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Abstract. Triple Graph Grammars (TGGs) are a declarative and rule-
based approach to bidirectional model transformation. The key feature
of TGGs is the automatic derivation of various operations such as unidi-
rectional transformation, model synchronisation, and consistency check-
ing. Application conditions can be used to increase the expressiveness of
TGGs by guaranteeing schema compliance, i.e., that domain constraints
are respected by the TGG. In recent years, a series of new TGG-based
operations has been introduced leveraging Integer Linear Programming
(ILP) solvers to flexible consistency maintenance even in cases where no
strict solution exists. Schema compliance is not guaranteed, however, as
application conditions from the original TGG cannot be directly trans-
ferred to these ILP-based operations. In this paper, we extend ILP-based
TGG operations so as to guarantee schema compliance. We implement
and evaluate the practical feasibility of our approach.

Keywords: Application conditions, Triple graph grammars, Integer lin-
ear programming

1 Introduction

In the context of Model-Driven Engineering (MDE), software systems are rep-
resented as a collection of different models. Often several semantically related
models are involved and therefore have to be kept consistent to each other. The
process of maintaining consistency among multiple models is called consistency
management and involves various operations including (unidirectional) trans-
formation, synchronisation, and consistency checking. Practical applications of
consistency checking occur in the industry automation domain, where multiple
domain-specific languages (DSLs) are used to describe complex systems [4].

Triple Graph Grammars (TGGs) are a declarative rule-based approach to
specifying a bidirectional consistency relation between two modelling languages.
The main advantage of TGGs is the possibility to derive multiple consistency
management operations from the same formal specification. In their roadmap for
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future research on TGGs [2], Anjorin et al. name the expressiveness of the TGG
language in use as one research dimension. One way of increasing the expres-
siveness [25] of TGGs is to ensure the satisfaction of certain constraints, such as
multiplicities with lower and upper bounds, which are typically posed by each
domain and should be respected by consistency maintainers. Using terminology
from Ehrig et. al [9], so called graph constraints consist of a premise (if), and a
set of conclusions (then). They are powerful enough to forbid certain situations
(negative constraints), demand certain conditions (positive constraints), and en-
force implications. One possible approach to handling constraints in the context
of TGGs is the use of application conditions (ACs) to restrict the applicability
of rules. The subset of ACs supported for operationalised TGGs is, however, still
quite restricted. All approaches we are aware of only handle a subset of Negative
Application Conditions (NACs) and mostly focus on model transformation and
synchronisation rather than consistency checking.

Recent work [17,18,20,24] has introduced TGG operations based on Integer
Linear Programming (ILP). Such operations are advantageous because they im-
plement a flexible and generic strategy for multiple consistency management
operations, while still providing acceptable scalability for growing model sizes.
Flexibility here means that the consistency management operations are able to
handle cases where no strict solution exists by providing “optimal” partial re-
sults. Graph constraints, however, have not yet been integrated in this hybrid
ILP-TGG framework and only basic TGG language features [25] are currently
supported. We extend this line of work by the notion of schema compliance for
TGGs, i.e., that all derived operations respect a set of constraints, as introduced
by Anjorin et al. [3]. Instead of trying to integrate ACs into TGG rules, we
propose to handle domain constraints directly in the ILP-based operations, thus
achieving schema compliance in this manner. By directly encoding graph con-
straints as ILP constraints, we are able to handle a larger class of constraints
than in previous work on schema compliance [3]. We apply our approach to con-
sistency checking with given correspondence links: a basic operation that must
be both flexible and efficient as it is often used as a “cheap” check in order to
avoid unnecessary work and ensure hippocraticness [6]. An extension to other
operations such as unidirectional transformation is straightforward and sketched
at the end of this paper. Our approach can be regarded as a step towards toler-
ant consistency management, as the largest consistent sub-triple is computed in
case of inconsistent input models. In this case, checking all domain constraints
in advance is not helpful as the user is only informed about the violation of
constraints and is not provided with a partial but optimal result.

The rest of the paper is organised as follows: Section 2 introduces a running
example, which is used to explain the main ideas on an intuitive level in Sect. 3.
Our contribution is compared with related work in Sect. 4. Basic definitions are
provided in Sect. 5, and used to express the formal concepts in Sect. 6. A reference
implementation together with an experimental evaluation is described in Sect. 7,
before discussing extensions towards other operations in Sect. 8. Finally, Sect. 9
concludes the paper and provides some directions for future work.
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2 Running Example

To illustrate our approach, a consistency rela-

Fig. 1. Triple of Metamodels

tion between simplified data models of the so-
cial networks Facebook and Instagram is used
as a running example. The respective meta-
models are depicted in Fig. 1. A Facebook-

Network consists of multiple FacebookUsers,
who can share Friendships with each other.
Similarly, an InstagramNetwork is made up
of arbitrarily many InstagramUsers. In con-
trast to the Facebook metamodel, the social
interaction is not expressed via Friendship nodes but by a follows relation
between InstagramUsers. To complete the triple, a correspondence metamodel
connects the network and user classes of the two metamodels via correspondence
types, depicted as hexagons. In the following diagrams, the prefixes Facebook

and Instagram are abbreviated with F and I, respectively. A triple graph typed
according to Fig. 1 is consistent if (1) the correspondence links form a bijec-
tion between all networks and users of the two networks, and (2) the following
additional graph constraints are satisfied:
– We forbid two or more Friendship nodes connecting the same two Facebook-

Users as depicted in Fig. 2. This is denoted as a negative constraint.
– There should be a Friendship between two FacebookUsers if the corre-

sponding InstagramUsers follow each other. This means if the premise that
two InstagramUsers follow each other holds, the conclusion that there is
a corresponding Friendship on Facebook should also hold. The combina-
tion of premise and (possibly multiple) conclusions is denoted as positive
constraint (as depicted in Fig. 3).

Fig. 2. NoDoubleFriendship Fig. 3. EnforceFriendship

3 Main Ideas

In this section, we demonstrate our approach by formalising the consistency
relation from the running example as a TGG and deriving a consistency checker.
The novelty of our approach is that we are able to guarantee schema compliance,
i.e., that all additional graph constraints (two from the running example) are
respected by the consistency checker.
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The consistency relation can be defined by four TGG rules depicted in
Fig. 4, 5, 6, and 7. Nodes and edges required as context (i.e., they have to
be matched to apply the rule) are depicted in black, while elements created
by the rule are depicted in green and are annotated with a ++-markup. Ac-
cordingly, the rule NetworkToNetwork creates a FacebookNetwork and a corre-
sponding InstagramNetwork, whereas UserToUser creates corresponding users,
requiring corresponding networks as context. The other two rules add relation-
ships between two users in the two social networks. RequestFriendship cre-
ates a follows edge in the Instagram model, while the Facebook model re-
mains unchanged. A follows edge in the opposite direction is added between
two InstagramUsers and a Friendship node is created for the corresponding
FacebookUsers when the rule AcceptFriendship is applied. A triple graph is
consistent if it can be generated using the four rules of the TGG and if it fulfils
the two graph constraints.

Fig. 4. Rule NetworkToNetwork Fig. 5. Rule UserToUser

Fig. 6. Rule RequestFriendship Fig. 7. Rule AcceptFriendship

To determine if a given triple is contained in the language of a TGG and
fulfils all additional graph constraints, we try to find a set of rule applications
that marks the input triple entirely while fulfilling all generated ILP constraints.
If this is impossible, we conclude that the given triple is inconsistent and pro-
vide a consistent sub-triple with maximum number of elements as result. Five
constraint types and the construction of the objective function are briefly intro-
duced using the example instance depicted in Fig. 8 which can be generated by
the TGG but violates the constraint NoDoubleFriendship. The elements are an-
notated with variables which correspond to those rules that potentially mark the
respective element, i.e. NetworkToNetwork (d1), UserToUser (d2, d3), Request-
Friendship (d4, d5) and AcceptFriendship (d6, d7). A variable is set to 1 if
the associated rule application is chosen to be applied to create the solution
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graph. Furthermore, Fig. 8 also depicts all matches for NoDoubleFriendship

(p8), the premise of EnforceFriendship (p9)1 and the conclusion for Enforce-
Friendship (c10, c11). To allow for uniform handling, negative constraints are
represented as graph constraints with a premise but no conclusions.

Context for rules: The applicability of rules that require elements as context
depends on previous rule applications that have created these elements. In the
example instance, the application of UserToUser (d2, d3) implies that the rule
NetworkToNetwork (d1) was applied already, because the INetwork is required
as context. ILP implication constraints of the form di =⇒ (dj1∨· · ·∨djm)∧· · ·∧
(dk1∨· · ·∨dkn) are thus created for all rules applications di with required context
elements j, . . . , k, and rule applications (dj1 , . . . , djm , . . . , dk1 , . . . dkn) that can
mark these elements.

Exclusions for rules: As elements should only be marked once, multiple rule
applications that mark the same element exclude each other. The follows

edges between two InstagramUsers can be marked both by applications of
RequestFriendship (d4, d5) and AcceptFriendship (d6, d7). For each element
that can be marked by multiple rule applications di, . . . , dj , an ILP exclusion
constraint di ⊕ · · · ⊕ dj is created.

Context for premises: Similar to ILP implication constraints for rules, matches
for the premises of graph constraints also depend on context provided by other
rule applications (whereas no elements are marked by those matches, so there
are no context dependencies among them). However, as soon as the context is
provided completely, the premise is fulfilled. The implication constraint is thus
in the opposite direction: Choosing a subset of rule applications di, . . . , dj that
is sufficient to create the context for a premise match pk implies that pk has to
be chosen.

Context for conclusions: For a conclusion of a graph constraint to hold, all
required elements have to be marked, which is reflected in a constraint similar to
the context constraint for rules. In the concrete example, there are two matches
(c10, c11) for the conclusion of EnforceFriendship (differing in F1 and F2 as
Friendship nodes).

Implications for graph constraints: The semantics of premise and conclu-
sion(s) is reflected in the implications for graph constraints, which define that
the presence of a premise match implies the existence of a corresponding con-
clusion match. p8 as a negative constraint is represented as a graph constraint
with a premise but no conclusions, whereas p9 implies c10 or c11 to be satisfied.

Objective function: In order to find a consistent solution for the given input,
it is necessary to find a set of rule applications that marks the input models
entirely. The objective function maximizes the number of marked elements, i.e.
each variable associated with a rule application is weighted with the number of
elements it marks, and the weighted sum is maximised. Variables associated with
constraints need not be taken into account because they do not create elements.

1 To simplify the solution, we omit symmetric matches that lead to more ILP con-
straints but neither change the result nor provide additional insight.
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Context for rules:

– d2 =⇒ d1
– d3 =⇒ d1
– d4 =⇒ d1 ∧ d2 ∧ d3
– d5 =⇒ d1 ∧ d2 ∧ d3
– d6 =⇒ d1 ∧ d2 ∧ d3 ∧ d5
– d7 =⇒ d1 ∧ d2 ∧ d3 ∧ d4

Exclusions for rules:

– d4 ⊕ d6
– d5 ⊕ d7

Context for premises:

– d2 ∧ d3 ∧ d6 ∧ d7 =⇒ p8
– d2 ∧ d3 ∧ (d4 ∨ d6) ∧ (d5 ∨ d7) =⇒ p9

Context for conclusions:

– c10 =⇒ d2 ∧ d3 ∧ (d4 ∨ d6) ∧ (d5 ∨ d7) ∧ d6
– c11 =⇒ d2 ∧ d3 ∧ (d4 ∨ d6) ∧ (d5 ∨ d7) ∧ d7

Implications for graph constraints:

– p8 =⇒ false
– p9 =⇒ c10 ∨ c11

Objective Function: max. 3d1 + 5d2 + 5d3 + d4 + d5 + 4d6 + 4d7

Fig. 8. Example instance with annotations for rule applications and constraint matches

All context elements in the example instance can be marked setting d1, d2,
d3, d6 and d7 to 1 and d4 and d5 to 0, leading to an objective function value
of 21 equal to the total number of elements. This marking would however vi-
olate the constraint NoDoubleFriendship, as U1 and U2 are connected by two
Friendship nodes. This violation is reflected in the ILP constraints as well: The
first context constraint for premises enforces setting p8 to 1, which immediately
contradicts the first implication for graph constraints. As no other subset of rule
applications is able to mark the input triple entirely, the consistency check fails.
The optimal solution, representing the maximal consistent sub-triple, is achieved
either by exchanging d4 and d6 or d5 and d7 in the set of chosen rule applications,
decreasing the objective function value to 18 and leaving one Friendship node
and the two connecting friends edges unmarked. Note that for this example,
the objective function and hard constraints contradict each other, emphasising
the fact that constraints must be taken into account when computing optimal
partial solutions.
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4 Related Work

Our contribution builds upon and extends the existing work on combining TGGs
and ILP [17, 18, 20, 24]. This previous work covers the basic idea of modelling
consistency checking without correspondence links as a search problem [17, 20],
a proof for correctness and completeness [18], and a generalisation to include
other operations such as unidirectional transformation and consistency checking
with correspondence links [24]. Only basic TGG rules without graph constraints
or ACs are handled, meaning that schema compliance cannot be guaranteed.

To the best of our knowledge, all existing TGG-based approaches ensure
schema compliance by enriching a provided TGG with suitable ACs. Ehrig et al.
introduce NACs to TGG and prove correctness and completeness for unidirec-
tional model transformation [10]. Golas et al. [13] extend these results to more
general ACs for TGGs but only cover the direct application of TGG rules, i.e.,
model triple generation. In both cases, the runtime efficiency and thus practical
feasibility of the derived operations is beyond scope. With a focus on guaran-
teeing polynomial runtime, Klar et al. [16] present a translation algorithm with
polynomial runtime for correct and complete TGG-based unidirectional model
transformation. Klar et al. restrict the class of supported NACs to NACs that
are only used to guarantee schema compliance, arguing that (i) such NACs can
be supported efficiently, (ii) are still very useful in practice to guarantee schema
compliance, and (iii) can also be efficiently supported by model synchronisa-
tion algorithms (as later demonstrated [19]). Anjorin et al. [3] show that this
restricted class of “schema compliance” NACs can be automatically generated
from negative constraints and is thus equivalent to providing negative constraints
together with a TGG. All these approaches, however, can only handle negative
constraints that are contained in a single domain, as the derivation of forward
and backward transformations can only handle “domain separable” NACs.

Similar to our hybrid TGG/ILP-approch, Callow and Kalawski [5] combine
model transformation and Mixed Integer Linear Programming (MILP) optimiza-
tion techniques but focus on model compliance for forward transformations and
not on deriving multiple consistency management operations. Xiong et al. [26]
solve consistency management tasks using the Haskell-based language Beanbag.
The approach considers implicit constraints and correspondences and is tailored
to the application to Unified Modeling Language (UML) structures, though.

There are also purely constraint-based approaches [11, 14, 21] that encode
both model structure and consistency relation into constraints and can easily
handle schema compliance. This comes at a price, however, as the underlying
constraint solvers do not scale with model-size and cannot compete with other
approaches [1]. Our hybrid TGG/ILP approach is a compromise that leverages
the flexibility of constraint solvers but still scales reasonably well [24] as the
variables of the ILP problem are matches and not model elements.

There are also various constraint-based approaches that use bio-inspired
meta-heuristics and could also handle schema compliance. The tool MOMoT [12]
realises model transformation based on evolutionary algorithms as a search strat-
egy for rule orchestration. Similarly, the multi-objective optimisation technique
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Design Space Exploration (DSE) is used by Denil et al. [7] in combination with
the T-core transformation framework [23]. In their tool MOTOE [15], Kessen-
tini et al. extract transformation blocks from examples and use Particle Swarm
Optimisation (PSO) as a search technique. In general, approaches that use meta-
heuristics can potentially scale better than exact search-based approaches, but
have to sacrifice hard guarantees of correctness, completeness, and optimality of
partial solutions.

5 Preliminary Definitions

Our basic definitions are adapted from Ehrig et al. [9], supplemented by the
definition of schema compliance [3]. TGGs are a declarative rule-based approach
which describes a language of triples of graphs. For that, we use the categorical
definition of graphs, treating graphs as objects and graph morphisms as arrows,
injectively mapping elements of one graph to those of another.

Definition 1 (Graph (Morphism)).
A graph G = (V,E, src, trg) consists of a set V of nodes (vertices), a set E of
edges, and two functions src, trg : E → V that assign each edge a source and
target node, respectively. The set elem(G) = V ∪E denotes the union of vertices
and edges. Given graphs G = (V,E, src, trg), G′ = (V ′, E′, src′, trg′), a graph
morphism f : G→ G′ consists of two functions fV : V → V ′ and fE : E → E′

such that src ; fV = fE ; src′ and trg ; fV = fE ; trg′. The ; operator denotes
the composition of functions: f ; g(x) := g(f(x)).

Based on Def. 1 triple graphs and triple morphisms can also be defined cate-
gorically. A triple graph consists of a correspondence graph with a unique mor-
phism to a source graph and a target graph each. An example for such a triple
graph is depicted in Fig. 8. Source and target graph are interchangeable, such
that the choice for source and target between the Facebook model and the
Instagram model is just a question of design.

Definition 2 (Triple Graph (Morphism)).

A triple graph G = GS
γS← GC

γT→ GT consists of graphs GS , GC , GT and graph
morphisms γS : GC → GS and γT : GC → GT . elem(G) denotes the union
elem(GS) ∪ elem(GC) ∪ elem(GT ). A triple morphism f : G → G′ with

G′ = G′S
γ′
S← G′C

γ′
T→ G′T , is a triple f = (fS , fC , fT ) of graph morphisms where

fX : GX → G′X , X ∈ {S,C, T}, γS ; fS = fC ; γ′S and γT ; fT = fC ; γ′T .

In this setting, we introduce typing by demanding a type (triple) morphism
to a chosen type (triple) graph. In Fig. 5, network nodes and user nodes can be
distinguished by typing information, for instance. The language of a type (triple)
graph TG is the set of (triple) graphs typed over TG.

Definition 3 (Typed Triple Graph (Morphism)).
A typed triple graph (G, type) is a triple graph G together with a triple mor-
phism type : G → TG to a distinguished type triple graph TG. A typed triple
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morphism f : Ĝ→ Ĝ′ is a triple morphism f : G→ G′ with type = f ; type′,
where Ĝ = (G, type), Ĝ′ = (G′, type′). L(TG) := {G | ∃ type : type(G) = TG}
denotes the set of all triple graphs of type TG.

In the following, all (triple) graphs and (triple) morphisms are assumed to
be typed unless explicitly stated otherwise. A (triple) graph morphism can be
viewed as a monotonic (triple) rule, such as depicted in Fig. 4, 5, 6 or 7 of the
running example. By applying a (triple) rule on a concrete host graph, nodes
and edges can be added to produce a new triple. (Triple) rules are applied by
constructing a pushout, which can be interpreted as a generalised union of (triple)
graphs R and G over a common sub-(triple)graph L:

Definition 4 (Triple Rule (Application)).

A triple rule r : L→ R is a monomorphic (injective) triple

morphism. A direct derivation G
r@m
=⇒ G′ via a triple rule r, is

constructed as depicted to the right by building a pushout over
r and a triple monomorphism m : L → G called a match. A

derivation D : G
∗

=⇒ Gn = G
r1@m1=⇒ G1

r2@m2=⇒ · · · rn@mn=⇒
Gn is a sequence of direct derivations. We denote by D =
{d1, . . . , dn} the underlying set of direct derivations included in D.

Starting off with the empty triple graph, all triples that can be produced by
finitely many rule applications form the language of a TGG.

Definition 5 (Triple Graph Grammar (Language)).
A triple graph grammar TGG = (G, R) consists of a triple graph G, and a
finite set R of triple rules. The triple graph language of TGG is defined as
L(TGG) = {G∅}∪{G | ∃ D : G∅

∗
=⇒ G}, where G∅ is the empty triple graph.

While the formal definition of rule-based triple graph generation is completed
at this point, we want to pose further restrictions on triples by introducing
domain constraints. Therefore, we introduce graph conditions for triple graphs
and graph constraints as a context-independent form of graph conditions. A
graph constraint is either satisfied trivially, if there does not exist a match for
the premise P , or if there exists at least one match for a conclusion Ci.

Definition 6 (Graph Constraint).
A graph constraint is a pair gc = (p∅ : G∅ → P, {ci : P → Ci | i ∈ I}), for

some index set I. P is referred to as the premise and {Ci | i ∈ I} as the
conclusions of the graph constraint gc. A triple graph G satisfies gc, denoted
by G |= gc, iff ∀mp : P → G, ∃ i ∈ I ∃mci : Ci → G, [mp = ci;mci ], where
mp, (mci)i∈I are monomorphisms.

A type graph TG along with a set of graph constraints is denoted as schema
for graphs. In the running example, the schema consist of the metamodel (Fig. 1)
and the graph constraints depicted in Fig. 2 and 3. A (triple) graph complies to
a schema if it is typed over TG and fulfils all graph constraints.
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Definition 7 (Schema Compliance).
A schema is a pair (TG,GC) of a type triple graph TG and a set GC ⊆ L(TG)

of graph constraints. Let L(TG,GC) := {G ∈ L(TG) | ∀gc ∈ GC, G |= gc}
denote the set of all schema-compliant triple graphs.

Finally, a triple graph is denoted as consistent with respect to a schema and
a TGG if it is schema-compliant and contained in the language of the TGG.

Definition 8 (Consistency).
Given a triple graph grammar TGG and a schema (TG,GC), a triple graph G
is said to be consistent iff G ∈ L(TGG) ∩ L(TG,GC).

6 Correctness and Completeness

We now formalise our approach to guarantee correctness and completeness, i.e.,
the consistency check succeeds if and only if the input model is consistent. As our
approach extends seminal work by Leblebici et al. [20], [18] and Weidmann et
al. [24] towards graph constraints, large parts of the formalisation originate from
these sources in an adapted version. The novelty of this section is the integration
of graph constraints into this formal framework (Def. 10, 12, 15, 18), as well as
showing that formal properties still hold in a setting with graph constraints
(Def. 21 ff.), assuming that the TGG at hand is progressive (Def. 23), i.e. each
rule application marks at least one element.

In the original definition of TGGs (Def. 5), triples are generated by creating
elements in source, correspondence and target graph simultaneously. For con-
sistency checking, a TGG can be operationalised to check if a given triple is
contained in the language of a TGG. In this case, elements are marked by rule
applications instead of being created. To determine if a concrete triple graph is a
member of the language of a TGG, one searches for a derivation sequence start-
ing with the empty triple graph (cf. Def. 5) and producing the triple graph. The
consistency checking operation derived from a TGG does not modify the input
triple but instead marks this graph by successive rule applications in the course
of a derivation sequence. An operational rule, derived from a corresponding triple
rule, requires its context elements to be marked already.

Definition 9 (Operational Rule and Marking Elements).

Given a triple rule r : L → R, the op-
erational rule cr : CL → CR for r is
constructed as depicted to the right. It
holds CL = CR = R, and cr : CL →
CR = idCR. An element e ∈ elem(R)
is a marking element of cr iff @e′ ∈
elem(L) with rS(e′) = e or rC(e′) = e
or rT (e′) = e.
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For operational rules, elements can be partitioned into those which are cre-
ated by the original TGG rule (marked elements) and those which must be pro-
vided as context (required elements). Graph constraints do not mark elements
and therefore, only a set for the elements required by premise and conclusion,
respectively, are defined.

Definition 10 (Marked and Required Elements).

For a direct derivation d : G
cr@cm
=⇒ G via an operational rule cr : CL→ CR, the

following sets are defined:

– mrk(d) = {e ∈ elem(G) | ∃ e′ ∈ elem(CL), cm(e′) = e where e′ is a marking
element of cr}

– req(d) = {e ∈ elem(G) | ∃ e′ ∈ elem(CL), cm(e′) = e where e′ is not a
marking element of cr}

For a graph constraint gc = (p∅ : G∅ → P, {ci : P → Ci | i ∈ I}), we define:

– req(p∅) = {e ∈ elem(G) | e′ ∈ elem(P ),mp(e
′) = e}

– req(ci) = {e ∈ elem(G) | e′ ∈ elem(Ci),mci(e
′) = e}, i ∈ I

All candidate rule applications are associated with a binary variable which
indicates by its value (0 or 1) whether the candidate is considered within the final
solution. To determine the variable assignment, all candidates are collected and
handed over to an ILP solver to determine the optimal subset of rule applications
(cf. Sect. 2) respecting all linear constraints.

Definition 11 (Constraints for Derivations).

Given a triple graph G, let D : G
∗

=⇒ G be a derivation via operational rules with
the underlying set D of direct derivations. For each direct derivation d1, . . . , dn ∈
D, respective binary variables δ1, . . . , δn with δ1, . . . , δn ∈ {0, 1} are defined. A
linear constraint LC for D is a conjunction of linear inequalities which involve
δ1, . . . , δn. A set D′ ⊂ D fulfils LC, denoted as D′ ` LC, iff LC is satisfied for
variable assignments δi = 1 if di ∈ D′ and δi = 0 if di /∈ D′, 1 ≤ i ≤ n.

Graph constraints are also associated to binary variables to ensure that only
schema-compliant triples pass the consistency check, while premises and each of
the corresponding conclusions are split into separate constraints. In contrast to
the binary variables for rule applications, the value assignment cannot be chosen
by the ILP solver. Instead, any variable assignment which does not violate the
linear constraints is fine, as they ensure schema-compliance by the interrelations
of rule applications and graph constraints.

Definition 12 (Constraints for Graph Constraints).
Let GC = {(p∅ : G∅ → P, {ci : P → Ci | i ∈ I})} be a set of graph con-
straints. For each graph constraint gc ∈ GC, respective binary variables π1 . . . πn
for the premises and γ1,1 . . . γ1,m1 . . . γn,1 . . . γn,mn for the conclusions are de-
fined. A linear constraint LC for GC is a conjunction of linear inequalities which
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involve π1 . . . πn and γ1,1 . . . γ1,m1
. . . γn,1 . . . γn,mn

. A triple graph G fulfils LC,
denoted as G |= LC, iff LC is satisfied for any variable assignment {π1 . . . πn} →
{0, 1}, {γ1,1 . . . γ1,m1

. . . γn,1 . . . γn,mn
} → {0, 1}.

As the operational rules reflect the behaviour of the original rules of the
underlying TGG, multiple markings for the same elements must be prohibited
as this would mean that an element is created multiple times. For each node
and edge, a linear constraint is created that ensures that this element is marked
at most once in order to guarantee schema compliance and containment in the
language of the TGG later on.

Definition 13 (Sum of Alternative Markings for an Element).

Given a triple graph G, let D : G
∗

=⇒ G be a derivation via operational rules
with the underlying set D of direct derivations. For each element e ∈ elem(G),
let E(e) = {d ∈ D | e ∈ mrk(d)}. The integer mrkSum(e) denotes the sum of the
associated variable assignments for each d ∈ E:

mrkSum(e) =
∑

di∈E(e)
δi

Definition 14 (Constraint 1: Mark Elements at Most Once).

Given a triple graph G, let D : G
∗

=⇒ G be a derivation via operational rules:

markedAtMostOnce(G) =
∧

e∈elem(G)

[ mrkSum(e) ≤ 1]

The reason for the sum of marked elements not being strictly equal to 1 is the
desired treatment of inconsistent inputs: The system should still be feasible in
case of inconsistent inputs and a maximal consistent sub-triple should be the
result of the optimisation step.

The following constraint ensures that the required context elements for oper-
ational rule applications as well as premises and conclusions are provided in the
final solution, such that the original TGG rule is guaranteed to be applicable in
this situation and the marked part of the triple graph is schema-compliant.

Definition 15 (Constraint 2: Guarantee Context).

Given a triple graph G and a schema (TG,GC), let D : G
∗

=⇒ G be a deriva-
tion via operational rules with the underlying set D of direct derivations. For
each direct derivation d ∈ D and each graph constraint gc ∈ GC, the following
constraints are defined:

con(d) =
∧

e∈req(d)
[δ ≤ mrkSum(e)]

con(p∅) =
∨

e∈req(p∅)
[ mrkSum(e) ≤ π]

con(ci) =
∧

e∈req(ci)
[γi ≤ mrkSum(e)], i ∈ I

context(D) =
∧
d∈D

con(d) ∧
∧

gc∈GC
[con(p∅) ∧

∧
i∈I

con(ci)]
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There are constellations in which rule application candidates mutually pro-
vide context for each other in a dependency cycle, such that parts of the graph
could be potentially marked by these rules, but none of them can ever be applied
first because the necessary context is not yet there. Therefore, we introduce a
relation B among rule applications to arrange them in a proper order.

Definition 16 (Dependency Cycles).

Let D : G
∗

=⇒ G be a derivation via operational rules with the underlying set
D of direct derivations. A relation B⊆ D × D between di, dj ∈ D is defined as
follows:

di B dj iff req(di) ∩ mrk(dj) 6= ∅

A set cy ⊆ D with cy = {d1, . . . , dn} of direct derivations is a dependency
cycle iff d1 B · · · B dn B d1.

The following constraint breaks dependency cycles by forbidding to choose
all of its member rule applications for the final solution.

Definition 17 (Constraint 3: Forbid Dependency Cycles).

Given a triple graph G, let D : G
∗

=⇒ G be a derivation via operational rules with
the underlying set D of direct derivations, and let CY be the set of all dependency
cycles cy ∈ D. A linear constraint acyclic(D) is defined as follows:

acyclic(D) =
∧

cy∈CY,cy={d1,...,dn}

n∑
i=1

δi < n

While the previous constraint types guarantee containment in the language
of the TGG at hand as well as context constraints for premises and conclusions,
Constraint 4 expresses the semantics of graph constraints to achieve schema-
compliance. Thereby, the linear constraint is very similar to the definition for
satisfaction of graph constraints (Def. 6). It is possible to formulate this con-
straint independent of the concrete rule application because only graph con-
straints are supported instead of arbitrary graph conditions.

Definition 18 (Constraint 4: Satisfy Graph Constraints).
Let (TG, C = {(p∅ : G∅ → P, {ci : P → Ci | i ∈ I})}) be a schema. A linear
constraint sat(G) expressing that G fulfils all graph constraints of C is defined
as follows:

sat(G) =
∧
C∈C

[¬π ∨
∨
i∈I

γi]

Finally, the objective function can be defined to maximize the number of
markings over the entire input triple, while ensuring that no correctness con-
straints are violated and the result is schema-compliant according to Def. 7.
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Definition 19 (Optimisation Problem).

Given a triple graph G and a schema (TG, C), let D : G
∗

=⇒ G be a derivation
via operational rules. The ILP to be optimised is constructed as follows: max.∑
d∈D
|mrk(d)| s.t. markedAtMostOnce(G) ∧ context(D) ∧ acyclic(D) ∧ sat(G)

The remainder of this section provides a proof sketch showing that the consis-
tency check always terminates, and succeeds iff the input triple graph is con-
sistent with respect to Def. 8. It is an extension of the proof for correctness
and completeness in a setting without graph constraints [18, 24], such that the
focus of this version is set on schema compliance. In the following, let a TGG
TGG = (G∅,R), a schema (TG,GC), a triple graph G, and a derivation via op-

erational rules D : G
∗

=⇒ G with underlying set of direct derivations D be given
for all definitions, lemmas and theorems.

First, we define a proper subset of operational rule applications as a set which
is associated to a feasible solution for the ILP (Def. 14, 15, 17 and 18).

Definition 20 (Proper Subset of Rule Applications).
A subset D′ ⊆ D is a proper subset of D iff D′ ` markedAtMostOnce(G) ∧

context(D) ∧ acyclic(D) ∧ sat(G).

Next, it is shown that there exists a sequence of the rule applications of a
proper subset, such that the marked elements of the graph form a consistent
triple. Furthermore, the marked part of the graph is schema-compliant.

Lemma 1 (Consistent Portions of a Triple Graph).
∃ proper subset D′ ⊆ D ⇐⇒ ∃G′ ∈ L(TGG) ∩ L(TG,GC) such that:

elem(G′) =
⋃

d′∈D′
mrk(d′)

Proof (Sketch). When all direct derivations d ∈ D′ are sequenced over the B
relation (Def. 16), a proper subset according to Def. 20 is formed, resulting in a
triple graph G′ ∈ L(TGG) consisting of the elements marked by D′. At the same
time, G′ will be schema-compliant iff D′ ` sat(G′) as this predicate ensures that
all given graph constraints are satisfied.

We demand the property of maximality to avoid trivial solutions such as the
empty triple graph:

Definition 21 (Maximal Proper Subset of Rule Applications).
A proper subset D′ of D is maximal if there does not exist any other proper

subset D′′ of D with a greater objective function value (cf. Def. 19).

The application of a sequenced maximal proper subset of rule applications
on the empty triple graph is denoted as maximally marked triple graph.

Definition 22 (Maximally Marked Triple Graph).
Let D′ be a maximal, proper subset of D. The triple graph G′ identified with
D′ according to Lemma 1 is denoted as a maximally marked triple graph with
respect to D.
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Theorem 1 guarantees that a triple graph that can be completely marked by
rule applications of a maximal proper subset is indeed consistent.

Theorem 1 (Correctness).
For a maximally marked triple graph G′ with respect to D, it holds:⋃

d∈D
mrk(d) = elem(G) =⇒ G′ is consistent

Proof (Sketch). G′ ∈ L(TGG) immediately follows from Lemma 1: As D is a
maximal proper subset, G′ ∈ L(TGG) holds, and the rule applications of D can
be sequenced, such that they can mark G′ entirely according to the premise of
this theorem. G′ ∈ L(TG,GC) holds as well because the choice of any d ∈ D′
leading to a violation of any gc ∈ GC would make sat(G′) false. Therefore, G′ is
consistent according to Def. 8.

To guarantee completeness, it remains to show that the process of construct-
ing the ILP terminates, which requires the set of possible rule applications to
be finite. As all possible derivation sequences are collected, the ILP solver ter-
minates with an optimum solution iff one exist. We therefore demand the un-
derlying TGGs to be progressive, i.e., each operational rule is required to mark
at least one element. In fact, operational rules that do not mark elements cor-
respond to TGG rules that do not have any effect on the host graph they are
applied on because they cannot add any elements, and are therefore irrelevant
for practical use.

Definition 23 (Progressive TGGs).
TGG is progressive if each of its operational rules has at least one marking

element.

Demanding the TGG at hand to be progressive, completeness can be con-
cluded by showing that the consistency check cannot cycle.

Theorem 2 (Completeness).
Let TGG be progressive. A maximally marked triple graph G′ with respect to D

exist such that:

G′ is consistent =⇒
⋃
d∈D

mrk(d) = elem(G)

Proof (Sketch). As Lemma 1 guarantees the existence of a derivation D, and
ILP solving always produces a maximally marked triple graph G′, we only need
to show the implication (equivalence follows from Thm. 1). To derive a con-
tradiction, we now assume that G′ is consistent, but that G′ either contains
unmarked elements or violates any constraint gc ∈ GC. From G′ being consis-
tent, it follows from the decomposition and composition theorem for TGGs and
operational rules [8, 18] that there exists a derivation sequence D′ : G

∗
=⇒ G′

with operational rules. This means that at least one rule application of D′ is not
contained in D or G′ violates any gc ∈ GC. The latter is impossible, as it would
contradict to the assumption that G′ is consistent. The former implies that the
objective function value could be increased by using D′ for marking G, which
contradicts the optimality of the result found by ILP solving.
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7 Implementation and Experimental Evaluation

We investigate the impact of graph constraints on runtime performance, con-
sidering scalability of consistency checking for growing model sizes with and
without taking graph constraints into account, by two research questions:

(RQ1) By which factor does the number of variables and ILP constraints increase
when introducing graph constraints to the ILP? How does this influence the
runtime of pattern matching, ILP construction, and ILP solving?

(RQ2) How does the runtime performance relate to model size (number of nodes
and edges) for consistency checking with and without graph constraints?

Setup: We implemented our approach within the tool eMoflon2 using Neo4J3

as an underlying graph pattern matcher and database for querying and stor-
ing the models. As a test example, we took the FacebooktoInstagram TGG
as described in Sect. 2. To obtain synthetic models, we used the derived TGG-
based model generator to produce random models with 1078 to 226,988 elements
(roughly the same number of nodes and edges). We then executed the derived
TGG-based consistency checker, once taking the negative graph constraint from
Sect. 2 into account, and once without any graph constraints. For each configu-
ration, the number of variables and constraints of the ILP, as well as the time
needed for pattern matching, ILP construction, and ILP solving were measured
for 10 repeated runs. As final values, the medians of the 10 test runs were taken
to minimize the bias introduced by outliers. All performance tests were executed
on a standard notebook with an Intel Core i7 (1.80 GHz), 16GB RAM, and Win-
dows 10 64-bit as operating system. An installation of Eclipse IDE for Java and
DSL Developers, version 2019-09 with Java Development Kit (JDK) version 13
was used. The JVM running the tests was allocated a maximum of 4GB memory,
and 8GB were allocated to the graph database Neo4J.

Results:4 Figure 9 shows the time needed for pattern matching, ILP con-
struction, and ILP solving for different model sizes. One can observe that for
both configurations (with and without graph constraints), the runtime of all
components depends linearly on the number of model elements. Taking graph
constraints into account for the consistency check makes the ILP construction
roughly 20% - 40% slower. This is to be expected as the ILP problem is simply
larger. For similar reasons, a difference can also be observed for the ILP solving
step, whose runtime is negligible without constraints, but increases by a factor
of 10 when including graph constraints. While this increase is substantial, ILP
solving does not have a large overall impact on the runtime performance even for
200k elements. Interestingly, pattern matching gets faster when the additional
negative graph constraint is included. This is surprising as additional pattern
matching is required to determine matches of the negative constraint. The un-
derlying graph database is heuristic-based, however, and also uses caching strate-
gies to decide what data to keep in memory. Apparently the pattern matching
strategy applied for the collection of patterns including the negative constraint
seems to scale better for model sizes greater than 130k.

2 github.com/eMoflon/emoflon-neo 3 neo4j.com 4 bit.ly/2BFAutd

https://github.com/eMoflon/emoflon-neo
https://neo4j.com
https://bit.ly/2BFAutd
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Fig. 9. Runtime Measurements Fig. 10. #Variables and #Constraints

The number of binary variables and constraints grows linearly with model size
for both settings, involving slightly more variables than constraints (cf. Fig. 10).
With the negative graph constraint, this number increases by about 25%-50%.

Summary: Revisiting our research questions, one can state that the number
of binary variables and constraints increases by a constant factor when introduc-
ing (negative) graph constraints, resulting in a constant increase of the overall
runtime for consistency checking. While the ILP solving step increases substan-
tially and could become problematic for large models, our measurements indicate
that the ILP solving step is probably not the bottle neck for our example (RQ1).
In both settings (with and without the negative graph constraint), the runtime
for consistency checking increases linearly with growing model size (RQ2).

Threats to validity: The evaluation was performed with only one TGG
consisting of only four rules, only the consistency checker (of all operations) was
run on randomly generated synthetic instances, and we measured the additional
price of taking only the negative graph constraint from Sect. 2 into account.
While our initial results are positive and indicate that the additional price of
guaranteeing schema compliance as we propose does not render the ILP-based
TGG operations infeasible due to an explosion in runtime, extensive bench-
marking with multiple TGGs, multiple graph constraints, larger model sizes,
and multiple consistency management operations is required to transfer these
results to practical, real-world applications.

8 Extension to Other Operations

The presented concepts are tailored to consistency checking with correspon-
dences, i.e. source, target and correspondence model are given as inputs and are
marked by operational rule applications, whereas all three models are simulta-
neously created by the original rule applications. There are also other operations
which use a mixture of creating and marking elements to complement given in-
put models to a complete triple. Figure 11 depicts the example instance of Fig. 8
annotated with the operations which require the respective model(s) as input.
The previously presented CO (check only) operation gets all three models as
input, whereas CC (correspondence creation) checks for consistency by building
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up the correspondence model for given source and target models. FWD OPT
and BWD OPT are operations for unidirectional transformation, i.e. either the
source or the target model is given and a consistent transformation to the re-
spective other domain is computed. A formal specification of the operations was
introduced by Weidmann et al. [24].

All these operations are based on

Fig. 11. Input models per operation

a common formalism that expresses
dependencies between rule applications
as ILP constraints, while in contrast
to the definitions of this paper, de-
pendencies between created elements
are also taken into account. As con-
straints for marked and created parts
of the triple are formed almost the
same way, it is possible to transfer
the results for consistency checking
respecting graph constraints to the other operations as well. However, the formal
proof which guarantees the operations’ correctness and completeness [18,24] has
to be extended to take graph constraints into account.

9 Conclusion and Future Work

We presented an extension of a seminal approach to combining TGGs and ILP
by supporting graph constraints. For consistency checking with given correspon-
dence links, we have shown correctness and completeness of the approach. The
results can be generalised towards other operations such as unidirectional trans-
formations as well. Additionally, the approach was implemented in a TGG tool,
and an experimental evaluation indicated that the scalability of the approach is
sufficient for practical use. For future work, we plan to extend the approach to
cope with general AC as well, increasing the expressive power of the supported
class of TGGs. As a proof of concept, we only implemented negative constraints
until now, which should be extended towards general graph constraints. Using
an incremental pattern matcher with extensible matches, it should be possible
to collect matches for the premise and corresponding conclusions at once, which
would keep the implementation efficient. Further performance tests with other
(industrial) examples will also be necessary to underpin the validity of the evalu-
ation results with respect to runtime performance, as both the metamodels and
the rule set are very restricted, whereas the considered model sizes are realistic.
Generating consistent models first and then mutate them slightly would further
lead to a smaller and therefore more reasonable number of inconsistencies.
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