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Abstract This paper studies fundamental questions concerning category-
theoretic models of induction and recursion. We are concerned with
the relationship between well-founded and recursive coalgebras for an
endofunctor. For monomorphism preserving endofunctors on complete
and well-powered categories every coalgebra has a well-founded part,
and we provide a new, shorter proof that this is the coreflection in
the category of all well-founded coalgebras. We present a new more
general proof of Taylor’s General Recursion Theorem that every well-
founded coalgebra is recursive, and we study conditions which imply the
converse. In addition, we present a new equivalent characterization of
well-foundedness: a coalgebra is well-founded iff it admits a coalgebra-to-
algebra morphism to the initial algebra.
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1 Introduction

What is induction? What is recursion? In areas of theoretical computer science,
the most common answers are related to initial algebras. Indeed, the dominant
trend in abstract data types is initial algebra semantics (see e.g. [19]), and this
approach has spread to other semantically-inclined areas of the subject. The
approach in broad slogans is that, for an endofunctor F' describing the type of
algebraic operations of interest, the initial algebra uF has the property that
for every F-algebra A, there is a unique homomorphism pF — A, and this s
recursion. Perhaps the primary example is recursion on IN, the natural numbers.
Recall that IN is the initial algebra for the set functor FX = X + 1. If A is any
set, and a € A and a: A — A+ 1 are given, then initiality tells us that there is
a unique f: IN — A such that for all n € IN,

f0)=a  fln+1)=a(f(n). (1.1)
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Then the first additional problem coming with this approach is that of how to
“recognize” initial algebras: Given an algebra, how do we really know if it is
initial? The answer — again in slogans — is that initial algebras are the ones with
“no junk and no confusion.”

Although initiality captures some important aspects of recursion, it cannot be
a fully satisfactory approach. One big missing piece concerns recursive definitions
based on well-founded relations. For example, the whole study of termination
of rewriting systems depends on well-orders, the primary example of recursion
on a well-founded order. Let (X, R) be a well-founded relation, i.e. one with no
infinite sequences - - - o Rx1 R xo. Let A be any set, and let a: A — A. (Here
and below, & is the power set functor, taking a set to the set of its subsets.)
Then there is a unique f: X — A such that for all x € X,

f(@) =a{f(y) :y R x}). (1.2)

The main goal of this paper is the study of concepts that allow one to extend
the algebraic spirit behind initiality in (1.1) to the setting of recursion arising
from well-foundedness as we find it in (1.2). The corresponding concepts are
those of well-founded and recursive coalgebras for an endofunctor, which first
appear in work by Osius [22] and Taylor [23,24], respectively. In his work on
categorical set theory, Osius [22] first studied the notions of well-founded and
recursive coalgebras (for the power-set functor on sets and, more generally, the
power-object functor on an elementary topos). He defined recursive coalgebras
as those coalgebras a: A — A which have a unique coalgebra-to-algebra
homomorphism into every algebra (see Definition 3.2).

Taylor [23,24] took Osius’ ideas much further. He introduced well-founded
coalgebras for a general endofunctor, capturing the notion of a well-founded rela-
tion categorically, and considered recursive coalgebras under the name ‘coalgebras
obeying the recursion scheme’ He then proved the General Recursion Theorem
that all well-founded coalgebras are recursive, for every endofunctor on sets (and
on more general categories) preserving inverse images. Recursive coalgebras were
also investigated by Eppendahl [12], who called them algebra-initial coalgebras.
Capretta, Uustalu, and Vene [10] further studied recursive coalgebras, and they
showed how to construct new ones from given ones by using comonads. They
also explained nicely how recursive coalgebras allow for the semantic treatment
of (functional) divide-and-conquer programs. More recently, Jeannin et al. [15]
proved the General Recursion Theorem for polynomial functors on the category
of many-sorted sets; they also provide many interesting examples of recursive
coalgebras arising in programming.

Our contributions in this paper are as follows. We start by recalling some pre-
liminaries in Section 2 and the definition of (parametrically) recursive coalgebras
in Section 3 and of well-founded coalgebras in Section 4 (using a formulation
based on Jacobs’ next time operator [14], which we extend from Kripke poly-
nomial set functors to arbitrary functors). We show that every coalgebra for a
monomorphism preserving functor on a complete and well-powered category has
a well-founded part, and provide a new proof that this is the coreflection in the
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category of well-founded coalgebras (Proposition 4.19), shortening our previous
proof [6]. Next we provide a new proof of Taylor’s General Recursion Theorem
(Theorem 5.1), generalizing this to endofunctors preserving monomorphisms on a
complete and well-powered category having smooth monomorphisms (see Defini-
tion 2.8). For the category of sets, this implies that “well-founded = recursive”
holds for all endofunctors, strengthening Taylor’s result. We then discuss the
converse: is every recursive coalgebra well-founded? Here the assumption that F'
preserves inverse images cannot be lifted, and one needs additional assumptions.
In fact, we present two results: one assumes universally smooth monomorph-
isms and that the functor has a pre-fixed point (see Theorem 5.5). Under these
assumptions we also give a new equivalent characterization of recursiveness
and well-foundedness: a coalgebra is recursive if it has a coalgebra-to-algebra
morphism into the initial algebra (which exists under our assumptions), see Co-
rollary 5.6. This characterization was previously established for finitary functors
on sets [3]. The other converse of the above implication is due to Taylor using
the concept of a subobject classifier (Theorem 5.8). It implies that ‘recursive’
and ‘well-founded’ are equivalent concepts for all set functors preserving inverse
images. We also prove that a similar result holds for the category of vector spaces
over a fixed field (Theorem 5.12).

Finally, we show in Section 6 that well-founded coalgebras are closed under
coproducts, quotients and, assuming mild assumptions, under subcoalgebras.

2 Preliminaries

We start by recalling some background material. Except for the definitions of
algebra and coalgebra in Subsection 2.1, the subsections below may be read as
needed. We assume that readers are familiar with notions of basic category theory;
see e.g. [2] for everything which we do not detail. We indicate monomorphisms
by writing — and strong epimorphisms by —.

2.1 Algebras and Coalgebras. We are concerned throughout this paper
with algebras and coalgebras for an endofunctor. This means that we have an
underlying category, usually written o7; frequently it is the category of sets or
of vector spaces over a fixed field, and that a functor F': & — & is given. An
F-algebra is a pair (4, «), where a: FA — A. An F-coalgebra is a pair (A4, a),
where a: A — FA. We usually drop the functor F. Given two algebras (A, «)
and (B, ), an algebra homomorphism from the first to the second is h: A — B
in & such that h-a = §- Fh. Similarly, a coalgebra homomorphism satisfies
B+ h = Fh-«a. We denote by Coalg F' the category of all coalgebras for F.

Example 2.1. (1) The power set functor &2: Set — Set takes a set X to the set
P X of all subsets of it; for a morphism f: X =Y, Zf: X — ZY takes a
subset S C X to its direct image f[S]. Coalgebras a: X — X may be identified
with directed graphs on the set X of vertices, and the coalgebra structure «
describes the edges: b € a(a) means that there is an edge a — b in the graph.
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(2) Let X be a signature, i.e. a set of operation symbols, each with a finite arity.
The polynomial functor Hs associated to X assigns to a set X the set

HsX = ]_[ Yox X",
nelN

where X, is the set of operation symbols of arity n. This may be identified with
the set of all terms o(x1,...,2,), for 0 € X, and z1,...,2, € X. Algebras for
Hy are the usual Y-algebras.

(3) Deterministic automata over an input alphabet X' are coalgebras for the
functor FX = {0,1} x X*. Indeed, given a set S of states, a next-state map
S x X — S may be curried to 6: S — S¥. The set of final states yields the
acceptance predicate a: S — {0,1}. So an automaton may be regarded as a
coalgebra (a,8): S — {0,1} x S¥.

(4) Labelled transitions systems are coalgebras for FX = Z(X x X).

(5) To describe linear weighted automata, i.e. weighted automata over the input
alphabet X with weights in a field K, as coalgebras, one works with the category
Veck of vector spaces over K. A linear weighted automaton is then a coalgebra
for FX = K x X*.

2.2 Preservation Properties. Recall that an intersection of two subobjects
s;:8;— A (i=1,2) of a given object A is given by their pullback. Analogously,
(general) intersections are given by wide pullbacks. Furthermore, the inverse
image of a subobject s: S ~— B under a morphism f: A — B is the subobject
t: T — A obtained by a pullback of s along f.

All of the ‘usual’ set functors preserve intersections and inverse images:

Example 2.2. (1) Every polynomial functor preserves intersections and inverse
images.
(2) The power-set functor & preserves intersections and inverse images.

(3) Intersection-preserving set functors are closed under taking coproducts,
products and composition. Similarly, for inverse images.

(4) Consider next the set functor R defined by RX = {(z,y) € X x X:z #
y} + {d} for sets X. For a function f: X — Y put Rf(z,y) = (f(z), f(y)) if
f(z) # f(y), and d otherwise. R preserves intersections but not inverse images.

Proposition 2.3 [27]. For every set functor F there exists an essentially unique
set functor F which coincides with F on nonempty sets and functions and
preserves finite intersections (whence monomorphisms).

Remark 2.4. (1) In fact, Trnkova gave a construction of F: she defined F) as
the set of all natural transformations Cy; — F', where Cy; is the set functor with
Co10 = 0 and Cyp1 X = 1 for all nonempty sets X. For the empty map e: ) — X
with X # (), Fe maps a natural transformation 7: Cy; — F to the element given
by 7x:1— FX.

(2) The above functor F is called the Trnkovd hull of F. It allows us to achieve
preservation of intersections for all finitary set functors. Intuitively, a functor on
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sets is finitary if its behavior is completely determined by its action on finite sets
and functions. For a general functor, this intuition is captured by requiring that
the functor preserves filtered colimits [8]. For a set functor F' this is equivalent to
being finitely bounded, which is the following condition: for each element z € F'X
there exists a finite subset M C X such that x € Fi[FM], where i: M — X is
the inclusion map [7, Rem. 3.14].

Proposition 2.5 [4, p. 66]. The Trnkovd hull of a finitary set functor preserves
all intersections.

2.3 Factorizations. Recall that an epimorphism e: A — B is called strong
if it satisfies the following diagonal fill-in property: given a monomorphism
m: C »— D and morphisms f: A — C and g: B — D such that m- f =g-e
then there exists a unique d: B — C such that f =d-e and g =m - d.

Every complete and well-powered category has factorizations of morphisms:
every morphism f may be written as f = m - e, where e is a strong epimorphism
and m is a monomorphism [9, Prop. 4.4.3]. We call the subobject m the image
of f. It follows from a result in Kurz’ thesis [16, Prop. 1.3.6] that factorizations
of morphisms lift to coalgebras:

Proposition 2.6 (Coalg F' inherits factorizations from ). Suppose that
F preserves monomorphisms. Then the category Coalg F' has factorizations of
homomorphisms f as f =m - e, where e is carried by a strong epimorphism and
m by a monomorphism in 7. The diagonal fill-in property holds in Coalg F.

Remark 2.7. By a subcoalgebra of a coalgebra (A, «) we mean a subobject
in Coalg F' represented by a homomorphism m: (B, ) — (A,«a), where m is
monic in 7. Similarly, by a strong quotient of a coalgebra (A, «) we mean one
represented by a homomorphism e: (4, ) — (C,v) with e strongly epic in 7.

2.4 Chains. By a transfinite chain in a category &/ we understand a functor
from the ordered class Ord of all ordinals into .«7. Moreover, for an ordinal A, a
A-chain in &7 is a functor from A to /. A category has colimits of chains if for
every ordinal A it has a colimit of every A-chain. This includes the initial object
0 (the case A =0).

Definition 2.8. (1) A category & has smooth monomorphisms if for every
A-chain C' of monomorphisms a colimit exists, its colimit cocone is formed
by monomorphisms, and for every cone of C formed by monomorphisms, the
factorizing morphism from colim C' is monic. In particuar, every morphism from
0 is monic.

(2) o has universally smooth monomorphisms if < also has pullbacks, and
for every morphism f: X — colim C, the functor &/ colimC — &/ /X forming
pullbacks along f preserves the colimit of C'. This implies that initial object 0
is strict, i.e. every morphism f: X — 0 is an isomorphism. Indeed, consider the
empty chain (A = 0).

Example 2.9. (1) Set has universally smooth monomorphisms.
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(2) Veck has smooth monomorphisms, but not universally so because the initial
object is not strict.

(3) Categories in which colimits of chains and pullbacks are formed “set-like”
have universally smooth monomorphisms. These include the categories of posets,
graphs, topological spaces, presheaf categories, and many varieties, such as
monoids, groups, and unary algebras.

(4) Every locally finitely presentable category o/ with a strict initial object (see
Remark 2.12(1)) has smooth monomorphisms. This follows from [8, Prop. 1.62].
Moreover, since pullbacks commute with colimits of chains, it is easy to prove
that colimits of chains are universal using the strictness of 0.

(5) The category CPO of complete partial orders does not have smooth mono-
morphisms. Indeed, consider the w-chain of linearly ordered sets A,, = {0,...,n}+
{T} (T atop element) with inclusion maps A4,, — A,41. Its colimit is the linearly
ordered set N+ {T, T’} of natural numbers with two added top elements T' < T.
For the sub-cpo IN+ {T}, the inclusions of A,, are monic and form a cocone. But
the unique factorizing morphism from the colimit is not monic.

Notation 2.10. For every object A we denote by Sub(A) the poset of all subob-
jects of A (represented by monomorphisms s: S ~— A), where s < s’ if there exists
1 with s = s’ - 4. If & has pullbacks we have, for every morphism f: A — B, the
inverse image operator, viz. the monotone map f : Sub(B) — Sub(A) assigning
to a subobject s: S — A the subobject of B obtained by forming the inverse
image of s under f, i.e. the pullback of s along f.

<_
Lemma 2.11. If o/ is complete and well-powered, then f has a left adjoint
given by the (direct) image operator f : Sub(A) — Sub(B). It maps a subobject
t: T — B to the subobject of A given by the image of f - t; in symbols we have

T <sift<fis).

Remark 2.12. If &/ is a complete and well-powered category, then Sub(A) is a
complete lattice. Now suppose that .27 has smooth monomorphisms.

(1) In this setting, the unique morphism L 4: 0 — A is a monomorphism and
therefore is the bottom element of the poset Sub(A).

(2) Furthermore, a join of a chain in Sub(A) is obtained by forming a colimit, in
the obvious way.

(3) If & has universalbé_ smooth monomorphisms, then for every morphism
f:+ A — B, the operator f : Sub(B) — Sub(A) preserves unions of chains.

Remark 2.13. Recall [1] that every endofunctor F' yields the initial-algebra
chain, viz. a transfinite chain formed by the objects F?0 of 27, as follows: F°0 = 0,
the initial object; F**10 = F(F0), and for a limit ordinal 7 we take the colimit
of the chain (F70),<;. The connecting morphisms w; ;: F'0 — F70 are defined
by a similar transfinite recursion.
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3 Recursive Coalgebras

Assumption 3.1. We work with a standard set theory (e.g. Zermelo-Fraenkel),
assuming the Axiom of Choice. In particular, we use transfinite induction on
several occasions. (We are not concerned with constructive foundations in this
paper.)

Throughout this paper we assume that o/ is a complete and well-powered
category &« and that F': &/ — &/ preserves monomorphisms.

For o/ = Set the condition that F' preserves monomorphisms may be dropped.
In fact, preservation of non-empty monomorphism is sufficient in general (for a
suitable notion of non-empty monomorphism) [21, Lemma 2.5], and this holds
for every set functor.

The following definition of recursive coalgebras was first given by Osius [22].
Taylor [24] speaks of coalgebras obeying the recursion scheme. Capretta et al. [10]
extended the concept to parametrically recursive coalgebra by dualizing completely
iterative algebras [20].

Definition 3.2. A coalgebra a: A — F'A is called recursive if for every algebra
e: FX — X there exists a unique coalgebra-to-algebra morphism ef: 4 — X,
i.e. a unique morphism such that the square on the left below commutes:

T 1
A € X €

A X
ai Te <a7A>J’ FefxA Te

FA Py px FAxA-TeXA  px A

(A, ) is called parametrically recursive if for every morphism e: FX x A — X
there is a unique morphism ef: A — X such that the square on the right above
commutes.

Example 3.3. (1) A graph regarded as a coalgebra for & is recursive iff it has
no infinite path. This is an immediate consequence of the General Recursion
Theorem (see Corollary 5.6 and Example 4.5(2)).

(2) Let ¢: F(uF) — pF be an initial algebra. By Lambek’s Lemma, ¢ is an
isomorphism. So we have a coalgebra (~1: uF — F(uF'). This algebra is (para-
metrically) recursive. By [20, Thm. 2.8], in dual form, this is precisely the same
as the terminal parametrically recursive coalgebra (see also [10, Prop. 7]).

(3) The initial coalgebra 0 — F0 is recursive.

(4) If (C,7) is recursive so is (F'C, Fy), see [10, Prop. 6].

(5) Colimits of recursive coalgebras in Coalg F' are recursive. This is easy to
prove, using that colimits of coalgebras are formed on the level of the underlying
category.

(6) It follows from items (3)—(5) that in the initial-algebra chain from Re-
mark 2.13 all coalgebras w; ;11: F'0 — F'*10, i € Ord, are recursive.



24 J. Addmek et al.

(7) Every parametrically recursive coalgebra is recursive. (To see this, form for
a given e: FX — X the morphism e = e -7, where 7: X x A — FX is the
projection.) In Corollaries 5.6 and 5.9 we will see that the converse often holds.

Here is an example where the converse fails [3]. Let R: Set — Set be the
functor defined in Example 2.2(4). Also, let C = {0,1}, and define v: C — RC
by v(0) = ~(1) = (0,1). Then (C,+) is a recursive coalgebra. Indeed, for every
algebra ov: RA — A the constant map h: C' — A with h(0) = h(1) = a(d) is the
unique coalgebra-to-algebra morphism.

However, (C,~) is not parametrically recursive. To see this, consider any

morphism e: RX x {0,1} — X such that RX contains more than one pair
(zo,21), ®o # x1 with e((zg,21),?) = x; for i = 0,1. Then each such pair yields
h: C — X with h(i) = z; making the appropriate square commutative. Thus,
(C,~) is not parametrically recursive.
(8) Capretta et al. [11] showed that recursivity semantically models divide-and-
conquer programs, as demonstrated by the example of Quicksort. For every
linearly ordered set A (of data elements), Quicksort is usually defined as the
recursive function q: A* — A* given by

qle) =¢ and q(aw) = q(w<q) * (ag(wsq)),

where A* is the set of all lists on A, ¢ is the empty list, x is the concatenation of
lists and w<, denotes the list of those elements of w which are less than or equal
than a; analogously for ws,.

Now consider the functor FX =1+ A x X x X on Set, where 1 = {e}, and
form the coalgebra s: A* — 14+ A x A* x A* given by

s(e)=e and s(aw) = (@, W<q, Wsq) fora € Aand we A",

We shall see that this coalgebra is recursive in Example 5.3. Thus, for the
F-algebram :1+ A x A* x A* — A* given by

m(e) =¢ and m(a,w,v) = w* (av)

there exists a unique function g on A* such that ¢ = m - Fig - s. Notice that the
last equation reflects the idea that Quicksort is a divide-and-conquer algorithm.
The coalgebra structure s divides a list into two parts w<, and w~,. Then Fgq
sorts these two smaller lists, and finally in the combine- (or conquer-) step, the
algebra structure m merges the two sorted parts to obtain the desired whole
sorted list.

Jeannin et al. [15, Sec. 4] provide a number of recursive functions arising in
programming that are determined by recursivity of a coalgebra, e.g. the gecd of
integers, the Ackermann function, and the Towers of Hanoi.

4 The Next Time Operator and Well-Founded Coalgebras

As we have mentioned in the Introduction, the main issue of this paper is the
relationship between two concepts pertaining to coalgebras: recursiveness and
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well-foundedness. The concept of well-foundedness is well-known for directed
graphs (G, —): it means that there are no infinite directed paths gg — g1 — - - -.
For a set X with a relation R, well-foundedness means that there are no backwards
sequences - - - Rz R x1 R xg, i.e. the converse of the relation is well-founded as a
graph. Taylor [24, Def. 6.2.3] gave a more general category theoretic formulation
of well-foundedness. We observe here that his definition can be presented in a
compact way, by using an operator that generalizes the way one thinks of the
semantics of the ‘next time’ operator of temporal logics for non-deterministic (or
even probabilistic) automata and transitions systems. It is also strongly related
to the algebraic semantics of modal logic, where one passes from a graph G
to a function on ZG. Jacobs [14] defined and studied the ‘next time’ operator
on coalgebras for Kripke polynomial set functors. This can be generalized to
arbitrary functors as follows.
Recall that Sub(A) denotes the complete lattice of subobjects of A.

Definition 4.1 [4, Def. 8.9]. Every coalgebra a: A — FA induces an endo-
function on Sub(A), called the next time operator

O: Sub(A) = Sub(4),  O(s) = W (Fs) for s € Sub(A).

In more detail: we define (s and «(s) by the pullback in (4.1). (Being a pullback
is indicated by the “corner” symbol.) In words, O (s)

assigns to each subobject s: S — A the inverse image OS —— FS§

of F's under a. Since F's is a monomorphism, (s is a OSI - IFS (4.1)
monomorphism and «(s) is (for every representation

(Os of that subobject of A) uniquely determined. A—— FA

Example 4.2. (1) Let A be a graph, considered as a coalgebra for &2: Set — Set.
If S C A is a set of vertices, then ()S is the set of vertices all of whose successors
belong to S.

(2) For the set functor FX = Z(X x X) expressing labelled transition systems
the operator O for a coalgebra a: A — (X x A) is the semantic counterpart
of the next time operator of classical linear temporal logic, see e.g. Manna and
Putieli [18]. In fact, for a subset S < A we have that (S consists of those states
all of whose next states lie in .S, in symbols:

OS={z€ Al (s,y) € a(z) implies y € S, for all s € X}.
The next time operator allows a compact definition of well-foundedness as
characterized by Taylor [24, Exercise VI.17] (see also [6, Corollary 2.19]):

Definition 4.3. A coalgebra is well-founded if id 4 is the only fixed point of its
next time operator.

Remark 4.4. (1) Let us call a subcoalgebra m: (B,8) — (A,«) cartesian
provided that the square (4.2) is a pullback. Then

(A, «) is well-founded iff it has no proper cartesian B . rB
subcoalgebra. That is, if m: (B,8) = (A,«) is a _ (4.2)

. . . . m Fm .
cartesian subcoalgebra, then m is an isomorphism. I I

Indeed, the fixed points of next time are precisely the A>3 FA
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cartesian subcoalgebras.

(2) A coalgebra is well-founded iff O has a unique pre-fixed point Om < m.
Indeed, since Sub(A) is a complete lattice, the least fixed point of a monotone
map is its least pre-fixed point. Taylor’s definition [24, Def. 6.3.2] uses that
property: he calls a coalgebra well-founded iff () has no proper subobject as a
pre-fixed point.

Example 4.5. (1) Consider a graph as a coalgebra a: A — Z A for the power-
set functor (see Example 2.1). A subcoalgebra is a subset m: B — A such
that with every vertex v it contains all neighbors of v. The coalgebra structure
B: B — B is then the domain-codomain restriction of «. To say that B is a
cartesian subcoalgebra means that whenever a vertex of A has all neighbors in
B, it also lies in B. It follows that (A, ) is well-founded iff it has no infinite
directed path, see [24, Example 6.3.3].

(2) If uF exists, then as a coalgebra it is well-founded. Indeed, in every pull-
back (4.2), since 1 =1 (as «) is invertible, so is 3. The unique algebra homomorph-
ism from puF to the algebra 3~!: FB — B is clearly inverse to m.

(3) If a set functor F fulfils F() = (), then the only well-founded coalgebra is the
empty one. Indeed, this follows from the fact that the empty coalgebra is a fixed
point of (). For example, a deterministic automaton over the input alphabet X,
as a coalgebra for FX = {0,1} x X* is well-founded iff it is empty.

(4) A non-deterministic automaton may be considered as a coalgebra for the set
functor FX = {0,1} x (£X)¥. It is well-founded iff the state transition graph
is well-founded (i.e. has no infinite path). This follows from Corollary 4.10 below.
(5) A linear weighted automaton, i.e. a coalgebra for FX = K x X* on Vecg,
is well-founded iff every path in its state transition graph eventually leads to O.
This means that every path starting in a given state leads to the state 0 after
finitely many steps (where it stays).

Notation 4.6. Given a set functor F, we define for every set X the map
Tx: FX — X assigning to every element z € FX the intersection of all
subsets m: M — X such that z lies in the image of F'm:

Tx(x) = ﬂ{m | m: M — X satisfies x € Fm[FM]}. (4.3)

Recall that a functor preserves intersections if it preserves (wide) pullbacks
of families of monomorphisms.

Gumm [13, Thm. 7.3] observed that for a set functor preserving intersections,
the maps 7x: FX — ZX in (4.3) form a “subnatural” transformation from F'
to the power-set functor &2. Subnaturality means that (although these maps do
not form a natural transformation in general) for every monomorphism i: X — Y
we have a commutative square:

FX 25 72X
| [ (14)
FY 2 Y
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Remark 4.7. As shown in [13, Thm. 7.4] and [23, Prop. 7.5], a set functor F’
preserves intersections iff the squares in (4.4) above are pullbacks. Moreover,
loc. cit. and [13, Thm. 8.1] prove that 7: F' — £ is a natural transformation,
provided F' preserves inverse images and intersections.

Definition 4.8. Let F' be a set functor. For every coalgebra a: A — FA its
canonical graph is the following coalgebra for 22: A < FA 12 P A.

Thanks to the subnaturality of 7 one obtains the following results.

Proposition 4.9. For every set functor F preserving intersections, the next
time operator of a coalgebra (A, «) coincides with that of its canonical graph.

Corollary 4.10 [24, Rem. 6.3.4]. A coalgebra for a set functor preserving
intersections is well-founded iff its canonical graph is well-founded.

Example 4.11. (1) For a (deterministic or non-deterministic) automaton, the
canonical graph has an edge from s to t iff there is a transition from s to ¢ for
some input letter. Thus, we obtain the characterization of well-foundedness as
stated in Example 4.5(3) and (4).

(2) Every polynomial functor Hy: Set — Set preserves intersections. Thus, a
coalgebra (A, «) is well-founded if there are no infinite paths in its canonical
graph. The canonical graph of A has an edge from a to b if a(a) is of the form
o(ct, ..., cp) for some o € X, and if b is one of the ¢;’s.

(3) Thus, for the functor FX = 1+ A x X x X, the coalgebra (A*,s) of
Example 3.3(8) is easily seen to be well-founded via its canonical graph. Indeed,
this graph has for every list w one outgoing edge to the list w<, and one to ws,
for every a € A. Hence, this is a well-founded graph.

Lemma 4.12. The next time operator is monotone: if m < n, then Om < On.

Lemma 4.13. Let a: A — FA be a coalgebra and m: B — A a subobject.
(1) There is a coalgebra structure B: B — F B for which m gives a subcoalgebra

of (A, ) iff m < Om.
(2) There is a coalgebra structure 3: B — FB for which m gives a cartesian
subcoalgebra of (A, ) iff m = Om.

Lemma 4.14. For every coalgebra homomorphism f: (B, ) — (A, «) we have
& e

where Oq and Op denote the next time operators of the coalgebras (A, a) and
(B, B), respectively, and < is the pointwise order.

Corollary 4.15. For every coalgebra homomorphism f: (B,3) — (A, a) we
— < . 5
have Qg - f = f - Oa, provided that either
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(1) f is a monomorphism in o/ and F preserves finite intersections, or

(2) F preserves inverse images.

Definition 4.16 [4]. The well-founded part of a coalgebra is its largest well-
founded subcoalgebra.

The well-founded part of a coalgebra always exists and is the coreflection
in the category of well-founded coalgebras [6, Prop. 2.27]. We provide a new,
shorter proof of this fact. The well-founded part is obtained by the following:

Construction 4.17 [6, Not. 2.22]. Let a: A — F A be a coalgebra. We know
that Sub(A) is a complete lattice and that the next time operator ) is monotone
(see Lemma 4.12). Hence, by the Knaster-Tarski fixed point theorem, O has a
least fixed point, which we denote by a*: A* — A.

By Lemma 4.13(2), we know that there is a coalgebra structure o*: A* — FA*
so that a*: (A*,a*) — (A, «) is the smallest cartesian subcoalgebra of (4, a).

Proposition 4.18. For every coalgebra (A, ), the coalgebra (A*, a*) is well-
founded.

Proof. Let m: (B, B) — (A*,a*) be a cartesian subcoalgebra. By Lemma 4.13,
a*-m: B — Ais a fixed point of (). Since a* is the least fixed point, we have
a* <a*-m,ie a* =a*-m-z for some r: A* — B. Since a* is monic, we thus
have m - x = id o4+. So m is a monomorphism and a split epimorphism, whence
an isomorphism. ]

Proposition 4.19. The full subcategory of Coalg F' given by well-founded coal-
gebras is coreflective. In fact, the well-founded coreflection of a coalgebra (A, «)
is its well-founded part a*: (A*,a*) — (A, «).

Proof. We are to prove that for every coalgebra homomorphism f: (B, ) —
(A4, a), where (B, ) is well-founded, there exists a coalgebra homomorphism
f%: (B, B) — (A*,a*) such that a* - f* = f. The uniqueness is easy.

For the existence of f*, we first observe that f (a*) is a pre-fixed point of
(Og: indeed, using Lemma 4.14 we have Og(?(a*)) < <?(Oa(a*)) = <7(@*).
By Remark 4.4(2), we therefore have idg = b* < <?(a”‘) in Sub(B). Using the
adjunction of Lemma 2.11, we have f (idp) < a* in Sub(A4). Now factorize f as
B 5 C 2 A, We have 7(2'(13) = m, and we then obtain m = 7(id3) < a*,
i.e. there exists a morphism h: C — A* such that a* - h = m. Thus, ff =
h-e: B — A* is a morphism satisfying a* - f! =a*-h-e=m-e = f. It follows
that f* is a coalgebra homomorphism from (B, 3) to (A*,a*) since f and a* are
and F' preserves monomorphisms. ]

Construction 4.20 [6, Not. 2.22]. Let (A, ) be a coalgebra. We obtain
a*, the least fixed point of (), as the join of the following transfinite chain of
subobjects a;: A; — A, i € Ord. First, put ag = L 4, the least subobject of A.
Given a;: A; — A, put a;41 = Qa;: Aip1 = OQA; — A. For every limit ordinal
J, put a; = \/i<j a;. Since Sub(A) is a set, there exists an ordinal 7 such that
a; =a*: A* — A.
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Remark 4.21. Note that, whenever monomorphisms are smooth, we have Ag =
0 and the above join a; is obtained as the colimit of the chain of the subobject
a;: A; — A, i < j (see Remark 2.12).

If F is a finitary functor on a locally finitely presentable category, then the
least ordinal ¢ with a* = a; is at most w, but in general one needs transfinite
iteration to reach a fixed point.

Example 4.22. Let (A,a) be a graph regarded as a coalgebra for & (see
Example 2.1). Then Ag = ), A; is formed by all leaves; i.e. those nodes with no
neighbors, A, by all leaves and all nodes such that every neighbor is a leaf, etc.
We see that a node x lies in A;;1 iff every path starting in = has length at most
i. Hence A* = A, is the set of all nodes from which no infinite paths start.

We close with a general fact on well-founded parts of fized points (i.e. (co)alge-
bras whose structure is invertible). The following result generalizes [15, Cor. 3.4],
and it also appeared before for functors preserving finite intersections [4, The-
orem 8.16 and Remark 8.18]. Here we lift the latter assumption (see [5, The-
orem 7.6] for the new proof):

Theorem 4.23. Let o/ be a complete and well-powered category with smooth
monomorphisms. For F preserving monomorphisms, the well-founded part of
every fized point is an initial algebra. In particular, the only well-founded fixed
point is the initial algebra.

Example 4.24. We illustrate that for a set functor F' preserving monomorph-
isms, the well-founded part of the terminal coalgebra is the initial algebra.
Consider F'X = A x X 4 1. The terminal coalgebra is the set A U A* of finite
and infinite sequences from the set A. The initial algebra is A*. It is easy to
check that A* is the well-founded part of A U A*.

5 The General Recursion Theorem and its Converse

The main consequence of well-foundedness is parametric recursivity. This is
Taylor’s General Recursion Theorem [24, Theorem 6.3.13]. Taylor assumed that
F preserves inverse images. We present a new proof for which it is sufficient that
F preserves monomorphisms, assuming those are smooth.

Theorem 5.1 (General Recursion Theorem). Let </ be a complete and
wellpowered category with smooth monomorphisms. For F: of — o preserving
monomorphisms, every well-founded coalgebra is parametrically recursive.

Proof sketch. (1) Let (A, a) be well-founded. We first prove that it is recursive.
We use the subobjects a;: A; — A of Construction 4.20%, the corresponding

4 One might object to this use of transfinite recursion, since Theorem 5.1 itself could
be used as a justification for transfinite recursion. Let us emphasize that we are
not presenting Theorem 5.1 as a foundational contribution. We are building on the
classical theory of transfinite recursion.
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morphisms a(a;): Aiy1 = OQA; — FA; (cf. Definition 4.3), and the recursive
coalgebras (F0,w; ;1) of Example 3.3(6). We obtain a natural transformation
h from the chain (A;) in Construction 4.20 to the initial-algebra chain (F0) (see
Remark 2.13) by transfinite recursion.

Now for every algebra e: FX — X, we obtain a unique coalgebra-to-algebra
morphism f;: F'0 — X, i.e. we have that f; = e Ff; - w;;+1. Since (4,a) is
well-founded, we know that o = o = «(a;) for some ¢. From this it is not difficult
to prove that f; - h; is a coalgebra-to-algebra morphism from (A, ) to (X, e).

In order to prove uniqueness, we prove by transfinite induction that for any
given coalgebra-to-algebra homomorphism e, one has ef - a; = f; - h; - a; for
every ordinal number j. Then for the above ordinal number ¢ with a; = id4, we
have ef = f; - h;, as desired. This shows that (A, a) is recursive.

(2) We prove that (A, a) is parametrically recursive. Consider the coalgebra
(a,idp): A — FA x A for F(—) x A. This functor preserves monomorphisms
since F' does and monomorphisms are closed under products. The next time
operator () on Sub(A) is the same for both coalgebras since the square (4.1) is a
pullback if and only if the square on the right below is one.

Since id4 is the unique fixed point of O

w.r.t. ' (see Definition 4.3), it is also the

unique fixed point of O w.r.t. F(—) x A. 0S (a(m),Om) FSx A
Thus, (A, {a,ids)) is a well-founded coal- _

gebra for F(—) x A. By the previous argu- Oml IFmXA
ment, this coalgebra is thus recursive for A {

F(—) x A; equivalently, (A4, «) is paramet-

rically recursive for F'. O

.4) FAx A

Theorem 5.2. For every endofunctor on Set or Veck (vector spaces and linear
maps), every well-founded coalgebra is parametrically recursive.

Proof sketch. For Set, we apply Theorem 5.1 to the Trnkové hull F' (see Proposi-
tion 2.3), noting that F and F have the same (non-empty) coalgebras. Moreover,
one can show that every well-founded (or recursive) F-coalgebra is a well-founded
(recursive, resp.) F-coalgebra. For Vecg, observe that monomorphisms split and
are therefore preserved by every endofunctor F'. O

Example 5.3. We saw in Example 4.11(3) that for FX = 14+ A x X x X
the coalgebra (A4, s) from Example 3.3(8) is well-founded, and therefore it is
(parametrically) recursive.

Example 5.4. Well-founded coalgebras need not be recursive when F does
not preserve monomorphisms. We take o/ to be the category of sets with a
predicate, i.e. pairs (X, A), where A C X. Morphisms f: (X, A) — (Y, B) satisfy
f[A] € B. Denote by 1 the terminal object (1,1). We define an endofunctor
F by F(X,0) = (X +1,0), and for A # (), F(X,A) = 1. For a morphism
f:(X,A) = (Y,B),put Ff = f+id if A= 0;if A+# (0, then also B # () and
Ffisid: 1 — 1.
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The terminal coalgebra is id: 1 — 1, and it is easy to see that it is well-
founded. But it is not recursive: there are no coalgebra-to-algebra morphisms
into an algebra of the form F(X,0) — (X, 0).

We next prove a converse to Theorem 5.1: “recursive — well-founded”.
Related results appear in Taylor [23, 24], Addmek et al. [3] and Jeannin et
al. [15].

Recall universally smooth monomorphisms from Definition 2.8(2). A pre-fized
point of F' is a monic algebra a: F'A — A.

Theorem 5.5. Let o/ be a complete and wellpowered category with universally
smooth monomorphisms, and suppose that F: o/ — o/ preserves inverse images
and has a pre-fized point. Then every recursive coalgebra is well-founded.

Proof. (1) We first observe that an initial algebra exists. This follows from results
by Trnkova et al. [25] as we now briefly recall. Recall the initial-algebra chain
from Remark 2.13. Let 8: FB — B be a pre-fixed point. Then there is a unique
cocone f3;: F'0 — B satisfying 8;11 = - F3;. Moreover, each j3; is monomorphic.
Since B has only a set of subobjects, there is some A such that for every ¢ > A,
all of the morphisms /3; represent the same subobject of B. Consequently, wx x4+1
of Remark 2.13 is an isomorphism due to By = Bxt1 - wart1. Then pF = F20
with the structure « = wy A+1 : F(uF) — pF is an initial algebra.
(2) Now suppose that (A, «) is a recursive coalgebra. Then there exists a unique
coalgebra homomorphism h: (A,a) — (uF,t™!). Let us abbreviate w;y by
c;: F'0 — pF, and recall the subobjects a;: A; — A from Construction 4.20.
We will prove bltransﬁmte induction that a; is the inverse image of ¢; under h; in
symbols: a; = h (¢;) for all ordinals i. Then it follows that ay is an isomorphism,
since so is ¢y, whence (A, ) is well-founded.

In the base case ¢ = 0 this is clear since A9 = Wy = 0 is a strict initial object.

For the isolated step we compute the pullback of ¢;11: W11 — pF along h
using the following diagram:

a(a;) Fh;

Aipr FA;

N S

A—2 5 FA Ly P(uF) —— uF
L h 7

By the induction hypothesis and since F' preserves inverse images, the middle
square above is a pullback. Since the structure map ¢ of the initial algebra is an
isomorphism, it follows that the middle square pasted with the right-hand triangle
is also a pullback. Finally, the left-hand square is a pullback by the definition of
a;+1. Thus, the outside of the above diagram is a pullback, as required.

For a limit ordinal j, we know that a; = \/Z<J a; and similarly, ¢; = \/Z<
since W; = colim;<; W, and monomorphisms are smooth (see Remark 2. 12( ))

Using Remark 2.12(3) and the induction hypothesis we thus obtain 3 (¢j) =

%(Viq‘ ¢i) = Vig, %(Ci) =Vigjai = a;.

s

O



32 J. Addmek et al.

Corollary 5.6. Let o/ and F' satisfy the assumptions of Theorem 5.5. Then the
following properties of a coalgebra are equivalent:

1) well-foundedness,
2) parametric recursiveness,

(

(

(3) recursiveness,

(4) existence of a homomorphism into (uF,.=1),
(

5) existence of a homomorphism into a well-founded coalgebra.

Proof sketch. We already know (1) = (2) = (3). Since F' has an initial algebra (as
proved in Theorem 5.5), the implication (3) = (4) follows from Example 3.3(2).
In Theorem 5.5 we also proved (4) = (1). The implication (4) = (5) follows
from Example 4.5(2). Finally, it follows from [6, Remark 2.40] that (uF,.™1) is
a terminal well-founded coalgebra, whence (5) = (4). O

Example 5.7. (1) The category of many-sorted sets satisfies the assumptions
of Theorem 5.5, and polynomial endofunctors on that category preserve inverse
images. Thus, we obtain Jeannin et al’s result [15, Thm. 3.3] that (1)—(4) in
Corollary 5.6 are equivalent as a special instance.

(2) The implication (4) = (3) in Corollary 5.6 does not hold for vector spaces.
In fact, for the identity functor on Vecx we have puld = (0, id). Hence, every
coalgebra has a homomorphism into p/d. However, not every coalgebra is recursive,
e.g. the coalgebra (K, id) admits many coalgebra-to-algebra morphisms to the
algebra (K, id). Similarly, the implication (4) = (1) does not hold.

We also wish to mention a result due to Taylor [23, Rem. 3.8]. It uses the concept
of a subobject classifier originating in [17] and prominent in topos theory. This is
an object {2 with a subobject ¢: 1 >— 2 such that for every subobject b: B — A
there is a unique b: A — 2 such that b is the inverse image of ¢t under b, By
definition, every elementary topos has a subobject classifier, in particular every
category Set® with € small.

Our standing assumption that <7 is a complete and well-powered category is
not needed for the next result: finite limits are sufficient.

Theorem 5.8 (Taylor [23]). Let F' be an endofunctor preserving inverse im-
ages on a finitely complete category with a subobject classifier. Then every recursive
coalgebra is well-founded.

Corollary 5.9. For every set functor preserving inverse images, the following
properties of a coalgebra are equivalent:

well-foundedness <= parametric recursiveness <= recursiveness.

Example 5.10. The hypothesis in Theorems 5.5 and 5.8 that the functor
preserves inverse images cannot be lifted. In order to see this, we consider the
functor R: Set — Set of Example 2.2(4). It preserves monomorphisms but not
inverse images. The coalgebra A = {0, 1} with the structure @ constant to (0,1)
is recursive: given an algebra g: RB — B, the unique coalgebra-to-algebra
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homomorphism h: {0,1} — B is given by h(0) = h(1) = B(d). But A is not
well-founded: ) is a cartesian subcoalgebra.

Recall that an initial algebra (uF), ¢) is also considered as a coalgebra (uF,t=1).
Taylor [23, Cor. 9.9] showed that, for functors preserving inverse images, the
terminal well-founded coalgebra is the initial algebra. Surprisingly, this result is
true for all set functors.

Theorem 5.11 [6, Thm. 2.46]. For every set functor, a terminal well-founded
coalgebra is precisely an initial algebra.

Theorem 5.12. For every functor on Vecyk preserving inverse images, the fol-
lowing properties of a coalgebra are equivalent:

well-foundedness <= parametric recursiveness <= recursiveness.

6 Closure Properties of Well-founded Coalgebras

In this section we will see that strong quotients and subcoalgebras (see Remark 2.7)
of well-founded coalgebras are well-founded again. We mention the following
corollary to Proposition 4.19. For endofunctors on sets preserving inverse images
this was stated by Taylor [24, Exercise VI.16]:

Proposition 6.1. The subcategory of Coalg F' formed by all well-founded coal-
gebras is closed under strong quotients and coproducts in Coalg F.

This follows from a general result on coreflective subcategories [2, Thm. 16.8]:
the category Coalg F' has the factorization system of Proposition 2.6, and its
full subcategory of well-founded coalgebras is coreflective with monomorphic
coreflections (see Proposition 4.19). Consequently, it is closed under strong
quotients and colimits.

We prove next that, for an endofunctor preserving finite intersections, well-
founded coalgebras are closed under subcoalgebras provided that the complete
lattice Sub(A) is a frame. This means that for every subobject m: B — A and
every family m; (i € I) of subobjects of A we have mA\/,c; m; =\, . (mAmy).
Equivalently, 7n: Sub(A) — Sub(B) (see Notation 2.10) has a right adjoint
m.: Sub(B) — Sub(A).

This property holds for Set as well as for the categories of posets, graphs,
topological spaces, and presheaf categories Seth, % small. Moreover, it holds for
every Grothendieck topos. The categories of complete partial orders and Vecg
do not satisfy this requirement.

Proposition 6.2. Suppose that F preserves finite intersections, and let (A, «)
be a well-founded coalgebra such that Sub(A) a frame. Then every subcoalgebra
of (A, @) is well-founded.
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Proof. Let m: (B, 8) — (A, «) be a subcoalgebra. We will show that the only
pre-fixed point of Qg is idp (cf. Remark 4.4(2)). Suppose s: S — B fulfils
Og(s) < s. Since F preserves finite intersections, we have - Oa=03" n by
Corollary 4.15(1). The counit of the above adjunction 1z - m,, yields 1 (m.(s)) <
5, 50 that we obtain 1 (Qa (mx(s))) = O (M (m.(s))) < Op(s) < s. Using again
the adjunction 2 - m.,, we have equivalently that O (1. (5)) < M. (s); i.e. . (s)
is a pre-fixed point of (), . Since (A, ) is well-founded, Corollary 4.15(1) implies
that m.(s) = id4. Since fn is also a right adjoint and therefore preserves the top
element of Sub(B), we thus obtain idg = T (id4) = T (m.(s)) < s. O

Remark 6.3. Given a set functor F' preserving inverse images, a much better
result was proved by Taylor [24, Corollary 6.3.6]: for every coalgebra homo-
morphism f: (B, ) = (A, «) with (A, @) well-founded so is (B, 8). In fact, our
proof above is essentially Taylor’s.

Corollary 6.4. If a set functor preserves finite intersections, then subcoalgebras
of well-founded coalgebras are well-founded.

Trnkova [26] proved that every set functor preserves all nonempty finite
intersections. However, this does not suffice for Corollary 6.4:

Example 6.5. A well-founded coalgebra for a set functor can have non-well-
founded subcoalgebras. Let F') = 1 and FX = 1+ 1 for all nonempty sets X, and
let Ff =inl: 1 — 1+ 1 be the left-hand injection for all maps f: ) — X with
X nonempty. The coalgebra inr: 1 — F1 is not well-founded because its empty
subcoalgebra is cartesian. However, this is a subcoalgebra of id: 1+1 — 141
(via the embedding inr), and the latter is well-founded.

The fact that subcoalgebras of a well-founded coalgebra are well-founded does
not necessarily need the assumption that Sub(A) is a frame. Instead, one may
assume that the class of morphisms is universally smooth:

Theorem 6.6. If o/ has universally smooth monomorphisms and F preserves
finite intersections, every subcoalgebra of a well-founded coalgebra is well-founded.

7 Conclusions

Well-founded coalgebras introduced by Taylor [24] have a compact definition based
on an extension of Jacobs’ ‘next time’ operator. Our main contribution is a new
proof of Taylor’s General Recursion Theorem that every well-founded coalgebra is
recursive, generalizing this result to all endofunctors preserving monomorphisms
on a complete and well-powered category with smooth monomorphisms. For
functors preserving inverse images, we also have seen two variants of the converse
implication “recursive = well-founded”, under additional hypothesis: one due
to Taylor for categories with a subobject classifier, and the second one provided
that the category has universally smooth monomorphisms and the functor has a
pre-fixed point. Various counterexamples demonstrate that all our hypotheses
are necessary.
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