
Chapter 15
Compartmental Population Balances
by Means of Monte Carlo Methods

Gregor Kotalczyk and Frank Einar Kruis

Abstract Stochastic simulation techniques for the solution of a network of pop-
ulation balance equations (PBE) are discussed in this chapter. The application of
weighted Monte Carlo (MC) particles for the solution of compartmental PBE sys-
tems is summarized and its computational efficacy in form of a parallel GPU imple-
mentation is pointed out. Solution strategies for coagulation, nucleation, breakage,
growth and evaporation are thereby presented. An application example treats the
simultaneous coagulation, nucleation, evaporation and growth encountered during
particle production through the aerosol route. Furthermore, the simulation of a com-
partmental network is discussed and parallel simulation techniques for the transport
of weighted MC particles are presented. The proposed methodology is benchmarked
by comparison with a pivot method for a variety of test cases with an increasing
degree of complexity. Simulation conditions are identified, for which conventional,
non-weighted MC simulation techniques are not applicable. It is found, that the
specific combination of a screen unit with tear-streams cannot be simulated by con-
ventional methods, termed ‘random removal’, and make thus other techniques—like
the here introduced merging techniques necessary.

Nomenclature

b Breakage rate [s−1]
dg Geometric mean diameter [m]
Cdist Compare distance on GPU memory (integer) [–]
d∗ Kelvin diameter [m]
d Diameter of particle [m]
Ei, j Merging error of particles i and j [–]
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f A→B Relative particle exchange flow rate from compartment A to B [s−1]
FA→B Absolute particle exchange flow rate from compartment A to B [s−1]
G Growth rate [m s−1]
kB Boltzmann constant [J K−1]
m1 Atomic (resp, molecule) mass [kg]
NMC Number of MC simulation particles [–]
NG Concentration of gas atoms (or molecules) [m−3]
nC(v) PSD in compartment C [m−6]
oidx Destination index on GPU memory (integer) [–]
i∗ Number of atoms (resp. molecules) in critical cluster [–]
p(i)
A i-th property of particle A [unit of i-th property]

ps Saturation pressure [Pa]
QA→B Volumetric flow rate of carrier gas/liquid from compartment A to B [m3 s−1]
R Mixing ratio for breakage scheme [–]
RN Nucleation rate [m−3 s−1]
S Supersaturation [–]
Ssep Separation function for screen [–]
s f Reciprocal of stochastic resolution [m−3]
T Temperature [K]
t (simulation) time [s]
tchar Characteristic time [s]
v Particle volume [m3]
v∗ Kelvin volume [m3]
vM Atomic (resp. molecular) volume [m3]
VC Volume within compartment C filled with carrier liquid (or gas) [m3]
Wi Statistical weight of MC particle i [m−3]
αi Merging weight for property i
β Coagulation kernel [m3 s−1]
γ Breakage function [–]
ε Maximal admittable merging error [–]
τ Time step [s]
σ Surface tension [N m−2]

Indices

0 Initial values
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1 Introduction

The solution of the population balance equation (PBE) [1] plays an important role in a
wide area of applications ranging from natural sciences to many fields of engineering
[2]. Especially the modelling of chemical engineering problems such as crystalliza-
tion [3], milling [4], granulation [5] or particle production in aerosol reactors [6]
resort to PBE based process modelling.

The modelling of single apparatuses can be seldomly done with the assumption
of spatial uniformity (as in e.g. [7]) and the application of Computational Fluid
Dynamics (CFD) simulations and/or compartmental modelling becomes necessary
in order to describe different zones of single apparatuses correctly.

CFD modelling allows a very high spatial resolution of the investigated system:
30,000 [8]−1,000,000 [9] cells are sometimes applied. The drawback of a CFD-
PBEmodelling is its enormous computational cost, hence a PBE has to be solved for
each of these cells. Due to the high computational cost, only a rough approximation
of the particle size distribution (PSD) is encountered in such simulations which
typically resort to sectional methods with a low resolution (of ca. 12–30 discrete
points or sections [10, 11]) or to the method of moments [12, 13], limiting the
particle modelling mostly to one property—the size.

To overcome this problem, compartmental modelling is often applied, simplifying
the spatial complexity to a low number of compartments (examples are 3 compart-
ments or 10 compartments [14]). This allows, on the other hand, a more complex
particle modelling with a more detailed sectional grid (e.g. 1000 discrete sections for
3 compartments [15]) or even with aMonte Carlo (MC) simulation, where more than
one particle property allow to model a more complex morphology of the particles
[14].

The PBE for a network of compartments, like presented in Fig. 1. can be described
by the following formula:

dnC (v, t)

dt
= + 1

2

∫ v

0
βC (v′, v − v′)nC (v′, t)nC (v − v′, t)dv′

︸ ︷︷ ︸
coagulation birth term

− nC (v, t)
∫ ∞

0
βC (v, v′)nC (v′, t)dv′

︸ ︷︷ ︸
coagulation death term

+ RN,C (t) · δ(v − v∗
C (t))︸ ︷︷ ︸

nucleation

−∇v(GC (v, t)nC (v, t))︸ ︷︷ ︸
growth(G>0)/evaporation(G<0)

−bC (v) · nC (v, t)︸ ︷︷ ︸
breakage death term

+
∫ ∞

v

bC (v′) · nC (v′, t) · γC (v|v′)dv
︸ ︷︷ ︸

breakage birth term

+
∑

inflow from all compartments i

fi→C · ni (v, t)

−
∑

outflow to all compartments i

fC→i · nC (v, t) (1)
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Fig. 1 A network of compartments. Each compartmentCi models parts of a reactor (or equipment)
volume, which is filled with the carrier gas (or liquid) with a volume VC . The compartment contains
a PSD, nC , and is described by other continuous variables, like temperature TC , a gas concentration
NG,C , etc

where the coagulation kernels βC , growth rates GC , nucleation rates RN,C and sizes
of the nucleating particles v∗

C , breakage rates bC(v) and breakage functions γC(v|v′)
can be defined differently for each compartment C . The shown particle exchange
flowrates fi→C and fC→i may assume constant values, or reflect more complex—
nonlinear—and particle size or time dependent forms. The given volumetric flow
rates QA→B (shown in Fig. 1) of the carrier gas (or liquid) and the volumes of the
carrier gas (or liquid) of the outflow compartments, VA, are thereby used in order to
determine the particle exchange flowrates via:

f A→B = QA→B/VA (2)

In this way, a complex reactor structure can be modelled in more detail [16, 17]
or the interconnection of single processing units in a flowsheet simulation can be
analyzed [15, 18, 19].

Although Eq. (1) describes only one particle property, the volume v, one could
interpret v as a vector describing multiple properties of the particle, such as volume
(p(1)), surface area (p(2)), wet content (p(3)), and so on, as suggested in Fig. 1. Only
a stochastic modelling is able to solve Eq. (1) for a high number of properties and
render the complete particle morphology.

In the following, stochastic solution strategies for Eq. (1) will be discussed in
the frame-work of an operator splitting approach meaning that the single processes
coagulation, nucleation, growth/evaporation, breakage and transport of particles are
decoupled for short periods of time τ . The approximation error introduced by this
decoupling can be minimized by a choice of a low enough separation time step τ .
For this reason, the solution strategies for single processes, like coagulation, nucle-
ation, growth/evaporation and breakage are discussed for one compartment first. The
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implementation of the coagulation in the framework of a compartmental network,
as well as the transport between single compartments is discussed in the section
afterwards, where the modelling of multiple compartments is applied.

2 Weighted Monte Carlo Particles for the Solution
of the Population Balance Equation

The use of weighted simulation particles (a particle with weight w represents w
real particles within a given reactor volume) has several advantages: it allows to
describe the interaction between simulation particles having different concentrations
coming from different cells or compartments [14, 20, 21]. It can also be used as a
tool to control the number of simulation particles (e.g. to gain numerical accuracy).
In the following, some techniques will be introduced to solve the single mechanisms
presented in Eq. (1) by the application of weighted MC particles.

2.1 Coagulation

The correct description of the coagulation rates for the weighted particles, especially
for a complex coagulation scheme, like the one introduced Zhao et al. [22] shown in
Fig. 2, poses a great difficulty.

The authors [22] presented the ‘ficticious particle theory’ which leads to the
following modified coagulation kernel:

β( f p) = 2Wjmax
(
Wi ,Wj

)
Wi + Wj

β (3)

The weights of the particles are denoted by Wi and Wj . The coagulation kernel β

describes the coagulation of the original (non-weighted) system—which might be
the Brownian kernel for the freemolecular regime, etc. The resulting coagulation rate
is asymmetric, making a distinction necessary, whether particle i coagulates with j
or vice versa. This definition is 1) difficult to understand conceptually and 2) difficult
to extend on other process—like nucleation or transport of fictitious particles.

We developed in [23] the concept of the stochastic resolution which describes
each coagulation in the frame-work of equally weighted MC-particles, where each
MC-particle describes s f real particles. The value for the parameter s f can be set
arbitrarily. Figure 2 shows that the setting s f = Wmin = min

(
Wi,Wj

)
leads to the

correct description of the coagulation-scheme. The scaling factor s f depends on the
chosen coagulation pair, so that different coagulation-events are described in different
stochastic resolutions.
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Fig. 2 The concept of ‘stochastic resolution’ can be used to describe the coagulation-scheme
developed Zhao et al. [22]. Only the choice for sf = Wmin leads to the correct description of the
general rule presented in the ‘simulation entries’ line

The coagulation rate β(w) for this coagulation-scheme can be derived from the
population balance equation:

dn(v)

dt
= 1

2

v∫
0
β
(
v − v′, v′)n(

v − v′)n(
v′)dv′ − n(v)

∞∫
0

β
(
v, v′)n(

v′)dv′ (4)

Instead of the ‘original’ concentrations n(v), the concentrations of the MC-
systems n(MC)(v) = n(v)

s f
are being considered. The multiplication of the PBE with

the factor 1
s f

= 1
Wmin

leads to the following modified coagulation rate of the MC-

particles: β(MC) = Wmin ·β. Hence there is one MC-particle of theWmin-species and
Wmax
Wmin

MC-particles of the Wmax-species, the overall rate for the coagulation between
one Wmin-MC-particle and one of the Wmax-MC-particles is:

β(w) = Wmax

Wmin
· β(MC) = Wmax · β (5)
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The second case Wmax = Wmin , which is not shown in Fig. 2, is also described
with the resolution s f = Wmin . Both particle species are described by only one MC-
particle, so that only one MC-particle can be found after the coagulation. In order to
apply the constant number scheme, the weight of the simulation entry representing
this particle is divided by two and the particle properties are stored in both positions.

The thus derived coagulation kernel β(w) is easier to calculate than the origi-
nally introduced β( f p) —a speed up of the simulation up to 10% could be noticed.
Due to its symmetric form, computational advantages for the implementation of the
inverse method can be expected, as only half of the computations of the β(w) ker-
nel are necessary. The simulation results of particle coagulation for the newly esti-
mated coagulation kernel β(w) could be found to be as accurate as the β( f p)-kernel
results (which show excellent agreement with the solution produced by means of the
Discrete-sectional-method in the first place) within the MC-stochastic noise [23].

2.2 Nucleation

Homogeneous nucleation is amechanism that leads to the formation of new particles,
whichhave to be included among the simulation entries.Constant number simulation-
schemes sum up all possible algorithms, which update—somehow—the simulation
properties, but keep the number of the used simulation entries constant. Keeping the
number of simulation entries constant ensures a constant level of stochastic accuracy
and makes a simple prediction of needed computational resources possible. Figure 3
shows possible constant-number nucleation algorithms. They can be used to model
the inclusion of the nucleation particles or particles included by other processes: like
breakage or transport.

The random removal algorithm has been introduced Lin et al. [24] in the frame-
work of the concept of a ‘constant number Monte Carlo simulation’ which is based
on the not-weighted particle scheme. The algorithms applying the merging step are
based on the weighted-particles scheme and the concept of the merging error. They
cannot be used for non-weighted MC simulations. The merge-List is created each
100 merge-steps and contains 100 simulation entries with low-weights.

2.2.1 Merging

The concept of ‘merging’ of simulation entries is proposed in [23]: if two simulation
entries with exactly the same properties are merged, the resulting representation of
the particle size distribution will not change and all the physical processes will be
described in the same way. If the simulation entries differ slightly in their properties,
a small error will be introduced.
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Fig. 3 Different simulation algorithms which combine theMC constant-number simulations based
on weighted particles with the nucleation process

The merging scheme:
Each simulation entry contains the weightW, and other properties p(1), p(2), p(3), . . .

of the rendered part of the particle population (where p(i) could be the volume,
porosity, electric charge, etc.). If the simulation entry A (weight WA) and B (weight
WB) are merged into the new simulation entry C (weight WC and several properties
p(i)
C ), the following two rules should apply:

(i) The total weight of the simulation-entries before and after the merge-step should
be preserved:

WC = WA + WB (6)

(ii) If the total amount of the particle-properties is preserved one can write:

WC · p(i)
C = WA · p(i)

A + WB · p(i)
B ⇔ p(i)

C = WA · p(i)
A + WB · p(i)

B

WA + WB
(7)
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This is themost simple assumptionwhich should hold true formost of the physical
applications, but other definitions—which make a more complex calculation neces-
sary can be used. E.g., if the described property is the diameter d but the volume v

is preserved, one can write (assuming sphere-like particles):

WC · π

6
(dC)3 = WA · π

6
(dA)

3 + WB · π

6
(dB)3

⇔ dC =
(
WA · (dA)

3 + WB · (dB)3

WA + WB

)1/3

(8)

The merging error:
The error introduced into the simulation by the merging of the simulation entries can
be estimated by the following formula:

E(A,B) =
∑

all roperties i

αi ·
⎛
⎝ p(i)

A − p(i)
B

min
(
p(i)
A , ·p(i)

B

)
⎞
⎠

2

(9)

where αi are merging-weights, which can be set arbitrarily—depending on the phys-
ical process—they can be interpreted as a measure of the severity, which the devia-
tion of the property p(i)

A from p(i)
B would have—compared to the deviation of other

properties p( j)
A from p( j)

B .

2.2.2 Parallel Merging Algorithm

The merging-algorithms presented in Fig. 3. use the selection of random simulation
entries, resulting therefore in a random merging error E(A,B)—which may be exces-
sively high. The smallest possible merging error can be estimated by the comparison
of all simulation-entry-pairs—which would prove very costly: NMC · (NMC − 1)/2
comparisons are necessary, if NMC simulation-entries are used. A sound compromise
between both scenarios is the sampling of a ‘representation of the simulation entries’
and the estimation of the minimum merging error of this representation. A parallel
algorithm can be applied for this purpose, easily adaptable for GPU computing: the
merging errors for (NMC − 1) pairs of simulation-entries can be computed in paral-
lel and the comparison of the calculated merging errors is done within only log2N
computational steps, like shown in Fig. 4.

2.2.3 Validation of Coupled Coagulation and Nucleation

The nucleation is combined with the simulation of coagulation in two steps: First, a
classical event-driven MC coagulation step is performed, this includes the selection
of the coagulation pair via the fast parallel A/R-method introducedWei [25] with the
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Fig. 4 The parallel low weight merging algorithm [23]: only 8 parallel thread-executions are
necessary in order to estimate the pair (1 out of 256) of simulation-entries with the minimal merging
error

weighting scheme based on the stochastic resolution—the actual time-step 	τMC is
evaluated in this step, too. In a second step, the number of the nucleating particles is
estimated, for this purpose the solution of the differential equation (which describes
the nucleation) can be approximated by the Euler-method (more complicated Runge-
Kutta methods or other ODE-solvers can be used for the modeling of the interaction
with the continuous phase [26, 27]). The newly created simulation entry is then
included by means of the merging algorithms from Fig. 4.

A typical benchmark test case1 shows the advantage of the merging of particles
compared to the random removal method, as sketched in Fig. 3. A part of the simu-
lation results already discussed in [23] are summarized in Table 1, where the mean
values dg and standard deviations 	dg of the geometric mean diameter are shown.
Hence each MC simulation is executed with a different sequence of random num-
bers, the resulting geometricmean diameter d(i)

g is different for each simulation i . The
arithmetic mean values (dg) and standard deviations 	dg of 100 d(i)

g values resulting
from of 100 MC simulations are shown. (Similar findings could also be presented
for the number concentration of the particles or the geometric standard deviations of
the resulting PSDs.) It can be clearly seen that the application of merging techniques
leads to significantly lower noise levels. For example, 10,000 simulation particles
in combination with the random removal method cannot reach the same precision
levels as the application of 1000 simulation particles in combination with the low

1A constant nucleation rate RN is assumed, so that newly introduced simulation entries have the
weight W0 = RN · 	τMC and a predefined diameter d0. For the simulation has been set: RN =
1014 1

m3 s
, d0 = 3 nm. A monodisperse population with an initial concentration of 1017 1

m3 has been
used as start condition, the initial MC particles are equally weighted. The temperature was set to
300 K and the particle density to 1 g

cm3 . The simulated time was ca. 25.8 s, which is 500 times the
characteristic time needed to reach the self-preserving distribution [28] due to coagulation.
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Table 1 Values of the geometric mean diameter and simulation times (CPU time) for the discrete
sectional (DS) method and MC simulations using Random removal (RR) and Low weight Merging
(LWM) with 1000 and 10,000 MC particles

Method Mean value dg
[nm]

Standard deviation
	dg (absolute)
[nm]

100	dg/dg
(percent) [–]

CPU time [s]

DS (20 100) 4.736 – – 8.4

DS (250 380) 4.740 – – 332.1

RR 1000 4.820 0.544 11.29 330.3

RR 10,000 4.736 0.180 3.79 3964.2

LWM 1000 4.733 0.100 2.11 300.4

LWM 10,000 4.742 0.033 0.70 3643.2

The number of used sections and discrete points for DS are indicated by the values in the brackets
(discrete points, sections). The exact 1D grid specifications are described in [23]

weight merging. It should also be noted that the computation of 10,000 MC particles
requires ca. 10 times larger computing times than of 1000 particles. The computing
times shown in Table 1 refer to the simulation of 100 MC simulations run in parallel
on the GPU and one discrete-sectional run sequentially on the CPU.

2.3 Coupled Condensational Growth and Evaporation,
Coagulation and Nucleation

A varying nucleation rate, RN, as well as a changing critical nucleus size, d∗, is
often encountered when a metallic vapor is created and then cools down, leading to
the nucleation rate increasing over tens of orders of magnitude and then going down
when the free atoms have been largely consumed. The size of the critical nucleus, d∗,
on the other hand, decreases from very large values to atomic sizes, and rises again
when the nucleation rate is increasing. This presents a severe test for the numerical
solution, as the source term is moving rapidly through the size spectrum, leading to
a dramatic change of the growth and evaporation rates of the simulated particles, as
well. Hence particles larger than the nucleating particle (i.e. with volumes vi > v∗)
will grow, while those which are smaller (i.e. with volumes vi < v∗) will evaporate.
This is described by the equation of the growth-rate G(vi , NG) of particles with the
volumes vi in the free-molecule regime [29]:

G(vi , NG) = dvi
dt

= vM · π · d2
i√

2π · m1 · kB · T
· (kB · T · NG − ps · exp{4 · σ · vM/(kB · T · di )}) (10)
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The value of the critical diameter is given by:

d∗ = 4 · σ · υM/(kB · T · ln(S))

with S = NGkBT
Ps

(11)

So that G(vi , NG) = 0 for vi = v∗ and G(vi , NG) > 0 for vi > v∗. The growth
rate of the particles is also dependent on the number of atoms (or molecules) of the
condensable material in the gaseous phase, NG. The depletion (resp. increase) of the
monomers due to condensation on (resp. evaporation of) the particles is described
by a mass balance:

dNG

dt
= −

∑
i

Wi · G(vi , NG)/vM − RN · i∗ (12)

Thereby, the nucleation of particles is also taken into account by the nucleation
rate RN and the number of atoms (resp. molecules) i∗ in a particle of the critical size
d∗.

We proposed an operator-splitting based approach for the parallel solution of this
system [26, 27, 30], by decoupling the growth-evaporation and nucleation mecha-
nism from the coagulationmechanisms for short periods of time, like in the presented
coupled simulation of coagulation and nucleation in Sect. 2.2.3. The condensational
growth (resp. evaporation) of the simulated particles is solved in parallel by applica-
tion of time-step adaptive Runge-Kutta techniques (see e.g. [31]). A parallel addition
algorithm, similar to the presented parallel comparison algorithm in Fig. 4, is used
for the fast calculation of the term

∑
i Wi · G(vi , NG) in Eq. (12). A more detailed

description of this approach can be found in [30]. This modelling of the continu-
ous PSD with discrete MC particles avoids the effect of numerical diffusion [32,
33], encountered in models describing particle growth, in analogy to moving grid
techniques for sectional methods [34].

It has be shown, that all of the mentioned mechanisms (i.e. evaporation, conden-
sation, nucleation and coagulation) have to be considered and that the omission of
one of these mechanisms leads to severe deviations from the ‘complete’ system [26].

The thus introducedmethodology can be used to determine the influence of differ-
ent formulations of nucleation rates and allows to identify experimental conditions
for the experimental investigation of those. There exist several approaches for the
description of nucleation theories [35]. We consider in the following these three
expressions for the nucleation rate RN, as discussed in [36]:

R(cou)
N (NG) =NG ·

√
2σ

π · m1

ps
kB · T · v1

· exp
(

− 16 · π · σ 3 · v2
M

3 · k3B · T 3 · ln(S)2

)
,
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Table 2 Material constants
for Ag at a temperature of
1300 K

Symbol Description Value Source

m1 Atomic mass 1.792 × 10−25 kg [37]

vM Atomic volume 1.922 × 10−29 m3 [37]

ps Vapor pressure 1.324 pa [37]

σ Surface tension 0.9024 J/m2 [38]

with S = NGkBT

ps
(13)

R(gir)
N (NG) = R(cou)

N · exp
⎛
⎝(36 · π)

1
3 · σ · v

2
3
1

kB · T

⎞
⎠; R(cls)

N (NG) = R(cou)
N · S (14)

The influence of these different nucleation theories has been discussed for atmo-
spheric simulation scenarios [27] and are briefly sketched for a metallic system
describing the nucleation of Ag vapor in the following. The material parameters in
Eqs. (10–14) assume values summarized in Table 2 at a temperature of T = 1300K.

The simulation of a isothermal nucleation induced due to an initial supersaturation
of S0 = 100 ofAg vapor and the presence of an initial (background) PSDwith amean
geometric diameter of 2 nmand a geometric standard deviation of 1.2 rendering a total
number-concentration of 1016 m−3 is used as an initial condition. The temperature
is kept constant to 1300 K during the course of the simulation.

The monomer concentration exhibits the fastest depletion rate for the Girshick-
based nucleation rate, as is shown in Fig. 5a. This is due the highest nucleation rate
which is plotted in comparison with other nucleation theories in Fig. 5b. This leads in
turn to the highest particle concentrations for the Girshick-based nucleation theory
(see figure Fig. 5c). The nucleation theories show the most striking differences at the
early stages of the simulation, for longer simulation times, (i.e. t > 0.01 s), similar

Fig. 5 Isothermal Ag particle synthesis with initial PSD and supersaturation S0 = 100. The
saturation surplus S − 1 (a), the corresponding nucleation rates (b) and the total particle number-
concentrations (c) are shown. The nucleation rates R(cou)

N (Courtney) R(gir)
N (Girshick) and R(cls)

N
(Classic) are defined in Eqs. (13) and (14)
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Fig. 6 Isothermal Ag particle synthesis with initial PSD and supersaturation S0 = 100. Resulting
PSDs after 2.2·10−4s (a) and 1.4·10−1s (b) for the nucleation rates R(kin)

N (Kinetic) R(gir)
N (Girshick)

and R(cou)
N (Courtney) defined in Eqs. (13) and (14)

supersaturations and concentrations can be observed (in Fig. 5 a-c). This is a signature
of the similar PSDs resulting from the simulation, as they are shown in Fig. 6.

The PSDs at the initial stages of the simulation (see Fig. 6a) show tremendous
differences and allow to attribute each of the different shapes to a specific nucleation
theory. For longer simulation times, on the other hand, a self-preserving PSD is
reached and all of the presented nucleation theories can be attributed to the shown
PSDs. The shown self-preserving PSD is the result of the complex coupling of
the mechanisms of coagulation and evaporation. This PSD deviates from the self-
preserving PSD for the coagulation only as reported Vemury and Pratsinis [28].
Similar self-preserving PSDs deviating from the self-preserving PSD for coagulation
only have been already reported for similar metallic systems [26] and [30]. This
approach allows thus to roughly approximate a time window, for which specific
differences between the different nucleation rates can be expected. Allowing thus to
give hints for measurements set-ups investigating the specific forms of the nucleation
rate RN.

2.4 Breakage

Breakage of particles is relevant for the modeling of particle mills, but also for
granulation, emulsions, sprays and even for aerosols when agglomerates break up
by collisions or turbulences. The rendering of the large number of particles which
are produced during the continuous breakage process poses a major problem for
MC simulations, because large computational resources have to be provided for
this purpose. In a typical milling process, for example, reductions of the particle
diameters from 500 to 0.5 μm are encountered, the same amount of volume, which
is rendered by one simulation particle with a size of 500 μm has to be rendered by
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109 simulation particles with a diameter of 0.5μm, if all particles represent the same
number concentration of real particles.

Traditional solutions of this problem encompass the discretization of the particle
property into bins [39], which would render the combination with the developed
growth/evaporation algorithm impossible, and constant-number approaches [40],
which are known to produce a high level of statistical noise [41].The application
of merging schemes [42] (i.e. the approximation of the properties of several sim-
ulation particles by one simulation particle) would pose an attractive alternative.
However, the vast amount of newly resulting particles makes a lot of merging steps
necessary, leading to large computing times. A recent constant-number method has
been presented [41], which renders the breakage event of one particle intomany frag-
ments by a single particle. The size of the fragment is selected stochastically, the use
of many simulation particles leads to the correct distribution of fragment sizes. This
scheme is only able to render the parts of the particle size distributionwhich represent
high number concentrations of the particles. Furthermore, only binary breakage can
be described.

We developed an alternative approach [43] for the derivation of the breakage
scheme by resorting to the argument that the breakage of many MC-particles with
equal properties and weights has to lead to a particle size distribution (PSD) of
fragments, which is described by the corresponding breakage kernel. It allows to
formulate any probability distribution function (PDF) with which the new volume of
the simulation particle is selected by adjusting the statistical weight of the resulting
fragments depending on 1) the selected particle properties, 2) the used PDF and 3)
the given breakage density function. This newly proposed scheme encompasses the
already introduced SWA schemes, especially a number-based (NB, named SWA1
in [41]) and volume-based (VB, named SWA2 in [41]) breakage scheme, and it
makes novel formulations possible: the low volume scheme (LV), which renders
preferably fragment particle sizes at the lower end of the size spectrum, and the
combination of LV with the NB (NB-LV) or VB (VB-LV). Exemplary simulation
results are shown in Fig. 7. It can be seen that the SWA methods (NB and VB) are
only able to render large particle sizes, and that LV, NB-LV and VB-LV are able to
render the whole spectrum of particle sizes. Smaller noise levels are found for VB
and specific VB-LV schemes, making both more suitable for prolonged simulations
than the other presented methods. The LV based simulation method fails to predict
the correct PSDs for longer simulation times. For this reason, the combinations of
LV with VB or NB are needed, in order to ensure the correct shapes of the PSDs for
longer simulation times. The combination ratio R ∈ (0, 1) between the LV and NB
leads to different schemes, while lower ratios R lead to a higher representation of
low-volume MC particles, they also lead to higher noise levels: the setting R = 0.6
leads to more statistical noise than R = 0.9, as it can be seen in Fig. 7. The adaptive
resetting of the factor R in order to avoid the systematical errors, as it is shown in
Fig. 7 for the LV scheme is briefly discussed in [44].

The required simulation times are listed in Table 3, 105 simulation particles are
required in order to ascertain a computational accuracy of less than 1%. (I.e. the
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Fig. 7 Resulting PSDs from the simulation of a test cases describing a binary, homogeneous
particle breakage function γ (vF, vP) = 2/vP and a breakage rate b(v) = v (test case 1 in [43]) for
a monodisperse initial condition v0 and the thus defined characteristic time tchar = b(v0)−1. The
MC-simulations are compared with analytic solutions found in [46]

Table 3 Computational times required for the simulation of t = tchar × 108 in dependency on the
used number of simulation particles

Simulation particles NB VB VB-LV

1000 0.5 s 0.8 s 0.6 s

10,000 2.8 s 4.4 s 3.0 s

100,000 27.1 s 42.5 s 29.8 s

arithmetic standard deviation of the moments of the distributions performed for 100
different sets of random numbers is smaller than 1% of the mean value.)

3 Compartmental Population Balance Modelling

The modelling of flow-sheet simulations in the scope of an operator-splitting
approach (see e.g. [47]) requires a specific time step management, so that ongo-
ing simulations processes can be forced to stop at specific simulation time points.
This issue is addressed first, in a second, longer paragraph, the implementation of
particle transport between single compartments by means of weighted MC particles
is introduced and some typical simulation scenarios are presented.
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3.1 Time Step Control for Compartmental PBE Networks

The combination of simultaneous processes rendered by the PBE solver poses a
challenging task, hence the characteristic time-scales for the corresponding processes
may differ in several orders of magnitude and change vastly during the simulation.
Although the developed algorithms for the breakage, coagulation and growth (resp.
evaporation) already adapt to the optimal time-step for each single process (in the
absence of other processes), the simulation of the combined coagulation, nucleation
and growth is driven by the discrete coagulation processes providing an inherent MC
time step τMC. This is a computationally advantageous setting, if the inherent growth
step τG is smaller than the coagulation step τMC. The opposite case, in which τG is
bigger than τMC, forces the simulation to use much smaller time steps τ ′

G and thus to
use much more computationally demanding growth steps. The incorporation of the
breakage as a third process with an inherent time step τB may force the simulation
to reset this step to a lower value τ ′

B in a coagulation driven implementation, as well.
This situation becomes even more complicated, if the PBE is solved for differ-

ent compartments and a particulate flow between the compartments is simulated.
Consider, for example two compartments, in which coagulation takes place, so that
compartment 1 has an intrinsic MC coagulation time step τ

(C1)
MC , while the second

compartment has the inherent coagulation time step τ
(C2)
MC , the additional particulate

flowrate between compartment 1 and compartment 2 might make the update of the
particle populations due to the transport of particles each time interval τTr necessary.
It depends on the specific modelled application, whether the minimum of these three
time steps has to be used, or some other minimal time step τmin can be applied. In
all cases, there exists the need, to perform, at least in one of the two compartments,
a smaller time step than the one intrinsically provided (τ (C1)

MC and/or τ
(C2)
MC ).

The application of time-driven MC methods [48] allows the setting of a variable
time step, but this time step has to be set proportional to the intrinsic step in order
to avoid systematical errors [49], although smaller values are allowed. The main
disadvantage of this approach is, however, its computational costs, hence all possible
coagulation pairs have to be checked for coagulation during the suggested time step—
special book-keeping methods [50] might help to address this problem for the single
simulation of coagulation but their usage is not possible2 in the context of a PBE
network modelling multiple simultaneous processes.

We have developed the concept of ‘fractional MC time steps’ [51], in order to
address this problem. In the scope of this approach, we modified the fast GPU
acceptance-rejection algorithm [25] in such a way, that an additional stochastic prob-
ability is formulated, whether the particles coagulate or not if a smaller time step than
the intrinsic MC AR-time step is needed. We compared our methodology (marked

2Special modeling is necessary in order to capture the changes of the ‘book kept’ entries due to
other non-coagulation processes—this might or might not be possible, depending on the specific
process being modelled. Additionally, the tracking of the changes might prove more expensive than
the application of the time-driven MC methods without book-keeping.
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Fig. 8 PSDs resulting from
simulation conditions as
described in [51]

as ‘MC full step’) with (1) another approach from the literature [21], where no coag-
ulation of the particles takes place in such an event (marked as ‘no step’) and (2)
with the self-proposed approach, where the particles simply coagulate—even if the
simulated time step is smaller than the intrinsic time step (marked as ‘full step’). A
typical isothermal coagulation scenario describing Brownian motion of particles in
the free-molecule regime (full details can be found in [51]), leads to the following
simulation results shown in Fig. 8, if the simulated system is forced to perform not the
intrinsic MC time steps but an artificial time step of 1 ms. It can be clearly seen, that
only the application of the fractional MC time steps leads to the correct description
of the PSDs, which is in excellent agreement with the reference result gained by the
application of the discrete-sectional method, as described in [52, 53].

3.2 Compartmental Monte Carlo Simulation

Modelling of MC particle transport as a stochastic process with discrete events is
sometimes suggested [54]. Such a modelling, could—however— entail a large num-
ber of stochastic events for small simulation times and slow down the simulation
considerably. The other disadvantage of such an approach is the potential increase
of the stochastic noise of the simulation.

The description of weighted simulation particles makes novel simulation strate-
gies for the transport possible, the adjustment of the statistical weight of each MC
particle makes the exact description of the depletion of particles due to particle out-
flow possible—as is discussed in [20] (termed ‘rescale outflow’) and shown in the
following. First, the description of a two-step (inflow and outflow) method is sug-
gested and themerging and random removal techniques are briefly described, then the
methodologies are validated and compared by simulations of exemplary flowsheets.
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3.2.1 Transport of Weighted MC Particles

In the following, the transport of MC particles from one compartment to other com-
partments will be described. It consists of two steps: (1) the particle outflow and
(2) the particle inflow. This is being realized by the computational implementation
of ‘streams’ which are able to store a population of MC particles, as large as the
population stored for each compartment.

In the first outflow step, particles are inserted into the streams. This can be easily
done by copying all particles from the hold-up into the stream and adjusting the
statistical weights accordingly, in the stream and in the hold-up. If, for example, the
particles from compartment 1 stream into compartment 2 with the size v dependent
relative rate f1→2(v), then one can describe for each particle i the change of its
statistical weight Wi for a small interval of time 	t as:

Wi (t + 	t) = Wi (t) − 	t · f1→2(vi ) · Wi (t) (15)

This is shown as particle outflow step in Fig. 9. The new weights Ws1
i and W

c1
i

are set to Ws1
i = 	t · f1→2(vi ) · Wc1

i and W
c1
i = Wc1

i − Ws1
i .

In the inflow step in Fig. 9, the particles from the streams are inserted into the
compartments. Analogously to the already discussed nucleation of particles, one
encounters at this step the problem of the limited CPU memory: each connecting
stream contains as many particles as the destination compartment, so that only a
fraction of all MC particles can be stored in the destination compartments. This
problem has been solved in two ways in the here presented work: (1) randomly
selected particles are removed from the simulation—adjusting the statistical weights
in such a way, that the mass of the system remains constant as in the conventionally
used constant number algorithms [55, 56] and (2) the particles are merged together
using a parallel merge algorithm as it is briefly discussed in [57].

Fig. 9 MCparticles stored in thememory assigned for compartment 1 and 2, aswell as in the stream
connecting both compartments. The stages (1) before the particle outflow (2) between outflow and
inflow and (3) after the inflow during the simulation of a single time step are shown
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Fig. 10 Compartment-Streammerge pattern. Each double arrow represents one merge attempt. All
merge attempts which are executed in parallel with the destination offset oidx = 0 are shown in
comparison with all parallel merge attempts made for the offset oidx = 1

3.2.2 Parallel Merge Algorithm

The merging algorithm described in Fig. 4 could be used for the merging of MC
particles within stream and the destination compartment. However, such an approach
would be computationally not efficient due to the large number of MC particles
ranging in typical applications between 1000 and 10000. This would imply 1000
or 10000 sequential or parallel invocations of the algorithm presented in Fig. 4. In
order to accelerate the merging process, a novel parallel algorithm has been briefly
sketched in [57] and is discussed here inmore detail. TheGPU’s capability to process
a large amount of data in parallel can be exploited in a more efficient way, if not only
one (as in Fig. 4) but a large number of MC particles has to be merged together (as
in Fig. 9).

Themerging scheme described by Eq. (6) and (7) can be thereby used in combina-
tionwith themerging error described by Eq. (9). Amaximal admittablemerging error
ε can be formulated and all particle pairs (i, j) with a merging error Ei, j (Eq. (9))
smaller than ε are merged together. A large number of parallel comparisons can
thereby be performed, forming potential pairs for the merging by calculation of the
merging errors of the pairs consisting of one particle in the destination compartment
and one particle in one of the streams, as shown as ‘Compartment-stream merge
pattern’ in Fig. 10. The destination offset, oidx, is thereby increased by one after
each comparison attempt, so that different pairs are formed for the calculation of the
merging error. After 512 steps, all possible pairs between each of the compartment
particle and another stream MC particle would have been checked in this way.3 An
internal check between particles stored in the compartment (resp. streams) is also

3In order to use the GPU efficiently, larger particle numbers (like e.g. 10000) have to be divided into
data blocks consisting of e.g. 512 particle numbers. In the here presented implementation, particle
numbers that are multiples of 512 are considered.
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Fig. 11 Intern merge
pattern. All merge attempts
which are executed in
parallel within one stream or
compartment with different
compare distances Cdist

performed, in order to address situations, in which the populations in the streams
are so different from the population in the compartment, that a merging is only pos-
sible with very high merging errors. These ‘internal merges’ are shown in Fig. 11.
The multiplication of the compared distance Cdist with the factor of 2, ensures the
treatment of different pairs after each invocation of the routine.

The complete algorithm for the parallel merging is shown in Fig. 12, the following
settings are set arbitrarily:

Fig. 12 Sketch of the merge algorithm for MC particle insertion. The Compartment-Stream merge
pattern is shown in Fig. 10 and the internal merge pattern is shown in Fig. 11
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Fig. 13 Exemplary flow-sheets with and without a feedback stream

• 8 Compartment-Stream merge patterns are performed for each invoked intern
merge-pattern (‘cs_count < 7’ in Fig. 12). This combination is invoked each time
before the (rather costly) check if all particles have been merged is initiated.

• After each 4 unsuccessful checks if all particles have merged, the maximal
admittable merging error is increased (‘err_count < 3’ in Fig. 12).

• The maximal admittable merging error is increased by a factor of 4 (‘ε = ε · 4’).
These settings prove towork efficiently for the presented test cases in the validation

section. Other settings might be more appropriate for other application scenarios and
the dynamic adaptation of these values to given simulation conditions might pose an
interesting research topic for future investigations.

3.2.3 Validation

The proposed simulation techniques are validated on several test-cases, which reflect
simple engineering problems and are shown in the figures Figs. 13 and 14. The
shown flowsheets increase in complexity, hence the implementation of a tear stream
(Flowsheet 2, Fig. 13) or a sieve unit (Flowsheet 3, Fig. 14) or both in combination
(Flowsheet 4, Fig. 14) poses a greater challenge for the numerical solution than
the simple flowsheet 1 in Fig. 13. This methodology allows to identify the specific
simulation scenario, for which conventional MC strategies are not suitable and the
here presented methodology based on weighted MC particles has to be applied in
order to obtain correct results.

For each of the presented units in Fig. 13, the evolution of the PSDs nM (mixer),
nF1 (filter 1) and nF2 (filter 2) can be modelled by the explicit set of differential
equations:

dnM(v, t)

dt
= + fF2→M · nF2(v, t) − fM→F1 · nM(v, t) − fM→F2 · nM(v, t)

+ FD→M · nD(v, t)
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Fig. 14 Exemplary flow-sheets with and without feedback including a feedback stream

dnF1(v, t)

dt
= + fM→F1 · nM(v, t)

dnF2(v, t)

dt
= + fM→F2 · nM(v, t) − fF2→M · nF2(v, t) (16)

The relative particle exchange rates fA→B from unitA to unitB aremultipliedwith
the particle PSDs in A, nA, which change over time. The external particle exchange
rate FD→M is multiplied with a PSD, nD , which does not change in time, realizing
thus in a constant in-flow into the mixer unit. The explicit values for the exchange
rates used for these benchmarking test cases are summarized in Table 4.

The system in Fig. 13 described by Eq. (16) does not take specific particle sizes
v into account, so that the same particle exchange rates apply for all sizes v. The
application of a screen unit changes this situation, so that the total particle exchange
rate from the screen to both filters, fS→F, is multiplied with the separator function,
Ssep(v). This leads to the following set of equations for the flowsheets shown in
Fig. 14:

Table 4 Particle exchange rates for Eqs. (16) and (17)

Flowsheet 1 in
Fig. 13

Flowsheet 2 in
Fig. 13

Flowsheet 3 in
Fig. 14

Flowsheet 4 in
Fig. 14

FD→M or
FD→S [1/s]

3 3 3 3

fM→F1 [1/s] 1 1 – –

fM→F2 [1/s] 2 2 – –

fM→F [1/s] – – 3 3

fF2→M or
fF2→S [1/s]

0 2 0 2
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dnS(v, t)

dt
= + fF2→S · nF2(v, t) − fS→F · nM(v, t) + FD→S · nD(v, t)

dnF1(v, t)

dt
= + fS→F · nS(v, t) · Ssep(v)

dnF2(v, t)

dt
= + fS→F · nS(v, t) · (1 − Ssep(v)) − fF2→S · nF2(v, t) (17)

The explicit particle exchange rates for these equations are summarized in Table 4.
The following form of the separation function Ssep(v) has been used for the screen:

Ssep(v) =
⎧⎨
⎩

1, v > v
sep
max

(v − v
sep
min)/(v

sep
max − v

sep
min), v

sep
max > v > v

sep
min

0, v
sep
min > v

(18)

The separation cut-off values v
sep
max = π(dsep

max)
3/6 and v

sep
min = π(dsep

max)
3/6

correspond to the diameters dsep
max = 57 nm and dsep

min = 40 nm.
As initial conditions for the PSDs in the mixer n0M(v) (resp. screen n0S(v)), two

identic log-normal distributions with a geometric mean diameter of 50 nm, a geo-
metric standard deviation of 1.2 and a total number-concentration of 1010m−3 have
been used. The same distribution has been used as feed PSD, i.e. nD(v). Both filters
are empty at the beginning of the simulation (n0F1(v) = n0F2(v) = 0).

A fixed pivot method [58] has been used as benchmark. The continuous initial
PSDs are thereby discretized with the help of a geometric grid of 1000 pivot points,
covering a particle size range from 1 nm to 10 μm. In the scope of this approach,
the set of Eqs. (16) or (17) is interpreted as the rate of change for each single pivot
point with its respective volume v.

The resulting PSDs after a simulation time of 10 s are shown in Figs. 15, 16, 17,
18. It can be seen, that flowsheet 1 (without tear streams and a screen) is very well

Fig. 15 PSDs in compartments as described in Flowsheet 1 in Fig. 13 and Eq. (16)
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Fig. 16 PSDs in compartments as described in Flowsheet 2 in Fig. 13 and Eq. (16)

Fig. 17 PSDs in compartments as described in Flowsheet 3 in Fig. 14 and Eq. (17)

Fig. 18 PSDs in compartments as described in Flowsheet 4 in Fig. 14 and Eq. (17)
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reproduced by the merging as well as the random removal approach. The random
removal approach leads to larger noise levels, which can be seen in slight deviations
of the PSD in the mixer unit in Fig. 15. The addition of a tear stream leads to an
increase of these noise levels, as can be seen Fig. 16—the approximations based on
the random removal technique become less accurate but can be still considered to be
in accordance with the results obtained by the fixed pivot method.

The replacement of the mixer with a sieve unit (or replacing flowsheet 1 with
flowsheet 3) leads also to a system, which can be well simulated by the random
removal technique (see Fig. 17). The addition of a tear stream to flowsheet 3 (result-
ing in flowsheet 4) leads—however—to such a complex system, that the random
removal method is not applicable. Figure 18 shows the striking deviations of the
PSDs obtained with the random removal method—which predict a wrong particle-
number concentration in the screen and filter 2 by a factor of nearly 10. The suggested
merging techniques—on the other hand—are able to reproduce the benchmark results
with a very high accuracy. This allows to say, that the specific combination of tear-
stream and screen leads to a simulation scenario, which cannot be addressed with
conventional MC simulation techniques—as the random removal technique. This
finding also explains the failure of the random removal techniques to describe an
even more complex simulation scenario, reported in [57].

4 Conclusions

The application of weighted MC particles for the solution of a compartmental
network in the framework of an operator splitting approach (the single processes
like coagulation and nucleation are separated for short periods of time) has been
discussed.

First, the solution of a one-compartmental system has been discussed, it has been
found that:

• the application of the stochastic resolution allows to describe the coagulation
between weighted simulation particles (like already discussed in [23]).

• merging techniques allow to simulate the combined nucleation and coagula-
tion with a lower amount of statistical noise than conventional MC simulation
techniques (like already discussed in [23]).

• the parallel simulation of evaporation and condensational growth allows to simu-
late particles formation processes and investigate the role of different nucleation
theories (this has been already discussed for metallic [26] and atmospheric sys-
tems [27], but the here presented case-study of Ag-particle synthesis has not been
published prior to this work).

• novel selection andweighting techniques of theMC fragment population resulting
from particle breakage lead to simulation techniques which are able to render the
full particle size spectrum completely (these simulation techniques and findings
have already been presented in [43]).
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As a second step, the combination of the findings above in an operator splitting
approach for the full simulation of a compartmental network has been sketched. It
has been found that:

• the computationally advantageous event-driven simulation technique can be also
used for the simulation of smaller time steps than the intrinsic MC time step—
making this method applicable for a network of PBE compartments (like already
discussed in [51]).

• the merging techniques introduced in [23] can be used for the simulation of par-
ticle transport between single compartments. (These findings have already been
presented on a more complicated system in [57], the here presented description
of the simulation algorithm is, however, far more detailed.)

• out of 4 case studies of a flow-sheet with increasing degree of complexity,4 con-
ventionalMCmethods can simulate the 3 simplest caseswhilemerging techniques
are needed for the simulation of the most complex case (this finding has not been
published prior to this work).
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processes” [KR 1723/15–1,2&3].
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