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Abstract. Symbolic model checking has become an important part of
the verification flow in industrial hardware design. However, its use is
still limited due to scaling issues. One way to address this is to exploit
the large amounts of symmetry present in many real world designs. In
this paper, we adapt partial order reduction for bounded model checking
of synchronous hardware and introduce a novel technique that makes
partial order reduction practical in this new domain. These approaches
are largely automatic, requiring only minimal manual effort. We evaluate
our technique on open-source and commercial packet mover circuits –
designs containing FIFOs and arbiters.

1 Introduction

Modern society relies increasingly on electronic systems, powered by hardware
components that continue to grow in complexity and variety. Ensuring the func-
tional correctness of these components is essential, as bugs and errors can have
consequences ranging from undermining a company’s reputation to jeopardiz-
ing human safety [1,22,25,32,33]. Most electronic designs must therefore include
a significant verification effort, and this effort often consumes more time and
resources than all other aspects of the design process [17,34].

Formal methods such as symbolic model checking have become a crucial part
of the verification effort because of their strong guarantees and automation [24].
However, due to the state space explosion problem [14], model checking typically
only works well for small- to medium-sized circuits with primarily control logic,
limiting its potential for addressing industry verification challenges.

One approach for combating the state space explosion problem is partial or-
der reduction [14]. While symbolic partial order reduction has been successfully
applied for the verification of asynchronous systems [37], its use in synchronous
systems has been limited. In this paper, we introduce a novel approach for adapt-
ing symbolic partial order reduction to model checking of synchronous hardware
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and demonstrate dramatic reductions in the time to reach deep bugs on cer-
tain classes of synchronous circuits. Moreover, the technique requires only an
interface-level annotation of the circuit, and when fully automated approaches
fail, can be guided by the user. The paper makes the following contributions:

1. We adapt partial order reduction for synchronous hardware verification.
2. We introduce a novel technique for reducing the possible inputs to a circuit

at a single time step, which is crucial for practical application of partial order
reduction to synchronous hardware.

3. We provide a set of sufficient conditions, which, if proven, guarantee that
the proposed techniques maintain the reachable states.

4. We introduce conservative proof techniques for verifying these conditions,
which empirically work well on packet movers.

5. We evaluate our techniques on a set of open-source and commercial packet
mover circuits, demonstrating dramatic speed-ups with minimal manual ef-
fort.

The rest of the paper is organized as follows. We first provide a motivating
example, below. Then, in Section 2, we cover relevant background material and
notation. We explain our partial order reduction in Section 3 and our interface
simplification technique in Section 4. We provide an experimental evaluation in
Section 5. Section 6 covers related work, and Section 7 concludes.

1.1 Motivating Example

Throughout this paper we use the running example shown in Code Snippet 1. We
chose this example because: i) it is easy to understand; ii) it resembles real-world
packet mover circuits; and iii) it contains a difficult to reach bug.

The system has a synchronizing clock and takes two 1-bit inputs: inc x and
inc y. The 6-bit registers (state elements) x and y index the valid vector
and are initialized to 0. The 64-bit registers valid and data start at 0 and 1,
respectively. The 64x64 bit memory is uninitialized. If inc x and en x are true,
the system increments the value of x. When inc y is true, the system increments
y, sets the valid bit at index y, writes data to the memory at location y, and
rotates the data vector to the left. Notice that the en x signal ensures that x
never surpasses y (until all bits in valid are set). This incrementing pointer
logic is similar to that found in a circular pointer FIFO. To ensure the asserted
property, the code attempts to maintain the invariant: data = 1 << y.

At first, it appears that the asserted property should hold based on this
invariant, but it does not. There is a bug that can first occur at cycle 65: the
overflow check in the data update uses integers, which are assumed to be 32-
bits. Since y is zero-extended to be 32-bits, y+1 can never be equal to 0. Thus,
when y has the value 63 and is incremented, data, which is supposed to be
one-hot, is set to 0.

Although the system is small, this is a surprisingly difficult bug to reach using
model checking. We believe this is due in part to the non-determinism in the
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Code Snippet 1: Buggy Toy Example

1 module deep_bug(input clk, input inc_x, input inc_y);
2 reg [5:0] x = 0;
3 reg [5:0] y = 0;
4 reg [63:0] valid = 0;
5 reg [63:0] data = 1;
6 reg [63:0] mem [63:0];
7 wire en_x;
8 assign en_x = valid[x];
9

10 always @(posedge clk) begin
11 if (inc_x & en_x)
12 x <= x + 1;
13 if (inc_y) begin
14 y <= y + 1; valid[y] <= 1’b1; mem[y] <= data;
15 data <= (y+1 == 0) ? 1 : (data << 1);
16 end
17 end
18

19 always @*
20 assert ((mem[x] == (1 << x)) || ˜valid[x]);
21 endmodule // deep_bug

update logic. In every state, there are 4 possible input combinations. As a result,
there are an exponential number of execution paths. Model checkers routinely
verify hardware designs with an exponential number of reachable states; however,
we have observed that systems such as this which also have an exponential
number of execution paths are difficult for a model checker to manage.

Specifically, all but two of the model checker configurations we tried timed
out at 2 hours before reaching the bug. Since bounded model checking (BMC) is
one of the best approaches for bug-finding, we focus on improvements to BMC
that help reach this bug. We introduce automated, best effort techniques that
reduce the time to hit this bug from over 1000 seconds to 46 seconds by safely
adding temporal symmetry breaking constraints to the system.

2 Background

Before explaining our algorithm, we adapt the standard notion of synchronous
transition systems and review fundamental model checking concepts below. For
a more thorough introduction to model checking, we refer the reader to [14,15].

– S: a set of states
– Init ⊆ S: a set of initial states

Definition 1. A Synchronous Transition System (STS) is a tuple, 〈S, Init , A,En, D, T 〉:
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– A: a finite set of atomic actions - logically distinct operations of the system
– En = {ena|a ∈ A}: where ena : S → B is a state predicate that holds iff

action a is enabled in a given state
– D: a set of data inputs to the system
– T ⊆ S×(P(A)×D)×S: the state transition relation, where P denotes power

set

For our purposes, an STS instruction can perform multiple atomic actions
simultaneously. We define the system’s instruction set (i.e. the set of actions
that the system can perform in one transition) as I := P(A). We then define the
set of inputs of an STS as Input := I ×D. Thus, the transition relation T is a
subset of S × Input × S.

We denote the cardinality of an instruction i as |i|. For s, s′ ∈ S, in ∈ Input ,
T (s, in, s′) holds iff it is possible to reach s′ from s by applying input in.
It is often convenient to reason about sequences using vector notation. Let
in ∈ Inputn and s ∈ Sn+1, with n > 0. We use subscripts to name individ-
ual elements of vectors, e.g. s := 〈s0, s1, . . . 〉. We use the notation T (in , s)
to denote

∧
0≤i<n T (si, ini, si+1). The length of a vector is given by | · |, e.g.

|s| = n + 1, and prepending is represented as · : ·, e.g. s = s0 : s′ for
some s′ ∈ Sn. With some abuse of notation, we allow prepending both se-
quences and single elements. For k > 0, we say that s ∈ Sk is reachable if
∃n ∈ N, s′ ∈ Sn+1, in ∈ Inputn+k . Init(s′0) ∧ T (in , s′ : s).

The set of enabledness predicates En constrain the valid states in which an
action can occur. For an instruction i ∈ I and s ∈ S, let eni(s) :=

∧
a∈i ena(s).

In the remainder of the paper, we only consider transition relations T that respect
the enabledness conditions. That is, we assume ∀ s, i.(eni(s)↔ ∃ s′, d.T (s, 〈i, d〉, s′)).
Depending on the context, this can be checked with a model checker or added
as an environmental assumption. We also assume that the existence of a transi-
tion does not depend on the data input, that is, ∀ s, i. (∃ d, s′. T (s, 〈i, d〉, s′) =⇒
∀ d. ∃ s′. T (s, 〈i, d〉, s′)).

Example 1. We can define an STS for the motivating example. Let BVk denote
the set of all bitvectors of width k. Because there is only a single clock with
no negative edge behavior, we model the system without the clock, where every
transition corresponds to a clock cycle. Define an STS 〈S, Init , A,En, D, T 〉,
where:

– S = BV6 × BV6 × BV64 × BV64 × (BV64)64 is the set of values for
〈x, y, valid, data,mem〉

– Init is the set containing all states where x = 0, y = 0, valid = 0 and data
= 1

– A = {inc x, inc y}
– En = {en inc x := valid[x] = 1, en inc y := true}
– D = {nil} (here, nil is just a dummy placeholder used to ensure that T is

not empty).
– T is the relation describing the next state updates in Code Snippet 1.
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Model Checking. Given an STS S, let a safety property P ⊆ S be a set con-
taining acceptable states. The model checking problem is to determine whether
the system stays within this acceptable set for all possible execution traces.
Formally, we want to check whether the following holds:

∀n ≥ 0, in ∈ Inputn, s ∈ Sn+1. (Init(s0) ∧ T (in , s)) =⇒ sn ∈ P (1)

When equation (1) holds, we say that P is an invariant of S. A number of
techniques exist for solving this problem, including Binary Decision Diagram
(BDD)-based [12] approaches, Interpolant-based [27] approaches, and IC3/PDR
(property directed reachability) techniques [10,16]. We refer the interested reader
to [15] for a more complete survey of model checking algorithms.

In this paper, we will focus on bounded model checking (BMC). In BMC,
instead of proving (1) for all n, we prove it for all n less than some finite bound
k. Though it typically cannot be used to prove properties, BMC can be quite
effective at finding bugs [6] and is especially useful when full model checking is
infeasible.

Symmetry. Early on in the development of model checking, researchers rec-
ognized the importance of symmetry reduction to combat the state explosion
problem [13]. Existing approaches in the hardware domain perform data sym-
metry reduction and data type reduction through the use of bit-width reduction
preprocessing passes or syntactic restrictions such as scalarsets [8,20,28]. There
have also been abstraction-refinement loop algorithms proposed to handle mem-
ory symmetries [9]. All of these approaches are focused on symmetries present
in the transition system description, such as the presence of large data types.
We refer to these types of symmetries as data symmetries. Most of these tech-
niques are intended to speed up proofs of true properties rather than accelerate
bug-finding.

Model checking of asynchronous systems such as concurrent programs faces
an orthogonal issue due to the many possible redundant interleavings of inde-
pendent processes. Throughout this paper, we refer to this as path symmetry.
Path symmetry is a temporal symmetry: it relates to executions of a system
rather than just its size. Path symmetries occur when there are many distinct
ways of reaching the same state in a system execution. Exploring all such paths
can result in exponential case splitting.

This paper provides evidence that path symmetry can also severely hurt
model checking performance in synchronous systems. One of the first techniques
proposed to handle path symmetry was partial order reduction.

Partial Order Reduction. Partial order reduction was first developed in the
explicit-state model checking context but was later extended to symbolic model
checking [37]. The approach is named “partial order reduction” for historical rea-
sons, but Clarke noted in [14] that “model checking using representatives” [30,31]
may have been a more appropriate name. In particular, partial order reduction
attempts to develop equivalence classes of behaviors so that only one represen-
tative from each class needs to be considered during model checking. Note that
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partial order reductions are sound only for checking state invariants. If the prop-
erty of interest is temporal, the reduction could disallow input sequences that
trigger the property. This can be avoided by first instantiating a monitor [15]
and, if necessary, converting liveness properties to safety [5].

Partial order reduction is less natural in the synchronous setting, because
synchronous transition systems do not have easily expressible independent ac-
tions. Nevertheless, these systems can still benefit from partial order reduction.
Consider our motivating example: despite the huge number of system execution
paths to consider, many of them are redundant. Observe that if both inputs are
zero, then the state does not change. Furthermore, there is a temporal symmetry
in the system execution: from any state where en x is true, driving only inc x
followed by only inc y results in the same state as driving them in the opposite
order. Thus, this system has a large number of redundant interleavings, much
like a multi-threaded program. To address this problem, we introduce a par-
tial order reduction for synchronous hardware. Our goal is to remove redundant
interleavings by adding constraints to the system. To maintain soundness, we
provide a set of conditions which must pass before we can add constraints.

3 Synchronous Partial Order Reduction

In order to be able to apply partial order reduction to a synchronous transition
system, we are interested in identifying pairs of instructions that can be reordered
without affecting the resulting state. More generally, we also want to be able
to find pairs that can only be reordered under certain conditions. To formalize
these notions, we adapt the notation and representation of guarded independence
relations from [37].1

Definition 2. Given an STS: 〈S, Init , A,En, D, T 〉 with instruction set I, let
G := P(S) be the set of predicates over the states. Let 〈i0, i1, g〉 be a guarded
independence tuple iff for all d0, d1 ∈ D and reachable s ∈ S3, the following
condition holds:

eni0(s0)∧g(s0)∧T (〈〈i1, d1〉, 〈i0, d0〉〉, s) =⇒ ∃ s′.T (〈〈i0, d0〉, 〈i1, d1〉〉, 〈s0, s′, s2〉).

According to this definition, if we can prove that 〈i0, i1, g〉 is a guarded indepen-
dence tuple, then we can reorder 〈i1, i0〉 instruction sequences as long as i) i0 is
enabled in the first state; ii) g holds in the first state; and iii) we also reorder the
corresponding data inputs. We check only the enabledness of i0 because 〈i0, i1〉 is
the representative order, and we only need to be able to reorder to the represen-
tative, not from it. The guard allows us to consider partial order reductions that
only hold for a subset of the reachable states. To avoid trivially overconstraining
the system with conflicting reorderings, we will only consider one ordering for
each pair of instructions.

The condition in Definition 2 is difficult to check automatically because of
the existential quantifier. We instead check two slightly weaker conditions that

1 The main differences are our STS formalism and that we consider reachability.
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Fig. 1: Partial Order Reduction Condition (3) Proof Goal

imply guarded independence. These conditions are also standard in the POR
literature [14,37]. The first condition states that instruction i0 cannot disable i1
under guard g:

∀ d ∈ D, s ∈ S2. (eni1(s0) ∧ g(s0) ∧ T (s0, 〈i0, d〉, s1)) =⇒ eni1(s1) (2)

Intuitively, this condition ensures that we do not remove reachable states by
disabling instructions. The second condition is that executing the instructions
in either order leads to the same final state:

∀d0, d1 ∈ D, s, s′ ∈ S3 . (g(s0) ∧ (s0 = s′0) ∧
T (〈〈i0, d0〉, 〈i1, d1〉〉, s) ∧ T (〈〈i1, d1〉, 〈i0, d0〉〉, s′)) =⇒ (s2 = s′2)

(3)

When applying partial order reduction to concurrent programs, the standard
approach is to check conservative syntactic properties which guarantee conditions
(2) and (3). Synchronous systems do not typically have these syntactic proper-
ties, because there is no notion of distinct processes. Instead, we must check
these conditions directly. In real circuits, it is unlikely that (2) will hold over
arbitrary states. However, it is sufficient to prove that it holds for all reachable
states. This can be done with a model checker.

To prove (3), we could encode it as an LTL property or build a monitor
automaton and use a model checker. Alternatively, we have found that we can
often use a straightforward commuting-diagram approach starting from a sym-
bolic initial state, depicted in Fig. 1. We duplicate the system, unroll it twice,
then start both copies in the same symbolic state and check that applying the
instructions in either order results in the same final state. This simple approach
has the disadvantage that a symbolic initial state ignores reachability which
could lead to spurious counterexamples. However, notice that the initial state
is constrained by enabledness assumptions. To apply an instruction it must be
enabled, so both instructions must be enabled in the initial state. We have found
that these enabledness assumptions often constrain the initial state enough to
rule out spurious counterexamples.
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If both conditions pass, then we can choose a representative order and dis-
allow the opposite ordering for that pair of instructions. If the proof of con-
dition (3) fails, it provides a counterexample which should either convince the
user that partial order reduction does not apply for that pair of instructions
(a real counterexample), or serve as a guide for the user to write guards that
would remove the spurious counterexample. Other invariants of the system, ei-
ther obtained automatically or manually guessed by the user, could also remove
spurious counterexamples. We can now state the first theorem of synchronous
partial order reduction: that these conditions guarantee guarded independence
over all reachable states.

Theorem 1. Given an STS S := 〈S, Init , A,En, D, T 〉, with instruction set I :=
P(A): if conditions (2) and (3) hold for instructions io, i1 ∈ I, and guard g ∈
P(S), then 〈i0, i1, g〉 is a guarded independence tuple.

Proof. Assume conditions (2) and (3) and that for some d0, d1 ∈ D and reachable
s ∈ S3, we have:

eni0(s0) ∧ g(s0) ∧ T (〈〈i1, d1〉, 〈i0, d0〉〉, s)

Because eni0(s0), we have ∃s′, d′ . T (s0, 〈i0, d′〉, s′) because of our enabledness
assumption. Furthermore, by the data-input independence property of transition
relations, it follows that for some s′1, T (s0, 〈i0, d0〉, s′1) Now, because one of our
assumptions is a transition from s0 using i1, eni1(s0) must be true. Condition
(2) implies that eni1(s′1), thus ∃ s′, d′. T (〈〈i0, d0〉, 〈i1, d′〉〉, 〈s0, s′1, s′〉). As before,
this implies that for some s′2, we also have that T (〈〈i0, d0〉, 〈i1, d1〉〉, 〈s0, s′1, s′2〉).
It then follows from (3) that s′2 = s2, and thus, 〈i0, i1, g〉 satisfies the condition
from Definition 2. �

Let a guarded independence relation, R ⊆ I × I × G, be a set of guarded
independence tuples. We now describe how to apply partial order reductions,
given some R. For each 〈i0, i1, g〉 ∈ R, and for every s ∈ S2, d ∈ D, whenever
T (s0, 〈i1, d1〉, s1)∧eni0(s0)∧g(s0) holds, we remove from T every transition of the
form 〈s1, 〈i0, d〉, s〉 (for any d and s). Let TR be the result. To apply this reduction
in practice, we add a constraint to the BMC encoding: (g(s0)∧eni0(s0)∧i1) =⇒
¬next(i0).

This makes it impossible for the STS system to ever execute an instruction
i0 after an instruction i1 when starting from a state where i0 is enabled and g
holds. This effectively gives preference to i0 as long as it is enabled. The effect
of partial order reduction on a pair of instructions in a synchronous system is
depicted in Fig. 2. Red X’s show removed transitions, and for simplicity, we
assume a trivial guard of true. Notice that all states are still reachable via some
path from the initial state in the bottom left corner.

Theorem 2. Given S := 〈S, Init , A,En, D, T 〉, let R be a guarded independence
relation and let SR be the reduced STS obtained by replacing T with TR in S.
Then, if a property P is an invariant for SR, it is also an invariant for S.
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Fig. 2: Effect of Partial Order Reduction for Instructions i0 and i1. Initial state
is green.

Proof. It suffices to show that SR can reach all the same states as S. We prove
this by contradiction. Assume there is some in , s such that Init(s0)∧T (in , s) and
0 ≤ j ≤ |s|−1 such that sj is the first state that is unreachable in SR. The value
of j cannot be 0 or 1, because S and SR have the same initial states and TR only
excludes sequences of length 2. Then, by the definition of TR, 〈inj−2, inj−1〉must
be a sequence excluded by TR. Conditions (2) and (3) guarantee that permuting
inj−2 and inj−1 results in an enabled sequence that ends in the same state,
sj , which contradicts the assumption. Thus, there cannot be a state which is
reachable in S but not SR. �

4 Reduced Instruction Sets

Now that we can apply partial order reduction to synchronous systems, our main
goal is to identify a maximal guarded independence relation, R. Recall that we
defined instructions as sets of atomic actions. We call an instruction contain-
ing at most one action atomic (this includes the instruction with no actions).
Non-atomic instructions are complex. Instructions thus reflect the parallelism of
synchronous hardware, and lead to natural candidates for R: pairs of atomic
instructions.

Furthermore, notice that the number of instructions is exponential in the
number of actions. Thus, it could be prohibitively expensive to check every pair
of instructions for guarded independence. In contrast, the number of atomic
instructions is equal to the number of actions (plus one). Furthermore, it is
likely that many complex instruction pairs will not have a guarded independence
relationship because they contain common actions. Our goal in this section is to
disallow as many complex instructions as possible without losing any reachable
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states, thereby reducing the number of pairs of instructions we need to check
while also making it more likely for the checks to succeed. Note that, in isolation,
removing instructions might be problematic, because it could extend the bound
needed to reach a property violation. However, as we will demonstrate in the
experimental section, this disadvantage is more than compensated for when it is
applied in combination with partial order reduction.

Given an STS with instruction set I, we seek a reduced instruction set,
Ir ⊆ I, which preserves the reachable states of the system. Let Inputr be the
set of inputs which only use instructions from Ir. Given an input in ∈ Input ,
our goal is to prove the existence of a witness w(in) ∈ Inputnr (for some n > 0)
that simulates the behavior of in using only reduced instructions. Formally, the
witness function w should satisfy:

∀ s, s′ ∈ S, in ∈ Input . T (s, in, s′) =⇒
∃n ∈ N, s ∈ Sn. T (w(in), s : s) ∧ (sn−1 = s′)

(4)

In other words, we need to show that for every instruction in the original in-
struction set, there exists a sequence of inputs, using only instructions from the
reduced instruction set (RIS), that results in the same final state. Notice that
a witness function that also depended on the state would be more general, but
for our purposes, it is sufficient for the witness function to depend only on the
input.

4.1 Atomic instruction sets

The condition in (4) is quite general and does not provide any intuition on how
to choose w. Here, we focus on a specific case where w is easy to construct: we
choose Ir to be an atomic instruction set, defined as an instruction set containing
only atomic instructions. We then must prove that the set of reachable states is
not affected by restricting the instructions to those in Ir.

It is sufficient to prove that for each complex instruction, we can remove one
of its actions and perform that action in the next step, with the same result. For
some complex instruction i containing a and some data input d, let wa(〈i, d〉) be
〈〈i−{a}, d〉, 〈{a}, d〉〉. We must show that for each input in containing a complex
instruction, there exists some a where wa(in) has the equivalent effect on the
system as in. Formally, the requirement is:

∀i ∈ I \ Ir, d ∈ D, s ∈ S2.

T (s0, 〈i, d〉, s1) =⇒ ∃ a ∈ i, s′ ∈ S3. T (wa(〈i, d〉), s′) ∧ s0 = s′0 ∧ s1 = s′2
(5)

Condition (5) is still difficult to prove because of the existential quantifier. One
conservative approach is to replace the existential quantifier with a universal
quantifier and attempt to prove that stronger condition. For real systems, this
is unlikely to hold. Instead, we propose a counterexample blocking procedure
which, if it succeeds, guarantees (5). We introduce symbolic values for i, d, and
a and then iteratively add constraints over them until the proof succeeds or
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Fig. 3: Equivalence of original and reduced instruction sequences. Circles repre-
sent states.
we have enumerated all possibilities. This algorithm is a specialized ∀∃ decision
procedure that exploits the structure of (5) and additional domain knowledge
about the proof goal. We use a constraint solver as an oracle.

Algorithm 1 ProveRIS(S)

1: S′ := 〈S′, Init ′, A′,En ′, D′, T ′〉 ← copy sys(S)
2: I := P(A), I′ := P(A′) // instruction sets are power sets of actions
3: var i : I, var i′ : I′, var a : A
4: var s : S2, var s′ : S′3, var d : D, var d′ : D′

5: add constraint(s0 = s′0 ∧ d = d′ ∧ i′ = i− {a})
6: add constraint(T (〈〈i, d〉〉,s) ∧ T ′(〈〈i′, d′〉, 〈{a}, d′〉〉,s′))
7: for c = 2 ... |A| do
8: while check sat(|i| = c ∧ s1 6= s′2) do
9: µ← get model()

10: iµ ← assignment(µ, i)
11: aµ ← assignment(µ, a)
12: add constraint(iµ ⊆ i =⇒ a 6= aµ)
13: if ¬check sat(i = iµ) then
14: return false // exhausted all possible decompositions for this instruction
15: end if
16: end while
17: end for
18: return true // every instruction can be decomposed

Algorithm 1 takes an STS, S := 〈S, Init , A,En, D, T 〉 and returns true if the
instruction set can be decomposed into an atomic instruction set by delaying a
single action from each instruction.2 For simplicity, the algorithm assumes (and
we check this assumption separately) that if a complex instruction i is enabled,
then for each a ∈ i, executing i − {a} results in a state where a is enabled.

2 We also implemented a more general version of this algorithm which can drop more
than one action at a time from the instruction i, but this simpler version is sufficient
for the results we report in this paper.
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Formally:

∀ i∈I\Ir, d∈D, s∈S2, a∈ i. eni(s0) ∧ T (s0, 〈i−{a}, d〉, s1) =⇒ ena(s1) (6)

Note that this is only a slight generalization of the property that atomic instruc-
tions do not disable each other, a condition that we will need anyway in order to
apply partial order reduction to the atomic instruction set (see condition (2)).

The algorithm first creates an identical copy of the STS in line 1. Lines 2-4 set
up symbolic variables for the instructions, data, and states of each system. Line
5 adds constraints to the solver enforcing that both systems start in the same
state, use the same data, and that i′ is i but with symbolic action a dropped.
Line 6 adds the transition relation constraint for each STS. The initial symbolic
set up is depicted in Fig. 3.

The outer loop at line 7 iterates over all possible complex instruction cardinal-
ities. The inner loop starting at line 8 attempts to show that for each cardinality
c, instructions of that cardinality can be decomposed by delaying one action
(symbolically represented by a). If all instructions of cardinality c have been
decomposed, then the while loop condition is false and the outer loop continues.
Otherwise, it gets variable assignments from the constraint solver in lines 9-11
and learns a constraint at line 13 that prevents this particular action, aµ, from
being chosen for decomposition again. To ensure that we have not blocked all
possible actions, there is an additional check at line 13, which returns false in
the case that no action can be delayed for the current instruction.

Importantly, the algorithm assumes that if the delay of action aµ does not
create a valid witness sequence for a given complex instruction iµ, then the
same is true whenever the instruction i includes iµ. We call this a monotonicity
assumption, and it typically holds when actions are somewhat independent. The
monotonicity assumption motivated the current structure of the algorithm and
can significantly reduce the number of iterations in the algorithm. We can remove
this assumption by changing iµ ⊆ i to iµ = i in the antecedent in line 13.
Note that the monotonicity assumption does not make the algorithm unsound:
if it returns true, then (as we prove below) condition (5) holds. However, if the
algorithm returns false, then it may be that the version without the assumption
would return true. For each of our experiments, we were able to get a true result
with the monotonicity assumption.

Because the algorithm does not consider state reachability and looks for a
witness function that only depends on inputs, it can still return false when an
equivalent sequence might exist for reachable states. In such cases, users can
examine the constraint solver models and attempt to remove some of them by
proving other invariants.3

If algorithm 1 returns true, we replace T with Tr, where Tr is the result of
removing from T all transitions 〈s, 〈i, d〉, s′〉 where |i| > 1. Practically, this is

3 This was rarely necessary in our experiments. Our implementation also extended
the algorithm to support predicate abstraction, which could also rule out spurious
counterexamples, but this feature was never needed in our experiments.
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achieved by adding a disjunctive constraint over the possible atomic actions. We
can now state the main results for reduced instruction sets.

Theorem 3. Let S be an STS. If condition (6) holds and ProveRIS(S) returns
true, then (5) holds.

Proof. We maintain the loop invariant at line 8 that for every instruction i′,
there is some action a′ such that check sat(|i| = c ∧ i = i′ ∧ a = a′) is true. It’s
true initially for each c by condition (6). Afterwards, the check on line 14 ensures
that it is maintained. Furthermore, the check on line 9 ensures that when the
while loop is exited, then any satisfying assignment for check sat(|i| = c) is such
that s1 = s′2. Together, these conditions guarantee that (5) holds.

Theorem 4. Let S := 〈S, Init , A,En, D, T 〉 be an STS such that condition (6)
holds and ProveRIS(S) returns true, and let Tr be the transition relation for
the reduced instruction set. Let Sr be the reduced STS obtained by replacing T
with Tr in S. Then, safety property P ∈ S is an invariant for Sr if and only if
it is also an invariant for S.

Proof. It suffices to show that the reachable states of S and Sr are identical.
Init does not change, so the initial states cannot be different. Furthermore, Tr
is obtained by removing transitions from T , we know that Sr cannot add any
reachable states. To show that it also does not remove any reachable states,
consider an arbitrary trace Init(s0) ∧ T (in , s) with |s| = n, we must show
∃ in ′,m, s′ ∈ Sm. Init(s′0)∧Tr(in ′, s′)∧sn−1 = s′m−1. We prove this by showing
by induction that it holds whenever in contains instructions of cardinality at
most c.

In the base case, c = 1, so all instructions are of size one or less. All of these
are already atomic and thus we can take in ′ = in and s′ = s by the definition
of Tr.

For the inductive step, suppose that it holds for cardinalities up to c−1, and
assume Init(s0) ∧ T (in , s) with |s| = n. Let inj = 〈i, d〉 be an input containing
an instruction of size at most c. If |i| < c, there is nothing to be done. Thus we
only consider the case where |i| = c. We know that T (sj , inj , sj+1) holds. By
Theorem 3 and condition (5), it follows that T (〈〈i−{a}, d〉, 〈{a}, d〉〉, 〈sj , s, sj+1〉)
holds for some a and s. We can thus replace inj in in by 〈i − {a}, d〉 followed
by 〈{a}, d〉 to obtain an input sequence inc and insert s between sj and sj+1 in
s to obtain sc with final state sn−1 such that Init(s0) ∧ T (inc, sc). Repeating
this process for each input containing an instruction of size c yields a final inc
such that the maximum cardinality of any instruction is c−1. The property then
holds by the inductive hypothesis. �

Note that if there is some instruction i ∈ I which cannot be decomposed
into atomic instructions, we could always keep this instruction in Ir and still
benefit from removing other complex instructions. In many cases, we can also
remove the empty instruction, ie = ∅. If applying ie cannot change the state of
the system, regardless of the data input, then it is considered a stutter step [14].
It is straightforward to check whether ie can be removed by comparing the state
before and after applying ie.
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5 Experimental Results

We developed a prototype flow for proving the POR and RIS conditions and
applying the necessary constraints. We use the IC3/PDR implementation in
ABC [11], pdr, to prove condition (6) (which implies condition (2)). This requires
manually writing a Verilog property for each atomic instruction.4 We imple-
mented the ProveRIS algorithm in our SMT-based model checker, CoSA [26],
configured with boolector [29] on the smtcomp19 branch, using CaDiCaL [4] as
the underlying SAT solver.5 We check the commuting diagram for condition (3)
in CoSA as well. It tries the trivial guard true by default, and allows the user
to provide additional candidate guards if necessary. The set up for proofs in
CoSA is automated based on user-provided annotations for the actions and en-
able conditions. We show our best results which used an encoding leveraging the
SMT theory of arrays to represent memories for proving conditions, and a pure
bitvector encoding for bounded model checking.

Our flow applies the following steps: i) read in a system description in Verilog
using Yosys [38] and generate AIGER [7] for ABC (or BTOR2 [29] for other
tools); ii) check condition (6) for each atomic instruction; iii) run the ProveRIS
algorithm, and if it returns true, add constraints to rule out all but atomic
instructions; and iv) check POR condition (3) for each pair of atomic instructions
and add constraints for each passing pair of instructions with the associated
guard. Each step depends on the previous step passing successfully. In each of
our experiments described below, we successfully completed every step of this
flow, though in some cases guards were required in step (iv). For POR and RIS
runtimes, we always include the time to check the conditions. We tried running
with POR alone, but it resulted in negligible improvements in runtime and thus
we omit these results. This demonstrates the importance of RIS. We ran all
experiments on a 3.5GHz Intel Xeon CPU with 16GB of RAM.

5.1 Motivating Example

First, we return to our motivating example. We compare the time to reach
the bug using the SAT-based ABC [11] engines pdr and bmc, and SMT-based
bounded model checking using btormc [29] and CoSA. We ran the SMT-based
model checkers both with and without the SMT theory of arrays for the encoding
of the memory. Both btormc and CoSA without the array encoding were able to
reach the bug in 1230s and 1437s, respectively, but all other approaches timed
out at two hours. In particular, pdr times out at 2 hours on the property, but can

4 This could be automated based on user-tagged actions and user-provided enable
conditions.

5 GitHub Commit Hashes for Tools:
Boolector/Btormc: 1989080261235f33e344cbd095e70a337c45bd16
CoSA: ff3c8cee1f0834c03167b2a8ecdd1223031312b3
PySMT: 09dc303185812149550110123ad266326beb1179
Yosys: a4b59de5d48a89ba5e1b46eb44877a91ceb6fa44
ABC: 5776ad07e7247993976bffed4802a5737c456782
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prove condition (6) for every atomic instruction in less than a second. Intuitively,
this makes sense because the enabledness conditions do not involve data or mem.
Thus, none of the datapath falls in the cone of influence, leaving only control
logic for IC3 to reason about. The remaining conditions, (3) and (5), are proven
in less than three seconds. Since all the conditions pass, we apply the POR and
RIS constraints, which reduces the time to hit the bug from 1437s to 46s in
CoSA, including the time to check the conditions.

5.2 Packet Movers

We now evaluate our approach on data integrity properties for a variety of
packet-mover circuits. Data integrity is a safety property that ensures no packets
are dropped or corrupted. In practice, data integrity is often checked by instan-
tiating a monitor, called a scoreboard. It provides the necessary infrastructure
for formal verification. In our case, it non-deterministically tags a magic packet
and checks that this packet exits the system when it should. Crucially, the score-
board is a reusable module which can check data integrity of arbitrary packet
movers.

Notice that existing symmetry reduction techniques will not be very effective
for this scoreboard setup. For example, consider a circular pointer FIFO which
maintains two incrementing pointers that index a memory for reading and writ-
ing, respectively. We cannot use scalarsets to break symmetries in the memory
addresses because the pointers index the memory and are involved in arithmetic,
breaking the syntactic requirements for scalarsets [28]. Furthermore, sequential
memory abstraction [9] could reduce the size of the memory, but does not ad-
dress the path symmetry. In addition, both these symmetry reduction techniques
are focused on proofs, not bug-finding.

We evaluate our approach on two commercial library components from a
major hardware company. We also implemented simpler, open-source versions of
these designs. Our open-source benchmarks include: i) a circular pointer FIFO
which assumes power-of-two depth but is instantiated with a non-power-of-two
depth (one greater than the provided parameter); ii) a shift register FIFO which
does not properly add data to the last register in the pipeline; and iii) 2-5

Design # #Solved #Solved PR Time Time PR

com 1 49 35 47 103.8 20.3
com 2 49 25 34 470.8 4.9
cp 49 35 47 230.3 18.9
sr 49 25 33 912.6 5.6
arb n=2 49 35 42 89.1 20.5
arb n=3 49 35 42 94.0 21.9
arb n=4 49 35 42 101.3 35.5
arb n=5 49 35 42 111.7 31.8

Table 1: Number Solved and Average Runtime

R

Fig. 4: Runtime Comparison
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correct circular pointer FIFOs in parallel with a non-deterministic arbiter and
credit counters for managing data flow. The reset state of the credit counter has
one too many credits, so data can be pushed to a full FIFO. The single FIFOs
have two actions each: one for pushing data, and one for popping data. For the
arbitrated circuits, there is a separate action for pushing data onto each FIFO as
well as a single request action which is enabled whenever any FIFO is non-empty.
There is an inherent symmetry in all of these designs. Consider any of the FIFOs.
There are two main actions: pushing data (which is enabled if the FIFO is not
full); and popping data (which is enabled if the FIFO is not empty). In a state
where both are enabled, pushing data followed by popping results in the same
state as popping and then pushing the same data. Furthermore, the actions can
be performed simultaneously, but requiring that they are performed separately
should not change the reachable states (depending on the implementation), so
RIS is applicable.

Our experiments vary both the parameterizable data width and depth of the
packet movers, by sweeping all powers of two between 2 and 128. All benchmarks
contain injected bugs and reach the bug at a deep bound relative to the depth.
We used a timeout of 4 hours. We use our prototype flow for checking the
conditions and CoSA for bounded model checking.6 For condition (3), we had
to write one guard which is true whenever the scoreboard counter is greater
than zero to handle an edge case. This same guard was used for every design,
but an appropriate invariant relating the scoreboard counter to the internal
state of the system being verified would also have worked. The open-source shift
register FIFO required one more guard about the number of stored elements.
We obtained both guards by observing counterexamples.

Table 1 compares the number of solved instances (49 total per row) within
the timeout and the average runtime of commonly solved instances in seconds.
Columns marked “PR” used the POR and RIS constraints. We additionally use
the following abbreviations: “com” for commercial, “cp” for circular pointer, “sr”
for shift register and “arb” for arbitrated. In Fig. 4 we plot the actual runtime on
a log-scale for all the benchmarks with and without POR and RIS. The dotted
lines show 10x and 100x improvements.

Analysis. There is a cluster of points in the bottom left of Fig. 4 which are solved
extremely quickly by both approaches, but slightly faster without POR and RIS.
These are results on benchmarks with very small parameter values, where the
bug occurs at a low depth, and so the POR and RIS results are dominated by
the time taken to check the conditions. However, as the parameter sizes, and
runtimes, increase, it is clear that POR and RIS can result in exponential speed
ups.

Recall that one concern is that RIS could extend the bound needed to reach
the bug. In the shift register and arbitrated FIFO systems, it extended the bound
by a few steps. However, for the bug in the open-source circular pointer FIFO,
it doubled the bound needed to reach the bug. Regardless, this was more than

6 Note: CoSA’s bounded model checking performance is comparable to commercial
model checkers on these benchmarks.
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compensated for by the symmetry-breaking of POR, as evidenced by the faster
times to reach the bug. The deepest bound was 260 which occurred at FIFO
depth 129.

It is interesting to note that encoding the transition systems to SMT using
the theory of arrays was always slower for bounded model checking, but was
noticeably faster for checking RIS and POR conditions. Perhaps this is because
the state comparison is easier for the solver to reason about using array exten-
sionality [23].

We have demonstrated that these techniques work well for packet movers.
In part, this is because packet movers are often well-constrained by their envi-
ronmental assumptions, and their behavior is largely independent of incoming
data values. Furthermore, we typically expect the POR and RIS conditions to
hold for a correct packet-mover implementation, so a failure in a condition could
identify a bug.

6 Related Work

Various techniques have been employed to accelerate bounded model checking.
The authors of [19] use BDDs to accelerate BMC, and the techniques intro-
duced in [35,36] exploit the structure of BMC queries to help the SAT solver.
The authors of [18] take advantage of structural information with an SMT frame-
work tailored for BMC. Our technique is similar in that we speed up bounded
model checking by adding constraints to the transition system, but we obtain
constraints using partial order reduction analysis.

Wang et al. [37] pioneered partial order reduction for symbolic software model
checking, guaranteeing optimal reduction for two threads. Their follow-up paper,
[21], extended this framework to find the optimal reduction for any number of
threads. We adapted their symbolic POR technique for synchronous hardware
model checking, and developed reduced instruction sets to improve the efficacy of
POR in this new domain. Bhattacharya et al. used a SAT solver to directly check
guarded independence conditions (as opposed to checking syntactic properties)
for asynchronous rule-based languages [3]. We also check conditions directly, but
in a synchronous setting.

The techniques developed by McMillan, temporal case splitting and path split-
ting [28], provide a framework for splitting on possible values at a given timestep.
These approaches deal with system executions, but still rely on breaking data
symmetries for performance. In contrast, our techniques focus on mitigating path
symmetries.

The work of Bengtsson et al. [2] extended POR to timed automata using
a local-time desynchronization of clocks, followed by resynchronization with an
added global clock. Similarly, our techniques adapt POR by modifying the sys-
tem. However, our approach targets a different domain, and only modifies the
original system by adding constraints.
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7 Conclusion

We have presented a set of conservative conditions over transition systems and
automated techniques for proving these conditions. If the conditions can be
proved, then constraints can be added to the system that break path symme-
tries. We evaluated our approach on parameterized open-source and commercial
packet-mover circuits and demonstrated significant improvements in bounded
model checking performance.

Some potential future work includes improvements to the ProveRIS proce-

packet movers, developing more targeted condition proofs by associating actions
with particular data inputs, and building an interactive tool which helps the
user identify and manage reduced instruction sets and partial order reductions.

8 Data Availability Statement

The experimental results and the necessary software for reproducing results in
a standard Ubuntu 18.04 installation are available in the Figshare repository:
https://doi.org/10.6084/m9.figshare.11874687.
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