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Preface

In the last couple of decades, the mathematical research at the interface with
physics and biology is generating a number of exciting results that are attracting
an increasing number of scientists. The emerging need of a theoretical framing
of the experimental observations and the search for a suitable formal setting
pose a great variety of novel mathematical problems that range from modeling to
qualitative analysis, up to numerical methods and rigorous analysis. In particular,
Mechanobiology is an emerging research field that stems at the triple point between
physics, biology, and mathematics. The large amount of quantitative data that are
nowadays made available by the dramatic improvements in imaging technique
offer the opportunity to apply mathematical models and methods to understand,
to predict, and even to control a number of mechanochemical processes that occur
in the biological matter at different scales, from cells to tissues. The mechanics
of living matters exhibits a number of peculiar behaviors that challenge classical
approaches, driving a number of generalizations of standard frameworks and the
revisitation of classical paradigms.

During the last few years, the mathematical community has devoted an increasing
interest to the challenges offered by the application of classical methods of
continuum mechanics to living systems. The CIME Course “The Mathematics of
Mechanobiology” held in Cetraro on August 27–31, 2018 was the occasion to take
a snapshot of the state of the art of such a vivid activity. The speakers offered a
critical review of the classical and recent results in four specific major areas:

• Cell motility and locomotion by shape control (Antonio DeSimone)
• Models of cell motion and tissue growth (Benoit Perthame)
• Numerical simulation of cardiac electromechanics (Alfio Quarteroni)
• Power-stroke-driven muscle contraction (Lev Truskinovsky)

The lecture notes written by the invited speakers are now collected in this volume
of the CIME Lectures collection. We strongly acknowledge the authors for their
effort in providing an influential view of key subjects at the core of the research
in mathematics for mechanobiology: we believe that this book will be a milestone
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vi Preface

from now on for all those who are interested in entering this fascinating research
field.

The editors are indebted to Ellen Kuhl for her valuable support in the scientific
direction of the summer school. Special thanks are due to Elvira Mascolo, Paolo
Salani, and Alfredo Marzocchi, in their role of Director, Scientific Secretary, and
Member of the CIME Foundation they orchestrated a perfect financial and logistic
assistance. We finally wish to acknowledge the financial support of Politecnico
di Milano and Politecnico di Torino and the excellent work of all the staff of
Grand Hotel San Michele for providing a flawless and very enjoyable stay to all
participants.

Torino, Italy Davide Ambrosi
Milano, Italy Pasquale Ciarletta



Abstract

This volume collects notes of the lectures delivered at the CIME-EMS Summer
School in Applied Mathematics The Mathematics of Mechanobiology held in
Cetraro, Italy, on August 27–31, 2018.
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Chapter 1
Cell Motility and Locomotion by Shape
Control

Antonio DeSimone

Abstract Mathematical modeling and quantitative study of biological motility is
producing new biophysical insight and opportunities for discoveries at the level of
both fundamental science and technology. One example is the elucidation of how
complex behavior of simple organisms emerges from specific (and sophisticated)
body architectures, and how this is affected by environmental cues. Moreover,
the two-directional interaction between biology and mechanics is promoting new
approaches to problems in engineering and in the life sciences: understand biol-
ogy by constructing bio-inspired machines, build new machines thanks to bio-
inspiration.

This article contains an introduction to the mathematical study of swimming
locomotion of unicellular organisms (e.g., unicellular algae). We use the tools
of geometric control theory to identify some general principles governing life at
low Reynolds numbers, that can guide the design of engineered devices trying
to replicate the successes of their biological counterparts. Locomotion strategies
employed by biological organism are, in fact, a rich source of inspiration for
studying mechanisms for shape control. We focus on morphing mechanisms based
on Gauss’ theorema egregium, which shows that the curvature of a thin shell can
be controlled through lateral modulations of stretches induced in its mid-surface.
We discuss some examples of this Gaussian morphing principle both in nature and
technology.

A. DeSimone (�)
The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy

Department of Excellence in Robotics and A.I., Scuola Superiore Sant’Anna, Pisa, Italy
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© The Editor(s) (if applicable) and The Author(s), under exclusive licence
to Springer Nature Switzerland AG 2020
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2 A. DeSimone

1.1 Introduction

Motility refers to the ability to move spontaneously. In biology, this is related to
the execution of a biological function involving the (active, purposeful) motion of
the whole body of an organism or of some of its parts. At the level of individual
cells or tissues, motility is crucial in many important biological processes such as
cell migration, the immune system response, the establishment of neuron synapses,
wound healing, just to name a few. More broadly, motility is fundamental to both
the origin of life and the propagation of lethal diseases. Example are the unicellular
swimming of sperm cells, the motion of bacteria and parasites in humans, animals
and plants, the invasion of nearby tissues by metastatic tumor cells, and the list could
continue.

Swimming locomotion of unicellular organisms has provided particularly fertile
grounds for the application of mathematical/physical modeling and of quantitative
methods to biology. The swimming behavior of micro-organisms has been analyzed
through the lenses of mathematical models based on the physical laws of fluid
dynamics, and it has attracted considerable attention in the recent biophysical
literature.

Among the successes on the biology side, one can list the early discovery of
the basic propulsion mechanisms in bacteria (through one rotary motor located
at the proximal end of each bacterial flagellum [20]) and flagellated eukaryotes
(through molecular motors distributed along the whole length of an eukaryotic
flagellum [76]). These have both been discovered through arguments based on
physical modeling, when direct observation of the active motors driving flagellar
motion was not yet possible. More generally, numerous more recent contributions
have established how complex behavior of simple organisms emerges from specific
body architectures, and how this is affected by environmental cues. Unicellular
organisms represent particularly valuable model systems for the study of the
simplest mechanisms of sensing, decision making, and response in biology because
they do not involve the intervention of a nervous system (and a brain) in the cascade
of regulatory processes.

In addition to the biological motivation to study them, the proficiency exhibited
by unicellular swimmers in navigating complex environments, including the human
body, has fueled the hope that new bio-inspired biomedical devices can be engi-
neered by trying to learn and replicate the mechanism that work for the biological
templates. This includes miniaturized robotic systems for diagnostics, therapeutics,
targeted drug delivery, minimally invasive surgery, micro-manipulation, micro-
fluidics. Moreover, the two-directional interaction between biology and mechanics
is promoting new approaches to engineering problems and in the life sciences:
understand biology by constructing bio-inspired machines, build new machines
thanks to bio-inspiration. In these notes, we will try to convey some of the
excitement that this exchange of information is generating at the cross-roads of
biology, physics, mathematics and engineering.
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More concretely, this article contains an introduction to the mathematical study
of swimming locomotion of unicellular organisms (e.g., unicellular algae). We give
a mathematical formulation of the basic problem of “swimming by prescribing time-
histories of shapes”, and then use the tools of geometric control theory to identify
some general principles governing life at low Reynolds numbers, that can guide the
design of engineered devices trying to replicate the successes of their biological
counterparts. We also illustrate how these principles are at work in biological
organisms, and provide a more detailed case study of the behavior of one specific
organism, Euglena gracilis, which exhibits a transition from flagellar swimming to
amoeboid motion (by propagation of peristaltic waves along the body) in response
to increasing confinement.

Besides their primary function, which is motion, locomotion strategies employed
by biological organism represent also a rich source of inspiration for studying
mechanisms for shape control. They are not visible to the naked eye and revealing
them by observing them with a microscope provides a golden mine for new
solutions to the problem of controlling shape in order to execute a function. Function
often follows from shape in biology. This is true in a wide range of phenomena
and across many time-scales, from morphogenesis, to adaptability to changing
requirements from an evolving environment, to functional behaviors resting on the
possibility of spanning diverse shapes over time, as is the case in motility. We
focus on morphing mechanisms based on Gauss’ theorema egregium, a principle
we like to call Gaussian morphing [36], and that was pioneered in [67]. Here
we can witness in a concrete setting the two-way interaction between biology
and mechanics/engineering mentioned above, with shape morphing mechanisms of
biological organisms suggesting, for example, new solutions for medical tools for
minimally invasive surgery.

We end this introduction by mentioning briefly some topics that are very closely
related to the subject of these notes but that, however, are not discussed explicitly
here. The conceptual framework we adopt to study swimming locomotion is general,
and it applies to other forms of motility besides swimming. Locomotion arises from
the mechanical interactions of an active body (i.e., a body capable of changing
its shape) with its surroundings, driven by the action–reaction principle. In the
case of higher organisms, muscle activity selects a preferred state of deformation,
the configuration that the body would acquire in the absence of external forces.
Modulating this state of spontaneous deformation in time while in contact with a
surrounding medium generates reactive forces from the environment that can be
used as propulsive forces for locomotion, just as in the case of a fish waving a fin.
Examples of reactive forces exploited for locomotion come from the interaction with
a substrate, as in the case of frictional ground forces in human and animal legged
locomotion [60], in the limbless undulatory locomotion of snakes [33, 59, 61], and
in the peristaltic locomotion of worms [1]. Similarly, hydraulic and (non-newtonian)
viscous forces arise from the interaction with a substrate in the case of snails gliding
on a substrate [30, 48, 68, 69]. Viscous and inertial forces exerted by the surrounding
fluid are the interaction forces with the environment in the case of swimming and
flying [32, 72]. Clearly, the list could continue. Anyway, higher organisms with
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a nervous system, where proprioception and feedback become very important are
outside of the scope of these notes. See [60, 62, 86] for some interesting ideas and
references in this context.

At the level of single cell locomotion, muscle activity is replaced by activity of
molecular motors exerting forces of biofilaments (actin filaments, microtubules) as
in the case of the actin cortex of eukaryotic cells. Different modes of motility can
arise, such as motion by blebbing, see, e.g., [31, 108], by frictional interaction with
a channel or a surrounding fluid arising as a reaction to actin retrograde flow [21],
or by lamellipodia protrusion thanks to cycles of attachment at the leading edge
(lamellipodium), retrograde actin flow, and detachment at the trailing edge, as in
the migration of adhesive cells on or within solid substrates, matrices, and tissues,
see [8]. Actin-powered motility of adhesive cells is very common in biology, hence
it is a vast topic with a very large literature. Conformational changes of molecular
motors, polymerization of actin filaments and, more generally, growth may provide
the energy required for motion via biochemical reactions [3, 16, 27, 85, 88, 109].

Modulation of adhesive forces is often crucial for this type of locomotion
[94]; in more macroscopic cases, similar stick-slip effects can be obtained through
directional friction: see, e.g., [47–49, 54]. Motility of neuronal growth cones has
been analyzed in [89]. Contact guidance of adhesive cells by substrate patterning
(e.g., chemical guidance with adhesive lines on an otherwise repellent surface, or
guidance by curvature with adhesive tubes) is an interesting, related topic, see [25].
Here, the possibility of a statistical mechanics approach based on shape fluctuations
of cells is a very attractive recent development. Further discussion on these topics
can be found in the work by Lev Truskinovsky and his co-authors, and reported in
another section in this volume.

The study of motion in plants [41], e.g. tropisms and nastic movements, is also
closely related to the theme of these notes. The fact that the time scales associated
with these plant motions are long compared with the typical human attention span
does not make them any less interesting, and time-lapse photography can reveal
very interesting motile behaviors: see the recent article on nutations of plant shoots
[2] and the references quoted therein for an introduction. Complex helical motion
motion of growing shoots or root tips is often tied to effective exploration and
penetration of the subsoil, or to the search for nearby supports in the case of climbing
plants. The oscillatory movements (nutations) of growing plant shoots reveal some
striking similarities with the beating of eukaryotic flagella and cilia, although on
very different time scales. This is a reflection of the fact that the bio-chemical
process that govern the response are very different (bio-chemistry of conformational
transformation of the molecular motors in the eukaryotic flagellum case, auxin
transport and cell growth in the plant nutation case). However, there seems to be
an interesting and yet unexplored connection between the two phenomena, at least
at some level, although the details of the response mechanism are certainly very
different.

The focus of these notes is on conceptual principles. These are often best
extracted from the analysis of model problems arising from simplified minimal
systems, that retain the richness of the original problem but can be reduced to simple
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calculations. As a consequence, we do not talk about numerical techniques to solve
control problems associated with locomotion questions, even though this is a very
important topic. The reader is referred to [10, 11, 15, 22, 24, 55, 63, 64, 70, 75,
77, 79, 96, 97, 102, 103, 107] and the references quoted therein for examples and
analysis of navigation and optimal control problems in biological and bio-inspired
locomotion, including numerical strategies for their solution.

1.2 Swimming at Low Reynolds Numbers

We describe the motion of a generic swimmer through a (time-dependent) shape
map t �→ �̄t , which specifies the way the reference configuration B evolves in time
as seen by an observer moving with the swimmer (we identify this observer with
the body-frame), and through the way the body frame moves with respect to the lab-
frame. The current position of the body-frame is given by the position of the origin,
c(t), while the orientation of the axes is obtained from the axes of the lab-frame
through the rotation R(t). In formulas (see also Fig. 1.1),

�t(X) = c(t)+ R(t)�̄t (X) = (c(t)+ R(t)id(X))+ R(t)ūt (X) (1.1)

where, in the second identity, we have written �̄t as the sum of the identity map id

plus a displacement ūt . This emphasizes that �t(X) consists of a rigid motion (the
one in brackets), and of a genuine change of shape associated with ūt .

The map (1.1) gives the position x at time t of a (material) point X ∈ B of the
swimmer. Given a point x ∈ Bt = �t(B), this is the position at time t of the point

X = �−1
t (x) = �̄−1

t (RT (t)(x − c(t))) (1.2)

The (Lagrangian) velocity of a (material) point of the swimmer is the time
derivative of (1.1),

�̇t (X) = ċ(t)+ Ṙ(t)�̄t (X)+ R(t) ˙̄�t(X) (1.3)

Fig. 1.1 Reference and deformed configurations of a swimmer: parametrization of the swimmer
motion in terms of position c(t), orientation R(t), and shape �̄t . Figure reproduced from [35]
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where superposed dots denote time derivatives. The (Eulerian) velocity of the point
of the swimmer occupying place x at time t is

�̇t

(
�−1
t (x)

)
= ċ(t)+ ω(t)× (x − c(t))+ R(t) ˙̄�t

(
�̄−1
t

(
RT (t)(x − c(t))

))

(1.4)

where ω(t) is the axial vector associated with the skew-symmetric matrix
Ṙ(t)RT (t).

Shape changes of the swimmer induce motion of the surrounding fluid. Dealing
with microscopic scales (so that the Reynolds number is small) and assuming
that the rates at which shape changes occur are not exceedingly fast (so that the
Womersley number is also small), we model the flow with the stationary Stokes
equations, so that the velocity u and pressure p in the fluid satisfy

η�u −∇p = 0 and div u = 0 in R
3 \ Bt (1.5)

where η is the viscosity of the fluid, together with the no-slip condition at the
interface between the fluid and the swimmer boundary

u(x, t)|∂Bt = �̇t

(
�−1
t (x)

)
|∂Bt (1.6)

and suitable decay conditions at infinity. This outer Stokes problem is well posed,
and given the one-parameter family of Dirichlet data t �→ u(x, t)|∂Bt (i.e., given the
maps t �→ c(t),R(t), �̄t ), the distributions of velocity u(x, t) and pressure p(x, t)
in the fluid are uniquely determined.

The motion of the swimmer is governed by the balance of linear and angular
momentum. We neglect inertia, and all other external forces different from those
exerted by the fluid. So the balance of linear and angular momentum become the
statement that the total force and torque exerted on the swimmer by the surrounding
fluid vanish. Denoting the Cauchy stress in the fluid with

S[u](x, t) = −p(x, t)I + η
(
∇u(x, t)+∇uT (x, t)

)
(1.7)

where I is the identity, we write these as

0 = f(t) =
∫

∂Bt

S[u](x, t)n(x)dA (1.8)

and

0 = g(t) =
∫

∂Bt

(x − c(t)× S[u](x, t)n(x)dA (1.9)
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where n(x) is the outer unit normal at x ∈ ∂Bt . It turns out that, given t �→ �̄t ,
Eqs. (1.8) determine uniquely the two time-dependent vectors v̄(t) = RT (t)ċ(t)
and ω̄(t) = RT (t)ω(t), namely, the representations in the body-frame of ċ(t) and
ω(t). Thus, c(t) and R(t) are found by integrating the equations ċ(t) = R(t)v̄(t)
and Ṙ(t) = R(t)[ω̄(t)]× (where the skew-symmetric tensor [ω̄(t)]× is defined by
[ω̄(t)]×a = ω̄(t)× a holding for every vector a). This shows that the following

Swimming Problem given a history of swimmer shapes t �→ �̄t , find the
corresponding history of positions and orientations t �→ c(t),R(t) has a unique
solution. The reader is referred to [40] for a detailed proof of this fundamental fact.

A further interesting question is whether, given initial position and orientation
c(0),R(0) and a target position c(0)+�c (or a target position and orientation pair),
there exist a shape history t �→ �̄t such that the swimmer can reach the target. This
is a typical question of control theory. In fact, swimming is a perfect example of
exploiting fluid-structure interactions to control the (Navier)-Stokes equations: we
use shape changes and act on the fluid to produce flows that generate exactly those
forces that propel the swimmer in the desired way.

The question of whether a periodic shape change can result in a net displacement
�c in a cycle has attracted a lot of interest in the literature, starting from G.I
Taylor’s educational movie on low Reynolds number flows [99] and Purcell’s
seminal paper [87] popularizing some of the seemingly paradoxical aspects of life at
low Reynolds numbers. This is the so-called Scallop Theorem, stating that, without
inertia, a scallop-like organism that can only open and close its (rigid) valves cannot
swim. More precisely, a low Reynolds swimmer varying its shape by periodically
modulating the opening of its valves can only achieve �c = 0 in one period. In
the language of control theory, this is the statement that the state of the system (in
particular, its position) is not controllable in terms of the rate of shape change (the
input of the system). We will return to this issue in the next section.

1.3 Locomotion Principles and Minimal Swimmers

In this section, we use the framework introduced in Sect. 1.2 to discuss some general
locomotion principles and to infer some prescriptions on how to design competent
swimmers of minimal complexity. We do this by focusing on some simple, yet
representative examples.

1.3.1 Looping in the Space of Shapes: No Looping? No Party!

A simple model system which is of great conceptual value is the three-sphere-
swimmer proposed in [83]. Consider the case in which B consists of three rigid
spheres of equal radius, whose centers are aligned and constrained to move along
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Fig. 1.2 Three-sphere-swimmer: parametrization in terms of position c(t) and shape
(ū1(t), ū2(t)). Figure reproduced from [35]

one line parallel to the unit vector e, only varying their mutual distances L +
ū1(t), L+ ū2(t) (see Fig. 1.2). The position of every point of the system is specified,
once we know the positions of the centers of the three spheres

x1(t) = c(t)− (L+ ū1(t)) , c(t) , x2(t) = c(t)+ (L+ ū2(t)) . (1.10)

We consider a T -periodic shape change

t �→ ū(t) = (ū1(t), ū2(t)) , (1.11)

namely, a closed curve in the space of shapes which we assume to be traced in the
anti-clockwise direction.

Linearity of the Stokes system leads to linear dependence of the forces in (1.8) on
the Dirichlet data of the outer Stokes problem, hence on ċ, ˙̄u1, ˙̄u2. The component
along e of the force balance is then written as

0 = f (t) = f1(ū(t)) ˙̄u1(t)+ f2(ū(t)) ˙̄u2(t)+ f3(ū(t))ċ(t) (1.12)

where, in view of translational invariance, the force coefficients are independent of
position and depend only on shape. It turns out that f3 �= 0 (in fact, f3 < 0 because
it is the drag opposing the motion of the system when the system translates rigidly
at unit speed, and the drag has direction opposite to the one of the velocity). Solving
for ċ we obtain

ċ(t) = V(ū(t)) · ˙̄u(t) , where Vi(ū(t)) := − fi(ū(t))
f3(ū(t))

(1.13)

Using Stokes theorem, we obtain the displacement �c in one stroke as

�c =
∫ T

0
V(ū(t)) · ˙̄u(t)dt =

∫

ω

curlūV(u1, u2)du1du2 (1.14)

where curlūV = ∂V2/∂ū1 − ∂V1/∂ū2 and ω is the region of shape space enclosed
by the closed curve (1.11).

As emphasized in [9], formula (1.14) above summarizes several key results of
low Reynolds number swimming. The first one is that, if the closed curve ∂ω spans
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zero area (i.e., the loop in shape space is trivial, as it happens for a reciprocal shape
change), then the displacement vanish. This is the so-called Scallop Theorem of
[87], already discussed in Sect. 1.2, stating that a scallop-like organism that can only
change shape by opening and closing its rigid valves cannot swim in the absence of
inertial forces.

The second important result is that, even when the loop in shape space is non-
trivial, the displacement is zero if the integrand in (1.14) vanishes. Therefore,
swimming rests on the fact that hydrodynamic resistance forces (the fi ’s defining the
vector field V in (1.13)) are shape-dependent, as probed by the differential operator
curlū.

The third fact following from (1.14) is that the displacement in one stroke is
geometric: it only depends on the geometry of the loop (1.11) drawn in the space of
shapes, not on the speed at which the loop is traced.

Finally, formula (1.14) shows that the system is fully controllable. Indeed, if
�c �= 0 is the displacement achieved with the loop �, smaller displacements of the
same sign can be achieved with loops of smaller area, any positive multiple k�c can
be achieved by tracing k times the curve �, and −�c can be obtained by tracing �

in the direction opposite to the one used to obtain �c.
We close this section by remarking that the one-dimensional nature of the

swimming dynamics of the three-sphere-swimmer (one degree of freedom for
the translational velocity of the swimmer) has made it possible to analyze the
problem with simple tools, such as Stokes theorem from differential calculus.
In the case of general swimmers (six degrees of freedom for the positional and
orientational velocity of the swimmer) the main concept is exactly the same, namely,
controllability needs lack of integrability of a differential form. One can obtain
similar results in the more general setting by using the tools of Geometric Control
Theory. The fact that the curl is non-trivial (i.e., the vector field V is not the gradient
of a scalar potential) is replaced by the requirement that the coefficients of the affine
control system governing the dynamics of the swimmer generate, through their Lie-
brackets, the whole tangent space. In other (more technical) words, the affine control
system governing the dynamics of the swimmer should be bracket-generating, and
then controllability is guaranteed by Chow’s theorem, see e.g., [9, 13, 80].

1.3.2 Minimal Swimmers With or Without Directional Control

Building on the results of the previous section, we want to ask now the following
question. What is the minimal number of independent motors, or controllers, that
can allow the three-sphere swimmer to achieve non-zero net displacements? A
superficial answer would be that two independent active elements are needed to
generate nontrivial loops in the space of shapes. However, as shown in [81], the
correct (and, at first sight, surprising) answer is that one active element suffices.

Indeed, by replacing one of the “arms” between two consecutive spheres with a
passive spring, and actuating periodically the remaining one, one can still extract
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net displacements, because the two arm lengths can still describe a loop in the
space of shapes. To understand how this arises, consider the two limit cases of very
slow and very fast actuation frequencies. At low actuation frequencies, the viscous
forces are negligible with respect to the elastic ones, and the system behaves as if
it had one rigid arm (hence, no net displacements). At high actuation frequencies,
elastic forces are negligible with respect to viscous ones, and the system behaves
as a collection of three beads, one of which is free, while the distance between the
other two is oscillating. It is relatively straightforward to show that, in this case,
long range hydrodynamic interactions lead to synchronization of the three spheres,
and the two distances (the arm lengths) oscillate keeping their sum constant. At
intermediate actuation frequency ω, elastic and viscous forces compete, and the
dynamics of the system leads to the two distances oscillating at the same frequency,
but with a frequency-dependent (locked) phase difference which is controlled by the
non-dimensional parameter

� := ωηL

K
. (1.15)

Here K is the stiffness of the passive spring, L its rest length, and η is the fluid
viscosity. Thanks to this phase lag, the two arm lengths trace a non-trivial loop in
the space of shapes, leading to non-zero (frequency dependent) net displacements
in one cycle.

The gain in simplicity associated with getting rid of independent control of one
the two arms comes with a cost in terms of the performance of the device, namely,
loss of controllability. Indeed, since the phase lag is set by system properties that
cannot be tuned, see (1.15), the loops in the space of shapes will be traced with
a fixed phase lag, hence in a fixed direction. The sign of the displacement is then
hard-wired into the system and the three-sphere swimmer with one passive arm can
only move with the passive arm ahead, see [81]. Put differently, one motor/controller
leads to the minimal system capable of achieving non-zero net displacements, but
without a reverse gear. Two independent motors/controllers are necessary for a
controllable system.

In closing this section, it is important to emphasize that this simple example
shows in a nutshell features that are much more general. Indeed, the dependence
of the net displacement in one cycle from the actuation frequency shows that,
when shape is not fully prescribed but it rather emerges form the balance between
hydrodynamic and elastic forces, the purely geometric picture of Sect. 1.3.1 is no
longer sufficient. The behavior of the system arises form a two-way fluid-structure
interaction problem, in which one needs to solve for the unknown shape variables
by coupling an equilibrium problem for an elastic structure to the dynamics of
the surrounding fluid (the outer Stokes problem of Sect. 1.3.1). In this context,
deciding on the controllability properties of the swimmer becomes more involved.
These controllability questions are very relevant. Examples of these questions are
whether a sperm cell can trace curvilinear trajectories (and through which control
mechanisms?), whether an artificial sperm-like robot whose flexible magnetic tail is
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actuated by an external oscillating magnetic field can trace any desired trajectory in
space and, in particular, can proceed both forward and backward along the direction
of the flagellum when the flagellum experiences small oscillations around a straight
extended configuration. Some of these question are further explored below.

1.3.3 Steering by Modulation of the Actuation Speed

Section 1.3.2 has shown that when shape is not completely prescribed, but it rather
emerges from the balance of elastic and viscous forces, some adjustments need to be
made to the geometric picture of Sect. 1.3.1. The presence of elastically deformable
parts in a swimmer makes the net displacement in a cycle frequency-dependent.
This fact can be used to steer a swimmer along curved trajectories.

The swimmer studied in [34] consists of a (rigid) spherical head with an elastic
tail attached to it, as schematically depicted in Fig. 1.3. We considered planar
motions of the system, assuming that the swimmer can actively control only the
angle α between the head and the tail. We studied the resulting swimming motion
under generic periodic time histories t → α(t) of the control parameter, resulting in
a periodic beating of its elastic tail.

The first surprising feature of the system is the ability of the swimmer to propel
itself and to “steer”, following either straight or curved trajectories (on average,
after many beats), despite being actuated by only one control parameter. Secondly,
the resulting displacements after each beating period are not geometric: Changing
the speed of the periodic control α does change the resulting displacement. There is
no contradiction, however, between these results and the observations in Sect. 1.3.1.
The key to realize this is that, in the swimmer of Fig. 1.3, shape is not completely
prescribed, because of the presence of the elastic tail. The shape of the latter is not

Fig. 1.3 Swimmer with elastic tail. The moving frame of the swimmer is given by the centre c and
the orientation θ of the head. The swimmer controls the angle α between its spherical head and its
tail at the point of attachment. Figure reproduced from [35]
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a-priori known, and it only emerges from the balance of elastic and hydrodynamic
forces arising from the actuation of the angle α. Thus, moving from systems in
which shape is completely controlled to systems in which shape is partly emergent,
the picture changes completely with respect to the Scallop Theorem scenario of [87].

We considered in [34] the equations of motion of the system in the local drag
approximation of Resistive Force Theory, see [70], restricting our analysis to stiff-
tailed swimmers. This allowed us to obtain analytical results in the small parameter
regime ε � 1 where ε is the ratio between the typical viscous and elastic force
acting on the tail (called the Machin number in recognition of the insight contained
in his seminal paper [76]). A formula that sheds light on the behavior of the system
during its motion is the one proved in [34] for the (normalized) deviation y(x, t) of
the tail from its straightened configuration

y(x, t) = −εp(α(t), x)α̇(t)+ O(ε2) , (1.16)

see Fig. 1.3. The function p(α, x) in Eq. (1.16), which can be calculated explicitly,
is a positive polynomial with α-dependent coefficients in the variable x. The
dependence of the deviation y on the velocity α̇ of the angle α has a simple physical
reason: The faster the tail beats, the larger are the viscous forces acting on it, which
result in larger bending of the tail itself. The critical consequence of (1.16) follows
from another simple observation: given the position of centre c and the orientation
θ of the swimmer’s head (see Fig. 1.3), the configuration of the swimmer is fully
determined by the angle α and the deviation y. That is, α and y determine the shape
of the swimmer. What (1.16) shows, then, is that the shape of the swimmer in motion
is fully determined (at least at first approximation) by the angle α and its rate-of-
change α̇, which, in turn, can be considered as a shape control parameter.

Indeed, a loop in the shape-space of the elastic tail swimmer can be effectively
given by the closed curve t → (α(t), α̇(t)). Consistently with the basic principles
stated in Sect. 1.3.1, we showed that net displacements �c and net rotations �θ of
the swimmer arise because of this looping. More precisely, denoting by ω the two
dimensional set enclosed by the loop t → (α(t), α̇(t)), we derived the following
formulas

�c = ε

∫

ω

U(α,ψ)dαdψ + O(ε2) (1.17)

and

�θ = ε

∫

ω

W(α,ψ)dαdψ + O(ε2) , (1.18)

where U and W are two non-vanishing functions (vector-valued and scalar-valued,
respectively) which are independent on the loop itself. At leading order in ε,
formulas (1.17)–(1.18) have the exact same structure of Eq. (1.14).
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From (1.17)–(1.18) we can deduce the characteristic motion control capabilities
of the swimmer. First, we can conclude that propulsion is possible, since a loop
t → (α(t), α̇(t)) naturally spans non-zero area, as one can see in the simple case
α(t) = sin t . Second, (1.17)–(1.18) explain why net displacements in one cycle
are not geometrical. For example, a simple time rescaling t → λt results in a
deformation of the shape parameters loop t �→ (α(λt), λα̇(λt)), thus faster (or
slower) beating results in different displacements. More general modulations of
the velocity of beating can be considered, resulting in different geometries of the
shape parameters loop. This gives room for motion control, so that the swimmer
can couple displacements and rotation during each period (steering). In fact, one can
show that the swimmer follows curved trajectories when the beating is asymmetric,
namely, when for example α has a fast up-beat phase followed by a slow down-beat
phase during one shape cycle.

1.3.4 Swimming by Lateral Undulations: Optimality
of Traveling Waves of Bending

Swimming by lateral undulation is a very common locomotion strategy that is used
by a large number of swimmers both at the macroscopic and the microscopic scale
(for the latter, see Sect. 1.4 below for more details). The mechanism by which
propagating a traveling wave of bending produces propulsion was analyzed in the
seminal paper [98], one of the milestones of the whole literature on biological fluid
dynamics at microscopic scales. The traveling waves of bending studied in this paper
are of the form

v̄(X, t) = b sin(kX − ωt) = b cos(ωt) sin(kX)− b sin(ωt) cos(kX) , (1.19)

which shows how they represent a non-trivial loop (in fact, a circle, since cos2(ωt)+
sin2(ωt) = 1) in a space of shapes parametrized by the two wave forms sin(kX) and
cos(kX). In other words, Taylor’s waves of bending fall in the general framework
of Sect. 1.3.1.

More in detail, let us consider a planar sheet infinitely extended in the z direction.
Let us focus on the plane (x, y), and let X be a Lagrangian coordinate along the
axis x, which is assumed to move with the sheet (hence x is the horizontal axis
of the body frame). Denoting by (ū, v̄) the components of the displacement of a
point (X, 0) in the body frame, we can consider the history of shapes described by
a traveling wave of the form

ū(X, t) = a cos (kX − ωt − φ) (1.20)

v̄(X, t) = b sin (kX − ωt) (1.21)
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These functions ū, v̄ describe shape waves propagating along the body axis that can
be both of stretching and of bending type, with a phase shift φ. Waves of stretching
(a > 0, b = 0) can be assimilated to peristaltic waves, waves of bending (a = 0,
b > 0) to lateral undulations. For ω > 0 and k > 0, these waves propagate in the
direction of increasing x and X.

Computing velocities from positions using (1.20)–(1.21), and using these veloc-
ities as Dirichlet boundary conditions for the outer Stokes problem, one can try
to solve for the velocities of the fluid and obtain the (horizontal) velocity U of
the sheet. This can be done through a series expansion leading to the following
expressions for the leading order term in the swimming speed U

U = −1

2
ωk

(
b2 + 2ab cosφ − a2

)
(1.22)

The reader is referred to [32] for a proof of these results. In particular, we have

U = 1

2
ωka2 , (peristaltic case: wave of stretching) (1.23)

U = −1

2
ωkb2 , (undulation case: wave of bending) (1.24)

which show that in the case of a (peristaltic) wave of stretching the motion is
prograde (i.e., in the same direction of the direction of propagation of the wave)
while, in the (undulatory) case of a wave of bending, the motion is retrograde (i.e., in
the direction opposite to the direction of propagation of the wave). Some interesting
applications of these formulas to the biological world of snails and earthworms and
of bio-inspired robotic replicas can be found in [1, 47–49, 54] and in the references
quoted therein.

Moving form the idealized case of the Taylor sheet to the analysis of a concrete
swimmer, which is in particular of finite length, is not straightforward. We have
studied in a series of papers the case of a planar swimmer consisting of N rigid
segments of equal length, connected by rotational joints. For N = 3 this is
Purcell’s three-link minimal swimmer [87], while considering the limit N → ∞
we can reproduce the geometry of Taylor’s sheet discussed above. This N-link
swimmer has been analyzed in the framework of Geometric Control Theory in
several scenarios. One is the case in which the angles between successive links
(which provide a discrete analog of the local curvature) are prescribed, i.e., we are
dealing with a problem of swimming at prescribed shapes as in Sect. 1.3.1, see [12].
It turns out that the governing equations for this swimmer have the structure of
an affine control system without drift, for which one can apply powerful theorems
to prove controllability. Another case is obtained by assuming that the links are
ferromagnetic and a time-dependent (oscillatory) external magnetic field is applied,
and that elastic torsional springs are present at the joints between successive links.
The resulting N-link magnetic swimmer, analyzed in [14], provides an example in
which shape emerges only from the balance of elastic restoring torques, external
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magnetic torques, and torques arising from hydrodynamic drag, i.e., a problem
conceptually analogous to the one of Sect. 1.3.2. The governing equations for
this second case have the structure of an affine control system with drift, for
which general sufficient conditions for controllability are not available. Loss of
controllability for swimmers whose shape is only partially controlled can therefore
be understood in the light of the structure of the governing equations, using the tools
of Geometric Control Theory.

The N-link swimmer can also be used to probe questions of optimal control.
Deformations in the form of waves traveling along the body are very common in
nature (both for swimmers and crawlers), and are used very frequently in slender
bio-inspired mobile robots. Are they optimal in any sense, when compared to
alternative actuation strategies? We have examined this question in [15]. More
precisely, we have considered the problem of finding the gait of minimal energy
expenditure among all those capable of reaching a prescribed displacement in one
shape cycle.

This problem of optimal control is nonlinear in the shape parameters (the angles
between successive joints) and finding (even numerically, when N is large) the
optimal gait explicitly is exceedingly difficult. By considering the regime of small
deviations from the straight configuration, i.e., under the assumption of small-
amplitude angles, and considering the approximation of the governing equations
at leading order in the shape parameters, we obtain an affine control system that can
be analyzed in full detail. We find that optimal gaits are always two-dimensional
elliptical loops, independent of N . These gaits bridge Purcell’s loops for the two-
dimensional shape space associated with N = 3, to gaits that, modulo edge effects,
can be identified with Taylor’s traveling waves of bending for large N , of a type
similar to (1.19).

The result above, namely, the energetic optimality of undulation waves as a
swimming strategy for a swimmer differing only slightly from a straight segment
only depends on structural properties and symmetries of the governing equations,
which in turn reflect the geometric symmetry of the physical problem at hand.
In fact, in this regime of small-amplitude joint angles, the perturbations from the
rectilinear geometry of the reference configuration are small, and a slender one-
dimensional swimmer with homogenous geometric and mechanical properties that
interacts with a homogeneous surrounding medium is a system which is essentially
invariant under shifts along the body axis. This is exactly true for an infinite
or a periodic system and approximately true, modulo edge effects, for a system
of finite length. The relevance of traveling waves as optimal gaits is therefore
naturally suggested by the geometric symmetry of the system and, in fact, it emerges
naturally from the symmetries of the governing equations. Given the generality of
this argument, it is quite natural that the same conclusion holds true for other types
of locomotion as well, such as the case of one-dimensional crawlers gliding on solid
surfaces, see [1].

Removing the assumption of small-amplitude joint angle and exploring the case
in which large deviations of the shape from the rectilinear one are allowed is
difficult. Numerical simulations show that the optimal gaits (obtained for the case
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N = 3 and N = 5 in [15]) are planar but non-convex in the case N = 3, and non-
planar with complex geometries in the case N = 5. This is not surprising because,
when the restricted setting of small perturbations from the rectilinear geometry is
abandoned, and large shape changes are considered, then invariance under shifts
along the body axis is lost and traveling waves are no longer a natural basis for
the study of the properties of optimal gaits. It would be interesting to find out
whether the closed curves of high dimensionality representing the optimal gaits in
the large deformation regime, that we find numerically, do exhibit special structural
properties or symmetries: this question is, at present, completely open.

1.4 Biological Swimmers

It may seem surprising that the principles discussed above may be relevant in the
study of the locomotion strategies of unicellular organisms, whose bodies look very
different from the idealized systems of beads and springs analyzed in the previous
section. In fact, this is indeed the case, as we argue in the remainder of this section.
We will show that the principles discussed in Sect. 1.3 go a long way in rationalizing
behaviors observed in biology.

1.4.1 Chlamydomonas’ Breaststroke

Chlamydomonas is a unicellular alga, with a round body, which swims thanks to
the beating of two flexible anterior flagella, see e.g. [56, 58]. It has been used as a
model organism, in particular for what concerns flagellar locomotion [51].

In one of its typical behaviors, the cell beats the two flagella in synchrony in a
plane, symmetrically about a central symmetry axis of the body. With this perfect
breast-stroke, the cell progresses with a rocking back-and-forth motion along the
symmetry axis. Net displacements are made possible by the fact that the shape of the
flagella varies during one stroke cycle. They are extended during the power phase of
the stroke, when the flagella beat (say) downwards, and push the cell body upwards.
They are contracted in the recovery part of the stroke, when they move upwards
to recover the initial posture, and push the cell downwards (hence the rocking
motion). Net upward displacement results from the fact that the hydrodynamic
forces generated by the extended flagellum are higher than those generated by the
retracted flagellum, moving in the opposite direction. Considering as shape variables
the angle formed at the attachment of the body (localized curvature), and a measure
of global curvature, we recognize that Chlamydomonas’ breast stroke consists of a
loop in the space of shapes.

This mechanism, based on the non-reciprocal time-periodic beating of slender
one-dimensional structures, is ubiquitous also in the self-propulsion of ciliates,
which are typically covered by numerous arrays of beating cilia. Their beating is
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organized in periodic spatio-temporal patterns called metachronal waves. Individual
cilia oscillate back and forth with a shape asymmetry between an extended
configuration in the power phase of the stroke and a more bent one during the
recovery phase of the stroke.

1.4.2 Sperm Cells and Flagellar Beat

Sperm cells are among the most thoroughly studied examples of unicellular
swimmers, see e.g. [53]. There is hardly a more evident illustration of how cell
motility is relevant to life as the highly oscillatory motion by which a sperm cell
successfully swims its way until it reaches and fecundates an egg cell.

Sperm cells move by beating a flagellum, whose structure is highly conserved
across all eukaryotic species. It consists of longitudinal bundles of microtubules,
arranged in a precise spatial structure (the 9+2 architecture of microtubule doublets
in the axoneme), on which molecular motors (dyneins) exert forces that cause the
creation and propagation of longitudinal bending waves [8]. These bending waves
generate the propulsive forces powering the motion of the cell. The same flagellar
architecture and the same flagellar beat, with the resulting force-exchange with a
surrounding fluid are at the basis of the locomotion strategies of all flagellates and
ciliates. In addition, they are at the root of some fluid transport phenomena of great
physiological relevance in humans and animals (such as muco-ciliary clearance, i.e,
the self-clearing mechanism of the airways in the respiratory system, but cilia may
also be involved in the flow of cerebrospinal fluid) which are driven by the beating
of ciliated cells lining the walls of the organs inside which the flow takes place.

Interestingly, a basic and fundamental model for the flagellar beat in eukaryotic
cilia and flagella is still lacking, in spite this being one of the most thoroughly
studied topics in cell motility for the last several decades. The seminal paper by
Machin [76] established that the observed wave patterns are incompatible with the
hypothesis that the flagellum is a passive elastic filament set in motion by external
actuation (e.g., an active process located at the proximal end, as is the case for
bacterial flagella, which are driven by a rotary motor located at the proximal end of
the flagellum). For eukaryotic flagella, active contractile elements must exist along
the length of the flagellum. In other words, mechanics shows that the observed
bending waves require the presence of internal actuation along the flagellum:
distributed active forces/torques along the flagellum, which we now know to be the
result of the action of molecular motors (dyneins) on microtubule bundles But how
is the active beat generated? How is the frequency of the beat set? Is it affected by
environmental cues and, if so, through which mechanisms? Already at its most basic
level, a bending wave requires spatio-temporal patterns of curvature of variable
sign along the body axis. This has led to the hypothesis there must exist some
coordination mechanism between molecular motors acting on opposite sides of the
flagellum: In order to generate the flagellar beat, molecular motors must switch on
and off, respectively, at the opposite sides of the bending plane (this is called the
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‘switch-point hypothesis’ in the biophysical literature). Whether this hypothesis is
correct and, if so, what controls the switching of activation of axonemal motors
is still a debated issue, and it is the subject of active ongoing research [74].
Recent advances in high resolution microscopy (cryo-electron tomography) have
enabled us to observe distinctive asymmetric spatial patterns of active and inhibited
motors along the length of a flagellum [73]. To date, however, there are no time-
resolved observations of the beat pattern, allowing for a direct visualization of the
configurations of motors and microtubules during the beat. In addition, it is not
known how the beat is regulated, and it is not ruled out that oscillations simply
emerge spontaneously as a resonance of the axoneme, seen as mechanical system in
which motors respond to the forces transmitted by the microtubules [92]. The quest
for a fundamental model of the regulation mechanism of the flagellar beat is still
outstanding.

1.5 Euglena Gracilis: A Case Study in Biophysics
and a Journey from Biology to Technology

We have been studying Euglenids, and Euglena gracilis in particular (see [71]),
already for some years. The reason behind our interest in this protist, a unicellular
flagellate, is that it exhibits two distinct forms of motility. One is through the beating
of a single anterior flagellum (swimming motility). Another one is through very
large, elegantly coordinated, rhythmic shape changes of the whole body (amoeboid
motion or metaboly). What controls the switching between this two distinct ‘gaits’ is
an interesting question, which is still open, and on which we have some hypotheses.

1.5.1 Metaboly and Mechanisms for Shape Change, Embodied
Intelligence

The large shape changes associated with metaboly rely on the special body
architecture of Euglena cells whose outer envelope, just like other Euglenids, has
a complex structure. Indeed, underneath the plasma membrane, they have an ultra-
structure called pellicle, see Fig. 1.4. This is a complex made of protinaceous strips,
microtubules, and molecular motors. The strips have overlap regions and are able
to slide one on another along their length. The sliding is powered by molecular
motors that induce sliding in the microtubules that run parallel to the strips, along
the overlap region. The large shape changes of metaboly correlate closely with
geometric rearrangements of the pellicle structure. In fact, the relative sliding along
the strips can be thought of as a mechanism of active surface shearing or, in the
language of differential geometry, of active change in the surface metric. In view
of Gauss’ Theorema Egregium, modulating the pellicle shears means modulating
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Fig. 1.4 Left: a sample of Euglena gracilis imaged in bright-field, reflected light microscopy
while exhibiting cell body shape changes (metaboly) concomitant with the reconfiguration of the
striated cell envelope. Right: micrographs of Euglena gracilis effectively crawling in a capillary
under significant spatial confinement by means of peristaltic shape changes. Notice the forward
motion of the leading edge of the cell and the corresponding retrograde motion of the traveling
bulge sliding against the capillary wall. Figure reproduced from [3]

the surface metric along the surface, and this can produce (Gaussian) curvature.
In particular, the propulsive mechanism associated with metaboly consists of the
propagation of a round protruding bulge along the axis of an elongated body
of approximately cylindrical shape. A surface with a bulge is one with nonzero
Gaussian curvature, so that metaboly relies on the propagation of nonzero Gaussian
curvature along the cell body. This can be accomplished and, as experiments show, is
in fact accomplished by modulation of the pellicle shears along their lengths. And in
the regions where the bulge forms, the pellicle strips acquire a characteristic helical
shape. This mechanism is described in detail in [17, 18], and in Sect. 1.6 below.

Observation at the microscope of the behavior of E. gracilis in capillaries
of decreasing diameter or in environments of increasing crowding suggest that
metaboly may be triggered by confinement. In fact, we could confirm this hypothesis
in [85] by examining swimming Euglena cells in environments of controlled
crowding and geometry, see Fig. 1.4. Under these conditions of increasing confine-
ment, metaboly allows cells to switch from unviable flagellar swimming to a new
and highly robust mode of fast crawling, which can deal with variable levels of
geometric confinement, even extreme ones, and turn both frictional and hydraulic
resistance into propulsive forces.

To understand how a single cell can control such an adaptable and robust mode
of locomotion, we developed in [85] a computational model of the motile apparatus
of Euglena cells consisting of an active striated cell envelope. The activity of the
motors results in tangential forces applied to the pellicle strips along their region
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of overlap, which causes them to slide one relative to the other. Using the energy
consumed by these motors as the input, we assign spatio-temporal patterns of
activation generating traveling waves of tangential forces and, in turn, traveling
waves of sliding displacements which produce peristaltic waves of the cell body.
One of the most striking conclusions that can be reached with the model is the
following. Driving the active cell envelope inside capillaries of decreasing diameter,
but with the same spatio-temporal patterns of activation, the system is capable of
quickly adjusting to the increasing confinement, always finding an effective gait (a
limit cycle) up to the most extreme levels of confinement. In other words, our model
shows that gait adaptability does not require specific mechano-sensitive feedback
but can be explained instead by the mechanical self-regulation of an elastic and
extended motor system.

From an engineering point of view, the ability of the pellicle to mechanically
self-adapt and maintain the locomotory function under different geometric and
mechanical conditions represents a remarkable instance of mechanical or embodied
intelligence, a design principle that is recently emerging in bio-inspired robotics by
which part of the burden involved in controlling complex behaviors is outsourced to
the mechanical compliance of the materials and mechanisms that build the device.

In conclusion, our analysis identifies a locomotory function and the operating
principles of the adaptable peristaltic body deformation of Euglena cells. Further
details on metaboly as a form of motility, and on the mechanisms controlling
how Euglena switches under confinement from flagellar swimming to this mode
of behavior are discussed in [85].

1.5.2 Flagellar Swimming, Helical Trajectories and a Principle
for Self-Assembly

When left undisturbed in free space, Euglena cells swim by beating a single anterior
flagellum. Contrary to what happens for Chlamydomonas, see Sect. 1.4.1, the flag-
ellar shapes of Euglena are typically non-planar (their geometry is often referred to
as ‘figure eight’ or ‘spinning lasso’). The resulting trajectories are also non-planar:
Euglena cells swim with a characteristic swinging motion (Erschuetterung) with
apparent sinusoidal trajectories when the cells are imaged in the two-dimensional
world of optical microscopy. In fact, as it turns out, this is the typical footprint of a
helical swimming motion projected on a 2D plane.

This is in fact proved in [90], where we have managed to reconstruct the three-
dimensional trajectories and flagellar shapes of swimming Euglena, starting from
time-sequences of two-dimensional images obtained with an optical microscope.
This has been made possible thanks to the precise characterization of the orbits
(the maps t �→ c(t),R(t) of the swimming problem of Sect. 1.2) traced by an
object propelled by a flagellum beating periodically in time. Hydrodynamics of
Stokes flows dictates the following universal law of periodic flagellar (and ciliar)
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propulsion: the orbits of any object propelled by periodically beating flagella (or
cilia), swimming far away from walls, boundaries, etc. are always generalized
helices. This makes the reconstruction of three-dimensional trajectories possible:
once the three-dimensional geometric structure of the orbits is known, these can be
recovered from their two-dimensional projections, hence lifting the two-dimensional
experimental images to three dimensions.

In fact, the same result on helical trajectories holds true if the organism is
propelled by an array of cilia, beating periodically. This situation is typically
modeled treating the swimmer as a squirmer, i.e. a rigid body with a distribution
of slip velocities on its boundary, which represent the relative velocity of the fluid
(which moves like the tips of the cilia) with respect to the base of the cilia, attached
to the boundary of the body. If the slip velocity field is periodic in time, the resulting
orbits are generalized helices. For the sake of simplicity, we will illustrate the results
on helical swimming above by only considering the discrete curve traced by an
arbitrary point of the swimmer (the origin c(t) of the body-frame), following its
positions after integer multiples of the beating period T . We have the following:

Helix Theorem The discrete trajectory k �→ ck = c(0 + kT ) traced by a micro-
swimmer moving in free-space, propelled by the T-periodic beating of a flagellum
or of an array of cilia, is a discrete circular helix.

This result is a special case of a more general one proved in [90], but we give
here a direct proof following [35]. Assume that, at t = 0, body-frame and lab-frame
coincide: c(0) = o, R(0) = I, and let d and R be the displacement and rotation at the
end of one beat cycle. After each cycle, the incremental displacement and rotation
in the body-frame will always be d and R since the shape change cycle is the same,
and the swimming problem (written in the body-frame) is invariant by rotation and
translation. Composing these (constant) translations and rotations with the motion
of the body-frame, the discrete trajectory in the lab-frame will be

ck = o + d + Rd + R2d + . . .+ R(k−1)d , and Rk = Rk , (1.25)

where Rk = R(0 + kT ) and R0 = R(0) = I.
To see that (1.25)1 is a discrete circular helix, we will use the discrete version of

a well known result form differential geometry, stating that a curve with constant
curvature and torsion is necessarily a circular helix. This is easy to prove by
integrating Frenet’s formulas, and is sometimes referred to as Lancret’s theorem.
To compute the (discrete) curvature at point ck , consider the (osculatory) plane
generated by the three points (ck−1, ck, ck+1) and spanned by the (discrete) tangents
R(k−1)d and R(k−1)Rd, see Fig. 1.5. By Frenet’s formulas, the curvature at ck is
1/|d| times the angle θ between d and Rd, which is independent of k. Similarly, to
compute the torsion at point ck , consider the binormal at ck . This is orthogonal to
the osculatory plane at ck, hence parallel to R(k−1)(d×Rd). Similarly, the binormal
at ck+1 is orthogonal to the plane spanned by Rkd and R(k+1)d, hence parallel to
R(k−1)(R(d × Rd)). By Frenet’s formulas, the torsion at ck is 1/|d| times the angle
φ between d × Rd and R(d × Rd), which is independent of k. Special cases are
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Fig. 1.5 Tangents and binormals to the discrete helix to compute discrete curvature θ/|d| and
discrete torsion φ/|d|. Figure reproduced from [35]

Fig. 1.6 Geometric construction of the parameters of the discrete circular helix associated with
shift d and rotation R = Rθ

e of angle θ and axis e. In the figure, d⊥ denotes the projection of d on
the plane perpendicular to the rotation axis e. Figure reproduced from [35]

that of a straight trajectory, which arises when d is parallel to the axis of R (hence
d×Rd = 0, zero discrete curvature), and of a circular trajectory, which arises when
d is perpendicular to the axis of R (so that both d×Rd and R×(d×Rd) are parallel
to the axis of R and hence, zero discrete torsion).

The informal discussion above can be made rigorous by using the results in [28],
that show that curve (1.25)1 can be seen as the discretization of a continuous curve
having as curvature and torsion exactly the values computed from (1.25)1.

It is interesting to give a concrete geometric representation of the helix above,
see Fig. 1.6. Let e be the axis of the rotation R (the eigenvector corresponding to
its eigenvalue equal to +1) and θ the angle. We can highlight the two parameters
characterising the rotation R by writing R = Rθ

e . In a reference frame with origin
o, first axis aligned with d⊥, the projection of d on the plane perpendicular to the
rotation axis e (we are assuming here that d is not parallel to e, for otherwise the
trajectory is a straight line parallel to d), and third axis aligned with e, the equation
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of the discrete circular helix (1.25)1 is

x1(k) = r cos

(
π − θ

2

)
+ r cos

(
−π + θ

2
+ kθ

)
(1.26)

x2(k) = r sin

(
π − θ

2

)
+ r sin

(
−π + θ

2
+ kθ

)
(1.27)

x3(k) = 0 + k |d//| (1.28)

where

r = |d⊥|/2

sin(θ/2)
, d// = (e ⊗ e) d , d⊥ = (I − e ⊗ e)d . (1.29)

Finally, it is interesting to notice that, since the axis of body rotation R is also the
screw axis of the helix traced by the cell body, as the cell moves in average along
the screw axis, the body rotates so that the lateral surfaces containing the eyespot
(in which a light receptor is located) is periodically exposed to or shaded from light,
unless the screw axis is aligned with the light source. In fact, this is a vivid example
of a general biochemical mechanism, repeatedly found in nature, whereby periodic
signals are used as a tool for navigation: the existence of a periodic signal implies
lack of alignment [56]. Thus, the organism can react to the signal by perturbing
its beat until the periodic signal is suppressed, in the aligned state. In this way,
the coupling between direction of average motion and axis of body rotations could
explain the navigation mechanism used by phototactic Euglena to orient with a light
source.

The result contained in the Helix Theorem is remarkable in its universality,
and it has far reaching consequences for the swimming of flagellated and ciliated
unicellular organism: They all trace helical trajectories. This is at least true over time
windows over which they exhibit stereotyped behavior (e.g., no turns), resulting
on periodic beating of their cilia and flagella. As a matter of fact, the recent
biophysical literature abounds with reports of discoveries of the helical structure
of experimentally observed trajectories of a variety of micro-swimmers of great
biological relevance (bacteria, sperm cells, etc.). Most of the previous literature had
focused on the special cases of straight and circular trajectories, which are easily
measured from two-dimensional images from an optical microscope, while the
reconstruction of trajectories such as helices, which are spatial curves, requires that
we resolve the third dimension perpendicular to the focal plane of the microscope.
This entails technical problems, and only recently is it becoming possible to
overcome them.

The interest and possible applications of the Helix Theorem above are not
confined to trajectories of biological (and, possibly, artificial) micro-swimmers.
In fact, the theorem yields a principle for the self-assembly of helical structures.
Indeed, the theorem characterizes the geometry of any chain resulting from the
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assembly of rigid monomers, when the position and orientation of the (k + 1)-th
monomer are constrained to be those arising from a shift d and a rotation R of the
k-th one. In this case, a discrete circular helix will emerge. In other words, if two
monomers can only bind in a precise relative position and orientation, then a self-
assembled helical structure will be the outcome when they form in a chain. This
simple observation provides a rationale explaining why helices are so ubiquitous in
biology and nature, and why bio-polymers self-assemble into helices. For the same
reason, self-assembled helical structures are frequently encountered in polymer
science, chemical engineering and materials science.

1.6 Shape Control and Gaussian Morphing

The mechanism by which Euglena changes shape when executing metaboly,
discussed in Sect. 1.5.1, is based on active shears of its outer envelope, which
arise in turn from the sliding of its pellicle strips. To the best of our knowledge,
this mechanism has never been used in engineered devices, at least until now.
For this reason, it is interesting to place this mechanism within a more general
discussion of shape control in biological organism, of deployable structures, of bio-
inspired morphing structures, of shape programming of active materials, adaptable
structures, and the various other variants of these concepts.

In fact, the active shearing explaining Euglena’s metaboly is but one example
of shape control of two-dimensional thin, shell-like objects, whereby shape control
is enforced through control of curvature. There are two main avenues to achieve
this. The first one operates by inducing differential strains along the thickness,
as in Timoshenko’s bimetallic strips [100] and in modern soft variants, see e.g.
[5, 29, 38, 44, 93]. The second one operates by controlling in-plane stretches and
exploiting Gauss’ theorema egregium. This second avenue, based on the fact that
Gaussian curvature is associated with derivatives of the components of the metric
tensor, i.e., differential stretches of the mid-surface, has received a lot of attention
in the recent literature, see e.g., [67, 78, 82, 91] and many others. We call Gaussian
morphing this second strategy, namely, the idea of controlling curvature (shape) of
a thin two-dimensional structure through modulated stretching of the mid-surface
(via prescription of the metric tensor). The mechanism used by Euglena is of this
second type.

Many results are available on how this Gaussian morphing principle is at work in
biological structures [6, 17, 18], and on how it can be exploited in artificial structures
by using for example hydrogels or nematic elastomers, see e.g. [7, 65, 95, 106].
But, up to now, technology has mostly relied on the first principle (differential
strains across the thickness), rather than on the second (differential stretches of the
mid-surface). Understanding how Gaussian morphing works in specific examples
may help popularize this new approach and inspire novel applications in the context
of deployable or adaptive structures and devices. With these motivations in mind,
we explore two concrete examples in the next sections. Further details can be found
in [36].
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1.6.1 Controlling the Shape of Surfaces by Prescribing Their
Metric

We start by considering the reference configuration of a material surface, namely,
a two-dimensional surface immersed in R

3 and its deformations. This means that
we consider a map (u, v) �→ χ0(u, v) ∈ R

3, where (u, v) ∈ (L0,H0) ⊂ R
2. A

deformed configuration of this material surface will be given by another map, say,
(u, v) �→ χ(u, v) ∈ R

3, again with (u, v) ∈ (L0,H0) ⊂ R
2.

By computing the surface deformation gradient F and the right Cauchy-Green
strain C = F T F , we obtain the metric tensors of the material surface in the
reference and deformed configurations as

C0 = g0 =
[

χ0,u · χ0,u χ0,u · χ0,v

χ0,u · χ0,v χ0,v · χ0,v

]
(1.30)

and

C = g =
[

χ ,u · χ ,u χ ,u · χ ,v

χ ,u · χ ,v χ ,v · χ ,v

]
=

[
E F

F G

]
, (1.31)

where a comma denotes partial differentiation.
We are interested in inducing controlled changes of the shape of the material

surface by generating changes of lengths and angles of its material fibers through
actuation, described by changes of the metric tensor from its reference value g0 to
a new value g. The possibility of changing curvature (morphing) of a surface by
acting on its metric is recognized by a remarkable theorem by Gauss, his celebrated
theorema egregium, stating that the Gaussian curvature K of a surface (the product
of its principal curvatures) can be computed by differentiating the components of its
metric tensor as

− EK = (�2
12),u − (�2

11),v + �1
12�

2
11 + �2

12�
2
12 − �2

11�
2
22 − �1

11�
2
12 , (1.32)

where �α
βγ , α, β, γ = 1, 2, are the Christoffel symbols, see [50]. The interpretation

of Gauss’ theorema egregium as a morphing scheme has been pioneered in the
seminal paper [67].

We will discuss examples that are motivated by shape changes exhibited by
unicellular organisms, of special relevance in the study of cell motility. Our first
example, motivated by Euglena’s metaboly introduced in Sect. 1.5.1, is the local
simple shear arising from the sliding of pellicle strips making up the cell envelope
of euglenids. This mechanism for shape change has been analyzed in great detail in
[17, 18, 84, 85], and it is described by a metric tensor of the form

g =
[

1 + γ 2 γ

γ 1

]
(shearing mechanism). (1.33)
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Here γ = γ (u, v) ∈ R is the local simple shear between material fibers aligned with
the coordinate lines (the direction of the centerline of the pellicle strips in the case
of euglenids), an area preserving deformation. Actually, the same mechanism drives
the flagellar and ciliary beating in eukaryotic cells discussed in Sect. 1.4.2, where
molecular motors induce relative sliding between parallel bundles of microtubules
lying on the outer cylindrical envelope of the flagellum, see [36] for more details.
Substituting (1.33) into (1.32) we obtain

K = (
γ,u − γ γ,v

)
,v

(shearing mechanism). (1.34)

Our second example is motivated by the observations in [39] of the deformations
of Lacrymaria olor, a unicelluar ciliate that is easily found in freshwater ponds,
just as Euglena. This same mechanism is also at work in the braided sheaths of
pneumatic artificial muscles of McKibben type [101]. It consists of a stretch with
principal directions along the coordinate lines

g =
[
λ2 0
0 μ2

]
(stretching mechanism), (1.35)

where λ = λ(u, v) ∈ (0,+∞) and μ = μ(u, v) ∈ (0,+∞) are the stretches
along the u− and v−coordinate lines, respectively. These are typically the diagonals
in the rhombus-shaped unit cell of a meshwork which deforms as a pantograph
in the sheath of a McKibben actuator or, for the biological case, in the arrays of
biofilaments making up the cell envelope.

The deformation associated with (1.35) is area preserving if λμ = 1, in which
case it is called a pure shear. Substituting (1.35) into (1.32) we obtain

K = − 1

λμ

((
λ,v

μ

)

,v

+
(μ,u

λ

)
,u

)
(stretching mechanism) (1.36)

in the general case while, in the area-preserving case, we have

K = − (
λλ,v

)
,v

− (
μμ,u

)
,u

(stretching mechanism , λμ = 1). (1.37)

1.6.2 Axisymmetric Surfaces

For simplicity, we focus now on axisymmetric shape-shifting surfaces. As reference
configuration S0, we consider the cylinder of radius R0 such that

χ0(u, v) =
{
R0 cos

(
u

R0

)
, R0 sin

(
u

R0

)
, v

}
, u ∈ (0, L0), v ∈ (0,H0) ,

(1.38)
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where L0 = 2πR0. This has the identity matrix as metric tensor g0 and zero
Gaussian curvature K0 = 0, in agreement with formulas for g and K in the previous
section obtained by setting either γ = 0 or λ = μ = 1.

We are then interested in deformed configurations with axisymmetric shape S,
which can be written by assigning a generating curve {r(v), z(v)} in the symmetry
plane and an azimuthal displacement ψ(v), leading to

χ(u, v) =
{
r(v) cos

(
u

R0
+ ψ(v)

)
, r(v) sin

(
u

R0
+ ψ(v)

)
, z(v)

}
, (1.39)

u ∈ (0, L0), v ∈ (0,H0) .

Substituting (1.39) into (1.31) we obtain

[
(r/R0)

2 r2ψ ′/R0

r2ψ ′/R0 r ′2 + z′2 + r2ψ ′2

]
=

[
E F

F G

]
= g , (1.40)

where a prime (·)′ denotes differentiation with respect to v. Clearly, since the left
hand side in the last equation depends only on v, only metric tensors g = g(v) that
are independent of u (axi-symmetric actuation) are compatible with (1.39). In these
circumstances, Eqs. (1.34), (1.36), and (1.37) from the last section simplify to

K = − (
γ γ,v

)
,v

(shearing mechanism), (1.41)

K = 1

λμ

(
1

μ2λ,vμ,v − 1

μ
λ,vv

)
(stretching mechanism), (1.42)

K = − (
λλ,v

)
,v

(stretching mechanism, λμ = 1), (1.43)

respectively.
We would like to compute the axisymmetric shapes that can result from

axisymmetric actuation patterns either in simple shear, γ = γ (v), or in pure shear
λ = λ(v), λμ = 1. From Eq. (1.40) we immediately see that, since E = (r/R0)

2,
whenever the metric g is constant, then the axisymmetric surface χ is a cylinder of
radius r = E1/2R0, a special instance of a surface with zero Gaussian curvature
K = 0. This case of constant metric g is the simplest to examine, and we shall
consider this case first.

1.6.3 Cylinders from Cylinders

When K = K0 = 0, the axisymmetric morphing surface can be developed onto
a plane both before and after actuation. Following [17], in order to study the
shape change S0 �→ S induced by the change of metric g0 �→ g, it is useful to
analyze the process by first cutting S0 along a direction parallel to the cylinder
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axis and unfolding it (isometrically) to a plane, then deform this plane with a two-
dimensional affine map �(u, v) inducing the (spatially uniform) change of metric
g0 �→ g

[
�,u · �,u �,u · �,v

�,u · �,v �,v · �,v

]
= g =

[
E F

F G

]
, (1.44)

and then roll-up (isometrically) the deformed plane on a cylinder of radius r =
E1/2R0. The case associated with Euglena’s shearing mechanism is

�(u, v) = Rφ
e3
(ue1 + (v + γ u)e2) , g =

[
1 + γ 2 γ

γ 1

]
, (1.45)

where R
φ
e3 is a rotation with axis e3 and angle φ = tan−1(γ ).

The case associated with with Lacrymaria’s stretching mechanism is given
instead by

�(u, v) = λue1 + μve2 , g =
[
λ2 0
0 μ2

]
. (1.46)

The way surfaces deform as a consequence of metrics of type (1.45) is studied
extensively in [17, 18], to which the reader is referred. A similar analysis can be
done for metrics of type (1.46). Substituting (1.46) into (1.40) we obtain

[
(r/R0)

2 r2ψ ′/R0

r2ψ ′/R0 r ′2 + z′2 + r2ψ ′2

]
=

[
λ2 0
0 μ2

]
= constant, (1.47)

which gives r = λR0, while the functions ψ(v) and z(v) are determined by solving
the differential equations

ψ ′ = 0 , (1.48)

and

z′ = ±μ . (1.49)

Hence, by setting the integration constants ψ(0) and z(0) equal to zero and selecting
the plus sign in (1.49) (solutions to (1.47) are determined up to a rigid motion
allowing for translations along e3, rotations about e3, and ± inversion along e3,
which are here fixed), we have ψ(v) = 0 and z(v) = μv.

Having in mind the arrangement of microtubules in Lacrymaria’s envelope, and
also the arrangement of fibers in the braided sheaths of McKibben artificial muscles,
we are interested in the conformational changes of networks of helical material
curves on S0, when a metric change g0 �→ g transforms S0 into S. We consider
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Fig. 1.7 Cylindrical surfaces obtained from a referential cylinder with H0/R0 = 5 by exploiting
the area preserving stretching morphing principle (1.35) for λ = {0.75, 1, 1.5, 2, 2.5, 3}. Cylindri-
cal surfaces are decorated by blue and yellow material fibers for θ0 = π/4 and N = 10. Figure
reproduced from [36]

the 2N lines

u(k)(v) = k
2π

N
R0 ± tan(ϑ0)v , k = 0, . . . , N − 1 (1.50)

and their images in the reference and deformed configurations

χ
(k)
0 (v) = χ0(u

(k)(v), v)

=
{
R0 cos

(
1

R0
u(k)(v)

)
, R0 sin

(
1

R0
u(k)(v)

)
, v

}
, v ∈ (0,H0)

(1.51)

and

χ (k)(v) = χ(u(k)(v), z(v))

=
{
λR0 cos

(
1

R0
u(k)(v)

)
, λR0 sin

(
1

R0
u(k)(v)

)
, μv

}
, v ∈ (0,H0).

(1.52)

Curves (1.51) are circular helices with radius R0, screw axis parallel to e3, and pitch
angle ϑ0. Curves (1.52) are circular helices with radius λR0, screw axis parallel to
e3, and pitch angle tan−1(λ tan(ϑ0)/μ) (when ϑ0 = π/4, the angular pitch of (1.52)
is tan−1(λ/μ)). These are all illustrated in Fig. 1.7.

1.6.4 Axisymmetric Surfaces with Non-constant Metric

We turn now to more general axisymmetric surfaces S of the form (1.39), obtained
by axisymmetric actuation, i.e., by a non-constant metric g depending only on the
“vertical” coordinate v (the coordinate along the symmetry axis) and not on the
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“azimuthal” coordinate u. The case of simple shear (1.33) has been studied in detail
in [17, 18, 84, 85] in connection with the morphing mechanism of the pellicle of
euglenids. In particular, we refer to [17] for the complete atlas of the axisymmetric
shapes of constant Gaussian curvature surfaces (cylinders, cones, spheres, spindles,
and pseudo-spheres) achievable by axisymmetric shearing, and for the solution of
the inverse problem of finding which shear actuation patterns, i.e., which metric of
the type (1.45), are capable of realizing each given shape.

Here, we consider the stretching metric given by (1.35), restricting attention to
the area-preserving case of λμ = 1 (pure shear) for simplicity. From

[
(r/R0)

2 r2ψ ′/R0

r2ψ ′/R0 r ′2 + z′2 + r2ψ ′2

]
=

[
λ2 0
0 1/λ2

]
, (1.53)

where λ = λ(v) and a prime denotes derivative with respect to v, we obtain

r(v) = λ(v)R0 , (1.54)

ψ ′(v) = 0 , (1.55)

and

z′(v) = ± 1

λ(v)

√
1 − (R0λλ′)2 , (1.56)

which can be solved with real z(v) provided that

λ|λ′| ≤ 1

R0
. (1.57)

This is a necessary condition for a metric of the form (1.35) to be realized by an
axisymmetric surface (embeddability in R

3).
We start by seeking surfaces of zero Gaussian curvature K = 0, more general

than the cylinders of the previous section, which arise when λ′ = 0. We thus have

0 = − (
λλ′

)′ = −1

2
(λ2)′′ , (1.58)

which implies that λ(v)λ′(v) = C, a constant such that |C| ≤ 1/R0. Hence,

z′(v) = dz

dv
= ± 1

λ(v)

√
1 − R2

0C
2 (1.59)

and, using (1.54), we deduce that

dr

dz
=

dr
dv
dz
dv

= ±R0λ(v)λ
′(v)√

1 − R2
0C

2
= ±

√
R2

0C
2

1 − R2
0C

2
=: ± tan(φ) , (1.60)
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which shows that S is a cone with axis parallel to e3 and opening angle φ (measured
clockwise from the e3 axis). This angle tends to zero when C → 0, and to π/2 when
C → ±1/R0.

Moreover, it follows from (1.58) that λ2(v) is a linear function of v ∈ (0,H0).
Thus, we can write λ as

λ = λ̃(ξ ) = √
A(1 − ξ)+ Bξ , ξ := v

H0
∈ (0, 1) , λ̃(0) = √

A, λ̃(1) = √
B

(1.61)

and integrate (1.59) to obtain

z(v) = z(0)±H0

√
1 − R2

0C
2

∫ v/H0

0

dx√
A(1 − x)+ Bx

. (1.62)

Furthermore, from λλ′ = (λ2)′/2 = C, we obtain

C = B − A

2H0
, (1.63)

so that the embeddability condition |C| ≤ 1/R0 is equivalent to

|B − A| − 2H0

R0
≤ 0 . (1.64)

Setting all the integration constants to zero and choosing the positive sign in the
previous formulas, we obtain the parametrization of S as

λ(v) =
√
A

(
1 − v

H0

)
+ B

v

H0
, (1.65)

r(v) = λ(v)R0 , (1.66)

ψ(v) = 0 , (1.67)

and

z(v) =
√
A(1 − R2

0C
2)

C

(√
1 − v

H0
+ B

A

v

H0
− 1

)
, (1.68)

which describes a truncated cone with opening angle given by (1.60) and radii
at the rim of the surface equal to r(0) = R0

√
A and r(H0) = R0

√
B. Here

A = λ2(0), B = λ2(H0), C = (B − A)/(2H0) and A, B must be such that
|B − A| − 2H0/R0 ≤ 0.
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Fig. 1.8 Truncated cones obtained from a referential cylinder with H0/R0 = 5 by exploiting the
stretching morphing principle (1.35) for r(0)/R0 = {1, 1.5, 2, 2.5, 3, 3.32} and r(H0)/R0 = 1.
Conical surfaces are decorated by blue and yellow material fibers for θ0 = π/4 and N = 10.
Figure reproduced from [36]

The images of the circular helices (1.51) after deformation are obtained by
substituting the previous formulas into

χ (k)(v) = χ(u(k)(v), z(v))

=
{
r(v) cos

(
1

R0
u(k)(v)

)
, r(v) sin

(
1

R0
u(k)(v)

)
, z(v)

}
, v ∈ (0,H0)

(1.69)

and are represented in Fig. 1.8.
Figure 1.9 shows a comparison between surfaces and networks of material lines

arising form the two different actuation mechanisms. The figure shows that the same
shapes can be obtained with two different metrics (one corresponding to a stretching
mechanism, the other one to a shearing mechanism). The two mechanisms (not
the shapes) are distinguishable because they lead to different deformations of the
networks of material lines, and lead to different displacements of material points
on the surfaces. On the left part of the figure, red lines suggest the evolution of
the orientation of the pellicle strips of Euglenids, which deform according to the

Fig. 1.9 A comparison between identical shapes (cylinders and truncated cones) obtained by
means of either a shearing (left) or stretching (right) mechanism. All the shapes are for H0/R0 = 5.
The shorted cylinders correspond to γ = √

3 (shearing mechanism) and to λ = 2 (stretching
mechanism). Cones are both such that r(0)/R0 = 2.5 and r(H0)/R0 = 1. Surfaces are decorated
by colored material fibers to highlight the embodiment of the morphing principle and to emphasize
the difference between the two morphing mechanisms. Figure reproduced from [36]
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shearing mechanism (1.33). On the right side of the figure the blue and yellow lines
suggest the evolution of the orientation of the network of threads in the sheath
of a McKibben artificial muscle or of the microtubules in the cell envelope of
Lacrymaria, which deform according to the stretching mechanism (1.35).

We remark that the theory of shape-shifting surfaces va Gaussian morph-
ing described in this section is purely geometric. It is clear, however, that the
shape-programming path in shape space we have described may require elastic
deformations of the structural elements (rod, membrane, plate, shell, and block
elements) making up the morphing surface. Since these elements will be stretched
and bent, the way a morphing principle works when implemented into a concrete
organism or in a concrete engineered device cannot be predicted without the
explicit appreciation of its embodiment into a specific body architecture (in the
case of organisms) or into specific arrangement of structural elements in the case of
engineered devices. In other words, the way a morphing principle works in practice
is crucially affected by the mechanical compliance of the materials and mechanisms
that build the body or the device.

Thus, the difference between the two mechanisms illustrated in Fig. 1.9 is
not without subtleties. For each fixed value γ of the shearing metric g, there is
a stretching metric delivering the same shape, through stretches along different
coordinate lines, the ones along the γ -dependent eigenvectors of g. A change of
coordinates transforms one metric into the other. If, however, we insist on the fact
that some curves in the reference configuration have the character of material lines,
and that the embodiment of the shape-shifting mechanism governs the change of
lengths and angles of material lines, then the two mechanisms by shearing and
stretching are no longer interchangeable. Indeed, material lines are deformed in
different ways by the two mechanisms and the embodiment reveals the difference
between the two. Along the one-parameter family of shapes illustrated in Fig. 1.9,
material lines initially straight and vertical deform at constant length by differential
lateral sliding in the shearing mechanism (shown in the left). Instead, they remain
straight and are shortened by the stretching mechanism (shown in the right). A more
complete discussion of this issue, and a more complete characterization of shapes
that can be produced with the two mechanisms (direct problem), and of the actuation
patterns needed to obtain them in specific embodiments of the underlying Gaussian
morphing principle (inverse problem) will be provided elsewhere.

1.6.5 Protruding Necks and Localized Bulges

Of particular interest in biology and soft robotics is the construction of localized
bulges and of protruding necks starting from an axisymmetric shape. These are
commonly exhibited by biological organisms and one can think of exploiting
them in artificial devices for robotic manipulation, drug delivery, surgical tools for
minimally invasive surgery, etc. In the context of the shearing mechanism (1.41),
they have been used to mimic the peristaltic waves and traveling bulges ratio-
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nalizing metaboly in Euglenids, see [17, 85]. In the context of the stretching
mechanism, (1.42) or (1.43), they can be used to mimic the neck protrusion that
the unicellular predator Lacrymaria olor uses to explore the environment to search
for preys and to feed on them.

Indeed, let’s consider (1.43), with the axially-symmetric stretch λ given in terms
of a non-dimensional coordinate ξ along the symmetry axis by

λ̃(ξ) = 1 + A

(
1 − exp

[
−

(
ξ − ξ0

D

)2
])

, ξ := v

H0
∈ (−1, 1) , (1.70)

where A > −1 determines the strength of the bulge perturbation with respect to
the reference cylinder (1.38), D > 0 determines its non-dimensional breadth, while
ξ0 ∈ (−1, 1) locates the centre of the bulge along the symmetry axis.

The shapes resulting from (1.70) are shown in Fig. 1.10. They are closely
reminiscent of the patterns exhibited by Lacrymaria when it protrudes its neck for

Fig. 1.10 Deformations resembling the neck extension of Lacrymaria olor obtained by means of
the stretching mechanism (1.43) from a reference cylinder. Shapes are obtained using Eq. (1.70)
with A = {0,−0.17,−0.34,−0.51,−0.68,−0.85}, D = 0.28, and ξ0 = 0.3. The referential
cylinder is such that H0/R0 = 7. Surfaces are decorated by blue and yellow material fibers defined
by Eq. (1.50) with θ0 = π/4 and N = 10. Figure reproduced from [36]
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feeding, see [39]. Shape changes of a similar kind are also exhibited by Euglena
when it executes metaboly, even though the extent of the protrusions is less extreme.
There, the shape-shifting mechanism (the metric change) and the displacements
of material points on the surface (the sliding of the pellicle strips) arise from
a continuous one–parameter family of shears (1.41) rather than stretches (1.43),
see [17, 85]. The molecular and bio-physical details by which the two unicellular
organisms control their behavior are still largely unknown.

1.7 Discussion and Outlook

In these notes we have followed two main threads, which are obviously intertwined.
On the one hand, we have considered biological and bio-inspired locomotion at

small length scales, and swimming motility of microscopic unicellular organisms in
particular. How does an organism or an artificial device move as a consequence
of its mechanical interactions with the environment, if is shape varies in time?
E.g., according to a periodic time-history? The main tool we have used in our
mathematical approach to this navigation problem is geometric control theory. In
this way, reaching position B from position A becomes a question of controllability,
and doing so optimally (e.g., at minimal energetic cost) is a problem of optimal
control.

On the other hand, we have considered the problem of how to control the shape
of the outer envelope of biological organism or of a thin engineering structure. I.e.,
how can we morph surfaces according to a specified shape programming scheme?
In particular, we have discussed the Gaussian morphing scheme, by which shape
changes result form changes of Gaussian curvature, which are in turn induced by
(active) lateral modulation of the metric of the surface.

There are cases, such as the metaboly of Euglenids, where the two threads are
intertwined. Indeed, Euglena gracilis cells control the shape of their outer envelope
by patterns of active pellicle shears, which represent modulations of the surface
metric by surface shears.

This brings us to the issue of the practical use of the algorithmic morphing
principle we have discussed, be it Gaussian morphing or more general morphing
schemes, for concrete applications. Invariably, workers in the field of micro-
swimmers like to mention the goal of using these principles to fabricate microscopic
medical devices (micro-robots) for autonomous navigation inside the human body,
capable of executing diagnostic, therapeutic, drug delivery, and minimally invasive
surgery functions, in a concrete application of the visionary sequences of the
movie ‘Fantastic Voyage’, or of the visionary words of R. Feynman, who was
talking about surgeons that can be swallowed. More generally, robotics has shown
concrete interest in concepts similar to the ones described in these notes, opening
up the new field of Soft Robotics [66]. In this new paradigm, robots that are asked
to interact with unstructured and rapidly changing environments can exploit the
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adaptability coming from compliant bodies, instead of relying only on complex
control algorithms for more traditional architectures based on rigid body parts.

The community of Soft Robotics is expanding, but a key challenge to the actual
deployment of robotic devices made at least in part of soft component comes from
the availability of soft active materials with the right properties. Hydrogels have
been used in several applications, in which actuation by solvent uptake is a feasible
mechanism (see e.g. [5, 65, 67, 91] and the references cited therein). Liquid crystal
elastomers (LCEs) [104] have also been identified as a very promising material,
thanks to the availability of many stimuli to which they can respond to (temperature,
light, electromagnetic fields, solvent uptake), and recent advances in manufacturing
(that allow for a very fine resolution of the patterns of programmed director fields,
which can be used to induce shape changes following Gaussian morphing principle).
There is a large literature on modeling the mechanical response of LCE sheets, see
[4, 7, 19, 26, 37, 43, 45, 46, 52, 78, 82, 93, 104–106] and the references cited therein
for a small sample.

These materials pose serious challenges also at the level of mathematical
modeling. Modeling the mechanics of phase transforming polymeric materials such
as LCEs is highly nontrivial, since they exhibit nonlinearities in their response,
for example due to domain evolution and hysteresis. Modeling these phenomena
still represent a challenge, in spite of the fact that these topics having been in
the forefront of research for many years, see e.g., [23, 42, 43]. Recent spectacular
results on the possibility of producing low hysteresis shape memory materials,
based on mathematical models (with low hysteresis behavior occurring when special
compatibility relations between the metric changes in two neighboring domains are
satisfied) testifies, however, that progress in this difficult subject is being made [57].
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Chapter 2
Models of Cell Motion and Tissue Growth

Benoît Perthame

Abstract The mathematical description of cell movement, from the individual
scale to the collective motion, is a rich and complex domain of biomathematics
which leads to several types of questions and partial differential equations. For
instance, bacteria move by run-and-tumble movement, which is well described, at
the cell scale, by a kinetic equation in the phase coordinates. At the population scale,
chemotactic effects lead to the famous parabolic Keller–Segel system, and the many
improvements of it that have been addressed recently.

When considering living tissues, concepts issued from mechanics arise. Notions
of pressure, phases, incompressibility are used in systems which carry the typical
parabolic and hyperbolic characters of fluid mechanics. Their complexity is directly
related to the details in the biological description and opens numerous mathematical
questions which are poorly understood.

The various process involved in cell movements can be considered at the cell
scale, at the population scale and, for tissues, at the organ scale. This leads to
study singular perturbation problems of various types. For tumor growth, the tumor
boundary can appear as a free boundary or as an internal layer.

2.1 Introduction

The mathematical description of cell movement from the individual scale to the
collective motion, is a rich and complex domain of biomathematics which has been
treated for a long time and with a rich variety of Partial Differential Equations. The
goal, in this Chapter, is to give a flavor of the domain, showing the miscellaneous
types of equations that can be encountered, the qualitative behavior of solutions and

B. Perthame (�)
Sorbonne Université, CNRS, Université de Paris, Inria, Laboratoire Jacques-Louis Lions, Paris,
France
e-mail: Benoit.Perthame@sorbonne-universite.fr

© The Editor(s) (if applicable) and The Author(s), under exclusive licence
to Springer Nature Switzerland AG 2020
A. DeSimone et al., The Mathematics of Mechanobiology,
Lecture Notes in Mathematics 2260, https://doi.org/10.1007/978-3-030-45197-4_2

43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45197-4_2&domain=pdf
mailto:Benoit.Perthame@sorbonne-universite.fr
https://doi.org/10.1007/978-3-030-45197-4_2


44 B. Perthame

some mathematical aspects. There are two general views which lead the line of the
chapter:

• Present the domain of cell populations along the scales. We depart from the
cell individual behavior, with the kinetic (mesoscopic) scale. This leads to the
various forms of chemotaxis of swimming bacteria. Then, compressible models
are presented as well as their incompressible limit. In some sense, this plan
follows the traditional view of fluid mechanics.

• Explain how individual cells, which can be bacteria, interacting in a rather
elementary way with their environment (secreting chemical substances and
reacting to them) can generate collective behaviors which are complex and seem
to result from organized strategies.

Several examples of reaction-diffusion equations, where the mechanism is due
to interaction of cells with the environment through nutrients or other physical
effects, are presented in [69] and in [50], showing mechanisms which underly
the patten formation ability of such mechanisms. Reaction-diffusion equations are
indeed usually encountered when considering populations of cells. However, many
more types of equations, with very diverse nonlinearities can occur depending of
the scale of interest.

At the individual scale, bacteria swim by a series of straight jumps followed
by a fast reorganization of their flagella which lead to a new direction of jump.
This trajectory is called run-and-tumble and is well described by a kinetic (linear
Boltzman) equation in the phase space (position, velocity). A major issue here is to
explain the modulation of these changes of direction depending on the environment.
This environment may be characterized by the concentration of a chemoattractant
and this results in a dynamics called chemotaxis where cells move preferentially
toward the chemoattractant. Cells can emit the chemoattaractant themselves, and
this leads to nonlinear systems.

Multiscale analysis allows to see the process at the population size and we
arrive at a Fokker–Planck equation for cell number density coupled to the diffusion
equation for the chemoattractant concentration. The resulting set of equations is
called the Keller–Segel system. This famous system has attracted a lot of attention
because of the complex patterns exhibited by solutions and in particular the blow-
up phenomena which leads the cells to a pointwise concentration. Also, many
improvements have been addressed recently which better fit some experimental
observations.

When considering living tissues, which are denser ensembles of cells, fibers,
liquids and molecules, these concepts are not enough, even if chemotaxis is impor-
tant also. Then, the description uses concepts issued from mechanics and multiphase
flows. Notions of pressure, Darcy’s law, incompressibility are used in systems which
carry parabolic and hyperbolic characters. Their complexity is directly related to the
details in the biological description and opens numerous mathematical questions. A
recent and comprehensive presentation of tissue mechanics can be found in [51].
The case of tumor growth has been attracted a huge literature recently and several
surveys are available, [9, 46, 64, 85].
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The domain of cell movement at the population scale is so vast that many aspects
cannot be treated in this chapter. For instance, we do not touch the question of
interaction between cell movements and the surrounding fluid, or chemotaxis in
fluids [62] neither how cilia or flagella direct the motion of cells. The internal
description of crawling cells are also wide subjects of present interest which are
treated in the other chapters of this Lecture Note.

2.2 Bacterial Movement by Run and Tumble

Bacterial motion and bacterial population self-organisation is a wide and fascinating
area of biology, which has generated an important literature with the progresses
of experimental observations. A major question is to understand how simple cells
can communicate and generate complex collective behaviors. The mathematical
modeling should be able to reproduce the observations by numerical simulations.

The mechanism is due to the interaction of cells with their environment through
nutrients or other physical effects [50, 69]. A specific example of communication
mechanisms through the environment, used by bacteria, is chemotaxis, i.e., the
motion of cells directed by a chemical signal. It is the central mechanism for
Escherichia coli, which has raised an enormous interest since Adler’s seminal paper
[1], see also [18, 20, 67] and the book [10] for all biological aspects of E. coli.

Since the 80’s, observations at the cell scale have shown that bacteria as E. Coli
or B. Subtilis move by a series of straight jumps followed by a fast reorganization of
their flagella which lead to a new direction of jumps, depending on the coordination
of molecular motors that control the flagella. This is called the run and tumble
movement. To give an idea of scales, the run time is about 1 s, the run length is a
few μm and tumbling takes a much shorter time (1/10 s). To take into account that
phenomena the kinetic formalism is needed and that was proposed, early after the
first observations, by Alt and his co-authors [3, 71]. Recent surveys on the subject
can be found in [26, 42, 54].

2.2.1 Modeling Run and Tumble

The modeling of run and tumble mechanism goes as follows. Denote by f (x, ξ, t)

the number density of cells located at x ∈ R
d and moving with the velocity ξ ∈ V ,

usually it is admitted that tumbles are always with the same speed and thus

V = S
d−1.



46 B. Perthame

From the knowledge of f (x, ξ, t), it is usual in this domain to compute the
macroscopic quantities as

n(x, t) :=
∫

V

f (x, ξ, t)dξ, density, (2.1)

n(x, t)u(x, t) :=
∫

V

ξf (x, ξ, t)dξ, momentum. (2.2)

The physical representation of the run-and-tumble movement leads to write the
equation

⎧
⎪⎪⎨
⎪⎪⎩

∂f (x, ξ, t)

∂t
+

run︷ ︸︸ ︷
ξ · ∇xf =

tumble︷ ︸︸ ︷
K [c, f ] ,

f (x, ξ, t = 0) = f 0(x, ξ) ≥ 0, f 0 ∈ L1.

(2.3)

This equation is similar to scattering (see [7, 49] for instance) and the difficulty here
is to take into account the rules leading cells to tumble, which are described by the
term

K [c, f ] =
∫

V

K(c; ξ, ξ ′)f (x, ξ ′, t)dξ ′
︸ ︷︷ ︸

cells of velocity ξ ′ turning to ξ

−
∫

V

K(c; ξ ′, ξ)dξ ′ f (x, ξ, t)
︸ ︷︷ ︸

cells of velocity ξ turning to ξ ′

.

(2.4)

Here c(x, t) describes a molecular environment which modulates cell responses. An
important issue is that K may depend functionally on c. For instance it may depend
in a non-local way on c, or on derivatives of c. To begin with, being given a function

� ∈ C1(R;R), 0 < min�(·) < max�(·) < ∞,

we can take a kernel with memory

K(c; ξ, ξ ′) = �
(
c(x − εξ ′, t)

)
, (2.5)

which expresses that a cell responds using the average concentration during their
run of duration 2ε and using a middle rule for the integration. The function �(·)
takes into account possible response modulation to the signal. One may be more
accurate and use an integration rule

K(c; ξ, ξ ′) = �
(
ω ∗ c(x, t))

for an appropriate kernel ω and convolution along the path.
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This chemical signal c(·) can be emitted by the cells themselves and diffused in
the media, then one writes

τ
∂c

∂t
−�c(x, t) = n(x, t) :=

∫

V

f (x, ξ, t)dξ, (2.6)

with τ ≥ 0 the molecular diffusion time scale, usually small compared to cell
dynamics. But the function c(·) can also be imposed from outside and then, Eq. (2.3)
is linear.

The chemical signal c(·) can also be a nutrient consumed by the cells. Then we
write, when the nutrient is not produced,

τ
∂c

∂t
−�c(x, t)+ λc(x, t)n(x, t) := 0, (2.7)

with λ the consumption rate.

2.2.2 Existence of Solutions

According to the usual theory (see [49] for instance), some general properties of
solutions of Eq. (2.3) are

1. Non-negativity. We have for all times f (x, ξ, t) ≥ 0.
2. Cell number conservation. We have for all times t ≥ 0

∫

Rd×V

f (x, ξ, t)dx dξ =
∫

Rd×V

f 0(x, ξ)dx dξ.

Notice that this property follows from the symmetric form of the tumbling
kernel where both K(c; ξ, ξ ′) and K(c; ξ ′, ξ) appear.

It is however difficult to draw more elaborate conclusions in terms of a priori
bounds, in particular when the kinetic equation and the diffusion equation for
chemical signal c(c, t) are coupled. This difficulty opened the route to several
existence results, which are still not complete in full generality and in particular
when the tumbling kernel depends on ∇c, see [17, 33, 57]. Blow-up of solutions,
under certain large mass conditions when the tumbling kernel depends on ∇c, has
been obtained in [16].

Here we state a result from [33] which proves global existence of locally (in time)
bounded solutions, thus extending a result in [53] in the linear case.

The existence theory for the nonlinear system (2.3)–(2.5) was settled in [33] and
yields the

Theorem 2.1 ([33]) In dimension d = 3, assume that V is bounded and that f0 ∈
L∞(Rd × V ), then there is a unique solution to the system (2.3)–(2.5),

f ∈ C
([0,∞);L1(Rd × V )

)
.
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Moreover we have for all T > 0 and 0 ≤ t ≤ T ,

0 ≤ f (t, x, ξ) ≤ C(T ),

‖∇c(t)‖Lp(Rd) ≤ C(T ),
d

d − 1
< p ≤ ∞,

‖c(t)‖Lp(Rd) ≤ C(T ), d < p ≤ ∞.

for some constant C(T ),

The proof is based on dispersion estimates, [73].
This result provides global strong solutions and therefore shows a fundamental

difference with the macroscopic model of Patlak/Keller–Segel system (see below)
since the latter exhibits blow-up. This is rather counter-intuitive since we can expect
that solutions to a hyperbolic equation, as the kinetic equation, has weaker estimates
than the related parabolic Patlak/Keller–Segel equation.

The parabolic equation on c can be treated as well and several extensions of
Theorem 2.1 have been obtained and for examples of specific dependency upon ∇c

in the tumbling kernel K , see [16, 17, 57].

2.2.3 Derivation of the Patlak/Keller–Segel System

It is standard to derive macroscopic equations with only space variable from kinetic
equations (in the phase space). To do so, one uses a rescaling in space and time to
pass from the cell scale to the population scale. In particular the derivation allows
a computation of the so-called “transport coefficients”, i.e., the coefficients of the
macroscopic model departing from the knowledge of the kinetic equation, i.e., the
individual behavior. This has been a strong property, from the very beginning of
kinetic theory, by Boltzmann, see [32] for instance. For linear scattering equations,
the seminal paper [7] gives a complete proof including correctors. We explain the
method for the run-and-tumble model at hand and the derivation of equations of
Keller–Segel type [60].

Using the small memory parameter ε introduced in Eq. (2.5) for the tumbling
rate, one can rescale space and time in the kinetic equation while keeping the
diffusion equation for the chemoattractant (this is questionable and a more complete
analysis should use the parameter range in the chemoattractant equation to justify
the reasoning). Under the symmetry assumption on V that

∫

V

ξdξ = 0, (2.8)
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we may use the diffusive rescaling (time scales as the square of space) and,
following [53, 55, 72] for instance, we arrive at

ε
∂

∂t
fε(x, ξ, t)+ ξ · ∇xfε = 1

ε
K [cε, fε], (2.9)

fε(x, ξ, t = 0) = f 0(x, ξ) ≥ 0, f 0 ∈ L1. (2.10)

As ε → 0, and using the notation (2.1), the macroscopic limit is the non-linear
Fokker–Planck equation (see again [33])

∂

∂t
n(x, t)− div[D(c)∇n] + div[nχ(c)∇c] = 0, (2.11)

τ∂tc(x, t)−�c = n(x, t). (2.12)

with the transport coefficients

D(c) = 1

|V |2
∫
V×V

ξ ⊗ ξdξ

�(c)
, χ(c) = 1

|V |2
∫

V×V

ξ ⊗ ξdξ
�′(c)
�(c)

.

This system is called the Patlak/Keller–Segel system. It has been widely studied
usually with D constant and χ depending on n, see Sect. 2.3 for variants and further
results around this system.

Proof Let us show the formal derivation again, assuming convergence of all
functions. First, we identify

∫

V

[�(c(x−εξ ′, t))fε(x, ξ ′, t)−�(c(x−εξ, t))fε(x, ξ, t)]dξ ′ = ε2 ∂

∂t
fε(x, ξ, t)+εξ ·∇xfε,

therefore as ε → 0 we find
∫

V

[�(c(x, t))f (x, ξ ′, t)−�(c(x, t))f (x, ξ, t)]dξ ′ = 0

which means that the limit f of fε is independent of ξ and thus satisfies

f (x, ξ, t) = 1

|V |n(x, t), ξ ∈ V.

As a second step we write, integrating in ξ ,

∂

∂t
nε(x, t)+ divJε(x, t) = 0, Jε(x, t) = 1

ε

∫

V

ξf:e(x, ξ, t)dξ. (2.13)
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The third step is to compute Jε which we do in using Eq. (2.10) as follows. After
multiplication by a component ξj and integrating in ξ , we have

1

ε

∫

V×V

[�(c(x − εξ ′, t))ξj fε(x, ξ ′, t)−�(c(x − εξ, t))ξj fε(x, ξ, t)]dξ ′dξ

= ε
∂

∂t

∫

V

ξj fε(x, ξ, t)dξ +
∫

V

ξξj · ∇xfεdξ.

We neglect the terms in ε and get, using (2.8),

−1

ε

∫

V×V

�(c(x − εξ, t))ξj fε(x, ξ, t)]dξ ′dξ = 1

|V |
∫

V

ξξj · ∇xndξ +O(ε)

and a Taylor expansion of �(c(x − εξ, t)) gives

−�(c(x, t)) |V | Jε(x, t)−|V |�′(c)∇xc(x, t)

∫

V×V

ξξj dξ = 1

|V |
∫

V

ξξj ·∇xndξ+O(ε).

This formula can be written as

Jε(x, t) = −�′(c)
�(c)

∇xc(x, t)

∫

V×V

ξξj dξ − 1

|V |2�(c)

∫

V

ξξj dξ · ∇xn+O(ε).

Inserting this expression in (2.13) yields the result.

2.2.4 Modulation Along the Path

More realistic kinetic models of bacterial movement use the modulation of signal
by E. coli. It turns out that bacteria increase the jump length when they feel an
increasing chemotactic signal and reduce their jumps when the signal decreases
along their path, [41, 65]. This leads to change the tumbling rule (2.5) to

K(c; ξ, ξ ′) = �
(∂c
∂t

+ ξ ′.∇c
)
. (2.14)

Such models where proposed by Erban and Othmer [43], Dolak and Schmeiser [41],
Erban and Othmer [44] and can be established from more precise descriptions of the
movement which take into account internal molecular pathway, see [79, 89]. From
these papers, we borrow the stiff response case, when

�(z) =
{
k− for z < 0,

k+ < k− for z > 0.
(2.15)
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More generally �(·) is a (smooth) decreasing function but stiffness is definitively a
correct assumption

�δ(z) = �
(z
δ

)
, �(±∞) = k±, (2.16)

for a ‘small’ constant δ > 0.
An important aspect of taking into account the path derivative in (2.16) emerges

from possible steady states and traveling pulse solutions which fit the experimental
observations, [28, 86, 87].

The boundedness of the function �δ makes that the difficulties for well-
posedness are not the same here as for the tumbling rate of Sect. 2.2.2. They arise
from the compactness of derivatives of c in the expression (2.14).We refer to the
analysis in [75] for that aspect.

The macroscopic limit, using a tumbling kernel as (2.14), leads to a new
class of macroscopic limits. called the Flux Limited Keller-Segel system. In [41],
the hyperbolic limit is proved, leading to Eq. (2.22) in Sect. 2.3. In [75] another
derivation is proved, with the diffusive scaling, using a different small parameter,
namely the stiffness in response denoted by δ in (2.16).

2.3 Macroscopic Models of Chemotactic Movement

In the previous section we have established, departing from individual cell move-
ment, the Patlak/Keller-Segel system (2.11)–(2.12) which describes the chemotactic
movement of cells at the population scale. We now give properties of solutions of
this system that we simplify as the parabolic-elliptic version, that is

⎧
⎪⎪⎨
⎪⎪⎩

∂
∂t
n(x, t)−�n(x, t)+ div(nχ∇c) = 0, x ∈ R

2,

−�c(x, t) = n(x, t),

n(x, t = 0) = n0(x) ≥ 0.

(2.17)

Notice that the solution of the equation for c is not well defined, and in fact we use
the representation formula

∇c = −λd

∫

Rd

x − y

|x − y|d n(y, t)dy = −λd
x

|x|d � n, λd = 1

d|Bd | . (2.18)

Let us mention that many variants and extensions of this system have been
proposed. The reader can find useful references in [12, 26, 54, 69, 74, 92]. In this
section, we only present some very specific and recent examples of models which
prevent blow-up.
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2.3.1 Elementary Properties

The Keller–Segel system admits several a priori estimates which reflects the basic
modeling assumptions. The solution remains nonnegative and the total cell number
is conserved

n(x, t) ≥ 0,
∫

Rd

n(x, t)dx := m0 =
∫

Rd

n0(x)dx.

It also admits a dissipation principle for the free energy E(t) defined as
⎧
⎨
⎩
E(t) = ∫

Rd [n ln(n)− χ
2 |∇c|2] dx,

d
dt
E(t) = − ∫

Rd n|∇ ln(n)− χ∇c|2 dx ≤ 0.
(2.19)

The main property of this free energy E is that it is composed of two terms; the
entropy

∫
Rd n ln(n) (which is essentially positive because small values of n do not

count in practice) and the (negative) potential energy −χ
2

∫
Rd |∇c|2. These different

signs allow for a competition between the dissipative (diffusion) term and the drift
term.

Proof To derive this free energy principle, we write the equation on n in (2.17) as

∂

∂t
n(x, t) = div[n(∇ ln(n)− χ∇c)].

Therefore, multiplying by ln(n)− χc and integrating by parts, we obtain
∫

Rd

(ln(n)− χc)
∂

∂t
n(x, t) = −

∫

Rd

n|∇ ln(n)− χ∇c|2.

It remains to compute
∫

Rd

c
∂

∂t
n(x, t) dx = −

∫

Rd

c
∂

∂t
�c dx =

∫

Rd

[∇c
∂

∂t
∇c dx

= 1

2

∫

Rd

∂

∂t
|∇c|2 dx.

Remark 2.1 When considering a more complete equation for c

τ
∂

∂t
c −�c + α c = n,

the free energy and energy dissipation are given by the expressions

⎧
⎨
⎩
E(t) = ∫

Rd

[
n ln(n)− χnc + χ

2 [|∇c|2 + αc2]] dx,
d
dt
E(t) = − ∫

Rd n|∇ ln(n)− χ∇c|2 dx − χτ
α

∫
Rd | ∂c∂t |2dx ≤ 0.
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2.3.2 Blow-Up in the Keller–Segel System

We recall the following results, see for instance [13, 74] and the references therein,

Theorem 2.2 In dimension d = 2, for the Patlak/Keller–Segel system with initial
data satisfying

∫
R2 n

0[1 + |x|2 + | log(n0)|]dx < ∞, we have

(i) for ‖n0‖L1(R2) <
8π
χ

there are smooth solutions of (2.17),

(ii) for ‖n0‖L1(R2) >
8π
χ

solutions blow-up in finite time (as a singular measure),
(iii) for radially symmetric solutions, blow-up means

n(t) ≈ 8π

χ
δ(x = 0)+ Remainder.

An very important literature is devoted to this blow-up phenomena. Among them,
let us mention the recent blow-up result in the parabolic-parabolic case [68].

Proof We do not not give a complete proof but we present an elementary calculation
which explains why the solutions have to blow-up. This calculation is based on the
second moment of the solution

m2(t) :=
∫

R2

|x|2
2

n(x, t)dx.

We have, from the first equation in (2.17),

d
dt
m2(t) = ∫

R2
|x|2

2 [�n− div(nχ∇c)]dx

= ∫
R2[2n+ χnx · ∇c]dx

= 2m0 − χλ2
∫
R2×R2 n(x, t)n(y, t)

x·(x−y)

|x−y|2

= 2m0 − χλ2
2

∫
R2×R2 n(x, t)n(y, t)

(x−y)·(x−y)

|x−y|2

(this last equality just follows by a symmetry argument, interchanging x and y in
the integral). This yields finally,

d

dt
m2(t) = 2m0(1 − χ

8π
m0).

Therefore if we have m0 > 8π/χ , we arrive at the conclusion that m2(t) should
become negative in finite time which is impossible since n is nonnegative. Therefore
the solution cannot be smooth enough to justify this calculation.
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Both theoretical analysis and numerical simulations show that solutions exhibit
Dirac mass singularities. These are the most common patterns exhibited by the
Patlak/Keller–Segel system.

This blow-up phenomena is compatible with observations of the amoeba Dyc-
tiostelium discoideum moving on a dish. Chemotaxis leads them to form highly
concentrated patterns, which we can interpret as a final stage before they change
their comportment and thus the model becomes wrong. At this stage, the cells
form a three dimensional multicellular fruiting body which generates spores that
can disperse. But for E. coli, and for many other types of experiments, such a final
stage is not observed and Dirac masses are not a desirable representation of the
observations. This means the Keller–Segel models misses some features.

2.3.3 Keller–Segel System with Prevention of Overcrowding

In order to circumvent the difficulty of blow-up in finite time, a limitation of the
drift term can be imposed in order to take into account volume filling effects and
quorum sensing, see [54, 80]. The system (2.17) can be modified, for instance, as

⎧
⎨
⎩

∂
∂t
n(x, t)−D�n(x, t)+ div(nψ(n)∇c) = 0, x ∈ R

2, t ≥ 0,

−�c(x, t)+ αc(x, t) = n(x, t),

(2.20)

with α > 0 a degradation rate, ψ(n) a switch for n large, for instance ψ(n) =
e−n/ns . Another example is the logistic form ψ(n) = ns −n. Then solutions remain
bounded, n ≤ ns , when this is true for the initial data, thanks to the maximum
principle. A remarkable feature of the system is its ability to form patterns. The
paper [80] presents a complete analysis of the parameter range for unstability and
for the dynamics of patterns formed by this system.

Adapting [80], we can simply explain why patterns are formed. For any constant
n̄ > 0 there is a steady state n ≡ n̄, S ≡ n̄/α. This state is unstable when the
inequality is satisfied:

n̄ψ(n̄) > Dα. (2.21)

To see that, we look for a growing perturbation n = n̄+δeikxeλt , S = n̄
d
+βeikxeλt .

Inserting the expansion for δ, β small in the equations, gives

{
λδ +D|k|2δ − n̄ψ(n̄)β|k|2 = 0,

(|k|2 + α)β = δ,

that is also written

λ = −D|k|2 + n̄ψ(n̄)
|k|2

|k|2 + α
.
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We find a growing mode λ > 0 under the stated condition (2.21).
In one space dimension, steady state patterns can also be computed considering

the steady states of (2.20). Assuming they decay fast enough at infinity, and
considering the simpler elliptic case for the chemoattractant; they are solutions of

−Dn′ + nψ(n)c′ = 0, −c′′ = n.

With the function Q such that Q′(n) = D
nψ(n)

, we find −Q(n)′ + c′ = 0 that gives
us

−c′′ = −Q(n)′′ = n.

This is a standard equation that can be studied and the range of parameters for
existence can be uncovered, see [80].

Another effect which changes the blow-up conditions, and can possibly avoid it
completely when q is large, is to use nonlinear diffusion and, then, the Keller–Segel
system reads

∂

∂t
n(x, t)−D�n(x, t)q + div(n∇c) = 0

with a power q > 1. An important literature is also available for this case, see for
instance [14, 27, 59] and the references therein.

2.3.4 The Flux Limited Keller–Segel System

As it can be derived from the kinetic equation for run and tumble, see Sect. 2.2.4,
the Flux Limited Keller–Segel system is written,

∂

∂t
n(x, t)+ div

[
nχ(

∂c

∂t
, |∇c|)∇c

] = 0, (2.22)

where the nonlinear sensitivity χ has the form derived from the kinetic equation.
We refer to [8, 35, 86, 87] for other variants of this system.

In [75], it is found that, with some coefficient A, and still assuming that the
velocity set V is radially symmetric)

χ(
∂c

∂t
, |∇c|) = A

|∇c|
∫

V

ξ1dξ

�
(
∂c
∂t

+ ξ1|∇c|) .

The non-negativity of the chemotactic sensitivity χ is a consequence of the
assumption that � is decreasing.
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Notice that when ∇c = 0, we have

∫

V

ξ1dξ

�
(
∂c
∂t

+ ξ1|∇c|) =
∫

V

ξ1dξ

�
(
∂c
∂t

) = 0.

This avoids an indetermination of ∇c
|∇c| when ∇c = 0.

However when using the stiff response limit at the kinetic scale, this indetermi-
nation arises, because χ is given by the ratio

χ = χ0
∇c

|∇c| ,

which leads to a particularly subtle theory developed in [58].

2.3.5 Traveling Bands

It is commonly admitted that chemotaxis is one of the key ingredients triggering the
formation of traveling bands (pulses) as observed in Adler’s famous experiment for
E. Coli (1966), [1]. We refer to [90] for a complete review of experimental assays.

Recently a mathematical and quantitative explanation has been developed in [86,
87], using the Flux-Limited Keller–Segel system with nutrient S in dimension d = 1

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂
∂t
n(x, t)−�n(x, t)+ div[n(Uc + US)] = 0,

Uc = χc
∇c
|∇c| , US = χS

∇S
|∇S| ,

∂c
∂t

−Dc�c + αc = βn, ∂S
∂t

−DS�S = −γ nS.

Traveling waves are defined as solutions of the form n(x − σ t) > 0, c(x − σ t),
S(x − σ t) for which n(±∞ = 0). The parameter σ ∈ R is called the traveling
speed and is due to the movement toward fresh nutrient S. If S is ignored, then
standing pulses are observed in accordance with the experimental observations in
[67].

In [86], in the case with stiff response, traveling pulses to this FLKS model
are built analytically and they exhibit an asymmetric profile as it is observed
experimentally. For a more general response function �, it is difficult to assert
the existence of pulses. Another important and difficult extension is to assert the
existence of traveling or standing bands (pulses) for the kinetic equation, we refer
to [15, 26, 28].
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2.3.6 Instabilities

Chemotaxis is a major phenomena which produces patterns as observed in nature.
Parabolic models as the Patlak/Keller–Segel system have been widely used for
such purposes, cf. [54, 70, 80] and the references therein. As mentioned before the
limitation of the drift is a possible mechanism in this direction. Another direction is
flux limitation as shown in [29].

There is only a limited literature on instabilities and pattern formation ability of
solutions to the kinetic equations of bacterial chemotaxis. We refer to [76] where
the stiffness parameter in the tumbling kernel with modulation along the path, that
is δ small in (2.16), appears to be a bifurcation parameter.

2.4 Compressible Models of Tissue Growth

Models of tissue growth appear in the development of organisms, in tissue regenera-
tion and also in tumor growth. These models serve not only to predict the evolution
of cancers in medical treatments, using model based image analysis for example
[84], but also to understand the biological and mechanical effects that are involved
in the tissue growth.

The models under consideration contain several levels of complexity, both in
terms of the biological and mechanical effects, and therefore in their mathematical
description. We begin with a class of models that can be considered as “compressible
fluids” that means that the pressure depends directly on the cell number density.
Such models are reminiscent from a numerous literature, see for instance [11, 21,
34, 88]. Again our goal here is to describe the models from a mathematical point of
view and the connections between different models.

2.4.1 A Simple Model with a Single Type of Cells

Solid tumors grow under the effect of cell proliferation limited by several factors.
Space availability, and the pressure induced by higher cell population, appears to be
the first cause of growth limitation by contact inhibition [11, 22, 83]. This can be
included in the simplest models for a cell population density n(x, t) where pressure
generates both movement and growth limitation, leading to write

⎧
⎪⎪⎨
⎪⎪⎩

∂
∂t
n+ div

(
nv

) = nG(p), x ∈ R
d, t ≥ 0,

n(x, t = 0) = n0(x) ≥ 0,

v(x, t) = −∇p(x, t), p(x, t) ≡ �γ

(
n(x, t)

) := n(x, t)γ , γ > 1.
(2.23)
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Fig. 2.1 A realistic pressure law �(n) should be decreasing for low densities n and increasing
after, see for instance [34, 56] and is possible in the framework of the Cahn-Hilliard model,
see Sect. 2.4.5. The power law we use here is a simplification compatible with the degenerate
parabolicity of Eq. (2.23)

The rule v(x, t) = −∇p(x, t) is a simplified version of Darcy’s law expressing
isotropic and homogeneous friction with the surrounding environment (fibers). This
expression for the velocity field means that cells are only pushed by mechanical
forces (variants are mentioned later). The particular choice for the law-of-state
�γ (n) := nγ is made for simplicity, see considerations on this issue in [36] and
Fig. 2.1. Finally the growth term, the right hand side in (2.23), is of Lotka-Volterra
type, and takes into birth and death of cells. Because pressure generates contact
inhibition, we assume that the C1 function G(·) satisfies

G(0) = GM > 0, G′(·) < 0, G(Ph) = 0, for some GM > 0, Ph > 0.
(2.24)

The name ‘homeostatic pressure’ has been proposed for value Ph ([83]) when cells
stop proliferating. At this stage it might also be useful to mention that dimensions
d = 2 is relevant for in vitro experiments on a dish and d = 3 is relevant both in
vitro and in vivo.

This equation is a semi-linear version of the porous medium equation

∂

∂t
n−�nm = 0, m > 1,
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which has been widely studied, see the references in [91]. Therefore, from the
standard theory of porous media equation, several properties and bounds can be
derived, under appropriate assumptions on the initial data. However, as we see it
further, the interaction between the growth term and the differential part yields new
interesting features.

As well-known for the porous media equation, the equation on the pressure is
extremely useful. Namely, we compute for later use

∂

∂t
p − n�′(n)�p − |∇p|2 = n�′(n)G

(
p(x, t)

)
. (2.25)

Before we go further, we would like to insist that all the a priori bounds below
are independent of the parameter γ .

2.4.1.1 Supersolution with Bounded Support

It is well known that a property of the porous medium equation is to describe
solutions with compact support that expands. Therefore, for our purpose here, we do
not bother with a bounded domain and associated boundary conditions. This feature
is however relevant both for realistic models and numerics.

We also work on the equation written on the pressure (2.25)

Lemma 2.1 There is a family of supersolutions under the form

PS(x, t) = B
(
R(t)2 − |x|2)+,

for B ≥ GM

2d , R(t) = R(0)e2Bt .

Choosing B and R(0) allows a large choice of functions larger than any bounded
initial data with bounded support. Therefore we have

Corollary 2.1 For n0 bounded and with bounded support, the solution of (2.23)
has bounded support.

Proof To prove Lemma 2.1, we compute

∂PS(x, t)

∂t
= 2BRṘ1{|x|≤R(t)} ≥ 4B2R21{|x|≤R(t)} ≥ |∇PS |2 = 4B2|x|21{|x|≤R(t)}

and, for some μ > 0

−�PS = −μδ{|x|=R(t)} + 2Bd1{|x|≤R(t)} ≥ GM1{|x|≤R(t)}.

Since the Dirac mass on the sphere {|x| = R(t)} is killed by the vanishing pressure
in the term PS�PS , we conclude that

−PS�PS ≥ PSGM ≥ PSG(PS).
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And we have proved that

∂PS(x, t)

∂t
− γPS�PS − |∇PS |2 ≥ γPSG(PS).

2.4.1.2 Existence of Solutions and a Priori Bounds

Now, we follow closely [77]. Because we are interested in the dependence on the
parameter γ (and large values of it), we consider a family of initial data n0

γ such that

for some constant K0,

∫

Rd

n0dx ≤ K0, p0 := �(n0) ≤ Ph,

∫

Rd

|∇n0|dx ≤ K0. (2.26)

Proposition 2.1 With assumptions (2.24)–(2.26), the unique solution of Eq. (2.23)
satisfies n(x, t) ≥ 0 and

∫

Rd

n(x, t)dx ≤ K0eGMt ,

∫

Rd

|∇n(x, t)|dx ≤ K0eGMt ,

∫ T

0

∫

Rd

|∇p(x, t)|dxdt ≤ C(T , Ph,K
0),

p(x, t) ≤ Ph,

∫

Rd

p(x, t)dx ≤ P
(γ−1)/γ
h K0,

∫ T

0

∫

Rd

|∇p(x, t)|2dxdt ≤ 1 + γGMT

γ − 1
P
(γ−1)/γ
h K0.

Proof The estimates for n are straightforward. For the TV bound, we just notice
that, the equation for n can also be written

∂

∂t
n−��(n) = nG

(
p(x, t)

)
, with �′(n) = n�′

γ (n).

Therefore, the equation for wi = ∂n(x,t)
∂xi

is

∂

∂t
wi − div[�′(n)∇wi ] = wiG

(
p(x, t)

) + nG′(p(x, t))∂p(x, t)
∂xi

,
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and finally, since the sign of ∂p(x,t)
∂xi

is the same than the sign of ∂n(x,t)
∂xi

,

∂

∂t
|wi |−div[�′(n)∇|wi |] = |wi |G

(
p(x, t)

)−n
∣∣G′(p(x, t))∣∣ ∣∣∂p(x, t)

∂xi

∣∣ ≤ |wi |GM.

After integration and use of the Gronwall lemma, this gives the L1 estimate on the
gradient of n and keeping the term with

∣∣ ∂p
∂xi

∣∣ gives the bound on the gradient of p
(see [77] for details).

The third line of bounds in Proposition 2.1 follows from the equation on the
pressure (2.25). This equation is in the strong form, the maximum principle applies
and gives the bound p ≤ Ph. It gives the L1 control on p because

p = nγ = nnγ−1 = np(γ−1)/γ ≤ nP
(γ−1)/γ
h ,

and it remains to apply the L1 control on n.
The L2 estimate on the gradient is easier to see when identifying the pressure

law, as �(n) = nγ in (2.25), to find

∂

∂t
p − γp�p − |∇p|2 = γpG(p). (2.27)

Integrating by parts, we obtain, for T > 0,

∫

Rd

[p(x, T )−p0(x)]dx+ (γ − 1)
∫ T

0

∫

Rd

|∇p|2dxdt ≤ γGM

∫ T

0

∫

Rd

p(x, t)dxdt.

which, combined with the L1 estimate for p gives the last inequality which
concludes the estimates of Proposition 2.1.

The bounds in Proposition 2.1 are fine to ensure compactness in space. It remains
to prove estimates implying time compactness. An easy way is to notice that under
the assumption that n0 is a sub-solution, that is

−div
(
n0∇�(n0)

) ≤ n0G
(
p0(x)

)
,

we have ∂n0

∂t
≥ 0. We may apply the same argument as for space derivatives and

w = ∂n
∂t

satisfies

∂

∂t
w − div[�′(n)∇w] = wG

(
p(x, t)

) + nG′(p(x, t))γ nγ−1w,
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an equation which gives us the property

∂

∂t
n0 ≥ 0 �⇒ ∂n

∂t
≥ 0. (2.28)

Because ∂
∂t
n0 − div

(
n0∇p0

) = n0G(p0), the assumption ∂
∂t
n0 ≥ 0 means that n0

is a sub-solution of the stationary equation.
This property (2.28) is very strong and shows one limitation of the model at

hand. It is incompatible with the observations that the cell population decreases in
the center of the tumor, the necrotic core. This effect can be obtained when the
nutrients are included in the equation, see (2.31) below.

In this situation, which we call ‘well prepared initial data’, we conclude

d

dt

∫

Rd

|w(x, t)|dx ≤ GM

∫

Rd

|w(x, t)|dx,

and thus

∫

Rd

∣∣∣∣
∂

∂t
n(x, t)

∣∣∣∣ dx ≤ eGMt

∫

Rd

∣∣∣div
(
n0∇�(n0)

) + n0G
(
p0(x)

)∣∣∣ dx. (2.29)

2.4.1.3 A Variant of Aronson-Bénilan Estimate

It is possible to improve these estimates and avoid the restrictive assumption that
the initial data is a sub-solution of the stationary equation. We recall from [77] the

Proposition 2.2 Assuming that rG := minp∈[0,ph]
(
G(p)− pG′(p)

)
> 0, the

estimates hold, for all t > 0,

�p(t)+G(p(t)) ≥ −rGe−(γ−1)rGt /(1 − e−(γ−1)rGt ). (2.30)

∂

∂t
p(x, t) ≥ −γ rG p(x, t)

e−γ rGt

1 − e−γ rGt
,

∂

∂t
n(x, t) ≥ −rG n(x, t)

e−γ rGt

1 − e−γ rGt
.

These inequalities allow for a fast transition at t = 0 (the right hand side is
singular then). They were discovered in [6] for the porous media equation and
improved in [40]. The improvement from [77] is to include the growth term G in the
estimate 2.30 on �p. They are much stronger than those in (2.28) because they do
not assume any further assumption on the initial data than those in Proposition 2.1.
A remarkable feature here, is that the semi-linear source term improves the usual
inequalities for porous medium equations, which are recovered for rG → 0. Indeed
it implies an exponential decay rather than algebraic.
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2.4.2 Single Cell Type Population Model with Nutrient

Many additional effects are used in more realistic models of tumor growth. A
possible additional improvement is to take into account nutrients. Then we arrive
to the model, also treated in details in [77],

⎧
⎪⎪⎨
⎪⎪⎩

∂tn− div(n∇p) = n �(p, c),

∂t c −�c = −n �(p, c),

c(x, t) = cB > 0 as |x| → ∞,

(2.31)

where c denotes the density of nutrients, and cB the far field supply of nutrients
(from blood vessels). The coupling functions �, � are assumed to be smooth and
to satisfy the intuitive hypotheses

⎧
⎨
⎩
∂p� < 0, ∂c� ≥ 0, �(Ph, cB) = 0,

∂p� ≤ 0, ∂c� ≥ 0, �(p, 0) = 0.
(2.32)

Variants are possible; for instance, we could assume that several nutrients
(oxygen, glucose) are released continuously from a vasculature or an other source
[36], and this can play an important role in cancer development.

As far as estimates are concerned, the solutions are also controlled with BV
estimates under the following assumptions on the initial data, in addition to (2.26).
We assume that for some c0 such that cB − c0 ∈ L1+(Rd),

⎧⎨
⎩

0 ≤ c0 < cB, ‖(c0)xi‖L1(Rd) ≤ C, i = 1, . . . , d,

‖div(n0∇p0)+ n0 �(p0, c0)‖L1(Rd) ≤ C, ‖�c0 − n0 �(p0, c0)‖L1(Rd) ≤ C.

(2.33)

Let us however point out that the analog of the Aronson-Bénilan type estimate
stated in Proposition 2.2 are not know for the model with nutrient.

Another remarkable effect, is that solutions may be very different and undergo
instabilities due to local nutrient depletion, see [78]. This is not possible with the
simpler model with a single equation.

2.4.3 Models with Two Cell Types

It is more realistic to take into account not only tumor cells but also other types of
cells. These can be surrounding healthy cells, or quiescent (non-proliferative) tumor
cells, and possibly necrotic cells which die by lack of nutrients. This leads to couple
equations as in (2.23) with a global pressure resulting from all the cells. Considering
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only two types of cells for simplicity, we arrive at

⎧
⎨
⎩
∂tn1 − div[n1∇p] = n1F1(p)+ n2G1(p), x ∈ R

d , t ≥ 0,

∂tn2 − div[n2∇p] = n1F2(p)+ n2G2(p),

(2.34)

with

n := n1 + n2, p = nγ , γ > 1. (2.35)

The existence theory is much more complicated for such systems and we refer to
the papers [11] for strong solutions to the non-degenerate case in a bounded domain
when n > 0, to [31] for the degenerate in one space dimension and to [52] for the
multidimensional case with a restriction on the growth functions.

Notice that the concentrations ci = ni
n1+n2

satisfy the equation

∂t ci − ∇ci.∇p = c1Fi(p)+ c2Gi(p)− ciR,

R = c1[F1(p)+ F2(p)] + c2[G1(p)+G2(p)].

Therefore we find

∂t (c1c2)−∇(c1c2)∇p = RHS,

and thus

∂t (nc1c2)− div
[
nc1c2∇p

] = nRHS, (2.36)

an equation which can be compared with the two phase Cahn–Hilliard model in
Sect. 2.4.5. It indicates a degenerate mobility when c1 = 0 or c2 = 0.

The possibility to write a closed equation as (2.36) is related to the so-called
segregation property which we discuss in Sect. 2.5.3.

2.4.4 Two Cell Type Model with Different Mobilities

More realistic is also that healthy cells and tumor cells do not react to the pressure
field with the same mobilities. This can be explained by adhesion proteins across the
membrane of the cells which are more numerous or effective in healthy tissues than
for tumor cells. The problem becomes far more delicate and many instabilities can
occur, see [56, 63], generating dendritic patterns as in the Safman–Taylor instability.
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The system with two cell type reads

⎧
⎨
⎩
∂tn1 − div[n1μ1∇p] = n1F1(p)+ n2G1(p), x ∈ R

d, t ≥ 0,

∂tn2 − div[n2μ2∇p] = n1F2(p)+ n2G2(p),

still with a law of state given for simplicity as

n := n1 + n2, p = nγ , γ > 1.

The mobilities factor μi can also depend on cell densities. This occurs in porous
media equation and oil recovery problems, similar models occur [3–5, 30].

2.4.5 Surface Tension and the Degenerate Cahn–Hilliard
Model

A widely used approach to describe the dynamics of two cells types takes into
account surface tension between the phases (see Sect. 2.5.4) and relies on the
degenrate Cahn–Hilliard model. A phase field φ(x, t) is used which describes the
concentration of cells. For instance φ = 0 represents healthy cells and φ = 1
represents tumor cells. Following [2, 34, 48, 64], we write a continuity equation
following Darcy’s law

∂

∂t
φ − div[μ(φ)∇p] = 0,

where the mobility μ(·) takes into account the degeneracy at phase saturation, for
instance

μ(φ) = φ(1 − φ)2,

a relation which garantees that 0 ≤ φ ≤ 1.
The main difference with previous models occurs in the ‘pressure’ term. It takes

into account energy carried by the diffuse interface of size γ separating the phases

p = −γ�φ − F ′(φ)

and the stability of the phases φ = 0 and φ = 1 results in expressions for the
interaction potential of the type (see Fig. 2.1)

F ′(φ) = φ2(φ − φ∗)
1 − φ

or F(φ) = −1

2
φ lnφ−(1−φ) ln(1−φ)+(φ− 1

2
)2.
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In the original model of Cahn–Hilliard for material science, where μ ≡ 1, the
potential is double well. Here the phase φ = 0 is metastable, see [23] and [2]. For
this reason, the model is able to represent phase separation which is often observed
in living tissues. Cells of the same type have a tendency to aggregate in patches.

The mechanistic consistency of the model is expressed by two relations, the
energy and the entropy. For the energy, we define

ECH(t) =
∫ [γ

2
|∇φ|2 − F(φ)

]
dx.

We compute

dECH(t)

dt
= −

∫
∂φ

∂t
[γ�φ + F ′(φ)]dx

=
∫

μ(φ)∇p∇[γ�φ + F ′(φ)]dx = −
∫

μ(φ)|∇p|2 ≤ 0.

Another physical quantity is the entropy relation. Define the mapping S : [0,∞) �→
[0,∞) using

S′′(φ) = 1

μ(φ)
, S(0) = S′(0) = 0.

The entropy functional is defined as

�[φ(t)] =
∫

S
(
φ(x, t)

)
dx

It is useful to keep in mind that the entropy functional behaves as follows in the
biophysical case μ(n) = n(1 − n)2

S(φ) = φ ln(φ), φ ≈ 0+, S(φ) = − log(1 − φ), φ ≈ 1−.

The entropy relation writes

d�(t)

dt
= −

∫ [
γ

∣∣�φ
∣∣2 + F ′′(φ) |∇φ|2

]
.

Mathematical analysis of this type of equation is very active presently, see for
instance [2, 30, 47] and the references therein.
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2.5 Incompressible Models of Tissue Growth

Incompressible models suppose that the tissue is saturated by cells, liquids or more
generally phases. They have the great advantage to avoid defining a pressure law
because the pressure is interpreted as a Lagrange multiplier for the incompressibility
constraint. For that reason these models are mostly selected in practical use of cancer
models, realistic simulations and software development [37–39, 46, 64, 85].

The outcome is that free boundary problems occur which are of mathematical
interest. The well-posedness analysis is interesting in itself but here we do not touch
this issue. We just describe the equations in parallel to the compressible models of
Sect. 2.4.

2.5.1 Single Cell Type Free Boundary Problem

The one cell type incompressible model, which corresponds to the compressible
one of Sect. 2.4.1 is the following Hele-Shaw equation of fluid mechanics. It is
a standard free boundary problem. The tumor occupies a domain �(t). The free
boundary ∂�(t) of the domain �(t) is moving with the velocity (in fact the only
normal derivative is needed)

v∞(x, t) = −∇p∞(x, t) (2.37)

where the pressure field is computed thanks to the equation

{−�p∞ = G(p∞), x ∈ �(t),

p∞ = 0 on ∂�(t).
(2.38)

In order to define this dynamic, some smoothness of the free boundary is necessary
(on needs to solve the Dirichlet problem and define normal derivative at least). Such
a property has been widely studied, see [45, 66] and the references therein. An
alternative is to set this problem in the general framework of viscosity solutions
with a correct viscosity condition on the interface, see [61]. Surface tension may
also be included [45, 46], then the Dirichlet boundary condition has to be changed
to p∞ = aκ(x, t) on ∂�(t), with a a parameter and κ the mean curvature of ∂�(t).

As we mentioned earlier, the biophysical modeling [22, 83], gives growth terms
G that depend on p, and not on n, which closes very nicely Eq. (2.38).

It is not intuitive why this geometric free boundary problem is related to
Eq. (2.23) and we discuss that in Sect. 2.6.
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2.5.2 Single Cell Type Model with Nutrient and Free Boundary

When considering the effect of nutrients, we arrive to a simple variant of the
geometric motion that we state for completeness. With the notations of Sect. 2.4.2,
we find that the equation for the pressure (2.38) is replaced by

{−�p∞ = �(p∞, c∞), x ∈ �(t),

p∞ = 0 on ∂�(t).
(2.39)

coupled with the equation for the nutrient

⎧⎪⎪⎨
⎪⎪⎩

∂tn∞ − div(n∞∇p∞) = n∞ �(p∞, c∞),

∂t c∞ −�c∞ = −n∞ �(p∞, c∞),

c∞(x, t) = cB > 0 as |x| → ∞,

(2.40)

2.5.3 Two Cell Types Incompressible Model

The case with two cell types gives another and maybe more intuitive example
of the meaning of incompressible models. Using the equations of Sect. 2.4.3, the
incompressible case is written as

⎧
⎨
⎩
∂tn1 − div[n1∇p] = n1F1(p)+ n2G1(p), x ∈ R

d , t ≥ 0,

∂tn2 − div[n2∇p] = n1F2(p)+ n2G2(p),

(2.41)

and the pressure p(x, t) is now a Lagrange multiplier for the constraint

n := n1 + n2 = 1. (2.42)

In other word, adding the two equations, we find

−�p = n1[F1(p)+ F2(p)] + n2[G1(p)+G2(p)].

This corresponds to the equation −�p∞ = G(p∞) when �(t) = R
d in the free

boundary problem (2.38).
Let us recall that, in (2.38) the tumor boundary is determined by ∂�(t), while in

the two phase model we expect that the tumor is {n1 > 1/2}. In order to complete
the analogy, the segregation property [11, 31] is desirable

n1(x, t) n2(x, t) = 0.
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This property follows formally from the equation for n1(x, t) n2(x, t) = 0

∂t (n1n2)−div[n1n2∇p]−n1n2�p = n1n2[F1(p)+G2(p)]+n2
1F2(p)+n2

2G1(p).

under the condition F2(p) ≡ 0, G1(p) ≡ 0.

2.5.4 Multiphase Models

Continuing on the fluid mechanical view of a tissue, the formalism of multiphase
fluids can be used in the present context [24, 25, 81, 82] in order to represent the
complexity of cell surrounding.

In the simplest possible view that we retain here for simplicity,

• only two phases are considered: the tumor cells and a ‘liquid’ (a generic name
for extracellular fluid) with local volume ratio φT (x, t) ≥ 0, φL(x, t) ≥ 0,

• the saturation regime (no void, incompressible) is written φT + φL = 1,
• the matter, tumor cells and liquid, flows with velocity vT , vL.

One writes usual Navier–Stokes equations for the different phases and their
momentum, leading to the system describing mass exchange and momentum
exchange

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂
∂t
φT + div

(
φT vT

) = �T ,

∂
∂t
φL + div

(
φLvL

) = �L,

ρT φT
[
∂
∂t
vT + vT .∇vT

] = div.TT +mT ,

ρLφL
[
∂
∂t
vL + vL.∇vL

] = div.TL +mL,

φT + φL = 1.

(2.43)

• The cell and liquid densities ρT and ρL (two constants) are usually assumed to be
equal, which means that the mass balance ρT �T + ρL�L = 0 reads

�T + �L = 0.

As a consequence, we obtain the incompressibility relation

div
(
φT vT + (1 − φT )vL

) = 0. (2.44)

To fix ideas, a possible expression for this growth term is Fisher type (before
necrosis occurs)

− �L = �T = G φT φL = G φT (1 − φT ). (2.45)
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This expression can be compared to the term nG(p) which we have used so far.

• The interaction forces, mT , mL, are due to interfacial pressure P and friction
terms (friction between phases and for tumor cells an adhesion on the extracellu-
lar matrix)

mT = P∇φT + k1φT φL(vL − vT )− k2vT , mL = P∇φL + k1φT φL(vT − vL),

(2.46)

with a dependency k2(φT )

• The stress tensors TT ,L represent internal forces to each phase. They should be
defined in a closed form and there are many possible choices. It helps at this
stage to neglect the acceleration terms ∂

∂t
v + v.∇v. Then the equations for the

momentum are simplified to

{
0 = div.TT +mT ,

0 = div.TL +mL,
(2.47)

To show the power off the formalism, e.g., [82], we give possible choices for the
stress tensors.

2.5.4.1 The One Phase Closure

The simplest choice is to neglect interactions between the phases, that is k1 = 0,
P = 0. To close the system one takes PT = �(φT ), TT = −PT I. One ends up with
a very simplified system which can be written

{
∂
∂t
φT + div

(
φT vT

) = �T = φT (1 − φT )G,

k2vT = −∇�(φT ) (Darcy’s law).
(2.48)

This is the simplest model that has been presented in Sect. 2.4.1.
However, the approach still gives some information about the dynamics of the

liquid phase which is reduced to the incompressibility relation (2.44).

2.5.4.2 The Darcy/Stokes Closure

In the stress tensor, we retain only the pressure term for the cells and only the
viscosity terms for the liquid. This means that the equations take the form

TT = −PT I, PT = �(φT ), (Darcy’s law)

TL = −∇PL +�vL, (Stokes equation)

Here PL is the Lagrange multiplier for the incompressibility relation (2.44).
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2.5.4.3 The Single Pressure Closure

One may also choose to keep a single pressure P(x, t), and again to retain the
isotropic tensor TT ,L = −PT,L I, and set

PT = φT P, PL = φL P.

This allows to solve for vT and vL in terms of P ; first we add the two momentum
equations in (2.47) and find mT +mL = ∇P . We find

vT = − 1

k2
∇P, vL = vT − 1

k1φT
∇P.

This finally leads to the system in closed form

⎧
⎪⎪⎨
⎪⎪⎩

∂
∂t
φT + div

(
φT vT

) = �T ,

vT = −K2(φT )∇P(x, t),

div[K1(φT )∇P ] = 0.

(2.49)

x,t This is also a standard two phase flow problem (in particular it is widely used for
oil/gas mixtures in oil recovery). Our understanding is very little because it shares
hyperbolic nature (having in mind that the pressure is smooth) and the parabolic
nature of equations derived from Darcy’s law.

To conclude this case, let us explain the a priori estimates 0 ≤ φT ≤ 1 directly
from (2.49). Because �T vanishes when φT = 0, see (2.45), we get −φT ≥ 0. For
the other inequality, we have to write the equation as

∂

∂t
φT − div

(
φT

K2

K1
K1∇P

) = �T ,

∂

∂t
φT +∇

(
φT

K2(φT )

K1(φT )

)
.K1∇P = �T .

Solutions satisfy φT ≤ 1 because it is in strong form and �T vanishes for φT = 1.
These expressions show that these models can be classified as nonlinear hyperbolic
conservation laws.

2.6 The Incompressible Limit and Stiff Pressure Law

As long as cells are well separated, the pressure forces are negligible. When
the population density increases, there is a maximum possible compaction which
cannot be exceeded. The transition is however very stiff. To represent this effect in
compressible models, the simplest formalism is to consider the limit as γ → ∞
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Fig. 2.2 Effect of γ large. A solution to the mechanical model (2.23) in one dimension with
G(p) = 5. ∗ (1 − p). Left: γ = 5. Right: γ = 40. The upper line is n; the bottom line is p

(scale enlarged for visibility). Notice that the density scales are not the same in the two figures.
The initial data is taken with compact support and the solution is displayed for a time large enough
(see Fig. 2.3 below for an intermediate regime). Reproduced from [77]

in the equation of state (2.23), and which we call the stiff pressure asymptotic.
This limit provides a derivation of incompressible equations from compressible
equations. The Fig. 2.2 illustrates the behavior of solutions for large values of γ
in Eq. (2.23).

2.6.1 Single Cell Type Model, Incompressible Limit

We consider the derivation of the geometric Hele-Shaw free boundary prob-
lem (2.5.1) departing from (2.23). We first establish the weak formulation of the
problem, including the possible singularities shown in Fig. 2.3. The difficult step is
to establish the so-called complementary relation. Then, we show that for a nice
initial data n0 = 1{�0}, then the geometric form is equivalent to the weak form.

In order to indicate the dependency on γ → ∞, now denote by nγ , pγ the
solutions of (2.23) as built in Sect. 2.4.1.2.

2.6.1.1 Weak Formulation of the Hele-Shaw Problem

Besides the free boundary formulation, there is also a weak formulation of the
limit γ → ∞ in Eq. (2.23). This limit gives a more general setting allowing a
‘pretumor zone’ where healthy and tumor cells are present in a mixed state. This
weak formulation was derived in [77] and leads to the equation

⎧
⎪⎪⎨
⎪⎪⎩

∂
∂t
n∞ − div

(
n∞∇p∞

) = n∞G
(
p∞(x, t)

)
, x ∈ R

d, t ≥ 0,

n∞(x, t = 0) = n0∞(x) ≥ 0,

p∞(1 − n∞) = 0, 0 ≤ n∞ ≤ 1.

(2.50)
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Fig. 2.3 Cell density and pressure carry different informations. Here γ = 40 and the initial data
n is less than 1. The solution is displayed at four different times. It shows how the smooth part
of n strictly less than 1 is growing with p = 0 (figure on the left). When n reaches the value 1,
the pressure becomes positive, increases and creates a moving front that delimitates the growing
domain where n ≈ 1. Thin line is n and thick line is p as functions of x. Reproduced from [77]

In other words, when n∞ < 1 then p∞ = 0. Consequently, n∞ and p∞ are so
weakly related that their dynamics can be somewhat independent. Nevertheless, a
remarkable property is that the weak solution of (2.50) is unique (see [77]).

To present the result, we now insert the index γ to the notations n and p for the
solutions of (2.23). The following result holds

Theorem 2.3 (Hele-Shaw Limit, [77]) With the assumptions of Proposition 2.1,
as γ → ∞, we have

nγ → n∞ ≤ 1, p → p∞ ≤ Ph a.e. in R
d × (0,∞),

∇pγ ⇀ ∇p∞ in L2(
R
d × (0, T )

)−weak, ∀T > 0,

∂

∂t
n∞ ≥ 0,

∂

∂t
p∞ ≥ 0.

The limit of Eq. (2.23) is Eq. (2.50).
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Notice that, from the BV (bounded variation) properties of nγ and pγ in
Proposition 2.1, we derive strong compactness. We also conclude that

n∞ ∈ L∞(
(0, T );L1 ∩ L∞(Rd)

)
, p∞ ∈ L∞(

(0, T )× R
d
) ∩ L1((0, T )× R

d
)

and that, as measures although we use the notation of L1 functions, |∇n∞(x, t)| and
|∇p∞(x, t)| are bounded with

∫

Rd

|∇n∞(x, t)|dx ≤ K0eGMt ,

∫ T

0

∫

Rd

|∇p∞(x, t)|dxdt ≤ C(T , Ph,K
0).

The other results follow immediately. For example, because

nγ pγ = nγ+1 = p

γ+1
γ

γ ,

and passing to the strong limits, we find in the limit the relation p∞(1 − n∞) = 0.
Another property follows immediately from the same argument; because nγ∇pγ =
∇p

γ+1
γ

γ , we find the relation

n∞∇p∞ = p∞.

In other words, the equation on n∞, in (2.50), can also be written

∂

∂t
n∞ −�p∞ = n∞G

(
p∞(x, t)

)
.

This is the form used in [77] to prove uniqueness of weak solutions.

2.6.1.2 The Complementary Relation

A more difficult result is the derivation of the ‘complementary relation’, (2.51)
below, which is equivalent to the strong convergence of ∇pγ .

Theorem 2.4 (Complementary Relation) Additionally to Theorem 2.3, one also
has

∇pγ → ∇p∞ in L2
loc

(
R
d × (0,∞)

) − strong,

The ‘complementary relation’ also holds in D
(
R
d × (0,∞)

)

p∞
(
�p∞ +G(p∞)

) = 0. (2.51)
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The complementary relation (2.51) is not an obstacle problem (a sign is
incompatible) and the solution is not unique. It is a weak version of Eq. (2.38) with

�(t) = {
p∞(x, t) > 0

}
, (2.52)

a set which evolution cannot be deduced from (2.51) alone, but follows from the
weak formulation (2.50).

The meaning, in distributions, of (2.51) is that for all smooth test functions ϕ
with compact support, it holds

∫

Rd×(0,∞)

ϕ(x, t)
[
−|∇p∞|2 + p∞G(p∞)

]
−

∫

Rd×(0,∞)

p∞∇ϕ.∇p∞ = 0

which makes sense with the available regularity for p∞ in Proposition 2.1.
The proof of Theorem 2.4 relies on a functional analysis argument which uses

the L∞ control from below for ∂
∂t
nγ ≥ 0 as given in Proposition 2.2.

2.6.1.3 From the Weak Formulation to the Free Boundary Statement

To begin with, notice that 1{�(t)} = 1{n∞(x,t)=1}. Indeed, on the one hand, 1{�(t)} ⊂
1{n∞(x,t)=1}. On the other hand, when p∞ = 0, then from (2.50), we conclude that
∂
∂t
n∞ = n∞GM , which means that we cannot have n∞(x, t) = 1 otherwise n∞

would continue to grow thus contradicting the bound n∞(x, t) ≤ 1.
Therefore, when n∞(x, t) takes the values 0 or 1 only, then we have

n∞(x, t) = 1{�(t)}. (2.53)

In this situation and assuming some smoothness for �(t), it is easy to derive the
Hele-Shaw free boundary formulation mentioned in Sect. 2.5.1. This is written in
details (and in more generality in the sense below) when �(t) is a ball in [77],
then one can establish precisely the speed of the free boundary given by (2.37). The
general study, including regularizing effects for the boundary ∂�(t) is performed in
[66]. The difficulty is that different types of singularities may occur and new islands
can be generated by places where 0 < n0 < 1, see also [61].

However, the weak formulation contains more than the free boundary state-
ments (2.37), (2.38) which only holds true when initially n0 = 1{�(t=0)} so as
to ensure (2.53). One can formally see this, because in the interior of �(t), we can
write ∂

∂t
n∞ = 0 and thus the weak formulation (2.50) gives immediately the elliptic

equation (2.38). But, if there is a zone where n0 < 1, then we still have n∞(x, t) < 1
for some time. In this space-time zone, we have p∞ = 0 and (2.50) is reduced to
the simple differential equation

∂

∂t
n∞ = n∞GM.
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A numerical simulation, illustrating this interpretation of competition between
exponential growth and free boundary motion, is displayed in Fig. 2.3.

2.6.2 Single Cell Type with Nutrient, Incompressible Limit

The weak limit of the single cell system with nutrient (2.39)–(2.40) has also been
established in [77]. The result is as follows

Theorem 2.5 Let �, � satisfy (2.32), and (n0, c0) satisfy the hypotheses (2.26)
and (2.33). Then, after extraction of subsequences, the density nγ , the nutrient cγ
and the pressure pγ converge for all T > 0 strongly in L1(QT ) as m → ∞ to limits
n∞, c∞, p∞ ∈ BV (QT ) that satisfy 0 ≤ n∞ ≤ 1, 0 ≤ c∞ ≤ cB , 0 ≤ p∞ ≤ ph,
and

⎧
⎨
⎩
∂tn∞ = �p∞ + n∞�(p∞, c∞), n∞(0) = n0,

∂t c∞ = �c∞ − n∞�(p∞, c∞) c∞(0) = c0,

(2.54)

in a distributional sense, with the relation

p∞(1 − n∞) = 0.

However the complementary relation p∞(�p∞−�(p∞, c∞)) is not established
by lack of an estimate à la Aronson-Bénilan. Therefore the direct link with the
geometric problem is not established either.

2.6.3 Open Problems

We recap here some open problems mentioned in this chapter. They are on the
mathematical side and do not address the many modeling challenges that rely on
new experimental observations.

The theory of weak solutions can be carried out for the case with nutrients,
see [77], but the complementary relation (2.51) is not established. That is because
it relies on the Aronson-Bénilan estimate which is not available for the nutrient
model (2.31), either in the modified form of the Aronson-Bénilan estimate proposed
in [77]. Notice that a possible idea, following [19, 52] is to control�p from below in
a weaker space than L∞. Namely for a quantity as w = �p+G or w = �p∞ −�,
a control of the negative part ‖w−‖Lp

loc
is proved.

For multispecies models, the existence in a general framework with degeneracy
is not established, see Sect. 2.4.3 for further comments. Also, the incompressible
limit γ → ∞ is also an open problem.The bounds provided in [52] are not
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enough to investigate this question. However the one dimensional case is under
investigation [19] based upon arguments from [31].

Another question is about different mobilities which, see [56, 63], where the
parabolic aspects of the equation for n = n1 + n2 do not apply. This is a long
standing problem.
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Chapter 3
Segregated Algorithms for the Numerical
Simulation of Cardiac Electromechanics
in the Left Human Ventricle

L. Dede’, A. Gerbi, and A. Quarteroni

Abstract We propose and numerically assess three segregated (partitioned) algo-
rithms for the numerical solution of the coupled electromechanics problem for
the left human ventricle. We split the coupled problem into its core mathematical
models and we proceed to their numerical approximation. Space and time dis-
cretizations of the core problems are carried out by means of the Finite Element
Method and Backward Differentiation Formulas, respectively. In our mathematical
model, electrophysiology is represented by the monodomain equation while the
Holzapfel-Ogden strain energy function is used for the passive characterization of
tissue mechanics. A transmurally variable active strain model is used for the active
deformation of the fibers of the myocardium to couple the electrophysiology and the
mechanics in the framework of the active strain model. In this work, we focus on the
numerical strategy to deal with the solution of the coupled model, which is based
on novel segregated algorithms that we propose. These also allow using different
time discretization schemes for the core submodels, thus leading to the formulation
of staggered algorithms, a feature that we systematically exploit to increase the
efficiency of the overall computational procedure. By means of numerical tests
we show that these staggered algorithms feature (at least) first order of accuracy.
We take advantage of the efficiency of the segregated schemes to solve, in a High
Performance Computing framework, the cardiac electromechanics problem for the
human left ventricle, for both idealized and subject-specific configurations.
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3.1 Introduction

The heart performs two fundamental tasks: it pumps the deoxygenated blood to the
lungs to get oxygen and release carbon dioxide, while it simultaneously pushes the
oxygen rich blood into the arteries delivering it to tissues and organs [46], almost
to every cell in the human body. Despite the apparent simplicity of these tasks,
the heart function is however the result of the concerted action of several physical
processes taking place at different spatial scales, i.e. at the cellular, tissue, and organ
levels, other than time scales. In the mathematical modeling of the heart function
all these processes have to be properly considered and, above all, integrated;
we refer to this as an “integrated heart model” [62]. The electrophysiology, the
active and the passive mechanics are referred to as “single core models”, and
are expressed by systems of Ordinary Differential Equations (ODEs) and Partial
Differential Equations (PDEs). Although their individual behavior is nowadays
quite established, further theoretical studies are necessary to better understand their
interactions [12, 19, 26, 28, 61, 67]. Since, as noticed before, the processes under
consideration feature different spatial and temporal scales, the grid for the numerical
approximation of the individual core models must be properly chosen. Moreover, the
discretized integrated problem can be formulated by either a monolithic approach,
where the approximated equations are assembled in a single large system and
simultaneously solved, or a segregated approach, where the approximated equations
are solved sequentially.

We focus here on the electromechanics of the left ventricle (LV). For the
investigation of this model and its numerical approximation we refer the interested
reader to, e.g., [33, 53, 61, 62, 68, 77, 80, 82]. Segregated algorithms are investigated
in [4, 12, 33, 44, 68, 82], where the electrophysiology and the mechanics problems
are solved separately. In [20, 21, 37], the integrated problem is instead solved using
a monolithic approach. In either case, suitable solvers (and preconditioners) must
be employed for the efficient solution of the linear systems stemming from the
discretization of the problems.

In this work we use the monodomain equation [13, 41, 59] together with the
minimal Bueno-Orovio ionic model [8] for the description of the electrophysiology.
For the passive mechanics, we use the state-of-the-art Holzapfel-Ogden model
[39] together with the active strain approach [2, 3] for the active mechanics, the
latter endowed with a newly proposed model for the transmurally heterogeneous
thickening of the myocardium [6]. The mechanics is then coupled with the
electrophysiology by means of a mathematical model describing the shortening of
the myocardial fibers [28, 71], triggered by a change in the ionic concentrations
in the cardiac cells, namely the intracellular calcium concentration. Regarding
the numerical approximation of the integrated model, we use the Finite Element
Method (FEM) for the space discretization while the time discretization is carried
out by means of the Backward Differentiation Formulas (BDFs) [63]. We propose
three novel segregated algorithms in combination with both implicit and semi-
implicit schemes, the latter consisting in the partial evaluation of the nonlinear
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terms with an approximation of the unknowns of the same order of the BDF scheme
[11, 29]. We compare the numerical results obtained by means of the segregated
algorithms with those of the monolithic method proposed in [28] for physically
meaningful benchmark problems. We develop our segregated algorithms in a way
such that different timestep sizes for the electrophysiology and the mechanics can
be used, thus leading to the so-called staggered algorithms. The use of different
timestep sizes for the time discretization of the single core models is indeed made
straightforward by the use of segregated approaches. Moreover, this is physically
motivated as each core model features very different time scales: precisely, the
electrophysiology requires a small timestep size while the mechanics yields stable
and accurate results also for relatively coarse time discretizations. We show that
the segregated schemes exhibit order of convergence with respect to the timestep
size equal to one. Moreover, regarding the computational efficiency, we show that
the segregated algorithms allow dramatic reductions of the computational costs
with respect to the monolithic scheme. This is particularly true for a segregated
algorithm in which the ionic, the monodomain, the mechanical activation, and the
mechanics equations are fully decoupled and a timestep size ten times larger is used
for the latter with respect to the former. Finally, we use the proposed algorithms for
subject-specific large scale simulations for a full heartbeat and discuss the results
thus obtained.

This chapter is organized as follows: in Sect. 3.2 we recall the mathematical
models for the electrophysiology, the mechanics and the mechanical activation of
the myocardium; in Sect. 3.3 we carry on the space and time discretizations of
the single core models; in Sect. 3.4 we propose the segregated algorithms for the
solution of the integrated problem; in Sect. 3.5 we report and discuss the numerical
results obtained with the proposed methods; finally, we draw our Conclusions.

3.2 Mathematical Models

We recall, for each physical process, the underlying mathematical models in the
form of ODEs and PDEs.

3.2.1 Ionic Model and Monodomain Equation

The systolic phase of the LV starts when the electric signal originated from the
atrioventricular node is conveyed through the Purkinje fibers network and delivered
to the myocardium [7, 14, 38, 55]. The signal triggers a complex interaction between
the transmembrane potential v and different ionic species thus causing a quick
depolarization and repolarization of the cells. This change of v is known as action
potential [47]. The electric signal propagates faster along the myocardial fibers
which, together with the sheets, characterizes the internal structure of the muscle
[73] as depicted in Fig. 3.1.
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Fig. 3.1 Fibers in a subject-specific geometry (left) colored by a transmurally linear variable and
a close up of a slice with fibers f0, sheets s0, and normals n0, together with their relative position
(right)

We use a set of NI ODEs in the ionic variables w = {
wq

}NI

q=1 to model
the ionic species concentrations and currents through the cell membrane and the
monodomain equation, a nonlinear diffusion-reaction parabolic equation derived
from the bidomain equations under simplifying assumptions [13, 14], to model the
tissue electrophysiology. This is compactly written as:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂w
∂t

= α(v)(w∞(v) − w)+ β(v)w in �0 × (0, T ),

χ

(
Cm

∂v

∂t
+ I ion(v,w)

)
= ∇ · (JF−1DmF−T∇v) + Iapp(t) in �0 × (0, T ),

(JF−1DmF−T∇v) · N = 0 on ∂�0 × (0, T ),

v = v0, w = w0 in �0 × {0},
(3.1)

Here, �0 is the reference domain and T > 0 is the final time of the simulation;
χ and Cm ∈ R

+ are the ratio of membrane surface with respect to the volume
and the membrane capacitance, respectively. The term I ion(v,w) represents the
currents driven by the ions concentrations while Iapp is an externally applied
stimulus. The current geometry displacement (the displacement of the myocardium)

d = X − x determines F = I + ∂d
∂X

and J = det(F), where X and x are the

space variables in the reference (�0) and in the deformed (�) configurations,
respectively. We neglect, for simplicity, stretch activated currents (SAC) [22, 42]
and other bioelectrical effects of mechanical feedbacks [16–18]. To account for the
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anisotropic electrical conductance of the myocardium, the diffusion tensor reads
Dm = σiso(I − f0 ⊗ f0) + σf f0 ⊗ f0, where f0 is the local fiber orientation (see
Fig. 3.1) that varies transmurally, while the sheets direction s0 (which is oriented as
the normal to the collagene sheets) is orthogonal to the LV walls. The n0 direction
is orthogonal to both f0 and s0; σiso and σf are the fiber-transversal and the fiber-
longitudinal conductances, respectively. Finally, the terms α(v), β(v), and I ion are
prescribed according to the ionic model. Among the many models proposed in
literature ([1, 47, 48, 52, 79]) we choose the Bueno-Orovio minimal model [8] for
which NI = 3. We assimilate the variable w3 to the intracellular concentration
[Ca2+].

3.2.2 Mechanical Activation

The concentration of calcium ions [Ca2+] drives complex dynamics in the sarcom-
eres [66], which lead to the cardiomyocites stretching. We use a phenomenological
model for the local shortening of the fibers (denoted by γf ) at the macroscopic level.
The latter, firstly proposed in [71], and further developed in [28, 68], reads:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂γf

∂t
− ε

g(w3)
�γf = 1

g(w3)
�(w3, γf ,d) in �0 × (0, T ),

∇γf · N = 0 on ∂�0 × (0, T ),

γf = 0 in �0 × {0}.

(3.2)

Here g(w3) = μ̂Aw
2
3, while �(w3, γf ,d) depends on the sarcomere force-

length relationship [28, 34, 68]; we refer the reader to [28] for the expression of
�(w3, γf ,d). Finally, μ̂A, ε ∈ R

+ are tuning parameters for the subject-specific
case under study.

3.2.3 Passive and Active Mechanics

We model the myocardium as a hyperelastic material [54]; then P = P(d) = ∂W
∂F

is the first Piola–Kirchhoff stress tensor and W the strain energy density function.
To model moderate volumetric changes (2–15%), we use the nearly-incompressible
formulation [25] by multiplicatively decomposing the deformation gradient F into

the isochoric F and the volumetric Fv parts as F = FvF, where Fv = J
1
3 I.

We use the Holzapfel-Ogden strain energy density function [39]—the state–of–
the–art in passive myocardial tissue modeling—with a volumetric term weakly
penalizing volumetric variations [74] W(C, J ) = Wel(C, J ) + Wvol(J ), where
the expression of Wel is given in [28] with parameters determined in [39] and
Wvol = B

2 (J − 1) log(J ); B ∈ R
+ is the bulk modulus.
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We use the active strain formulation [2, 3, 51, 70] to account for the active
behavior of the myocardium. This approach corresponds to a decomposition of F
in the form F = FEFA = J

1
3 FEFA; FE is the isochoric component of the elastic

(passive) part of the deformation, where FE = FvFE , and FA is the prescribed
active deformation (active strain) tensor. We have that P = det(FA)PEF−T

A ,
where PE = ∂W

∂FE
. We refer to [28, 30, 31] for more details. We use the following

orthotropic form for the tensor FA [2, 5, 57, 68, 69]:

FA = I + γf f0 ⊗ f0 + γss0 ⊗ s0 + γnn0 ⊗ n0,

where γn and γs are the local shortening (or elongation) of the tissue in the directions
s0 and n0, respectively. Following [6, 28], we set γn as transmurally variable, γn =
k′(λ)

(
1√

1+γf
− 1

)
, where λ is a transmural coordinate, varying from λendo at the

endocardium and λepi at the epicardium. The dependent variable γs is chosen to
ensure det(FA) = 1; hence, γn = γn(γf ) and γs = γs(γf ).

We finally use the stress tensor P(d, γf ) in the momentum equation:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ
∂2d
∂t2

−∇0 · P(d, γf ) = 0 in �0 × (0, T ),

(N ⊗ N)

(
K

η
⊥d + C

η
⊥
∂d
∂t

)

+ (I − N ⊗ N)

(
K

η

‖ d + C
η

‖
∂d
∂t

)
+ P(d, γf )N = 0 on �

η

0 × (0, T ),

P(d, γf )N = pendo(t)N on �endo
0 × (0, T ),

d = d0,
∂d
∂t

= ḋ0 in �0 × {0}.
(3.3)

where ρ is the density of the myocardium. The boundary ∂�0 is partitioned in
�endo

0 , �epi
0 , and �base

0 , representing the endocardium, the epicardium, and the
ventricle base, respectively. For η ∈ {base, epi}, we consider generalized Robin
conditions with parameters Kη

⊥,K
η
‖ , C

η
⊥, C

η
‖ ∈ R

+, whereas the pressure pendo(t)

(still prescribed at this stage) is set at the endocardium; the generalized Robin
conditions are meant to represent the effect of the pericardium and surrounding
tissues on the epicardium. Finally, d0 and ḋ0 denote initial conditions.

3.2.3.1 Prestress

If, at the initial time t = 0, pendo = pendo(0) > 0, the blood pressure acts at
the endocardial walls and thus the net force acting on the myocardium is not zero.
The reference configuration �0 is therefore unstressed at t = 0, which leads to
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unphysical deformations in problem (3.3). To overcome this issue, we use a prestress
approach [40, 78] to determine the internal stresses of the myocardium such that the
latter remains in mechanical equilibrium at t = 0. After observing that P(d, γf ) =
P(d0) at t = 0, we look for a vector d̂0 and a tensor P0 such that

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∇0 · P(̂d0) = −∇0 · P0 in �0,

(N ⊗ N)K
η
⊥d̂0 + (I − N ⊗ N)K

η
‖ d̂0 + P(̂d0)N = 0 on �

η
0 ,

P(̂d0)N = pendoN on �endo
0 ,

(3.4)

with d̂0 ≈ d0. We then use the stress tensor P̃(d, γf ) = P(d, γf ) + P0 in place of
P(d, γf ) in the first of Eq. (3.3), and set d0 = d̂0, ḋ0 = 0. Since the pair (̂d0,P0)

is a solution of Eq. (3.4), this allows the myocardium to remain in mechanical
equilibrium at t = 0.

3.2.4 Cardiac Cycle

As we aim at modeling the LV electromechanics for a full heartbeat (typically about
0.8 s long), we need to account for the blood interaction with the LV along the
different phases of the heartbeat (see Fig. 3.2). Hence, we solve different 0D model
(ODEs) [26, 68, 82]. The phases are, in order:

1. Isovolumic contraction: the early stages of the LV contraction drive an increment
of the endocardial pressure pendo from the End Diastolic Pressure (EDP) pendo

EDP

(about 10 mmHg) to the one in the aorta pao (about 85 mmHg). We determine
pendo as the solution of

dV endo

dt
(pendo) = 0, t ∈ (0, T1], (3.5)

where V endo(0) is set to the initial LV volume. Thus, we require that the
ventricular volume V endo remains constant; T1 = T1(p

endo) is the earliest time
occurrence at which pendo ≥ pao;

2. Ejection: the ventricular volume V endo decreases due to the contraction of the
LV forcing the blood to flow through the aortic valve. We use a two elements
Windkessel 0D model [84] in the form:

C
dpendo

dt
= −pendo

R
− dV endo

dt
, t ∈ (T1, T2], (3.6)

with pendo(T1) = pao where C and R represent the capacitance and resistance of
the electric circuit mimicking the blood flow in the aorta. This phase ends when
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Fig. 3.2 Wiggers diagram [43] of the left heart depicting the aortic, ventricular, and atrial
pressures as well as the ventricular volume, along the four phases of the cardiac cycle

pendo becomes smaller than pao, thus closing the aortic valve. Since we do not
model the aortic pressure over time, we set in Eq. (3.6) T2 = T2(V

endo) as soon

as dV endo

dt (T2) ≥ 0;
3. Isovolumic relaxation: the endocardial pressure pendo decreases as a conse-

quence of the LV early relaxation while V endo remains constant and is treated
similarly to the isovolumic contraction (Eq. (3.5)). We denote the end time of
this phase as T3 = T3(p

endo), the occurrence at which pendo ≤ pendo
min (about

5 mmHg);
4. Filling: the pressure drop in the LV causes the opening of the mitral valve, which

in turn causes an increment of V endo due to the blood flowing into the LV, until
both the pressure pendo and the volume V endo reach the EDP values. We model
this phase by linearly increasing pendo until it reaches the value pendo

EDP at the time
T 3 = 0.7 s, and we keep it constant from T 3 to the final time T = 0.8 s, that is:

dpendo

dt
= ς, t ∈ (T3, T ], (3.7)

with ς = pendo
EDP−pendo(T3)

T 3−T3
if t ∈ (T3, T 3] and ς = 0 if t ∈ (T 3T ].
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3.3 Space and Time Discretizations

We briefly discuss the numerical discretization of the single core models (3.1), (3.2),
and (3.3) with respect to the space and the time independent variables.

3.3.1 Space Discretization

We use the Finite Element Method, FEM [63], for the space discretization of the
PDEs of Sect. 3.2, thus obtaining a system of ODEs for each core model. We
consider a mesh composed of pairwise disjoint tetrahedra Th such that ∪K∈Th

K =
�0, where h is the maximum size of the elements K ∈ Th. Then, we define
the finite dimensional spaces Xr

h = {
v ∈ C0(�0) : v|K ∈ P

r (K) ∀K ∈ Th

}
and

Xr
h = [

Xr
h

]3, where P
r (K) is the set of polynomials of degree smaller than

or equal to r in the element K . By indicating with
{
ψj

}Ndof
r

j=1 a basis for Xr
h,

it holds Xr
h = span(ψ1, . . . , ψNdof

r
), Xr

h = span({ψk
1}3

k=1, . . . , {ψk
Ndof
r

}3
k=1), and

ψk
j = ψj ek , where ek is the k-th unit vector of R3. We then denote by

{
xj

}Ndof
r

j=1
the set of the Degrees of Freedom (DoFs) associated to Xr

h and Xr
h. The functions

vh, γf,h, and dh are the FEM approximations of v, γf , and d, respectively, and
we denote by v, γ f , and d the vectors containing the nodal values of the primitive

variables. Specifically, for the ionic variables wq

h(x, t) =
∑Ndof

r

j=1 w
q

j (t)ψj (x), where

w
q

j (t) ≈ wq(xj , t), from which wq (t) =
{
w
q

j (t)
}Ndof

r

j=1
and w(t) = {

wq(t)
}NI

q=1.

Similarly, for the transmembrane potential vh(x, t) = ∑Ndof
r

j=1 vj (t)ψj (x), where

vj (t) ≈ v(xj , t) and v(t) = {
vj (t)

}Ndof
r

j=1 . For the active strain, γf,h(x, t) =
∑Ndof

r

j=1 γf,j (t)ψj (x), where γf,j (t) ≈ γf (xj , t) and γ f (t) = {
γf,j (t)

}Ndof
r

j=1 . For

the displacement, dh(x, t) = ∑Ndof
r

j=1

∑3
k=1 d

k
j (t)ψ

k
j (x), where dkj (t) ≈ d(xj , t) · ek

and d(t) =
{{

dkj (t)
}Ndof

r

j=1

}3

k=1
.

We write the equations of the ionic model at each node xj , j = 1, . . . , Ndofr .
The semi-discrete formulation of the ionic model hence reads: given v(t), find w(t)

such that
{

ẇ(t)+ U(v(t))w(t) = Q(v(t)), t ∈ (0, T ],
w(0) = w0,

(3.8)

where Uii (v) = αq(vj )−βq(vj ) and Qi (v) = αq(vj )w
∞
q (vj ), with i = q Ndof

r +j ,

for q = 1, . . . , NI , j = 1, . . . , Ndof
r .
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For the monodomain equation we obtain instead the following semi-discrete
problem: given w(t) and d(t), find v(t) such that

{
Mv̇(t)+K(d(t))v(t)+ Iion(v(t),w(t)) = MIapp(t), t ∈ (0, T ],
v(0) = v0,

(3.9)

where Mij = ∫
�0

ψjψi d�0, Kij (dh) = ∫
�0
(JhF−1

h DmF−T
h ∇ψj ) · ∇ψi d�0,

Iioni (v,w) = ∫
�0

I ion
(
vh,w

1
h, . . . , w

NI

h

)
ψi d�0, and Iappi (t) = Iapp(xi , t) for

i, j = 1, . . . , Ndof
r and v0 = {

v0(xj )
}Ndof

r

j=1 ; Fh = ∂dh
∂X and Jh = det(Fh). To

overcome numerical instabilities [9], we use however a lumped mass matrix M
L

in place of M [60].
The semi-discrete formulation of the mechanical activation problem (3.2) reads:

given w(t) and d(t), find γ f (t) such that

{
Mγ̇ f (t)+ εK(w(t))γ f (t)+ �(w(t), γ f (t),d(t)) = 0 t ∈ (0, T ],
γ f (0) = 0,

(3.10)

where Kij (w) = ∫
�0

ε

g(w3
h)
∇ψj · ∇ψi d�0 and �i (w, γ f ,d) = − ∫

�0

1
g(w3

h)
�

(
w3
h, γf,h,dh

)
ψi d�0, for i, j = 1, . . . , Ndof

r .
The semi-discrete formulation of the mechanics problem (3.3) reads: given

γ f (t), find d(t) such that

⎧
⎨
⎩
ρsM3d̈(t)+ Fḋ(t)+Gd(t)+ S(d(t), γ f (t)) = pendo(t)− S0, t ∈ (0, T ],
d(0) = d0, ḋ(0) = 0,

(3.11)

where d0 =
{{

d0(xj ) · ek
}Ndof

r

j=1

}3

k=1
, M3 = diag{M,M,M}, pendoi =

∫
�endo

0
pendoN·ψ i , S0,i =

∫
�0

P0 : ∇0ψ
k
i d�0, Fkij = ∑

η∈{epi,base}
∫
�
η
0

(
C
η
⊥(N ⊗ N)

+C
η
‖ (I − N ⊗ N)

)
ψk
j · ψk

i d�0, F = diag
{
F
k
}3
k=1, Gk

ij = ∑
η∈{epi,base}

∫
�
η
0

(
K

η
⊥

(N ⊗ N)+K
η
‖ (I − N ⊗ N)

)
ψk
j · ψk

i d�0, G = diag
{
G
k
}3
k=1, Ski (d, γ f ) =

∫
�0

P(dh, γf,h) : ∇0ψ
k
i d�0, S(d, γ f ) = diag

{
Sk(d, γ f )

}3

k=1
for i, j =

1, . . . , Ndof
r . The discretized prestress problem (3.4) can be similarly written as:

find (̂d0,P0) such that

Gd̂0 + S(̂d0,h) = pendo
EDP − S0. (3.12)
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3.3.2 Time Discretization

We now carry on the time discretization for each of the semi-discrete single
core problems of Sect. 3.3.1. For the electrophysiology several approaches have
been proposed and used to solve the monodomain equation, in combination with
the ionic model: explicit schemes [36, 68], implicit schemes [49, 59, 85], and
implicit-explicit (IMEX) schemes [15, 75]. Regarding the mechanics, we consider
an implicit scheme, while we consider both implicit and semi-implicit schemes
for the electrophysiology. We symbolically rewrite the semi-discrete problems of
Sect. 3.2 in the general form:

⎧
⎪⎪⎨
⎪⎪⎩

Mizi (t)+ Ti (z(t)) = Hi (t) t ∈ (0, T ], i = 1, . . . , 4,

zi (0) = zi,0, i = 1, . . . , 4,

ż4(0) = 0,

(3.13)

where z1 = w, z2 = v, z3 = γ f , z4 = d, and M1 = I
d
dt , M2 = M3 = M

d
dt ,

M4 = ρsM3
d2

dt2
. The nonlinear vector-valued functions Ti and Hi are specific of the

corresponding core model. In order to obtain a fully discretized formulation using
the BDF scheme, we exploit the following approximation of the time derivatives:

d

dt
zi (tn+1) ≈ 1

�t

(
ϑ I

0zn+1
i − zI

i

)
, zI

i =
σ∑

k=1

ϑ ′
kzn−k+1

i , i = 1, . . . , 4

d2

dt2
z4(t

n+1) ≈ 1

(�t)2

(
ϑ II

0 zn+1
4 − zII

4

)
, zII

4 =
σ+1∑
k=1

ϑ II
k zn−k+1

4 ,

(3.14)

where �t = T
NT

is the timestep size, NT being the number of subintervals, while
the parameters ϑ ′

k, ϑ
′′
k , k = 0, . . . , σ depend on the order σ of the BDF scheme.

In the implicit case, we obtain the following nonlinear systems:

Ai (zn+1) = bn+1
i , i = 1, . . . , 4, n = σ, . . . , NT − 1, (3.15)

with zn assigned for n = 0, . . . , σ . In the semi-implicit case, on the other hand,
we extrapolate the variables in the nonlinear terms Ai (zn+1) by means of the
Newton-Gregory backward polynomials [11]—as done, e.g., for the Navier–Stokes
equations in [29]—thus yielding a linear system at each timestep. The extrapolated
variables are evaluated by means of an approximation of the same order σ of
the BDF scheme as zi (tn+1) ≈ z∗i = ∑σ

k=1 βkzn−k+1
i . We thus approximate the

nonlinear terms as Ai (zn+1) ≈ ∑4
j=1 Ai,j (z∗)zn+1

j + Ãi (z∗), with notation being
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understood. By recalling Eq. (3.15), we hence obtain a system in the form:

4∑
j=1

Ai,j (z∗)zn+1
j = bn+1

i n = σ, . . . , NT − 1, (3.16)

with zn assigned for n = 0, . . . , σ and bn+1
i = hn+1

i − Ãi (z∗).

3.3.2.1 Discretization of the 0D Fluid Model

We evaluate the volume V endo(t) at time tn by exploiting the formula reported in
[68]. For the discretization of the 0D fluid models of Sect. 3.2.4 in terms of pendo,
we consider the following approaches tailored on the phase of the heartbeat (we
drop the “endo” superscript for simplicity). At each n:

1. Isovolumic contraction: we use an inexact Newton method to solve Eq. (3.5)
by iteratively updating the pressure as pn+1

k+1 = pn+1
k − �t

ζ
(V n+1

k − V n), for

k = 0, 1, . . . with pn+1
0 = pn and V n+1

0 = V n. By dimensional arguments,

we approximate ∂V
∂p
(pn+1

k ) as −�t
ζ

[
mm4s2

g

]
in the Newton iterate. At each

iteration, pn+1
k+1 is used to solve the electromechanics problem thus obtaining

V n+1
k+1 ; the procedure is repeated until the condition

|V n+1
k+1 −V n|
�t

< ε is satisfied.
The parameter ζ < 0 has to be “sufficiently” small in order for the fixed point
algorithm to converge;

2. Ejection: the two elements Windkessel model (3.6) is solved in the pressure
variable with a BDF scheme of order σ = 1:

C
pn+1 − pn

�t
= −pn+1

R
− V n − V n−1

�t
; (3.17)

3. Isovolumic relaxation: we proceed as in 1);
4. Filling: the pressure is simply updated as pn+1 = pn +�t ς .

3.4 Numerical Coupling: Segregated Strategies

We first recall the monolithic strategy that we introduced in [28], then we propose
three new segregated strategies for the solution of the electromechanics problem.
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3.4.1 Fully Monolithic Strategy (IIEIAIMI)

We use the implicit scheme (3.15) for the time discretization of each core model
and we assemble the integrated problem in a monolithic fashion, thus considering a
“strong” coupling among the fully discretized core models; see [28]. This amounts
to solve, for n = σ, . . . , NT − 1, the following system of size 8 × Ndof

r :

(IIEIAIMI ) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
ϑ I

0

�t
+ U(vn+1)

)
wn+1 − Q(vn+1) = 1

�t
wI,

(
ϑ I

0

�t
M+K(d

n+1
)

)
vn+1 + Iion(vn+1,wn+1)= 1

�t
MvI +MIapp(tn+1),

(
ϑ I

0

�t
M+ εK(wn+1)

)
γ n+1
f + �(wn+1, γ n+1

f , d
n+1

) = 1

�t
Mγ I

f ,

(
ρs

ϑ II
0

(�t)2
M3 + ϑ I

0

�t
F+G

)
d
n+1 + S(d

n+1
, γ n+1

f )

= ρs
1

(�t)2
M3d

II + 1

�t
Fd

I + pendo(tn+1)− S0,

(3.18)

which we indicate as (IIEIAIMI), where the subscript I stands for the implicit
solver, and compactly rewrite in algebraic form as

An+1
EM (zn+1) = bn+1

EM , (3.19)

with notation being understood. We then apply, at each timestep, the Newton method
[63] to approximate the solution of the nonlinear problem (3.19) by iteratively
solving the linear system

J
n+1
EM,kδzn+1

k+1 = −rn+1
k with zn+1

k+1 = zn+1
k + δzn+1

k+1, (3.20)

for k = 0, . . . , until ‖rn+1
k ‖L2 < εNtol, where εNtol is a given tolerance. Jn+1

EM,k is

the Jacobian matrix of (3.19), evaluated in zn+1
k , and is endowed with the following

block structure:

JEM =
J11 J12 0 0

J21 J22 0 J24

J31 0 J33 J34

0 0 J43 J44 (3.21)
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while the residual is defined as rn+1
k = bn+1

EM − An+1
EM (zn+1

k ). In (3.21) we high-
light the diagonal blocks corresponding to the electrophysiology, the mechanical
activation, and the mechanics, respectively. We use the preconditioned GMRES
method [72] to solve problem (3.20). We exploit a lower block triangular Gauss–
Seidel right preconditioner PEM introduced in [28], a generalization of the FaCSI
preconditioner of [23, 24, 27]. PEM is obtained by dropping the upper triangular
blocks of matrix JEM , namely J12, J24, and J34, and then by substituting the
diagonal blocks with black-box Algebraic Multigrid (AMG) and Additive Schwarz
preconditioners. With this strategy, we are able to exploit the information of the
core problems at the block level, that is we use a preconditioner that exploits the
“physics” of the coupled problem.

While (IIEIAIMI) is “numerically” stable and convergent as long as the initial
guess zn+1

0 in (3.20) is, at each time, “sufficiently” close to the solution, it also
requires to use the same timestep for the time discretization of each core model.
Hence, even if the electrophysiology and the mechanics feature very different time
scales, the former dictates our choice for the timestep of the fully monolithic
problem.

3.4.2 Partially Segregated Strategy (IIEIAI)–(MI)

We break the strong coupling between the electrophysiology and the mechanical
activation (IIEIAI) and the tissue mechanics (MI). We hence evaluate the terms

K(d
n+1

) and �(wn+1, γ n+1
f ,d

n+1
) of Eq. (3.18) in the extrapolated variable d

∗

instead of d
n+1

, thus obtaining two separated problems which are solved in a
segregated fashion. This strategy is equivalent to the application of a (first order)
Godunov splitting scheme [32] to the monolithic problem. We notice that the
(IIEIAI) problem is still fully coupled, while it is decoupled from the (MI) block,
hence the denomination (IIEIAI)–(MI).

This approach allows to use a smaller timestep for the (IIEIAI) problem, which
we denote by τ , with respect to the one used for the mechanics (MI): we set in
particular

τ = �t

Nsub

,

where Nsub ∈ N is the number of intermediate substeps; τ is the timestep size of

(IIEIAI) and �t that of (MI). This implies that τ ≤ �t and t
n+ m

Nsub = tn+mτ for
m = 1, . . . , Nsub. Nsub can also be regarded as the ratio of the timestep lengths used
for the mechanics and for the electrophysiology and activation. The overall time
advancement is represented in Fig. 3.3. Another clear advantage of this approach
is that, in the isovolumic phases, only the mechanics problem needs to be solved,
contrarily to the fully monolithic one where Eq. (3.18) has to be solved at each
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Fig. 3.3 Graphical representation of the time advancement for (IIEIAI)–(MI) and
(ISIESIASI)–(MI)

subiteration. Problem (IIEIAI) from tn to tn+1 reads:

(IIEIAI ) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
ϑ I

0

τ
+ U(vn+

m
Nsub )

)
wn+ m

Nsub − Q(vn+
m

Nsub ) = 1

τ
wI,

(
ϑ I

0

τ
M+K(d

∗
)

)
v
n+ m

Nsub + Iion(v
n+ m

Nsub ,w
n+ m

Nsub )= 1

τ
MvI = MIapp(t

n+ m
Nsub ),

(
ϑ I

0

τ
M+ εK(wn+ m

Nsub )

)
γ
n+ m

Nsub

f + �(wn+ m
Nsub , γ

n+ m
Nsub

f , d
∗
) = 1

τ
Mγ I

f ,

(3.22)

for m = 1, . . . , Nsub, where the terms wI, vI, and γ I
f (defined in Eq. (3.14)) are

evaluated by using the variables at times tn, tn − τ, . . . , tn − (σ − 1)τ . As in
the case of the implicit electromechanics, we use the Newton method to solve
problem (3.22), and the block structure of the correspondent Jacobian matrix JEA
is:

JEA =
J11 J12 0

J21 J22 0

J31 0 J33. (3.23)

We exploit the same preconditioning technique that was outlined in Sect. 3.4.1 for
the (IIEIAIMI) strategy, but we restrict it to the block (IIEIAI). After solving
Eq. (3.22) for Nsub steps, we solve at tn+1 the implicit mechanics problem (MI ):

(MI ) :

(
ρs

ϑ II
0

(�t)2 M3 + ϑ ′
0

�t
F+G

)
d
n+1 + S(d

n+1
, γ n+1

f )

= ρs
1

(�t)2
M3d

II + 1

�t
Fd

I + pendo(tn+1)− S0,

(3.24)
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by means of the Newton method. We notice that the vector γ n+1
f in Eq. (3.24) is

already known, since it is given after the last step of Eq. (3.22) (i.e. for m = Nsub).

3.4.3 Partially Segregated Strategy (ISIESIASI)–(MI)

By considering now the semi-implicit scheme (subscript SI) for the time discretiza-
tion, the (ISIESIASI) problem reads:

(ISIESIASI ) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
ϑ I

0

�t
+ U(v∗)

)
wn+ m

Nsub = 1

τ
wI + Q(v∗),

(
ϑ I

0

�t
M+K(d

∗
)+ I

ion
v (v∗,w∗)

)
vn+

m
Nsub + I

ion
w (v∗,w∗)wn+ m

Nsub

= 1

τ
MvI + Ĩion(v∗,w∗)+MIapp(tn+

m
Nsub ),

(
ϑ I

0

τ
M+ εK(w∗)+ Pγf (w

∗, γ ∗
f ,d

∗
)

)
γ
n+ m

Nsub

f = 1

τ
Mγ I

f + �̃(w∗, γ ∗
f ,d

∗
),

(3.25)

for m = 1, . . . , Nsub. In this case, the block pattern of the matrix AEA, stemming
from the linear system (3.25), is:

AEA =
A11 0 0

A21 A22 0

0 0 A33

.

(3.26)

As in the case of the (IIEIAI) strategy, after solving Eq. (3.25) for Nsub steps, we
solve the implicit mechanics problem (MI ) (3.24).

3.4.4 Fully Segregated Strategy (ISI)–(ESI)–(ASI)–(MI)

Finally, we further segregate the (ISIESIASI) block: that is instead of solving
schematic (3.25) in a single shot, we solve the three subproblems sequentially. In
Fig. 3.4 we show a representation of the time advancement in this case. At each time
tn, the algorithm amounts to perform, for m = 1, . . . , Nsub, the following steps, in
order:
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Fig. 3.4 Graphical representation of the time advancement for (ISI)–(ESI)–(ASI)–(MI)

1. find w
n+ m

Nsub by solving:

(ISI ) :
(
ϑ I

0

�t
+ U(v∗)

)
wn+ m

Nsub = 1

τ
wI + Q(v∗); (3.27)

2. use w
n+ m

Nsub , obtained with Eq. (3.27), to find v
n+ m

Nsub by solving:

(ESI ) :

(
ϑ I

0
�t

M+K(d
∗
)+ I

ion
v (v∗,w

n+ m
Nsub )

)
v
n+ m

Nsub

= 1

τ
MvI + Ĩion(v∗,w

n+ m
Nsub )− I

ion
w (v∗,w

n+ m
Nsub )w

n+ m
Nsub +MIapp(t

n+ m
Nsub );

(3.28)
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3. use w
n+ m

Nsub and v
n+ m

Nsub , obtained from Eq. (3.27) and Eq. (3.28), to find

γ
n+ m

Nsub

f by solving:

(ASI ) :

(
ϑ I

0

τ
M+ εK(w

n+ m
Nsub )+ P

γf (w
n+ m

Nsub , γ ∗
f ,d

∗
)

)
γ
n+ m

Nsub

f

= 1

τ
Mγ I

f + �̃(w
n+ m

Nsub , γ ∗
f ,d

∗
).

(3.29)

After Nsub steps, we solve once again problem (3.24) and finally obtain d
n+1

.

3.5 Numerical Results

In this section we first briefly describe the procedures used to obtain the geometries,
the fiber and sheet fields, and the prestress, then we test the three segregated schemes
on benchmark problems in both idealized and subject-specific LV geometries. The
idealized mesh features 1827 vertices and 6500 tetrahedra, while the subject-specific
mesh features 126,031 vertices and 637,379 tetrahedra. We use finite elements of
order r = 1 and BDF of order σ = 1 (i.e. Backward Euler) and σ = 2 for the time
discretization to ensure A-stability [63].

For all the simulations we use LifeV,1 an open-source finite element library for
the solution of problems described by PDEs in a High Performance Computing
framework.

3.5.1 Preprocessing

Image segmentation locates regions of interest (ROI) in the form of a subset of pixels
[35], and amounts to assign different flags to regions containing different types of
tissues and/or fluids. In this work, to obtain the subject-specific mesh, we used a
manual procedure exploiting the brightness of the pixels of a 3D MRI image;2 see
Fig. 3.5.

Fibers and sheets field distributions in the myocardium are not tipically extracted
from MRIs, unless special procedures are applied [65]. For this reason, several

1https://cmcsforge.epfl.ch.
2The MRI images are provided by Prof. J. Schwitter (Chief physician at the Centre Hospitalier
Universitaire Vaudois CHUV, Lausanne) and Dr. P. Masci (CHUV) in the framework of the
collaboration CMCS@EPFL–CHUV.

https://cmcsforge.epfl.ch
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Fig. 3.5 From left to right: the MRI from which the subject-specific geometry was segmented, the
mesh, the fibers field, and the sheets field

mathematically rule-based definition of these fields have been used [33, 45, 50, 70],
which attempt to construct their orientation. At the epicardium and at the endo-
cardium, the fiber direction f0 is tangential to the boundary, while the sheet direction
s0 belongs to the plane identified by the normal and the ventricle centerline (i.e. the
line passing through the center of the ventricle). In the most general case, angles
αendo, αepi , βendo, and βepi , representing the inclination of the fibers and the sheets
with respect to the base plane, are assigned. The direction of fibers and sheets inside
the myocardium is determined by a transmurally linear mapping. Here we consider
the rule-based algorithm proposed in [87] and further developed in [68]; we set
αendo = −60◦, αepi = +60◦, βendo = βepi = 0◦. In Fig. 3.5, we show the fields
obtained by applying the algorithm to the subject-specific mesh.

Regarding the prestress, we solve problem (3.12) by means of a continuation
method. More precisely, given the EDP value pendo

EDP and an integer S representing
the number of steps, we first define a pressure ramp increment in the form: pk =
k
S
pendo
EDP , k = 1, . . . , S. For each k = 1, . . . , S, we set p = pk in Eq. (3.4)

and solve the nonlinear system (in d) by using the Newton method to obtain an
increasingly accurate approximation of P0,k, i.e. the prestress corresponding to the
pressure pk . We refer the reader to [28] for more details.

3.5.2 Benchmark Problem with Idealized Geometry

In order to assess the properties of the proposed segregated schemes and to evaluate
their behavior for different timestep sizes, we set up and solve a benchmark problem
by using the idealized geometry. The contraction is triggered by applying a current
in three distinct points at the endocardium while keeping the pressure at the
EDP value pendo

EDP = 10 mmHg. We choose this setting so that the volume of the
idealized LV halves during the simulation, from the initial value of approximately
136 mL to around 68 mL, thus attaining a deformation which is comparable with
physiological data. We set T = 0.1 s and τ = 1, 2, 4, 8, 12, 16, 24, 32×10−5 s, with
Nsub = 1, 2, 4, 8, 16 for the segregated strategies (being �t = Nsubτ the timestep
size for the mechanics), while �t = τ for the monolithic strategy. The absolute
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Fig. 3.6 Idealized LV and magnitude of the displacement field at different times, compared with
the reference domain �0, for the benchmark problem

tolerances for the Newton method and the GMRES solver are set to εNtol = 10−4

and εGtol = 10−8, respectively. For all the numerical simulations of this benchmark,
6 cpus are used.

In the following, we denote by v̂τh and d̂τh the potential and the displacement
solutions, respectively, obtained with (IIEIAIMI) and timestep τ , while we set
τ̂ = 10−5 s (the smallest timestep size used). We use the solution generated by the
monolithic approach (IIEIAIMI) with (τ = τ̂ ) as a reference one (a manufactured
“exact” solution). Indeed, since no exact solution for the electromechanics problem
is available, the error analysis with respect to the timesteps is carried out by using
a reference solution on the same mesh, effectively disregarding the error due to the
space discretization. In the monolithic case, all the coupling conditions between
the core models are enforced in the extradiagonal blocks of the monolithic system
matrix. However, as we will show, this accuracy comes at the price of a large
computational cost. In Fig. 3.6 we report the deformation and the displacement field
of the ideal geometry obtained by solving the problem with (IIEIAIMI) compared
with the reference domain �0.

We first numerically verify that in the (IIEIAIMI) case the errors in L2(�0) and
L∞(�0) norms of the potential and of the displacement magnitude decay as τ and
τ 2 when using BDF with σ = 1 and σ = 2, respectively. With this aim, we display
in Fig. 3.7 the errors ||̂vτh − v̂τ̂h || and ||̂dτh − d̂τ̂h|| against the timestep τ = �t . The
converge rate is indeed coherent with the order σ of the BDF scheme under use.

Before analyzing the convergence rates against τ for the segregated schemes,
we investigate the role of the splitting scheme on the mechanical feedback in the
monodomain equation, which is realized by the dependence of the diffusion tensor
on the deformation gradient F. To this aim, we display in Fig. 3.8 the errors, at times
T = 24, 48, 96 ms, made using (IIEIAI)–(MI) with τ̂ for different values of the
parameterNsub. That is, we use τ = τ̂ for the electrophysiology and the activation—
the same timestep used to obtain the reference solution—while using �t = Nsubτ

for the mechanics. We first of all observe that, in all cases, the convergence rate
is linear with respect to Nsub (equivalently, with respect to �t); this behavior is
expected since the Godunov splitting scheme used in the segregated algorithm is
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Fig. 3.7 Errors in L2(�0) (left) and L∞(�0) (right) norms of the potentials v̂τh (top) and of
the displacements d̂τh (bottom) obtained by solving the problem with the monolithic scheme
(IIEIAIMI), at times T = 24 ms (blue), T = 48 ms (red), and T = 96 ms (yellow), in logarithmic
scale against τ . The results for both BDF1 and BDF2 are reported

first order accurate. Furthermore, while the magnitude of the error of the potential
v̂τh is negligible when compared to the errors in Fig. 3.7, the same does not hold for
the displacement dτ̂h. This is also expected since, in Fig. 3.8, the value of τ is fixed
while �t is not, nonetheless this clearly shows that, for transmembrane potential,
the splitting error is several orders of magnitude smaller than the one introduced
when using a larger τ .
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Fig. 3.8 Errors in L2(�0) (left) and L∞(�0) (right) norms of the potentials vτ̂h (top) and of the
displacements dτ̂h (bottom) at time T = 96 ms obtained by solving the problem with the segregated
scheme (IIEIAI)–(MI) and timestep τ , in logarithmic scale against Nsub

We then analyze the errors introduced when using (IIEIAI)–(MI),
(ISIESIASI)–(MI), and (ISI)–(ESI)–(ASI)–(MI) for varying τ and Nsub. We
do not report the ones for the case Nsub = 1 against τ (as previously done for the
monolithic strategy) neither for (IIEIAI)–(MI) nor for (ISI)–(ESI)–(ASI)–(MI)

since no appreciable differences are visible with respect to (IIEIAIMI)
and (ISIESIASI)–(MI), respectively. In Fig. 3.9 the errors for the scheme
(IIEIAI)–(MI) at time T = 96 ms are reported for different choices of Nsub. As
previously mentioned, only first order accuracy is granted by the considered splitting
schemes, however the error on the potential vτh converges even quadratically (it is
superconvergent). On the other hand, the error on the displacement dτh converges
linearly, unless the values Nsub = 1, 2 are employed.

By considering now the (ISIESIASI)–(MI) strategy, we report in Fig. 3.10 the
errors made for the potential and the displacement at times T = 24, 48, 96 ms.
We observe that the error significantly increases for τ > 8 × 10−5 s, in particular
for the potential vτh . This is due to numerical instabilities occuring when using the
semi-implicit case, which is “not guaranteed” to be stable for an arbitrary choice
of τ . Nonetheless, these instabilities are “non-destructive” since the error on dτh is
not significantly affected by them. However, in both cases, we observe again that
the errors are superconvergent for Nsub = 1 and τ ≤ 8 × 10−5 s as they decrease
quadratically. We conclude our error analysis by reporting in Fig. 3.11 the errors
against �t at time T = 96 ms when using (ISIESIASI)–(MI), for different choices
of Nsub. We conclude that, similarly to the (IIEIAI)–(MI) case, the errors converge
at least linearly, as expected by the splitting schemes employed.
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Fig. 3.9 Errors in L2(�0) (left) and L∞(�0) (right) norms of the potentials vτh (top) and of
the displacements dτh (bottom) at time T = 96 ms obtained by solving the problem with
(IIEIAI)–(MI) and Nsub = 1, 2, 4, 8, 16, in logarithmic scale against τ

We now investigate the efficiency of the schemes as a function of τ and

Nsub. In Tables 3.1 and 3.2 we report the average number of Newton (N
N

)

and GMRES (N
N

) iterations required for the solution of the monolithic prob-
lem with (IIEIAIMI), and for the solution of the mechanics problem with the
(IIEIAI)–(MI), (ISIESIASI)–(MI), and (ISI)–(ESI)–(ASI)–(MI) strategies. As

expected, both N
N

and N
G

increase significantly as τ gets larger and larger.
Otherwise, the required wall time T W dramatically drops with a speed-up of
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Fig. 3.10 Errors in L2(�0) (left) and L∞(�0) (right) norms of the potentials vτh (top) and of
the displacements dτh (bottom) obtained by solving the problem with (ISIESIASI)–(MI), at times
T = 24 ms (blue), T = 48 ms (red), and T = 96 ms (yellow), in logarithmic scale against τ , for
Nsub = 1

almost 300 times when using the strategy (ISI)–(ESI)–(ASI)–(MI) and timestep
τ = 32 × 10−5, with respect to (IIEIAIMI) with timestep τ = 1 × 10−5.

We can now better compare the efficiency of the different strategies by displaying
in Fig. 3.12 the errors of the displacement in L2(�) norm against the total wall time
T W , and hence establish which strategy is the most efficient for a given tolerance on
the error. The first clear conclusion that can be drawn is that, whatever the tolerance,
it is more convenient to use the (IIEIAI)–(MI) strategy with Nsub = 1 rather than
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Fig. 3.11 Errors in L2(�0) (left) and L∞(�0) (right) norms of the potentials vτh (top) and
of the displacements dτh (bottom) at time T = 96 ms obtained by solving the problem with
(ISIESIASI)–(MI) and Nsub = 1, 2, 4, 8, 16, in logarithmic scale against τ

the monolithic (IIEIAIMI) one; this is in agreement with our previous observations
on the magnitude of the splitting error introduced by using the (IIEIAI)–(MI)

strategy. More in general, we observe that the proposed segregated strategies
represent a better alternative with respect to the monolithic one if a larger error on
the displacement is deemed to be acceptable. We conclude that the chosen strategy
represents a trade-off between the efficiency of the simulation and the accuracy
of the approximated solution. If the goal is that of reducing the computational
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Table 3.1 The average

number of Newton (N
N

) and

GMRES (N
G

) iterations for
the solution of the monolithic
problem (IIEIAIMI), and
the total wall time (T W , in
minutes) for the benchmark
simulations, for each
τ (= �t) considered

τ (= �t) (IIEIAIMI)

N
N

N
G

T W

10−5 s 2.1 8.5 363′

2 × 10−5 s 2.4 8.1 188′

4 × 10−5 s 3.0 7.8 101′

8 × 10−5 s 3.5 7.7 54′

12 × 10−5 s 3.6 7.9 36′

16 × 10−5 s 4.0 7.6 28′

24 × 10−5 s 4.7 7.9 22′

32 × 10−5 s 5.2 9.2 18′

cost, the (ISI)–(ESI)–(ASI)–(MI) strategy should be the matter of choice, although
its accuracy drops for larger timestep sizes. On the other hand, if accuracy is the
driving factor, (IIEIAI)–(MI) has to be preferred to (IIEIAIMI) thus avoiding the
extremely long wall times needed by the latter.

3.5.3 Subject-Specific LV: The Full Heartbeat

We use the subject-specific mesh of Fig. 3.5 for the simulation of a full heartbeat by
modeling the pressure as detailed in Sect. 3.3.2.1 and by setting T = 0.8 s. Basis
functions of degree r = 1 are employed, thus obtaining a system of size M =
8 × N

dof
1 = 1,008,248 in the monolithic case, together with BDF of order σ = 2.

The timestep is set equal to τ = 5 × 10−5 s while �t = Nsubτ with Nsub =
1, 5, 10 for the segregated strategies. All the numerical simulations were carried out
using Piz Daint, a Cray XC50/XC40 supercomputer installed at the Swiss National
Supercomputing Center (CSCS),3 and 72 cores were used for each simulation.4

As for the previous test, a current is applied at the endocardium at three distinct
points for 3 ms in order to trigger the cardiac rythm. We show the results obtained in
Fig. 3.13, where the transmembrane potential at times T = 10, 20, 40 ms is depicted
together with the activation time (AT). The latter is defined, in each point, as the time
at which the electric potential reaches a threshold value vthr (we set in particular
vthr = 10 mV) [56, 81]. The activation time is in good agreement with experimental

3http://www.cscs.ch.
4Unfortunately the maximum wall time allowed on the Piz Daint supercomputer is set to 24 h,
thus making it impossible to complete a simulation of a full heartbeat in all cases—most notably
for the (IIEIAIMI) strategy, which is the most computational demanding. We hence run two sets
of simulations: in the first case, we set T = 0.8 s thus obtaining the pressure-volume loops of
Fig. 3.16; in the second one, we set T = 0.073 s (the maximum time reachable in 24 h with the
(IIEIAIMI) strategy) thus obtaining the results of Fig. 3.16.

http://www.cscs.ch


3 Segregated Algorithms for the Numerical Simulation of Cardiac. . . 107

Table 3.2 The average number of Newton (N
N

) and GMRES (N
G

) iterations for the solution of
the mechanics problem and the total wall time (T W , in minutes) for the benchmark simulations,
for each segregated strategy, τ (in 10−5 s), and Nsub considered

τ (IIEIAI)–(MI)

Nsub = 1 Nsub = 2 Nsub = 4 Nsub = 8 Nsub = 16

N
N

N
G

TW N
N

N
G

T W N
N

N
G

TW N
N

N
G

T W N
N

N
G

TW

1 2.5 4.4 300′ 2.7 4.7 221′ 2.8 5.6 178′ 3.3 5.4 156′ 3.6 7.0 144′

2 2.7 4.7 144′ 2.8 5.6 101′ 3.3 5.4 81′ 3.6 7.0 69′ 4.1 10.3 63′

4 2.8 5.6 70′ 3.3 5.4 50′ 3.6 7.0 38′ 4.1 10.2 32′ 4.5 14.5 29′

8 3.3 5.4 38′ 3.6 7.0 26′ 4.1 10.3 20′ 4.4 14.6 16′ 5.2 18.7 15′

12 3.4 6.2 26′ 3.8 8.8 18′ 4.4 12.6 13′ 4.8 17.2 11′ 5.4 21.9 10′

16 3.6 7.0 20′ 4.2 10.2 14′ 4.4 14.6 10′ 5.2 18.7 9′ 5.5 24.7 8′

24 3.8 8.9 15′ 4.4 12.6 10′ 4.8 17.2 8′ 5.4 21.9 6′ 6.0 28.8 6′

32 4.2 10.3 12′ 4.5 14.6 8′ 5.3 18.7 6′ 5.5 24.8 5′ 6.0 33.2 5′

τ (ISIESIASI)–(MI)

Nsub = 1 Nsub = 2 Nsub = 4 Nsub = 8 Nsub = 16

N
N

N
G

TW N
N

N
G

T W N
N

N
G

TW N
N

N
G

T W N
N

N
G

T W

1 2.5 4.4 258′ 2.7 4.7 179′ 2.8 5.6 137′ 3.3 5.4 115′ 3.6 7.0 107′

2 2.7 4.7 123′ 2.8 5.6 81′ 3.3 5.4 59′ 3.6 7.0 48′ 4.1 10.2 42′

4 2.8 5.6 60′ 3.3 5.4 39′ 3.6 7.0 27′ 4.2 10.2 21′ 4.5 14.5 18′

8 3.3 5.4 32′ 3.6 7.0 20′ 4.1 10.2 14′ 4.5 14.5 10′ 5.2 18.6 8′

12 3.4 6.2 22′ 3.9 8.8 13′ 4.4 12.5 9′ 4.8 17.1 7′ 5.4 21.8 5′

16 3.5 7.0 16′ 4.1 10.2 10′ 4.4 14.5 7′ 5.2 18.6 5′ 5.5 24.6 4′

24 3.7 8.7 11′ 4.3 12.3 7′ 4.7 16.9 4′ 5.3 21.5 3′ 6.0 28.4 2′

32 3.8 9.9 8′ 4.3 13.9 5′ 4.8 18.5 3′ 5.3 23.9 2′ 10.6 23.9 2′

τ (ISI)–(ESI)–(ASI)–(MI)

Nsub = 1 Nsub = 2 Nsub = 4 Nsub = 8 Nsub = 16

N
N

N
G

T W N
N

N
G

TW N
N

N
G

T W N
N

N
G

TW N
N

N
G

T W

1 2.5 3.2 242′ 2.7 3.6 159′ 2.8 4.4 118′ 3.3 4.4 97′ 3.6 5.8 84′

2 2.7 3.6 114′ 2.8 4.5 71′ 3.3 4.5 50′ 3.6 5.8 38′ 4.1 8.5 32′

4 2.8 4.5 57′ 3.3 4.5 36′ 3.6 5.8 24′ 4.2 8.5 18′ 4.5 12.2 14′

8 3.3 4.5 31′ 3.6 5.9 18′ 4.2 8.6 12′ 4.5 12.2 8′ 5.2 15.9 7′

12 3.4 6.0 21′ 3.8 8.0 13′ 4.4 11.1 8′ 4.8 15.2 6′ 5.4 19.6 4′

16 3.5 7.0 16′ 4.1 10.1 10′ 4.4 14.3 6′ 5.2 18.3 4′ 5.5 24.3 3′

24 3.7 8.2 11′ 4.3 11.6 6′ 4.6 15.7 4′ 5.4 20.2 3′ 6.0 26.7 2′

32 3.8 8.5 8′ 4.3 12.0 5′ 4.8 15.9 3′ 5.4 20.5 2′ 9.8 28.7 1′

data obtained from healthy patients [10, 83], since the complete activation of the
myocardium takes around 40 ms.

In Fig. 3.14 we show the displacement magnitude on the deformed myocardium
�, compared with the reference geometry �0, at the times T = 100, 200, 300 ms. A
significant thickening of the myocardium walls takes place, which is in accordance
with experimental observations [64]. The model, however, only produces a moderate
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Fig. 3.12 Errors in L2(�) norm of the displacement at time T = 96 ms against the total wall
time T W for the (IIEIAI)–(MI), (ISIESIASI)–(MI), and (ISI)–(ESI)–(ASI)–(MI) strategies for
Nsub = 1, 2, 4, 8, 16, compared to the error for the (IIEIAIMI) strategy

Fig. 3.13 Transmembrane potential at different times (top row) and activation time (bottom row)
for the subject-specific simulation

rotation of the LV: in [58] the authors suggest that this behavior is related to the
choice of the incompressibility constraint, the bulk modulus B magnitude, and to
the boundary conditions. In order to better appreciate the behavior of the employed
model, we also estimate the components of the stress tensor in the fibers and sheets
direction σff = (Pf0)f and σss = (Ps0)s. With this aim, we solve the following
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Fig. 3.14 Deformed subject-specific geometry and displacement field at different times, compared
with the reference domain �0, for the full heartbeat simulation

L2-projection problem: find σff such that

∫

�0

σff ψi =
∫

�0

(Pf0)fψi,

for i, . . . , Ndof
1 , and analogously for σss . In Fig. 3.15 we show the two fields

obtained at the same time instants considered in Fig. 3.14; we highlight that
T = 200 ms corresponds approximately to the time at which the LV pressure
attains its maximum (around 120 mmHg). The values assumed by σss mostly
fall in the physiological range [39, 76, 86, 88] and match the pressure value at
the endocardium. Nonetheless the stress value peaks in the region close to the
myocardium base; we believe that this is due to the thickness of the septum wall
which, in this subject-specific geometry, was reconstructed as particularly thin.
Regarding the stress σff , the model reproduces much larger values with respect
to those indicated in [6, 39, 88], thus overestimating them by almost an order of
magnitude especially where the myocardium wall is (much) thinner. We remark,
however, that the available medical data used in [39] to fit the strain energy function
are obtained with in vitro loading tests, hence accounting only for the passive
component of the stress.

Finally, we compare in Fig. 3.16 the pressure-volume (pV) loops obtained with
the different numerical coupling strategies. A close up of the pV loops in the ejection
phase is also reported to better assess the differences among them. We observe
that, as in the benchmark test, the difference between the results obtained with
(ISIESIASI)–(MI) and those obtained with (ISI)–(ESI)–(ASI)–(MI) is negligible.
We conclude that the main deviation among the pV loops is caused by the choice
of different timestep lengths �t = Nsubτ for the mechanical model. Specifically,
during the last part of the first isovolumic phase, the endocardial pressure increases
very rapidly, while the change of the phase (as detailed in Sect. 3.2.4) takes place
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Fig. 3.15 Stress components σff (top) and σss (bottom) depicted on three slices of the deformed
domain at three different times

Fig. 3.16 LV internal volumes (top left) and endocardial pressures (bottom left) versus time,
with pV loops (right) for the subject-specific simulations with all the strategies considered (the
parameter Nsub used is indicated in legend with a subscript)
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Table 3.3 The mechanics
timestep �t (in 10−5 s), the
average number of Newton

(N
N

) and GMRES (N
G

)
iterations, and the total wall
time (T W , in minutes) for the
simulation of the heartbeat
with final time T = 0.073 s
with the subject-specific
mesh, using the four
strategies considered and
Nsub = 1, 5, 10

Strategy Nsub �t N
N

N
G

T W

(IIEIAIMI) – 5 3.3 18.7 1440′

(IIEIAI)–(MI) 1 10 4.4 40.8 723′

(IIEIAI)–(MI) 5 25 5.1 71.8 284′

(IIEIAI)–(MI) 10 50 5.8 93.6 259′

(ISIESIASI)–(MI) 1 10 4.4 40.8 543′

(ISIESIASI)–(MI) 5 25 5.0 72.1 136′

(ISIESIASI)–(MI) 10 50 5.7 93.7 130′

(ISI)–(ESI)–(ASI)–(MI) 1 10 4.4 37.7 582′

(ISI)–(ESI)–(ASI)–(MI) 5 25 5.1 66.1 148′

(ISI)–(ESI)–(ASI)–(MI) 10 50 5.7 86.4 93′

when the condition pendo ≥ pao is satisfied. Hence, when using a large timestep �t

for the mechanical core model, the value of the pressure is higher when the ejection
phase begins.

We conclude our analysis of the subject-specific simulations by reporting in

Table 3.3 the values of N
N

, N
G

, and T W , for the simulation of the heartbeat with
final time set to T = 0.073 for all the strategies used. We observe that, even if in
this case the number of Newton and GMRES iterations increases significantly with
respect to the benchmark simulation case, the segregated schemes, and in particular
the staggered schemes, allow to greatly reduce the computational costs for the
subject-specific simulations too. Indeed, a speed-up of up to 16 times is obtained
when using the (ISI)–(ESI)–(ASI)–(MI) strategy with Nsub = 10, compared to
(IIEIAIMI) used with the same timestep size τ .

3.6 Conclusions

We proposed several segregated strategies for the solution of the integrated elec-
tromechanics problem for the LV. We formulated the continuous model by coupling
the monodomain equation, the ionic minimal model, the activation model for the
fibers contraction, and the myocardial mechanics in the active strain framework.
We approximated the mathematical model in space by means of the Finite Element
method, and in time with both implicit and semi-implicit schemes based on BDF;
then, we formulated segregated strategies for its solution, considering the more
general case of staggered time discretizations arising from the choice of different
timestep sizes for the electrophysiology and mechanical activation from one side,
and for the mechanics from the other side.

The proposed segregated strategies were used with an idealized geometry for the
simulation of a free contraction benchmark. The error on the results were evaluated
against the solution obtained with (IIEIAIMI) and τ = 10−5 s, here assumed to
be almost “exact”. We concluded from our error analysis that an approach based
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on segregating the mechanics from the rest of the problem allows to significantly
reduce the computational cost of the simulation while providing accurate results:
in the benchmark setting, it was possible to reduce the wall time for a 0.1 s long
contraction approximately from 6 h with (IIEIAIMI), to 2.5 h with (IIEIAI)–(MI)

and Nsub = 16. Using a semi-implicit time scheme for the electrophysiology and
the activation allows to further cut the time required for the simulation, but at
relatively large timesteps—for which the semi-implicit scheme is not stable—the
accuracy significantly drops. Then, we showed that if also the electrophysiology
and the activation are solved sequentially by segregating the ionic model, the
monodomain equation and the mechanical activation, the computational cost is
further reduced while the accuracy is preserved. With this approach, by using
(ISI)–(ESI)–(ASI)–(MI) and Nsub = 16, we were able to solve the problem in
less than 1.5 h.

Finally, we showed that the same integrated model can be used for large scale
simulations with subject-specific geometries. We used the proposed strategies for
the simulation of a full heartbeat and showed that physiological values for the
pressure and the volume, are obtained. Segregated algorithms exhibit a significantly
improved efficiency in this case too, when compared to the monolithic one. We
conclude that segregated strategies are preferable if a relatively low temporal
accuracy is acceptable, while the monolithic strategy should be preferred if the
required accuracy is extremely high.
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Chapter 4
Power-Stroke-Driven Muscle Contraction

Raman Sheshka and Lev Truskinovsky

Abstract To show that acto-myosin contraction can be propelled directly through
a conformational change, we present in these lecture notes a review of a recently
developed approach to muscle contraction where myosin power-stroke is interpreted
as the main active mechanism. By emphasizing the active role of power stroke, the
proposed model contributes to building a conceptual bridge between processive and
nonprocessive motors.

4.1 Introduction

Broadly accepted chemo-mechanical models of muscle contraction operate with
kinetic constants depending on a continuous variable, the elongation of an effective
spring. This leads to an appearance of phenomenological functions, which brings
into the theory an infinite number of parameters. In an attempt to avoid such ‘free-
dom’ we make a tacit assumption that the structural elements of force producing
machinery are purely mechanical and can be in principle built in a lab.

To model the phenomenon of muscle contraction at a purely mechanical level we
follow the approach developed in the theory of Brownian ratchets which replaces the
conventional chemistry-based interpretation of active force generation by the study
of Langevin dynamics of mechanical systems. In ratchet-based models describing
acto-myosin contraction, the ATP activity is usually associated with actin binding
potential while the power-stroke mechanism, residing inside myosin heads, is
viewed as passive. Instead, in view of the reasons discussed below, we assume that
power-stroke is the main active mechanism. Implicitly, our basic assumption is that
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Fig. 4.1 Schematic
illustration of the four-step
Lymn–Taylor cycle showing
the power-stroke A → B, the
detachment B → C, the
re-cocking of the
power-stroke C → D and the
final re-attachment D → A

bringing the system back into
the original state

the fundamental mechanism behind active force generation is the same in the linear
molecular motors (myosins, kynesins, dyneines).

Muscle contraction takes the form of a relative motion of thick (myosin) and
thin (actin) filaments [3]. Active force generation results from stochastic interaction
between individual myosin heads (cross-bridges) and the adjacent actin binding
sites. It includes cyclic attachment of myosin cross-bridges to actin filaments
together with a concurrent conformational change in the core of the myosin
catalytic domain (of folding-unfolding type). A lever arm amplifies this structural
transformation producing the power-stroke, which allows the attached cross bridges
to generate macroscopic forces [53].

Myosin motors convert chemical energy into mechanical work by catalyzing the
hydrolysis of adenosin triphosphate (ATP) to the adenosine di-phosphate (ADP),
freeing phosphate (Pi) and using the released energy for generating motion. A
prototypical biochemical model of the myosin ATPase reaction in solution, linking
together the attachment-detachment, the power-stroke and the hydrolysis of ATP, is
known as the Lymn–Taylor cycle [72], see Fig. 4.1. While this minimal description
of enzyme kinetics is common for most myosins motors [113], its association
with microscopic structural details and its relation to micro-mechanical interactions
remains a subject of debate [22, 111, 112].

In physiological literature it is usually implied that muscle contraction is to
a large degree driven by the power-stroke which is then perceived as an active
mechanism [42]. This opinion is supported by observations that both the power-
stroke and the reverse-power-stroke can be induced by ATP even in the absence of
actin filaments [112], that contractions can be significantly inhibited by antibodies
which impair lever arm activity [84], that sliding velocity in mutational myosin
forms depends on the lever arm length [117] and that the directionality can be
reversed as a result of modifications in the lever arm domain [15, 116].

A perspective that the power-stroke is the driving force of active contraction
was challenged by the suggestion that myosin catalytic domain could operate as
a Brownian ratchet, which means that it can move and produce contraction without
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assistance from the power-stroke mechanism [49, 95, 130]. In this interpretation
the contraction is driven directly by the attachment-detachment machinery which
rectifies correlated noise and selects directionality following, for instance, the
polarity of actin filaments [57, 58].

Although the simplest models of Brownian ratchets neglect the conformational
change, some phases of the attachment-detachment cycle can be interpreted as the
power-stroke when the actin potential is assumed to undergoe additional externally
driven horizontal shifts [122, 126]. Ratchet models were also proposed where the
periodic spatial landscape is supplemented by a reaction coordinate, representing
the conformational change [93, 127]. In all these models, however, the role of the
power stroke was viewed as secondary and the contraction could be generated even
if the power stroke mechanism was disabled. The main functionality of the power-
stroke mechanism would be then attributed to passive fast force recovery [2, 19, 54].

An alternative viewpoint that the power-stroke mechanism consumes chemical
energy and can be viewed as active, is the underpinning of the broadly accepted
phenomenological chemo-mechanical models [52, 88]. These models pay great
attention to structural details and in their most comprehensive versions faithfully
reproduce the main experimental observations [83, 109]. The chemo-mechanical
models, however, are not transparent mechanistically because they deal with elastic
interactions implicitly. In these models chemical states are interpreted as continuous
manifolds (parameterized by the strain) and to characterize jump processes between
the points on these manifolds the authors choose the transition rate functions phe-
nomenologically. While this functional freedom compensates the lack of knowledge
of the underlying multidimensional energy landscape, the inherent arbitrariness of
some of these choices limits the ultimate predictive power of this approach.

In an attempt to reach a synthetic description, several hybrid models, allowing
chemical states to coexist with springs and forces, have been also proposed
[26, 46, 65]. The phenomenological side of these models is minimal, however,
they still combine continuous dynamics with jump transitions which makes the
precise identification of structural prototypes and the underlying micro-mechanical
interactions challenging. In this class of models the power-stroke in an individual
cross-bridge was reproduced most faithfully by Geislinger and Kawai who intro-
duced a 2D energy landscape by coupling a bi-stable potential with a symmetric
periodic potential [43]. In this model both the attachment-detachment mechanism
and the power stroke mechanism were effectively endowed with activity, however,
the ATP hydrolysis was still represented by a flashing actin potential.

In these lecture notes we review a set of models which suggest that the
power stroke can be, at least in principle, the main driving force behind muscle
contraction. The discussed models are fully mechanistic in the sense that all
ambiguous jump processes are replaced by a fully mechanistic Langevin dynamics.
To focus exclusively on the idea of an active power stroke, driven directly by the
ATP hydrolysis, we intentionally simplify the real picture and at some point even
model actin filaments as passive non-polar tracks. The power-stroke mechanism is
represented by a symmetric bi-stable potential associated with an internal degree of
freedom and the ATP activity is modeled by a correlated component of the external
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noise. We show that even in this simple setting one can obtain a fully mechanical
interpretation of all four chemical states in the minimal Lymn–Taylor cycle which
opens a possibility of building artificial engineering devices mimicking enzymatic
activity.

We start with a discussion of the three main force generation mechanisms: motor
driven contraction, power stroke driven contraction and the model where power
stroke not only drives the process but also controls the attachment/detachment
mechanism. The idea that the symmetry breaking mechanism rests in internal
conformational transition [23, 75] is borrowed from the theory of processive motors
[24, 82, 104, 124]. Thus, in the description of dimeric motors it is usually assumed
that ATP hydrolysis induces a conformational transformation which then changes
the relative position of the motor legs ensuring motility [119]. Here we use the same
idea to describe a non-processive motor with a single leg that remains on track due
to the presence of a thick filament.

To be realistic, a model of the power stroke driven contraction must contain an
assumption that the strength of the attachment depends on the state of the power
stroke element. To justify the implied coupling, we argue that the conformational
state of the power-stroke element provides steric regulation of the distance between
the myosin head and the actin filament. More specifically, we assume that when the
lever arm swings, the interaction of the head with the binding site weakens. This and
other aspects of steric rotation-translation coupling in ratchet models are discussed
in [43, 68, 90].

The proposed framework allows for three different modes of power stroke driven
contractility which may operate simultaneously.

The first mode is activated only if correlations are present in the additive noise
as in the conventional rocking ratchets [74]. The peculiarity of our rocking ratchet
is that the periodic potential is symmetric and time independent. The correlated
component of the noise affects the bi-stable potential and, since it is also symmetric,
the directional motion is due exclusively to an asymmetry induced by the coupling
between the internal degrees of freedom and the center of mass of the motor.

The second mode does not necessitate correlations in the noise but instead
requires that the coupling between the power-stroke element and the actin filament
is hysteretic. The motor can then extract energy directly from the delay mechanism
which represents a non-equilibrium reservoir. We show that the two active mecha-
nisms, correlations-induced and hysteresis-induced, can favor motions in different
directions and can play complimentary roles.

Finally, the third mode functions if the internal forces acting between the myosin
head and the actin filament are non-potential even without being hysteretic [73, 93,
130]. This assumption introduces another active mechanism which can drive the
motor even if the environment is in equilibrium. The correlations-induced and non-
potentiality-induced mechanisms can impose opposite directionality, in particular,
they can operate in combination to slow down and even to stop the motor.

The variety of the available regimes is particularly rich when the forces are
non-potential and the coupling between the power-stroke and the actin filament
is hysteretic. The resulting ratchet shows complex reversals of current depending
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on the amplitude of the external driving and temperature. The importance of the
hysteretic coupling is revealed by the observation that only in this case the model
can reproduce all four steps of the Lymn–Taylor cycle.

In the last section of these lecture notes we show that the power-stroke-driven
active rigidity can emerge as a result of resonant nonthermal excitation of the power
stroke machinery. Building upon the idea of active drift [96] we consider a family of
stall states in a power stroke driven system parameterized by a meso-scopic measure
of total deformation. We compute the time and ensemble averaged potential at the
fixed value of the deformation parameter and interpret the deformation derivative of
this potential as an effective stiffness.

Of particular interest is the effect on active rigidity of the stochastic nature
of the nonequilibrium reservoir. We show that while in periodic or dichotomous
environments, the noise induced pseudo well exists, active stabilization disappears
if the noise is of Ornshtein–Uhlenbeck type. The sensitive dependence of the
mechanical performance of the molecular scale devices on the shape of the power
spectrum of the noise, has been previously observed in the studies of active drift
[25, 81] and here we broaden the picture by covering molecular machines generating
active rigidity. Various features captured by our minimal model of active rigidity are
in common not only with inertial stabilization [17], but also with the performance
of the Ising model in periodic magnetic field [40], the folding/unfolding of proteins
subjected to periodic forces [38] and the parametric behavior of more complex
actively driven systems [11, 20, 85].

While some of the material collected in these lecture notes is new, the main ideas
are based on the published papers [107, 108].

4.2 General Ratchet Model

Even the simplest mechanical model of a cross-bridge capable of both, the
attachment detachment and the power stroke, must involve at least two continuous
variables [52, 73, 74].

Suppose that the position of the motor head is modeled by the variable x(t),
while the variable y(t) describes the internal degree of freedom representing the
configuration of the lever-arm, see Fig 4.2a. Suppose also that the interaction
between the myosin head and the actin filament is modeled by a space periodic
potential. Finally, assume that the molecular link between the motor head and the
motor tail can be described by a bi-stable spring, see Fig 4.2b.

Using these assumptions we can now formulate the general stochastic dynamics
of a cross-bride in terms of the system of Langevin equations:

ηdX/dt = −∇G(X, t)+ σξ (t). (4.1)
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Fig. 4.2 (a) Sketch of one-legged molecular motor in pre-power stroke and post-power stroke
configurations. (b) The mechanical model

Here η is a diagonal matrix defining drift coefficients, σ is another diagonal matrix
with components

√
2ηikB" , and ξ(t) is the Gaussian random vector with zero

mean 〈ξi(t)〉 = 0, and with correlations 〈ξi(t)ξj (s)〉 = δij δ(t− s), i, j = x, y. The
terms ηidxi/dt describe frictional forces and the corresponding drag coefficients
are assumed to be constant. The function G(X, t) introduces the energy landscape
of the motor device.

The mechanical action of the ATP hydrolysis will be represented by a correlated
component of the external noise f. Suppose that such a noise can affect both, the
actin/myosin bound states and the conformational state of the lever-arm. This means
that the corresponding force can act on coordinates x and y. Writing a generic
expression for a tilted energy landscape G(X, t) we obtain

G(X, t) = G0(x, y)− xfx(t)− yfy(t). (4.2)

Here G0(x, y) = �(x)+ V (y − x) is the intrinsic energy landscape, see Fig. 4.4a,
where the bi-stable potential V (y − x) describes two conformational states of the
power stroke mechanism. We identify one energy well with the pre-power-stroke
state and another energy well with the post-power-stroke state. We also assume
that the potential �(x) has period L so what �(x + L) = �(x). The simplest
representation of the correlated noise fi(t) imitating the ATP activity is through
periodic functions with zero average (over the corresponding periods τi).

Since our goal is to develop the model with active power stroke we will not con-
sider the most general case, when the components fy(t) and fx(t) are independent.
Instead, we focus on three specific models. In ‘X model’ the rocking/tilting force
acts on the variable x,

fx(t) = f (t), fy(t) = 0; (4.3a)

this model was already introduced and studied in [76]. In ‘Y model’ the rocking
force will be acting on the variable y

fx(t) = 0, fy(t) = f (t). (4.3b)
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Fig. 4.3 (a) The surface and contour plot of the function G0(x, y). (b) The scheme illustrating
three different rocking mechanism: X-ratchet (4.3a), Y-ratchet (4.3b), XY-ratchet (4.3c)

Finally, in ‘XY model’ the rocking couple will act on the difference y − x,

fx(t) = −f (t), fy(t) = f (t). (4.3c)

In Fig. 4.3a we illustrate our two-dimensional energy landscape identifying four
different mechanical configurations A,B,A1, B1 which represent different local
minima of the energy. The schematic illustration of the three different rocking
mechanisms is shown in Fig. 4.3b.

In the X-tilted ratchet model (4.3a) the correlated force is applied to the x variable
while the power-stroke mechanism remains passive. Applying the correlated force
to the y variable in the Y-tilted ratchet model (4.3b) we make the first step in the
direction of bringing activity to the power stroke mechanism. Finally, in the XY-
tilted ratchet model (4.3c), the active force is applied directly to the y − x variable.
The non-equilibrium noise in this model is then acting directly on the internal degree
of freedom characterizing the motor mechanism.

A model closely related to XY-tilted ratchet and coupling translational and
rotational degrees of freedom was considered in [43]. The XY-tilted ratchet also
resembles some models of Kinesin where ATP acts on the internal bi-stable device
forcing two legs to move along the actin filament. In this sense the XY-tilted cross-
bridge can be viewed as a “single-leg” analog of a Kinesin motor [78] with both
mechanisms driven through the power stroke.

In these lecture notes we consider two loading devices–hard and soft, see Fig. 4.4.
In the case of hard (or, rather, mixed) device the total energy is

Gh
0(x, y) = �(x)+ V (y − x)+ 1

2
km(y − z)2, (4.4)

where Vm = 1
2km(y − z)2 is the potential of a linear spring and the variable z is

treated as a fixed external parameter, see Fig. 4.4a. In this case, it is of interest to
compute the average tension generated by such system T = km(〈y〉 − z), where the
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Fig. 4.4 (a) Soft device configuration; (b) hard device configuration

notation 〈y〉 indicates the averaging of the stochastic variable y(t) over the ensemble
and over the time. In the case of soft device the total energy is

Gs
0(x, y) = �(x)+ V (y − x)− yfext , (4.5)

where fext is an external force, see Fig. 4.4b. In this case, the parameter of interest
is the drift velocity v = limt→∞〈x(t)〉/t .

4.3 X-Tilted Ratchet

We recall that in this case the correlated noise f (t) is acting on the x variable. In
Fig. 4.5 we present a schematic illustration of the rocking axis for the corresponding
energy landscape in coordinates (y − x, x). The implied tilting biases the states
A′, B ′ during the first half of the period and the states A,B during the second half
of the period.

It will be convenient to rewrite our equations in the dimensionless
form. We use the following definitions of the non-dimensional variables:
X̃

(
t̃
) ≡ (1/a)X

(
t = τ �t̃

)
, Ṽ (x̃, ỹ) ≡ (1/(kma2))V (x = ax̃, y = aỹ), f̃ (t̃ ) ≡

(1/(kma))f (t) and ξ̃i (t̃) ≡ ξi(t)/
√
τ � Here τ � is the main time scale of the

problem τ � = ηy/km. The distance a between two minima of the potential V (y−x)

introduces the characteristic length scale, while the natural energy scale is kma
2.

The remaining nondimensional parameters are D̃ ≡ kB"/(kma
2) and α = ηy/ηx .

Below, for simplicity, we omit the tildas.
In the soft device the dimensionless system takes the form:

⎧
⎨
⎩
dx/dt =− α [∂x�(x)+ ∂xV (y − x)− f (t)] + √

2αD ξx(t),

dy/dt =− ∂yV (y − x)+ fext +
√

2D ξy(t),
(4.6)

while in the hard device we obtain
⎧
⎨
⎩
dx/dt =− α [∂x�(x)+ ∂xV (y − x)− f (t)] + √

2αD ξx(t),

dy/dt =− ∂yV (y − x)− km(y − z)+ √
2D ξy(t).

(4.7)
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Fig. 4.5 X-tilted ratchet
model: the energy landscape
with a fictive axis showing
how the rocking is applied

The Fokker–Planck equations corresponding to the normalized systems of Langevin
equations (4.6) and (4.7) take the form:

• in the soft device configuration:

∂tP
s(x, y, t) = αD∂x

[
P s(x, y, t)

D
∂xG

s(x, y, t)+ ∂xP
s(x, y, t)

]

+D∂y

[
P s(x, y, t)

D
∂yG

s(x, y, t)+ ∂yP
s(x, y, t)

]
, (4.8)

where Gs(x, y, t) = �(x)+ V (y − x)− xf (t)− yfext .
• in the hard device configuration:

∂tP
h(x, y, t) = αD∂x

[
Ph(x, y, t)

D
∂xG

h(x, y, t)+ ∂xP
h(x, y, t)

]

+D∂y

[
Ph(x, y, t)

D
∂yG

h(x, y, t)+ ∂yP
h(x, y, t)

]
, (4.9)

where Gh(x, y, t) = �(x)+ V (y − x)− xf (t)+ 1
2km(y − z)2.

In what follows, we adopt the simplest descriptions of the functions �(x),
V (y − x) and f (t). Thus, we assume that

�(x) =

⎧
⎪⎪⎨
⎪⎪⎩

�max

λ1
(x − nL), for nL ≤ x < nL+ λ1

�max

λ2
((n+ 1)L− x), for nL+ λ1 ≤ x < (n+ 1)L, n ∈ N

(4.10)

where � = λ1 − λ2 is the parameter, which controls the potential asymmetry, when
λ1 = (L + �)/2 and λ2 = (L −�)/2. The bi-stable element will be described by
a piece-wise quadratic function

V (y − x) =
⎧
⎨
⎩

1
2k0 (y − x)2 + ε0, (y − x) � l,

1
2k1 (y − x − a)2 , (y − x) � l,

(4.11)
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Fig. 4.6 The adopted simplified structure of the functions �(x),V (y − x) and f (t)

where ε0 = 1/2
(
k1(l − a)2 − k0l

2
)
. A periodic force f (t) with period τ is assumed

to be a square signal

f (t) = A(−1)n(t) with n(t) = �2t/τ , (4.12)

where brackets � denote integer part. We illustrate the functions �(x), V (y − x)

and f (t) in Fig. 4.6.

4.3.1 Typical Cycles

Soft Device We begin with a series of numerical experiments in the soft device.
We perform computations by using the standard Euler scheme with the time step
�t = 10−3 and then conduct the averaging over Nr = 103 realizations of the noise.

In Fig. 4.7a we illustrate the typical average trajectory of the X-tilted motor when
the system reaches the steady state with the average velocity vx = vy ≡ v. Our
Fig. 4.7b shows the time evolution of the system in coordinates (t, y − x). Observe
the emerging oscillations between the two wells of the bi-stable potential and note
that the motor crosses a succession of space periods, see Fig. 4.7c.

We define the cycle as a segment of the average trajectory corresponding to one
period of the driving f (t). During the cycle we associate the transition A′′ → B ′
with the release of the power stroke mechanism and the transition B → A′′ with its
recharging.

In order to make sure that during each cycle the motor performs only one
attachment-detachment step, we need to adjust our parameters. Suppose that α =
0.2 (which controls the drift along x coordinate), take L = 3, and, in order to
preserve the value of the force acting on the particle, choose �max = 4.5. In Fig. 4.8
we show the ensuing average behavior of the motor. As in the case shown in Fig. 4.7,
the system reaches the steady state with a particular value of the average velocity, see
Fig. 4.7a. The visible fluctuations can be explained by the relatively small number
of stochastic realization in this case where we took Nr = 200.
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Fig. 4.7 The behavior of the X-tilted ratchet model in soft device with fext = 0. (a) The
trajectories 〈x(t)〉 (solid black line) and 〈y(t)〉 (dashed gray line); (b) the time evolution of the
system in coordinates {t, y − x}; (c) the average trajectory in coordinates {y − x, x}. Parameters:
k0 = 1.5, k1 = 0.43, l = 0.22, a = 1, λ1 = 0.35, L = 0.5, �max = 0.75, α = 1, A = 2,
τ = 16

Fig. 4.8 The X-tilted ratchet in the soft device configuration with fext = 0. (a) The trajectories
〈x(t)〉 (solid black line) and 〈y(t)〉 (dashed gray line); (b) the time evolution of the system in
coordinates {t, y−x}; (c) the average trajectory in coordinates {y−x, x}. The red line corresponds
to f (t) = +A, blue line—to f (t) = −A. Parameters: k0 = 1.5, k1 = 0.43, l = 0.22, a =
1, λ1 = 2.4, L = 3, α = 0.2, A = 4.5, τ = 16

The ensuing X motor cycle can be presented as a combination of two steps (see
Fig. 4.9a):

• 1→2. First, because of the broken space symmetry, the motor advances in the
x direction and crosses the energy barriers associated with the maxima of the
periodic potential �(x). In the meanwhile the motor recharges the power stroke
mechanism.
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Fig. 4.9 The X-tilted ratchet model in the soft device configuration. With the solid gray lines we
show the surface contours of the energy landscape �(x)+V (y−x). (a) The simplest motor cycle.
(b) More complex motor cycle

• 2→3. As the rocking force changes its sign, the new configuration of the
energy landscape drives the motor into the backward direction along the x axis.
However, the motor is now trapped and instead of going backwards, it performs
the power-stroke. Then the motor cycle starts again.

Note that in both studied cases the detachment and re-attachment take place
simultaneously with the power stroke. Since the power stroke in this model is
passive, the advance of the motor is due exclusively to the asymmetry of the
potential V (y − x): the motor must advance along the x axis in order to ensure
the recharging of the power stroke mechanism. Note also that the ratchet must make
a sufficiently large step in the forward direction in order to recharge the power stroke
mechanism.

By varying the parameters of the model we can obtain other cycles as well. For
instance, the motor step 1 → 2 can be made longer than a simple jump between
the two nearest periods. Also, we can force the motor to move according to the
scheme 1 → 2′ → 2, shown in Fig. 4.9b. Moreover, the motor can advance few
periods along the x axis in the forward direction before accomplishing the power-
stroke 2 → 3 and can also move backward during a few periods following the path
2 → 3′ → 3. Note, however that while both motor positions, 3′ and 3, correspond to
the same energy well 0 in the bi-stable potential, they are associated with different
wells of the periodic potential.

Hard Device To study the effect of temperature we vary the parameter D while
keeping the amplitude of the nonequilibrium driving fixed at A = 6 and in Fig. 4.10
we show the average trajectories during one time period of the force f (t). With solid
lines we show the energy landscape in the positive phase and with dashed black lines
in the negative phase of rocking. We illustrate the average trajectory using different
colors depending on the phase of rocking.

We observe that the cycle get stabilized after a short transient period. At
low temperatures the response is localized around one minimum of the bi-stable
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Fig. 4.10 The X-tilted ratchet model in the hard device configuration at different values of the
temperature D and constant amplitude A = 6. The light gray lines depict a single stochastic
realization during one time period. (a) D = 0.01; (b) D = 0.065; (c) D = 0.08; (d) D = 0.3. The
other parameters are: k0 = k1 = 7, l = 0.22, a = 1, L = 2, λ1 = 1.4, �max = 5, α = 5 and
τ = 20

potential, see Fig. 4.10a. The increase of temperature allows the configurational
particle to cross the potential barriers along both y−x and x directions, in particular
it allows for a transition between the energy wells of the bi-stable potential, see
Fig. 4.10b, c. An (almost) three-state cycle is formed if the motor can displace itself
along x sufficiently far in order to be able to recharge the power stroke element. If
we increase the parameter D further, the particle makes larger jumps along the x

direction, see Fog. 4.10d. At even higher temperatures the system loses its ability to
generate force.

In Fig. 4.11 we present a schematic illustration of the attainable three-state cycle
in the hard device. After a transient stage the motor follows the following trajectory
in the clockwise direction 1 → 2 → 3 → 1 where:
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Fig. 4.11 The schematic representation of the typical X-tilted ratchet cycle in the hard device
loading configuration. The average trajectory is shown by solid black arrows

• Transition 1 → 2. The average trajectory is shown schematically by black
arrows. During the positive phase of the driving f (t), motor crosses the barrier in
the forward direction along the saw-tooth actin potential. It recharges the power
stroke element, see Fig. 4.10 (phase plotted in red).

• During the negative phase of the driving f (t) the motor makes the transition
2 → 3 → 1, see Fig. 4.10 (phase plotted in blue). The change of sign of the force
f (t) biases the transition in the backward direction along the potential �(x). At
the same time, the transition 2 → 3 takes place which we can identify with the
power stroke. After the transition 3 → 1 the motor cycle starts again.

The main characteristic feature of the X model is that the power stroke is
recharged purely mechanically, together with the advance of the motor along the
actin filament. This unavoidably combines two different steps of the Lymn–Taylor
cycle into one.

4.3.2 Force-Velocity Relations and Stochastic Energetics

Next we study the force-velocity relation for the X-tilted ratchet placed in the soft
device. In Fig. 4.12 we present our numerical results for different temperatures D
and two amplitudes of the non-equilibrium driving: A = 2.5 and A = 4.5. At
A = 2.5 and small temperature we observe the characteristic concave shape of
the force velocity curve. The area limited by the curve and the axes increases with
temperature until the maximum is reached at D = 0.1. The subsequent increase
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Fig. 4.12 Force-velocity relations for the X-tilted ratchet: (a) A = 2.5; (b) A = 4.5. The
parameters: k0 = 1.5, k1 = 0.43, l = 0.22, a = 1, L = 1, λ1 = 0.7, �max = 1.5, α = 1,
α = 1 and τ = 20

of temperature leads to the loss of the performance of the motor. The stall force,
defined in soft device as the value of force at zero average velocity, increases with
increasing temperature until the threshold value of D and decrease afterwards. At
A = 4.5 we observe that the force velocity curves become convex. With the increase
of temperature D we first approach the linear regime but then start to lose the active
performance.

We define the active work performed by the motor against the load as −fextv

which means that it is positive when the average velocity and the external force
have opposite signs. In these regimes the system is anti-dissipative, the motor uses
(instead of dissipating) the external energy and can therefore perform some useful
work, see the gray quadrants in 4.12. The predominantly passive regimes correspond
to the cases where the average velocity and the external load have the same sign.
Such systems are mostly dissipative and the energy is released rather than being
absorbed, see the white quadrants in Fig. 4.12.

In Fig. 4.13a we present the average velocity of the motor as a function of
temperature D for several values of the rocking amplitude A. At small amplitudes
the motor shows a maximum of the velocity at a finite temperature. At high
amplitudes the average velocity is a monotonically decreasing function of D which
suggests that we deal with a purely mechanical ratchet. By light green color we
identify the region with negative velocity where the motor is dragged by the cargo.
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Fig. 4.13 X-tilted ratchet in the soft device configuration, fext = −0.1. (a) The dependence of the
average velocity v on temperature D for the different values of the amplitude A. (b) The consumed
energy R. The parameters: k0 = 1.5, k1 = 0.43, l = 0.22, a = 1, L = 1, λ1 = 0.7, �max =
1.5, α = 1 and τ = 30

To study the energetics of the X-tilted ratchet we rewrite the equations of the
model in the soft device (4.6) in the form

⎧⎪⎨
⎪⎩
∂x[�(x)+ V (y − x)] − f (t) = − 1

α
dtx +

√
2D

α
ξx(t),

∂yV (y − x)− fext = −dty + √
2D ξy(t).

(4.13)

If we now multiply these equations by the vector dX in the Stratonovich
sense and use the conventional definition of the exchanged heat δQi =(−ηdtxi +√

2ηiDξi(t)
) ◦ dxi [105] we obtain

{
∂x [�(x)+ V (y − x)] ◦ dx − f (t) ◦ dx = δQx,

∂yV (y − x) ◦ dy − fext ◦ dy = δQy.
(4.14)

Using the definition G0(xt , yt ) = �(xt )+ V (yt − xt )− yfext we can rewrite these
equations in the form

{
∂xG0 ◦ dx − f (t) ◦ dx = δQx,

∂yG0 ◦ dy = δQy.
(4.15)

If we now average these equations over one time period τ , we obtain

1

τ

Xt+τ∫

Xt

dG0(Xt )− 1

τ

xt+τ∫

xt

f (t)dxt = 1

τ

Xt+τ∫

Xt

(δQx + δQy). (4.16)
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Here we can identify the input energyR = 1
τ

xt+τ∫
xt

f (t)dxt . Our Fig. 4.13b shows the

value of R for the system in a soft device as a function of D for several values of
A. One can see that with the increase of the level of thermal fluctuations the motor
needs more energy in order to preform the work. At large temperatures we observe
saturation, showing that the motor dragged by the cargo consumes energy at a fixed
rate.

If we now define the (active or passive) mechanical work

Wmec = 1

τ

Xt+τ∫

Xt

dG0(Xt ) = −1

τ

yt+τ∫

yt

fext dy = −fextvy ≡ −fextv, (4.17)

we can then write the energy balance in the form Wmec = R+Q where the heat term

is Q = 1
τ

Xt+τ∫
Xt

(δQx + δQy) [105]. For the system in the soft device, the mechanical

efficiency of the system can be defined by the expression

εmec = Wmec

R
. (4.18)

If we associate the functional work of an unloaded motor with overcoming viscous
drag WStokes = α−1v2

x + v2
y . we can also define the Stokes efficiency

εStokes = WStokes

R
. (4.19)

Finally, we can define the rectifying efficiency by combining Stokes and mechanical
efficiencies:

εrec = Wmec +WStokes

R
. (4.20)

In Fig. 4.14a we illustrate for the system in the soft device the mechanical work
as a function of D at increasing values of A. By color, we mark the region of positive
and negative mechanical work. In Fig. 4.14b we show the temperature dependence
of the mechanical efficiency. In the regime of small amplitude A we observe a
maximum of efficiency at finite temperature. With increasing amplitude A, the
maximum vanishes and the efficiency becomes a monotonically decreasing function
of D, which is the behavior characteristic for mechanical ratchets. By light green we
indicate the regime of negative efficiency, where our motor is unable to perform a
positive mechanic work against the external force and performs instead as an active
breaking mechanism. In Fig. 4.14c we plot the Stokes efficiency as a function of
D; the rectifying efficiency is shown in Fig. 4.14d. The shape of these functions
is dominated by the quadratic Stokes term, however, the cumulative efficiency can
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Fig. 4.14 X-tilted ratchet in the soft device configuration with fext = −0.1. (a) The dependence
of the mechanical work Wmec on temperature D for different amplitudes A; (b) the mechanical
efficiency εmec; (c) the stokes efficiency; (d) the rectifying efficiency. Parameters are the same as
in Fig. 4.13

have a maximum at a finite temperature also if the amplitude of the rocking is small
and the device works as a Brownian ratchet.

4.4 Y-Tilted Ratchet

The Y-tilted ratchet coupes the bi-stable potential V (y − x) with the space periodic
potential �(x). On the scheme presented in Fig. 4.15 we show again one period
of the two-dimensional energy landscape with four mechanical configurations
A,B,A′, B ′ representing local minima of the energy. The applied periodic tilting
acts along the diagonal and biases either the state B ′, during the positive phase of
rocking, or the state A, during the negative phase.
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Fig. 4.15 Y-tilted ratchet energy landscape

The dimensionless system of Langevin equation for the Y-tilted motor in the soft
device takes the form

⎧⎨
⎩
dx/dt =− α [∂x�(x)+ ∂xV (y − x)] +√

2αD ξx(t),

dy/dt =− ∂yV (y − x)+ fext + f (t)+√
2D ξy(t).

(4.21)

In the hard device we obtain
⎧
⎨
⎩
dx/dt = − α [∂x�(x)+ ∂xV (y − x)] +√

2αD ξx(t),

dy/dt = − ∂yV (y − x)− km(y − z)+ f (t)+√
2D ξy(t).

(4.22)

Here we use the same potentials as before: �(x), see (4.10), V (y − x), see (4.11)
and f (t), see (4.12). They are all schematically illustrated in Fig. 4.6.

4.4.1 Typical Cycles

Soft Device In Fig. 4.16 we show the two-dimensional representation of the motor
trajectory in the case of zero external load, fext = 0. The main new observation is
that the Y-tilted ratchet is able to generate a four-state cycle A → B → B ′ → A′.
This cycle is realistic and can be in principle directly compared with the biochemical
Lymn–Taylor cycle.

The schematic representation of such cycle is shown in Fig. 4.17. It can be
represented as a sequence of the following steps:

• 1 → 1′ → 2. We start at the end of the negative phase of the driving f (t) when
the system is in the state A. As f (t) changes the phase (to positive), the energy
switches to �(x) + V (y − x) − yA. After an immediate advance 1 → 1′, the
bi-stable element goes through the major transition 1′ → 2 which we identify
with the power stroke.

• 2 → 3. While the system remains in the positive phase of the loading f (t),
the motor makes a step along x direction from the state B to the state B ′. This
advance along the actin filament is the direct consequence of the power stroke
which is here the driving force behind the detachment and reattachment.
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Fig. 4.16 Y-tilted ratchet in the soft device configuration with fext = 0. (a) The average
trajectories /〈x(t)〉 (solid black line) and 〈y(t)〉 (dashed gray line). (b) The time evolution of the
system in coordinates {t, y − x}; (c) the average trajectory in coordinates {y − x, x}. The red lines
correspond to the positive phase of the rocking f (t) = +A, the blue lines—to the negative phase
of rocking f = −A. The parameters: k0 = 1.5, k1 = 0.43, l = 0.35, a = 1, L = 1, λ1 =
0.7, �max = 1.5, α = 1, A = 2.5, τ = 16, D = 0.06

• 3 → 3′ → 4. Now the system is in state B ′, see Fig. 4.16d. The correlated force
changes its sign and the energy landscape becomes tilted in the other direction.
Following an immediate transition 3 → 3′ the power stroke element is recharged
through the transition 3′ → 4. Because of the asymmetry of the actin potential
�(x) the coordinate x gets trapped and does not move in the backward direction.
Therefore the advance along the actin filament has taken place and the cycle can
start again.

Depending on the amplitude of the correlated noise term, the motor step 2 → 3 can
be longer or shorter. In particular, the system can jump over several periods of the
potential �(x). The length of such ‘step’ is influenced by the fine structure of the
energy landscape and also depends on the stiffness of the bi-stable spring.

Hard Device We assume that z = 0. The cycles emerging after short transients are
illustrated in Fig. 4.18.

At small temperature D = 0.01 we observe oscillations between the conforma-
tional states A and B inside the same space period of the actin potential (x = 0), see
Fig. 4.18a. This behavior can be interpreted as a power-stroke (red path) followed by
the recharging (blue path) in the attached state. The little loop around the state B is
a consequence of the distorted landscape in the hard device. We can therefore speak
here about a two-state cycle. With the increase of temperature the Brownian particle
is able to explore larger areas of the two-dimensional landscape and at D = 0.1 we
can stabilize the oscillations between the state A′ and B ′, see Fig. 4.18b. In this case
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Fig. 4.17 Y-tilted ratchet in the soft device configuration. (a) Mechanical representation of the
motor cycle. (b) Average trajectory superposed with the energy landscape in the positive (solid red
lines) and in the negative (solid blue lines) phases of the loading. (c) Schematic representation of
the major transitions associated with the power stroke element

the system reattaches to a new cite on the actin filament and stretches the spring.
As a result, the motor generates much larger average tension, however, the cycle
is still composed of only two states. By increasing the temperature further, we are
forcing the system to go through a four state cycle, see Fig. 4.18c. Interestingly,
in this regime the motor generates smaller tension then in the regime of slightly
lower temperature when the cycle consists of two states only. At even higher values
of D we still have the four-state cycle but we now occasionally encounter also
disadvantageous transitions in the backward direction, see Fig. 4.18d.
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Fig. 4.18 Y-tilted ratchet in the hard device configuration at different temperatures and constant
amplitude of non-equilibrium driving A = 6. Solid lines represent the energy landscape in the
positive and dashed lines—in the negative phase of rocking. The average motor trajectory is shown
by the thick red line during the positive and by the thick blue line during the negative phase. The
light gray lines follow the single stochastic realization during one time period: (a) D = 0.01; (b)
D = 0.1; (c) D = 0.3; (d) D = 0.8. The parameters: k0 = k1 = 7, l = 0.22, a = 1, L =
2, λ1 = 1.4, �max = 5, α = 5,km = 1 and τ = 20



4 Power-Stroke-Driven Muscle Contraction 139

Fig. 4.19 Y-tilted ratchet in the hard device configuration. With solid gray lines we show the
energy level contours in positive phases of the rocking when potential is �(x) + V (y − x) +
1/2kmy2 − yA while with dashed gray lines we show the energy level contours in the negative
phase of rocking when the potential is �(x)+V (y−x)+1/2kmy2 +yA. (a) The two-state motor
cycle, the average trajectory is shown schematically by red arrows in the positive phase and by
blue arrows in the negative phase; (b) schematic structure of the two-state cycle; (c) the four-state
motor cycle; (d) schematic structure of the four-states cycle

In Fig. 4.19 we present a more systematic comparison of the observed two-state
and four-state cycles. In the ‘two- state cycle’ we observe the following steps:

• 1 → 1′ → 2. We start at the end of the phase with the negative tilt. The system
explores the state A, see Fig. 4.19b. As the tilt switches to positive, the system
makes an immediate transition 1 → 1′. From this new configuration the system
performs the power stroke 1′ → 2. The motor then remain in the state B.
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• 2 → 2′ → 1. While the system is in the state B, see Fig. 4.19b, the correlated
noise changes sign, creating again the negative tilt of the energy landscape.
The system undergoes an immediate transition 2 → 2′. Because of the spatial
asymmetry of the actin potential the system remains trapped in the same period
of the periodic potential �(x) while the power stroke is recharged performing
the transition 2′ → 1. Then the cycle starts again.

In the ‘four-state cycle’ the steps are:

• 1 → 1′ →. We start again at the end of the negative phase of the rocking.
The system explores the state A. As the noise term f (t) changes the value from
negative to positive, the system makes an immediate transition 1 → 1′, see
Fig. 4.19d. From this new configuration the system performs the power stroke
1′ → 2.

• 2 → 3. While in the positive phase of f (t), the system makes a jump into the
next nearest well in the positive x direction which is the consequence of the
power stroke.

• 3 → 3′ → 4. The system is now in the state 3 and the corresponding energy well
is B ′, see Fig. 4.19d. The correlated noise term changes the sign and the system
undergoes a transition 3 → 3′. Then the instability causes the particle to perform
the transition 3′ → 4, which we interpret as the recharging of the power stroke
mechanism.

• 4 → 1. From the state A′ the motor jumps in backward direction making the
transition 4 → 1. The system returns into the initial state and the cycle can start
again.

To summarize, in the two-state regime the system is residing in a distant, force
generating well of the periodic potential while performing periodic oscillations
between the two conformational states of the power stroke element. The level of
the generate force is high because the cross bridge is firmly attached throughout the
cycle. In the four-state regime, the system is periodically reaching the distant well of
the periodic potential but remains there only for a limited time before returning back
to the original attachment site. In this regime the average force is smaller, however
the mechanical cycle is closer to its biochemical analog.

4.4.2 Force-Velocity Relations and Stochastic Energetics

In Fig. 4.20a we show the force-velocity relation at different temperatures D and
fixed amplitude of rocking A = 2.5. Observe that it is mostly convex at this level
of driving. With the increase of temperature the system generates smaller average
velocity at zero load and is characterized by smaller stall force. These trends were
similar in the case of X-tilted ratchet, see Fig. 4.12. In Fig. 4.20b we show how the
force-velocity relation changes when we vary the amplitude of rocking A at the
fixed temperature D = 0.01. We obtain concave force-velocity relations at small
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Fig. 4.20 Force velocity relations for the Y-tilted ratchet: (a) temperature dependence at A = 2.5;
(b) non-equilibrium noise amplitude dependence at the temperature D = 0.01

Fig. 4.21 Y-tilted ratchet in the soft device configuration working against the load fext = −0.1:
(a) temperature dependence of the drift velocity at different values of A; (b) Consumed energy R

dependence on temperature D at different values of A. The parameters k0 = 1.5, k1 = 0.43, l =
0.22, a = 1, L = 1, λ1 = 0.7, �max = 1.5, α = 1 and τ = 60

amplitude of the driving where we expect that the system to work as a thermal
ratchet but then recover the convexity in the interval 1.5 < A ≤ 3.

In Fig. 4.21a we show the average velocity as a function of temperature at dif-
ferent values of the amplitude A. For small amplitudes (thermal ratchet regime) the
motor exhibits a maximum of velocity at finite temperature. At higher amplitudes A
(mechanical ratchet) the average velocity decreases monotonically with D. Overall
the Y-tilted model is generating smaller average velocities than the X-tilted model
at the same values of parameters.
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Fig. 4.22 Y-tilted ratchet in the soft device working against the load fext = −0.1. Temperature
dependence at different values of A: (a) the mechanic work Wmec; (b) the mechanic efficiency; (c)
the Stokes efficiency; (d) the rectifying efficiency. The parameters are the same as in Fig. 4.21

In Fig. 4.21b we show the consumed energy R as a function of D and use the
same range of amplitudes A. As the temperature increases, the motor consumes
more and more energy in order to preform useful work. We also again observe a
saturation at high temperatures meaning that there is a limit of how much thermal
energy the motor can rectify.

Finally, in Fig. 4.22 we show the temperature dependence of the various measures
of efficiency at increasing values ofA. The qualitative behavior of all these functions
is basically the same as in the case of X-tilted ratchet.
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Fig. 4.23 XY-tilted ratchet:
the effective tilting of the
energy landscape

4.5 XY-Tilted Ratchet

In the XY-tilted ratchet the correlated force f (t) acts on the combination of variables
y − x, which can be identified with an internal strain inside the bi-stable element.
This means that the rocking force affects the power stroke mechanism directly
instead of implicitly modifying the internal state of this device through other
external degrees of freedom. In Fig. 4.23 we illustrate the mechanical action of the
rocking force on the two dimensional energy landscape: note that the ATP activity
is now fully decoupled from the actin filament.

In the non-dimensional variables the main system of equations describing the
activity of the XY-tilted ratchet in the case of soft device takes the form

⎧⎨
⎩
dx/dt =− α [∂x�(x)+ ∂xV (y − x)+ f (t)] +√

2αD ξx(t),

dy/dt =− ∂yV (y − x)+ fext + f (t)+ √
2D ξy(t).

(4.23)

In the case of hard device we obtain
⎧
⎨
⎩
dx/dt =− α [∂x�(x)+ ∂xV (y − x)+ f (t)] +√

2αD ξx(t),

dy/dt =− ∂yV (y − x)− km(y − z)+ f (t)+ √
2D ξy(t).

(4.24)

In the corresponding Fokker–Planck equations (4.8) and (4.9) we must use the
potential Gs(x, y, t) = �(x) + V (y − x) − (y − x)f (t) − yfext in the case of
the soft device and Gh(x, y, t) = �(x)+V (y−x)− (y−x)f (t)+ 1

2km(y− z)2 in
the case of the hard device. In our numerical experiments we used the same choices
for the functions �(x), see (4.10), V (y − x), see (4.11) and f (t), see (4.12) as in
the previous sections, see Fig. 4.6.

Before turning to the structure of the generated cycles we remark that a
conceptually similar approach was used before to describe Kinesin modeled as two
coupled rocking ratchets which move along the same periodic potential [78]. The
corresponding system of over-damped Langevin equation can be written ass:

⎧
⎨
⎩
dx/dt =− ∂x�(x)− ∂xV (x − y)− f (t)+√

2D ξx(t),

dy/dt =− ∂y�(y)− ∂yV (x − y)+ f (t)+√
2D ξy(t),

(4.25)
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Fig. 4.24 Kinesin-type molecular motors: (a) ratchet concept developed in [79]; (b) ratchet
concept developed in [78]; (c) ratchet concept developed here, XY-tilted ratchet

where �(x) and �(y) are two identical ratchet potentials, V (x − y) is the bistable
potential describing the interaction between the two legs of the Kinesin motor,
whose positions are given by coordinates x and y. Note that here, as in our model,
the time periodic rocking acts on the coordinate x − y, which indicates the implicit
activity of the bistable element, see Fig. 4.24. In contrast to such ‘two-leg’ designs
describing processive motors, our ‘one-leg’ design concerns non-processive motors.

4.5.1 Motor Cycles

Soft Device In Fig. 4.25 we show the averaged trajectory of the XY-tilted ratchet
exposed to a rocking force with amplitude A = 0.6 and simultaneously subjected to
a thermal noise with D = 0.02. The system follows a three-state cycle: it performs a
power-stroke while being attached to one particular state on the periodic landscape
and then moves in the forward direction along this landscape, while recharging
the power-stroke mechanism. The change of sign of the tilting force f (t) both
re-activates the power-stroke mechanism and causes the directional motion of the
motor. The amplitude of the tilting strongly influences the shape of the energy
landscape, in particular, in each phase, positive and negative, the intrinsic bi-stability
of the potential in the y − x direction may be either preserved or not. In Fig. 4.26
we schematically show the states visited by the motor during one cycle:

• 1 → 1′ → 2. We start the cycle at the very end of the negative phase of the
rocking, see Fig. 4.26 when the system explores the state A. As the force f (t)

changes from negative to positive, the energy becomes�(x)+V (y−x)−(y−x)A

and the particle makes a transition 1 → 1′. During the positive phase of the
rocking the system undergoes the transition 1′ → 2 which we identify with the
power stroke.
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Fig. 4.25 XY-tilted ratchet in the soft device configuration with fext = 0: (a) Trajectories 〈x(t)〉
(solid black line) and 〈y(t)〉 (dashed gray line); (b) time evolution of the system in coordinates
{t, y−x}; (c) average trajectory in coordinates {y−x, x}; red line correspond to the rocking phase
f (t) = +A, blue lines—to the phase f = −A. The parameters k0 = 1.5, k1 = 0.43, l =
0.35, a = 1, λ1 = 0.35, L = 0.5, �max = 1, α = 1 and τ = 16

• 2 → 3′ → 3. We are now in state 2 corresponding to the state B, see Fig. 4.25.
The rocking force changes the sign and the energy becomes �(x)+ V (y − x)+
(y − x)A. The system makes the step 2 → 3′, and since the bistable potential
is now biased, the motor performs an additional transition 3′ → 3, finalizing the
recharging of the power stroke element. Because of the spatial asymmetry of the
periodic potential the attachment site does not change during such recharging.
Then the cycle starts again.

Note that the motor advance and the recharging of the power stroke take place
simultaneously. Those are the two stages where the external energy supply is
necessary and they cannot be separated in this setting.

Hard Device We fix the total displacement at z = 0 and show in Fig. 4.27 the
simplest motor cycles. At low temperatures the system moves only between the
states A and B. This means that the cross bridge is attached to a particular site of
the actin potential while performing random work between two configurations of
the power stroke element. With the increase of temperature D the motor eventually
crosses the energy barrier (detaches) and then stabilizes (attaches) in the next site
on the actin filament. In this new attached position the motor continues to perform
the transitions between state A′ and state B ′, see Fig. 4.27b. Observe that now the
attachment site is distant from the reference position, the spring is stretched and the
motors shows higher levels of tension comparing to the cycle shown in Fig. 4.27a.
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Fig. 4.26 Schematic cycle of the XY-tilted ratchet in the soft device configuration: (a) mechanical
representation of the motor cycle; (b) averaged trajectory; (c) the cycle showing the energy changes
associated with different moves of the system in the space ((y − x), x)

By increasing the temperature and the amplitude of rocking further, we force
the motor to visit more sites on the energy landscape. Thus in Fig. 4.27c the motor
periodically changes the attachment site: the cycle is performed between the state
A′ and the state B, corresponding to different attachment sites along the potential
�(x). In this regime the motor is able to generate the highest level of average
tension. We see first motor detachment and advance, accompanied by the recharging
of the power stroke element, and then the power stroke combined with re-attachment
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Fig. 4.27 XY-tilted ratchet model in the hard device configuration with z = 0. The dependence
of the motor cycle on the temperature D and the rocking amplitude A: (a) D = 0.01, A = 2.4;
(b) D = 0.065, A = 2.4; (c) D = 0.08, A = 4; (d) D = 0.1, A = 4. The parameters
k0 = 1.5, k1 = 0.43, l = 0.35, a = 1, λ1 = 0.7, L = 1, �max = 1.5, α = 1 and τ = 10
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Fig. 4.28 XY-tilted ratchet model in the hard device configuration: (a) D = 0.2, A = 2.4; (b)
D = 0.4; A = 4. Other parameters are the same as in Fig. 4.27

bringing the system to the original site. Once again, the two biochemical steps
appear coupled in this mechanical setting. The slanted two-state cycle is preserved
also at higher values of D, see Fig. 4.27d. The fine structure of the cycle, however,
is now a bit different because higher level of noise stimulates additional spurious
transitions inside the landscape. At even larger temperature the device progressively
looses its ability to rectify thermal fluctuations. In particular, at sufficiently high
temperatures the motor changes the direction in which the motor cycle is performed.
Thus, in Fig. 4.28a, b the cycle is performed in the direction opposite to what we
have seen in Fig. 4.27.

To summarize, we now present the schematic structure of the simplest two-state
hard device cycle shown in Fig. 4.29.

• 1 → 1′ → 2. We start at the end of the negative phase of the rocking when
the system explores the state A. Then the force f changes sign and the system
makes the transition 1 → 1′. During the positive phase of the rocking the particle
performs the transition 1′ → 2, which we associate with the power stroke.

• 2 → 2′ → 1. We are now in the state B. The rocking force changes sign and
the system makes the transition 2 → 2′. Because of the spatial asymmetry of the
periodic potential, the system remains trapped in the ‘distant minimum’ of �(x)
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Fig. 4.29 Schematic representation of the XY-tilted ratchet cycle in the hard device corresponding
to the trajectory shown in Fig. 4.27a: (a) two-state motor cycle; (b) energetics of the two-state cycle

Fig. 4.30 Schematic representation of the XY-tilted ratchet cycle in the hard device corresponding
to the trajectory shown in Fig. 4.27d: (a) ‘slanted’ two-state motor cycle; (b) energetics of the
‘slanted’ two-state cycle

while performing the transition 2′ → 1, which we interpret as the recharging of
the power stroke. Then the cycle can start again.

In Fig. 4.30 we similarly illustrate the (low temperature) ‘slanted’ two-state cycle
corresponding to what we have seen in Fig. 4.27d. Formally, the motor visits only
two sites corresponding to the stable states A′ and B ′, see Fig. 4.30a. However,
because of the peculiar shape of the cycle we can distinguish two additional
intermediate states marked as 1′ and 2′. With these additional states taken into
consideration we can interpret the ensuing periodic trajectory as the following four-
states cycle:

• 1 → 2′ → 2. We start again at the end of the negative phase of the rocking when
the system explores the state A′. Then the force f changes its sign from negative
to positive and the system makes a transition 1 → 2′ ‘moving back’ along the
x coordinate. During the positive phase of the rocking the system performs an
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additional transition 2′ → 2 and finds itself in the state B. We interpret the
transition 2′ → 2 as the power stroke.

• 2 → 1′ → 1. We now are in the state 2, point B. The correlated force changes its
sign again, from positive to negative. The system detaches and makes a ‘forward
jump’ to the next site along the actin filament performing the transition 2 → 1′.
Subsequently the particle continues with the transition 1′ → 1 which we interpret
as the recharging of the power stroke mechanism. Then, the cycle can start again.

4.5.2 Force-Velocity Relations and Stochastic Energetics

In Fig. 4.31a we show the effect of temperature at low amplitudes of rocking
A = 2.5 on the force velocity relations for a XY-tilted ratchet. At zero temperature
the system exhibits purely mechanical behavior without any ‘anti-dissipation’ (no
entrance into the white quadrants). The growth of temperature D increases the area
between the force-velocity curve and the axes in the domain of anti-dissipative
behavior. We observe the pronounced concave character of the force-velocity
relations at sufficiently low temperatures. After the threshold in D the concavity
progressively vanishes and the profile becomes linear, while the motor loses its
ability to carry the cargo. In Fig. 4.31b we illustrate the dependence of the force-
velocity relation on A at fixed D = 0.02. At small amplitudes of rocking the motor
follows closely the external force fext and does not perform useful mechanical work.

Fig. 4.31 The XY-tilted ratchet in soft device configuration: (a) dependence of the force-velocity
relation on temperature D at the fixed A = 2.5; (b) dependence of the force-velocity relation on A

at the fixed temperature D = 0.02. Parameters are the same as in Fig. 4.27
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Fig. 4.32 XY-tilted ratchet in the soft device configuration working against the fixed load fext =
−0.1. (a) the mechanical work Wmec; (b) the mechanical efficiency; (c) the Stokes efficiency; (d)
the rectifying efficiency. Parameters are the same as in Fig. 4.27

Only after a certain threshold in amplitude the motor starts to generate active drift
against the load.

In Fig. 4.32a we show the mechanical work as a function of D at different
amplitudes of the rocking amplitude A. We observe two regimes: with positive
and with negative mechanic work. In Fig. 4.32b we present the mechanical effi-
ciency. At small amplitudes A we observe a maximum of the efficiency at finite
temperature. With increasing A the maximum vanishes and the efficiency becomes
a monotonically decreasing function of D, as one can expect in a purely mechanic
ratchet. By light green color we indicated the regimes with the negative efficiency,
where dissipation prevails. In Fig. 4.32c we present the Stokes efficiency as a
function of D. We observe maxima on the efficiency vs D curve corresponding
to finite temperatures and low rocking amplitudes regimes and also see that in
some regimes the Stokes efficiency may increase with temperature. The rectifying
efficiency is shown in Fig. 4.32d. Once again, at small amplitudes of rocking we see
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thermal ratchet behavior with a maximum of efficiency at finite temperature while
at high rocking amplitudes we see the mechanical ratchet behavior with efficiency
decreasing with temperature.

4.6 Comparison of the Three Models

We introduced above three minimal mechanistic models which all describe muscle
contraction in terms of Langevin dynamics of a mechanical system. By localizing
the mechanical effects of the ATP-related activity on a single internal degree of
freedom, we could study separately the possibilities that actin filament is active
(X model), that the coupling between the attachment/detachment and the power
stroke elements is active (Y model) and that the power stroke element itself is
active (XY model). Now we chose a single set of parameters and compare directly
the resulting force-velocity relations and the efficiencies of the associated energy
transduction mechanisms. To allow such a comparison we continue to use the
simplest descriptions of the functions �(x), V (y − x) and f (t) shown in Fig. 4.6.

To produce a realistic description of muscle contraction we use the time scale
t� = ηy/km ∼ 0.2 ms where ηy ∼ 0.38 ms · pN/nm is the micro-scale viscosity
[19] and where km ∼ 2 pN/nm is the stiffness of the elastic part of the myosin
motor [7, 67]. The spatial scale is then l� = a where a ∼ 10 nm is the distance
between two minima of the pre and post power stroke wells [69]. Then the energy
scale is ε� = kma

2 ∼ 200 pN · nm. We assume that D = kB"/(kma
2) ∼

0.02 where kB = 4.10 pN · nm is the Boltzmann constant, " ∼ 300 K is the
ambient temperature, and a = 10 nm is the characteristic size of a motor power-
stroke [69]. For the active driving we obtain τ = τAT P /(η/km) ∼ 100 where
τAT P = 40 ms is the characteristic time of ATP hydrolysis [53]. We can now write
A = √

�μ/(kma2) ≈ 1 where �μ = 20kB" is the typical value of degree of
non-equilibrium in terms of the affinity of ATP hydrolysis reaction [53]. Finally
we assume that the non-dimensional parameters of the bi-stable potential take the
values [19]: k0 = 1.5, k1 = 0.43, l = 0.35, a = 1. The space periodic potential
is characterized by the parameters λ1 = 0.7, L = 1, �max = 1.5 and in most
illustrations we suppose for simplicity that α = 1.

4.6.1 Soft Device

In Fig. 4.33 we compare the drift velocities generated by X,Y and XY -tilted
ratchets in the soft device. The common feature of all three systems is that they
exhibit the phenomenon of stochastic resonance: the average velocity is maximized
at a particular value of temperature. At large temperatures all three systems
progressively lose the capacity to rectify thermal fluctuations. In the regimes with
high amplitude of the rocking the stochastic resonance disappears and the average
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Fig. 4.33 The performance of different motors in soft device conditions with fext = 0. Average
velocity v as a function of temperature D at different values of the amplitude A for X ratchet (a),
Y ratchet (b), XY ratchet (c). Here the correlation time τ = 30
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Fig. 4.34 (a) The dependence of the average velocity on the correlation time τ at A = 3 and
D = 0.08. The variation of the average velocity with temperature D for X-ratchet (b), Y-ratchet
(c) and XY-ratchet (d). Here α = 1

velocity becomes a monotonically decreasing function of D. This is an indication
that in all three cases the nature of the ratchet changes from Brownian to purely
mechanical. Observe also that at α = 10 (in the right column of Fig. 4.33) all three
motors change their direction of the motion because of an additional asymmetry in
the system which competes with polarity of the actin filament.

In Fig. 4.34 we compare the average velocities in the three models at different
values of the correlation time τ characterizing the driving f (t). In the case of X
ratchet, Fig. 4.34a, the influence of τ is minimal. This suggests that for small and
moderate amplitudes of rocking, the ratchet behavior can be well approximated by
the effective model with adiababtically eliminated fast variable y. The Y ratchet
is operational over a broad interval of the periods τ . Instead, the XY ratchet is
functional only for sufficiently small values of τ . In Fig. 4.35, we compare the
dependence of the average velocity v on temperature D at several values of the
rocking amplitude A.

In Fig. 4.36 in the left column we compare the average trajectories for X, Y and
XY ratchets at the pointsϕ,ψ andμmarked in Fig. 4.33. As before, we use red color
to identify the part of the cycle associated with the positive phase of the rocking, and
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Fig. 4.35 The dependence of the average velocity v on temperature D at fext = −0.1; X ratchet
(a); Y ratchet (b); XY ratchet (c). The parameters: α = 1 and τ = 30

blue color for the path associated with the negative phase. The dotted line shows the
boundary between left and right wells of the bi-stable potential and we associate its
crossing with either release or re-cocking of the power stroke mechanism.

For the X-tilted ratchet shown in Fig. 4.36a we obtain a three-state cycle, where
the detachment and the re-attachment take place simultaneously with the recharge
of the power stroke. For the Y-tilted ratchet shown in Fig. 4.36b we obtain a four
-state cycle. Note that here, the motor releases and recharges the power-stroke
mechanism actively, moreover without the power-stroke activity the motor won’t be
able to move. Finally, for the XY -tilted ratchet shown in Fig. 4.36c we again obtain
a three-state cycle. First, it performs a power-stroke while being attached to one
particular site on the periodic landscape �(x) and after that it moves forward along
the potential �(x), while in same time recharging the power-stroke mechanism.
Here again the motor advance and the recharging of the power stroke take place
simultaneously.

In Fig. 4.37 we compare the force velocity relations at different temperatures D
and fixed rocking amplitude A = 2.5. At zero temperature all three systems exhibit
purely mechanical depinning behavior without showing any “anti-dissipation”. At
finite temperatures we obtain the concave force-velocity relations in agreement with
experimental observations [62, 87, 125]. After the threshold D ≈ 0.1 the force
velocity relations becomes almost linear and eventually the motors lose their ability
to carry cargo. The XY-tilted ratchet shows the highest stall force value among the
three type of devices.

4.6.2 Hard Device

In Fig. 4.38 we compare the average tension generated by the motors in the hard
device at different temperatures D and rocking amplitudes amplitude A. The active
tension is optimized at a finite value of D for all configurations given that the
amplitude of the correlated noise is sufficiently low.
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Fig. 4.36 Typical trajectories of the three motors in the soft device with fext = 0: (a) X-tilted
ratchet; (b) Y-tilted ratchet; (c) XY-tilted ratchet. The parameters: α = 1 and τ = 30

At low temperatures and low amplitudes of rocking the X-tilted ratchet generates
small tension because the energy transmitted to the motor is not sufficient to
activate the bi-stable element. The Y-tilted ratchet shows the plateau regimes,
where the system acts as simple mechanical bi-stable element. The XY-tilted
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Fig. 4.37 Comparison of the force-velocity relations at fixed A = 1.5 for: X ratchet (a), Y ratchet
(b), XY ratchet (c). The parameters: α = 1 and τ = 30

Fig. 4.38 The dependence of the average tension T on temperature D for: X-tilted ratchet (a), Y-
tilted ratchet (b) and XY -tilted ratchet (c). The parameters k0 = 1.5, k1 = 0.43, l = 0.35, L =
1, λ1 = 0.7, �max = 1.5,τ = 30, α = 1, km = 1 and z = 0. Under these conditions the averaged
tension T is equal to 〈〈y〉〉

ratchet demonstrates a hybrid behavior exhibiting the temperature and the amplitude
thresholds whose crossing allows the motor to form a cycle. Such regime takes
advantage of both, the thermal fluctuations and the correlated noise.

The structure of the motor cycle—the sequence of visited energy minima during
different stages of the rocking—is the unique signature of each device. The most
interesting motor cycles generated at z = 0 in each of our three devices are presented
in Fig. 4.39. Again, the average motor trajectory is plotted by red during the positive
and in blue line during the negative phase of the rocking. The light gray trajectories
show single stochastic realizations. The corresponding tension curves are shown in
Fig. 4.40.

As we have already seen, in the hard device, the X-tilted is trapped in a single
energy well of the double well potential and the power stroke element does not
contribute to force generation. We can force the X-tilted ratchet to visit both minima
of the double well potential if we use somewhat less realistic parameters, k0 =
7, k1 = 7, l = 0.22, L = 2, λ = 1.4, �max = 5 and α = 5. Such cycle
is formed only when the motor makes sufficiently large steps along the coordinate
x and can therefore recharge the power stroke element. After a transient stage, an
X-tilted ratchet with these parameters performs the cycle in the clockwise direction:
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Fig. 4.39 The most complex motor cycles in hard device at z = 0: (a) X ratchet, (b) Y ratchet, (c)
XY ratchet. The parameters k0 = 7, k1 = 7, l = 0.22, L = 2, λ = 1.4, �max = 5, τ = 20,
α = 5
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Fig. 4.40 Average tension T versus temperature D in: X ratchet (a), Y rathet (b) and XY ratchet
(c). The parameters are the same as in figure above

1 → 2. Due to the broken space symmetry, the motor advances in the x direction and
crosses the energy barrier along the periodic potential �(x). In the meanwhile the
motor recharges the power stroke element (performs the transition from the lower
energy well B to the higher energy well A1 in the bistable potential). During the
next step 2 → 3, as the rocking force changes its sign, the new configuration of
the energy landscape forces the motor into backward direction along the x axis.
However, the motor is now trapped and instead of going backwards, it performs the
power-stroke. Then the motor cycle starts again.

Consider now the Y-tilted ratchet. If we choose parameters as in the case of
X-ratchet above we obtain the four-state cycle shown in Fig. 4.39b. The system
reattached and jumps to a new cite on the actin filament while stretching the bi-
stable spring. This behavior can be interpreted as a power-stroke (red path) followed
by the recharging (blue path) in the attached state. The motor first goes through
mechanical configurations A,B and then through the configurations B1, A1. In the
ensuing four-state cycle the stages are: the transition 1′ → 2 is the power stroke,
then, as the motor makes a jump into the next nearest well along the actin filament
(in the positive x direction) the rocking force changes sign forcing the recharging of
the power stroke mechanism, 3′ → 4.

Note that in the corresponding two-state cycle obtained in the section on Y-tilted
ratchets, the system was residing in a distant, force generating well of the periodic
potential while performing periodic oscillations between the two conformational
states of the power stroke element. The level of the generate force was high because
the cross bridge was firmly attached throughout the cycle. In the four-state regime
studied here, the system is periodically reaching the distant well of the periodic
potential as well, but remains there only for a limited time before returning back to
the original attachment site. In such regimes the average force is necessarily smaller.

Our Fig. 4.39c shows the typical cycle exhibited by the XY ratchet in the hard
device. The motor periodically changes the attachment site: the cycle is performed
between the state A1 and the state A,B, corresponding to different attachment sites
along the actin filament. In this regime the motor is able to generate the highest level
of average tension. The three- state cycle can be interpreted as follows: first motor
detachment and advance accompanied by the recharging of the power stroke device
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and then the power stroke combined with re-attachment brings the system into the
original site.

4.6.3 Stochastic Energetics

We now apply to all devices the same conservative load fext = −0.1. In Fig. 4.41a
we illustrate the temperature dependence of the mechanical efficiency for the X-
tilted ratchet. In the regime of small amplitudes A we observe a maximum at finite
temperature. The negative values of efficiency indicate the regimes where the motor
is unable to perform a positive mechanic work against the external force and works
instead as an active breaking mechanism. The Stokes efficiency, also shown in
Fig. 4.41a, is always positive by definition.

We illustrate the efficiency of the Y-ratchet in Fig. 4.41b. Overall this ratchet is
less efficient when the X ratchet. We can explain this difference by the design of
the active mechanism: the metabolic energy is taken by the bi-stable element and
therefore only partially consumed by the forward steps long the x direction.

Finally, the performance of the XY tilted ratchet is illustrated in Fig. 4.41c. At
small amplitudes A we again observe a maximum of the mechanical efficiency
at finite temperature. Interestingly, we find the XY device is the least efficient
among all. One problem with our XY-tilted ratchet model is that it still interprets
ambiguously the detached state which is present only implicitly. To deal with this
conceptual problem we consider in the next section a more sophisticated model of
the XY-tilted ratchet where we also take into consideration the explicit feedback
between the state of the power stroke element and the degree of interaction between
the myosin heads and the actin filament.

4.7 XY-Tilted Ratchet with a Steric Feedback

In this section we argue that the conformational state of the power-stroke element
can provide steric regulation of the distance between the myosin head and the
actin filament. More specifically, we assume that when the lever arm swings, the
interaction of the head with the binding site weakens, see Fig. 4.42a. This and other
aspects of steric rotation-translation coupling in ratchet models have been previously
discussed in [43, 68, 90].

A schematic representation of the proposed model is shown in Fig. 4.42b,
where x is the observable position of a myosin head, y is the internal variable
characterizing the phase configuration of the power stroke element and z is another
internal variable responsible for the coupling. The “macroscopic” variable x sees
a symmetric energy landscape and is not directly affected by the ATP hydrolysis.
Both asymmetry and driving can then originate only from the coupling between the
external and the internal degrees of freedom.



4 Power-Stroke-Driven Muscle Contraction 161

Fig. 4.41 Comparison of the efficiency in the three models loaded in the soft device with fext =
−0.1; (a) X ratchet. (b) Y ratchet. (c) XY ratchet. The parameters k0 = 1.5, k1 = 0.43, l =
0.3, L = 1, λ1 = 0.7, Vmax = 1.5, α = 1, τ = 30
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Fig. 4.42 (a) An illustration of the steric effect associated with the power-stroke; (b) sketch of the
mechanical model

4.7.1 The Model

We identify the external degree of freedom with the variable x representing the
location of actin binding face on the actin filament. We recall that the natural internal
degree of freedom, describing the configurational state of the power-stroke element,
is y−x, where the variable y was defined in the Introduction. By adding the second
internal variable z, characterizing the separation of the myosin head and the actin
filament, we attempt to capture the higher-dimensional effects of detachment in the
simplest 1D setting.

The role of different variables is clear from the way we write the energy of the
system

Ĝ(x, y, z) = z�(x)+ V (y − x), (4.26)

where �(x) is a non-polar periodic potential representing the binding strength of
the actin filament and V (y − x) is a double-well potential describing the power-
stroke element. The two-well structure of the potential implies that the power-stroke
mechanism can be either folded into the post-power-stroke state or unfolded into the
pre-power-stroke state. For simplicity, we assume that the two wells of the potential
V (y − x) are symmetric which eliminates a redundant polarity.

The coupling between the state of the power-stroke element y − x and the
spatial position of the motor x is implemented through the internal variable z. In
the simplest version of the model z is assumed to be a function of the state of the
power-stroke element

z(x, y) = �(y − x). (4.27)

This function must have a particular structure in order to mimic the underlying steric
interaction, see Fig. 4.43. We assume that when a myosin head executes the power-
stroke it moves away from the actin filament and therefore the control function
�(y − x) should progressively switch off the actin potential. Similarly, when the
power-stroke is recharging the myosin head moves closer to the actin filament and
the function �(y − x) should bring the actin potential back into on configuration.
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Fig. 4.43 The coupling function �(y − x) linking the degree of attachment z with the state of the
power-stroke element y − x

Fig. 4.44 The energy landscapes: Ĝ(x, y, 1), describing the attached state where �(y − x) = 1,
and Ĝ(x, y, 0), describing the detached state, where �(y − x) = 0

We observe that since the double-well potential V (y − x) is fully symmetric,
the assignment of the wells to pre- or post-power-stroke states is arbitrary. Had we
decided to invert the choice presented in Fig. 4.43 by relabeling the energy wells,
we would have to replace �(s) by �(−s). As we see later in the paper, such switch
results in a simple reversal of the directionality of the motion.

By using the coupling (4.27) we can simply eliminate the variable z and introduce
the redressed potential

G(x, y) = Ĝ(x, y,�(y − x)). (4.28)

As it tracks the state of the power-stroke element the potential G(x, y) effectively
“flashes” between the periodic and flat (in x) configurations, see Fig. 4.44. However,
in contrast to conventional flashing ratchets, the switch here is not imposed from
outside but results from the coupling with a fluctuating internal variable.

The overdamped stochastic dynamics of the system with energy (4.28) is
described by the following 2D system of (dimensionless) Langevin equations

⎧
⎨
⎩
dx/dt =− ∂xG(x, y)− f (t)+√

2Dξx(t),

dy/dt =− ∂yG(x, y)+ f (t)+√
2Dξy(t).

(4.29)
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Here ξ(t) is a conventional white noise with 〈ξi (t)〉 = 0, and 〈ξi(t)ξj (s)〉 = δij δ(t−
s). The parameter D = kBθ/E is a dimensionless measure of temperature θ and kB
is the Boltzmann constant; for simplicity the viscosity coefficients are assumed to be
the same for variables x and y. The force couple f (t) with zero average represents
a correlated component of the noise and characterizes mechanistically the degree of
non-equilibrium in the external reservoir (the abundance of ATP).

We can say that the system (4.29) describes the power-stroke-driven ratchet
because the correlated noise f (t) acts on the relative displacement y − x. It
effectively “rocks” the bi-stable potential and the control function�(y−x) converts
such “rocking” into the “flashing” of the periodic potential �(x). Various other
types of rocked-pulsated ratchet models have been previously studied in [99, 102].

The goal of any ratchet design is to generate a systematic drift v =
limt→∞〈x(t)〉/t without applying a biasing force. This is possible in the model
governed by Eq. (4.29) because of an implicit symmetry breaking imposed by the
control function (4.27).

To justify this claim, let us for simplicity set f (t) = 0 and rewrite (4.29) in
the variables representing the position of the center of mass q = (x + y)/2 and the
power-stroke configuration r = y−x, which is a conventional step in such problems
[32]. The new potential is

G(q, r) = �(r)�(q − r/2)+ V (r),

and if we recall that the equilibration of the variable r takes place at much faster
time scale than the overall drift, we can adiabatically eliminate it and obtain a one
dimensional stochastic system with an effective periodic potential

Geff (q) ∼ ln

[∫ ∞

−∞
exp (−G(q, r)/D)dr

]
.

In the absence of the feedback �(s) = 0 this potential is symmetric Geff (q) =
Geff (−q) because �(s) = �(−s) and V (s) = V (−s). When �(s) �= �(−s),
it loses symmetry because pre- and post-power-stroke configurations are no longer
equivalent. It is also clear that by reverting the control function �(s) → �(−s), we
change the directionality of the average motion, see Fig. 4.48 below.

To understand the dependence of the average velocity on the parameters of the
model, we studied the system (4.29) numerically. In our computational illustrations
we use again a periodic extension of the symmetric triangular potential �(x) with
amplitude �max and period L, see Fig. 4.42a

�(x) =

⎧
⎪⎪⎨
⎪⎪⎩

2�max

L
x if 0 ≤ x < L/2,

2�max

L
(L− x) if L/2 ≤ x < L.
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The symmetric potential V (y − x) is assumed to be bi-quadratic with the same
stiffness k in both phases. The distance between the bottoms of the wells is denoted
by a, see Fig. 4.42b, so

V (y − x) =

⎧
⎪⎪⎨
⎪⎪⎩

1

2
k (y − x + a/2)2 if y − x < 0,

1

2
k (y − x − a/2)2 if y − x � 0.

The correlated component of the noise f (t) is again interpreted as the simplest
ac driving described by a periodic extension of a rectangular shaped function with
amplitude A and period τ

f (t) = A(−1)n(t) with n(t) = �2t/τ ,

where brackets � denote integer part. Finally, the steric control ensuring the gradual
switch of the actin potential is described by a gradual step function

�(s) = (1/2) [1 − tanh (s/ε)] , (4.30)

where ε is a small parameter.
To fix the parametrization, we need to specify the dimensional scales. It is natural

to use the distance between the bottoms of the wells in the bi-stable potential as the
length scale l so a = 1. We have also made a standard assumption that the separation
between the binding cites along the actin filament is of the same order as the power-
stroke size and therefore L = 1. The height of the barrier between the binding sites
was chosen as the energy scale E, so we put �max = 1. The relaxation time scale
was set by the viscosity coefficient η and therefore τ � = ηl2/E. To ensure that the
ac driving is slow at the scale of internal relaxation we took τ = 10. The curvature
of the energy wells in the bistable potential should be comparable with E/l2 and
therefore we took a generic value k = 1.5. In the computations we used the value of
the small parameter ε = 0.2 which made the attachment and the detachment events
sufficiently sharp.

To integrate the system (4.29) numerically, we used the simplest Euler–Maryama
scheme [63] with a constant time step �t = 0.5 × 10−3. The ensemble averaging
was performed over N = 104 stochastic realizations.

Our numerical results are summarized in Fig. 4.45. First of all, we see that the
drift is absent (v = 0) when the noise is uncorrelated and the external reservoir is
in equilibrium (A = 0). This is an obvious consequence of the potential nature of
this holonomic model. Indeed, the stationary probability flux satisfies ∇J = 0 and
J = fF−D∇f where f (x, y) is the stationary probability distribution and F is the
internal force. Since F = −∇G, one can use periodicity in x and growth in y − x

(of the potential G) to show that J = 0, see also [73, 93, 130].
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Fig. 4.45 The dependence of the average velocity v on temperature D and the amplitude of the
ac signal A in the model with coupling (4.30). The pre- and post-power-stroke states are labeled in
such a way that the purely mechanical ratchet would move to the left

It is then clear that the drift in this model is exclusively due to A �= 0. When A is
small, the drift velocity shows a maximum at finite temperatures which implies that
the system exhibits stochastic resonance [41]. At high amplitudes of the ac driving,
the motor works as a purely mechanical ratchet and the increase of temperature
always worsens the performance [49, 58, 95].

As we have already seen, the direction of motion in this model is decided by
the choice of steric biasing of the otherwise symmetric bi-stable potential. the
chosen directionality can be either enhanced or suppressed if we consider polar
actin filaments. To illustrate this point, we show in Fig. 4.46 how the drift velocity
depends on the parameter characterizing the spatial asymmetry of the actin track. In
particular, we see that on a polar filament with sufficient asymmetry our motor can
be stopped and even steered in the opposite direction.

The next question concerns the compatibility of the proposed model with the
minimal bio-chemical ATPase cycle shown in Fig. 4.1. The traditional identification
of chemical and structural states, detailed in this figure, suggests that the motor
must pass through the following four mechanical transients: “attached pre-power-
stroke”, “attached post-power-stroke”, “detached post-power-stroke” and “detached
pre-power-stroke”. It is immediately clear that not all of these states can be reached
by the model with coupling (4.30). Indeed, the detachment takes place when the
“striking” element is positioned exactly between the two energy wells and therefore
the power-stroke cannot be completed in the attached state. As a result, the model
reproduces reliably only two structural configurations: the attached pre-power-
stroke state and the detached post power-stroke state.
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Fig. 4.46 The dependence of the drift velocity v on the filament polarity � = λ1 − λ2 in the
model with coupling (4.30) at fixed temperature D = 0.01

To capture the remaining states shown in Fig. 4.1 we must assume that the
detachment, necessarily implying in our model the motion of the center of mass, is
delayed till the power-stroke is (almost) completed. Similarly, the attachment must
take place only after the power-stroke element has been (almost fully) recharged.
The necessary modification of the model, accounting for such two-way delays, is
discussed in Sect. 4.7.2.

4.7.2 Hysteretic Coupling

To reproduce the whole Lymn–Taylor cycle, we postulate that the switching of the
actin potential from on to off state takes place at different values of the variable y−x,
depending on the direction of the conformational change (folding or unfolding). To
this end, we replace the holonomic coupling (4.27) by a memory operator

z{x, y} = �̂{y(t)− x(t)} (4.31)

whose output depends on whether the system is on the “striking” or on the
“recharging” branch of the trajectory, see Fig. 4.47. Such memory structure can be
also described by a rate independent differential relation of the form

ż = Q(x, y, z)ẋ + R(x, y, z)ẏ, (4.32)

where the implied non-integrability makes the model non-holonomic. Indeed, if we
introduce a vector variable u = (x, y, z), and neglect the time dependent external
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Fig. 4.47 The hysteresis
operator �̂{y(t) − x(t)}
linking the degree of
attachment z with the
previous hystory of the
power-stroke configuration
y(t) − x(t)

noise we can rewrite the system of the governing equations in the form u̇ = F(u),
where F is no longer a gradient. The resulting Brownian motor can potentially
advance even in the absence of the correlated noise by extracting energy directly
from the non-holonomic control mechanism.

By using (4.31) we can now rewrite the energy of the system as a functional of
its history y(t) and x(t)

G{x, y} = �̂{y(t)− x(t)}�(x)+ V (y − x). (4.33)

In the Langevin setting (4.29), the history dependence may mean that the underlying
microscopic stochastic process is non-Markovian (due to, say, configurational
pinning [14]), or that there are additional non-thermalized degrees of freedom that
are not represented explicitly [50]. In general, it is well known that the realistic
feedback implementations always involve delays [36].

To simulate hysteretic response numerically we used two versions of the same
coupling function (4.30) shifted by δ with the branches �(y − x ± δ) identified
sufficiently far away from the hysteresis domain, see Fig. 4.47. Our numerical
experiments show that the performance of the model is not sensitive to the shape
of the hysteresis loop and depends mostly on its width characterized by the small
parameter δ.

In Fig. 4.48 we illustrate the “gait” of the motor with the hysteretic cou-
pling (4.31). The center of mass advances in steps and during each step the
power-stroke mechanism gets released and then gets recharged again, which takes
place concurrently with attachment-detachment. By coupling the attached state with
either pre- or post-power-stroke state, we can vary the directionality of the motion.
The average velocity increases with the width of the hysteresis loop which shows
that the motor can extract more energy from the coupling mechanism system with
longer delays.

The results of the parametric study of the model are summarized in Figs. 4.49 and
4.50. First observe that the motor can move even in the absence of the correlated
noise, at A = 0, because the non-holonomic coupling (4.33) breaks the detailed
balance by itself. At finite A the system can use both sources of energy (hysteretic
loop and ac noise) and the resulting behavior is much richer than in the non-
hysteretic model.
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Fig. 4.48 Stationary particle trajectories in the model with the hysteretic coupling (4.31). Differ-
ent ways of biasing lead to different directions of drift and large hysteresis loops produce faster
moving motors. Other parameters are: D = 0.02 and A = 1.5

Fig. 4.49 The dependence of the average velocity v on temperature D in the hysteretic model with
δ = 0.5

For instance, if the holonomic ratchet with a fixed coupling bias always advances
in one direction, the non-holonomic ratchet can self-propell in both directions. At
large A the hysteretic motor exhibits the same directionality as the non-hysteretic
motor and the average velocity is only mildly affected by the presence of the
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Fig. 4.50 The dependence of the average velocity v on amplitude of the ac driving A in the
hysteretic model with δ = 0.5

hysteresis. At small A the situation changes and now the direction of the drift
is controlled by the hysteresis and is reversed comparing to the case of a non-
hysteretic motor. As we see, in the hysteretic power-stroke-driven ratchet different
active mechanisms dominate at different values of A. This opens an interesting
possibility for these molecular machines to flip “engines” and in this way reverse
the directionality by simply changing the intensity of the external energy supply.

The A dependence of the drift velocity is shown in more detail in Fig. 4.50.
At zero temperature the system is pinned and the drift is blocked till the driving
amplitude reaches a threshold beyond which the system can work as a mechanical
ratchet. At finite temperatures the pinning disappears because of the noise-induced
barrier crossing. At small A the motor drifts in the direction opposite to the direction
of the mechanical ratchet. The velocity of this drift shows a characteristic peak at
finite A revealing stochastic resonance. The current reversal, indicating the change
of the mechanism from hysteresis-dominated to correlation-dominated, takes place
near the depinning point A ∼ 2.5.

To illustrate the mechanism of the hysteresis-dominated drift it is sufficient to
consider the case when A = 0. This disables an alternative ac driven ratchet
mechanism. In Fig. 4.51 we compare two realizations of particle trajectories in
the 3D space (x, y − x, z): for the model without hysteresis (4.27) and with
hysteresis (4.31). The loops obtained by projecting these trajectories on the 2D plane
(y−x, z) describe the structure of the corresponding “strokes” in the configurational
space. In the holonomic case (4.27) the area of the projected loop is equal to zero and
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Fig. 4.51 Single particle trajectories in the space {y − x, z, x} and their projections on the plane
(y−x, z): (a) non-hysteretic coupling (b) hysteretic coupling. The parameters are: D = 0.2, A = 0
and δ = 0.5

we observe diffusion without drift (in Fig. 4.51a the average of x is equal to zero).
Instead, in the non-holonomic case (4.31) the projected trajectory spans a finite
area and the drift velocity is finite (see Fig. 4.51b). Similar dependence of the drift
velocity on the area of the “stroke” is known in the theory of Stokes swimmers where
non-holonomic control is also the factor responsible for the directional motion (in
“violation” of the scallop theorem [4]).

The mechanical “stroke” in the space of internal variables z, y − x can
be compared with the minimal biochemical acto-myosin cycle shown in
Fig. 4.1. The chemical states constituting this cycle are identified with structural
configurations (obtained from crystallographic reconstructions) in the following
way [72]: A(attached, pre-power-stroke → AM*ADP*Pi), B(attached, post-power-
stroke → AM*ADP), C(detached, post-power-stroke → M*ATP), D(detached,
pre-power-stroke → M*ADP*Pi). In our model the jump events are replaced by
continuous transitions and the association of chemical states with particular regimes
of stochastic dynamics is not straightforward.

In Fig. 4.52a, we show a fragment of the averaged trajectory of a steadily
advancing motor projected on the (x, y−x) plane. In Fig. 4.52b the same trajectory
is shown in the (x, y−x, z) space with fast advances in the z direction intentionally
schematized as jumps. By using the same letters A,B,C,D as in Fig. 4.1 we
establish a basic connection between the chemical/structural states and the transient
mechanical configurations of the advancing motor.

Suppose that we start at point A corresponding to the end of the negative cycle
of the ac driving f (t). The system is in the attached, pre-power-stroke state and
z = 1. As the sign of the force f (t) changes, the motor undergoes a power-stroke
and reaches point B while remaining in the attached state. When the configurational
variable y − x passes the detachment threshold, the myosin head detaches which
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Fig. 4.52 (a) A steady-state cycle in the hysteretic model projected on the x, y − x plane; red
path if f (t) > 0 and blue path if f (t) < 0; (b) representation of the same cycle in the z, x, y − x

space with identification of the four chemical statesA,B,C,D constituting the Lymn–Taylor cycle
shown in Fig. 4.1. The level sets represent the energy landscape G at z = 0 (detached state) and
z = 1 (attached state). The parameters are: D = 0.02, A = 1.5, and δ = 0.75

leads to a transition from point B to B ′ on the plane z = 0. Since the positive
cycle of the force f (t) continues, the motor completes the power-stroke by moving
from B ′ to point C. At this moment, the rocking force changes sign again which
leads to recharging of the power-stroke mechanism in the detached state, described
in Fig. 4.1 as a transition from C to D. In point D, the variable y − x reaches the
attachment threshold. The myosin head reattaches and the system moves to point
D′ where z = 1 again. The recharging continues in the attached state as the motor
evolves from D′ to a new state A, shifted by one period.

In this way the chemical states constituting the minimal enzyme cycle can
be linked to the mechanical configurations traversed by our stochastic dynamical
system. The detailed mechanical picture, however, looks more complicated than
in the simplest Lymn–Taylor scheme. It is clear that at least in some regimes one
can use the Kramers approximation to perform a controlled transition from our
continuous dynamics to a description in terms of a discrete set of chemical reactions.
However, it is also clear that more chemical states than in the minimal Lymn–Taylor
model will be needed to describe the detailed mechanical “stroke”.

So far we have been dealing with motors overcoming viscous friction but not
carrying cargoes. The next step is to see how fast the same motor can move
against an external force fext . Two different mechanical configurations of the
motor carrying cargo correspond to the cases when fext > 0, v < 0 and fext <

0, v > 0, see Fig. 4.53. Since the non-hysteretic motor is designed to move to the
left, the mechanical configuration shown in Fig. 4.53a can be somewhat arbitrarily
characterized as “pushing”. Given that the motor with the hysteretic coupling can
move in both directions, the configuration shown in Fig. 4.53b also corresponds to a
steady regime which can be then interpreted as “pulling”. Since our motor does not
have explicit leading and trailing edges, we assume that the force fext acts in both
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Fig. 4.53 Schematic representation of the power stroke driven motor carrying cargo: (a) pushing
regime, (b) pulling regime

Fig. 4.54 The force-velocity relation in the model with hysteretic coupling at different amplitudes
of the ac driving A and different temperatures D. The hysteresis width is δ = 0.5

cases on the variable y which amounts to tilting of the potential (4.33) along the y

direction

G{x, y} = �̂{y(t)− x(t)}�(x)+ V (y − x)− yfext . (4.34)

However, the actual architecture of a half sarcomere is asymmetric and the forces
are transmitted through passive cross-linkers imposing a particular polarity on
the loading. Therefore, despite the ambiguity, we find the association of the two
mechanical regimes shown in Fig. 4.53 with pushing and pulling appropriate.

A stochastic system with energy (4.34) was studied numerically and in Fig. 4.54
we show the computed force-velocity relations. The light quadrants in the (fext , v)
plane correspond to two domains of dissipative behavior where R = fext v > 0.
Here the direction of the force agrees with the direction of motion and the motor is
being dragged by the applied load (while exhibiting both passive and active friction).
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The shaded quadrants indicate the two domains where the system is anti-dissipative
and R = fext v < 0. In these regimes the motor produces work and the motion can
be of two types: when the motor overcomes the opposing pushing force and drives
the cargo ahead of itself (fext > 0, v < 0) and when it carries the cargo attached
from behind acting against a pulling force (fext < 0, v > 0). Since in the hysteretic
model the current can be reversed by changing the amplitude of the ac noise A, our
motor can perform two types of useful work.

Observe that at low temperatures the convexity properties of the force-velocity
relations in active pushing and active pulling regimes are different. In the case
of pulling the typical force-velocity relation is reminiscent of the Hill’s curve
describing isotonic contractions [51]. In the case of pushing, the force-velocity
relation can be characterized as convex-concave and such behavior has been also
observed in muscles [30, 31, 71]. The difference is due to the dominance of
physically non-equivalent mechanisms in the corresponding parameter domains.

For instance, in the pushing regimes, the motor activity fully depends on
ac driving and at large amplitudes of this driving it performs as a mechanical
ratchet. Instead, in the pulling regimes, associated with small amplitudes of external
driving, the motor advances because of the delayed feedback exemplified by the
hysteretic mechanism. We may speculate that both mechanisms can be operative
in acto-myosin systems which would then provide an explanation for occasionally
counterintuitive drift directions.

We also mention that dissimilarity of convexity properties of the force-velocity
relations in pushing and pulling regimes has been recently discussed in the context
of cell motility where acto-myosin contractility is known to be one of the main
driving forces [94]. The direct quantitative comparison is, however, premature since
in our minimal setting the model deals with a single cross bridge and still neglects
important collective effects [19].

4.7.3 Non-potential Models

The performance of the power-stroke driven ratchet can be considerably enhanced if
the feedback between the power-stroke and the attachment-detachment mechanisms
is made non-conservative even in the absence of hysteresis. This would happen,
for instance, if the configurational state of the power-stroke element affected the
position of a myosin head with respect to actin filament, while the reverse influence
remained insignificant, in other words, if the coupling between the power-stroke
element and the actin potential was one-sided. In this case instead of a passive
control we are dealing with an active control represented by a Maxwell demon-type
mechanism [18, 35].
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Fig. 4.55 Temperature dependence of the drift velocity v in the non-potential model (4.35)
without hysteresis

The governing equations describing such ratchet can be written in the form

⎧⎨
⎩
dx/dt = − z∂x�(x)− ∂xV (y − x)− f (t)+ √

2Dξx(t)

dy/dt = − ∂yV (y − x)+ f (t)+√
2Dξy(t),

(4.35)

where the notations are the same as in (4.29). The results of the numerical study of
the system (4.35) are summarized in Fig. 4.55.

The overall behavior of the non-potential system (4.35) is similar to the behavior
of the potential system with hysteretic coupling (4.33). Since the ratchet can now
receive energy from the active controlling device [73, 93], a nonzero drift takes place
already at A = 0. The direction of the current can be again reversed by varying the
amplitude of the driving. At large values of A, we obtain our usual mechanical
ratchet which does not see the non-potentiality of the model. At small A the ratchet
exploits the non-potentiality of the model in the essential way. As in the case of
hysteretic system, the direction of the drift is now opposite to the one picked up by
the mechanical ratchet. Notice also that at moderate values of A the directionality
of the drift can be reversed by the variation of temperature.

The non-potential ratchet shows the highest performance in combination with
the hysteretic feedback (4.33), see Fig. 4.56. The behavior of such hybrid system at
A = 0 is similar to what we have seen in the case of the system with energy (4.33)
which means that in this regime the response is dominated by hysteresis. As A

increases we observe a new effect: around A ∼ 1.5 the system appear to be in
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Fig. 4.56 Temperature dependence of the drift velocity v in the non-potential model (4.35) with
hysteresis, δ = 1

a resonant state and works as a quasi-mechanical ratchet, however now, the non-
potentiality is the principle driving factor, see Fig. 4.56. With further increase of A
we observe a reversal of the current and the system enters the regime where the
main driving force is again the ac noise. At large A the mechanical ratchet behavior
prevails again, however, it is fundamentally different from the quasi-mechanical
ratchet behavior observed around A ∼ 1.5.

In Fig. 4.57 we illustrate the effect of the amplitude A on the drift velocity
in more detail. In contrast to the potential case, the ratchet can now move at
zero temperatures in both directions equally fast if the amplitude of the ac signal
is chosen appropriately. The current reversal takes place in the narrow range of
amplitudes A where the transition from a mechanical to a quasi-mechanical ratchet
mechanism takes place.

At finite temperatures we see a complex interplay of all three active mechanisms.
The detailed study of the underlying stochastic system, allowing one to precisely
map the parametric domains where particular mechanisms dominate, will be
presented elsewhere.

To better understand the effects of non-potentiality we also compute the Péclet
number Pe = Lv/De , characterizing the relative strength of the drift (over
diffusion). The effective diffusion coefficient is defined by Reimann et al. [97],
Lindner et al. [70], and Khoury et al. [61]

De = 1

2
lim
t→∞

〈[x(t)− 〈x(t)〉]2〉
t

, (4.36)
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Fig. 4.57 The dependence of the average velocity v on the amplitude A of the ac signal in the
non-potential model with hysteresis, δ = 1

so the stochastic transport is most coherent when the absolute value of the Péclet
number is larger than one. From Fig. 4.58 we see that only in the non-potential
model the motion at small values of the driving amplitude A can be viewed as truly
directional.

Suppose now that a load is attached to the motor with non-potential hysteretic
coupling. The typical force-velocity relations are shown in Fig. 4.59. As in the
potential case, the motor can operate in two anti-dissipative regimes either by
working against a pushing force or by pulling a cargo. At both small and large values
ofA the behavior of the potential and the non potential motors is similar. Expectedly,
an anomaly takes place in the pulling regime (fext < 0, v > 0) at A ∼ 1.5 where the
motor behaves as a quasi-mechanical ratchet. Here the non-potentiality dominates
and the force-velocity relation shows an unusually sharp convexity change. It is
interesting that in this regime the behavior near the stall force is reminiscent of the
one observed in skeletal muscles [53].

4.8 Active Rigidity

In this section we show that effective rigidity or, more generally, effective sus-
ceptibility in a bundle of elastically coupled cross-bridges, can emerge from the
activity localized at the level of the power stroke machinery. Consider again a
skeletal muscle cell [53] where we neglect detachment of active cross-linkers (cross-
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Fig. 4.58 The Péclet number in the potential model with hysteresis (δ = 0.5 as in Fig. 4.50) and
in the non-potential model with hysteresis (δ = 1 as in Fig. 4.57); D = 0.1

Fig. 4.59 The force-velocity relation in the non-potential model with hysteresis at different
temperatures D and different driving amplitudes A; δ = 1
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bridges) and model an elementary series element (half-sarcomere) as a parallel
array of molecular motors operating in stall conditions. As in other sections,
we model attached myosin motors as bi-stable springs, with two energy wells
corresponding to pre and post power stroke configurations. Each ‘snap-spring’ of
this kind acts against a linear spring, representing a structural filament. The system
is exposed to both uncorrelated agitation (scaled with temperature-type parameter
D) and a correlated noise representing ATP hydrolysis (scaled with affinity-type
parameter A).

4.8.1 Macroscopic Problem

We start with an assumption that a muscle myofbril can be viewed as a chain of half-
sarcomeres arranged in series with each half-sarcomere represented by a parallel
array of N cross-bridges interacting with a single actin filament [54, 120], see
Fig. 4.60. We assume again that the nontrivial dynamics of attached cross-bridges is
due exclusively to the conformational change in myosin heads (power stroke) and
model cross-bridges as bi-stable elements in series with linear springs, see Fig. 4.61.
We therefore stay with our original paradigm that the nonequilibrium driving is
provided through the rocking of the bi-stable elements [108].

Fig. 4.60 (a) Schematic representation of a muscle myofibril as a series connection of half
sarcomeres; (b) Model of a single half-sarcomere with attached cross-bridges arranged in parallel.
Shaded boxes in (b) represent bi-stable snap-springs shown in Fig. 4.61

Fig. 4.61 Schematic representation of a bi-stable snap-spring in series with a linear spring
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A half-sarcomere in this model, see Fig. 4.60b, can be described by the system
of non-dimensional Langevin equations

{
dxi/dt = −∇xi�+√

2Dξ(t),

νdy/dt = −∇y�,
(4.37)

where y is a macro-scopic variable characterizing the strain at the level of the half-
sarcomere whose dynamics is slow due to the large value of the relative viscosity ν.
The variable y is coupled with N fast soft-spin type variables xi through identical
springs with stiffness k. The potential energy is � = ∑N

i=1 E(xi, y, t) − fexty,

where fext(t) is a slowly varying macro-scopic force. The ensuing problem is a soft
spin generalization [76] of the Huxley-Simmons model [54] and we recall that its
applications extend far beyond muscles mechanics, from hair cell gating [77] and
binding of cell-adhesion patches [33] to mechanical denaturation of RNA and DNA
hairpins [128] and unzipping of biological macromolecules [47].

The equation for y in (4.37) can be re-written as

ν

N

dy

dt
= k

(
1

N

N∑
i=1

xi − y

)
+ fext

N
, (4.38)

which makes the mean field nature of the interaction between y and xi explicit. If
N is large, we can replace 1

N

∑N
i=1 xi by 〈x〉 using the fact that the variables xi are

identically distributed and exchangeable [34]. If ν0 = ν/N and gext = fext/(kN)

remain finite in the limit N → ∞, we can write

ν0dy/dt = k[(〈x〉 − y)+ gext(t)].
Assume for determinacy that the function f (t) is periodic and choose its period

τ in such a way that � = ν0/k " τ . Since gext(t) is a slowly varying function at the
time scale τ , we can split the force k(〈x〉 − y) acting on y into a slow component
kψ(y) = k(〈x〉 − y) which originates from our effective potential and a slow-fast
component kφ(y, t) = k(〈x〉−〈x〉)which in the steady regime becomes a τ periodic
function of time with zero average. We can then write

�
dy

dt
= ψ(y)+ φ(y, t)+ gext. (4.39)

The next step is to average (4.39) over the time scale τ . To this end we introduce a
decomposition y(t) = z(t)+ ζ(t), where z is the averaged (slow) part of the motion
and ζ is a fast varying perturbation (with time scale τ ) that is small compared to z.
Then, expanding 4.39 up to first order in ζ , we obtain,

�

(
dz

dt
+ dζ

dt

)
= ψ(z)+ ∂zψ(z)ζ+

φ(z, t)+ ∂zφ(z, t)ζ + gext.

(4.40)
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Since gext(t) # τ−1
∫ t+τ

t
gext(u)du, we obtain at fast time scale [13]

�
dζ

dt
= φ(z, t).

Integrating this equation between t0 and t ≤ t0 + τ we can assume that z is fixed
and therefore ζ(t) − ζ(t0) = �−1

∫ t

t0
φ(z(t0), u)du. Given that φ is τ periodic with

zero average, we conclude that ζ(t) is also τ periodic with zero average.
If we now average (4.40) over the fast time scale τ , we obtain

�dz/dt = ψ(z) + r + gext,

where

r = (�τ)−1
∫ τ

0

∫ t

0
∂zφ(z, t)φ(z, u)dudt.

Since both φ(z, t) and ∂zφ(z, t) are bounded, we can write |r| ≤ (τ/�)c � 1,
where the ‘constant’ c depends on z but not on τ and �. Therefore, if N " 1 and
ν/(kN) " τ , the equation for

z(t) = τ−1
∫ t+τ

t

y(u)du

can be written directly in terms of the effective potential

(ν/N)dz/dt = −∂zF + fext/N.

To find the potential F(z) we need to average the ensuing mean field model over the
fast and slow-fast dynamics in (4.41) while keeping the variable y fixed.

4.8.2 Mean Field Model

The implied mean field model can be viewed as a description of a probe character-
ized by a (microscopic) coordinate x which is placed in an active environment. The
probe is attached through an elastic spring to a measuring device associated with
a (meso-scopic) variable y. We assume that the variable y is slow and treat it as
a control parameter. Instead, the variable x(t) will undergo fast stochastic motion
which will have to be averaged out.

In the absence of noise, the environment will be introduced through the potential
V (x) and we assume that the probe is placed in an unstable configuration. One
way to satisfy this condition is to assume that V (x) has a double well structure
with the reference position of a probe in a spinodal state. We further assume
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that the probe is exposed to a fluctuating surrounding medium with a quickly
relaxing component represented by an equilibrium thermostat and a relatively
slower relaxing component describing non-equilibrium environment. We study the
meso-scopic force exerted by the probe on the measuring device which implies the
transition from the environment potential V (x) to the effective potential for the
measuring device F(y).

To be more specific, consider the stochastic dynamics of a variable x(t) described
by a dimensionless Langevin equation

dx/dt = −∂xE(x, y, t)+
√

2Dξ(t), (4.41)

where ξ(t) is a standard white noise and D is a temperature-like characteristic of
the equilibrium thermostat. The potential E(x, y, t) = Ep(x, t)+ Em(x, y) is sum
of two components: Ep(x, t) = V (x) − xf (t), describing the probe in an out of
equilibrium environment and Em(x, y) = k(x− y)2/2, describing the linear elastic
coupling with a measuring device characterized by stiffness k. We assume that the
energy is supplied to the system through the rocking force f (t) with zero average
which is characterized by an amplitude A and a time scale τ . To have analytical
results, we need to further assume that the potential V (x) is bi-quadratic

V (x) = (|x| − 1/2)2 /2. (4.42)

Similar framework has been used before in the studies of directional motion of
molecular motors [25].

To compute the effective potential F(y) we use an observation that if the
‘measurements’ are performed at a time scale larger that τ , the resulting force is
T (y) = k[y − 〈x〉], where the averaging is over ensemble and time

〈x〉 = lim
t→∞(1/t)

∫ t

0

∫ ∞

−∞
xp(x, t)dxdt.

Here p(x, t) is the probability distribution for the variable x which solves the
associated Fokker–Plank equation. The primitive of the averaged tension

F(y) =
∫ y

T (s)ds, (4.43)

can be then viewed as a non-equilibrium analog of the free energy [6, 66, 100, 129].
While in our case, the mean-field nature of the model ensures potentiality of the
averaged tension, in a more general setting, the averaged stochastic forces will lose
their gradient structure and even the effective “equations of states” relating averaged
forces with the corresponding generalized coordinates may not be well defined [9,
12, 44, 56, 110, 114].

It is clear that the effective potential F(y) will depend not only on V (x) but
also on the stochastic properties of the driving f (t). The question we pose is
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whether there exists a non-biased stochastic driving which ensures stabilization
of spinodal configurations that would be unstable in the absence of the noise. In
the equilibrium case, when f (t) = 0, such stabilization is possible because of
entropic effects but only at sufficiently large temperature D. The challenge is to
find a correlated (colored) noise f (t) which ensures stabilization at arbitrary small
D. The possibility of bi-modality of the marginal probability distribution p(x, t)

in single-well potentials is known for DC and Levi type noises [28, 29], however,
this effects disappears after ensemble averaging involved in the computation of the
effective potential F(y).

4.8.3 Non-dimensionalization

Equation (4.41), which constitutes the basis of our prototypical model, is dimension-
less. To translate the results back into muscles context we need to use the time scale
τ � = η/k0 ∼ 0.1 ms where η ∼ 0.38 ms. pN/nm is the micro-scale viscosity [19]
and k0 ∼ 3 pN/nm is the passive stiffness of the equivalent energy wells. The spatial
scale is then l� = a where a ∼ 10 nm is the distance between two minima of the pre
and post power stroke wells [69] and the energy scale is ε� = k0a

2 ∼ 300 pN · nm.
Following [19] we also assume that k = km/k0 ∼ 0.6, where km ∼ 2 pN/nm

is the stiffness of the elastic part of the myosin motor [7, 67]. Hence D =
kB"/(k0a

2) ∼ 0.01 where kB = 4.10 pN · nm is the Boltzmann constant,
" ∼ 300 K is the ambient temperature, and a = 10nm is the characteristic size of
a motor power-stroke [69]. For the active driving we obtain τ = τa/(η/k0) ∼ 100
where τa = 40 ms is the characteristic time of ATP hydrolysis [53]. We can now
write that A = √

�μ/(k0a2) ≈ 0.5 where �μ = 20kB" is the typical value of
degree of non-equilibrium in terms of the affinity of ATP hydrolysis reaction [53].

The knowledge of the set of dimensionless parameters A,D and τ will be
sufficient to locate the muscle system on the phase (regime) diagram. Such diagrams
will be constructed in Sect. 4.8.4 for three different types of active driving.

4.8.4 Phase Diagrams

In this Section we consider the general problem (4.41) at finite temperature (D >

0) when both equilibrium and nonequilibrium reservoirs are contributing to the
microscopic dynamics simultaneously. The limiting case of zero temperatures (D =
0) will be analyzed separately in Sec. 4.8.5.

Periodic (P) Driving Suppose first that the non-equilibrium driving is represented
by a periodic (P), square shaped external force f (t) = A(−1)n(t) with n(t) =
�2t/τ , where brackets denote the integer part. While this choice of periodic driving
ensures certain analytical simplicity, the obtained results will be generic.
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It will be convenient to rewrite the dynamic equation (4.41) in the form

dx/dt = −∂xṼ (x, z)+ f (t)+√
2Dξ(t), (4.44)

where

Ṽ (x, z) = 1

2
(|x| − 1/2)2 + 1

2
k(x − z)2.

The associated Fokker–Planck equation for the time dependent probability distribu-
tion p(x, t) reads

∂tp = ∂x [p∂xE(x, t)+D∂xp] . (4.45)

First of all we note that explicit solution of (4.45) can be found in the adiabatic
case when the correlation time τ is much larger than the escape time for the bi-
stable potential V [48, 74]. The idea of this approximation is that the time average
of the steady state probability can be computed from the mean of the stationary
probabilities with constant driving force (either f (t) = A or f (t) = −A).

It is obvious, that the adiabatic approximation becomes exact in the special case
of an equilibrium system with A = 0 when the stationary probability distribution is
known explicitly:

p0(x) = Z−1e−Ṽ (x)/D,

where Z = ∫ ∞
−∞ exp(−Ṽ (x)/D)dx. The tension elongation curve can then be

computed analytically, since we know

〈x〉 = 〈x〉 =
∫ ∞

−∞
xp0(x)dx. (4.46)

The resulting curve T (z) and the corresponding potential F(z) are shown in
Fig. 4.62a. At zero temperature the equilibrium system with A = 0 exhibits negative
stiffness at z = 0 where the effective potential F(z) has a maximum (spinodal
state). As temperature increases we observe a standard entropic stabilization of the
configuration z = 0, see Fig. 4.62a.

Computing solution of the equation ∂zT |z=0 = 0, we find an explicit expression
for the critical temperature De = r/[8(1 + k)] where r is a root of a transcendental
equation 1 + √

r/πe−1/r/[1 + erf(1/
√
r)] = r/(2k). The behavior of the roots of

the equation T (z) = −k(〈x〉 − z) = 0 at A = 0 is shown in Fig. 4.63b. It illustrates
a second order phase transitions taking place at D = De.

In the case of constant force f ≡ A the stationary probability distribution is also
known [98]

pA(x) = Z−1e
−

(
Ṽ (x)−Ax

)
/D
,
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Fig. 4.62 Tension elongation curves T (z) in the case of periodic driving (adiabatic limit). The
equilibrium system (A = 0) is shown in (a) and out-of-equilibrium system (A �= 0)—in (b). The
insets show the effective potential F(z). Here k = 0.6

Fig. 4.63 The parameter dependence of the roots of the equation T (z) = 0 in the adiabatic limit:
(a) fixed D = 0.04 and varying A, first order phase transition (line CA − MA in Fig. 4.64a); (b)
fixed A = 0 and varying D, second order phase transition (line De−CA in Fig. 4.64a). The dashed
lines correspond to unstable branches. Here k = 0.6

where again Z = ∫ ∞
−∞ exp(−Ṽ (x)/D)dx. In adiabatic approximation we can write

the time averaged stationary distribution in the form,pAd(x) = 1
2 [pA(x)+p−A(x)],

which gives

〈x〉 = 1

2
[〈x〉(A)+ 〈x〉(−A)] . (4.47)

In this equation the expression for 〈x〉(A) can be written explicitly

〈x〉(A) = Z−1
∑
i=1,2

P(ui)[√πuierfc(ui)− (−1)ie−u2
i ],
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where

P(u) = (D/(1 + k))e
− 1

2D

(
1
4+kz2−2Du2

)
,

u1,2 = (A± 1/2 + kz)/
√

2D(1 + k),

Z = √
(1 + k)π/(2D)

∑
i=1,2

P(ui)erfc((−1)iui),

and erfc is the complementary error function.
The force-elongation curves T (z) and the corresponding potentialsF(z) obtained

for A �= 0 are shown in Fig. 4.62b. It demonstrates the main effect: as the degree
of non-equilibrium, characterized by A, increases, not only the stiffness in the state
z = 0 where the original double well potential V had a maximum changes from
negative to positive but also the effective potential F(z) develops around this point
the third well. We interpret this phenomenon as the emergence of active rigidity
because the new equilibrium state becomes possible only at a finite value of the
driving parameter A while the temperature parameter D can be arbitrarily small.
The behavior of the roots of the equation T (z) = −k(〈x〉 − z) = 0 at A �= 0
is shown in Fig. 4.63a. It illustrates the first order phase transitions taking place at
increasing A (and small fixed D).

The full steady state regime map (dynamic phase diagram) summarizing the
results obtained in adiabatic approximation is presented in Fig. 4.64a. There, the
‘paramagnetic’ phase I describes the regimes where the effective potential F(z) is
convex, the ‘ferromagnetic’ phase II is a bi-stability domain where the potential
F(z) has a double well structure and, finally, the ‘Kapitza’ phase III is where
the function F(z) has three convex sections separated by two concave (spinodal)
regions. Note that the boundaries of the domain occupied by phase III in this
diagram are not defined by the number of the roots of T (z) = 0, as it is usually done

Fig. 4.64 Phase diagram in (A,D) plane showing phases I,II and III: (a) adiabatic limit, (b)
numerical solution at τ = 100 (b). CA is the tri-critical point, De is the point of a second order
phase transition in the passive system. The “Maxwell line” for a first order phase transition in the
active system is shown by dots. Here k = 0.6
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in the study of magnetic systems, but by the counting of the number of the effective
“energy wells” linked to convexity properties of the whole effective potential F(z).

In view of the structure of the bifurcation diagrams shown in Fig. 4.63, we can
interpret the boundary CA −De separating phases I and II as a line of (zero force)
second order phase transitions and the dashed line CA −MA as a Maxwell line for
the (zero force) first order phase transition, see Fig. 4.63. Then CA can be interpreted
as a tri-critical point near which the system can be described by an non-equilibrium
(active) Landau potential of the form

F(z) = F0 + rz2 + qz4 + pz6,

where r, q, p are pseudo-thermodynamic parameters. Indeed, while r represents
the usual measure of temperature D and p > 0 is a constant, the A dependent
parameter q is an uncoventional measure of the intensity of active driving. Similar
tri-critical point appears in the periodically driven mean field Suzuki-Kubo model of
magnetism which can be interpreted in our terms as a description of the zero tension
behavior [115].

The adiabatic approximation fails at low temperatures (small D) where the
escape time diverges and in this range the phase diagram has to be corrected
numerically, see Fig. 4.64b. By simulating directly Eq. (4.41) we obtain that even
the moderate temperature features of the diagram (tri-critical point, point De and
the vertical asymptote of the boundary separating phases I and III at large values of
A) are captured adequately by the adiabatic approximation. For instance, the value
of temperature corresponding to point N (at infinite A) obtained from the adiabatic
approximation is DN = q/[8(1 + k)] where q is a solution of a transcendental
equation q − k = q3/2/[√q + e1/q√π(1 + erf(1/q))] which agrees with our
numerics.

The new feature of the non-adiabatic phase diagram is a dip of the boundary
separating Phases II and III at some D < De leading to an interesting re-entrant
behavior (cf. [89, 118]). This is an effect of stochastic resonance which is not
captured by adiabatic approximation.

To verify our numerical results in the low temperature domain D → 0 we used
Kramers approximation, valid when the rocking period τ is much smaller than the
typical escape time of the bi-stable potential V .

It allows one to compute explicitly the location of point K (A = 1/2) and point
M (A = 1/2 + k/4), which we found to be in full agreement with our numerical
simulations, see Fig. 4.64b. Because of incompatibility of the limits D → 0 and
τ → ∞ these points are rather far from the corresponding adiabatic predictions KA

and MA shown in Fig. 4.64a.
Force-elongation relations characterizing the mechanical response of the system

at different points on the (A,D) plane (Fig. 4.64b) are shown in Fig. 4.65 where the
upper insets illustrate the typical stochastic trajectories and the associated cycles
in {〈x(t)〉, f (t)} coordinates. We observe that while in phase I thermal fluctuations
dominate periodic driving and undermine the two wells structure of the potential, in
phase III the jumps between the two energy wells are fully synchronized with the
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Fig. 4.65 (a–c) Typical tension-length relations in phases I, II and III. Points α, β and γ are the
same as in Fig. 4.64b; (d) shows the active component of the force. Inserts show the behavior of
stochastic trajectories in each of the phases at z # 0 (gray lines) superimposed on their ensemble
averages (black lines); the stationary hysteretic cycles, the structure of the effective potentials F(z)
and the active potential Fa(z) defined as a primitive of the active force Ta(z). The parameters:
k = 0.6, τ = 100

rocking force. In phase II the system shows intermediate behavior with uncorrelated
jumps between the wells.

In Fig. 4.65d we illustrate the active component of the force Ta(z) = T (z;A)−
T (z; 0) in phases I, II and III. A salient feature of Fig. 4.65d is that active force
generation is significant only in the resonant (Kapitza) phase III. A biologically
beneficial plateau (tetanus) is a manifestation of the triangular nature of a pseudo-
well in the active landscape Fa(z) =

∫ z
Ta(s)ds; note also that only slightly bigger

(f,< x >) hysteresis cycle in phase III, reflecting a moderate increase of the
extracted work, results in considerably larger active force. It is also of interest that
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the largest active rigidity is generated in the state z = 0 where the active force is
equal to zero.

If we now estimate the non-dimensional parameters of the model by using the
data on skeletal muscles, see Sect. 4.8.3, we obtain A = 0.5,D = 0.01, τ = 100.
This means that muscle myosins in stall conditions (isometric contractions), may
be functioning in resonant phase III. Our simple model can therefore contribute to
the explanation of the observed stability of skeletal muscles in the negative stiffness
regime [19]; similar mechanism may be also behind the titin-based force generation
at long sarcomere lengths [103].

Dichotomous (DC) Driving The P driving is only one among correlated signals
that can serve as a mechanical representation of an out of equilibrium chemical
reservoir. To ascertain the robustness of the results obtained in the case of P driving
we now consider another type of correlated forcing which is also characterized by
two parameters, the amplitude A and the characteristic time τ . It is given by the
explicit formula f (t) = A(−1)n(t), where n(t) is a Poisson process with P(n) =
e−λλn/n! with λ = 1/(2τ ) and is known as symmetric dichotomous (DC) noise
or random telegraph signal [55, 86]. For this Markov process we have 〈f (t)〉 =
A exp(−t/τ ) and 〈f (t), f (s)〉 = A2 exp(−|t − s|/τ).

The probability distribution can be written in the form p(x, t) = p−(x, t) +
p+(x, t) where p±(x, t) are the probability densities to be in a state x at time t

given that f = ±A. The DC driven system (4.41) is described by the two coupled
Fokker–Planck equations [10],

∂tp± = ∂x(∂xE±p± +D∂xp±)+ λ(∓p± ± p∓) (4.48)

where E±(x) = Ṽ (x) ∓ Ax. Note that in this interpretation the DC noise appears
as a chemical reaction violating the detailed balance [91]. The stationary version
of the system (4.48) can be written in a transparent form if in addition to p(x) =
p−(x) + p+(x) we introduce a complimentary variable d(x) = p+(x) − p−(x).
Then we obtain

∂xṼ p −D∂xp − Ad = 0,
τ∂x(∂xṼ d −D∂xd − Ap) = d.

(4.49)

The numerical study of (4.41) with DC noise shows that the qualitative structure
of the phase diagram in the (A,D) plane remains the same as in the case of P driving,
see Fig. 4.66. We again observe phases I, II and III and the tri-critical point at about
the same location as in the case of P noise.

To interpret the numerical results, it is instructive to consider analytically
tractable special cases. First of all, Eq. (4.49) can be used to obtain the adiabatic
(τ → ∞) limit when the two equations decouple and the steady state probability
distributions take the form p±(x) ∼ exp(−E±(x)/D) as in the case of P driving.
The resulting phase diagrams are therefore identical, see section “Periodic (P)
Driving”.
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Fig. 4.66 (a) Phase diagram in the case of DC driving. The identification of phases I, II, and III
is the same as in Fig. 4.64a, b. (b) Typical tension-length relations in different phases (b). Here
τ = 100 and k = 0.6

The second case, when the analytic results are available, is the zero temperature
limit D → 0 considered in detail in Sect. 4.8.5.

Finally, the third analytically tractable case is τ → 0, A → ∞, with D̃ = A2τ

remaining finite. In this limit we obtain that the non-equilibrium component of

the noise is represented by a Gaussian white noise f (t) =
√

2D̃ξa(t) with the
temperature D̃ that is different from the temperature of the equilibrium reservoir
D, for instance, one can think about a system exposed to a thermostat with
temperature D and a chemostat with temperature D̃. The combined excitations
are again represented by a white noise

√
2D∗ξn(t) with effective temperature

D∗ =
√
D2 + D̃2.

In contrast to the zero temperature case, now the Kapitza phase III, describing
active stabilization, is absent. We obtain only phases I and II separated by a second

order phase transition line
√
D2 + D̃2 = De with the universal asymptotic behavior

D̃ ∼ (De − D)1/2 near equilibrium, see Fig. 4.67. The system in this limit can

Fig. 4.67 Phase diagram for the case when the chemical reaction is modeled by an effective
temperature D̃. Here k = 0.6
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undergo entropic stabilization only which means that the two temperature model
does not capture the same range of phenomena as the D = 0 model. Note that other
two temperature models can exhibit destabilization of a single well system[44].

Ornstein–Uhlenbeck (OU) Driving We have seen that the overall effect of the
two bounded noises on a mechanical system may be similar even though one of
them is highly correlated and non-Markovian and another one is weakly correlated
and Markovian. To show that not all noises are ‘mechanically equivalent’ we now
consider an Ornstein–Uhlenbeck (OU) process which is also characterized by two
parameters A and τ [8, 86].

In the case of OU driving, the function f (t) is a solution of the stochastic
equation

df (t)/dt = −1

τ
f (t)+ A

√
2

τ
ξf (t). (4.50)

Exactly as in the case of the DC noise we have for the first two moments f̄ (t) =
〈f (t)〉 = A exp(−t/τ ), and 〈f (s)f (t)〉 = A2 exp(−|t − s|/τ), where we assumed
for determinacy that f (0) = A. The resulting process is also Markovian, however
now it is unbounded and is defined on a continuous state space.

The Fokker–Planck equation for the probability density p(x, f, t) takes the form

∂tp = ∂x(p∂xE +D∂xp)+ τ−1∂f (fp + A2∂f p). (4.51)

Our numerical results for the system driven by OU noise are summarized in
Fig. 4.68a. At small intensity of driving A we observe the conventional picture of
entropic stabilization. A striking feature of this diagram is the absence of phase
III, which means that in contrast to the cases of P and DC driving, the OU driven
system does not support the phenomenon of active stabilization. To understand these

Fig. 4.68 (a) Phase diagram in the case of OU driving. The identification of phases I, II is the
same as in Fig. 4.64a, b. (b) The typical tension-length relations in different phases. Here τ = 100
and k = 0.6
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numerical results it is instructive to consider the already mentioned three limiting
cases that can be treated analytically.

In the adiabatic limit (τ → ∞), Eq. (4.51) simplifies and can be integrated. Then
we obtain that p(x) ∼ exp(−E(x)/D) which shows that in this limit only entropic
stabilization remains possible.

Another analytically tractable limit is D → 0, which shows again that in contrast
to the cases of P and DC driving, only phases I and II are present at zero temperature
phase diagram.

Finally, we can consider the double limit τ → 0, A → ∞, with D̃ = A2τ fixed.
As in the case of DC noise, we recover in this limit a system subjected to an effective
temperature and showing phases I and II only, see Fig. 4.67.

The analysis of these special cases supports our numerical results suggesting that
in the OU driven system the tri-critical point is absent. We can link the failure to
generate active rigidity in such system with the unbounded nature of the OU noise
allowing the eventual escape from a neighborhood of any resonant state.

4.8.5 Zero Temperature Limit

To understand better the differences between our three representations of non-
equilibrium driving, we now compare the behavior of the system in the analytically
tractable limit when the temperature of an equilibrium thermostat is equal to zero,
D = 0. In this limit the role of passive stabilization is minimized, which allows one
to make the effect of active terms more transparent. When D = 0 we are left with
two non-dimensional parameters: the correlation time τ and the amplitude of the
active signal A. We found, however, that using another pair (τ, D̃), with D̃ = A2τ ,
is more convenient.

Dichotomous (DC) Driving In the case of DC driving with D = 0 the stationary
solution of the Fokker–Plank equation (4.49) can be written in the form [64]

p(x)∂xṼ (x)+ A2
[

1

τ
− ∂x

(
∂xṼ (x)·

)]−1

∂xp(x) = 0, (4.52)

where the notation ∂x

(
∂xṼ ·

)
should be understood in the sense of differential

operators. The formal solution of ((4.52)) satisfying zero boundary conditions at
infinity can be written in quadratures [48, 64]

p(x) = Z−1

A2 − (∂xṼ (x))2
exp

(
−1

τ

∫ x ∂yṼ (y)

A2 − (∂yṼ (y))2
dy

)
,
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where we still need to find the normalizing constant Z. For this solution to be valid
we must also satisfy the inequality

|∂xṼ (x)| < A. (4.53)

When A = 0, we recover the deterministic case where condition (4.53) selects
between the points x0,1(0) where the force vanishes.

In principle, the choice depends on the initial condition but in the limit of
vanishing D and large time t , the trajectory x(t) converges to the point minimizing
the potential Ṽ . The resulting tension elongation relation can be then obtained by
setting

〈x〉 = x0(0)+ x1(0)

2
+ sign(z)

x1(0)− x0(0)

2
.

The effective energy F(z) emerges as a symmetric two parabolic bi-stable potential
where z = 0 is a singular spinodal point separating the energy wells at z = ±1/2.

Another simple case is when τ → 0 with A2τ = D̃ remaining finite. In this
limit activity disappears and driving becomes equilibrium with temperature D̃.
The steady state probability distribution is given by p(x) ∼ exp(−Ṽ (x)/D̃) and
the effective energy exhibits a transition from phase II to phase I at the critical
temperature De.

To compute p(x) in the general case, we identify the admissible set, where
((4.53)) holds, as ]x0(−A), x0(A)[⊔]x1(−A), x1(A)[ where

x0(−A) = min(0, −1/2+kz−A
1+k

) ≤ x0(A)

x0(A) = min(0, −1/2+kz+A
1+k

) ≤ 0

x1(−A) = max(0, 1/2+kz−A
1+k

) ≥ 0

x1(A) = max(0, 1/2+kz+A
1+k

) ≥ x1(−A)

We can now integrate p(x) on each of the segments ]x0(−A), x0(A)[ and
]x1(−A), x1(A)[. The result can be written in the form

p(x) = C0�0(x)
(2τ (1+k))−1−11]x0(−A),x0(A)[(x)

+ C1�1(x)
(2τ (1+k))−1−11]x1(−A),x1(A)[(x),

(4.54)

where�0(x) = A2−[(1+k)x−kz+1/2]2 and �1(x) = A2−[(1+k)x−kz−1/2]2.
If the domain of definition is connected as in, say, Case 2, when x0(A) =

x1(−A) = 0, a continuity condition relates C0 and C1:

C0 = Z−1�1(0)(2τ (1+k))−1
,

C1 = Z−1�0(0)(2τ (1+k))−1
.

(4.55)
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If instead either x0(A) or x1(−A) is different from zero, the two sets
]x0(−A), x0(A)[ and ]x1(−A), x1(A)[ are separated by a segment where the
probability is equal to zero. This means that the passage from one region to the
other is impossible. In this case the coefficients C0 and C1 depend on the initial
probability distribution as in the periodic case (at D = 0).

If we regularize the problem by adding a weak white noise (small D �= 0), the
choice of constants becomes again unambiguous as we can associate the support of
the distribution with the side (0 or 1) opposite to the smallest potential barrier. We
can then write explicitly C1 = Z−1max(0, sign(z)) and C0 = Z−1−C1. In all cases
the constant Z is found from normalization.

We illustrate the stationary probability distributions p(x) in Fig. 4.69a for several
choices of parameters. The analytical expression for the tension elongation curves
T (z) involve hypergeometric functions and is too complex to be presented here.
The resulting curves are illustrated in Fig. 4.69 for small and large values of the
correlation time. The phase diagram, shown in Fig. 4.70a, exhibits all three phases
I, II and III with a tri-critical point C′ located at τC ′ = [2(k + 1)]−1 and D̃C ′ =
De + [2(k + 1)]−1/4. The behavior of the force-elongation relations in different
phases is illustrated in Fig. 4.70b. As we see, the DC driven dynamics is sufficiently
rich to capture both active and entropic stabilization phenomena even in the absence
of the equilibrium reservoir (at D = 0).

Periodic (P) Driving The numerical simulations for the problem with P driving and
D → 0 show only phases II and III even for rapidly oscillating external fields, see
Fig. 4.70c.

To understand this result we can use Kramers approximation which can be
developed under the assumption that the rocking period is short comparing to at least
one of the escape times τ0,1(±A). The use of such anti-adiabatic limit is consistent
with the observation that in the limit D → 0 the escape times from the energy wells
diverge.

Fig. 4.69 (a) Examples of stationary probability distributions in the case of DC driving with A =
0.6. Dotted line: τ = 0.1, z = −0.5. Dashed line: τ = 1, z = −0.5. Solid line: τ = 1, z = 0.
(b–c) Tension elongation relations for different values of τ
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Fig. 4.70 (a) Zero temperature phase diagram in the case of DC driving. The identification of
phases I, II and III is the same as in Fig. 4.64a, b. Tension-elongation relations in the case of DC
driving in different phases (b). Zero temperature phase diagram in the case of P driving (c) and OU
driving (d). Parameters k = 0.6, D = 0

A study of the purely mechanical problem with P driving reveals that, since the
potential E can have up to four local minima, the dynamical system 4.44 can have
up to four stationary solutions. We have four main cases:

• Case 1: 〈x〉 = [x0(−A)+ x0(A)] /2
• Case 2: 〈x〉 = [x0(−A)+ x1(A)] /2
• Case 3: 〈x〉 = [x1(−A)+ x1(A)] /2
• Case 4:

〈x〉 =
⎧⎨
⎩

1
2 [x0(−A)+ x0(A)] , if z < 0

1
2 [x1(−A)+ x1(A)] , if z > 0.
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To justify, for instance, the last expression (Case 4) we can apply the rate theory
for rocked bi-stable system. Then we obtain for n0(t) (the number of particle in the
well 0 at the moment t) the expression

〈n0〉 ∼ e

(
−min±A

[�E1(±A)]+ min±A,1,0
[�E0,1(±A)]

)
/D
.

Here either min±A
�E1(±A) = min±A,1,0

�E0,1(±A) and 〈n0〉 = 1, or min±A
�E1(±A) >

min±A,1,0
�E0,1(±A) and 〈n0〉 = 0. The condition min± �E1(±A) > min±,1,0

�E0,1(±A)

introduces the dependence of the stationary distribution on z. After time averaging,
the steady state probability distribution takes the form:

p(x) = 〈n0〉
2

[p0(x; −A)+ p0(x;A)]

+ 1 − 〈n0〉
2

[p1(x; −A)+ p1(x;A)] ,
(4.56)

where

p0(x; ±A) = exp (−E0(x; ±A)/D)

0∫
−∞

exp (−E0(x; ±A)/D) dx

p1(x; ±A) = exp (−E1(x; ±A)/D)
∞∫
0

exp (−E1(x; ±A)/D) dx

.

In the limit D → 0 the distributions p0,1(x; ±A) become delta functions concen-
trated at the points x0,1(±A) which gives our formula for 〈x〉.

If we now use the computed values for x0,1(±A), we can obtain the analytic
expressions for the tension T (z). Then, by solving the equation T (z) = 0 we can
locate the line of the first order phase transition separating phases II and III and
show that A = 1

2 at point K and that A = 1
2

(
1 + k

2

)
at point M, both in agreement

with the numerical phase diagram presented in Fig. 4.71c. The qualitative difference
between the predictions of the adiabatic approximation implying that D is large and
the Kramers approximations corresponding to small D is illustrated in Fig. 4.71.

In coordinates (τ, D̃) the phase diagram for the P driven system with zero temper-
ature shows a single phase boundary separating phases II and III, see Fig. 4.70c. The
entropically stabilized phase II is absent because, despite the presence of the noise,
it is bounded and there is no stochastic contribution allowing the system to cross
arbitrary barriers. Because of the same reason the phase boundary between phases
II and III in the P driven system is shifted comparing to the case of DC driving as
the point De does not exist any more. This is in contrast to the fact that at finite D

the two systems (with P and DC driving) behave quite similarly, in particular, they
are indistinguishable in the adiabatic limit τ → ∞.
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Fig. 4.71 (a) Examples of the stationary probability distributions in the case of P driving in
adiabatic (dotted line) and Kramers (solid line) approximations at A = 0.2, z = −0.01, D =
0.002. (b) Tension elongation relations for D = 0.01 and A = 0.2 expressed by Kramers solution
(solid line) and adiabatic solution (dotted line). (c) Tension elongation relations in the limitD → 0
for several value of A. For 0 < A < K , all curves collapse (dotted line) since the energy injected
by the rocking is not sufficient to overcome the potential barriers

Ornstein–Uhlenbeck (OU) Driving In the case of OU driving with D = 0 an
analytical approximation of the stationary probability distribution is available when
τ << 1 [48]. The main idea is to combine Eq. (4.44) and Eq. (4.50) to obtain a new
equation for a noisy inertial oscillator

d2x

dt2
+ dx

dt
(1 + τ∂xxṼ (x))+ ∂xṼ (x) = A

√
2τξf (t), (4.57)

where ξf is a standard white noise. At large times the inertial dynamics with
additive noise (4.57) can be approximated by the overdamped dynamics with
multiplicative noise

dx

dt
= (1 + τ∂xxṼ (x))−1

(
−∂xṼ (x)+ A

√
2τξf (t)

)

which must be interpreted in the Stratanovitch sense [48]. The corresponding Fokker
Planck equation

∂tp = ∂x

(
∂xṼ

1 + τ∂xxṼ
p

)

+ ∂x

(
1

1 + τ∂xxṼ
∂x

(
A2τ

1 + τ∂xxṼ
p

))
,

(4.58)

has an explicit stationary solution [48]:

p(x) = Z−1|1 + τ∂xxṼ (x)| exp

(
− Ṽ (x)+ τ (∂xṼ (x))2/2

A2τ

)
.
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Fig. 4.72 (a) Examples of stationary probability distributions in the case of OU driving at A =
0.5; dotted line: τ = 1, z = −0.5; dashed line: τ = 1, z = 0; solid line: τ = 0.1, z = −0.5. (b–c)
Tension elongation relations in the OU cases for small (b) and large (c) correlation times. Large
correlation times are formally outside of the domain of validity of the approximation

Notice again that when τ → 0 with D̃ = τA2 fixed, f (t) becomes a white noise
and the distribution p(x) takes the classical Boltzmann form.

In Fig. 4.72a we show examples of the stationary distributions for specific values
of parameters. The corresponding tension curves T (z) are illustrated in Fig. 4.72b,
c for large and small correlation times.

Our Fig. 4.70d shows the resulting phase diagram which, as expected, exhibits
only phases I and II. This is again a confirmation of the fact that in the case of
OU driving the crucial phase III, describing the phenomenon of active regidity, is
absent. When τ is small (at a fixed D̃), the OU noise becomes a white noise and, as
in the case of the DC driving, the phase boundary separating phases I and II passes
through the point De.

The comparison of all three phase diagrams, shown in Fig. 4.70a, c, d suggests,
that at zero temperature the system with DC driving is an intricate amalgam of the
systems with OU and P drivings.

4.9 Conclusions

In these lecture notes we discussed the possibility that acto-myosin contraction is
driven exclusively by the power-stroke. We developed several mechanistic models
built on the assumption that the microscopic stochastic dynamics can be described
by a set of continuous equations of mechanics with the equilibrium thermal
environment modeled by a uncorrelated noise and internal activity modeled in
different ways, in particular, by a correlated noise. The correlations associated with
nonthermal such noise would then reflect the nonequilibrium nature of the external
reservoir.

To model the full cross-bridge mediated actin-myosin interaction we developed
three-dimensional phase space framework coupling a periodic potential with a bi-
stable potential. In this perspective, the periodic potential represents myosin/actin
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interaction; the conformational change responsible for the power stroke is described
by a double-well potential. The mechanical approach allowed us to reveal the impor-
tant difference between the soft and hard device loading conditions. We mention that
this asymmetry remained under-appreciated in the conventional chemo-mechanical
models.

Our starting point was the observation that in the currently accepted mechanistic
representations of acto-myosin systems, the power-stroke is undermined as a passive
folding-unfolding mechanism while the attachment-detachment is given a primary
role as the main driver of contraction. Since active sites are located inside motor
domains, the external forces, representing the ATP activity, are typically introduced
as conjugates to macroscopic positions of these domains and such ratchets are
essentially attachment-detachment-driven. The implied mechanisms may be indeed
operative during muscle contractions but then they would be complimentary to the
ones studied here. In our approach the thrust of the ATP activity was shifted towards
the internal variable characterizing the state of the power-stroke element.

Depending on the particular sub-unit where the external correlated force is
applied, we introduced three basic designs of the force generating ratchet machinery.
By localizing the effect of the correlated rocking on a single internal degree of
freedom, we defined three basic models: X-tilted, Y-tilted and XY-tilted ratchets.

The X-tilted ratchet is the conventional mechanism where the external activity is
concentrated in the actin filament. We have shown that with X-tilted ratchet design
one cannot simulate the full four-state Lymn–Taylor cycle because the detachment
of the cross-bridge head and the recharge of the power stroke are always combined.
Another shortcoming of this model is that it does not treat adequately the detached
configuration of the acto-myosin system.

In the Y-tilted ratchet model the correlated noise acts on the internal variable
located inside the power stroke mechanism making both the power stroke and the
actin filament active. The resulting ratchet performs four-state cycle in the soft
device and either two-state or four-state cycle in the hard device. This suggests that
the Y-tilted ratchet framework is capable in principle of mimicking the complete
Lymn–Taylor cycle, however the mechanistic interpretation of such internal drive in
term of the molecular structure of the cross-bridge remains ambiguous.

Finally, the XY-tilted ratchet model can be viewed as a mechanistic system which
is driven entirely through the activity concentrated in the power stroke element
while the actin filament is interpreted as passive. By treating the power stroke
as the primary mechanism we delegated to the attachment/detachment process
the secondary role of a machinery securing translational character of the motion.
However, since the XY-tilted ratchet was shown to generate only three-state cycle it
remains fundamentally incompatible with the existing biochemical models.

The main limitation of all these models is that the detached state is represented as
a maximum of the periodic and therefore the detachment takes place very quickly.
To overcome this problem we developed a synthetic model where the XY tilted
ratchet mechanism was augmented by taking into consideration the explicit steric
separation of thick and thin filaments. To make a clear distinction between our
model and the conventional models of Brownian ratchets we assumed that the actin
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track is non-polar and that the bi-stable element is unbiased. The symmetry breaking
was then achieved exclusively through the coupling of these two sub-systems.

Our synthetic model accounting for steric effects was based on the assumption
that the multiplicative feedback is acting on the space-periodic potential �(x).
In this model the conformational state of the power stroke mechanism regulates
the distance of the myosin head form actin filament. We associated the pre-power
stroke with a detached state (no interaction with the spatial periodic potential �(x))
and the post power stroke—with the attached state (the system interacts strongly
with the space periodic potential �(x)). In this way the detached state was fully
integrated into the mechanical cycle. The resulting model reproduced all four states
of the Lymn–Taylor cycle where the individual states were interpreted as transient
mechanical configurations.

By considering three classes of models of this type we exposed three different
ways of how a power-stroke-driven ratchet can receive energy of the ATP hydrol-
ysis and presented mechanical representations of the associated non equilibrium
chemical reservoirs. In the first, traditional, representation, a mechanical action of
the chemical reaction was modeled by a correlated component of the noise. The
second representation was based on the idea that the coupling between internal
and external degrees of freedom is hysteretic. Here in contrast to what is usually
observed in macroscopic systems, hysteresis was used as a source rather than a sink
of energy. The third representation implied that the internal degrees of freedom have
an inherently chemical origin and therefore the source of non-equilibrium is in the
lack of potentiality of these forces. We have shown that only the hysteretic design
allows one to reproduce fully adequately the complete four state Lymn–Taylor cycle.

In the last section of these lecture notes we assumed that attachment detachment
machinery is disabled and addressed the question whether a power stroke driven
molecular device can generate effective rigidity. Instead of a single stall state, the
proposed model was shown to exhibit a family of stall states and we quantified the
energetic cost of moving from one member of the family to another. Since in our
case the implied parameter had the meaning of meso-scopic strain, the derivative of
the (time averaged) energy with respect to this parameter could be interpreted as the
effective rigidity.

Our prototypical mean field model of active rigidity supports the idea that by
controlling the degree of non-equilibrium in the system, one can stabilize apparently
unstable or marginally stable mechanical configurations and in this way modify
the structure of the effective energy landscape (when it can be defined). Our
analysis, however, reveals that apparently similar noises can generate qualitatively
different mechanical effects and that the very possibility of the power-stroke driven
stabilization of an unstable state may be ultra-sensitive to the higher moments of the
stochastic forces.

To summarize, we provided compelling evidence that a relatively simple
mechanical system is able to generate complex stochastic dynamics imitating
muscle contractions. In particular, we showed that such system can mechanistically
reproduce the complete Lymn–Taylor cycle. This opens a way towards structural
interpretation of the chemical states, known from the studies of the catalytic cycle
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in solution, and determining functionality of the particular transient mechanical
configurations of the acto-myosin complex. The implied identification is a
precondition for the bio-engineering reproduction of a wide range of cellular
processes, where myosin cross-bridges play the dominant role, from movement
of cells to cytokinesis. Given that the mechanisms involved in our model can be
mimicked artificially at a super-cellular scale, the proposed schematization of the
contraction phenomenon can be viewed as a step towards building engineering
devices imitating acto-myosin enzymatic activity.

It is also important to mention that starting from the existing approach of rocking
ratchets and reinventing it in the framework of the power stroke activity, we were
able to unify the description of a single processive molecular motor such as Kinesin,
with the description of the collectively operating non-processive molecular motors
such as myosin. In this way we built a bridge between theoretical description
myosin and Kinesin motors that have so far been treated as fundamentally different.
In support of the idea that both processive and non-processive motors can be
driven through a conformational change, we mention that the general shape of
the force-velocity relations obtained in this paper is compatible with the available
measurements not only for non-processive motors but also for processive motors
[27, 60, 80, 123].

We showed, in particular, that while the most realistic XY tilted ratchet can
perform a positive mechanical work, it is less efficient than X and Y ratchets. To
understand why such seemingly inefficient device may be selected by evolution, it is
important to remember that alternative, more efficient strategies include mechanical
activity of actin filaments which is mechanically rather ambiguous.

The main limitation of the discussed picture of contraction is that it was devel-
oped for a single cross-bridge while important collective effects were neglected,
see Fig. 4.73. A theory accounting for the implied collective effects has been so
far developed only for passive response of skeletal muscles involving mechanically
induced power stroke but not the attachment-detachment [19] and in active regimes
one can expect a variety of interesting phenomena from coherent fluctuations
[26, 45, 59, 121] to self-tuning towards criticality [5, 106]. Yet another reason for

Fig. 4.73 Schematic representation of collectively interacting myosin motors: (a) hard device
configuration. (b) soft device configuration
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the observed inefficiency of the XY ratchet may be the neglect of quenched disorder
whose account allows one to build a link between muscle architecture and the theory
of spin glasses and reveal a tight relation between actomyosin disregistry and the
optimal mechanical performance of the force generating machinery [21].

The schematic nature of the proposed models, allowing one to identify only
the main mechanisms, is the main reason why we did not attempt to perform a
systematic quantitative comparison of our predictions with experiment. Extending
the proposed framework towards the account of collectively interacting cross-
bridges will open the possibility to calibrate the model using experimental data.
Given the purely mechanical nature of our modeling, one can then consider building
the actual artificial molecular size devices based on the principles developed in these
lecture notes.

The proposed framework also raises some specific issues which need to be
addressed in future work. One challenge is to understand the microscopic nature of
the hysteretic element and of the active mechanism ensuring the non-potential force
structure. Another challenge is to find the optimal interaction of our three active
mechanisms ensuring the highest performance of the power-stroke driven motor.
The third challenge is to study the effects of short range interaction of elastically
coupled power-stroke-driven motors.

The experimental verification of the proposed model of active rigidity requires
quantitative monitoring of the mechanical properties of a biological system (say,
cytoskeleton) combined with the control of activity elements (say, molecular
motors) and the corresponding experimental techniques are already available [1, 37].
The mastery of actively tunable rigidity will open interesting prospects not only in
biomechanics [92] but also in engineering design incorporating negative stiffness
[39] or aiming at synthetic materials involving dynamic stabilization [16, 101].
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