/978-3-642-20398-5_33
https://fbinfer.com/
10.1049/sej.1988.0012
https://doi.org/10.1049/sej.1988.0012
10.1145/2517300.2517302
https://doi.org/10.1145/2517300.2517302

Highly Automated Formal Proofs over Memory Usage of Assembly Code 115

18. Evans, D., Larochelle, D.: Improving security using extensible lightweight static
analysis. IEEE Software 19(1), 42–51 (Jan 2002). 10.1109/52.976940

19. Feng, X., Shao, Z., Vaynberg, A., Xiang, S., Ni, Z.: Modular verification of as-
sembly code with stack-based control abstractions. Tech. Rep. YALEU/DCS/TR-
1336, Dept. of Computer Science, Yale University, New Haven, CT (Nov 2005),
http://flint.cs.yale.edu/publications/sbca.html

20. Feng, X., Shao, Z., Vaynberg, A., Xiang, S., Ni, Z.: Modular verification of assembly
code with stack-based control abstractions. In: Proc. 2006 ACM SIGPLAN Con-
ference on Programming Language Design and Implementation. PLDI’06, vol. 41,
pp. 401–414. ACM Press, New York, NY, USA (Jun 2006)

21. Floyd, R.W.: Assigning meanings to programs. Mathematical Aspects of Computer
Science 19(1), 19–32 (1967)

22. Fox, A., Myreen, M.O.: A trustworthy monadic formalization of the ARMv7 in-
struction set architecture. In: Kaufmann, M., Paulson, L.C. (eds.) Interactive The-
orem Proving. pp. 243–258. Springer Berlin Heidelberg, Berlin, Heidelberg (2010).
10.1007/978-3-642-14052-5_18

23. Ganesh, V., Dill, D.L.: A decision procedure for bit-vectors and arrays. In: Damm,
W., Hermanns, H. (eds.) Computer Aided Verification. pp. 519–531. Springer
Berlin Heidelberg, Berlin, Heidelberg (2007). /10.1007/978-3-540-73368-3_52

24. Goel, S.: Formal Verification of Application and System Programs Based on a
Validated x86 ISA Model. Ph.D. thesis (2016), http://hdl.handle.net/2152/46437

25. Goel, S., Hunt, W.A., Kaufmann, M., Ghosh, S.: Simulation and formal ver-
ification of x86 machine-code programs that make system calls. In: 2014 For-
mal Methods in Computer-Aided Design (FMCAD). pp. 91–98 (Oct 2014).
10.1109/FMCAD.2014.6987600

26. Greenaway, D., Andronick, J., Klein, G.: Bridging the gap: Automatic verified ab-
straction of C. In: Beringer, L., Felty, A. (eds.) International Conference on Inter-
active Theorem Proving. pp. 99–115. ITP 2012, Springer-Verlag, Berlin, Heidelberg
(Aug 2012)

27. Heule, S., Schkufza, E., Sharma, R., Aiken, A.: Stratified synthesis: Automatically
learning the x86-64 instruction set. In: Proceedings of the 37th ACM SIGPLAN
Conference on Programming Language Design and Implementation. pp. 237–250.
PLDI ’16, ACM, New York, NY, USA (2016)

28. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications
of the ACM 12(10), 576–580 (Oct 1969)

29. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–
677 (Aug 1978). 10.1145/359576.359585

30. Hovemeyer, D., Pugh, W.: Finding bugs is easy. SIGPLAN Not. 39(12), 92–106
(Dec 2004). 10.1145/1052883.1052895, http://findbugs.sourceforge.net/

31. Klein, G., Andronick, J., Elphinstone, K., Murray, T., Sewell, T., Kolanski, R.,
Heiser, G.: Comprehensive formal verification of an OS microkernel. ACM Trans-
actions on Computer Systems 32(1), 2:1–2:70 (Feb 2014). 10.1145/2560537

32. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elka-
duwe, D., Engelhardt, K., Kolanski, R., Norrish, M., et al.: seL4: Formal verifica-
tion of an OS kernel. In: Proceedings of the ACM SIGOPS 22nd symposium on
Operating systems principles. pp. 207–220. ACM (2009)

33. Krebbers, R., Jung, R., Bizjak, A., Jourdan, J.H., Dreyer, D., Birkedal, L.: The
essence of higher-order concurrent separation logic. In: European Symposium on
Programming. pp. 696–723. Springer (2017)

10.1109/52.976940
https://doi.org/10.1109/52.976940
http://flint.cs.yale.edu/publications/sbca.html
10.1007/978-3-642-14052-5_18
https://doi.org/10.1007/978-3-642-14052-5_18
/10.1007/978-3-540-73368-3_52
https://doi.org//10.1007/978-3-540-73368-3_52
http://hdl.handle.net/2152/46437
10.1109/FMCAD.2014.6987600
https://doi.org/10.1109/FMCAD.2014.6987600
10.1145/359576.359585
https://doi.org/10.1145/359576.359585
10.1145/1052883.1052895
https://doi.org/10.1145/1052883.1052895
http://findbugs.sourceforge.net/
10.1145/2560537
https://doi.org/10.1145/2560537

116 F. Verbeek et al.

34. Kruegel, C., Kirda, E., Mutz, D., Robertson, W., Vigna, G.: Automating mimicry
attacks using static binary analysis. In: USENIX Security Symposium. vol. 14, pp.
11–11 (2005)

35. Kumar, R., Myreen, M.O., Norrish, M., Owens, S.: CakeML: A verified implemen-
tation of ML. In: Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. pp. 179–191. POPL ’14, ACM, New York,
NY, USA (2014), https://cakeml.org/

36. Leroy, X., Blazy, S., Kästner, D., Schommer, B., Pister, M., Ferdinand, C.: Com-
pCert - a formally verified optimizing compiler. In: Embedded Real Time Software
and Systems, 8th European Congress. ERTS 2016, SEE, HAL, Toulouse, France
(Jan 2016), https://hal.inria.fr/hal-01238879

37. Matichuk, D., Murray, T., Wenzel, M.: Eisbach: A proof method language for
Isabelle. Journal of Automated Reasoning 56(3), 261–282 (2016)

38. Matthews, J., Moore, J.S., Ray, S., Vroon, D.: Verification condition generation via
theorem proving. In: International Conference on Logic for Programming, Artificial
Intelligence, and Reasoning. pp. 362–376. Springer-Verlag (2006)

39. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: International conference
on Tools and Algorithms for the Construction and Analysis of Systems. pp. 337–
340. Springer-Verlag (2008)

40. Myreen, M.O., Gordon, M.J.C.: Hoare logic for realistically modelled machine code.
In: Grumberg, O., Huth, M. (eds.) Tools and Algorithms for the Construction and
Analysis of Systems. pp. 568–582. Springer-Verlag, Berlin, Heidelberg (2007)

41. Myreen, M.O., Gordon, M.J.C., Slind, K.: Machine-code verification for multiple
architectures - an application of decompilation into logic. In: 2008 Formal Methods
in Computer-Aided Design. pp. 1–8. IEEE (Nov 2008)

42. Myreen, M.O., Gordon, M.J.C., Slind, K.: Decompilation into logic—improved.
In: 2012 Formal Methods in Computer-Aided Design (FMCAD). pp. 78–81. IEEE
(2012)

43. Necula, G.C.: Proof-carrying code. In: Proceedings of the 24th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages. pp. 106–119. ACM
(1997)

44. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for
Higher-Order Logic, vol. 2283. Springer Science & Business Media (2002)

45. O’Hearn, P., Reynolds, J., Yang, H.: Local reasoning about programs that alter
data structures. In: International Workshop on Computer Science Logic. pp. 1–19.
Springer (2001)

46. Quynh, N.A.: Capstone: Next-gen disassembly framework (Aug 2014),
http://www.capstone-engine.org/, accessed June 27, 2019

47. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
Proceedings 17th Annual IEEE Symposium on Logic in Computer Science. pp.
55–74. IEEE (2002)

48. Rice, H.G.: Classes of recursively enumerable sets and their decision problems.
Transactions of the American Mathematical Society 74(2), 358–366 (1953)

49. Roessle, I., Verbeek, F., Ravindran, B.: Formally verified big step semantics out of
x86-64 binaries. In: Proceedings of the 8th ACM SIGPLAN International Confer-
ence on Certified Programs and Proofs. pp. 181–195. CPP 2019, ACM, New York,
NY, USA (2019)

50. Rushby, J.: Noninterference, Transitivity, and Channel-Control Security Policies.
SRI International, Computer Science Laboratory (1992)

https://cakeml.org/
https://hal.inria.fr/hal-01238879
http://www.capstone-engine.org/

Highly Automated Formal Proofs over Memory Usage of Assembly Code 117

51. Sewell, T.A.L., Myreen, M.O., Klein, G.: Translation validation for a verified OS
kernel. In: Proceedings of the 34th ACM SIGPLAN Conference on Programming
Language Design and Implementation. pp. 471–482. PLDI ’13, ACM, New York,
NY, USA (2013)

52. Shi, J., He, J., Zhu, H., Fang, H., Huang, Y., Zhang, X.: ORIENTAIS: Formal
verified OSEK/VDX real-time operating system. In: 2012 IEEE 17th International
Conference on Engineering of Complex Computer Systems. pp. 293–301 (Jul 2012)

53. Shi, J., Zhu, L., Fang, H., Guo, J., Zhu, H., Ye, X.: xBIL – a hardware resource ori-
ented binary intermediate language. In: 2012 IEEE 17th International Conference
on Engineering of Complex Computer Systems. pp. 211–219 (Jul 2012)

54. Slind, K., Norrish, M.: A brief overview of HOL4. In: International Conference on
Theorem Proving in Higher Order Logics. pp. 28–32. Springer (2008)

55. Song, D., Brumley, D., Yin, H., Caballero, J., Jager, I., Kang, M.G., Liang, Z.,
Newsome, J., Poosankam, P., Saxena, P.: BitBlaze: A new approach to computer
security via binary analysis. In: Proceedings of the 4th International Conference
on Information Systems Security. Keynote invited paper. Hyderabad, India (Dec
2008)

56. Tan, J., Tay, H.J., Gandhi, R., Narasimhan, P.: Auspice: Automatic safety property
verification for unmodified executables. In: VSSTE. pp. 202–222. Springer (2015)

57. Verbeek, F., Bockenek, J.A., Ravindran, B.: Artifact – Highly automated formal
proofs over memory usage of assembly code (2020). 10.5281/zenodo.3676687

58. Wang, F., Shoshitaishvili, Y.: Angr – the next generation of binary analysis. In:
2017 IEEE Cybersecurity Development (SecDev). pp. 8–9. IEEE (2017)

59. Wenzel, M.: Isabelle/Isar—a generic framework for human-readable proof docu-
ments. From Insight to Proof—Festschrift in Honour of Andrzej Trybulec 10(23),
277–298 (2007)

60. Yu, Y.: Automated Proofs of Object Code for a Widely Used Microprocessor. Ph.D.
thesis, University of Texas at Austin (1992)

61. Zhang, M., Sekar, R.: Control flow integrity for COTS binaries. In: Presented as
part of the 22nd USENIX Security Symposium (USENIX Security 13). pp. 337–352
(2013)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

10.5281/zenodo.3676687
https://doi.org/10.5281/zenodo.3676687
http://creativecommons.org/licenses/by/4.0/

	Highly Automated Formal Proofs over Memory Usage of Assembly Code
	1 Introduction
	2 Formal Memory Usage Certificates
	3 FMUC Verification
	3.1 Verification Tools Used
	3.2 Per-block Verification
	3.3 Verification of Function Body
	3.4 Composition

	4 Case Study: Xen Project
	5 Related Work
	6 Conclusion
	References

