
Statistical Model Checking for
Variability-Intensive Systems

Maxime Cordy1 , Mike Papadakis1, and Axel Legay2

1 SnT, University of Luxembourg, Luxembourg
{maxime.cordy,michail.papadakis}@uni.lu
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Abstract. We propose a new Statistical Model Checking (SMC) method
to discover bugs in variability-intensive systems (VIS). The state-space
of such systems is exponential in the number of variants, which makes
the verification problem harder than for classical systems. To reduce ver-
ification time, we sample executions from a featured transition system –
a model that represents jointly the state spaces of all variants. The com-
bination of this compact representation and the inherent efficiency of
SMC allows us to find bugs much faster (up to 16 times according to our
experiments) than other methods. As any simulation-based approach,
however, the risk of Type-1 error exists. We provide a lower bound and
an upper bound for the number of simulations to perform to achieve the
desired level of confidence. Our empirical study involving 59 properties
over three case studies reveals that our method manages to discover all
variants violating 41 of the properties. This indicates that SMC can act
as a low-cost-high-reward method for verifying VIS.

1 Introduction

We consider the problem of bug detection in Variability Intensive Systems (VIS).
This category of systems encompasses any system that can be derived into multi-
ple variants (differing, e.g., in provided functionalities), including software prod-
uct lines [12] and configurable systems [32]. Compared to traditional (“single”)
systems, the complexity of bug detection in VIS is increased: bugs can appear
only in some variants, which requires analysing the peculiarities of each variant.

Among the number of techniques developed for bug detection, one finds test-
ing and model checking. Testing [6] executes particular test inputs on the sys-
tem and checks whether it triggers a bug. Albeit testing remains widely used
in industry, the rise of concurrency and inherent system complexity has made
system-level test case generation a hard problem. Also, testing is often limited
to bounded reachability properties and cannot assess liveness properties.

Model checking [2] is a formal verification technique which checks that all
behaviours of the system satisfy specified requirements. These behaviours are
typically modelled as an automaton, whose each node represents a state of the
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system (e.g. a valuation of the variables of a program and a location in this pro-
gram’s execution flow) and where each transition between two states expresses
that the program can move from one state to the other by executing a sin-
gle action (e.g. executing the next program statement). Requirements are often
expressed in temporal logics, e.g. the Linear Temporal Logic (LTL) [31].

Such logics capture both safety and liveness properties of system behaviours.
As an example, consider the LTL formula �(command sleep⇒ ♦system sleep).
command sleep and system sleep are logic atoms and represent, respectively, a
state where the sleep command is input and another state where the system
enters sleep mode. The symbols � and ♦ means always and eventually, respec-
tively. Thus, the whole formula expresses that “it is always the case that when
the sleep command is input, the system eventually enters sleep mode”.

Contrary to testing, model checking is exhaustive: if a bug exists then the
checking algorithm outputs a counterexample, i.e. an execution trace of the sys-
tem that violates the verified property. Exhaustiveness makes model checking
an appealing solution to obtain strong guarantees that the system works as in-
tended. It can also nicely complement testing (whose main advantage remains
to be applied directly on the running system), e.g. by reasoning over liveness
properties or by serving as oracle in test generation processes [1]. Those bene-
fits, however, come at the cost of scalability issues, the most prominent being
the state explosion problem. This term refers to the phenomenon where the state
space to visit is so huge that an exhaustive search is intractable. As an illustration
of this, let us remark that the theoretical complexity of the LTL model-checking
problem is PSPACE-complete [37].

Model checking complexity is further exacerbated when it comes to VIS. In-
deed, in this case, the model-checking problem requires verifying whether all
the variants satisfy the requirements [11]. This means that, if the VIS comprises
n variation points (n features in a software product line or n Boolean options
in a configurable system), the number of different variants to represent and to
check can reach 2n. This exponential factor adds to the inherent complexity of
model checking. Thus, checking each variant (or models thereof) separately –
an approach known as enumerative or product-based [34] – is often intractable.
To alleviate this, variability-aware models and companion algorithms were pro-
posed to represent and check efficiently the behaviour of all variants at once. For
instance, Featured Transition Systems (FTS) [11] are transition systems where
transitions are labelled with (a symbolic encoding of) the set of variants able to
exercise this transition. The structure of FTS, if well constructed, allows one to
capture in a compact manner commonalities between states and transitions of
several variants. Exploiting that information, family-based algorithms can check
only once the executions that several variants can execute and explore the state
space of an individual variant only when it differs from all the others. In spite
of positive improvements over the enumerative approach, state-space explosion
remains a major challenge.

In this work, we propose an alternative technique for state-space exploration
and bug detection in VIS. We use Statistical Model Checking (SMC) [26] as a
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trade-off between testing and model checking to verify properties (expressed in
full LTL) on FTS. The core idea of SMC is to conduct some simulations (i.e.
sample executions) of the system (or its model) and verify if these executions
satisfy the property to check. The results are then used together with statistical
tests to decide whether the system satisfies the property with some degree of
confidence. Of course, in contrast with an exhaustive approach, a simulation-
based solution does not guarantee a result with 100% confidence. Still, it is
possible to bound the probability of making an error. Simulation-based methods
are known to be far less memory- and time-consuming than exhaustive ones, and
are sometimes the only viable option. Over the past years, SMC has been used
to, e.g. assess the absence of errors in various areas from aeronautic to systems
biology; measure cost average and energy consumption for complex applications
such as nanosatellites; detect rare bugs in concurrent systems [10,21,25].

Given an LTL formula and an FTS, our family-based SMC method samples
executions from all variants at the same time. Doing so, it avoids sampling twice
(or more) executions that exist in multiple variants. Merging the individual state
spaces biases the results, though, as it changes the probability distribution of the
executions. This makes the problem different from previous methods intended
for single systems (e.g. [20]) and obliges us to revisit the fundamentals of SMC in
the light of VIS. In particular, we want to characterize the number of execution
samples required to bound the probability of Type-1 error by a desired degree
of confidence. We provide a lower bound and an upper bound for this number
by reducing its computation to particular instances of the coupon problem [4].
We implemented our method within ProVeLines [17], a model checker for VIS.
We provide empirical evidence, based on 3 case studies totalling 59 properties
to check, that family-based SMC is a viable approach to verify VIS. Our study
shows that our method manages to find all buggy variants in 41 properties and
does so up to 16 times faster than state-of-the-art model-checking algorithms
for VIS [11]. Moreover, our approach can achieve a median bug detection rate 3
times higher than classical SMC applied to each variant individually. The hardest
cases arise when the state space of some variant is substantially smaller than the
other. This leads to a reduced probability to find a bug in those variants.

2 Background on Model Checking

In model checking, the behaviour of the system is often represented as a transi-
tion system (S,∆,AP,L) where S is a set of states, ∆ ⊆ S × S is the transition
relation, AP is a set of atomic propositions3 and L : S → 2AP labels any state
with the atomic propositions that the system satisfies when in such a state.

2.1 Linear Temporal Logic

LTL is a temporal logic that allows specifying desired properties over all future
executions of some given system. Given a set AP of atomic propositions, an LTL

3 Atomic propositions can be seen as basic observable properties of the system state.
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formula φ is formed according to the following grammar: φ ::= > | a | φ1 ∧ φ2 |
¬φ1 | ©φ1 | φ1Uφ2 where φ1 and φ2 are LTL formulae, a ∈ AP , © is the next
operator and U is the until operator. We also define ♦φ (“eventually” φ) and
�φ (“always” φ) as a shortcut for >Uφ and ¬♦¬φ, respectively.

Vardi and Wolper have presented an automata-based approach for checking
that a system – modelled as a transition system ts – satisfies an LTL formula
φ [37]. Their approach consists of, first, transforming φ into a Büchi automaton
B¬φ whose language is exactly the set of executions that violate φ, that is, those
that visit infinitely often a so-called accepting state. Such execution σ takes the
form of a lasso, i.e. σ = q0 . . . qn with qj = qn for some j and where qi is accepting
for some i : j ≤ i ≤ n. We name accepting any such lasso whose cycle contains
an accepting state.

The second step is to compute the synchronous product of ts and B¬φ, which
results in another Büchi automaton Bts⊗¬φ. Any accepting lasso in Bts⊗¬φ rep-
resents an execution of the system that violates φ. Thus, Vardi and Wolper’s
algorithm comes down to checking the absence of such accepting lasso in the
whole state space of Bts⊗¬φ. The size of this state space is O(|ts| × |2|φ||) and
the complexity of this algorithm is PSPACE-complete.

2.2 Statistical Model Checking

Originally, SMC was used to compute the probability to satisfy a bounded LTL
property for stochastic system [39]. The idea was to monitor the properties on
bounded executions represented by Bernoulli variables and then use Monte Carlo
to estimate the resulting property. SMC also applies to non-stochastic systems
by assuming an implicit uniform probability distribution on each state successor.

Grosu and Smolka [20] lean on this and propose an SMC method to address
the full LTL model-checking problem. Their sampling algorithm walks randomly
through the state space of Bts⊗¬φ until it finds a lasso. They repeat the process
M times and conclude that the system satisfies the property if and only if none
of the M lassos is accepting. They also show that, given a confidence ratio δ and
assuming that the probability p for an execution of the system exceeds an error
margin ε, setting M = δ

1−ε bounds the probability of a Type-1 error (rejecting
the hypothesis that the system violates the property while it actually violates it)
by δ. Thus, M can serve as a minimal number of samples to perform. Our work
extends theirs in order to support VIS instead of single systems. Other work on
applying SMC to the full LTL logic can be found in [18,38].

2.3 Model Checking for VIS

Applying classical model checking to VIS requires iterating over all variants,
construct their corresponding automata Bts⊗¬φ and search for accepting lasso
in each of these. This enumerative method (also named product-based [34]) fails
to exploit the fact that variants have behaviour in common.

As an alternative, researchers came up with models able to capture the be-
haviour of multiple variants and distinguish between the unique and common
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Fig. 1: An example of FBA with two variants.

behaviour of those variants [3, 8, 11]. Among such models, we focus on featured
transition systems [11] as those can link an execution to the variants able to
execute it more directly than the alternative formalisms. In a nutshell, FTS ex-
tend the standard transition system by labelling each transition with a symbolic
encoding of the set of variants able to exercise this transition. Then, the set of
variants that can produce an execution π is the intersection of all sets of variants
associated with the transitions in π.

To check which variants violate a given LTL formula φ, one can adapt the
procedure of Vardi and Wolper and build the synchronous product of the featured
transition system with B¬φ [11]. This product is similar to the Büchi automaton
obtained in the single system case, except that its transitions are also labelled
with a set of variants.4 Then, the buggy variants are those that are able to
execute the accepting lassos of this automaton. This generalized automaton is
the fundamental formalism we work on in this paper.

Definition 1. Let V be a set of variants. A Featured Büchi Automaton (FBA)
over V is a tuple (Q, ∆, Q0, A,, Θ, γ) where Q is a set of states, ∆ ⊆ Q × Q
is the transition relation, Q0 ⊆ Q is a set of initial states, A ⊆ Q is the set of
accepting states, Θ is the whole set of variants, and γ : ∆→ 2Θ associates each
transition with the set of variants that can execute it.

Figure 1 shows an FBA with two variants and eight states. State 5 as the
only accepting state. Both variants can execute the transition from State 3 to
State 4, whereas only variant v2 can move from State 3 to State 6.

The Büchi automaton corresponding to one particular variant v is derived by
removing the transitions not executable by v. That is, we remove all transitions
(q, q′) ∈ ∆ such that v 6∈ γ(q, q′). The resulting automaton is named the projec-
tion of the FBA onto v. For example, one obtains the projection of the FBA in

4 Those labels are equal to those found in the corresponding transitions of the featured
transition system.
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Figure 1 onto v2 by removing the transition from State 3 to State 7 and those
between State 7 to State 8.

2.4 Other Related Work

Recent work has applied SMC in the context of VIS. In [36], the authors pro-
posed an algebraic language to describe (quantitative) behavioural variability in
a dynamic manner. While their work shares some similarities with ours, there
are fundamental differences. First, we seek for guaranteeing the absence of bugs
in all variants of the family (applying family-based concepts), while they focus
on dynamic feature interactions (on a product-based basis). The second differ-
ence is that they consider quantitative bounded properties, while we support the
entire LTL verification problem by extending the multi-lasso concept of [20,28].

Another related, yet different area is the sampling of VIS variants (e.g. [27,
30]). Such work considers the problem of sampling uniformly variants in order to
study their characteristics (e.g. performance [22] and other quality requirements
[15]) and infers those of the other variants. Recently, Thüm et al. [35] survey
different strategies for the performance analysis of VIS, including the sampling
of variants and family-based test generation, which is based on the same idea of
executing test cases common to multiple variants. Contrary to us, such works
do not consider temporal/behavioural properties and most of them perform the
sampling based on a static representation of the variant space (i.e. a feature
model [23]). An interesting direction for future work is to combine our family-
based SMC with sampling techniques to check only representative variants of
the family.

3 Family-Based Statistical Model Checking

The purpose of SMC is to reduce the verification effort (when visiting the state
space of the system model) by sampling a given number of executions (i.e. lassos).
This gain in efficiency, however, comes at the risk of Type-1 errors. Indeed, while
the discovery of a counterexample leads with certainty to the conclusion that the
variants able to execute it violate the property φ, the fact that the sampling did
not find a counterexample for some variant v does not entail a 100% guarantee
that v satisfies φ. The more lassos we sample, the more confident we can get that
the variants without counterexamples satisfy φ. Thus, designing a family-based
SMC method involves answering three questions: (1) how to sample executions;
(2) how to choose a suitable number of executions; (3) what is the associated
probability of Type-1 error.

3.1 Random Sampling in Featured Büchi Automata

One can sample a lasso in an FBA by randomly walking through its state space,
starting from a randomly-chosen initial state and ending as soon as a cycle is
found. A particular restriction is that this lasso should be executable by at least
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Input: fba = (Q, ∆, Q0, A, Θ, γ)
Output: (σ, Θσ, accept) where σ is a lasso of fba and Θσ is the set of the

variants able to execute σ and accept is true iff σ is accepting.

1 q0 ← pick from Q0 with probability 1
|Q0|

;

2 q ← q0; σ ← q0; Θσ ← Θ; depth← 0; a← 0;
3 while hash(q) =⊥ do
4 depth← depth+ 1;
5 hash(q)← depth;
6 if q ∈ A then
7 a← depth;
8 end
9 Succσ ← {q′ ∈ Q|(q, q′) ∈ ∆ ∧ (γ(q, q′) ∩Θσ) 6= ∅};

10 q′ ← pick from Succσ with probability 1
|Succσ| ;

11 σ ← σq′;
12 Θσ ← Θσ ∩ γ(q, q′);
13 q ← q′;

14 end
15 return (σ,Θσ, hash(q) ≤ a)

Algorithm 1: Random Lasso Sampling

one variant; otherwise, we would sample a behaviour that does not actually exist.
The set of variants able to execute a given lasso are those that can execute all
its transitions, i.e. the intersection of all γ(q, q′) met along the transitions of this
lasso. More generally, we define the lasso sample space of an FBA as follows.

Definition 2. Let fba = (Q, ∆, Q0, A, Θ, γ) be a featured Büchi automaton.
The lasso sample space L of fba is the set of executions σ = q0 . . . qn such that
q0 ∈ Q0, (qi, qi+1) ∈ ∆ for all 0 ≤ i ≤ n− 1, (

⋂
0≤i≤n−1 γ(qi, qi+1)) 6= ∅, qj = qn

for some 0 ≤ j ≤ n− 1 and a 6= b⇒ qa 6= qb for all 0 ≤ a, b ≤ n− 1. Moreover,
σ is said to be an accepting lasso if ∃qa ∈ A for some j ≤ a ≤ n.

Algorithm 1 formalizes the sampling of lassos in a deadlock-free FBA.5 After
randomly picking an initial state (Line 1), we walk through the state space by
randomly choosing, at each iteration, a successor state among those available
(Line 7–18). Throughout the search, we maintain the set of variants Θσ that
can execute σ so far (Line 16). Then, we use this set as a filter when selecting
successor states, so as to make sure that σ remains executable by at least one
variant. At Line 13, Succσ is the set of successors q′ of q (last state of σ) that can
be reached. We stop the search as soon as we reach a state that was previously
visited (Line 7). If this state was visited before the last accepting state, it means
that the sampled lasso is accepting (Line 19).

5 We assume that no variant may remain stuck in a state without outgoing transition
that this variant can execute. Should this happen, we assume that the variant self-
loops in the state wherein it is stuck, yielding an immediate lasso.
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A motivated criticism [28] of the use of random walk to sample lasso is that
shorter lassos receive a higher probability to be sampled. To counterbalance
this, we implemented a heuristic named multi-lasso [20]. It consists of ignoring
backward transitions that do not lead to an accepting lasso if there are still
forward transitions to explore. This is achieved by modifying Line 13 such that
backward transitions leading to a non-accepting lasso are not considered in the
successor set.

Assuming a uniform selection of outgoing transitions from each state, one
can compute the probability that a random walk samples any given lasso from
the sample space.

Definition 3. The probability P (σ) of a lasso σ = q0 . . . qn is inductively defined
as follows: P [q0] = |Q0|−1 and P [q0 . . . qj ] = P [q0 . . . qj−1]× |Succq0...qj−1

|−1.

In the absence of deadlock, (L,P(L), P ) defines a probability space. Proba-
bility spaces on infinite executions are by no means a trivial construction (see
e.g. [9]). Nevertheless, the proof of this proposition is similar to its counterpart
in Büchi automata [20] and is therefore omitted. It derives from the observation
that the lasso sample space is composed of non-subsuming finite prefixes of all
infinite paths of the automaton.

Let us consider an example. In the FBA from Figure 1, there are two non-
accepting lassos (l1 = (1, 2, 1) and l2 = (1, 3, 7, 8, 7)) and two accepting lassos
(l3 = (1, 3, 4, 5, 3) and l4 = (1, 3, 6, 5, 3)). Both variants can execute lassos l3,
while only v1 can execute l2 and only v2 can execute l1 and l4. The probability
of sampling l1 is 1

2 , whereas P [l2] = P [l3] = P [l4] = 1
6 . Thus, the probability of

sampling a counterexample executable by v2 is 1
3 , whereas it is only 1

6 for v1.

Next, we characterize the relationship between this probability space and any
individual variant v. Let Lv be the set of lassos executable by v. Since Lv ⊆ L,
the probability pv to sample such a lasso is

∑
σv∈Lv P (σ). Note that pv can

be different from the probability p̂v of sampling an accepting lasso from the
automaton modelling the behaviour of v only (i.e. the projection of the FBA
onto v). This is because, in the FBA, the probability of selecting an outgoing
transition from a given state is assigned uniformly regardless of the number of
variants able to execute that transition. This balance-breaking effect increases
more as the variants have different numbers of unique executions.

Let σ = q0 . . . qn be a lasso in Lv. Then Pv(σ) is inductively defined as follows:
Pv[q0] = P [q0] and Pv[q0 . . . qj ] = Pv[q0 . . . qj−1] × |{(qj−1, q) ∈ ∆v : q ∈ Q}|−1
where ∆v = {(q, q′) ∈ ∆ : v ∈ γ(q, q′)}. In our example, Pv1 [l3] = 1

2 , as opposed
to P [l3] = 1

6 . This implies that it is more likely to sample an accepting lasso
executable by v1 from its projection in one trial than it is from the whole FBA
in two trials. This illustrates the case where merging the state spaces of the
variants can have a negative impact on the capability to find bugs specific to
one variant.

Thus, sampling lassos from the FBA allows finding one counterexample exe-
cutable by multiple products but it introduces a bias. Overall, it tends to decrease
the probability of sampling lassos from variants that have a smaller state space.
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This can impact the results and parameter choices of SMC, like the number of
samples required to get confident results and the associated Type-1 error.

3.2 Hypothesis Testing

Remember that addressing the model checking problem for VIS requires to find
a counterexample for every buggy variant v. Thus, one must sample a number
M of lassos such that one gets an accepting lasso for each such buggy variant
with a confidence ratio δ. Let fba be a featured Büchi automaton, v be a variant
and pv =

∑
σ ∈ LωvP (σ) where Lωv is the set of accepting lasso executable by v.

Let Zv denote a Bernoulli random variable such that Zv = 1 with probability
pv and Zv = 0 with probability qv = 1 − pv. Now, let Xv denote the geometric
random variable with parameter pv that encodes the number of independent
samples required until Zv = 1. For a set of variants V = {v1 . . . v|V |}, we have
that Xv1 . . . Xv|V | are not independent since one may sample a lasso executable
by more than one variant.

We define X = maxi=1..|V |Xvi . We aim to find a number of sample M such
that P [X ≤ M ] ≥ 1 − δ for a confidence ratio δ. This is analogous to the
coupon collector’s problem [4], which asks how many boxes are needed to collect
one instance of every coupon placed randomly in the boxes. It differs from the
standard formulation in that the probability of occurrence of coupons are neither
independent nor uniform, and a single box can contain 0 to |V | coupons. Even
for simpler instances of the coupon problem, computing P [X ≤M ] analytically
is known to be hard [33]. Thus, existing solutions rather characterise a lower
bound and an upper bound. We follow this approach as well.

3.3 Lower Bound (Minimum Number of Samples)

To compute a lower bound for the number of samples to draw, we transform the
family-based SMC problem to a simpler form (in terms of verification effort).
We divide our developments into two parts. First, we show that assigning equal
probabilities pvi to every variant vi (obtained by averaging the original probabil-
ity values) reduces the number M of required samples. As a second step, we show
that assuming that all variants share all their executions also reduces M . Doing
so, we reduce the family-based SMC problem to its single-system counterpart,
which allows us to obtain the desired lower bound.

Averaged probabilities. Let pavg = 1
|V |

∑
v=1..|V | pv and Xeven be the coun-

terpart of X where all probabilities pvi have been replaced by pavg .

Lemma 4. For any number N , it holds that P [Xeven ≤ N ] ≥ P [X ≤ N ].

Intuitively, the value of X depends mainly on the variants whose accepting lassos
are rarer. By averaging the probability of sampling accepting lassos, we raise the
likelihood to get those rarer lassos and, thus, the number of samples required
to get an accepting lasso for all variants. Shioda [33] proves a similar result
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for the coupon collector problem. He does so by showing that the vector peven

majorizes p = {pv1 . . . pv1} and that the ccdf 6 of X is a Schur-concave function
of the sampling probabilities. Even though our case is more general than the non-
uniform coupon collector’s problem, the result of Lemma 4 still holds. Indeed, we
observe that the theoretical proof of [33] (a) does not assume the independence
of the random variables Zvi ; (b) still applies to the dependent case; and (c)
supports the case where the sum of the probability values pvi is less than one.

Maximized commonalities. Next, let Xall be the particular case of Xeven

where all accepting lassos are executable by all variants and are sampled with
probability pavg . Thus, the number of samples to find an accepting lasso for
every variant is reduced to the number of samples required to find any accepting
lasso.

Lemma 5. It holds that P [Xall ≤ N ] ≥ P [Xeven ≤ N ].

Moreover, let us note that Xall is a geometric random variable with parameter
pavg . This reduces our problem to sampling an accepting lasso in a classical Büchi
automaton and allows us to reuse the results of Grosu and Smolka [20].

Lemma 6. For a confidence ratio δ and an error margin ε, it holds that

pavg ≥ ε⇒ P [Xall ≤M ] ≥ P [Xall ≤ N ] = 1− δ

where M = ln(δ)
ln(1−ε) and N = ln(δ)

ln(1−pavg) .

This leads us to the central result of this section.

Theorem 7. Assuming that pavg ≥ εavg for a given error margin εavg, a lower
bound for the number of samples required to find an accepting lasso for each

buggy variant is M = ln(δ)
ln(1−εavg) with a Type-1 error bounded by δ.

3.4 Upper Bound (Maximum Number of Samples)

We follow a similar two-step process to characterise an upper bound for M . In the
first step, we replace the probabilities pvi of every variant by their minimum.
In the second step, we alter the model so that the variants have no common
behaviour. Then we show that, given a desired degree of confidence, the obtained
model requires a higher number of samples than the original one.

Minimum probability. Let pmin = minv=1..|V | pv and Xmin be the coun-
terpart of X where all probabilities pvi have been replaced by pmin. The ccdf
of X being a decreasing function of the sampling probabilities, we have that
P [Xmin ≤ N ] ≤ P [X ≤ N ].

6 ccdf stands for complementary cumulative distribution function
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No common counterexamples. Let {(Xindep)vi} be a set of independent geo-
metric random variables with parameters pmin and let Xindep = max(Xindep)vi .
Xindep actually encodes the number of samples required to get a counterexample
for all buggy variants when those have no common counterexamples. We have
that P [Xindep ≤ N ] ≤ P [Xmin ≤ N ], since the number of samples to perform
cannot be reduced by sampling a counterexample executable by multiple vari-
ants. Now, let us note that Xindep is an instance of the uniform coupon problem
with |V | coupons to collect. A lower bound for P [Xindep ≤ M ] is known to
be 1 − |V | × (1 − pmin)M [33]. Assuming pmin greater than some error margin
εmin, we have P [Xindep ≤ M ] ≥ 1 − |V | × (1 − εmin)M . Setting a confidence
ratio δ, we want to find a M such that P [Xindep ≤ M ] ≥ 1 − δ. By solving

1 − |V |(1 − εmin)M = 1 − δ, we obtain M = ln(δ)−ln(|V |)
ln(1−εmin) , which we can use as

the upper bound for the number of samples to perform.

Theorem 8. Assuming that pmin ≥ εmin for a given error margin εmin, an
upper bound for the number of samples required to find an accepting lasso for

each buggy variant is M = ln(δ)−ln(|V |)
ln(1−εmin) with a Type-1 error is bounded by δ.

4 Empirical Study

4.1 Objectives and Methodology

One can regard SMC as a means of speeding up verification while risking miss-
ing counterexamples. Our first question studies this trade-off and analyses the
empirical Type-1 error rate. More precisely, we compute the detection rate of
our family-based SMC method, expressed as the number of buggy variants that
it detects over the total number of buggy variants.

RQ1 What is the empirical buggy variant detection rate of family-based SMC?

We compute the detection rate for different numbers M of samples lying between
the lower and upper bounds as characterised in Section 3. To get the ground
truth (i.e. the true set of all buggy variants), we execute the exhaustive LTL
model checking algorithms for FTS designed by Classen et al. [11]. For the lower
bound, we assume that the average probability to sample an accepting lasso for
any variant is higher than εavg = 0.01. Setting a confidence ratio δ = 0.05 yields
ln(0.05)
ln(0.99) = 298. We round up and set M = 300 as our lower bound. For the higher

bound, we assume that the minimum probability to sample a counterexample in
a buggy variant is higher than εmin = 3.10−4 and also set δ = 0.05. For a model

with 256 variants7, this yields M = ln(0.05)−ln(256)
ln(0.9997) = 18478. For convenience,

we round it up to 19, 200 = 300 · 26. In the end, we successively set M to
300, 600, . . . , 19200 and observe the detection rates.

Next, we investigate a complementary scenario where the engineer has a
limited budget of samples to check. We study the smallest budget required by

7 256 is the maximum number of variants in our case studies
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SMC to detect all buggy variants (in the cases where it can indeed detect all of
them) and what is the incurred computation resources compared to an exhaus-
tive search of the state space. Thus, our second question is:

RQ2 How much efficient is SMC with a minimal sample budget compared to an
exhaustive search?

Finally, we compare family-based SMC with the alternative of sampling in
each variant’s state space separately. We name this alternative method enumer-
ative SMC. Hence, our last research question is:

RQ3 How does family-based SMC compares with enumerative SMC?

As before, we compare the two techniques w.r.t. detection rate. We set M to
the same values as in RQ1. In enumerative SMC, this means that each variant
receives a budget of samples of M

|V | where M is the number of samples used in

family-based SMC and V is the set of variants.

4.2 Experimental Setup

Implementation. We implemented our SMC algorithms (family-based and
enumerative-based) in a prototype tool. The tool takes as input an FTS, an
LTL formula and a sample budget. Then it performs SMC until all samples are
checked or until all variants are found to violate the formula. To compare with
the exhaustive search we use ProVeLines [17], a state-of-the-art model checker
for VIS.

Dataset. We consider three systems that were used in past research to evaluate
VIS model checking algorithms [11,14,16]. Table 1 summarizes the characteristics
of our case studies and their related properties. The first system is a minepump
system [11,24] with 128 variants. The underlying FTS comprises 250,561 states,
while the state space of all variants taken individually reaches 889,124 states.
The second model is an elevator model inspired by Plath and Ryan [29]. It is
composed of eight configuration options, which can be combined into 256 differ-
ent variants, and its FTS has 58,945,690 states to explore. The third and last is
a case study inspired by the CCSDS File Delivery Protocol (CFDP) [13], a real-
world configurable spacecraft communication protocol [5]. The FTS modelling
the protocol consists of 1,732,536 states to explore and 56 variants (individually
totalling 2,890,399 states). We discarded the properties that are satisfied by all
variants. Those are: Minepump #17, #33, #40; Elevator #13, CFDP #5. In-
deed, these properties are not relevant for RQ1 and RQ3 since SMC is trivially
correct in such cases. As for RQ2, any small sample budget would return correct
results while being more efficient than the exhaustive search. This leaves us with
59 properties.

Infrastructure and repetitions. We run our experiments on a MacBook Pro 2018
with a 2.9 GHz Core-i7 processor and macOS 10.14.5. To account for random
variations in the sampling, we execute 100 runs of each experiment and compute
the average detection rates for each property.
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Table 1: Models and LTL formulae used in our experiments.
Minepump (250,561 FTS states, 128 valid variants)

#1 ¬(�♦(stateReady ∧ highWater ∧ userStart))
#2 ¬(�♦stateReady)
#3 ¬(�♦stateRunning)
#4 ¬(�♦stateStopped)
#5 ¬(�♦stateMethanestop)
#6 ¬(�♦stateLowstop)
#7 ¬(�♦readCommand)
#8 ¬(�♦readAlarm)
#9 ¬(�♦readLevel)

#10 ¬((�♦readCommand) ∧ (�♦readAlarm) ∧ (�♦readLevel))
#11 ¬(�♦pumpOn)
#12 ¬(�♦¬pumpOn)
#13 ¬((�♦pumpOn) ∧ (�♦¬pumpOn))
#14 ¬(�♦methane)
#15 ¬(�♦¬methane)
#16 ¬((�♦methane) ∧ (�♦¬methane))
#17 �(¬pumpOn ∨ stateRunning)
#18 �(methane⇒ (♦stateMethanestop))
#19 �(methane⇒ ¬(♦stateMethanestop))
#20 �(pumpOn ∨ ¬methane)
#21 �((pumpOn ∧methane)⇒ ♦¬pumpOn)
#22 ((�♦readCommand) ∧ (�♦readAlarm) ∧ (�♦readLevel))⇒ �((pumpOn ∧methane)⇒ ♦¬pumpOn)
#23 ¬♦�(pumpOn ∧methane)
#24 ((�♦readCommand) ∧ (�♦readAlarm) ∧ (�♦readLevel))⇒ ¬♦�(pumpOn ∧methane)
#25 �((¬pumpOn ∧methane ∧ ♦¬methane)⇒ ((¬pumpOn)U¬methane))
#26 �((highWater ∧ ¬methane)⇒ ♦pumpOn)
#27 ¬(♦(highWater ∧ ¬methane))
#28 ((�♦readCommand) ∧ (�♦readAlarm) ∧ (�♦readLevel))⇒ (�((highWater ∧ ¬methane)⇒ ♦pumpOn))
#29 �((highWater ∧ ¬methane)⇒ ¬♦pumpOn)
#30 ¬♦�(¬pumpOn ∧ highWater)
#31 ((�♦readCommand) ∧ (�♦readAlarm) ∧ (�♦readLevel))⇒ (¬♦�(¬pumpOn ∧ highWater))
#32 ¬♦�(¬pumpOn ∧ ¬methane ∧ highWater)
#33 ((�♦readCommand) ∧ (�♦readAlarm) ∧ (�♦readLevel))⇒ (¬♦�(¬pumpOn ∧ ¬methane ∧ highWater))
#34 �((pumpOn ∧ highWater ∧ ♦lowWater)⇒ (pumpOnUlowWater))
#35 ¬♦(pumpOn ∧ highWater ∧ ♦lowWater)
#36 �(lowWater ⇒ (♦¬pumpOn))
#37 ((�♦readCommand) ∧ (�♦readAlarm) ∧ (�♦readLevel))⇒ (�(lowWater ⇒ (♦¬pumpOn)))
#38 ¬♦�(pumpOn ∧ lowWater)
#39 ((�♦readCommand) ∧ (�♦readAlarm) ∧ (�♦readLevel))⇒ (¬�♦(pumpOn ∧ lowWater))
#40 �((¬pumpOn ∧ lowWater ∧ ♦highWater)⇒ ((¬pumpOn)UhighWater))
#41 ¬♦(¬pumpOn ∧ lowWater ∧ ♦highWater)

Elevator (58,945,690 FTS states, 256 valid variants)

#1 ¬�♦progress
#2 ¬�♦f0 ∨ ¬�♦f1 ∨ ¬�♦f2 ∨ ¬�♦f3
#3 ¬�♦p0at0 ∨ ¬�♦p0at1 ∨ ¬�♦p0at2 ∨ ¬�♦p0at3
#4 �(fb2⇒ (♦f2))
#5 �♦progress⇒ (�(fb2⇒ (♦f2)))
#6 �♦progress⇒ (�(fb2⇒ (♦(f2 ∧ dopen))))
#7 �♦progress⇒ (¬♦�f2)
#8 �♦(progress ∨ waiting)⇒ (¬♦�f2)
#9 �♦(progress ∨ waiting)⇒ (¬♦�f0)

#10 ¬♦((cb0 ∨ cb1 ∨ cb2 ∨ cb3) ∧ ¬(p0in ∨ p1in) ∧ dclosed)
#11 �♦progress⇒ (¬♦�dclosed)
#12 �♦progress⇒ (¬♦�(p0to3 ∧ dclosed))
#13 �♦progress⇒ (¬♦�dopen)
#14 �♦(progress ∨ waiting)⇒ (¬♦�dopen)
#15 ((�♦(progress ∨ waiting)) ∧ (�♦(fb0 ∨ fb1 ∨ fb2 ∨ fb3)))⇒ (¬♦�dopen)
#16 ¬♦(p0in ∧ p1in ∧ dclosed)
#17 ¬♦�(p0in ∧ dclosed)
#18 �♦progress⇒ (¬♦�(p0in ∧ dclosed))

CFDP (1,801,581 FTS states, 56 valid variants)

#1 ♦fileReceived
#2 (♦eofReceived)⇒ ♦fileReceived
#3 ((♦eofReceived) ∧ (♦nakReceived))⇒ ♦fileReceived
#4 ((♦eofReceived) ∧ (�♦nakReceived))⇒ ♦fileReceived
#5 �(finSend⇒ fileReceived)
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(a) Minepump (family-based SMC) (b) Elevator (family-based SMC)

(c) CFDP (family-based SMC)

Fig. 2: Detection rate of the buggy variants achieved by our SMC method, in the
three case studies and using different sample sizes. In each figure, the x-axis is
the number of samples.

5 Results

5.1 RQ1: Detection Rate

Figure 2 shows as boxplots, for each case study and over all checked properties,
the percentage of buggy variants for which family-based SMC found a counterex-
ample. We provide those boxplots for different number M of samples.

In the case of Minepump and Elevator, the median detection percentage is
100% starting from M = 1200 and M = 600, respectively. Further increasing the
number of samples raises the 0.25 percentile. In Minepump and for M = 1200,
there are 18/41 properties for which SMC could not detect all buggy variants.
Increasing M improves significantly the percentage of buggy variants detected by
SMC for all these properties, although there remain undetected variants in 15
of them even with M = 19, 200. This illustrates that our assumption regarding
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pmin was inappropriate for those properties: counterexamples are rarer than
we imagined. The elevator study yields even better results: at M = 600, SMC
detects all buggy variants for 10/18 properties; this number becomes 14/18 at
M = 2, 400 and 17/18 at M = 9, 600. As for the remaining property, SMC with
M = 19, 200 detects 50% of the variants on average and we observe that this
percentage consistently increases as we increase M .

The results for CFDP are mixed: while the median percentage goes beyond
80% as soon as M = 1, 200, it tends to saturate when increasing the number of
samples. The 0.25 percentile still increases but also seems to reach an asymp-
totic behaviour in the trials with the highest M . A detailed look at the results
reveals that for M ≥ 1, 200, SMC cannot identify all buggy variants for only two
properties: #3 (9 buggy variants) and #4 (4 buggy variants). At M = 19, 200,
SMC detects 5.43 and 3.14 buggy variants for those two properties, respectively.
Further doubling M raises these numbers to 6.36 and 3.26. This indicates that
the non-detected variants have few counterexamples, which are rare due to the
tinier state space of those variants. The computation resources required by SMC
to find such rare counterexamples with high confidence are higher than model-
checking the undetected variants thoroughly. An alternative would be to direct
SMC towards rare executions, leaning on techniques such as [10,21].

SMC can detect all buggy variants for 41 properties out of 59. For the re-
maining properties, however, SMC was unable to find the rare counterex-
amples of some buggy variants. This calls for new dedicated heuristics to
sample those rare executions.

5.2 RQ2: Efficiency

Next, we check how much execution time SMC can spare compared to the ex-
haustive search. Results are shown in Table 2. Overall, we see that SMC holds
the potential to greatly accelerate the discovery of all buggy variants, achieving
a total speedup of 526%, 1891% and 356% for Minepump, Elevator and CFDP,
respectively. For more than half of the properties, the smallest number of sam-
ples we tried (i.e. 300) was sufficient for a thorough detection. Those properties
are actually satisfied by all variants. The fact that SMC requires such a small
number of samples means that the same bug lies in all the variants (as opposed to
each variant violating the property in its own way). On the contrary, Minepump
property #31 is also violated by all variants but requires a much higher sample
number, which illustrates the presence of variant-specific bugs.

Interestingly, the benefits of SMC are higher in the Elevator case (the largest
of the three models), achieving speedups of up to 16,575%. A likely explana-
tion is that the execution paths of the Elevator model share many similarities,
which means that a single bug can lead to multiple failed executions. By sam-
pling randomly, SMC avoids exploring thoroughly a part of the state space that
contains no bug and, instead, increases the likelihood to move to interesting
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Table 2: Least numbers of samples (in our experiments) that allowed detecting all
buggy variants and corresponding execution time. Full refers to an exhaustive
search of the search space. Only properties that are violated by at least one
variant and for which SMC found all buggy variants are shown.

SMC Full
Property # Samples # States Time # States Time Speedup

Minepump #1 600 25332 0.18 92469 1.33 739%
Minepump #2 300 12553 0.10 24908 1.06 1060%
Minepump #4 300 2383 0.03 103933 3.10 10333%
Minepump #5 1200 48714 0.32 76040 1.03 322%
Minepump #7 300 2469 0.03 18482 0.21 700%
Minepump #8 300 2757 0.03 4646 0.05 167%
Minepump #9 300 2758 0.03 8263 0.08 267%

Minepump #10 600 15191 0.11 55936 0.58 527%
Minepump #12 300 2356 0.03 811 0.02 67%
Minepump #14 300 2915 0.04 989 0.02 50%
Minepump #15 300 2389 0.03 2673 0.05 167%
Minepump #16 300 4102 0.04 1917 0.03 75%
Minepump #18 300 2604 0.03 125 0.01 33%
Minepump #19 600 25027 0.18 143540 2.69 1494%
Minepump #20 300 3864 0.03 40 0.01 33%
Minepump #25 2400 67620 0.50 346935 6.12 1224%
Minepump #26 300 2708 0.03 4382 0.05 167%
Minepump #27 300 2450 0.03 3702 0.04 133%
Minepump #28 2400 58382 0.43 99780 1.28 298%
Minepump #30 300 300 0.03 3648 0.05 167%
Minepump #31 9600 165802 1.29 61185 1.03 80%
Minepump #32 300 2684 0.03 4110 0.05 167%
Minepump #41 300 5732 0.05 3886 0.04 80%

Total 461092 3.60 1062400 18.93 526%

Elevator #1 300 4371 0.03 105883 0.52 1733%
Elevator #2 600 226813 1.14 437252 2.48 218%
Elevator #3 4800 1736781 7.67 14822853 103.22 1346%
Elevator #4 300 4403 0.04 1194568 6.63 16575%
Elevator #5 300 7719 0.05 1305428 7.76 15520%
Elevator #6 300 7061 0.05 1202204 6.89 13780%
Elevator #7 600 25021 0.12 732684 4.33 3608%
Elevator #8 600 26120 0.13 204934 1.19 915%
Elevator #9 300 3142 0.03 39086 0.28 933%

Elevator #11 300 3278 0.03 91 0.02 67%
Elevator #12 9600 1502419 6.53 1954924 11.12 170%
Elevator #14 2400 141753 0.61 7889584 52.88 8669%
Elevator #15 2400 142405 0.69 7889753 57.64 8354%
Elevator #16 2400 955206 4.02 28551923 182.25 4534%
Elevator #17 1200 100755 0.38 516230 3.53 929%
Elevator #18 4800 510145 1.94 486694 3.00 155%

Total 5397392 23.46 67334091 443.74 1891%

CFDP #1 300 50206 0.20 87937 1.71 855%
CFDP #2 1200 117897 0.52 102842 0.85 163%

Total 168103 0.72 190779.00 2.56 356%
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(a) Minepump (enumerative SMC) (b) Elevator (enumerative SMC)

(c) CFDP (enumerative SMC)

Fig. 3: Detection rate of the buggy variants achieved by classical SMC applied
variant by variant, in the three case studies and using different sample sizes. In
each figure, the x-axis is the number of samples.

(likely-buggy) parts. A striking example is property #16 (satisfied by half of the
variants), where SMC reduces the verification time from 3 minutes to 4 seconds.

Where SMC can detect all buggy variants, it can do so with more ef-
ficiency compared to exhaustive search, for 33/41 properties, achieving
speedups of multiple orders of magnitude.

5.3 RQ3: Family-based SMC versus Enumerative SMC

Figure 3 shows the detection rate achieved the enumerative SMC for the three
case studies and different numbers of samples, while the results of the family-
based SMC were shown in Figure 2. In the Minepump and Elevator cases, enu-
merative SMC achieves a lower detection rate than family-based SMC. In both
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cases, a Student t-test with α = 0.05 rejects, with statistical significance, the
hypothesis that the two SMC methods yield no difference in error rate. One can
observe, for instance, that, with 600 samples, enumerative SMC achieves a me-
dian detection rate of 31.13%, while family-based SMC achieved 99.86%. This
tends to validate our hypothesis that family-based SMC is more effective as the
variants share more executions. Indeed, on average, one state of the Minepump
is shared by 3.55 variants.

In the case of CFDP, however, enumerative SMC performs systematically
better (up to 13.95% more). Still, the difference in median detection rate tends
to disappear as more executions are sampled. Nevertheless, CFDP illustrates the
main drawback of family-based SMC: it can overlook counterexamples in vari-
ants with fewer behaviours. In such cases, enumerative SMC might complement
family-based SMC by sampling from the state space of specific variants.

Family-based SMC can detect significantly more buggy variants than enu-
merative SMC, especially when few lassos are sampled. Yet, enumerative
SMC remains useful for variants that have a tiny state space compared
to the others and can, thus, complement the family-based method.

6 Conclusion

We proposed a new simulation-based approach for finding bugs in VIS. It applies
statistical model checking to FTS, an extension of transition systems designed to
model concisely multiple VIS variants. Given an LTL formula, our method results
in either collecting counterexamples for multiple variants at once or proving the
absence of bugs. The algorithm always converges, up to some confidence error
which we quantify on the FTS structure by relying on results for the coupon
collector problem. After implementing the approach within a state-of-the-art
tool, we study empirically its benefits and drawbacks. It turns out that a small
number of samples is often sufficient to detect all variants, outperforming an
exhaustive search by an order of magnitude. On the downside, we were unable to
find counterexamples for some faulty variants and properties. This calls for future
research, exploiting techniques to guide the simulation towards rare bugs/events
[7,10,21] or towards uncovered variants relying, e.g., on distance-based sampling
[22] or light-weight scheduling sampling [19]. Nevertheless, the positive outcome
of our study is to show that SMC can act as a low-cost-high-reward alternative
to exhaustive verification, which can provide thorough results in a majority of
cases.
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