q

Check for
updates

Verifying Quantum Communication Protocols
with Ground Bisimulation*

Xudong Qin'2, Yuxin Deng!®, and Wenjie Du? TACAS

g Q 8) Artifact

1 . . Evaluation
Shanghai Key Laboratory of Trustworthy Computing, 2020

MOE International Joint Lab of Trustworthy Software,
and International Research Center of Trustworthy Software,
East China Normal University, Shanghai, China
steven_qxd@126.com yxdeng@sei.ecnu.edu.cn
2 Peng Cheng Laboratory, Shenzhen, China,

3 Shanghai Normal University, Shanghai, China
wenjiedu@shnu.edu.cn

Accepted

Abstract. One important application of quantum process algebras is
to formally verify quantum communication protocols. With a suitable
notion of behavioural equivalence and a decision method, one can de-
termine if an implementation of a protocol is consistent with its specifi-
cation. Ground bisimulation is a convenient behavioural equivalence for
quantum processes because of its associated coinduction proof technique.
We exploit this technique to design and implement two on-the-fly algo-
rithms for the strong and weak versions of ground bisimulation to check
if two given processes in quantum CCS are equivalent. We then develop
a tool that can verify interesting quantum protocols such as the BB84
quantum key distribution scheme.

Keywords: Quantum process algebra - Bisimulation - Verification -
Quantum communication protocols.

1 Introduction

Process algebras provide a useful formal method for specifying and verifying
concurrent systems. Their extensions to the quantum setting have also appeared
in the literature. For example, Jorrand and Lalire [18,21] defined the Quantum
Process Algebra (QPAlg) and presented a branching bisimulation to identify
quantum processes with the same branching structure. Gay and Nagarajan [15]
developed Communicating Quantum Processes (CQP), for which Davidson [6]
established a bisimulation congruence. Feng et al. [10] have proposed a quan-
tum variant of Milner’s CCS [23], called qCCS, and a notion of probabilistic
bisimulation for quantum processes, which is then improved to be a general no-
tion of bisimulation that enjoys a congruence property [12]. Later on, motivated
by [25], Deng and Feng [9] defined an open bisimulation for quantum processes

* Supported by the National Natural Science Foundation of China (61672229,
61832015) and the Inria-CAS joint project Quasar.
© The Author(s) 2020

A. Biere and D. Parker (Eds.): TACAS 2020, LNCS 12079, pp. 21-38, 2020.
https://doi.org/10.1007/978-3-030-45237-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45237-7_2&domain=pdf
http://orcid.org/0000-0003-0753-418X
https://doi.org/10.1007/978-3-030-45237-7_2

22 X. Qin et al.

that makes it possible to separate ground bisimulation and the closedness un-
der super-operator applications, thus providing not only a neater and simpler
definition, but also a new technique for proving bisimilarity. In order to avoid
the problem of instantiating quantum variables by potentially infinitely many
quantum states, Feng et al. [11] extended the idea of symbolic bisimulation [17]
for value-passing CCS and provided a symbolic version of open bisimulation for
qCCS. They proposed an algorithm for checking symbolic ground bisimulation.

In the current work, we consider the ground bisimulation proposed in [9]. We
put forward an on-the-fly algorithm to check if two given processes in qCCS with
fixed initial quantum states are ground bisimilar. The algorithm is simpler than
the one in [11] because the initial quantum states are determined for the former
but can be parametric for the latter. Moreover, in many applications, we are only
interested in the correctness of a quantum protocol with a predetermined input
of quantum states. This is especially the case in the design stage of a protocol
or in the debugging of a program.

The ground bisimulation defined in [9] is a notion of weak bisimulation be-
cause a strong transition can be matched by a weak transition where invisible
actions are abstracted away. We also consider a strong version where all ac-
tions are visible, for which we have a simpler algorithm. Both algorithms are
obtained by adapting the on-the-fly algorithm for checking probabilistic bisimu-
lations [8,7], which in turn has its root in similar algorithms for checking classical
bisimulations [14,17]. The basic idea is as follows. A quantum process with an
initial quantum state forms a configuration. We describe the operational be-
haviour of a configuration as a probabilistic labelled transition system (pLTS),
where probabilistic transitions arise naturally because measuring a quantum sys-
tem can entail a probability distribution of post-measurement quantum systems.
Ground bisimulations are a strengthening of probabilistic bisimulations by im-
posing some constraints on quantum variables and the environment states of
processes. The skeleton of the algorithm for the strong ground bisimulation re-
sembles to that for strong probabilistic bisimulation [8]. The algorithm for the
(weak) ground bisimulation is inspired by [28] and uses as a subroutine a proce-
dure in the aforementioned work. The procedure reduces the problem of finding
a matching weak transition to a linear programming problem that can be solved
in polynomial time. We have developed a tool that implements both algorithms
and can check if two given configurations are strongly or weakly bisimilar. It
is useful to validate whether an implementation of a protocol is equivalent to
the specification. We have conducted experiments on a few interesting quantum
protocols including super-dense coding, teleportation, secret sharing, and sev-
eral quantum key distribution protocols, in particular the BB84 protocol [5], to
analyse the functional correctness of the protocols.

Other related work Ardeshir-Larijani et al. [3] proposed a quantum variant of
CCS to describe quantum protocols. The syntax of that variant is similar to
qCCS but its semantics is very different. The behaviour of a concurrent pro-
cess is a finite tree and an interleaving is a path from the root to a leaf. By
interpreting an interleaving as a superoperator [26], the semantics of a process

Verifying Quantum Communication Protocols with Ground Bisimulation 23

is a set of superoperators. The equivalence checking between two processes boils
down to the equivalence checking between superoperators, which is accomplished
by using the stabiliser simulation algorithm invented by Aaronson and Gottes-
man [1]. Ardeshir-Larijani et al. have implemented their approach in an equiva-
lence checker in Java and verified several quantum protocols from teleportation
to secret sharing. However, they are not able to handle the BB84 quantum key
distribution protocol because its correctness cannot be specified as an equiva-
lence between interleavings. Our approach is based on ground bisimulation and
keeps all the branching behaviour of a concurrent process. Our algorithms for
checking ground bisimulations are influenced by the on-the-fly algorithm of Hen-
nessy and Lin for value-passing CCS [17]. We are inspired by the probabilistic
bisimulation checking algorithm of Baier et al. [4] for the strong version of ground
bisimulation, and by the weak bisimulation checking algorithm of Turrini and
Hermanns [28] for the weak version.

Kubota et al. [20] implemented a semi-automated tool to check a notion of
symbolic bisimulation and used it to verify the equivalence of BB84 and another
quantum key distribution protocol based on entanglement distillation [27]. There
are two main differences between their work and ours. (1) Their tool is based on
equational reasoning and thus requires a user to provide equations while our tool
is fully automatic. (2) Their semantic interpretation of measurement is different
and entails a kind of linear-time semantics for quantum processes that ignores
the timepoints of the occurrences of probabilistic branches. However, we use a
branching-time semantics. For instance, the occurrence of a measurement before
or after a visible action is significant for our semantics but not for the semantics
proposed in [20].

Besides equivalence checking, based on either superoperators or bisimulations
as mentioned above, model checking is another feasible approach to verify quan-
tum protocols. For instance, Gay et al. developed the QMC model checker [16].
Feng et al. implemented the tool QPMC [13] to model check quantum programs
and protocols. There are also other approaches for verifying quantum systems.
Abramsky and Coecke [2] proposed a categorical semantics for quantum pro-
tocols. Quantomatic [19] is a semi-automated tool based on graph rewriting.
Ying [30] established a quantum Hoare logic, which has been implemented in a
theorem prover [22].

The rest of the paper is structured as follows. In Section 2 we recall the
syntax and semantics of the quantum process algebra qCCS. In Section 3 we
present an algorithm for checking ground bisimulations. In Section 4 we report
the implementation of the algorithm and some experimental results on verifying
a few quantum communication protocols. Finally, we conclude in Section 5 and
discuss some future work.

2 Quantum CCS

We introduce a quantum extension of classical CCS (qCCS) which was originally
studied in [10,29,12]. Three types of data are considered in qCCS: as classical

24 X. Qin et al.

qu(nil) =0 qu(T.P) = qu(P)
qu(c?z.P) = qu(P) qu(cle.P) = qu(P)
qu(c?q.P) = qu(P) — {q} qu(clq.P) = qu(P) U {q}
qu(€[q].P) = qu(P)Uq qu(M[g;z].P) = qu(P)Uq
(P +Q)=qu(P)Uqu(Q) qu(P || Q)= qu(P)Uq(Q)
qu(P[f]) = qu(P) qu(P\L) = qu(P)
qu(if b then P) = qu(P) qu(A(q; T)) = q.

Fig. 1. Free quantum variables

data we have Bool for booleans and Real for real numbers, and as quantum data
we have Qbt for qubits. Consequently, two countably infinite sets of variables
are assumed: cVar for classical variables, ranged over by z,y, ..., and ¢Var for
quantum variables, ranged over by ¢, r,.... We assume a set Fxp, which includes
cVar as a subset and is ranged over by e, e/, ..., of classical data expressions over
Real, and a set of boolean-valued expressions BEzp, ranged over by b, ¥, ...,
with the usual boolean constants true, false, and operators =, A, V, and —.
In particular, we let e 1 ¢ be a boolean expression for any e,e’ € Erp and
<€ {>,<,>,<,=}. We further assume that only classical variables can occur
freely in both data expressions and boolean expressions. Two types of channels
are used: cChan for classical channels, ranged over by c,d, ..., and ¢Chan for
quantum channels, ranged over by c¢,d,.... A relabelling function f is a map
on cChan U ¢qChan such that f(cChan) C c¢Chan and f(qChan) C qChan.
Sometimes we abbreviate a sequence of distinct variables ¢y, ..., g, into q.
The terms in qCCS are given by:

P,Q:=nil | 7.P | c?x.P | cle.P | ¢?q.P | clq.P | E[q].P | M|G;z].P |
P+Q | PI[Q | P[f] | P\L | ifbthen P | A(g;Z)

where f is a relabelling function and L C c¢Chan U qChan is a set of channels.
Most of the constructors are standard as in CCS [23]. We briefly explain a few
new constructors. The process c?q.P receives a quantum datum along quantum
channel ¢ and evolves into P, while clg.P sends out a quantum datum along
quantum channel ¢ before evolving into P. The symbol £ represents a trace-
preserving super-operator applied on the quantum system referred to by the
variables ¢. The process M|[q; x]. P measures the state of qubits ¢ according to
the observable M and stores the measurement outcome into the classical variable
x of P.

Free classical variables can be defined in the usual way, except for the fact
that the variable in the quantum measurement M[g; x] is bound. A process P
is closed if it contains no free classical variable, i.e. fu(P) = 0.

The set of free quantum variables for process P, denoted by quv(P) can be
inductively defined as in Figure 1. For a process to be legal, we require that

1. ¢ & qu(P) in the process clq.P;
2. qu(P)Nqu(Q) = 0 in the process P || Q;

Verifying Quantum Communication Protocols with Ground Bisimulation 25

(C-Inp)
(Taw) v € Real
(T.P,p) = (P, p) (c?2.P, p) <% (Plv/z], p)
(C-Outp) (C-Com) , '
v =[e] (Pi,p) =5 (Pl,p) (P2,p) = (P3,p)
(cle.P, p) =5 (P, p) (P1[| P2, p) = (PL|| Ps,p)
(Q-inp)
r & qu(c?q.P) (Q-Outp)
(c?q.P, p) =5 (P[r/q]. p) (clg-P, p) =5 (P.p)
(Q-Com)
<P1ap> ﬂ><-P1,7p> <P2ap> ﬂ><-F)2,7p> (Oper)
(P1| P2,p) = (P{ || Ps,p) (€la]-P, p) — (P, E4(p))
(Meas)))
M = Ziel MNE" pi = tr(Ezp) .
(M[g; z].P, p) == 3., pilP[Ni/2], E5pEg /pi)
(Int) (Sum)
(Pi,p) == A gbu(a) Nqu(P2) =0 (Pr,p) = A
(Py|| Po,p) == Al P (Pr+ Pa,p) = A
(Rel) (Res)
(P,p) = A (P,p) = A en(a)NL =10
1.0 2% Al (P\L,p) = A\L
(Cho) (Cons)
(Pp) <> A [b] = true (P[/7,7/d,p) =+ A A(E,q) =P
(if b then P, p) 2 A (A(D,7),p) = A

Fig. 2. Operational semantics of qCCS. Here in rule (C-Outp), [e] is the evaluation of
e, and in rule (Meas), E; denotes the operator E* acting on the quantum systems §.

3. Each constant A(g;

) has a defining equation A(¢;Z) := P, where P is a
term with qu(P) C G a

z
g and fu(P) C .

The first condition says that a quantum system will not be referenced after it
has been sent out. This is a requirement of the quantum no-cloning theorem.
The second condition says that parallel composition || models separate parties
that never reference a quantum system simultaneously.

Throughout the paper we implicitly assume the convention that processes
are identified up to a-conversion, bound variables differ from each other and
they are different from free variables.

Before introducing the operational semantics of qCCS processes, we review
the model of probabilistic labelled transition systems (pLTSs). Later on we will
interpret the behaviour of quantum processes in terms of pLTSs because quan-
tum measurements give rise to probability distributions naturally.

26 X. Qin et al.

We begin with some notations. A (discrete) probability distribution over a
set S is a function A: S — [0,1] with) _¢ A(s) = 1; the support of such a A is
the set [A] ={s€ S | A(s) > 0}. The point distribution 3 assigns probability
1 to s and 0 to all other elements of S, so that [5] = {s}. We only need to
use distributions with finite supports, and let Dist(S) denote the set of finite
support distributions over S, ranged over by A, O, etc. If) 7, _ - pr. = 1 for some
collection of pg > 0, and the Ay are distributions, then so is ZkeK pi - A with

(ZkeK pr - Ag)(s) = ZkEK Pk - Ak (s).

Definition 1. A probabilistic labelled transition system is a triple (S, Act,, —),
where S is a set of states, Act, is a set of visible actions Act augmented with the
invisible action 7, and — C S x Act, x Dist(S) is the transition relation.

We often write s —— A for (s,a, A) € —. In pLTSs we not only consider
relations between states, but also relations between distributions. Therefore, we
make use of the lifting operation below [7].

Definition 2. Let R C Sx .S be a relation between states. Then R° C Dist(S) x
Dist(S) is the smallest relation that satisfies the two rules: (i) s R s’ implies
SR (i) Ay R° O; for alli € T implies (3 ,c; pi - Ai) R° (X ;e pi - ©i) for
any p; € [0,1] with Y, ., pi = 1, where I is a finite index set.

We apply this operation to the relations —— in the pLTS for a € Act,, where
we also write —— for (——) . Thus as source of a relation —— we now also allow
distributions. But note that 3 —— A is more general than s — A because if

5 -5 A then there is a collection of distributions A; and probabilities p; such
that s — A, for each i € I and A = Y icrPi- Qg with >, pi = 1.

We write s — A if either s — A or A = 3. We define weak transitions ==
by letting == be the reflexive and transitive closure of — and writing A == ©
for a € Act whenever A === O. If A =3 is a point distribution, we often
write s == O instead of § == O.

We now give the semantics of qCCS. For each quantum variable ¢ we assume
a 2-dimensional Hilbert space H,. For any nonempty subset S C ¢Var we write
‘Hs for the tensor product space ®q65 H, and Hg for ®q€$ Hg4. In particular,
H = Hgver is the state space of the whole environment consisting of all the
quantum variables, which is a countably infinite dimensional Hilbert space.

Let P be a closed quantum process and p a density operator on H', the pair
(P, p) is called a configuration. We write Con for the set of all configurations,
ranged over by C and D. We interpret qCCS with a pLTS whose states are all the
configurations definable in the language, and whose transitions are determined
by the rules in Figure 2; we have omitted the obvious symmetric counterparts
to the rules (C-Com), (Q-Com), (Int) and (Sum). The set of actions Act takes
the following form, consisting of classical/quantum input/output actions.

Act = {c?v,clv | ¢ € cChan,v € Real} U {c?r,clr | ¢ € qChan,r € qVar}

1 As H is infinite dimensional, p should be understood as a density operator on some
finite dimensional subspace of H which contains H 4, (p).

Verifying Quantum Communication Protocols with Ground Bisimulation 27

We use cn(a) for the set of channel names in action a. For example, we have
en(c?x) = {c} and en(7) = 0.

In the first eight rules in Figure 2, the targets of arrows are point distribu-
tions, and we use the slightly abbreviated form ¢ —— C’ to mean C — C'.

The rules use the obvious extension of the function || on terms to configu-
rations and distributions. To be precise, C || P is the configuration (Q || P, p)
where C = (Q, p), and A || P is the distribution defined by:

(Al P)((Q,p)) 4 {A(<Q’,p>) if Q = Q' || P for some Q'

0 otherwise.

Similar extension applies to A[f] and A\L.

Suppose there is a configuration C = (P, p), the partial trace over system
P at such state can be defined as trq,(py(p) whose result is a reduced density
operator representing the state of the environment. We give the definition of
ground bisimulation and bisimilarity as follows.

Definition 3 ([9]). A relation R C Con x Con is a ground simulation if for
any € = (P,p), D'= (Q,0), C R D implies that qu(P) = qv(Q), treu(r(p) =
trau@) (o), and

— whenever C —— A, there is some distribution © with D 2. 0 and AR° 6.

A relation R is a ground bisimulation if both R and R~ are ground simulations.
We denote by = the largest ground bisimulation, called ground bisimilarity. If

the above weak transition D = O s replaced by a strong transition D —— O,
we obtain a strong ground bisimulation.

In the rest of the paper, we mainly focus on ground bisimulation and only
briefly mention the algorithm for checking strong ground bisimulation.

3 Algorithm

We present an on-the-fly algorithm to check if two configurations are ground
bisimilar.

The algorithm maintains two sets NonBisim and Bisim to keep non-bisimilar
and bisimilar state pairs, respectively. When the algorithm terminates, Bisim
should contain all the state pairs satisfying the bisimulation relation.

The function Bisim(¢, u), as shown in Algorithm 1, is the main function of
the algorithm, which attempts to find the smallest bisimulation containing the
pair (t,u). It initialises Bisim and a set named Visited to store the visited
pairs, then calls the function Match to search for a bisimulation. The function
Match(t, u, Visited) invokes a depth-first traversal to match a pair of states
(t,u) with all their possible behaviours. The set Visited is updated before the
traversal for detecting loops. We also match the behaviours of ¢t and u from both
directions as we are checking bisimulations. Two states are deemed non-bisimilar
in three cases:

28 X. Qin et al.

— one state has a transition that cannot be matched by any possible weak
transition from the other;

— they do not have the same set of free quantum variables;

— the density operators of them corresponding to their quantum registers are
different.

The first case is checked by MatchAction, and the other two are done in
Match. We add a pair of states to NonBisim if one of the three cases above
has occurred. Otherwise, it will be stored in Bisim.

An auxiliary function Act(t) is invoked in Match to discover the next action
that ¢ can perform. If £ have no more action to perform the function will return
an empty set.

The function MatchAction(«,t, u, Visited) checks the equivalence of con-
figurations through comparing their transitions. The function recursively discov-
ers the next equivalent state pairs between the target states of the transitions.
Technically, it checks the condition that if ¢ =+ A then there exists some ©

such that u = @ and A R° ©O. Here we use as a subroutine a procedure of
[28] to reduce the problem to a linear programming problem that can be solved
in polynomial time. The problem is defined in Appendix. In MatchAction, we
introduce a predicate LP(A, u, @, R) which is true if and only if the linear pro-
gramming problem has a solution. We invoke the function Close to construct
an equivalence relation R between S and the states in the support of the target
distribution. Note that in Lines 28 and 34 we have two distinct cases because
in output actions the emitted values are required to be equal, which are unlike
other types of actions.

In general, there are loops in pLTSs. When a state pair to be considered
is already contained in Visited it will be assumed to be bisimilar and added
to Assumed (Lines 42-43). Later on, if the pair of states are found to be non-
bisimilar, the pair will be added to NonBisim and a wrong assumption exception
(Lines 18-21) will be raised to restart the checking process from the original pair
of states. Then Bisim(¢,u) renews the sets Bisim, Visited and Assumed to
remove the pairs checked under the wrong assumption (Lines 4-6).

Algorithm 1 Checking ground bisimulation

Require: Two pLTSs with initial configurations ¢ and .
Ensure: A boolean value b,..s indicating if the two pLTSs are ground bisimilar.

1: function GroundBisimulation(¢,u) =

2 NonBisim := ()

3 function Bisim(¢,u) = try {

4: Bisim =0

5: Visited := ()

6: Assumed := ()

7 return Match(t,u, Visited)

8 } catch WrongAssumptionException = Bisim(¢, u)

9:
10: function Match(t, u, Visited) >t = (P, p) and u={Q,0)

Verifying Quantum Communication Protocols with Ground Bisimulation 29

11: Visited:=Visited U {(t,u)}

12: b:=/\ e act(r) MatchAction(a,t,u, Visited)
13: B::/\aEAct(u) MatchAction(o,u,t, Visited)
14: be,:=qu(P) = qu(Q)

15: b@::trqv(f) (p) = irqu(P) (o)

16: bres:=b AbAbe, Abe,

17: if bycs is tt then Bisim = Bisim U {(t,u)}
18: else if b, is ff then

19: NonBisim = NonBisim U {(t,u)}

20: if (t,u) € Assumed then

21: raise WrongAssumptionException
22: return b,

23:

24: function MatchAction(q,t, u, Visited)
25: switch a do

26: case c! ‘

27: for t =<5 A; do

28: Assume {tx}s,era,) and {u;} et
u=—=T"Ne;=e}Au; €[]

29: R:= {(tg,u;)|Close(ty, u;j, Visited) = tt}

30: 0:=LP(A;,u,a, R)

31: return A, 6;

32: otherwise

33: for t & A; do

34: Assume {tx}s, era,) and {uj}uér/\uje(z“]

35: R:= {(tg,u;)|Close(ty, u;j, Visited) = tt}

36: 0:=LP(A;,u,a, R)

37: return A, 6;

38:

39: function Close(t, u, Visited)

40: if (t,u) € Bisim then return tt

41: else if (t,u) € NonBisim then return ff
42: else if (t,u) € Visited then

43: Assumed = Assumed U {(t,u)}

44: return tt

45: else return Match(t, u, Visited)

Now let us prove the termination and correctness of the algorithm.

Theorem 1 (Termination). Given two configurations t and u, the function
GroundBisimulation(t,u) always terminates.

Proof. The algorithm starts with two empty sets NonBisim and Bisim. The
next action to perform is detected in Match. Then it invokes function MatchA c-
tion to find the next new pair of configurations and recursively call function

30 X. Qin et al.

Match to check them. Once a state pair is checked to be non-bisimilar in
function Match, it is added into NonBisim. Meanwhile, if it is also con-
tained in the set Assumed, the algorithm restarts a new execution of Bisim.
Let k£ denote the number of executions of Bisim, and NonBisimj be the
set NonBisim at the end of Bisimy. It is easy to show by induction that
NonBisimy, C NonBisimyy1 for any £ > 0. Since the system under consid-
eration is finite-state, there always exists some n such that NonBisim,, is the
largest set of non-bisimilar state pairs and Bisim,, is the last execution of Bisim.

After the execution of Bisim,,, no more exceptions will be raised. Each time
Match is executed with ¢ and w as its parameters, we add (¢,u) into Visited.
The quantum variables and the configurations of the quantum registers for ¢ and
u are compared. When no more state pairs are added into Visited, the function
Match will not be invoked again and the whole algorithm will terminate. ad

Theorem 2 (Correctness). Given two configurations t and u from two pLTSs,
Bisim(t,u) returns true if and only if they are ground bisimilar.

Proof. Let Bisim,, be the last execution of Bisim. Let NonBisim,, and Bisim,,
be the values of the two sets NonBisim and Bisim, respectively, recording the
checked state pairs at the end of Bisim,,. By inspecting Match, we know that
NonBisim,, N Bisim,, = 0.

Let us analyse the result returned by Bisim,,, which is the output of the
function call Match(t, u, Visited). If the result is false then one of the conjuncts
in byes is invalid, which means that one of the three cases discussed in the
beginning of Section 3 occurs, thus ¢t and u are indeed non-bisimilar. If the
return is true then there is Bisim, = Visited,\NonBisim,. For each pair
(t,u) € Bisimy,, all the conjuncts in b..s must be true. Both ¢ and w must
have the same set of free quantum variables and the same density operators. In
addition, they have matching transitions. That is, for any action a, if t — A
then there exists some weak distribution @ such that v == © and A R° O.
This is true because (i) the relation R in function MatchAction is correctly
constructed, and (ii) the lifted relation R° exists. Below we argue for (i); the
existence of the lifting operation in (ii) relies on the validity of the predicate LP
whose correctness is established by Theorem 9 in [28].

The algorithm adds a pair into Assumed, if the pair to be checked has al-
ready been visited and passed the bisimulation checking conditions. It implies
that Assumed, C Visited,. Furthermore, as there is no wrong assumption
detected after the execution of Bisim,,, we have Assumed, C Bisim, which
implies that Bisim, = Assumed, U Bisim,,. So Bisim,, constitutes a bisimu-
lation relation containing the initial state pair (¢, u). O

Before concluding this section, we analyse the time complexity of the algo-
rithm.

Theorem 3 (Complexity). Let the number of configurations reachable from t
and u be n. The time complezity of function Bisim(t,u) is polynomial in n.

Verifying Quantum Communication Protocols with Ground Bisimulation 31

Proof. The number of state pairs is at most n?. The number of state pairs
examined in the kth execution of Bisim is at most O(n? — k). Therefore, the
total number of state pairs examined is as most O(n?+(n?—1)+...+1) = O(n*).
Note that each state has finitely many outgoing transitions. Given a transition,
to check if there exists a weak matching transition, we call the function LP at
most once, the construction of a flow network and solving the linear programming
problem are both polynomial in n if we use the algorithm in [28]. Consequently,
the whole algorithm is also polynomial in n. 0O

For the strong version of ground bisimulation, we are only concerned with
the matching of strong transitions. Therefore, Algorithm 1 can be simplified and
there is no need of the predicate LP in the function MatchAction.

4 Implementation and Experiments

In this section, we report on an implementation of our approach and provide the
experimental results of verifying several quantum communication protocols.

Stron ——
AST pLTS pLTSs Bisimulagt;ion Strong Bisimilar
Parser Generation > Checking Configuration
Module *’Qﬁ Module Pairs
Specification, Weak ——
Variable Initialisation, Bisimulation Vgif,’;,'sfrggir
Operator Definition Checking Pairs
Module

Fig. 3. Verification workflow.

4.1 Implementation

We have implemented both strong and weak ground bisimulation checkers in
Python 3.7. The workflow of our tool is sketched in Figure 3. The tool consists
of a pLTS generation module and two bisimulation checking modules, devoted
to modeling and verification, respectively. The input of this tool is a specifica-
tion and an implementation of a quantum protocol, both described as qCCS
processes, the definition of user-defined operators, as well as an initialisation of
classical and quantum variables. Unlike classical variables, the initialisation of
all quantum variables, deemed as a quantum register, is accomplished at the
same time so to allow for superposition states. The final output of the tool is a
result indicating whether the specification and the implementation are bisimilar
under the same initial states. The algorithm also stores the bisimilar state pairs
and non-bisimilar state pairs in two tables.

The pLTS generation module acts as a preprocessing unit before the verifica-
tion task. It first translates the input qCCS processes into two abstract syntax

32 X. Qin et al.

trees (ASTs) by a parser. Then the ASTs are transformed into two pLTSs ac-
cording to the operational semantics given in Figure 2, using the user-defined
operators and the initial values of variables. The weak bisimulation checking
module implements the weak ground bisimilarity checking algorithm we defined
in the last section. It checks whether the initial states of the two generated pLTSs
are weakly bisimilar.

The tool is available in [24], where we also provide all the examples for the
experiments to be discussed in Section 4.3.

4.2 BB84 Quantum Key Distribution Protocol

To illustrate the use of our tool, we formalise the BB84 quantum key distribution
protocol. Our formalisation follows [11], where a manual analysis of the protocol
is provided. Now we perform automatic verification via the ground bisimulation
checker.

The BB84 protocol provides a provably secure way to create a private key
between two partners with a classical authenticated channel and a quantum inse-
cure channel between them. The protocol does not make use of entangled states.
It ensures its security through the basic property of quantum mechanics: if the
states to be distinguished are not orthogonal, such as |0) and |+), then informa-
tion gain about a quantum state is only possible at the expense of changing the
state. Let the sender and the receiver be Alice and Bob, respectively. The basic
BB84 protocol with a sequence of qubits ¢ with size n goes as follows:

1. Alice randomly generates two sequences of bits B, and K, using her qubits
q. Note that ¢ here are auxiliary qubits which are not modified in this step.

2. Alice sets the state of ¢, such that the ith bits of ¢ is |z,) where x and

y are the ith bits of B, and K,, and respectively, [0g) = [0), [0,) = |1),

1) = [+) = (10) + [1))/vZ and [11) = |-) = (0} — [1))/V3.

Alice sends her qubits ¢ to Bob.

Bob randomly generates a sequence of bits By, using his qubits §'.

5. Bob measures the ith qubit of ¢ he received from Alice according to the
basis determined by the ith bit of B,. Respectively, the basis is {|0),]1)} if
it is 0 and {|4),|—)} if it is 1.

6. Bob sends his choice of measurements B, to Alice, and after receiving the
information, Alice sends her B, to Bob.

7. Alice and Bob match two sequences of bits Ba and Bb to determine at which
positions the bits are equal. If the bits match, they keep the corresponding
bits of K, and Kj. Otherwise, they discard them.

-~

After the execution of the basic BB84 protocol, the remaining bits of K, and
K, should be the same, provided that the communication channels are perfect
and there is no eavesdropper.

Implementation. For simplicity, we assume that the sequence ¢ consists of only
one qubit. This is enough to reflect the essence of the protocol. The other qubits

Verifying Quantum Communication Protocols with Ground Bisimulation 33

used below are auxiliary qubits for the operation Ran.

Alice défRan[ql ; Ba].Ran[q1; K,).Setk, [q1]-Hp, [q1].A2Blq; .
b2a? By.a2b! B, .keyalemp(K,, By, Bp).nil;

Bob " A2B7¢,.Ran|gz; By). Mg, [q1; K3).b2a! By,
a2b? B, .keyplemp(Ky, B, By).nil;

BB84 Y (Alice||Bob) \ {a2b, b2a, A2B}

where there are several special operations:

— Ran|g;x] = Sety[q].Mo1]q; x].Setolq], where Sety (resp.Sety) is the oper-
ation which sets a qubit it applies on to |+) (resp.|0)), Moy 1[g;z] is the
quantum measurement on ¢ according to the basis {|0),|1)} and stores the
result into x.

— Setk[q] sets the qubit ¢ to the state | K).

— Hplq] applies H or does nothing on the qubit ¢ depending on whether the
value of Bis 1 or 0.

— Mp[q; K] is the quantum measurement on g according to the basis {|+), |—)}
or {|0),|1)} depending on whether the value of B is 1 or 0.

— cmp(x,y, z) returns x if y and z match, and €, meaning it is empty, if they
do not match.

Specification. The specification can be defined as follows using the same opera-
tions:

BB84pec défRan[ql; B,].Ran[q1; K,).Ran|gz; By)
(key,lemp(K,, By, By).nil||keyplemp(K,, By, Bp).nil).

Input. For the implementation of BB84, we need to declare the following vari-
ables and operators in the input attached to it.

— The classical bits are named B,, K, for Alice and By, K, for Bob.
— The qubits are declared together as a vector |¢1, g2). The vector always needs
an initial value. We can set it to be |00) in this example.

When modelling the protocol, we use several operators. They should be defined
and their definitions are part of the input.

— The operator Ran involves two operators Set,, Sety and a measurement
Mo 1 measuring the qubit according to the basis {|0),|1)}.

— Setg needs Setg and Set;.

— Hp requires the Hadamard gate H.

Mp uses the measurement M _ which measures the qubit according to the

basis {|+),|—)}-

The function cmp is treated as an in-built function, so there is no need to define
it in the input.

For the specification BB84,y,.., we only declare the classical bits B,, By, K,
qubits ¢1, g2 and the operator Ran. The variables and operators declared here
are the same as those in the input of the implementation.

34 X. Qin et al.

Output. Taking the input discussed above, the tool first generates two pLTSs,
with over 150 states for the implementation and 80 states for the specification,
and then runs the ground bisimulation checking algorithm. As we can see from
the fifth row in Table 1, our tool confirms that (BB84,pg) ~ (BB84spec, o),
where pg denotes the initial state of the quantum register, thus the implemen-
tation is faithful to the specification. In the output of the tool, there is an enu-
meration of 1084 pairs of non-bisimilar states and 3216 pairs of bisimilar states.
The pLTSs and the state pairs can be found in [24].

4.3 Experimental Results

We conducted experiments on several quantum communication protocols with
a few different input variables. Table 1 provides a summary of our experimental
results obtained on a macOS machine with an Intel Core i7 2.5 GHz processor
and 16GB of RAM.

Weak ground bisimulation

Program H Variables ‘Bisi‘lmpl‘Spec‘ N ‘ B ‘ ms
Super-dense qig2 = |00), z =1 Yes| 16 5 9 20 259
coding q1g2 = 00), x =5 No| 6 2 - - 2
Super-dense _ _
coding (modified) qig2 = 100), x =5 Yes| 8 5 5 12 110
2142q3 = |100) Yes| 34 | 3 | 22 | 22 | 232
Teleportation || q1q2qs3 = %\OOOM%HOO) Yes| 34 3 22 22 264
q1q2q3 = 73|00()>+%|100> Yes| 34 3 22 22 239
q19293g4 = |1000) Yes| 103 | 3 65 65 1339
Secret Sharing q1q2q3q4=%|0000>+%|1000 Yes| 103 | 3 65 65 1252
q1q2q3q4:73|0000>+%|1000> Yes| 103 3 65 65 1187
BB84 q1q2 = |00) Yes| 152 | 80 | 1084 | 3216 | 130163
BB84 (with q1g2q3 = |000) Yes | 1180 | 352 [121072|75392|55728587
eavesdropper)
B92 q1q2 = |00) Yes| 64 | 80 | 466 | 1284 | 34522
E91 ¢19293g4 = |0000) Yes| 124 | 80 | 964 |2676| 113840

Table 1. Experimental results. The columns headed by Impl and Spec show the
numbers of nodes contained in the generated pLTSs of the implementations and speci-
fications, respectively. Column N shows the sizes of the sets of non-bisimilar state pairs
and Column B shows the sizes of the sets of bisimilar state pairs. Column ms shows
the time cost of the verification in milliseconds.

In each case, we report the final outcome (whether an implementation is
ground bisimilar to its specification), the number of nodes in two pLTSs, the
numbers of non-bisimilar and bisimilar state pairs in NonBisim and Bisim,
respectively, as well as the verification time of our ground bisimulation checking
algorithm. The time cost excludes the part of pLTS generation which takes
around one second in all the examples.

Verifying Quantum Communication Protocols with Ground Bisimulation 35

Besides the protocol discussed in Section 4.2, we also verify other ones that
make use of entangled qubits such as the teleportation and the quantum secrect
sharing protocol. For quantum key distribution protocols, we conduct experi-
ments on the BB84, the B92 and the E91.

Not all the cases in Table 1 give the size of the set NonBisim of non-bisimilar
state pairs, as the bisimulation checking algorithm may immediately terminate
once a negative verification result is obtained, i.e. the two initial states are not
bisimilar.

Data Availability Statement
The datasets generated and/or analyzed during the current study are available
in the figshare repository: https://doi.org/10.6084/m9.figshare.11874942.v1.

5 Conclusion and Future Work

We have presented an on-the-fly algorithm to check ground bisimulation for
quantum processes in qCCS, and a simpler algorithm for strong ground bisim-
ulation. Based on the algorithms, we have developed a tool to verify quantum
communication protocols modelled as qCCS processes. We have carried out ex-
periments on several non-trivial quantum communication protocols from super-
dense coding to key distribution and found the tool helpful.

As to future work, several interesting problems remain to be addressed. For
example, a limitation of the current work is to compare quantum processes with
predetermined states of quantum registers. Indeed, there are occasions where
one would expect two processes to be equivalent for arbitrary initial states.
It is infeasible to enumerate all those states. Then the symbolic bisimulations
proposed in [11] will be useful. We are considering to implement the algorithm
for symbolic ground bisimulation, and then tackle the more challenging symbolic
open bisimulation, both proposed in that work. Another problem occurs in the
experiment of Section 4.2. The example tested one qubit instead of a sequence of
qubits because more qubits lead to a drastic growth of the running time, which
shows a limitation of the current approach of explicitly representing state spaces.

Appendix

Algorithm 1 needs to check the condition that if + -+ A then there exists some

O such that u == 6 and A R° ©. We use as a subroutine a procedure of [28] to
reduce the problem to a network flow problem that can be solved in polynomial
time.

Technically, we construct a network graph G(A,u,a, R) = (V, E) defined as
follows. Let S be the set of reachable states, and R be a binary relation on the
states.

Let A and V¥ be two vertices that represent the source and the sink of the
network, respectively. For each visible action «, the set of vertices V is given

https://doi.org/10.6084/m9.figshare.11874942.v1

36 X. Qin et al.

below
V={AvIUSUS"US,USTUS, USr

where
ST = tr =v 5 T, B e {a,7}};
S = {va|v € S};
St = [T ot € St
S, ={vi|lve S}
Sr = {vr|v € S}.
and the set of edges F is
E={(Au)}UL1UL, ULy UL ULg
where
Ly = {(v,0"), 0", W)|tr =v "> T, v € [I"};
Lo = {(v,), (v, vp)[tr =v == T, v, € [T}

Ly = {(va, v, W W) |tr = vo — T, vl, € [I'};
LT ={(ua,ur)|ue S}
Lr ={(s1,5%), (s, V)|(s, ') €R}.
For the invisible action 7, the definition is similar: V = {A, ¥}USUS" US| USRr
and E = {(A,u)} UL UL, ULg where L ={(s,s1)|s €S}
If « is a visible action, we consider the following linear programming problem
associated to G(A,u,a, R):

max Z(s,v)EE‘ _fs,v

subject to

fsw >0 for each (s,v) € E
Jauw=1

for.y = A(v) for each v € S
Z(S,v)eE fsw— Z(v,w)eE fow=0 for each v € V\ {A, ¥}
Jotrwr — (@) fyper =0 for each tr = v —» " and v’ € [T']
fotrar —L(0") -« foar =0 for each tr = v - I and v’ € [T']
fotrwr, = T(0') + fopwtr =0 for each tr = v — I" and v € [I]

Note that the fourth constraint is referred to as the flow-conservation constraints.
The last three constraints link the source state and the result distribution.

For the invisible action 7, the linear programming problem associated to the
network G(A,u,7,R) is the same as above except that the last two constraints
are dropped.

We denote by LP(A,u,a,R) the predicate that is true if and only if the
linear programming problem above has a solution.

Verifying Quantum Communication Protocols with Ground Bisimulation 37

References

10.

11.

12.

13.

14.

15.

16.

17.

. Aaronson, S., Gottesman, D.: Improved simulation of stabilizer circuits. Physical

Review A 70(052328) (2004)

Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. In: Pro-
ceedings of the 19th IEEE Symposium on Logic in Computer Science. pp. 415-425.
IEEE Computer Society (2004)

. Ardeshir-Larijani, E., Gay, S.J., Nagarajan, R.: Automated equivalence checking of

concurrent quantum systems. ACM Transactions on Computational Logic 19(4),
28:1-28:32 (2018)

Baier, C., Engelen, B., Majster-Cederbaum, M.E.: Deciding bisimilarity and simi-
larity for probabilistic processes. Journal of Computer and System Sciences 60(1),
187-231 (2000)

Bennett, C.H., Brassard, G.: Quantum cryptography: Public-key distribution and
coin tossing. In: Proceedings of the IEEE International Conference on Computer,
Systems and Signal Processing. pp. 175-179 (1984)

Davidson, T.A.S.: Formal Verification Techniques using Quantum Process Calcu-
lus. Ph.D. thesis, University of Warwick (2011)

Deng, Y.: Semantics of Probabilistic Processes: An Operational Approach. Springer
(2015)

Deng, Y., Du, W.: A local algorithm for checking probabilistic bisimilarity. In:
Proceedings of the 4th International Conference on Frontier of Computer Science
and Technology. pp. 401-407. IEEE Computer Society (2009)

Deng, Y., Feng, Y.: Open bisimulation for quantum processes. In: Proceedings of
the 7th IFIP International Conference on Theoretical Computer Science. Lecture
Notes in Computer Science, vol. 7604, pp. 119-133. Springer (2012)

Feng, Y., Duan, R., Ji, Z., Ying, M.: Probabilistic bisimulations for quantum pro-
cesses. Information and Computation 205(11), 1608-1639 (2007)

Feng, Y., Deng, Y., Ying, M.: Symbolic bisimulation for quantum processes. ACM
Transactions on Computational Logic 15(2), 1-32 (2014)

Feng, Y., Duan, R., Ying, M.: Bisimulation for quantum processes. In: Proceed-
ings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. pp. 523-534. ACM (2011)

Feng, Y., Hahn, E.M., Turrini, A., Zhang, L.: QPMC: A model checker for quantum
programs and protocols. In: Proceedings of the 20th International Symposium
on Formal Methods. Lecture Notes in Computer Science, vol. 9109, pp. 265—272.
Springer (2015)

Fernandez, J.C., Mounier, L.: Verifying bisimulations “on the fly”. In: Proceed-
ings of the 3rd International Conference on Formal Description Techniques for
Distributed Systems and Communication Protocols. pp. 95-110. North-Holland
(1990)

Gay, S.J., Nagarajan, R.: Communicating quantum processes. In: Palsberg, J.,
Abadi, M. (eds.) Proceedings of the 32Nd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. pp. 145-157 (2005)

Gay, S.J., Nagarajan, R., Papanikolaou, N.: QMC: A model checker for quantum
systems. In: Proceedings of the 20th International Conference on Computer Aided
Verification. Lecture Notes in Computer Science, vol. 5123, pp. 543-547. Springer
(2008)

Hennessy, M., Lin, H.: Symbolic bisimulations. Theoretical Computer Science
138(2), 353-389 (1995)

38

18.

19.

20.

21.

22.

23.
24.

25.

26.

27.

28.

29.

30.

X. Qin et al.

Jorrand, P., Lalire, M.: Toward a quantum process algebra. In: Proceedings of the
1st Conference on Computing Frontiers. pp. 111-119. ACM (2004)

Kissinger, A.: Pictures of Processes: Automated Graph Rewriting for Monoidal
Categories and Applications to Quantum Computing. Ph.D. thesis, University of
Oxford (2011)

Kubota, T., Kakutani, Y., Kato, G., Kawano, Y., Sakurada, H.: Semi-automated
verification of security proofs of quantum cryptographic protocols. Journal of Sym-
bolic Computation 73, 192-220 (2016)

Lalire, M.: Relations among quantum processes: Bisimilarity and congruence.
Mathematical Structures in Computer Science 16(3), 407-428 (2006)

Liu, T., Li, Y., Wang, S., Ying, M., Zhan, N.: A theorem prover for quantum hoare
logic and its applications. CoRR abs/1601.03835 (2016)

Milner, R.: Communication and Concurrency. Prentice-Hall (1989)

Qin, X., Deng, Y., Du, W.: QBisim (2020), https://github.com/MartianQXD/
QBisim

Sangiorgi, D.: A theory of bisimulation for the pi-calculus. Acta Informatica 33(1),
69-97 (1996)

Selinger, P.: Towards a quantum programming language. Mathematical Structures
in Computer Science 14(4), 527-586 (2004)

Shor, P., Preskill, J.: Simple proof of security of the BB84 quantum key distribution
protocol. Physical Review Letters 85(2), 441-444 (2000)

Turrini, A., Hermanns, H.: Polynomial time decision algorithms for probabilistic
automata. Information and Computation 244, 134-171 (2015)

Ying, M., Feng, Y., Duan, R., Ji, Z.: An algebra of quantum processes. ACM
Transactions on Computational Logic 10(3), 1-36 (2009)

Ying, M.: Foundations of Quantum Programming. Morgan Kaufmann (2016)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

https://github.com/MartianQXD/QBisim
https://github.com/MartianQXD/QBisim
http://creativecommons.org/licenses/by/4.0/

	Verifying Quantum Communication Protocols with Ground Bisimulation*
	1 Introduction
	2 Quantum CCS
	3 Algorithm
	4 Implementation and Experiments
	4.1 Implementation
	4.2 BB84 Quantum Key Distribution Protocol
	4.3 Experimental Results

	5 Conclusion and Future Work
	Appendix
	References

