®

Check for
updates

The Polynomial Complexity of Vector Addition
Systems with States

Florian Zuleger (BX)
zuleger@forsyte.tuwien.ac.at

TU Wien

Abstract. Vector addition systems are an important model in theoret-
ical computer science and have been used in a variety of areas. In this
paper, we consider vector addition systems with states over a parame-
terized initial configuration. For these systems, we are interested in the
standard notion of computational time complexity, i.e., we want to un-
derstand the length of the longest trace for a fixed vector addition system
with states depending on the size of the initial configuration. We show
that the asymptotic complexity of a given vector addition system with
states is either O(N*) for some computable integer k, where N is the
size of the initial configuration, or at least exponential. We further show
that k can be computed in polynomial time in the size of the considered
vector addition system. Finally, we show that 1 < k < 2", where n is the
dimension of the considered vector addition system.

1 Introduction

Vector addition systems (VASs) [13], which are equivalent to Petri nets, are a
popular model for the analysis of parallel processes [7]. Vector addition systems
with states (VASSs) [10] are an extension of VASs with a finite control and are a
popular model for the analysis of concurrent systems, because the finite control
can for example be used to model shared global memory [12]. In this paper, we
consider VASSs over a parameterized initial configuration. For these systems,
we are interested in the standard notion of computational time complexity, i.e.,
we want to understand the length of the longest execution for a fixed VASS
depending on the size of the initial configuration. VASSs over a parameterized
initial configuration naturally arise in two areas: 1) The parameterized verifica-
tion problem. For concurrent systems the number of system processes is often
not known in advance, and thus the system is designed such that a template
process can be instantiated an arbitrary number of times. The problem of ana-
lyzing the concurrent system for all possible system sizes is a common theme in
the literature [9,8,1,11,4,2,3]. 2) Automated complexity analysis of programs.
VASSs (and generalizations) have been used as backend in program analysis
tools for automated complexity analysis [18-20]. The VASS considered by these
tools are naturally parameterized over the initial configuration, modelling the
dependency of the program complexity on the program input. The cited papers
have proposed practical techniques but did not give complete algorithms.

© The Author(s) 2020
J. Goubault-Larrecq and B. Konig (Eds.): FOSSACS 2020, LNCS 12077, pp. 622-641, 2020.
https://doi.org/10.1007/978-3-030-45231-5_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45231-5_32&domain=pdf

The Polynomial Complexity of VASS 623

Two recent papers have considered the computational time complexity of
VASSs over a parameterized initial configuration. [15] presents a PTIME pro-
cedure for deciding whether a VASS is polynomial or at least exponential, but
does not give a precise analysis in case of polynomial complexity. [5] establishes
the precise asymptotic complexity for the special case of VASSs whose configura-
tions are linearly bounded in the size of the initial configuration. In this paper,
we generalize both results and fully characterize the asymptotic behaviour of
VASSs with polynomial complexity: We show that the asymptotic complexity of
a given VASS is either ©(N*) for some computable integer k, where N is the
size of the initial configuration, or at least exponential. We further show that
k can be computed in PTIME in the size of the considered VASS. Finally, we
show that 1 < k < 2", where n is the dimension of the considered VASS.

1.1 Overview and Illustration of Results

We discuss our approach on the VASS V,..,,, stated in Figure 1, which will serve
as running example. The VASS has dimension 3 (i.e., the vectors annotating the
transitions have dimension 3) and four states si, s2, s3, s4. In this paper we will
always represent vectors using a set of variables Var, whose cardinality equals
the dimension of the VASS. For V,.,,, we choose Var = {z,y, 2z} and use x,y, 2
as indices for the first, second and third component of 3-dimensional vectors.
The configurations of a VASS are pairs of states and valuations of the variables
to non-negative integers. A step of a VASS moves along a transition from the
current state to a successor state, and adds the vector labelling the transition
to the current valuation; a step can only be taken if the resulting valuation
is non-negative. For the computational time complexity analysis of VASSs, we
consider traces (sequences of steps) whose initial configurations consist of a val-
uation whose maximal value is bounded by N (the parameter used for bounding
the size of the initial configuration). The computational time complexity is then
the length of the longest trace whose initial configuration is bounded by N. For
ease of exposition, we will in this paper only consider VASSs whose control-flow
graph is connected. (For the general case, we remark that one needs to decom-
pose a VASS into its strongly-connected components (SCCs), which can then be
analyzed in isolation, following the DAG-order of the SCC decomposition; for
this, one slightly needs to generalize the analysis in this paper to initial configu-
rations with values ©(N*=) for every variable z € Var, where k, € Z.) For ease
of exposition, we further consider traces over arbitrary initial states (instead of
some fixed initial state); this is justified because for a fixed initial state one can
always restrict the control-flow graph to the reachable states, and then the two
options result in the same notion of computational complexity (up to a constant
offset, which is not relevant for our asymptotic analysis).

In order to analyze the computational time complexity of a considered VASS,
our approach computes variable bounds and transition bounds. A variable bound
is the maximal value of a variable reachable by any trace whose initial configu-
ration is bounded by N. A transition bound is the maximal number of times a
transition appears in any trace whose initial configuration is bounded by N. For

624 F. Zuleger

Vyun, our approach establishes the linear variable bound ©(N) for « and y, and
the quadratic bound ©(N?) for z. We note that because the variable bound of z
is quadratic and not linear, V,,,, cannot be analyzed by the procedure of [5]. Our
approach establishes the bound @(N) for the transitions s; — s3 and sy — so,
the bound ©(N?) for transitions s; — sa, $2 — 81, S3 — 84, 4 — S3, and
the bound ©(N?) for all self-loops. The computational complexity of V., is
then the maximum of all transition bounds, i.e., O(N?). In general, our main
algorithm (Algorithm 1 presented in Section 4) either establishes that the VASS
under analysis has at least exponential complexity or computes asymptotically
precise variable and transition bounds ©(N*), with k& computable in PTIME and
1 < k < 2", where n is the dimension of the considered VASS. We note that our
upper bound 2™ also improves the analysis of [15], which reports an exponential
dependence on the number of transitions (and not only on the dimension).

We further state a family V,, of VASSs, which illustrate that k can indeed
be exponential in the dimension (the example can be skipped on first reading).
Vn uses variables x; ; and consists of states s; ;, for 1 <i <mn and j =1,2. We
note that V,, has dimension 2n. V,, consists of the transitions

- 81 4, Si2, for 1 <4 <n, with d(x;1) = —1 and d(z) = 0 for all z # x; 1,
— Si2 LN si1, for 1 <4 < n, with d(z) =0 for all z,
- Si,l i> Si71, fOI" 1 S 7 S n, With d(.’lﬁi)l) = —1, d(l‘@z) = 1, d(l’prl,l) =
d(ziz1,2) = 11in case i < n, and d(z) = 0 for all other z,
— Si2 4, Si2, for 1 <4 < n, with d(z;1) = 1, d(z;2) = —1, and d(z) = 0 for
all other z,
- i1 LN Sit11, for 1 <i < n, with d(z;1) = —1 and d(z) =0 for all x # z; 1,
— Si41,2 LN Si2, for 1 <4 < n, with d(z) =0 for all .
Veup in Figure 1 depicts V), for n = 3, where the vector components are stated in
the order =1 1,212, 22,1, %22, 23,1, T3,2. It is not hard to verify for all 1 <i <n
that O(N 2%1) is the precise asymptotic variable bound for z;1 and z; o, that
Si1 — Si2, Si2 —7 Si1 and Si1 —7 Si4+1,15 Si+1,2 —7 Si2 in case i < n, and that
@(NQZ) is the precise asymptotic transition bound for s; 1 — s;1, 8i2 — Si2
(Algorithm 1 can be used to find these bounds).

1.2 Related Work

A celebrated result on VASs is the EXPSPACE-completeness [16,17] of the
boundedness problem. Deciding termination for a VAS with a fized initial con-
figuration can be reduced to the boundedness problem, and is therefore also
EXPSPACE-complete; this also applies to VASSs, whose termination problem
can be reduced to the VAS termination problem. In contrast, deciding the termi-
nation of VASSs for all initial configurations is in PTIME. It is not hard to see
that non-termination over all initial configurations is equivalent to the existence
of non-negative cycles (e.g., using Dickson’s Lemma [6]). Kosaraju and Sullivan
have given a PTIME procedure for the detection of zero-cycles [14], which can be
easily be adapted to non-negative cycles. The existence of zero-cycles is decided

The Polynomial Complexity of VASS 625

~1 0 0
1 1 0 0 0
1 0 ~1 0 0
1 0 1 1 0
0 0 1 0 1
. 1 . 0 0 1 0 1
o W) o) el el
T T 51,1 52,1 53,1
S1 S3
0 —1\ /0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 ~1(llo 0
e A\ 1A ey 1| et 0 0 0 0 0 0
0 0 0 0 0 —1
0 0 0 0 0 0
S2 S4

1 .~ 1 S1,2 52,2 53,2

) 0 . 0 0
0 1 0 0 0 0
~1| (O 0 0 0
0 0 1 0 0
0 0 —1 0 0
0 0 0 0 1
0 0 ~1

Fig. 1. VASS Vyup (left) and VASS Vegp (right)

by the repeated use of a constraint system in order to remove transitions that
can definitely not be part of a zero-cycle. The algorithm of Kosaraju and Sullivan
forms the basis for both cited papers [15,5], as well as the present paper.

A line of work [18-20] has used VASSs (and their generalizations) as backends
for the automated complexity analysis of C programs. These algorithms have
been designed for practical applicability, but are not complete and no theoretical
analysis of their precision has been given. We point out, however, that these
papers have inspired the Bound Proof Principle in Section 5.

2 Preliminaries

Basic Notation. For a set X we denote by |X| the number of elements of X.
Let S be either N or Z. We write S’ for the set of vectors over S indexed by
some set 1. We write S’/ for the set of matrices over S indexed by I and .J.
We write 1 for the vector which has entry 1 in every component. Given a € S’,
we write a(i) € S for the entry at line ¢ € I of a, and ||a|| = max;ey |a(i)| for the
maximum absolute value of a. Given a € S” and J C I, we denote by a|; € S’
the restriction of a to J, i.e., we set a|;(i) = a(i) for all i € J. Given A € ST*/,

626 F. Zuleger

we write A(j) for the vector in column j € J of A and A(i,j) € S for the entry
in column ¢ € I and row j € J of A. Given A € S'™7 and K C J, we denote
by A|x € SI*X the restriction of A to K, i.e., we set A|x(i,5) = A(i,j) for all
(1,7) € I x K. We write Id for the square matrix which has entries 1 on the
diagonal and 0 otherwise. Given a,b € ST we write a+b € S’ for component-wise
addition, ¢ - a € S’ for multiplying every component of a by some ¢ € S and
a > b for component-wise comparison. Given A € S/, B € S/*K and z € S”,
we write AB € ST*K for the standard matrix multiplication, Az € S’ for the
standard matrix-vector multiplication, AT € S/*! for the transposed matrix of
A and 27 € S'*/ for the transposed vector of .

Vector Addition System with States (VASS). Let Var be a finite set of variables.
A vector addition system with states (VASS) V = (St(V), Trns(V)) consists
of a finite set of states St(V) and a finite set of transitions Trns(V), where
Trns(V) C St(V) x ZVa" x St(V); we call n = | Var| the dimension of V. We write

s1 4, s2 to denote a transition (s1,d,s2) € Trns(V); we call the vector d the
update of transition sy i> So. A path w of V is a finite sequence sq d—1> S1 d—2> - Sk

with s; i, si+1 € Trns(V) for all 0 < ¢ < k. We define the length of © by
length(m) = k and the value of 7 by val(m) = ;2) di- Let instance(r,t) be
the number of times 7 contains the transition t, i.e., the number of indices i such
that ¢ = s; 2 si+1. We remark that length(m) = 3_,c 7,5(1) instance(r, t) for
every path 7 of V. Given a finite path 7 and a path ms such that the last state
of 7 equals the first state of my, we write m = mymy for the path obtained by
joining the last state of m; with the first state of mo; we call 7 the concatenation
of w1 and mo, and mme a decomposition of w. We say 7’ is a sub-path of m, if
there is a decomposition © = my7'my for some w1, m. A cycle is a path that has
the same start- and end-state. A multi-cycle is a finite set of cycles. The value
val(M) of a multi-cycle M is the sum of the values of its cycles. V is connected,
if for all s,s" € St(V) there is a path from s to s’. VASS V' is a sub-VASS of V,
if Se(V') C St(V) and Trns(V') C Trns(V). Sub-VASSs V; and Vs are disjoint,
if St(V1) N St(Va) = 0. A strongly-connected component (SCC) of a VASS V is a
maximal sub-VASS S of V such that S is connected and Trns(S) # 0.

Let V be a VASS. The set of waluations Val(V) = NV consists of Var-
vectors over the natural numbers (we assume N includes 0). The set of config-
urations Cfg(V) = St(V) x Val(V) consists of pairs of states and valuations.
A step is a triple ((s1,11),d, (s2,12)) € Cfg(V) x Z4™V) x Cfg(V) such that
v =1 +dand 5, B sy € Trns(V). We write (s1,v1) 4, (s2,v2) to denote a

step ((s1,v1),d, (s2,v2)) of V. A trace of V is a finite sequence ¢ = (sg, o) LN

(s1,11) LN -+« (sk,vy) of steps. We lift the notions of length and instances
from paths to traces in the obvious way: we consider the path m = sg LN

$1 LN -+ -8 that consists of the transitions used by (, and set length({) :=
length(mw) and instance((,t) = instance(mw,t), for all ¢ € Trns(V). We denote
by init(¢) = ||vp|| the maximum absolute value of the starting valuation
of . We say that ¢ reaches a valuation v, if v = vi. The complexity of V is

The Polynomial Complexity of VASS 627

the function compy,(N) = SUPgace ¢ of v,init(c)<n length(C), which returns for
every N > 0 the supremum over the lengths of the traces ¢ with init(¢{) <
N. The variable bound of a variable x € Var is the function vbound,(N) =
SUP¢race ¢ of V,init(¢)<N,(reaches valuation v l/(l'), which returns for every N > 0
the supremum over the the values of = reachable by traces ¢ with init({) < N.
The transition bound of a transition ¢t € Trns(V) is the function tbound;(N) =
SUDtrace ¢ of V,init(C)<N instance((,t), which returns for every N > 0 the supre-
mum over the number of instances of ¢ in traces ¢ with init(¢) < N.

Rooted Tree. A rooted tree is a connected undirected acyclic graph in which one
node has been designated as the root. We will usually denote the root by ¢. We
note that for every node 7 in a rooted tree there is a unique path of n to the root.
The parent of a node 1 # ¢ is the node connected to 1 on the path to the root.
Node 7 is a child of a node 7/, if 1/ is the parent of n. " is a descendent of n, if
71 lies on the path from 7’ to the root; i’ is a strict descendent, if furthermore
n # 1. nis an ancestor of i, if ' a descendent of n; i is a strict ancestor, if
furthermore 7 # n’. The distance of a node 7 to the root, is the number of nodes
n on the path from 7 to the root. We denote by layer(l) the set of all nodes
with the same distance [to the root; we remark that layer(0) = {¢}.

All proofs are presented in the extended version [21] for space reasons.

3 A Dichotomy Result

We will make use of the following matrices associated to a VASS throughout
the paper: Let V be a VASS. We define the update matriz D € ZVor*Trms(V) by
setting D(t) = d for all transitions t = (s,d,s’) € Trns(V). We define the flow
matriz F € Z5tV)xTms(V) by setting F(s,t) = —1, F(s',t) = 1 for transitions
t = (s,d,s") with s’ # s, and F(s,t) = F(s',t) = 0 for transitions ¢t = (s,d, s)
with ' = s; in both cases we further set F(s”,t) = 0 for all states s” with s # s
and s” # s’. We note that every column ¢ of F either contains exactly one —1
and 1 entry (in case the source and target of transition ¢ are different) or only 0
entries (in case the source and target of transition ¢ are the same).

Ezample 1. We state the update and flow matrix for V,,, from Section 1:
11-11000 0 —10 00001 -10 0 -10
0000-11 0 O 0 1
D=|1-11-10 0 0 0 00]),F=
11 1 —1-1-1-1-100 00000 O 1 —-11 0
00000 O0-11 0 -1
with column order s; — s1, So — S, S3 — 83, S4 —> S4, S — S1, S1 — So,
S4 —> 83, 83 — S4, 81 — 83, S4 — So (from left to right) and row order x,y, z for
D resp. s1, 82, 83,84 for F' (from top to bottom).

We now consider the constraint systems (P) and (Q), stated below, which
have maximization objectives. The constraint systems will be used by our main
algorithm in Section 4. We observe that both constraint systems are always sat-
isfiable (set all coefficients to zero) and that the solutions of both constraint
systems are closed under addition. Hence, the number of inequalities for which

628 F. Zuleger

the maximization objective is satisfied is unique for optimal solutions of both
constraint systems. The maximization objectives can be implemented by suit-
able linear objective functions. Hence, both constraint systems can be solved
in PTIME over the integers, because we can use linear programming over the
rationales and then scale rational solutions to the integers by multiplying with
the least common multiple of the denominators.

constraint system (P): constraint system (Q):
there exists u € ZT™ V) with there exist € Z"", z € Z5'(V) with

Du>0 r>0

p=>0 z2>0

Frp=0 DIr+FT2<0
Maximization Objective: Maximization Objective:
Maximize the number of inequalities|Maximize the number of inequalities
with (Dp)(x) > 0 and p(t) >0 with r(z) > 0 and (DTr + FT2)(t) <0

The solutions of (P) and (Q) are characterized by the following two lemmata:

Lemma 2 (Cited from [14]). u € Z7™WV) s a solution to constraint sys-
tem (P) iff there exists a multi-cycle M with val(M) > 0 and u(t) instances of
transition t for every t € Trns(V).

Lemma 3 (Cited from [5]!). Let 7,z be a solution to constraint system (Q).
Let rank(r,z) : Cfg(V) — N be the function defined by rank(r,z)(s,v) = rTv +
z(s). Then, rank(r,z) is a quasi-ranking function for V, i.e., we have

1. for all (s,v) € Cfg(V) that rank(r,z)(s,v) > 0;

2. for all transitions t = s, 4, so € Trns(V) and valuations vi,ve € Val(V)
with vo = vy + d that rank(r,z)(s1,v1) > rank(r, z)(sa, v2); moreover, the
inequality is strict for every t with (DTr + FT2)(t) < 0.

We now state a dichotomy between optimal solutions to constraint sys-
tems (P) and (Q), which is obtained by an application of Farkas’ Lemma. This
dichotomy is the main reason why we are able to compute the precise asymptotic
complexity of VASSs with polynomial bounds.

! There is no explicit lemma with this statement in [5], however the lemma is implicit
in the exposition of Section 4 in [5]. We further note that [5] does not include the
constraint z > 0. However, this difference is minor and was added in order to ensure
that ranking functions always return non-negative values, which is more standard
than the choice of [5]. A proof of the lemma can be found in the extended version [21].

The Polynomial Complexity of VASS 629

Lemma 4. Letr and z be an optimal solution to constraint system (Q) and let p
be an optimal solution to constraint system (P). Then, for all variables x € Var
we either have r(x) > 0 or (Du)(x) > 1, and for all transitions t € Trns(V) we
either have (DTr + FT2)(t) <0 or p(t) > 1.

Example 5. Our main algorithm, Algorithm 1 presented in Section 4, will di-
rectly use constraint systems (P) and (@) in its first loop iteration, and adjusted
versions in later loop iterations. Here, we illustrate the first loop iteration. We
consider the running example V,.,,,, whose update and flow matrices we have
stated in Example 1. An optimal solution to constraint systems (P) and (Q) is
given by p = (1441111100)7 and r = (220)T, z = (0011)T". The quasi-ranking
function rank(r,z) immediately establishes that tbound,(N) € O(N) for ¢t =
s1 — sz and t = s4 — so, because 1) rank(r, z) decreases for these two transitions
and does not increase for other transitions (by Lemma 3), and because 2) the ini-
tial value of rank(r, z) is bounded by O(N), i.e., we have rank(r, z)(s,v) € O(N)
for every state s € St(Vyy,) and every valuation v with ||v|| < N. By a simi-
lar argument we get vbound,(N) € O(N) and vbound, (N) € O(NN). The exact
reasoning for deriving upper bounds is given in Section 5. From p we can, by
Lemma 2, obtain the cycles C1 = s1 — So — S5 — S — S9 — S92 — §1 — s1 and
Co = 83 — 84 — 84 — 84 — 84 — 84 — 84 — s4 with v(Cy) + v(Cs) > (001)T
(*). We will later show that the cycles C; and Cs give rise to a family of traces
that establish tbound;(N) € 2(N?) for all transitions t € Trns(Vy.,) with
t # 81 — s3 and t # s4 — $o. Here we give an intuition on the construction: We
consider a cycle C of V., that visits all states at least once. By (*), the updates
along the cycles C7 and C5 cancel each other out. However, the two cycles are
not connected. Hence, we execute the cycle Cy some 2(N) times, then (a part
of) the cycle C, then execute Cy as often as Cy, and finally the remaining part
of C; this we repeat 2(N) times. This construction also establishes the bound
vbound, (N) € 2(N?) because, by (*), we increase z with every joint execution
of C7 and Cs. The precise lower bound construction is given in Section 6.

4 Main Algorithm

Our main algorithm — Algorithm 1 — computes the complexity as well as variable
and transition bounds of an input VASS V), either detecting that V has at least
exponential complexity or reporting precise asymptotic bounds for the transi-
tions and variables of V (up to a constant factor): Algorithm 1 will compute
values vExp(z) € N such that vboundy(z) € O(NE®E)) for every € Var and
values tExp(t) € N such that tboundy(t) € O(N*P®) for every t € Trns(V).

Data Structures. The algorithm maintains a rooted tree T'. Every node n of T'
will always be labelled by a sub-VASSs VASS(n) of V. The nodes in the same
layer of T will always be labelled by disjoint sub-VASS of V. The main loop of
Algorithm 1 will extend T' by one layer per loop iteration. The variable [always
contains the next layer that is going to be added to T'. For computing variable and
transition bounds, Algorithm 1 maintains the functions vExp : Var — N U {oc}
and tExp : Trns(V) — NU {oo}.

630 F. Zuleger

Initialization. We assume D to be the update matrix and F to be the flow
matrix associated to V as discussed in Section 3. At initialization, T" consists of
the root node ¢ and we set VASS(1) =V, i.e., the root is labelled by the input V.
We initialize [= 1 as Algorithm 1 is going to add layer 1 to 7" in the first loop
iteration. We initialize vExp(z) = oo for all variables « € Var and tExp(t) = oo
for all transitions t € Trns(V).

The constraint systems solved during each loop iteration. In loop iteration [,
Algorithm 1 will set tExp(t) := [for some transitions ¢ and vExp(x) := [for
some variables . In order to determine those transitions and variables, Algo-
rithm 1 instantiates constraint systems (P) and (Q) from Section 3 over the set
of transitions U = U, c1ayer—1) 1rms(VASS(n)), which contains all transitions
associated to nodes in layer [— 1 of T'. However, instead of a direct instantiation
using D|y and Fly (i.e., the restriction of D and F to the transitions U), we
need to work with an extended set of variables and an extended update matrix.
We set Vare,: := {(x,n) | n € layer(l — vExp(x))}, where we set n — oo = 0 for
all n € N. This means that we use a different copy of variable x for every node
7 in layer | — vExp(x). We note that for a variable « with vExp(z) = oo there is
only a single copy of z in Var.,; because ¢ € layer(0) is the only node in layer
0. We define the extended update matrix D, € Z"%" XU by setting

[D(x,t),if t € Trns(VASS(n)),
Dezt((xan)vt) T { 07 otherwise.

Constraint systems (I) and (II) stated in Figure 2 can be recognized as in-
stantiation of constraint systems (P) and (@) with matrices D, and F|y and
variables Var.,:, and hence the dichotomy stated in Lemma 4 holds.

We comment on the choice of Vargq: Setting Var e, = {(z,n) | n € layer(i)}
for any ¢ < [— vExp(x) would result in correct upper bounds (while i > [—
vExp(z) would not). However, choosing ¢ < | — vExp(x) does in general result in
sub-optimal bounds because fewer variables make constraint system (I) easier
and constraint system (II) harder to satisfy (in terms of their maximization
objectives). In fact, i = [— vExp(z) is the optimal choice, because this choice
allows us to prove corresponding lower bounds in Section 6. We will further
comment on key properties of constraint systems (/) and (II) in Sections 5
and 6, when we outline the proofs of the upper resp. lower bound.

We note that Algorithm 1 does not use the optimal solution u to constraint
system (I) for the computation of the vExp(z) and tExp(t), and hence the com-
putation of the optimal solution p could be removed from the algorithm. The
solution y is however needed for the extraction of lower bounds in Sections 6
and 8, and this is the reason why it is stated here. The extraction of lower bounds
is not explicitly added to the algorithm in order to not clutter the presentation.

Discovering transition bounds. After an optimal solution r, z to constraint sys-
tem (II) has been found, Algorithm 1 collects all transitions ¢ with (DL ,r +
F|Lz)(t) < 0 in the set R (note that the optimization criterion in constraint
system (II) tries to find as many such ¢ as possible). Algorithm 1 then sets
tExp(t) ;= for all ¢ € R. The transitions in R will not be part of layer { of T.

The Polynomial Complexity of VASS

631

Input: a connected VASS V with update matrix D and flow matrix F'
T := single root node ¢ with VASS(1) = V;

l:=1;

vExp(x) := oo for all variables z € Var;

tExp(t) := oo for all transitions t € Trns(V);

repeat

let U= U, crayerq—1) Irns(VASS(n));

let Doy € ZV<t*U be the matrix defined by
D(x,t), if t € Trns(VASS
Deat((z,m),?) :{ (O, : other\(zvise (77));

find optimal solutions u and r, z to constraint systems (1) and (II);
let R:={tcU| (DL, + F|F2)(t) <0};
set tExp(t) := [for all t € R;
foreach 7 € layer(l — 1) do

let V' := VASS(n) be the VASS associated to 7;

decompose (St(V'), Trns(V') \ R) into SCCs;

foreach SCC S of (St(V'), Trns(V') \ R) do

L create a child i’ of n with VASS(n') = S;

foreach = € Var with vExp(z) = co do
L if r(z,¢) > 0 then set vExp(z) :=1;

| return “V has at least exponential complexity”

l:=1+1
until vExp(z) # oo and tExp(t) # oo for all x € Var and t € Trns(V);

let Vares := {(z,n) | n € layer(l — vExp(z))}, where n — oo = 0 for n € N;

if there are no x € Var, t € Trns(V) with | < vExp(x) + tExp(t) < co then

Algorithm 1: Computes transition and variable bounds for a VASS V

constraint system (/): constraint system (I7):
there exists u € ZY with there exist r € Z'*" e 2z € Z5'V) with

Dazt,uf 2 0 r 2 0

w=>0 z2>0

Flyp=0 DLr+ F|iz<0
Maximization Objective: Maximization Objective:
Maximize the number of inequalities|Maximize the number of inequalities with
with (Degepe)(z) > 0 and p(t) >0 r(z,n) > 0and (DL,r + F|F2)(t) <0

Fig. 2. Constraint Systems (/) and (/1) used by Algorithm 1

Construction of the next layer in T'. For each node n in layer [— 1, Algorithm 1
will create children by removing the transitions in R. This is done as follows:
Given a node 7 in layer [— 1, Algorithm 1 considers the VASS V' = VASS(n)
associated to n. Then, (St(V'), Trns(V')\R) is decomposed into its SCCs. Finally,

632 F. Zuleger

for each SCC S of (St(V'), Trns(V')\ R) a child 0’ of 1 is created with VASS(n') =
S. Clearly, the new nodes in layer [are labelled by disjoint sub-VASS of V.

The transitions of the next layer. The following lemma states that the new layer
l of T contains all transitions of layer | — 1 except for the transitions R; the
lemma is due to the fact that every transition in U \ R belongs to a cycle and
hence to some SCC that is part of the new layer [.

Lemma 6. We consider the new layer constructed during loop iteration | of
Algorithm 1: we have U\ R =, c1ayerqy Trns(VASS(n)).

Discovering variable bounds. For each x € Var with vExp(z) = oo, Algorithm 1
checks whether r(x,¢) > 0 (we point out that the optimization criterion in
constraint systems (IT) tries to find as many such « with r(z,¢) > 0 as possible).
Algorithm 1 then sets vExp(x) := [for all those variables.

The check for exponential complexity. In each loop iteration, Algorithm 1 checks
whether there are © € Var, t € Trns(V) with | < vExp(z) + tExp(t) < oo. If
this is not the case, then we can conclude that V is at least exponential (see
Theorem 9 below). If the check fails, Algorithm 1 increments ! and continues
with the construction of the next layer in the next loop iteration.

Termination criterion. The algorithm proceeds until either exponential complex-
ity has been detected or until vExp(z) # oo and tExp(t) # oo for all z € Var and
t € Trns(V) (i.e., bounds have been computed for all variables and transitions).

Invariants. We now state some simple invariants maintained by Algorithm 1,
which are easy to verify:

— For every node 7 that is a descendent of some node 1’ we have that VASS(n)
is a sub-VASS of VASS(7).

— The value of vExp and tExp is changed at most once for each input; when
the value is changed, it is changed from oo to some value # oco.

— For every transition ¢ € Trns()V) and layer [of T, we have that either
tExp(t) <! or there is a node n € layer(l) such that ¢t € Trns(VASS(n)).

— We have tExp(t) = [for t € Trns(V) if and only if there is a n € layer(l—1)
with ¢ € Trns(VASS(n)) and there is no) € layer(l) with ¢ € Trns(VASS(n)).

Example 7. We sketch the execution of Algorithm 1 on V. In iteration [= 1,
we have Vare,; = {(z,t), (y,¢), (z,0)}, and thus matrix D, is identical to the
matrix D. Hence, constraint systems (I) and (IT) are identical to constraint sys-
tems (P) and (Q), whose optimal solutions p = (1441111100)7 and r = (220)7,
z = (0011)7 we have discussed in Example 5. Algorithm 1 then sets tExp(s; —
s3) = 1 and tExp(sq — s2) = 1, creates two children 14 and np of ¢ labeled by
Va = ({81782}, {81 — 51,81 — S2,82 — 89,89 — 81}) and Vg = ({83784}, {83 —
S3,83 — S4,84 — S4,84 — S3}), and sets vExp(z) = 1 and vExp(y) = 1. In
iteration [= 2, we have Vare, = {(z,m4), (y,n4), (z,nB), (y,n8), (2,0)} and
the matrix D, stated in Figure 3. Algorithm 1 obtains x4 = (11110000)7 and
r = (12211)7, z = (0000)” as optimal solutions to (1) and (II). Algorithm 1 then

The Polynomial Complexity of VASS 633

-11 0 0 0 0 0 O -1 0 0 O with column order

1 -10 0 0O O O O 1 0 0 O S1 — S1, S2 — S2,
Doy = 0O 0-11 0 0 0 O 01 0 O S3 — 83, S4 — S4,

0 01 -100 00 0-10 0 (from left to right)

-11 1 -1-1-1-1-1 D — 0 0 —-10 and row order
with column order s; — s1, s2 — s,/ ~ |1 0 0 1 0 (z,m), (y,m), (z,m2),
83 — S3, S4 —» S4, S2 — S1, S1 — S2, 0 0 0 1 (y,772),($,773),(y,773),
Sa — S3, S3 — Sa (from left to right) 0 0 0 —1{ (2,m4),(y,m),(2,m4),
and row order (z,m4),(y,na),(z,nB), -11 0 0 [(2n8) (from top to
(y,mB), (2,¢) (from top to bottom) 0 0 1 -1/ bottom)

Fig. 3. The extended update matrices during iteration I = 2 (left) and [= 3 (right) of
Algorithm 1 on the running example V., from Section 1.

sets tExp(s; — s2) = tExp(sa — s1) = tExp(s3 — s4) = tExp(s4s — s3) = 2,
creates the children 1,72 resp. n3,m4 of na resp. np with n; labelled by V; =
({si},{si — si}), and sets vExp(z) = 2. In iteration | = 3, we have Var.; =
{(33’771)7 (y7 771)’ (ma 772)7 (y7772)7 (.1‘7773)7 (%773), (557774), (ya774>7 (Z?nA>7 (Z?nB)} and
the matrix D, stated in Figure 3. Algorithm 1 obtains p = (0000)7 and
r = (1113311111)T, 2z = (0000)T as optimal solutions to (I) and (II). Algo-
rithm 1 then sets tExp(s; — s;) = 3, for all 4, and terminates.

We now state the main properties of Algorithm 1:
Lemma 8. Algorithm 1 always terminates.

Theorem 9. If Algorithm 1 returns “V has at least exponential complexity”,
then compy,(N) € 2°0N) and we have tbound,(N) € 2°WN) for all t € Trns(V)
with tExp(t) = oo and vbound;(N) € 2°WN) for all x € Var with vExp(z) = oo.

The proof of Theorem 9 is stated in Section 8. We now assume that Algorithm 1
does not return “V has at least exponential complexity”. Then, Algorithm 1
must terminate with tExp(t) # oo and vExp(x) # oo for all ¢ € Trns(V) and
x € Var. The following result states that tExp and vExp contain the precise
exponents of the asymptotic transition and variable bounds of V:

Theorem 10. vboundy(z) € O(NE®®) for all 2 € Var and tboundy(t) €
O(N*E=P®) for all t € Trns(V).

The upper bounds of Theorem 10 will be proved in Section 5 (Theorem 16)
and the lower bounds in Section 6 (Corollary 20).

We will prove in Section 7 that the exponents of the variable and transition
bounds are bounded exponentially in the dimension of V:

Theorem 11. We have vExp(x) < 21Vl for all x € Var and tExp(t) < 2IVorl
for all t € Trns(V).

Finally, we obtain the following corollary from Theorems 10 and 11:

Corollary 12. LetV be a connected VASS. Then, either compy,(N) € 22(N) o
compy,(N) € O(N?) for some computable 1 < i < 21Vorl,

634 F. Zuleger

4.1 Complexity of Algorithm 1
In the remainder of this section we will establish the following result:

Theorem 13. Algorithm 1 (with the below stated optimization) can be imple-
mented in polynomial time with regard to the size of the input VASS V.

We will argue that A) every loop iteration of Algorithm 1 only takes poly-
nomial time, and B) that polynomially many loop iterations are sufficient (this
only holds for the optimization of the algorithm discussed below).

Let V be a VASS, let m = | Trns(V)| be the number of transitions of V, and
let n = | Var| be the dimension of V. We note that |Layer(l)| < m for every layer
l of T, because the VASSs of the nodes in the same layer are disjoint.

A) Clearly, removing the decreasing transitions and computing the strongly
connected components can be done in polynomial time. It remains to argue
about constraint systems (I) and (II). We observe that |Vare:| = [{(z,n) |
n € layer(l — vExp(x))}| < n-m and |U| < m. Hence the size of constraint sys-
tems (I) and (II) is polynomial in the size of V. Moreover, constraint systems (I)
and (II) can be solved in PTIME as noted in Section 3.

B) We do not a-priori have a bound on the number of iterations of the main
loop of Algorithm 1. (Theorem 11 implies that the number of iterations is at
most exponential; however, we do not use this result here). We will shortly state
an improvement of Algorithm 1 that ensures that polynomially many iterations
are sufficient. The underlying insight is that certain layers of the tree do not
need to be constructed explicitly. This insight is stated in the lemma below:

Lemma 14. We consider the point in time when the execution of Algorithm 1
reaches line | :== 1 + 1 during some loop iteration | > 1. Let RelevantLayers =
{tExp(t) + vExp(z) | * € Var,t € Trns(V)} and let I’ = min{l’ | I! > [,I' €
RelevantLayers}. Then, vExp(z) # i and tExp(t) # i for all x € Var, t €
Trns(V) and 1 < i <.

We now present the optimization that achieves polynomially many loop itera-
tions. We replace the line [:= [+1 by the two lines RelevantLayers := {tExp(t)+
vExp(z) | x € Var,t € Trns(V)} and [:= min{l’ | I’ > [,I" € RelevantLayers}.
The effect of these two lines is that Algorithm 1 directly skips to the next rel-
evant layer. Lemma 14, stated above, justifies this optimization: First, no new
variable or transition bound is discovered in the intermediate layers | < i < [I’.
Second, each intermediate layer | < i < I’ has the same number of nodes as layer
[, which are labelled by the same sub-VASSs as the nodes in ! (otherwise there
would be a transition with transition bound ! < i < I’); hence, whenever needed,
Algorithm 1 can construct a missing layer [< ¢ < I’ on-the-fly from layer I.

We now analyze the number of loop iterations of the optimized algorithm. We
recall that the value of each vExp(x) and tExp(t) is changed at most once from
00 to some value # oco. Hence, Algorithm 1 encounters at most n - m different
values in the set RelevantLayers = {tExp(t) + vExp(z) | z € Var,t € Trns(V)}
during execution. Thus, the number of loop iterations is bounded by n - m.

The Polynomial Complexity of VASS 635

5 Proof of the Upper Bound Theorem

We begin by stating a proof principle for obtaining upper bounds.

Proposition 15 (Bound Proof Principle). Let V be a VASS. Let U C
Trns(V) be a subset of the transitions of V. Let w : Cfg(V) — N and inc; :
N — N, for every t € Trns(V) \ U, be functions such that for every trace
¢ = (so,v0) LN (s1,11) LN of V with init({) < N we have for every
i >0 that

1) si % sip1 € U implies w(si, v;) > w(sisr, vira), and
2) s LN Si+1 € Trns(V) \ U implies w(s;,v;) + incy(N) > w(Sit1,Vig1)-

We call such a function w a complexity witness and the associated inc; functions
the increase certificates.
Let t € U be a transition on which w decreases, i.e., we have w(sy,v1) >

w(sg,ve) — 1 for every step (s1,v1) 4, (s2,v2) of V with t = s1 9y 5. Then,

tbound;(N) < max w(s, V) + tboundy (N) - incy (N).
NS e en V) t,ET%V)\U v(N) - incy (N)

Further, let x € Var be a variable such that v(z) < w(s,v) for all (s,v) €
Cfg(V). Then,

vbound, (N) <

< max w(s,v) + tboundy (V) - incy (V).
e iz) 2 v(N) - ince(N)

t'e Trns(V)\U

Proof Outline of the Upper Bound Theorem. Let V be a VASS for which Algo-
rithm 1 does not report exponential complexity. We will prove by induction on
loop iteration [that vboundy(z) € O(N') for every x € Var with vExp(z) = I
and that tboundy (t) € O(N') for every t € Trns(V) with tExp(t) = I.

We now consider some loop iteration ! > 1. Let U = |, (1—1) Trns(VASS(n))
7, Var e, xU

€layer
be the transitions, Var.,; be the set of extended variables and D.,; €
be the update matrix considered by Algorithm 1 during loop iteration [. Let r, z
be some optimal solution to constraint system (II) computed by Algorithm 1
during loop iteration [. The main idea for the upper bound proof is to use the
quasi-ranking function from Lemma 3 as witness function for the Bound Proof
Principle. In order to apply Lemma 3 we need to consider the VASS associated
to the matrices in constraint system (II): Let V., be the VASS over variables
Var ., associated to update matrix D.,; and flow matrix F|y. From Lemma 3
we get that rank(r, z) : Cfg(Vest) — N is a quasi-ranking function for V.. We
now need to relate V to the extended VASS V.,; in order to be able to use this
quasi-ranking function. We do so by extending valuations over Var to valuations
over Var ... For every state s € St(V) and valuation v : Var — N, we define the
extended valuation exty(v) : Vare,; — N by setting

,if 5 € St(VASS(n)),
exts(v)(z,n) = {V(()x) o otheg“wise.(n))

636 F. Zuleger

As a direct consequence from the definition of extended valuations, we have
that (s, exts(v)) € Cfg(Ves) for all (s,v) € Cfg(V), and that (s1, exts, (v1)) Den®),
(s2,exts, (1)) is a step of Vg, for every step (s1,11) 4, (s2,12) of V with

S1 4, s9 € U. We now define the witness function w by setting
w(s,v) = rank(r, z)(s, exts(v)) for all (s,v) € Cfg(V).

We immediately get from Lemma 3 that w maps configurations to the non-
negative integers and that condition 1) of the Bound Proof Principle is satisfied.
Indeed, we get from the first item of Lemma 3 that w(s,v) > 0 for all (s,v) €
Cfg(V), and from the second item that w(si,v1) > w(se,) for every step
(s1,11) 4, (s2,12) of V with t = $1 4, sg € U; moreover, the inequality is strict if
(DL ,r+F|52)(t) <0, i.e., the witness function w decreases for transitions ¢ with
tExp(t) = [. It remains to establish condition 2) of the Bound Proof Principle. We
will argue that we can find increase certificates inc,(N) € O(N'~tE®(%) for all
t € Trns(V)\ U. We note that tExp(t) < for all t € Trns(V) \ U, and hence the
induction assumption can be applied for such ¢. We can then derive the desired
bounds from the Bound Proof Principle because of 3, 7,41\ tbound (N) -

¢ (V) = X e prs(y o OVERW) - O(NFB20) = O(NY).

Theorem 16. vboundy (z) € O(NVE®®) for all x € Var and tboundy(t) €
O(N*=®2(1) for all t € Trns(V).

6 Proof of the Lower Bound Theorem

The following lemma will allow us to consider traces (x with init({y) € O(N)
instead of init({y) < N when proving asymptotic lower bounds.

Lemma 17. LetV be a VASS, lett € Trns(V) be a transition and let x € Var be
a variable. If there are traces (y with init((y) € O(N) and instance((y,t) >
N¢, then tboundy(t) € Q2(N?). If there are traces (y with init((y) € O(N)
that reach a final valuation v with v(z) > N*, then vboundy (z) € 2(N*?).

The lower bound proof uses the notion of a pre-path, which relaxes the notion

of a path: A pre-path o = t; - - - t;; is a finite sequence of transitions t; = s; LN sl
Note that we do not require for subsequent transitions that the end state of
one transition is the start state of the next transition, i.e., we do not require
st = si+1. We generalize notions from paths to pre-paths in the obvious way,
e.g., we set val(c) = ¢}y) di and denote by instance(o,t), for ¢t € Trns(V),
the number of times o contains the transition t. We say the pre-path o can be
executed from valuation v, if there are valuations v; > 0 with v;11 = v; + d;11
for all 0 < 7 < k and v = vp; we further say that o reaches valuation v/, if
V' = v. We will need the following relationship between execution and traces:
in case a pre-path o is actually a path, o can be executed from valuation v, if
and only if there is a trace with initial valuation v that uses the same sequence

The Polynomial Complexity of VASS 637

of transitions as 0. Two pre-paths ¢ =t ---t; and ¢’ =t} ---t] can be shuffled

into a pre-path ¢” = t{---t] ;, if 0" is an order-preserving interleaving of o

and o’; formally, there are injective monotone functions f : [1,k] — [1,k +]

and g : [L,1] = [L,k + 1] with f([1,k]) N g([1,1]) = 0 such that t7 ;) =t; for all

1 € [1,k] and t;’(i) =t} for all ¢ € [1,!]. Further, for d > 1 and pre-path o, we

denote by 0% = go - - - ¢ the pre-path that consists of d subsequent copies of o.
—_——

d

For the remainder of this section, we fix a VASS V for which Algorithm 1 does
not report exponential complexity and we fix the computed tree T" and bounds
vExp, tExp. We further need to use the solutions to constraint system (/) com-
puted during the run of Algorithm 1: For every layer [> 1 and node n € layer((),
we fix a cycle C'(n) that contains p(t) instances of every t € Trns(VASS(n)), where
 is an optimal solution to constraint system (I') during loop iteration [. The ex-
istence of such cycles is stated in Lemma 18 below. We note that this definition
ensures val(C(1)) = -, prnsuass(y)) P(t) - (). Further, for the root node ¢, we
fix an arbitrary cycle C(¢) that uses all transitions of V at least once.

Lemma 18. Let i be an optimal solution to constraint system (I) during loop
iteration | of Algorithm 1. Then there is a cycle C(n) for every n € layer(l)
that contains exactly u(t) instances of every transition t € Trns(VASS(n)).

Proof Outline of the Lower Bound Theorem.
Step I) We define a pre-path 7;, for every [> 1, with the following properties:

—_

instance(7;,t) > N'*! for all transitions ¢ € J

val(t;) = N'*1 > netayer(ny Val(C(1)).

)) Trns(VASS(n)).
)

) wal(m)(x) > 0 for every x € Var with vExp(z) <

)

)

ne€layer

[\

l.
val(m)(z) > N'*! for every x € Var with vExp(z) > 1+ 1.
77 is executable from some valuation v with
a) v(r) € O(NE®@)) for x € Var with vExp(x) <[, and
b) v(z) € O(N') for x € Var with vExp(z) > 1 + 1.

The difficulty in the construction of the pre-paths 7; lies in ensuring Property 5).
The construction of the 7; proceeds along the tree T' using that the cycles C(n)
have been obtained according to solutions of constraint system ().

Step II) It is now a direct consequence of Properties 3)-5) stated above that
we can choose a sufficiently large £ > 0 such that for every [> 0 the pre-path
pi = 78TF - 7F (the concatenation of k copies of each 7;, setting 7 = C(¢)™V),
can be executed from some valuation v and reaches a valuation v/ with

1) |[v]l € O(N),
2) V'(z) > kNVE®@) for all 2 € Var with vExp(z) < I, and
3) V/(z) > kN'! for all # € Var with vExp(z) > [+ 1.

The above stated properties for the pre-path p;, .. , where [,y is the maximal
layer of T, would be sufficient to conclude the lower bound proof except that we
need to extend the proof from pre-paths to proper paths.

638 F. Zuleger

Step III) In order to extend the proof from pre-paths to paths we make
use of the concept of shuffling. For all [> 0, we will define paths ~; that can be
obtained by shuffling the pre-paths pg, p1,..., p;. The path v, , where lyax is
the maximal layer of T', then has the desired properties and allows to conclude
the lower bound proof with the following result:

Theorem 19. There are traces (y with init({y) € O(N) such that (x ends
in configuration (sy,vy) with vy (x) > NP for all variables x € Var and
we have instance(Cy,t) > NYPW) for qll transitions t € Trns(V).

With Lemma 17 we get the desired lower bounds from Theorem 19:

Corollary 20. vboundy(z) € Q(NEP@)) for all 2 € Var and tboundy(t) €
Q(N*E=®)) for all t € Trns(V).

7 The Size of the Exponents

For the remainder of this section, we fix a VASS V for which Algorithm 1 does
not report exponential complexity and we fix the computed tree T" and bounds
vExp, tExp. Additionally, we fix a vector z € Z5V) for every layer [of T and a
vector 1, € Z.Ve" for every node 1 € layer(l) as follows: Let r, z be an optimal
solution to constraint system (II) in iteration [+ 1 of Algorithm 1. We then set
z; = z. For every n € layer(l) we define r,, by setting r,(x) = r(x,n’), where
1 € layer(l — vExp(z)) is the unique ancestor of 7 in layer | — vExp(z). The
following properties are immediate from the definition:

Proposition 21. For every layer I of T and node n € layer(l) we have:

1) z,> 0 and r, > 0.

2) rld + z(s2) — zi(s1) < 0 for every transition s 9 sy € Trns(VASS(n));
moreover, the inequality is strict for all transitions t with tExp(t) =1+ 1.
3) Letn' € layer(i) be a strict ancestor of n. Then, TnT/d + 2i(s2) — 2i(51) =0

for every transition s, N, Trns(VASS(n)).

4) For every x € Var with vExp(z) = l+1 we have r,)(z) > 0 and r,,(z) = ryy ()
for ally’ € layer(l).

5) For every x € Var with vExp(z) > [+ 1 we have r,(z) = 0.

6) For every x € Var with vExp(x) < there is an ancestor ' € layer(i) of n
such that ry(xz) >0 and ry(2') =0 for all ' with vExp(z') > vExp(z).

For a vector r € ZY* we define the potential of r by setting pot(r) =
max{vExp(z) | x € Var,r(z) # 0}, where we set max () = 0. The motivation for
this definition is that we have r7v € O(NP*(")) for every valuation v reachable
by a trace ¢ with init({) < N . We will now define the potential of a set
of vectors Z C ZV". Let M be a matrix whose columns are the vectors of Z
and whose rows are ordered according to the variable bounds, i.e., if the row
associated to variable 2’ is above the row associated to variable z, then we have

The Polynomial Complexity of VASS 639

vExp(2’) > vExp(z). Let L be some lower triangular matrix obtained from M by
elementary column operations. We now define pot(Z) = > jumn » of £ POE(7),
where we set >) = 0. We note that pot(Z) is well-defined, because the value
pot(Z) does not depend on the choice of M and L.

We next state an upper bound on potentials. Let [> 0 and let B; =
{vExp(z) | © € Var,vExp(z) < I} be the set of variable bounds below [. We
set varsum(l) = 1, for B; = (), and varsum(l) = > B, otherwise. The following
statement is a direct consequence of the definitions:

Proposition 22. Let Z C ZV*" be a set of vectors such that r(x) = 0 for all
r € Z and x € Var with vExp(z) > l. Then, we have pot(Z) < varsum(l + 1).

We define pot(n) = pot({r, | ' is a strict ancestor of n}) as the potential
of a node . We note that pot(n) < varsum(l + 1) for every node n € layer(l)
by Proposition 22. Now, we are able to state the main results of this section:

Lemma 23. Letn be a node in T. Then, every trace ¢ with init(¢) < N enters
VASS(n) at most O(N®P*M) times, i.e., ¢ contains at most O(NP*)) transitions

s L s with s ¢ St(VASS(n)) and s’ € St(VASS(n)).

Lemma 24. For every layer |, we have that vExp(x) = [resp. tExp(t) = I
implies vExp(x) < varsum(l) resp. tExp(t) < varsum(().

The next result follows from Lemma 24 only by arithmetic manipulations
and induction on I:

Lemma 25. Let [be some layer. Let k be the number of variables x € Var with
vExp(r) < l. Then, varsum(l) < 2%.

Theorem 11 is then a direct consequence of Lemma 24 and 25 (using k < | Var|).

8 Exponential Witness

The following lemma from [15] states a condition that is sufficient for a VASS
to have exponential complexity?. We will use this lemma to prove Theorem 9:

Lemma 26 (Lemma 10 of [15]). Let V be a connected VASS, let U W be a
partitioning of Var and let Cy,...,Cy, be cycles such that a) val(C;)(z) > 0 for
alzeU and 1 <i<m, and b) Y, val(C;)(x) > 1 for all x € W. Then, there
is a ¢ > 1 and paths Ty such that 1) mn can be executed from initial valuation
N -1, 2) Ty reaches a valuation v with v(x) > ¢V for allz € W and 3) (C’i)CN
is a sub-path of wn for each 1 < i < m.

We now outline the proof of Theorem 9: We assume that Algorithm 1 re-
turned “V has at least exponential complexity” in loop iteration [. According to
Lemma 18, there are cycles C(n), for every node n € layer(l), that contain p(t)
instances of every transition ¢t € Trns(VASS(n)). One can then show that the cy-
cles C(n) and the sets U = {a € Var | vExp(x) <1}, W = {a € Var | vExp(x) >
[} satisfy the requirements of Lemma 26, which establishes Theorem 9.

2 Our formalization differs from[15], but it is easy to verify that our conditions a) and
b) are equivalent to the conditions on the cycles in the ‘iteration schemes’ of [15].

640

F. Zuleger

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

. Parosh Aziz Abdulla, Giorgio Delzanno, and Laurent van Begin. A language-based

comparison of extensions of Petri nets with and without whole-place operations.
In LATA, pages 71-82, 2009.

Benjamin Aminof, Sasha Rubin, and Florian Zuleger. On the expressive power
of communication primitives in parameterised systems. In LPAR, pages 313-328,
2015.

Benjamin Aminof, Sasha Rubin, Florian Zuleger, and Francesco Spegni. Liveness
of parameterized timed networks. In ICALP, pages 375—-387, 2015.

Roderick Bloem, Swen Jacobs, Ayrat Khalimov, Igor Konnov, Sasha Rubin, Hel-
mut Veith, and Josef Widder. Decidability in parameterized verification. SIGACT
News, 47(2):53-64, 2016.

Tomds Brazdil, Krishnendu Chatterjee, Antonin Kucera, Petr Novotny, Dominik
Velan, and Florian Zuleger. Efficient algorithms for asymptotic bounds on termi-
nation time in VASS. In LICS, pages 185-194, 2018.

Leonard Dickson. Finiteness of the odd perfect and primitive abundant numbers
with n distinct prime factors. Am. J. Math, 35:413—-422, 1913.

Javier Esparza and Mogens Nielsen. Decidability issues for Petri nets - a survey.
Elektronische Informationsverarbeitung und Kybernetik, 30(3):143-160, 1994.
Alain Finkel, Gilles Geeraerts, Jean-Francois Raskin, and Laurent van Begin. On
the omega-language expressive power of extended Petri nets. T'C'S, 356(3):374-386,
2006.

Steven M. German and A. Prasad Sistla. Reasoning about systems with many
processes. J. ACM, 39(3):675-735, 1992.

John E. Hopcroft and Jean-Jacques Pansiot. On the reachability problem for 5-
dimensional vector addition systems. T'CS, 8:135-159, 1979.

Annu John, Igor Konnov, Ulrich Schmid, Helmut Veith, and Josef Widder. Param-
eterized model checking of fault-tolerant distributed algorithms by abstraction. In
FMCAD, pages 201-209, 2013.

Alexander Kaiser, Daniel Kroening, and Thomas Wahl. A widening approach to
multithreaded program verification. TOPLAS, 36(4):14:1-14:29, 2014.

Richard M. Karp and Raymond E. Miller. Parallel program schemata. J. Comput.
Syst. Sci., 3(2):147-195, 1969.

S. Rao Kosaraju and Gregory F. Sullivan. Detecting cycles in dynamic graphs in
polynomial time (preliminary version). In STOC, pages 398-406, 1988.

Jérome Leroux. Polynomial vector addition systems with states. In ICALP, pages
134:1-134:13, 2018.

Richard J. Lipton. The Reachability Problem Requires Exponential space. Research
report 62. Department of Computer Science, Yale University, 1976.

Charles Rackoff. The covering and boundedness problems for vector addition sys-
tems. T'CS, 6:223-231, 1978.

Moritz Sinn, Florian Zuleger, and Helmut Veith. A simple and scalable static
analysis for bound analysis and amortized complexity analysis. In CAV, pages
745-761, 2014.

Moritz Sinn, Florian Zuleger, and Helmut Veith. Difference constraints: An ad-
equate abstraction for complexity analysis of imperative programs. In FMCAD,
pages 144-151, 2015.

Moritz Sinn, Florian Zuleger, and Helmut Veith. Complexity and resource bound
analysis of imperative programs using difference constraints. JAR, 59:3-45, 2017.

The Polynomial Complexity of VASS 641

21. Florian Zuleger. The polynomial complexity of vector addition systems with states.
CoRR, abs/1907.01076, 2019.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

	The Polynomial Complexity of Vector Addition Systems with States
	1 Introduction
	1.1 Overview and Illustration of Results
	1.2 Related Work

	2 Preliminaries
	3 A Dichotomy Result
	4 Main Algorithm
	4.1 Complexity of Algorithm 1

	5 Proof of the Upper Bound Theorem
	6 Proof of the Lower Bound Theorem
	7 The Size of the Exponents
	8 Exponential Witness
	References

