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Preface

Processes of material and energy conversion often consist of multiple individual
sub-processes that are interconnected by material, energy and information streams.
The cross-links between the individual sub-processes have a significant impact on
the dynamic behaviour and the stability of such processes. For the design and
optimization, particularly in view of the conservation of energy and raw material
resources, not only the individual components should be simulated, but also the
dynamic behaviour of the whole process. This is the state of the art for fluid
processes and different tools for dynamic flowsheet simulation are commercially
available. In contrast, such program systems and process models which are gen-
erally applicable to a wide range of applications are missing for solids processes.
This is due to the complex description of solids with their multivariate disperse
properties and the associated processes for the conversion of solids.

The flowsheet modelling allows for an investigation of complex processes
consisting of several interconnected apparatuses and sub-processes on longtime
scales. For the solids process engineering, the multidimensionality of the properties
of granular materials significantly complicates the solution of various problems,
such as design or optimization of production processes. As most solids processing
systems include unit operations that have a strong impact on the transient behaviour
of the whole process, like conveyors or bunkers, the ability to simulate the beha-
viour of dynamic systems is crucial for applying flowsheet models for optimization
or control purposes in the area of solids processing technology.

Available flowsheet simulation programs deal with the challenge of solids
process simulation. However, none of the tools offer the option of dynamic process
simulation of solids processes with the inherent description of the multidimensional
distributed parameters of the granular material.

The German Research Foundation (Deutsche Forschungsgemeinschaft, DFG)
has supported a research program in the form of the Priority Program (SPP 1679) on
“Dynamic simulation of interconnected solids processes (DYNSIM-FP)” from 2013
to 2020. The goal was to study the dynamics of different processes in the area of
solids process engineering and to gain a better understanding of the phenomena that
arise when combining various of such sub-processes into a single interconnected
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system. The central aim was to provide numerical tools for dynamic simulation of
interconnected solids processes. For this, dynamic models of various equipment and
machinery for solids processing are to be formulated and implemented.
Furthermore, methods for the numerical treatment of such systems and new models
for the description of solids properties shall be developed.

The research within SPP 1679 was classified into three research areas consisting
of 27 research projects from universities and research institutes from Germany:
(a), (b) models for the description of solids properties, (c) algorithms and process
simulation. Additionally, a separate Central Project (Z-project) was established. Its
goal was to develop a flowsheet modelling system, which should serve as a plat-
form for combining the results of all these individual groups into a single frame-
work. To allow for mostly independent model development and research, the
flowsheet simulation framework must provide high flexibility, extensible libraries
and stable interfaces. The resulting open-source modular modelling system
Dyssol—an acronym for “Dynamic simulation of solids processes”—offers these
features through its high degree of modularity, open and standardized interfaces,
efficient algorithms and a clear user interface.

This book summarizes the research results of this joint research project. The
research program SPP 1679 DYNSIM-FP has been steered by a committee, where
Prof. Stefan Heinrich, Hamburg, took over the coordination (spokesperson) and
was supported by Prof. Arno Kwade, Braunschweig (vice-spokesperson); Prof.
Heiko Briesen (vice-spokesperson), München; Prof. Wolfgang Peukert, Erlangen;
Prof. Matthias Kind, Karlsruhe; and Prof. Achim Kienle, Magdeburg. We want to
thank and greatly appreciate the DFG for financial support, and especially Dr.-Ing.
Bernd Giernoth, Dr.-Ing. Georg Bechtold, Dr. Simon Jörres and Ms. Anja Kleefuß
for their excellent coordination and continued support of the research activities. Of
course, the great success of the SPP 1679 would not have been possible without the
enthusiasm of all involved Ph.D. students and researchers and their excellent
contributions. Numerous workshops, most held in Hamburg, were the clamp of the
intensive cooperation within the several projects.

Hamburg, Germany
February 2020

Stefan Heinrich
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Part I
New Dynamic Process Models



Chapter 1
Process Modeling for Dynamic Disperse
Particle Separation and Deposition
Processes

Sören Sander, Lizoel Buss, and Udo Fritsching

1 Introduction

Dynamic particulate process models are to be derived within the framework of
dynamic flowsheet modeling and simulation (FSS). In the contribution FSS is devel-
oped for the separation processes of solid particles from a fluid resp. gas. Potential
applications of the dynamic simulation environment of particle separation are for
instance in the analysis and design of the dynamic process behavior in the purifica-
tion of exhaust gases (for example to reduce emissions from combustion processes)
but also in the production of particle layers with defined properties, as occur in the
powder coating of surfaces.

A specific focus of the derivation is on analysis of gas cleaning of a particle-
laden air stream through a plate-wire electrostatic precipitator. In this process, the
intensification of the degree of separation is achieved by the application of electric
field forces. The result is a coupled multiphase flow system in which interactions
between the electric field, the fluid phase and the particles on several scales lead to
a complex relationship between the degree of precipitation and the conditions in the
process.

The properties of the particulate material, the feed stream parameters as well as
the specific process control directly influence the output stream conditions as for
instance the particle size distribution and dust concentration, thus the precipitation
efficiency of the process. The specific spatial distribution of the particles and their
charges may cause temporal changes in the deposition behavior in the apparatus.
The locally varying thickness of the deposited particle layer increasingly influences
the re-dispersion and re-entrainment of already deposited particles back into the
flow field. This successive growing particle layer structure plays a significant role,
especially during the transient startup phase of the process. For heavy load changes,
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Fig. 1 Complex interaction between electric field forces, fluid, particles and walls

e.g. in the incoming particle laden gas stream, changes in the concentration, the
particle size distribution and also in the composition of the disperse phase may lead
to a dynamic transient behavior of the deposition process.

The separation efficiencies and performance of electrostatic precipitation pro-
cesses (ESP) are analyzed by means of

1. an experimental labscale model setup of a plate-wire electrostatic precipitator
and

2. simulations in a coupled Computational Fluid Dynamics (CFD) model as well
as in

3. a Flow Sheet Simulation (FSS) model building block.

Here, variations in the feed material (various model dusts) as well as in the geom-
etry of the separator are to be analyzed. The goal is to transfer the particle layer
interaction with the impinging particles and the particle-layer-fluid interaction into a
physically based predictive process model. These interactions result in the multiple
dependencies as shown in Fig. 1.

2 Electrostatic Particle Separation: State of the Art

In order to reduce environmental pollutions with particulate matter, powders and
dusts, progressively more constrictive legal obligations for fine dust separation of
PM10, PM2.5 and PM1 into the environment are proposed. Electrostatic precipitators
(ESP) obtain high efficiency in this particular particle size range. ESP are applied for
instance to fly ash separation during exhaust gas cleaning in industrial processes such
as lignite or bituminous coal fired boilers, biomass combustion or coal fired power
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plants [1–4]. In addition, ESP applications to street cleaners have been investigated
[5]. During the past years, new insight into dust separation from exhaust gas by
electrostatic precipitators covered high gas temperatures, discharge electrode design
and quenching (e.g. [6, 7]).

The dynamics in electrostatic precipitators depend on the particle charging and
the field transport. Both parameters vary with local particle position, thus leading to
an effective field particles traverse [4]. A frequently used and industrially applied
mathematical model for the particle separation efficiency

η = 1 − EXP
(−wthA/V̇

)
(1)

has been presented by [8], where the collection area A and the flow rate V̇ are the
main process parameters. The theoretical migration velocity

wth = qmaxE
Cu

3πμdp
(2)

depends on the electric field E of the ESP, particle size dp and the maximum particle
charge

qmax =
[
(1 + 2Kn)2 + 2

(1 + 2Kn)

εr − 1

εr + 2

]
πε0d

2
p E, (3)

where ε0 is vacuum permittivity, εr is the particle relative permittivity, Cu is the
Cunningham correction factor and Kn is Knudsen number.

Numerical models of ESP allow tracking of particles through a channel exposed to
a electrode geometry specified electric field. The effect on different electrode geome-
tries on the overall precipitation has been shown experimentally ([1, 9]). Numerical
simulation of ESP typically is limited to simple plate or wire-electrodes, as their
geometry easily can be reduced to a 2D structure [10]. As these electrodes are well
studied, they are a good starting point for comparison of different designs. During
the last few years, some authors started analyzing more complex electrode geometry
designs extending their models and meshes to 3D ([11, 12]). However, the precip-
itation curves e.g. presented by [8] require the input of mean field values, that are
assumed to stay constant throughout the ESP, namely ni,∞t-product in case of nano
sized particles and electric field E in case of micron particles. Numerical models
allow precise tracking of this field data along the particle tracks, which exhibit the
undergoing of charging and acceleration inside the field. This way, the actual parti-
cle movement and separation is connected to the mean field values and, therefore,
separation efficiency inside EPS’s and the assumptions necessary for derivation of
integral models can be examined.
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2.1 Lab Scale Electrostatic Precipitator Design

The ESP studied in this work is a 0.3 m high and 0.5 mwide rectangular channel with
a length of 1.2 m. The channel walls top and bottom are made of acrylic glass. The
sides consist of grounded copper plates. At thewidth central plane at a distance of 0.3,
0.6 and 0.9 m from the inlet, three wire spray electrodes are positioned. This design
covers a section of a real size ESP, where multiple channels of the aforementioned
width stringing together to allow higher throughputs of exhaust gas. These parallel
channels are typically 20–60 times higher and their length is varied by a factor of
10–20 to account for nanometer to micrometer sized particle precipitation.

2.2 Numerical Methods for Flow and Electric Field

Numerical models of the electric fields, charge transport and retroactive effects on
the continuous phase, so called electric wind, have been developed and improved
([10, 13, 14]). These models calculate the electrostatic field with respect to Poisson
equation

∇E = −ρE

ε0
(4)

where ρE and ε0 are the space charge density and the vacuum permittivity,
respectively. The ion flux J is modelled by

J = ρE · (bE + U) − D∇ρE . (5)

A dimensional analysis shows that the flux induced due to the electric field E is
in the order of 10−3 while the transport with the fluid velocity U is just around 10−5

and the diffusional transport is of the order below 10−8. It is justified to neglect the
latter two. This increases the stability of the solver while only slightly lowering the
accuracy. The standard iterative pressure-velocity link approach iterates between the
continuity equation and the Navier-Stokes equation with an additional electric force
Fel added to account for fluid motion due to ion acceleration induced by the electric
field

Fel = ρEE. (6)

This model only includes electrophoreses and assumes isotropic permittivity
inside the medium (no polarization of gas molecules). Isothermal conditions ensure
the absence of electrostriction. The continuous gas phase is modeled as an Eulerian
phase using the [15] 2.3.1 formulation (pimpleFoam) and an anisotropic Reynolds-
Stress-Model (RSM) modeling turbulence effects ([16, 17]). It should be noted that
the instable ion discharges at the electrode ([18, 19]) leads to a spatial gradient in
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charge density. This corresponds to a fluctuation in fluid acceleration close to the
electrode and higher velocities appear, producing turbulence. The model presented
here does not properly resolve the time scales of this process and thus the additional
turbulence production is neglected. The iteration limit is 200, but the solution was
observed to converge after 2–3 iterations, allowing a convergence tolerance of 10−5.
Linear upwind and cell limited least square schemes discretize the divergences and
gradients, respectively.

2.3 Numerical Grid and Mesh Setup

Three numerical mesh configurations approximate different ESP geometries. These
configurations govern the principle particle transport and electric wind influence on
flow structure for the ESP geometries. Regions close to the spraying electrodes are
refined. The rectangular cells align with the inlet mean flow direction. The area from
electrode to wall is slightly altered to fit the electric field. Reasons for adjustments
in mesh cell direction are the fluid cell Courant number

CFLi = ui
�t

�x
(7)

and the electric Courant number

CFLel = b|E| �t

�x
(8)

where ui is continuous phase cell velocity magnitude, b is the ion mobility, E the
electric field, �x is characteristic cell length and �t is the time step. These numbers
determine the solver stability criterion. The cell limited upwind scheme is more
accurate, if cells are in direction of the flow. This direction is perpendicular for the
ion flux (in direction of the electric field) and the fluid flow (in direction of the
channel length). The cell direction increases the accuracy of both field solutions.
The two meshes for spiked wire electrode setups are developed based on the wire-
electrode mesh and highly refined close to the electrode tips. For all cases, the wall
distance was adjusted to fit the specific turbulence model needs. The criterion was
checked after each successful run. Further cell reduction was achieved coarsening
the inlet and outlet regions. For the studies of particle transport inside the spiked-wire
precipitators, the volume is discretized using a maximum of about 3Mio cells in case
of asymmetric and symmetric spikes.

For the wire-electrode mesh, a simplified 2D structure is extrapolated into the
third dimension using hex-cells. The near wall region is resolved while electrode
regions are captured just roughly to reduce the number of cells. The mesh coarsens
in intermediate regions using a cell growth function. A mesh independency study
allowed reduction in the total number of cells from more than 8,000,000 to just
366,060.
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Table 1 Boundary condition variations

Phys. quantity Inlet Walls Anodes Electrodes Outlet

ρE grad = 0 grad = 0 grad = 0 Calculated grad = 0

V ∇ = 0 ∇ = 0 0 Fixed ∇ = 0

U (1 0 0) (0 0 0) (0 0 0) (0 0 0) ∇ = 0

p grad = 0 grad = 0 grad = 0 grad = 0 0

2.4 Boundary Conditions

In the area close to the spray electrodes the air is ionized, represented by a boundary
value for ion space charge. In general, the electrodes create charges that hit air
molecules. This way a cascade air charging follows and leads to a high increase in
ions next to the electrodes [20]. The zone in which this cascade mainly occurs is
about

rc = r + 0.003
√
r (9)

and depends on the electrode radius [21]. As this zone is small compared to the
domain, the boundary is relocated onto the electrode surface. The values are taken
from [22, 23].

Cooperman [23] described, that the parabolic dependency of the charge density
on the applied voltage should be determined from experimental values. It leads to a
fit of the form

Jb
V

= mV + b, (10)

where V is the applied voltage, Jb is ion flux in surface normal direction, and m
and b are experimental constants. The actual value should be measured, as particles
further influence the final value (compare e.g. [24]). Physical quantities of velocity,
pressure, potential and ion concentration at mesh boundaries are repented in Table 1.

2.5 Particle Transport Analysis

The particle transport modeling is based on conventional Lagrangian movement for-
mulation as implemented in [15]. In ESP’s particles undergo an additional electric
force based on their number of charges. Thus, amodel for particle charging and accel-
eration due to electric forces is implemented into OpenFOAM using the approach of
Lawless [25]. This unipolar charging model unites former approaches of diffusion
and field charging.
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The charging mechanism is based on particle size and electric field strength.
Particles charge fast if they are either in a high electric field or if their surface can
collect many electrons e (high surface area and, therefore, particle diameters dp). A
comparison of particles in an electric field E is done by utilizing the dimensionless
charging numbers of

w =
dp
2 E
kT
e

(11)

at a normal temperature T = 21.5 ◦C, where k is the Boltzmann constant. The
dimensionless charge is calculated by

c
′ = ne2

2πε0dpkT
(12)

and the dimensionless time by

τ = bρEt

ε0
. (13)

Both curves are in principal agreement with simulations in [25]. In the beginning,
field charging is the dominant effect responsible for particle charging. At later times
field charging becomes less important, as surface charges of particles reduce the
electric field around the particle and electrons aremore frequently transported around
the particle. For a better understanding of the mechanism, upper and lower bounds of
particle charging are shown in the diagram. The lower bound is obtained assuming
only the dominant charging takes place. The sum of charges method assumes that
diffusive and field charging as described in [25] are additive. This solution differs
only slightly from the simulative results in this work. For particle charging with
various permittivity the saturation charge 3wmust be recalculated replacing it by the
quantity

1 + 2
εr − 1

εr + 2
. (14)

This factor is a measure for distortion of the electric field around the particle.

2.6 Experimental ESP Setup

The electrostatic precipitator studied in experiments allows the analysis of the depo-
sition of airborne particles. Construction and operation of the laboratory plant for
the investigation of electrostatic precipitators are shown in Fig. 3. The particles
are fed virtually pulsation-free via a twin-screw particle feeder and dispersed into
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the gas stream by means of a nozzle. The system is operated in the suction mode.
The compressor at the end of the system can handle maximum volume flow rates
of 1700 m3/h. This flow rate leads to mean velocities in the flow channel (cross
Sect. 30 cm × 50 cm) of max. 3 m/s. The dispersed particles are accelerated with
the gas flow into the channel through a honeycomb flow straightener.

Not separated particles are detected at the outlet of the ESP by an aerosol spec-
trometer (GRIMM). The exiting flow from theESP, directly connected to the channel,
is cleaned of the remaining particles in the gas stream. Therefore, the gas stream first
passes through a cyclone. Here the particles larger than 5 microns are deposited. The
gas then passes through a cartridge filter and a filter cloth. The air is not returned but
escapes through a vent to the outside (Fig. 3).

2.7 Flow Field Analysis: PIV-System

To measure the particle velocities along the channel of the electrostatic precipitator,
Particle Imaging Velocimetry (PIV) is used (see also [26, 27]). A flexible shielded
laser arm leads the laser beam to the inlet of the flow channel. A beam expander at
the output of the arm widens the beam. The laser light section then propagates in the
direction of flow perpendicular to the deposition anodes as shown in Fig. 4.

With the PIV measuring system, the flow of particles in a 2d plane is measured.
The measurements are used to derive instantaneous and average velocity profiles of
the particles in a section of the separator.

2.8 Particle Layer Measurement

For analyzing the deposited particle layer at the ESP wall, specific small targets
(round stubs) are placed in the channel walls that easily could be removed from the
walls. Three stubs with a diameter of 20 mm are mounted into the collection anode
at a height of 0.15 m and lengthwise to the second electrode. The particle layers
formed on these stubs are examined with a microscope to determine the thickness of
the deposit. Figure 5 shows the test set-up used to determine the deposit thicknesses.

In addition to the stubs another layer sample is collected on a copper plate with
the size of 20 cm × 20 cm. This sample is used for offline characterization of the
layer dustiness.

2.9 Coupled CFD-Modeling

Numerical simulation studies of electrostatic precipitation (EPS’s) of dust particles
from exhaust gases have been carried out. In ESP’s particle separation from exhaust
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Fig. 2 Dependencies during implementation of a flow sheet model (FSS) from experimental inputs
(EXP) and fluid simulation modeling (CFD)

gases is intensified by an external static electric field. Coupling effects between gas
flow characteristics, electric field, induced charges and the particulate matter occur
during the process [28]. Numerical modeling and simulation is increasingly used
to identify the influence of these coupling effects and, therefore, particle accelera-
tion in ESP’s on precipitation efficiency (e.g. [10, 29, 30]). Particle deposition and
layer formation impacts separation efficiency as the layer itself induces back corona,
sparking and re-entrainment. These disturbances are strongly dependent on the local
layer properties, such as particle size, packing density, chemical composition and
layer thickness. The resistivity of a typical fly ash layer strongly varies with the iron
and sodium content [31].

Numerical simulation is capable of tracking particle parcels throughout the
domain and analyzes their deposition. Particles are treated statistically in parcels
by momentum exchange with the continuous phase using well validated models
available (e.g. Schiller-Naumann). Their coupling with the electric field is described
using a charging model to determine their charging. Afterwards an external force
fieldmodel couples their cross-sectionmovement towards the direction of the electric
field. The charge movement modeled in terms of diffusive and convective transport
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alongsidewith the transport inside the electric field. InOpenFOAM, a test case shows
the validity of themodel formulation giving special attention towards an electric CFL
criterion

CFLel = ρEkE�t

�x
< 0.5 (15)

that specifies numerical stability for transport of a scalar in an electric field. The
transport itself is bounded by Peek’s formulation at the boundaries using Kapzov’s
assumption for cylindrical surfaces, e.g. proposed by [32]

E0 = 3.1 · 106
[
V

m

]
ρrel

(
1 + 0.0308√

ρrelr

)
. (16)

Inside the standard PIMPLE-loop an additional term describes the velocity change
due to the ion movement based on ion density and electric field strength. This cap-
tures any influence of particulate cross section movement. The wake that occurs at
the spraying electrode weakens with increasing inlet velocities wherewith particle
redirection diminishes.

Results and test cases show the overall behavior of particlemovement insideESP’s
and the coupling between continuous phase and electric field, the so-called electric
wind. The newly implementedmodel into OpenFOAM is validated against analytical
solutions to the problem. Small microns- to nano-sized particles carry fewer charges
compared to bigger ones, as their surface saturates, and the captured ions prevent
impaction of more charges. This leads to a decreased velocity in radial direction. As
expected, these particles in the range of 0.3–1 μm tend to impact the wall closer to
the outlet. Low conductivity basically induces the same behavior. The layer develops
to a coarser structure with higher porosity and less contact points along the channel
while at the same the resistivity rises. Therefore, re-entrainment and back corona
become more likely.

2.10 Flowsheet Simulation FSS

The FSS model for the integral predictive simulation of the deposition of particulate
matter in electrostatic precipitators (flowchart simulation FSS) consists of two stages.
First, the deposition of the material on the electrode wall is described, where a
general theoretical deposition consideration applies. The field strength entering into
the equation is supplemented by a factor, which represents the effective field of the
particles. This factor is depending on the structure of the separator, in particular on the
electrode geometry and is therefore an essential parameter of the system geometry.
In the FSS model for ESP the separated particles distribute to the holdup and are not
yet considered completely separated.
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In the second stage, the possible redispersion of particles from the deposited layer
back into the flow field is characterized on the basis of the particles in the holdup.
A mean characteristic is determined by defining a reentry probability. Particles that
do not reenter the gas stream end up as finally separated at the outlet of the model
while the exhaust gas stream contains all the non-separated and redispersed particles
in the first step.

The dynamic FSS simulation environment “dysSol” of Skorych et al. [33] is
utilized as a simulation frame where a new dynamic model unit “ESP” calculates
the evolving particle sizes and masses at the outlet of the precipitator with time. The
precipitation rate defines the transformation matrix used in the framework.

While the collection area and the flow rate are easily determined and usually
previously known, especially the particle migration velocity inside ESP is to be
modeled [34]. A common principle is to use the terminal velocity of maximum
charged particles

wth = qmax,thEESP
Cu

3πμdp
(17)

where EESP is the mean electric field applied to the particles inside the precipitator,
Cu is the Cunningham correction factor, μ is the dynamic viscosity of the fluid, dp is
the particle size and qmax,th is the maximum particle charge, which again is particle
size dependent as

qmax,th

=
kBT
2Kedplog

(
1 + πKcIone2ρI

2kBT
dp

)

qmax,diff

+
(π e bIon ni,∞ t K)

(π e bIon ni,∞ t K+1)

(
1 + 2 εr−1

εr+2

)
EESP
4K ∗ d2

p

qmax,field
(18)

with K = 1
4πε0εr

, the Boltzmann constant kB, temperature T , the mobility of ions in
air bIon, the space charge density ρI , the charge of a single electron e and vacuum
and relative permittivity ε0 and εr , respectively. The particle size dependent maxi-
mum charge in diffusive and field charging has a turnover between these charging
mechanisms for particles of size around 1 μm. For particles above 10 μm diffusion
chargingmay be neglected, for particles below 100 nmfield charging has a negligible
influence.
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2.11 Effective Electric Field

The mean electric field applied to the particles comprises of the applied voltage
at the electrodes, the electrode geometry and the particle trajectories through the
precipitator. Thus, a complex interplay of particle acceleration towards the walls
and the charging due to the field arises, which is important as the electrodes do
not generate a constant field throughout the ESP. To avoid immense computational
costs, this coupling is modeled, using an electrode specific effective field parameter
CE = Eelectrode/Eplate, where Eplate is the electric field of a plate-to-plate capacitor
with similar dimensions (see [34]).

2.12 Ion Concentration

Besides the electric field, the ion concentration inside ESP is spatially distributed.
Again, the dependency of the particle tracks on charging and vice versa rises a need
to model the mean field by application of an electrode geometry dependent mean
ion density. The mean ion density inside a precipitator may be estimated from the
critical electric field at the electrode

Ecrit = 30fE

(
1 + 0.301√

100rE

)
(19)

to

ρI = dWW j

πbIonrCoronaEcrit
10−5, (20)

where j is the current flux, which can either be measured by experiment or estimated
using theoretical correlations, e.g. by Cooperman [35]. The I-V-characteristic used
throughout the present approach is based on experimental measurements in a labora-
tory scaled ESP [34] in the rage of VE < 80 kV and IE < 0.5mA. The redispersion
model is designed to simulate arbitrary systems. The model has been tested against
the laboratory scaled ESP as it is well characterized in other research studies con-
cerning particle migration, separation efficiencies, ion concentration as well as flow
field and electric field conditions.

2.13 Re-Entrainment Model

Re-entrainment of deposited particles in ESP occurs either due to particles discharg-
ing at the collection electrode and bouncing back into the fluid due to their kinetic
energy or due to shear related fluid forces, which may pull particles that already have
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been attached to the separation walls back towards the free stream [36, 37]. Both
effects arise mainly for low resistive particles, which keep their electric charge yield
a force towards the wall, preventing detachment from the walls. In high resistive
layers, electric discharges and back-corona ignite similar re-dispersive behavior of
the particulate matter. The derived model is capable of mapping and calculation both
phenomena, however, the analysis will focus on low resistivity particulate matter.
Therefore, two oxide materials are subject to examination, a natural oxide CaCO3

and a metal oxide Al2O3. They only slightly differ in terms of separation efficiencies
and discharge quickly as they impact the layer. Yet, the metal oxide has a higher
degree of hardness.

The three main mechanisms which cause redispersion for these oxides are bounc-
ing of the unoccupied wall and the sparse layer, turbulence induced redispersion due
to flow conditions and cluster removal due to particle impacts.

To simulate the probability of particle re-entrainment, a two-step calculation is
performed for each particle class. The first step estimates the probability of bouncing
from the walls

φb =
√

e2 − Qadh

Qkin

(
1 − e2

)
(21)

from comparison of kinetic energy in direction of the wall Qkin∼wth and adhesion
energy Qadh. The coefficient of restitution e links particle hardness to redispersion.
In a second step, bouncing particles must escape the turbulent bursts near the wall
[38, 39]. The streamlines in turbulent bursts are similar to those of wall impinging
jets e.g. shown by Schlichting [40]

F ′′′ + FF ′′ + 1 − F ′2 = 0 (22)

Assuming particles moving in these bursts, their time to be transported back
towards thewall is calculated by comparing their reattachment time to their residence
time inside the precipitator,whereEq. 23 is solved usingRunge-Kutta 4-5 integration.
Afterwards, the fluid velocity is substituted into the particle movement equation of
motion for low resistive particles

dv+
p

dt+
= fd

τ+Cu

(
v+ − v+

p

)
(23)

where the equation itself is formulated in dimensionless form presented in [41] and
v is fluid velocity, vp is the particle velocity, fd is the drag coefficient, Cu is the
Cunningham correction, τ is particle relaxation time and t is time. The amount of
particle re-dispersion is then

φr = (1 − m)j (24)
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where m = 1/270 is the area ratio of a turbulent burst and j is the number of
bursts particles undergo inside the precipitator. A typical mean pathway for a particle
detaching from and then reattaching to the walls is shown in Fig. 8.

Concerning cluster removal by particle impact, an additional hit towards the walls
increases the kinetic energy onto the particle layer and on the particle bounds inside
the layer, respectively. The energy will be dissipated to some extent, e.g. into layer
rearrangements, thermal and mechanical stresses, while the main part of the energy
is used towards the breakage of the bounds inside the layer.

Each bound break down at a singular level. Thus, the maximal energy into the
breakage of the layer is compared to the layer bonds energy.Based on layer properties,
the number of bounds may be estimated, e.g. for highly porous layers. According to
[42], porosity Φ is based on the force ratio between particle-particle forces and the
electrostatic forces acting on the layer

Φ = Φ0
(
1 − EXP

(
α{χi}β

))
(25)

with

χi =
∑

j

∣∣∣FVDW
i,j

∣∣∣
∣∣Fe

i

∣∣ + Fiip
i

(26)

and

Fiip
i = KFe

i

√
H̄

dp
. (27)

Thus, the porosity of the compressed layer relies on particle morphology and
electric field adjustment.

During start-up of the process, the rebound constant e depends on whether the
particle hits the precipitator walls or the particle layer. This probability is modelled
applying a mean rebound factor and the ratio of layer height h to mean particle size
dp as well as the layer porosity Φ

e = eplate(Φ)
h
dp + eL

[
1 − (Φ)

h
dp

]
(28)

The implementation of a force propagation factor fp accounts for statistical
rebound factor blending as particles impinge the highly porous particle layer, which
leads to a force distribution into the layer. The layer coefficient of restitution may
then be estimated by

eL = ep
(
fp

) h
dp . (29)
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As a final step the particle layer porosity is calculated, which varies with elec-
tric field strength, that compresses the layer onto the precipitation electrodes. [43]
extrapolated porosities of various sized packed particles by statistically connecting
settled apparent densities of sampled materials in question and their particle size
distribution. The porosity of the mixture is

ε̄ = 1 −
∑m

i=1 d
3
p,ifi

∑m
i=1

(
dp,i ∼ d̄p

)3
fi + 1

n̄

∑m
i=1

[(
dp,i + d̄P

)3 − (
dp,i ∼ d̄p

)3]
fi

(30)

where d̄p is the mean particle diameter of the mixture and dp,i the mean particle
diameter of the i-th class with fi number density of particles in this class.

The flow sheet simulation unit model (FSS-ESP unit) as shown in Fig. 9 uses a
2-stage particle separation and re-entrainment calculation method. The model tracks
multidimensional properties of the particulate matter, e.g. considering particle size
and material type. A predefined inflow holds information on these properties while
facility properties and process conditions are defined inside the ESP unit.

Firstly, particle separation efficiency defines the number of particles that separate
towards thewalls. The particles then are “stored”within the holdup, which represents
the (separation electrode) side walls of the precipitator. Based on the properties of
this holdup, the re-entrainment probability determines the number of particles that
redisperse into the gas flow, while the remaining particles are transported towards the
ESP silo. The particulate streams as output for clean gas and silomay then be analyzed
in terms of overall precipitation rate and particle size dependent precipitation rate.

Experimental data generated by the setup from [44] show the particle size and
material dependent separation behavior in an electrostatic precipitator. Process and
geometry parameters are presented in Table 2. The precipitationwasmeasured online
by a Grimm Aerosol Spectrometer 1.108 at the precipitator outlet for 30 min. Alu-
minium oxide Al2O3 (“Pural NF ®”) and limestone CaCO3 (“Ulmer Weiss ®”) dried
at 150 °C for 2 h are being precipitated.

3 Results and Discussion

3.1 Particle Characterization

In addition to the parameters in the exhaust gas of a separator, such as concentration,
temperature and humidity, the input parameters of the electrostatic precipitator also
depend on dust parameters, such as the chemical and granulometric composition
and the specific electrical resistance. Therefore, input materials typically used in
industrial practice as well as sample or model dust powders are used for the exper-
imental investigations. In advance of the experiments, fly ash has been identified
as one model particle for this project and has been analyzed for its composition in
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Table 2 Model parameters
used throughout the study
sorted by geometry, process
and material properties

Name notation Value unit

Geometry parameters

Length l 1.2 m

Width w 0.5 m

Height h 0.3 m

Coefficient of roughness fE 0.8

Wire-to-wire distance wwD 0.3 m

Wire radius rE 5e-4 m

Effective field const. CE 1.1

Process parameters

Pressure p 1 bar

Temperature T 293 K

Applied voltage V 70,000 V

Gas flow rate Vg 0.12 m3/s

Name notation Value unit

Material parameters

Diffusion constant Dg 1.77e-5 m2/s

Gas viscosity Mg 1.82e-5 Pa s

Gas density ρg 1.19 kgm3

Ion mobility bIon 1.6e-4 m2/V

Material parameters CaCO3

Particle size distribution q(dp) Matrix 1/μm

Dielectric constant εr 3.4

Hamaker constant A132 2.2e-19

Coefficient of restitution e 0.3

Material parameters Al2O3

Particle size distribution q(dp) Matrix 1/μm

Dielectric constant εr 2.2

Hamaker constant A132 2.69e-20

Coefficient of restitution e 0.8

cooperation with the University ofWuppertal SPP project. Scanning ElectronMicro-
scope (ESEM) images and Energy Dispersive X-Ray (EDX) analyzes of fly ash were
processed.

In a second approach of ESP analyzes also metal oxide (Al2O3 Pural NF) as well
as natural oxide CaCO3 (Ulmer Weiss) powders and particles are investigated.

The analysis of the EDX spectrumof a fly ash sample in Fig. 10 shows a significant
contribution of carbon, followed by silicon, aluminum and iron. Other components
occur in low concentrations of less than one percent by mass. The high percentage



1 Process Modeling for Dynamic Disperse Particle Separation … 19

of oxygen in the fly ash allows conclusions to be drawn that the elements are oxi-
dized. The complex mixture produces a fly-ash-specific electrical resistance, which
is difficult to deduce from the input variables in flowchart simulations but does affect
precipitation. The same applies to the carbon content of fly ash (Fig. 10).

In addition to the dependency of deposition from composition, the deposition of
fly ash depends on the particle size distribution in the input stream. The measure-
ment of the non-agglomerated particles has been done by means of laser diffraction
spectroscopy (LDS) with a wet-dispersed sample. The LDS (Malvern Mastersizer)
determines the size distribution basedon the light diffraction of a laser beamassuming
a universal multi-modal distribution.

The fly ash consists of about 10 wt% of sub-micron particles. Below 10 μm, 30%
of the mass of the particulate material is present (see Fig. 11, left). The remainder
of the material consists of particles with a maximum diameter of just over 100 μm,
the frequency of which is decreasing to larger particles. The LDS measured parti-
cle size distribution was compared to the distribution measured by a Malvern G3
optical microscope evaluation. Due to the lower resolution limit of the microscope
no submicron components could be determined. The G3 particle size distribution
corresponds to that of the LDS only for the larger particle fractions.

The LDS is able to detect particles with a minimum diameter of about 20 nm.
Since the measured distribution with a minimum diameter of 100 nm is close to
this limit, the particle size distribution was also qualitatively supported by electron
microscope (ESEM) images (see Fig. 11, right). The images show the presence of
particles below 1 μm.

Fig. 3 P&IDof the experimental setup for electrostatic precipitation of particles fromair (Reprinted
from Particuology 38 (2018) 10–17, Sander et al. with permission from Elsevier)
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Fig. 4 PIV measurement setup

Fig. 5 Photo of the test
set-up to determine the
deposit thicknesses.
(Reprinted from Chem. Eng.
Techn. 40 (2017) 9,
Fritsching et al. with
permission from
Wiley-VCH)

Fig. 6 Numerical simplified ESP model using a 2D axisymmetric geometry, resulting flow field at
low velocities and the ion density concentration in this case
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Fig. 7 Sketch of the flow sheet simulation model for dynamic disperse separation processes in
electrostatic precipitators in “dyssol”

Fig. 8 Particle trajectories
in a turbulent burst, assuming
they will undergo only one
burst before re-adhesion.
Example path shown for
Al2O3 re-entraining
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Fig. 9 Implementation of re-entrainment model to the flow sheet unit operation of a ESP including
particle migration from inlet stream towards the hold-up and clean gas and bunker outstreams

Fig. 10 Composition of fly ash from EDX-analysis in a electron microscope
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Fig. 11 Particle size distribution of fly ash. LDS analysis, wet dispersed, logarithmic scale

3.2 Particle Layer Analysis

To examine the deposited particle layers, samples are taken from the inside of the
deposition anode. The samples are applied to a copper foil and are either left in the
deposited state or fixed by means of adhesive for receiving the surface in the electron
microscope. The samples can be viewed laterally at an angle of 90°. Figure 7, left
and right, shows the surface structure of a layer formed after one hour of operation
of the ESP on the side plate in the middle of the channel. The particulate structure is
irregular and consists of a composite of several particle sizes. The presence of very
large and small particles suggests a pre-agglomerated state of the input material. In
a cross-section for the depth analysis of the layer, the same would be disrupted, in
a second approach the layer was first fixed with adhesive and then cut. Figure 7,
centered, is characterized by a smooth surface. The glue on the surface ensures a
flattening of the structure. The depth analysis of the layer fundamentally confirms
the knowledge gained from the surface analysis that the layer consists of amultimodal
size distribution (Fig. 12).
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Fig. 12 Precipitated particle layer. Electron microscope picture, deep cut through the layer (left,
right) and glued layer (middle)

3.3 Analysis of Particle Separation Efficiency

In the initial start phase of the precipitation system, the deposition plate electrode
(duct wall) is clean and not yet filled with particles. Therefore, the particle to be
separated from thegas streamdirectly impacts thewall.Dependingon theparticle size
and momentum, the particle impact either leads to deposition or to the resuspension
of the particles. Only a sufficiently small impact force allows the particles to be
deposited on the wall (Fig. 13).

Fig. 13 Time dependent precipitation efficiency of Al2O3 and CaCO3
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Fig. 14 Dynamic particle size dependent precipitation of Al2O3 and CaCO3

The deposition rate of different kind of dust particles in the ESP has been analyzed
with time. According to Fig. 14, the time course of the deposition rate of the metal
oxide model dust (Pural NF) changes in the first 15 min, while the deposition rate for
the organic oxide model dust (Ulmer Weiss) undergoes no significant changes. This
behavior is attributed to the different coefficient of restituitions of the two model
dusts, which is about 0.8 for Pural NF and only about 0.3 for UlmerWeiss. The more
than twice the number of impacts in Pural NF causes the more frequent rebound of
the particles from the plate electrode (copper wall). In the later stages, a (porous)
particle layer forms on the wall, which increases the interparticle adhesive forces and
may cushion the impact of the particles. Thus, the re-suspension share of particles
in the fluid decreases and the deposition rate increases (Fig. 14).

Since larger particles have more kinetic energy on impact, the redispersion rate
also increases with particle size. Figure 14 (left) shows the curves for the separation
curves for the start of the experiment at t = 0 min and at the end of the test at t =
30 min. The discrepancy between the separation curves increases with the particle
size of 15% for 1μmparticles up to 55% for 20μmparticles. Since the larger particles
also occupy a higher mass fraction in the disperse phase, they also contribute more
to the overall separation efficiency, which explains the drop of about 25% in Fig. 13.
Small changes in the separation curve have been detected for the model dust lime,
but these are random in time, which is why they are attributed to fluctuations in the
measurement signal. As expected, both curves show a similar course for electrostatic
precipitators (see Fig. 14 (right)), whereas the curve for Pural NF is below that of
Ulmer Weiss. If only the curves of maximum deposition are considered, the curves
are closer together. Both substances achieve similarly high degrees of separation.
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3.4 ESP CFD-Model and Simulation

The simulation of fluid and particle motion is with a coupled electro-hydrodynamic
model shown in Fig. 6 illustrate that there is a strong response from the electric
field to the movement of particles that charge and then move in the direction of the
electric field to the electrode wall [Law96], which is responsible for the deposition
of particles through the electric field. Charged particles, in turn, carry ions out of
the continuous phase and transport them along their path. The effect is rather minor,
depending on the particle concentration. Another special feature is the movement of
the ionized fluid molecules. Here, the ion wind, a macroscopic movement of the fluid
in the field direction, is created. In reality, charged molecules are also transported
with the fluid in the main flow direction. However, convective transport is negligible
compared to ion transport along the electric field. At the low particle concentrations
considered here, a one-way coupling between the fluid and the particle phase is
sufficient (Fig. 15).

A specific focus of the simulations has been set on the variation of geometric
dimensions of the electrodes and its material properties, characterized by the relative
permittivity and density. In order to cover wider boundary areas during operation,
specific extreme material values have been also used in some simulations, which
cannot be assigned to a real physical system (Table 3).

Fig. 15 Coupling between electric field, flow field and particle movement
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Table 3 Variation of geometry and material in the CFD simulations

Geometry variation Material variation

Electrode Name Material Density (kg m−3) Permittivity [–]

Wire CaC03 Calcium-carbonat 2.71 8

Asymmetric spikes Fe2O3 Iron oxide 5.24 14.2

VP1 model 2.5 100

Symmetric spikes VP2 model 25 100

VP3 model 2.5 1.8

3.5 Efficiency at Different Voltages

Numerous investigations on particle deposition in plate-wire electrostatic precipita-
tors in the literature use electrodes as a 2-dimensional simple structure, which leads
to simplifications in terms of generated fields and ion concentrations both in labo-
ratory experiments and in simulations. These wire electrode form serves here as a
validation case. The curves in Fig. 16 illustrate the rates of particle separation of
CaCO3 for voltages of 55–70 kV. The CFD results from OpenFOAM (OF) show
only minor deviations from the flowchart simulation (FSS) (Fig. 16).

For particles larger than 10 μm, deviations of more than 5% occur. This is due
to the gravitational separation hitherto neglected in the flowchart simulation. The
deviations tend to increase at higher voltages as well since vortex formation and

Fig. 16 Results from CFD simulations of particle separation from 55 to 70 kV (Reprinted from
Particuology 38 (2018) 10–17, Sander et al. with permission from Elsevier)
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multi-scale turbulence effects with increasing potentials play a greater role. These
effects cannot be properly described in 2d simulations.

3.6 Electrode Geometry and Material Variation

One of the main reasons for the high degree of complexity in the design of an
electro-deposition process with the help of a macro-model is the variety of electrode
geometries that can be encountered in practice (Fig. 17).

The coupled fluid, particle and field simulation model in 3D for electrostatic
precipitators is able to map such geometries. Figure 18 compares the degrees of
precipitation of the wire electrode used in laboratory experiments with electrode
types with symmetrical or asymmetrical spikes. The use of spikes locally provides
higher field strengths and ion densities but cannot deliver them consistently over the
entire volume. As a consequence, particles in size > 1 μm are in principle charged
worse, which likewise results in a deterioration in the overall degree of separation.
On the other hand, the minimum deposition rate of approximately 10% for the wire
electrodes is approximately doubled. Since electric separators primarily are intended
to filter out these small particle size ranges when used as end separators, the length
of a separator can be significantly reduced by the use of this type of electrode. The
mean field traversed by the particles is taken over into the integral model as apparatus

Fig. 17 Electrode design influence on particle precipitation (Reprinted fromParticuology 38 (2018)
10–17, Sander et al. with permission from Elsevier)
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Fig. 18 Separation efficiency for experimental and model particles—comparison of fluid/field-
CFD-simulation andflow sheet simulation FSS for 3 electrode designs (Reprinted fromParticuology
38 (2018) 10–17, Sander et al. with permission from Elsevier)

characteristic value C. It is currently not possible to correctly model the results for
the smallest particle fraction. Here further model developments are required for
the representation of a diffusive transport. Overall, the FSS can also sufficiently
reproduce the electrode shape by means of the geometrical parameters mentioned,
and thus is applicable to the scaling of systems. The particlematerial can be varied and
represented by the relative permittivity in the flowchart simulation. Since no module
has yet been implemented for gravity separation, the curves still show deviations for
particles larger than 10 μm (see Figs. 17 and 18).

3.7 Continuous Redispersion of Limestone Particles

Experiments performed with limestone show a time independent separation behav-
ior, where neither particle size nor overall precipitation rate change over time. The
model prediction is time independent in case of single stage precipitation without
consideration of redispersion. The redispersionmodeling predicts a time independent
behavior as well, but with a slightly lower overall precipitation efficiency. However,
both efficiencies are within the experimental uncertainties (Fig. 19).

Looking into the particle size resolved precipitation pattern, differences in the
calculation of the single stage model and the redispersion model are observed. As no
particles re-entrain from the walls i the first, the curve progresses towards a precipi-
tation efficiency of 1 for larger particle diameters, as already predicted by multiple
theoretical macroscopic and CFDmodels (e.g. [24, 34]). These models are limited to
the assumption, that particles impinging the precipitator wall are directly separated.
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Fig. 19 Time (right) and particle size dependent (left) model validation for CaCO3 with time
independent precipitation rates. Modeling shown with (−) and without (- - - -) redispersion

The re-entrainment model shows a different result in the particle size range from
5 to 25 μm. Instead of increasing precipitation efficiencies with increasing particle
sizes, redispersion effects becomemore dominant and reduce the overall precipitation
efficiency to about 80%. This reduction is connected to the probability of particles
detaching from the layer surface. Layer properties do not vary significantly over time,
thus the increasing layer height at the walls does not alter the predicted redispersion
probability, hence resulting in a time independent separation behavior. The model
reflects the experimental trend and explains the particles separation limitation larger
than 5 μm.

3.8 Re-Entrainment of Pural NF® Particles

Emissions fromAl2O3 are comparable to the ones of CaCO3 considering only precip-
itation to the walls. Including re-entrainment effects, the experimental data in Fig. 20
show a time dependent separation behavior as the initial layer at the facility startup
forms. Figure 20 indicates, that the particle size dependent precipitation efficiencies
are represented more accurate for particles above 5 μm utilizing the re-entrainment
model. Without this model, the number of precipitated particles is overpredicted.

The proposed model covers layer formation effects, predicting time dependent
precipitation efficiencies which run into a continuous precipitation rate after 15 min.
There are two major effects, which add to the time dependent behavior.

Firstly, redispersion is increasing after some minutes due to rising probability of
particles impinging onto other particles instead of impinging onto the wall. As the
copper plate is rather soft compared to Pural NF (e ≈ 0.8 instead of e ≈ 0.4), less
rebounding occurs. This effect is within the experimental data, thus, making it hard
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Fig. 20 Time (right) and particle size dependent (left, for t = 1 min) model validation for Al2O3
with time dependent precipitation efficiencies. Modeling shown with (−) and without (- - - -)
redispersion

to evaluate. After a few minutes, an initial particle layer has formed on the walls.
Now, mostly all particles impinge the layer and the wall effect disappears. The layer
forming has a high porosity (compare [43]) and will allow force progression into it,
reducing re-entrainment from the layer. After the layer reaches a certain height, the
force progression into the layer is constant and, likewise, precipitation rates proceed
in a steady state.

The force progression factor used inEq. (29) is afittingparameterwhich influences
how fast the precipitation rate reaches a steady state. The parameter is connected to
the layer porosity, as a dense particle layer (less porous) hasmore interparticle bounds
and may withstand a higher force compared to a fluffier layer. Figure 21 shows the
influence of the factor in a reasonable range of 0.9–0.98. Values above 1 are not
reasonable as they would allow higher forces to act on the particles than maximum
impact force theoretical available during impingement.Avalue of 1neglects any layer
influence.With decreasing force factors, the stable continuous process conditions are
reached after about 7 min. The change in dynamics is limited to this rise. Thus, low
values will only slightly alter the precipitation curves. With increasing values, the
dynamics are slowing down more and more. This is expected by looking at the
damping function formulation. All curves are within experimental data errors. Thus,
it can be concluded, that the fitting parameter influences the results in an acceptable
way. The force progression into the layer remains an uncertainty, which should be
addressed in further studies.



32 S. Sander et al.

Fig. 21 Force propagation
factor influence

4 Summary, Conclusions and Outlook

Electric forces on gaseous and particulate phases are implemented into a numeri-
cal CFD model of the flow inside electrostatic precipitators (ESP). The gas phase
gains electrons through a steady-state boundary inlet at the precipitator electrodes
while particles charge according to the Lawless unipolar model. The simulation of
wire, asymmetric and symmetric spiked wire electrode designs for electrostatic pre-
cipitators provide mean electric field values responsible for particle charging and
acceleration. Integration of these geometries into a macroscopic precipitation model
shows good agreement to the simulation. Particles start their drift towards the walls
approximately after passing the first electrode, where the onset of rapid particle
charging caused by high electric field strengths and ion densities is located. For the
gas phase it is found that macroscopic vortices arise along the precipitator. Thus,
turbulence influences the overall separation efficiency mainly of nanometer sized
particles which is not captured by the macroscopic model approach. With high den-
sities, micron sized particles accelerate vertical to the spiked electrodes and undergo
higher charging and transport fields, which increases precipitation efficiency.

Particle re-entrainment mechanisms in electrostatic precipitators (ESP) are mod-
eled for inclusion as a model unit into dynamic flowsheet simulation (FSS). Results
on CaCO3 and Al2O3 precipitation and redispersion for a laboratory scaled ESP are
discussed. The new approach describes a unit operation to be incorporated in the
dynamic flowsheet environment “dysSol”, which allows a multidimensional analy-
sis considering particle size and material type. Particle separation and redispersion is
modeled through common theory, implementing an additional effective field constant
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obtained from the CFD simulations. Re-entrainment calculations are based on force
ratios and fluid flow conditions. A force progression function accounts for particle
layer properties.

In case of limestone particles (Ulmer Weiss ®), a steady state redispersion is pre-
dicted by the model, showing an increased accuracy in the particle size dependent
precipitation rates. The same holds true for metal oxide particles (Pural NF ®). Here,
the force progression is more dominant, showing a dynamic increase in precipitation
rates with time. The experimental data exhibit identical trends, however, the analysis
of the force progression factor indicates remaining uncertainty. It should be addressed
in further studies. A promising approach for the derivation of the factor may be by
application of the Discrete-Element-Method (DEM) for studying of particle impact
onto particulate layers, as DEM simulations are capable of resolving the force pro-
gression into the layer as well as the resulting force onto particles and groups of
particles. In this way the particle deposition probability and possible re-entrainment
of particles may be calculated directly.
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Chapter 2
Dynamic Modelling of Reactive Fluidized
Bed Systems Using the Example
of the Chemical Looping Combustion
Process for Solid Fuels

Lennard Lindmüller, Johannes Haus, Ernst-Ulrich Hartge,
and Stefan Heinrich

Abstract The novel open-source flowsheet simulation software DYSSOL was used
to simulate effects inside a system of interconnected fluidized bed reactors. The
development of the needed models was done exemplary for the Chemical Looping
Combustion process for solid and gaseous fuels. In CLC a solid oxygen carrier mate-
rial is circulated between interconnected fluidized bed reactors. In the simulation, the
focus is laid on the prediction of the dynamics of the whole system, especially the
process start-up, shut-down and fuel load change. A dynamic model, which can be
applied for bubbling beds and circulating fluidized beds was derived. Additionally,
a cyclone was introduced for gas-solid separation. Loop seals ensure gas sealing
between the reactors and were included into the modeling. Fluid mechanics inside
the systems are modeled with empirical and semi-empirical, one-dimensional corre-
lations, to enable fast calculations. These considerations allow real-time simulations
of long-term effects in the system. The chemical reactions for gaseous and solid fuel
combustions are included in the simulation. This has an effect on the solid oxygen
carrier and so the oxidation and reduction of the carrier are regarded. The simula-
tions were validated with experiments on a 25 kWth Chemical Looping Combustion
facility at TUHH. The flowsheet models are able to predict the movement of the
bed material between the units after operation changes as well as the time frames in
which these changes occur. Besides, the gas and solids conversions in the fluidized
bed reactors were simulated accurately.
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Abbreviations

AR Air Reactor
CCS Carbon Capture and Storage
CFB Circulating Fluidized Bed
CFD Computational Fluid Dynamics
CLC Chemical Looping Combustion
CLOU Chemical Looping with Oxygen Uncoupling
CSTR Continuously Stirred Tank Reactor
FR Fuel Reactor
iG-CLC In situ Gasification-CLC
OC Oxygen Carrier
PFR Plug Flow Reactor
S Siphon/loop seal
SP Standpipe

Nomenclature

a Decay constant in the freeboard region (–)
Ar Archimedes number (–)
Ar Cross-sectional area of reactor (m2)
as Share ratio of flow which is in inner cyclone vortex (–)
at Ratio of interfacial area between bubble and suspension phase to the

volume of a reactor element (1/m)
C Weir coefficient (–)
Cb,l Gas concentration of gas component l in bubble phase (mol/m3)
Cd,l Gas concentration of gas component l in dense suspension phase

(mol/m3)
Cf,l Gas concentration of gas component l in the freeboard (mol/m3)
cv Solids concentration (–)
cv,i,∞ Solids concentration above the transport disengagement height (–)
cv,mf Solids concentration at minimum fluidization velocity (–)
cv,suspension Solids concentration in the dense suspension phase (–)
D Molar binary diffusion coefficient (m2/s)
Dc Cyclone design parameter (–)
d* Cyclone cut size diameter (m)
di,p Average particle size in class i (m)
dp Particle diameter (m)
dv Bubble size (m)
dv,0 Initial bubble size (m)
Ea Activation energy for the reaction (J)
Fg Fd gravitational and drag force (kg m/s2)
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g Gravitational acceleration (m/s2)
Gs,i,∞ Solids circulation rate (kg/(m2s))
h Height inside the reactor (m)
Hb Height above the distributor where dense bottom zone ends (m)
Hw Weir height (m)
J̇Q,l Convective flow of gas component l (mol/m3)
k0 Pre-exponential factor (mol1−n Ln−1 s−1)
k1–k7 Reaction rate constant (mol1−n Ln−1 s−1)
kG Gas diffusion resistance (mol/s)
Ki,∞ Elutriation rate for each particle interval i (kg/(m2 s))
KQ Convective exchange rate of gas l (1/s)
ṁ Mass flow rate (kg/s)
mr Total reactor inventory (m)
n Reaction order (–)
p Pressure (Pa)
�Q3,i Particle size class fraction (–)
R Universal gas constant (J/(K mol))
rg,l Reaction rate of solid with gaseous component l (mol/m3)
T(ut,i) Cyclone separation efficiency curve (–)
u Superficial gas velocity (m/s)
ub Bubble rise velocity (m/s)
ud Velocity in dense suspension phase (m/s)
umf Minimum fluidization velocity (m/s)
ut,i Terminal velocity of particles in size interval i (m/s)
V̇b Visible bubble volumetric flow (m3/s)
V̇or Volumetric flow through a single orifice (m3/s)
W Width of the standpipe/weir (m)
Xj,l Solids conversion of component j with gas component l (–)

Greek letters

μ Gas viscosity (Pa·s)
εb Bubble volume fraction (–)
εmf Minimum fluidization voidage (–)
ηf(d) Cyclone separation efficiency (–)
θ Scale dependent geometry parameter (–)
λ Average bubble lifetime (s)
ρm,j Molar density of solid reactant j (mol/m3)
ρsolid Solid density (kg/m3)
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Indices

0 Initial
b Bubble
d Dense suspension phases
f Freeboard
i Particle size class
j Solid component
l Gas component

1 Introduction

Chemical Looping Combustion (CLC) is a promising CO2 capturing technology,
whichmight find future use for electricity generation or in industrial processes where
industrial firing systems are needed. Instead of direct air combustion, in CLC an oxy-
gen carryingmaterial (OC), usually ametal oxide, is circulated between a fuel reactor
(FR) and an air reactor (AR). The OC is reduced by the fuel in the FR and re-oxidized
in the AR by air. By avoiding contact with the fuel and air, a combustion in absence
of nitrogen is realized and a flue gas stream of almost pure CO2 and H2O is generated
in the FR. The pure CO2 can then be used for underground storage in suitable geo-
logical formations, such as empty natural gas caverns. This process is called Carbon
Capture and Storage (CCS). The basic process schematics of the investigated CLC
configuration, called in-situ Gasification Chemical Looping Combustion (iG-CLC)
with solid fuels, is shown in Fig. 1. There, MxOy stands for an oxidized OC and
MxOy-1 for the reduced OC. In the FR of an iG-CLC plant, the solid fuel is converted
to a syngas, which then reacts with the OC. Some OCs can release a certain amount

Fig. 1 General scheme of
the CLC process

depleted air steam/CO2

steam/CO2air

fuel
reactor

air
reactor

MexOy

MexOy-1
solid fuel
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of bound oxygen directly, which then reacts with a solid fuel. This reaction route
is called Chemical Looping with Oxygen Uncoupling (CLOU). This work focuses
entirely on iG-CLC.

The simulation of the CLC process was conducted with a variety of methods
and approaches. One typical method is Computational Fluid Dynamics (CFD). In
CFD a high amount of equations is solved on a dense numerical grid which can be
two or three dimensional. In contrast to this, flowsheet simulation describes macro-
scopic effects in the individual units with empirical models. In comparison to CFD,
the operation of a whole process system can be quickly simulated regarding long
term effects. Flowsheet modelling approaches for CLC were conducted by various
research groups mainly with Aspen Plus [1–4] but also with MatLab/Simulink [5, 6]
and IPSEpro [7]. A summary of the mentioned works can be found in Haus et al. [8].
Other mathematical modeling on macro-scale are summarized by Adanez et al. [9].
In all the mentioned research, only steady state operations were simulated. Often,
the modeling of CLC concentrates on the FR since it is the most crucial part in the
process. The reactions in the AR are mostly disregarded, due to a fast and complete
re-oxidation of the OC. Also, the conversion of carbon, which slipped from the FR to
the AR can be considered as complete. A fluid mechanical macroscale model for
a fluidized bed reactor for flowsheet simulation was implemented into the SolidSim
environment by Puettmann et al. [10]. The basics of this approach were used in the
ASPEN Plus 8.4 package of ASPEN Tech. Prior research at TUHH has shown, that
this model cannot be used directly for CLC processes.

The CLC process is characterized by the complex transient behavior between the
process units due to the big holdup of the reactive units. This is disregarded in most
CLC modeling approaches since most works are focused on the FR. Often artificial
in- and output streams are used for every unit to mimic the effect of solid circulation.
These model systems cannot predict the dynamic process behavior, since e.g. the
solid circulation rate is not calculated but assumed as input value.

In the presented work, an entire CLC system, consisting of fluidized bed reactors,
loops seals and a cyclone was implemented into DYSSOL. The process network is
described with empirical and semi-empirical correlations. With the models, long-
term behavior as well as process variations, such as start-up, shut-down and fuel load
changes, can be simulated. Due to the complexity of thewhole systemwith numerous
gas solid reactions, themodeled fluidized bed reactor unit was advanced step-by-step.
First, the focus was on the fluid dynamics of the interconnected system [11]. In a sec-
ond step, the dynamic reactions of the OCwith gaseous fuels were implemented [8].
Afterwards, the volatile gasification was added into the model. In this way, the com-
bustion of biomass was simulated, by neglecting the char content [12]. In a last step,
the focus is on the conversion of high-carbon fuels. Additionally, to the OC, char was
introduced as a second reactive solid to the system. All simulations were compared
to experiments on a 25 kWth CLC pilot plant with the respective fuel. The measured
gas concentrations in the pilot plant’s off-gas were used to fit the kinetic data to the
simulations. In the following, the experimental facility and flowsheet are explained
and afterwards all modeled units are described in detail.
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2 Materials and Methods

2.1 Experimental Facility

A 25 kWth experimental CLC pilot plant is operated at Hamburg University of
Technology. The plant is run with an oxygen carrier consisting of 9 wt% CuO on
Al2O3 as a basis. In Fig. 2 (left) the schematics of the pilot plant with a two-stage
bubbling bed FR system is shown. Solid and gaseous fuels are usually added in stage
1 of the fuel reactor (FR1). There, solid fuels are gasified by CO2 and H2O. The
generated gases by gasification and the volatile gases are converted by the oxygen
carrier. Unconverted gases enter stage 2 of the fuel reactor (FR2), where they are
further converted. It was demonstrated, that the two-stage design provides very high
conversions of high volatile fuels, like methane, biomass and lignite char. In the air
reactor (AR), which is operated as a circulating fluidized bed (CFB) riser, the reduced
oxygen is completely re-oxidized by oxygen from air. After the AR a cyclone is used
for gas-solid separation. Loop seals provide gas sealing between the fluidized bed
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Fig. 2 Left: Schematics. Right: Flowsheet of 25 kWth CLC pilot-plant at Hamburg University of
Technology. (AR: air reactor, FR: fuel reactor, S1 and S2: siphons/loop seals). From Haus et al. [8],
but with extended streams
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Table 1 Dimensions of the 25 kWth CLC pilot-plant at TUHH

Dimensions Height (m) Diameter (m) Holdupa (kg)

Air reactor AR 8 0.1 ~ 5

Fuel reactor FR 2 m per stage 0.25 ~ 24

Bed height FR 0.6 per stage

Cyclone 0.34 0.21 –

Dimensions Width (m) Length (m) Holdupa (kg)

Siphon S1 0.16 0.13 ~ 4

Siphon S2 0.13 0.25 ~ 8

aSolids holdup for typical operation conditions

reactors. The dimensions of the plant are summarized in Table 1. With 32 pressure
transducers the fluidmechanic situation in the system can be tracked. Amore detailed
analysis of the CLC facility at TUHH can be found in [13]. The data from the
experimental runs on the CLC plant are used for the development and validation of
the models in DYSSOL.

2.2 Flowsheet of the CLC Process

In Fig. 2 (right) the flowsheet of the pilot-scale CLC plant at TUHH is shown. The
fluidized bed reactors, including the AR riser and bubbling beds (FR1 and FR2),
are simulated with the same model unit, using different correlations, corresponding
the to the fluidization regime. In the following, the pathway of the OC through the
system is explained, starting in the AR.

The solids in the air reactor move upwards with the fluidization air (stream 15).
Both gas and solids exit the reactor via stream 1. In the cyclone, air and fine particles
exit the systemwith stream 2. The cyclones’ underflow enters the syphon 1 (S1) with
stream 3. The syphon is fluidized by steam (stream 5). Via stream 4 solids and steam
from the syphon enter the upper stage of the fuel reactor (FR2). Fine particles and
gases leave the system via stream 6. The solids enter the lower reactor stage (FR1)
through a standpipe, which is submerged into the bed. The gases and fine particles
leave FR1 via stream 7 to fluidize FR2. The fluidization of FR1 is done with stream
10, which contains a mixture of CO2 (stream 12) and steam from S2 (stream 16).
Solid fuel injection is done via stream 11 into the lower bed of FR1. Via the lower
standpipe solids enter syphon 2 (S2) with stream 9. S2 is fluidized by steam (stream
13). Via stream 14 the solids and steam enter the air reactor. The modeled streams
transfer all gas and solids parameters from one unit to another (e.g. mass flow,
temperature, pressure). Two secondary particle properties are defined in the model:
The particle size distribution and the oxidation state of the OC. Both parameters
can change over time and are passed from one unit to another in the simulation.
DYSSOL saves these attributes in matrices. A detailed description for the handling
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of the secondary particle properties is presented in the previous chapter by Skorych
et al. For flowsheet simulations of CLC, the oxidation state is usually described by
no more than 10 intervals, for calculation speed reasons. After a reduction of the OC,
the particles move from one oxidation class to the next lower one, or the next higher
one for OC oxidation.

2.3 Process Units

For flowsheet simulation, the process is subdivided into individual model units. In
the following section, the modeled units used for Chemical Looping Combustion are
described, which are fluidized bed reactors, loop seal and a cyclone unit.

2.3.1 Fluidized Bed Reactor Unit

Fluid Mechanics

For the fluidized bed reactor, a single module was developed, which can be used for a
CFB riser and a bubbling bed. The module is divided into two zones, a dense bottom
zone and a freeboard zone. The bottomzone consists of a suspension phase and a solid
free bubbles phase. In the freeboard zone, the solids concentration is exponentially
decreasing with the rector height [14]. Figure 3 (left) shows a typical solids concen-
tration distribution over the fluidized bed reactor height. For all process conditions,
the presence of bubbles is assumed in the bottom zone. All fluid dynamic effects in
the model are assumed to be one dimensional. In the following the correlations used
for the description of the fluid mechanics are summarized. A more detailed descrip-
tion can be found in a publication by Werther and Wein [15]. The initial bubble size
dv,0 above the gas distributor is given by Davidson and Harrison [16]:

dv,0 = 1.3 ·
(
V̇ 2
or

g

)0.2

(1)

With V̇or being the volumetric flow through a single orifice and the gravitational
acceleration g. With increasing height over the distributor, the bubble diameter dv is
described with:

d(dv)

dh
=

(
2εb
9π

)1/3

− dv

3λub
(2)

In the equation εb describes the bubble volume fraction and λ the average bubble
lifetime. The formed bubbles rise with the velocity ub:
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Fig. 3 Left: typical solids distribution inside a fluidized bed reactor. Right: input and output flows
inside a fluidized bed reactor, aswell as the flows and distributions inside (Reprintedwith permission
from [8])

ub = V̇b + 0.71 · θ · √g · dv (3)

here V̇b describes the visible bubble volumetric flow and θ is a scale dependent
geometry parameter. From the dense bottom zone up to the border of the freeboard
zone, which is at the height Hb, the solid concentration cv(h) is calculated with:

cv(h) = (1 − εb(h)) · cv,suspension for h < Hb (4)

The solid concentration in the suspension phase cv,suspension is assumed to be similar
to the solids concentration at minimum fluidization velocity cv,mf.

Above the dense suspension phase, an exponential decay of the solids concentra-
tion towards the reactor top is assumed. This can be described with a correlation from
Kunii and Levenspiel, which also considers an elutriation effect that differs for each
particle size class i [17]:

cv,i (h) = cv,i,∞ + (
cv,i (Hb) − cv,i,∞

) · e−a(h−Hb) for h ≥ Hb (5)

The parameter a is an empirical decay constant, which represents the changing
solids concentration in the freeboard region. If the decay constant a is multiplied with
the superficial gas velocity u, the result has a constant value for a certain system:

a · u = 0.5, . . . , 3 for bubbling beds and dp ∼ 300 μm (6)
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a · u = 2, . . . , 12 for turbulent beds (7)

In Eq. (5), cv,i,∞ describes the solids concentration above the transport disengage-
ment height, which is calculated from:

cv,i,∞ = Gs,i,∞
ρs · u (8)

The solids circulation rate Gs,i,∞ for every size fraction i is calculated from an
elutriation rate Ki,∞ for each particle class fraction i and the mass of particles in each
respective class �Q3,i:

Gs,i,∞ = �Q3,i · Ki,∞ (9)

The elutriation rate Ki,∞ can be calculated from different elutriation rate correla-
tions. Several researchers investigated the elutriation rate at many operation regimes
of fluidized bed reactors [18]. At fluidization velocities above 3 m/s, which are usu-
ally in a CFB riser and in the air reactor of the exemplary CLC system, a correlation
by Choi et al. is used [19]:

Ki,∞ · di,p
μ

= Ar0.5 · exp
(
6.92 − 2.11 · F0.303

g − 13.1

F0.902
d

)
(10)

Here di,p describes the average particle size in class i, μ is the dynamic viscosity
of the gas and Ar is the Archimedes number. Fg and Fd describe the gravitational and
the drag force on the particles. For bubbling fluidized beds with lower gas velocities,
such as the fuel reactor stages in the exemplaryCLC system, the following correlation
by Tasirin and Geldart is used [20]:

Ki,∞ = 14.5 · ρg · u2.5 · exp
(
−5.4 · ut,i

u

)
(11)

Here, the elutriation rate depends on the terminal velocity ut,i for each particle size
class and the superficial gas velocity u. With a given mass fraction �Q3, i and the
elutriation rate of each particle size class Ki,∞, the particle size distribution and the
corresponding particle loss due to elutriation at the outlet at the reactor top can be
calculated.

For the calculation of the whole fluidized bed reactor the unit is discretized in
a defined number of height elements. With the correlations shown above, the solid
concentrations at every height class in the dense bottom zone and the freeboard zone
are calculated for each time step. The concentrations correspond to the total reactor
inventory mr, according to:

mr = Ar · ρsolid

(
Hb∫
0
cvdh + hmax∫

Hb

cvdh

)
(12)
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Here, Ar is the cross-sectional area and hmax the total reactor height. The fluidized
bed reactor model can have two exits: A top exit and an exit over an overflow
weir/standpipe.With all inlet and outlet streams, a new reactor inventory is calculated
for each time step:

dmr

dt
= ṁsolids,inlet − ṁelutriation, f reeboard − ṁover f low (13)

For a CFB riser, ṁoverflow is set to 0 because all particles are leaving the reactor
together with the gas via elutriation. The number of elutriated particles depends on
the solid concentration at the reactor top and the gas velocity. In a bubbling bed
reactor, most particles are discharged via solid overflow and only little elutriation
takes place. The particle flow over the weir is defined with a correlation by Botsio
and Basu [21]:

ṁover f low = cv,Hb · ρs · 2
3

· C · W · √2g · (Hb − Hw)2/3 (14)

The parameter C is the weir coefficient, W is the width of the weir, Hw describes the
height of the weir and Hb the height of the bubbling bed.

Chemical Reactions

As it is described in the fluid mechanics section, the reactor model is subdivided into
a freeboard zone and a bottom zone with a solid free bubble phase and suspension
phase. Figure 3 (right) illustrates the modeled phases as well as the input and output
streams. Heterogenous gas-solids reactions occur only in the suspension and dilute
freeboard phase. In the model, the solids are assumed to be perfectly mixed in the
whole reactor. The gases rise from the distributor without any back mixing and are
modeled as in a plug flow reactor.

In iG-CLC, the solid fuel is directly fed into the fuel reactor (FR), where it dries,
devolatilization takes place and later the char is gasified. The generated fuel gases
then react with the OC. The reaction mechanism is depicted in Fig. 4 as described
previously by Adanez et al. [9] and Lyngfelt et al. [22].

The modeled devolatilization time is assumed to be immediate and thus indepen-
dent from the atmosphere as well as other gas concentrations. The devolatilization
of the fuel occurs in the dense bed zone of the fuel reactor. An equal distribution of
the volatile gases through the whole bed height is assumed [23]. This gas mixture
consists of H2, CO, CO2, CH4, H2O and N2 including the volatiles, and the fuel
moisture.

Via the same inlet stream, solid char can be added to the system. The char and
the oxygen carrier are assumed to be perfectly mixed. Further, the modeled fuel is
assumed to be ash and tar free. Thewatergas-shift reaction and other homogenous gas
reactions are not regarded in the model. Furthermore, higher hydrocarbons, nitrogen
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Fig. 4 Conversion route in
iG-CLC for solid fuels. From
Adanez et al. [9] and
extended for the influence of
conversion products on
gasification

oxygen
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oxides and sulfur oxides are not considered. In the following, all modeled reactions
are described. The gasification reactions (1) and (2) describe the conversion of char
in the fuel reactor:

Cchar + CO2
k1→ 2CO (R1)

Cchar + H2O
k2→H2 + CO (R2)

The gasification depends on the reaction rate constants k1 and k2 as well on the
char concentration. Hence, the modeled reactions are not inhibited by the presence
of CO and H2. This is justified with the simultaneous fast reactions of the respective
fuel gases with the OC, which are desribed in the following:

CH4 + CuO
k3→CO + 2H2 + Cu (R3)

CO + CuO
k4→CO2 + Cu (R4)

H2 + CuO
k5→H2O + Cu (R5)

In the air reactor, the oxygen carrier oxidation is described by reaction 6. For the
reaction rate constant k6 usually high values are chosen to assure a complete OC
re-oxidation in the AR:

0.5O2 + Cu
k6→CuO (R6)

Since the gasification is usually a slow process, the solid stream exiting the fuel
reactor can contain unconverted char particles together with the oxygen carrier.With-
out further treatment, the char will then be converted in the air reactor. In an ideal
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operation, this carbon slip is kept to a minimum. The combustion of char in the air
reactor is described with reaction (7):

O2 + Cchar
k7→CO2 (R7)

For the reaction rate constant k7 a value that high is chosen so that all char,
which has entered the air reactor via carbon slip, is converted. With reaction (7) a
conventional combustion with air in the fuel reactor can be simulated as well.

The reaction of the solid (Cu, CuO or Cchar) j with the respective gas component
l is described by the reaction rate rs,j,l:

rs, j,l = −cv, j · ρm, j · dXs, j,l

dt
(15)

Here, cv,j is the volumetric concentration of a solid reactant j in a reactor volume
element. It is taken by multiplying the total solids concentrations cv and the fraction
of active reactant on and inside the particles. This is relevant since most oxygen
carriers consist only partly of reactive material. Moreover, ρm,j is the molar density
of the solids reactant j and dXs,j,l/dt is the solids conversion rate of reactant j with
respect to the fuel gas l. The solids conversion rate is usually determined experi-
mentally. From the obtained data, Arrhenius-type reaction rates for each reaction
can be obtained. Since metallic OCs differ from the structure and reaction behavior,
several heterogenous reaction models were proposed for the solid conversion [9].
For the mentioned gas-solid reactions a shrinking-core model with active, spherical
grains is used. Abad et al. [24] found out that this model is well suited to describe the
reaction behavior of a CuO/Al2O3 oxygen carrier. A general form of the Arrhenius
type reaction kinetics is described as follows.

dXs, j,l

dt
= k

(
Cn
l , T

) · f (X) (16)

Here, the reaction rate constant k is a function of the molar concentration of the
reacting gas l, with the reaction order n and the temperature T. If the gas concentration
Cl is constant over the course of the reaction in a discretized volume element Ar · dh,
the reaction rate constant can be described with the Arrhenius equation:

k = k0 · e −Ea
RT (17)

In the Arrhenius equation, k0 is a pre-exponential factor and Ea is the activation
energy for the reaction, both are determined experimentally. The factor R is the
universal gas constant. The rate of conversion also changes with the conversion X
itself. For this simulation, an algebraic expression for spherical grains and a reaction
limitation is used. This model assumes active round grains which shrink over time.
With a declining surface area over the course of the reaction, the reaction rate declines
as well [9]:
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Fig. 5 Molar balances solved for each discretized height element dh. The suspension and the bubble
phase are connected via diffusive and convective mass transfer (Reprinted with permission from
[8])

f (X) = 1 − (1 − X)1/3 (18)

The molar balances of the suspension, bubble and freeboard phase in the
discretized volume elements Ar · dh for the gas species are shown in Fig. 5.

Since no homogenous gas reactions occur in the bubble phase, changes in the
molar concentrations happen only due to convective and diffusive gas transfer with
the suspension phase. In the following the concentration changes of all gas species
l at a reactor volume element Ar · dh, are shown for the bubble phase b, the dense
suspension phase d and the freeboard f:

bubble phase : dCb,l

dh
= J̇Q,l − kG · at · (

Cb,l − Cd,l
) − Cb,l

du
dh

u − um f (1 − εb)
(19)

dense suspension phase : dCd,l

dh
= J̇Q,l − kG · at · (

Cb,l − Cd,l
) + rg,l

um f (1 − εb)
(20)
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freeboard : dC f,l

dh
= rg,l − C f,l

du
dh

u
(21)

The parameter rg,l describes the reaction rate of the gas l, with the oxygen carrier
or char, based on the reactor volume. The chemical reactions change the molar flow
of gases due to the generation or consumption of gases. Correspondingly to the
generation or consumption of gases the velocity over height is changed as well.
However, the velocity in the suspension phase is assumed to be constant. Therefore,
all generated gases in the suspension phase are directed to the bubble phase via a
convective flow J̇Q,l. If a gas is consumed in the suspension phase, a convective flow
from the bubble phase is assumed:

J̇Q,l =
{
KQ · Cd,l f or KQ > 0
KQ · Cb,l f or KQ < 0

(22)

In these equations, the parameter Cl is the gas concentration of gas l in the dense
suspension d or bubble phase b and KQ describes the convective exchange rate. It
is calculated from all heterogenous reaction rates rg,l of the gases in the suspension
phase:

KQ = R · T
p

∑
rg,l (23)

Here, p denotes the pressure inside the system, R is the universal gas constant and
T the temperature. In Eqs. (19) and (21) the term Cl

du
dh describes the change of the

mass flow of the gas l over the height caused by gas velocity changes. In the fuel
reactor, usually the flow increases due to the solid fuel conversion to gases and due
to the CH4 reaction, in which one molecule of CH4 creates two molecules of H2 and
one CO molecule. In the air reactor, the molar flow is decreased due to the oxidation
of the OC. In the model, it is assumed that the gas passes the suspension phase close
to minimum fluidization velocity umf. To maintain umf in the suspension phase, gas
concentration changes due to velocity effects only occur in the bubble and freeboard
phase.

Chemical reactions in suspension phase lead to different gas concentrations in
bubble and suspension. This causes a diffusivemass transfer between the phases. The
resulting gas diffusion resistance kG is described with the following correlation [25]:

kG = um f

3

√
4 · D · εm f · ub

π · dv

(24)

Here, D describes the molar binary diffusion coefficient, εmf is the minimum
fluidization voidage, ub is the bubble rise velocity and dv stands for the bubble size.
To the diffusion resistance kG in Eqs. (19) and (20) the parameter at is multiplied,
which is the ratio of the interfacial area between bubble and suspension phase to the
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volume of a reactor element. By assuming spherical bubbles, the parameter at can
be described with the bubble size dv and the bubble volume fraction εb:

at = 6εb
dv

(25)

Calculation Procedure

The calculation procedure for the fluidized bed reactor module is shown in Fig. 6.
In a first step, fixed parameters are read into the program. Since they cannot be
changed during the simulation, they are only initialized once. Examples for fixed
parameters are geometrical values or the particle elutriation model. In a next step,
the reactor is discretized in a number of height elements over the reactor height. It
is important to choose a number high enough to provide enough intermediate steps
for the calculation of the fluid mechanics and chemical reactions. Afterwards, for
each time step the operation conditions, like inflows from other units and fluidization
velocity are read from the system.

With the actual state of the reactor (current solids holdup and its conversion state)
and the operation conditions, the fluid mechanics in the system are calculated. This
includes the solid concentration at each height class, the bubble size, the dense bed
height and the solid elutriation. The fluid mechanics are calculated with the Sundials
DAE solver, which is further described in the previous chapter by Skorych et al.
Afterwards, the gas and solids conversion from chemical reactions is calculated at
each height element. The gas conversion is calculated by an explicit Euler algorithm.
With the Euler method, the gas concentrations, which are discretized at each height
element, are calculated from the gas concentrations and kinetics from the previous
height element, starting from the reactor bottom. Fluid mechanics and chemical
reactions are then iterated until the gas and solid conversions match to each other.
When the iteration is complete and the calculated values match to each other within
a predefined tolerance, the outlet flows are calculated together with the new bed
mass, the OC conversion state and the particle size distribution. The time steps for
the calculations are determined by DYSSOL in a way to avoid numerical errors
regarding the predefined tolerances.

2.3.2 Loop Seal Unit

The loop seals ensure gas sealing between the reactors. Furthermore, they act as
holdup for solid material. The loop seals are designed with two chambers, the recycle
chamber RC and the supply chamber SC, which are both fluidized. In Fig. 7 the basic
geometry of the loop seal S2 between the AR and the upper stage of the FR can be
seen. A standpipe above the supply chamber, which holds solid is included in the
model. The model describes both chambers as fluidized beds in bubbling conditions.
Thus, the solids concentration depends on the presence of bubbles. Hydrodynamic
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Fig. 6 Calculation procedure for the fluidized bed reactor module (Reprinted with permission
from [8])
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Fig. 7 Basic schematics of
the loop seal model
(Reprinted with permission
from [8])
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behavior is simulated the same way as in the fluidized bed reactor module. The total
mass mLS inside the loop seal is the sum of the masses in the recycle chamber mRC

and in the supply chambermSC. The height of the supply chamber and the weir height
HW in the recycle chamber restrict the maximum mass of solids in the loop seal.

The solid mass distribution and the height differences in both chambers depend
strongly from the pressure difference environment around them and with it, from the
FR and AR.

Three factors influence the pressure balance between the AR and FR. Firstly, the
solids must always reach the slit height to prevent a short-circuit of the gas. Secondly,
the height from the slit to theweir defines themaximumheight of solids in the recycle
chamber. Thirdly, the height of the supply chamber defines the maximum holdup of
solids in it. All described effects are implemented into the model. With Eq. (14) the
solids overflow is defined in the same way as in the fluidized bed reactor. According
to Bareschino et al. [26] the solid circulation it not influenced by the fluidization
velocity in the loop seal. Furthermore, it is shown that most of the gas leaves the loop
seal through the recycle chamber. These findings were approved by Thon [27] on a
cold flow model of the CLC pilot plant at TUHH.

The modeled loop seals allow dynamic bed mass changes, which arrange
according to the pressure drop differences of the two chambers:

�pLS = HC2∫
HC1

ρScV (h)gdh (26)

The time dependent mass in the loop seal is given by the in- and out- mass flow
rate:
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dmLS

dt
= ṁLS,in − ṁLS,out (27)

2.3.3 Cyclone Unit

For gas-solid separation a cyclone model is implemented into DYSSOL. A system,
which is similar to the semi-empiricalmodel byMuschelknautz [28], is implemented.
This model was validated against data from several hot units and is widely used for
cyclone design in Germany. In this work, the model was extended with an approach
by Klett et al. [29] to avoid errors in the population balances for fine particles.

In the Muschelknautz model, the separation of particles and gas is accomplished
by two different mechanisms, shown in Fig. 8. Firstly, the wall separation occurs
after exceeding the saturation carrying capacity. This causes a strand, which directly
leads down the wall to the solids exit. Secondly, the separation occurs inside the inner
vortex. A small part of particles moves directly to the upper outlet together with the
gas, the so-called overflow. After the inlet solids loading μ exceeds the threshold
value μG, wall separation occurs. Bigger particles are preferably separated at the
wall, which leads to a finer particle size distribution in the inner vortex. Generally, in
circulating fluidized beds μG is exceeded. In the inner vortex, a cut size diameter d*
defines which fraction of a particle size d leaves the cyclone with the overflow or with
the underflow. The resulting separation efficiency ηf(d) is shown in Eqs. (28)–(30).
Depending from the cyclone type the parameter Dc varies from 2 to 4 and is usually
set to a value of 3.

Fig. 8 Cyclone model with
separation mechanisms
(adapted from
Muschelknautz and
Trefz [28]) inlet

off-gas and fine solids

coarse solids

inner vortex
separation

wall
separation

overflow
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η f (d) = 0 for d <
d∗

D
(28)

η f (d) = 0.5 ·
{
1 + cos

[
π

(
1 − log d

d∗ + logD

2logD

)]}
for

d∗

D
< d < D · d∗ (29)

η f (d) = 1 for D · d∗ < d (30)

The described model assumes a separation, considering only a single particle
diameter. This can be problematic, when a mixture of solids with different densities
needs to be separated. To tackle this issue, Redemann et al. [30] proposed a separation
model, which uses the terminal velocities instead of the particle diameter. In the
model, a separation efficiency curve T(ut,i), which determines the part of solids what
can be separated in the inner vortex, is defined. T*(ut,i) depends on the terminal
velocity ut,i for each defined terminal velocity class i:

T
(
ut,i

) = (1 − a) · T ∗(ut,i) + as (31)

T ∗(ut,i) = 1

1 −
√
ut,50,e
ut,i

exp

[
as

(
1 −

√
ut,i

ut,50,e

3
)] (32)

Here, the parameter ut,50,e is the terminal velocity of a particle flow, were 50% of
the particle mass has a terminal velocity below this value. The share ratio as describes
the share of the flow which is in the inner vortex.

The presented cyclone model is a steady state model. Dynamics are not necessary,
since the particle holdup is expected to be very small. It is assumed that particles,
which enter the cyclone, are instantaneously separated into a gas flow with small
entrained particles via overflow and a coarse particle underflow.

3 Results

In this chapter, a summary of simulation results with previously described DYSSOL
models are shown. The simulation results include the effects of a dynamic operation
on the fluid dynamics of the given CLC system as well as the combustion reactions,
which result in a conversion of the oxygen carrier. The simulations are validated
against experimental data, obtainedwith a 25 kWthCLC two-stage pilot plant, which
is operated at Hamburg University of Technology. More detailed results of the fluid
dynamics and methane conversion can be found in publications by Haus et al. [8,
11]. Results of biomass conversion simulations are presented by Lindmüller et al.
[12]. In the following results, each experimental setup is briefly explained and then
compared with the simulations. In all presented simulations, a desktop computer
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(single core of Intel® Core™ i7-6800 K) could simulate the dynamic plant operation
faster than real-time.

3.1 Movement of the Bed Mass Inside the System

When CH4 is added as fuel to the FR, the volumetric gas flow will be increased,
because one CH4 molecule reacts with the OC to one CO and two H2 molecules. A
higher gas flow leads to an increase of the bubble volume fraction in the bed. Since
the height in the bubbling bed is limited to the standpipe height, the bed holdup
decreases at higher velocities. Due to the interconnected reactors, a velocity change
in one unit will lead to a rearrangement of the solids distribution in the whole system.
This effect is shown in Fig. 9, where the measured pressure drop of each reactor is
plotted over time. At t = 4 min, CH4 is added to FR1. This leads to a decrease of
�p in the fuel reactor stages and an increase of �p in the AR, which means that bed
material is transferred from the FR to the AR. This effect is even more notable in the
AR, where the OC is re-oxidized with O2. This leads to a reduction of the volumetric
gas flow in the AR. After stopping the fuel injection, the bed material moves back
again to both FR1 and FR2.

Due to strong pressure fluctuations, the exact conditions can only be estimated.
The loss of bed mass in the FR is about 5–10% while the AR holdup increase is
roughly 10–20%.

Fig. 9 Measured pressure drops over the whole reactor height of FR1, FR2 and AR at 800 °C.
Methane injection started at 4 min and was stopped after 33 min (Reprinted with permission from
[8])
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Fig. 10 Simulated bed masses inside the system over time with a response to fuel injection at t =
100 s (Reprinted with permission from [8])

For the flowsheet simulation, the same input parameters as for the experiment
were used. After adding methane to the FR, the same behavior as in the experiments
could be observed. The bed masses in the simulation are plotted in Fig. 10. At the
start of the simulation, the bed masses arrange themselves to a stable operation point
which takes about 30 s. After fuel is added at 100 s, particles move to the AR due to
the aforementioned effects. Stopping the fuel injection leads to a reassembly of the
bed masses in the system to the first steady state.

The simulation could predict the experimental fluid mechanical response of the
reactor system. In the simulation, the fuel reactor stages lose around 5% of their
bed mass while the AR bed mass increases around 20%, which is in the range of
the experimental results. The simulated system took about 30–40 s to reach a new
steady state.

3.2 Gas Conversion in the Fuel Reactor

During a combustion of wood biomass in the CLC pilot plant at TUHH the volu-
metric gas concentrations in the outlet of both fuel reactor stages FR1 and FR2 were
measured. The fuel was fed into the bed of FR1. As in every experimental run, the
fuel reactor is fluidized with CO2 and steam. In the experiment with a 16 kWth power
input at 850 °C, the H2 and CO concentrations at the fuel reactor outlet (FR2) were
around 0.8 vol.% and 1.2 vol.%, while the concentration of CO2 was around 98%.
CH4 was not detected in the exhaust gas. Regarding the measurement error in the
system, it can be likely assumed that H2 and CO were completely converted. In FR1
still high amounts of fuel gases were detected. Thus, only one fuel reactor stage in
this CLC facility is not enough for a complete fuel conversion.
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Acomparisonof themeasured and simulatedgas concentration is shown inFig. 11.
Here it can be seen that the model is able to predict the axial gas concentrations over
the whole reactor height. The composition of the simulated volatile gas is shown in
Table 2. It has to be noted that in this presented work the biomass char content, which
is about 5 wt%, was not regarded.

In the simulation, the concentrations in the lower dense zones (< 0.6 m) are
averaged over the bubble and suspension phase. Furthermore, the fuel is evenly and
instantaneously devolatilized over the total bed height Hb of FR1. This explains an
increase of the fuel gas concentrations over the bed height in FR1. At the same time,
the fuel gases are consumed by the OC. Therefore, the fuel gas concentrations do not
increase linearly over the bed height. In the bed zone of FR2 the fuel gas is further
consumed by the OC. The gases coming from FR1 react with the fully re-oxidized
OC. At the border between the dense bed and the freeboard zone, changes in the gas
concentrations are seen, since the solid concentration over the bed decreases quite
fast.

Fig. 11 Biomass conversion
at 16 kWth in fuel reactor
stage 1 and 2 over height at
850 °C. Biomass inlet in bed
of FR1. Comparison of
simulation and experimental
data at the exit of each stage

X experiment
— simulation

Table 2 Biomass volatile gas
composition for simulation

Gas vol.%

H2 43.6

CO 33.2

CO2 11.7

CH4 11.5



60 L. Lindmüller et al.

0
2
4
6
8
10
12
14
16
18
20

0 200 400 600 800
0

20

40

60

80

100

CO
, H

2
co

nc
. [

vo
l%

]

time [s]

CO
2

co
nc

. [
vo

l%
]

fuel start 16 kWth [3.1 kg/h]

CO
FR1

CO2

H2

CH4

Fig. 12 Gas concentrations at exit of fuel reactor stage 1 over time during biomass conversion at
16 kWth and 850 °C

The reaction rateswere fitted to resemble the experimental outlet concentrations at
FR2. In this way, the target gas concentrations were accurately met in the simulation.
With the same reaction rates, the reactions in FR1 were simulated. Here the gas
concentrations in the simulation were still close to the experimental ones.

To analyze the reaction progression, the gas concentrations can be dynamically
plotted over time. Exemplarily, Fig. 12 shows the concentrations of the gases, leaving
FR1 over time, before and after a fuel start. Without any fuel, only CO2 and steam
are present in the fuel reactor. Here, the modeled steam concentration is not plotted.
Adding reactive gases to the model leads to the shown concentration gradients. As
it is explained in the previous paragraph, the conversion of the volatile gas mixture
is not complete after only one fuel reactor stage. After around 200 s a steady state
regarding the gas concentrations in the FR is reached.

3.3 Conversion of the Oxygen Carrier

In the following, the conversion state of the OC in FR1 after the start and top of a
methane injection is evaluated. A detailed description of the experimental operation
conditions can be found in Haus et al. [8]. The OC conversion Xs is plotted over
time in Fig. 13. There Xs = 0 stands for a fully oxidized OC and Xs = 1 stands for
a fully reduced OC. The experiment starts with a fully oxidized OC. At t = 100 s, a
methane injection to the FR was started, leading to an increase of Xs. At t = 1400 s,
themethane injectionwas stopped. TheOC conversion decreases again, since the OC
is re-oxidized in the air reactor. The OC conversion depends strongly on the solids
circulation rate Gs. The higher Gs, the lower the specific OC conversion after the fuel
reactors, since more solid material reacts with the same amount of fuel gas. With
the same conditions in the experiment and simulation, such as fluidization velocities
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Fig. 13 Conversion of the OC, coming from FR1, during a CH4 combustion at 800 °C. Simulation
of 2400 s of operation, fuel injection starts at 100 s and stops at 1400 s. Samples were taken during
hot operation at 8 points. The simulation was done with fitted kinetics (Reprinted with permission
from [8])

and bed masses, the simulated solids circulation rate was 25 kg/(m·s2). This is in the
range of previous measurements, where Gs was between 15 and 45 kg/(m·s2).

The dynamic flowsheet simulation is able to track Xs over time. These values
were compared with experimental values from samples taken after 120, 240, 480
and 720 s after the fuel injection was started and 120, 240, 480 and 1000 s after the
fuel was stopped.

Both, experiment and simulation needed about 800 s of fuel injection to reach
a steady state at Xs = 0.28. The long transition time is caused by a long residence
time of OC particles in FR1 and FR2, which could be accurately reproduced in the
simulation. However, the decline time after a fuel stop takes considerably longer
in the simulation. This discrepancy can be explained with the simulated mixing
behavior in the lower loop seal between the FR exit and the AR. A perfect mixing of
the holdup with the solids coming from the FR is assumed. In reality, it is possible
that the solids have a shorter residence time in the loop seal because the particles can
pass the loop seal like a moving bed without much mixing of solids.

Another way to observe the solid conversion is to analyze the O2 outlet concen-
tration of the AR. Air enters the AR with 21 vol.% O2. The more O2 consumed in
the AR, the higher the conversion Xs of the OC after the fuel reactor. The advantage
of this method is that no OC samples during the experimental operation have to be
taken. However, without knowing the solid circulation rate and the OC samples, the
exact conversion cannot be determined experimentally.

In the experimental run, which is further described in Sect. 3.2, the outlet O2 con-
centration in the AR was measured during a dynamic combustion of wood biomass
in the FR. Figure 14a shows the O2 concentration in the AR during the experimental
and simulated fuel start and stop. There, the O2 concentration drops by 7 vol.% after
starting the fuel. The more reduced OC enters the AR, the lower the O2 concentra-
tion. By stopping the fuel supply the OC is not reduced in the FR anymore and the
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Fig. 14 Experimental and simulated O2 concentration at AR outlet at 850 °C, a during start and
stop of biomass injection with fitted kinetics, b during fuel load change with the same kinetics

remaining reduced OC from the FR is re-oxidized in the AR. Since the solid holdup
in the FR needs to be transported into the AR by circulation, the oxygen in the AR
is still consumed until the whole inventory from the FR was carried over. This takes
around 600 s after fuel supply was stopped.

Additionally, a fuel load change from 12.7 to 16 kWthwas conducted. In Fig. 14b,
the measured and simulated O2 concentration in the AR are presented. Here a new
steady state was reached in about 400 s. In both cases the simulation was able to
predict the dynamic course of the O2 concentration and thus the OC conversion
state. The kinetics for the simulation were fitted to match the FR gas concentrations
in Fig. 11 and the ARO2 concentration in Fig. 14a. Thus, the load change in Fig. 14b
serves as validation of the simulation with the used kinetics.
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4 Conclusion

Dynamicmodels, necessary for CLCwith gaseous and solid fuels, were implemented
into the flowsheet simulation environment DYSSOL. Unit models for a CFB riser
reactor, a bubbling bed reactor, a cyclone and a loop seal were developed. For valida-
tion, the simulations were comparedwith experimental data obtained from a 25 kWth
two-stage CLC pilot plant, which is operated at Hamburg University of Technology.
The dynamic models were used to simulate several hot operations of the CLC plant
with methane and wood biomass as fuel. In the following, the most important results
of the present work are summarized:

• Solid distributions in the system could be predicted close to the experimental
measurements for different operation states. The transition time from one fluid
mechanical state to another was correctly predicted.

• Heterogenous chemical reactions were implemented into the fluidized bed reactor
model, including the conversion of fuel gases with the OC and the gasification of
solid char.

• During solid combustions, the fluidized bed reactor model is able to depict the
gas conversion at the reactor exit. The simulations showed expected axial gas
concentrations over height. Nevertheless, fitted kinetic parameters needed to be
used for the simulation.

• Dynamic operation changes were applied to the system. In a hot plant run, fuel
starts and stops aswell as a load changewere conducted. The resulting experimen-
tal changes of the OC conversion could be accurately predicted in the simulation.
Furthermore, the response time of the OC conversion to the operation changes
could be correctly determined.

• In all simulations, a desktop computer (single core of Intel® Core™ i7-6800 K)
could simulate the plant operation faster than in real time. Thismakesmodel-based
plant control of a complex interconnected system possible.

• DYSSOL proved to be a reliable and mighty tool to calculate units and predict
long term effects in solids processes.
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Chapter 3
Dynamics of Spray Granulation
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Abstract This chapter presents new findings on process and product design in
continuous spray layering granulation in horizontal fluidized beds. The results are
achieved by a multi-scale approach, combining single-particle characterization of
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the influence of drying conditions on layer formation and properties with meso-scale
information of particle flowand recirculation between process chambers separated by
weirs. On the macro-scale, population balance modeling is used to describe the over-
all process dynamics taking into account apparatus design and process conditions.
New process regime maps are presented along with control concepts to guarantee
stable and safe operation as well as desired particle properties.

1 Introduction

Spray layering (granulation) is a particle formulation process in which a solid con-
taining liquid is sprayed onto a collection of core particles. The droplets collide with
the cores andwet their surface. Supplying a heated gas flow, the liquid evaporates and
the solid remains on the core particle surface. By continued spraying and evaporation,
full layers can be obtained. As a consequence, the particles grow in size.

Horizontal fluidized beds are a key technology in spray layering, with widespread
application in the areas of food, feed, fine chemicals and pharmaceuticals. They
can be used to combine more than one operation in a single apparatus, for example
layering of particles with a solid-containing liquid, followed by drying and cooling.
For this, the apparatus can be compartmentalized along the apparatus length, by
installation of weirs, creating different process chambers (Fig. 1).

Installation of weirs generates a residence time distribution (RTD) of the particles
in the apparatus, as the passing of a weir by an individual particle depends on the
particle properties, for example mass density, sphericity, as well as the fluidization
conditions. Residence time distributions are known to cause product property distri-
butions, for example differences in particle size in granulation, or product moisture
content in drying operation.

The knowledge of the effect of an individual weir, parameterized with respect to
particle properties and fluidization conditions, would allow answering a number of
important design questions, for example howmanyweirs are required in an apparatus
to obtain a desired spread of the residence time distribution, and therefore guide the
design and operation of horizontal fluidized beds.

Furthermore, thermal conditions influence the dynamics of the evaporation pro-
cess and thereby the dynamics of layer formation and layer properties, for instance
layer thickness and porosity. These in turn influence the evolution of the particle size
distribution.

Product classification in continuous operation can be performed internally and
externally, for example by a screen-mill cycle. Here, the particle size distribution in
the horizontal fluidized bed determines the dynamics of the process including the
classification, for example the magnitude and time-scale of recycle flows or loads on
screens and mill, influencing their efficiency.

Due to the multi-scale interaction, starting with single-particle layer formation
dynamics over particle flows between adjacent process chambers to large-scale pro-
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Fig. 1 Schematics of a typical spray granulation process in a horizontal fluidized bed with multiple
process chambers generated by the insertion of weirs. Additionally shown is the external screen-mill
cycle for product classification [1]

cess and plant behavior, spray layering granulation in horizontal fluidized beds is a
prototypical interconnected solids process.

The research aims of the project were:

1. Study the influence of thermal conditions on the dynamics of layer formation and
layer properties;

2. Study and characterize the influence ofweir design and configuration on residence
time and particle property distributions;

3. Derive and extend population balance models to describe the temporal evolu-
tion of particle properties with respect to apparatus (weir) design and operating
parameters;

4. Using these models, study the dynamic and steady-state behavior of the continu-
ous spray layering in horizontal fluidized beds;

5. Derive, design and implement control strategies to prevent unwanted process
behavior and guarantee required product properties under model uncertainties
and process disturbances.

This chapter is structured as follows: In Sect. 2, the basic population balancemodel
for continuous spray layering in horizontal fluidized beds is introduced, considering
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particle flows not only between adjacent process chambers but also between dif-
ferent functional compartments within each chamber. This is followed in Sect. 3 by
experimental and simulation results on the particle exchange rates between chambers
under the influence of weir design. Section4 collects the experimental results with
respect to the influence of thermal conditions on particle properties. This is followed
in Sect. 5 by the presentation of a model extension, to allow predictive simulation
of property development for different thermal conditions in each chamber. Using
the extended model, the dynamic and steady-state behavior can be studied in detail.
Section6 presents results of the system theoretic analysis using the process model,
identifying different process regimes (stable, unstable) depending on the operation
and process conditions. This presentation is followed in Sect. 7 by results on con-
trol of the overall process, to stabilize operation and to guarantee desired product
properties. The chapter closes with Sect. 8, a summary and outlook.

2 Basic Population Balance Model for Spray Granulation
in A Multi-chamber Setup

In this section a multi-chamber and multi-compartment model of a horizontal flu-
idized bed apparatus for layering granulation is presented. Each chamber is designed
individually and process conditions, such as spray rate, particle feed or gas tem-
perature, can be adjusted for each chamber separately. Particle growth is described
by population balance modeling. The particle exchange rates between the process
chambers are determined individually to account for different weir configurations.

The growth of particles by layering is described within the population balance
equation (PBE) framework as introduced for particulate processes by Ramkrishna
[2].

The main idea of population balance modeling is the description of the temporal
evolution of the number density function (or other density functions derived from
it). For this, all relevant sub-processes that yield a change in the density have to be
modelled. The density function characterizes the distribution of particle properties,
for example the particle size, moisture content or temperature. Solving for the density
function thereby gives information on the change of these particle properties. Popu-
lation balance modeling has been used successfully to describe fluidized bed drying,
agglomeration and layering granulation processes, for instance by Refs. [3–7].

To account for the fact that the sprayed solution or suspension can only reach
a fraction of the particle bed it is necessary to divide the process chamber into
compartments of different functionalities. For this purpose [8–10] introduced multi-
compartment models for fluidized bed coating and layering granulation. Particularly,
two-compartment models have been applied by Refs. [11–14] for fluidized bed lay-
ering granulation and coating processes.
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Fig. 2 Schematic representation of setup and particle flows in the multi-chamber, multi-
compartment model

A two-compartment model is integrated into the multi-chamber model to describe
particle growth and all relevant particle flows in each chamber. Figure2 illustrates
the developed multi-chamber and multi-compartment model. In this model the two
compartments are considered to be arranged vertically in order to account for bottom
or top-spray of the solid-containing spray. In case of top-spray configuration, the
upper compartment (denoted by ‘1’ in Fig. 2) is the spray compartment in which the
particles are in direct contact with the sprayed liquid. In the lower zone (compartment
‘2’) only drying and mixing of the contained particles take place. In bottom-spray
configuration the lower zone ‘2’ is assigned to be the spray zone and the upper zone
‘1’ the drying zone, respectively.

The population balance equations for the number distribution density of particles
with respect to particle size L of each compartment j in each chamber i , ni, j , are
written as follows:

∂ni, j

∂t
= −∂

(
Gi, j ni, j

)

∂L
− ni, j

τi, j
+ ni, j̄

τi, j̄
+ ṅi, j,in − ṅi, j,out . (1)

The total number distribution density of each chamber ni is the sum of the number
distributions of all compartments j within the chamber i ,
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ni =
J∑

j=1

ni, j . (2)

The volume fraction of the compartment, ωi, j , and the particle residence time in this
compartment, τi, j , can be determined experimentally or taken from literature (e.g.
[13] or [11]). The ratio of the mean residence times of the two zones equals the ratio
of the compartment volumes:

τi, j

τi, j̄
= ωi, j

ωi, j̄
. (3)

All particles in a chamber are contained in the two compartments, yielding the con-
straint:

2∑

j=1

ωi, j = 1. (4)

In the spray compartment ( j = 1 for top-spray and j = 2 for bottom-spray configu-
ration) the growth rate of particles, Gi, j , can be expressed by a relation proposed by
Mörl et al. [15]:

Gi, j = 2 ysus,s Msus,i, j(
1 − εsh(ηdry,i )

)
�s Ap,i, j

(5)

with

Ap,i, j = π

∫
L2ni, j (t, L) d L = π μ2,i, j (t), (6)

where μ2,i, j is given by

μ2,i, j (t) =
∞∫

0

L2ni, j (t, L) d L . (7)

It contains the assumption that the sprayed liquid mass is distributed equally on the
particle surface, Ap,i, j , which can be calculated from the second moment of number
distribution density in the respective compartment, ni, j . In case of spherical particles,
the particle surface within the spray zone can be determined by Eq. (6).

The porosity of the formed shell, εsh , depends on thermal process conditions and
the material of the initial core as shown experimentally by Rieck et al. [16].

The particle number flow rates between the chambers are represented by ṅi, j,out

and ṅi, j,in:

ṅi, j,out = ṅ−
out,i, j + ṅ+

out,i, j , (8)

ṅi, j,in = ṅ−
in,i, j + ṅ+

in,i, j , (9)
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ṅ−
in,i, j = ṅ+

out,i−1, j , (10)

ṅ+
in,i, j = n−

out,i+1, j . (11)

Particle flows that enter from or leave to a previous chamber are denoted by “−”.
Those that enter from or leave to a subsequent chamber are denoted by “+” (see
Fig. 2). In case of the first and the last chamber these equations have to be modified,
since there is no previous or subsequent chamber, respectively. For the first chamber
the inlet flows ṅ−

in,1, j and the outlet flows ṅ−
out,1, j are 0. The same applies for the inlet

flows ṅ+
in,I, j of the last chamber. The product flow is the sum of forward outlet flows

of the last chamber ṅ+
out,I, j .

The particle flow at the chamber inlet and outlet depends on various factors, for
example particle properties, like particle size and density distribution, the fluidization
regime as well as the geometric design of the weir. Weirs, therefore, may have
influence on the overall movement and recirculation of particles and mixtures in
a process chamber. The characterization of the weir influence can be performed
experimentally by particle tracking velocimetry (PTV) as described by Meyer et al.
[17] or theoretically by combination of computational fluid dynamics (CFD) and
discrete element method (DEM).

3 Determination of Inter-chamber Particle Transfer

In solids processing in horizontal fluidizedbeds the formation of residence timedistri-
butions and subsequently of property distributions, for instance in moisture content,
particle size or chemical composition, are observed. Residence time distributions
are due to partial recirculation of particles against the main transport direction. It
is known that the installation of weirs, thus dividing the apparatus into multiple
chambers, influences the overall residence time distribution.

Weirs are rectangular plates which are installed perpendicular to the main solid
transport direction. Three common designs exist, shown in Fig. 3: Over-flow weirs
which are installed directly on top of the distributor plate so that particles have to
overcome the weir; under-flowweirs with a defined gap between weir and distributor
plate; and side-flow weirs which are similar to under-flow weirs, however, the gap
only exists over a certain portion of the apparatus width.

The effect of individual weirs on the observed dispersion has not been fully under-
stood with respect to operation parameters, material properties or weir geometry.

Therefore, methodswere developed and tested that allow investigating the particle
transfer from one chamber to another and vice versa. In contrast to previous attempts
to characterize the transport behavior by tracer experiments (see for instance [18–
21]), particle tracking velocimetry (PTV) was utilized. The main advantage is that
PTV allows the determination of exchange rates on single particle basis.
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Fig. 3 Weir designs: over-flow weir (left), under-flow weir (center), side-flow weir (right)

3.1 Experimental Setup

3.1.1 Two-Dimensional Fluidized Bed

Theparticle tracking experimentswere conducted in abatchpseudo-two-dimensional
fluidized bed. It is a slightly modified version of the plant already used by Refs.
[22–24] in their studies (Fig. 4a–c). The front and back plane aremade of shatterproof
glass that has been treated to prevent sticking of particles. Fluidization is realised by
a controlled gas mass flow through a 3mm sintered metal plate at the bottom. The
plant has beenmodified such that one weir can be installed, either as an under-flow or
as an over-flowweir. A weir plate (thickness: 4mm) is made of PVC and can be fixed
to the front and back plane, providing the required gap for the under-flow weir (here:
20mm) and dividing the fluidized bed into two chambers of equal size and volume.
The chambers are called ‘left chamber’ and ‘right chamber’ in the following.

Fig. 4 Sketch, dimensions (a,c) and placement of the field-of-view (b) of the 2D-fluidized bed setup
for recording of particle exchange between chambers separated by a weir (Used with permission
by Elsevier)
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3.1.2 Materials

All experiments were conducted with porous γ -alumina particles (Sasol Germany
GmbH). The material, a model substance in drying and layering experiments, was
chosen because of its thermal and mechanical robustness, i.e., there is only limited
breakage and abrasion of particles even after repeated particle-particle or particle-
wall collisions. This simplified the tracking of particles. Two different size distri-
butions were used: One with a mean diameter of 1.8mm and a standard deviation
of 0.1mm, the other with a mean diameter of 3mm and a standard deviation of
0.1mm. The particles belong to group D in the Geldart classification with minimum
fluidization velocities of 0.5 m/s (1.8mm) and 0.81 m/s (3mm), respectively.

3.2 Method Development: Particle Tracking Velocimetry
(PTV)

Particle tracking velocimetry (see [23–27] for details and successful applications)
involves the identification of individual particles in images, constructing individ-
ual particle trajectories and determining individual (Lagrangian) particle velocities
(Fig. 5). The main advantage of PTV is that particles are tracked directly and individ-
ually, allowing also the detection of small numbers of particles moving opposite to a
dominating particle flow,making PTV very suitable for the investigation of exchange
rates at weirs.

3.2.1 Image Acquisition

Particle movement in the two chambers was recorded with a high-speed camera
system: It consists of a 1024 × 1024 pixel Photron camera with a CMOS chip,
mounted on a solid frame. Two halogen bulbs with 400W each were positioned to
provide uniform lighting of the field of view (FOV). The camera was operated at full
resolution at 1000Hz, with an exposure time of 1/31000 s and a dynamic range of 10
bits. Operating the camera at these settings allows recording of 5000 images (5 s of
process time), a constraint imposed by the built-in memory chip. An objective lens
(60mm, f = 4) was used to give the desired depth of field and light exposure. The
field of view (95mm × 95mm) was placed as sketched in Fig. 4. This position was
chosen in pre-trials and allows capturing the particlemovementwithout losing spatial
resolution by the observation of empty zones or of regions where particle movement
is not of interest for weir passage (far left, far right of the weir). The overall setup was
controlled by the DaVis image acquisition software (LaVision GmbH, Germany).
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Fig. 5 General idea of and processing steps in particle tracking velocimetry

3.2.2 Image Analysis: Monodisperse Particulate Systems

Analysis of the recorded images and particle tracking were performed following the
steps shown in Fig. 6: At first, individual particles were identified by choosing and
cropping a sample particle in the initial image. The sample particle is cropped to
the area of highest illumination; this enables the identification of particles in close
packings. Using a smaller sample particle, a larger number of particles is successfully
detected [17]. In each image, the centroids of detected particles were tabulated and
fed to the tracking algorithm. Particle centroids were tracked between frames by
Voronoi matching, as introduced by Capart et al. [26] for dilute flows and extended
by Hagemeier et al. [24] for dense particle flows. Thereby, for each identified and
unambiguously tracked particle, a set of positions was generated over time, forming
the individual (Lagrangian) particle trajectories.

To determine the exchange rates from the left to the right chamber and vice versa,
the x-position (horizontal position) of the weir in the images is defined. Then the
x-component of each position of each individual particle trajectory is evaluated,
checking whether it passes this threshold position, i.e., it is checked whether the
x-component of a particle starting in the left chamber has increased beyond the x-
value defined as the weir position, or decreased below this value if the particle was
initially in the right chamber. In over-flow as well as under-flow configuration the
y-component (vertical position) of the particles is arbitrary in this step. Particles
cannot penetrate the weir, so in over-flow configuration they can only pass from
one chamber to the other above the weir, whereas in under-flow configuration the
height of the installed weir prohibits particle transfer by passing the weir in over-
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Fig. 6 Flow-chart of
operations involved in image
processing to obtain particle
exchange rates

flow. Straightforward counting of passes between frames yields the number-based
exchange rates.

3.2.3 Image Analysis: Polydisperse Particulate Systems

Identification of particles of different sizes is performed by an incremental approach,
i.e. applying the method for monodisperse particles several times. In the first run,
the sample particle used for identification is chosen such that all particle sizes are
detected, yielding a total number of particles. In the second run on the same set of
images as in the first, the sample size is increased such that the smallest size (1.8mm)
is no longer detected but the larger particle size (3mm). In this step also the detection
of agglomerate structures due to overlap of two or more particles is corrected. The
difference in numbers of detected particles (total and 3mm) then gives the number
of 1.8mm particles.

In each image the centroids of detected particles are tabulated and fed to the track-
ing algorithm. Particle centroids are tracked between frames by Voronoi matching
as described in Hagemeier et al. [24] for dense particle flows. Thereby, for each
identified and unambiguously tracked particle a set of positions is generated over
time, forming individual particle trajectories.

3.3 Experimental Series

Particle exchange was studied for different fluidization velocities in multiples of
the minimum fluidization velocity and varying mass fraction of 1.8 and 3.0mm
particles. For the mixtures, the minimum fluidization velocity is obtained using the
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mean Sauter diameter of the mixture, i.e. fluidization velocities relate to multiples of
the minimum fluidization velocity of the mixture. All experiments were performed at
ambient temperature with non-heated fluidization gas. For under-flow experiments
the weir gap height was set to 20mm, in over-flow experiments the weir was set to
height of 25cm. In all experiments the left chamber was filled to a static bed height
of 12.5 cm, the right chamber to a height of 10cm.

In the over-flow weir scenario, both chambers were filled with particles until the
static bed heights were achieved. The mass flow controller for the fluidization gas
was then switched on. Following the start-up period of the mass flow controller
(which can result in a small amount of particle exchange between the chambers), the
high-speed recording was started and images of particle motion were taken for the
next 5 s, resulting in 5000 images.

All batch experiments to study the recirculation at under-flow weirs were per-
formed in the following way: (1) Filling both chambers of particles to a certain bed
height (gap closed by a lid); (2) start of fluidization in both chambers via setting
reference value for gas mass flow controller; (3) after start-up of fluidization sudden
removal of lid (opening the gap) and start of image acquisition with the high-speed
camera system.

An example sequence of images, showing every 500th frame, is shown in Fig. 7.
These sequences form the basis for image analysis, particle tracking and the deter-
mination of the exchange rates between the chambers.

3.4 Results

The presentation and discussion of the results is structured as follows: First a mea-
sure for quantification of internal particle circulation is introduced. Then the results
obtained from PTV measurements and Voronoi-tracking are presented for 1.8mm
particles at different fluidization velocities. Hereby results for under-flow weirs are
compared to results obtained for over-flow weirs. Following is the presentation of
results for 3mm particles and a comparison with results for 1.8mm particles, char-
acterizing the influence of particle size on internal circulation. Finally, results for
internal circulation for mixtures of 1.8 and 3mm particles of different mass fractions
are discussed to show the influence of bi-(poly-)disperse particles on transport at
over-flow and under-flow weirs.

In order to quantify the internal recirculation R, we use the concept as introduced
by Charlou et al. [28] in their study on residence time behavior in paddle dryers.
They related the internal circulation as the ratio of particles moving ‘backwards’,
B (against the dominant transport direction) to the net value of particles moving
‘forwards’, F :

R(t) = B(t)

F(t) − B(t)
(12)
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Fig. 7 Exemplary sequence of recorded high-speed images of particle transport at under-flow weir
(1.8mm particles, time resolution: 1 ms)

From the definition, R can take arbitrary values (positive and negative), signaling at
each timewhethermore particles aremoving ‘forwards’ or ‘backwards’. For practical
evaluation, however, averaging of the quantities B and F over a representative time
interval provides more insight. In case of a time average of zero in the ‘backwards’
flow, the (averaged) value of R is zero, which in turn yields plug-flow of particles
in the dominant (‘forward’) transport direction. Increasing values of R quantify
increasing back-flow of particles, i.e. recirculation against the transport direction. If
the time averages of F and B are (almost) equal, an ideally mixed system results and
the absolute value of the time average of R approaches infinity.

The internal circulation R is related to the classical Bodenstein number Bo
(see [29, 30]). The Bodenstein number in turn measures the axial dispersion of
particles in the chamber, i.e. by determing R from particle tracking, the coefficient
of axial dispersion can be obtained.

3.4.1 Internal Recirculation of 1.8 mm Particles

The time-averaged values for the internal recirculation of 1.8mm particles at an over-
flow weir are shown in Table1. It can be observed that with increasing fluidization
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Table 1 Averaged internal recirculation coefficient Ravg for 1.8mm particles

u/um f Over-flow Under-flow

3 4.1 3.06

4 2.71 2.94

5 1.59 1.12

velocity the value of R decreases, i.e. the system tends to a plug-flow like behavior.
A similar trend, although of different magnitude is also observed in the results for the
under-flow configuration also presented in Table1. Again, with increasing fluidiza-
tion velocity the internal circulation decreases and the particle transport is similar to
plug-flow.

In case of the over-flow configuration the result is due to the initially different bed
height in the chambers, resulting in different pressure drop and the rising velocity of
formedgas bubbles that propell particles over theweir. For long times an equilibration
of bed heights and also transfer rates is achieved [17]. In case of the under-flow
configuration, bubble formation close to the weir and rising velocity are important.
If a bubble forms in one chamber close to the weir and starts to rise (as seen in
Fig. 7), it creates additional drag on the particles close to the weir in both chambers,
dragging significant particle numbers through the gap towards the bubble. For long
process times, again, equilibration of the transport rates between the two chambers
is achieved.

3.4.2 Internal Recirculation of 3 mm Particles

The obtained results of internal recirculation for beds ofmonodisperse 3mmparticles
at over-flow and under-flow weirs are shown in Table2. While the recirculation
coefficient at the under-flowweir follows the same trend as it did for 1.8mmparticles,
a reverse trend is observed in terms of the over-flowweir:With increasing fluidization
velocity the internal recirculation does not decrease but increase, resulting in a system
that is close to an ideally back-mixed system. This behavior can also be observed
visually during the measurements with many bubbles being created on both sides
of the weir, propelling large amounts of particles to the adjacent chamber, due to
high momentum of the gas, and quickly driving the system to an equilibrium state
of equal bed heights and transfer rates in the current set-up.

Table 2 Averaged internal recirculation coefficient Ravg for 3.0mm particles

u/um f Over-flow Under-flow

3 2.04 66.06

4 20.72 17.32

5 30.57 5.16
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Compared to 1.8mm particles, the 3mm particles tend to even transfer rates
faster after a disturbance in the fluidization behavior, for instance due to different
bed heights, for example due to feeding events in only one of the chambers, or
due to bubble formation and movement inside the bed. If, however, the absolute
fluidization velocities are compared, one observes that R has a similar value for both
particle sizes: The ratio of the two minimum fluidization velocities um f,3.0/um f,1.8 is
approximately 1.5. Comparing the absolute value of u/um f,3.0 = 3 (2.43 m/s) giving
an R value of 2.04 with the corresponding value of 1.8mm (between u/um f,1.8 = 4
and 5), the values are similar (R in [1.59, 2.71]). This means that, as long as the
equilibrium has not been obtained and the fluidization conditions are equal, both
particle sizes are re-circulated in the same manner. One has to note, that this does
not mean that in equal times equal numbers are transported across the weir, but only
that the ratio of the directed transport is equal.

3.4.3 Internal Recirculation of Bi-disperse Particle Mixtures at
Over-Flow Weirs

After having studied the trends for the recirculation of mono-disperse particles at
over- and under-flow weirs for different fluidization velocities, the behavior of bi-
disperse particlemixtures is investigated. For this purpose, experimentswithmixtures
of 1.8 and 3.0mmparticles with differentmass fractionswere performed under other-
wise the same conditions. Note that in the following um f corresponds to theminimum
fluidization velocity of the mixture, calculated from the Sauter mean diameter. In
most experiments, the fluidization velocity corresponds to 4 um f ; for the 50%/50%-
mixture results for the overall circulation are also presented for 3 and 5 u/um f . In
addition to the over-all circulation of particles at the weirs (regardless of size), also
the individual recirculation of the two particle sizes is presented and discussed.

The trends of time-averaged internal recirculation R for the 50%/50%-mixture
are presented in Table3. One can observe a decrease in the value of R with increas-
ing fluidization velocity. Comparing this trend with the two individual trends for the
monodisperse material, it can be concluded that for large enough fluidization veloci-
ties the exchange behavior of the mixture is dominated by the recirculation behavior
of the smaller (1.8mm) particles.

Fixing the fluidization velocity to 4 um f and varying the mass fractions of 1.8 and
3.0mm particles, the results for the over-all recirculation also shown in Table3 are
obtained: Now an increase in the value of R can be observed, i.e. the transport tends
towards back-mixed flow (resp. equilibrium state). Comparing the results for the
individual recirculation of the 1.8 and 3.0mm particles, one sees that with increasing
mass fraction of small particles, the recirculation of both particle sizes increases.
Again, one has to note that the minimum fluidization velocity of the mixture does
correspond to neither of the minimum fluidization velocities of the particles, i.e.
individual particles are experiencing higher and lower velocities than four times
their individual minimum fluidization velocities. This may accelerate reaching the
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Table 3 Averaged internal recirculation coefficient Ravg of bi-disperse particlemixture at over-flow
weirs

Particle sizes (mm) Mass fractions (%) u/um f Over-flow

1.8 + 3.0 50:50 3 15.33

1.8 + 3.0 50:50 4 5.87

1.8 + 3.0 50:50 5 3.43

1.8 + 3.0 30:70 4 1.75

1.8 + 3.0 50:50 4 5.87

1.8 + 3.0 70:30 4 8.92

1.8a 30:70 4 2.68

1.8 50:50 4 6.13

1.8 70:30 4 10.19

3.0b 30:70 4 1.34

3.0 50:50 4 5.41

3.0 70:30 4 6.83
aRecirculation of 1.8mm particles in mixture
bRecirculation of 3.0mm particles in mixture

equilibrium state of the set-up with equal transfer rates, shifting the time-averaged
values of R to higher values, i.e. apparently larger back-mixing.

3.4.4 Internal Recirculation of Bi-disperse Particle Mixtures at
Under-Flow Weirs

Following the same approach, the particle recirculation behavior of the bi-disperse
mixture was studied in the under-flow configuration. Results for the 50%/50%-
mixture and different fluidization velocities are presented in Table4, showing a
decrease of the time-averaged value of R with increasing fluidization velocity, similar
to the trends obtained for the monodisperse particles.

Again fixing the fluidization velocity to four times the minimum fluidization
velocity (calculated with the Sauter mean diameter of the mixture) and varying the
mass fractions of 1.8mm and 3mm particles, the results for the overall recirculation
(regardless of particle size) and results for the individual particle sizes in Table4 are
obtained, respectively. Compared to the other scenarios, the trends with respect to
variation of the mass ratios are not obvious. As a first approximation, the overall
recirculation is almost constant with increasing mass fraction of small particles.
The individual rates decrease non-uniformly with increasing mass fraction of small
particles, still following the trend of the monodisperse particles. The non-uniformity
has its sources in the bubble behavior (and the aforementioned force exerted on the
particles, dragging them through the gap) as well as in the gap size. Compared to
the over-flow case, however, the over-all values of R follow a different trend and
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Table 4 Averaged internal recirculation coefficient Ravg of bi-disperse particlemixture at over-flow
weirs

Particle sizes (mm) Mass fractions (%) u/um f Under-flow

1.8 + 3.0 50:50 3 6.35

1.8 + 3.0 50:50 4 4.15

1.8 + 3.0 50:50 5 1.94

1.8 + 3.0 30:70 4 3.8

1.8 + 3.0 50:50 4 4.15

1.8 + 3.0 70:30 4 3.02

1.8a 30:70 4 15.17

1.8 50:50 4 4.2

1.8 70:30 4 7.75

3.0b 30:70 4 3.43

3.0 50:50 4 4.11

3.0 70:30 4 0.87
aRecirculation of 1.8mm particles in mixture
bRecirculation of 3.0mm particles in mixture

are also different in magnitude, signaling that the equilibrium state was generally
not achieved in the experiment, due to the influence of the gap width on the flow
behavior.

3.5 Discrete Particle Modeling

A special focus was placed on the microscopic scale of particle transport behavior
between the separated chambers in horizontal fluidized beds. For this reason discrete
particle modeling (DPM) was used for the characterization of the microscopic par-
ticle transport behavior. Discrete particle modeling is a very powerful tool for the
investigation of flow phenomena and the particle dynamics in fluidized bed tech-
nology [31]. It can be used for the determination of the circulation frequencies and
residence times in certain zones of the apparatus [32], for studying the spraying [33],
mixing behavior [34–36] and for optimization of processes [37].

Coupled CFD-DEM simulations are used to characterize the particle exchange
in a two-compartment system on the micro-scale. For the simulations OpenFOAM
and LIGGGHTS have been used. For a detailed description of the theoretical back-
ground, the reader is referred to the work of Refs. [38, 39], while a profound review
of the DPM for fluidized beds can be found in Deen et al. [31]. For the implemen-
tation of OpenFOAM, CFDEMcoupling and LIGGGHTS, Refs. [40, 41] provide
comprehensive summaries.
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3.5.1 Experimental Validation

Validationwas performedwith respect to the two-dimensional experimental fluidized
bed, to adopt the setup for the numerical simulation without any assumptions or
simplifications. In fact, the process conditions as well as the experimental setup and
geometrical data were to be adopted for the simulation. Figure4c shows the CAD
geometry of the used setup for the numerical study. For the simulation the size of the
particles was fixed to 1.8mm.

The coupledCFD-DEMsimulationwas performed for 6 s for the over-flowconfig-
uration (see Fig. 4c) in order to compare the results regarding the particle transport
between the individual chambers of the two-staged fluidized bed and validate the
simulation by the PTV experiments. The experiments have been evaluated for 5 s of
the recorded high-speed videos, while the simulations have been also evaluated for
5 s after the first second of initialization.

The snapshots in Fig. 8 show that the particle transport behavior in both, the exper-
iment and the simulation is randomly changing from left to right and the opposite
direction. The simulation and the experiment show a good agreement regarding the
flow pattern of the particles within the two compartments and also the transport
behavior of the particles. The quantitative exchange rate in the simulation was deter-
mined on the basis of particles crossing from one to the other chamber between two
time steps (0.005 s). Similar to the PTV experiments, the horizontal trajectory of
every particle that crossed the weir defined whether the particle is in the first cham-

Fig. 8 Snapshots of the particle positions obtained from the experiments and the corresponding
simulation at a gas inlet flow of 60kg/h for the validation setup [42]
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Fig. 9 Averaged particle exchange rates between the individual compartments and the average
internal recirculation coefficient of the validation experiment and the simulation for a time interval
of 5 s [42]

ber or the second. Consequently, the particle exchange between the two chambers
was determined from one frame to the next.

The particle exchange rates and internal recirculation are evaluated using the par-
ticle identifiers provided by the simulation environment. Figure9 shows the results
of the individual averaged particle streams and the resulting average internal recir-
culation coefficient R (averaging over 5 s).

The results of Fig. 9 show that the amounts of exchanged particles in the experi-
ment and the simulation are similar, while the recirculation coefficient has a slightly
higher deviation, because of the sensitivity of the recirculation coefficient to small
changes in both particle streams. Moreover, it cannot be guaranteed that the ini-
tial conditions of the experiment and the corresponding simulation were exactly the
same. Despite these minor discrepancies, it can be concluded that the two methods
show very good quantitative agreement. Thus, it could be proven that coupled CFD-
DEM simulations are suitable for the evaluation of weir designs at the transition zone
between two compartments.

3.5.2 Large-Scale Numerical Study of Particle Transfer

The simulationmethodologywas transferred to the studyof the large-scale equipment
at the Institute of Solids Process Engineering and Particle Technology at Hamburg
University of Technology (Procell 25, Glatt Ingenieurtechnik GmbH). The geometry
is shown in Fig. 10a, limited to two chambers to reduce numerical effort. The studied
weir configurations and their dimensions are shown in Fig. 10b.

Continuous throughput of particles was realized within a particle generation
domain, which was attached to the inlet tube of the geometry. For the continuous
discharge of particles, the outlet tube was connected to a rotary valve model domain.
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Fig. 10 a Scheme of the numerical setup of the two-staged horizontal fluidized bed for continuous
simulations and b the dimensions of the two-staged systems for the differentweir configurations [42]
(Used with permission by Elsevier)

Table 5 Simulation conditions of the two-staged pilot plant simulations (detailed information is
given by Diez et al. [42]).

CFD time step 5 × 10−5 s

DEM time step 2 × 10−6 s

Air density 1.189kg/m3

Air dynamic viscosity 1.82 × 10−5 Pa s

Nozzle air flow rate 21 m3/h

Solids material Sodium benzoate

Particle diameter 3/2 mm

Particle density 1440 kg/m3

Initial bed mass per chamber 7.5 kg

Solids feed rate 1 kg/min

Avg. number of particles 0.74 Mio./2.6 Mio.

Fluidization rate u/um f 3.2/4.6

This model was added for keeping the hold-up mass inside the apparatus constant.
The main simulation conditions and material properties are contained in Table5. For
further information on the simulation setup, see [42].
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3.5.3 Large-Scale Simulation Results

Simulations were carried out for three different weir configurations and the base
case for setups with 3mm particles of mono-disperse distributions in the two-staged
system. The overall goal of this study was to analyze the impact of weir designs on
the microscopic transport behavior of the particles in multi-chamber systems. After
an initializing time of 10 s for reaching stationary conditions regarding the supply
and discharge of the solids material inside the system the evaluation procedure was
started.

Results for the average internal recirculation coefficient R (averaging time interval
of 60 s) for the individual setups are shown in Fig. 11.

The results in Fig. 11 show that the base (no weir) and over-flow configurations
are characterized by higher particle recirculation (solids transport from the second to
the first chamber), which implies more intensive axial dispersion. In contrast to this
the side-flow as well as the under-flow variant show significantly lower recirculation
coefficients. While in the over-flow weir design the internal recirculation decreases
to about 60% of the base case, for the side-flow and under-flow a decrease to about
17% and 11%, respectively, is observed.

With regard to the weir configuration, the base (no weir) and over-flow configu-
ration favor axial dispersion due to intense mixing between the two compartments,
whereas the under-flow and side-flow weir design lead to a reduction of axial dis-
persion. This indicates a more directional transport for the side-flow and under-flow
design. Further results are presented in Diez et al. [42], and Bachmann et al. [29]
who additionally investigated the influence of gap height and particle size on particle
transfer in these configurations.

Summarizing, coupled CFD-DEM simulations can be a tool for extending
macroscopic particle transport approaches, like residence time experiments, by the
micro-scale particle dynamics for improving solids transport models and getting

Fig. 11 Mean recirculation rates of each weir configuration with 3mm particles (mono-disperse)
and a fluidization velocity of 3 m/s for the two-compartment system [42]



88 C. Neugebauer et al.

comprehensive knowledge about the transport behavior of gas-solids flows, espe-
cially at high solids loading.

4 Experimental Studies on Continuous Spray Granulation
in Horizontal Fluidized Beds

4.1 Experimental Setup

The experiments have been carried out in a pilot-scale horizontal fluidized bed plant
(Fig. 12; ProCell 25, Glatt Ingenieurtechnik GmbH Weimar, Germany). Combined
with an external pneumatic conveying and a screening-milling cycle, this process
was operated continuously.

The process chamber, presented in Fig. 12a, has a length of 1 m, a width of 0.25m
and a height of about 0.40m and can be divided into four different compartments
by introducing weirs. The aim was to analyze the influence of thermal conditions
on product quality. The process conditions in every stage were the same, operated
with constant inlet gas velocity of 3 m/s. The solution was injected by four two-fluid
nozzles in bottom-spray configuration (see Fig. 12b). Atomization was supported
by compressed air. The spray solution consisted of 35 wt.-% of sodium benzoate
dissolved in demineralizedwater. The hold-upmaterial consisted of sodium benzoate
particles in a size range of 0.5m to 2.5mm (undersize, product and oversize material)
and an apparent density of 1440 kg/m3.

Nuclei were exclusively produced by grinding of oversized material in a pin mill.
Hence, no external feed of solid material was required in these experiments. The
process was operated with a constant bed mass of 25 kg, while starting with a bed
that contained 50 wt% product particles, 25 wt% oversized and 25 wt% undersized
particles.

The thermal conditions of the spray granulation process can be varied, not only
changing the process temperature, but also by changing the spray rate of the solution.
For this reason, those twoparameters, given inTable6, have been selected as variables
in the experiments.

During the experiments samples were taken from the process chamber for an off-
line measurement of the moisture content of the solid material and for tracking the

Table 6 Parameter variations to investigate the influence of the thermal conditions on product
properties [1]

Parameter Values

Gas inlet temperature
(◦C)

100 150 200

Spray rate (kg/h) 40 80 120
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Fig. 12 Photos of a the sampling devices and the installed inline probe during continuous gran-
ulation, b an installed two-fluid-nozzle within the process chamber and c the used pilot plant
granulator [1]

particle size distribution. Additionally, an inline probe (IPP 70-S, Parsum GmbH,
Germany) for in-situ measurement of the particle size distribution was used.

The product granuleswere discharged by a two-deck tumbler screen in a size range
of 2.00–2.24 mm. After three times the average solids residence time, steady-state
was assumed. From this point onwards, samples were taken and analyzed according
to the following characteristics:

• Solids moisture content
• Surface morphology and roughness
• Solids density and porosity
• Compression strength
• Wetting behavior.

4.2 Particle Characterization

4.2.1 Solids Moisture Content

The solids moisture content of the hold-upmaterial was analyzed thermo-gravimetri-
cally using the moisture analyzer Precisa EM-120 HR (Precisa Gravimetrics AG).
For the analysis procedure a constant drying temperature of 105 ◦C was applied and
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a switch-off criterion was used that stopped the measurement when the reduction
in weight was less than 0.01mg/s or a total measuring time of 10min was reached.
Due to the hydrophilic character of sodium benzoate the particle moisture content
was determined immediately after sampling. Figure13a shows that the particles were
relatively dry in all experiments, except of two experiments. These results demon-
strate that there has to be a certain boundary, at which the combination of the drying
temperature and the spraying rate do not affect the moisture content of the particles
anymore while reaching a certain equilibrium value which should be around 1 g/kg
according to Fig. 13a. To identify this transition zone the drying potential η according
to Refs. [16, 43] is used:

η = Ysat − Yout

Ysat − Yin
. (13)

The drying potential is calculated by the moisture content of the inlet gas stream
Yin and at the outlet Yout of the process. These values were measured and recorded
by installed sensors in the plant. The saturation moisture content Ysat is calculated
from the following equation:

Ysat = 0.662 · psat

p − psat
. (14)

The corresponding saturation vapor pressure psat is calculated according to Wagner
[44]. From Fig. 13 the transition can be identified to occur at η = 0.5.

Fig. 13 a Solids moisture content of the material inside the process chamber and b calculated
drying potentials of each experiment by varying the inlet temperature and the spray rate
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Fig. 14 SEM analysis of the product granule surfaces of each experiment [1] (with kind permission
of Elsevier)

4.2.2 Surface Morphology and Roughness

For surface analysis of the product granules, a scanning electron microscope (LEO
Gemini 1530, Carl Zeiss AG, Germany) was used. The results in Fig. 14 clearly show
an influence of the process conditions on the morphological structure of the particles
and are in line with findings of Refs. [16, 45]. The scanning electron microscope
(SEM) images show that the increase in the drying temperature results in smoother
surfaces, while a decrease leads to a higher surface roughness in combination with a
more porous surface layer.

At the highest spray rate and lowest gas inlet temperature (ϑdrying = 100 ◦C and
ṁspray = 120kg/h), the experiment could not be performed as agglomeration set in,
i.e. particle clusters occured due to the formation of liquid bridges between particles.

The surface roughness was measured by focus-variation microscopy using an
Alicona Infinite Focus microscope (Alicona Imaging GmbH), which provides a
measurement of the 3D-surface structure, followed by an evaluation related to a
surface-based roughness parameter. This surface-based evaluation included a pro-
jection area of 500 × 500µm for each product granule, as shown in Fig. 15.

The roughness parameter Sdr belongs to the so-called hybrid topography charac-
teristics affected by both the texture amplitude and the structural pattern [46]. It is
calculated according to DIN EN ISO 25178-2 [47]:
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Fig. 15 Example for a focus-variationmeasurement of 3D-surface structure and b the height profile
of the corresponding granule surface [1]

Fig. 16 Surface roughness
Sdr of the granules according
to the process conditions
(drying temperature and
spray rate) they are produced
with
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The results of this roughness evaluation are shown inFig. 16.A significant increase
in surface roughness is observedwith increasing spray rates aswell aswith decreasing
gas inlet temperature.

The influence of operation parameters on surface roughness was discussed in
detail in Rieck et al. [16], also taking into account the crystallization behavior of the
sprayed salt solution.

4.2.3 Solids Density, Porosity and Compression Strength

Thermal conditions not only influence the roughness of the granules, but also the
internal structure, such as the porosity and apparent density. Moreover, these charac-
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teristics are topologically related to and significantly influence other characteristics,
for example the compression strength of a granule.

The apparent density of granules was measured by helium pycnometry (Mul-
tivolume Micrometrics 1305). The porosity of selected granules was measured via
X-ray micro-computed tomography (CT-ALPHA, ProCon X-Ray GmbH) as
described in Refs. [48, 49].

The compression strength was analyzed by single particle compression tests using
a Texture Analyser TA.XT plus (Stable Micro Systems). For detailed information on
the test procedure and evaluation of force-displacement curves, see [50].

Figure17 shows results for the three characteristics. The solids density and the
compression strength of the granules show an increasing trendwith increasing drying
potential, while the porosity reveals the opposite trend.

Fig. 17 a Average solids density, b granule porosity and c compression strength of the granules
according to drying potential of the individual granulation process experiments [1] (Used with
permission by Elsevier)
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These trends are in line with the results from the SEM analysis and the roughness
measurements. Because of the smoother and more compact surfaces of the particles
with increasing drying potential, the particles are layered more compactly, resulting
in higher of solids content (see Fig. 17a) due to high nucleation rates and reduced crys-
tal growth. In consequence, the void fraction inside the granule structure decreases,
resulting in a reduction of the granule porosity (see Fig. 17b). Furthermore, the reduc-
tion of voids and defects inside the granule leads to higher compression strengths
(see Fig. 17c).

5 Population Balance Model Extension: Influence
of Thermal Operating Conditions

Product design is one of the key disciplines in particle formulation processes, usually
driven by quality-by-design principles in combination with a fundamental process
understanding, focusing on key features of solids handling properties, like flowabil-
ity, the dissolution behavior, the release rates or the storage stability. Furthermore
granule characteristics, like the solids density, moisture content, granule surfacemor-
phology, surface roughness, compression strength and the wetting behavior play a
major role for the development of tailor-made granule properties for specific uses in
pharmaceutical, food and other industrial applications. The particle properties can be
influenced by several process parameters, like drying temperature, liquid feed rate as
well as droplet size of the atomized liquid feed. Additionally the peripheral process
units and downstream processing play a distinctive role.

Figure14 clearly shows that the morphology of the particles is changing sig-
nificantly with the thermal operating conditions. In particular, the shell porosity is
increasing with increasing rate of the injected liquid from the left to the right in
Fig. 14. Further it is increasing with decreasing temperature of the fluidization air
from the top to the bottom in Fig. 14.

Following the ideas in Refs. [1, 16], the behavior shown in Fig. 14 was modeled
by correlating the shell porosity with the drying potential η.

It turns out that for the present test system the relation between shell porosity and
drying potential can be described in good approximation by a linear correlation.

εshell(η) = εshell,0 − �εshell η. (16)

Other particle properties like surface roughness and compression strength can
also be correlated with the drying potential as shown in the previous section. Alter-
natively, they can be obtained as a function of porosity and particle size distribution
as suggested in Litster and Ennis [51].

Using the correlation between shell porosity and the drying potential according
to Eq. (16), the population balance model presented in Sect. 2 can be extended to
account for the influence of the thermal conditions on particle porosity [52]. For this,
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Fig. 18 Model extension to account for the influence of thermal conditions

it is assumed that all particles share the same porosity, temperature and moisture
content due to the ideal mixing of the bed, but have different sizes. The particle size
distribution is described by the population balance of the particle phase introduced
already in Sect. 1. Therein, the growth rate has to be modified with the shell porosity
as illustrated in Fig. 18 to account for the growth of porous particles. As described
above the shell porosity is correlated with the drying potential which depends on the
thermal conditions inside the granulation chamber. Thermal conditions are obtained
from energy balances of the fluid and the particle phase, and the material balances
of the solvent in the fluid, the particle phase, the dry mass of the particles and the
fluidization air.Due to the assumption of idealmixing inside the granulation chamber,
these additional material and energy balances are described by ordinary differential
equations. They depend on the heat and mass transfer between the particle and the
fluid phase, which depends in turn on the total surface of the particle phase according
to

AP = π

∞∫

0

L2n(t, L)d L . (17)

This leads to a bi-directional coupling between the population balance of the
particle phase and the ordinary differential equations describing the influence of the
thermal conditions as illustrated in Fig. 18. The resulting model can be used for the
design and control of processes for the production of particles with tailor-made size
and porosity. The latter will be discussed in Sect. 7 of this chapter.

So far, focus was on the granulation chamber. However, particle morphology
affects also the milling of oversized particles in a continuous process with sieve mill
cycle and has therefore also an effect on dynamic stability of this process configura-
tion according to the experimental findings of Schmidt et al. [53], who have shown
that a high inlet gas temperature leads to a stable steady state, whereas a low gas inlet
temperature leads to an unstable steady state. This has been modeled qualitatively in
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Fig. 19 Simulation scenario on the influence of thermal conditions on the stability of the fluidized
bed layering granulation process with sieve-mill cycle

Neugebauer et al. [54] by correlating the mean diameter of the milled particles with
shell porosity.

The resulting plant dynamics is illustrated in Fig. 19 with a simulation scenario.
The simulation starts at a steady statewith a constant fluidization air inlet temperature
of 80 ◦C and a constant moisture content of the fluidization air at the inlet of 6 g/(kg
dry air). The mill is operated with a constant reference value μmill,0 which is only
changed by some portion �μmill(εP), which depends on particle porosity εP as
explained above. At time tsp in Fig. 19 the inlet temperature of the fluidization air is
reduced to 75 ◦C. This leads to an increase of particle porosity, which in turn results in
finer milling. As will be discussed in the next section this affects the process stability
and leads to instability in the form of self sustained oscillations of the particle size
distribution, which is illustrated in Fig. 19 with the Sauter diameter d32.

At time point tdist in Fig. 19, the moisture content of the fluidization air at the inlet
is changed from 6 to 15 g/(kg dry air). This increases the particle porosity further. As
a consequence the particle size distribution is further destabilized, i.e. the amplitude
of the oscillations of d32 is further increased.

6 Systems Theoretical Analysis

Continuously operated fluidized bed layering granulation (FBLG) processes tend to
be unstable, as reported by Refs. [7, 55, 56]. A rigorous experimental investigation
has been given recently by Refs. [53, 57, 58]. A model based analysis helps to
further deepen the understanding of the underlying mechanisms and can be used to
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predict the influence of important operational parameters on process stability using
a numerical bifurcation analysis in combination with dynamic simulations. Main
results are summarized in the following. For the details the reader is referred to
the original publications in Refs. [11, 12, 14]. For simplicity, thermal effects are
neglected in this section. The impact of thermal effects on process stability have
been briefly discussed in Sect. 5 of this chapter.

In the remainder two different types of FBLG processes are considered:
(i) A process with internal product classification, internal seed formation and vari-
able bed mass, (ii) A process with external product classification, where the seeds
are generated with a sieve-mill cycle and the bed mass is kept constant.

For the first type of process, focus is on top spray. Seeds are generated internally
from the overspray, i.e. some small droplets which are dried before they interact with
the surface of thefluidized particles. The amount of generated seeds crucially depends
on the amount of the injected liquid and the bed height, Following [7], the basicmodel
introduced in the modeling section was extended accordingly [14]. In particular, it is
assumed that a part of the injected liquid is contributing to particle growth, whereas
the other part leads to the formation of new seeds by overspray. The magnitude of the
different fractions crucially depends on the bed height. The amount contributing to
seed formation decreases linearly until the bed height reaches the nozzle height and
remains constant close to zero if the bed height is larger than the nozzle height. A
second important operational parameter which has large impact on process stability
is the product withdrawal. The product withdrawal is characterized by the mean
separation diameter L1, which can be adjusted by means of a countercurrent air flow
used for the considered internal product classification.

Main results of the theoretical analysis using the two-zone model from Neuge-
bauer et al. [14] are summarized in Fig. 20. The right diagram shows the stability map
depending on the separation diameter L1 and the injected liquid V̇in j . Instability in the
form of self-sustained oscillations of the bed height and the particle size distribution
occurs in the shaded region. Along the upper limiting curve, bed height hbed equals
the nozzle height hnozzle and is constant. Below this limiting curve a smooth onset
of small amplitude oscillations is observed. Besides the upper limiting curve also a
lower limit to the instability region was found. With this, the experimental findings
of Schmidt et al. [57] could be explained for the first time in a consistent way. The
experimental observations were reproduced qualitatively by dynamic simulation as
shown in the left part of Fig. 20 with the time plots of bed hight and α, the relative
size of the granulation zone which is also variable in this configuration due to the
variable bed height [14]. Simulation starts at a stable steady state corresponding to
point a in the stability map. After a shift of L1 to point b the system decays to a
different stable steady state. It starts oscillating after another shift of L1 to point c
within the instability region and becomes stable again after a fourth move of L1 to
point d after crossing the lower limiting curve of the instability region.

Similar patterns of behavior can be observed for the second type of process with
external product classification and a sieve mill cycle. Here, bed mass is kept constant
and the particles which are continuously withdrawn from the granulation chamber
are classified into a product, an undersized and an oversized fraction. The oversized
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Fig. 20 Stability map and simulation scenario for FLBG with internal product classification

fraction is milled and fed back to the granulation chamber together with the under-
sized fraction. On the one hand, this mode of operation is very economic due to the
recycle and re-use of the off-spec particles. On the other hand it creates instability
due to the positive feedback introduced by the recycle.

The influence of the most important operational parameters on process stability of
this second configuration was also studied theoretically using a two-zone model [11,
12]. Results for the case, when no additional external nuclei are fed to the granulation
chamber, are shown in Fig. 21.Most important parameters are now themean diameter
of the milled particles Lmill , the relative volume of the granulation zone α, and the
time constant τ2 characterizing the exchange rate between the granulation and the
drying zone. Since the bed mass is constant, α is also constant. α and τ2 depend
on the plant design (nozzle type, size, and position and geometry of the granulation
chamber) and the operating conditions [11]. It turned out that zone formation inside
the granulation chamber has minor effect on process stability compared to Lmill .
Coarse milling will result in stable steady states, whereas fine milling will lead
to self sustained oscillations of the recycle flows and the particle size distribution,
represented by the Sauter diameter d32 in Fig. 21.

The instability region shrinks, if additional nuclei are fed externally to the process
chamber, which has a stabilizing effect as was already shown in Radichkov et al. [56].

The results in Fig. 21 were obtained for an ideal milling process described by a
Gaussian distribution of the milled particle sizes around Lmill . Similar results were
obtained for a more detailed model of the mill which was fitted to experimental
data using a superposition of three Gaussians. However, the instability region can
change its size and position in the parameter space. So that for a specific set of
operating and plant parameters, oscillations are predicted by the detailed mill model
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whereas the idealized mill model predicts stable steady state behavior as illustrated
in Fig. 22. Hence it is concluded, that for the quantitative prediction of instability
of the FBLG process with sieve-mill cycle a quantitative prediction of the milling
process is essential [59].

The above results were obtained for single stage FBLG processes. An extension to
multi-stage FBLG processes with sieve mill cycle is illustrated in Fig. 23. The figure
gives a comparison between two different two-stage processes. In the first process
half of the solution is injected in each of the two stages, whereas in the second process
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the whole solution is injected to the first chamber. In both cases, the injected liquid
is evenly distributed on the available particle surface in the respective granulation
zones contributing entirely to uniformgrowth. Total bedmass and total injected liquid
suspension is the same in both cases and the same as in Fig. 21. In a first step, transport
between the chambers is assumed to be representative. In both cases, the exchange
rates between the drying and the granulation zones on each stage are assumed to
be high, corresponding to a low value of τ2. Therefore, stability in Fig. 23 does not
change with α (the relative size of the granulation zones), which is consistent with
the single stage process in Fig. 21 for a low value of τ2. Further, the other operational
parameters are the same as in Fig. 21. With these assumptions, the first process in
Fig. 23 with injection in both stages is identical to the single stage process in Fig. 21.
Instability occurs for fine milling below Lmill = 0.725 mm. In contrast to this, if
the whole liquid is injected into the first chamber, instability occurs for fine milling
below Lmill = 0.6 mm. Hence, the size of the shaded instability region is reduced
for the second process compared to the first process. This is due to the fact, that in
the second chamber of the second process no granulation is taking place but only
drying. Therefore, the second chamber acts as a buffer, which dampens the oscillatory
behavior and therefore has a stabilizing effect. Hence, multi-stage processes with
additional drying chambers are not only useful for additional adjustment of product
properties but also have a positive effect on dynamic stability when an external
sieve-mill cycle is used.

7 Control of Continuous Operation

Several control concepts were developed for single and multistage FBLG processes
within this project to stabilize unstable steady states, increase the reproducibility and
speed up the time consuming experiments. The developed control concepts are as
follows:
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1. Model-free controllers using auto tuning [60]. This approach was used for direct
determination of the open loop stability boundaries in closed loop operation as
described in Palis et al. [61].

2. Model-based robust [62] and nonlinear control [63] of a multi-stage FBLG pro-
cess.

3. Adaptive control of continuous fluidized bed spray granulation with external
sieve-mill cycle [64].

4. Decentralized cascade controllers for continuous fluidized bed spray granulation
with external sieve-mill cycle. Controllers were developed step by step using a
detailed plant model and also validated experimentally [54, 65].

For the latter, the plant model introduced in Sect. 2 of this chapter was extended to
account for the specific plant characteristics of the pilot plant in Hamburg considered
in this chapter, such as

• classifying product removal from the granulation chamber,
• size dependent milling of the oversized particles,
• a variable bed mass, to test different approaches for bed mass control of the gran-
ulation chamber with the model.

For the bed mass control, the pressure difference across the fluidized bed is deter-
mined as a direct measure for the bed mass to be controlled. Manipulated variable is
the rotational speed of the rotary valve at the product withdrawal from the granulation
chamber. It turned out that the performance of this control loop depends crucially on
the operation of the mill. The mill is used for the grinding of the oversized particles,
which are fed back to the granulation chamber as new nuclei. Stable operation of
the bed mass control was not possible for the standard mode of operation, where
the rotational speed of the mill is kept constant. This problem could be resolved
by introducing another controller to adjust the mill power instead of its rotational
speed. With this, a stable bed mass control could be achieved, which is crucial for
continuous operation of the plant over a prolonged period [65].

However, even for constant bed mass, oscillations of the particle size distribution
and the recycle flow rate can occur as described in the previous section. Such a
scenario is shown inFig. 24under the label open loopdynamics.Here, the particle size
distribution shows a very weakly damped oscillation so that the startup of the plant
takes several days, until finally a stable steady state of the particle size distribution
and the Sauter diameter is obtained. For finermilling, the steady state is even unstable
and will never be reached due to permanent oscillations without damping. To solve
this problems and achieve not only stable bed mass but also a stable particle size
distribution, a further control loopwas added.Here, the Sauter diameter is determined
online with a Parsum probe and the mill power is manipulated to achieve a stable
given value of the Sauter diameter within short time. The model was used for the
tuning and testing of this controller before it was implemented at the plant. As shown
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Fig. 24 Comparison of open loop and closed loop dynamics of a continuous granulation process
with sieve-mill cycle during startup. Upper diagrams show the temporal evolution of the particle
size distributions measured at the pilot plant in Hamburg. Lower diagrams show the corresponding
time plots of the Sauter diameter d32. Solid lines in the lower diagrams represent model predictions,
whereas the bullets represent the experimental values. Figure taken from Ref. [54]

in Fig. 24 the controller achieved a stable steady state of the particle size distribution
and the Sauter diameter within short time of less than 10 hours. Further, experimental
findings agree well with the theoretical predictions.
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The control algorithm for the Sauter diameter in Fig. 24 is a simple linear pro-
portional controller. It was shown that additional integral action is destabilizing and
should therefore be avoided for this process. It was shown that the simple propor-
tional controller works very well for small disturbances. For larger disturbances,
however, more advanced, model-based control concepts are required as proposed for
example in Refs. [66–69].

Besides particle size, particle morphology, in particular particle porosity, is of
major interest in many applications. Therefore, automatic adjustment of particle
porosity by feedback control was studied in Neugebauer et al. [54]. Problem here
is, that porosity cannot be controlled directly, due to a lack of available online mea-
surement information. However, as discussed in Sect. 4, particle porosity depends
directly on the drying potential which is related to the thermal conditions. The ther-
mal conditions can bemeasured online easily. Therefore, the drying potential is taken
as controlled variable for porosity control and the inlet temperature of the fluidization
gas is taken as manipulated variable. For this control configuration a simple single
loop PI controller was designed and tested using the model. For this, the plant model
was extended to account for the influence of porosity on the milling of oversized
particles, which is crucial for the stability of the particle size distribution.

Results taken from Neugebauer et al. [54] are shown in Fig. 25. The solid line
represents a scenario where only porosity control is applied, whereas the red dashed
line is for simultaneous porosity and d32 control. In all cases, bed mass control as
described above was applied. At time tsp in Fig. 25 the reference value of the particle
porosity was changed from εp,I to εp,I I and at time tdist a step disturbance of the
moisture content of the inlet gas from 6 to 15 g/kg dry air was introduced.
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In both cases, the controller adjusts the porosity within a relatively short time
of about 5 hours smoothly to the new reference value εp,I I and keeps it constant.
However, without the d32 controller, the particle size distribution represented by the
Sauter diameter in the second diagram of Fig. 25 starts oscillating due to the influence
of the porosity on the milling of the oversized particle. If in addition, d32 control was
applied as described above, the Sauter diameter and the particle size distribution
could also be stabilized.

8 Summary and Outlook

Within this project, new insight into the dynamics of particle formulation by spray
layering in continuously operated horizontal fluidized beds has been obtained. Start-
ing from the single-particle level, using information on the particle recirculation
between functional compartments and multiple chambers by weirs, the effect of
thermal conditions on layer properties, dynamic and steady-state process behavior
has been illuminated. Process models were derived allowing the predictive simula-
tion of particle properties and the dynamic and steady-state behavior. This led to the
derivation of process regime maps, dividing (asymptotically) stable operating points
from unstable operating points. Using this information, control concepts could be
derived and tested—first in simulations and later at a full-scale industrial plant.

Combined information on micro-, meso- and macro-scale behavior, i.e. from sin-
gle particles to the apparatus, and its implementation in the simulation framework
“Dyssol” allows formodel-driven apparatus, process and control design. This enables
the inverse design of process and apparatus starting from particle property require-
ments, by mathematical optimization.
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Chapter 4
Dynamic Simulation of Technical
Precipitation Processes

Hendrik Rehage and Matthias Kind

Abstract Precipitation of sparingly soluble salts is a widely applied industrial unit
operation to produce color pigments or nutritional additives. Simulation of this unit
operation on a flowsheet level would be a useful tool to simplify process develop-
ment and optimization. However, the numerical effort of simulating the industrial
standard apparatus for precipitation, the stirred-tank reactor (STR), is generally too
high for process flowsheet simulation. This high computational cost is due mostly to
the complex coupling of mixing and solids formation and the inhomogeneous reac-
tion environment in STRs. Handling of this multiscale challenge in a short time scale,
thus, requires the development of numerically efficient short-cut surrogate models.
In this chapter, we provide an overview of the results from of our project aiming to
develop a dynamic precipitationmodel for flowsheet simulation using the example of
semi-batch precipitation of barium sulfate. This chapter covers the full development
progress with step-by-step increasing complexity from steady-state to semi-batch
process scale. Multiple experimental setups are used to proof the model hypothe-
ses. The steady-state and dynamic semi-batch precipitation model are exemplarily
implemented in the flowsheet frameworkDyssol. By using these flowsheet units, the
specific process dynamics of semi-batch precipitation processes is investigated. It is,
furthermore, demonstrated that using dynamic process parameters (e.g. increasing
impeller rotational speed) might be a suitable method to optimize the product particle
size distribution (PSD) for semi-batch precipitations in the future.

Nomenclature

B Nucleation rate [m−4s−1]
BT Baffles size [m]
CT Stirrer off-bottom clearance [m]
c̃ Molar concentration [mol1m−3]
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C Nucleation kinetics constant [–]
Dri,sol Average diffusion coefficient of reactive ions (ri) in solvent (sol) [m2s−1]
DT Impeller diameter [m]
dprim Inner feed pipe diameter [m]
E Engulfment constant [s−1]
frec Recalculation frequency [–]
G Growth rate [m1s−1]
HT Feed pipe off-bottom clearance [m]
J Nucleation kinetics factor [m−3s−1]
K Solubility product [mol2m−6]
kB Boltzmann constant [m2kg1s−1K−1]
L Particle diameter [m]
L̄mol,ri Average molecular diameter of reactive ions [m]
Lcrit Critical nucleation radius [m]
Lmin Minimal particle size of PSD grid [m]
Lmax Maximal particle size of PSD grid [m]
L50,3 Median of volume-based PSD [m]
�L PSD grid spacing [m]
M Mass [kg]
Ṁ Mass flow [kg1s−1]
M̃ Molar mass [kg1mol−1]
mi Mass of particles in class i [kg]
N Stirrer rotational speed [s−1]
n Particle number density [m−4]
nA/B Particle number density in zone A or B [m−4]
nt Total particle density [m−3]
nr Refractive index [–]
Q Volume flow [m3s−1]
q0 Number-based PSD [m−1]
q3 Volume-based PSD [m−1]
R Free lattice ion ratio [–]
RT Radial position of feed pipe [–]
Sa Activity-based saturation [–]
TT Tank diameter [m]
T Temperature [K]
t Process time [s]
�t Semi-batch model timestep [s]
ū Average velocity [m1s−1]
Vmol,s Molecular volume of solid [m3]
V L Liquid phase volume [m3]
VBF Bulk fluid volume [m3]
wi Particle mass fraction in particle size class i [–]
x Mass fraction [–]
xLj Component mass fractions in liquid phase [–]
z Mixer length coordinate [m]
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αabs Absorption coefficient [–]
αk Volume fraction of zone k [–]
β Splitting factor/recycle ratio [–]
γ± Activity coefficient [–]
γsl Solid-liquid interface tension [N1m−1]
δ Dirac-delta function [m−1]
ε̄ Average energy dissipation [m2s−3]
μ Dynamic viscosity [Pa1s1]
ν Kinematic viscosity [m2s−1]
ξS Mass fraction of solid phase [–]
ξL Mass fraction of liquid phase [–]
υs Number of ions for solids formation [–]
ϑm,sf Stochiometric coefficients of solids formation reaction [–]
ρ̃s Molar density of solid [kg1m−3]
τmix Time scale of mixing [s]
τsf Time scale of solids formation [s]
τct Computational time (real time) [s]

Indices

i Particle size class index
j Compound index in liquid phase (solved ions and solvent)
k Mixing fraction index
m Index for solved ions in liquid phase
w Index for solvents in liquid phase
0 Index for initial value (t = 0)
sf Solids formation
mix Mixing
ri Reactive ions
sol Solvent
out Outlet
mol Molecular

Superscript Characters

L Liquid phase
S Solid phase
1:1 1:1 mixture of educt fluids for well-mixed condition
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Abbreviations

BF Bulk fluid
CFD Computational fluid dynamics
CIJM Confined impinging jet mixer
STR Stirred-tank reactor
DLS Dynamic light scattering
E-model Engulfment model
MSMPR Mixed-suspension, mixed product-removal
JICF Jet in cross flow
PBE Population balance equation
PFR Plug flow reactor
PSD Particle size distribution
SEM Scanning electron microscopy
SLS Static light scattering

Dimensionless Numbers

Sh Sherwood number [–]

1 Introduction

Precipitation is an important solids formation process which is extensively applied in
the chemical and pharmaceutical industry. Among the products typically produced
by precipitation are active pharmaceutical ingredients, color pigments and catalyst
materials. Sparingly soluble salts are a specific class of material which pose a serious
challenge for industrial process development. They are often precipitated by mixing
two aqueous salt solutions, each of them carrying one of the reactive ion types. Due
to the low product solubility in the mixture, solid formation is triggered after mixing
both educts. As the supersaturation reached for sparingly soluble salt precipitation is
generally on a high level compared to other crystallization processes, the increased
nucleation and growth rates cause a small time scale of solids formation τsf [s]. If
τmix/τsf ≥ 1with τmix [s] designating the time scale of mixing, the latter can crucially
influence the PSDof the solid product. As consecutive process steps, such as centrifu-
gation, rely heavily on the product PSD, knowledge about the process functionality
between process parameters and the PSD is required for process development.

The standard apparatus for technical precipitation is the STR in batch, semi-batch
or continuous operation mode. The semi-batch operation is often the method of
choice, especially for fine chemical products, as flexible production is possible here.
A central drawback of the semi-batch operation, besides the process dynamics, is
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the localized reaction zone. The solids formation does not take place in the full STR
domain due to the low τsf. It is, instead, limited to a small volume around the feed
pipe. This volume is also designated as the reaction zone. The local mixing condi-
tions in this reaction zone have a significant impact on the final product PSD and,
therefore, must be considered for simulation. It is often required to perform numer-
ically expensive computational fluid dynamics (CFD) simulations for information
about the local mixing process. This aspect is aggravated by the fact, that even while
using CFD, the definition of the exact reaction volume is unclear and, thus, can often
only be roughly estimated.

Flowsheet simulation simplifies process development and optimization and is
widely applied in process engineering, but it requires short-cut modeling of the dif-
ferent unit operations involved. To date, commercial flowsheet frameworks, such as
Aspen Plus or gProms, enable the steady-state and dynamic simulation of precip-
itation, but the underlying models are restricted to processes with only low levels
of supersaturation. As they rely on the mixed-suspension, mixed-product-removal
(MSMPR) concept (τmix/τsf < 1), neither different zones in the reactor nor the influ-
ence of mixing on the PSD are considered. Therefore, it has not been possible to
simulate sparingly soluble salts on a process flowsheet level yet. Although numeri-
cally reduced models for semi-batch precipitation exist in literature, these models do
not reach the numerical efficiency required for process flowsheet simulation. Con-
sequently, new short-cut models must be developed to allow the process flowsheet
simulation of semi-batch precipitation of sparingly soluble salts.

The aim of this project is the development of a dynamic model for precipitation
which operates on time scales suitable for process flowsheet simulation. We use the
knowledge gained by investigating the influence of mixing on precipitation by CFD
methods [1–4] to develop a numerically efficient model for steady-state precipita-
tion in confined impinging jet mixers (CIJMs). The latter are simple static mixing
geometries in comparison to the complex dynamic STRs. The steady-state model
is selectively validated by simple and complex process flowsheet simulations [5]
and, furthermore, applied to investigate different mixing models from literature. The
dynamic semi-batch model is developed according to the current state of the art in
literature, as a considerable amount of literature exists on the modeling of mixing
influenced precipitation in STRs (Fig. 1).

The models with highest computational cost fully resolve the dynamic fluid flow
with CFD (a), coupled with population balance equation (PBE) approaches, to track
the solids formation [6–14]. These studies, supported by experimental work [15–
17], offered further insights into the complex dynamics of precipitation processes
in stirred tanks. Of course, these models are numerically intense and, therefore, not
suitable for process flowsheet simulation.

Zonemodels (b) use distinct reactor zones instead ofCFDsimulations to depict the
fluid dynamics. Consequently, these models are much faster to calculate [8, 18–23].

Mechanistic models (c) are even further reduced. They combine a well-mixed
bulk fluid (BF) with a plug flow reactor (PFR) which represents the mixing and
reaction zone in the stirred tank. One of the most significant mechanistic models
for semi-batch precipitation was presented by Bałdyga and Bourne [24], who used
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(Lagrangian approach)
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Fig. 1 Literature approaches for modeling mixing influenced precipitation in STRs. The CFD
simulations resolve the full flow field a, zone models use discrete zones with exchange streams
b and mechanistic models use a plug flow reactor (PFR) mixing zone c. To date, no models with a
computational efficiency suitable for process flowsheet simulation exist d

the engulfment model (E-model) to simulate the influence of mixing on the product
PSD. This type of model was also used by [22, 25, 26].

The mechanistic models are not as accurate as the CFD models, but they offer
fast computational speed. However, as illustrated in Fig. 1, the mechanistic models
in literature do not reach the time scales required for process flowsheet simulation.
Nevertheless, it has been shown within this project that it is possible to further
improve their numerical efficiency. We modify the mechanistic model of [24] with
an additional approximation method, leading to a hybrid model design. This new
approximation method increases the calculation speed by several orders of magni-
tude. Furthermore, we validated the equivalent concept of BF and PRF proposed
by Bałdyga and Bourne [24]. Subsequently, the final semi-batch model was imple-
mented intoDyssol and validated by experiments. Furthermore,we applied themodel
exemplarily to improve the final product PSD by using dynamic process parameters.

2 Materials and Methods

Section 2.1 introduces the model material barium sulfate, which was used for all
simulations and experiments within this project. Section 2.2 deals with the different
types of experiments which were conducted to validate our model assumptions.
Section 2.3 presents and summarizes the most relevant model equations and the
Simulation Setups investigated.



4 Dynamic Simulation of Technical Precipitation Processes 115

2.1 Materials

We used barium sulfate precipitation from aqueous sodium sulfate and barium chlo-
ride solution for our studies. Barium sulfate precipitation is well-investigated in
literature and a typical model material for research on mixing influenced precipi-
tation. During contact of both educt solutions, immediate reaction to solid barium
sulfate according to Eq. (1) takes place.

BaCl2(aq) + Na2SO4(aq) → BaSO4(s) + 2NaCl (aq) (1)

The most significant process parameter for precipitation is the activity-based sat-
uration Sa [–], as it impacts the nucleation and growth rate directly. The functionality
for Sa is given in Eq. (2).

Sa = γ±

√
c̃Ba2+ · c̃SO2−

4

K
(2)

K [mol2m−6] designates the solubility product, γ± [–] the average activity coeffi-
cient and c̃ [mol1m−3] the molar concentrations of the reactive ions. The real values
for saturation vary greatly during the process, as the saturation buildup depends on
local mixing attributes and changes due to the process dynamics. We, therefore, use
the index 1:1 as a reference to a well-mixed, 1:1 volumetric mixture of both educt
solutions. Therefore, S1:1a [–] provides a coarse estimation of the general level of
saturation within the process.

In this work, we used colloidal stabilization to prevent particle aggregation, as
aggregation is not part of our model yet. Colloidal stabilization was reached by
an excess of barium ions using a lattice ion ratio of R1:1 = c̃Ba2+/c̃SO2−

4
= 5 for

all experiments and simulations. Several literature studies have confirmed that this
excess of barium ions is sufficient to prevent aggregation in CIJMs [27, 28]. We,
furthermore, showed in [29] that R1:1 = 5 is also a suitable value for colloidal
stabilization of barium sulfate in other mixing geometries.

Our experiments and simulations were performed at a supersaturation level of
S1:1a = 1000. By using this high level of supersaturation, the consequently low time
scale of solids formation guarantees an influence of mixing on the PSD for stan-
dard process parameters for semi-batch STR and CIJM precipitation. The concen-
trations required to achieve S1:1a = 1000 and R1:1 = 5 were calculated with a Pitzer
model approach. The resulting educt concentrations of c̃BaCl2,0 = 0.58mol/L and
c̃Na2SO4,0 = 0.144mol/L were used for all experiments and simulations presented
in this work. The index 0 indicates t = 0, with t [s] as the process time. The educt
solutions were prepared by solving Na2SO4 and BaCl2 · 2H2O (>99.99% w/w by
Carl Roth) in deionized water.
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2.2 Experiments

Weconducted different types of experiments (Experimental SetupsA–D) to provide a
step-by-step validation of our model. Section 2.2.1 presents the experimental setups
for validation of the steady-state model. Section 2.2.2 presents the setup for the
dynamic semi-batch experiments and the “experimental simulation” setup to allow
a specific validation of the equivalent circuit concept for semi-batch precipitation.

2.2.1 Steady State Experiments

The experimental Setup A for steady-state precipitation in CIJMs is illustrated in
Fig. 2. Two flow-controlled gear pumps P1 and P2 (MCP-Z by Ismatec) provided
the educt solution volume flows of QNa2SO4/BaCl2 = 24−150ml/min (1:1 volumetric
mixture) for the CIJMmixer unit. The educts were prepared as described in Sect. 2.1
and filled into the educt tanks, which are temperature-controlled at T = 20 ◦C.
Subsequently, the pumps were adjusted to the target volume flows. Samples were
taken at the CIJM outlet after several minutes and analyzed with methods described
in Sect. 2.2.3, to check for a constant PSD indicating a steady-state operation. A
technical drawing of the CIJM with indications is given in Fig. 3. More details on
this experiment are provided in [5].

The experimental Setup B extends Setup A by a recycle stream to investigate its
influence on the product PSD experimentally (Fig. 3). We used the peristaltic pump
DULCOflex byProminent for P3,whichwas flow-controlled by amagnetic inductive
flowmeter (Optiflux byKrohne). Themixer (M) and splitter (S) in Fig. 3were realized
as three-wayTball valves (KHTC3/18T byLandefeld), since classifying effectswere
not expected for the small particle size of the precipitate. The CIJM was constructed
according to the indications in Fig. 3. Samples were taken after the splitter to check

BaCl2Na2SO4

P2

P1

CIJM

Product

Fig. 2 Experimental Setup A with pumps (P), educt storage tanks and CIJM reactor (indications in
mm). Flow meters for P1 and P2 are neglected due to visibility reasons. Reprinted with permission
from [5]
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BaCl2Na2SO4

P2

P1

M S

P3

CIJM

Product

Fig. 3 Experimental Setup B to investigate the influence of recycle streams with pumps (P), mixer
(M), splitter (S), and CIJM precipitation reactor. Flow meters for all pumps are neglected in the
figure due to reasons of visibility. Reprinted with permission from [5]

Table 1 Educt solution composition for recycle stream simulations. Reprinted with permission
from [5]

Solution β Ṁ(g/s) Q
(
ml1 min−1

)
xLH2O

xLNa xLBa xLCl xLSO4

BaCl2 0 2.62 150 0.8921 0 0.071 0.037 0

0.1 2.24 130 0.8714 0 0.085 0.044 0

0.2 1.68 100 0.8462 0 0.101 0.052 0

0.3 1.28 70 0.7873 0 0.140 0.072 0

Na2SO4 0–0.3 2.55 150 0.9798 0.007 0 0 0.014

for a constant PSD. Setup B experiments generally reached steady-state after twelve
minutes or less.

We adjusted the educt concentrations and educt volume flows according to Table 1
to investigate the impact of the recycle ratio β = Ṁcirc/Ṁmix,2 independently of
changes for S1:1a , R1:1 or the energy dissipation in the CIJM. Ṁ [kg1s−1] designates
themass flow, including liquid and solid phase, and xLj = ML

j /M
L are the component

mass fractions in the liquid phase (L). Neither educt solution contains a solid phase.
Further details on this experiment are provided in [5].

2.2.2 Dynamic Experiments

We used the plant in Fig. 4 for bulk semi-batch experiments (Type C) and two-zone
experiments (Type D) to validate the equivalent circuit hypothesis for the semi-batch
model. Further information on the underlying idea of this experiment is provided in
Sect. 2.3.2.1. The plant consists of a 11-L tank reactor (1), a 6-L feed container (2),
and an external pipe-circuit (3) with a mixing reactor (4). Only a short overview on
the experimental procedure is given in this article. Further details are provided in
[29].
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MM TITI

TITI
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Pump 1

Outlet
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1
2

3

4

Fig. 4 Simplified process scheme of experimental Setup C and D for bulk and two-zone
precipitation experiments. Reprinted with permission from [29]

A technical drawing of the tank reactor is given in Fig. 5. It was constructed
according to DIN 28131 [30] with an inner tank diameter of TT = 240mm, four
baffles of size BT = 0.1 TT, a six-blade Rushton Turbine of diameter DT = 0.35 TT
and an off-bottom clearance of CT = 0.35 TT. The feed pipe with inner diameter
dprim = TT/60 was positioned at a radial distance to the stirrer axis of RT = 0.183 TT
with a feed off-bottom clearance of HT = 0.421 TT. The product sampling position
is indicated by P in Fig. 5.

secondary inlet (sec)
outlet (out)

baffles
primary inlet (prim)

s�rrer

Fig. 5 Schematic (left) and technical drawing (right) of STRwith four baffles and six-bladeRushton
Turbine stirrer



4 Dynamic Simulation of Technical Precipitation Processes 119

The process plant (Figs. 4 and 5) enables two different types of experiments: Bulk
and two-zone experiments.

Bulk Experiments (Experimental Setup C)

A standard semi-batch procedure is performed in bulk experiments. Therefore, the
valves to the external loop (3, 4) are closed and the feed pipe is positioned in the
tank reactor (1). Initially, 5.37L BaCl2 solution was poured into the tank reactor,
which corresponds to 50% of final filling. The rotational velocity was adjusted to the
target value. After the process started, the Na2SO4 solution was added through the
feed pipe by using a defined feed volume flow Qprim until a total addition volume
of 5.37L Na2SO4 solution was reached. Subsequently, probes of solid product were
taken at position P in the STR.

Two-Zone Experiments (Experimental Setup D)

The feed pipe in two-zone experiments is not positioned inside the tank reactor (A).
Instead, it is positioned in the external mixing reactor (C). The valves to the external
loop were opened and Pump 2 was adjusted to the calculated value for the circulation
flow. The stirring rotational speedwas always adjusted to N = 300 rpm, as the stirred
tank represented the well-mixed BF. At the start of the process, the Na2SO4 solution
was added through the feed pipe into D, until a total addition volume of 5.37 L
Na2SO4 solution was reached. Sampling was carried out at position P in the STR.

2.2.3 Analytics

The volume-based PSD q3(L)(m−1) for particles from steady-state experiments was
measured by dynamic light scattering (DLS) using a Zetasizer Nano ZS byMalvern.
Additionally, scanning electron microscopy (SEM) was used as a second measure-
ment technique to calculate the number-based PSD q0(L)(m−1). Probes for SEM
analysis were centrifuged three times at 11,000 rpm, including two intermediate
washing steps with deionized water. Subsequently, the product was dried for 24 h at
50 °C in a drying cabinet and sputtered with 3.5 nm platin for the investigation in a
LEO 1530 SEM. Diameters of 500 particles at different locations were determined
by graphical evaluation to calculate the q0(L) distribution.

The particle sizes for dynamic semi-batch experiments exceeded themeasurement
range of DLS, as the mixing intensity in the STR is several orders lower than the one
reached in CIJMs. Therefore, we measured the particle size for these experiments by
static light scattering (SLS) usingMastersizer 3000 or 3000E byMalvern. Measure-
ments were carried out in deionized water using a Hydro EV wet dispersion system
by Malvern. Samples were measured with a laser occlusion of 10%, a refractive
index of nr = 1.643 and an absorption coefficient of αabs = 0.1.
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2.3 Simulation

Section 2.2.1 introduces the model for steady-state precipitation. Section 2.2.2
presents the dynamic semi-batch model.

2.3.1 Steady-State Precipitation Model

The model equations are given in Sect. 2.3.1.1. The mixing model is presented in
Sect. 2.3.1.2. Section 2.3.1.3 provides information about the Simulation Setups. All
sections only represent the most important equations and information. Consultation
of [5] is recommended for a more detailed view of the steady-state precipitation
model.

Model Equations

During steady-state precipitation, both educt solution A and B with educt volume
flows QA and QB are mixed along the mixer length coordinate z [m]. An exemplarily
illustration for the balance volume in CIJMs and the spatial discretization is given in
Fig. 6.

The process of turbulent mixing is complex, as eddies of multiple size scales
are involved in the mixing process. However, several mechanistic models have been
developed to account for the mixing process in a simplified way. In our project,
we used the micro mixing model proposed by Metzger and Kind [4]. Mechanistic
mixing models divide the liquid phase into different zones (index k) with volume

Fig. 6 Spatial discretization of the CIJMgeometrywith typical supersaturation Sa and total particle
density nt (left). Balance volume for steady-state precipitation, shown exemplarily with two educt
environments (A, B) and one mixed environment (M) (right). Reprinted with permission from [5]
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V L
k [m3] to track the status of mixing (αk = V L

k /V L). V L [m3] designates the total
volume of liquid phase including all zones. Due to the mixing process, these volume
fractions αk change along the mixer length coordinate z. The balance volume is the
well-mixed reaction volume fraction (M in this example), which will grow along the
mixer length coordinate z by engulfing the unmixed educt fluid A and B.

The PBE is based on the particle density n = dnt/dL [m−4] in the reaction zone
M, with nt [m−3] as the total number of particles per volume suspension and L [m]
as the particle diameter. As the rising saturation level Sa inside the reaction zone will
trigger solids formation, a rising total particle number density can be observed along
z (Fig. 6).

The PBE in Eq. (3) is used to calculate n along the z coordinate of the mixer.
B [m−4s−1] designates the nucleation rate and G = dL/dt[m1s−1] the particle
growth rate, ūout[m1s−1] the average velocity at the mixer outlet. nA/B[m−4] are
the particle densities in the educt mixing zones A and B, which are only relevant if
the educt solutions already contain particles. The last two terms in Eq. (3) are exem-
plarily adapted to the mixing model by Metzger and Kind [4]. These terms must be
changed if other mixing models are investigated.

dn

dz
+ n · dln(αM)

dz
= 1

ūout

(
B − d(Gn)

dL

)
− nA

αM

dαA

dz
− nB

αM

dαB

dz
(3)

The semi-empirical Eq. (4), considering homogenous and heterogenous nucle-
ation, is used in the model to calculate the nucleation rate. Jmax,hom/het [m−3s−1]
and Chom/het [–] are material specific constants. The dirac-delta function δ(Lcrit)

[m−1] is used to include the nuclei at the critical nucleation radius Lcrit [m].

B = δ(Lcrit) ·
(
Jmax,hom · e−Chom ·ln(Sa)−2 + Jmax,het · e−Chet·ln(Sa)−2

)
(4)

The size of the thermodynamically stable nuclei Lcrit depends on the supersat-
uration and is calculated by Eq. (5) following the classical nucleation theory. The
solid-liquid interface tension γsl [N 1m−1], the molecular volume of the solid Vmol,s

[m3], the Boltzmann constant kB [m2kg1s−2K−1], the number of ions νs [–] and the
system temperature T [K] are the relevant variables.

Lcrit = 4 · γsl · Vmol,s

νs · kB · T · ln(Sa) (5)

A size-dependent growth rate was implemented by Eq. (6), proposing a diffusion-
limited growth mechanism. D̄ri,sol[m2s−1] designates the average diffusion coeffi-
cient of the reactive ions (ri) in the solvent (sol), ρ̃s [mol1m−3] designates the molar
density of the solid and Sh the Sherwood number. Due to the small particle size,
Sh = 2.0 was assumed for all simulations.

G = Sh · 2D̄ri,sol

L · ρ̃s
· √

K · (Sa − 1) (6)
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D̄ri,sol is calculatedbyStokes-EinsteinEq. (7).μ [kg1m−1s−1]designates the dynamic
viscosity of the solvent and L̄mol,ri [m] the average molecular diameter of the reactive
ions.

D̄ri,sol = kBT

3πμL̄mol,ri
(7)

The solution composition changes along z, as ions are mixed into the reaction
zone and depleted by solids formation. Consequently, the concentration balance for
all ionic components in the liquid phase (index m) is given in Eq. (8). The last two
terms in Eq. (8) are exemplarily adapted to the mixing model by [4]. These terms
must be changed if other mixing models are investigated. Differences between the
densities of the mixing environments are neglected for Eq. (8).

dc̃m
dz

+ c̃m · dln(αM)

dz
= dc̃m,sf

dz
− c̃m,A

αM

dαA

dz
− c̃m,B

αM

dαB

dz
(8)

The solid formation reduces the ion concentration according to Eq. (9), with
ϑm,sf [–] as stochiometric coefficient of ion type m in the solids formation reaction.
Spherical particles are assumed with dVp/dL = πL2/2. Vp designates the volume
of a single particle. ϑm,sf obtains a negative value for educts of the solid formation
reaction. If ions are not part of the solids formation reaction, ϑm,sf = 0.

dcm,sf

dz
= π

2

ϑm,sf · ρ̃s

ūout
·
∫
L

n(L)G(L)L2dL (9)

The saturation Sa is not directly calculated by the model. Instead, the model
is connected to the software PhreeqC to calculate the activity coefficients. Further
details on this software connection or additional equations for the steady-state model
(e.g. for μ) can be found in [5].

We used a high-resolution finite-volume scheme with a van Leer flux limiter to
solve the PBE. More information on the solver and its control is provided in [5]. The
material constants for barium sulfate can be found in [5].

Mixing Model

We investigated different mixing models for CIJMs to find the most promising can-
didate for process flowsheet simulation. We applied the micro-mixing model by
Metzger and Kind [4] for most of the steady-state simulations conducted within this
project. The model consists of three mixing zones, two educt zones (A, B) and one
well-mixed reaction zone (Fig. 7). The model by Metzger and Kind [4] is predictive
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Fig. 7 Temporal mixing volume fractions evolution for the model by [4]

Fig. 8 Simulation flowsheet for steady-statemodel validation (SetupA). Reprintedwith permission
from [5]

for the given setup but does not follow the physical concept of the engulfment the-
ory directly. Consequently, it is more an empirically based than a physically based
model.

The temporal evolution of the volume fractions is given by Eqs. (10–12). E =
0.058 ε̄0.5ν−0.5 [s−1] designates the engulfment constant. ε̄[m2s−3] is the average
energy dissipation and ν [m2s−1] the kinematic viscosity.

dαA

dz
= − E

ūout
· αA · (1 − αA) (10)

dαB

dz
= − E

ūout
· αB · (1 − αB) (11)

dαM

dz
= E

ūout
(αA · (1 − αA) + αB · (1 − αB)) (12)

Simulation Setups

This section introduces the steady-state Simulation Setups. Flowsheet Simulation
Setup A (Fig. 8) was designed according to Experimental Setup A and represents a
stand-alone simulation of CIJM precipitation. The input concentrations of the educt
solutions were defined according to the educt concentrations presented in Sect. 2.1
and the input volume flows were varied according to the experiments described in
Sect. 2.2.1. Further details of Setup A simulations are given in [5].

The recirculation flowsheet (Simulation Setup B, Fig. 9) was constructed accord-
ing to the Experimental Setup B (Fig. 3, Sect. 2.2.1). We used the units for ideal
mixing/ideal splitting implemented in Dyssol [31] for Splitter and Mixer. Fur-
ther details regarding the simulations and the Dyssol solver configurations can be
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Fig. 9 Simulation flowsheet for investigating the influence of the recycle streamon the precipitation
process. Reprinted with permission from [5]

found in [5]. The process conditions for the simulations with different recycle ratios
β = Ṁcirc/Ṁmix,2 were chosen according to Table 1.

2.3.2 Dynamic Semi-Batch Precipitation Model

Section 2.3.2.1 provides an overview of the model equations. The mixing model is
explained in Sect. 2.3.2.2. Section 2.3.2.3 presents the newly developed approxima-
tion method, which is the reason for the outstanding numerical performance of the
model. Section 2.3.2.4 provides information regarding the Simulation Setups.

Model Equations

The semi-batch model is based on the mechanistic model proposed by [24], who
divided the semi-batch STR in a PFR connected to well-mixed stirred bulk fluid
(BF). We could prove experimentally in [29] that this assumption can be used to
model the semi-batch process. The relevant process parameters are the feed mass
flow Ṁprim, the outlet mass flow Ṁout, the secondary inlet mass flow Ṁsec and the
impeller rotational speed N . All of these process parameters can be either steady-state
or dynamic. The semi-batch process itself will be dynamic in any case.

Figure 10 illustrates the main variables of the model. The BF’s mass MBF consists
of a liquid (L) and a solid phase (S) with the mass fractions ξS

BF = MS
BF/MBF and

ξL
BF = ML

BF/MBF. Without the presence of other phases, ξL
BF can be calculated by

the closure ξL
BF = 1 − ξS

BF. The mass fractions of the components in the liquid
phase are defined by xLj,BF = ML

j,BF/M
L
BF with j as the index for all components in

the liquid phase. The relative mass of the particles in each size class is defined by
wS
i = mS

i /M
S
BF.

The system state vector of the BF is given by �B(t) =
(
MBF ξS

BF x
L
j,BF w

S
i,BF

)T
.

With five components ( j = 5) in the liquid phase (e.g. H2O,Ba,Na,Cl,SO4) and
150 particle size classes (i = 150), �B(t) consists of 157 entries. No particles are
considered in the feed stream Ṁprim (ξS

prim = 0wS
i,prim = 0). Furthermore, we assume
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Fig. 10 Process variables for the semi-batch process a and the equivalent circuit of PFR and BF b

the presence of only one solvent. The BF volume VBF is assumed to correspond to
the volume of pure solvent (VBF = xH2O,BFML

BF/ρH2O).
The streams, which are interconnecting BF and PFR are �Scirc,1 (entering the PFR)

and �Scirc,2 (leaving the PFR). The stream vector �S is defined by �S = (Ṁ ξS xLj w
S
i )

T.
Corresponding to the BF, the variables for the stream vector are defined by
ξS
circ,1 = ṀS

circ,1/Ṁcirc,1, ξL
circ,1 = ṀL

circ,1/Ṁcirc,1, xLj,circ,1 = ṀL
j,circ,1/Ṁ

L
circ,1 and

wS
i = ṁS

i /Ṁ
S
circ,1.

The balance equations for the BF can be derived with the variables given. MBF

will change due to the incoming and outgoing streams, according to Eq. (13).

dMBF

dt
= Ṁsec + Ṁcirc,2 − Ṁout − Ṁcirc,1 (13)

The temporal evolution of the solids phase fraction is described by Eq. (14). No
source term for solids formation must be considered for the BF balance equation, as
solids formation only takes place in the PFR.

dξS
BF

dt
+ ξS

BF
dln(MBF)

dt

= 1

MBF
· (
Ṁsec ξS

sec + Ṁcirc,2 ξS
circ,2 − (

Ṁout + Ṁcirc,1
)
ξS
BF

)
(14)

The component balances are given by Eq. (15).

dxLj,BF
dt

+ xLj,BF
dln

(
ξL
BF

)
dt

+ xLj,BF
dln(MBF)

dt

= 1

MBF ξL
BF

· (
Ṁsec ξL

sec x
L
j,sec + Ṁcirc,2 ξL

circ,2 x
L
j,circ,2



126 H. Rehage and M. Kind

−(
Ṁout + Ṁcirc,1

)
ξL
BFx

L
j,BF

)
(15)

Nucleation or growth are not relevant for theBF, as both take place only in the PFR.
Consequently, the particle mass fractions for the BF can be calculated by Eq. (16).

dwS
i,BF

dt
+ wS

i,BF · dln
(
xSBF

)
dt

+ wS
i,BF · dln(MBF)

dt

= 1

MBF xSBF
· (
Ṁsec ξS

sec w
S
i,sec + Ṁcirc,2 ξS

circ,2 w
S
i,circ,2

−(
Ṁout + Ṁcirc,1

)
ξS
BF w

S
i,BF

)
(16)

The unknown variables of this model are the circulation mass flow rate Ṁcirc,1

and the vector �Scirc,2 representing the fluid after precipitation in the PFR. A closure
for Ṁcirc,1 based on the stirrer type and size was developed by using the conceptual
idea of the similarity between the local reaction zone in a stirred tank with Rushton
Turbine and a JICF precipitation. Calculation of �Scirc,2 is explained in Sect. 2.3.2.3.
Explicit Euler’s method is used to solve Eqs. (13–16) with a static time discretization
�t = 0.5. This value for �t is appropriate for the Simulation Setups C and E.

Mixing Models

The semi-batchmodel uses the steady-statemodel presented inSect. 2.3.1 to calculate
the PFR. The mixing model for CIJMs was replaced by a mixing model for the jet in
cross flow (JICF) mixing of the feed volume flow and the circulation flow. As shown
in [29], a JICF mixer can be used to imitate the local flow environment around
the feed pipe in STRs. The reaction zone is, therefore, defined as Qprim (P), which
engulfs Qcirc,1 (C) over the mixer length coordinate z. A possible influence of meso
mixing must be additionally considered, as the fluid must be meso mixed first to start
micro mixing. Consequently, zone Cmeso is introduced for the fluid of Qcirc,1 which
is already meso mixed and therefore, can act as an engulfment environment for P
(Fig. 11).

P

C C

P
C meso

P
C

C

meso
P

z

Fig. 11 Fluid prim (P) engulfing fluid circ, 1 (C) in the E-model by [24]. Cmeso designates the fluid
which is already meso mixed and, thus, provides the environment for the engulfment process of P
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We used the E-model by [24] considering micro and meso mixing to depict the
evolution of P over z. The timescale for meso mixing was calculated with τmeso =
1.2 d2/3

prim ε̄−1/3 according to [32].iterations on a flowsheet

dαP

dz
= E

ūcirc,2
αP

(
1 − αP

αu

)
(17)

αu = αP0

αP0 + (1 − αP0) · exp(z/(τmesoūmix))
(18)

The mixing model requires an average energy dissipation ε̄, which was correlated
by steady-state experiments.

Replacing the mixing model in the steady-state model also required adaptation of
the PBE and the component balances. For precipitation in the PFR, P is the balance
volume instead of M. Equation (3) and Eq. (8) were, therefore, replaced by Eq. (19)
and Eq. (20), respectively.

dn

dz
+ n · dln(αP)

dz
= 1

ūcirc,2

(
B − d(Gn)

dL

)
− 1

αP

d
(
nCmesoαCmeso

)
dz

− nC
αP

dαC

dz
(19)

dc̃m
dz

+ cm · dln(αP)

dz
= dc̃m,sf

dz
− 1

αP

d
(
c̃m,CmesoαCmeso

)
dz

− c̃m,C

αP

dαC

dz
(20)

Approximation Method

The reason for the outstanding numerical performance in our semi-batch model in
comparison to mechanistic models in literature is the approximation method which
wedevelopedwithin this project. Thismethod takes advantage of the fact that the PFR
is a steady-state system and, therefore, will only show a different output signal if its
input signals, �Scirc,1 and �Sprim, deviate significantly compared to the prior iteration. In a
typicalmechanisticmodel from literature, thePFRconsumes99.7%of computational
time, whereas the BFmodel only requires 0.3% (measured in our example case). The
BF model can be calculated much faster than the PFR, since the coupling between
mixing, nucleation and growth does not have to be solved in the BF. Consequently,
the PFR calculation is the bottleneck of mechanistic models. Improvements which
simplify or skip the PFR calculation can, thus, increase numerical efficiency by
several orders of magnitude.

The approximationmethod is illustrated inFig. 12.ndesignates the iteration index.
The vector �Scirc,2 can either be gained by solving the PFR (high numerical effort)
or approximating its result by a component balance. We assume for this additional
balance that the saturation in �Scirc,2 is fully depleted to thermodynamic equilibrium.
For the example of barium sulfate (two reactive ions, ϑBa = ϑSO4 = 1), the resulting
ion concentrations in �Scirc,2 can be calculated by Eq. (21).
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Solve PFR

Solve comp.
balance

Fig. 12 Approximation method for the short-cut modeling of the semi-batch process dynamics

c̃Ba,circ,2 = 0.5 · (
c̃Ba,circ,1 − c̃SO4,circ,1

) +
√
0.25

(
c̃Ba,circ,1 − c̃SO4,circ,1

)2 + K (21)

Ṁn,circ,2, ξS
n,circ,2 xLn,j,circ,2 can, thus, be calculated by simple balance equations

without solving the PFR. Only the PSD is not calculated. It is, instead, approximated
by using the PSD from the last iteration (wS

i,circ,2 = wS
i−1,circ,2). The approximation

method, thus, introduces an error on the PSD but increases computational speed by
several orders of magnitude.

The recalculation frequency frec = nrec/nit is the number of recalculations of the
PFR divided by the number of iterations. The approximation method is not active for
frec = 1 as the PFR is calculated on each iteration. The value frec = 1/10 means that
after one calculation, the approximation method is applied for the next nine iteration
steps.

Simulation Setups

Two different Simulation Setups were investigated for the semi-batch precipitation
model (Fig. 13). Simulation Setup C was designed according to Experimental Setup
C. All simulation parameters were adapted to the experimental STR with the six-
blade Rushton turbine stirrer. We conducted simulations for N = 50− 200 rpm and
Qprim = 0.1− 0.4 L1min−1 according to the experiments. The results from Setup C
simulations, therefore, allow one to validate the semi-batch model.

Furthermore, Simulation Setup E was designed to demonstrate on the example
of a dynamic stirring rate that there is currently unused potential to influence the
process dynamics. We use a linearly increasing stirring rate to influence the process
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Fig. 13 Simulation Setups:
constant feed rate and
constant stirring rate for
validation (C) and dynamic
increase of the stirring rate
(E)

Fig. 14 Linear increase of
the rotational speed versus
time (Setup E)

0 400 800 1200 1600
100

150

200

250

300

350

400

N
 (r

pm
)

t (s)

 N

dynamics of the semi-batch process (Fig. 14). The feed volume flow is kept constant
at Qprim = 0.2 L1min−1.

3 Results and Discussion

This section presents selected results from steady-state and dynamic experiments
and simulations. The results of the steady-state simulation are compared to the cor-
responding validation experiments in Sect. 3.1. Furthermore, the model is applied to
investigate the influence of recycle streams on the product PSD. Section 3.2 deals
with the results from “experimental simulation” to verify whether an equivalent cir-
cuit of PFR andwell-mixedBF can be used to simulate a semi-batch STR. Section 3.3
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compares the dynamic semi-batch simulation to experimental data and, furthermore,
investigates the influence of dynamic process parameters on the product PSD.

3.1 Steady-State Precipitation

The experiments and simulations of Setup A aim at validating our steady-state model
for CIJM precipitation and investigating its predictiveness towards the PSD. In addi-
tion to the micro mixing model by Metzger and Kind [4], two other models by [24,
33] are compared, which are not explicitly discussed in Sect. 2.3.1.2.

As shown in Fig. 15, the median of the volume-based PSD (L50,3) for precipitated
particles in Setup A experiments can be well-predicted with a steady-state precipita-
tion model using the micro mixing model byMetzger and Kind [4]. Interestingly, the
model by Bałdyga and Bourne [24] predicts larger particles compared to the other
mixing models. We could furthermore show by mathematical analysis that the mod-
els by Metzger and Kind [4] and Schwarzer [33] do not implement the engulfment
theory correctly. Both models proved to be suitable for our simulations but should
be designated as empirical models.

We, furthermore, investigated the influence of recycle streams on steady-state
precipitation by Setup B experiments and simulations. As observable in Fig. 16,
the PSD becomes increasingly multimodal with increasing splitting factor β. This
multimodality is caused mostly by recycled particles passing the CIJM more often
and, therefore, growingmore thanparticles passing theCIJMonly once. Furthermore,
the size of the smallest particles in the first peak, which are the particles after a single
precipitation in the CIJM, is also increased for β ≥ 0.1 in a nonlinear way (Fig. 16).

Fig. 15 Median of
volume-based PSD (L50,3)

versus jet velocity with for
simulations with different
micro mixing models by [24,
33, 4] and experiments.
Particle size measured by
DLS
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Fig. 16 Simulated influence
of the splitting factor β on
the number-based PSD (q0)
of the product stream for
ideal mixing in the CIJM.
Reprinted with permission
from [5]
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The nonlinear system behavior for increased values of the splitting factor β is also
observable for the saturation curve along the z-axis (Fig. 17). Whereas the saturation
does not significantly differentiate for β ≤ 0.2, major changes can be observed for
β = 0.3. As we could show in [5], the reason for this faster supersaturation depletion
is the faster depletion of reactive ions, which becomes relevant when larger particles
are present.

The particles show, independently of the value chosen for the splitting factor β,
no differences in morphology, see Fig. 18.

Nevertheless, the number distribution based on the particles counted (see
Sect. 2.2.3) reveals a similar size shift effect comparable to the simulation. The
differences between the PSD (q0) for a splitting factor of β = 0 and of β = 0.2 are
shown exemplarily in Fig. 19.

Fig. 17 Saturation Sa over
the CIJM z-axis in flowsheet
B for different splitting
factors β for ideal mixing in
the CIJM. Reprinted with
permission from [5]

0.0 0.5 1.0

10

100

1000

S a
 (-

)

z (mm)

β = 0
β = 0.1
β = 0.2
β = 0.3



132 H. Rehage and M. Kind

Fig. 18 REM pictures of barium sulfate precipitated for splitting factors β = 0 (left) and β = 0.3
(right). Reprinted with permission from [5]

Fig. 19 Experimental SEM
results for splitting factors
β = 0.0 and β = 0.2.
Reprinted with permission
from [5]
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The experimental results analyzed with SLS in comparison to simulation results
are given in Fig. 20.As observable, themodel can predict the average particle size cor-
rectly even for a complex flowsheet including a recycle stream. The simulation with
a splitting factor of β = 0.3 (ūjet = 12.7m1s−1) required 26 iterations on a flowsheet
level with a total computational time requirement of τct = 5.6 s (ct—computational
time) in Dyssol on one core of an Intel Core i7-7700 3.60 GHz processor. Conse-
quently, even for complex flowsheets, the steady-state model combines reasonable
accuracy with a high numerical efficiency.
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Fig. 20 Median of
volume-based PSD (L50,3)
versus the splitting factor β

and two different mixing
assumptions (ideal mixed
and micro mixing model by
[4]). Reprinted with
permission from [5]
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3.2 Validation of the Equivalent Circuit Model Concept

The two-zone experiments (Setup D, Sect. 2.2.2.2) were performed to verify whether
the assumption of a well-mixed stirred tank connected to a PFR is, in principle, a
suitable analogon for depicting the semi-batch process. As Bałdyga and Bourne [24]
did not selectively investigate this aspect before using this model idea for simulation,
weperformedan “experimental simulation”by comparingparticle sizes from thebulk
semi-batch and corresponding two-zone equivalent circuit experiments. This method
allows us to approximate the error which originates from this model concept. The
corresponding value of Qcirc,1 was calculated for a given stirring rate N of the bulk
process by using the method published in [29]. The two-zone experiment was then
performed according to the procedure described in Sect. 2.2.2.2 over a wide range
of process conditions.

Figure 21 illustrates an exemplary result using the example of two process con-
ditions, firstly, with 150 rpm and uprim = 0.39m/s and, secondly, with 50 rpm and
uprim = 0.13m/s. The resulting PSDs are quite similar with slightly larger parti-
cles generated in the two-zone process. This effect of slightly larger particles was
observed over a wide range of process conditions and two different stirrer types in
[29]. Therefore, it can be concluded that the equivalent circuit assumption and the
correlation for Qcirc,1 introduces a small error on the final PSD. However, this error
is not significant in the context of process flowsheet simulations, where the simpli-
fied model assumptions only allow for a coarse estimation of the target variables.
Consequently, replacing the semi-batch process by the equivalent circuit of PFR and
well-mixed BF is a suitable modeling strategy for process flowsheet simulation.



134 H. Rehage and M. Kind

Fig. 21 The volume-based
PSD (q3) of bulk (Rushton
turbine stirrer) and
corresponding JICF
two-zone experiments for
two different rotational
speeds and feed velocities.
Reprinted with permission
from [29]
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3.3 Dynamic Simulation

Results from semi-batch process simulation are compared to experimental data in
Sect. 3.3.1. Furthermore, the numerical efficiency of the model of the newly devel-
oped approximation method used is demonstrated. Section 3.3.2 provides results
regarding the influence of the semi-batch process dynamics for steady-state bound-
ary conditions. Section 3.3.3 illustrates how dynamic boundary conditions might be
used to optimize the product PSD for semi-batch processes in the future.

3.3.1 Validation and Numerical Efficiency

An exemplary result from validation of the semi-batch model for different stirrer
rotational speeds is given in Fig. 22. As observable, the simulation predicts the
experimental results well, with an error for L50,3 below 100 nm. We also tested
different feed volume flow ratios, with the result that higher deviations between
model and experiments occurred for Qprim ≥ 0.3L/min. Consequently, we did not
investigate these process conditions further, as a model refinement is required to
depict high feed volume flows correctly.

The computational time of the model depends mostly on frec, the PSD discretiza-
tion (�L , Lmax − Lmin) and time discretization �t . All influencing factors were
investigated separately to ensure that none of them influences the results signif-
icantly. Reliable results can be gained with 100 equally distributed particle size
classes (�L = 22 nm) from Lmin = 22 nm to Lmax = 2.2μm and �t = 0.5. These
values are, therefore, used as default values for all simulations.

The recalculation frequency frec, which is part of the approximation method
described in Sect. 2.3.2.3, is the main reason for the outstanding numerical perfor-
mance of our surrogate model compared to mechanistic models from literature. An
exemplarily chosen casewith Simulation SetupC, Qprim = 0.2 L/min, N = 100 rpm
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Fig. 22 Median of
volume-based PSD (L50,3)

versus impeller speed for
experiments and Setup C
simulation
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illustrates the massive improvement of numerical efficiency if the PFR is not recalcu-
lated in every timestep.Without the approximationmethod ( frec = 1), this simulation
case requires approximately τct ≈ 58min on a single core of an Intel Core i-7 7700
CPU with 3.60 GHz. As shown in Fig. 23, the calculation speed can be improved by
several orders of magnitude by using a lower value for frec. Interestingly, even for
frec = 1/30, which requires τct ≈ 2.1min instead of τct ≈ 58min, the accuracy of
the model is only insignificantly diminished.

Fig. 23 Median of
volume-based PSD (L50,3)
for recalculation frequencies
of frec = 1

2 to frec = 1
80 .

Simulations performed at
Qprim = 0.2 L/min,
N = 100 rpm and,
�t = 0.5 s with Setup C
simulation. Computational
time τct referred to a single
core of an Intel Core i-7
7700 CPU with 3.60 GHz
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Fig. 24 Temporal evolution
of PSD for Setup C
simulation with
Qprim = 0.2 L/min and
N = 100 rpm
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3.3.2 Process Dynamics for Steady-State Boundaries

A standard semi-batch operation with static feed rate and impeller rotational speed
shows a dynamic PSD evolution, for which several mechanisms are responsible:
Firstly, the reduction of reactive ion concentration by dilution and solids formation
reaction decreases the supersaturation level in the PFR over time. Secondly, particles
already present in the reactor can pass the PFR additional times and grow more.
At a later stage of the process, these recycled particles can massively decrease the
supersaturation in the PFR if a specific amount and size of particles is reached to
offer the particle surface for a fast depletion of reactive ions in the PFR.

Figure 24 illustrates a typical PSD evolution using the example of a Setup C
simulation with Qprim = 0.2 L1min−1 and N = 100 rpm. The total process time of
this simulation is τpro = 27min. A primary peak can be observed at the start of the
process. These are the first particles precipitated in the PFR. During the process, the
PSD shifts to larger particle sizes with a secondary peak observable.

3.3.3 Dynamic Optimization by Dynamic Boundary Conditions

Further analysis of Sa(z, t) and of n(z, t) confirm that supersaturation decreases over
the process time. As this is assumed to be the main reason for the widening of the
PSD over the process time, Setup E was used to investigate whether this specific
process dynamics can be counteracted by increasing the stirring rate over time. As
higher mixing intensities lead to the generation of smaller particles in the PFR, this
effect could be of possible use to counteract the increase of the particle size due
to lower supersaturation. We, therefore, used a dynamic stirring rate for Simulation
Setup E, which was increased from 100 to 300 rpm, as shown in Fig. 14.
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Fig. 25 Variation of static
stirring rate (100, 300 rpm)
and linear increase
(dynamic) from 100 to
300 rpm impacting the final
PSD (Simulation Setup E)
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A narrower PSD can be reached by dynamically increasing the stirring rate, as
observable in Fig. 25. The overall effect is not significant compared to the experi-
mental reproducibility due to the process condition chosen. However, this simulation
illustrates how dynamic optimization might be performed by using dynamic process
parameters for model-based process control.

4 Conclusion

In this contribution, a steady-state and a dynamic semi-batch surrogatemodel for pre-
cipitation of sparingly soluble salts were presented. Both models reach the numerical
efficiency required for application in flowsheet process simulations.

The steady-state model solves the coupled mixing and solids formation process
along a z coordinate of the mixer (plug flow assumption). The mixing process is
modeled by the interaction of different fluid environments according to the E-model
by Bałdyga and Bourne [24]. The PSD is calculated by solving a PBE under consid-
eration of nucleation and diffusion-limited particle growth. The steady-state model
was implemented in Dyssol and validated with two Experimental Setups: A simple
stand-alone precipitation experiment and a complex flowsheet with a recycle stream
connecting inlet and outlet to investigate the influence of recycle streams on the PSD.
Experimental validation proved that the model predicts the experimental outcomes
well, also for the complex flowsheet with recycle streams involved. Furthermore, we
were able to investigate the influence of the recycle stream ratio on the PSD both
numerically and experimentally.

The dynamic semi-batch model is based on a semi-batch model concept by
Bałdyga andBourne [24], who divided the semi-batch stirred tank in awell-mixedBF
and a PFR reactor as the mixing and reaction zone. As Bałdyga and Bourne [24] did



138 H. Rehage and M. Kind

not experimentally proof the idea of a PFR-BF equivalent circuit, we developed the
concept of an “experimental simulation,” which compares experimental PSDs of the
equivalent circuit to the PSD resulting from semi-batch bulk experiments. Although
there is a small error introduced by the equivalent circuit concept, this concept proved
to be a suitable simulation strategy for process flowsheet simulation. To implement
themodel, the steady-statemodel (withminor adaptations) was used to solve the PFR
with high computational speed. It was, furthermore, possible to increase the compu-
tational speed of the model significantly by developing a hybrid modeling technique.
Within this hybrid model design, which can be applied for every mechanistic model
using a BF-PFR equivalent circuit in literature, the PFR is not recalculated on each
iteration but, instead, most of the timesteps are approximated by simpler equations.
Simulation time scales suitable for dynamic process flowsheet simulation can be
reached by utilizing this new approximation method. The final dynamic semi-batch
model was implemented in Dyssol. Except for high feed volume flows, the model
predicted the experimental data well. The dynamic process simulations show that
the wide PSD obtained by semi-batch precipitation originates from the semi-batch
process dynamics. As an outlook to future work, it is, furthermore, demonstrated
that dynamic process parameters might be used to optimize semi-batch precipitation
processes.
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Chapter 5
Development of a Dynamic-Physical
Process Model for Sieving

Darius Markauskas and Harald Kruggel-Emden

Abstract For a broad range of applications sieving/screening is well suited to sep-
arate bulk materials according to particle sizes. In the treated bulk materials par-
ticles frequently prevail in broad size distributions, with non-spherical shape and
sometimes even under moist conditions, complicating the separation process. There-
fore, it is inevitable to gain a deeper understanding of the subprocesses of screen-
ing (size based stratification, particle passage through the screen surface and pos-
sible transport along the screen) under the aforementioned conditions. To gain this
knowledge, detailed particle-based simulation approaches like the discrete element
method (DEM) are available. Based on the latter method, discontinuous and contin-
uous screening as well as its subprocesses are investigated. Therein, different screen
geometries and characteristics are considered along with various mechanical exci-
tations applying model and real particle shapes first under dry conditions and later
under the influence of various liquid amounts. In order to perform reliable DEM
screening simulations, the exact determination of particle properties like size, shape,
material and contact parameters is essential, which is required in advance of the
simulations. Besides the DEM, the integral outcome of screening can be represented
by various phenomenological process models. Usually, the material-, operating-,
and apparatus-specific parameters of the latter process models are empirically deter-
mined by experiments, whereas, here, the parameters for screening process models
are directly obtained fromDEMsimulations, which allows their benchmarking under
defined conditions. Additionally, suitable process models are successfully extended
to represent screening processes under the presence of moisture.

1 Introduction

In mechanical process engineering, materials preparation and energy technology,
it is often required to classify disperse solid systems according to their particle
sizes and shapes or to separate out strongly under- or oversized material from the
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desired product [1]. In typical processes, particles are often of highly non-spherical
shape and of broad size distribution [2, 3]. However, in combined solids processes in
industrial applications, definednarrowparticle size distributionsmaybenecessary for
subsequent process steps. In this sense a technical simple, but well-suited approach
for the separation of solid mixtures is sieving or screening, which can be performed
discontinuously or continuously.

By definition, sieving or screening is a separation of a particle collective according
to geometric features, whereby ideally, other material properties such as e.g. the
particle density are not relevant [4]. Characteristic for sieving or screening is the
comparison of the bulk material with approximately equal sized openings of a solid
surface called apertures. Particles that are smaller than the apertures usually pass
by gravity, while larger particles remain as holdup on the screen. In accordance to
other classification processes, the bulk material supplied on a screen is referred to
as feed material. The particles that pass through the apertures are the fines getting
in the screen underflow, whereas the particles that remain on the screen consisting
of coarse material form the screen overflow [1, 4]. In Fig. 1, the terms in the simple
case of a discontinuous batch sieving process are summarized. Before the beginning
of a batch sieving process, a particle collective, which should be separated into size
classes, is fed on the classifier in individual charges. The process extends over a
predetermined period and the feed remains in the apparatus throughout the process
and must be discharged in a consecutive step.

The amplitude and the frequency of the vibrating sieve surface have a decisive
influence on the quality of batch sieving. The movement of the sieve ensures a ver-
tical loosening of the material, so that smaller particles can reach the sieve bottom
due to the gaps formed between the larger particles (segregation). In addition, circu-
lating and stochastic motions in the particle layer cause each particle to be compared
multiple times with the aperture size. Since not every small particle passes through
the sieve bottom on the first encounter due to local and time-varying conditions, it is
only possible to separate the sieve material into fines and coarse material over time
[1, 5]. Note that segregation in the context of sieving or screening is often referred
to by the phrase stratification.

In industrial processes, predominantly continuous screening machines like the
typical one shown in Fig. 2 are used [1].

In such a continuous screening process, the feed material is fed continuously on
a usually slightly inclined screen surface, resulting in a thick layer of particles at the
feed end of the screen apparatus. In addition to the loosening of the feed material, the
vibration of the screen also causes the transport of the particle layer along the screen
which is supported by the inclination. Thereby, the thickness of the bulk material

Fig. 1 Schematic of a
discontinuous sieving
process
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Fig. 2 Schematic of a continuous screening process

layer decreases with continuous movement of the material along the screen. At the
beginning of the screening process, much more particles are near the feed end and
only a few are at the discharge end. This state slightly shifts over time, whereby, it is
favorable that the screening process reaches a steady state after a while. This steady
state should be maintained but can be interrupted by load changes or by a shutdown
of the screening apparatus. From the screening process, the separated fractions are
discharged as overflow and underflow [1, 6].

Screening is rarely operated as a stand-alone process but mostly integrated in
a process chain with other combined solids processes in the industrial context. In
order to prevent disturbances in such connected industrial processes, the knowledge
of the influence from upstream process steps on the actual process and its impacts
on subsequent downstream processes is significant and therefore, the single pro-
cesses must be at best fully understood. Despite its wide usage in industry and recent
promising developments concerning the dynamics of screening and its subprocesses
influenced by different mechanical agitations or by a fluid, a satisfactory under-
standing of screening processes is still not fully given for mixtures of real solids,
leaving the design, optimization and scaling of this process operation a challenging
task. The underlying different processes (stratification, particle passage and particle
transport), their interaction and dynamic behavior still lack detailed understanding
[7]. Furthermore, flexible, simple and physically based process models for a quan-
titative representation of screening on the background of a transient description are
not available.

At least the two subprocesses stratification and passage are closely interlinked
during screening. Due to the mechanical excitation of the screen, smaller particles
move through the interstices of the larger particles in the direction of the screen
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surface (stratification), whereby particles smaller than the aperture size pass through
the screen openings depending on their shapes [8]. In addition, the transport of
the bulk material during the continuous screening process and various mechanical
excitations also influence the particle passage [9, 10].

For the design and optimization of apparatus-specific parameters as well as oper-
ational ones of a screening process under stationary conditions, various phenomeno-
logical process models are available. Some simple models, which are commonly
used in stationary process simulation packages, only consider the integral outcome
of the separation operation, while others represent the particle size separation tem-
porally or spatially resolved. In addition, some of the models take the interacting
processes of stratification and the actual particle passage through the screen into
account. All phenomenological models have in common that they require a set of
empirical parameters, which are material, operation and apparatus-specific and are
usually determined from experimental investigations. In contrast, particle-based sim-
ulation methods such as the discrete element method (DEM), based on the work by
Cundall und Strack [11], provide detailed insights into the process of screening and
allow, after appropriate validations, the design and optimization of equipment as well
as of operating parameters. Up to now, only a few screening investigations addressed
systems of realistic particles of complex shape or under the influence of liquid.
Applications of the DEM with the aim to directly derive parameters for dynamic
phenomenological models for the process step screening were rarely carried out and
are yet not adequately accomplished.

That the DEM is capable after appropriate calibration to perform a benchmarking
of screening process models and can even address moist particles is shown in the
following. The data obtained from the DEM can thereafter be utilized to derive and
optimize novel processmodelswhich can then be utilized in solids process simulation
frameworks.

2 Discrete Element Method (DEM)

The discrete element method (DEM) first proposed by Cundall and Strack [11] as
well as Walton and Braun [12] is a particle-based simulation approach that provides
detailed insights into various processes and has become a common tool for modeling
particulate systems (see [13–16]).After validation, it offers the possibility to optimize
equipment and operating parameters without carrying out extensive experiments
before each study. By applying this method, the movement and interaction of each
individual particle within a considered computational domain can be represented and
tracked. Contact forces between the particles and the system environment as well as
possible additional forces resulting from the presence of liquid are used to determine
velocities, positions and spatial orientations of all particles contained in the system
using the Newton’s and Euler’s equations of motion.
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2.1 Particle Geometries in the DEM

Due to its simplicity, in particularwith respect to the determination of the contacts, the
majority of studies in the field ofDEMwere using spherical particles [17]. In contrast,
non-spherical particles require a higher complexity for the contact determination
[18]. In most industrial processes, where bulk solids occur, including sieving, the
actual particle geometries, however, differ significantly from the spherical shape.
Therefore, methods for describing complex particle geometries within the DEM
have to be applied.

A common method for approximation of non-spherical particles in DEM simu-
lations is the use of superquadrics or ellipsoids (see Fig. 3a). Several studies have
demonstrated the ability to represent a wider variety of particle geometries and sig-
nificantly increase the shear strength of loose packings compared to spherical parti-
cles [19–21]. Superellipsoids or-quadrics, however, are limited to symmetrical body
shapes and cannot reproduce sharp-edged particles.

Another common typeof representationof non-spherical particleswithin theDEM
are polyhedra, which are arbitrary convex bodies defined by surface triangulation
(see Fig. 3b). Since polyhedra can have a variety of structures, the contact geometry
that occurs can be very complex. Although polyhedra have the advantage of being
versatile in use, the challenging determination of the overlaps and the resulting forces
lead to a high computational effort. This limits their applicability to large-scale
screening simulations where, in addition to many particle contacts, a large number
of particle wall contacts is unavoidable.

In addition, non-spherical particles in the DEM can be represented by the multi-
spheremethod developed by Jensen et al. [22], Favier et al. [23, 24] andVu-Quoc et al.
[25] (see Fig. 3c). Following this flexible approach, a series of spheres of any size are
bundled to determine the desired shape of the non-spherical particle as accurately
as possible [26]. As a result, the spheres can overlap while the geometry of such
a particle remains unchanged during the simulation. In addition to the flexibility
to represent a variety of shapes, the contact detection inherits its simplicity from
the spheres [17]. Although sharp-edged shapes can only be represented to a certain

a Superellipsoids b Polyhedrals c Multi-spheres

Fig. 3 Comparison of different approximations of non-spherical particles, comprising of a superel-
lipsoids, b polyhedral and c multi-sphere method
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degree with the multi-sphere method, it is well suited for modeling of screening
of non-spherical particles. Due to the relatively low computational effort the multi-
sphere approach is the most popular method for representing non-spherical particles.
However, the number of spheres required to properly approximate the real particle
must be estimated on a case by case basis [27] which is further addressed in Sect. 2.5.

2.2 Equations of Motion Governing the DEM

The DEM is routinely used to model systems with spherical particles [13, 14]. To
obtain the translational and rotational motion in such a system, the Newton’s and
Euler’s equations are integrated

mi
d2 �xi
dt2

= �Fc
i + mi �g + �Fl

i , (1)

Ii
d �ωi

dt
= �Mi , (2)

with particle massmi , particle acceleration d2 �xi/dt2, contact force �Fc
i , forces arising

from a possible liquid amount �Fl
i , gravitational force mi �g, moment of inertia Ii ,

angular acceleration d �ωi/dt , angular velocity �ωi and external moments resulting out
of contact and other sources �Mi .

When non-spherical particles are used in the DEM, the integration of the Euler’s
equation reads

Îi
d �Wi

dt
+ �Wi ×

(
Îi �Wi

)
= Λ−1

i
�Mi , (3)

where d �Wi/dt is the angular acceleration, �Wi is the angular velocity in the body
fixed frame, �Mi is the external moment resulting out of contact and other sources, Îi
is the inertia tensor along the principal axis andΛ−1

i is the rotation matrix converting
a vector from the inertial into the body fixed frame. Explicit integration schemes
are used to solve the equations for translational and rotational motion (see [28]).
The relevant forces required in Eqs. (1)–(3) are described in Sects. 2.3 and 2.4.
Contributions due to rolling friction are neglected.

2.3 Contact Forces

After determining a pair of colliding particles or a contact between a particle and
a boundary object, the resulting forces are evaluated by applying a suitable contact
force model. In this sense Fig. 4a shows a collision of two spherical particles i and
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j

i

l

k

a b

Fig. 4 A collision of two a spherical particles and bmulti-sphere particles. Reprint with permission
from [29, 30]

j, whereas in Fig. 4b the two spheres l and k of two non-spherical (multi-sphere)
particles i and j collide.

2.3.1 Normal Force Model

For the calculation of the normal force, different models are available. The most
common is the linear viscoelastic spring damper model [31, 32], which is also used
here for the determination of the normal component of the contact forces. The normal
force is given as the sum of an elastic and a dissipative component

�Fn
i j = �Fn

el + �Fn
diss = knδi j �ni j + γ n�νn

i j , (4)

where kn is the spring stiffness, δi j is the virtual overlap, �ni j . is a normal vector, γ n

is a damping coefficient and �vni j = ((�vi − �v j
) · �ni j

)�ni j is the relative normal velocity
at the contact point with the velocities �vi and �v j [31]. Note that in case of the multi-
sphere particles in Fig. 4b the force is calculated analogously between the contacting
spheres k and l of particles i and j. The damping coefficient γ n is obtained by

γ n = −(
2 ln

(
en

)
mef f

)
/tn, (5)

with the coefficient of restitution en , which has to be experimentally determined or
obtained from literature, the duration of a collision

tn = π/

(√(
kn/mef f − (

γn/
(
2mef f

))2)
)

(6)
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and the effective mass mef f = mim j/
(
mi + m j

)
.

2.3.2 Tangential Force Model

In addition to the normal force, a force component in the tangential direction for
modeling of occurring friction effects is taken into account in order to prevent par-
ticles from sliding apart in a particle bed. Also for the tangential force, different
models are applicable [33]. Similar to the normal force, the most common tangential
models are linear (see e.g. [34–36]). Here, the tangential forces are calculated by
applying a linear spring limited by the Coulomb condition and calculated as

�Ft
i j = −min

( �Ft
spring,

�Ft
coul

)
= −min

(
kt

∣∣∣�ξi j
∣∣∣, μC

∣∣∣ �Fn
i j

∣∣∣
)
�ti j , (7)

where kt is the tangential stiffness of a linear spring, μC is the friction coefficient,
�ξi j is the relative tangential displacement and �ti j is the tangential unit vector [33].
For the contact of two spheres k and l of two multi-sphere particles i and j (comp.
Fig. 4b), only the indices are changed in Eq. (7). The tangential spring stiffness kt is
obtained as

kt = κmef f
(
π/tn

)2
, (8)

where κ is given through the mechanical properties as

κ = (
(1 − νi )/Gi + (

1 − ν j
)
/G j

)
/
(
(1 − 0.5νi )/Gi + (

1 − 0.5ν j
)
/G j

)
, (9)

where ν is the Poisson’s ratio and G = E/(2 + 2ν) is the shear modulus of the two
interacting materials of particles i and j depending on Young’s modulus E and again
Poisson’s ratio ν [37].

2.4 Liquid Bridge Forces

For slightly wet or moist particles liquid bridge forces have to be considered [38].
Several researchers have proposed expressions for the determination of capillary
forces (see e.g. [39–41]), viscous forces (see e.g. [42–45]), as well as for the forma-
tion, the shape, the liquid volume and the redistribution of liquid due to the rapture
of a liquid bridge [46, 47]. In addition, some expressions in closed form have been
proposed for the accurate calculation of liquid bridges [48, 49] and the derived mod-
els have to some extend been used in DEM simulations (see e.g. [50–54]). However,
all these models are limited to the calculation of forces in pendular states, while only
a few researchers also investigated the condition of the funicular state [55–57].
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Considering the pendular state with small amounts of liquid, individual liquid
bridges exist between pairs of particles, which leads to certain resulting adhesive
forces. In the DEM model used here, only the capillary force �Fcap

i j as well as the

viscous forces in normal �Fnvis
i j and tangential direction �Ftvis

i j are applied, resulting
in the total liquid bridge force

�Fl
i j = �Fcap

i j + �Fnvis
i j + �Ftvis

i j , (10)

which is calculated in addition to the contact force in Eq. (1). The external moment
�Mi in Eq. (2) is also extended and is now the sum of the moments due to a contact
�MC,i and a liquid bridge �ML ,i = �r × �Ftvis

i .
When two particles i and j such as in Fig. 4a or a particle and awall get into contact

in amoist surrounding, a liquid bridge forms out between them. Both contact partners
contribute to the liquid bridge, which is assumed to be constant in volume (Vlb) until
it breaks, which occurs according to Willett et al. [40] when the distance S between
two contact partners with ri ≥ r j is larger than

Srup = 2rre f f

(
1 + (

0.25θi j
)(

1 + r j
ri

))

⎛
⎝

(
Vlb

8r3re f f

)1/3

+
(
r j
2ri

− 2

5

)(
Vlb

8r3re f f

)2/3
⎞
⎠. (11)

During the liquid bridge contact, the capillary forces between two particles as
well as between a particle and a wall are obtained according to Rabinovich et al. [39]
and Pitois et al. [44] as

�Fcap
i jpp =

⎛
⎜⎝− 2πσrre f f

(
cos θi + cos θ j

)

1 + 1/
(√

1 + Vlb
(πrre f f S2)

− 1
) − 4πσrre f f sin

(
θi j

)
sin

(
θi j + ϕi j

)
⎞
⎟⎠�ni j ,

(12)

�Fcap
ipw =

(
−2πσri (cos θi + cos θw)

1 + S
√

πri/Vlb
− 2πσri sin(θiw) sin(θiw + ϕiw)

)
�niw, (13)

with the surface tension coefficient σ , the static contact angles θi , θ j and θw of the
particles i, j and a wall, respectively as well as their mean values θi j and θiw (comp.
[58]), the separation distance S, the reduced effective radius rre f f and the half filling
angles

ϕi j =
√
S/2rre f f

(
−1 +

√
1 + Vlb/

(
πrre f f S2

))
(14)

and
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ϕiw =
√
2S/ri

√
1 + Vlb/

(
πri S2

)
. (15)

Furthermore, viscous forces are considered, calculated in normal direction
according to Pitois et al. [44] as

�Fnvis
i j = −6πηr2re f f �νn

i j

S

(
1 − 1/

√(
1 + Vlb/

(
πrre f f S2

)))2

, (16)

with the liquid dynamic viscosity η. In tangential direction, Goldman et al. [43]
introduced the following correlations

�Ftvis
i j = −6πηrre f f

(
8

15
ln

rre f f
S

+ 0.9588

)
�vti j

− 6πηrre f f

(
2

15
ln

rre f f
S

− 0.2526

)
�ωi j × �ni j , (17)

�Ftvis
i j = −6πηrre f f

(
8

15
ln

rre f f
S

+ 0.9588

)
�vti j

− 6πηrre f f
8

(
rre f f

S + rre f f

)4
(
1 − 3rre f f

8
(
S + rre f f

)
)

�ωi j × �ni j , (18)

valid for S < 0.1rreff and S ≥ 0.1rreff , respectively, with �vti j = �vi − �v j − �vni j as the
tangential relative velocity and �ωi j = ri �ωi +r j �ω j as relative rotational velocity of the
spheres. When a liquid bridge ruptures its liquid amount is spread among particles
and particles and walls—for details see [29].

2.5 Determination of DEM Parameters

In order to be able to carry out DEM simulations reliably, various parameters such as
particle size, shape anddensity, aswell as stiffness, friction and restitution coefficients
are required. Various procedures and methods for the experimental determination of
the latter DEM parameters have been introduced and applied in recent studies [59].
According to [59], it is possible to choose between two general methods or a com-
bination of both to determine DEM parameters. In the first, bulk experiments and
simulations are performed with the same setup, iteratively adapting the simulation
parameters to exactly match the experimentally obtained outcome, regardless of the
accurate representation of each individual property. Disadvantages of thismethod are
the possible limitation to the examined application and the used DEM submodels as
well as the partial loss of the physical meaning of the DEM parameters [60]. In con-
trast, these disadvantages are not present when the second method is used, in which
the individual particle properties are measured directly. Difficult in this approach
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is the parameter determination for small and arbitrarily shaped non-spherical par-
ticles [59, 60]. Even if the values are measured with high accuracy, the results in
bulk experiments and simulations may differ, due to computational limitations with
which the particle size and shape is resolved in the simulations [61–63]. Another
possibility is to combine both methods by first determining the parameters with the
second method, followed by an parameter adaptation with small scale experiments
according to the first method as proposed by Elskamp et al. in [30].

2.5.1 Determination of DEM Parameters at the Single Particle Scale

Two of the most important parameters for DEM simulations are the particle size and
shape, which must be determined in advance to other parameters. While the particle
size usually can be measured easily, the representation of particle shape is more chal-
lenging although it can be relied on the approaches as outlined in Sect. 2.1. In the past
some researchers represented simple model shapes by manually assembling spheres
when relying on the multi-sphere method. Among others, Markauskas et al. [64]
used 3 to 50 spheres of different sizes to represent ellipsoid particles. Particles with
a slightly more complex shape were reported by Pasha et al. [65], which represented
maize grains with a clump of several spherical particles generated by an automated
optimization process based on 3DX-ray tomography data. In contrast,Williams et al.
[66] evaluated descriptions of the irregular particle shapes of iron ore using a digi-
tal image segmentation technique and generated corresponding non-spherical DEM
particles. Mollon and Zhao [67] presented a method for producing 3D non-spherical
particles based on three 2D contours of the cross sections of random realistic grains
of sand. A similar method was derived in [30] using an automated shape adaption
algorithm.

Other important parameters for DEM simulations, which can be determined by
direct measurement at the individual particle level, are the particle density, stiffness,
Young’s and shear modulus, sliding and rolling friction, damping and the coefficient
of restitution.

If, as here, a linear contact model is used, particle stiffness is specified based on an
appropriate calibration with various small scale experiments (e.g. shear tests) or by
sensitivity analyzes. In contrast, when using Hertz-Mindlin models it is required to
calculate contact stiffness based on Young’s modulus, shear modulus, and Poisson’s
ratio. The modulus of elasticity is obtained by uniaxial compression tests in which
individual particles are compressed [68–70].

Several researchers have reported the particle-wall sliding friction obtained with
different approaches. Onemethod for determining slip friction between two particles
wasdescribedbySenetakis et al. [71],whodesigned adevice to performshear tests for
small displacements, loads and non-spherical particles. Barrios et al. [63] determined
the contact coefficient of sliding friction with a rotating pin-on-disk tribometer. In
addition, the coefficient of sliding friction can be obtained using a direct shear box
(e.g. Jenike shear cell) in which a wall is replaced by the desired wall material and
the particles are sheared over it (see e.g. [72–75]).
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For the investigations presented here, the sliding friction between two contact
partners is taken from literature data or determined with the experimental set-up
shown inFig. 5 (see [36, 76]). In a similar experimentwithout a spindle, the coefficient
of static friction is determined at the moment when the plate with the particles begins
to move [36, 76].

The coefficient of restitution between two particles is determined by the method
shown in Fig. 6a according to Wong et al. [77], González-Montellano et al. [70]
and Alonso-Marroquín et al. [78]. In this case, a particle connected to the end of a
pendulum is released from a vacuum tweezer to fall off, resulting in a particle motion
on a circular path until it collides with another motionless particle consisting of the

Fig. 5 Determination of the sliding friction by dragging one contact partner over another. Reprint
with permission from [30]

Fig. 6 Determination of the restitution coefficient for a particle-particle contacts with the double
pendulum method [70, 77, 78] and particle-wall contacts with b the pendulum method and c the
drop test [70, 78–80]
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material of the second contact partner. Then the coefficient of restitution for this
particle-particle contact is determined based on H0, H1 and H2.

The construction of Fig. 6a may be modified to study particle wall collisions
according to the construction shown in Fig. 6b, in which the second particle is
replaced by a wall of the desired material. Another method for obtaining the coeffi-
cient of restitution between a particle and a wall is the common drop test shown in
Fig. 6c (see e.g. [68, 70, 78–81]). The latter approach can be used for spherical and
non-spherical particles, considering the angle of motion and angular velocity [82–
84]. Note that the drop test can also be used to measure the coefficient of restitution
for particle-particle contacts (see e.g. [68, 70, 78–81]).

2.5.2 Determination of DEM Parameters at the Bulk Particle Scale

For the determination of DEMparameters at bulk level, various tests are carried out at
small scale, whereby one or more parameters of the respective DEM simulations are
iteratively adapted to the obtained experimental results. To adjust the bulk density,
simple experiments can be carried out to fill a container of known volume, and the
same particle bed height should be obtained in experiments and simulations (see e.g.
[85–88]).

A very common method for taking into account sliding friction, in particular
between particles, but also between particles and walls, is the measurement of the
static angle of repose in a pile formation test (see e.g. [27, 60, 62, 63, 72, 74, 89]). In
this case, a container, which is filled with the particles used in the real application, is
lifted from a plate or opened at the bottom, which leads to the release of the particles.
This results in the formation of a pile from which the angle to the horizontal can be
measured. The material of the container and especially the bottom plate should be
made of the same material as the wall elements in the simulations. As an example,
see Fig. 7, where this approach is applied to spherical particles of polyoxymethylene
(Fig. 7b) and gravel (Fig. 7c).

Another approach to adjust the coefficients of sliding friction is based on the
measurement of the dynamic angle of repose formed by bulk materials in a rotating
drum. The measured experimental angle can be compared with the results of the

a b cv = 0.011 m/s

Fig. 7 a Experimental set-up to measure the static angle of repose and b resulting piles of 5 mm
POM spheres as well as c piles of gravel in the experiments (top) and the simulations (bottom).
Reprint with permission from [30]
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a b c d                            e

Fig. 8 a Experimental set-up to measure the dynamic angle of repose as well as resulting piles of
b, c 5 mm POM spheres and d, e gravel in b, d the experiments and c, e the simulations. Reprint
with permission from [30]

respective simulations, in which the same particle and wall properties are used as
in the experiment (see e.g. [63, 68, 90–93]). For example, see Fig. 8, where this
calibration is again performed for polyoxymethylene spheres (Fig. 8b and 8c) and
gravel (Fig. 8d and 8e).

The restitution coefficient or the damping coefficient can also be adjusted by
experimental and numerical comparison of particle behavior and average particle
height in vibrating beds (e.g. [94]) and by backward calibration using the drop test
[63]. Further details on the approximation algorithm for non-spherical particles and
on the determination and adaptation of DEM parameters can be found in [30].

3 Process Models

Flowsheet simulations of solids processes allow the modelling of larger process
chains with reasonable resources. They allow to look at process feasibility, sensitivity
with regard to process parameters as well as process optimization of individual
process steps, but also of the overall process chain. In contrast to DEM modelling
as described in Sect. 2 they require much less computational resources and therefore
are much quicker to perform. On the other hand, however, as a prerequisite, they
require phenomenological process models which for screening are introduced and
briefly discussed in the following.

3.1 Flowsheet Simulations of Solids Processes

A large amount of parameters has to be considered when solids production processes
should be developed or optimized. These processes are often very complex and
comprise of a multitude of interconnected subprocesses. A good way to look at the
overall process is given in terms of the underlying flow sheet [95], which also offers
a good way of modelling. Thereby a distinction can be made between stationary and
dynamic modeling [96]. In the first case, all processes are calculated under steady-
state operating conditions, including time-constant process variables and a fulfilled
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mass and energy balance without accumulations. In contrast, dynamic modeling can
take into account accumulations and unbalanced states to cover a variety of additional
issues such as oscillations, batch or semi-batch processes, load changes, and startup
and shutdown procedures [95]. In addition to the direct dynamic behavior in a process
unit, dynamic effects can also be attributed to changes in upstream process steps and,
in addition, influence subsequent downstream processes. To avoid interruptions or
mechanical failures in industrial processes, the understanding of transient processes
and the development of transient process models is essential [97]. To study the
dynamic behavior of entire solids process chains without extensive experimental
investigations, these models need to be linked by a robust and efficient framework
for dynamic process simulation [98]. It should be noted that due to the complexity
and disparity of the solid phase with sets of distributed parameters that may even
be interdependent [99], such a framework for solids processes needs to meet very
different requirements than a similar framework for fluid processes [100]. Therefore,
most of the current dynamic simulation tools are designed for liquid processes with
some limited extensions for the solid phase. In this context, a new framework for
dynamic simulations of solid processes (Dyssol) was developed as part of the DFG
priority program SPP 1679. Further information on the Dyssol framework can be
found in the work by Skorych et al. [95], in which this novel tool for dynamic
flowsheet simulations of solids processes is introduced, and of course throughout
this book.

3.2 Phenomenological Process Models for Screening

In order to analyze entire process chains of interconnected solids processes, the
understanding of the individual processes and their modeling as process models is
unavoidable. Usually, these models are often partially empirical, their parameters
have to be adjusted to measured data to obtain reliable results, and therefore they
depend on material properties and device geometries [101, 102]. In particular, a
predictive process model for screening that includes consideration of its inherent
transient nature as well as directly induced or resulting dynamic effects would be
important for industrial process design, monitoring, and optimization [97]. To repre-
sent the particle size separation during a screening process without extensive exper-
iments, several phenomenological screening process models are available which are
discussed in the following.

3.2.1 Steady State Separation Curve Screening Models

One way of obtaining a process model for screening is the utilization of a separation
curve that is limited to the steady state. For known fractional mass flow rates in
the feed and in the overflow, which are obtained from experiments or simulations,
overflow separation curves can be derived as
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Ti = T (d) = ṁi,over f low

ṁi, f eed
. (19)

In the literature, several authors proposed equations to estimate the aforemen-
tioned separation curves. Most of these model equations are based on the parameter
aS , which is the fine material that does not come into contact with the screen surface
and leaves as an overflow, the cut size dcut , which is the particle size where Ti = 0.5,
and the separation sharpness αS which is an adjustable parameter. In this context,
Dehghani et al. [103] suggested the following two parameter equation based on the
model of Hatch and Mular [104], which is referred to as model No. I

T (d)Dehghani = 1/
(
1 + exp

(
θ
(
d3
cut −

(
dl

√
2d cos θ

√
2d sin θ

))
/αS

))
, (20)

where θ = tan−1(dt/dw) and dt , dw and dl are the thickness, width and length of
the particle, respectively. The particle diameter d in Eq. (20) is obtained as d =√(

d2
t + d2

w

)
/2.

Plitt [105] described the classification with the following three parameter
separation function

T (d)Pli t t = (1 − aS) ·
(
1 − exp

(
− ln 2 ·

(
d

dcut

)αS
))

+ aS, (21)

referred to as model No. II. Based on the model by Hatch and Mular [104], Rogers
[106] proposed a refined three parameter separation curve equation referred to as
model No. III

T (d)Rogers = (1 − aS)

1 + ( dcut
d

) · exp
(

αS ·
(
1 −

(
d
dcut

)3
)) + aS. (22)

Another model equation normally utilized in the context of air classifiers, but also
applicable for screening processes was derived by Molerus and Hoffmann [107]. It
is referred to as model No. IV in the following, including the possible bypassing of
fines (comp. [106])

T (d)Molerus = (1 − aS)

1 + ( dcut
d

)2 · exp
(

αS ·
(
1 −

(
d
dcut

)2
)) + aS. (23)

In order to provide a better adaptability, based on themodel structure by Trawinski
[108], three other four parameter separation functions are considered here
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T (d)Trawinski_1 =
(
1 −

(
1 +

(
αS
√
2 − 1

)(
d

dcut

)αS ·βS
)−αS

)
· (1 − aS) + aS,

(24)

T (d)Trawinski_2 =
⎛
⎜⎝1 −

⎛
⎝1 + 3 ·

(
d

dcut

)((
d

dcut
+αS

)
·βS

)⎞
⎠

−0.5
⎞
⎟⎠ · (1 − aS) + aS,

(25)

T (d)Trawinski_3 =
(

d
dcut

)αS ·
(

d
dcut

+βS

)

1 +
(

d
dcut

)αS ·
(

d
dcut

+βS

) · (1 − aS) + aS. (26)

Their additional fourth adjustable parameter βS conduces to represent the asym-
metry of the separation curve. Further they are referred to as models Nos. V–VII.
For more details on the models I-VII see [109].

3.2.2 Steady State Spatially Resolved Screening Models

The available phenomenological continuous screening models are divided into
kinetic [3, 110–114] and probabilistic theoretical models [3, 103, 115–118]. Both
model groups allow a spatially resolved representation of a screening process in the
steady state and therebyprovidemore information than the separation curve screening
models provided in Sect. 3.2.1. The presented phenomenological screening models
are also applicable to discontinuous [110] screening processes [111] by replacing the
length l by the time t in the model equations (see Sect. 3.2.3). It should be noted that
a discontinuous screening process is by definition transient, whereas a continuous
screening process may be transient (e.g. during startup and for load or operational
changes), but normally assumes a steady state after some time. This allows the use of
the in Table 1 summarized screening process models that provide spatially resolved
information on passage along the screen at the obtained steady state. At the moment
there are no transient, spatially resolved screening process models available.

First-order kinetics provides the basis for kinetic models that can be augmented
by a particle passage probability [112] which require low computational effort to
solve the underlying equations. The resulting models are limited to shallow particle
beds on continuously operated screens [119]. In contrast, probabilistic approaches
require a greater number of parameters [112], which typically include the probability
that small size particles will pass through an aperture, such as derived e.g. by Gaudin
[120]. Operating parameters of screening processes such as mechanical agitation,
screen size and properties (e.g. aperture shape) and particle composition (e.g. particle
elongation) can be taken into account when using probabilistic models [3, 103, 115].
However, probabilisticmodels usually only consider the particle passage itself during
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the screening process and thus do not provide any further insight into other related
subprocesses [119].

In contrast, some phenomenological screening models account for concurrent
subprocesses by providing additional input parameters, e.g. the opposing processes
of stratification and particle passage through the screen apertures [7, 9, 10]. In this
sense the original model of Soldinger [9] was extended by the influence of the
particle layer thickness and the consideration of the bulk material composition [10].
The prediction of the conveyance speed of the bulk material on the screen as a further
extension of this model was dealt with in another paper by the same author [121].

Table 1 gives an overview of all investigated screening process models including
the name of the author and a model number (Arabic numerals), including the main
equations and the adjustable model parameters used. A more detailed description of
all investigated models can be found in [109].

All models outlined in Table 1 have in common that they rely on the overall
screening efficiencyE as a screen length dependent variable for continuous screening.
It is given as

E = E(l) = (ṁ0 − ṁ)/ṁ0, (27)

where ṁ0 is the initial undersizedmass flow at l= 0 and ṁ is the remainingmass flow
of the undersized material at the screen position l. In the case when the undersized
particles are considered as different fractions, the screening efficiency is stated per
particle size class i

Ei = Ei (l) = (
ṁi,0 − ṁi

)
/ṁi,0, (28)

where ṁi,0 is the initial fractional and ṁi is the actual fractional undersized mass
flow. This is related to the overall screening efficiency by E = ∑n

i=1

(
Ei · ṁi,0/ṁ0

)
,

where n is the number of undersized particle classes.

3.2.3 Transient Screening Models

In Table 1 presented steady state spatially resolved screening models can also be
applied to transient discontinuous screening by replacing length l by time t. In addi-
tion to the thirteenmodels listed inTable 1 two othermodels by Shimosaka et al. [118]
and Yoshida et al. [7] become applicable. The complete list of models is presented in
Table 2 (for details see [122]). Themodels allow the calculation of the overall screen-
ing efficiency E which is a time dependent variable during batch screening given as
E = E(t) = (m0 − m)/m0, where m0 is the initial undersize mass at t = t0 and m is
the actual mass of the undersize material on the screen at time t. Often the screening
efficiency is stated per particle size class i as Ei = Ei (t) = (

mi,0 − mi
)
/mi,0,which

is related to the overall screening efficiency by E = ∑n
i=1

(
Ei · mi,0/m0

)
, where n is

the number of undersize particle classes. The screening efficiency for each particle
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Table 2 Governing equations of the studied discontinuous screening process models. Reprint with
permission from [122]

Model number and
origin

Major equations Adjustable
parameters

α. Standish and
others [110, 112,
117]

E = 1 − exp(−kt) k

β. Andreev et al.
[113]

E = 1 − exp(−ktn) k, n

γ.
Trumic/Magdalinovic
[112]

E = 1 − 1/(1 + kt) k

δ. Standish [110] E = ∑n
i=1

(
(1 − exp(−Aki t)) · mi,0/m0

)
A: screen area; n: number of undersize fractions

k1,…, kn

ε. Grozubinsky et al.;
deterministic [3]

E = 1 − exp(−(a − d)(1 − exp(−βt))tq/β) q, β

ζ. Subasinghe et al.
[114]

Ei = 1 − [ksi exp
(−kpi t

) − kpi exp(−ksi t)]/
(
ksi − kpi

)
;

E = ∑n
i=1

(
Ei · mi,0/m0

)

ksi : rate constant of segregation and kpi : rate constant of passage

ks1,…, ksn
kd1,…, kdn

η. Grozubinsky et al.;
probabilistic [3]

E = 1 − exp(−q(a − d)(1 − exp(−βt))t/β)

· (
1 + 0.5(qt/β)2(aD − dd0)(1 − exp(−βt))2

)

aD = 1
h−1

∑h
i=1(ai − ā)2; dd0 = 1

n−1

∑n
i=1

(
di − d̄

)2
aD, dd0: dispersion index of a (aperture size) and d (particle
diameter)
n: number of undersized particles; h: number of apertures

d̄: average undersized particle diameter, ā: average aperture size

q, β

θ. Subasinghe et al.
[115]

E = 1 − (1 − P)N ; P = (a − d)2/(a + w)2 for screen incl. ϕ
= 0°

N =
{
c1 · tτ1 · (d/a) f or(d/a) < c2 · tτ2/(c1 · tτ1 + c2 · tτ2 )
c2 · tτ2 · (1 − d/a) f or(d/a) > c2 · tτ2/(c1 · tτ1 + c2 · tτ2 )

c1,c2,τ1,τ2

κ. Shimosaka et al.
[118]

E = 1 − exp(−Pt); P = kPg Pe Pf Cp ;

Pe: initial undersized particle ratio
Pf = H/H50;

Cp = 0.1463 · v f rq · vamp; Pg : passage probability [120]
v f rq : vibration frequency; vamp : vibration amplitude
H: max. height of initial position of particles;
H50: height of 50% of particles

k

(continued)
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Table 2 (continued)

Model number and
origin

Major equations Adjustable
parameters

λ. Nakajima/Whiten
[116]

E = 1 − exp(−N P); N = kt

P =

cos4(θ − π/8)α

(
1 −

(
d
a0

)
×

((
a1
a2

)2
sin2 θ + cos2 θ

)0.5
)2

θ = tan−1(dt/dw); dt , dw : particle thickness/width;

a0 =
√(

a21 + a22
)

k

μ. Dehghani et al.
[103]

E = 1 − exp(−N P); N = kt

P = α
((

a1 − √
2d cos θ

)(
a2 − √

2d sin θ
)
/(a1a2)

)

θ = tan−1(dt/dw); dt , dw : particle thickness/width;
α: fraction open area

k

ν. Ferrara et al. [117] m0

(∑n
j=1 y j,0

(
1
X ji

)(
Ei (t)X ji − 1

) + ln Ei (t)
∑r

j=n+1 y j,0
)

=
−k2σ

(
1 − di

a

)σ

t

y j,0: initial weight fraction of particle fraction j

X ji = ((
a − d j

)
/(a − di )

)σ

di , d j : studied/other present particle diameters
n, r: number of undersized/undersized + oversized particle
classes

k
σ (screen
mesh
dependent)

ξ. Soldinger; without
undersized fractions
[9]

E j+1 = k j B j
(
t j+1 − t j

) + E j

B j+1 = Bj + (
c j

(
1 − S j

) − k j B j
)(
t j+1 − t j

)
j: time index

k j = b
(
1 − E j

)
; c j = f

(
wq , wd

)

B: fractional mass of undersized particles in bottom layer
S: fractional mass of undersized particles stratified into bottom
layer
E : fractional mass of undersized particles passed through
apertures

wq
(dependent
on
proportion
of undersize
material)
wd
(dependent
on width of
particle size
distribution)
b
(dependent
on particle
size)

(continued)

size class Ei (t) is calculated on the basis of the fractional initial undersize mass mi,0

and fractional actual undersize mass mi.
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Table 2 (continued)

Model number and
origin

Major equations Adjustable
parameters

π. Soldinger; with
undersized fractions
[10]

Ei, j+1 = ki, j Bi, j
(
t j+1 − t j

) + Ei, j ; i: particle class; j: time
index
E j = ∑n

i=1 Ei, j ; Bj = ∑n
i=1 Bi, j ; n: number of undersized

particle classes

Bi, j+1 = Bi, j + (
ci, j

(
Si,∞ − Si, j

) − ki, j Bi, j
)(
t j+1 − t j

)
;

ki, j = bi
(
1 − Ei, j

)
; ci, j = f

(
wq , cd,i

)

Bi : fractional mass of undersized particles in bottom layer
Si : fractional mass of undersized particles stratified into bottom
layer
Ei : fractional mass of undersized particles passed through
apertures

wq

(dependent
on
proportion
of undersize
material)
cd,1,…, cd,n
(dependent
on particle
size
distribution)
b1,…, bn
(dependent
on particle
diameter
and aperture
size)

ρ. Yoshida et al. [7] E j = 1 − 1/m0
(
1 − Pj

) · m j−1

Pj = Pr Pp, j−1,nL ; j: trial index with j = f · t ;
Pr = PbB + Ps(1 − B)

Pb, Ps : probability of particles passing screen boundary/screen
openings
B: area ratio of the boundary on the screen surface
Pp : probability of particles existing at a certain vertical position
in the bed
Pp, j,nL = Ppe,nL Pp, j−1,nL−1 + (1 − Pr )

(
1 − Ppe,nL

)
Pp, j−1,nL ;

nL : bottom layer
Ppe = f (c): probability of undersized particles passing through
a particle layer

c =
{0, . . . , 1}

3.2.4 Extended Transient Screening Models to Cope for Moisture

In [123], selected phenomenological models for discontinuous screening as outlined
in Sect. 3.2.3 have been extended to include the presence of moisture within the
treated granular material. The special feature of the models is that, after adjusting
themodel parameters, they also have predictive capabilities for changes in amplitude,
frequency, particle diameter, and moisture content. Table 3 gives an overview of the
advanced screening process models which are titled with the name of the author and
an alphabetic character. Table 3 also contains the most important equations as well
as the model parameters used. All models calculate the fraction retained over time
by particle size class i:

Yi = Yi (t) = mp,l,i/mp,l,i,0, (29)

where mp,l,i,0 is the initial fractional mass of the particles at t = 0 s and mp,l,i is the
remaining fractional mass of the particles at time t. Note that both masses include



5 Development of a Dynamic-Physical Process Model for Sieving 165

Table 3 Governing equations of the extended and applied phenomenological screening process
models. Reprint with permission from [123]

Model number
and origin

Major equations Adjustable
parameters

a. Dong et al.
[124]
(based on
Subasinghe
et al. [115])

Yi = (1 − Pi )Ni

Pi = (a − di )2/(a + w)2

a: aperture size w: wire diameter; di : particle
diameter

Ni = k
(

A f (1−M)γ√
di g

)α
t

tend

k, α, γ

b. Subasinghe
et al. [114]

Yi =(
ks,i exp

(−kp,i t
) − kp,i exp

(−ks,i t
))

/
(
ks,i − kp,i

)

ks,i = ks

(
A f (1−M)γ√

di g
di
dav

)α

kp,i = kp

(
A f (1−M)δ√

di g
di
a

)β

ks , kp, α, β, γ, δ

c. Soldinger [10] Yi, j+1 = Yi, j − ki, j Bi, j
(
t j+1 − t j

)
; i: particle

class; j: time index

Bi, j+1 =
Bi, j + (

ci, j
(
Si,∞ − Si, j

) − ki, j Bi, j
)(
t j+1 − t j

)

Y j = ∑n
i=1 Yi, j ; Bj = ∑n

i=1 Bi, j ; n: number of
undersized particle classes

ki, j = biYi, j ; ci, j = f
(
wq,i , cd,i, j

)

wq,i = ks

(
A f (1−M)γ√

di g
di
dav

)α

bi = kp

(
A f (1−M)δ√

di g
di
a

)β

Bi : fractional mass of undersized particles in
bottom layer
Si : fractional mass of undersized particles
stratified into bottom layer

ks , kp, α, β, γ, δ

the particle mass and additionally the mass of liquid assigned to the particles. The
fraction retained Y is related to the screening efficiency by Y = 1−E.

4 Benchmarking and Extension of Process Models Based
on Discrete Element Simulations

In the following, DEM investigations basing on the modelling framework as intro-
duced in Sect. 2 of dry particle systems are performed in Sect. 4.1 for continuous
[109] and in Sect. 4.2 for discontinuous [122] screening, respectively. Main features
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of the relevant screening subprocesses are derived and available process models as
introduced in Sects. 3.2.1–3.2.3 are benchmarked for both continuous and discontin-
uous processes. In Sect. 4.3 results for discontinuous screening under the influence
of moisture are validated against experiments. Thereafter process models as derived
in [123] and stated in Sect. 3.2.4 are benchmarked against the obtained DEM results.

4.1 Continuous Screening

As a first case screening of a polydisperse feed material is investigated by the DEM
in a continuously operated screen apparatus as shown in Fig. 9a. In Sect. 4.1.1 the
numerical setup is described and the required simulation parameters are outlined. In
Sect. 4.1.2 the results are presented as obtained from the DEM (section “Numerical
Investigations”) and the process models (Section “Benchmarking of Steady State
Separation Curve Screening Models”).

4.1.1 Numerical Setup and Simulation Parameters

The considered apparatus is equipped with a wire screen of 0.35 m x 0.1 m size.
The square aperture size is 4.9 mm while the wire diameter is 1 mm. In the initial
configuration, the apparatus is vibrated with 27.6 Hz with a stroke angle of 45° to the
horizontal at an amplitude of 1.76 mm (Fig. 9a). The mass flow of the polydisperse
feed material amounts to 0.1 kg/s in the initial setup. The material comprises of
particles with a density of 2700 kg/m3 subdivided equally into 100 size classes rang-
ing from 2.4 mm to 7.35 mm. Besides spheres, cylinder-like and double cone-like
particles are studied in this investigation (see Fig. 9b). The non-spherical particles
(shapes (2) and (3)) have an aspect ratio of 1.55. The cylindrical particles (shape
(2)) are volume equivalent to the spherical particles and have a hemispherical termi-
nation at both ends. The double cones (shape (3)) have the same minor dimension
as the spheres. If needed for analysis or as a parameter for a screening model, the

a b

a = 4.9 mm
w = 1 mm

l = 0.35 m

0.07 m

Vibration amplitude 1.76 mm 
and frequency 27.6 Hz

0.035 m

0.1 m

21

345°

Fig. 9 a Continuous screening apparatus with wire structure; bConsidered particle shapes. Reprint
with permission from [109]
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equivalent diameter of a complex shaped particle is calculated from its volume as
dvol = 3

√
6 · V/π , where V is the volume of the particle.

DEM parameters were used for the simulations in accordance with Delaney et al.
[125] andCleary [15] applicable for standard industrial quarry rock, with the stiffness
of the normal spring kn = 1000 N/m, the stiffness of the tangential spring kt=
500 N/m, the particle-particle restitution coefficient enPW = 0.4, the particle-wall
restitution coefficient enPW = 0.5, and the particle-particle and particle-wall friction
coefficients μc,PP = μc,PW = 0.5.

4.1.2 Results and Discussions

For each particle shape, the influence of the parameter modifications outlined in
Table 4 is examined. Starting from the initial setup (base case), variations of the
vibration amplitude and frequency, stroke angle and particlemass floware performed.
Only one parameter is varied at a time. The simulation results are subsequently
compared to results attained by separation curve and phenomenological screening
process models (comp. Sects. 3.2.1 and 3.2.2) whose adjustable parameters are fitted
by genetic algorithms [126] for the separation curves or to the fraction/fractions
retained on the screen obtained from the DEM, respectively.

Numerical Investigations

In the DEM simulations, particles are continuously fed onto the vibrated screen well
mixed until a steady state is reached. The steady state is reached, when the inlet
flow rate is equal to the sum of overflow and underflow. The simulations are then
maintained for at least Δt = 10 s, thereafter. All analysis presented are based on this
time period of Δt = 10 s in the steady state. Due to the inclined vibration of the
screen, particles are transported along it. The finest particles nearly instantly pass the
apertures after getting in contact with the screen surface. Larger undersized particles
need more attempts, and hence time, to pass and therefore travel along the screen
for some distance before they pass through the screen. A bottom layer of particles
larger than the aperture size forms out on the screen which hinders the subsequent
passage of the undersized particles. The bottom layer is whether dilute or dense
and covered with further layers of coarse material, whereby this depends on the

Table 4 Initial setup and performed variations of the continuous screening investigations

Parameter Initial Var. 1 Var. 2 Var. 3

Amplitude [mm] 1.76 1.32 2.2 2.64

Frequency [Hz] 27.6 20.7 34.5 41.4

Stroke angle [°] 45 30 60 –

Particle mass flow [kg/s] 0.1 0.05 0.15 0.2
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Fig. 10 a, b Particle passage through the screen openings for the three considered particle shapes
over screen length for varying amplitudes (a) and frequencies (b). Reprint with permission from
[109]

screen configuration, the operational parameters and the shape of the particles. As a
consequence, fine and near mesh sized particles have to stratify downwards through
the gaps between the oversized particles to approach the screen surface. Only then
the fine particles regain the possibility to pass through the screen apertures.

In order to achieve comparability for the particle passage between the differ-
ent cases examined, the mass flow rate passed through is summed up for all particle
classeswith smaller diameters than the apertures and normalized by the feed through-
put. For all shapes the threshold diameter d = dvol is aligned with the aperture size.
Thereby, the fraction retained Y over the screen length is obtained which is related
to the screening efficiency by Y = 1−E. The fraction retained is outlined in Figs. 10
and 11. Among the particle shapes considered, the highest passage ability in most
studies is achieved by volume equivalent cylinders, followed by double cones and
then spheres, which is mostly caused by pegging of apertures by the latter.

In the base case configuration using spheres (shown in Figs. 10 and 11 in yellow),
the steady state is reached at about t = 65 s. In the start-up phase, particles pass
through the apertures at the beginning of the screen, but over time, particles accumu-
late due to pegged apertures. As a result, the passage of the particles shifts towards
the end of the screen over time, which is associated with long residence times, espe-
cially for particles close to the mesh size. Parts of the screen surface are completely
blocked by particles of near mesh size, and therefore the fraction retained curves in
Figs. 10 and 11 for the base case show a flat, near-linear decline, rather than an initial
rapid decline, followed by a flattening as observedmostly for non-spherical particles.
Because of the thick particle layer, very small particles in particular require more
time to stratify and thereby move along the screen, resulting in a delayed/shifted
transition into the underflow, or they even remain on the screen and get discharged
into the overflow. In the base case, some of the undersized particles pass the apertures
near the end of the screen, as larger particles previously pegging the apertures get
aerated when being discharged into the overflow.
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Fig. 11 a, b Particle passage through the screen openings for the three considered particle shapes
over screen length for a varying stroke angles and b mass flows. Reprint with permission from
[109]

In the first variation performed (Fig. 10a), the initial amplitude of 1.76 mm is
varied according to Table 4. A reduction of the amplitude is not feasible for spheres
due to too excessive accumulation of particles on the screen, whereas an amplitude
of 1.32 mm is applicable for complex shaped particles. However, this leads to an
intensive accumulation of particles and thus to a shifted/delayed particle passage,
especially for double cones. Here, the steady state is reached after t = 50 s. Increasing
the amplitude to 2.2 mm eliminates the problems for spheres, improves their particle
passage by enhancing their transport along the screen. If a larger amplitude is applied
beyond a threshold (amplitude>2.2mm)undersized nearmesh particles reside longer
on the screen because of an extended free flight period resulting in less particle screen
contacts and thus less available attempts to pass (not shown in Fig. 10) which results
in a reduced particle passage (Fig. 10a).

The second parameter variation (Fig. 10b) deals with the change of the frequency
in accordance with Table 4. The results are qualitatively consistent with those from
the first investigation. In case of a reduced frequency for non-spherical particles, the
steady state is not reached before t = 70 s. Accordingly, a lower frequency results in
an intensively retarded particle passage and reduced transport for all particle classes.
A frequency of 34.5 Hz in case of spheres results in an improved particle passage and
a stronger transport for all size classes (not shown in Fig. 10b). A further increase
above a threshold frequency reduces the passage rates.

In the simulations, a stroke angle of 45° to the horizontal is first used, which
is changed according to Table 4 in the third investigation (Fig. 11a). For spheres, a
lower vertical stroke component (vibration plane tilted by 30°) leads to a pronounced
piling of particles already on the first parts of the screen because it is less probable
for pegged spheres to leave blocked sieve openings. Thus, the undersized material
passes the apertures delayed/shifted along the screen towards its endor it is discharged
from the screen as part of the overflow. In this way, 60% of the undersized material
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is released. Although the support for horizontal transport is lower, a stronger vertical
motion component (vibration plane tilted by 60°) speeds up the transport of spheres
and thereby also improves the particle passage due to a faster removal of pegged
particles. For double cones, the change in the stroke angle in both directions leads
to delayed particle passage. A stroke angle of 30° leads to particle accumulation and
therefore slower particle transport and longer residence times. In contrast, a stroke
angle of 60° leads to delayed/shifted passage. For volume equivalent cylinders, a
decreased stroke angle has only minor effects on the passage of particles, although
particle accumulation is observed. An increased stroke angle leads to a reduced
transport, delayed particle passage and less near mesh particles in the overflow.

The fourth variation takes into account the particle mass flow rate (Fig. 11b).
The probability of pegging for spheres is increased for larger particle mass flows
with more near orifice sized particles being present. Due to a larger bed height and
therefore a greater necessity for stratification, the use of higher mass flow results
in delayed/shifted particle passage and flat fraction retained curves (Fig. 11b). In
comparison, spheres in a shallower bed caused by a lower particle mass flow require
less time for stratification and hence passage, especially with so few near mesh sized
particles present that pegging is a rare event. If themass flow is further increased from
ṁ = 150 g/s to ṁ = 200 g/s, the percentage of undersized particles remaining on the
screen does not appear to change for spheres (Fig. 11b). Due to the higher mass flow
ṁ ≥ 100 g/s, the undersized particles, but also the oversized particles entrained in the
bed layer remain longer on the screenwith slightly increased transport. An increase in
the mass flow in the case of complex shaped particles also leads to a delayed/shifted
particle passage (comp. Fig. 11b). However, the fraction retained curves remain steep
compared to spheres as there is no pegging of particles or blocking on the screen.

Benchmarking of Steady State Separation Curve Screening Models

In a first step, the steady state separation curve screening models are fitted and then
benchmarked against the data obtained in section “Numerical Investigations” by
the DEM. For the benchmarking over a larger number of investigations in case of
separation curve models an average deviation of the simulated and model predicted
separation curves is calculated with

(∑rS
iS=1|Tsim(iS) − Tmod(iS)|

)
/rS where rS is

the total number of considered particle classes iS . Figure 12 shows the summed
up deviations between steady state separation curve screening models according to
Sect. 3.2.1 and simulations using the DEM with spheres (Fig. 12a), double cones
(Fig. 12b) and volume equivalent cylinders (Fig. 12c) according to Table 4.

With exception ofmodelNo. I byDehghani et al., the investigated steady state sep-
aration curve screening models do not consider the particle shape. Nevertheless, the
differences between the adjusted models and the DEM results remain small because
the separation curve models are adjusted separately for each simulation since they do
not have any predictive capabilities. Separation curve screening models can easily
represent partition numbers forming an ideal separation curve (unit step function) or
a symmetrical S-shaped curve. For spheres (Fig. 12a), the closest result to an ideal



5 Development of a Dynamic-Physical Process Model for Sieving 171

0

0.05

0.1

0.15

0.2

0.25

I II III IV V VI VII

S
um

m
ed

 a
ve

ra
ge

d 
de

vi
at

io
n 

[-]
 

Model 

Initial case Amplitude 1.32 mm Amplitude 2.2 mm Amplitude 2.64 mm

Frequency 20.7 Hz Frequency 34.5 Hz Frequency 41.4 Hz

Mass flow 50 g/s Mass flow 150 g/s Mass flow 200 g/s

c

0

0.05

0.1

0.15

0.2

0.25

0.3

I II III IV V VI VII

S
um

m
ed

 a
ve

ra
ge

d 
de

vi
at

io
n 

[-]
 

Model 

b

0

0.05

0.1

0.15

0.2

0.25

I II III IV V VI VII

S
um

m
ed

 a
ve

ra
ge

d 
de

vi
at

io
n 

[-]
 

Model 

a

Stroke angle 30°

Stroke angle 60°

Fig. 12 Deviations between steady state separation curve screening models (Sect. 3.2.1) and dis-
crete element simulations summed up for all investigated variations (Table 4) for a spheres, b double
cones and c volume equivalent cylinders. Reprint with permission from [109]

separation curve can be achieved when either an amplitude, a frequency, a stroke
angle or an inclination angle slightly larger than in the base case configuration is
used. Therefore, pegging is prevented, but the particle transport is still slow enough
to ensure a good passage. The very low deviations are caused by undersized near
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mesh particles which do not pass through the apertures and thus lead to symmet-
ric separation curves. Geometric scaling (size reduction) or a lower mass flow rate
also leads to nearly ideal separation curves, resulting in small differences between
DEM results and separation curve models. The amount of small particles in the over-
flow increases in cases with a greater transport velocity induced by larger amplitudes,
frequencies or inclination angles. The simulation results do not lead to symmetri-
cal S-shaped curves, because undersized near mesh particles not passing the screen.
This leads to larger deviations between the separation curve screening models and
the simulation results. For the base case configuration or when a higher mass flow
or a stroke angle with a larger horizontal motion component is employed, the near
mesh sized particles are intensively pegging the apertures. Because of it, many small
and even very small particles are discharged into the overflow. As a result, separation
curve screening models show larger deviations when adjusted to these simulation
results.

Non-spherical particles (Fig. 12b, c) having an equivalent diameter larger than the
orifice size can pass the sieve apertures into the underflow if their minor-diameter is
smaller than the aperture size. In turn, undersized near mesh particles are discharged
into the overflow. As a result, the simulation results form symmetric S-shaped curves
that are readily represented by separation curve screening models. However, the
passing rates of near mesh sized non-spherical particles are more sensitive than with
spherical particles, especially when a higher mass flow is applied or when particles
accumulate on the screen when the screen is operated at a small amplitude or fre-
quency. In these cases, the separation curves increase unevenly and therefore, much
larger deviations occur. A faster particle transport, which is achieved by applying a
larger amplitude or frequency, also results in a few more small and oversized near
mesh particles in the overflow amounting to larger deviations.

Smaller deviations for separation curve models result in some cases when double
cones are screened instead of spheres (Fig. 12b) due to a lower pegging probability.
The largest deviations result from applying of lower amplitudes and frequencies
followed by stroke angles with small vertical motion components. The smallest
deviations for double cones arise for the base case configuration.

The summed up deviations for volume equivalent cylinders (Fig. 12c) show the
lowest deviations of the investigated shapes due to the lowest pegging probability.
The largest deviations with volume equivalent cylinders occur for low amplitudes
and frequencies due to the formation of unsymmetrical separation curves. On the
other hand, good results are achieved for the base case configuration independent of
stroke angle, and for cases with a slightly enlarged mass flow.

The lowest overall deviations, summed up over all investigations, can be obtained
using the model No. II by Plitt and the first revised model by Trawinski (No. V). In
both models, the term (d/dcut ), which increases with particle diameter, is influenced
by one or even two adjustable parameters in the exponent independent of additional
parameters [see Eqs. (21) and (24)] which gives a good adaptability for both models.
The largest deviations are found in the case of the second revised model of Trawinski
(No. VI). Here, both adjustable parameters are present in the exponent of the term
(d/dcut ), but both depend on the particle size d [comp. Eq. (25)].
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Benchmarking of Steady State Spatially Resolved Screening Models

In a second step, the simulation results presented in section “Numerical Investiga-
tions” are used to benchmark the steady state spatially resolved screening process
models described in Sect. 3.2.2. Thereby the fraction retained on the continuous
screening apparatus in dependence on screen length obtained from the DEM simula-
tions is compared with data from spatially resolved phenomenological models which
are fitted to the DEM results by adjusting their respective model parameters. For the
benchmarking of a larger number of investigations, an average deviation of the sim-
ulated and process model predicted fraction retained is calculated for models, where
the whole fine material is considered as one lumped undersized fraction by using(∑ j

k=1|Emod(k) − Esim(k)|
)
/j , where j is the total number of considered positions

along the screen k. For models in which the different undersized particle classes i are
considered as fractions (Nos. 4, 8, 9, 10, 11, 13), the average of the obtained fractional

deviations is calculated by using
(∑l

i=1

(∑ j
k=1|Emod(i, k) − Esim(i, k)|

))
/( j · r),

where r is the total number of undersized fractions. The screen of length 0.35 m in
this process is divided into intervals of 0.01 m.

InFig. 13 the summedupparticle passage deviations between steady state spatially
resolved screening models according to Sect. 3.2.2 and discrete element simulations
for spheres (Fig. 13a), double cones (Fig. 13b) and volume equivalent cylinders
(Fig. 13c) for all investigated variations (see Table 4) are shown.

Regardless of shape, the models that do not account for the division of under-
sized particle fractions (Nos. 1, 2, 3, 5, 6, 7 and 12) are the fastest to adjust and
get low deviations as only the lumped fraction retained curve is to be fitted to the
simulation results instead of the fraction retained curves of all undersized particle
classes. Among these models, the model by Soldinger (No. 12) followed by Andreev
et al. (No. 2), Subasinghe et al. (No. 6) and Grozubinsky et al. (Nos. 5, 7) show the
lowest overall deviations when spheres as shape are considered (Fig. 13a). All of
these models use more than one adjustable parameter. The models Nos. 5 and 7 can
be easily reduced to the rate law (model No. 1); for the screening intensity β � 1 the
term exp(−βt) becomes zero (see [122]). In bothmodels the additionally introduced
coefficient of proportionality q provides an improvement in accuracy for screening
if many different size classes are under consideration. The model by Trumic and
Magdalinovic (No. 3) shows the largest deviations of the models, which does not
take into account the division of undersized particle fractions due to the use of only
one adjustable parameter.

For a model that accounts for the division of undersized particle fractions, rela-
tively low deviations are obtained by the model of Standish (No. 4). This is achieved
by using one adjustable parameter per size class. Although the model by Ferrara
et al. (No. 11) exhibits overall minor deviance and accounts for different particle size
classes as well as uses only a few adjustable parameters, it has the disadvantage of
a long adjustment time because it has to be fitted iteratively. Slightly larger devia-
tions are visible for the fractioned model by Soldinger (No. 13) with the benefit of a
shorter fitting time. The probabilistic model by Subasinghe et al. (No. 8) is adjusted



174 D. Markauskas and H. Kruggel-Emden

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4 5 6 7 8 9 10 11 12 13

S
um

m
ed

 a
ve

ra
ge

d 
de

vi
at

io
n 

[-]
 

Model 

Initial case Amplitude 1.32 mm Amplitude 2.2 mm Amplitude 2.64 mm

Frequency 20.7 Hz Frequency 34.5 Hz Frequency 41.4 Hz

Mass flow 50 g/s Mass flow 150 g/s Mass flow 200 g/s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4 5 6 7 8 9 10 11 12 13

S
um

m
ed

 a
ve

ra
ge

d 
de

vi
at

io
n 

[-]
 

Model 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4 5 6 7 8 9 10 11 12 13

S
um

m
ed

 a
ve

ra
ge

d 
de

vi
at

io
n 

[-]
 

Model 

a

b

c

Stroke angle 30°

Stroke angle 60°

Fig. 13 Particle passage deviations between steady state spatial resolved screening models sorted
according to Table 1 and discrete element simulations summed up for all investigated variations
according to Table 4 for a spheres, b double cones and c volume equivalent cylinders. Reprint with
permission from [109]

and applied also fast, however exhibits larger deviations. The models by Nakajima
et al. (No. 9) and Deghani et al. (No. 10) demonstrate the largest overall deviations
when considering spheres. This is due to the fact that they represent particle size
class resolved results of a screening process using only one adjustable parameter.
Note, that these models (No. 9 and No. 10) are identical in the case that spherical
particles are addressed.
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The initial (base) case with delayed/shifted particle passage and a resulting flat
fraction retained curve is comparatively easy to model. This results in minor devi-
ations for most of the investigated models. Also simulation cases with immediate
particle passage and strongly decreasing fraction retained curves show no major
discrepancies between models and DEM results, likewise. Greater differences occur
when the fraction retained curves stagnate over a certain length of the screen or when
they are decreasing unevenly. The models that account for the division of undersized
particle fractions, in particular models Nos. 8–10, have greater difficulties when the
differences between the passage rates of undersized particles are erratic. This could
be the case, if the particles are transported with higher velocity on the screen when
e.g. a large amplitude, frequency or inclination angle is used.

In the considered cases using double cones (Fig. 13b) the models by Grozubinsky
et al. (Nos. 5, 7) andAndreev et al. (No. 2) followed by themodel by Subasinghe et al.
(No. 6) are adjusted to the simulation results with the smallest deviations. Although
model No. 4 needs many adjustable parameters, it demonstrates comparatively large
deviations because it does not consider the shape of the particles. Again, model No.
11 is the model with lowest deviations which accounts for the division of undersized
particles in fractions without adjusting parameters for each size class. For the case of
double cones, however, it leads to larger deviations and model No. 8 by Subasinghe
et al. achieves nearly the same results with less computations. With the models by
Nakajima et al. (No. 9) andDeghani et al. (No. 10), the largest deviations are obtained
again.

The models by Grozubinsky et al. (Nos. 5, 7) demonstrate the smallest devia-
tions for volume equivalent cylinders (Fig. 13c). Here, the probabilistic model No.
7 achieves slightly better results than the deterministic model, since the dispersion
of the particles is taken into account. Unlike the two former investigated shapes
(spheres and double cones), model No. 12 by Soldinger does not get the lowest
deviations caused by randomly passing particles with an equivalent diameter larger
than the aperture size. For the same reason, model No. 13 by Soldinger shows more
deviations in comparison to the other shapes. Again, model No. 3 by Trumic and
Magdalinovic reveals comparatively large deviations because of its simplicity and
not considering the particle shape. For the volume equivalent cylinders, model No. 11
by Ferrara et al. shows only slightly larger deviations in the comparison to model
No. 4 by Standish, which requires much more adjustable parameters. In addition,
model No. 11 has much lower deviations than model No. 3, in which only the under-
sized fraction as a lumped entity is considered. For volume equivalent cylinders,
model No. 10 by Deghani et al. shows the largest deviations due to its condition for
the probability function and because the use of only one parameter for all particle
size classes. The revised model No. 9 with a similar model structure and the same
number of model parameters gives comparatively lower deviations.
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4.2 Discontinuous Screening Without Moisture

As a second case screening of a polydisperse feed material is investigated by the
DEM in a batch screen apparatus as shown in Fig. 14. In Sect. 4.2.1 the numerical
setup is described and simulation parameters are outlined as required for the DEM.
In 4.2.2 the numerical results are presented as obtained from the DEM in section
“Numerical Investigations” and as derived by processmodels in section “Comparison
of Phenomenological Screening Process Models”.

4.2.1 Numerical Setup and Simulation Parameters

The considered batch screening apparatus is equipped with a wire screen comprising
34× 34 apertures on a floor area of 0.2 m× 0.2 m with the aperture size 4.9 mm and
the wire width 1 mm. In initial configuration, the apparatus is vibrated with 27.6 Hz
with a stroke angle of 90° to the horizontal at an amplitude of 3.52 mm (Fig. 14).

The polydisperse feed consists from particles with a density of 2700 kg/m3. The
particles are subdivided into three relevant size classes consisting of coarse, nearmesh
and fine material represented, in case of spheres, by particles with average diameters
of 7.35 mm, 4.2875 mm and 2.45 mm, respectively. In the base case, the mass of
feed amounts to 4 kg, divided equally into the examined particle classes. The applied
DEMparameters are the same as used inSect. 4.1.1.Besides spheres, differently sized
cylinders and double cones are studied in this investigation (see Fig. 9b). Starting
from the base case, variations of the stroke angle, vibration frequency and amplitude,
and total particle mass are performed for all three particle shapes varying one of the
parameters at a time (Table 5).

Fig. 14 Batch screening
apparatus with wire
structure. Reprint with
permission from [122]
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Fig. 15 a, b Particle passage through the screen openings for the three considered particle shapes
for a varying amplitudes and b frequencies and c, d corresponding average residence times in the
bottom layer for c varying amplitudes and d frequencies. Reprint with permission from [109]

4.2.2 Results and Discussions

DEM simulations are performed. The obtained outcomes from the simulations are
later compared to results attained by phenomenological screening process models
(Table 2, Sect. 3.2.3) whose adjustable parameters are fitted by genetic algorithms
to the retained mass on the screen obtained from the DEM [126].

Numerical Investigations

Well mixed particles are fed into the screen apparatus and then vibrated for t =
40 s. Due to the movement of the screening surface, fine particles and near mesh
size particles stratify downwards through the gaps between the bigger particles. By
reaching the bottom in particular the fine particles get the possibility to pass through
the apertures in the screening surface. Due to the smallest ratio between the fine
particle’s minor axis and the oversized particles or else the screen apertures, the
possibility of passing through interstices between particles and screen openings is
highest for them. Among the particle shapes considered, the highest passage ability
is achieved by spheres followed by the non-spherical shapes in all investigations (see
Figs. 15, 16 and 17).
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In the first study (Fig. 15a) the amplitude of 3.52 mm in the base case is varied
according to Table 5. Considering the results for the smallest amplitude of 0.88 mm,
with approximately 50% residuals remaining on the screen, the particle passage for
larger amplitudes significantly increases regardless of the particle shape. The pas-
sage increases up to a critical amplitude of 6.16 mm (5.28 mm for double cones) and
then stagnates or decreases slightly. Larger amplitudes increase the porosity in the
particle bed which leads to larger gaps between the oversized particles resulting in
an improved stratification of smaller particles. In contrast, larger amplitudes beyond
a critical amplitude result in an elevation of the particle bed and therefore to larger
distances between particles and the screen surface reducing overall passage. In addi-
tion, at higher amplitudes, impacts are of higher velocity and therefore characterized
by a stronger rebound which also affects the passage through the apertures.

This behavior can be confirmed by Fig. 15c, in which the simulations with an
amplitude of 4.4 mm show the shortest residence time in the bottom layer, which
is the layer directly on top of the screen surface, for undersized particles regardless
of shape. At this amplitude, the possibility to pass through the apertures is greatest.
However, larger amplitudes provide a better overall passage rate, because overall
passage is affected by both stratification and the ability to pass through the apertures.
It can explain why highest overall passage is shifted to amplitudes larger than 4.4mm
where stratification is increased and residence time in the bottom layer is yet not



180 D. Markauskas and H. Kruggel-Emden

strongly lengthened. For double cones, it can be seen exemplarily that residence
times are increased in the bottom layer for larger amplitudes (Fig. 15c) which reduces
overall particle passage (Fig. 15a).

The second study (Fig. 15b) deals with the variation of the frequency (Table 5).
Here, also the two lowest frequencies result in the least particle passage with under
50% after t = 40 s, due to a low stratification. In addition, the particles are in
an immobile state, leaving them few opportunities to come in direct contact with
apertures, forcing them to reside an extended period of time in the bottom layer
independent of particle shape (Fig. 15d). All the other settings show similar results
for the overall passage throughout the first 10 s of the investigation, but with final
residual mass on the screen varying between 0 and 20% at the end of the screening
time. The frequency value of 27.6 Hz shows the best passage ability over more than
half of the simulation time, before being surpassed by the frequency of 34.5 Hz.

Initially, the simulations use a stroke angle of 90° to the horizontal (Table 5)
which in the third investigation is changed to an oscillating movement consisting
of two stroke angles with varying horizontal and vertical components (Fig. 16a).
An alternating stroke angle of 45°/135° significantly improves the particle passage
for spheres, however reduces the passage of complex shaped particles. In contrast,
a stroke angle of 30°/150° increases the screening efficiency of all particle shapes
because particles have enhanced chances to enter an aperture and pass it. Using an
angle of 60°/120° significantly reduces the passage only for cylindrical particles.
The above mentioned observations can also be confirmed by the enhanced residence
times of non-spherical particles in the case of 60°/120° and 45°/135° stroke angles
as well as by the reduced residence times in the bottom layer for spheres for stroke
angles of 45°/135° and for all particle shapes for stroke angles of 30°/150° (Fig. 16c).
In general, a combination of a stronger horizontal with a less intense vertical motion
component as e.g. for 30°/150° facilitates more possibilities to pass the screen open-
ings for all undersized particle shapes, while a combination of a stronger vertical with
a weaker horizontal motion forces the oversized elongated non-spherical particles
to align vertically with the screening surface, which leads to pronounced pegging of
the apertures.

The fourth investigation deals with a variation of total particle mass (Fig. 16b).
Due to a lower bed height and thus a faster stratification, the application of a lower
mass leads to a faster particle passage. In comparison, particles in a thicker bed layer,
which is caused by a larger particle mass, take extra time to stratify and then to pass.
The probability of pegging is larger for particle masses with more oversized particles
being present. As a result, the undersized particles remain longer in the bottom layer
when more mass is applied to the screen (Fig. 16d).

Comparison of Phenomenological Screening Process Models

The simulation results described in section “Numerical Investigations” are used
to benchmark the phenomenological screening models as outlined in Table 2. An
average deviation of the simulated and model predicted mass is calculated for
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models, which consider the whole fine material as one lumped undersized frac-

tion, by
(∑ j

k=1|msim(k) − mmod(k)|
)
/j , where j is the total number of consid-

ered time steps k. For models, which consider the different undersized particle
classes i as fractions, the average of the obtained fractional deviations is consid-

ered by
(∑l

i=1

(∑ j
k=1|msim(i, k) − mmod(i, k)|

))
/( j · l), where l is the number of

undersized fractions.
In Fig. 17 the summed up deviations of all performed simulations using spherical

particles (Fig. 17a, b), double cones (Fig. 17c, d) and volume equivalent cylinders
(Fig. 17e, f) for varying amplitudes (Fig. 17a, c, e) and frequencies (Fig. 17b, d, f)
for all considered process models are presented. Almost all models have problems
for representing flat residual mass curves, which are caused by small amplitudes or
low and high vibration frequencies. The kinetic models by Andreev et al. (model
β), Standish (model δ) and Subasinghe et al. (model ζ) as well as the probabilistic
models by Subasinghe et al. (model θ) and Ferrara et al. (model ν) as well as the frac-
tional complex model by Soldinger (model π) demonstrate the best overall results.
However, they rely on empirical model parameters (model β) or, because of their
non-explicit functional form, require long adjustment times during fitting (model ν).

At different amplitudes, the models β and γ show particularly suitable results. The
functional forms with an additional adjustable parameter as exponent of the time t
can compensate well for the variations in residual mass on the screen caused by dif-
ferent amplitudes. Due to optimization for continuous screening and due to a simple
parameter structure, deviations from the model by Trumic and Magdalinovic (model
γ) are largest, although acceptable results for some small amplitudes and frequen-
cies of e.g. 6.9, 20.7 and 55.2 Hz are obtained. However, model γ has difficulties to
represent simulations with strong residual mass decrease and complete depletion of
material caused by large amplitudes and passage optimized frequencies, respectively.
In all investigated cases (Fig. 17) the models α, ε, η, θ, κ, λ and μ indicate deviations
of the same order of magnitude. Models κ, λ and μ rely directly on the screening
efficiency of the rate law (model α), where only the ranges of the model parameters
are changed. These altered ranges may affect the setting of the model parameters
(easier guess of initial values and quicker convergence) or improve their physical
meaning as e.g. in model κ, where passage probabilities are introduced, but overall
model accuracy is unaffected.

In addition to quantitatively better results, nearly all models represent the sim-
ulations with complex shaped particles qualitatively similar to those with spheres.
Total deviations are smaller for double cones in comparison with volume equivalent
cylinders. Model ρ by Yoshida et al. shows despite its complexity comparatively
large deviations, because it is derived for a batch simulation setup differing from the
setup used here. From the comparison of the two models by Soldinger (models ξ

and π), it can be concluded that a representation of different fractions in a lumped
way can reduce model accuracy, especially in complex models where stratification
is considered in detail.
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Fig. 17 Particle passage deviation between phenomenological models sorted according to Table 2
and discrete element simulations summed up for various a, c, e amplitudes (spheres, double
cones, volume equivalent cylinders); b, d, f frequencies (spheres, double cones, volume equivalent
cylinders). Reprint with permission from [109]

In Fig. 18 particle passage deviation between phenomenologicalmodels andDEM
simulations performed with spheres (Fig. 18a, b), double cones (Fig. 18c, d) and
volume equivalent cylinders (Fig. 18e, f) for varying stroke angles (Fig. 18a, c, e)
and masses (Fig. 18b, d, f) are shown.

The results for various vibrations differ from the previously discussed results by
obtaining much better results for spheres in comparison to non-spherical particles,
except when model γ is used. The model γ shows a better accuracy for complex
shaped particles, because in the simulated cases a final screening efficiency of 100% is
not reached, which is relatively easy to represent with this model. Some models have
problems to represent complex shaped particles agitated by an oscillating movement
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Fig. 18 Particle passage deviation between phenomenological models sorted according to Table 2
and discrete element simulations summed up for various a, c, e stroke angles (spheres, double cones,
volume equivalent cylinders); b, d, f masses (spheres, double cones, volume equivalent cylinders).
Reprint with permission from [109]

especially for combinations of 45°/135° and to some extend also for 60°/120° (see
Fig. 18c, e). Strong pegging of apertures is reported for these agitation modes in case
that non-spherical particles are used. As is expected, screening process models are
not able of representing these phenomena, which are observed in the DEM, where
orientations of every particle are tracked.

Variation of the mass has a similar effect on all three investigated particle types
as the variation of amplitudes (see Fig. 17a, c, e)—deviations increase when a larger
initial particle mass is applied to the screen. Although model β shows good time
averaged behavior, larger maximum deviations are evident for simulations with very
lowmass (not shown in Fig. 18), especially at the beginning of the screening. Under-
sized particles are less disturbed by oversized particles during screening, when a
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lower bulk mass is used. This results in a more steadily decreasing retained mass on
the screen allowing for more accurate modeling by the screening process models as
a consequence. For both cases, a varying stroke angle and a mass variation, models
β and θ show particularly suitable results due to their functional forms, which can
take varying mass depletions into account.

4.3 Discontinuous Screening with Moisture

To reliably go the step from DEM modelling of dry screening to screening under
moist conditions requires the validation of themodel extensions described in Sect. 2.4
under real screening conditions. Therefore, a validation of the usedDEMmodel under
these conditions has been performed shading light on the related subprocesses and
their linkage to liquid bridge formation, stressing and rupture (see [29]). Results on
this are presented in Sect. 4.3.2 by comparing insights obtained from batch screening
experiments and simulations. The investigated setup is outlined in Sect. 4.3.1. The
successful validation allows the application of the extended screening models from
Sect. 3.2.4 (see [123]) in the final Sect. 4.3.3.

4.3.1 Experimental and Numerical Setup

A batch screening apparatus, which can be applied for dry and wet screening
(see Fig. 19), is used for the experiments and the modelling in this study. The screen
apparatus is a modified “Haver and Boecker EML digital plus” batch screen tower
with a circular screen surface, which is on top additionally equippedwith a feed bin to
ensure that the particles in experiments and simulations reach the screen surface at the
same time and to ensure that the screen excitation is already in a continuous motion
when particles get into the contact with the screening surface. In addition, there is an
outlet below the screen to measure the particle passage through the apertures when
they reach the collecting bin placed on a balance. Above the outlet various screens
with different aperture sizes can be places. In the study performed here, one screen
surface is applied in each case with the aperture sizes adjusted to the particle sizes
as presented in Table 6. The screen is operated with a fixed frequency of 50.6 Hz;
two amplitudes of A = 1 mm and A = 0.8 mm are considered. For details on the
elliptical stroke motion of the screen surface see [29].

In the investigation, POM and glass spheres are applied in three different size
classes. They are assumed to be ideal spheres of d1 = 5mm, d2 = 7mm, d3 = 10mm
in a first and d1 = 3 mm, d2 = 5 mm and d3 = 7 mm in a second configuration.
In both configurations, the particles and the aperture size are related as d1 < d2 < a
< d3, where a is the size of an aperture. To perform the experiments POM spheres
are filled into the feed bin with a mass of mp = 3mpi = 3 × 250 g = 750 g. The
amount of glass spheres is chosen to be volume equivalent with the POM spheres
giving a mass ofmp ≈ 1410 g (see Table 6). For both materials, three different liquid
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Fig. 19 a Experimental setup and b corresponding approximation in the DEM simulations of the
batch screening apparatus. Reprint with permission from [29]

Table 6 Experimental
properties for batch screening
experiments. Reprint with
permission from [29]

Properties POM Glass

Particle mass [kg] 0.75 ~1.41

Liquid amount [%] 0/5/10 0/2.5/5

Surface tension [N/m] 0.07275

Aperture size [mm] 8.00 ± 0.02/5.60 ± 0.01

Wire diameter [mm] 2.00 ± 0.01/1.60 ± 0.01

Scree wire profile [−] Circular (woven)

Set amplitude [mm] 1/0.8

Frequency [Hz] ~50.6

Stroke behavior Elliptical, mainly vertical

amounts in the range of 0% ≤ M ≤ 10% are applied. In the case of glass spheres,
the percentage amount is lower in order to maintain a pendular regime. Mechanical
and physical particle and wall properties are presented in Table 7. Distilled water is
use as a liquid.

In Table 8 the DEM parameters coulomb friction μc, rolling friction μroll and the
coefficient of restitution en for POM and glass spheres with their respective contact
partners are listed. Details according their determination can be found in [30].
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Table 8 DEM parameters for POM and glass spheres and various contact partners. Reprint with
permission from [29]

Contact partner 1 Contact partner 2 μc [−] μroll [m] endry [−]

POM sphere Steel (side walls, screen wires,
bottom, outlet walls)

0.3484 5.97E−05 0.8473

POM sphere POM sphere 0.3725 4.63E−05 0.8038

Glass sphere Steel (side walls, screen wires,
bottom, outlet walls)

0.2866 1.09E−04 0.4351

Glass sphere Glass sphere 0.1966 8.95E−05 0.7808

4.3.2 Numerical and Experimental Results Obtained

In the following, fractions retained Y obtained by experiments and by DEM simula-
tions are presented and compared against each other. In Figs. 20 and 22, the results
are presented as fraction retained over time Y = Y (t) = mp,l/mp,l,0, where mp,l,0

is the initial mass at t = 0 s and mp,l is the remaining mass of the particles together
with the liquid which is not in the collecting bin at time t.

In the first investigations, dry material with different sizes of the particles is
screened and the experimental results for the fraction retained on the screen over
time are compared to the results obtained by DEM simulations in Fig. 20.

The simulation results of the POM spheres agree very well with the experimental
ones except for slight deviations (see Fig. 20a). With an aperture size of a = 8 mm
(d1/2/3 = 5/7/10 mm), an amplitude of A = 1 mm results in a rapid reduction of
the fraction retained value until all particles are screened at t ≈ 15 s. In contrast,
an amplitude of A = 0.8 mm reduces the passing of particles after t = 5 s. With an
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Fig. 20 Fraction retained on the screen over time applying a dry POM spheres with a = 8 mm
(d1/2/3 = 5/7/10 mm) with A = 0.8 mm and A = 1 mm as well as a = 5.6 mm (d1/2/3 = 3/5/7 mm)
with A = 1 mm and b dry glass spheres with a = 8 mm (d1/2/3 = 5/7/10 mm) with A = 0.8 mm
and A = 1 mm as well as a = 5.6 mm (d1/2/3 = 3/5/7 mm) with A = 1 mm. All results are obtained
by experimental investigations (results are averaged over 15 experiments) and DEM simulations,
respectively. Reprint with permission from [29]
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aperture size of a = 5.6 mm (d1/2/3 = 3/5/7 mm), the particles pass the apertures
rapidly in the first seconds, but after t = 2 s the passage is hindered and lasts longer
than in the first investigation, both in DEM simulation and experiment. After a part of
undersized particles have passed the apertures, the larger particles peg the apertures
more intensively than in the initial investigation. Therefore, the stratification through
the large particles to the screen surface is hindered slowing passage down. The results
for dry glass spheres are very similar to those obtained for POM, but some deviations
occur when a smaller aperture size is used (see Fig. 20b).

In the next investigations, small amounts of liquid are added to the particles.
Figure 21 shows the distribution of the liquid on the particles and walls in varying
blue tones at t = 3 s. At this instance in time, a part of the undersized particles has
already passed the screening surface and the remaining ones reveal thinner liquid
films than the larger particles. Most of the wall elements reveal only thin liquid films.
The liquid bridges between the particles are presented as cuboids in Fig. 21b whose
volume visible outside the spheres corresponds to the volume of the liquid bridge.

The experimental results together with the ones obtained by DEM simulations
are presented in Fig. 22, where the fraction retained on the screen over time for
dry particles and particles under the influence of different liquid amounts can be
compared.

As can be seen in Fig. 22a, a small liquid amount (M = 5%) reduces the particle
passage in the initial configuration, whereas a larger amount (M = 10%) does not
affect it further, both in experiment and simulation. The influence of the water is rela-
tively low due to the large contact angles and particle sizes. In the DEM simulations,

Fig. 21 Visualization of the liquid distribution on the particles and walls presented as liquid film
thickness at t = 3 s for POM spheres (a = 8 mm, d1/2/3 = 5/7/10 mm) and a liquid amount ofM =
10% for a the whole screen apparatus and b zoomed into reveal the liquid bridge volume between
particles presented as cuboids. Reprint with permission from [29]
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a POM, a = 8 mm, A = 1 mm d Glass, a = 8 mm, A = 1 mm

b POM, a = 8 mm, A = 0.8 mm e Glass, a = 8 mm, A = 0.8 mm

c POM, a = 5.6 mm, A = 1 mm f Glass, a = 5.6 mm, A = 1 mm
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Fig. 22 Fraction retained on the screen over time applying (a–c) dry and wet (M = 0/5/10%)
POM spheres with a = 8 mm (d1/2/3 = 5/7/10 mm) with a A = 1 mm and b A = 0.8 mm as
well as c a = 5.6 mm (d1/2/3 = 3/5/7 mm) with A = 1 mm as well as (d–f) dry and wet (M
= 0/2.5/5%) glass spheres with a = 8 mm (d1/2/3 = 5/7/10 mm) with d A = 1 mm and e A =
0.8 mm as well as f a = 5.6 mm (d1/2/3 = 3/5/7 mm) with A = 1 mm. All results are obtained
by experimental investigations (results are averaged over 15 experiments) and DEM simulations,
respectively. Reprint with permission from [29]
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slightly more particles remain on the screening surface between t = 2.5–10 s, but
afterwards the results fit very well. At an amplitude of A = 0.8 mm (see Fig. 22b),
the obtained fraction retained values are higher when water is added. The numerical
and experimental results for a smaller amount of water (M = 5%) fit together very
well. In the DEM simulations, however, the fraction retained for a larger amount of
water (M = 10%) is slightly overpredicted. In the configuration with smaller par-
ticle diameters d1/2/3 = 3/5/7 mm, the influence of liquid is more pronounced (see
Fig. 22c). For smaller particle sizes used in this investigation, the capillary forces
become larger relative to the weight force, which is relatively small because of the
low density of POM. The fraction retained is similar after t = 20 s forM = 0% and
M = 5% and only slightly larger forM = 10% due to the pegging of particles in the
dry case. The DEM simulations reveal the same trends but show some deviations
between t = 1–10 s.

When analyzing the initial configuration with glass spheres (see Fig. 22d), a
larger amount of water increases the fraction retained obtained experimentally and
numerically. However, the influence of the liquid is relatively low due to the large
particle masses. The simulation results show some deviations between t = 2–5 s
under the influence of water. After that, the results fit very well. The same trends
can be seen with an amplitude of A = 0.8 mm (see Fig. 22e). However, here all
results obtained are closer to each other. The results derived using glass spheres with
smaller particle diameters of d1/2/3 = 3/5/7 mm (comp. Fig. 22f) differ greatly from
those obtained using POM spheres. In particular, the experimental results are close
to each other with slightly larger values when more water is added. Because of the
larger density of glass particles, the influence of the capillary force is smaller than
for POM. The simulation results show a bit more differences and slightly overpredict
the fraction retained until t ≈ 7 s and underpredict it afterwards. Due to the pegging
of the dry particles, less particles remain on the screening surface at t = 20 s if liquid
is added. Overall, the simulation results agree well with the experimental ones.

4.3.3 Benchmarking of Extended Screening Models

Based on the successful validation ofmoistDEMscreening simulations in Sect. 4.3.2,
in this section, results on the three in [123] introduced and in Sect. 3.2.4 outlined
modified process models for batch screening under the influence of moisture are
shownwhen adjusting their parameters to fit the results obtained byDEMsimulations
such as outlined in Sect. 4.3.2 which are further extended. To compare the introduced
models over a larger number of investigations, an average deviation of the fraction
retained per particle size class obtained by DEM simulations and process models is
calculated. For the different undersized particle classes i, the average of the obtained

fractional deviations is given by
(∑l

i=1

(∑ j
k=1|Ymod(i, k) − Ysim(i, k)|

))
/( j · r),

where j is the total number of considered time steps k and r is the total number of
undersized fractions (here r = 2). The total time of the screening process t = 20 s is
divided into intervals of Δt = 0.5 s here.
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The process models are first adjusted to the simulation results applying one set
of parameters for all simulations which is presented in Fig. 23 (bars on the left side
of each model). The average deviations for the models are 0.0593 (model a), 0.0387
(model b) and 0.0417 (model c). The parameter sets for the three models are as
follows:

• No. 1: k = 1142.6444, α = −0.0193, γ = −161.2886
• No. 2: ks = 1.3883, α = 0.8288, γ = 2.2026, kp = 0.0542, β = −5.5913, δ =

0.4581
• No. 3: ks = 5.3935, α = −9.3318, γ = 9.6818, kp = 5.0896, β = 0.7160, δ =

2.4247

In addition, these results are compared to the best possible fit when one set of
parameters is used for each simulation (Fig. 23, bars on the right side of each model;
parameter sets not shown here). The best possible average deviations for the models
obtained are 0.0392 (model a/model b) and 0.0403 (model c). The achieved accuracy
is very similar for all three models, because the quality of the adjustment is indepen-
dent of the values of the operational parameters or the liquid amount (see Fig. 23,
right bars).
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Fig. 23 Deviations between the fraction retained per size class obtained by phenomenological
screeningmodels as stated inTable 3 anddiscrete element simulations summedup for all investigated
simulations. The process models are adjusted to the simulation results by applying one set of
parameters for all simulations (bars on the left side of each model) and by applying one set of
parameters for each simulation, showing the best possible adjustment (bars on the right side of each
model). Reprint with permission from [123]
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Overall, all three models can better represent simulations with an instant decline
of the fraction retained, whereas the deviations increase for a less instant decline of
the fraction retained due to larger liquid amounts, frequencies and lower amplitudes.
If the models are adjusted with one set of parameters to all simulation results (see
Fig. 23, left bars), the ranking of the models from the lowest to the largest deviation
is model b, model c and model a, for each configuration. The results for the models b
and c are similar whether one set of parameters is used for all simulations (Fig. 23, left
bars) or one for each simulation (Fig. 23, right bars). In contrast, the deviations for
model a aremuch larger when only one set of parameters is used for all simulations. It
can be concluded, that the functional forms of all three process models can represent
the progression of the fraction retained per size class for one individual configuration
well. However, in batch screening with several particle layers on the screen, it is
essential to consider the subprocesses stratification and passage like is done in model
b and model c to represent the results for a wider range of configurations.

5 Conclusions

To conclude, the findings made provide insights in the relevant subprocesses stratifi-
cation, passage and transport as well as particularities of screening like operational
parameters and particle characteristics including their influence on time or spatial
dependent outcomes like the fraction retained. To obtain the aforementioned findings
the modeling of screening processes with the discrete element method was improved
and extended by the possibility to address sieving/screening under the influence of
a certain amount of liquid. In addition, a general straightforward procedure to deter-
mine DEM simulation parameters reliably was developed. Furthermore, appropriate
validations against experiments have been carried out in order to underline the cor-
rectness of the DEM simulations and to apply the respective DEM submodels for
further investigations even beyond sieving/screening. With the information and data
obtained from steady state and dynamic DEM simulations, process models were
benchmarked and successfully extended for sieving/screening under moist condi-
tions. Consequently, the derived process models can be applied as prototypes in
dynamic process simulation frameworks of combined solids processes.
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Chapter 6
Dynamic Process Models for Fine
Grinding and Dispersing

Greta Fragnière, Ann-Christin Böttcher, Christoph Thon, Carsten Schilde,
and Arno Kwade

Abstract Fine grinding and dispersing, such as grinding in stirred media mills,
gains importance in several industrial processes. Solid materials processing is fre-
quently subjected to dynamic changes, effecting the performance of milling. To
accurately model milling processes, dynamic flowsheet simulation turns out as a
promising approach to gain quick and reliable solutions, describing the milling pro-
cess over time.The connection of different process units is even closer to the industrial
setup. Therefore, the focus of the study is the introduction of a dynamic model for
stirred media mills that can be implemented into flowsheet simulation. The mod-
elling approach aims at separating grinding and transport phenomena in the mill.
Starting with an investigation of a batch grinding process in a “calibration mill”,
the dependency of the breakage rate on machine and material parameters is shown.
The stressing conditions in this calibration mill are determined theoretically and via
simulations using coupled CFD-DEM simulations. In the study, the prediction of
influences such as varying grinding media, stirrer speed and solids concentration on
the breakage rate worked out well. In continuous processes, the particle transport and
axial grinding media distribution, effecting the dynamics, are simulated as a series
of instantly mixed cells, connected by mixing streams. With the dynamic flowsheet
simulator Dyssol, the dynamic response of the product to changes in the feed was
compared to experimental investigations with limestone in a laboratory stirred media
mill. Material parameters for the model were tested in a newly designed breakage
tester.
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1 Introduction

The importance of ultrafine grinding and dispersing has increased in various indus-
tries like chemical, pharmaceutical, ceramic, electronic and ore industry. For these
operations, stirred media mills are often used in which the particles are ground in
a suspension by relative velocities of grinding media down to the micrometer or
nanometer size. Especially expensive products and large installations require the
enhancement of models describing fine grinding in stirred media mills, for example
to decrease product quality fluctuations and to decrease the amount of wasted mate-
rial. Grinding and dispersing in stirredmediamills is oftenmodeled by looking on the
mill operation parameters but neglecting the suspension properties. However, both
influence the kinetic energy of grinding media, the product transport of particles, and
the uneven axial distribution of grinding media. Next to grinding, these parameters
also influence the power consumption of the mill and the wear of mill and grinding
media. Through optimal adjustment of operation parameters, it is possible to reduce
the power consumption significantly, so that grinding processes are more economic
and work more environmental friendly.

Even though fine grinding in stirred media mills has been investigated for sev-
eral years now, a model describing the effect of uneven grinding media distribution
was not considered so far. Furthermore, fluctuations of feed material and the effect
of start-up and shut-down processes are unknown contributions on product quality.
Usingmill controlmight stabilize sensitive processes. Especially in circulationmode,
often used in pharmaceutical, chemical and paint industry, particle size distribution
and viscosity of the supplied suspension change dynamically during the grinding
process due to increasing particle interactions with decreasing particle size. Supple-
mentary, in passage mode, coarse material can influence the grinding process if an
internal deflector wheel, which retains the grinding media in the grinding chamber,
is installed.

Incorporating stirred media mills in longer process chains, there is an increasing
demand for the prediction of material’s particle size distribution as function of oper-
ation time. In literature, most flow sheet models work with characteristic particle
size values and do not consider particle size distributions or the influence of oper-
ating parameters. Therefore, the description of entire particle size distributions in
dependency of geometry, operating parameters and processing mode is practically
impossible. However, there are models for dry comminution in ball mills, which
describe the breakage rate as a function of the size-dependent strength distribution
of the material and the distribution of stress energy [1, 2]. Additionally, it is pos-
sible to calculate the evolution of particle size distribution during comminution by
population balance modelling.

This contribution presents a process model for fine grinding in horizontally ori-
entated stirred media mills for application in a dynamic flow sheet simulation. The
modelling approach is based on separating machine and material function, as well
as on considering grinding and transport phenomena (Fig. 1). In order to achieve
this, on the one hand the stress conditions in a “calibration mill” were investigated
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Fig. 1 Model approach for stirred media mills

experimentally (grinding tests and radiometric densitometer) and via simulations
(coupled CFD-DEM) for several operation and process parameters. On the other
hand, a method has to be developed to efficiently measure the material properties of
particles in the lower micrometer range.

For a continuous grinding process within a stirred media mill a dynamic model
needs to account for the particle transport and the axial grinding media distribution
due to the suspension flow. To do so, the horizontally orientated stirred media mill
can be simulated as a series of instantly mixed cells that are connected by mixing
streams. The cell volumes and positions are defined according to the stirrer discs
(compare Fig. 2). Themagnitude of the suspensionmixing streams is calibrated based
on residence time experiments. The grinding media transport is investigated with
radiometric densitometry. For both transport phenomena (suspension and grinding
media), the dependency of the mixing coefficients on various operational parameters
is presented.

Fig. 2 Schematic
representation of cells for a
transport model in stirred
media mills
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In order to account for the full particle size distribution, the change of the particle
size due to grinding is calculated via population balance equations. Thus, the mass
balance for size class i in cell r is given by

dmi,r

dt
= ṁi,r−1

i,r + ṁi,r+1
i,r − ṁi,r

i,r+1 − ṁi,r
i,r−1 − Si,rmi,r +

imax∑

j=i

Sj,rmj,rbij (1)

with the mass flow over cell boundaries ṁ, the specific breakage rate S of particles
with size xi in size class i, and the breakage distribution function b, where bij describes
themass fractionofmaterial that breaks fromsize class j into size class i. Thebreakage
rate is considered to be dependent on the local stress conditions in each cell, while
the breakage distribution function is here assumed to be constant irrespective of the
stress conditions.

Furthermore, this study presents a new approach to determine the breakage func-
tion experimentally and relate those data to energy states. Since the dominating stress
mechanism was found to be compression between two surfaces, a two-roll mill was
adjusted tomeasure breakage characteristics in dependency of different energy levels
down to 5 μm.

2 Stressing Conditions in Stirred Media Mills

In the past century, many research studies have investigated the stressing conditions
in stirred media mills. Researchers developed a broader and better understanding of
breakage mechanisms and breakage energy used in stirred media mills [3–6]. Since
the process optimization is a time-consuming process due to several experiments that
have to be executed for eachmaterial, new approaches focus onmodels describing the
material dependent effects, thus reducing the number of experiments. Therefore, the
following chapter deals with stressmechanisms and conditions in stirredmediamills.
First, through Discrete Element Method, stress energies and contact frequencies
could be calculated. Second, themicro scale simulations of two single grinding beads
give detailed information about particle capture probability. These two aspects can
be taken into account for improving the stress model of stirred media mills.

2.1 Stress Energy and Contact Frequency

Coupled CFD-DEMsimulationswere carried out to investigate the fluid and grinding
media motion and the grindingmedia collisions. The set-up is shown by Beinert et al.
[7]. The stress energy distributions in a representative mill section were determined
for various operating conditions (grinding bead size, density and stirrer speeds) and
two rotor types. Moreover, they are also calculated for a planetary ball mill. The
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kinetic energy at the beginning of the grinding media contact was evaluated. This
represents the maximum available energy for particle stressing. The relative grinding
media movement at the beginning of the contact with respect to normal, shear and
roll motion in translational and rotational direction was described in detail. The
results and especially the model are described in depth by Beinert et al. [7]. The
detailed contact analysis enables a quantification of the dominating contact type
over the whole range of stress energy. For an example of a stirred media mill with
glass grinding beads of 0.8 mm in diameter and with a disc stirrer operated with
a circumferential speed of 9 m/s the stress energy distribution is shown in Fig. 3.
Additionally, the ratio of the six investigated stressing energies is shown over the
whole range of stress energy. Three different ranges can be identified:At low stressing
energies shearing, rolling and impact are prevalent. In the middle of the spectrum,
translational normal and translational shear energy rise while the other energies
vanish.At high stressing energies translatoric shear energy is dominant that originates
in media-wall and media-stirrer contacts.

For the stress energy resulting from the grinding bead collisions in translational
normal direction Kwade formulated the following dependency on the operational
parameters circumferential speed vt grinding bead diameter dgm and their density
ρgm as a characteristic measure of the maximum expectable stress energy [9]:

SEmodel, ∝ v2
t d

3
gmρgm (2)

This characteristic model parameter is compared to the simulation results in Fig. 4
in which the correlation of the mean value of the stress energy resulting from the

Fig. 3 a Cumulative distribution of the stressing energy and the energy fractions resulting from
six different contact types, b schematic overview on the possible different ideal contact types with
the directions of velocities. Indices are as follows: t: translational, n: normal, r: rotational, s: shear
[Reprinted with permission from [8] (a) and [7] (b)]
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Fig. 4 Simulated mean stress energy SEsim plotted over the stress energy SEmodel from Eq. (3) for
varied grinding media material and sizes, mills (stirred media mills with disc and cylinder rotor and
planetary ball mill) and rotation velocities (Reprinted with permission from [7])

simulated translational motion in normal direction, SEsim, and the analytical results
of the model parameter, SEmodel , is shown.

The difference in the absolute value of the stress energy is due to the different
assumptions and calculation bases, especially in determining a mean value in case
of the simulations and in calculating a characteristic value for the maximum stress
energy in case of the mechanistic model of Kwade. However, it can be seen that the
trend is identical for both results, i.e. the slope of the resulting correlation is about
1. For the simulation results, an approximate function for the mean stress energy
was sought on the basis of the varied operating parameters circumferential speed vt ,
grinding bead diameter dgm and their density ρgm. This results for the stirred media
mill in the following relationship:

SEt,n, = cmav
1.12
t d3.98

gm ρ0.71
gm (3)

The approximate function found shows a slightly increased dependence regard-
ing the circumferential speed, a significantly increased dependence of the grinding
bead diameter as well as a decreasing significance of the grinding bead density in
comparison to the mechanistic model.

In addition to the average stress energy, the number of contacts per time must be
known in order to evaluate differentmills.Kwadedescribes the followingdependency
of the collision frequency Nc,model/t on the operational parameters rotational speed
n and number of grinding media Ngm [9]:

Nc,model

t
∝ nNgm (4)
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Fig. 5 Number of simulated grinding bead contacts plotted over the number of contacts predicted
with the analytical model at 12 operating conditions for the three different mills (Reprinted with
permission from [7])

Figure 5 shows the number of contacts per time for the simulative Nc,sim/t and
analyticalNc,model/t results. For the stirred media mill, the following dependency can
be observed: In general, the number of contacts increases with decreasing diameter
and increasing speed. For the grinding media material, there is a different correlation
for stirred media mills and planetary ball mills. The influence of the grinding media
material decreases with increasing speed. For the approximation function of the
contact frequency on the base of the operating parameters this yields:

Nc,sim

t
= cman

0.55N 1.18
gm (5)

The influence of the speed is significantly reduced; the influence of the grinding
media is almost identical to the analytical model. However, the coefficient of deter-
mination is slightly increased. The reason for the low agreement regarding the stirrer
speed is that the material values of the grinding media are not taken into account
in the calculation for the analytical model. The simulative results partly show clear
differences for different grinding media materials.

2.2 Particle Capture Probability

In this chapter the probability of product particles to be captured between approach-
ing grinding beads or between beads andmill walls is discussed. The different contact
types of grinding beads resulting out of variating translational and rotational motion
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patterns and their impact on the product particle capturing probability are investi-
gated. In the previous chapter only the grinding media contacts were studied, the
simulations described in this chapter describe the number of product particles being
stressed during these contacts.

The first simulation environment is set on the mesoscale, meaning only two grind-
ing beads and their local environment around or in the gap between them are being
considered to determine the effect on fluid displacement. Data on the relative grind-
ing bead motion is derived from stirred media mill simulations performed on the
macroscale [10]. The CFD domain around the beads is fully resolved, the simulation
of the grinding beads motion is possible due to mesh deformation. Since the mesh
deformation at the contact point would be too large it is not possible to simulate
the actual contact. The immersed boundary method is used for the coupling of CFD
and DEM. The grinding bead impact is set to be elastic, meaning below a critical
distance from the symmetry plane a complete reversal of grinding media motion
occurs. The grinding beads and product particles are assumed to be spherical. For
comparison an analytical method is applied to allow the direct comparison of the
normalized velocity of a collision of two grinding beads (normalized to the starting
velocity). The analytical model is the sum of the fluid displacement force and the
fluid resistance force. The fluid displacement for ball-ball and ball-wall contacts is
calculated according to Beinert et al. [10].

Fdis,bb = −3

2
πηv

r

h0
(6)

Fdis,bw = −6πηv
r

h0
(7)

The fluid resistance force is calculated based on Kürten et al. [11] and depends
on the Reynolds number present in the system:

cw =
⎧
⎨

⎩

24/Re, if Re ≤ 0.25
21/Re + 6/

√
Re + 0.28, if 0.25 ≤ Re ≤ 4000

0.45, if Re ≥ 4000
(8)

For the following comparison of the numerical and analytical determination the
diameter of the grinding media is dGM = 375 μm, the grinding media density (ZrO2)
ρGM = 6067 kg/m3 and the surrounding fluid is water. The distance between the
grinding beads and the symmetry plane (0.25 * dGM; 0.50 * dGM; 1.00 * dGM; 2.00
* dGM) as well as the starting velocity (0.2; 1.0; 5 m/s) are varied. These three
starting velocities result in different Re numbers (8.4; 42.0; 210.0). The numerical
and analytical results for the normalized velocity in dependence of the normalized
distance between the grinding beads can be seen in Fig. 6 for the time before and
after the collision, with the lower values around 0.6 describing the velocity after the
collision:
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Fig. 6 Grinding media velocity normalized to starting velocity depending on normalized distance
before and after a bead-bead collision [12]

Comparing the numerical and analytical solutions for the normalized velocities
and distances, in both cases the smaller the distance to the symmetry plane is, the
greater is the fluid displacement force.While the two grinding beads are approaching,
there is good agreement for the normalized velocities. The reduction of the grinding
bead velocity is higher for lower starting velocities, due to the lowerReynolds number
and therefore, the greater impact of frictional fluid forces. The velocity loss is the
highest shortly before the reversal of the motion direction occurs. The force acting by
the displacement of the fluid is proportional to the velocity and inversely proportional
to the distance. When, after the collision, the grinding beads are moving away from
each other, the velocity decreases linearly. However, the difference between the
simulation and the analytical model is greater than on the initial path (till collision)
since the flow is influenced by the sudden alteration of the grinding bead motion.
For the simulation there is no uniform pattern regarding the influence of the starting
distance. The comparison of the fluid displacement in the numerical and the analytical
solution shows, that the influence of the fluid displacement is underestimated in the
analytical solution [12].

In the following the capture probability is investigated in two additional simulation
set ups using resolved simulations performed as described above. In the first case a
completely resolved flow around the grinding beads and their interaction with the
product particles is simulated. Secondly the flow is investigated in the gap between
two grinding beads. In the first case (the simulation of the local environment of
the grinding beads) the two grinding beads have a diameter of dGM = 500 μm
each. They are approaching each other. In the centre between the grinding beads
nine spherical particles with a diameter of dp = 50 μm (dp/dGM = 0.1) are evenly
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arranged. The distance of the grinding beads to the centre at the starting point is l =
750μm. In Table 1 the resulting angle to the middle as well as the respective velocity
and Reynolds numbers are shown for given starting velocities. In Fig. 7 exemplary
resulting flow patterns with the product particles are shown.

While approaching each other, the grinding bead velocities decrease due to fluid
displacement. As a result of the approach the product particles in between are moved
out. Still, the particle concentration in the shrinking capturing volume increases, due
to the higher mass inertia of the particles compared to the fluid. During the collision
of the grinding beads the kinetic energy is transferred to the elastic-plastic stress state.
As a result, the grinding media is slowed down and then accelerated in the opposite
direction due to the elastically stored energy. Hereby velocity and acceleration are
dependent on the damping of the fluid. On the “return-way” of the grinding beads
the product particles are accelerated towards their initial position by the pull of the
grinding beads. Hence, the decrease in velocity is greater for the lower velocity
since the influence of friction of the fluid is more pronounced for lower Reynolds
numbers. The complete projections of the trajectories of the centres of the grinding
beads (black, thick lines) and of the particles (coloured, thin lines) are exemplarily
shown in Fig. 8 for the starting velocity of 0.050 m/s in a–c and of 0.100 m/s in d–f.

Table 1 Parameters in
dependence of starting
velocity [12]

Starting
velocity
[m/s]

Angled
velocity
[m/s]

Resulting
angle [°]

Reynolds
number [−]

±0.050 ±0.000 0 25

±0.050 ±0.001 1.15 25

±0.050 ±0.002 2.29 25

±0.050 ±0.003 3.43 25

±0.100 ±0.000 0 50

±0.100 ±0.001 1.15 50

±0.100 ±0.002 2.29 50

±0.100 ±0.003 3.43 50

Fig. 7 Velocity fluid fields
and particle position for
different start velocities
(Reprinted with permission
from [8])

vstart=0.100 m/s

vangle=0.06 m/s

vstart=0.050 m/s

vangle=0.000 m/s
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Fig. 8 Projections and trajectories of grinding bead center points and of particles (Reprinted with
permission from [12])

For approaches with greater angles between the two grinding beads motions,
the product particle velocity reduction caused by the impact itself increases. This
influence increases in the further course as the particles are accelerated and moved
due to the pull induced by the grinding beads [12]. It can be seen that the particles are
accelerated following a contact in the pull of the fluid moving into the gap between
the grinding beads, which are moving away from each other. As a consequence, the
product particles are carried away from their initial position. The paths of the product
particles before and after the grinding media collision are different due to the flow
field around the grinding beads being different as result of the angle of motion during
collision.

The difference for variousReynolds numbers is notable. In general, the decrease in
product particle velocity is lower for higher velocities due to the reduced influence
of friction caused by a more turbulent flow at higher Reynolds numbers. In case
of angled impact, no clear influence on the overall reduction of velocity can be
observed, the influence on the velocity during the contact at different contact angles
is however noticeable. The velocity reduction caused by the impact is greater with
increasing angle between the grinding bead velocity vectors. Thus, in macro scale
simulations the coefficient of restitution should contain the deceleration caused by
the fluid displacement to gain more realistic results [8]. In Table 2 the influence of
grinding bead velocities on product particle motion is displayed. The grinding media
velocity is described by the start velocity in normal direction and a low transversal
velocity. The resulting mean product particle velocity is shown as well as the mean
position change as a function of the product particle diameter dp of eight particles
[12].
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Table 2 Average velocity and position change for contact cases [12]

Contact case
Start velocity—crosswise velocity

Average velocity [m/s] Average change in position [m]

0.050–0.000 0.257 · vstart 0.420 · dp

0.050–0.001 0.250 · vstart 0.546 · dp

0.050–0.002 0.229 · vstart 0.439 · dp

0.050–0.003 0.210 · vstart 0.683 · dp

0.100–0.000 0.276 · vstart 0.520 · dp

0.100–0.002 0.280 · vstart 0.446 · dp

0.100–0.004 0.270 · vstart 0.470 · dp

0.100–0.006 0.239 · vstart 0.301 · dp

The absolute product particle velocity increases with rising grinding media start-
ing velocity. The more angled the impact of the grinding beads is, the smaller is the
average acceleration of the product particles. No clear dependency can be detected
for themean position change. Here significantlymore variations need to be examined
and for the analysis of the flow in the gap another method is required, observing this
area with higher resolution.

In the second simulation shown in Fig. 9 a highly resolved CFD-mesh in the gap
between the grinding beads, in particular in regard for the boundary layer, is used. In
the simulation bidirectional interaction (two way coupling) between fluid phase and
product particles is enabled.However, themotion of the grinding beads is not affected
by the fluid, i.e. their velocity remains constant. In addition to the relative velocity
in normal direction, the rotation of the grinding beads is taken into account in order
to determine its effect on the capture probability of product particles in between the
grinding beads. The diameter of the grinding beads and the product particles was set
to dGM = 1000 μm and dp = 50 μm (dp/dGM = 0.05). As normal velocity of the
grinding beads vn = ± 5 mm/s and accordingly as relative velocity vrel = 10 mm/s
are chosen. The resultant Reynolds number is Re = 5. The initial distance from the
centre of the grinding beads to the plane of symmetry is l = 600 μm, the time span
required to cover the distance is �t = 200 ms, the time period being considered in

Fig. 9 Cutting slides through flow fields and product particles (Reprinted with permission from
[8])
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the simulation is �t = 150 ms. Due to reasons of the mesh refinement the contact of
the grinding beads was not examined.

Through varying the angular velocities of the grinding beads the rotation based
effects of shearing and rolling on the capture probability of product particles were
considered. Due to the approach of the grinding beads the fluid is accelerated out of
the gap between the grinding media resulting in a transport of the product particles
with the fluid out of the resulting gap. Depending on the local flow field, the accel-
eration of the product particles is less pronounced with increasing angular velocity
of the approaching grinding beads, leading to an increased capture probability. Five
speed combinations are examined, shear and rolling motion are calculated using an
extended contact analysis [7]. The parameters of the different contact cases, grinding
bead velocity vn, angle velocity wx, the normal shear and the rolling stresses ξrot,r
are shown in Table 3, and the resulting gaps and particles and Fig. 9 [12].

It can be seen, that the fluid velocity increases significantly with a smaller gap
size. For the normal impact (0N), the velocity distribution (without product particles)
is completely symmetrical with respect to the contact plane. The product particles
are forced out of the contact point and out of the remaining gap, respectively. As the
angular velocity increases, the symmetry is reduced to the contact plane for rolling
(4R and 2R) and to the contact point symmetry for shearing (2S und 4S). In these
cases, the rotation of the grinding media counteracts the displacement flow. The
rotational movement of the grinding beads in the gap is aligned in the same direction
during rolling and aligned in the opposite direction during shearing. By imprinting
the rotation in the opposite direction (rolling, case 4R and 2R), product particles
are forced in the direction of the gap or further away from the contact point on the
opposite side. The same effect occurs with rotation of particles with identical motion
alignment (shearing) on the opposite side to the displacement.

For a quantitative evaluation, the number of collisions, the number of contacts and
the number of product particles involved are considered. Multiple collisions (each
numerical contact between grinding bead and product particles), which occur in short
succession, are summarized into a contact. In Table 4 they are shown for the different
contact types [12].

Table 3 Parameters for different contact cases [12]

4R, Normal collision with rolling vn = ±5 and mm/s and wx = ±4π 1/s with
ξtra,n = 0.613 and ξrot,r = 0.387

2R, Normal collision with rolling vn = ±5 and mm/s and wx = ±2π 1/s with
ξtra,n = 0.864 and ξrot,r = 0.136

0R, Normal collision vn = ±5 and mm/s and wx = ±0π 1/s with
ξtra,n = 1.000 and ξrot,r = 0.000

2S, Normal collision with shearing vn = ±5 and mm/s and wx = ±2π 1/s with
ξtra,n = 0.864 and ξrot,r = 0.136

4S, Normal collision with shearing vn = ±5 and mm/s and wx = ±4π 1/s with
ξtra,n = 0.613 and ξrot,r = 0.387
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Table 4 Contact and collision parameters for different contact cases [12]

Contact case Particle
number
at start

Particle
number
at end

Average
velocity

Average
position
change

Stressed
particles/contacts

Collision
Nr

4R—normal
impact and
rolling

5 2 1.165 *
vGM

0.955 *
dp

3 65

2R—normal
impact and
rolling

5 5 0.807 *
vGM

0.665 *
dp

3 64

0N—normal
impact

5 5 0.614 *
vGM

0.465 *
dp

3 61

2S—normal
impact and
shearing

5 5 0.654 *
vGM

0.569 *
dp

3 62

4S—normal
impact and
shearing

5 3 0.797 *
vGM

0.767 *
dp

3 64

4R—normal
impact and
rolling

10 6 1.408 *
vGM

1.015 *
dp

5 84

2R—normal
impact and
rolling

10 9 1.007 *
vGM

0.733 *
dp

4 64

0N—normal
impact

10 9 0.866 *
vGM

0.561 *
dp

4 88

2S—normal
impact and
shearing

10 10 0.901 *
vGM

0.588 *
dp

5 62

4S—normal
impact and
shearing

10 10 0.939 *
vGM

1.107 *
dp

5 60

For the five contact caseswith five product particles there is no apparent difference
in the number of contacts, for the calculations with ten product particles there is an
increase in the number of contacts with increasing rotational velocity. In addition to
direct strain bygrindingbeads, strain by thefluid is also possible.More hydrodynamic
stress is presumably caused by higher acceleration through the fluid due to the higher
product particle velocity with a similar effect on the position change. The mean
product particle velocity increases with increasing angular velocity which is more
pronounced in rolling motion than in shearing motion. A higher angular velocity
leads to a greater change in position with rolling motion having a larger effect on
product particles. In summary, the rotation of the grinding beads has a considerable
influence on the capture probability [12].
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To sum up, the conveying into the gap for both shearing and rolling motion is
evident, leading to increased capturing probabilities. A complete statement about the
type of contact is not yet possible due to limited computing capacity, an evaluation
of the capture probability is however possible [12].

3 Measuring Material Function of Fine Particles

For the calibration of a flow sheet simulation, quantitative knowledge about the break-
age function of product particles and aggregates as well as about the specific break-
age energy is required. Although there are ways to determine the breakage energy
distribution of single product particles via microcompression, this method is very
time-consuming due to sufficient statistics necessary for a representative database.
Moreover, a breakage function can only hardly or not be determined. Therefore,
this method is not suitable for industrial application due to high investment costs and
extreme highmeasurement time. In addition, it delivers limited information about the
resulting fragment size distribution. Another method stated in literature is the back-
calculation of model parameters from the results of mill experiments. However, the
use of literature model equations for the breakage function is limited for ultra-fine
comminution and the results achieved by back-calculation are often restricted to the
test mill. Furthermore, this method is unsuitable for industries like pharmaceutics
where often only very small product samples are available for testing.

In order to connect these, a breakage tester was constructed, based on the work-
ing principle of an EXAKT-three-roll-mill (E-line) with a precise roller to bearing
clamping unit. It allows the investigation of a small but still reasonable amount of
particle breakage to guarantee the required statistical significance. In addition, the
fraction size distribution of an initial narrow particle size distribution can be mea-
sured after the stressing between the rolls. For this purpose, only two of the three rolls
are used for particle breakage. The gears are modified to set counter-rotating motion
of identical velocity, and only the normal pressure is applied and shearing between
the rolls is prohibited. The breakage tester can be seen as a scheme in Fig. 10 and as
the real device in Fig. 11.

The gap between the rolls can be adjusted in the range of 5–180 μm with an
accuracy of one micrometre depending on the bearing clearance, the parallelism of
the rolls, the fine-adjustment of the gap as well as the simultaneous measurement of
the low compression forces and torques. In addition to the original construction of
the three roller-mill, a torque meter is added to the third roll, which is not directly
involved in the crushing of the particles.

The particle deposition is carried out via a vibration conveyer on top of the devise
which allows for a defined velocity and the deposition of a specified particle mass of
a limited number of particles. The tailor-made feed platforms allow the deposition
along the entire width of the rolls according to the required distribution patterns.
Under the rolls, a removal unit enables the particle uptake. For torque measurements,
the direct contact of the removal unit to the rolls was prohibited.
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Fig. 10 Schematic of breakage tester

Fig. 11 Photo of breakage tester in laboratory

The breakage tester enables to adjust various parameters such as roller speed,
product mass flow, distance of the particles falling on the rolls, the gap sizes between
the rolls, and the feed particle size. The effect of the gap size on the applied breakage
force and resulting breakage function was investigated systematically in order to
guarantee the breakage of each particle within the feed particle fraction but excluding
multiple particle breakage. The aim is the identification of an optimal gap size to



6 Dynamic Process Models for Fine Grinding and Dispersing 215

feed size ratio. Therefore, the gap size was varied between 40 and 80 μm and the
feed particles have been sieved into four different fractions from 50 up to 110 μm
(Table 5).

The systematic variation of feed particle size and gap size has shown that the gap
size has to be significantly lower than the x50,3 for breakage, even though there are
particles with greater particle size in the feed (Fig. 12). Therefore, a sufficient energy
input and, thus, gap size to particle size ratio is necessary to observe their effects
in the particle size distribution. When this breakage energy is reached, the number
of particles breaking depends on the ratio of gap size to particle size. In Fig. 12b,
the resulting breakage function of the particle size fraction from 80 to 90 μm is
unchanged for gap sizes smaller than 50 μm. This effect can be attributed to two
effects: First, coarser particles might be collected above the rolls until they are small
enough passing the roll so that they are ground in two steps, effecting the final particle
size. Second, dust formation is increasing significantly, increasing the loss of fines.
Therefore, there are two limits of the gap size. An upper limit where most particles
are too small and just fall through the gap, and a lower limit, where the detection of
fines is limited due to increasing loss at decreasing gap sizes.

These findings result in the aim to identify the optimal ratio between the feed
particle and gap size of the two roller tester. After determining these two limiting
ratios for all particle size fractions, it is observed that between 45 and 94% the applied
energy increases and the breakage behavior of the particles changes. At ratios of gap
to particle size being smaller than 45%, further specific energy input increases the

Table 5 Matrix of
experiments with variation of
feed particle size and gap size

Feed size [μm] Gap sizes [μm]

50–71 40, 50, 60, 70, 80

71–80 40, 50, 60, 70, 80

80–90 40, 50, 60, 70, 80

90–100 40, 50, 60, 70, 80

a b

Fig. 12 Effect of the gap size on the particle size distribution—a Feed particle size of x50,3 =
74 μm and b x50,3 = 88.49 μm
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loss of fines, complicating the detection of further breakage to smaller fractions. It can
be concluded that there is a limit of detection in size reduction for a defined particle
size. At ratios above 94%, most particles simply fall through the gap, resulting also
in smaller energy values.

Summarizing this results, the breakage behavior of materials and especially the
breakage function can be predicted through the tailor-made breakage tester. Further
aim is to calculate the breakage function dependent on feed particle size and breakage
energy for the given material. Further investigations will deliver more information
about the usage of the two-roller tester and will be published soon. One focus will
be to evaluate to what extent the breakage function can be used to predict breakage
in stirred media mills.

4 Grinding

4.1 Effects of Operating Condition Variations
on the Breakage Rate

The evolution of the particle size distribution in grinding processes can be described
by population balance modelling. In order to model the transition of particles to
smaller particle sizes, the parameters specific breakage rate and breakage (distribu-
tion) function are required. These can be determined by experiments. However, the
specific breakage rate determined experimentally for one operating condition is not
easily transferable to other operating conditions as it depends strongly on particle
size, material properties and the stressing conditions in the mill.

The stress conditions in stirred mills can be determined with semi-empirical mod-
els (e.g. [13–16]). The shear-based power model represents the stirred mill as a vis-
cometer and shows the effect of stirrer speed, geometry and viscosity on the power
consumption of the mill [15]. The stress energy model shows with the parameters
stress energy and stress frequency, which are calculated from simple proportional-
ities, the influence of process parameters on the grinding result [14]. Eskin et al.
[13] estimate the mean velocity and frequency of grinding media oscillations using
approximate values of turbulent energy dissipations on a micro scale. Based on this
micro hydrodynamic view of the particle stressing, Afolabi et al. [16] define a pro-
cess parameter depending milling intensity factor that correlates with the breakage
kinetics of drug nanoparticles. As an alternative to the semi-empirical models, the
stress conditions can be obtained by simulating the grinding media motion in wet
operated stirred media mills via coupling of discrete element method (DEM) with
computational fluid dynamics (CFD) (e.g. [7, 17]) or smoothed particle hydrody-
namics (SPH) (e.g. [18]). Gers et al. [19] characterize collision characteristics by
determining collisional Stokes and Reynolds numbers from direct numerical sim-
ulations. Distribution of stress energy from DEM simulations in combination with
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material breakage behavior have already been applied to ball mills for estimating the
effect of operating parameters on the breakage rate [20–23].

In the following the influence of different operating and machine parameters on
the specific breakage rate in wet stirred media milling is discussed. On the one hand,
the stress conditions in a stirred media mill are determined by the semi-empirical,
mechanistic model of Kwade and on the other hand with two approaches based
on coupled CFD-DEM simulations. The results of the three procedures are com-
pared with experimentally measured specific breakage rates of limestone, a material
frequently used to study the grinding process in stirred mills [24–26].

Stress energy approach: It can be shown that the breakage rate directly depends
on the product of stress energy and stress frequency (determined according to
Kwade’s stress model). The product of both, stress energy and frequency, can be
seen as a measure for the product volume specific power input acting on the product
particles during the grinding or dispersing process. This makes it possible to describe
the influence of grinding media density and size as well as stirrer speed on the break-
age rate [27]. Furthermore, the influence of additional parameters, namely stirrer
geometry (Fig. 13a) and product concentration of the suspension (Fig. 13b) on the
breakage rate of limestone particles was investigated. The stress energy coefficient
SE is calculated using the mass of a grinding media mgm and the peripheral stirrer
speed v:

SE = 1

2
mgmv2 (9)

The coefficient stress frequency, SF, is proportional to the grindingmedia collision
frequency per volume (i.e. the volume specific collision frequency) nc/t, the number
of particles per volume n∗

P and the capture probability Pc.

SF ∝ nc
tn∗

P

Pc = nK
tnP

(
1 − ϕgm(1 − ε)

)Pc (10)

a) b)

Fig. 13 Experimentally determined breakage rate of limestone for two different stirrer geome-
tries (left) and two solid concentrations (right) applied via the product of stress energy and stress
frequency or SE * SF normalized to the number of particles (Reprinted with permission from [27])
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Here nP is the number of particles per suspension volume, ϕgm the grinding bead
filling degree and ∈ the grinding bead porosity. The collision frequency and, thus,
the load frequency are proportional to the stirrer speed and number of grinding
media. The capture probability is calculated using an “active volume” between two
grinding media during a contact. A further assumption is that in the actual size and
concentration range only one particle is trapped between two grinding media and
significantly stressed.

Using this approach, the breakage rate was determined for different grinding
media sizes and stirrer speeds as well as two different stirrer geometries and solids
concentrations. Figure 13 shows very clearly that the stress model well describes the
influence of changes in operating parameters on the breakage rate in batch operation
per stirrer geometry. However, a simple transfer to another stirrer geometry is not
possible, which is usually unproblematic since the stirrer geometry is normally not a
variable quantity in the process. Furthermore, the model approach for the breakage
rate according to the stress model does not allow predicting the absolute value of the
breakage rate from scratch. Few experiments with the used material in the respective
mill are necessary to determine the location parameters of the linear function of the
breakage rate.

Approach via mean values from CFD-DEM simulations: The collision energy
distribution and the collision number were calculated for various operating parame-
ters using CFD-DEM simulations and the result was comparedwith the characteristic
values of the stress model [7]. It was shown that simulated grinding media contacts
and collision energies do not show exactly the same dependencies on the operating
parameters as defined for the stress model. For the product of the two parameters SE
and SF, however, the dependency is approximately the same. This is an indication of
why the combination of stress energy and stress frequency shows good correlations
with experimentally measured breakage rates. It should be noted that the capture
probability was not determined from the DEM-CFD simulations. A strong corre-
lation between the simulation results and the experimental breakage rates could be
shown (Fig. 14). The breakage rate of a product particle size class can be described
by a linear function. The smaller particles exhibit higher strength; therefore, their
breakage rate is lower. No material parameter is included in the index in Fig. 14, so
two curves can be seen. The integration of material values into the model is shown
in the next section.

Approach via CFD-DEM simulation and material function: The CFD-DEM
simulations provide complete stress energy distributions that are characteristic for
different mills and operating parameters. Tavares and Carvalho [22] consider in their
approach for dry ball mills the stress energy distribution of the mill as well as the
particle breakage energy distribution through the convolution of the two distributions.
In combination with the collision frequency and the capture probability, this results
in the breakage rate. For validation of this model for stirred media mills, yeast cells
were used as test material [27]. The yeast cells have the advantage that the burst or
breakage energy can be adjusted by the osmotic conditions and that they are almost
monodisperse with a particle size of ~5μm. In addition, yeast cells show no breakage
function after digestion and the burst or breakage rate can be clearly determined
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Fig. 14 Experimental breakage rate plotted against specific energy input determined from CFD-
DEM simulations for two limestone size classes (Reprinted with permission from [27])

by measuring the released protein concentration. The breakage energy distribution
of the yeast cells was measured by microcompression and is shown in Fig. 15.
“Yeast #1” and “Yeast #2” indicate two different osmotic conditions which influence
the breakage energy distribution. Furthermore, Fig. 15 shows the effective collision
frequency nc,eff(E). The effective collision frequency represents the summation of
the frequency of collisions with energy E and higher and is determined from the
CFD-DEM simulations:

nc,eff (E)

t
=

Emax∫

E

nc(E)

t
dE (11)

The breakage rate is then calculated taking into account the material breakage
energy distribution gmat(E):

Ssim = Pc

nP(1 − ϕ(1 − ε))

Emax∫

Emin

gmat(E)
nc,eff (E)

t
dE (12)

Figure 16 shows the comparison between the experimentally determined breakage
rate Sexp and the simulatively determined breakage rate Ssim on a double logarithmic
scale. It should be emphasized that Ssim is based solely on themicrocompression data,
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Fig. 15 Effective collision frequency determined fromCFD-DEMsimulations and breakage energy
distribution of yeast and limestone. The breakage energy distributions can be described by log-
normal distributions (Reprinted with permission from [27])

Fig. 16 Experimentally determined breakage rate compared to the simulative determined breakage
rate for limestone (a) and yeast cells (b) (Reprinted with permission from [27])

simulation results and model assumptions and does not contain any fitted parame-
ters. Figure 16b shows that for yeast the influence of stirrer speed, material strength
and grinding bead size on the breakage rate can be well mapped. In the case of
glass grinding media, the simulated breakage rate corresponds to 0.2–1.7 times the
experimentally determined breakage rate. However, the influence of the change of
grinding media from glass grinding media to zirconium oxide grinding media can-
not be reproduced correctly and Ssim for zirconium oxide grinding media is clearly
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below the experimental values. For limestone (Fig. 16a) there are two clear outliers
and no linear correlation could be found between Ssim and Sexp. The poorer agreement
of the results for limestone may be due to the fact that the collision energy distri-
bution shows strong fluctuations in the range of the breakage energy distribution
values for limestone (see Fig. 15). In addition, the energy actually transferred to the
particles does not exactly correspond to the collision energy, which is a maximum
value. Therefore, it should be checked whether the simulated collision energies are
in principle too low, or whether multiple stressing is also an important factor in the
grinding of limestone.

4.2 Circulation Mode

Materials can be ground in four different modes. Therein, continuous passage mode
is most often used in industry. Circulation mode is an approach often used in labora-
tory scale to understand grinding processes, avoiding the usage of large amounts of
material. In 1996, Kwade developed a stress energy model that calculated the stress
energy based on the kinetic energy of the grinding beads [28]. After correlation with
the specific energy and the information of the final product size, it is possible to
obtain an optimum curve for specific energy input.

Circulation mode is often the favored method in laboratory scale to determine the
operation parameters for a certain final product size, but also in industry if very fine
particles have to be produced. Therefore, it is of great interest to identify the important
influencing parameters in circulation mode and correlate it towards one or multiple
passage mode, i.e. different continuous modes that are often applied in industry
for medium fine and coarse products like minerals, agrochemicals and ores. Kwade
introduced several parameters that influence the kinetic energy and one of those
parameters affecting the energy transfer coefficient is the viscosity of the product
suspension [29]. Thereby, the viscosity is dependent on the mass concentration,
particle size and fluid viscosity. If the fluid viscosity is not varied, but the mass
concentration, then beside viscosity also the capture probability is influenced.

Generally grinding in circulation mode results in broader particle size distribu-
tions compared to running in multiple passage mode. Especially the first circulations
result in broader distributions, but longer grinding times and with that higher num-
ber of cycles reduce the poly dispersity index PDI. However, operation in circulation
mode with a sufficient number of cycles delivers distinctly narrower residence time
distributions and, thus, particle size distribution than operating themill in one passage
mode (Fig. 17) [30].

The grinding experiments were executed in two different types and sizes of mills
to consider mill specific effects: One was the LM4 IsaMillTM fromNetzsch, the other
one the PM-1 from Drais. The LM4 has an internal deflector wheel and its volume
is around 4.5 L. Six perforated discs have been used with a distance of 35 mm.
The PM-1 is smaller and its volume is around 700 mL. There are five perforated
discs installed. In the LM4 IsaMillTM, the mass concentration was kept constant to
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Fig. 17 Development of particle size x50,3 and PDI in circulation mode for limestone

30wt%, but the fluid viscosity was varied through the addition of polyethylene glycol
to observe the effect of pure viscosity changes on grindability. The volume flow was
set to 100 L/h and the tip speed was 8 m/s. For the PM-1, the mass concentration was
varied to additionally look at the effect of capture probability on grinding events.
The volume flow was set to 50 L/h and the tip speed was constant at 10 m/s.

In Fig. 18a, the viscosity increases because of the increase in mass concentration
and the decrease in particle size. Higher solid concentrations lead to longer circula-
tion times. This effect can be normalized by the throughput capacity. The effect is

a b

Fig. 18 Grinding of soda-lime-glass in circulation mode in PM-1—a viscosity development and
b corresponding x50,3 in dependency of specific energy consumption
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interesting during the first 20 min of operation when it was possible to reach sig-
nificantly smaller particle sizes if the solid concentration is reduced. This effect can
be accounted to two phenomena: On one hand, 20 wt% should be enough material
to capture particles during each stress event. Increasing the amount of particles in
the system would lead to further energy distribution among the particles, resulting
in less events per particles and an increase in grinding time. On the other hand, the
viscosity increases with a higher solids concentration leading to a decrease in energy
transfer coefficients and in kinetic energy transferred from the grinding bead onto
the captured particles. This effect also increases grinding time until the same final
particle size is reached.

Since the industry often uses passage mode for comminution if medium or coarse
product size are required, negative side effects due to increased solids concentration
can be reduced through the stabilization of the product particles. In the majority
of instances, reduction of solids concentration is avoided since the throughput is
decreased. For economic reasons, engineers often increase the specific energy to
obtain the same result in shorter time. Still, the grinding efficiency dependent on
solids concentration might be increased for larger mills. In this study, the laboratory
mill (Drais PM-1) has no internal classifier that would influence the product or
grinding media transport.

The effect of fluid viscosity on the grinding efficiency was also investigated. In
this study, the viscosity does not only influence the grinding itself but also the prod-
uct and the grinding media transport through the internal deflector wheel of the mill.
For comparison, the temperature was recorded during grinding and the viscosity was
measured at the same temperature measured within the grinding chamber. Figure 19a
represents the development of viscositywith increasing specific energy under various
fluid viscosities. It is observed that the viscosity remains constant over the grinding
time and that it is mainly dependent on the fluid viscosity (continuous phase). This
leads to the conclusion that particle size (disperse phase) which is changing over
grinding time does not affect the suspension viscosity in this case. Reasons are that

Fig. 19 Grinding of quartz in circulation mode in LM4 IsaMillTM—a viscosity development and
b corresponding x50,3 in dependency of specific energy consumption
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the particle size for the given solids concentration is still above or in the range of a
critical value (Knieke et al.) under which the viscosity starts to significantly rise and,
that the effect of the reduction in particle size is compensated by the increase of the
temperature inside the grinding chamber (Fig. 19a). Comparing these results with
the particle size (x50) change in Fig. 19b, only slightly difference in the measurement
values could be found. Even though the increase in viscosity probably improves the
grinding bead distribution along the length of the LM4, the dissipation of kinetic
energy through increased damping of bead collisions decreases grinding efficiency.
Therefore, no effect of viscosity on grinding result could be ascertained here. How-
ever, at the beginning of the grinding process, i.e. at low residence times, an increase
in viscosity improves the grinding efficiency in the LM4 (Fig. 19b).

In general, the viscosity is an important aspect for grinding at low grinding times.
With increasing number of cycles, the effect of viscosity is decreasing. One aspect
might be that the product residence time is increasing with higher viscosities, which
is important in the beginning of the process. Another aspect might be that particles
greater than 20 μm can be captured more efficiently at higher viscosities, since the
drag force acting on the grinding beads and particles distributes them equally in
all cells in the mill, so that the effective velocities of grinding beads in the cells is
increased.

In conclusion, viscosity is only changing the grinding process, if the viscosity is
high enough to reduce the kinetic energy of the beads and the bead distribution along
the length of the mill. If the viscosity is only influenced by the particle diameter, the
change in viscosity is marginal as long as the particles sizes are clearly above 1 μm.
The influence of increased solids concentrations is reduced through longer grinding
times, since the energy is distributed among more particles. A longer grinding time
results in a narrower particle size distribution when circulation mode is used at
constant mill throughputs. In case of one passage mode longer grinding times and,
consequently, lowermill throughputs result inwider residence time distributions and,
thus, wider particle size distributions.

5 Product Transport

For stirred media mills it was already shown that the residence time distribution
can be simulated by a series of ideal stirring vessels with recirculating flow [31,
32]. The volumes of the ideal stirring vessels are positioned around the stirring
discs, as shown schematically in Fig. 20. Thereby, the geometry of the stirred mill
is considered. Keeping the series of well mixed cells in mind, in the simulation
the product particle concentration should change stepwise in axial direction after a
change in the product inlet. This also corresponds to the experimentally observed
behavior of the fluid transport [32]. Back mixing is described by the return flow
coefficient R, which indicates the ratio of mixing flow to volume flow: R = Ṙ/V̇
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Fig. 20 Schematic
representation of the cell
model with return flow for
stirred media mills

In this model, the return flow coefficient is assumed to be constant over the entire
mill. The return flow coefficient must be determined experimentally and can be mod-
elled to a limited extent depending on the operating parameters [32]. Additionally,
it is assumed that in fine grinding the product particles move together with the fluid
[33]. This allows the product transport to be determined experimentally by tracer
experiments for the fluid phase, as described in the following (see also Fig. 21).

In order to measure the residence time distribution in stirred media mills, a pulse
of saturated sodium chloride solution was injected at the grinding chamber inlet. At
the grinding chamber outlet, the electrical conductivity was measured. This gives
directly the residence time density function, which was normalized and corrected for
outliers. The dead time of the flowbetween injection point and grinding chamber inlet
aswell as between grinding chamber outlet and conductivity probewas approximated
by assuming an ideal plug flow [34]. For the cell model with back-mixing, a state
space model was created in Matlab. By minimizing the sum of the error squares
using the Matlab function fminsearch, the simulated residence time distribution was
adapted to the experimentally measured distribution and the return flow coefficient
R was determined.

The examination of the product transport took place in the same two stirred media
mills that were mentioned earlier: first, a laboratory sized mill (PM-1, Drais) with
in this case 4 grinding discs and a working volume of 613 mL and second, a mill
with deflector wheel (M4 IsaMill, Netzsch) and a volume of 4.6 L. The effect of
the viscosity on the residence time distribution was investigated using a polyethy-
lene glycol-water mixture in different proportions as Newtonian model fluid. The
temperature at the grinding chamber inlet and outlet was recorded and its influence
on the viscosity was taken into account. In addition to the viscosity, the operating
parameters stirrer speed, volume flow, grinding bead size and grinding media filling
were varied.

It was shown that the cell model with back-mixing is capable of mapping the
residence time distribution in the two stirred media mills investigated. With increas-
ing circumferential speed, a steady increase of the mixing flow was observed (see
example parameters in Fig. 22a). Figure 22b shows the influence of the medium
viscosity on the mixing flow. With increasing viscosity, the mixing flow decreases,
whereby the values for the low viscosity of water partly do not fit into the overall
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Fig. 21 a Experimental procedure to measure the residence time distribution of the fluid phase by
a trace method. b Fitted cell model with mixing flow to experimentally measured residence time
density function
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Fig. 22 Back-calculated mixing streams in the cell model in dependency of the parameters a stirrer
speed and b viscosity of the medium

trend, probably due to a more even axial distribution of grinding media. The varia-
tion of the volume flow has a small influence on the mixed flow. A constant mixed
flow at higher volume flows means that the return flow coefficient R is reduced and,
therefore, a narrower residence time distribution is achieved.

Figure 23 shows the mixing stream that was fitted to residence time experiments
in theM4 IsaMill. The overall media filling degree has a clear influence on themixing
stream. A higher filling degree leads to a lower mixing stream between cells and,
thus, a narrower residence time distribution. The effect of the pump capacity of the
deflector wheel (classifier) was investigated by reducing the number of pins. It can
be seen in Fig. 23 that the deflector wheel increases the mixing stream.
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Fig. 23 Back-calculated mixing streams for the M4 IsaMill

6 Axial Grinding Media Distribution

Depending on the type of mill, it is observed that the grinding media is distributed
along the x-axis due to drag forces, which lead to a grinding media transport. This
effect can reduce the performance of a mill drastically, up to a point where the
grinding beads are packed at the outlet of themill. Therefore, somemill types include
an internal deflector wheel which is counteracting towards the volume flow. This mill
design leads to a change in grinding bead distribution along the x-axis, which is not
understood completely up to this point. In this study, the effect of single parameters
such as tip speed, volume flow, bead size and density, grinding media filling degree
and viscosity changed the grinding media distribution along the x-axis.

Since the grinding media filling ratio changes the stress conditions in the mill and
therefore affects the grinding conditions, it is of interest to combine the single effects
on the grinding media transport and model the effect of the grinding media filling
degree on the grinding process.

In order to determine the local grinding media filling ratio, radiometric densitom-
etry was used, dealing with the weakening of a gamma source through the grinding
beads. Depending on the strength of the signal, it was possible to back-calculate the
grinding media concentration in each cell for different positions before and after the
discs. The exponential loss of radiation intensity follows the Lambert-Beer’s law
[35].

The radiometric densitometer was set above the mill design to closely investigate
the grindingmedia transport during running of themill (see Fig. 24). Themill consists
of six perforated discs with a diameter of 100mm. The distance of the discs is 35mm.
An internal deflector wheel was used as a classifier and was installed directly in front
of the outlet to avoid bead packing.
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Fig. 24 Schemeof axial (a) and radial (b) setup for themeasurementswith radiometric densitometer
[35]

The gamma radiation source consists of Cs137 (661 keV) nuclide. The detector is
a thallium activated NaI crystal. For the detection two positions were chosen, one on
the right mill side, the other one on the left side to avoid measurements closely to
the shaft. 17 positions were measured along the x-axis. To avoid overlaying effects
of the grinding media with the grinding beads, all tests were performed using model
fluids with different viscosities. The grinding beads were varied in density and size.
Furthermore, the total grindingmedia concentrationwere varied between 40 and 80%
of the grinding chamber volume.

It was observed that all parameters change the measured filling degree in the
separate cells. In Fig. 25a), the grinding media concentration was varied between
40 and 80%. First of all, the cells seem to be filled gradually. The cells at the inlet
are filled with grinding beads before the cells closer to the outlet, in conclusion the
backwards transport by the classifier has to be stronger than the forward transport
by the volume flow. The classifier itself never sees any grinding beads. The disc
before the classifier acts as transition zone between the grinding and classifying
zone, showing some grinding beads before and some behind disc 5. This partitioning
and the way the cells are filled with grinding beads leads to a characteristic repeating
pattern of the development of the local filling degree over the length of the mill: The
highest local filling degree is most often measured in cell 1 (C1) at the mill inlet. The
filling ratio value of this cell influences the filling of all following cells. Depending
on the density and size of the grinding beads, it is possible to vary this maximum
filling degree.

Figure 25a–b show the grinding bead distribution for a bead density of 3.7 g/cm3

and a bead size of 2.5 mm for different filling ratios and viscosities. In both cases, the
maximum concentration seems to be close to 80%. Comparing this to a decreased
density of 3.63 or 1.5 g/cm3 (Fig. 25c), the maximum reached concentration in cell
1 is increased. For greater grinding bead sizes on the other hand the maximum local
concentration is decreasing. Depending on this first cell, all other cell will be filled
with grinding beads. The solids concentration of the product particles influences
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Fig. 25 Local filling degree in dependency of a grinding bead concentration [35], b viscosity,
c grinding bead density and d volume flow

the effect of the drag and centrifugal forces on the grinding beads. If the beads are
denser and, thus, heavier, then the centrifugal forces increase more than the drag
forces applied by the classifier and, therefore, the drag has less effect on the axial
grinding media distribution.

Exactly the same phenomena can be seen when the viscosity is increased up to
50mPas (see Fig. 25b) The classifying effect is reduced, becausemore kinetic energy
is lost by the transport of the beads through the medium. Although, it can be seen that
an increase in viscosity effectively distributes the particles more along the x-axis in
direction of the mill outlet and as a result the grinding beads can move more freely
in the single cells.

On the one hand, Fig. 25d shows the influence of a reduced rotor tip speed on
the local filling degree. Compared to (c), the maximum local filling degree in cell 1
does not change at low volume flow. It might be that the influence of the tip speed is
increasing with greater volume flows. On the other hand, Fig. 25d shows the great
influence of the volume flow on the maximum tip speed at least for low rotor tip
speed.
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It is obvious that there is a close interaction of the parameters affecting the axial
grinding media distribution. Especially the tip speed and the volume flow rate influ-
ence the grinding media transport along the x-axis and can easily be adjusted during
the operation of the mill.

7 Flowsheet Model

In the following the application of the dynamic grindingmodel for a horizontal stirred
media mill is shown. The model is implemented in the dynamic flowsheet simula-
tion software Dyssol [36]. The change of the particle size distribution is calculated
via population balance equations. The milling chamber is simulated as a series of
instantly mixed cells that are connected by mixing streams. The cells allow for a
simplified simulation of the grinding bead filling level and the product transport
through the stirred media mill. Exemplarily, the effect of the solids concentration
and the volume flow on grinding and residence time distribution is investigated. The
dynamic response of the product particle size distribution at the mill outlet after step-
wise change of these process parameters is shown. The simulations are compared to
experimental investigations with limestone in a laboratory stirred media mill.

The simulated flowsheet is shown in Fig. 26. The reason for the delay unit is to
account for not ideal plug flow in tubes of the experimental setup. The answer on a
step function of salt concentration was measured for the tubes in the experimental
set-up via a conductivity sensor. The result cannot be described with ideal plug flow
(see Fig. 27). Therefore, the change in concentration is described with Eq. 13, that
was fitted to meet the experimental step function response of the tubes:

Fig. 26 Flowsheet for continuous grinding operation
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Fig. 27 Measured and fitted
answer of tubes on a step
function for two different
flow rates

ẋ = k
(
x(t)−x

(
t − tdelay

))2
(13)

The pump unit’s only purpose is to set the volume flow, which is a time dependent
user parameter. The dynamic stirred media mill unit performs grinding of particles in
a suspension. The axial grinding media distribution was not considered at this point
in the simulations and is assumed to be constant.

The set-up of the continuous experiments is shown in Fig. 26. It is comparable
to the simulated set-up. After a steady state is reached in the grinding process the
feed is switched from one stirred tank to another to mimic a step function in input
parameters. At the product outlet samples are taken at 0.5, 1, 2, 3, 4, and 6 times the
ideal filling times after the switch plus the ideal dead time in the tubing considering
ideal plug flow. The samples are analyzed for the mass concentration and the particle
size was measured via laser diffraction (Helos, Sympatec).

First, the mass concentration in the feed was varied in a step function from 0
to 0.1 to 0.3 to 0.5 to 0. In Fig. 28a the experimental and simulated response of
the suspension’s solids concentration at the product outlet is shown. In general, the
simulations show the adaption of the product outlet to the step function in the feed.
However, the scatter of the experimental values is relatively high. In Fig. 28b and
Fig. 29 the particle sizes at the product outlet can be seen. As a response to the rise in
mass concentration in the mill, the characteristic particle sizes in the product outlet
increase. Both, experiments and simulations show this effect.

As another example, the step change in the flow rate was simulated. The volume
flowwas changed from 30 to 15 L/h. Figure 30 shows at the top the volume flow over
time and at the bottom characteristic values of the product particle size over time.
It can be seen that it takes about three ideal filling times until a new steady state is
reached. A lower volume flow leads to longer residence times of the suspension in
the mill and, therefore, smaller particle sizes at the product outlet. At the same time,
with the smaller volume flow there is a higher back-mixing in relation to the volume
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Fig. 28 a Mass concentration of the feed and at the product outlet for the experiments and sim-
ulations; b median and x84 value for the particle size at the product outlet starting from the first
reached steady state

Fig. 29 Simulated particle size distribution at the product outlet after step wise increased solids
concentration of the feed suspension

flow, hence a higher mixing coefficient R. At the product outlet, a broader particle
size distribution can be detected, which can be explained by the broader residence
time distribution.
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Fig. 30 Median and x84 value for the particle size at the product outlet (below) responding to a
step function of the flow rate (above)

8 Conclusion

In this contribution two types of horizontal stirred media mills (with and without
deflecting wheel) were investigated experimentally and with simulation in order to
describe relevant machine parameters for a dynamic process model for stirred media
mills. Coupled CFD-DEM simulations were performed to determine the contact fre-
quency and stress energy of the grinding bead collisions. The unresolved simulations
showed good agreement to existing models for describing stress energy. The distri-
bution of different collision types such as normal collisions, shearing and rolling
could be derived to be used as input parameter for resolved simulations. In these
the capturing probability of product particles between approaching grinding beads
were investigated, depending on the proportion of the above mentioned collision
types. Principle insights could be gained such as increased capturing probabilities
for shearing and rolling motion. The capturing probability in combination with the
collision frequency and stress energy delivers the relevant machine parameters for
flow sheet simulations.
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In case of the unresolved CFD-DEM simulations, the product of stressing fre-
quency and energy showed good correlation with experimental grinding results. For
the validation different particles were investigated using microcompression, includ-
ing yeast cells, to experimentally determine the respective breakage probability. Cor-
relating these breakage probabilities with the collision frequencies gained from the
simulations allowed for a direct comparison with experimentally gained breakage
rates from performing grinding experiments.

For the systematic analysis of fine particle breakage via compression between
grinding beads a breakage tester was constructed. Material specific fracturing prop-
erties were investigated in dependence of the original particle size and the gap size
between the rolls. Force and torque were captured for an energetic evaluation. The
device enabled the prediction of material specific breakage behavior which, in a
normalized form, should enable the prediction within flow sheet simulations.

The temporal development of particle size distribution was modeled with popu-
lation balance equations. On this basis the impact of various operating and machine
parameters on the breakage rate was examined. It could be verified that collision
frequency and thereby load frequency has a linear dependence of the stirrer speed
and the number of grinding beads. The so determined breakage rates showed a good
correlation with experimental results. The product transport through the mill was
simulated via a cell model with mixing flow.

Additionally, circular mode grinding experiments were performed to investigate
the impact of operation parameters. For instance, it was shown, that only viscosities
high enough to impact the kinetic energy have an impact on the grinding process.
Additionally, radiometric densitometry was used to investigate grinding media trans-
port. A high correlation between tip speed and volume flow on the grinding media
transport along the horizontal axis could be detected.

The results from these experiments and simulations were included in Dyssol as
a flow sheet simulation. The implemented model was then examined by performing
simulations and comparing them with experimental results for the particle size at the
outlet of a stirred media mill.
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Chapter 7
Dynamic Simulation of Mechanical Fluid
Separation in Solid Bowl Centrifuges

Marco Gleiss and Hermann Nirschl

Abstract Solid bowl centrifuges are used in a wide range of applications in the
process industry. The aim is to separate the individual phases of a liquid/liquid,
liquid/solid or liquid/liquid/solid system. The design of solid bowl centrifuges is
based on the �-theory, which does not describe the separation process with a suf-
ficiently high accuracy. This process results in numbers of experiments with high
time and cost expenditure. In addition, �-theory only describes the stationary state
and therefore do not allow the calculation of start-up processes and load changes.
This chapter shows a new real-time capable numerical algorithm, which ensures
a high computational efficiency and is therefore suitable for dynamic simulations
of the process behavior of solid bowl centrifuges. The introduction deals with the
state of the art and the existing problems concerning of the design of solid bowl
centrifuges. Subsequently, material functions representing the separation properties
in solid bowl centrifuges are expounded. The developed material functions are the
basis for the dynamic simulation of the process behavior in solid bowl centrifuges
described below. The residence time and flow conditions of the apparatus signifi-
cantly influence the process behavior for semi-batch and continuous processes. The
last two sections present the dynamic modeling of continuously operating decanter
and semi-batch tubular centrifuges. Example simulations and comparisons to exper-
iments validate the developed dynamic models and demonstrate the applicability for
dynamic simulations.

Nomenclature

As Cross section of the sediment [m]
Bsc Screw pitch [m]
C G-force [−]
D Flow number [−]
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E(D) Residence time distribution function [−]
E Separation efficiency [−]
F(D) Residence time distribution [−]
G Grade efficiency [−]
h Hindered settling factor [−]
Lcyl Length of the cylindrical drum [m]
Lhel Length of the unrolled screw channel [m]
ṁs,i - 1 Incoming mass flow of solids [kg s−1]
ṁs,i Outgoing mass flow of solids [kg s−1]
ṁs,sep Mass flow of separated solids [kg s−1]
N Total number of compartments [−]
nRZ Exponent Richardson and Zaki [−]
p1 Empirical parameter for solids pressure function [Pa]
p2 Empirical parameter for solids pressure function [−]
ps Solids pressure [Pa]
P Product loss [−]
q3,i Mass density distribution [m−1]
Q Volumetric flow rate [m3 s−1]
r1, r2 Empirical parameters for hindered settling function [−]
Rd Radius of the bowl [m]
Rm Mean radius of the bowl [m]
Rmax Maximum radius of the sediment [m]
Rs Radius of sediment surface [m]
Rw Radius of the weir [m]
Rep Particle Reynolds number [−]
Sdyn Normalized dynamic change [−]
t Time [s]
T Transport efficiency [−]
x Particle diameter [m]
x50,3 Mean particle diameter dependent on mass [m]
U Volumetric Filling level [−]
Umax Maximum volumetric filling level [−]
Vhel Volume of the screw channel in the cylindrical part of the decanter centrifuge

[m3]
V Volume of a compartment in the sedimentation zone [m3]
Vsed Sediment volume [m3]
β Screw angle [rad]
�l Length of a compartment [m]
�n Differential speed between screw and drum [rpm]
η Dynamic viscosity [Pa s]
φ Solids volume fraction [−]
φc Mean solids volume fraction of the sediment [−]
ρ Density [kg m−3]
τ Mean residence time [s]
ω Angular velocity [s−1]
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Indices

0 Initial position of the particle
i Compartment
l Liquid
N Total number of compartments
S Solid
sol Solution
tr Transport

Abbreviations

CFD Computational fluid dynamics
CSTR Continuous stirred tank reactor
MPC Model predictive control
ODE Ordinary differential equation
PFR Plug flow reactor
PVC Polyvinylchloride
RTD Residence time distribution
SRF Single rotating frame

1 Introduction

Processes dealing with particle formation such as crystallization or precipitation,
syntheses but also the fermentation of biological components usually take place
in an aqueous medium [1, 2]. For better handling and transport as well as further
processing of the mostly particulate valuable material, mechanical fluid separation is
essential as a subsequent separation step after particle generation. Since centrifuges
apply large centrifugal forces, there is a decrease of particle settling time compared
to the settling in the gravity field, which reduces the process time significantly. In the
field of centrifugation, a distinction ismade between solid bowl and filter centrifuges.
Solid bowl centrifuges have an impermeable bowl. In filter centrifuges, in contrast,
the bowl is permeable for the filtrate. The particles usually remain on the filter cloth.
At this point, it should be noted that this contribution is limited to the modeling of
solid bowl centrifuges.

The design of solid bowl centrifuges is based on highly simplified models such
as the �-theory [3, 4]. The �-theory regards the physical behavior of the material
in solid bowl centrifuges as a “black box” and neglects transient phenomena, which
occur due to the spin-up process or as a reaction to load changes. Additionally,
�-theory does not consider flow conditions, settling behavior, cake formation and
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sediment transport [5]. For the scale-up of solid bowl centrifuges the manufacturers
use numbers of experiments on a pilot scale. This procedure is time-consuming and
cost-intensive and does not allow any prediction about the dynamic process behavior
[6]. For a theoretical description of the transient response of solid bowl centrifuges, it
is necessary to consider flow conditions and separation behavior. A major challenge
in depicting the separation process in solid bowl centrifuges arises from the fact,
that particle separation depends on the residence time in the apparatus. In contrast
to thickeners, the flow direction in solid bowl centrifuges results in a classification
of particles along the rotor [7].

In the field of flowsheet simulation, it is important to predict the steady-state
or dynamic behavior of a process plant using time-efficient mathematical models.
For other applications such as Model Predictive Control (MPC) it is essential to
calculate faster than real time to enable a coupling of dynamic modeling with the
process control level. Mesh-based methods such as Computational Fluid Dynamics
(CFD) are not suitable for flowsheet simulations [8, 9]. CFD simulations rather
serve to derive parameters, that are not achievable experimentally from numerical
experiments [10, 11].

The following section begins with an overview of the experimental setup to inves-
tigate material functions for the settling behavior and the cake formation process.
The dynamic model for solid bowl centrifuges uses material functions for process-
orientated dynamic simulations. Subsequently, different experimental methods to
characterize the system and residence time behavior for decanter centrifuges are
presented. Based on the investigations of material and process behavior the fol-
lowing section deals with the mathematical modeling of the dynamic behavior of
continuously working decanter centrifuges. The comparison of dynamic simulations
with pilot-scale experiments for decanter centrifuges shows the applicability of the
developed numerical approach. The following section shows the development of a
dynamic model for semi-continuously operating tubular centrifuges. Simulations of
a tubular centrifuge on a pilot scale reveal a different process behavior of tubular
centrifuges compared to decanter centrifuges. Finally, the conclusion summarizes
the main results and gives a short outlook on further work.

2 Material Functions and Separation Properties

The properties of the disperse and the fluid phase such as particle size, particle
shape, solid volume fraction, physicochemical properties, density of solid and liquid
as well as dynamic viscosity have a significant influence on the material behavior
during mechanical fluid separation [12]. Due to the large number of influencing
quantities, there are no generally applicable models for the arbitrary product. Rather,
it is preferable to investigate the material properties in a laboratory apparatus and to
develop material functions for the theoretical description of the separation process
[13]. The use of well-established laboratory equipment, such as beaker centrifuges
or filters is one way to achieve this goal [14, 15]. In the case of solid bowl centrifuges,
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the process behavior depends on various influencing factors for instance, the settling
behavior, sediment build-up, sediment transport andmechanical dewatering [16, 17].
In the following subsection the experimental investigation of material functions for
finely dispersed materials is presented in more detail.

2.1 Settling Behavior of Finely Dispersed Particles
in the Centrifugal Field

The settling behavior of finely dispersed particles has a decisive influence on the
separation efficiency of solid bowl centrifuges. Especially in the case of a high solid
content, the particles affect each other due to an increasing hydrodynamic interaction
between solid and liquid. As a result, Stokes law for particle settling is no longer valid
and a correction function for hindered settling is necessary. A measuring system for
determining the settling behavior of slurries is the LUMiSizer, which is an analytical
centrifuge for the investigation of small product quantities of a few milliliters [15].

Figure 1a shows schematically the measuring setup within the analytical cen-
trifuge which consists of a light source, a cuvette and a CCD sensor. The CCD sen-
sor records the transmission versus time along the radial position of the cuvette. The
integrated software calculates the settling velocity of the samples from the raw data
of the transmission profiles, see right-hand side in Fig. 1. The LUMiSizer allows the
simultaneous analysis of up to twelve samples. Themaximum speed is n= 1000 rpm,
which corresponds to a g-force of C = 2320. The hindered settling function serving
to describe the settling behavior of the investigated slurry, results from the analysis
of different solid volume fractions.

Fig. 1 Schematic representation of themeasuring principle for the analytical centrifuge LUMiSizer
(a). Temporal change of transmission along the radius of a cuvette for the product limestone (b)
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Richardson and Zaki [18] postulate a power law based on experimental investi-
gation for the hindered settling

h = (1 − φ)nRZ , (1)

for slurries consisting of monodisperse particles. For creeping flows (Rep < 0.1), the
exponent nRZ is 4.65. The approach ofRichardson andZaki, however, is only valid for
monodisperse particles and therefore represents a simplification of the real behavior
of a polydisperse particle system. To investigate these, it is appropriate tomeasure the
material function for settling behavior by means of analytical centrifugation. Often
the hindered settling approach

h =
(
1 − φ

r1

)r2

, (2)

of Michaels and Bolger is applied in this case to adapt to the experimental data
[19]. Here, r1 and r2 be adapted to fit the experimental data. Figure 1 Schematic
representation of the measuring principle for the analytical centrifuge LUMiSizer
(a). Temporal change of transmission along the radius of a cuvette for the product
limestone (b).

Figure 2 shows the normalized settling velocity related to the g-force as a func-
tion of the solids volume fraction for limestone-water suspensions with different
mean particle sizes. With higher solid content the influence of hydrodynamic inter-
actions on the particle settling increases significantly. The impact of particle size on
the investigated limestone-water suspensions is also evident. There is a shift of the
settling velocity towards higher values with the increase of the particle size.

Fig. 2 Normalized settling
velocity for limestone-water
suspensions with for
differing particle size
distributions [20]



7 Dynamic Simulation of Mechanical Fluid Separation in Solid … 243

2.2 Sediment Build-up in the Centrifugal Field

Additionally to the settling behavior, sediment build-up in solid bowl centrifuges
effects the separation performance. Here, the properties of the disperse phase have
a huge impact on the physical behavior during the sediment formation process.
Coarsely dispersed particles form an incompressible cake. In contrast, finely dis-
persed particles form a compressible cake. The reason for this varying behavior
results from the increasing strength of interparticle forces onfinely dispersed particles
(x < 10 µm).

The difficulty in describing the sediment structure of finely dispersed particles
lies in the fact that the material behavior changes suddenly at the transition between
suspension and sediment. Particles in a slurry move freely and hydrodynamic effects
primarily influence the settling behavior. The sediment transmits normal and shear
stresses inside the cake. In literature [21, 22], the gel point is defined to mark the
transition between particle settling and cake compression. It is the solids volume
fraction of the top sediment layer for which the solids pressure is ps = 0 Pa.

Table 1 shows the comparison of the gel point for six different particulate sys-
tems, which differ in particle size. For polyvinylchloride (PVC) and limestone 1,
the gel point corresponds approximately to the solids volume fraction of the formed
sediment. For both products, the impact of inertial forces is significantly great com-
pared to particle-particle interactions. For finer particles, it is clearly visible, that the
behavior is entirely different. By reducing the particle size, the influence of mass
forces is neglectable and thus, as a result, the particle-particle interactions increas-
ing remarkably. For these particulate systems, the gel point is below the maximum
achievable solids volume fraction in the sediment.

Laboratory centrifuges are also suitable for characterizing the sediment structure.
For the experimental investigation of the cake heights for low pressures in the range
of up to ps = 105 Pa the analytical centrifuge LUMiSizer is used. Here, Usher et al.
[23] show a measuring procedure for the investigation of compressible saturated
sediments. The solids pressure can be derived as a function of the solids volume
fraction for the equilibrium state. The analytical centrifuge starts at low rotational
speed and centrifuges the sample to the equilibrium state. If there is no change in the
transmission profile, the next step is to increase the rotational speed. Afterwards, the

Table 1 Comparison of the
gel point for different
particulate systems

Product x50,3 in µm φgel in −
PVC 30 0.48

Limestone 1 80 0.48

Limestone 2 3.4 0.23

Limestone 3 1.6 0.16

Limestone 4 1.2 0.09

Limestone 5 0.7 0.07
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sediment is centrifuged to the equilibrium for the next speed. Each measuring point
represents a solids volume fraction and a solids pressure.

At this point, it should be mentioned that the filling level of the cuvette and the
maximum speed are limiting factors measuring the compression behavior of the sedi-
ment in the LUMiSizer. However, solid bowl centrifuges achieve significantly higher
solids pressures of up to ps = 106 Pa. Experimental investigation for higher rotational
speeds is therefore necessary. Hermle cooling centrifuge type ZK630 achieves larger
centrifugal accelerations of up toC=6000 and therefore serve to investigate of higher
solids pressures. Special bucket systems allow the analysis of the cake formation
based on investigations of the equilibrium state by gravimetric measurements.

Figure 3 illustrates the solids pressure as a function of the normalized solids
content which is the ratio of solids volume fraction and gel point, for four limestone
fractions with mean particle sizes of x50,3 = 0.65µm, x50,3 = 1.2µm, x50,3 = 1.6µm
and x50,3 = 3.4 µm. Comparing the individual limestone fractions, it is noticeable
that there is a shift in the curves with a reduction of particle size. The finer the
particles, the more compressible is the formed sediment. For an average particle size
of x50,3 = 3.4 µm the sediment at ps = 105 Pa compresses up to a maximum of 2.3
times compared to gel point. For the limestone with a mean size of x50,3 = 0.65 µm,
the sediment has a higher compressibility. For a solids pressure of ps = 106 Pa cake
compresses up to a maximum of six times compared to the gel point.

To transfer the experimental data to the dynamic model for solid bowl centrifuges,
a power law byGreen et al. [24] serves to adapt the experimental data. Solids pressure

ps = p1

[(
φ

φgel

)p2

− 1

]
, (3)

is a function of the solids volume fraction. p1 and p2 represent empirical parameters.
Furthermore, sediment flow and sediment transport have a significant influence on
the process behavior of solid bowl centrifuges. The pores of finely dispersed sed-
iments have a very high capillary pressure. Therefore, the undersaturation of the
sediment is not possible. Rather, a pasty, liquid-saturated sediment formed by finely
dispersed particles has a non-Newtonian rheology [25, 26]. Due to the dependency of

Fig. 3 Comparison of solids
pressure as a function of
normalized solids volume
fraction for four finely
dispersed limestone-water
suspensions [20]
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the existing yield point on the solids pressure, the experimental determination of the
rheological material properties is very challenging. Here, the yield point increases
with the reduction of porosity. Moreover, the material is either dilatant or shear thin-
ning. Since no measurement methods are currently available to determine the rheo-
logical material properties, an adjusting parameter is defined to describe the sediment
transport. The influence of this parameter is shown in more detail in Sect. 4.2.

3 System and Residence Time Behavior

In addition to the material behavior of the suspension, the flow conditions have
a considerable influence on the operation of solid bowl centrifuges. For tubular
and decanter centrifuges, for example, the residence time limits particle separation.
Knowledge about the residence time behavior is therefore essential for the design of
these centrifuge types. One possibility for the description of the flow conditions is the
determination of the residence time and system behavior by means of experimental
or numerical investigations. This approach considers the integral output response
after a sudden change at the inlet. Dead zones and vortices create a dispersion in the
system. This means that a step response at the outlet does not follow from a step
change at the inlet.

The left-hand side in Fig. 4 shows exemplarily the residence time behavior of a
density distribution and a sum distribution as a function of the flow number D. The
ratio of measuring time and mean residence time τ yields the flow number. The sum
distribution F(D) is integral value of the density distribution E(D):

Fig. 4 Left: exemplary residence-time distribution functionE(D) and cumulative distribution curve
F(D) as a function of flow number. Right: cumulative distribution function for three different flow
types [20]
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F(D) =
D∫

0

E(D)dD. (4)

For the mean residence time D = 1, the residence time spectrum reaches its
maximum and the residence time distribution reaches the mean value.

The right side in Fig. 4 illustrates the comparison of the real residence time
behavior with an ideal plug flow reactor (PFR) and a continuous stirred tank reactor
(CSTR). PFR modeling assumes, that the flow is uniform and there is no exchange
of forces along the cross-section. This results in a sudden change of the residence
time behavior after reaching the mean residence time. CSTR modeling supposes
no gradients in the apparatus and the change occurring immediately at the output.
This leads to a broad sum distribution with high axial dispersion. Real processes
generally differ significantly from the performance of a PFR and CSTR, see Figs. 1
and 4, because the axial dispersion depends on the flow conditions. Dead zones and
back-mixing are present inside centrifuges. Consequently, the real residence time
behavior of a process differs considerable from ideal behavior.

Several methods are suitable for determining the real residence time behavior,
see Fig. 5. The characterization of the residence time behavior for decanter cen-
trifuges has been examined applying three methods: experimental residence time
measurement, investigation of the system behavior and CFD simulations of a tracer
transport. Experimental residence time measurements are based on the transport of a
tracer material through the apparatus. In this work, saturated sodium-chloride solu-
tion is in use with a mass fraction of 2 wt%. This corresponds to a density of the
saturated solution of ρsol = 1012 kg m−3. For the determination of the real resi-
dence time behavior of the centrifuge it plays an important role, that there is only a
neglectable difference in density between the liquid and the tracer. Otherwise seg-
regation of the two fluids occur due to the acting g-force. At this point it should be

Fig. 5 Comparison of the
investigated three different
methods to determine the
residence time distribution
for solid-bowl decanter
centrifuges [20]
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noted, that experimental residence timemeasurement only considers amachine filled
with liquid.

The second method is the determination of the system behavior for the same
lab-scale decanter centrifuge. Here, the particle size or the solids volume fraction is
changed at the inlet to investigate the response of the machine to the load change
applied. The third method applies CFD simulations in combination with a passive
tracer transport.

The left-hand side of Fig. 6 shows the response to an abrupt change of the solids
volume fraction at the inlet. After reaching the steady state, the solids volume fraction
was determined at time t = 0 s switching the installed three-way valve from tank 1
with φin = 0.02 to tank 2 with φin = 0.03. A time-delayed system behavior can be
derived from the experiments, which results from the present flow conditions and
the existing hold-up in the decanter centrifuge. As a consequence of the growing
solids volume fraction at the inlet the momentum exchange between solid and liquid
increases significantly.

For a better comparison of the temporal behavior during the abrupt change of the
solids volume fraction, the right-hand side of Fig. 6 exhibits the normalized dynamic
change as a function of the flow rate. The normalized dynamic change

Sdyn =
∣∣∣∣φstart − φ(t)

φend − φstart

∣∣∣∣. (5)

describes the temporal change between the initial and final state of the sudden change
at the inlet. Thus, the values range between Sdyn = 0 and Sdyn = 1. This enables
the comparison between individual measurements as well as the experimental and
numerical residence time investigation. The comparison of the normalized dynamic
change shows an approximately identical behavior for the three investigatedmethods,
which is represented by the s-shaped curve on the right-hand side in Fig. 6.

Fig. 6 Left: temporal change of solids volume fraction at the overflow dependent on g-force (C
= 100, C = 250, C = 400) for a decanter centrifuge type MD80 from Lemitec GmbH. Right:
normalized dynamic change as a function of flow number for the investigated change of solids
volume fraction [6]
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The third method to determine the residence time behavior is based on CFD simu-
lations in combination with a transport equation taking into account the dispersion of
a tracer by a passive scalar [27]. Modeling a passive scalar using a transport equation
requires that the tracer has the same physical properties as the fluid. Thus, there is
no cross-exchange due to a density difference.

The CFD simulations assume, that the screw rotates at the same speed as the bowl.
Thus, a SRF describes the influence of centrifugal and Coriolis force. Additionally,
a stationary flow is expected for the CFD simulations. Moreover, at the beginning
there is no tracer in the centrifuge (F = 0). The step change to F = 1 simulates the
injection of the tracer into the lab-scale decanter centrifuge. By specifying F = 1 at
the inlet, the residence time behavior results directly from the tracer concentration
at the overflow.

Figure 7 shows schematically the procedure for determining the residence time
behavior using CFD simulations. The investigation of the residence time behavior
based on CFD simulations is currently only applicable for a decanter centrifuge
filled with liquid. The inclusion of the real behavior during operation requires the
consideration of the sediment build-up and sediment transport. Currently, however,
no meaningful models are available that allow CFD simulations in combination
with sediment transport in decanter centrifuges. Hammerich et al. [11] show a first
approach for the description of the rheological behavior for finely dispersed sediment
using the example of tubular centrifuge.

The left side in Fig. 8 compares the three methods investigated for the step change
of solids volume fraction, the tracer experiment and the CFD simulation. Here, it
can be summarized that there is good agreement between the three methods and
the residence time behavior also influences the dynamic behavior of the lab-scale
decanter centrifuge. The reason for this is that the temporal change of the solids
volume fraction at the overflow after a sudden change at the inlet depends on the

Fig. 7 Schematic representation of the CFD simulations to determine the residence time behavior
of a lab-scale decanter centrifuge type MD80. Reprinted with permission from [20]
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Fig. 8 Left: comparison between tracer experiment, tracer simulation and system behavior for
a stepwise change of solids volume fraction at the inlet. Right: comparison between the tracer
experiment, tracer simulation and stepwise change of particle size distribution at the feed [20]

flow conditions inside the machine. The rotor and the screw body limit the flow
domain. No slip conditions apply to all walls. This results in the formation of a flow
profile. In addition, the turbulent flow generates vortices leading to an increased
momentum exchange. The left-hand side in Fig. 8 compares the residence time and
the system behavior for the abrupt change of the particle size distribution at the inlet.
It is apparent that three methods show a good agreement. In the next step, the system
behavior is used for the dynamic modeling of decanter centrifuges.

4 Dynamic Modeling of Decanter Centrifuges

Decanter centrifuges are used in many sectors of the process industry for the sep-
aration of solids and liquids. They consist of a cylindrical-conical bowl, a screw
conveyor and the feed pipe. A schematic representation of a decanter centrifuge is
shown in Fig. 9. The suspension flows axially into the centrifuge where it is pre-
accelerated at the transition between the cylindrical and conical part. The slurry
flows along the formed channel in the screw body towards the overflow. The solid
material, which usually has a higher density, settles in towards the inner wall of
the bowl and is deposited there as liquid-saturated sediment. For a countercurrent
decanter centrifuge, the screw body transports the sediment within the conical part
of the machine.

So far, the known theoretical models for decanter centrifuges neglect the dynamic
behavior. However, this occurs in decanter centrifuges during the spin-up process or
as a reaction to load changes at the inlet. In the following, the dynamic modeling of
countercurrent decanter centrifuges by means of the interconnection of individual
compartments (index i) is presented. Figure 9 illustrates schematically the compart-
ment model for the cylindrical part of a decanter centrifuge. The sedimentation zone
and the sediment zone define two areas with differing physical behavior for the
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Fig. 9 Schematic representation of the compartment model for countercurrent decanter centrifuges
[6]

mathematical modeling of settling behavior and sediment build-up. The linking of
the individual compartments characterizes the dynamic behavior of the apparatus.
This approach is also well known from chemical reaction engineering as tank-in-
series model. The serial connection of ideally back-mixed compartments maps the
residence time behavior of the apparatus.

The right-hand side in Fig. 9 depicts the incoming
(
ṁs,i−1

)
and outgoing

(
ṁs,i

)
mass flow of solids. Additionally, the incoming (q3,i−1) and outgoing (q3,i) mass
density distribution are shown, which consider the change of particle size for each
compartment (index i). In contrast to the well-known �-theory, the solid mass flow,
and the particle size distribution change locally within the machine. This enables a
process-related description of the classification process for decanter centrifuges.

Due to the centrifugal separation of the particleswithin the apparatus, the approach
considers the partial removal of particle fractions for each compartment. The sed-
iment zone then takes the separated solid mass flow

(
ṁs,sep,i

)
into account for the

calculation of the sediment formation.
Furthermore, sediment transport occurs in decanter centrifuges, which influences

significantly the filling process. The numerical approach considers the physical
behavior during the sediment transport by an incoming

(
ṁ tr,i

)
and outgoing

(
ṁ tr,i−1

)
sediment mass flow in the mass balance of the sediment in each compartment. In the
case of decanter centrifuges, the screw conveyor inside the rotating bowl prevents
the flow of the slurry in axial direction. In fact, the material flows along the formed
screw channel towards the overflow. Thus, the mathematical modeling of the spatial
and temporal change requires unwinding the screw channel and its discretization
along the settling paths. Figure 10 shows the unwinding of the screw channel, the
discretization of the sedimentation and sediment zone as well as the sediment dis-
tribution along the screw channel exemplarily for two different time steps t0 = 0 s



7 Dynamic Simulation of Mechanical Fluid Separation in Solid … 251

Fig. 10 Schematic representation of the unrolled screw channel, its discretization, and the sediment
distribution for a countercurrent decanter centrifuge at two different time steps t0 = 0 s and t1 > t0
[20]

and t1 > t0. The dynamic model considers the influence of the sediment build-up on
the residence time behavior. In addition, the algorithm calculates the radial position
of the sediment surface Rs,i(t) from the volume of the sediment Vsed,i for each com-
partment (index i). At the start time, different parameters such as the radius of the
weir Rw, the radius of the drum Rd, the screw pitch Bsc and the length of the unrolled
screw Lhel define the calculation domain.

4.1 Mathematical Modeling of the Sedimentation Zone

The sedimentation zone comprises the transport of the slurry in direction of the over-
flow and for the particle settling towards the inner bowl wall. For the mathematical
description of the physical behavior mentioned, a series of equations are mandatory.
The solids mass balance

dms,i

dt
= ṁs,i−1 − ṁs,i − ṁs,sep,i, (6)

is applied to calculate the accumulation of solids dms,i

dt for each time step and com-
partment i. Here, ṁs,i−1 is the incoming mass flow of solids, ṁs,i is the outgoing
mass flow of solids and ṁs,sep,i, is the mass flow of separated solids. The mass flow
of separated solids is calculated as the product of incoming solids mass flow and
separation efficiency Ei(t):
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ṁs,sep,i = Ei (t) · ṁs,i−1. (7)

The separation efficiency is an integral measure to describe the separation per-
formance of a process and can be calculated by integrating the product of the mass
density distribution function q3,i−1(x, t) entering a compartment and grade efficiency
G i(x, t) over the entire particle size range xmin ≤ x ≤ xmax:

Ei(t) = xmax∫
xmin

Gi (x, t)q3,i−1(x, t)dx . (8)

Inserting Eq. (7) in (6) yields the equation for the solids mass in compartment
with in the sedimentation zone:

dms,i

dt
= ṁs,i−1

(
1 − Ei(t) − ṁs,i

ṁs,i−1

)
. (9)

To convert the mass balance into a volume balance, the solid mass and the solid
mass flow are converted into the volume and the volume flow rate. The volume
balance for the compartment (index i) of the sedimentation zone

dφi

dt
= Qi−1φi−1

(
1 − xmax∫

xmin

G i(x, t)q3,i−1(x, t)dx − Qiφi

Qi−1φi−1

)
, (10)

follows by inserting the solid mass
(
ms,i = ρsφiVi

)
), the solid mass flow ṁs,i =

ρsφiQi and Eq. (8) in (10). A constant volume (Vi ) and ideal backmixing in the
compartment is assumed to solve the ordinary differential equation (ODE) in Eq.
(10). In addition, the separation process depends on the change in the particle size
distribution along the screw channel. The change in the particle size distribution for
the compartment with index i is as follows:

d
[
ms,iq3,i(x)

]
dt

= ṁs,i−1q3,i−1(x) − ṁs,iq3,i(x) − ṁs,sep,iq3,sep,i(x). (11)

Here, ṁs,i−1q3,i−1(x) is the incomingmass flowof particles with size x , ṁs,iq3,i(x)
is the mass flow of outgoing particles with size x and ṁs,sep,iq3,sep,i(x) is the mass
flow of separated particles with size x . For further consideration, the accumulation
term in Eq. (11) is neglected. The assumption is made to calculate the mass density
distribution of the separated solids

q3,sep,i(x, t) = q3,i−1(x, t)
G i(x, t)

Ei(t)
, (12)

and the mass density distribution of the outgoing stream
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q3,i(x, t) = q3,i−1(x, t)
(1 − G i(x, t))

(1 − Ei(t))
. (13)

The unknown variables of the presented equations are the grade efficiency and
the volume of a compartment (index i). For decanter centrifuges, the grade effi-
ciency depends on the material properties, the centrifuge geometry and the process
conditions.Gleiss et al. [6] showa shortcutmodel based on a grade efficiency function

G i(x, t) = Rs,i(t)

Rs,i(t) − Rw

{
1 − exp

[
− (ρs − ρl)h(φ)x2ω2

18ηl

Bsc
(
Rs,i(t) − Rw

)
�l

Qi−1

]}

(14)

to predict temporal and spatial changes along the screw channel of a decanter cen-
trifuge as a function of the parameters described previously. Here, ρs is solids density,
ρl is liquid density, ηl is the dynamic viscosity of the liquid, x is the particle size, ω is
the angular velocity, Bsc is the screw pitch and �l is the length of a compartment for
the unrolled screw channel. The volume of the sedimentation zone (in a compartment
i) is calculated as follows:

Vi = (
Rs,i(t) − Rw

)
�l Bsc. (15)

4.2 Mathematical Modeling of the Sediment Zone

After particle separation, the material accumulates on the inner wall of the bowl as
liquid-saturated sediment. The sediment structure depends on the separated solids
and on the sediment transport. Therefore, it is essential to consider the physical
behavior for the modeling of the process behavior. For this reason, this subsection
dealswith themathematicalmodeling of the temporal and spatial changes in sediment
formation. In this case, it is assumed that the maximum compaction of the sediment
formed by finely disperses particles is present at the transition between the cylindrical
and conical part. As a result, the conical part in the dynamic model is neglected. The
description of the accumulation of solids in the centrifuge requires a mass balance
of solids for each compartment (i = 1, …, N):

dms,sed,i

dt
= ṁs,tr,i + ṁs,sep,i − ṁs,tr,i−1. (16)

Here, ms,sed,i is the accumulated solid mass, ṁs,tr,i is the solid mass flow trans-
ported into the compartment, ṁs,tr,i−1 is the solid mass flow transported out of the
compartment. Both mass flows occur because of the relative motion between bowl
and screw conveyor. For the direct calculation of the sediment volume, the solids
mass balance is converted into a volume balance.
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dVs,sed,i

dt
= Qs,tr,i + Qs,sed,i − Qs,tr,i−1. (17)

Qs,tr,i is the flow rate of solids which is transported into the compartment, Qs,tr,i−1

is the volume flow rate of solids which is transported out of the compartment and

Qs,sed,i = φi−1Qi−1Ei (t), (18)

is the volume flow rate of separated solids. The volume flow rate of solids transported
by the screw conveyor system is described as follows:

Qs,tr,i = φc,i As,i · T Bsc�n

sin(β)
. (19)

Here, φc,i designates the mean solids volume fraction of the cake, As,i is the
cross-section of the cake, T is the transport efficiency, β is the screw angle and �n
is the differential speed between screw conveyor and drum. The transport efficiency
(0 ≤ T ≤ 1) is unknown and must be derived from experiments on a laboratory
decanter centrifuge. T < 1 applies to the transport efficiency as friction and sliding
occur during sediment transport. The cross-sectional area of the sediment

As,i (t) = Bsc
(
Rd − Rs,i (t)

)
, (20)

is calculated from the area of a rectangle with the width of the screw pitch and the
difference between drum radius and the radius of the sediment surface. The latter
results from the volume of the sediment in the compartment with index i:

Rs,i (t) = Rd − Vsed,i(t)

Bsc�l
. (21)

Furthermore, the length of the unrolled screw is required for the calculation of
the sedimentation zone:

Lhel = Lcyl

Bsc
· [

(2πRm)2 + B2
sc

]0.5
. (22)

The length of the unrolled screw is necessary to calculate the total volume of the
cylindrical drum:

Vhel = Lhel Bsc(Rd − Rw). (23)

The total volume of the cylindrical drum is used here to predict the temporal
change of volumetric filling level during the separation process. Furthermore, the
dynamic model is based on the assumption that no sediment can grow out of the
calculation area. The maximum radial position of the sediment is calculated and
compared with the actual radial position of the sediment surface for each time step:
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Rmax = Rd −Umax(Rd − Rw). (24)

It is assumed that a maximum filling degree of Umax = 0.95 occurs in decanter
centrifuges [28]. The reason for this behavior is that a fast-flowing layer forms on the
sediment surface which results in equilibrium between settling and lift of particles.
For a detailed description of the dynamicmodeling of the cake compression behavior
of finely disperse particles, please refer to Gleiss [20].

4.3 Validation of the Dynamic Model for Decanter
Centrifuges

This subsection shows selected results for the experimental validation of the dynamic
model for a pilot-scale decanter centrifuge. The basis of dynamic simulations is the
mathematical modeling presented in Sects. 4.1 and 4.2. Limestone-water and PVC-
water slurrieswere used for the validation trials of the presented approach for decanter
centrifuges on a lab and pilot scale. Table 2 shows the geometric parameters of the
lab-scale and pilot scale decanter centrifuges investigated here.

Figure 11 shows the influence of the total number of compartments N on the
transient behavior of the solids volume fraction at the overflow. An exemplary case
with the simulation setup Q = 30 l·h−1, C = 500 and �n = 5 rpm illustrates the
temporal change of the solids volume fraction on the left-hand side. After the spin-up
process which ends after t = 150 s, the simulation results reveal a steady behavior.
At t = 250 s, the solids volume fraction changes abruptly from φin = 2 %vol to
φin = 3%vol at the inlet. The results indicate that the reaction of the machine to this
load change occurs time-delayed at the overflow, which has already been described
in Sect. 3. The total number of compartments N has an influence on both the start-
up process and the simulated load change. The reason is the reduction of the axial
dispersion with the increase of N. The influence of the total number of compartments
on the normalized dynamic change is depicted the right-hand side of Fig. 11.

An important parameter for the dynamic modeling of decanter centrifuges is the
transport efficiency T,which describes the transport behavior of the formed sediment.
Since the sediment build-up has a decisive influence on the process behavior of

Table 2 Geometric
parameters of the decanter
centrifuges investigated

Parameter Lab-scale decanter
(m)

Pilot scale
decanter (m)

Length cylindrical
bowl

0.18 0.98

Weir radius 0.034 0.104

Bowl radius 0.04 0.14

Screw pitch 0.025 0.125
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Fig. 11 Left: transient behavior of solids volume fraction at the overflow. Right: simulation for
the normalized dynamic change as a function of flow number. Both diagrams show the influence
of the total number of compartments N on the dynamic and residence time behavior. Simulations
performed for a lab scale decanter centrifuge type MD80 at Q = 30 lh-1, C = 500 and �n = 5 rpm
[20]

decanter centrifuges, it is important to know the effect of this parameter to predict
separation with a good accuracy. Therefore,

Figure 12 demonstrates the influence of transport efficiency on the solids volume
fraction in the overflow (left) and underflow (right). The simulation setup is based
on pilot scale experiments with Q = 500 m3 h−1, φin = 0.15 and �n = 15 rpm to
verify the influence of the transport efficiency on the dynamic simulation.

According to definition, the transport efficiency is between 0 < T < 1. For
small values of T , the transport is inefficient. Conversely, T = 1 represents an
ideal transport without friction losses. The screw conveyor moves the cake during
one rotation by the screw pitch. The influence of transport efficiency on the solids

Fig. 12 Left: influence of the transport efficiency on the solids volume fraction at the overflow.
Right: mean solids volume fraction at the underflow as a function of rotational speed and transport
efficiency. The simulation setup is Q = 0.5 m3 h−1, φin = 0.15 and �n = 5 rpm. Simulations
performed for a pilot scale decanter centrifuge. Reprinted with permission from [20]
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volume fraction in the overflow is negligible in a wide range of 0.25 ≤ T ≤ 1.
A clear deviation from simulation and experiment is only detectable for T = 0.1.
For this setting, the sediment transport is inefficient and the machine fills almost
completely. As a result, only a small volume is available for the separation and the
solids volume fraction at the overflow increases due to the short residence time in
the apparatus.

The right-hand side in Fig. 12 exhibits the impact of transport efficiency on the
mean solids volume fraction φc and the maximum solids volume fraction at the inner
wall of the drum φc,max as a function of rotational speed. The comparison of the
results points out that there is only a small influence of the transport efficiency on
the solids volume fraction in the underflow. This results in only a slight shift of the
curves towards a larger solids volume fraction due to the rising sediment volume.

Another field of application for decanter centrifuges is the classification of finely
dispersed particles. The aim here is to adjust selectively the particle size of the
valuable product. For testing the applicability of dynamic modeling, finely dispersed
limestone is classified in a pilot decanter centrifuge. The following parameters serve
as simulation setup: Q = 0.5m3 h−1, φin = 0.15 and �n = 15 rpm.

Figure 13 presents the mass sum distribution at the overflow for experiments and
simulations for the investigated pilot decanter centrifuge as a function of rotational
speed. The results indicate that there is a shift in the mass sum distribution with
the increase of rotational speed. In addition, the dynamic simulations reproduce the
results of the classification accurately. Thus, the dynamic model also considers the
change in particle size distribution.

The sediment build-up in solid bowl centrifuges depends not only on the process
conditions, but also on the material properties of the disperse phase. Additionally,
the sediment build-up in decanter centrifuges is influenced by the differential speed
between screw and bowl. The left side in Fig. 14 illustrates the influence of the inlet
solids volume fraction on the mean solids volume fraction of the underflow. The

Fig. 13 Particle size
distribution at the overflow
for simulation and
experiment dependent on
rotational speed for the
classification of
limestone-water slurries with
a pilot-scale decanter
centrifuge. The simulation
setup is Q = 0.5 m3 h−1, φin
= 0.15 and �n = 5 rpm [20]
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Fig. 14 Comparison of the mean solids volume fraction of the underflow dependent on rotational
speed. Left: influence of feed volume fraction for finely dispersed limestone with a mean particle
size of x50,3 = 3.4 µm. Right: impact of differential speed between screw conveyor and drum for
a limestone-water slurry with a mean particle size of x50,3 = 1.6 µm [20]

measuring ranges overlap, which indicates that there is only a small influence of
the solids volume fraction. Furthermore, the solids volume fraction of the underflow
increases for higher speeds. Comparing simulation and experiment, it is easy to see
that the calculation underestimates the solids volume fraction of the sediment. At
this point, shear compression can lead to a denser packing of the formed saturated
cakes.

The right-hand side in Fig. 14 shows the influence of differential speed (�n) on
themean solids volume fraction at the underflow for�n = 6 rpm and�n = 15 rpm.
The influence of the differential speed on the solids volume fraction is significantly
higher for the investigated process compared to the variation of the feed solids volume
fraction. This results in a denser sediment for�n = 6 rpm at a lower speed compared
to the simulation setupwith�n = 15 rpm. In addition, the simulation underestimates
the experimental values for both differential speeds.

5 Dynamic Modeling of Tubular Centrifuges

Another machine type in the class of solid bowl centrifuges are fast-rotating tubular
centrifuges. Due to the slim design, this centrifuge type achieves g-forces up to
C = 100000. This makes the apparatus suitable for the separation of nanoparticles
and proteins from fermentation processes. Another field of application is the defined
classification of nanoparticles. Figure 15 depicts the schematic design of a tubular
centrifuge. A pump delivers the mostly diluted suspension at the bottom axially into
the apparatus. The geometry of the machine forms a liquid pond and a gas core.
The suspension flows in axial direction and leaves the apparatus on the top. The
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Fig. 15 Schematic representation of a tubular centrifuge, developed compartment approach and
balancing of an individual compartment. Reprinted with permission from [20]

centrifugal field created by the rotation leads to particle settling in the direction of
the inner rotor wall.

The basis for the mathematical modeling is the dynamic model for decanter cen-
trifuges presented in Sect. 4.1. Sedimentation and sediment zone describe the sepa-
ration of the dispersed phase and the sediment formation in the investigated tubular
centrifuge. In contrast to decanter centrifuges, no sediment transport takes place. The
starting point is a cohesive particle cluster that does not move because of the rheolog-
ical properties of the sediment. Once the particles have been separated, the sediment
remains at this axial position in the rotor. Only sediment compression in the radial
direction takes place. As for decanter centrifuges, a total number of compartments
(N) subdivides the inner space of the rotor. The right-hand side in Fig. 15 shows the
variables modeled exemplarily for the compartment (index i). Sections 5.1 and 5.2
discuss the mathematical modeling of tubular centrifuges in more detail.

Figure 16 depicts the temporal change of sediment build-up exemplarily for three-
time steps t0 < t1 < t2. At the beginning of the dynamic simulation t0 = 0 s ,
only liquid is present in the centrifuge. Discretization of the rotor length Lax allows
calculating of the sediment distribution for each time step t . After a certain time (t2),
the regions close to the inlet are almost completely filled due to the classification of
the product along the rotor length. Here, simulation results from Hammerich et al.
[11] show that a fast-flowing layer forms in these regions. Due to the short residence
time of the slurry, no further separation occurs. Instead, the flow collects particles
from the sediment surface. However, this physical behavior is not taken into account
in the presented approach. If the radius of the sediment is equal or smaller than
the maximum radial position of the sediment surface Rmax, no further separation is
considered in this section of the tubular centrifuge.
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Fig. 16 Schematic representation of the temporal filling process exemplary for three-process steps
t0 < t1 < t2. Reprinted with permission from [20]

5.1 Modeling of the Sedimentation Zone

The dynamic modeling of the sedimentation zone in tubular centrifuges is based
on almost the same assumptions as for decanter centrifuges. However, in contrast
to decanter centrifuges, the main flow direction is axial towards the overflow. The
modified residence time behavior requires to adapt the grade efficiency calculation:

Gi (x, t) = Rs,i(t)
2

Rs,i(t)
2 − R2

w

{
1 −

(
exp

{
− (ρs − ρl)h(φ)x2ω2

18ηl

Vi(t)

Qi−1

})2
}

. (25)

The main difference to the grade efficiency model for decanter centrifuges results
from the differing geometry of tubular centrifuges. Neglecting the pre-acceleration
zone and the overflow region, it can be described as a hollow cylinder. The volume
of a compartment (index i) is calculated using the geometric dimensions of a hollow
cylinder:

Vi(t) = π
(
Rs,i(t)

2 − R2
w

)
�l. (26)

The length of a compartment �l is unknown. The ratio of the length of the cylin-
drical rotor Lcyl to the total number of compartments N describes �l. Furthermore,
the total volume of the cylindrical rotor
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Vcyl = π
(
R2
d − R2

w

)
Lcyl, (27)

is decisive for the calculation of the volumetric filling level. The mass balance for
solid, liquid and particle size distribution is the same for the dynamic modeling of
decanter and tubular centrifuges. At this point, it should be noted that the rotating
gas core and thus the gas liquid-interphase are not considered in the dynamic model
presented. Additionally, no particle breakage occurs in the feed zone of the tubular
centrifuge.Moreover, the slurry rotates as a rigid body. Thismeans that an insufficient
pre-acceleration is not taken into account by the presented approach.

5.2 Modeling of the Sediment Zone

Since a tubular centrifuge is a semi-continuous apparatus, the process behavior for
sediment build-up differs from that of a decanter centrifuge. Here, the solid accumu-
lates continuously on the inner rotor wall until the apparatus is completely filled. As
a result, the solids mass balance in a compartment of the sediment zone simplifies
as follows:

dms,sed,i

dt
= ṁs,sed,i. (28)

The continuous supply of solids during the entire process leads to a complete
filling of the rotor up to the maximum volumetric filling level theoretically. For the
prediction of the radial position of the sediment surface for the compartments i = 1,
…, N the solids mass balance is transformed into a volume balance of solids:

dVs,sed,i

dt
= Qs,sed,i. (29)

The dynamic simulation of the sediment build-up along the axial position of the
rotor allows the temporal prediction of the sediment distribution. The accumulated
volume of the sediment is used to determine the radial position of the sediment
surface

Rs,i(t) =
[
R2
d − Vsed,i(t)

π�l

]0.5

, (30)

for each compartment (index i). The radial position of the sediment surface is then
used to calculate the volume of the sedimentation zone in Eq. (26) and thus to map
the residence time behavior which deviates with process time. Stahl et al. [29] show
that the sediment in tubular centrifuges only increases up to a critical volumetric
filling level of Umax = 0.95. This means that the sediment does not emerge from
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the liquid pool. Rather, separated and dragged solids are in equilibrium in the fast-
flowing layers of the centrifuge. The dynamic model considers the described process
behavior by estimating the maximum possible radius of the sediment:

Rmax = [
(1 −Umax) · (

R2
d − R2

w

) + R2
w

]0.5
. (31)

For each time step, the radial position of the sediment surface for each compart-
ment (index i) is compared to the maximum sediment radius. For Rs,i(t) ≥ Rmax, no
further particles are separated in this compartment and G i(x, t) = 0 apply for the
grade efficiency. The evaluation of the temporal behavior of the separation process is
based on two parameters: the product loss P(t) and volumetric filling levelU (t). The
temporal change of the volumetric filling level results from the ratio of the overall
accumulated sediment volume for all compartments i = 1, …, N to the volume of
the rotor:

U (t) =
∑N

i=1 Vsed,i(t)

Vcyl
. (32)

The product loss

P(t) = ṁs,of

ṁs,feed
, (33)

is the ratio of the solidmass flow at the overflow ṁs,of to the solidmass flow at the feed
ṁs,feed. The algorithm developed for the sediment formation process distinguishes
between an incompressible and a compressible cake. For an incompressible cake,
the porosity is not a function of the solids pressure. This results in a practically
constant porosity over the sediment height. Suchmaterials are also analyzed in beaker
centrifuges to determine the porosity of the sediment for dynamic simulation. For
compressible cakes, the behavior differs significantly. Here, as described in Sect. 2.2,
porosity is a function of the solids pressure. For the mathematical description of the
sediment build-up for compressible materials please refer to Gleiss [20].

5.3 Validation of the Dynamic Model for Tubular Centrifuges

This subsection dealswith the verification of the dynamicmodel to predict the process
behavior of tubular centrifuges. The parameters to validate the dynamic model are
the product loss and the volumetric filling level. The tubular centrifuge investigated
is a pilot machine of the company CEPA GmbH type GLE. Table 3 summarizes the
geometric dimensions and discretization of the centrifuge.

Additionally, Fig. 17 depicts the mass distribution functions of silica with the
commercial nameAerosil 200which is applied as an initial parameter for the dynamic
modeling. The mass related mean particle size is x50,3 = 76 nm.
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Table 3 Summary of the key
data of the investigated
tubular centrifuge

Parameter Value (m)

Rotor length 0.18

Drum radius 0.0215

Weir radius 0.0152

Number of compartments 50

Number of sediment slices 100

Number of particle classes 100

Fig. 17 Mass distribution
function of silica
nanoparticles with the
commercial name Aerosil
200

Figure 18 shows the temporal change of product loss for the separation of silica
nanoparticles, dependent on the empirical parameters of the material function for
the solids pressure. The simulation setup is Q = 0.1 l · min−1, C = 19200 and
φin = 0.005. The product loss changes linearly with time in the range of 1 min <

t < 90 min.
One of the three parameters p1, p2 andφgel was changed exemplarily for each sim-

ulation. As can be seen fromFig. 17Mass distribution function of silica nanoparticles
with the commercial name Aerosil 200.

Figure 18, the parameter variation shows a small influence on the temporal change
of the product loss, but also a good agreement with the experiment.

A significant influence results for the volumetric filling level and thus for the
sediment build-up in the tubular centrifuge, see Fig. 19. The variation of parameters
p1 and p2 shifts the curve for the volumetric fill level up by about 10%. This clearly
shows the influence of the compression behavior on the sediment structure and thus
the importance of the meaningful prediction of the material behavior based on the
methodology shown in Sect. 2.2 on a laboratory scale. Here, measurement uncer-
tainties lead to deviations in the dynamic simulation of process behavior for tubular
centrifuges and thus to deviations in the separation efficiency.
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Fig. 18 Comparison of
simulation und experiment
for the temporal change of
product loss dependent on
the material properties to
describe solids pressure. The
simulation setup is Q =
0.11·min−1, C = 19.200 and
φin = 0.005 [20]

Fig. 19 Comparison of
simulation and experiment
for the temporal change of
the filling level for the
tubular centrifuge
investigated dependent on
the material function for the
compression behavior. The
simulation setup is Q =
0.1l·min−1, C = 19200 and
φin = 0.005 [20]

Figure 20 illustrates the simulated temporal change of the grade efficiency under
variation of the volumetric flow rate for two different time steps t = 10min and
t = 30min. In this case, the simulation setup is based onC = 19200 andφin = 0.005.
The results show a shift in the degree of separation with respect to the process time
towards larger particle fractions, which worsens the classification.

Furthermore, the influence of the volume flow can be clearly seen. At this point
there is a shift of the curves towards larger particles with the increase of the volume
flow rate. The process behavior can be explained by the reduction of the residence
time in the tubular centrifuge. Furthermore, the results indicate a broader grade
efficiency for higher volume flow rate.

Another advantage of the dynamic model is the description of the temporal evo-
lution of the sediment height and the sediment distribution along the rotor. As a
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Fig. 20 Dynamic simulation
of grade efficiency dependent
on time and volumetric flow
rate. Simulation setup is C =
19200 and φin = 0.005 [20]

result the sediment volume can be derived for each time step. Figure 21 presents the
sediment height as a function of the rotor length for C = 9600, C = 28900 and C
= 38500. Here, the g-force refers to the bowl radius. Each iso-line corresponds to a
constant time. The interval between two lines is �t = 10 min. The results indicate
deviating process behavior for the sediment build-up as a function of the volume
flow. A thin sediment layer is formed in the rotor for C = 9600 at time t = 90min.
For C = 38,500 the rotor is almost completely filled. This process behavior results
from the increasing amount of the separated solid for a higher g-force.

6 Conclusion

This work presents the development of two dynamic models for continuous working
decanter centrifuges and semi-batch tubular centrifuges. Both models are computa-
tionally efficient and therefore suitable for dynamic flowsheet simulation and Model
Predictive Control. Dynamic simulation requires material functions and the resi-
dence time behavior to predict the real process behavior with sufficient accuracy. In
contrast to the �-theory, which carries out experiments on a pilot scale, the settling
behavior and the sediment build-up were investigated sing well-established labora-
tory equipment. This allows a detailed numerical investigation of the process level
for solid-bowl centrifuges.

Another important parameter for the description of continuous and semi-batch
machines are the flow conditions, which influence the residence time of the particles.
For this reason, three methods have been applied to investigate the flow conditions:
the experimental residence timemeasurement, CFD simulations and characterization
of the system behavior. The experimental data for the system behavior results from
a stepwise change of particle size distribution and solids volume fraction at the feed
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Fig. 21 Temporal change of
sediment height as a function
of rotor length for three
g-forces C = 9600, C =
28900 and C = 38500. Each
line represents an iso-curve
for a point in time. Reprinted
with permission from [20]

of a lab-scale decanter centrifuge. The results show the correlation between the resi-
dence time and the dynamic behavior. The dynamic model for decanter centrifuges is
based on the interconnection of individual compartments. The numerical algorithm
solves the mass balance of solids and liquid as well as for the particle size class for
each compartment. Since the material behavior at the transition between suspension
and sediment changes abruptly, the mathematical model divides the centrifuge into
a sedimentation zone and a sediment zone. The sedimentation zone describes the
dynamic behavior during the separation of the particles. Whereas the sediment zone,
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considers the calculation of sediment build-up and sediment transport. The compar-
ison of dynamic simulations with experiments for finely dispersed particle systems
shows a good conformity.

Finally, the broad applicability of the developed compartment model was demon-
strated by transferring the dynamic model of a continuous working decanter to semi-
batch tubular centrifuges. It can be shown that the deviating process behavior of
tube centrifuges is due to the sediment build-up in the rotor. In contrast to decanter
centrifuges, the accumulated solids remain in the apparatus and thus reduce the flow
cross-section. As a result, the residence time decreases permanently until the sedi-
ment occupies the entire rotor. The comparison with experiments for nanoscale silica
also shows a good agreement between simulation and experiment for the temporal
change of product loss and grade efficiency. The developed models are not only suit-
able for dynamic flowsheet simulation, but also for other applications. For example,
it is conceivable to use dynamic models for MPC or to carry out an optimization
regarding raw material or resource efficiency.
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Chapter 8
Flowsheet Simulation of Integrated
Precipitation Processes

Mark Michaud, Michael Haderlein, Doris Segets, and Wolfgang Peukert

Abstract This work presents the fundamentals and exemplary applications of a
generalized model for precipitation, aggregation and ripening processes including
the formation of solid phases with two dimensions. The particle formation is gov-
erned by awidely applicable population balance approach. Solid formation processes
are described via the numerically efficient Direct Quadrature Method of Moments
(DQMOM), which can calculate the evolution of multiple solid phases simultane-
ously. The particle size distribution (PSD) is approximated by a summation of delta
functions while the moment source term is approximated by a two-point quadra-
ture. The moments to calculate the multivariate distributions are chosen carefully to
represent the second order moments. Solid formation is based on themodel of Hader-
lein et al. (2017) and is extended by a multidimensional aggregation model. Now,
the influences of mixing, complex hydrochemistry and particle formation dynamics
including nucleation, growth and aggregation on multiphase precipitation processes
are modelled and simulated along independent dimensions with high efficiency.

Nomenclature

A Fraction of zone in mixing model [–]
A′ Fraction of zone in mixing model [–]
B Fraction of zone in mixing model [–]
B′ Fraction of zone in mixing model [–]
BHom Homogeneous nucleation rate [1/(m3*s)]
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BSec Secondary nucleation rate [1/(m3*s)]
BHet Heterogeneous nucleation rate [1/(m3*s)]
ci Concentration of species i [mol/l]
c∞
L Bulk concentration [mol/l]
Dp Diffusion coefficient of phase p [m2/s]
E Engulfment factor [1/s]
f Particle size distribution density [1/m]
fA,i Shape factor of phase i [–]
g Residual describing the complex equilibria [–]
Gi Diffusion limited growth rate in direction i [m/s]
HA Hamaker constant [J]
He Adsorption constant [–]
hi,m Net particle formation rate of solid phase i in zone m [1/(m*s)]
J Jacobian of the residual describing the complex equilibra [–]
I Ion activity product of all solid phases [molx/lx]
k Order of moment [–]
kB Boltzmann constant [J/K]
l Oder of mixed moment [–]
ki Equilibrium constant of reaction i [molx/lx]
KSP,P Solubility product of phase p [molx/lx]
M Mixing matrix [–]
Mi Molar mass of species i [kg/mol]
N Total number of nodes for DQMOM [–]
Ns Size of the property vector for node positions [–]
ni,m Particle number density of phase i in zone m [1/(m*s)]
n0 Particle number at the beginning of the simulation [–]
oj Logarithmic concentration of species j [–]
R Ripening rate [m/s]
Rs Reaction stoichiometry matrix [–]
Ri Radius of interacting particle [m]
Sp Supersaturation of solid phase p [–]
Sξ Source term for moment transformation [1/(m*s)]
Sh Sherwood number [–]
T Temperature [K]
U Molar balance stoichiometry matrix [–]
ui Mean velocity of internal variable [m/s]
VM Molecular volume [m3/mol]
�VGrowth Volume growth during time step �t [m3]
wi Weighting factor for the Nelder-Mead optimization [–]
Wij Fuchs stability ratio [–]
Wtot Total interaction potential [J]
x Particle diameter [m]
xcrit Critical particle diameter [m]
Y Normalized center-to-center distance of interacting particles [–]
zi Ion charge of species i [–]
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β Sum of all sources Si [(m/s)k+l]
βBrown Brownian aggregation kernel [m3/s]
βTurb Turbulent aggregation kernel [m3/s]
γ Interfacial energy [N/m]
γi Activity coefficient of species i [–]
ε Specific power input [W/kg]
ε0 Vacuum permittivity [A*s/(V*m)]
εr Relative permittivity [–]
ζ Target functional of the Nelder-Mead optimization [–]
η Dynamic viscosity [Pa*s]
θ Contact angle for heterogeneous nucleation [–]
� Heaviside function [–]
κ Debye length [1/m]
μij Stoichiometric coefficient of component i in species j [–]
ν Kinematic viscosity [m2/s]
νij Stoichiometric coefficient of species j in reaction i [–]
ξN,α Node position of property N of node α [m]
π Archimedes constant [–]
ρ Solid density [kg/m3]
σ Standard deviation of particle size distribution [m]
σi,p Stoichiometric coefficient of species i in solid phase p [–]
� Solution of implicit equation [–]
� i Surface potential of face i [C/m2]
ωN,α Node weight of property N of node α [–]

1 Introduction

Precipitation from solution leads to a wide range of solid particles of vastly varying
sizes ranging from a few nanometers to hundreds of microns, different shapes such
as spheres, platelets or cylinders and different composition of inorganic or organic
compounds.

Typical examples considered in this report are the binary compounds ZnO quan-
tum dots (QDs) for opto-electronic applications [1, 2]. BaSO4 used as white pigment,
and the more complex systems Goethite (FeOOH [3, 4]) as yellow pigment and
Gerhardtite (Cu2(NO3)(OH)3) as a side product for methanol catalyst preparation
(Cu/ZnO [4, 5]). The design of precipitation processes is a highly complex field of
intense research due to the various and complex underlying phenomena. In general,
the sequence of mixing, reaction, nucleation, growth, ripening and agglomeration
must be considered. Any predictive tool for precipitation must be able to describe
the dynamics of the transient solid formation processes. This includes a sufficient
resolution of fluid dynamics in the reactor coupled to population balance equations
(PBE) for the evolution of solid phases. Today, the full resolution of fluid flow by
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direct numerical simulation is possible up to Re < 4000 in simple reaction geome-
tries (T-mixers [6, 7]). Driving force for solid formation is the chemical potential of
the key component, i.e. the supersaturation given as the ratio of the actual concen-
tration and the equilibrium concentration. Particle formation can be either reaction-
or mixing-controlled. The former leads to a rather uniform distribution of compo-
nents in the reactor, whereas the latter leads even in simple geometries such as T-
or Y-mixers to more widely distributed component distributions. For flowsheet sim-
ulation, however, simple approaches are implemented while sufficient accuracy of
predictions must be guaranteed. In most industrial applications, a well-defined, often
narrow property distribution is targeted.

The topic of the current chapter is the development of such a dynamic flowsheet
simulation module using a well-known moment method for predicting the mean size
and shape of precipitated particles. The model covers mixing, activity-based super-
saturation build-up even in systems of complex hydrochemistry, and solid formation
processes. Briesen et al. provided fundamentals to simulate independent particle
properties simultaneously [8]. To expand on this work, a generalized modelling tool
is developed, which is capable of describing the evolution of multi-component and
multiphase particle systems [1, 3, 5], which will then be implemented into a simula-
tion framework. Additionally, our model is used to determine unknown or difficult-
to-measure material parameters such as surface energy or intermediate products.
The bivariate model formulation allows the prediction of multiple particle proper-
ties. In particular, we apply the model to core-shell QDs and to the formation of
needle-shaped crystals. Both systems are examples of particles with two dimensions
influencing the final product property. The model architecture represents a modular
micro-reaction plant consisting of a T-mixer for nucleation and a subsequent ves-
sel for defined particle growth. The setup was characterized with respect to mixing
efficiency and residence time distribution.

The model allows transient predictions of a large number of different multivariate
precipitation processes in dependence of the underlying mixing and hydrochemistry
[9]. Precipitation processes are categorized into mixing- or reaction-controlled sys-
tems enabling efficient and problem-specific calculations. The computational effort
for these calculations is kept low by using appropriate numerical simplifications,
such as the DQMOM, which allows the calculation of multiple disperse properties
while keeping the relative error within reasonable bounds. Finally, the individual
sub-models are combined into one single module and coupled with a solver, which
can be integrated into the Dyssol framework [10].

2 Model Architecture

The developed model is best described as a generalized population balance approach
for the subsequent or parallel formation ofmultiple solid phaseswith up to twodimen-
sions including agglomeration and ripening. Solid formation is described via the
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Fig. 1 Architecture of the generalized models for precipitation processes. A system state at time
step t is used as the starting point to generate moment transport equations. The information flow
follows the creation of population balances and their reintegration into the system. (Adapted from
[4] with kind permission from Elsevier)

DQMOM, inwhich the population balances are represented by a set ofmoment trans-
port equations, to enable multiphase and multicomponent precipitation simulation
with integrated hydrochemistry. We encompass the influences of mixing, chemical
reaction networks and particle formation dynamics along independent dimensions.
The model architecture is detailed in Fig. 1.

The system state at a time step t summarizes all relevant pieces of information such
as concentration, mixing state, supersaturation and particle size. This information is
arranged by the submodels to describe the system behavior at this time step. The
system behavior is represented by a set of partial differential equations, which are
solved by an explicit Runge-Kutta algorithm [11]. The state of the system at time
t comprises three major information classes, namely (i) the state of mixing, (ii) the
chemical composition of the mixing zones, and (iii) the properties of the disperse
phase. The model uses several sub-models, namely

• a mixing module which describes volume segregation,
• a hydrochemistry module which models the thermodynamic driving force for

particle formation and growth and finally,
• a general population balancemodule to calculate the dynamic behavior of disperse

phases during the precipitation process.

The state of mixing is used by a sub-model to compute the current engulfment
behavior. The hydrochemistry module determines the supersaturation and the result-
ing nucleation and particle growth. The temporal change of the chemical composition
is determined via mass balances and depends on the feed rate and the consumption
of chemical components by solid formation. PBEs describe the evolution of disperse
properties and are mainly influenced by the supersaturation, the transfer of parti-
cles between zones and their aggregation behavior [1]. The PBEs are solved by a
multivariate DQMOM approach to calculate the moments of the size distribution
developed in [12], which was generalized in our previous work [5, 9]. Finally, the
separate datasets are merged to describe the overall system behavior. The forward
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integration of the underlying system of ordinary differential equations delivers the
system state at the next time step in an explicit Eulerian approach. Particle formation
is sub-divided into reaction-limited and transport-limited systems, i.e. for the former
the influence of the mixing module can be neglected. In both cases, the thermody-
namic driving force, i.e. the local distribution of supersaturation controls space- and
time-dependent nucleation and growth.

3 Mixing Model

Precipitation processes can be classified into being either reaction-controlled or
mixing-controlled. The former process can be easily modelled by assuming driving
forces at each point of the reactor. The latter is strongly influenced by the preceding
mixing of the reactants and will yield results depending on the mixing history [13,
14]. CFD simulations including direct numerical simulation would allow for a pre-
cise calculation of the mixing behavior, however this kind approach is numerically
too expensive for flowsheet simulation [6, 15]. Therefore, we use the Engulfment-
Deformation-Diffusion model (EDD model) which was originally developed for
stirred tank reactors and later extended to various other types of mixers [16, 17]. In
particular, the asymmetric Baldyga model was adapted and improved by the devel-
opment of the symmetric engulfment model (SEM) to closer represent the symmetric
Y- and T-mixers by Haderlein et al. [4], based on an earlier model of [14, 18].

The SEM divides the mixer into four compartments of individual composition,
namely the two compartments with pure A and B whose compositions equal the
composition of the feed, and two compartments A’ and B’ in the contact area. Each
compartment is considered to be ideally mixed. The SEM assumes bidirectional
fluxes between A’ and B’ allowing for reactive mixtures in both compartments. The
compartments interact with each other, the mass transport from one compartment to
another is assumed to be proportional to the Engulfment factor E [17]:

E = 0.058

√
ε

ν
(1)

E depends on the specific power input ε and the kinematic viscosity of the liquid.
The interactionbetween the compartments of theSEMiswritten as a set of differential
equations each detailing the volume flow rate of the four individual zones per time
step �t [1]:

dA

dt
= −E

(
A
(
A′ + B

) + AB
A

A + B

)
(2)

dB

dt
= −E

(
B
(
A′ + B

) + AB
B

A + B

)
(3)
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Fig. 2 Graphical description of the symmetrical engulfment model (SEM). The sketch on the left
shows the direction of the flows in the contact zone. The temporal evolution on the right shows the
mixing behavior (Adapted from [4] with kind permission from Elsevier)

dA′

dt
= −E

(
A
(
A′ + B

) + AB
A

A + B
+ A′2B′

A′ + B′ − A′B′2

A′ + B′

)
(4)

dB′

dt
= −E

(
B
(
A′ + B′) + AB

A

A + B
− A′2B′

A′ + B′ + A′B′2

A′ + B′

)
(5)

These volume changes over time can be arranged into a mixing matrix detailing
the flow from one compartment into another. The evolution of the compartment
volume fractions can be seen in Fig. 2.

It is important to note that the compositions of the fractions A′ and B′ do not
necessarily need to be equalized even when both volume fractions have reached
quasi-equilibrium. This corresponds to concentration gradients inside the mixer at a
time at which no pure feed is present anymore.

Mathematically, the mixing model is implemented into the precipitation module
via themixingmatrix X in which the volume flow rate from each zone into each other
zone is summarized. In this matrix, entries are comprised of two indices. Each line
describes the flow from the zone of the first index, while each column describes the
flow into the zone of the second index. Each entry of the mixing matrix thus indicates
the flow from the zone referenced by the first index into the zone referenced by the
second index, allowing for easy summation of total volume flow from each individual
zone:

M =

⎛
⎜⎜⎝

AA AB
BA BB

AA′ AB′

BA′ BB′

A′A A′B
B′A B′B

A′A′ A′B′

B′A′ B′B′

⎞
⎟⎟⎠ (6)

While the diagonal elements of the matrix are zero, the non-zero elements are
equal to the volume change of the individual zones listed above. The aforementioned
total volume change of each zone Zi can be written as the sum over column j and
line j of M associated with the zone:
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Fig. 3 Comparison of
characteristic mixing time of
MEM (black) and SEM
(grey) with experimental
data (red dots). (Adapted
from [4] with kind
permission from Elsevier)

dZi

dt
=

∑
j

Mji −
∑
j

Mij (7)

Mij denotes the entry of the mixing matrix M at line i and column j. The mixing
model was validated by characterization of a T-mixer via the Villermaux-Dushmann
protocol [19] using the empirical approach developed by Commenge and Falk [20].
The excellent agreement is an improvement to the earlier MEM model (see Fig. 3).

4 Hydrochemistry

The concentration of species is of major importance for modelling solid formation as
it has direct impact on the determination of supersaturation and thus nucleation and
growth kinetics. To predict the behavior of precipitating solids, the supersaturation
as driving force needs to be calculated with high precision. This is done by setting
up mass action laws to calculate the relevant concentrations and then predict the
supersaturation using only the solubility product as additional data. However, at
alreadymoderate concentrations, activity models such as the Davies equation (Eq. 8)
must be taken into account [21]. Due to its simplicity and good agreement with
experimental data, it is frequently used for the description of the underlying ionic
species:

log10 γi = −0.5079z2i

⎛
⎝

√∑
i ciz

2
i

2

1 +
√∑

i ciz
2
i

2

− 0.3

∑
i ciz

2
i

2

⎞
⎠ (8)

The variable c and z refer to the concentration and charge of the involved species.
Description of equilibrium concentrations are dynamically solved with mass actions
laws and mass balance equations:



8 Flowsheet Simulation of Integrated Precipitation Processes 277

ki =
∏
j

(
γjcj

)νij (9)

ci =
∑
j

μijcj (10)

with ki being the equilibrium constant and νij being the stoichiometric species coef-
ficient accounting for the influence of the j-th species on the i-th equilibrium reaction
and μij the stoichiometric component coefficient accounting for the stoichiometric
coefficient of component i within the species j. These equations are compiled into a
hydrochemistry model, which under the given activities and equilibrium concentra-
tions, calculates the supersaturation of each individual solid phase, which is needed
in the next step:

SP =
(∏

i (γici)
σi,p

KSP,p

) 1∑
σi,p

(11)

with Ksp being the solubility product of phase p. Due to numerical reasons, the
equations are transferred to a logarithmic scale:

oj = ln cj (12)

ln ki =
∑
j

νij
(
ln
(
γj + oj

))
(13)

ci =
∑
j

(
μij exp

(
oj
))

(14)

The model can now be written conveniently in matrix notation as:

g(p) =
[
gR
gM

]
=

[
R · (ln(γ + o) − ln k

M · exp o − c

]
(15)

g denotes the residual and gR and gM denoting the reaction, respectivelymass balance,
related part of the residual. In a system of p components and q species, the number of
reactions is r= q− p. The size of R describing this system is (r× q) and the element
Rij represents the stoichiometric coefficient of species j in reaction i. In contrast, the
size of M is (p × q) and its elements Mij represent the stoichiometric coefficients of
the component j in species i. Now, the determination of the species equilibrium can
be achieved by finding the root of g. The corresponding algorithms make use of the
Jacobian of the system:
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J =

⎡
⎢⎢⎣

∂g1
∂o1

. . .
∂g1
∂om

...
. . .

...
∂gn
∂o1

. . .
∂gn
∂om

⎤
⎥⎥⎦ =

[
JR
JM

]
(16)

with:

JM = ∂gM
∂o

= M · exp o

JR = ln(10)

2
· A ·

⎛
⎜⎝ 1

2
√
I
(
1 + √

I
)2 − b

⎞
⎟⎠ · R · z2 ⊗ (

exp(o) ◦ z2
) + R (17)

For brevity, the following operators are used:
Matrix product: •
Hadamard product: °
Dyadic product: ⊗
The ion activity product can now be written in short matrix notation by working

in logarithmic scales to reduce calculation time and easy readability:

ln I = σT · (ln γ + o) (18)

with σT as transposed solid phase stoichiometry matrix whose element σi,p is the
stoichiometric coefficient of the species i in the solid phase p [4].

5 Moment Methods/DQMOM

The direct quadraturemethod ofmoments (DQMOM)was first published byMarchi-
sio et al. in 2005 [12]. It offers an approximate solution of PBEs via the moment
transport equation. DQMOM is less computationally demanding than finite volume
methods or Monte Carlo methods. DQMOM has two major advantages over other
moment methods. Firstly, it is highly efficient, flexible but sufficiently simple when
applied to multivariate distributions. Secondly, it allows for coupling the internal
coordinates and phase velocities in polydisperse systems. DQMOM tracks the evo-
lution of variables in the quadrature approximation (QMOM) directly rather than the
moments, however yields the same result if compared to QMOM. DQMOM allows
the implementation of multivariate PBEs by exchanging the variable with a weighted
property vector for which the solver of the model has to be adjusted. Tracking the
absolute value of the mixed order moments during the simulation is directly possible
and does not require any additional computational steps. The growth laws in the code
can directly dictate the growth behavior of the tracked phases. A detailed derivation
of the DQMOM can be found in the original publication [12]. In brief, the particle
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mass balance inside the mixing zones described above can be expressed by:

∂ni,m(x,t)

∂t
− ∂G

(
x, t,Si, ni,m

)
∂x

= hi,m
(
x, t,Si,m, n,X

)
(19)

hi is the internal particle net formation rate in which all particle formation processes
except of growth are summarized. The model substitutes the PSD by a sum of multi-
dimensional Dirac functions:

f(ξ; x, t) =
N∑

α=i

ωα(x, t)δ[ξ − 〈ξ〉α(x, t)] (20)

where N is the number of delta functions, ω is the weight of the node α. And each
dirac function can be written as:

δ[ξ − 〈ξ〉α(x, t)] =
NS∏
j=1

δ
(
ξj − 〈ξj〉α(x,t)

)
(21)

and 〈ξ〉α is the property vector of node α with dimensionality j. Introducing this
approximation into a general PBE with the internal coordinate ξ:

∂f
(
ξj
)

∂t
+ ∂

∂xi

[〈ui|ξj〉f(ξj)] − ∂

∂xi

(
Dx∂f

(
ξj
)

∂xi

)
= Sξ

(
ξj
)

(22)

where 〈ui|ξ〉 is the mean velocity conditioned on the property value ξ and Sξ(ξ)

is the source term. By rearranging, the following moment transport equation for
two-dimensional calculations can be derived:

N∑
α=1

[
(1 − k − l)〈ξ1〉kα〈ξ2〉lαaα + k〈ξ1〉k−1

α

〈
ξ2

〉l
α
b1α + l〈ξ1〉kα〈ξ2〉l−1

α b2α
]

=
N∑

α=1

[
k(k − l)〈ξ1〉k−2

α 〈ξ2〉lαC11α + 2kl〈ξ1〉k−1
α 〈ξ2〉l−1

α C12α

+l(l − 1)〈ξ1〉kα〈ξ2〉l−2
α C11α

] + S
(N)

kl (23)

with a and b and Ck S
(N)

k abbreviating:

aα = ∂ωα

∂t
+ ∂

xi
(〈ui〉ωα) − ∂

∂xi

(
Dx

∂ωα

∂xi

)
(24)

b1α = ∂(〈ξ1〉αωα)

∂t
+ ∂

xi
(〈ui〉〈ξ1〉αωα) − ∂

∂xi

(
Dx

∂〈ξ1〉αωα

∂xi

)
(25)
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b2α = ∂(〈ξ2〉αωα)

∂t
+ ∂

xi
(〈ui〉〈ξ2〉αωα) − ∂

∂xi

(
Dx

∂〈ξ2〉αωα

∂xi

)
(26)

Cβγα = ωαDx
∂
(〈ξβ〉α

)
∂xi

∂
(〈ξγ〉α

)
∂xi

(27)

S
(N)

kl = +∞∫
−∞

+∞∫
−∞

ξk1ξ
l
2Sξ(ξ)dξ1dξ2 (28)

and Sξ is the moment transport source for the mixed moment including terms for
growth, nucleation and aggregation. The left hand side of Eq. 23 represents an arbi-
trary choice of lower order moments needed to calculate the wanted PSD properties,
such as diameter and total surface area. The choice for integer moments can be rep-
resented by a set containing the moment order k = {(0,0); (1,0); (0,1); (2,0); (0,2);
(2,2)}. DQMOM is implemented into the code as a set of linear ordinary differential
equations and solved using the ODE23 solver for nonstiff equations, which satisfies
the general DQMOM equation:

Aα = β (29)

In our case, the individual terms need only to represent six mixed moments for
two bi-dimensional nodes to cover all included processes:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1

−〈ξ〉211 −〈ξ〉212 2〈ξ〉11 2〈ξ〉12 0 0
−〈ξ〉221 −〈ξ〉222 0 0 2〈ξ〉21 2〈ξ〉22

−3〈ξ〉211〈ξ〉221 −3〈ξ〉221〈ξ〉222 2〈ξ〉11〈ξ〉221 2〈ξ〉21〈ξ〉222 2〈ξ〉11211 〈ξ〉1121 2〈ξ〉11212 〈ξ〉1122

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
(30)

αT =
[
a1 a2 b11 b12 b21 b22

]
(31)

The mixed moments were chosen by keeping the maximum number of empty cell
spaces in the solution arrays while ensuring that the matrix A is of full rank:

Rcond(A) > 0 (32)

The implementation of a second abscissa in these equations allows the contin-
uous description of two length parameters, e.g. core and shell of QDs or length
and diameter of nanorods, respectively, by tracking a set of kl-mixed moments. The
advantage of this approach is threefold. Firstly the combination of the growth rate
and the particle net formation rate into one moment source term locates all data on
both chemical properties of the solid and liquid phases and process data like supersat-
uration in one part of the equation. Therefore, the general equation of the system can
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be applied to many different systems. Secondly, the integration of different mixing
models in separate equations allows the application in different mixing regimes or
reactor geometries. Lastly, the establishment of individual sets of equations for each
mixing zone and each solid phase allows the parallelization of the solution and thus
reduces the computational effort.

The solid formation process is condensed into a source term within the moment
transport equations by a sum of the N-point quadrature moment sources, which
govern physical phenomena such as nucleation, growth and aggregation. The central
equation can be reduced to a set of four independent differential equations, whose
solution allows tracking the first four moments of the solid phases inside eachmixing
zone in the aforementioned mixing model.

6 Solid Formation

Nucleation, growth and aggregation are addressed in the model and briefly sum-
marized in the following. Homogeneous nucleation is typically used to describe
the precipitation of particles from a supersaturated solution. According to classical
nucleation theory (CNT), homogeneous nucleation follows from repeated reversible
addition of monomers until a stable cluster is formed. The driving force for the phase
transition is the supersaturation. In this work, we consider nucleation and diffusion-
limited growth. Nevertheless, the overall framework can easily be extended by other
models for nucleation and growth ensuring the wide applicability of our approach. In
our model, we assume a stepwise solid formation process, which assumes primary
nucleation of particles with critical size and subsequent growth. Three different
nucleation rates are available as sources for the model:
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D is the diffusion coefficient, KSP is the solubility product, x is the particle diam-
eter, VM is the molecular volume, γ is the interfacial energy, He is the adsorption
constant of a building block on the surface of the nucleus, f is a geometric correction
factor, S is the supersaturation which is introduced by the hydrochemistry model,
and ν is the stoichiometric coefficient. The model assumes nucleation of particles
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with a critical size xc, which is calculated by the Gibbs-Thomson equation which is
derived from the assumption of energy equilibrium between free Gibbs enthalpy of
volume versus free Gibbs enthalpy of surface:

xc = 4VMγ

kBTln(S)
(36)

For a detailed derivation of these equations the reader is directed to [22]. The
second step in solid formation is growth of nucleated particles. Growth is calculated
in each time step depending on the system state. The growth rates used for fast
precipitation processes are assumed to be diffusion-limited:

Gi = 4D
√
KSP

Mi

ρ

S − 1

x
(37)

M refers to the molar mass, ρ is the density of the solid phase and x is the current
diameter of the growing particle. This source term can mathematically be described
as adding a layer of solid material to an existing particle during each time step �t
during the simulation. The term is closed by the mass balance which removes the
corresponding amount of mass from the solution that is needed to grow the particle
of size ξ:

�VGrowth =
NS∑
i

fA,iξ
2
i Gi�t (38)

with fA,i being a shape factor. Conversion of the growth rate for the use in DQMOM
requires a mixed-point transformation for each moment that is calculated, while
the extension to a bivariate model requires additional information about the second
spatial direction. In this case, the information for net particle formation and growth
rate for each node and dimension is provided to the source term for the moment
transport equation by a combined arbitrary source term of G1 and G2. Each line in
term for the moment transport equation thus has to encompass the net growth rate
for each node and dimension:

β =

⎡
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0
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2ω1G1ξ11ξ
2
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2
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2
22 + 2ω2G2ξ

2
12ξ22

⎤
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(39)

This results in the possibility to model different geometrical particle shapes. The
flexibility of our code allows for source terms with independent variables to be
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implemented, which are schematically displayed in Fig. 4. These source terms can
be adjusted to account for different geometries or sequential growth.

The example of sequential growth is a good starting point to test the numerical
stability of the code for bivariate systems. Sequential growth of core-shell particles
represents two independent growth rates. Here, initial nucleation and growth of the
core has no influence on the subsequent growth of the shell, the former only delivers
the boundary condition for the node positions at the beginning of the shell growth.
The two independent parameters are the core diameter and the shell thickness with
a boundary condition restricting the values of the sizes to a positive domain. This is
necessary, as DQMOM is solvable for negative node positions and in consequence
negative particle sizes. The mean diameter of each phase can be derived from a lower
order mixed moment:

Fig. 4 Schematic display of the different ways to model bivariate PSD. aUncoupled growth allows
growth of one dimension independent of the other. b Coupled growth always changes each entry of
the property vector simultaneously. c Production of core-shell particles as an example of sequential
growth. d–e Cylinders and ellipsoids as examples of structure resulting from growth rates pointing
in different spatial dimensions
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xi =
∑N

α ξαiωα∑N
α ωα

(40)

in which ω is the node weight and ξ is the position of node α for phase i. In the case
of sequential processes, temporal separation of growth is achieved by Heaviside step
functions � multiplied to the solid growth model:

G1 = (1 − �(t − T))
2 Sh Dp Mp

ρ S x1

(
KSP

βi,p

)υi,p

(41)

G2 = (�(t − T))
2 Sh Dp Mp

ρ S (x1 + x2)

(
KSP

βi,p

)υi,p

(42)

in which T is the process time for the first step. These equations describe a sequential
process with temporal separation of core and shell growth. For the simulation, this
means only 3 of the 6 lines in Eq. 39 are nonzero for each calculated time step. This
avoids badly scaled matrices as long as the starting point of the node positions are
unique.

For simultaneous growth in each spatial dimension, matrix β in Eq. 39 is nonzero
in at least 5 lines. A good example of this would be the growth of non-spherical
particles such as rods, spindles and ellipsoids. For the nanorods, a simple cylindrical
geometry was assumed by multiplying the growth rate with a constant factor in order
to modulate the final particle. When calculating the growth of anisotropic particles
the mass balance has to be revised in comparison to spheres, since the volume of
added solid is now dependent on all other dimensions. This coupling is done by
separately calculating the mean volume, here given for a cylinder and the respective
surface from diameter D and length L:

Vcylinder = π

4
D2L (43)

Acylinder = πD

(
D

2
+ L

)
(44)

and added into the mass balance:

mzone(ti + 1) = mzone(ti) − ρsolidG(ti) ∗ A(ti) (45)

Here mZone is the total mass of the solid in the current mixing zone and ρ is the
density of the solid.

Additionally to growth and nucleation, the code includes an aggregation model
for anisotropic particles. Aggregation is the result of successful particle collisions
due to either Brownian motion, laminar or turbulent fluid flow. The aggregation rate
is estimated by the product of the particle number density in the dispersion and
the aggregation kernel given by the product of collision frequency and aggregation
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efficiency. The general aggregation kernels for Brownian motion and turbulent flow
are given by:

βBrown = 1

Wij
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in which ε is the turbulent energy dissipation rate and ν the viscosity of the fluid.With
the exception of the aggregation efficiency all other terms can be directly extracted
from the system state. Since aggregation is no purely isotropic process [3], a second
information modulating the oriented aggregation process is necessary. The model
assumes collisions between two crystals by letting any two faces interact with each
other. The energy barrier Wij of this interaction and the frequency of successful
collisions are calculated. This is accomplished by extending the Fuchs stability ratio
for spherical particles where the inverse aggregation efficiency is given by [23]:

Wij = 2
∞∫
2

(
exp

(
Wtot(Y)

kT

))
Y2 dY (48)

with Y being the dimensionless center-to-center distance normalized by the arith-
metic mean of the radii of the interacting particles. This equation uses the total
interaction potential between two particles and can be adapted to include a wide
range of different geometries. For example, the total interaction potential between
spherical particles is calculated with:

Wtot = − HAR1R2
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+ ε0εR1R2

(
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1 + �2
2

)

×
(
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�2
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)
+ ln(1 − exp(2κY))

)
(49)

with Y being the dimensionless center-to-center distance normalized by the arith-
metic mean of the radii of the interacting particles, HA being the Hamaker constant,
� being the respective charges of the paired faces and κ being the Debye length.
This notation gives the possibility of introducing surface potentials of different crys-
tal faces to model the aggregation probability of different possible combinations of
interacting faces during collisions of anisotropic particles.

Since the model already incorporates modular sources in the moment transport
equation, aggregation can bemodelled by a simple extension of themoment transport
equation by an N-point quadrature aggregation term for the kl-mixed moment:
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Closure of this term is achieved within the framework of DQMOM. Tracking
the absolute value of the mixed order moments for aggregation processes during the
simulation is directly possible via these extended source terms in the central set of
equations, and thus does not require any additional computational steps.

7 Application Examples

The applicability of the simulation tool was validated for a set of different systems
shown in Table 1. Each of those systems provides unique challenges such as mix-
ing controlled precipitation of BaSO4, the multiphase precipitation of copper-zinc
salts (multiphase process with complex hydrochemistry) [15] and iron hydroxide
and oxyhydroxide nanoparticles (system with difficult to access properties) [3]. The
properties of the solids are taken from literature depending on their stoichiometry and
the reactants available (displayed in Table 1). The literature values for the solubility
product of Fe(OH)2 vary over a wide range and to encompass a large range of values
an upper and lower bound were selected for investigation.

7.1 Mixing-Controlled Systems: Barium Sulfate (BaSO4)
and Iron Hydroxide (Fe(OH)2)

Barium sulfate is a widely studiedmaterial system.Mixing, nucleation and diffusion-
limited growth are considered as sub-processes.While only one phase can evolve, the
mean particle size strongly depends on the mixing efficiency as reported in literature

Table 1 Solubility products and densities

Solid name Composition Density (kg/m3) Solubility product (mol/l)n

Barium sulfate BaSO4 4500 9.8 × 10−11 [24]

Copper hydroxide Cu(OH)2 3370 4.7 × 10−20 [25]

Zinc hydroxide Zn(OH)2 3050 1.7 × 10−17 [26]

Malachite Cu2CO3(OH)2 4050 6.9 × 10−34 [25]

Gerhardtite Cu2NO3(OH)2 3389 5.3 × 10−33 [27]

Rosasite Cu1.4Zn0.6CO3(OH)2 4150 4.0 × 10−37 [28]

Ferrous hydroxide Fe(OH)2 3400 4.8 × 10−16 and 10.7 ×
10−16 [29]
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Fig. 5 Validation of the precipitation model by comparison of simulated data (solid lines) with
literature data (dashed lines). a Median particle size formed in the T-mixer for energy inputs of
10° W/kg (blue dashed line), 103 W/kg (green dotted line) and 106 W/kg (red solid line) in com-
parison to literature data (black lines). b Supersaturation during BaSO4 precipitation compared to
literature [14]. c Mean particle size of ferrous hydroxide Fe(OH)2 particles (initial concentration
0.14 M FeSO4, 0.56 M NaOH). Specific energy dissipation 103 W/kg, simulation for the litera-
ture range of solubility values of 4.8 × 10−16 mol3/l3 (red and purple lines) and 10.7 × 10−16

mol3/l3(green and blue lines) (Adapted from [4] with kind permission from Elsevier)

[15]. This finding is reproduced with the presented tool showing the applicability
of the mixing model. For the case of mixing-controlled systems, the precipitation
module is applied to the case of a T-mixer using the sub-models detailed in the
above sections. The specific energies have a strong influence on the mixing rate (see
chapter on mixing model) and thus the resulting particle size. The mean particle size
(Fig. 5a) is given as an integral mean value over all reaction zones. As shown in
(Fig. 5b) each of the two mixing zones A′ and B′ has an individual supersaturation
leading to different solid formation kinetics. Both reaction zones are displayed in the
same color, they converge over time. The difference to the literature data (displayed
in black) is mainly attributed to the use of different mixing models [3].

The next case is the precipitation of iron hydroxide (Fig. 5c). Iron hydroxide forms
as an intermediate precursor for goethite FeOOH pigments [3] under the exclusion
of oxygen. Therefore, it reflects a case where experimental access is difficult and
the numerical investigation can yield important insights to the understanding of this
distinct synthesis and to the transient particle formation process. Fe(OH)2 is highly
unstable due to oxidation. However, using our tool, the precipitation behavior can
be evaluated in detail. The code was applied to two sets of literature data for the
solubility product using the symmetrical engulfment model. The standard deviation
of the values given (2.97 × 10−16 mol3/l3) is subtracted, respectively added, to the
mean value (7.7 × 10−16 mol3/l3) giving a lower (4.8 × 10−16 mol3/l3) and a higher
(10.7 × 10−16 mol3/l3) estimation. Although more work needs to be done to gain
deeper insight to material data (e.g. with respect to solubility, surface energy, particle
shape, which are main challenges in particle technology in general), this example
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already gives a reasonable estimate on the precipitation kinetics. As expected for
a mixing-controlled system, in the beginning of the formation process, the mean
particle size differs in the two mixing zones. Growth in the iron-rich zone is faster
than in the alkaline zone. In both zones, a rapid increase in nucleation after a short
time causes an intermediate decrease of the mean particle sizes. However, the final
sizes in both zones are equal for each solubility product as both zones exchange
particles and therefore converge after a sufficiently long enough mixing time. The
calculated mean final particle size is situated in the lowμm range and lies in a similar
regime as reported in literature [3].

In both of the discussed cases, mixing strongly influences the transient particle
formation dynamics and thus the final particle properties. Accordingly, mixing must
be carefully considered in particular with respect to up-scaling. Recently, we found
self-similar profiles of supersaturation and of the resulting PSDs for the case of
precipitation of drug molecules in a T-mixer [7]. These promising results provide
strong hints that unifying scale-up principles can be derived, at least during flow
synthesis of nanoparticles.

7.2 Systems with Complex Phase Composition: gerhardtite
(Cu2NO3(OH)3)

As the next example, we consider the simulation of a multicomponent system. Liter-
ature data for solubility products are available and are in very good agreement to the
simulated values [25–28]. The alkaline precipitation of copper salts leads to multi-
ple solids of different chemical composition. The addition of zinc sources leads to
copper-zinc salts, which are important precursors for Cu/ZnO catalysts for methanol
synthesis [5]. The solids that form during this precipitation include copper hydrox-
ide (Cu(OH)2), zinc hydroxide (Zn(OH)2), malachite (Cu2CO3(OH)2), gerhardtite
(Cu2NO3(OH)3) and the mixed phase rosasite (Cu1.4Zn0.6CO3(OH)2). The complex
chemical network for precipitating the desired compound rosasite (see Table 2) is
implemented into the hydrochemistry model as a stoichiometric matrix α (Eq. 61)
listing all of the reactive species of the system.

The resulting stoichiometry matrix implemented into the hydrochemistry model
can be written as:
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Table 2 Reactions considered for the aqueous preparation of precursors for Cu/ZnO methanol
catalysts

Reaction K Log10 K References

Cu(OH)2�Cu2+ + 2OH− KSP,1 −19.33 [25]

Cu2(NO3)(OH)3�2Cu2+ + NO−
3 + 3OH− KSP,2 −32.274 [27]

Cu2(CO3)(OH)2�2Cu2+ + CO−
3 + 2OH− KSP,3 −33.16 [25]

Cu1.4Zn0.6(CO3)(OH)2�1.4Cu2+ + 0.6Zn+CO−
3 + 2OH− KSP,4 −36.4 [28]

Zn2+ + 2OH−�Zn(OH)2 KSP,5 −16.77 [26]

H+ + OH−�H2O KW 14 [25]

Cu2+ + 2OH−�Cu(OH)2 K1 11.8 [25]

Cu2+ + 3OH−�Cu(OH)−3 K2 15.34 [25]

2Cu2+ + 2OH−�Cu2(OH)2+2 K3 17.57 [25]

3Cu2+ + 4OH−�Cu3(OH)2+4 K4 34.9 [25]

Cu2+ + CO2−
3 �CuCO3 K5 6.75 [25]

Cu2+ + H+ + CO2−
3 �CuHCO+

3 K6 12.169 [27]

Cu2+ + 2CO2−
3 �Cu(CO3)

2−
2 K7 10.3 [27]

Cu2+ + No−
3 �Cu(NO3)

+ K8 0.5 [27]

H+ + CO2−
3 �HCO−

3 K9 10.329 [27]

2H+ + CO2−
3 �H2CO3 K10 16.681 [27]

α =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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(51)
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Fig. 6 Comparison of predicted data by the model (solid blue lines) with literature data [5] (black
lines). Evolution of mean particle size of rosasite after multiphase precipitation at different con-
centrations of Cu(NO3)2 ranging from 0.05 to 0.13 M, Na2CO3 concentration constant at 0.13 M;
Comparison to copper carbonate precipitation at different concentrations from literature [5]. a Evo-
lution of mean rosasite particle size. b Evolution of supersaturation. (Adapted from [4] with kind
permission from Elsevier)

in which the columns represent the components and the rows represent the species.
All these species were then considered in mass action laws as detailed into section
above. The considered reactions and their constants are shown in Table 2.

In this study, all five solids were considered simultaneously and the impact of
a changing Na2CO3 compound on the product concentration was investigated. The
code predicts in agreement with experiments that for all initial concentrations the
only solid phase precipitating is rosasite with a phase purity of close to 100% as this
is the phase with the lowest solubility [4].

Thus, in case of rosasite precipitation, the process is reliable with respect to the
formation of side products. The results of the study are depicted in Fig. 6. The mean
diameter of rosasite and the corresponding supersaturation are shown for varying
concentrations of Na2CO3.

So far, it has been shown that the precipitation model is capable of handling multi-
ple solid phases without restriction to the number of components and species. Addi-
tionally, if the synthesis targets solid phases other than rosasite, process conditions
favoring distinct phases can be identified by numerical investigation.

7.3 Systems with Anisotropic Aggregation: goethite (FeOOH)

The bivariate DQMOM-approach was applied to the complex synthesis of goethite
nanorods. Goethite forms not only by crystalline growth but also by oriented attach-
ment [3]. This oriented attachment process has previously been investigated at our
institute. Simulations with a low number of particles have shown good agreement
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to experimental data [30]. The DQMOMmodel, however, offers the chance of scal-
ing this simulation to a much larger particle number without the limitation of high
computing time, which is often a limitation for the simulation of discrete particles.

Experimentally, the goethite particles were synthesized by aeration of an alkalized
0.9 M iron sulfate solution at 45 °C. While the mechanism of goethite synthesis is
complex, the present study uses a simplified model developed at our institute to
model the generation of goethite at constant pH [30]:

4Fe2+ + O2 + 8OH− → 4FeOOH + 2H2O (52)

The oxygen was supplied via bubbling synthetic air through a porous plate with
a constant volume flow rate of 100 ml/min. Samples were taken from the solution
at intervals of 5 min. The samples were investigated using SEM imaging and evi-
denced that first clearly visible needles formed around 30 min and continued to grow
from this point on. After 55min, the iron of the solutionwas depleted and the reaction
ended (Fig. 7).

The tool was then used to explore the formation of goethite by oxidizing iron
hydroxide platelets (see Sect. 7.2). These platelets act as nuclei for the formation of

Fig. 7 SEM images of the samples taken during goethite synthesis after 25, 30, 45 and 50 min.
At 25 min the hexagonal precursor phase can be seen, however no goethite needles are visible. At
30 min, first goethite needles are visible, as well as the precursor. At 45 and 50min, goethite needles
have grown when compared with the previous samples
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goethite from solution under consumption of dissolved oxygen [3]. Goethite crys-
tals are orthorhombic and typically elongated along the crystallographic 001 direc-
tion and terminated by the {021} faces at the end and {110} faces on the sides.
Since the surface energies of these faces are similar, the final particle shape is deter-
mined by aggregation kinetics rather than by thermodynamics [31]. For modeling,
the orthorhombic goethite crystals were considered as cylinders terminated by {021}
faces with the mantle surface considered as a {110} face. The multivariate aggrega-
tion model was then applied to the case of Brownian aggregation at 293 K in aqueous
solution. The source term was adapted for the case of cylindrical geometry. Since the
aggregation of cylindrical particles depends on both dimensions of the particles, it
provides additional challenges in contrast tomonovariate aggregation processes such
as the aggregation of spheres. The resulting aggregation termprovides data on the two
interacting particle dimensions and the particle geometry. Furthermore, aggregation
was modelled including van derWaals attraction between cylinders of different sizes
and electrostatic repulsion between the two crystal facets. For the latter, data for the
surface charge density of the two different crystal faces of goethite were used, which
were obtained from a multisite complexation model [32]: 46 mC/m2 for the {110}
face and 57 mC/m2 for the {021} face. The Hamaker constants were calculated by
[33]:

A = 24πγ D2
0 (53)

where γ is the interfacial energy and D is the contact distance of two particles. The
comparison of experimental and modelling data is displayed in Fig. 8 in which the
mean diameter and mean length gathered from the SEM images is compared to the
mean diameter of the two particle dimensions from the simulation. The simulated
values coincidewith the experimental values determined by statistical SEMmeasure-
ments and follow the mean values very nicely for both dimensions. The deviations in

Fig. 8 Results of the
complete behavioral study
on the formation of Goethite
nanorod aggregation
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the experimental results can be attributed to effects from breakage and aggregation
processes in cases that the attached particles are not properly aligned [30]. This effect
was neglected for the simulation study.

Noteworthy, the extension to non-spherical particles is seen as one of the largest
limitations for solving by PBEs. Here it is shown that the fully bivariate model can be
applied to complex source terms in the case of bivariate aggregation. The extension
to bivariate systems is capable to simulate a large range of particle shapes with
varying source terms in the moment transport equation. This is possible for manifold
different geometries and thus allows addressing increasingly complex structures to
be simulated with the model.

7.4 Reaction-Controlled Systems: zinc oxide (ZnO) Quantum
Dots

An example for a reaction-limited system is the formation and temporal evolution of
ZnO QDs [1]. Modelling of particle formation processes incorporates two distinct
challenges. On the one hand, a high accuracy is desired to ensure outstanding product
quality with respect to narrowPSDs and optical properties, whereas on the other hand
the numerical efficiency limits the feasibility of simulation studies. As described in
the above section the present tool requires repetitive solution of PBEs, which for long
time processes such as ripening, requires small step sizes due to the mathematical
stiffness of the governing Gibbs-Thomson equation, which might lead to prohibitive
long calculation times:

R(x, t, c) = 4D M c∞
L

ρx

[
c(t)

c∞
L

− exp

(
4γVm

νx kBT

)]
(54)

This equation, which describes the size-dependent solubility of small particles,
often leads to extreme gradients, when solved for moderate experimental conditions.
This equation can be introduced into a general PBE:

∂

∂t
q(x, t) + ∂

∂x
(R(x, t, c)q(x, t)) = 0 (55)

Usually the exponential term of the Gibbs-Thomson equation is abbreviated by a
Taylor series expansion:

R(x, t, c) ≈ 4D M c∞
L

ρx

[
c(t)

c∞
L

−
(
1 + 4γVm

νx kBT

)]
(56)

This description, leads to an increasing error for decreasing particle size as seen in
Fig. 9. The ripening rates of larger particles deduced from the linear approximation
are in good agreement with the full solution of the exponential function independent
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Fig. 9 (Left) Nonlinearity of the ripening rates calculated by the full exponential term (green lines)
and by using the Taylor series approximation (blue lines) at a ZnO concentration of 10−8 kg*m−3

to 10−12 kg*m−3. (Right) Magnitudes of the ripening rates R at x5,0 (blue line), x50,0 (green line),
and x95,0 (red line) of the number density distribution q0(x,t) between 1 and 5 nm simulated in
PARSIVAL for T = 40 °C (Adapted from [9] with kind permission from Elsevier)

of the solid concentration. In contrast, at typical QD sizes clearly below 10 nm
and especially for smallest particles below 3 nm large deviations are observed. The
solution of the governing stiff equation leads to fluctuating ripening rates for small
particle sizes. Thus, an efficient numerical solution (FIMOR) was developed by our
colleagues in Applied Mathematics [9].

The Gibbs-Thomson equation can better be solved with a fully implicit iterative
solution:

yn+1
(k+1) = yn+1

(k) − (
D�

(
y(k)n + 1

))−1
�
(
yn+1

(k)

)
(57)

with k being the iteration counter, y the condensed variable and � is the solution of
the implicit equation:

�
(
yn+1) := yn+1 − yn − 1

2

(
�yn + �yn+1) (58)

The surface energy was calculated according to Mersmann:

γ = 0.414kBT

3

√
V2

M

ln

(
ρ

c∞
L M

)
(59)

The surface tension was calculated with an Arrhenius-like expression to predict
the temperature-dependent ripening behavior:

c∞
L (T) = C exp

(
−EA,r

RT

)
(60)
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Fig. 10 Comparison of the mean volume-weighted particle sizes x1,3 that evolve during 12 h of the
ripening process for temperatures of 10 °C (brown), 15 °C (black), 20 °C (yellow), 25 °C (purple),
30 °C (cyan), 35 °C (red), 40 °C (green) and 50 °C (blue) calculated by FIMOR (solid lines) and
the full exponential solution with the experimental results obtained from absorbance measurements
(symbols). (Adapted from [9] with kind permission from Elsevier)

The data generated by this approach was compared to ZnO QDs on ZnO QDs
synthesized from mixing a 0.1 M zinc acetate solution with a 0.1 M LiOH solution.
Particles produced by this method were stored below −10° C to prevent ageing.

The excellent agreement between the mean particle sizes predicted by FIMOR
and the experimentally derivedparticle diametersmeasured for temperatures between
20 and 50 °C underlines the validity of the implicit model widely outperforming the
Taylor approximation (Fig. 10). A maximum relative deviation of 8% in the mean
volume weighted particle sizes between simulation and experiment is found for a
temperature of 20 °C after a total ageing time as long as 12 h. The maximum absolute
deviation in x1,3, which is found for a temperature of 35 °C is even below 0.4 nm.
Based on the successful description of simple temperature constant batch ripening,
a study on time–temperature profiles and their validation against experimental data
recorded in the batch mode will be discussed. Therefore, an initial suspension with
mean size x1,3 of 2.4 nm has been exposed to two different temperature profiles. As
shown in Fig. 11, the first temperature profile consisted of an initial high temperature
phase at 35 °C kept for 2 h followed by a low temperature phase at 10 °C persisting
for additional 4 h (blue circles). The second temperature profile followed the same
timing but the first section was at a low temperature of 10 °C while in the second
section a moderate temperature of 25 °C was applied (red circles). The simulation
results coincide again very well with the experimental data. The maximum deviation
of 5% in x1,3 observed between experiment and simulation after 6 h of ripening is in
the same order of magnitude as already discussed in the context of Fig. 10.
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Fig. 11 Evolution of the mean volume weighted particle size x1,3 for two different temperature
profiles (blue) (red) calculated from themeasured absorbancedata (circles) and simulatedbyFIMOR
(solid line) (Adapted from [9] with kind permission from Elsevier)

The a priori estimation of process parameters, which result in a product with
desired properties, reduces the experimental effort for process design considerably.
The predictive character and the high numerical efficiency of FIMOR allow the map-
ping of product properties on the process parameter space. The use of a map allows
the precise tailoring of process parameters according to future product properties.
For the present study on the ripening of ZnOQDs, the process parameter space spans
over the ripening temperature and the ripening time.With respect to the experimental
boundary conditions, we consider times up to 30 h and temperatures between 0 and
50 °C. Long experimental times are usually avoided, the upper temperature limit
is determined by the fact that agglomeration occurs when the temperature exceeds
50 °C. The result of the FIMOR-derived time–temperature (t–T) map is presented in
Fig. 12. A sufficiently dense set of evaluated temperatures results in a smooth map
showing the evolution of the mean particle size x1,3 and the width of the PSD.

Fig. 12 Time and temperature (t–T) maps for the mean particle size (a) and the width of the
PSDs (b) derived for the ripening of ZnO quantum dots by FIMOR (Adapted from [9] with kind
permission from Elsevier)
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Such t–T maps do not only allow a prediction of the dispersity of a sample for
different process conditions but also provide insights and improve the general under-
standing of the Ostwald ripening process. The evolution of the width of the PSDs
along the black isolines illustrated in Fig. 12 raises the question whether there is a
specific time/temperature combination to achieve a particularly narrow distribution.
Therefore, the data is processed further with the results being summarized in Fig. 13.
The analysis of the standard deviations plotted vs ripening time shown in Fig. 13a
reveals that each mean particle size is connected to a specific width of the distribu-
tion. This width is independent of the time needed to achieve a certain particle size.
Thus, all PSDs along one iso-line are self-similar and independent of the chosen
time/temperature combination, since time is dependent on temperature as long as a
single particle size is considered.

The slight decrease of the width with time is attributed to numerical effects rather
than on a real focusing of the PSD. Going one step further, when the width of a PSD
is fixed for a particular mean particle size, the data can be re-evaluated to find the
respective correlation. In Fig. 13b the average width of the PSD as a function of the
mean particle size is shown. Noteworthy, the apparently simple straight line consists
of the evaluation of 92 mean particle sizes and the respective PSDs. From the vari-
ous conditions extracted from the t–T map, a linear correlation with a slope of 0.13
is found. This behavior—although astonishing at first sight—has been described
in literature long time ago when Lifshitz and Slyozow theoretically predicted the
self-similarity of PSDs during Ostwald ripening [22]. The self-similarity is based on
the existence of a stable shape of PSDs exposed to Ostwald ripening. The shape of
such a PSD will be conserved by FIMOR and is shown in Fig. 13c. Due to the high
numerical efficiency of FIMOR, this effect can be used in the framework of optimiza-
tion studies and represents a promising way towards tailor-made colloids. The good
agreement with experimental data and the confirmation of general observations like
self-similarity found in the literature is an excellent validation for batch processes
in small volumes where no pronounced concentration and temperature gradients are
observed. However, industrial applications more and more demand for continuous
processes.

Fig. 13 a Width of PSD along the isolines of uniform mean particle size drawn in Fig. 9. b Mean
width evaluated for 92 particles with mean particle sizes between 3 and 12 nm. c Normalized stable
shape of the PSD (blue), the predicted shape fromLifshitz and Slyozow (green) [22] and fitted values
according to a lognormal distribution (black crosses) (Adapted from [9] with kind permission from
Elsevier)
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This new procedure is numerically stable and uses the unaltered equations with
high accuracy. The typical calculation time for several hour long ripening processes
decreases to a few minutes. Furthermore, processes with dynamically changing tem-
peratures can be modeled with high precision and excellent agreement with experi-
mental data. Due to its predictive nature it saves experimental time and considerably
improves the understanding of continuous colloidal processing [9].

7.5 Systems with Sequential Growth: CdSe@ZnS Quantum
Dots

The bivariate extension of the model was applied to the precipitation and growth of
cadmium selenide—zinc sulfide (CdSe@ZnS) quantum dots. Mathematically these
particles can be represented as a structure growing sequentially from the inner core
to the outer shell in a 2-step process. In order to simplify the complex nucleation
behavior any influence of heterogeneous nucleation of shell material on the core
surface is neglected.

The synthesis of core-shell CdS/ZnS quantum dots is usually done by injecting
shelling agents to seeded core particles by heterogeneous nucleation and growth
of the shell on the core. The so called hot injection technique for the synthesis of
quantum dots is a well-established and widely used method in the lab and was per-
formed using an automated Chemspeed Technologies Swing XL autoplant synthesis
platform. Typically, a Cd-containing stock solution is prepared by introducing CdO
and oleic acid. The hot cadmium oleate solution is injected into a selenium solution
in trioctylphosphene. The high supersaturation induces fast nucleation of CdSe fol-
lowed by rapid particle growth on a timescale of a few s. The shelling agent, e.g. a
diethylzinc solution, is then injected in a second step to produce the desired core-shell
nanoparticles.

This sequential experimental procedure is a good starting point to introduce bivari-
ate particle simulation, since the temporal separation of the different growth steps
allow for simplification of Eq. 39. The two-step synthesis can be modeled by the
introduction of two Heaviside functions to save calculation time as shown in pre-
ceding chapters. Neglecting nucleation and aggregation, the growth terms G1 and
G2 can be expressed by distinct growth laws multiplied with a Heaviside function,
ensuring sequential growth (see Eqs. 41 and 42) with T being the injection time of
the shelling agent and log(KSP) = − 33 being to solubility product [38]. This proves
the bivariate code retains the flexibility of the monovariate model, which is important
to ensure applicability to a wide range of different particulate systems. The code was
tested on experimental data from Mahmoud et al. and showed excellent agreement
as seen in Fig. 14. The shell thickness can be modulated with simulation time and
provides a good basis for future optimization studies.
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Fig. 14 Comparison
between the numerical
results and experimentally
determined particle sizes for
CdSe and CdSe@ZnS
quantum dots. Experimental
data was obtained from [39]

7.6 Property Optimization: ZnO Quantum Dots

In cooperation with our colleague Lukas Pflug from the institute of applied math-
ematics a numerical scheme for modelling ZnO QD ripening was established and
employed to optimize the ZnOQD formation in a batch and in a continuous microre-
actor [9]. In general, optimization in particle technology can be applied to various
aspects of precipitation:

• Model-based determination of otherwise difficult-to-measure particle variables,
e.g. surface energy, intermediate phases or highly transient phenomena.

• Optimization of process variables to ensure preferred product properties.
• Optimization of particle property distributions.

The optimization ofmaterial composition has previously been done at our institute
during a study on the estimation of material parameters for multiphase, multicom-
ponent precipitation modeling [34]. In this study, the simultaneous precipitation of
multiple phases inside a T-mixer was investigated with the present model. An opti-
mization study allowed predicting the phase composition of the solid product of a
simultaneous precipitation of BaSO4 and BaCO3 inside a T-mixer. In the present
study, the preferred precipitation of one solid product was achieved by adjusting
the pH by a free parameter optimization [2]. The model is capable of predicting
experimental results proving the effectiveness of this method.

In Chap. 7.2, we demonstrated the generation of self-similar PSDs, which makes
classical optimization rather difficult [9]. Therefore, a three-step process to con-
trol the PSD was developed (see Fig. 15a). Using the colloidal dispersion A with
a monomodal distribution, the monomodal distribution B is grown. An additional
part of dispersion A is then mixed with dispersion B to yield a bimodal distribu-
tion C. Afterwards, additional growth and ripening of solution C leads to the final
monomodal distribution D.

In total 5 process parameters are available for optimization: temperature, ripening
time in steps 1 and 3 and mixing ratio in step 2. In the first step, time and temperature
are dependent and can be reduced to one variable to accelerate optimization. Setting
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the process temperature to 30 °C the simulated values for themedian size and standard
deviation of a bimodal PSD are displayed in Fig. 15b. The point marked with C
corresponds to the colloidal solution with bimodal distribution at point C in Fig. 15a.
During ripening, the width of the distribution, expressed as the standard deviation,
initially increases until it drops significantly and finally reaches a minimum. Xmarks
the condition with a minimum standard deviation σ and median size. The chosen
optimization parameter is the ripening time, which of course is dependent of the
temperature. This concludes three parameters for optimization purposes: the ripening
time of the first process (t1), the mixing ratio (r of A and B), and the second step
temperature (T2).

Next, the effect of the parameters on the final PSD was investigated. The target
size defines the mixing ratio, which is required to meet a specific particle size. The
process time follows from the choice of mixing ratio, since for each ratio an optimal
time was found. This yields a 2D optimization problem. The optimization was done
by defining a cost functional and using a Nelder-Mead algorithm to calculate a
residence time and temperature, which correspond to a particle size distribution. The
cost functional can be written as:

ζ = (
xcurrent,mean − xtarget

)2
wx + σ 2wσ + twt (61)

with x being the size, σ being the standard deviation of the PSD and t being the res-
idence time. A weighting factor w orders the optimization parameters in a preferred
order.

The results shown in Fig. 16 display three trials with target sizes of 3.0, 4.5 and
5.5 nm.Each trial uses three points to determine a starting position needed to initialize
theNelder-Mead algorithm. The dots indicate simulation results during optimization.
The resulting PSDs for each size follow the principle of self-similarity reported for
ripening processes as seen in Fig. 15b [9].

The present model allows for easy implementation of optimization studies which
can be extended to new material systems in the monovariate case. Thus, the present
studies offer unique opportunities for the optimization of shape-dependent particle
properties in multivariate systems.

Fig. 15 a Schematic of the three-step process to optimize the PSD for a reaction controlled growth.
b Exemplary course of the median particle size versus deviation for the bimodal case (blue), in
comparison to the self-similar growth of a monomodal PSD (black)
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7.7 Coupling to a Separation Process

Typically, particle formation is coupled to other unit operations, most importantly
with separation or even classification. Today, methods of nanoparticle classification
are rare. We have shown that semiconducting nanoparticles such as ZnS can be size-
classified by antisolvent precipitation [35]. More recently, we introduced nanoparti-
cle chromatography as another possible scalable solution for size-classification. In
particular, results exist for fullerenes [36], ZnS and Au [37] nanoparticles.

Here, we couple the described ripening module with nanoparticle classification.
The coarse fraction mc is considered as product while the fine fraction mf is recycled
back to particle formation. This way, particles of larger sizes can be produced by
recirculating particles back to the reactor several times. The flowsheet of this setup
is displayed in Fig. 17a.

The developed ripening module was used to model a dynamic screening process
with a recirculation in a modular plant. For the separation we assume a separation
efficiency of κ = 0.8 and a cut size of 6.75 nm, which corresponds to the maximum
size of a particle traveling once through the reactor. The flowsheet displayed in

Fig. 16 Results of the optimization process. a Reduction of the optimization parameters to a 2D
problem. Starting values are marked in black for the target size of 3.0 nm (blue), 4.5 nm (green)
and 5.5 nm (purple). b Corresponding PSDs to the calculations on the left

Fig. 17 a Sketch of the ripening process coupling to nanoparticle classification. b Mass fraction
of the coarse (blue) and fine (green) material leaving the classifier
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Fig. 17a leads to exemplary behavior shown in Fig. 17b for the course and the fine
fraction at the end of the separator. The data are based on an exemplary process
temperature of 40 °C and a ripening time of 2.5 h. The influence of the chosen
separation size can be seen in the temporal evolution of fines and coarse fractions,
which drop initially and afterwards rise again until a stationary state is reached.

8 Conclusion

A widely applicable tool for modeling precipitation processes in aqueous phase
is presented. The tool encompasses several individual modules, such as, mixing,
hydrochemistry, and solid formation. All modules are designed to ensure minimum
numerical effort and maximum flexibility in terms of material systems, complexity
of material, additional hydrochemical species and solid formation processes. To
account for multiple solid phases, the present equations have been extended to cover
multi-phase aggregation. The two-dimensional model is capable of simulatingmulti-
phase and multi-component precipitation with bivariate properties. The model was
applied to various particle systems such as mixing-controlled BaSO4 and reaction-
controlledZnO formation. Complex applications includemethanol catalyst precursor
formation on the basis of Cu and Znwhere up to 30 chemical reactions were included
in the hydrochemistry model. As well as the formation of iron oxide pigments such
as FeOOH nanorods, an anisotropic particle system with a non-classical growth
mechanism.

The variety of the given examples illustrates the flexibility of the tool, which
allows it to be applied to a wide range of particle formation processes. The modi-
fied bivariate code retains its flexibility, which is important to ensure applicability to
anisotropic particulate systems. Simulation of bivariate systems is possible for mani-
fold different geometries and thus allows addressing increasingly complex structures.
This integrated model is the framework to simulate and to optimize reaction- and
mixing-controlled precipitation processes with up to two independent parameters
and will thus pave the way for advanced particle properties tailored to the needs
of the later application. This will become important for various pressing issues in
the field of particle technology such as process design, scale-up and process opti-
mization for particles of complex composition or non-spherical shape. The truly
two-dimensional model is capable of calculating a multi-phase precipitation process
with bivariate properties.
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Chapter 9
Impact Comminution in Jet Mills

Alexander Strobel, Benedikt Köninger, Stefan Romeis, Karl-Ernst Wirth,
and Wolfgang Peukert

Abstract Modelling the comminution in jet mills with respect to the complex two-
phase flow and the dynamic process behaviour is still a challenging task. The pro-
cessed solids pass through several stages in the mill: The comminution process in
the lower part, the pneumatic transport towards the classifier in the middle section,
and the classification step at the top. In this contribution, the grinding kinetics and
process behaviour during quasi-batch and fed-batch operational mode for different
holdups, classifier speeds, and particle sizes are examined in detail. A previously
developed method using well-characterized aluminium particle probes to access the
stressing conditions is adapted for application in the investigated jet mill: The rela-
tive particle impact velocity is linked to the geometric changes of the particles upon
impact. A high number of impact events happen in the mill, while at the same time,
the average particle velocity is comparatively low. Besides the stressing conditions,
breakage probabilities for the used glass beads are determined by single particle
impact experiments and described by the model of Vogel and Peukert. Solids con-
centration measurements and high-speed imaging reveal the formation of particle
clusters at the classifier and its periphery. These clusters have a massive impact on
the classification step itself: Fine particles are trapped inside the clusters and are not
discharged. Based on an adaption of the breakage model, and using the mean relative
particle impact velocity determined by the particle probes, a model for the product
mass flow is introduced.

Nomenclature

(1 − ε) Solid volume fraction [–]
(1 − ε)r Solid volume fraction at radius r [–]
(1 − ε)jet Solid volume fraction in the jet [–]
a Particle acceleration [m s−2]
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Ar Annulus area of the mill chamber with radius r [m2]
A Cross-sectional area of the mill [m2]
cw Drag coefficient [–]
d0 Nozzle diameter [mm]
E Young’s modulus [Pa]
fmat Particles’ resistance against breakage [kg J−1 m−1]
FW Drag force [N]
k Number of impacts [–]
K(1)(x) First Kapur function [s−1]
M Mass [g]
mi Mass of size class i [g]
mi,0 Initial mass of size class i [g]
mparticle Particle mass [g]
ṁi Mass flow transported to the classifier [g min−1]
ṁjet Mass flow through a single jet [g min−1]
ṁp Product mass flow [g min−1]
n Number of nozzles in the mill [–]
N Total number of evaluated particles [–]
Ni Number of particles with I contacts [–]
p Grinding pressure [bar]
PB Breakage probability [–]
Pi Relative number of particles with i contacts [–]
q3 Volume-weighted density distribution [m−1]
Q0 Number-weighted cumulative sum distribution [–]
Q3 Volume-weighted cumulative sum distribution [–]
r Radial distance in the milling chamber [m]
R Outer radius of the milling chamber [m]
Rcl Radius at the outer classifier blade [m]
Rep Particle Reynolds number [–]
S Breakage rate [g min−1]
SN% Percentage of stressed particles [–]
SNstress Average contact number per stressed particle [–]
t Process time [s]
T(x) Separation efficiency curve [–]
up,jet Particle velocity in the jet [m s−1]
v Particle velocity [m s−1]
vcl Circumferential velocity classifier wheel [m s−1]
vr Gas velocity in radial direction [m s−1]
�v Relative particle impact velocity [m s−1]
V Overall volume of all particles [m3]
Vi Volume of individual particle [m3]
Wm,min Minimum mass-specific energy input [J kg−1]
Wm,kin Mass-specific kinetic energy input [J kg−1]
x Particle diameter [μm]
x1,2 Sauter diameter [μm]



9 Impact Comminution in Jet Mills 307

x50,3 Mean volume-weighted particle diameter [μm]
xc Contact diameter on the particle surface after impact [μm]
xcut Particle cut size for breakage probability [μm]
xT Cut size classifier [μm]
z Nozzle distance in jet mill [mm]
η Dynamic viscosity [Pa s]
ν Poisson ratio [–]
ξ Product residue [–]
ρp Particle density [kg m−3]
ψi Sphericity of individual particle [–]
ψ Volume-based mean sphericity [–]

Indices

m Milling chamber
p Product
t Process time
gas Gas

1 Introduction

Dynamic processes are becoming increasingly important in the field of solid pro-
cess engineering. The on-demand production, faster product cycles and fluctuating
energy supply of renewable (wind or solar) energy are the driving forces of this
development. First and foremost, before addressing the modelling of interconnected
solids processes, a well-founded understanding of the dynamics of individual unit
operations and overall processes is essential [1]. To date, in-depth information on
the dynamic behaviour of comminution processes is rare. Modelling of comminu-
tion processes is a challenging task [2]: Within the mill, very complex transport
phenomena prevail, resulting in mostly unknown stressing conditions. In particular,
classifier mills are highly interesting because they involve three coupled unit opera-
tions: The comminution in the jet area, the transport to the classification zone, and the
classification itself [3]. Although advanced CFD [4–6] or coupled CFD-DEM [2, 7]
approaches are available today, the highly turbulent two-phase flows in the mills are
far from being understood sufficiently. Other approaches use dynamicmodel systems
for the calculating of closed loop systems [8–10] or population balance methods [11,
12]. The high Reynolds numbers and the steep velocity gradients in combination
with the high solids concentrations limit the application of numerical methods [2].

One particular type of classifier mills is the fluidized bed opposed jet mill, which
is the method of choice for size reduction of hard, abrasive, and thermosensitive
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materials [13]. Through the autogenous comminution by particle-particle impacts
induced by the gas jets, a high degree of fragmentation can be achieved for the pro-
duction of fine powders <10μm. Since nomoving parts for impaction are needed, the
comminution proceeds without anywear of themachinery, avoiding also the contam-
ination of the product. The processing of different materials in fluidized bed opposed
jet mills is addressed in several different publications [14–18]. These approaches
propose empirical models to describe the two-phase flow or just illustrate experi-
mental effects. Other authors describe batch processing in fluidized bed opposed jet
mills while global grinding kinetics are employed to model size reduction [19–21].
The complex two-phase flow, the high gas velocities, and the difficulties to directly
assess the stressing conditions comprise major challenges. The classification process
is studied both experimentally and numerically in stand-alone classifiers, including
the fluid mechanics inside the vanes of the rotating classifier wheel [6, 22–28].

The following chapter is dedicated to the study of particle-particle interactions,
revealing the overall stressing conditions, and the dynamics of the two-phase flow
during non-stationary fine grinding. For this purpose a lab-scale fluidized bed
opposed jet mill is investigated in detail: Besides the grinding behaviour during
different operational modes, a novel approach for the direct determination of relative
particle velocitieswill be presented.Any comprehensive description of the comminu-
tion process requires the knowledge about the materials properties and the materials
response to the determined stresses. For this reason the single particle breakage
behaviour is studied and analysed by single particle compression and impact tests.
The presented observations are then finally used for a model of the product mass
flow.

2 Materials and Methods

2.1 Fluidized Bed Opposed Jet Mill

The experiments were performed in a lab-scale fluidized bed opposed jet mill (AFG
100, Hosokawa Alpine AG, Germany). A scheme of the setup is depicted in Fig. 1
[29]. The mill consists of a cylindrical milling chamber (inner diameter of 100 mm).
Three Laval nozzles [exit diameters of 1.9mm (1)] are arranged in a 3D configuration
at the bottom of the mill chamber and are directed towards the central focal point.
The nozzles are supplied with pressurized air, which leads to a gas flow directed
upward towards the classifier wheel (2), whose outer diameter is 50 mm. The mill
was operated at a pressure level of 10–20 mbar below ambient conditions. An online
laser diffraction system (3) (Insitec, Malvern Panalytical, UK) is installed in the
product stream to continuously record the product particle size distributions (PSDs)
(sample rate of 1 Hz). Before the online particle size measurement, the product
particles are dispersed by a ring nozzle (4). Particle separation after the measurement
was ensured by a cyclone and a filter. For the characterization of the material inside
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Fig. 1 Scheme of the lab-scalemill AFG100. (1) Laval nozzles, (2) classifierwheel, (3) online laser
diffraction setup, (4) ring nozzle, (5) needle shaped capacitance probes inserted into the custom-
made adapter fitted into the original feed chute (6). Adapted from Köninger et al. [29], with kind
permission of Elsevier

the mill, the grinding process was interrupted, and the PSD was determined by
offline laser diffraction (Mastersizer 2000, Malvern Panalytical, UK). The holdup
was determined by weighing.

To measure the solid volume fraction (1 − ε) in the zone between the upper
Laval nozzles and the classifier, capacitance probes (5) were inserted into the
milling chamber through a customized measurement adapter which was fitted into
the original feed chute (6) (75 mm below the classifier). The capacitance probes
are sensitive to changes in the surrounding electromagnetic field caused by the
solids: These changes in the capacitance, which are converted to a voltage signal
and are further processed by a two-channel amplifier, can be related to the solids
concentration surrounding the probes. A calibration procedure is applied [30] to
convert the measurement signal to the corresponding solid volume fraction (1 − ε).
The local solid volume fraction (1− ε)r was measured at six different radial positions
r, and the data was converted to an overall solid volume fraction as shown by Eq. 1.
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(1 − ε) =
∑R

r=0(1 − ε)r · Ar

A
(1)

With Ar being the annulus area of the mill chamber for each position r and A
the cross-sectional area of the mill. Measurements close to the walls (r = R) were
not possible. The formation of a slight crust on the walls was observed (for the
processing of the later introduced limestone). A solids fraction of 1 − ε = 0.55
(similar to conditions of a fixed bed) was assumed.

Absolute pressures of up to 6 bar were applied to the gas before entering the
grinding chamber via the nozzles, which corresponds to a maximum volumetric gas
flow rate of 11.7 m3h−1 through each of the nozzles. The classifier speed was varied
between 6000 (circumferential wheel velocity vcl = 15.7 m s−1) and 15,000 rpm (vcl
= 39.3 m s−1). The solids holdup was varied between 100 and 700 g. Within the
presented experiments the mill was operated in quasi-batch and fed-batch mode.

To optically access the classifying process, an identical AFG 100 with a cus-
tomized shaft was used [26, 31]: The original drive shaft of the classifier wheel was
replaced by a hollow shaft to visualize the flow through the classifier (customization
was done by the Weber group). For further details on the collaboration, please refer
to the joint publication [31]. The hollow shaft and the original feed chute are placed
on opposing sites in the milling chamber, allowing optical access to the fluid and
particle flow through the classifier wheel and the surrounding area, while the original
geometries are maintained. Imaging was performed by placing a high-speed camera
(Keyence VW-600M, 640× 240 or 320× 240 pixels resolution, 8000 or 12,000 fps)
in front of a window located in the original feed chute. Illumination is realized with
a tripod lamp across the ceiling window to prevent any light reflections. For further
details, we refer to Stender et al. [26] and Spötter et al. [32].

2.1.1 Quasi-Batch Experiments

For quasi-batch grinding experiments, the mill was only operated with the initially
given amount of solids. Besides product-sized material being discharged during the
process, the holdup did not change bymore than 15% (for the processing of soda-lime
glass beads). The process was interrupted at predefined time intervals to measure the
powder mass in the milling chamber and its PSD. Thus, by simple mass balancing,
the product mass flow rate was calculated. For this purpose, the complete holdup
was removed from the mill and thoroughly mixed. Three individual samples were
taken for size analysis (Mastersizer 2000,Malvern Panalytical, UK). All experiments
were repeated three times, and mean values and standard deviations were calculated
accordingly. Changes in the sampling intervals did not show a significant influence
on the obtained results.
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2.1.2 Fed-Batch Experiments

During quasi-batch experiments, the holdup and the PSD in the milling chamber are
changing simultaneously. Therefore, the influences of individual parameters on the
process cannot be differentiated. To minimize the influence of the changing holdup,
fed-batch experiments were performed: The process is interrupted in fixed intervals
to stock up the holdup with the feed material. Within the first 5 min of operation, an
interval of 1 min was chosen, followed by a 5 min interval for the remaining process
time. Sampling was performed according to the protocol given above.

2.2 Fluidized Bed with Secondary Gas Injection

For some case studies, a lab-scale fluidized bed [33, 34] (inner diameter of 94 mm,
circulation zone height of 570 mm) with secondary gas injection was used. Fluidiza-
tion gas velocity was set to 2.4 cm s−1. A sintered metal plate at the bottom of the bed
was used to ensure a homogeneously distribution of the gas. For particle separation,
a cyclone and a filter are installed at the top. The diameter d0 of the used nozzles
was 2 mm. A single nozzle setup and a two-opposing nozzle setup were investigated.
The distance to the focal point of the opposing nozzles was 42 mm. The jet velocity
was set to 200 m s−1 (velocity at the nozzle threat). Sampling was performed after
intervals of 10 min by dismantling the lower segment of the fluidized bed: The solid
was manually mixed and samples were taken at three different spots and merged.

2.3 Material

2.3.1 Soda-Lime Glass Beads

Spherical soda-lime glass beads (Silibeads®, Type S) by Sigmund Lindner (Ger-
many) were used as model particles. In comparison to other investigated materials
like talc [35], hydrargillite [9, 19] or ethenzamide [20, 36] the glass beads have dis-
tinct advantages for the chosen application: They show superior mechanical proper-
ties (Mohs hardness ≥6, Young’s modulus E = 63 GPa, [37]) and thus show rather
slow breakage. By purposely slowing down the comminution process, the dynamic
changes of the process can be observed in greater detail. The density of the beads
was 2500 kg m−3.

For the investigation of the grinding dynamics and kinetics, as-received feed frac-
tions with Sauter diameters x1,2 of 61, 93, and 127 μm and corresponding spans
((x90,3 − x10,3)/x50,3)) of 0.71, 0.68 and 0.64, respectively, were used. The corre-
sponding PSDs are given in Fig. 2a together with an SEM image of one of the feed
fractions (Fig. 2b). From the SEM images, the sphericityψi of the individual particles
is calculated according to Eq. 2:
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Fig. 2 PSDs of the as-received soda-lime glass beads. Sauter diameters of the fractions are 61, 93,
and 127 μm (a). b SEM-image of the x1,2 = 93 μm feed material. Adapted from Köninger et al.
[29], with kind permission of Elsevier

ψi = 2
√

π · area
perimeter

(2)

From the perimeter of each analysed particle, an equivalent diameter was deter-
mined, which was further used for calculating the volume Vi of the corresponding
equivalent sphere. Subsequently, the volume-based mean sphericity is calculated
according to Eq. 3:

ψ =
∑

ψi
Vi

V
(3)

For the evaluation of the relative particle impact velocities, the feed material
from Sigmund Lindner was narrowed by sieving, resulting in a particle fraction with
an x50,3 and a span of 55.1 μm and 0.71, respectively (Mastersizer 2000, Malvern
Panalytical, UK). The distribution is displayed in Fig. 3a.

2.3.2 Aluminium Probe Particles

To assess the relative particle impact velocities, spherical aluminium particles (TLS
Technik & Spezialpulver, Germany) were used together with glass beads as feed
material; the size distribution was likewise adjusted by sieving. The resulting PSD is
displayed in Fig. 3a. The x50,3 value for the aluminium spheres was 53.8 μm (span
0.87). An SEM image of the particles is given in Fig. 3b. The density was 2.70 g/cm3
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Fig. 3 a PSDs of the narrowed glass (blue, dashed-dotted) and aluminium (green, solid) fraction.
b SEM image of aluminium spheres. Adapted from Strobel et al. [33], with kind permission of
Elsevier

asmeasured by helium pycnometry (Accupyc,Micromeritics, USA). The aluminium
particles were later mixed with the glass beads (1:19 m/m) for the experiments.

2.3.3 Limestone

For the presented experiments targeting the particle transport and the separation at
the classifier, irregular limestone particles (Saxolith, SH-Minerals GmbH, Germany)
were used. Compared to the glass beads, the PSD is rather broad, i.e. x50,3 and x1,2
of 67 μm and 15 μm, respectively, have been measured. The density of the particles
is 2700 kg m−3. By pressure drop measurements, a minimum fluidization velocity
of 0.007 m s−1 was determined.

2.4 Characterization Methods

2.4.1 Scanning Electron Microscopy (SEM)

Scanning electron microscopy was performed with a GeminiSEM 500 (Carl Zeiss
Jena, Germany). Both, a secondary electron detector and a through-the-lens detector
(Inlens) were used for imaging. The acceleration voltage was set to 2 kV.
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2.4.2 Offline Laser Diffraction

A Mastersizer 2000 equipped with the wet dispersing unit hydro 2000S (Malvern
Panalytical, UK) with water as dispersant was used for offline particle size measure-
ments. Loose agglomerates were broken by ultrasound. All samples were measured
5 times with an accumulation time of 10 s, the average values are reported.

2.4.3 Single Particle Impact Testing

Single particle breakage and deformation behaviour was characterized by impacting
individual particles using the Schönert breakage device and a custom-build low-
pressure impact device. A detailed description of the Schönert device can be found
in the work of Meier et al. [38]. In brief, the particles are fed by a vibrational channel
onto the centre of a horizontal rotor disc. The rotating disc accelerates the particles
towards an outer tooth-shaped ring. The shape of the outer ring ensures an angle of
90° upon impact. To minimize friction, the whole device can be operated at reduced
pressure. From the rotational speed of the disc, the impact velocity is then calculated.

A scheme of a second low-pressure impact device is depicted in Fig. 4. The
attached vacuum pump reaches pressures down to 20 mbar. For speed regulation,
the pressure inside the impact chamber is varied. Impact distance and angle can be
changed. Particle velocity was measured by particle image velocimetry (PIV). The
PIV system (ILA GmbH, Jülich, Germany) consisted of two pulsed Nd–YAG lasers,
a fast high resolution recording CCD camera (PCO2000, 2048 × 2048 pixels) and
a synchronizer. The time step between two consecutive images was 4 μs. From the
know time step and the travelled particle distance, the velocity prior to the impact is
calculated.

From the PSDs prior and after impacting the breakage probability PB can be
calculated. On basis of the well-known Vogel and Peukert model [39], the break-
age probabilities PB and changes in mass for individual size classes (index i) were
determined. A simplified calculation according to Eq. 4 was used for the evaluation.
Similar to sieve analysis, a nominal cut size xcut is used. The evaluation is based on
the assumption that the breakage probability for a given impact velocity is the same
for all particles belonging to the identical size class. After impacting the material,
the change in mass of the fraction above the cut size is then related to the initial mass
before any impact took place (k = 0).

PB = �mi

mi,0
= Q3(xcut) − Q3,k=0(xcut)

1 − Q3(xcut)
(4)

Impact experiments in a third custom-build impact devicewere performed to iden-
tify the yield strength and the tangent modulus for the material’s model needed in
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Fig. 4 Low-pressure particle impact device

the finite element calculations. Therefore, aluminium spheres with an initial diame-
ter of 6 mm (Umarex, Germany) were accelerated towards a rectangular steel plate
(150mm× 150mm× 20mm, length×width× height) using pressurized air. Before
impact, the velocity of the particles was measured by two light barriers installed in
close distance to the impact plate. The size of the formed spherical contact area
(minimum Feret diameter) on the surface of the particles was related to the particle
size ratio xc/x. By using a scale paper placed in the plain of the contact, the mini-
mum Feret diameter of the contact area was determined from photographic images.
Therefore, the waist diameter equals the initial particle diameter. No changes in the
waist diameter were detected within the evaluated impact velocity range.
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2.4.4 Finite Element Modelling (FEM)

Simulations of the particle-particle as well as the particle-wall impacts were per-
formed using the software package Ansys V.17.2 (Ansys Inc., USA). A 3D model
was used for all simulations. To access the mechanical properties of the used alu-
minium spheres for simulating the particle-particle impacts in the jet mill, a first set
of simulations for the impact of an aluminium sphere (6 mm) on a steel plate (90°
angle) were performed. Yield strength and tangent modulus of the aluminium sphere
were fitted until a sufficient match of the simulated and experimentally observed
geometries was found. Young’s moduli and Poisson ratios are listed in Table 1.

Dimensions of the sphere and the impact plate were chosen according to the
experimental setup. The number of nodes and eight-node quadratic quadrilateral
elements used in the simulation is given in Table 2. The coefficient of static friction
was determined to be 0.44 by using the impact plate and the contact surface of an
impacted 6 mm sphere (impact velocity of 60 m s−1) in an inclined plane experiment
(average of 20 repetitions).

In the second step, the particle-particle impact between a glass and an aluminium
sphere along the line connecting their gravity centres was simulated. Dimensions
were set according to the used feed materials. The inclined plane experiment of a
glass bead layer on aluminium gave a static friction coefficient of 0.28.

Table 1 Mechanical
properties used for the
simulation

E/GPa ν/–

Aluminium sphere [40] 68 0.34

Steel plate 200 0.30

Glass sphere 63 0.20 [41]

Table 2 Number of nodes
and eight-node quadratic
quadrilateral elements of the
simulated geometries

Nodes Elements

Impact sphere-plate

Aluminium sphere 720,000 530,000

Impact plate 145,000 105,000

Impact sphere-sphere

Glass sphere 143,000 103,000

Aluminium sphere 700,000 517,000
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3 Results and Discussion

3.1 Dynamics of Quasi-Batch Comminution

3.1.1 Size Evolution and Morphology

The generation of a fine product of a few μm in size requires a sufficiently high
classifier speed. The classifier speed was set to 12,500 rpm, which corresponds to
a circumferential classifier velocity vcl of 32.7 m s−1 and a nominal cut size xT =
4.3 μm at the vanes of the classifier wheel [30].

In Fig. 5 changes in the particle size and sphericity during quasi-batch grinding
are depicted. The particle sizes x1,2 and x50,3 decrease with time (Fig. 5a); within the
first 80 s an almost linear trend is observed. However, after the first 80 s, the Sauter
diameter x1,2 decreases significantly faster than x50. This observation is attributed to
a slow initial breakage of the feed particles, while the breakage of the fragments is
accelerated. The fragments show a higher specific surface area and, in consequence,
cause the observed change of x1,2. A similar trend is observed for the volume-based
mean sphericityψ: Up to a processing time of 80 s, the sphericity decreases strongly.
After this period, the overall morphology and with it, the sphericity of the broken
fraction stays almost constant. The SEM images in Fig. 5b confirm that for short

Fig. 5 a Change of particle sizes x1,2, x50,3 and sphericity during batch grinding. b SEM images
for a feed particle size of x1,2 = 93 μm and a holdup of 400 g after 60 and 600 s. Adapted from
Köninger et al. [29], with kind permission of Elsevier
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processing times (1 min, top image), the number of unbroken feed particles is still
high. After 10 min of processing (lower image) mainly fragments dominate.

The few remaining, almost intact particles exhibit dents on the surface. As such,
the dent formation is seen as an alternate process to chipping, which causes rather
fine fragments. These observations indicate that the feed material is not likely to be
broken by one high energy impact but rather by a higher number of impacts producing
small fragments. The impacts leading to these small fragments are associated with
a high number of impact events at rather low impact velocities. Moderate particle
velocities in high-speed gas jets that were injected into fluidized bedswere also found
by Köninger et al. [34] by particle image velocimetry.

Schönert [42] and later Salman et al. [43] quantitatively characterized the mor-
phological changes of glass spheres after impaction on a target: Different fracture and
deformation modes have been assigned to the appearing morphologies whereby each
category corresponds to a specific range of the applied mass-specific kinetic energy
Wm,kin. To get a first impression of the grinding conditions in the milling chamber,
the method introduced by Salman et al. [43] was applied to the samples in the first
60 s of the quasi-batch grinding experiment. For this purpose the morphology of the
particles and fragments is divided into four different types: unstressed immaculate
particles (no fracture, smooth surface), particles with low energy impact marks (chip-
ping, dents), fragments showing Hertzian cone cracking, and high impact velocity
fragments (appearing as hemispheres, high velocity form). In Fig. 6a examples of
the different stressing modes are depicted. In case a particle or fragment could be

Fig. 6 a Four different fracture (respectively impact velocity) categories. b Number frequency of
the different failure modes after 20, 40 and 60 s of processing. Starting conditions: x1,2 = 93 μm
and a holdup of 400 g. Adapted from Köninger et al. [29], with kind permission of Elsevier
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assigned to different classes, the particle was assigned to the class with higher asso-
ciated impact energy. A minimum of 200 particles was evaluated per sample. The
number frequency of the four categories was determined according to Eq. 5:

number frequency = number of particles with specific morphology type

number of all evaluated particles
(5)

Figure 6b shows the fracture modes for the quasi-batch grinding experiment after
processing for 20, 40, and 60 s:Within the first 40 s over 85%of the particles remained
unstressed or only traces of a low energy impact (chipping) are visible. Only 5–7%
of the spheres could be assigned to the highest impact class. After 60 s the number
of particles without visible damage drops significantly, whereas the proportion of
particles with several low energy marks on the surface, and particles which have
experienced a high-energy stress event (Hertzian cracks and high velocity form),
increases. All these observations are in good agreement with the observed trend in
Fig. 5. These results already suggest that lower grinding energies are dominant (e.g.,
in the jet perimeter) and, therefore rather surprisingly, the impact frequency is an
essential driving force in fine grinding, if not the most important one. After 60 s a
reasonable evaluation of the morphology is impossible due to the high amount of
created fines (represented by x1,2 in Fig. 5).

However, this method gives no explicit values for the number of impacts and the
impact velocity. To target these valuesmore precisely, a technique initially introduced
by Peukert and co-workers to characterize the stressing conditions in wet operated
stirred media mills [44–46] was adapted: The morphological changes of spherical,
well-characterized ductile metal particles are related to the relative particle impact
velocities prior to impact. Additionally, the exact number of dents on the particle sur-
face gives information about the stressing frequency. This method will be presented
in detail in Sect. 3.3.

3.1.2 Modelling Grinding Kinetics

An excellent approach tomodelling grinding kinetics—as proposed byBerthiaux and
Dodds [19]—is Kapur’s model for batch grinding [47], which is a simple measure
for the overall comminution process. Equation 6 gives the particle size-dependent
Kapur function K(1)(x), which describes the change of mass within a specific particle
size range:

ln

(
1 − Q3(x, t)

1 − Q3(x, t = 0)

)

= K (1)(x) · t (6)

Equation 6 can be used to directly estimate size-dependent breakage rates from
the measured PSDs for short comminution times (approximately 80 s): Only small
amounts of solid are discharged from the milling chamber during this time interval,
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while the process behaves like a batch experiment. These assumptions are only valid
for a time-independent breakage rate K(1)(x) and when no nonlinear effects occur
[48]. The discharged mass mp,t can be taken into account by adapting the PSD
(1 − Q3(x, t)):

1 − Q3(x, t) = mm,t

mm,t=0
(1 − Q3(x, t))m + mp,t

mm,t=0
(1 − Q3(x, t))p (7)

In Eq. 7 mm,t denotes to the mass inside the milling chamber and mp,t to the total
discharged mass at the process time t. Additionally, the mass load at t = 0, which
is indicated by the same index, is taken as a reference. By using Eq. 7, the Kapur
function K(1)(x) from Eq. 6 can be calculated. As already stated, within the first 80 s a
linear decrease of the particle size (see Fig. 5a) is observed. The Kapur function was
calculated accordingly. The Kapur functions for different holdups of 100, 300, 400,
and 700 g (same feed material, x1,2 = 93 μm) and different initial particle sizes (x1,2
= 61, 93, and 127 μm, holdup of 400 g) are shown in Fig. 7. The grinding constant
K(1)(x) is plotted against the particle size class: The faster the comminution process
within a particle size class, the more negative the values become. For holdups of
100 and 700 g no local extremum is observed, i.e. grinding kinetics increase with
the particle size. For medium holdups (300 and 400 g) the fastest grinding kinetics
are found in the range of a Sauter diameter of 60–90 μm. Targeting the breakage of
particles in the size range between 50 and 90μm, the corresponding optimum holdup
is found between 300 and 500 g: Here, the lowest value of K(1)(x) is observed.

For a load of 100 g, the probability of particle impacts is considered rather low
due to the low solid concentration. These low impact probabilities lead to longer
path lengths for acceleration before the particles impact with each other. The low
holdup corresponds to high kinetic energies per unit mass. A holdup of 700 g is the

Fig. 7 a Kapur function K(1)(x) after 80 s for different holdups with feed particle size x1,2 = 93μm
and for different feed particle sizes with an initial holdup of 400 g (b). Adapted from Köninger et al.
[29], with kind permission of Elsevier
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other extreme case: the bed height is above the nozzles and back mixing of small
particles might be decreased. Due to the high mass concentration, impacts are more
likely to happen after shorter acceleration times, whereas the impact probability is
comparatively high. For an intermediate holdup of 300 g, the nozzles are covered
and the best trade-off between acceleration path lengths and stressing probability is
found.

Figure 7b shows the influence of the feed particle size on the Kapur function for
an initial holdup of 400 g: For all tested feed materials, a maximum in the grinding
kinetics is observed for sizes close to the Sauter mean diameter of the individual frac-
tion. The determined maximum comminution efficiency increases with the particle
size. For smaller particles, the entrainment into the jet and the pneumatic transport
from the grinding zone is promoted, whereas large particles experience less acceler-
ation inside the jets. Therefore, a higher number of larger particles around the jets is
expected which result in an increased impact probability. As will be shown later in
Sect. 3.6, the breakage probability is increased for larger particles.

3.2 Fed-Batch Comminution

A changing holdup has a significant influence on the grinding performance of the
mill for larger process times. Therefore, the holdup is now kept constant to eliminate
this influencing variable. Thus, fed-batch experiments were performed to simulate a
constant holdup: During sampling, feedmaterial was added to replace the discharged
product. In Fig. 8a x50,3 in themilling chamber is shown for different holdups. Similar
to the results from the quasi-batch experiments, during the whole process (40 min)
no constant particle size is reached.When looking at x50,3 for the discharged product,
no difference between the holdups was observed. In general, the trend for the dis-
charged fines was found to be similar for the quasi-batch experiment with different
holdups shown in Fig. 5a. An increased holdup leads to a faster size reduction of the
largest particles in the mill: For more particles being stressed in the active grinding
zone, a larger amount of smaller sized fragments is produced. As stated by Fukanaka,
comminution is faster at lower holdups due to an increased grinding energy per unit
mass [36].When increasing the pressure and thus the jet speed, an excess of available
energy may exist: By increasing the holdup again, the number of impacts inside the
jets increases and a faster comminution results. For an increased amount of fines
inside the milling chamber, the overall flowability of the solid is decreasing due to
agglomeration and adhesion. In consequence, the fluidization behaviour and with
it the two-phase flow inside the jets changes. However, this affects the stressing
conditions of the particles. Figure 8c gives the discharged product mass flow. The
observations are in agreement with Fukanaka: Initially, the mass flow rate is rapidly
increasing until reaching a maximum value followed by a steady-state phase. For
higher holdups, the time until a steady product mass flow is reached increases. The
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Fig. 8 a Particle size x50,3 in the milling chamber, b x50,3 of the discharged product, c product mass
flow rate, d fines residue inside the milling chamber. Data for fed-batch experiments with varying
initial holdups. Adapted from Köninger et al. [29], with kind permission of Elsevier

residence time was calculated by dividing the product mass flow rate by the initial
holdup. From the product mass leaving the mill during 40 min of processing, resi-
dence times between ~75 min (100 g) and ~110 min (700 g) can be calculated for
holdups of 100 g and 700 g, respectively. Since the number of impacts strongly cor-
relates with the holdup, the number of impacts increases with increasing residence
time.

Within the first 10 min, coarser product particles leave the mill until the steady-
state is reached (Fig. 8b). This time was found for all different holdups. A similar
observation wasmade for the correspondingmass flow rates. Independent of the con-
tinuously changing fluid mechanical behaviour, which is caused by the decreasing
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mean particle size, a stationary product flow rate is reached. Typically, the product
fineness and output is sensitive to decreasing particle sizes. However, size-dependent
particle pre-separation in the transport zone could minimize that effect on the clas-
sifier [49]. Since the various holdups result in different product mass flow rates, a
crucial role must be attributed to the load at the classifier and, thus, to the whole
process.

Since there is no perfect separation in technical applications, always a certain
amount of product-sized particles remains in the coarse fraction. According to Altun
and Benzer [50], the effect of fine particles by-passing the classifier and re-entering
the circulation system is influenced by the solid concentration. In comparison to
stand-alone classifiers, where the rejected material is entering the coarse fraction, the
fines are recirculated until they leave the classifier mill. Thus, the product particles
re-enter the transport and classification section, before approaching the classifier
again. The classifier is therefore exposed to a continuous stream consisting of fresh,
crushed and rejected material. Hence, product-sized particles are accumulated inside
the milling chamber. The relative amount of product-sized particles which remain
inside the milling chamber can be expressed by the product residue ξ (Eq. 8).

ξ = 1 − mp

mm · Q3,m
(
x = x90,p

) + mp
(8)

The x90,3-value of the discharged product is used as threshold diameter for the
product particles inside the milling chamber. This approach allows comparing the
product discharge process for different holdups—even if the particle size distributions
inside the mill differ and the separation curves are unknown. For no accumulation of
product-size particles happening inside the milling chamber, ξ should be zero, i.e.,
all product particles are discharged immediately. Figure 8d gives the product residue
ξ as a function of the process time for different holdups. Within the first minutes,
most of the product remains inside the mill, despite relatively coarse material being
discharged (Fig. 8b). Once the products’ target-fineness is reached at approximately
10 min, a minimum in ξ is observed. Despite the now reached stationary product
discharge, further grinding again increases the accumulation of the product particles
inside the mill.

Regarding the minimum ξ, a higher holdup is beneficial. However, with the ongo-
ing grinding process accompanied by the faster production of fines, the product
residue ξ becomes worse for higher holdups. Please note that the product residue is
not in a steady state after 40 min of processing since the particle size and with it, the
amount of fines inside the milling chamber keeps changing.



324 A. Strobel et al.

3.3 Characterization of Stressing Conditions

3.3.1 Method Development

In general, grindingmust be understoodby themill function and thematerial function.
Themill function describes the type of stressing, the transferred stress energy, and the
stress number. Thematerial function accounts for the particles’ reaction to the applied
stress in form of breakage probability and breakage function, i.e. the size distribution
of the fragments. For modelling of comminution processes and its grinding kinetics,
knowledge about the stressing conditions applied to the particles is essential. To target
the impact velocity, i.e. the applied stress energy, and the stressing frequency in the
jet mill, a method developed to characterize the stressing conditions in wet operated
stirred media mills [45, 46] was adapted: The morphological changes of spherical,
well-characterized ductile metal probe particles are related to the relative particle
impact velocities prior to impact [33]. Briefly, single particles can be compressed
by a flat punch micromanipulator installed in a SEM. Stress-strain curves of several
100 particles can be measured and material properties such as Young’s modulus,
hardness, yields stress, and absorbed energy can be extracted [51]. The manipulation
device in the SEM, also allows to access pictures of the stressed and partly broken
particles. Surprisingly, images of compressed silica particles below their brittle-
ductile transition (<1 μm) in the SEM and those stressed in a stirred media mill
looked very similar, indicating that compression in the SEM mimics compression
between two grinding beads. On this basis, themethodwas initially developed for the
case of two-sided stressing in stirred media mills. As probe particles, ductile metal
particles are used which do not break but plastically deform. The deformation is a
measure of the absorbed energy and thus can be used to extract the kinetic energy of
the milling beads. This approach provides the stress energy distribution acting in the
mill. Fundamental background information and details of the methodical procedure
are reported in two publications of Peukert et al. [45, 46].

In comparison to the method for stirred media mills, a mixture of soda-lime glass
beads and aluminium beads was used with a radio of 19:1 m/m. As can be seen in
Fig. 3a the two PSDs match perfectly. Since the two materials have a similar density,
separation during the comminution process is prevented. As shown earlier, almost no
fracture of the glass beads occurs during the first 20 s of the comminution process.
The absence of small fragments is essential for themethod since theymight penetrate
into the surface of the softer aluminium particles. Thus, the evaluation of the formed
dents would not be possible.

To determine the material parameters for the FEM material’s model for the alu-
minium spheres, single particle impact experiments with 6 mm aluminium spheres
against a steel plate were performed. In total, 108 particles were impacted in the
velocity range between 10 and 60 m s−1. The obtained correlation (orange dotted
line in Fig. 9a) between the velocity v prior to the impact and the resulting contact
ratio xc/x was fitted in a FEM model: Results are depicted in Fig. 9a by the blue
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Fig. 9 a Fitted experimental data for 6 mm aluminium spheres impacted on a steel plate, impact
velocities against normalized contact size xc/x. b Adjusted FEM for different impact cases, relative
impact velocities against normalized contact size xc/x. Case A: “Only one sphere is moving”; case
B: “Unidirectional moving of both spheres”; case C: “Head-on collision of both spheres”. c SEM
image of stressed particle (400 g hold-up, 3 bar, vcl = 32.7 m s−1). Adapted from Strobel et al.
[33], with kind permission of Elsevier

squares (semi-filled, rotated). The fitting procedure resulted in a yield strength and
tangent modulus of 95 MPa and 50 MPa, respectively. To ensure similar deforma-
tion behaviour of both, the 6 mm and 53.8 μm aluminium spheres, experiments in
the impact device of Schönert have been conducted. Almost identical deformation
behaviour could be confirmed. The material data of the impacted 6 mm aluminium
spheres can thus be used in the next step to simulate particle-particle impact behaviour
in the mill.

Figure 9b shows the results from FEM modelling of the particle-particle impact
scenario: Since both particles are moving prior to the impact, the relative particle
impact velocity �v is considered. The data for the different impact scenarios “only
one sphere is moving” (green triangle, hollow, case A), “unidirectional moving of
both spheres” (black square, hollow, crossed-out, case B) and “head-on collision of
both spheres” (red circle, full, case C) does not deviate. An exemplary SEM image
of an aluminium particle stressed in the fluidized bed opposed jet mill (Fig. 9c)
shows the formation of spherical dents on the surface. The glass beads are only
elastically deformed; no visible breakage occurred throughout the experiment. FEM
simulations indicate that the normalized contact area diameter xc/x scales with the
relative velocity prior to the impact (normal to the particles’ surfaces). To account
for foreshortening (distortion due to tilted surfaces) Feret diameters of the contact
areas were used to determine the contact area diameter xc.

The stress frequency was addressed by counting the number of dents on the
probe particles. The proportion of particles with i contacts Pi = Ni/N (Ni: number of
particleswith i contacts, N: total number of evaluated particles) is used for calculating
the stress numbers SN% (Eq. 9) and SNstress (Eq. 10).

SN% = 1 − P0 (9)



326 A. Strobel et al.

SNstress =
∑n

i=1 Pi · i
1 − P0

(10)

SN% provides the overall percentage of stressed particles, while SNstress gives the
average contact number per stressed particle. For each sample, the contact areas on
the visible hemispheres of 100 aluminium particles were evaluated.

3.3.2 Particle Impact Velocity and Contact Numbers

Temporal Evolution

Experiments were performed in the described lab-scaled fluidized bed jet mill for
process times of up to 40 min. Figure 10a shows the obtained temporal evolution of
the stress number distributions. The overall profile of the curve is maintained while
it shifts constantly throughout the process. No fracture of the glass particles was
observed during the whole process.

SN% and SNstress are given in Fig. 10c. After 20 min SN% approaches 1, i.e. all
probe particles have been stressed at least once. Throughout the process, SNstress

increases almost linearly. After 40 min an average of eleven contacts per particle was
found. The average contact number increases linearly with time, multiple stressing of
an existing contact on the probe particles’ surface can be excluded. The characteristic
shapes of dents on the surface is depicted in Fig. 10d. Further, the distributions of
the impact velocity normal to the surface (Fig. 10b) are of similar shape for all
investigated processing times. A large number (~90%) of all impacts happens at
relative velocities between 6.8 and 9.1 m s−1, respectively. For some impact events,
impact velocities of up to 25 m s−1 could be found. Remarkably, particle stressing
in a single jet occurs at impact velocities significantly lower than the pre-set jet
velocity. These surprising and important results imply that the current understanding
of grinding in fluidized bed opposed jet mills must be revised. High impact energy
events are rare, the stress number seems to be much more important than high stress
energy. Consequently, attrition and weakening effects may play a more important
role than previously anticipated.

The stressing in stirred media mills, in contrast to the here shown results for the
comminution in jet mills, shows fewer, but much larger flat contact pairs (the forma-
tion of pairs is attributed to the bilateral stressing by compression). After a process
time of 10 min in a stirred media mill, we found an average of 2.5 flat contact pairs
on the surface [45, 46]. However, the impact velocity of the approaching grinding
beads, and, therefore, the introduced energy, was closer to the values expected by
common models.
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Fig. 10 Number-weighted contact number (a) and relative impact velocity distributions (b) for
different process times in a fluidized bed jet mill (one nozzle). c Stress numbers SN% and SNstress
for the respective distributions. d SEM image of one probe particle after 40 min. 200 m s−1 gas
velocity at the nozzle threat. Adapted from Strobel et al. [33], with kind permission of Elsevier

Nozzle Arrangement

The next set of experiments targeted the change in the stressing behavior for two
opposing nozzles. Additionally to the increase in number, the distance of the nozzle
was systematically varied. Figure 11 again shows the cumulative number-weighted
sum distributions for the contacts (a) and the relative velocity (b) for normalized
nozzle distances (z · d−1

0 ) of 10 and 21, respectively. As a reference, the corresponding
distributions for the single nozzle setup from the previous section are given.

The opposing jet setup shows higher contact numbers (a) and higher relative
impact velocities (b) after a processing time of 10 min. The configuration with the
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Fig. 11 Cumulative number-weighted sum distributions of the stressing events (a) and the relative
particle impact velocity (b) for different nozzle setups in a fluidized bed reactor with secondary gas
injection. Gas velocity of 200 m s−1 at the nozzle threat. Adapted from Strobel et al. [33], with kind
permission of Elsevier

larger distance between the nozzles (z · d−1
0 = 21) exhibits the highest number of

contacts (SN% = 0.97, SNstress = 7.6) as compared to the closer configuration (z · d−1
0= 10, SN% = 0.94, SNstress = 6.6) and the single jet configuration. Surprisingly, the

impact velocities are higher for the smaller nozzle distance. In comparison to the
single nozzle setup, the mean velocity of the two nozzle setup is increased by a
factor of 1.73 (z · d−1

0 = 21) and 2.52 (z · d−1
0 = 10), respectively. We attribute the

stress numbers to the differences in the total available jet surface area, i.e. the surface
area between the developed jets and the surrounding solid bed. Of course, the surface
area is larger for the configuration with the larger nozzle-nozzle distance. However,
decreasing the nozzle distance results in a reduced jet boundary area. The single
nozzle setup yields the smallest area for particle entrainment, resulting in the lowest
overall stress number. We attribute the differences of the relative impact velocities to
two factors: Firstly, to the movement of particles in opposite directions, which makes
impacts with higher velocities more likely compared to the single nozzle setup, and
secondly, to the reduction in the gas velocity due to widening of the jets. The latter
effect is more prominent for larger nozzle distances.

Influence of the Holdup

In the following, the above-described method was used to determine the relative
particle impact velocity for different holdups [33]: the mills’ loading was varied
between 100 and 700 g. Grinding pressure was set to 1 bar. Figure 12 shows the
results after a processing time of 20 s. This limited process time was chosen due to
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Fig. 12 a Relative impact velocity distribution for different holdups in the AFG 100. b Number-
weighted sum distributions of the contacts on the aluminium probe particles. c SN% and SNstress
for the respective distributions. Adapted from Strobel et al. [33], with kind permission of Elsevier

the high number of formed contacts for higher process times. No fracture of the glass
beads occurred during this time [52].

Obviously, the relative impact velocity does not depend on the holdup (Fig. 12a):
A median impact velocity of approximately 4.8 m s−1 was found. Comparing the
obtained distributions to the maximum speed in the expanding gas jets, the relative
particle impact velocity is significantly lower.However, as Fig. 12b shows, the contact
number distributions clearly depend on the hold-up: Looking at the holdups of 100
and 700 g, almost all particles are stressed and show contacts on their surfaces.
Further, the number of contacts is higher for the lower holdup. For the holdups of
200 and 400 g, only ~70%of the probe particles showdents. Nonetheless, the stressed
probes (200 and 400 g) show the highest number of contacts (see Fig. 12b, c). To gain
further insight into the underlying mechanism, the solid distribution inside the mill
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Fig. 13 Solid distribution as
function of distance to the
classifier for different
hold-ups in the AFG 100
accessed by capacitive
probes (positive values for
the direction of the focal
point). Adapted from Strobel
et al. [33], with kind
permission of Elsevier

was measured by capacitance probes as a function of the distances to the classifier
wheel (Fig. 13). The axis of the classifier wheel is used as zero point (positive values
for the direction of the focal point). Due to the highly abrasive conditions within the
jets, the focal point of the jets is not accessible.

For the lowest holdup, the solid is equally distributed over the whole transport
zone. In contrast, for the holdup of 700 g, a linear increase of solids loading towards
the grinding zone is visible. For the intermediate holdup of 400 g, the solid concen-
tration measurement indicates a separation inside of the mill: Towards the focal point
(high distance) a strongly increased solid concentration was measured (exceeding
35 vol%), while a low solids content (2–5 vol%) was measured for a distance of
150 mm and lower. However, the lower values are comparable to the measured data
for a hold-up of 100 g. Thus, the hold-up influences the distribution of the solid
content in the grinding chamber during the comminution process: Two compart-
ments with different solid content and a yet unknown mass exchange seem to exist.
Therefore, the recirculation inside the mill is crucial for the process. The indications
from Fig. 13 are in agreement with previous observations from Sect. 3.1.2: A holdup
between 300 and 500 g was found to be most efficient for the comminution of glass
beads (yielded the lowest value of K(1)(x) [29]).

Pressure Variation

In the next step, we consider the stress frequency distribution and the stress numbers
for a fixed hold-up of 400 g and a grinding pressure of 1, 2 and 3 bar (the rotating
speed of the classifier wheel remains constant vcl = 32.7 m/s). The results are given
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Fig. 14 a Relative impact velocity normal to the particle surface. b Number-weighted sum
distributions of the impact events. c Stress numbers SN% and SNstress (see Eq. 9 and 10)

in Fig. 14. Obviously, in all cases, the stress numbers are consistently high (Fig. 14c),
SNstress lies between 15 and 25).When increasing the pressure to 2 bar, the number of
non-stressed probe particles is reduced (Fig. 14b). Increasing the pressure further to
3 bar, a higher number of unstressed particles is observed. Simultaneously, particles
with a higher number of contacts appear in the sample. Köninger et al. recently
showed for fluidized beds with secondary gas injection, that the solid concentration
within the jets decreases upon increasing the gas pressure [34]. Figure 14a shows
the influence of the grinding pressure on the relative impact velocity distribution
calculated from the measured contact diameters. Between a pressure of 1 and 2 bar
only slight differences are visible. At the investigatedmaximum pressure of 3 bar, the
distribution shifts to higher impact velocities. Nonetheless, even at 3 bar maximum
impact velocities of 50 m s−1 were found only in few cases. However, all median
impact velocities (Q0 = 0.5) were smaller than 10 m s−1, a surprising result.
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In conclusion, higher grinding pressures lead to higher impact numbers. Accord-
ingly, we attribute the widely observed higher grinding efficiency at higher pressures
to a significant increase in the impact numbers rather than to the impact velocity.
Considering the approximated residence times from Sect. 3.2 (40 min of processing,
feed-batch mode, x1,2 = 93 μm, between 75 min at 100 g holdup, and 110 min for
the 700 g holdup), the influence of the impact number becomes apparent. The num-
ber of impacts would add up to several thousand per particle. Considering the high
impact numbers and the unexpectedly low relative impact velocities, a fatigue-like
behaviour of the stressed particles must be considered as the main driving force of
this dry comminution process.

3.4 Transport Zone

For the discharge of the fine solids produced in the grinding zone at the bottom of
the grinding chamber, transport to the classifier at the top of the machine is required.
Therefore, to participate in the transport, the diameter of the particles must be below
the single grain settling diameter in the up-flow: For the used limestone particles
the settling diameter was calculated to be ~120 μm [31]. Since already 90% of the
initial feed particles are smaller than the single grain settling diameter, the transport
of the solids material in the chamber towards the classifier should be promoted.
The knowledge of the solid concentration and, therefore, the mass flow towards the
classifier is of essential knowledge for the modelling of the apparatus. (Note: For
the results discussed in Sects. 3.4 and 3.5, limestone was processed at a grinding
pressure of 3 bar in quasi-batch mode. Holdup and classifier speed were changed
according to the notifications).

The solid concentration (1 – ε) in the transport zone (the section between the
grinding chamber and the classifier) for different holdups was measured during the
comminution process by capacitance probes. Results are shown in Fig. 15a. A linear
increase from0.01 to0.03with progressing time is detected for the lowest investigated
holdup of 100 g. For the other cases, a maximum in solid concentration is observed
right after the start. Besides, the maximum value scales with the initial holdup.
With proceeding time, the solid concentration decreases, passes a minimum and
rises again, while the differences between the holdups vanish. The rising values
following the start indicate an increased production and subsequent transport of fine
and intermediate particles towards the classifier. Thus, the load in the transport zone
is decreased. Passing the minimum, a significantly higher amount of intermediate
particles, which are not discharged but only recirculated in the milling chamber, has
to be present. Towards the end of the depicted experiments, the solid concentrations
approach a steady-state value. From the processing of glass beads and for the here
shown data for limestone, the same overall trend is found: Higher holdups lead to
higher solid concentrations in the transport region [29].
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Fig. 15 a Solid concentration for different holdups (classifier speed of 12,000 rpm). b Solid con-
centration for different classifier speeds (initial holdup of 400 g). Adapted from Köninger et al.
[31], with kind permission of Elsevier

All variations of the classifier speed for a constant initial holdup of 400 g (Fig. 15b)
show a similar start-up behaviour with an initial maximum. The time until a steady
state is reached increases with the classifier speed. The only exception was found for
the lowest classifier speed. Since bigger particles can pass the classifier at smaller
circumferential speeds, the range of intermediate-sized particles, that recirculate in
the milling chamber and are further stressed, decreases. Accordingly, at 6000 rpm
more particles are transported towards the classifier and are discharged.

3.5 Classification

Classification takes place at the upper part of themill. Fine product particles approach
the classifier and are rejected if their diameter is larger than the cut size xT. Using
Eq. 11, which follows from the force equilibrium for a single spherical particle from
Stokes law [53], the cut sizes xT can be estimated. A cut size xT of 4.4 μm results at
a classifier speed of 12,000 rpm.

xT =
√
18 · vr · Rcl · η

ρp · v2
cl

(11)

ρp is the particle density, η the dynamic viscosity of the fluid and Rcl the radius
at the outer classifier blade. As discussed earlier in Sect. 3.2, the discharge of fines
during the process changes: Fine product particles are accumulated after a minimum
in the product residue ξ is reached for fed-batch experiments. However, for quasi-
batch processing of limestone a similar trend was observed, i.e. the product residue
changes throughout the whole observation time (see Fig. 16, the cut size is marked
by a dotted line).
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Fig. 16 Product particle size
x90,3 and product residue ξ

inside the milling chamber
during quasi-batch grinding
with a classifier speed of
12,000 rpm, an initial holdup
of 400 g and limestone as
feed material. Adapted from
Köninger et al. [31], with
kind permission of Elsevier

Through the continuously changing size distribution and holdup, the two-phase
flow around the classifier changes, too. Further, the rejected particles recirculate
in contrast to stand-alone classifiers. Therefore, the determination of separation
efficiency curves T(x) is challenging.

Classically, separation efficiency curves relate the mass of particles with the size
x which are rejected from a separator to the total mass of particles with the size x fed
to the separator. Taking the respective mass flow rates into account, the separation
efficiency curve describes themass flow ratio of particles with the diameter x rejected
from the classifier and the particle mass flow with the same diameter x transported
to the classifier (Eq. 12). The PSD fed to the classifier is assumed to be equal to the
one inside the milling chamber (q3,m).

T (x, t) = ṁp,t · q3,p(x, t)
ṁi,t · q3,m(x, t)

(12)

The product mass flow rate ṁp,t and the PSD of the discharged product q3,p(x, t)
are directly accessible. The internal mass flow rate transported to the classifier ṁi,t

is, however, unknown. An exact calculation of the separation efficiency curve T(x)
is thus not possible.

Nonetheless, values for internal mass flow rates have been estimated. Based on the
assumption of solely positive values of separation efficiency curves for all particle
sizes, the calculated curves after 60 s of processing are plotted in Fig. 17a for values of
ṁi,t between300 and800gmin−1. Figure 17bdisplays the estimated efficiency curves
after 600 s. ṁi,t was varied between 400 and 1200 g min−1. All separation curves
reveal a prominent minimum at approximately 2 μm. This shape of the separation
curves is known as “fish-hook”. The effect is commonly attributed to the formation
of agglomerates and their subsequent rejection at the separator. Thus, fine particles
are transferred to the coarse fraction or in our case, are accumulated inside the
milling chamber. Relating to the high speed particle tracking results presented later
in this section, the observed fish-hooks are attributed to the retaining effect of particle
clusters at the periphery of the classifier wheel.
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Fig. 17 Separation efficiency curves T(x) after 60 s (a) and 600 s (b) of processing limestone
(3 bar, 400 g initial holdup, 12,000 rpm classifier speed). Different internal mass flow rates were
assumed. Adapted from Köninger et al. [31], with kind permission of Elsevier

For a processing time of 60 s a minimum internal mass flow rate of 300 g min−1

must be assumed to obtain positive values of the separation efficiency curves, while
for 600 s a minimum internal mass flow of at least 400 g min−1 needs to be achieved.
For internal mass flow rates exceeding the minimum internal mass flow rate, the
classification process turns out to be even more ineffective: Due to the ongoing
comminution and the associated decrease in particle size, the amount of re-circulating
solid increases. Particles impacting on the classifier wheel and thus being broken
have been considered as the cause of the partially negative separation efficiency
curves. However, from single particle experiments, minimum impact velocities of
about 10–20 m s−1 to initiate breakage of limestone have been reported [29]. This
relative impact velocity of particles at the classifier’s blades might only be reached
occasionally [32]. Therefore, breakage at the classifier wheel is not likely to happen
and can be neglected.

Based on the assumed internal mass flow rates in Fig. 17b, mass loadings at
the classifier between 0.265 g g−1 (300 g min−1) and 1.05 g g−1 (1200 g min−1)
result. The differences in operating conditions between classifier mills and stand-
alone classifiers are striking: For stand-alone classifiers, mass loadings in the range
of 0.1–0.2 are common for fine cut sizes below 10 μm [32, 53, 54].

As explained in the previous sections, the holdup inside the mill influences the
internal flow conditions. Obviously, the second influencing variable is the rotational
speed of the classifier. When the rotational speed increases, the centrifugal force is
rising. Therefore, the discharge of a finer product should be promoted. Further, a
broadening of the PSD and an increased residence time should emerge. As displayed
in Fig. 18a, the product mass flow increases with decreasing classifier speed during
the start-up period of the milling process. Additionally, the ratio of mt=600 s and mt=0,
giving the relative amount of solid remaining in the milling chamber after 600 s, is
given in Fig. 18a. Only for the highest rotational speeds (12,000 and 15,000 rpm),
steady-state conditions are established, whereas the holdup sinks fast for 6000 and
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Fig. 18 Product mass flow rates, together with the ratio of mt=600s and mt=0, giving the relative
amount of solid remaining in the milling chamber after 600 s (a) and product residues (b) during
quasi-batch grinding of limestone for different classifier speeds (initial holdup of 400 g). Adapted
from Köninger et al. [31], with kind permission of Elsevier

9000 rpm, respectively. However, the accumulation of fine product is more pro-
nounced for higher centrifugal forces (Fig. 18b). Next to the rotational speed in
Fig. 18b, the x90,3 values of the discharged product after reaching steady-state con-
ditions are listed: These values indicate that the product accumulation inside the
milling chamber is, besides the holdup (explained in Sect. 3.2), a function of the top
cut size set by the classifier speed.

Concluding the findings presented so far, a major role can be attributed to the
transport and classification process at the classifier and, therefore, has to be consid-
ered in greater detail. For that reason, the solid concentration close to the classifier
wheel and in its periphery are analysed in the following.

The high-speed images, which have been taken for the visualization of the particle
movement, revealed high solid concentrations at the classifier wheel. In the periphery
of the classifier wheel, clusters of particles are formed (see Figs. 19 and 20). Particle
cluster formation not only takes place at the classifier: As a result of the high solid
load inside the mill, clusters can form in the transport zone as well. Even for the
lowest investigated holdup of 100 g, the formation of clusters was observed. After a
specific time, when solid material is accumulated in the clusters, strands of clusters
move tangentially from the outer edge of the classifier wheel to the periphery (see
Fig. 19a–c). InFig. 19d, the cluster frequency, i.e. the number of clustersmoving away
from the classifying wheel per unit time, is depicted as a function of the classifiers’
rotational speed. The observed dependence is in agreement with observations of
Spötter et al. [32].

We attribute the previously shown fish-hook effect to the formation of these clus-
ters: Product-sized particles might not be able to penetrate the observed clusters,
will be trapped within the clusters, and be thrown back into the periphery. Thus, the
discharge of fines from the mill decreases.

With increasing rotational speed and solids holdup, additional clusters are formed
in the periphery of the classifier at an outer distance: Two clusters, one at the blade
and one in the periphery, are visible in Fig. 20a. The second type of clusters—with
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Fig. 19 a–c Three consecutive images extracted from high-speed videos [time difference of 3 ms
from (a–c)]. Movement of a particle cluster away from the outer edge of a classifier blade (100 g
initial holdup, 12,000 rpm classifier speed). d Cluster formation frequency as a function of the
classifier speed (400 g initial holdup). Adapted from Köninger et al. [31], with kind permission of
Elsevier

its accumulated particles—rotates in a certain distance to the classifier wheel for
some time. Figure 20b–c show three consecutive images of this cluster type. The
formed clusters will thus interfere with the solid transport towards the classifier and
the following classification process, i.e. they can be seen as scavengers for the fine
particles.

Besides the detained fine particles, the clusters mostly consist of intermediate
particles, which are too big to pass the classifier, yet are too small to settle and re-
enter the grinding zone. The overall amount of clusters increases with increasing
holdups [32].
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Fig. 20 a Particle clusters in the periphery of the classifier wheel (100 g holdup, 12,000 rpm
rotational speed). b–d Three consecutive images at the outer edge of the classifier [time difference
of 3 ms from (b–d)], 400 g of holdup, 12,000 rpm rotational speed). Adapted from Köninger et al.
[31], with kind permission of Elsevier

3.6 Modelling the Breakage Behaviour

The response of the material to the experienced stress conditions in the mill is the
essential part of any grinding model. The stressing conditions are defined in terms of
the experienced energy upon impact—in case of jetmills by the impact velocity—and
the impact frequency. However, the breakage events in jet mills are not directly acces-
sible due to the highly complex fluid mechanics. In particular, the impact velocities,
the impact frequency, and the residence times in the jets are widely distributed. The
impact conditions will therefore differ widely: Straight and oblique particle-particle
impacts can occur and the impacting particles can be of different size and shape. To
model the breakage behaviour of materials, the described Schönert device was used
to determine the breakage probability PB according to the procedure of Vogel and
Peukert [39].

Figure 21a shows the measured breakage probability PB of the previously used
glass bead fraction (x1,2 = 93 μm) given as a function of the number of successive
stressing events k, the particle size x, the particles’ resistance against breakage fmat,
Wm,kin and Wm,min. Wm,kin is the mass-specific kinetic energy of the particles prior
to the impact, while Wm,min is the minimum mass-specific kinetic energy, which
resembles a threshold that needs to be exceeded to induce breakage. Therefore, to
induce breakage Wm,kin needs to exceed Wm,min. Equation 13 describes the exact
relation:

PB = 1 − e{−fmat ·x·k·(Wm,kin−Wm,min)} (13)
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Fig. 21 a Breakage probabilities and fitted master curve for the used glass beads (x1,2 = 93 μm).
Material parameters fmat = 0.944 kg J m−1 and x · Wm,min = 0.1225 J m kg−1 [37]. b SEM images
of broken particles for different stressing conditions. Adapted from Köninger et al. [29], with kind
permission of Elsevier

Impact velocities were in the range of 40–110 m s−1 and the number of successive
events per particle k was varied between 1 and 8. The shown data points are in good
agreement with the master curve. Values for x · Wm,min (0.1225 J m kg−1) and fmat

(0.944 kg J m−1) are taken from literature [39]. For Wm,kin and k being too low, no
fragmentation of the particles was observed. Only the formation of rather small dents
or cracks on the particles’ surfaceswas observed. The appearing surface structures are
quite similar to the ones from comminution experiments. An insignificant amount of
fines is produced. Full fragmentation and a high amount of fines result with increased
impact velocity and at a higher number of impacts k. Figure 21b shows the SEM
images of two experiments with similar dimensionless stressing parameters fmat ·
x · k · (Wm,kin − Wm,min) (~0.35) and their degree of fragmentation. The resulting
breakage probabilities are quite similar. The particles were stressed one to five times
with an energy Wm,kin of 2.1 kJ kg−1 and 5.0 kJ kg−1, respectively. The breakage
function inherently depends on the material properties of the glass beads and on the
absorbed energy. Two strategies to increase the breakage probability PB arise from
Eq. 10: Either by increasing the impact velocity and, therefore, the solids kinetic
energy Wm,kin or by increasing the number of impacts k. The solid concentration
influences both cases in the mill.

Low solid concentrations result in longer acceleration distances for the particles
in the gas jets before impacting with each other. For higher solid concentrations, the
possible acceleration distances decrease dramatically—the particle velocity upon
impact is thus reduced. Throughout the process, the particle size x and sphericity ψ

change as breakage occurs. As a result, the fluid mechanics is influenced, which then
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leads to a higher acceleration a of the particles in the jets.

a ∼ FW

mparticle
∼ cw

x
(14)

Equation 14 shows the dependency of the acceleration on the mass-specific drag
force FW/mparticle, which depends on the drag coefficient cw and the inverse particle
size. From Haider and Levenspiel [55] a relation between the drag coefficient and
the sphericity is known:

cw = 69.44 · e−5.16ψ (15)

Both during the grinding process and the single particle experiments, the particle
size and sphericity decrease. Based on Eq. 15, the drag coefficient will increase
with decreasing sphericity. With a continuous increase in the drag coefficient and
reduction of the particle size during comminution, the acceleration of the individual
particles will increase significantly according to Eq. 14. Thus, the fragmentation
process is self-enhancing, at least until intermediate fineness. Since smaller and
smaller fragments are produced throughout the process—many of them close to the
single-digit micrometre cut size—the impact behaviour of these particles should not
be neglected. However, with their increased drag coefficient, the testing should be
performed in a reduced pressure environment. These two prerequisites are met by
the custom-build low-pressure impact device depicted in Fig. 22. Figure 22a shows
the measured velocities for three different fractions of the glass beads (x1,2 of 4.7,
17.3, and 60.8 μm). The chamber pressure was set to 100 mbar for all fractions.

The solids mass flow provided by the brush disperser was set to 2.75 · 10−5 kg
s−1. Together with a gas flow rate of 1.6 · 10−3 m3 s−1, which enters the acceleration
tube through the brush disperser, a solid-to-air flow ratio of 6.8 · 10−6 was achieved.

Fig. 22 a Box plot of
particle velocities for glass
bead fractions with different
Sauter diameters. b Jet inside
the impact chamber,
visualized by high load of
glass beads (x1,2 = 4.7 μm)
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For solid-to-air flow ratios below 0.1 particle-particle interactions are minimized and
single impact conditions prevail [56].

Mean velocities of 231 and 274 m s−1 were measured for particles with x1,2 of
17.3 and 4.7 μm, respectively. The distributions are desirably narrow as indicate
by the small boxes. To visualize the behaviour of the particles entering the impact
chamber, the solid load was drastically increased. Obviously, turbulences do not
interfere with particle impacts on the plate which occur with an angle between 85.8°
and 90°. Taking into account the previously determined relative low particle impact
velocities (Sect. 3.3.2), product PSDs and morphologies (Sect. 3.1.1), the device
provides a sufficient way do determine breakage probabilities for a wide range of
materials down to lower micron-size range.

3.7 Modelling Product Mass Flow

Combining all the previously made observations, a simplified model for the product
mass flow on the basis of the data for constant mass flow in the jets was introduced
by Köninger, based on several assumptions for the boundary conditions: All solids
that are added at a particular time step are comminuted. A shift of the particle sizes
in the intermediate range is neglected since almost no more changes in the Sauter
diameter are observed for process times greater than 40 min. For a constant holdup
and PSD in the mill, the product mass flow equals the breakage rate of the added
solid material. The breakage rate S is calculated using the breakage probability PB
and the mass flow in the jet area:

S =
∑

PB,i · ṁjet,i ∼ PB · ṁjet (16)

The individual particle classes i and their respective breakage probability PB,i and
mass flow in the jet ṁjet,i are neglected. The breakage rate is therefore written as PB
and the solids mass flow in a single jet as ṁjet.

For the calculation of the breakage probability (Eq. 13), an averaged value for the
impact number k and the particle impact velocity (necessary for Wm,kin) are used.
These averaged values were determined with the particle probemethod introduced in
Sect. 3.3.1 and applied in Sect. 3.3.2. For a grinding pressure of 5 bar average values
of 6.6 m s−1 (impact velocity) and 1 s−1 (impact rate) were interpolated. Thus, for a
residence time of 30 min 1800 impacts are assigned to each particle.

For these stressing conditions, a simplifying assumption for the breakage proba-
bility was made: As the average impact velocities from particle probe measurements
are far below the minimum impact velocity of approximately 40m s−1, the minimum
mass-specific energy input Wm,min is set to 0. If this would be not the case, PB would
vanish and no comminution would happen. We see the assumption Wm,min close to 0
indeed as justified based on the observations reported earlier: Image analysis of the
broken material and the detected high contact numbers prompted the role of abrasive
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effects as one of the primary causes for size reduction. Thus, despite the relatively low
impact velocities, comminution can take place. For k � 1 comminution at any given
velocity will take place, and Wm,min ~ 0 holds true. The energy from these impacts
with rather low energy adds up to an overall energy input, which, in consequence, is
sufficient to induce breakage of the particle.

The breakage probability PB of Vogel and Peukert (Eq. 13) can be expanded
through a Taylor series (Eq. 17).

ey = 1 + y + y2

2
+ . . . (17)

Hence, we assume that the breakage probability is rather low, which is valid for
the low impact velocities. A low breakage probability corresponds to low abscissas.
Thus, the series expansion is terminated after the second term.

ey = 1 + y (18)

In consequence the breakage probability can be expressed as:

PB = �mi

mi,0
= 1 − 1 − y = fmat · x · k · (

Wm,kin − Wm,min
)

(19)

With y = fmat · x · k · (
Wm,kin − Wm,min

)
.

Taking the solids mass flow in the jet and the discharged product mass flow into
account, Eq. (20) evolves:

PB = ṁp

ṁjet
= fmat · x · k · (Wm,kin − Wm,min

)
(20)

Equation 20 can be rearranged for the product mass flow for the jet, which is
proportional to the breakage rate S:

S ∼ ṁp = fmat · x · k · (
Wm,kin − Wm,min

) · ṁjet (21)

The necessary mass-specific kinetic energy input is calculated using the relative
particle impact velocity �v.

Wm,kin = 1

2
· v2 (22)

The solids mass flow in a single jet can be calculated using Eq. 23:

ṁjet = ρp · (1 − ε)jet · d2
0 · π

2
· up,jet (23)
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Fig. 23 Stationary product
mass flow determined from
experiments and
approximated according to
Eq. 25 for different solid
concentrations in the jets
(5 bar grinding pressure,
12,500 rpm classifier speed,
with kind permission of B.
Köninger)

At this point we assume, that the average particle velocity up,jet in the jet equals
the relative particle impact velocity �v. Inserting Eqs. 22 and 23 into Eq. 21 the
following equation results for the breakage rate, respectively the product mass flow.

S ∼ ṁp = fmat · x · k · π

8
· �v3 · ρp · (1 − ε)jet · d2

0 (24)

For n nozzles in the considered jet mill are used, Eq. 25 results for the overall
product mass flow.

ṁp ∼ nnozzles · fmat · x · k · �v3 · ρp · (1 − ε)jet · d2
0 (25)

To calculate the product mass flow according to Eq. 25 amean solid concentration
in the jets is needed. Values between 0.1 and 0.3 are inserted for (1 – ε)jet. As particle
diameter x50,3 is used, the model gives a trend for different holdups in the fluidized
bed opposed jet mill (Fig. 23).

Since the relative particle impact velocity is taken into consideration with a power
of 3, a closer look at the impact conditions within the mill is required for further
refinements, i.e. by considering both, the whole particle size and impact velocity
distribution. The assumptions made for the solid mass flow in the jets together with
the breakagemodel of Vogel and Peukert led to a satisfying first approximation of the
product mass flow in fluidized bed opposed jet mills. Moreover, the given equation
offers interesting possibilities for the scale-up of these mills, since the diameter d0 of
the used nozzles is taken into account. However, scaling effects concerning the fluid
mechanics within the jets need to be examined in greater detail. Köninger varied the
nozzle diameter between 1 and 4 mm providing first hints on prevailing correlations.
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4 Conclusion

In this chapter, the grinding process in a lab-scale fluidized bed opposed jet mill
was investigated. The process and its three different unit operations—namely the
comminution in the lower part, the pneumatic transport in the middle section, and
the classification step at the top of the mill—were thoroughly discussed. Besides
tracking the evolution of the particle sizes in quasi-batch grinding experiments, the
morphology of the received fines was discussed. Four different breakage modes
could be assigned to the particles from image analysis. The frequency of the cases
provides hints on the stressing conditions in the jet mill: In the first minute, most
particles exhibit small cracks, small chips and debris are identified, or the particles
are unharmed. Larger fragments from high energy impacts were rarely observed.

From grinding kinetics, a medium holdup in the range of 400 g was identified as
optimum for the investigated mill size. For larger particles, faster comminution took
place. Strong influences of the particle feed size on the final product size could not be
observed. Since the holdup influences the grinding kinetics, fed-batch experiments
were performed with a constant holdup along the whole process time. In contrast to
the quasi-batch experiments, faster comminution was observed for higher holdups
in fed-batch mode. However, the accumulation of product particles in the milling
chamber strikingly increased towards higher processing times, which led to a more
detailed investigation of the classification and transport process.

The presented separation curves showed a fish-hook effect. Product-sized parti-
cles accumulated inside the mill for all investigated conditions. For increasing solid
holdups and classifier speeds, the amount of accumulated fines increases together
with the solid concentration in the transport zone. Additionally, it takes significantly
longer for higher holdups to reach a steady state. High-speed images showed the
formation of clusters and strands around the classifier: these clusters scavenge fine
particles. The fine particles trapped in the cluster are rejected and driven periodically
to the outer periphery of the classifier. The formation of clusters at the classifier
blades and in the periphery of the classifier wheel is strongly influenced by the clas-
sifier speed and solid holdup. Further, the breakage behaviour of the used glass beads
was examined by impact testing. The obtained data were in excellent agreement with
the breakage model of Vogel and Peukert. For the impact testing of particles below
20 μm, a custom-build low-pressure single particle impact device was designed and
operated.

The experimental evaluation of the solid distribution was only addressed for the
transport area in the middle section of the mill. However, in addition to the capac-
itance measurements, the solid distribution in the jet and the surrounding bed was
targeted with X-ray tomography. For further information on this method and con-
ducted experiments within this priority program we recommend further works of the
authors that are not targeted in this contribution [34, 52].

To gain better insight into the stressing conditions, aluminium particles were used
to assess the relative particle impact velocity and stress frequency. The ratio of the
formed contact diameter and the particle diameter correlates with the relative particle
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impact velocity before the impact. Thus, distributions of the relative particle impact
velocity, i.e. of the acting stress energies and stress frequencies in the process were
obtained. These experiments clearly confirmed the impression of the breakagemodes
from SEM images of the glass spheres: A high number of impacts occurs during the
process in the mill, while at the same time, the mean relative particle impact velocity
is surprisingly low.

Finally, a product mass flow model of Köninger was presented. Based on an
adaption of the breakage model of Vogel and Peukert, and using the mean relative
particle impact velocity determined by the particle probes, this model provides a
reasonable approximation of the experimental data.
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Chapter 10
Dynamics of Separation Characteristics
of Sieving and Flow Classification
Processes

Martin Weers, Annett Wollmann, Ulrich Teipel, and Alfred P. Weber

Abstract In spite of the broad range of applications of flow and sieve classification,
the physical phenomena for higher particle loadings are not completely understood.
As a starting point, common models such as the one of Molerus may be used and
optimized to include particle-particle and particle-wall collisions. In this contribu-
tion, it is investigated to which extent single particle models may be employed to
describe the performance of a deflector wheel classifier and a circular vibratory
screening machine at higher loadings. For the sieving process, the Molerus model
was modified with a selectivity parameter, while for the deflector wheel, a differen-
tiation of particles with low and high Stokes numbers was made. For high Stokes
numbers, in a first approximation, the particularities of the airflow can be neglected,
but the impaction behavior on the wheel blades needs to be taken into account. With
the detailed knowledge of the mean airflow, a much better prediction of the sepa-
ration curve can be obtained. In particular, the dynamic aspects of flow and sieving
classification have been studied.

Nomenclature

T(x) Separation efficiency (–)
x Particle size (m)
x′ Dimensionless particle size (–)
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k Coefficient for the sharpness of cut (–)
COR Coefficient of restitution (–)
v Velocity (m s−1)
η Viscosity (Pa s)
ρ Density (kg m−3)
H Particle layer height (cm)
τ Characteristic particle relaxation time (s)
τ* Particle cloud relaxation time (s)
V̇ Carrier gas volume flow rate (m3 s−1)
R Wheel radius (m)
h Height of the openings in the deflector wheel (m)
U Circumference (m)
�2D 2D Sphericity (–)
SEM Scanning electron microscope
σ Standard deviation (depends on related variable)
E Kinetic energy (J)
JKR Johnson-Kendall-Roberts
p Pressure (Pa)
E* Average Young’s modulus (Pa)
υ Poisson ratio (–)
� Angle related to the deflector wheel blade (°)
L Impaction length (m)
f Revolution rate (s−1), fine material fraction (–)
cD Drag coefficient (–)
Re Particle Reynolds number (–)
κ Sharpness of cut (–)
F Force (N)
c Coarse material fraction (–)
Q Distribution sum function (–)
a “Dead flow” parameter (–)
α, β Measure of selectivity (–)
� Dimensionless acceleration number (–)
A Amplitude (m)
ω Angular velocity (° s−1)
g Gravitational constant (m s−2)
q Density distribution (m−1)
ṁ Massflow rate (kg s−1)
KV Throwing coefficient (–)

Indices

p Particle
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air Air
eff Effective
f Fines
G Coarse
A Feed
25 Particle size related to T(x) = 0.25
50 Mean particle size
75 Particle size related to T(x) = 0.75
3 Mass-weighted
t Cut particle size related to T(x) = 0.50
v Volume equivalent
area-equivalent Projection area equivalent
perimeter-equivalent Projection perimeter equivalent
r Rebound
i Approach
0 Initial
imp Absolute normal impaction
rad Radial
tan Tangential
rel Relative
w Wall
kin. Kinetic

1 Introduction

Dry classification processes are employed in powder technology for the separation
of outsize particles (e.g. following milling) as well as for the production of narrow
fractions. They can be divided into flow and sieving classification processes. In this
chapter, the classification processes of deflector wheel separation for fine particles
and sieving for coarser particles are treated. In spite of their broad use, the physi-
cal principles, which need to be taken into account for an optimized layout of the
processes, are still not completely understood.

In sieve classification, the collision processes take place between the sieve wires
and the particles of the collective. With the successful transport of the particles
across the meshes a fractionation in two or more specific size classes is obtained.
The passing probability depends in particular on the particle properties (e.g. size,
form, orientation), sieve geometry (mesh size and form, sieve inclination) and oper-
ational parameters (loading, frequency, amplitude), respectively [1]. For the steady
state sieve classification process models have been presented by Plitt [2], Rogers [3],
Molerus [4] and Trawinski [5] while for the instationary process additional models
were provided by Soldinger [6], Deghani [7], Nakajima andWhiten [8, 9] and Hatch
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and Mular [10]. In this context, the formation of particle layers, the so called strati-
fication, where finer particles move downwards across the openings between larger
particles, has to be considered. In this way, fine particles may pass the meshes or may
be reflected by collisions with the sieve wires. According to the model by Molerus
[4] the fractional separation efficiency T(x) can be described by:

T(x) = 1/[1 + (xt/x)
2 exp(k[1 − (xt/x)

2])] (1)

where x is the particle size, xt the cut size and k represents a coefficient for the
sharpness of cut.

Also for the deflector wheel separators, the model by Molerus [4] was applied.
It was later improved by Rumpf [11], Senden [12, 13], Schubert [14] and finally by
Husemann [15]. As a simplification, all these models assume a steady state process,
for which the classification corresponds to a counter flow separation of single parti-
cles. The forces at work are on the one side the drag force of the gas flow radially
passing thewheel blades inwards and on the other hand, the centrifugal force directed
outwards deflecting coarser particles.

In his theoretically based model, Husemann considered the geometry and opera-
tional parameters where, however, also four fitting parameters were used. In this way,
a calibration is necessary to find the appropriate parameter values for the separation
characteristics of a classification process. In addition, particle-particle interactions
and particle-wall collisions with the blades of the deflector wheel were neglected.
However, since deflector wheel separators are usually operated at high loadings [16]
other approaches need to be developed to capture the underlying physical principles
in a sound manner.

The objectives of this chapter are to give deeper insights into the characteristics
and the analogy of flow and sieve classification and to develop optimized models for
steady state and instationary operations of the classification processes. For flow and
sieve classification the model by Molerus (Eq. 1) will serve as starting point, but it
will experience some modifications.

2 Deflector Wheel Classifier

2.1 Model Considerations

The deflector wheel separator used here is an ATP 50 (Hosokawa Alpine) which is
schematically shown in Fig. 2 (left). The powder, which is added by a conveying
screw, approaches the rotating wheel carried by an air stream. Between the blades,
the particles experience a drag force inwards by the carrier air which is counteracted
by the centrifugal force originating from the vortex induced by the rotating wheel
(Fig. 1, left). Therefore, it is tempting to calculate the cut size from a force balance on
individual particles as done by Molerus leading to the Eq. (1). However, for the ATP
50 used here, previous investigations have shown that, especially for particles with
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Fig. 1 (Left) Schematic diagram of the deflector wheel; (right) model for the particle-blade
collisions including particle-particle collisions

significant Stokes numbers, particle-blade collisions have a major influence on the
particle motion [17]. In addition, particle-particle collisions need to be included in
an appropriate model for the deflector wheel classifier. The concept of such a model
is schematically shown in Fig. 1 (right). Initially, a cloud of particles with similar
trajectories and velocities approach the deflector blade. At a certain distance H from
the blade, the incoming particles start to collide with the particles reflected from the
blade. Due to the mutual collisions, the reflected particles, as well as the incoming
particles, are decelerated where the velocity of the reflected particles relative to the
blade vanishes at a distance H away from the blade. Knowing the initial particle
velocity relative to the blade and the distance H the particle motion can be approx-
imated by assuming an effective viscosity similar to the Richardson–Zaki approach
[18]. From this consideration also the coefficient of restitution (COR), which is the
ratio of rebound velocity vr to the approach velocity vi, can be deduced. This model
gives a good representation of the particle motion within the blades.

From the model presented in Fig. 1 (right) Spötter derived a simple relation
between effective viscosity ηeff and distance H [17]:

ηeff = ρpx
2v0/(18H) (2)

where ρp is the particle density and v0 is the velocity of the particles when they
arrive at the distance H from the blade. In this way, the influence of particle-particle
collisions,which influence bothHandηeff, is taken into account, i.e. the solid loading.
In addition, if the COR is known also the rebound velocity vr immediately after the
particle reflection from the blade can be calculated:

vr = CORv0(1 − H/(v0 τ)) (3)

where τ = ρp x2 v0/(18 ηeff) is the characteristic particle relaxation time (in the
particle cloud).

Applying the balance between drag force and centrifugal force the cut size xt can
be related to operational parameters such as the radial inward velocity between the
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blades vrad, where vrad = V̇/(hUeff)where V̇ is the carrier gas volume flow rate, Ueff

is the open circumferential length and h is the height of the openings:

xt = 18ηeff τ
∗/ρp (4)

where τ* is obtained by solving the quadratic equation:

τ∗2((CORv0)
2/R) + τ∗(vr + 2H(CORv0)

2/v0)−(H2(CORv0)
2/v20) = 0 (5)

Finally, the distance H could be measured in an idealized experiment where parti-
cles are shot against an immobile target wall and observed with a high speed camera
(cf. [17]) or derived from DEM simulations together with values for the COR [17,
19]. However, for dense particle clouds within the rapidly rotating blades of the
deflector wheel, it is very challenging to observe the distance H. Therefore, direct
measurements of the particle velocities before and after impact on the blades were
performed using high speed camera at low concentrations (cf. Sect. 2.4). Also, the
particle trajectories were recorded and the particle impaction area on the blades was
derived.

Since the airflow has a significant influence on the cut size (cf. Eqs. (4) and (5))
and on the sharpness of cut, the mean airflow between the deflector wheel blades and
in the wheel center was determined using a 2D LDV system. However, the geometry
of the addition of the classifying air (cf. Fig. 2, left) results in an asymmetrical flow
towards the deflector wheel. Therefore, the measurements were performed on two
perpendicular positions, i.e. on the top (“North”) and on the right side (“East”) of
the wheel.

Fig. 2 (Left) 3D design of the modified ATP 50 deflector wheel classifier with the airflow marked
as red helix and the direction of rotation of the classifier wheel as green arrow. (Right) Scanning
electron microscope (SEM) micrograph of the used limestone particles
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2.2 Deflector Wheel Classifier

The used deflector wheel classifier is a modified ATP50 from Hosokawa-Alpine
(Fig. 2, left). The optical access to the wheel was achieved by changing the two-sides
bearing to a one-sided bearing while the flow and classifying conditions remained
unchanged [20]. To keep the front side particle-free, a special sheath air system was
installed. The illumination was kept versatile by installing windows on the top and
the two sides of the impeller chamber. In addition, the cover plate could be replaced
by an insert sleeve.

The following section comprises a short description of the powder system, fol-
lowed by investigations of the particle collision behavior and the characterization
of the airflow within the deflector wheel. From these results, separation curves are
derived and compared with experimental ones. Then, a sensitivity analysis is per-
formed and the instationary separation process is commented. Finally, the gained
insights are summarized and implemented into a new model.

2.3 Material Characteristics

As powder mainly limestone of different fractions (SHMinerals) was used. Saxolith
40 exhibits a mass-weighted mean particle size x50,3 of 44 μm and Saxolith 70 an
x50,3 of 77 μm, respectively. The Particle Size Distributions (PSD) were measured
with a laser diffraction instrument (HELOS, Sympatec) while the powders were
dispersed with a dry disperser (RODOS, Sympatec). A SEMmicrograph of Saxolith
40 particles is shown in Fig. 2 (right).

Since the particle sphericity is expected to have a significant influence on the
classification, the powders were analyzed with a high speed particle imaging sys-
tem (QICPIC, Sympatec). From the data, the 2D sphericity �2D was determined
according to Eq. (6):

�2D = xarea−equivalent

x perimeter−equivalent
(6)

The results for the sphericity�2D as a function of the projection equivalent diame-
ter are presented in Fig. 3 for Saxolith 40 and Saxolith 70. The non-spherical shape of
the particles is due to the production process using comminution. Regarding the size-
dependent sphericity, the powders exhibit hardly any difference. The 2D sphericity
varies mostly within the limits of squares and equilateral triangles.
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Fig. 3 2D sphericity versus particle diameter for the used limestone particles. Shown are mean
values for the indicated range and 1σ: (left) for Saxolith 40 and (right) for Saxolith 70

2.4 Particle Impaction Behavior

As shown in Fig. 1 (right), the particle trajectory can be divided into an approach
phase, the impaction, the bouncing on the blade and the retraction phase. In order
to study the impaction behavior in detail, single particle experiments on a fixed
plate were performed and the particle trajectory was recorded with a high speed
camera. Figure 4 shows a series of 3 pictures which are 1.5 ms apart from each
other. Three particles (indicated by arrows) approach the impaction plate (red line).
In the second and the third picture the previous particle positions are indicated by
circles and the trajectories by dashed lines. For the evaluation, particles with curved
trajectories (green arrow) and particles staying attached to the plate due to high
rotational moments (yellow arrow) have not been considered. However, the fraction
of these particles was negligible. For all the other particles (magenta arrow) the
velocities and angles of impaction and rebound were recorded and the normal COR
was calculated from the perpendicular velocity components according to Eq. (7).
With a stationary impaction plate, the relative velocity is only the particle velocity.

COR =
vrel,r
vrel,i

=vp,r
vp,i

=vp,r − vw
vp,i + vw

=
√
Ekin.,r

Ekin.,i
(7)

Fig. 4 Impact behavior of limestone particles hitting a steel plate in the model setup
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2.4.1 Estimation of the COR with the Model of Thornton and Ning

To compare the measured values to each other and the ones expected for perfect
spheres having the same bulk material properties, Eq. (8) was used [21]. This model
is derived from the JKR theory by Thornton et al. and valid for a wide range [21–23].
The absolute normal impact velocity is represented by vimp, whereas vy is the yield
velocity indicating the end of the fully elastic impaction regime. The yield velocity
can be calculated byEq. (9)with the limiting contact pressure py being approximately
2.5 times the yield stress of the material [21]. Additionally, the density ρ and E*, the
average Young’s modulus, of the materials is calculated from the sum of their yield
abilities [21, 24].

As particlematerial limestonewas used and the plate consisted either frommarble,
steel or from aluminum. For the evaluation of Eqs. (8) and (9) the bulk material
properties from literature were applied: Elimestone = 27.1 GPa, υlimestone = 0.47 [25],
Emarble = 50.5 GPa, υmarble = 0.27 [26], Esteel = 210 GPa and υsteel = 0.3 [27] and
Ealuminum = 72.2 GPa and υaluminum = 0.34 [27]. The yield stress of the limestone
was the lowest of the aforementioned materials with 130 MPa [25].

COR =

(
6
√
3

5

)1/2

·
[
1 − 1

6

(
vy
vimp

)2
]1/2

·

⎡
⎢⎢⎣

(
vy
vimp

)
(

vy
vimp

)
+2

√
6
5 − 1

5

(
vy
vimp

)2

⎤
⎥⎥⎦

1/4

(8)

vy= 1.56

(
p5y

ρp · E∗4

)1/2

(9)

The estimated yield velocity for limestone particles on a steel or aluminum
plate and for limestone particles impacting on a marble plate was therefore 0.016
m s-1, 0.024 m s−1 and 0.032 m s−1, respectively.

2.4.2 Rebound Behavior in the Model Set up

In order to validate the COR measured in the classifier, the normal COR was also
determined in amodel setup. This offers several advantages such as an easier compar-
ison with available literature data and a more precise investigation of the impaction
behavior due to the improved magnification.

To acquire reliable data, the particles in the model set-up were accelerated in a
horizontal direction in a steel pipe, 100 mm long and 12 mm in diameter so that
the airflow did not slow down too much but the flow had a horizontal alignment (cf.
Fig. 5). The irregularly shaped particles of limestone with a diameter between 20
and 100 μm are first placed in the rubber storage box and then accelerated. A slot
geometry of 1 mm in diameter focused the particle flow in the focus area of the high
speed camera onto a 10 mm thick steel or marble plate.
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Fig. 5 Model setup to measure particle impaction properties using a microscopic lens with a high
speed camera in a bright field. The particles are accelerated by the linear acceleration device

The high speed camera (Keyence Corporation, VW-600M) with a microscopic
lens (VH-Z50L) was operated in bright field microscopy with a high-energy light
source and a 50× magnification. The frame rate was set to 230,000 fps and the
shutter-speed therefore down to 1/230,000 s−1. In this way, the time steps between
two pictures were 4.3μs, enabling the observation of 30μm particles with a velocity
up to 60 m s−1.

The measured normal COR are presented in Fig. 6 where (a) refers to limestone
particles hitting a steel plate and (b) to limestone particles impacting on a marble
plate. The case (a) is intended to reflect the situation in the deflector wheel which is
made of aluminum with a naturally occurring thin oxide layer on the surface. In the
case (b), due to similar material properties, the system resembles the particle-particle
collisions between limestone particles. While in the case (a) high impact velocities
were applied, in case (b) low velocities were realized. Using the above mentioned
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Fig. 6 Measured COR in the model set up. (Left) for limestone particles impacting on a steel
surface, while (right) shows the measurements for limestone particles impacting on a marble plate
with very similar material properties as the impacting particles
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model of Thornton et al. the expected behavior of spherical limestone particles was
included using literature material values.

Themeasured values refer to the projection area equivalent diameter where within
the investigated size range between 30 and 70 μm no velocity dependence was
observed. However, for a broader size range, this dependence should be taken into
account. In general, the measured COR follows the expectation values where the
scattering due to the non-spherical particle shape is superimposed. In addition, in
the low velocity range, the average value does not follow the model trend. In the
model, spherical particles hardly experience plastic deformation in this regime, but
the impaction energy is nearly completely transferred into elastic deformation which
is recoveredwith somedissipation in the reboundprocess. In contrast, for the real non-
spherical particles a higher number of multiple collisions due to excentric impaction
and a higher fraction of plastic deformation is expected, in particular, when the
particles are impacting on their edges or corners (cf. Fig. 2, right).

2.4.3 Particle Impaction Behavior in the Classifier

The impaction behavior in the modified ATP50 was measured as shown in Fig. 7. In
position a the recording direction is perpendicular to the rotation axis. The recordings

Fig. 7 Set-up of the deflector wheel classifier with the high speed camera and light source. a Set-
up with the high speed camera aligned perpendicular to the deflector wheel axis and a schematic
camera view in the circle with the long side of the paddle as angle reference side. b Set-up with the
high speed camera aligned coaxially to the deflector wheel axis and the schematic camera view in
the circle with the short side of the deflector wheel paddle as angle reference side
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were performedwith a FastcamSA-X2 type 1080K-M2 high speed camera (Photron)
equipped with a Nikon AF Nikkor 50 mm with an aperture opening of f# = 1.8. The
used light system was a dedocool D2 (Dedotec Inc.). The frame rate was 20,000 fps
and the shutter speed 1/20,670 s−1.

In position b the camera was oriented in the direction of the rotation axis. Here a
Keyence VW-600M high speed camera with a Keyence VW-Z2Macroobjective was
employed. The recording rate was 230,000 fps with a shutter speed of 1/230,000 s−1.
The illumination system was again the dedocool D2.

The results are shown in Figs. 8, 9 and 10 where in position a the long side of the
blades serve as reference system and in position b the short sides. Since in position
a the particles move radially inwards (away from the observer) and exhibit little
lateral motion, they appear to be nearly at rest before they are hit by the blades.

Fig. 8 Inbound behavior of particles on the deflector wheel paddle. In a the perpendicular view in
which a particle seems to be standing still before the impaction and b the particle velocity is shown
with its angle related to the deflector wheel blade for different rotor speeds

Fig. 9 Rebound angle after the particle-deflector wheel impact. In a the camera is aligned
perpendicular to the deflector wheel axis of rotation and in b coaxial
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Fig. 10 COR measured in the deflector wheel classifier. In a the camera is aligned perpendicular
to the deflector wheel axis of rotation and in b coaxial

This effect is demonstrated on a single particle in Fig. 8 (left). The blades move
upwards (preceding side in red and persuing side in yellow). The particle trajectory
is indicated by a green linewhile themomentary position is given by a full green circle
and the previous position by a dashed green circle. Although the particle is moving
radially inwards the depth of focus of the macro lens is sufficiently large to supply
useful data. Therefore, the results are presented versus the mean radius-dependent
circumferential speed (each point represents an average over 80 data points). The
limits of the circumferential speed have been taken from the work by Spötter [17]
and are indicated in Figs. 8 and 9 (left) by minimal and maximal values.

In position b a significant particle motion before the impaction is observed. The
results are shown in Fig. 8. It is observed that the absolute particle velocity principally
increases with the rotor speed, but is mainly dominated by a large data scattering.
The modified rotor speed seems to influence the characteristics of the airflow near
the deflector wheel implying to affect the particle motion in spite of their high Stokes
number.

Figure 9 shows the bouncing angle of the particles after impaction on the blades.
In Fig. 9 (left) the bouncing angle amounts to about 90° where at higher rotor speeds
a slight focusing effect towards 90° is discerned. That the enclosed area is rather
situated below 90° can be explained with the vortex (Fig. 2) and the flow through
the hollow shaft for the fine powder exhaust. The approach to the 90° angle can be
interpreted along the lines that the particle has less time to adapt to the air stream.
The already high Stokes number increases further with increasing rotor speed.

Figure 9 (right) shows the results for the bouncing angle related to the short blade
side (position b). The particles move mainly perpendicularly and are not affected
by the airflow inwards between the blades. The measured bouncing angle exhibits
an average value of 83°. For low rotor speeds the particle momentum before the
impaction is comparable with the one transferred from the blade in the collision,
while for higher rotor speeds the transferred momentum of the blade is dominating.

In Fig. 10 the normal COR is shown as a function of the impaction velocity. The
COR decreases from 0.4 at 3000 rpm to 0 at 15,000 rpm where the large scattering
also includes negative values. This may be due to the motion into the depth of the
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wheel (parallel to the axis of rotation) is not taken into account here. With the setup
shown in Fig. 6b an average contact time of 20 μs was determined. During this time
the particle may undergo a deviation into the depth of the wheel which could be
reflected in the results.

The results in Fig. 10b have been obtained with the coaxial setup (position b in
Fig. 6). The CORwere ordered according to their revolution rate and the correspond-
ing mean velocity over each range is indicated with a dashed line and a gray area
reflecting one standard deviation. The thick dashed line over the entire velocity range
indicates the expected value for spherical particles based on the literature values for
limestone particles and an aluminum impaction plate. The behavior of the measured
data deviates substantially from the expectation for spherical particles. This obser-
vation can be explained based on the results presented in Fig. 9a. At low revolution
rates, the velocity directed into the depth of the blades is larger since also the bounc-
ing angle scatters more. At higher revolution rates, the particles rebound more often
under 90°, thereby reducing the fraction of the non-detected velocity component.

2.4.4 Particle Trajectory in the Classifier at Low and High Particle
Loadings

From the particle velocities shown in Fig. 8b and their angles in relation to the
deflector wheel blades the particle trajectories can be derived. In the beginning, par-
ticles with high Stokes numbers are considered where the influence of the airflow
is estimated to be negligible for the approach phase. In an absolute coordinate sys-
tem, the particle trajectory is rectilinear (in radial inward direction), which will be
transformed into a coordinate system, which rotates with the deflector wheel. In this
rotating system, the trajectories shown in Fig. 11 (left) are obtained for low particle
loadings where the particles can be treated individually.

In Fig. 11 the model predictions (left) are compared with the measurements of
Stender [20] are shown which have been recorded with a high speed camera at a
loading of 1%w. The blades are discernible on the left and the right side in the
pictures and the particle motion is indicated by arrows. For the calculation, particles
with a size of 60 μm were assumed, while the pictures with the high speed camera
were taken for limestone particles with a median diameter x50,3 of 59.86 μm. On
the left, for each revolution rate three different particle trajectories are labeled which
all start on the circumference but at different positions. The red trajectory starts in
the middle between the blades, while the green trajectory starts at a quarter to the
persuing blade and the blue trajectory begins immediately behind the preceding blade
(experiencing the longest residence time before being hit by the pursuing blade). For
the blue trajectory, the spread of the flight path due to the scattering in velocity and
in approach angle is indicated by the gray area. The fastest particles are indicated
by the dashed line and the slowest particles by the dotted line corresponding to one
standard deviation from the average velocity (blue line).
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Fig. 11 Comparison between particle trajectories recalculated for low concentrations from their
impaction behavior on the left side and measured at 1%w mass loading [20] on the right side. On
the left side are particles with different starting positions marked in blue, red and green, while the
grey area indicates a trajectory range, derived from absolute particle plus-minus standard deviation
and its trajectory angle plus-minus one standard deviation

It is obvious that with increasing revolution rate the particles are more and more
focused as a consequence of the reduced residence time before impaction. The calcu-
lated (single particle) and themeasured approaching pattern (cloud of particles) show
a strong resemblance so that in the following the expected distribution of impactions
events on the persuing blade will be calculated based on single particle trajectories.

In Fig. 12 (left), the impaction probability distribution of a particle on the blue
trajectory is indicated as a function of the radial position on the persuing blade.
Vertical and horizontal velocity components have been varied in steps of 0.1 m s−1

ranging from the mean velocity minus one standard deviation until the mean velocity
plus one standard deviation. The impaction probability is given as density distribution
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Fig. 12 (Left) Impaction probability calculated for a particle trajectory starting right after the
preceding blade (blue trajectories). (Right) Impaction probability versus deflector wheel radius for
a distributed addition of the particle (all along the circumference)

with an interval length of 0.25 mm. The focusing effect with increasing revolution
rate is clearly visible where also the position of the maximum value varies.

Figure 12 (right) shows the cumulative impaction probability for various revo-
lution rates when assuming that the incoming particles are evenly distributed over
the circumference. The curves underline the focusing towards the outer area of the
blade, but also that with increasing revolution rate the distribution becomes more
homogeneous over the impaction range. At a lower revolution rate, only a few early
entering particles with high radial velocity reach deep into the inter-blade volume so
that the cumulative distribution is fading away towards smaller radii.

The length L of the impaction zone (Fig. 12) is shown in Fig. 13 as a function
of the revolution rate. Again these results for single particles are compared to the
observations of Spötter made for higher loadings [17]. The absolute values differ
only by 0.5 mm from each other. The higher values of L for higher loadings may
reflect the broadening effect of the particle beam due to particle-particle collisions
which have been neglected in the low concentration model. This concentration-
dependent effect may contribute to the lower sharpness of cut observed throughout
the literature [4, 28–31]. While other phenomena such as the dispersion quality and
the homogeneous particle feeding at the outer circumference of the deflector wheel
may be mitigated to a certain extent by geometric and operational variations, the
particle-particle collisions will always limit the achievable sharpness of cut.

Basically, it is sound to assume that with increasing revolution rate the impaction
length is reduced proportionally since the particles have a shorter residence time
before impaction. Applying this model strictly would result in an inverse behavior
as indicated with the green curve in Fig. 13. However, this behavior is not even
reached for low concentrations since the impaction length does not only depend on
the revolution rate, but also on the particle entrywhich itself depends on the revolution
rate. Therefore, an empirical power law approach between impaction length L and
revolution rate f was postulated in the form of:
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Fig. 13 Comparison between the impact length determined by [32] at a mass loading of 1%w and
recalculated from the single particle impaction behavior

L = const · f m (10)

It was found that values of m are close to −0.5 as indicated in Fig. 13. The good
agreement of the reproduced values of L for measurements at low and high loadings
with Eq. (10) indicates a more general scaling law which may apply over a broad
concentration range. As will be outlined below, the value of L can be used as input
parameter for a very simple model for the separation curve.

2.4.5 From Particle Impaction Derived Deflection Probability

By equating centrifugal force and drag force a cut size was determined for each
radial position on the blade. For the considered particles with high Stokes numbers,
it was assumed that the particle trajectory is only influenced by the radial motion
inwards but otherwise remains unaffected by the flow field between the blades. The
force balance was evaluated right after the particle impact on the blade. Since the
airflow around the particle is close to the transition regime, the cut sizewas calculated
iteratively taking the velocity-dependent drag coefficient into account. The cut size
was calculated considering the volume V and the surface A of the particle:

V

A
= 1

2

ρair

ρp

v2rad
vtan2

· cD · R (11)
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where ρair and ρp are the densities of air and the particle, respectively, vrad is the radial
velocity and vtan the circumferential velocity, R the radial distance to the rotation
axis and cD the drag coefficient [33]:

cD= 24

Re
(1+0.15Re0.687) (12)

where Re is the particle Reynolds number.
For non-spherical particles, the usual definition of the particle diameter is not

constructive, so that the volume equivalent diameter will be used in the following.
In Table 1 the volume-to-surface ratio is listed as a function of the particle geometry.
It is obvious that with increasing deviation from the spherical geometry this ratio
decreases influencing the cut size due to a different drag force.

To obtain a separation curve for the outlined model the cut sizes need to be
weightedwith the radially dependent impaction probability (Fig. 12, right). In Fig. 14
the separation curves are shown for revolution rates of 3000, 6000 and 9000 rpm.
Basically, the calculated single particle separation curves reflect the experimental
results over a certain range. The largest deviations were found for large and small
particles, while the xt values are well recovered at high revolution rates and even
for 3000 rpm the values of xt differ only by 20%. In these calculations, an idealized
flow was assumed which seems to be audacious when looking at Fig. 2 (left). The
vertically moving-up vortex is expected to also affect the flow pattern around the
horizontally revolving deflector wheel and, therefore, the particle separation. With
increasing revolution rate it is expected that the influence of the vertical vortex
diminishes which is supported by the better agreement of calculated and measured
separation curves in Fig. 14.

In summary, it was shown that for particles with high Stokes numbers the sepa-
ration curves at high loadings can reasonably be approximated from the trajectories
measured at low concentrations and from the particle shape factor. However, for
particles with lower Stokes numbers, this approach has to be extended to include the
flow field between the blades as outlined in the following.

Table 1 Comparison of the
volume-to-surface ratio for
different regular particle
geometries

Shape Volume/Surface

Sphere 1
6 x ≈ 0.167 x

Cube 1
6

3
√

π
6 xV ≈ 0.134 xV

Regular tetrahedron 3
√

π
2

1
6
√
3
xV ≈ 0.112 xV
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Rotor speed 
/ rpm Characteristic feature

xt
/
μm

κ 
/ -

3000

Experiment 120 0.57

Cubic particle 101 0.72

Tetrahedral particle 113 0.72

6000

Experiment 39 0.55

Cubic particle 41 0.74

Tetrahedral particle 45 0.73

9000

Experiment 25 0.59

Cubic particle 25 0.74

Tetrahedral particle 27 0.74

Fig. 14 Curve of separation derived from the particle impaction behavior compared to experimen-
tally determined ones

2.5 Airflow

In literature, numerical simulations and experimental characterizations of deflector
wheel classifiers with different designs have been performed by several groups [28,
34–37]. Usually, the momentary flow pattern was investigated. For instance, Sun
et al. simulated the flow field within the complete apparatus with CFD [38], while
Toneva et al. reproduced the gas flow in the channel between the blades using the
PIV technique and simulations [39]. Also, Stender imaged the channel vortex with a
high speed camera and tracer particles having a Stokes number of approximately 1
[20]. The vortices occurring at fast revolving parts can hardly be suppressed [40] so
that they have a significant influence on the separation behavior. In spite of the highly
turbulent flow behavior in the interior of the deflector wheel classifier and between
the blades, so far no average flow pattern has been provided in the literature. Here this
task was tackled through 2D-LDV measurements where the average flow velocities
were obtained by averaging over 100,000 tracer particles per measuring point.
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Fig. 15 (Left) Measurement setup with the tracer particle generation (right part) and the LDV
system aligned with the deflector wheel classifier. (Right) shows the area of interest (“North” and
“East”) in the deflector wheel for the conducted measurements along with the deflector wheels
direction of rotation

2.5.1 Experimental Setup

For the determination of the average flow velocity, a 2D-LDV system of the TSI
Inc. (TR-SS-2D) with a Bragg cell and a focal length of 350 mm was used. The
meteringmodes were optimized for eachmeasuring position with respect to the burst
efficiency. The rotation of the deflector wheel was directly recorded by the LDV
system using an optical revolution sensor (Avibia, AV-ROS-W) with a measuring
range of 1–250,000 rpm. The LDV was mounted on a horizontal traverse which
could be moved in steps of 40μm. The height was adjusted manually using threaded
rods where the outer edge of the deflector wheel served as reference.

The tracer particles were produced by nebulization (Pallas, Type AKG2000, 4 bar
pressure) of a 10%w NaCl solution with subsequent drying by passing a tube furnace
(Carbolite Gero, Type MTF 12/38/250) at 400 °C. The tracer particles were added
on the top close to the observation area (cf. Fig. 15). The observed area is shown in
Fig. 15 (right) including the revolution sense of the deflector wheel. For the following
results, the origin of the coordinate system is always the center of the deflector wheel
immediately behind the glass disc. Due to its refraction behavior, the rotating glass
disc represents a challenge for themeasurements. The setupwas verifiedwith velocity
measurements at the rear area of the deflector wheel.

2.5.2 Measurement Results

In Sect. 2.4.5 the hypothesis was put forward that the perpendicular vortex has a
negative impact on the particle separation between the blades of the deflector wheel.
In this chapter, first the angular-dependent flow fieldsmeasured at 9000 rpm at depths
of 6, 9, 12 and 15 mm will be shown and discussed (cf. Fig. 15, right). The chapter
is focused on the average flow velocities.
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Fig. 16 Angular resolved presentation of the LDV measurement at 9000 rpm for the depths of 6,
9, 12 and 15 mm

In Fig. 16 the angularly resolved flow profiles are shown. The deflector wheel
blades are indicated as black areas on the left and on the right. The velocitiesmeasured
in one plane (cf. Fig. 15, right) have been split over the rotation angle and the direction
was corrected for the rotation. It can be seen that the air outside of the deflector
wheel is accelerated by the wheel. Due to the suction in the center, the airflow is
slightly directed inwards. In between the blades the average velocity is stronger
directed inwards closer to the glass disc compared to the rear area. This phenomenon
may be explained by a secondary vortex in the outside domain which creates a low
pressure area like it was found by Sun et al. in simulations of a similar classifier
[38]. In the center of the wheel, the airflow is significantly more rectified and, due
to the conservation of angular momentum and continuity, the velocity increases
strongly with decreasing radius. At a radius of 6 mm, however, the airflow is directed
outwards. Here the tracer particles cannot follow the gas flow sufficiently which is a
consequence of the high circumferential velocity in combination with the decreasing
radial velocity which is induced by the suction at the center.

Figure 17 shows the spatial distribution of the average air velocity at revolution
rates of 3000 rpm, 9000 rpm and 15000 rpm, respectively. Each black point indicates
a measuring position. On the left side the tangential velocities are shown and on
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Fig. 17 Mean tangential (left) and radial (right) air velocities in the “North” region of the deflector
wheel

the right side the radial velocities. The behavior of the tangential velocities is very
similar for all three revolution rates. Initially, there is a certain acceleration from the
outside area inwards before the deflector wheel imposes its angular speed. At the
outer edge, the measured air velocity is slightly lower than expected from revolution
rate and wheel radius. At 3000 rpm the expected value at the edge is 8 m s−1, at
9000 rpm 24m s−1 and at 15,000 rpm 39m s−1, respectively. At the inner edge of the
wheel, the measured tangential air velocity is slightly higher than the wheel speed
which is due to the conservation of the angular momentum and the acceleration of
the air by the wheel. Subsequently, the classifying airflow follows an eddy motion.
Towards the center, the velocity is reduced due to viscous friction which, however,



10 Dynamics of Separation Characteristics of Sieving and Flow … 371

could not be proven with LDV since the tracer particles were rarely carried into
this area.

For the radial velocities, the same color code was used. For all three revolution
rates, the radial velocity was negative in the central shaft area as a consequence of the
centrifugal force affecting the tracer particles. Between suction and the inner edge of
the wheel, the airflow is very rectified due to the continuity condition. Between the
blades, the radial velocity varies significantly. Based on a mass balance, the radial
velocity at the outer edge of the wheel is about 7 m s−1 and increases up to ca.
12 m s−1.

While at 3000 rpm a relatively uniform velocity profile is established, which fol-
lows the above constructed picture, at 9000 and 15,000 rpm the profiles are much less
homogeneous The formation of the profile is due to the secondary vortex discussed
above.

The deflector wheel considered here exhibits an experimental sharpness of cut
of 0.57 at 3000 rpm, 0.59 at 9000 rpm and 0.50 at 15,000 rpm. Comparing these
observations with the flow fields shown before, the reduction of the sharpness of cut
at high revolution rates is not surprising.

This effect will be included in the calculated separation curves shown in the
following.

A parameter which affects the sharpness of cut is the rotational symmetry of the
airflow. At low revolution rates, radial and tangential velocities at the outer edge
of the wheel are very similar and rather low. It is expected that the airflow is more
symmetrical at higher revolution rateswhere the circumferential velocity of thewheel
dominates. In Fig. 18 the average tangential velocities are shown on the left and the
radial velocities on the right for different revolution rates. The measurements on the
“North” side are indicated in black (cf. vertical plane at radii of 23 and 26 mm shown
in Fig. 15, right) and the “East” side in red (horizontal plane mostly at a radius of
25 mm in Fig. 15, right).

Generally, it is observed that the tangential velocity ismore homogeneous than the
radial velocity which was already found for the North side in Fig. 17. At the different
revolution rates, local minima appear which are not at the same positions for North
and East measurements. This indicates that the vortices in the apparatus affect the
flow around the wheel in different ways. The radial velocity, on the other hand,
exhibits a more pronounced and rather systematic divergence. While on the North
side a mostly inwards oriented flow is encountered, the radial velocity on the East
side is nearly zero up to moderate revolution rates. Only at higher revolution rates,
the radial velocity is slightly oriented outwards. This missing rotational symmetry
needs to be taken into account in the following considerations about the particle
separation.



372 M. Weers et al.

Fig. 18 Estimation of the rotational symmetry of the airflow between the deflector wheel blades for
different rotor speeds. Measurement position “North” is related to the upper area, shown in Fig. 15,
right, while “East” is related to the right side horizontal area

2.5.3 Deflection Probability Derived from Particle Impaction
and Measured Airflow

From the measured flow profiles and the impaction behavior shown in Fig. 12 a
deflection probability, i.e. a separation curve for the deflector wheel classifier can
be determined. As outlined in Sect. 2.4.5, the grade efficiency curve is calculated.
Figure 19 shows deflection probability curves calculated for tetrahedral particles at
9000 rpm. The curves have been calculated based on the measured radial and tangen-
tial velocities for different planes along the depth between the blades. In addition,
the measured separation curve is indicated by the bold black line in Fig. 19. Since for
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Fig. 19 Deflection
probability for different
depths at 9000 rpm for
tetrahedral particles
calculated with measured
circumferential and radial air
velocity

the used deflector wheel classifier the particles are added into the apparatus without
previous dry dispersion, it is possible that very fine particles (ca. 10μm) are attached
to coarser particles and are separated with them. This may explain why the measured
separation curve is not enclosed by the calculated curves in the range below 10 μm.

If it is assumed that the particles enter the wheel at each depth with the same fre-
quency, an overall separation curve can be constructed by adding all the individual
curves shown in Fig. 19. The results of this procedure are shown in Figs. 20 and
21 including the calculated standard deviation. Besides tetrahedral particles also the
results for cubic and spherical particles are presented. Particles with a low Stokes
number aremore prone to reach positions of high radial velocities between the blades.
An analogous phenomenon is known in the flowmeasuring technology regarding the
LDA method where tracer particles of a higher velocity exhibit a higher probability
to be detected [41]. Therefore, it may be assumed that the reality lies in between the
averaged separation curves and the ones weighted with the radial velocity. Figure 20
shows separation curves derived from the airflow measurements which can be com-
pared with the ones based on the impaction probability shown in Fig. 14. In Fig. 14
the deviations between predicted and measured separation curves were the highest
für 3000 rpm, while at higher revolution rates a good agreement of calculated and
measured cut sizes was observed.

In comparison with the results in Fig. 14, the findings in Fig. 20 indicate that not
only the cut size but also the sharpness of cut can well be predicted by using the
real flow field. At low revolution rates, the experimental separation curve runs close
to the calculated one based on the weighted radial velocity. This is due to the low
revolution rate and the corresponding low influence of the airflow. With increasing
revolution rate, the circumferential velocity raises from 8 m s−1 at 3000 rpm to
39 m s−1 at 15,000 rpm. Hence the Stokes number increases and the particles enter
the apparatus with less preclassification (cf. Fig. 20). At 9000 rpm, it is expected
that the separation curve lies in between the lower and the upper limit. However, the
experimental separation curve is shifted to smaller sizes and is situated on the left of
the weighted and unweighted curves. A possible explanation may be related to the
missing rotational symmetry and/or a secondary vortex which focuses the particles
preferentially into one plane along the depth.
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Rotor speed 
/ rpm Characteristic feature

xt
/

µm
κ 
/ -

3000

Experiment 120 0.57

Cubic particle 100 0.50

Cubic p. weighted 122 0.74

Tetrahedral particle 113 0.49

Tetrahedral p. weighted 138 0.74

9000

Experiment 25 0.59

Cubic particle 46 0.47

Cubic p. weighted 52 0.70

Tetrahedral particle 51 0.46

Tetrahedral p. weighted 58 0.69

15000

Experiment 12 0.50

Cubic particle 14 0.55

Cubic p. weighted 17 0.70

Tetrahedral particle 16 0.54

Tetrahedral p. weighted 18 0.70

Fig. 20 Frommeasuredmean airflowandparticle impaction behavior derived deflection probability

In this work, the model concept presented in Fig. 1 will be followed. Particles
enter the space between the blades as collective and they are decelerated by the
particles, which had already been reflected by the blade before they impact on the
blade themselves. Based on the high loading, it is assumed that particle-particle
collisions ensure that at the outer edge of the particle cloud the particles have the
same velocity as the circumferential speed of the wheel. Therefore, in Fig. 21 it is
checked how far the prediction of the separation properties remains correct when
instead of the measured tangential velocity the calculated one, i.e. circumferential
velocity, is used. As radial velocity, the measured one is used.

In general, Figs. 20 and 21 show hardly any deviations. The separation curves
for 3000 and 15,000 rpm exhibit nearly identical parameters, but the experimental
separation curve at 9000 rpm is much better reflected by the unweighted prediction.

This result supports the validity of the model outlined in Fig. 1. This means that
the Molerus model can be applied for particles with high Stokes numbers when cut
size and sharpness of cut are deduced from themeasured radius-dependent impaction
probability of the particles and the distribution of the radial air velocity. As a first
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Rotor speed 
/ rpm Characteristic feature

xt
/

µm
κ 
/ -

3000

Experiment 120 0.57

Cubic particle 100 0.43

Cubic p. weighted 137 0.74

Tetrahedral particle 112 0.42

Tetrahedral p. weighted 155 0.75

9000

Experiment 25 0.59

Cubic particle 29 0.35

Cubic p. weighted 40 0.82

Tetrahedral particle 33 33

Tetrahedral p. weighted 45 0.82

15000

Experiment 12 0.50

Cubic particle 10 0.58

Cubic p. weighted 16 0.59

Tetrahedral particle 11 0.58

Tetrahedral p. weighted 18 0.58

Fig. 21 From measured mean air radial velocity with calculated tangential velocity and particle
impaction behavior derived deflection probability

approximation, the entry trajectories of the particles allow calculating the cut size (cf.
Fig. 14). For particles with low Stokes numbers, however, the rotational symmetry
of the airflow gains on importance while the characteristics of the particle entrance
into the space between the blades become less significant. In turn, this means that
for another deflector wheel classifier particle entrance conditions and flow fields are
needed for the prediction of the separation performance.

2.6 Transient Aspects

Although the microprocesses on the deflector wheel are very rapid (typically the
residence time of an air volume within classifier is 80 ms), the classification process
exhibits an instationary behavior over many minutes up to an hour. This behavior
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is due to the partition of the apparatus in two different zones. In Fig. 22 (left) a
cross sectional view of the classifier is presented. The separation of the particles on
the deflector wheel has been elaborated exhaustively above. However, the fate of
the coarse, deflected particles was not further discussed so far. In the cone between
the deflector wheel and the coarse powder outlet, an upward airflow encounters the
settling coarse particles.While for an airflowof 75m3 h−1 a cut size of ca. 10–100μm
is observed on the deflector wheel for limestone (depending on the revolution rate),
the cut size obtained from the balance of gravity and drag force in the coarse material
cone is expected to be in the range of 400μm. Thus, the coarse particles cannot leave
the classifying chamber as individual grains, but due to the rotational airflow of the
incoming air, they will be concentrated near the walls forming streaks. These streaks
will finally end up in the coarse material container similar to a cyclone separator.

The accumulation of powder in the classifier chamber by the mechanisms dis-
cussed above, which is called hold-up, may affect the effective loading and thereby
the classification performance. Therefore, the effective loading was determined with
the setup shown in Fig. 23, where a 3-way valve (V03) was introduced into the fine
powder line. In order to determine the amount of powder in the hold-up, the classi-
fier was running until a steady state was reached (cf. below). Then, the feeding was
stopped (X01) and the fine powder line was blocked with the 3-way valve (V03)
where the aspirator at the end was fed with environmental air. Since the original
airflow ceased the particles in the hold-up settled onto the closed valve (V01) of the
coarse material container which was then cleaned. By opening the V01 valve the
hold-up material could be collected. The effective loading was found to be much
higher than the nominal value based on the feed as shown in Fig. 22. The effective
loading lies in the range between medium and high pressure pneumatic conveying
[42].

It was found that in the steady state the effective loading was not influenced by
the operational parameters. However, the time to reach the steady state may very
well depend on the operation conditions. Spötter et al. investigated the starting-up
phase for a revolution rate of 9000 rpm and mass loadings of 1–5%w of limestone
particles. The results in Fig. 24 (left) show that with decreasing loading the time

Fig. 22 (Left) The two cut sizes in the operation of the deflector wheel classifier. (Right) Effective
mass concentration
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Fig. 23 P&ID of the deflector wheel classifier with the set up for the hold-up determination

Fig. 24 (Left) Coarse and fine fraction in relation to the process time for 9000 rpm and a feed
concentration from 1 to 5%w, (right) characteristic time to reach the stationary cut size in relation
to the rotor speed and feed concentration [32]

to reach steady state increases and may be as long as 30 min for 1%w. Also the
revolution rate influences this time where the steady state is reached earlier at higher
revolution rates (cf. Fig. 24, right).

This characteristic time is needed to achieve a steady state between incoming
feed rate and removal rate for fine and coarse material. Within this conception, the
hold-up represents a storage volume which has to be filled before inflow and outflow
are balanced. The speed of filling this storage volume can be influenced either by
the feed rate (i.e. loading and flow rate) or by deflection rate (i.e. revolution rate). It
would be interesting to see if this conception applies also for the variation of other
parameters which influence the cut size such as the wheel radius.
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3 Screening Technology

3.1 Introduction

Screening is a process for the separation of particulate solids. In this process, a dis-
perse particle collective is transported over a moving surface and separated by a
screen. During this process, the particle size x of the feed material is constantly geo-
metrically compared with the mesh size w of the screen bottom. When the particles
are successfully transported through the screen mesh, the feed material is separated
into a coarse material fraction (c) and a fine material fraction (f). Whether and with
what probability a particle passes through a sieve opening depends on the ratio parti-
cle size to mesh size (x/w), the particle shape and mesh shape, the orientation of the
particle at the point of contact and the angle of impact in respect to the sieve plane.
Figure 25 shows the relationships between the correspondence of a particle and the
sieve mesh. The near size particle (x ~ w) present in the feed material is of particular
importance for the screening success. They influence the degree of selectivity and
screening quality.

In the case of a continuous screening process, the transport velocity and the size of
the screen determine the dwell time of the screenings on the screen. The dwell time
is mainly responsible for the success of the separation. Furthermore, the possibility
of how the particles can arrange above a screen opening is important. This depends
decisively on the layer thickness of the material on the sieve. If there is a multi-
particle layer, this is referred to as thick film screening, in which the required relative
movement of the particle must be ensured by loosening or circulating the screening

cross grain/
terminal grain

fine grain
x < w

coarse grain
x > w

feed

Fig. 25 Screening as a comparison between particles with size x and mesh with aperture w
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Fig. 26 Typical functions of
classification (grade
efficiency curves)
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material. On the other hand, with thin film screening, the kinetics of the screening
process depends only on the conditions that the particles find for passing through the
screen openings [1].

The screening machines are divided into flat screens with a movement of the sieve
bottom in the plane, throw screens (movement perpendicular to the sieve bottom
plane) and tumbling screens in which a circular oscillation in the plane is superim-
posed by a tumbling stroke component. The quality of the screen classification is
determined not only by the parameters of the feed material (particle size distribu-
tion, shape, density and interaction potential) but also by the feed material mass, the
design of the screens used (mesh size, mesh shape, wire thickness and open screen
area) and in particular by the influencing variables of the screening machines such as
amplitude, frequency and angle of inclination. In practice, there is usually no ideal
separation of the particle fill, but a part of the particles with x < w remains on the
sieve and thus remains in the coarse material and a part of larger particles is found in
the fine material as misplaced particles. Figure 26 shows typical separation functions
T(x). The ideal separation is characterized by the jump function. The “dead flow a”
describes the proportion of particles that have not been classified. The closer the
separation function is to the ideal separation, the sharper the separation process is.

To characterize a separation, the passages or the distribution sum functions for
the feed material Q3A(x), the coarse material Q3G(x) or the fines Q3F(x), as well as
the mass flows, must be determined.

3.2 Separation Function for a Steady State Screening Process

Knowledge of the separation function T(x) is the most important information for
describing the sieve classification process. Various approaches are known from the
literature. All models are dependent on three model parameters:

a “dead flow”, function value for T(x → 0); applies: 0 ≤ a ≤ 1
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xt corresponds to the median separation limit of the grade efficiency curve, if a = 0
α measure of selectivity; applies: 0 < α < ∞.

A model to describe a separation function was described by Plitt [2]. Here the
classification is postulated as a reversal of an ideal mixture.

T (x)Pli t t = (1 − a) ·
(
1 − exp

(
− ln(2) ·

(
x

xt

)α))
+ a (13)

Molerus and Hoffmann [4] presented a separation function for air classifiers.

T (x)Molerus = 1 − a

1 + ( xt
x

)2 · exp
(

α ·
(
1 −

(
x
xt

)2
)) + a (14)

For all themodels above, themodel parameter α is directly related to the sharpness
of cut or selectivity κ25/75 according to Eder [1]:

κ = x25
x75

(15)

Within the scope of this project, a new improved separation function for the
stationary screening process was developed [4, 10, 43]. This function contains a new
selectivity parameter β.

T (x) = ·(1 − a)

[
1 −

(
1 + 3 · x ′(((x ′)+α)·β)

)− 1
2

]
+ a (16)

In this, a is the dead flow for T(x → 0), α and the newly introduced parameter β

as a measure of the selectivity of the sieve classification. For β the following applies:
0 < β < ∞. Furthermore, in Eq. (4) the dimensionless particle size x′ is defined as
the quotient of the particle size x to the median value of the grade efficiency curve
xt (for a = 0):

x′ = x/xt (17)

3.3 Transportation of Particles on Vibrating Surfaces

Particles carry out specific movements on a vibrating surface, which depend on the
frequency, amplitude, inclination of the sieve bottom and the dispersity properties
of the particles as well as the concentration or number of the particles (thin or
thick film sieving). For the analysis of the movements of the particles on vibrating
surfaces an electrodynamic vibration exciter was used, which simulates the sieve
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movement. It performs a linear, frequency- and amplitude-dependent movement in
vertical direction. A function generator from Hameg Instruments GmbH transmits a
sinusoidal standard signal to the power amplifier TGA 251 from RMSGmbH, which
transmits the amplified standard signal to the shaker. Depending on the amplification
factor, the amplitude of the design of the base plate or sieve bottom is varied. Figure 27
shows the experimental setup of the shaker system. The high-speed cameraVW-9000
from Keyence is used to track the particle movement.

Initially, investigations were carried out to describe the movement of individual
particles on the vibrating support. Spherical glass particles with a particle size of x
= 3.3 mm were used. Figures 28 and 29 show the motion profile of this particle at
a frequency of f = 60 Hz and f = 45 Hz and corresponding amplitudes of 1.6 and
2.1 mm.

It clearly shows the dependence of the movement pattern of the particles on fre-
quency and amplitude at low number densities (thin film). Completely different con-
ditions are observed when the particle concentration or the number density increases
significantly. These conditions are present in a real screening process. This is a super-
position of convective transport and segregation. The experiments described below

function
generator

high speed
camera

PMMA
Cylinder

electrodyn.
oscillation

actuatoroscilloscope power 
amplifier

Fig. 27 Experimental set, electrodynamic vibration exciter

Fig. 28 Single particle
movement, f = 60 Hz, A =
1.6 mm
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Fig. 29 Single particle
movement, f = 45 Hz, A =
2.1 mm
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were carried out with quartz particle fills with a mean diameter of x50,3 = 1 mm and
a quantity of m = 250 g. The dimensionless acceleration number � was determined
for each experiment:

� = Aω2

g
= 4A π2 f 2

g
(18)

Figure 30 shows that for the upward movement of the particles a clear influence
of the amplitude is to be recognized but the influence of the frequency is not so
significant.

The following Figs. 31, 32 and 33 show the movements of the particles on moving
surfaces with different amplitudes and frequencies.

At low amplitudes, there is a harmonious movement of the particles on the vibrat-
ing surface.With an increase in amplitude, a significant polarisation of concentration
takes place at certain locations. This results in the sieving of a thin layer at some
points on the sieve surface and thus a correspondence of the particles and the mesh
is possible. At other points, no unhindered passage through the meshes is possible
due to the polarization.

Fig. 30 Movement of the particle layer: (left) f = 60 Hz, A = 0.62 mm, � = 8.98 and (right) f =
20 Hz, A = 3.86 mm, � = 6.21
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Fig. 31 Particles on moving surfaces: f = 45 Hz, A = 0.78 mm, � = 6.32

Fig. 32 Particles on moving surfaces: f = 40 Hz, A = 1.28 mm, � = 8.24

Fig. 33 Particles on moving surfaces f = 25 Hz, A = 2.76 mm, � = 6.94



384 M. Weers et al.

Fig. 34 Circular vibratory screening machine (Rekord V 3/10/I L of Siebtechnik GmbH)

3.4 Sieving in Transient Mode of Operation

The circular vibratory screening machine Rekord V 3/10/I L of Siebtechnik
GmbH (Fig. 34) was used to investigate the transient mode of operation of screening
machines. The length of the sieve of the sieving machine is 1000 mm and thus has a
usable screen area of 0.3 m2. The vibration is generated by an exciter shaft through
two unbalances. The screen inclination can be varied between 0° and 40° to the hor-
izontal. Screens with mesh widths w = 0.125 mm, 0.25 mm, 0.5 mm and 1.0 mm
are available.

For these investigations, the screening machine is designed in such a way that
a temporal and spatial resolution of the product can be detected. For this purpose,
various collection containers were fitted under the sieve (see Fig. 35).

In these containers, the fines can now be detected along the sieve surface in a
time-resolved manner. The grade efficiency curves T(x, t) can be determined from
the analysis of the feed, the fines and the coarse. Figure 36 shows an example of how
the fines are changing over the length of the sieve.

The following parameters were varied in the following investigations of the tran-
sient mode of operation: duration of sieving, sampling position and angular velocity
ω. Quartz particles at a mass flow rate of 250 kg/h were used as material. The
separation functions were calculated according to Eqs. (19) and (20).

T (x) = mG

mA
· qG(x)

qA(x)
(19)

T (x) = 1 − mF

mA
· qF (x)

qA(x)
(20)
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feed

fines

coarses

vibratingscreen

Fig. 35 Vibrating Screen with different collecting containers which can be operated for different
durations

Fig. 36 Time-dependent change of fine material

In a first series of experiments, the revolution rate was varied between 900 and
1550 min−1. Figure 37 shows the different separation functions depending on the
different revolution rates for a feed mass flow of ṁ = 250 kg/h. It appears that with
increasing the revolution rate the separation function shifts into the fine material
range, but the gradient remains almost identical. Also the selectivity according to
Eder (see Eq. (16)) drops continuously with increasing revolution rate but within a
rather small range of κ (cf. Fig. 38).

The decrease of xt with the revolution rate can be explained by the throwing
coefficient KV.

KV = r · ω2 · sin(α + β)

g · cosβ
(21)
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Fig. 37 Grade efficiency function of different number of revolution of circular vibrating screen

Fig. 38 Sharpness of cut κ
and cut size xt as a function
of revolution rate
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Here the accelerations, which also affect the particles, are characterized. Due to
the higher revolution rate, the particles are accelerated stronger, thus being moved
further and transported faster through the sieve. As a result, there is a less frequent
comparison between mesh size and particle size.

In a further step, the local distribution of the particles in the collection containers
(cf. Fig. 39) was investigated at different times (t1 = 1 min, t2 = 2 min and t3 =
10 min) at a revolution rate of 1200 min−1.

Fig. 39 Collecting container under the screening machine
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In Fig. 40 it is shown that for a given container the size distribution of the fines
does not change with the duration of the screening. For 1 and 10min screening nearly
indistinguishable size distributions are obtained. However, when comparing the first
and the second container for collection of the fine fraction, a clear shift towards larger
particles is observed. This may be explained by the conception that the finer particles
pass first the screen leaving behind larger particles which pass later.

The experimental results of the separation curves for the first and the third con-
tainer are shown inFig. 41.Within the experimental uncertainties, the grade efficiency
curves are close to each other. Using the different models outlined in Eqs. (13), (14)
and (16) the calculated separation curves are compared with the measured ones. It
can be seen that for the model of Plitt no parameter could be found so that a reason-
able agreement with experimental data was obtained. For the model of Molerus, a
much better agreement was observed. Finally, with the own model (T_beta) a very
good approximation of the measurement results is achieved.
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Fig. 40 Density distribution of the fines in the first and the second container for different durations
(t1 = 1 min and t3 = 10 min)
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4 Conclusion

In spite of the broad range of applications of flow and sieve classification the physical
phenomena of higher particle loadings are not completely understood. As common
departure point, the single particle model of Molerus was used here. For the sieving,
the single particle motion and acceleration was studied and the Molerus model was
modified with a selectivity factor, which accounts for particle-particle interactions
as well as the formation of particle layers on the sieve bottom. Particle accumulation
effects, which occur in steady state and in instationary operation, may hinder the
particlemobility at higher loadings. However, it was observed that along the vibrating
screen the separation curve did not change significantly.

In flow classification, the commonly used models cannot account for instation-
ary effects. Therefore, a new system to measure the time to reach steady state was
employed. It turned out that a hold-up volume needs to be filled before steady state
is reached which may take several tens of minutes for low loadings. However, the
hold-up volume seems to be rather constant. For steady state operation, the Molerus
model was used by refining tangential and radial velocities. For particles with high
Stokes numbers, the flow field can be neglected in a first approximation and the
cut size is dependent on the particle impaction probability on the blades. With the
detailed knowledge of the mean radial airflow, a much better prediction of the sep-
aration curve can be obtained. In contrast to the radial velocity, the tangential air
velocity is of less significance for the cut size and sharpness of separation. This is
due to the formation of a particle cloud, whose tangential velocity is to a large extent
dominated by the circumferential velocity of the deflector wheel.

For particleswith lowStokes numbers, the rotary symmetry of the airflow entering
the deflector wheel will gain in importance, while the particle entrance trajectories
will be less significant. Ironically, the model of Molerus gives a good prediction of
the cut size even its conception of the particle motion is not correct for particles with
high Stokes numbers.
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Chapter 11
Experimental Study and Modelling
of Particle Behaviour in a Multi-stage
Zigzag Air Classifier

Eduard Lukas, Christoph Roloff, Hannes Mann, Kristin Kerst,
Thomas Hagemeier, Berend van Wachem, Dominique Thévenin,
and Jürgen Tomas

Abstract In most industrial solid processing operations, the classification of parti-
cles is important and designed based on the terminal settling velocity as the main
control parameter. This settling velocity is dependent on characteristic particle prop-
erties like size, density, and shape. Turbulent particle diffusion is the other key prop-
erty controlling the efficiency of the separation. In this project, multi-stage separation
experiments of a variety of materials have been performed using different flow veloc-
ities, mass loadings of the air, number of stages. Separation has been investigated
separately concerning particle size, particle density, and particle shape. Continu-
ous operation in terms of solid material and airflow has been mostly considered.
However, variations in mass loading and pulsating operation of the fan have been
investigated as well. The performance has been analyzed and discussed with respect
to the separation functions, for instance regarding separation sharpness. Severalmod-
elling approaches have been checked and/or developed to describe theoretically the
corresponding observations. After fitting the free model parameters, a very good
agreement has been obtained compared to experimental measurements. Finally, the
reduced model has been implemented into the central software DYSSOL.
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1 Introduction

The treatment of raw materials, intermediates, products, and waste is one of the
most important processes for many industrial applications. Usually, the final process
outcome depends strongly on the quality of separation. Separation by particle size is
mostly done by sieving. For lower cut points (for a particle diameter in the order of
mm), air classifying performs better because fine particles often adhere to and block
the openings of the sieves. One apparatus for air classifying is the zigzag air classifier.
This system has been known for a long time [1–3]. It is widely used for a variety of
industrial applications, e.g. for classifying shredded PET bottles [4], municipal solid
waste [5], scrap cables, or stalks and leaves for the tea and tobacco industry [6].

The main advantage of multi-stage air classifying is the wide range of possible
cut sizes, in the range of micrometers to several millimeters. Sorting (separation by
density) can be done within a wide density range as well. Separation is done based
on the differences in settling velocity, which is the main characteristic parameter and
is determined by particle properties as size, density, and shape [6].

Obviously, the air velocity in any separation chamber impacts the particle dynam-
ics, in particular with respect to the flow direction. Due to this fact, the zigzag air
classifier has a wide field of possible applications. Themass flux of one stage in prac-
tical applications is typically between 5 and 15 t/(m h); an even higher throughput
can be reached by using several channels in parallel. The number of stages affects the
separation performance since, at every stage, separation of fine and coarse (or light
and heavy) particles occurs as the particles flow across the air stream. Therefore,
every particle that leaves the channel has been separated repeatedly, which leads to
a high operational efficiency. Additionally, the process can be linked to pneumatic
conveying without the requirements for any additional device [6].

However, problems are also encountered when using a zigzag air classifier (ZAC).
In particular, variations in properties of the feed (in size, density, or shape) e.g. due
to segregation in the silo, eventually lead to local and temporal fluctuations of the
mass loading of air. This affects the efficiency of the separation in a negative way.
Due to these fluctuations, pulsations of the air stream may also be observed. All in
all, the unknown dynamics of the process lead to insufficient reliability of the ZAC
operation, reducing separation efficiency. Though the efficiency might be increased
again by employing a larger number of stages, those cause additional pressure loss,
increasing energy consumption. As a consequence of this trade-off, it is expected
that an optimal number of separation stages exists for a given process.

Since ZACs have been used for many decades, they have been the topic of several
investigations. Selected publications are discussed in what follows. For instance,
Worrell and Vesilind [7] investigated the separation performance of different air
classifiers based on various throat configurations. They used municipal solid waste
to separate light (paper and plastics) and heavy (aluminum and steel) materials and
introduced a new concept to evaluate the operational efficiency. The total efficiency
was defined as the product of the fractional recoveries of light and heavy material in
the overflow and underflow. Therefore, the highest efficiency of 100% can only be



11 Experimental Study and Modelling of Particle … 393

reached if 100% of the lightweight material is discharged as light product and 100%
of the heavyweight material is delivered as heavy product.

The operational efficiency of ZACs at low particle concentrations has been inves-
tigated by Senden [5] who used square pieces of paper and porous polystyrene
spheres as test materials during the experiments. He analyzed the influence of dif-
ferent channel depths and bending angles (90°, 120°, 150°) and found the 150° case
showing the highest separation efficiency associated with an enormous increase of
particle residence time. Furthermore, he developed a stochastic model to describe
the separation behavior based on observations of every single stage. Rosenbrand [8]
extended Senden’s model [5] for high particle concentrations using a dimensionless
correlation.

Vesilind and Henrikson [9] studied the influence of feed rate on the separation
performance in a zigzag channel with a bending angle of 120° using square-shaped
plastic and aluminum pieces. It was shown that particle residence times decrease
with increasing feed rate; the same applies to separation efficiency. Both effects
were ascribed to an increased particle-particle collision frequency.

For performance comparison of different air classifiers, Biddulph and Connor
[10] developed a simple test based on the estimation of effective diffusivity; good
separation efficiencies were assumed to be connected with low diffusivities.

The research group around Tomas [11, 12] developed a model to describe the
separation performance in a ZAC. This model agreed well with experimental data
measured by separation experiments of glass beads, sand, split, and gravel at lowmass
loadings of the air. One important advantage of their model is a flexible application
concerning separation by size, density, or shape. The zigzag air classifier was found
to deliver satisfactory to good separations, and this at low energy consumption.

The separation of PET flakes by particle shape in a zigzag separator has been
studied in several studies [4, 13, 14]. Using a low mass loading of the air, the process
showed good separation efficiency.

Several investigations can also be found in the literature (e.g., [13, 15]) concern-
ing the simulation of one- and multi-phase flows in zigzag-shaped channels using
Computational Fluid Dynamics (CFD). However, only few of these publications
attempted to quantify separation performance.

The aim of the present investigation was to investigate in a systematic manner the
processes leading to particle separation in a ZAC, by combining in a suitable manner
theoretical, experimental and numerical investigations.

The installation used for all studies is shown in Fig. 1. The pilot-scale air separa-
tor used in this research consists of the zigzag channel featuring four exchangeable
channel modules aligned vertically and housing two segments each, which are con-
nected under a prescribed inclination angle. A controllable blower drives the air in a
closed circuit through the apparatus. Air flows through the inflow pipe and then from
bottom to top through the zigzag channel, through an aero-cyclone and a filter before
it re-enters the blower. Particles are fed to the system through a small square duct
at mid-height of the zigzag channel by means of a controllable vibration conveyer
connected to a hopper. The separated material is collected in two containers, one for
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Fig. 1 Principle sketch of the investigated pilot-scale zigzag air classifier with (1) aero-cyclone,
(2) zigzag channel, (3) container for fine fraction, (4) container for coarse fraction, (5) hopper, (6)
screw feeder, (7) filter, (8) inflow pipe, (9) fan

the coarse fraction falling down into the underflow bin, and one for the fine fraction
lifted with and separated from the airstream by a cyclone into the fine fraction bin.

Many different process conditions have been considered and analyzed in a sys-
tematicmanner using this system. Thanks to such extensive studies, it should become
ultimately possible to derive best-practice recommendations for designing and using
a ZAC in an optimal manner for a given process. Since all the results of this project
have been already extensively published, the rest of this chapter consists mainly in
summarizing the most important findings regarding each aspect of this combined
study.

2 Research Strategy

Considering the complexity of the process, a combination of theoretical, numerical
and experimental studies was considered best to get a deep insight regarding the
controlling physical mechanisms, with a view toward optimal design and operating
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conditions. The corresponding subprojects are described in Fig. 2 and correspond to
following steps:

• Theoretical description of a single spherical particle settling in a gas flow under
laminar or turbulent conditions;

• Experimental investigation of fluid velocities, turbulent properties and vortex
structures in the ZAC;

• Numerical simulations of fluid velocities, turbulent properties and vortex struc-
tures in the ZAC;

• Experimental investigation of particle trajectories in the ZAC;
• Numerical simulation of particle trajectories in the ZAC (coupling Computational

FluidDynamicswith eitherDiscrete ParticleModel—DPM—orDiscrete Element
Model—DEM);

• Experimental investigations of separation based on particle size, particle density,
particle shape;

• Derivation of a simplified model of particle separation in the ZAC and integration
of thismodel into the central simulation platformDYSSOLdeveloped in the group
of S. Heinrich at the Technical University Hamburg.

Theory:
Settling of single
spherical particle in
laminar or turbulent flow

Experiments:
Flow features in ZAC

Experiments:
Particle trajectories in ZAC

Separation experiments
and analysis

Development of a simplified model describing separation
in ZAC, and integration in DYSSOL

Simulations:
Flow features in ZAC

Coupled simulations:
Particle trajectories in
ZAC

Fig. 2 Research strategy used for this project
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Table 1 Analytical solution for a turbulent flow around a settling particle in the Newton regime

Name Equation

Equation of motion dv
dt = 1

tRvs

(
v2s − v2

)

Relaxation time tR
tR = (

ρp + j ρf
)√ 3dp

ρf(ρp−ρf)g

Relaxation distance sR sR = tRvs = 3dp(ρp+jρf)
ρf

Velocity-time law
v = vs

(vs+v0) exp
(

2
tR

(t−t0)
)
−vs+v0

(vs+v0) exp
(

2
tR

(t−t0)
)
+vs−v0

Velocity-distance law
v =

√
v2s − (v2s − v20) exp

(
− 2

tRvs
(s− s0)

)

Distance-time law
s = s0 + vs

(

−(t− t0) + tR ln
(vs+v0) exp

(
2
tR

(t−t0)
)
+vs−v0

2vs

)

3 Main Results

3.1 Theoretical Study

The settling process of particles in the Stokes and the Newton regimes are of central
importance for understanding separation in the ZAC. Considering only spherical and
isolated particles, it is possible to obtain full analytic solutions for this configuration,
in particular regarding terminal settling velocity and corresponding relaxation times.
The main results of the theoretical investigations carried out during this project
have been documented in [16]. Additional details and information can be found (in
German) in [17]. For instance, the main resulting equations regarding the behavior
when a turbulent flow is found around the particle are given in Table 1, in which the
notations of [16] have been kept.

Using these relations, it is now easily possible to derive corresponding results for
relevant materials considered in the rest of this study. For instance, the behavior of
gravel settling in air is shown in Fig. 3.

3.2 Experimental Investigations Regarding the Turbulent Air
Flow

Apart from systematic separation experiments described later in this chapter, the
physical processes controlling the coupled behavior of turbulent flow and particles
have been investigated in detail. For this purpose, a variety of measurement methods
have been used. The simplest ones relied on probes placed within the set-up. In this
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Fig. 3 Particle velocity of a
gravel particle (10 mm
diameter) in air at ambient
conditions (reprinted with
permission from [16])

manner, it was for instance possible to investigate the pressure drop induced by the
channel (Fig. 4).

The results of the measurement campaigns have been used for two different
purposes:

• Foster our understanding of the processes controlling particle separation;
• Support accompanying numerical simulations, by delivering boundary conditions

and reference data for validation.

Regarding the latter point, laser-based measurement techniques have been used.
Being purely optical and thus non-intrusive, they have the advantage of not perturb-
ing the observed process in any manner. In a first step, Laser-Doppler Velocimetry
(LDV) has been employed in the entry section of the zigzag channel (Fig. 5). In this
manner, proper inflowboundary conditions have been obtained formean velocity and

Fig. 4 Dependency of
average vertical velocity
component in the channel
(Uz , blue-filled circles) and
pressure loss through the
channel (�p, red plus signs
and green circles, obtained to
check the repeatability of the
measurements) on
temperature T
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Fig. 5 LDV measurement
planes with vectors
indicating the measured,
time-averaged magnitude of
the z-velocity (vertical, or
axial) component Uz at the
sampling points, for a fan
speed of 0.35 Vmax. The
corresponding magnitude is
also shown as colour field in
the corresponding plane

turbulence intensity. Those form the basis for all simulations relying on the Unsteady
Navier-Stokes Reynolds-Averaged (URANS) equations, discussed in the next sub-
section. Using this experimental information as boundary conditions, it becomes
possible to compute only the zigzag channel itself, excluding the fan section and
the coarse fraction (i.e., bottom) container from all further simulations. Since the
employed installation is large, this is important to limit the volume of the simulation
domain and, therefore, the necessary number of discretisation cells, allowing a better
resolution and/or shorter computational times.

In a second step, the focus has been mainly set on Particle Image Velocimetry
(PIV). Note that such PIV measurements are very challenging in our pilot-scale
apparatus, since many difficulties must be met: large-scale system, leading to mea-
surements several meters above ground level; related safety issues (laser protection);
very complex geometry; limited optical access (a large part of the channel had to
be reconstructed out of high-quality acrylic glass to enable laser-based measure-
ments); very dusty environment; strong vibrations. Most PIV studies documented
in the scientific literature investigate academic configurations under well-controlled
conditions, very often in a dedicated optical laboratory. In the present case, PIV
measurements must take place in a very large experimental hall hosting more than
10 different experiments—sometimes running simultaneously.

The employed PIV setup is shown in Fig. 6. The acquisition of images at 5 Hz
was carried out for a variety of process conditions.

By analyzing the obtained PIV images, a variety of information can be obtained.
Both instantaneous and average velocity fields have been derived, as shown in Fig. 7.
Additionally, the dominating features of the vortical structures found in the channel
have been identified. Finally, information is also obtained regarding turbulence inten-
sity and the main frequencies of the fluctuations observed in the channel. This first
investigation is helpful to identify key features of the complex and highly unsteady
turbulent air flow within the zigzag channel.
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Fig. 6 Viewof the PIVhardware around the zigzag channel (left). Zoomon the PIV camera imaging
the calibration target within the channel (centre). Laser light-sheet used for PIV (right)

Fig. 7 Exemplary PIV images within the zigzag channel: instantaneous (left) and average flow
field with recirculation zone (right) at the same location

3.3 Numerical Investigations Regarding the Turbulent Air
Flow

In parallel to these first experimental investigations, a large number of numerical
simulations based on Computational Fluid Dynamics (CFD) have been carried out,
first considering only the gas flow. For all these simulations, the exact geometry
of the installation has been taken into account and used as a basis for discretisa-
tion. First simulations considered the whole system starting at fan outlet. This leads
unfortunately to a very large gas volume; for this reason, a satisfactory resolution
could not be achieved with reasonable computing times. In order to solve this issue,
the LDV measurements described previously have then been used systematically as
boundary conditions. In this manner, only the zigzag channel itself needs to be taken
into account in the numerical simulation, reducing drastically computational times.
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Fig. 8 Instantaneous velocity field obtained by URANS simulations in one segment of the ZAC
under identical conditions and resolution for different turbulence models: standard k-ε (left), k-ω-
SST (center), and SAS (right)

The flow in the zigzag channel is highly turbulent. Considering the complexity of
the geometry and of the resulting flow features, high-fidelity simulations like direct
numerical simulation (DNS)or large-eddy simulation (LES)would be recommended.
However, DNS is simply impossible for this configuration; a single LES simulation
would be acceptable, but systematic studies involving additionally particles are again
beyond reach. The only approach allowing many different simulations relies on the
unsteady RANS equations. As a consequence, in a second step, the impact of the
turbulence model used in all further URANS simulations has been assessed. During
the course of this 6-year research project, URANS simulations have been carried out
using different versions of the industrial software ANSYS-Fluent, STAR-CCM+,
or OpenFOAM, depending on license availability and on the proposed models. As
a matter of fact, no relevant difference has been obtained among these different
software solutions when using similar resolution and models. On the other hand, the
impact of the employed turbulence model was found to be extremely high. As an
illustration, Fig. 8 shows instantaneous results obtained in the same segment of the
channel with the same grid resolution and at the same time with three different, well
established turbulence models: standard k-ε, k-ω-SST (Shear Stress Transport), and
SAS (Scale-Adaptive Simulation).

These turbulent flow simulations revealed that the standard k-ε model does not
lead to sustained unsteady features; after computing about 1 s of physical time, a
steady solution without any fluctuation is established within the channel, which is in
contradiction to the experimental observations. Using now the k-ω-SST model, only
veryweak periodic fluctuations involving a single large-scale vortex pair are observed
in the corner of the channel; again, this behavior does not coincide with experimental
measurements. Only the SASmodel is able to deliver a highly unsteady velocity field
involving a number of small-scale vortices, in qualitative agreement with experimen-
tal observations. Unfortunately, the SAS model (or equivalent formulations) are not
available in all simulation platforms yet; additionally, these models come in general
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with a noticeably higher computing time, since finer grids and smaller timesteps are
required to get properly resolved features. Further studies will be necessary before
getting final statements regarding the recommended URANS turbulence model for
the ZAC.

3.4 Experimental Investigations Regarding the Particles

After having properly characterized the turbulent air flow, further experimental inves-
tigations elucidated the behavior of the particles during the separation process in the
ZAC. In order to avoid any perturbation of the system, optical measurements have
been again preferred, this time relying on shadowgraphy. This means that a back-
ground illumination is employed, and the shadows of the particles on the camera
image are post-processed to get a variety of information, like particle number density,
particlemovement, particle velocity (using consecutive images), andpossibly particle
shape and orientation. The main findings of these measurements have been docu-
mented extensively in [18]. Apart from delivering useful information regarding the
local particle velocity at different levels within the zigzag channel, this investigation
also revealed the main characteristic particle movements, as shown in Fig. 9.

In particular, the following conclusions can be drawn from these measurements:
the dominating motion for particles flowing downward is a sliding motion along the
bottom wall of the channel; the flow separation found behind each channel bend
is of central importance to explain particle trajectories, increasingly so for higher
flow-rates; collisions of particles with other particles or with the channel walls play a
prominent role to understand the non-homogeneous distribution of particle number
density; the upwardmovement of the particles is dominated mainly by the features of
the air flow and is more complex than the downward movement. These observations
are essential to develop proper theoretical models able to describe particle separation
with sufficient accuracy.

Fig. 9 Dominating particle trajectories identified by shadowgraphy along each bend of the zigzag
channel
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3.5 Coupled Simulations of the Particulate Flow Within
the Zigzag Channel

Again, in parallel to the experimental study discussed previously, a variety of numer-
ical simulations have been carried out in an effort to describe the behavior of the
particles within the turbulent air flow found within the zigzag channel. Keeping in
mind, as discussed previously in Sect. 3.3, that it was already extremely challenging
to solve for the turbulent air flowwithout any particles, it is clear that this objective is
extremely ambitious, both regarding the needed computational resources (computing
time and memory) as well as model accuracy (availability of sufficiently accurate
numerical models).

The first attempt in the project was to couple the URANS simulation with a very
simple particle model (Discrete Particle Model, or DPM) using a one-way approach,
considering all particles as points, neglecting any influence of the particles on the
flow, and disregarding all collisions. These very strong simplifying hypotheses are
helpful to reduce computational times; however, it is clear from the start that getting
suitable predictions with such simplifications would be a good surprise. Indeed, and
independently from the employed turbulence model, it has been fully impossible to
get any acceptable agreement regarding process outcome using such simplifications,
as exemplified in Fig. 10. At best, some qualitative trends can perhaps be derived
from such simple simulations; but quantitative predictions appear to be impossible.
More details regarding such comparisons with separation experiments discussed in
the next subsection can be found in [14].

In an effort to improve the accuracy of the numerical predictions, it was decided
to switch from the simple DPM model to the more advanced DEM approach (Dis-
crete Element Model). In principle, URANS-DEM simulations come at a consider-
ably higher numerical cost but open the door for truly coupled simulations between
turbulent flow and particles, and are able to directly take particle collisions into

Fig. 10 Exemplary
comparison of measured
separation sharpness
(denoted “Exp”) and
prediction obtained by
URANS-DPM simulations
using as turbulence model
k-ε, k-ω-SST, or
Reynolds-Stress Model
(RSM) for sand particles
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account. Therefore, it is expected that such numerical predictions should be closer
to the experimental observations. However, depending on the employed software,
such simulations do show also some limitations. Since open-source solutions are of
course advantageous for fundamental research projects, it was decided to perform
these URANS-DEM simulations using the coupled open-source software CFDEM-
coupling [19].CFDEMcoupling combines theC++-basedopen-source software envi-
ronmentsOpenFOAM(forCFD) andLIGGGHTS (forDEM).Hence,CFDandDEM
calculations rely on two separate codes. The interaction between the two calculations
is realized by exchanging relevant information with a predefined timestep. Unfortu-
nately, advanced turbulence models like SAS are not available in CFDEMcoupling.
Looking back at the results of Sect. 3.3, the “best” model currently implemented
there is the k-ω-SST model. Even if our previous study has demonstrated that this
model leads only to weak flow fluctuations involving few large-scale vortices (at the
difference of experimental observations), it had to be kept for the present simula-
tions. In Fig. 11, the numerical prediction for classification based on particle density
is shown, in comparison with experimental data.

In particular, this study revealed an unexpectedly strong influence of the employed
drag model. For Fig. 11, the model of Di Felice [20] has been retained. Switching
to another model, or modifying the poorly-known coefficients appearing in the drag
law, the results become very noticeably different. Using model fitting, it is then
possible to reach in principle a good agreement by comparison with the separation
experiments discussed in the next subsection. However, this is obviously not a satis-
factory solution. This highlights the need for further research regarding CFD-DEM
simulations and all underlying models in the future.
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Fig. 11 Separation function predicted by URANS-DEM using the drag model of Di Felice in
comparison with own experimental results when separating particles based on their density
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3.6 Separation Experiments

During the course of this project, uncountable separation experiments have been
carried out. It is not the purpose of this section to discuss all corresponding results.
Interested readers can find more information in the references listed at the end of
this work, in particular in [21]. Further publications on this topic are currently under
review or being written.

In order to get insight of practical relevance, different kinds of separation
experiments have been documented, in chronological order:

• Separation based on particle size, for a variety of materials (constant air flow);
• Separation based on particle density (constant air flow);
• Separation using a pulsating air flow;
• Separation based on particle shape (constant air flow).

The experiments corresponding to the two last steps are currently being post-
processed, and are thus left for future publications. Separation of sand and gravel
based on particle diameters has been documented in [21]. The results are exemplified
in Fig. 12 for gravel, with particle diameters between 0.1 and 9 mm and a high
sphericity of 0.85, all particles having the same density.

Concerning now density-based separation, the central objective was to investigate
this effect on its own.As a consequence, the diameter and shape of the particles should
be kept identical. Additionally, since opticalmeasurement techniques should be used,
it was desirable to directly encode the particle density in the acquired images. After
a long search, it was finally possible to find suitable particles of different color (see

Fig. 12 Measured total efficiency for the separation of gravel as a function of mass loading (left)
or channel flow velocity (right)
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Fig. 13 Spherical particles used for density-based separation experiments. Each color corresponds
to a different density, with identical diameter. In this picture, the image post-processing software
developed for an automatic recognition of the particles in the coarse-fraction container has been val-
idated by comparison with a manual treatment. Circles correspond to individual particle detections,
circled numbers to particle groups

also Fig. 13), all spherical, with the same diameter and density, at a still acceptable
price, and hence perfectly suitable for corresponding experiments.

4 Development of Reduced Models

All these results have been used to check, validate, and improve models able to
describe particle separation in the ZAC. Of particular importance for this purpose
are:

• The reference data for comparison provided by the separation experiments (for
instance Fig. 12);

• The identification and quantification of typical flow features, necessary to drive
model development (for instance Fig. 7);

• The identification of relevant particle movements (for instance Fig. 9), shown
again in an exemplary manner in Fig. 14;

• The theoretical investigations given for a single particle at the beginning of
this chapter, together with our knowledge regarding the importance of turbulent
particle diffusion.

Combining all these features, and based on the existing literature regarding ZAC
modelling, different approaches can be developed, either building directly on top of
existing models [11, 22], or by proposing new directions.
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Fig. 14 Typical particle movement controlling the classification process

4.1 One-Dimensional Discretized Approach

One original approach regarding the modelling of the process is the one-dimensional
discretisation of the separation process in axial direction, as described schematically
in Fig. 15. This approach has been presented in detail in the PhD Thesis of Hannes

Fig. 15 Balance of particle fluxes around a discretized portion of the zigzag channel at position z
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Mann, “Experimentelle Untersuchung, Modellierung und dynamische Simulation
der mehrstufigen turbulenten Partikel-Querstromklassierung” (Otto-von-Guericke-
Univ. Magdeburg, 2016). In principle, it amounts to a discretisation of the zigzag
channel in a (possibly large) number of compartments exchangingmass fluxes of par-
ticles with specific properties through their boundaries. Using an iterative approach,
steady-state conditions can be reached.

Unsteady predictions are in principle possible aswell. Though thismodel is attrac-
tive and could deliver a high accuracy, it requires a good knowledge of many param-
eters and is not well suited for an integration into the central simulation software
DYSSOL. For this reason, alternatives are needed.

4.2 Improving Classical Models

During the course of this investigation, two established models have been revisited.
Of particular importance is the turbulent particle diffusion, being a central control
parameter regarding separation efficiency. Using the model of [11] while properly
fitting the unknown model parameters, a very good agreement can be obtained for
density-based separation, as illustrated in Fig. 16. However, one issue encountered
in this modelling approach, is that the proposed range for turbulent particle diffusion
is in complete disagreement with the experimental observations gained during this
project. It was thus decided to revisit the original model of [22] in the light of the new
experimental findings. This important part of the project is the subject of a publication
currently under review, and will not be described further here in the interest of space.

Fig. 16 Comparison of
model predictions using the
approach of [11] (lines) with
measurement data (symbols)
regarding separation of
gravel particles for different
mass loadings, after fitting of
model parameters
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Fig. 17 Comparison of
model predictions regarding
grade efficiency versus
terminal particle velocity
using a model derived from
[22] (lines) with
measurement data (symbols)
regarding separation of glass
beads, after fitting of model
parameters

As exemplified in Fig. 17, it leads to an excellent agreement with the measurement
data.

4.3 Implementation in DYSSOL

The final step of this project is an implementation of the reduced models into the
central software DYSSOL, derived at the Technical University Hamburg in the group
of S. Heinrich. This has already been carried out for the model derived from [11], as
illustrated in Fig. 18. In this manner, coupled simulations involving zigzag classifiers
can readily be carried out in this context.

Fig. 18 Screenshot fromDYSSOL (left: computation results; right: employed setting) showing the
implementation of the ZAC model derived from the model of Tomas and Gröger [11]
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5 Conclusion and Perspectives

The zigzag air classifier is a device of high practical importance for a variety of
industrial applications. Additionally, the processes controlling separation in the
zigzag channel are extremely interesting from a fundamental point of view, since
they highlight the importance of coupled aspects (modification of the turbulent flow
induced by the particles; particle-particle and particle-wall collisions; particle swarm
effects…). In this combined study, theoretical developments, systematic experiments,
and numerical simulations relying on different approaches have been combined to
elucidate the controlling parameters and to develop reducedmodels, suitable for inte-
gration into simulation platforms like DYSSOL. It appears that, after proper model
fitting, a good agreement can be obtained between measurement data and model
predictions. Nevertheless, the large differences still found between experiments and
simulations reveal the need for further studies before fully predictive numerical
studies of practical systems become possible with standard computational resources.
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“Dynamische Simulation vernetzter Feststoffprozesse” (“Dynamic simulation of interconnected
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Chapter 12
Property Function to Compute
the Dustiness of Powders

Kai Vaupel, Tim Londershausen, and Eberhard Schmidt

Abstract The dustiness of a disperse solid can be understood as a property, which
when handled in a gaseous environment, behaves similar to an aerosol, releasing the
respective particle fraction of given quantity and size distribution. In general, this
release of dust is undesirable because it might result inmaterial loss and often is asso-
ciated with an exposure of personnel involved or represents a risk of environmental
pollution. The dustiness is therefore a product property, which might change along
the process path, for example through comminution, agglomeration, classification or
mixing of solids involved. Property functions which describe time variable dustiness
integrated in dynamic processes as a function of the distribution of particle size,
particle shape, and particle interaction during a certain handling, were determined
as part of this project. For this purpose, experiments with laboratory equipment such
as “free fall in still air”, “moving in a rotating drum”, “dispersion, pressure surges
method”, or “airflow dispersion” were performed at very well defined boundary
conditions and physically based models were established. The prediction functions
were successfully implemented in the flow sheet simulation DYSSOL. These mod-
els will be further used through the introduction of the so called “Fractionated grade
of release”. Together with the description of time-dependent changes of the related
strain-functions (apparatus properties) and rigidity-functions (material properties)
this approach will help to better predict transient processes of dustiness in future.

Nomenclature

c Particle mass concentration [g/m3]
d32 Sauter diameter [m]
E30 Light attenuation after 30 s [1]
Emax Light attenuation maximum [1]
ε Bulk porosity [1]
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H Channel height [m]
K Apparatus specific factor [1]
L Channel length [m]
m0 Mass of the powder sample [g]
m1 Mass of the unused filter [g]
m2 Mass of the used filter [g]
qr(x) Particle size distribution density [m−1]
Qr(x) Particle size cumulative distribution [1]
S Dust release number [1]
t Time [s]
W Channel width [m]
x Particle equivalent diameter, particle size [m]
xi,r Percentile of particle size distribution [m]
X0.8 Moisture content of a sample at 80% relative humidity
X0.9 Moisture content of a sample at 90% relative humidity
XA Moisture content of a sample

Indices

0 Quantity by number
2 Quantity by area
3 Quantity by volume/mass
10 10% percentile
50 50% percentile, median
90 90% percentile
E Experimental
GP Greater particles
i Percentile
mod Modal
P Prognosed
r Type of quantity
R Respirable dust
RD Rotating drum (Heubach)
SD Single drop (Palas)
T Total dust
UNC University of North Carolina



12 Property Function to Compute the Dustiness of Powders 415

1 Introduction

The dust formation tendency (dustiness) of bulk materials can be understood as
release of particle fractions of a special quantity and size distribution into a gaseous
environment given certain handling. Dustiness of bulk materials may change along
the process path, for example, through comminution, agglomeration, classification
or mixing of the solids involved. In general, such release of particles is undesirable
because it might result in material loss, is often associated with personnel being
exposed to it and may cause environmental pollution.

Within the scope of DFG-focus program 1679 “Dynamic simulation of inter-
linked solid matter processes”, empirical formulas describing these processes were
developed by the project group B1 “Property functions for calculating dust forma-
tion tendency of powders”. Dustiness forecast functions were derived from the three
testing methods “single drop”, “UNC dustiness tester”, and “rotating drum”, taking
into account material density, particle mass and size distribution, particle shape and
moisture. By implementing these functions into the DYSSOL flowsheet simulation
framework, dust formation tendencies of simulated products can be predicted within
the flowsheet. Additionally dustiness quantification of powders based on fractional
release rate and established laboratory testing methods was experimentally investi-
gated. These findings were meant to support the work of cooperation partners and
may improve the fractional release model developed recently [1].

2 Experimental Investigations

2.1 Cooperation with Project A1: Influence of Deposit
Thickness on Powder Layer Dustiness

In cooperation with project A1 “Process modeling for dynamic disperse separa-
tion and deposition processes”, maintained by University of Bremen, dynamic layer
growth and layer stability in separation processes of particulate material from fluid
streams was investigated.

For this purpose powder layers of varying thicknesses were generated within an
electrostatic precipitator at the University of Bremen. Filter test materials Pural NF
(bohemite, density 2.47 g/cm3, bulk density 0.51 g/cm3) and Ulmer Weiß XMF
(limestone, density 2.68 g/cm3, bulk density 0.66 g/cm3) were utilized in these tests.
Particle size distrubutions were determined with a Retsch made Horiba LA-950
laser light diffraction measurement unit. Particle size of Pural NF ranges from x10,0
= 1.34 µm to x90,0 = 4.29 µm with the number median x50,0 = 1.98 µm and a
standard deviation of 1.77 µm. Particle size of Ulmer Weiß XMF ranges from x10,0
= 0.57 µm to x90,0 = 2.28 µm with the number median x50,0 = 1.16 µm and a
standard deviation of 0.81 µm. Both materials have a white color.
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Fig. 1 Schematics of the
electrostatic precipitator,
with three wire electrodes
and copperplate anode

The schematics of the electrostatic precipitator are shown in Fig. 1. Dimensions
of the precipitation chamber are length L = 1.2 m, width W = 0.5 m and height H
= 0.3 m.

Particulate test material was dispersed by a K-Tron screw feeder combined with
an air pressure nozzle and homogenized before entering the precipitation chamber.
Inside the chamber three high voltage precipitation wire electrodes are placed along
the center axis, at a distance to the chamber inlet. The distance between the equally
spaced wires was 0.3 m. By using a high voltage supply (70 kV) corona discharge
was created. These charges precipitate particles from the aerosol on the conducting
copperplate. For optical analysis of the deposited particles, three stubswith a diameter
of 20 mm were mounted into the conducting copperplate. They were positioned
lengthwise with respect to the second electrode at a height of 0.15 m. Precipitated
particle layers were examined bymeans of a Keyence digital microscope as shown in
Fig. 2. Examination criteria were thickness and surface morphology of the deposit.
Results of precipitation tests with duration 10 min, 20 min and 30 min are shown in
Table 1. The standard deviation within the deposit thicknesses may be the result of
aerodynamic ripple building, as reported in [2, 3].

Fig. 2 Layer formation after 20 min test duration at 400× magnification for two test dusts

Table 1 Deposit thicknesses at different test durations

Test duration 10 min 20 min 30 min

Pural NF 125.2 µm ± 29.0 µm 169.0 µm ± 47.3 µm 225.3 µm ± 61.8 µm

Ulmer Weiß XMF 93.6 µm ± 17.3 µm 351.8 µm ± 55.7 µm 553.9 µm ± 47.9 µm
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Fig. 3 Schematics of the redispersion dust in a double pipe-system (RDDS)

Resuspension experiments were carried out by means of a redispersion dust in
a double pipe-system (RDDS), connected to a dilution stage and a Grimm 1.108
optical aerosol spectrometer (OPC). Schematics of the RDDS are shown in Fig. 3.

The implementation of a dilution stage between sample collection and the OPC
ensures not to exceed the maximum permissible particle load of the aerosol spec-
trometer. Results of the resuspension experiments are shown in Figs. 4 and 5 for
three particle size fractions. In time zone B the ventilator was running and thus
resuspending the particles. In A and C the ventilator was switched off. As for Pural
NF the influence of the deposit thickness on dust formation tendency for different
particle fractions is clearly recognizable while the resuspension experiments with
Ulmer Weiß XMF where inconclusive.

Similar experiments were made with fly ash to support modeling processes of
project A1.

Fig. 4 Resuspension of Pural NF (10, 20, 30 min deposition time from left to right)
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Fig. 5 Resuspension of Ulmer Weiß XMF (10, 20, 30 min deposition time from left to right)

2.2 Cooperation with Project A3: Agglomeration
in a Fluidized Bed Reactor

In cooperation with project A3 “Spray granulation in a fluidized bed reactor” main-
tained by the Technische Universität Hamburg-Harburg formation of fine particles
due to overspraying were investigated in a Glatt G25 fluidized bed reactor, with a
Grimm 1.108 aerosol spectrometer. The aim of this cooperation was the identifi-
cation and characterization of the dust content within the granulation process. In
particular the occurrence of thermal overspray could be detected. In addition, an
influence of process temperature, layer height of the particle bed in combination
with the use of bottom spray nozzles and dust reduction through the filter cleaning
could be determined.

On the basis of the obtained results it can be confirmed that overspray has occurred
in the processes carried out under the process conditions used. Based on these results,
it was possible to identify the direct formation of fine particles from the solution
within the particle size range 0.3–4 µm. These findings contradict the assumption of
the formation of particles within the size range from 6.5–110 µm, which is based on
previous investigations to characterize the spraying process of the nozzles. However,
it should also be mentioned that the Grimm 1.108 can only be used up to a measuring
range of 20µm. Due to the coarse resolution of the Parsum probe, which is regularly
used for online measurements within the G25, the range of fines between 20 µm and
below 500 µm could not be resolved. The formation of germ particles by spraying
cannot be confirmed or refuted accordingly for this size range.
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2.3 Cooperation with Project A5: Separation by Sieving

In cooperation with project A5 “Development of a dynamic physical basedmodel for
the sieving process” maintained by the Technische Universität Berlin (TUB) emis-
sions of the sieving process of reference test bulkmaterial (RTBM)were investigated,
to generate reference scenarios for computational simulations.

In contrast to conventional laboratory sieving towers, where material is strained
in the ground-parallel X-Y-plane, the in-house development of TUB will strain the
material in vertical Z-direction. The test materials RTBM 1A and 1Bwere developed
by Bergische Universität Wuppertal (BUW) to minimize the difference between
numerical and experimental input data in computational dust release simulations
[4]. One component of the binary powder mixtures consists of 1500 µm diameter
steel balls made of AlSi 420. The second component consists of calcium carbonate,
which was obtained from KSL Staubtechnik GmbH under the trade name Eskal 15.
The particle sizes of the Eskal 15 used range fromx10.3 = 13.5µm to x90.3 = 27.0µm,
the mass median x50.3 being 19.5 µm. RTBM 1A is composed of 95 g steel balls and
5 g Eskal 15. RTBM 1B is formed from 98 g steel balls and 2 g Eskal 15.

Particle immission in the range from 0.3 µm up to 20 µm was recorded at 6 s
sampling rate for 300 s by a Grimm 1.108 optical particle counter. The sampling
inlet was positioned 50 mm above the strained particle reservoir. After preliminary
investigations on a steel wire screen with a mesh width of 0.8 mm, an aluminium
plate was used instead as base in all of the experiments. Vertical straining was car-
ried out at sieving frequencies 3.3 s−1, 6.6 s−1 and 10.0 s−1. Results are shown in
Figs. 6, 7, 8.

Fig. 6 Immission 50 mm
above the reservoir at 3.3 s−1

sieving frequency
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Fig. 7 Immission 50 mm
above the reservoir at 6.6 s−1

sieving frequency

Fig. 8 Immission 50 mm
above the reservoir at
10.0 s−1 sieving frequency

2.4 Cooperation with Project A6: Grinding Aids

In cooperation with project A6 maintained by the Technische Universität Braun-
schweig influences of grinding aids on product dustiness were investigated. Durcal40
limestone supplied by Omya AG, Switzerland was milled for 80 min in a GSM 06
(Siebtechnik GmbH, Germany) vibrating mill, with the addition of 0.1 mass percent
of grinding aid. Purpose of the grinding was to produce limestone paticles with parti-
cle sizes in the lower micrometer range, since they have a wide industrial application.
As grinding aids pure substances Triethanolamin (TEA) (C6H15NO3), Diethyleng-
lycol (DEG) (C4H10O3) and heptanonic acid (C7H14O2) with purities >96% were
added.

The milling process took place in a hermetically sealed steel container with a
volume of 1 L, which was filled to 30% with 6 mm diameter steel balls as grinding
body. Sample size of Durcal40 was 198.1 g [5]. As a reference Durcal40 was milled
without addition of a grinding aid, too. In preparation of the experiments, the lime-
stone was dried for 20 h at 80 °C. In this way, four limestone powders were milled
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from Durcal40. Particle size distribution of the ground powders was investigated by
means of a HELOS laser light diffraction spectrometer made by Sympatec GmbH,
Germany, and a Horiba LA 950 laser light diffraction particle size analyzer made
by Retsch Technology, Germany. Dustiness of the ground powders was investigated
with a single drop apparatus (Sect. 3.2.1) and the UNC dustiness tester (Sect. 3.2.3).

Since dry powders were characterized in dustiness investigation, themeasurement
with the HELOS system was carried out as dry measurement. Therefore the HELOS
diffraction spectrometer was coupled with a RODOS dry dispersion unit made by
Sympatec, and a dispersion pressure of 2 bar was set. For comparison wet dispersion
measurements were made with the Horiba LA 950. Results of both measurements
are shown in Figs. 9 and 10.

It should be noted, that in dry particle size analysis, tightly bound agglomerate
structures are actual depicted as primary particles, since dry dispersion in the air
stream is usually insufficient for complete digestion of the agglomerates in this
particle size range. However, the particle sizes obtained with the HELOS system
will more realistically represent the conditions in the single drop apparatus as well

Fig. 9 Particle distribution
density by mass of dry
dispersion measurement with
HELOS/RODOS
combination for reference
grinding and grinding with
different grinding aids

Fig. 10 Particle distribution
density by mass of wet
dispersion measurement with
Horiba LA 950 for reference
grinding and grinding with
different grinding aids
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Fig. 11 Results of experimental dustiness assessment. a with single drop apparatus and b with
UNC dustiness tester for total suspended particles

as in the UNC dustiness tester than those obtained with the wet dispersion analysis
of the Horiba LA 950.

The average dust release numbers of the experimental dustiness assessments are
shown in Fig. 11. When comparing against Durcal40, which was milled without the
use of grinding aids, it can be seen that the use of grinding aids results in a significant
increase of material dustiness. Particularly noteworthy in this context is the use of
heptanonic acid, which led to the highest dust measurement in both test methods.

2.5 Cooperation with Project A10: Jet Mill

In cooperation with project A10 “grinding with a jet mill” maintained by the Uni-
versity of Erlangen dustiness of jet mill grind material was investigated. Soda-lime-
silica glass beads (SiLibeads Solid Micro Glass Beads) and Nabalox® calcinated
alumina for grinding (>99.6% Al2O3) were milled in the jet mill at different process
conditions. The obtained particle size distributions of the ground substances shown
in Figs. 12 and 13 were measured in water at the University of Erlangen with a
Mastersizer 2000 made by Malvern Panalytical.

Based on the material-specific parameters density, porosity and particle size dis-
tribution of the SiLiBeads and Nabalox®, a dustiness potential prognosis was carried
out according to [6] for the rotating drum apparatus. The results of the prognosis are
shown in Table 2 together with supplementary laboratory dustiness analysis with the
rotating drum method.
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Fig. 12 Cumulative particle
size distribution by mass of
the investigated
Soda-lime-silica glass beads

Fig. 13 Cumulative particle
size distribution by mass of
the investigated calcinated
Alumina

Table 2 Comparison between prognosed and measured dust release

Material Bulk density/
g cm−3

Porosity Milling
parameter

Prognosed dust
release number
SRD,P

Experimental
dust release
number SRD,E

SiLiBeads 282.4 0.89 feed 109 39

SiLiBeads 205.6 0.85 7500 rpm, 3 bar 232 996

SiLiBeads 188.9 0.86 12500 rpm,
3 bar

202 505

Nabalox® 245.3 0.93 feed 325 658

NabaloxÞ 179.9 0.93 12500 rpm,
3 bar

112 79
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Referring to Table 2, it can be seen that the predicted dustiness tendencies deviate
significantly from the measured dust releases. This indicates, that the test materials,
that underlie the prediction formula used, do not adequately represent the dusting
properties of the investigated materials.

3 Development of Dustiness Forecast Functions

3.1 Introduction

At Bergische Universität Wuppertal dustiness forecast functions based on experi-
ments with single drop method, rotating drum method and the UNC dustiness tester
were developed [6]. These prognosis functions will allow estimations of dust forma-
tion tendency by means of distribution and material specific parameters for dry and
moist materials and are implemented into the newly developed DYSSOL flow sheet
simulation [7].

3.2 Testing Methods

3.2.1 Single Drop Method

To simulate filling processes of bulk material a laboratory scale single drop testing
method is used (see also Fig. 14). After opening a trapdoor, a 30 g powder sample falls
through a 0.5 m long pipe into the measurement chamber. Here collision with and
sedimentation on the chamber bottom occurs. By logging the extinction of two laser
light sources the time dependent development of dust emission can be monitored.

Fig. 14 Schematics of the
single drop testing method
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The dustiness number SSD is derived from the maximum attenuation of light EMAX

and the light attenuation E30, which is recorded 30 s after the drop of the sample
(Eq. 1).

SSD = EMAX + E30 (1)

3.2.2 Rotating Drum Method

Tosimulatemixing andfillingof powders, the rotatingdrum testingmethod according
to DIN 55992-1 is used. Schematics of the method are shown in Fig. 15. A powder
sample (100 g) is placed in the rotating drum of the apparatus. By rotation with a
fixed rate of 30 rpm the sample is simultaneously mixed, dropped and dispersed as
shown in Fig. 16. An axially induced air flow, generated by the service modul will
transport the released particles out of the rotating drum, beyond a separator for coarse

Fig. 15 Schematics of the rotating drum testing method according to DIN 55992-1

Fig. 16 Demonstration of
the rotating drum method
sample straining
(counterclockwise rotation)



426 K. Vaupel et al.

Fig. 17 UNC dustiness
tester

particles onto a filter. The amount of released and transported particles is determined
gravimetrically after a sampling time of 5 min and an overall air flow of 100 L.
Calculation of the dust release number SRD is based on Eq. (2); m0 is mass of the
powder sample, m1 is mass of the unused filter, m2 is mass of the used filter.

SRD = 105 · (m2 − m1)/m0 (2)

3.2.3 UNC Dustiness Tester

The UNCDustiness tester shown in Fig. 17 was developed at the University of North
Carolina to simulate the dust dispersion by a single blast of compressed air. This batch
device has been specifically designed for the testing of potential hazardous or costly
powders. Therefore the sample mass is limited to 10 mg per test. The dispersed
powder will be collected by two samplers, to quantify gravimetrically the respirable
and total dust that was generated with a given energy input.

The calculation of the dust release number SUNC for respirable (index R) and total
dust (index T) is based on Eqs. (3) and (4); m0 is mass of the powder sample, m1 is
mass of the unused filter, m2 is mass of the used filter.

SUNC,T = 100 · (6.2/2.0) · (m2,T − m1,T
)
/m0,T (3)

SUNC,R = 100 · (6.2/4.2) · (m2,R − m1,R)/m0,R (4)
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3.3 Materials

Nine different test materials as listed in Tables 3 and 4 and depicted in Fig. 18 were
used to develop empiric dustiness forecast functions for the methods described in
Sect. 3.2. Care was taken in the selection process to ensure, that the selected test
materials will cover a wide range of material- and distribution-specific properties.
For each material sorption isotherms were derived from experiments with a climate
test chamber [6].

Table 3 Test materials [6]

Material Main
components

Density, g/cm3 Bulk density,
g/cm3

Porosity

Arizona test dust A1 >98% SiO2 2.54 0.53 0.79

Arizona test dust A2 >98% SiO2 2.62 0.74 0.72

Arizona test dust A3 >98% SiO2 2.61 0.84 0.68

Arizona test dust A4 >98% SiO2 2.63 1.10 0.58

Pural NF F1 77% Al2O3,
22.998% H20

2.35 0.50 0.79

Ulmer Weiß
XMF

F2 99.2% CaCO3,
0.4% MgCO3,
0.25% SiO2,
0.1% Al2O3
0.035% Fe2O3

2.68 0.69 0.74

KSL 14027
construction site
test dust

Bau ca. 25% SiO2,
ca. 25% Ca(SO4)
½ H20
ca. 25% brick
dust
ca. 25% Portland
cement

2.80 0.85 0.70

ECE R-45 P1 ca. 88% SiO2,
ca. 10%
charcoal-dust
ca. 2% NaCMC

2.30 0.80 0.65

KSL 11047 P2 37 … 72% SiO2,
7 … 14% Al2O3,
3 … 6%
CaMg(CO3)2
2.5 … 40%
viscose rayon
2 … 4% Fe2O3
1.35 … 10%
cotton fiber

2.08 0.27 0.87
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Fig. 18 Scanning electron micrographs of nine test material (cf. Tables 3 and 4)

3.4 Forecast Functions

For each testing apparatus several forecast functions were developed, taking into
account relative humidity, particle distribution parameters as mass median x50,3 and
Sauter diameter d32. In case of the single drop method prognosis functions the two
attenuations of light Emax and E30 are predicted by the equations given in Table 5,
using the apparatus specific calculation factor KSD as shown in Eq. (5).

KSD = (2/3) · (d32/μm) · (ε/(1− ε)) · (x50,2 − x10,2
)
/x50,2 (5)

ε is bulk porosity; d32 is Sauter diameter; xi,2 is a percentile of the particle size
distribution by area.
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Table 5 Prediction functions for single drop method under different environmental conditions [6]

Environmental conditions Forecasting functions

20% relative humidity Emax = −14.32 + 30.98 log KSD
E30 = −11.80 + 21.49 log KSD

50% relative humidity Emax = −19.19 + 29.14 log KSD
E30 = −14.10 + 17.79 log KSD

80% relative humidity Emax = −20.00 + 29.30 log KSD
E30 = −14.04 + 17.33 log KSD

Low vacuum Emax = −14.76 + 24.71 log KSD
E30 = 8.88 + 14.91 log KSD

Table 6 Prediction functions for rotating method, XA =moisture content of material sample, X0.9
= moisture content of a material at 90% relative humidity [6]

Dry bulk material log SRD,dry = 3.11 – 0.67 KRD

Wet bulk material log (SRD,wet /X0.9) = 2.21 (XA KRD)−0.14

In case of rotating drum method, the apparatus specific calculation factor KRD is
based on Eq. (6). Mean prediction functions for dry and wet bulk materials are given
in Table 6.

KRD = (
d32,GP/ d32

) · (1/ε) · x50,3/
(
x90,3 − x10,3

)
(6)

ε is bulk porosity; d32 is Sauter diameter; d32,GP is Sauter diameter taking into account
all particles larger than 2.9µmfor dry bulkmaterial and 3.9µmforwet bulkmaterial;
xi,3 is a percentile of the particle size distribution by mass.

In case of the UNC dustiness tester only the amount of total dust is predicted (see
Eq. (7) and Table 7).

KUNC = (3/2) · (μm/ d32) · ((1− ε)/ε) · (d32,GP/ d32
) · x50,3/

(
x90,3 − x10,3

)
(7)

ε is bulk porosity; d32 is Sauter diameter; d32,GP is Sauter diameter taking into
account all particles larger than 8.8 µm (for dry bulk material); xi,3 is a percentile of
the particle size distribution by mass.

Table 7 Total dust prediction functions forUNCdustiness tester,XA =moisture content ofmaterial
sample, X0.8 = moisture content of a material at 80% relative humidity [6]

Dry bulk material log SUNC,dry = 0.93 exp (−0.15 KUNC)

Wet bulk material log (SUNC,wet XA) = 0.50 + 0.44 (ε XA X0.8 (x90,3 − x10,3)/(x90,2 −
x10,2))
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Fig. 19 DYSSOL flowsheet simulation schematics [7]

3.5 Implementation in DYSSOL

Releasing particles does not only represent loss of material and thus a cost factor
but also a potential threat to human health as well as to the environment. Because of
this it may be relevant to know the dust formation tendency of a simulated substance
for classification issues according to the European Chemicals Regulation REACH
(Registration, Evaluation,Authorization andRestrictions ofChemicals). InDYSSOL
dynamic flow sheet [7], dust formation tendency prognosis based on single drop,
rotating drum and UNC dustiness tester are part of simulation results. The dustiness
forecast module is an integral part of the simulation core (cf. Fig. 19), connected to
relevant simulation results obtained from the product stream leaving the simulated
units.

4 Further Research

The prediction functions offer development potential beyond their use in DYSSOL,
for instance in the development of a more efficient particle reservoir model using
Exner equation based sediment mass balance approach. Such a reservoir model may
improve the performance of the recently published fractionate release model [1] and
other geoscientific dust release models.

Another application of such a reservoir model may be in further development
of the adhesion-based assessment of the dustiness of powders and binary powder
mixtures, as reported by Parey [8]. Irrespective of such development options fur-
ther experimental research is needed in case of fractionate release of particles from
strained reservoirs as for instance powders grinded with grinding aids.
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Chapter 13
Morphological Modelling and Simulation
of Crystallization Processes

Simon Schiele, Tijana Kovačević, and Heiko Briesen

Abstract The shape of crystals is an important property that has a great impact on
their physical behavior. Examples are flowability, dissolution, and growth kinetics.
Still, crystals are often described by a single size parameter. One reason is, that
today shape information is still hard to measure. Additionally, only few modeling
techniques exist that are able to describe the shape of crystals. In this chapter, these
issues are addressed by accurately describing crystals with mathematical models,
making the full morphological structure of crystals and their agglomerates accessi-
ble by stereoscopic and three-dimensional (3D) imaging techniques and using these
methods to model crystallization while considering the complex shape of the crys-
tals. In addition, artificial neural networks (ANN) are used to classify whether pro-
jections of crystals show single crystals or agglomerates. As a final step, a case study
of a model of a mixed suspension mixed product removal (MSMPR) crystallizer
and a hydrocyclone are integrated into the software platform Dyssol and used to
dynamically simulate a crystallization process with recycling stream.

1 Introduction

Crystallization is an important process step in many pharmaceutical, chemical and
food processes. It is used to purify and formulate solid products. After crystallization
the products are initially suspended in the crystallization mother liquor. Subsequent
process steps then deal with the separation of the valuable solids from the rest of
the suspension. Such processes are typically centrifugation, filtration, and/or dry-
ing. All of the mentioned downstream processes and crystallization itself are highly
dependent on the morphology of the particles. The morphology also affects physical
properties such as dissolution rates that are particularly interesting for pharmaceutical
substances.
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Commonly, crystals are still described with only few size parameters (such as
a diameter or other characteristic lengths). Such descriptions neglect the complex
shape that crystals may express. It is not uncommon that crystals have e.g. needle-
like shapes or form even more complex structures through agglomeration that are
impossible to describe with only one or even a few size parameters.

Today, morphology of crystals is gaining increasing attention not only as a quality
criterion, but also as process parameter. Therefore, it is of great interest to describe
the morphology of crystals correctly in order to be able to model crystallization with
correct consideration of crystal morphology.

The aim of this article is to summarize the efforts that was made in context
of a collaborative research project (DFG SPP 1679) towards correct description of
crystals and crystallizationmodeling [1–9]. Suchmodels could then be used in future
to optimize and control crystallization processes with respect to downstream process
performance and product quality.

2 Mathematical Description of Crystals

This section summarizes the basic mathematical crystal representation used in Rein-
hold et al. [9] and Kovačević et al. [1, 2, 4], which all used potash alum as an
exemplary substance. The crystal structure of potash alum is shown in Fig. 1 along
with the corresponding miller indices of their faces.

A common way to describe the form of facetted crystals is by Miller indices
of their specific faces. This description however, brings two major drawbacks for
morphological modeling. First of all, theMiller indices describe each face of a crystal
independently and they do not contain any size information. The second drawback

Fig. 1 Crystalline structure of potash alum crystals according to Ma et al. [10]. The crystals have
different morphologies depending on which faces are most expressed. (Reprinted with permission
from [8], Copyright (2015) Elsevier)
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is that only ideal crystals can be described. More complex crystal shapes that may
result from abrasion or agglomeration cannot be described. Therefore, alternative
descriptions are explained here.

In mathematical terms, facetted convex shapes consisting of points x in space can
be described by H-representations [11]:

C(h) = {x|Ax ≤ h} (1)

whereA is amatrixwith normal vectors of facets in space ai, and h is a vector with the
length of these vectors. TheH-representation describes all points that are within the
facets defined byA and h. For crystals, rows ofA can be interpreted as normal vectors
of the faces of such a crystal. A is therefore specific for each crystal morphology.
The vector h then describes the exact shape and size of an ideal crystal of form A.
Herein, the dimension of x is either two or three dimensional (2D/3D).

For crystals it is common that symmetry conditions apply. To reduce the dimension
of h, one can, therefore, introduce a crystal model-specific group mapping matrix
MhC→h [11]

h = MhC→h · hC (2)

This operation can also be formulated in a reverse way with the pseudo inverse
matrixM+

hC→h [11]

hC = M+
hC→h · h (3)

These constrained crystal models are called constrained HC-representations
[11–13].

Because H-representations only allow the description of ideal single crystals,
the representation is extended so that also more complex shapes can be described.
Abraded crystals, for instance, may not have sharp edges that would be described by
anH-representation, but may appear with round edges and corners. Agglomerates on
the other hand may be concave and can therefore also not be represented by simple
H-representations.

For the description of rounded particles, an ideal kernel crystal (index k) was
combined with a sphere. The combination of sets in general can be performed by the
so-called Minkowski addition [14]. The combination of i sets S1...i can be written as

S =
∑

Si =
{∑

xi|xi ∈ Si∀i
}
. (4)

The addition of an ideal kernel crystal C(hk) and a sphere B that has the radius
λr [11] is accordingly written as

C(hk , λr) = C(hk) + λrB. (5)
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Fig. 2 3D models with increasing roundness obtained by the addition of octahedral potash alum
kernel crystals with spheres. (Reprinted with permission from [9], Copyright (2015) Elsevier)

A graphical representation of Eq. (5) for six different radii and an octahedral
potash alum kernel crystal can be seen in Fig. 2.

The representation as a 3D body allows the calculation of the volumeμvol, surface
areaμsur, and mean widthμmw from the corresponding measuresμvol

k ,μsur
k , andμmw

k
of the kernel crystal and the radius of the sphere λr [14]:

μvol = μvol
k + μsurλr + 2πμmw

k λ2
r + 4

3
πλ3

r (6)

μsur = μsur
k + 4πμmwλr + 4πλ2

r (7)

μmw = μmw
k + 2λr (8)

For 2D bodies only μsur
k , and μmw

k can be calculated.
Agglomerates can be described by anH-representation for each primary crystal.

Additionally, information on orientation and location of the center of mass of the
primary crystals is needed. Details are described in Sect. 2.3.

Another way to describe crystals is by a matrix V that contains vectors that point
to the vertices of a crystal.

V = [
v1, . . . , vnV

]T
(9)

Kovačević et al. call this a V-representation [1].
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2.1 Description of Crystal Projections and Roundness
Measurement

A fundamental question in crystal or particle representation is, how to deal with
roundness instead of sharp edges and corners. A framework in this respect was
introducedbyReinhold et al. [9]. The roundness of a crystal canbeused as aparameter
that describes howmuch attrition occurs in a process. To achieve this, first 3D crystals
were modeled and then projections of these models were generated. They were used
to validate the experimental procedures that are described in the end of this section.
The comparison of the exact roundness obtained from 3D models and the roundness
obtained from 2D projections of the model crystals allowed an evaluation of how
well the roundness can be measured when only 2D information is available and how
non-ideal images affect the roundness measurement. This is particularly interesting
because it is currently not possible to obtain 3D images of crystals in real time and
on-line analysis of particulate systems is often done by 2D image analysis.

To define the roundness of a particle, several definitions exist in the literature [15–
18]. Here, a new descriptor for roundness μB was defined so that it can be calculated
from the geometric properties of the Minkowski addition [9]. A spherical crystal
which is by definition perfectly round, can be described by Eq. (5) with hk = 0
and hence μmw = 2λr results from Eq. (8). A crystal that has sharp edges and is
therefore as little round as possible for a given kernel crystal, is described by Eq. (5)
with λr = 0 and hence μmw = μmw

k results from Eq. (8). To reflect this concept of
roundness the roundness parameter μB is written as

μB = 1 − μmw
k

μmw
= 2λr

μmw
k + 2λr

(10)

Note that it can be calculated for a body of any dimension, in this case for 2D and
3D bodies equivalently.

3D crystals with roundness between 0 and 1 and defined mean width were sim-
ulated using Eq. (5). A potash alum model with 26 faces was used for the kernel
crystal model (see Fig. 3 left-hand side). This gained numerous crystal models with

Fig. 3 Rendered 3D model of a potash alum crystal model with 26 faces (left), a 2D projection of
this crystal (middle) and the same 2D projection to which blur was added (right). (Reprinted with
permission from [9], Copyright (2015) Elsevier)
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known, exact measure of their roundness and mean width (grey line in Fig. 2). From
each body, multiple 2D projections Πp were generated and blur was added to the
images, as described in [9] (see Fig. 3 middle and right-hand side). Finally, two addi-
tive roundness parameters were calculated for each particle from its 2D projections
with the sharp and blurred 2D images (black lines in Fig. 2). The additive roundness
estimates the roundness parameter of the real 3D particle from its nproj projections:

μB ≈ 1 −
μmw − ∑

p
1

nproj
λr,Πp

μmw
(11)

In the following, it is described how μmw and λr,Πp were obtained from nproj
projections of a particle in order to be able to calculate the roundness μB according
to Eq. (11). The first step was to find a 2D H-representation of each individual
projection. It was found by Hough transform [19] performed as follows. First, the
center of mass of a projection was determined and considered as the center of a
Cartesian coordinate system. Lines on the border of a projection can be described
by an angle ϕ and distance from the center of mass ρ. The vector (cosϕ, sin ϕ)T

describes a normal vector of such a line. Then any point on the line x is described
by the scalar product

ρ =
〈
x,

(
cosϕ

sin ϕ

)〉
(12)

The pixels on the outline of a projectionΠp were considered as data points. ϕ and
ρ were discretized in pieces ϕj and ρ l . Each point x could be described by several
lines defined by Eq. (12) and a combination of ρ l and ϕj. A bin value was introduced
for each combination of ρ l and ϕj that represented how many data points x were
described by such a line. This yielded a grey scaled image with the coordinates
0 ≤ ϕi ≤ 2π and ρmin ≤ ρ l ≤ ρmax (see Fig. 4). High bin values (represented as
dark points in Fig. 4) indicate coordinates which describe many points of the outline

Fig. 4 Bin values of a
Hough transform. (Reprinted
with permission from [9],
Copyright (2015) Elsevier)
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of a projection. In other words, these lines represent long sections of the outline. The
corresponding distance ρ l and normal vector

(
cosϕj, sin ϕj

)T
were hence potential

values for anH-representation.
To reduce the number of outlines, only local maximum bin values (indexm) were

considered as detected lines. They were described by the vectors

ac,Πp,m = (cosϕm, sin ϕm)T (13)

that make up the matrixA of a 2DH–representation. The face distances hwere given
by all ρm. Like this, a 2D H–representation of a projection was found.

To describe not only the kernel crystal but also the roundness, a disc with radius λr

was added to theH-representation using theMinkowski addition. The size of this disc
was determined by solving aminimization problem: The experimental data contained
the outline of a projection. This outlinewas also described by theMinkowski addition
of the previously found H–representation and a disk of unknown radius λr (Eq. 5).
An appropriate disc radius was then found by minimizing the distance between these
two lines. A detailed description is given by Reinhold and Briesen [9].

From the Minkowski additions of each projection Πp, a mean width μmw
Πp

was
obtained according to Eq. (8) and used to calculate the additive roundness defined in
Eq. (11).

It can be seen in Fig. 5, that even for crystals that had perfect edges (set μB = 0)
a roundness of 0.17 was measured. This was caused by the discretization of the
boundary points during image analysis. This error was even more pronounced for
blurred images. As it can be seen in Fig. 3 that corners of the projections were not
as expressed as in the sharp images. For very round particles, 2D analysis yielded
lower roundness than one should expect (c.f. Fig. 5). This was caused by the fact
that small line segments fitted well to a hand-full of boundary points, hence faces

Fig. 5 Simulated roundness
(solid gray line) and the
roundness obtained based on
ideal (dashed black line) and
blurred (solid black line) 2D
images. (Reprinted with
permission from [9],
Copyright (2015) Elsevier)
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were found and the kernel crystal never fully disappeared. Overall, the roundness of
particles can be measured well for roundness values below 0.85.

Going one step further, stereoscopic 2D images of real abraded potash alum crys-
tals were obtained on-line from suspension with the stereoscopic imaging method
described by Schorsch et al. and Reinhold et al. [9, 20]. Stereoscopic images were
taken of potash alum crystals in a saturated, agitated solution at three points in time
(start of the experiment, two hours and five hours after the start). Both themeanwidth
and the additive roundness of the particles were calculated with Eqs. (14) and (11). A
high stirring rate (1800 rpm) was used so that excessive abrasion occurred. Because
the crystals were suspended in a saturated solution, neither growth nor dissolution
was expected. Stereoscopic imaging as performed here yielded two orthogonal pro-
jections of a particle. For each of these projections a Minkowski addition was found
by appropriate image analysis as described above.

The mean width of the real 3D particle was estimated by the weighted addition
of the mean widths of the two obtained stereoscopic projections Πp .

μmw ≈
∑

p

1

nproj
μmw

Πp
(14)

Figure 6 shows that at the beginning of the abrasion experiment the crystals were
large (mean width between 450 and 850 μm) and have sharp edges (roundness
around 0.3). With increasing experiment time, roundness increased (up to 0.7) and
the mean width decreased (250 μm). Following the theory of Gahn and Mersmann

Fig. 6 Measured roundness of real crystals over their measured mean width at different time of the
crystallization experiment. + indicate samples obtained at the start of the experiment, x after two
hours and o after 5 h. (Reprinted with permission from [9], Copyright (2015) Elsevier)
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[21], abrasion occurs through impact of crystals on the stirrer. This impact causes
breakage predominantly at corners and edges of the particles [22, 23]. This explains
that roundness increased and the mean width of the particles decreased through
intensive agitation.

In conclusion, limitations of the measurement of roundness from 2D projections
of particles were revealed and quantified. Further, a new method was demonstrated
that is able—under the previously mentioned limitations—to quantify the particle
roundness and mean width during crystallization by using stereoscopic imaging in
combination with appropriate image analysis.

2.2 Shape Identification of 3D Single Crystals

Similar image analysis concepts as described in the previous subsection can be
applied to 3D images of crystals. 3D images can be obtained by micro-computed
tomography (μCT) as described by Kovačević et al. [1]. This imaging technique
allows capturing the full shape information of particles. However, images are much
harder to obtain.

The goal here was to find faces of measured crystals and fit them to a pre-
defined crystal model. Here again, the image analysis involved face identification
using Hough transform. Subsequently face normals of the predefined crystal mod-
els—given by a crystal specific matrix A—were matched to the faces found in a
3D image. The main difference to the problem in Sect. 2.1—except for the higher
dimensionality—is that a crystal model was predefined and then fitted to the 3D
images. The goal was to find faces that appear in a measured crystal.

In a first step, it was assumed that a 3D image of a crystal is given as a set of regu-
larly distributed surface points. This data set was extracted fromμCTmeasurements.
A 3D polar coordinate system was chosen so that it originated from the arithmetic
mean of these surface points. In this coordinate system face normal vectors were
described by an azimuthal angle θ and a polar angle φ. Distances from the origin
were described by ρ. Both angles θ and φ were then discretized using the HEALPix
algorithm [24].

Figure 7 visualizes the HEALPix discretization of a unit sphere with 12 principal
elements (solid outline), with N 2

side = 16 subelements of equal area (dashed outline).
For calculations in this work Nside was chosen as 20. Each of these 12 ·N 2

side subele-
ments were represented by a potential face normal vector and face distance. The face
distance was also discretized. To apply the Hough transform, each grid point that
was defined by θi, φj and ρl was assigned a bin value b

(
θi, φj, ρl

)
that represented

the number of surface points within it. To obtain the directions of the face normals
it was sufficient to define one bin value b̃

(
θi, φj

)
per subelement:

b̃
(
θi, φj

) = max
ρ

b
(
θi, φj, ρl

)
(15)
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Fig. 7 HEALPix
discretization of a unit
sphere [25]. (Reprinted with
permission from [1],
Copyright (2014) American
Chemical Society)

Local maxima of this function represent orientations of face normals. A typical
function with its local maxima is shown in Fig. 8. Such local maxima were found by
a non-maximum suppression search [19, 26]. This algorithm was slightly adapted to
be used for points on a sphere as described by Kovačević et al. [1].

The points of the local maxima led to measured face normals that can be written
as

nF
(
θi, φj

) = [
cos(θi) sin

(
φj

)
, sin(θi) sin

(
φj

)
, cos(θi)

]
(16)

in a Cartesian coordinate system. All the measured face normals were summarized
in the matrix AF.

The next challenge was to match the face normals of a crystal model A to these
measured face normals. This task was subdivided into three individual problems.
First, the measured vectors may had different order in AF than their corresponding
model vectors in A, and A may contained faces that were not measured in a real
crystal because faces had disappeared e.g. due to fast growth. Second, the measured
matrix AF may contained faces that were not included in the crystal model. This may
had happened due to agglomeration of breakage of the real crystals. Third, measured
face normal vectors needed to be rotated to point in the directions of the model.

The first problem was solved by defining a mapping matrix SM that permuted the
vectors in A and excluded normal vectors which had no corresponding face in AF.
For the second problem, a filter matrix SD that excluded all faces in AF that had no
corresponding face in Awas defined. For the rotation of the measured into the model
vectors a rotation matrix R was defined. With these definitions, a real crystal was
approximated by a crystal model with
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Fig. 8 Bin values of theHough transform.Red dotsmark localmaxima. (Reprintedwith permission
from [1], Copyright (2014) American Chemical Society)

SD · AF ≈ (SM · A) · RT (17)

The problem to rotate a set of vectors ri into the vectors bi was formulated by
Wahba [27] and solved byMarkley [28] byminimizing the least-square cost function

L(R) = 1

2

∑

i

ωi‖bi − Rri‖2 (18)

We chose to use equal weights ωi that satisfy
∑

i ωi = 1. The rotation matrix R
was calculated from

R = UMWT (19)

Therein, U and W resulted from the singular value decomposition of the matrix
B

B =
∑

i

birTi (20)
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into

B = UDWT (21)

and

M = diag(1, 1, det(U), det(W)) (22)

Provided SM and SD were known, one could solve Wahba’s problem given in
Eq. (18). However, SM and SD were unknown and one could have found a solution
to the problem by testing all possible combinations of SM, SD and R:

L(R,SD,SM ) = 1

2

∑

i

ωi

∥∥(SD · AF)i −
[
(SM · A)RT]

i

∥∥ (23)

This had involved the optimization over a huge parameter space, which is compu-
tationally inefficient. Kovačević et al. [1] developed an algorithm to efficiently solve
this problem and described it in detail. Within the scope of this contribution it is
sufficient to understand that a numerically efficient solution exists that yields R,SD
and SM.

To obtain a description of a measured crystal by a crystal model so far a rotation
matrix, amapping, and a filteringmatrix has been found. The face distances remained
to be determined. This could have been done quite easily by finding the ρl that
maximize Eq. (15) for faces that have been measured. However, for faces that have
grown out of the crystal, and are hence not found in the measurement data, this
does not work. For these cases, the measured data was cut into planar slices that
are orthogonal on a face normal vector, and are therefore defined by ρn

(
θi, φj

)
. The

triangles in Fig. 9 show, that slices inside the measured data contain an outline of the
crystal at distance ρ from the center. The ratio between the number of pixels on the
outline and the area of the convex hull of the outline was then maximized by finding
an appropriate face distanceρ. This principle is illustrated in Fig. 9. Therein the arrow
indicates a normal vector of a face of a potash alum crystal that is not expressed in
the measured data. The triangles represent the outline for a face distance that is too
small, and squares indicate a slice where the mentioned ratio reaches its maximum.

In the last two steps towards a successful fit, it needed to be assured that all
identified faces lied within the crystal model and fulfilled the symmetry conditions
defined by the crystal model. The first issue is illustrated in Fig. 10: If a face distance
was identified to be too long, a face lied outside of the model.

To assure that all identified crystal faces liedwithin the fittedmodel, invalid entries
in the vector hwere identified according to Reinhold and Briesen [11], and Borchert
and Sundmacher [12] and then modified according to

hi = max
1≤i≤nH ,1≤j≤nV

〈
ai, vj

〉
(24)
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Fig. 9 Measured hull of a potash alum crystal with a model normal vector of a face that is not
expressed in the measurement (arrow). Triangles indicate points in a slice that is orthogonal to the
vector and that has a distance that is too small to appropriately describe the face distance. Squares
indicate the length of the normal vector that describes a disappearing face of the crystal. (Reprinted
with permission from [1], Copyright (2014) American Chemical Society)

Fig. 10 Illustration of the problemof faces lying outside of a crystalmodel as discussed byReinhold
and Briesen [11]. An invalid face vector is shown on the right-hand side of the figure. (Reprinted
with permission from [1], Copyright (2014) American Chemical Society)
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where the vector vj represents vertices in the crystal’s V-representation as defined in
Eq. (9).

Finally, symmetry conditions were applied to ensure that all faces belonging to
the same facet group had the same distance to the crystal center. The procedure is
described by Kovačević et al. [1].

As measures how well investigated crystals were fitted, the mean quadratic devia-
tion, dquad, a volume ratio, rvol, and the volume deviation, dvol were introduced. dquad
is a measure to determine how much measured points differ from their fit. Therein
long distances between model and measurement are weighted stronger. The volume
ratio is a measure how well the volume is conserved and the volume deviation is a
scaledmeasure of howmuch the fitted shapemismatches themeasured shape. Details
on how these measures were calculated can be retrieved from Kovačević et al. [1].

The method described in this section enables to fit crystal models to 3D μCT
images obtained from regular potash alum crystals. Results of the fits are shown in
Fig. 11. Irregular particles that resulted from e.g. breakage or agglomeration were
identified by high volume deviations and high quadratic deviations.

In conclusion, the methods that were developed enable face identification in 3D
images. It was described how these faces can be matched to predefined particle
models. The method was applied to the model substance potash alum and it was
shown that single particles can be described with only few parameters by appropriate
crystal models.

2.3 Shape Identification of Crystal Agglomerates

Even more challenging than identifying single crystals is the identification of several
primary crystals constituting a crystal agglomerate. Kovačević et al. [2] presents an
approach how concepts of identification of single crystals can be transferred to the
identification of agglomerates.

Generally, one needs to find all primary particles in an agglomerate and then use
the methods described by Kovačević et al. [1] and in the previous section to model
their structure with individualH-representations. Thus, each agglomerate would be
described by a hand full of H–representations of its primary particles.

To separate agglomerates into their primary particles an algorithm based on
the seeded watershed segmentation and region recombination was developed (see
Fig. 12). The steps defined in Fig. 12 are illustrated with an example agglomerate in
Fig. 13. The first step of the agglomerate segmentation algorithm is to find concavity
points that are an indicator for contact points of primary particles. The 2D approach
of Fernandez et al. [29] and Indhumathi et al. [30] was used and transferred to the
presented 3D problem: A cubic mask was centered at each surface point of the mea-
surement and a concavity value cp was calculated. It was defined as the quotient of
the number of voxels that contain material Nforeground mask and the number of voxels
inside the mask Nmask.
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Fig. 11 Successful fits of regular potash alum crystals. (Reprinted with permission from [1],
Copyright (2014) American Chemical Society)

In measurements with infinite resolution a concave region is identified by a con-
cavity value higher than 0.5, meaning that more than half of the mask is filled.
However, this is not a reasonable threshold for real measurement data. Due to the
discretization of an image into voxels, surfaces appear rough even if they may be
flat in reality. The concavity value also depends on the orientation and size of the
mask. Therefore, the mask edge length was set to 2a+1 where a = 3

√
0.0013Nvoxels.

Nvoxels is the total number of voxels inside a measured agglomerate. The concavity
threshold was then calculated using

ct = 1.2
(2a + 1)2(a + 1)

(2a + 1)
(25)

The factor 1.2 was used to compensate for boundary roughness, different orien-
tations of the masks, and measurement inaccuracies. Finally, concavity points were
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Fig. 12 Algorithm to separate agglomerates into their primary particles. (Reprintedwith permission
from [2], Copyright (2016) American Chemical Society)

identified by the local maxima of all points on the surface that satisfied cp > ct.
This was done by a non-maximum suppression peak search in cube shaped windows
with an edge length of a + 1 [19, 26]. These concavity points were then expanded
to prevent under-segmentation of the following distance transform-based watershed
segmentation. The expansion was done in a way that a hole was drilled into the mea-
sured structure at every concavity point perpendicular to the surface (c.f. Fig. 13b).
For details on the concavity expansion refer toKovačević et al. [2]. Finally, watershed
transform was applied to segment the agglomerate into primary particles. A descrip-
tion of the watershed transform algorithm can be found in the work of Vincent and
Soille [31] and Gonzales et al. [32].

Although the concavity point expansion prevented under-segmentation by the
watershed algorithm (under-segmentation shown in Fig. 13a), it often led to over-
segmentation (Fig. 13c). Therefore, segments that belonged to the same primary
particle needed to be identified and subsequently merged. To achieve this, first neigh-
boring regions were identified. Then small regions that each made up less than 3% of
the total number of voxels were merged with an adjacent region so that the concavity
of the resulting larger region was minimized (Fig. 13e). The concavity of the merged
region was calculated from Eq. (26):
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Fig. 13 Segmentation of an exemplary potash alum agglomerate with the algorithm summarized in
Fig. 12. The images a and c show the difference of the result of the watershed transform when con-
cavities are (c) or are not (a) expanded. Concavities are marked as red stars with their corresponding
masks as black cubes. b shows the agglomerate with expanded concavity points. Image c shows the
result of the watershed transform. In d the boundary voxels that have been identified by the water
shed transform are merged into adjacent regions. In e the small, purple region in d is merged with
the yellow region, f, g show the first and second iteration of the large region merging, so that (g) is
the result of the segmentation algorithm. h shows the rendered measured crystal together with a
successful fit obtained with the methods described in Sect. 2.2. (Reprinted with permission from
[2], Copyright (2016) American Chemical Society)

cr =
∣∣∣∣1 − Ni + Nj

V

∣∣∣∣ (26)

Ni and Nj are the number of voxels of the two regions to be merged and V is the
volume of their convex hull. For details on the exact procedure refer to Kovačević
et al. [2].

After the small regions were merged, it was checked whether merging of large
regions also led to a smaller average concavity of a merged region. Examples are
the combination of the red and orange regions in Fig. 13e and the green and orange
regions in Fig. 13f. While this was done, concavity points were considered. If the
mask of a concavity point included exactly two regions, the merging of these two
regions was forbidden. Another case where merging was forbidden is when merging
would have been allowed according to the first condition, but the concavity value of
a concavity point was increased through merging over some threshold. This could
have been the case if a concavity point contained e.g. three regions. For details on
this procedure again refer to Kovačević et al. [2].

Once an agglomeratewas divided into its primary particles, themethods described
in Sect. 2.2 could be adopted and applied to findH-representations for each primary
particle, as shown in Fig. 14h.
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Fig. 14 In both panels the theoretical probability density of disorientation angles according to
Mackenzie and Thomson [31] is shown as a blue line. Panel a shows the disorientation angles
obtained with exact rotationmatrices of a simulated sample population. b shows the angles obtained
with rotation matrices that were identified with the algorithm summarized in [4] of the same
population as used for panel (a). (Reprinted with permission from [4], Copyright (2017) Elsevier)

Kovačević et al. [2] also describe how non-ideal cases in which the segmentation
algorithm produced regions that could not be fitted with the algorithm described in
Sect. 2.2 were treated.

In conclusion, this section describes how agglomerates can be represented in their
full geometric complexity. A seeded watershed algorithm was applied to separate a
measured particle into several segments. The segments were then merged under
consideration of certain criteria to yield primary particles inside an agglomerate.
Finally, the methods described in Sect. 2.2 were applied to describe each primary
particle separately.

2.4 Disorientation Angles in Potash Alum Agglomerates

The procedures described in Sects. 2.2 and 2.3 enable the mathematical description
of measured 3D crystal images. The mathematical description allows detailed anal-
ysis of the complex structures. One particular feature of crystal agglomerates which
is accessible with the presented tools is the angle between the primary particles. To
check whether there is a preferred orientation Kovačević et al. [4] used their tech-
niques to measure disorientation angles between primary crystals in potash alum
agglomerates comprising two primary particles. They compared the distribution of
measured disorientations with simulated agglomerates that have randomly orientated
primary particles. Agglomerates were represented usingH-representations as shown
in Eq. (1). The simulated agglomerates also provided the opportunity to validate the
algorithms described in Sects. 2.2 and 2.3.
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Two primary crystals A and B were considered and it was assumed that B could
be rotated into A by an arbitrary rotation matrix R̃. If the crystal model of A and B
has nS symmetry operations, then the rotation of B into A can also be performed by
additionally applying the ns rotation matrices R̃i that perform a symmetry operation.
This was possible because the symmetry operations do not change the appearance
of the shape and thus give ns identically-looking crystals. According to Mackenzie
and Thomson [33], a disorientation angle Θ is the smallest of angles Θi which can
be calculated for each rotation with

Θi = arccos

⎛

⎝
tr

(
R̃iR̃

)
− 1

2

⎞

⎠ (27)

In this work, potash alum crystals were considered to be octahedral. For an octa-
hedron, there are 24 symmetry operations. Thus, to compute the disorientation angle
between two primary particles, one must first find the rotation matrix R̃ between
these two primary crystals. This could be easily computed provided a shape fit for
each primary particle. Then, 24 symmetry operations were applied and the 24 angles
Θi were computed according to Eq. (27). The disorientation angle is the smallest of
these angles. A disorientation angle of 0° means that particles are oriented the same
way.

In order to validate the algorithm, agglomerates were first simulated. For the sim-
ulated agglomerates, it was possible to compute the distribution of the disorientation
angles because the rotation matrices of the simulated primary crystals were known
exactly. Figure 14a shows the probability density of the resulting angles together with
the theoretical distribution that would be expected to result from an infinite number
of samples. This theoretical distribution is given in the literature for cubes and also
holds for octahedra [33]. In the next step, simulated 3D images of these agglomer-
ates were created and the disorientation angle was computed based on the shapes
identified in the images. The result is shown in Fig. 14b. The comparison of Fig. 14a,
b shows that the proposed algorithms work well for simulated ideal agglomerates
and yield meaningful disorientation angles.

In a next step, a potash alum crystal population was grown in a lab scale reactor
and sampled at the end of the crystallization. The agglomerates of these samples were
visualized using μCT measurements. The 3D images were then processed with the
algorithms described in Sects. 2.2 and 2.3. The segmentation procedure was adapted
to include user-interaction steps which made the segmentation more accurate. The
shape identification procedure was also adapted to work with asymmetrical crystals
observed in the measurement. Then the disorientation angle of the agglomerates was
calculated. Details on the experimental procedures are provided by Kovačević et al.
[4]. Exemplary results are shown in Fig. 15. It was observed, that agglomeration of
potash alum crystals tends to show lower disorientation angles than it was expected if
randomly oriented particles form agglomerates. This expectation is shownby the blue
line in Fig. 15, obtained from theoretical considerations in the literature. Kovačević
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Fig. 15 Disorientation
angles of a population of 74
experimentally obtained
potash alum agglomerates.
(Reprinted with permission
from [4], Copyright (2017)
Elsevier)

et al. [4] further discriminate between two different types primary particle contact:
slightly touching and growth together.

In conclusion, the methods described in Sects. 2.2 and 2.3 were applied to potash
alum crystals to yield geometric representations of crystals. Themain contribution of
this work was to use these models to analyze the particles. By measuring the disori-
entation angle of primary particles in agglomerates—a measure that is inaccessible
by traditional 2D imaging methods—it was demonstrated that 3D image analysis is
a powerful tool for particle characterization.

3 Classifiers for Agglomerates

The previous sections dealwith the exact characterization of crystal populations. This
section follows a more basic approach where particles are only classified whether
they are agglomerates or not. It is common that particle populations are characterized
by a size distribution. A common way to measure particles size distributions is by
dynamic image analysis. Therein size information is retrieved from image analysis
of projections of a sample of particles from a bulk.

Abulk property that can be used to characterize the quality is the degree of agglom-
eration which represents the ratio of the number of particles that are agglomerates
to total number of particles. The aim here was to additionally retrieve the degree of
agglomeration from the same images used for particle size measurements.

The identification of the degree of agglomeration has been studied in Heisel et al.
[5] by comparing artificial neural networks (ANN) and discriminant factorial analysis
(DFA) with respect to their accuracy. Further a procedure to set up appropriate
training sets and to select appropriate discriminant variables was proposed. The
experimental work and the parts regarding DFA are conducted by the work group of
Prof. Schembecker whereas the work concerning ANN has been conducted in the
group of Prof. Briesen.

Projections of L-alanine and adipic acid crystals in suspension were obtained by
dynamic image analysis. Example images can be seen in Fig. 16. For the scope of
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Fig. 16 Example images of the three categories single crystals, agglomerates, and bubbles of both
material systems L-alanine and adipic acid. (Reprinted with permission from [5], Copyright (2017)
Elsevier)

this section it is important that the obtained images may contain images of crystals
that either were (1) agglomerates or (2) single crystals. The images also contained (3)
artefacts of measurements, specifically, gas bubbles (c.f. Fig. 16). For classification
19 image descriptorswere studied. The image descriptors provided information about
particle size and shape such as the area, equivalent diameter, or number of concavity
points. A full list and description of how they can be calculated is provided by Heisel
et al. [5].

The quality of the descriptors in respect to their potential to distinguish between
the three classes was ranked using proportional similarity [34, 35]. This statistical
tool yields the PS value that is one for two identical distributions and zero for two
completely different distributions. One PS value that evaluates the potential to dis-
tinguish between single crystals and agglomerates was calculated (PSsa). AnotherPS
value that evaluates the potential to distinguish between crystals and bubbles (PScb)
was calculated for each descriptor. These two values were used to rank the descrip-
tors in respect to their potential in distinguishing between the classes. PSmn—the
mean of PSsa and PScb—was also used to rank the image descriptors. Only the latter
is considered in the present summary. For more results regarding the other two PS
values see Heisel et al. [5].

To obtain three training data sets per material system, six crystallization experi-
ments were conducted. From each experiment thousands of images were acquired of
which the first 600 images of single crystals and 600 images of agglomerates were
selected manually. These experiments produced only few images of gas bubbles.
This is why 600 images of gas bubbles were created by a separate experiment with
only water and extensive stirring. Using these 1800 images per experiment various
training (TR), test (TE) sets were created. The training sets were combined training
sets (C) if images of different experiments of one material system and gas bubbles
were used, or separate training sets (S) if images of only one experiment and gas
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bubbles were used. The training sets were also varied in total number of images
between 27 and 1800.

The training sets were then used to train DFA and ANN classifiers. For evalua-
tion of the performance of the classifiers, two quality criteria were introduced. The
first one was the performance index PIAll which represents the fraction of correctly
classified objects. The aim was to reach values above 0.9. The second value was the
error made in the degree of agglomeration Ag. Since the test sets were made of the
same number of agglomerated crystals and single crystals, the value for each test set
was known to be Ag = 0.5. The error in degree of agglomeration δAg made by the
classifier was therefore defined as:

δAg =
∣∣Agclassifier − 0.5

∣∣
0.5

(28)

This value should be below 0.1 for a well-trained classifier. Some exem-
plary results for the material system adipic acid/water and the ANN classifier are
summarized in Fig. 17.

Both ANN and DFA are able to accurately distinguish between the three classes.
Figure 17 shows that there are only three descriptors necessary to classify images
with ANN. For DFA 7 descriptors are necessary.

Heisel et al. [5] discuss that training a DFA classifier is easier than that of an ANN
classifier. However, DFA needs more descriptors. Which leads to the conclusion that
ANN is an attractive alternative if much effort needs to be put in the development
of calculation procedures of the image descriptors. It was further shown that PS is a
powerful tool to select appropriate image descriptors even for the classification into
three classes. It was also discussed that the classifiers could be used for different

Fig. 17 Results for a ANN classifier for different numbers of image descriptors (in order of their
PS rank) and number of samples in the training data sets (27, 90, 180, 360 or 1800). Gray areas
indicate the number of image descriptors necessary to reach the predefined classification quality
(horizontal black lines). Error bars indicate standard deviations compared between different test
sets. (Reprinted with permission from [5], Copyright (2017) Elsevier)
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experimental conditions. That is, provided the size of the particles remains similar to
the particles in the training set. It was proposed to optimize the developed procedure
so that it works for differently sized particles, too.

4 Modelling of Crystallization with Consideration
of Morphology

The previous sections explain how crystal morphology can be mathematically
described or classified into categories. This section focuses on the effects of complex
morphology on growth of single crystals and agglomerates.

For simulations of crystallization processes it is common to assume populations
of crystals that can be described with only one size parameter (e.g. diameter for
spherical particles) [36]. However, Fig. 11 shows that this a bad assumption for
complex crystalline structures and complex single crystals (Fig. 3 left-hand side).
The problemwith this assumption is that one can often not correctly describe both the
volume and the surface area of crystals at the same timewith only one size parameter.
Authors then often chose volume-equivalent diameters to model e.g. growth of the
crystals because so at least the mass is conserved. However, growth depends on
the surface area that is available for growth. Therefore, significant inaccuracies are
introduced by simplifying the morphology of crystals.

4.1 Modelling of the Growth of Faceted Crystals

Reinhold and Briesen [8] addressed the growth of potash alum crystals under con-
sideration of their morphology. The behavior of populations—such as crystals in
suspensions—is frequently modeled with population balance models [37]. A sim-
plified version that considers only growth of a constant number of particles can be
written as [8]:

∂n

∂t
+ ∇(gn) = 0 (29)

where n is the number density distribution of a population of, in this case, crystals and
g is the growth rate of crystal surfaces. Equation (29) describes the problem studied
by Reinhold and Briesen [8]: 26-faced potash alum crystals (as shown in Fig. 1)
were considered to grow in an ideally mixed batch crystallizer. A constrained HC-
representation was employed to reduce the dimension of the face distances to seven
entries in hC. This means that the growth rate g in Eq. (29) was actually a vector
with seven entries that each described the growth rate of one crystal face group.
Therefore, the number density distribution also features seven internal coordinates.
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Even though only growth was considered in this model equation, its solution is not
trivial.

Because growth rates depend on the supersaturation which is again dependent on
the volume of the crystals, a solution of the problem involved the evaluation of the
integral for the total volume of the population. The integral for the volume can be
generalized for any geometric property of the crystals μ and can be written as

Iμ(t) =
∫

μ(hC)n(hC, t)dhC (30)

Because of the high dimension of the problem the solution becomes numerically
challenging. It was solved using a Monte Carlo method that calculated solutions at
nsample random points hC,i. The probability functions w

(
hC,i, t

)
of these points were

assumed to be known. Then the integral in Eq. (30) was estimated by [38, 39]

Iμ(t) ≈ 1

nsample

∑

i

μ
(
hC,i

) n
(
hC,i, t

)

w
(
hC,i, t

) (31)

Based on a simplifiedmodel with only three faces, for which an analytical solution
is available, Reinhold and Briesen [8] describe which effect the choice of the initial
probability function w

(
hC,i, 0

)
and nsample has on the accuracy of the numerical

integration. They finally conclude that

w(hC, 0) = 1

2

(
μvolume(hC)

Ivolume(0)
+ 1

I1(0)

)
n0(hC) (32)

was a reasonable choice that balances between the relative errors for the volume and
surface area integration. nsample = 2× 104 was determined to be a sufficient number
of samples for the Monte Carlo integration to achieve relative errors below 10−3 at
reasonable computational cost.

To be able to numerically solve the partial differential Eq. (29) it needed to be
transferred to a system of ordinary differential equations. This was done employing
the method of characteristics. For details refer to Reinhold and Briesen [8].

With these parameters the growth of a batch of 7.66× 107 26-faced potash alum
crystals was simulated over a time span of 1 h. The initial distribution of the con-
strained face distances hC was chosen as a multivariate Gaussian normal distribution
with mean face distances of 10 μm and 1 μm standard deviation. The growth rates
were taken from the literature [40] and vary between 0.2 mm/s for the (100) and
(010) faces and 6 mm/s for the (111) faces. These different growth rates led to the
disappearance of the fast-growing crystal faces during growth (Fig. 18); which has
an influence on the growth of the particles—and, therefore, also on the course of
supersaturation—that could not be modeled with growth models that do not consider
each face separately.

To determine which faces were disappearing during simulation it was important
to detect face distances that would result in faces that were outside of a crystal. The
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Fig. 18 Visualization of the evolution of one hC,i vector over the course of the simulation.
(Reprinted with permission from [8], Copyright (2015) Elsevier)

concept is illustrated for a 2D case in Fig. 10 and is discussed by Reinhold and
Briesen [11]. In context of this work Reinhold and Briesen [8] described how they
detected that face distances became too large and limited their growth accordingly.

The evolution of the constrained face distances of a single crystal of the simulated
population is displayed in Fig. 19. The corresponding surface areas of the same
crystal are displayed in Fig. 20. It can be observed that the fast growing (111) face
was initially able to growwith its maximum growth rate until its surface area became
very small. Then its growth rate was limited by the growth of the (110), (101), and

Fig. 19 Evolution of the
face distances of a single
crystal over the course of the
simulation. (Reprinted with
permission from [8],
Copyright (2015) Elsevier)

Fig. 20 Evolution of the
surface areas of specific
crystal faces over the course
of the simulation. (Reprinted
with permission from [8],
Copyright (2015) Elsevier)
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Fig. 21 Evolution of the
total number, surface area
and volume relative to their
corresponding initial values.
(Reprinted with permission
from [8], Copyright (2015)
Elsevier)

(011) faces. Once also these areas became small due to the slow growth of the (100),
(010), and (001) faces the growth of all faces was limited through the growth rates
of these faces.

The population balance model also yielded the evolution of the total area and
volume of all crystals of the population. The evolution of the volume and area of
all crystals relative to the initial condition is displayed in Fig. 21. Note that the
number of crystals remained constant because neither agglomeration nor breakage
were modeled.

In conclusion, it was demonstrated how a population balance model for face-
specific growth of single crystals can be solved. For the solution it was necessary to
estimate integrals in a high dimensional space. This was achievedwith aMonte Carlo
based scheme, that allows to determine the error of the integral estimate. To solve the
differential equations, the method of characteristics was applied. The accuracy of the
method was evaluated based on a lower dimensional problem for which an analytical
solution is available. It was further applied to solve a high dimensional population
balance model for the growth of single potash alum crystals under consideration
of their full morphology. It was thereby demonstrated that disappearing faces have
an impact on the growth of the crystals that could not be modeled by conventional
crystal models.

4.2 Modelling of the Growth of Crystal Agglomerates

While Reinhold an Briesen [8] focused on the growth of single crystals, Kovačević
and Briesen [3, 6] studied agglomeration and growth of crystals. The challenge
was that upon agglomeration of two primary particles the agglomerate should be
described in a way that preserves both the surface area and the volume of the primary
particles. In conventional models it is often assumed that upon agglomeration a new
particle is generated that has a single size parameter (e.g. a diameter or a face distance
as shown in Fig. 22) that preserves the volume of the two primary particles. The area
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Fig. 22 Agglomeration following the simple approach: When the blue and green crystal agglom-
erate the volume equivalent grey crystal is generated. The surface area is way too smaller than the
sum of the surface areas of the constituting primary particles. (Reprinted with permission from [6],
Copyright (2019) American Institute of Chemical Engineers)

is then calculated for the larger particle. This introduces a high error for the surface
area and therefore for subsequent growth of the agglomerate.

Kovačević and Briesen [6] studied three different modeling approaches: The first
one, the simple approach, represents the state of the art in which only the volume of
particles is conserved after agglomeration (Fig. 22). The second approach is called
the 2D approach where a 2D population balance equation that considers particle
volume and area as internal coordinates was set up. Therein both particle volume
and surface area are conserved upon agglomeration. However, modeling the growth
rate of the surface was not as straightforward as the increase of volume by additive
agglomeration. The thirdmethod they studied was aMonte Carlo based, highly accu-
rate, but also very computationally expensive method that was previously published
by Briesen [41] and adapted for the agglomeration of octahedral potash alum crystals
in Kovačević and Briesen [3]. It describes agglomerates with their full morphological
complexity and was therefore able to accurately describe both the volume and sur-
face area of agglomerates (Fig. 23). This was made possible by using the appropriate
functionality of the MATLAB framework of Reinhold [42] and the cdd library [43].
This complex method was also used to parametrize the 2D approach.

The complex approach considers a sample number of crystals that was assumed
to be representative for the whole population that was to be simulated. It was com-
putationally expensive to calculate the volume of the agglomerates, which makes the
method infeasible for simulations of long process times [3].

Fig. 23 Aggregation following the complex approach: The agglomerate is described with its full
geometric complexity. (Reprinted with permission from [6], Copyright (2019) American Institute
of Chemical Engineers)



462 S. Schiele et al.

With the 2D approach a compromise was made between the complex and simple
approach. A 2D population balance is more complex to solve than a 1D one, but
still leads to a manageable computational effort. The corresponding 2D population
balance equation that describes growth and agglomeration can be written as [44–46]

∂f (V,A)

∂t
+ ∂(GV f (V,A))

∂V
+ ∂(GAf (V,A))

∂A

= 1

2

V∫

V ′=0

A∫

A′=0

βf
(
V − V ′,A − A′)f

(
V ′,A′)dA′dV ′

− f (V,A)

V∫

V ′=0

A∫

A′=0

βf
(
V ′,A′)dA′dV ′ (33)

f (V,A) is the 2D crystal size distribution with the volume V and surface area A as
internal coordinates. The growth terms GV and GA describe the increase of particle
volume and area through growth respectively. β is the agglomeration rate kernel.
Upon agglomeration it is easy to add the volume and surface area of the two primary
crystals to yield their respective values for the agglomerate. The increase of the
volume can easily be derived from face displacement rates. However, it was not as
straightforward to model the growth of the surface area.

All of the three approaches were solvedwith the same numerical scheme to ensure
that no numerical differences of the results could occur. The solver was an event-
driven Monte Carlo approach that determines time steps according to agglomeration
events. Between the time steps constant supersaturation was assumed and used to
calculate growth. The procedure is summarized in Fig. 24.

In the initialization step an initial crystal population that was assumed to be rep-
resentative for the population in the process was generated. Octahedral potash alum
crystals were described with one size parameter, the constrained face distance hC
(displayed in Fig. 22). A number of Npart crystals with normally distributed face
distances and uniformly distributed orientations was generated to be further simu-
lated. The respective orientations were held constant throughout the simulation. The
particles existed in a small control volume VMC that was chosen so that the number
density concentration in the control volume was the same as in the total suspension
volume.

Following the initialization, the main simulation loop was entered by evaluating
mass balances. This yielded the present supersaturation that is the driving force for
growth. Based on the supersaturation the face displacement rates were calculated
according to literature [47]. It was assumed to be constant in each time step.

The length of such a time step was determined based on agglomeration events.
It was assumed that all particles have the same probability to agglomerate (constant
β = β0) for some calculations. For others a shear rate and particle size dependent
agglomeration rate kernel was introduced according to Briesen [48]. For the constant
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Fig. 24 The numerical
solver of all three simulation
approaches. (Reprinted with
permission from [6],
Copyright (2019) American
Institute of Chemical
Engineers)

agglomeration kernel, the agglomeration rate was calculated from the agglomeration
kernel and was also dependent on the size of the control volume and the number of
crystals in it:

r = β0

(
Npart

VMC

)2

(34)

This means that, on average, in 1 s rVMC particles will agglomerate, which again
means that the average time step size is �t = (rVMC)−1. For the Monte Carlo solver,
the time step size was sampled from an exponential distribution according to [49]

�t = −�t · ln(x) (35)
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where x is a uniformly distributed random number between 0 and 1. The calculation
of the time steps for the shear rate dependent agglomeration kernelwasmore complex
and explained in detail by Briesen [48] and Kovačević and Briesen [6].

With the time step size at hand, growth of the particle population was calculated.
For the simple and complex approach this was done in a straightforward way with
hC,new = hC + �tGh for each particle in the simple approach or with hC,part new,i =
hC,part,i + �tGh for each face distance i of each primary particle for the complex
approach.

The population balance of the 2D approach did not directly contain the face
distances. The growth was modeled based on the growth of the volume and surface
area directly: Vnew = V + �tGV and Anew = A + �tGA . The growth rate of the
volume is given asGV = AGh. Until this pointGA remained unknown. An empirical
relation with the parameters p1 and p2 was proposed:

GA = p1A
p2V

1−2p2
3 Gh (36)

Kovačević and Briesen [6] derived that for single crystals p1 is in fact a function
of p2. For octahedral particles the following function was found:

p1 = 24
√
3

(
12

√
3
)p2(

4
√
3
) 1−2p2

3

(37)

p1 and p2 can be interpreted as geometric factors that are specific for certain geome-
tries and do not only differ depending on whether a particle is an agglomerate or not,
but also on the geometry of each individual agglomerate. Kovačević and Briesen
[6] studied various values for p1 and p2 and find that—even though the values
slightly vary for different simulation cases—reasonable average values can be found
to describe particles in a process. To study different parameters, they used the com-
plex method to generate 1000 isolated agglomerates. The term isolated stems from
the fact that they are not simulated within a reaction environment. p1 and p2 are only
dependent on the geometry. How a certain geometry is reached is not important for
their calculation. To produce a set of agglomerates, two particles were brought to
contact. Subsequently their face distances were displaced in several steps without
consideration of a supersaturation. Therefore, the time-consuming calculation of the
mass balanceswas not necessary. After each face displacement step, both volume and
area were calculated and then allowed a correlation between growth rate by means
of face displacement, and the change of the surface area. The procedure is illustrated
in Fig. 25.

With p2 = 1.135 a hypothetical crystallization process was simulated with the
scheme displayed in Fig. 24. The results are shown in Fig. 26. The agglomeration
kernel was chosen relatively high compared to a real crystallization problem to make
the effect of agglomeration clearer.
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Fig. 25 Illustration of the procedure to determine p2: First particles are brought to contact, then
their faces are displaced in several steps t which produces an increase in the surface area A of
their agglomerate. The growth rate of the surface area is determined and used to calculate p2 from
Eq. (37). (Reprinted with permission from [6], Copyright (2019) American Institute of Chemical
Engineers)

Fig. 26 Simulation results for the complex (blue line), simple (orange line), and 2D (green dashed
line) approaches with a constant agglomeration kernel. (Reprinted with permission from [6],
Copyright (2019) American Institute of Chemical Engineers)

Figure 26 shows the evolution of the volume of the crystals (top left), the total
surface area (top right), the supersaturation (bottom left) and the growth rate (bottom
right). It can be seen that the 2D approach is able to reproduce the results of the
complex approach, while it usedmuch less computational recourses. It further strikes
that even though the simple approach makes a relative error of up to two compared
to the complex approach when calculating the surface area, the supersaturation, and
the growth rate, the total volume was calculated quite accurately. The reason for this
is that due to the underestimation of the surface area, less material was built into
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the crystals. This led to a higher supersaturation, which again led to higher growth
rates. These higher growth rates were therefore able to compensate for the error that
is made for the surface area.

In conclusion, a procedure to accurately model agglomeration and growth of
crystalswith a 2Dpopulation balancewas proposed. The population balance equation
considers the volume and surface area of the particles as internal coordinates and
was therefore able to conserve both of these values upon agglomeration. The growth
is also expressed with respect to growth of volume and area. The second subsection
summarizes how both of these rates can be determined. While the growth rate of the
volume was determined on a straightforward way, the growth rate of the surface area
needed to be estimated with a Monte Carlo based scheme. The scheme proposed
here was applied for potash alum crystals but is formulated in a way that it can be
applied to other material systems.

5 Integrated Crystallization Modelling in Dyssol

The crystallization models proposed in the previous sections are able to describe
the crystallization phenomena growth and agglomeration in an accurate way; how-
ever, they are computationally expensive. They are, therefore, with currently avail-
able hardware hardly suitable for process simulations that span long process times
and include complex flowsheets. There are, however, simpler crystallization models
available in the literature, that are able to describe several crystallization phenomena
simultaneously, and have less computational cost. A case study on the implementa-
tion of such a crystallization process within Dyssol was presented by Kulozik et al.
[7].

Kulikov et al. [50] study the performance of the dynamic flow sheet integra-
tion platform CHEOPS [51]—that is in some ways similar to Dyssol—based on an
integrated crystallization flowsheet. Therefore, a similar process was implemented
for Dyssol and compared to the results of Kulikov et al. [50]. The main difference
between CHEOPS and Dyssol is that CHEOPS is used to couple models that are
generated in different simulation environments. Dyssol now allows simulations in
one combined software package that can be used to model each unit operation and
couple different unit operations to form a flowsheet.

The flowsheet of Kulikov et al. [50] contains four units: (1) a mixed suspension
mixed product removal (MSMPR) crystallizer, (2) a hydrocyclone, (3) an evaporator
and (4) an ideal mixer. For all of the units a model was implemented in Dyssol. They
were then combined to an integrated flowsheet and Dyssol was used to simulate the
behavior of this exemplary process over a process time of 72 h. The first two of the
mentioned units will be briefly explained in the following sections. The mixer is
considered trivial and is not explained. It accepts two feed streams that are ideally
mixed to a product stream of the mixer. The evaporator is implemented in a way that
a constant ratio of pure solvent is withdrawn to concentrate its feed. It has a vapor
stream and a concentrate stream as outputs.



13 Morphological Modelling and Simulation … 467

5.1 MSMPR Crystallizer

The central equation of the mixed suspension mixed product removal (MSMPR)
crystallizer model is again a population balance equation. In this case growth of
spherical particles (diameter d ) with a growth rate G, and nucleation with a birth
rate B were considered. In addition, the crystallizer accepts a feed stream and has a
vapor and a product stream as output.

∂n(d)

∂t
+ ∂(G(d)n(d))

∂d
+ 1

V

nstreams∑

j

(
nj(d)V̇j

) + n(d)
d ln V

dt
= ∂B(d , n)

∂d
(38)

Growth and nucleation kinetics were as proposed by Jones and Mydlarz [52].
The discretization as done with the method of classes and a flux limiter was used as
proposed byQamar [53]. Additionally, mass balances were introduced. The resulting
set of differential algebraic equations is then solved using Dyssol [54].

5.2 Hydrocyclone

The implementation of the hydrocyclone is based on the work of Braun [55] and the
descriptions of Kulikov et al. [50]. The static model proposed by Braun divides a
hydrocyclone into four zones (c.f. Fig. 27): Zone A is a tube-like inlet zone to which
a suspension is fed and forced onto a circular downward movement. The suspension
then enters an outer tube-like zone Bwhere the fluid continues to move downward on

Fig. 27 Abstraction of the
hydrocyclone as proposed by
Braun [55]
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its circular path. Inside the outer zone B Braun considers a cylindrical inner zone C
where the fluid moves upwards towards the outlet where the overflow is withdrawn.

The model assumes material transport between the zones that is dependent on
particle sizes. Larger particles are drawn to the outer wall by centrifugal force and
are added to the underflow if they are large enough to touch the outer wall of the
zones A and B. Particles that reach the top of zone C are added to the overflow. The
reflux parameter Rf = V̇overflow

V̇feed
is used to define which proportion of a feed suspension

is leaving the cyclone through the overflow.

5.3 Flowsheet and Simulation Results

The units were combined to a flowsheet as shown in Fig. 28: Feed material is mixed
with a recycle stream and then concentrated in an evaporator. The concentrate is fed to
the crystallizer where vapor is withdrawn at a constant rate to induce crystallization.
The product suspension is then classified in the hydrocyclone. The fine fraction is
recycled and the coarse product leaves the process. For this study the material system
water/potash alum was used.

For a simulation scenario, a sieve or filter unit at the end of the process was
assumed but not included in the model. It is further assumed, that this unit should
not be fed with a product that is too fine to prevent blocking. This scenario is also
studied by Kulikov et al. [50]. The goal of the simulation is, therefore, to reduce the
mass stream of fine particles (d < 50 μm). Here, the effects of the reflux ratio Rf

(as also studied by Kulikov et al. [50]) and the feed stream were studied.
Figure 29 shows that after the start of the process, the mass stream of fines rapidly

raised, reached a maximum and finally approaches an equilibrium state. For higher

Fig. 28 Crystallization flowsheet with reflux. The sieve is not considered in the model but used in
the optimization discussion
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Fig. 29 Mass stream of fine
particles dependent on reflux
ratio. The feed mass stream
was 0.5 kg/s

reflux ratios less fine particles were contained in the product. This is also observed
by Kulikov et al. [50] for a different material system.

Figure 29 suggests that for all cases the highest mass flows of fine crystals can
be observed within one day after startup of the process. A further simulation goal
was to reduce the maximum mass flow by appropriate adaption of the feed stream.
For this case the reflux ratio was fixed to 0.5. The simulation result for this reflux
ratio and a feed mass stream of 1 kg/s was used as a benchmark (blue solid lines in
Figs. 29, 30, and 31). In a first attempt, the feed rate was kept at only 0.5 kg/s for the
first 18 h and was then rapidly increased to 1 kg/s.

Figure 30 shows that this procedure led to a slower increase of the mass stream
of fine particles. Once the feed rate was increased a sharp increase in the mass
stream of fine particles was observed. The peak was higher than in the benchmark
simulation. It rapidly decreased and converged towards the expected equilibrium. A
second simulation was done where the feed stream was gradually increased from
0.5 to 1 kg/s within 18 h (c.f. Fig. 31). In this case it was observed that the peak of

Fig. 30 Simulation result
for a rapidly increased feed
rate (orange dashed line) and
comparison to the
benchmark result (blue solid
line)
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Fig. 31 Simulation result
for a gradually increased
feed rate (orange dashed
line) and comparison to the
benchmark result (blue solid
line)

the mass flow of fine particles was delayed and was not as pronounced as for the
benchmark. The equilibrium was still reached at a similar time.

In conclusion, it was demonstrated that Dyssol can be used to dynamically sim-
ulate crystallization flowsheets. Even complex cases such as reflux streams can be
handled and Dyssol can be used for long process time calculations.

6 Conclusion

Sections 2 and 3 deal with the analysis of crystal morphology. Section 4 focuses on
the modelling of crystallization under consideration of morphology and discusses
errors that are made by the classical assumptions that neglect morphology. Finally, in
Sect. 5 a crystallization process was modeled using the dynamic flowsheet simulator
Dyssol and it was shown that it can be efficiently used to dynamically simulate
integrated flowsheets.

The analysis of crystal morphology is often done by 2D on-line image analysis
in both industry and science. It was demonstrated that certain errors with respect to
morphology have to be acceptedwhen only 2D information is available. This concept
has been demonstrated for the measurement of a roundness parameter of abraded
crystals. It was further demonstrated that morphological bulk properties such as the
degree of agglomeration can be extracted from particle projections. Procedures for
the calibration of artificial neural networks were proposed.

To overcome the limitations of measurements where only 2D information is avail-
able, 3Dparticle imageswere acquired and analyzed. It was demonstrated that the full
morphological information that was provided by 3D particle description can be used
to measure properties that are inaccessible from 2D images—such as disorientation
angles in agglomerates. Even though 3D image acquisition and analysis are much
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more sophisticated than of 2D images, the proposedmethods help to understandmor-
phological influences on important phenomena like crystal growth, agglomeration
and breakage.

Another aspect of the work was the modeling of crystallization under consider-
ation of the influence of morphology. Using a high dimensional population balance
model the important influenceofmultiple surfaceswith different growth rates on crys-
tal growthwas demonstrated. For the effective solution of such amodel, novel numer-
ical methods have been developed. It is common practice to neglect the combined
influence of agglomeration and growth on the surface area of crystal populations. It
was herein demonstrated that this introduces high errors in such models. A method
was proposed to parametrize a population balance model that considers both the
evolution of crystal volume and area correctly. Because such models are still numer-
ically challenging and computationally expensive even if not included in a flowsheet,
they are currently not suitable for simulation of integrated flowsheets. Therefore, a
simpler model was included in the simulation platform Dyssol. It is demonstrated
that Dyssol can be used to efficiently calculate integrated crystallization processes.
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Chapter 14
Numerical Methods for Coupled
Population Balance Systems Applied
to the Dynamical Simulation
of Crystallization Processes

Robin Ahrens, Zahra Lakdawala, Andreas Voigt, Viktoria Wiedmeyer,
Volker John, Sabine Le Borne, and Kai Sundmacher

Abstract Uni- and bi-variate crystallization processes are considered that are mod-
eled with population balance systems (PBSs). Experimental results for uni-variate
processes in a helically coiledflow tube crystallizer are presented.A surveyonnumer-
ical methods for the simulation of uni-variate PBSs is provided with the emphasis on
a coupled stochastic-deterministic method. In this method, the equations of the PBS
from computational fluid dynamics are solved deterministically and the population
balance equation is solved with a stochastic algorithm. With this method, simula-
tions of a crystallization process in a fluidized bed crystallizer are performed that
identify appropriate values for two parameters of the model such that considerably
improved results are obtained than reported so far in the literature. For bi-variate pro-
cesses, the identification of agglomeration kernels from experimental data is briefly
discussed. Even for multi-variate processes, an efficient algorithm for evaluating the
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agglomeration term is presented that is based on the fast Fourier transform (FFT).
The complexity of this algorithm is discussed as well as the number of moments that
can be conserved.

1 Introduction: Modeling of Crystallization Processes with
Population Balance Systems

Solid state processing is an important part of the industrially relevant production
as about 70% of products of the chemical and pharmaceutical industry are sold as
solids. An important part of this processing is crystallization of solid materials from
liquid solutions. Fundamental and applied research in this area of crystallization
will lead to improved process performance with less energy consumption as well
as more efficient material utilization. Also the product quality and specifications
like size and its distribution, shape, and agglomeration degree have to be considered
in more detail, as many process steps are dependent on such characteristics [44].
The DFG priority programme 1679 “Dynamic simulation of interconnected solids
processes” addressed many of the current issues and our particular contribution has
been the investigation of different important aspects of continuous crystallization
processes. As solid-liquid systems are complex and challenging in many ways and
fluid flow and particles interact in a variety of fashions, the numerical methods had
to be extended and new tools had to be developed to simulate crystallization in a
better way. We focus here on relevant phenomena of crystal growth of multi-faceted
crystals as well as on crystal agglomeration with two specifically developed model
experiments working with selected well-understood model substances.

Crystallization processes are oftenmodeled in termsof a crystal population instead
of considering the behavior of each individual crystal. Utilizing macroscopic conser-
vation laws, one derives a system of coupled equations for the population, a so-called
population balance system (PBS), that describes an averaged behavior of the crystals.

Weconsider crystallizationprocesseswithin amoving incompressiblefluid,which
occur, e.g., in pipes or batch crystallizers. It is assumed that the suspension of the
crystals is dilute such that the impact of the crystals on the fluid flow is negligible.
Then, the first two conservation laws are the balance of the linear momentum and
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the conservation of mass for the fluid flow, which are modeled by the incompressible
Navier–Stokes equations

∂tu − ∇ ·
(

ρ

η
∇u

)
+ (u · ∇) u + ∇p = f in (0, tend) × Ω,

∇ · u = 0 in (0, tend) × Ω.

(1.1)

In (1.1), tend (s) is a final time,Ω ⊂ R
3 is a bounded domain, which is assumed to be

constant in the whole time interval, u (m/s) is the velocity field, p (Pa) is the pressure,
f (m/s2) represents forces acting on the fluid, ρ (kg/m3) is the density of the fluid, and
μ (kg/sm) is the dynamic viscosity of the fluid. Often, the body forces possess the
form f = (0, 0, g)T with g (m/s2) being the gravitational acceleration.

The other equations of a PBS are usually coupled. These are equations for the
energy balance, where the unknown quantity is the temperatureT (K), for the balance
of the molar concentration c (mol/m3) of dissolved species, and for the balance of the
particle population density f (1/kg m3) (the unit is for a particle population density
with the only internal coordinate mass, it is different in other situations).

The energy balance of the PBS has the form

∂tT − DTΔT + u · ∇T = Fener,growth(c,T , f ) in (0, tend) × Ω, (1.2)

where DT (m
2
/s) is a diffusion coefficient, u is the velocity from (1.1), and the right-

hand side Fener,growth(c,T , f ) (K/s) models the energy consumption or production in
the growth process of the crystals. Since the velocity is divergence-free, it holds that
u · ∇T = ∇ · (Tu).

In a crystallization process, the dissolvedmaterial in the fluid is used in the growth
process of the crystals. The corresponding balance equation has the form

∂tc − DcΔc + u · ∇c = Fconc,growth(c,T , f ) in (0, tend) × Ω. (1.3)

Here, Dc (m
2
/s) is again a diffusion coefficient and Fconc,growth(c,T , f ) (mol/s m3) rep-

resents the consumption or production of dissolved material. We like to mention
that there are PBSs with a coupled system of equations of type (1.3) for several
concentrations, like in the modeling of precipitation processes, e.g., see [36].

The final part of a PBS is an equation for the particle population density. Assuming
that the number of internal or property coordinates is dint ≥ 1, then this equation
might read as follows

∂t f + (u + used) · ∇f + ∇int · (G(c,T )f )

= Fagg(u, c,T , f ) + Fbreak(u, c,T , f ) in (0, tend) × Ω × Ωint. (1.4)

Here, Ωint is the dint-dimensional domain for the internal coordinates and used (m/s)

is the sedimentation velocity, which is assumed to be divergence-free. The growth
term is assumed to be linear with the growth rate G(c,T ) (kg/s), and ∇int is the
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nabla operator with respect to the internal coordinates. Nucleation is included via
appropriate boundary conditions with respect to the internal coordinates. The right-
hand side of (1.4) describes the agglomeration (aggregation, coalescence) of crystals
and their breakage (fragmentation).

To simplify the presentation below, the case dint = 1 will be considered in the
remainder of this section, i.e., a so-called uni-variate population. Then,Ωint is just an
interval, e.g., an interval with respect to the mass of the crystals Ωint = [mmin,mmax]
in kg and it is ∇int = ∂m. In this case, the agglomeration term for every time-space
point (t, x) has the form

Fagg(u,T , f ) = 1

2

mmax∫
mmin

κagg(u,T ,m − m′,m′)f (m − m′)f (m′) dm′

−
mmax∫

mmin

κagg(u,T ,m − m′,m′)f (m)f (m′) dm′, (1.5)

whereκagg (m
3
/s) is the agglomeration kernel. The first term, which is the source term,

models the amount of crystals of massm that are created by the agglomeration of two
crystals with masses m′ and m − m′, where m′ ∈ (mmin,mmax). The corresponding
sink term accounts for the crystals of mass m that vanish because they are consumed
by agglomeration with other crystals of mass m′. The breakage term might be of the
form

Fbreak(u, c,T , f ) =
mmax−m∫
mmin

κbreak(u,T ,m,m′)f (m + m′) dm′

−1

2

m∫
mmin

κbreak(u,T ,m − m′,m′)f (m′) dm′, (1.6)

where κbreak (1/kg s) is the breakage kernel. The first term on the right-hand side
describes the appearance of crystals of mass m and the second term describes the
disappearance of such crystals due to breakage events.

2 Uni-variate Processes

2.1 Benchmark Problem

Different phenomena such as nucleation, growth, breakage, and agglomeration occur
during crystallization. It depends on the particular crystallization process, which
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phenomena are dominant. They have to be identified and integrated in the PBS as
shown in (1.4), while other termsmay be neglected. The resulting coupled PBS needs
to be parameterized. For that, benchmark problems are required. Here, a growth
dominated crystallizer is selected.

As mentioned in the previous section, the crystal mass can be used as internal
property coordinate of the PBS. The goal of the presented benchmark problem is
to intensify a process to grow faceted crystals shape-selectively. Hence, a measure
of crystal size is applied as internal coordinate. To determine the crystal size distri-
bution (CSD), 3d-crystal shapes are estimated from 2d-projections of the observed
crystals following the methods by [9–11]. The shape is described by the perpendic-
ular distances of the crystal faces to the crystal center. It is sufficient to consider one
perpendicular distance x (m) for each face type to describe the full symmetry of an
ideal crystal. Potassium aluminum sulfate dodecahydrate, also called potash alum,
crystallizes predominantly as octahedron in aqueous solution. Hence, its shape can
be characterized by one face type. The resulting crystal distribution is uni-variate.

The benchmark problem is of high dimension. There are four dimensions in
time and space and one internal coordinate. Further, the solid and liquid phases
are coupled.

2.2 Helically Coiled Flow Tube Crystallizer

2.2.1 Setup and Process

Growth-dominated experiments are realized in a helically coiled flow tube (HCT)
crystallizer. The crystallization is temperature controlled. For the experiments, solu-
tion is pumped from a reservoir to the HCT, as depicted in Fig. 1. The solution passes
a degasifier before crystal seeds are added, where the seeds are of a defined size frac-
tion. The suspension is cooled in the HCT to grow. At the outlet of the HCT, the
crystal population is imaged by a flow-through microscope. Finally, the crystals are
dissolved in a reservoir.

Seeds are sieved in different size fractions. The seed fractions are applied for res-
idence time experiments without growth and for growth experiments. In the exper-
iments, several process parameters can be varied systematically: helix orientation,
average fluid flow rate, crystal seed fraction, feed concentration, and temperature
[66, 67]. Selected results are shown for an HCT crystallizer with a coil diameter of
0.11m and an inner tube diameter of 0.006m at laminar flow rates.

2.2.2 Residence Time Distribution

In residence time experiments for the dispersed phase, a sieved crystal size fraction
was added within 10 s at the inlet. The solution was saturated and isothermal condi-
tions were applied to avoid crystal growth. The residence time was estimated from
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Fig. 1 Schematic of the
benchmark experiment in the
helically coiled flow
tube (HCT) crystallizer

the crystal projections, which were recorded at the tube outlet by the flow-through
microscope. Further, the crystal shape and a size descriptor were estimated from the
projections. Crystal velocities were calculated from the measured residence times
and known geometry of the HCT and are depicted in Fig. 2. They were measured
in an HCT crystallizer made of glass (length of 35m, upward flow). Mean crystal
velocities were calculated for several size classes. It was observed that large crystals
of about 200μm size are faster than smaller crystals of a size of about 100μm. This
observation holds for crystals of a density which deviates from the fluid density at
laminar flow rates in HCTs [66, 67]. In the PBS, the residence time can be empir-
ically described in dependence on the crystal size by a polynomial function or by
interpolation from measurements. To apply the model in a size range that exceeds
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Fig. 2 Crystal-size dependent crystal velocities at two different laminar average fluid velocities
(blue, dashed) for the uni-variate potash alum. Measured in experiments (black, solid) and extrap-
olated (black, dotted)
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the measured sizes, it can be assumed that very small crystals follow the fluid flow,
as shown in Fig. 2.

The crystal residence time depends on the process parameters. Crystallization
experiments in HCTs show that crystals of different size have different velocities in
HCTs. Large crystals are faster than small crystals. Size-dependent residence times
can be used to separate crystals of certain sizes in batch or periodic operation.

2.2.3 Crystal Growth

Crystals can be grown in HCTs by cooling crystallization. The longer the tubes and
the lower the fluid velocities, the more time crystals have to grow and the larger the
attainable final crystal sizes. This is illustrated for the case of varying fluid velocity
in Fig. 3.

Crystal growth can be realized continuously in HCTs to change the CSD (Fig. 4).

Fig. 3 Product crystal number density distributions after crystal growth experiments for varying
average fluid flow rate: left: u = 0.24m/s; right: u = 0.35m/s. Potash alum seed fraction of a size
x of (95±11)μm at a feed saturation temperature of 40 ◦C and an initial outlet supersaturation of
σ = 4%

Fig. 4 Crystal growth
experiments (blue bars) and
simulation (green solid
curve) of a potash alum seed
fraction at a feed saturation
temperature of 40◦ and an
initial supersaturation of
σ = 17% at the outlet for an
average fluid flow rate
u = 0.24m/s. Crystal
number density distributions:
top: seed crystals; bottom:
product
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Numerically, the solution of the fullmodel of the form (1.1)–(1.6) is expensive due
to themutual coupling of the equations. Hence, themodel is reduced and assumptions
are made for a dynamic simulation with reasonable computation times:

(a) It is assumed that the energy balance (1.2) can be neglected when a temperature
profile is given.

(b) The momentum balance (1.1) is neglected.
(c) Only one spatial coordinate is considered, which is the z-coordinate along the

tube axis.
(d) A low suspension density and moderate cooling are applied experimentally to

suppress nucleation, breakage, and agglomeration.
(e) Crystal growth is size-independent.

The reduced population balance equation (PBE) is

∂t f + u · ∇f + G(c,T )∇int · f = 0 in (0, tend) × Ω × Ωint. (2.1)

For the continuous phase, there are two balance equations, since potash alum crystal-
lizes as dodecahydrate under consumption of water from the solution. The diffusion
term in (1.3) is replaced by a dispersion term of the same structure, but of a different
value for the coefficient Dc. The crystal growth rate depends on the supersatura-
tion of the continuous phase and thereby on the local temperature T (t, z). The local
temperature can be set by external cooling and it can vary dynamically.

The reduced PBS consisting of (1.3) and (2.1) was discretized in space z and in
the internal size coordinate x via a finite volume method. The derived differential
algebraic equation system was solved with the Matlab-ode23 solver, which is
based on a Runge-Kutta approach. Product CSDs resulting after crystal growth are
depicted in Fig. 5. As expected, the final crystal size increases with tube length during

Fig. 5 Simulated product number density distribution based on a reduced model for the crystal
growth of a normally distributed potash alum seed fraction (μ = 106μm, σ = 41μm) for different
tube lengths. Left: a constant crystal velocity; right: a size-dependent crystal velocity based on the
measurement data
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cooling crystallization. In batch simulations, the size-dependent residence time leads
to narrow crystal size distributions compared to a uniform crystal residence time.

2.3 Brief Survey on Numerical Methods for Solving a PBS

Let the time interval be decomposed into subintervals [tn−1, tn], n = 1, . . .N , with
0 = t0 < t1 < · · · < tN = tend and let the (numerical) solution un−1,Tn−1, cn−1, fn−1

at the time instance tn−1 be given. Then, one has to apply some time stepping scheme
to compute the (numerical) solution at tn. This section provides a brief survey on
methods that are proposed in the literature for computing a numerical solution at tn.

Since a monolithic approach for solving the PBS, which computes all unknown
functions together from (1.1) to (1.4), is computationally too demanding, the PBS is
split into several parts and these parts are solved consecutively.

2.3.1 The Navier–Stokes Equations

Because the velocity appears in all equations and there is no back coupling of the
other unknowns to the flow field, it is a straightforward idea to solve first the Navier–
Stokes equations (1.1). These equations can be solved monolithically or decoupled
by a so-called projection scheme. As temporal discretization, often first or second
order time stepping schemes are used, like the Euler schemes, the Crank–Nicolson
scheme, or the backward difference formula of order 2 (BDF2). The nonlinear term
in the momentum balance can be treated implicitly, semi-implicitly, or explicitly.
The semi-implicit approach is called implicit-explicit (IMEX) scheme. Usual spatial
discretizations include finite elementmethods (FEM), finite volumemethods (FVM),
or, for simple domains, finite differencemethods (FDM). A detailed description of all
these approaches is far beyond the scope of this paper. Many of them are described,
within the framework of FEMs, in [35, Chap. 7].

The situation becomesmore complicated if the flow is turbulent. There is nomath-
ematical definition of turbulence, but a good physical description is that a turbulent
flow contains a wide range of physically important scales. In particular, there are
many small scales that cannot be resolved on affordable grids and, consequently,
that cannot be simulated. Standard discretizations cannot cope with this situation
since they try to simulate all important scales. Simulations with such discretizations
usually blow up in finite time. Since neglecting the small scales leads to physically
incorrect numerical simulations, an approach is needed to model the impact of the
unresolvable scales onto the resolvable scales. This approach is called turbulence
modeling. In the literature, many turbulence models are proposed, e.g., see [54, 58],
and turbulence modeling is still an active field of research. There is no turbulence
model that can be considered to be the best one.

At the end of this step, un is known and it can be used in the other equations of
the PBS.



484 R. Ahrens et al.

2.3.2 The Energy and Concentration Equations

As a next, natural step, the Eq. (1.2) for the energy balance and (1.3) for the concen-
tration balance can be solved. Again, due to the numerical complexity, a monolithic
solution of this system of equations does not seem to be attractive. Instead, the equa-
tions are solved individually, by using the currently available data, e.g.,

1. ∂tTn − DTΔTn + un · ∇Tn = Fener,growth (cn−1,Tn−1, fn−1) ,

2. ∂tcn − DcΔcn + un · ∇cn = Fconc,growth (cn−1,Tn, fn−1) ,

where still the temporal derivatives have to be discretized. In this approach, one
has to solve two linear equations. The individual solution of these equations can be
iterated by using in the second iteration the temperature and concentration solution
computed in the first iteration and so on.

In many applications, in particular in crystallization processes, the diffusion
parameters in (1.2) and (1.3) are smaller by several orders of magnitude compared
with the size of the velocity field. This situation is called convection-dominated and
there is a similar difficulty as for turbulent flows: there are important features of
the solution, so-called layers, that cannot be resolved on affordable grids. As for
turbulent flows, standard numerical discretizations fail in this situation and the use
of a so-called stabilized discretization is necessary, e.g., see [55]. There are many
proposals for stabilized discretizations in the literature. In the context of the coupled
system (1.2) and (1.3), it is essential that the numerical solution computed with the
stabilized method must not possess unphysical values, so-called spurious oscilla-
tions, or it is allowed to exhibit only negligible spurious oscillations. This property
is important because the computed solutions serve as data in other equations, for
certain coefficients, and if the numerical solutions have spurious oscillations, then
non-physical coefficients in other equations might be computed. At any rate, it was
noted in [36] for a precipitation process that using a stabilized discretization that
does not sufficiently suppress spurious oscillations usually leads to a blow-up of the
simulations of the coupled system in finite time.

As a matter of fact, many of the proposed stabilized schemes lead to numerical
solutions with non-negligible spurious oscillations, e.g., see the numerical assess-
ment in [39]. Some schemes that satisfy the requirement with respect to the spurious
oscillations are the followings:

• finite difference methods

– upwind; very diffusive and very inaccurate,
– FCT (flux-corrected transport) schemes [14];
– ENO (essentially non-oscillatory) [32], WENO (weighted ENO) [45]; much
more accurate, small spurious oscillations possible,

• finite element methods

– linear FEM-FCT [42]; often good compromise between accuracy and efficiency,
– FEM-FCT [43, 46]; nonlinear method, often quite accurate,
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• finite volume methods

– Scharfetter–Gummel method [59]; improved upwind but still quite diffusive,
– FCT [70].

The assessments provided above are based mostly on our experience from [37].

2.3.3 The Population Balance Equation

After having discretized the temporal derivative in (1.4), one obtains an equation for
fn in a four- or even higher-dimensional domain. But this difficulty is not the only
one for solving the population balance equation. There is a transport operator on the
left-hand side of (1.4) whose discretization requires special techniques, and on the
right-hand side there are integral operators whose efficient evaluation is complicated,
in particular for the first term of the agglomeration (1.5).

First of all, there are several principal ways for designing a scheme for computing
a numerical approximation of fn:

• solve an equation in the high-dimensional domain Ω × Ωint , where the left-hand
side is discretized with some appropriate discretization based on FDM, FEM, or
FVM, the so-called direct discretization,

• apply an operator-splitting scheme that deals first with an equation in Ω and after
this with an equation in Ωint ,

• utilize a momentum-based method to transform the population balance equation
to a system of equations in a three-dimensional domain,

• apply a stochastic method for solving (1.4).

The first approaches will be discussed briefly in the following whereas the last
approach is presented in detail in Sect. 2.4.

Utilizing the first approach, the direct discretization, is computationally demand-
ing. One issue is that usual CFD codes do not support four- or higher-dimensional
domains. Using an implicit approach, then the system matrix becomes compara-
tively dense, compared with 3d, and the question of an appropriate solver for the
linear systems of equations arises. The left-hand side of (1.4) is a transport operator,
which can be considered as a limit case with vanishing diffusion of the convection-
dominated operators from the energy and concentration balances. The discretizations
mentioned for the convection-dominated operators in Sect. 2.3.2 can be applied also
for the transport operator of the population balance equation. In addition, one needs
a numerical method for evaluating the integral terms on the right-hand side of (1.4),
see Sect. 3.2 for a discussion of this topic. Direct discretizations of 4d population
balance equations can be found, e.g., in [12, 13, 60], and of a 5d population balance
equation in [40].

Operator-splitting schemes for population balance equations in the form men-
tioned above were proposed in [25], see also [26]. Motivations for this proposal are
efficiency, the possibility to use software that is designed for domains in usual dimen-
sions, and the possibility to apply different discretizations for the different equations.



486 R. Ahrens et al.

The principal form of the equations to be solved is as follows. Let f̂n = fn−1, solve
in the first step

∂t f̂ + (
un + used,n−1

) · ∇ f̂ = 0 in (tn−1, tn) × Ω (2.2)

for all y ∈ Ωint . Then, set f̃n−1 = f̂n, solve

∂t f̃ + ∂m

(
G(cn,Tn)f̃

)

= Fagg(un, cn,Tn, f̂n) + Fbreak(un, cn,Tn, f̂n) in (tn−1, tn) × Ωint (2.3)

for all x ∈ Ω , and set fn = f̃n. There are several modifications of this basic operator-
splitting scheme for population balance equations, in particular to perform the steps
in a different order, e.g., see [3, 25, 27]. Equation (2.2) is usually a transport equation
with dominating convection, such that one has to utilize a stabilized discretization,
see Sect. 2.3.2. Also (2.3) is a transport equation, but the growth of the crystals
might be sufficiently slow such that one can apply some standard discretization. The
operator splitting introduces an additional splitting error which does not spoil the
optimal order of convergence for low order finite element methods [25].

As already mentioned at the beginning of this section, the definition of the popu-
lation balance equation (1.4) for the crystal size distribution in a higher-dimensional
domain is a major challenge for the simulation of population balance systems. A
popular way to avoid this issue is the consideration of the first moments of the crys-
tal size distribution, as proposed the first time in [33], where the so-called Method
of Moments (MOM) was derived. The kth moment of the crystal size distribution is
given by

Mk =
∞∫
0

mkf dm, k = 0, 1, 2, . . . . (2.4)

It will be assumed, that f is zero for m ≤ mmin and m ≥ mmax, i.e., that there are
a minimal and a maximal mass for the crystals. Hence, the domain of integration
in (2.4) can be restricted to this interval. On the one hand, the first moments are
often important in practice because they correspond to physical quantities, like the
number of crystals (0th moment) or the mass of crystals (3rd moment). But on the
other hand, the reconstruction of the crystal size distribution from its moments is a
severely ill-posed problem and it is hard to design stable algorithms [34].

Multiplying (1.4) with mk , integrating with respect to the internal coordinate,
commuting this integrationwith differentiation in timeandwith respect to the external
variable yields an equation for the kth moment

∂tMk + (u + used) · ∇Mk =
mmax∫

mmin

mkS dm, k = 0, 1, 2, . . . , (2.5)
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with
S = Fagg(u, c,T , f ) + Fbreak(u, c,T , f ) − ∂m (G(c,T )f ) .

System (2.5) is a closed system for a finite number of moments only in special cases,
e.g., if there are no agglomeration, no breakage, and special growth functions.

For the case that a closure of (2.5) cannot be found, we consider for simplicity
only the growth term on the right-hand side of (2.5). Applying integration by parts
and using that f vanishes atmmin andmmax, this term can be reformulated as follows

−
mmax∫

mmin

mk∂m (G(c,T )f ) dm =
mmax∫

mmin

kmk−1G(c,T )f dm

=
mmax∫

mmin

G̃(c,T )f dm, k ≥ 1,

with the new growth function G̃(c,T ) = kmk−1G(c,T ). Note that this integral still
contains the unknown crystal size distribution f . The principal idea of the Quadra-
ture Method of Moments (QMOM) proposed in [49] consists in approximating this
integral by some quadrature formula

mmax∫
mmin

G̃(c,T )f dm ≈
N∑
i=1

ωi G̃(mi), (2.6)

where N is the number of quadrature points, which is prescribed by the user, ωi are
the weights of the quadrature rule andmi are the nodes (quadrature points, abscissas).
Then, at time instance tn, one considers the system of equations for the moments

∂tMk + (u + used) · ∇Mk =
mmax∫

mmin

G̃(cn,Tn)fn−1 dm, k = 0, . . . , 2N − 1, (2.7)

where the left-hand side has still to be discretized appropriately and the right-hand
side is approximated with (2.6).

To keep the quadrature error in (2.6) as small as possible, theweights and abscissas
should be chosen such that the optimal order (2N − 1) of the numerical quadrature is
obtained. Several algorithms are available for this purpose. In [41], it is shown that the
long quotient-modified difference algorithm (LQMDA) behaves better than two other
algorithms concerning stability and efficiency. For computing the optimal weights
and abscissas, the knowledge of f is not necessary, but only of the first 2N moments
of f . Thus, for the first time step n = 1, one can use the known initial condition of
f for computing the right-hand side in (2.7) such that the first 2N moments at time
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t1 can be computed. Then, these moments can be used for computing the right-hand
side for the next time instance and so on.

Agglomeration and breakage processes can be also incorporated into the frame-
work of QMOM, e.g., see [48]. An extension of the QMOM,which does not compute
themoments, but directly the weights and abscissas, is the Direct QuadratureMethod
of Moments (DQMOM), as proposed in [47]. It is also possible to simulate multi-
variate populations with QMOM, e.g., see [18].

2.3.4 On Our Experience with Some of the Methods

As already mentioned above, it was noted in [36] that the use of a stabilized scheme
for convection-diffusion equations, which does not suppress spurious oscillations
sufficiently, often leads to a blow up of the simulations. Only cutting off such oscil-
lations appropriately led to stable simulations. However, such cut-off techniques lead
inevitably to violations of conservation properties. Moreover, in the same paper, it
was concluded that the use of upwind techniques led to completely smeared and prac-
tically useless results. A clear improvement of the quality of the numerical solutions
was observed in [38] by using a linear FEM-FCT scheme for the convection-diffusion
and transport equations in the PBS. Based on this experience, we have employed the
linear FEM-FCT scheme for solving the energy equation (1.2) and concentration
equation (1.3) in PBSs. Different numerical methods for the 4d population balance
equation were studied in [13]. The problem of interest was a turbulent air-droplet
flow in a segment of a wind tunnel, where Ω × Ωint was a tensor product domain
in 4d. In this situation, FDM approaches can be applied easily. Two kinds of linear
FEM-FCT schemes and an FDM ENO scheme were compared. It turned out that the
FDM ENO scheme was by far the most efficient approach, such that it was recom-
mended for population balance equations on tensor product domains. This scheme
was also applied successfully for the simulation of a bi-variate population balance
in [40]. In [3], a direct discretization using the FDM ENO approach for the popu-
lation balance equation (1.4) and an operator-splitting scheme were compared for
an axisymmetric problem. While the operator-splitting scheme converged faster to
a steady-state, the evolution of the transition was predicted more accurately by the
direct discretization.

In summary, up to the publication of [3], we could, on the one hand, identify accu-
rate and efficient approaches for simulating PBSs that are given on tensor product
domains. Here, efficiency refers only to the differential operators in the population
balance equation (1.4). Efficient methods for the integral operators are a different
topic, which will be discussed in Sect. 3.2. But on the other hand, it is very compli-
cated to extend our favorite approach, the direct discretization, to problems defined in
more general domains, which occur usually in applications. In this respect, we could
make decisive progress in the preceding years by employing and further developing
a stochastic method, which will be discussed in detail in Sect. 2.4.
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2.4 A Stochastic Method for Simulating the Crystal Size
Distribution

This section describes a stochastic particle simulation (SPS) method for computing a
numerical approximation of the crystal size distribution f whose behavior is modeled
by the population balance equation (1.4). This method can be applied successfully
for the simulation of problems given in complex spatial domains.

The basis of the SPS method that is utilized in our simulations is the method
proposed in [52, 53]. This method had to be extended by all features that are caused
from the movement of the crystals in the spatial domain: convective transport in
three dimensions, sedimentation, crystal-wall collisions, and the coupling with the
deterministic methods for solving the other equations (1.1)–(1.3) of the PBS. The
algorithms from [52, 53] include convective transport in one dimension, growth,
and coagulation (collision growth). With respect to the first and third feature, the
method is based on two classical algorithms. The first one is Bird’s direct simulation
Monte-Carlo algorithm for the Boltzmann equation [8] that proposes an approach to
handle the convective transport part with a splitting method. The second algorithm
is the Gillespie algorithm [28, 29] that models the coagulation via stochastic jump
processes. One of the original contributions from [53] is a stochastic algorithm for
simulating crystal growth via a surface reaction model.

Altogether, the splitting scheme applied in the SPS method consists of two parts:
the convective transport of crystals, discussed in Sect. 2.4.1, and Markov jump pro-
cesses for simulating growth, agglomeration, and insertion of crystals, described in
Sect. 2.4.2. Section2.4.3 presents the complete algorithm that simulates the PBSs
(1.1)–(1.4).

2.4.1 Convective Transport of Stochastic Computational Crystals

The spatial domain Ω is triangulated by a triangulation consisting of mesh cells
Kj, j ∈ {1, . . . ,N }. Each mesh cell contains a crystal ensemble Ej. In the stochastic
method, computational crystals (particles) are considered that represent an ensemble
of physical crystals (particles). For simplifying the notion, the computational crystals
will be called just ‘crystals’ in the following.

Consider a spatial mesh cell K and a crystal ensemble (K, E), where each crystal
ei in E possesses a spatial and an internal coordinate ei = (xi,mi), with xi ∈ K and
mi ∈ Ωint . The complete ensemble E withNE crystals is given by E = (e1, . . . , eNE ).

Let Δt be a constant splitting time. First of all, the flow field u from the Navier–
Stokes equations (1.1) is responsible for the transport of crystals. Second, crystals are
also moved by sedimentation with the sedimentation velocity used. In the convection
step, each crystal ei is transported along the trajectories of u + used

xi −→ xi + Δt (u(xi) + used(xi)) . (2.8)
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There are two topics that will be discussed in this section. From themodeling point
of view, a model for the sedimentation velocity used is needed. From the algorithmic
point of view, one has to detect whether the crystal left its mesh cell after the transport
step or even would hit the boundary of the domain if the transport step is performed
and appropriate numerical procedures have to be performed in these situations.

For the considered application, a crystallization process in a fluidized bed crys-
tallizer, the sedimentation of crystals has to be taken into account. Sedimentation
depends on various aspects, like the form of the crystals and the actual local velocity
field. In our application, the crystals can attain quite different forms. Since we could
not find an appropriate sedimentation model in the literature, we decided to use as
basis a sedimentation model for spherical particles, see [7, pp. 58] for its derivation.
However, numerical studies in [6] showed that we had to modify this model for
our purposes. Concretely, a scaling factor was introduced. Finally, the sedimentation
velocity in our numerical simulations has the form

used = (0, 0, uz)
T with uz = σ

(
6
ρπ

) 2
3
(ρcryst − ρ)g

18μ
m

2
3 . (2.9)

In this model, ρ (kg/m3) is the density of the fluid, ρcryst (kg/m3) the density of the
crystals, μ (kg/m s) the dynamical viscosity of the fluid, g = 9.81 m/s2 the gravity, and
σ the numerically determined scaling factor. It can be observed that the sedimentation
model (2.9) depends on the mass of the crystals. In [6], a brief numerical study led
to the choice σ = 0.1 in (2.9). Section2.5 will present results that are obtained also
with a different scaling factor.

After having performed the transport step (2.8), it must be checked whether each
moved crystal still belongs to the same mesh cell. If not, then it must be removed
from its current ensemble. If the final point of the relocation is withinΩ , it is inserted
in the ensemble of the new cell. However, it might happen that this point is outside
Ω such that the crystal hits the boundary of the flow domain. The treatment of this
situation required a notable extension of the algorithm for the crystal transport.

First of all, for the considered application, we distinguished the boundary part
through which the crystal would leave the domain. Crystals that would leave through
the inflow boundary, which is located at the bottom of the fluidized bed crystallizer,
are measured and removed from the simulations. This situation happens because of
the sedimentation of crystals. Crystals that would leave through other boundaries
are reflected and repositioned in the domain. Two reflection algorithms were imple-
mented, which bothmodel elastic wall collisions where no kinetic energy is absorbed
in the collision. A perfect reflection is utilized if the starting point of the crystal’s
movement is sufficiently away from the boundary of the domain, i.e., its distance is
larger than a prescribed tolerance. Otherwise, a random reflection is applied. This
random reflection is also used in the case of double reflections at two boundary parts.
For details describing the reflection algorithms, it is referred to [4, 6].
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2.4.2 Modeling of Growth, Coagulation, and Crystal Insertion by
Markov Jump Processes

The crystals are allowed to interactwith eachother onlywithin their current ensemble.
In particular, crystals do not have to meet in the same point in space in order to
agglomerate, it is enough for them to be contained in a common mesh cell.

Growth, agglomeration, and insertion of crystals are modeled with Markov jump
processes. These processes are described in this section, following [52, 53], in terms
of the so-called ‘stochastic weighted algorithm’. For further technical details, it is
referred to [52, 53].

Starting at some time t ∈ [0, tend), the system stays in the state E(t) for an expo-
nentially distributed waiting time τ , P(τ ≥ s) = exp(−λ(E)s). Here, λ(E) is the
waiting time parameter that is the sum of the individual rates of all jumps that are
possible in E(t). This parameter is the sum of the growth jump rate λgrow(E) and the
agglomeration jump rate λaggl(E):

λ(E) = λgrow(E) + λaggl(E).

First, the simulation of crystal growth will be described. The growth term as it
stands in the population balance equation (1.4) is a transport term along the internal
coordinate. The rationale behind a stochastic simulation of this term by Markov
jump processes is the interpretation of crystal growth as crystal surface growth via
a chemical reaction. One can derive a relation between the growth rate G(c,T ) and
the corresponding reaction rate, e.g., see [5]. A crystal growth jump has an impact
on just one crystal ei. Given a growth height Δmi, the state of ei is changed by

ei = (xi,mi) −→ (xi,mi + Δmi) =: ẽi.

The crystal ej for which the next growth jump occurs is chosen with the probability

G(c,T ,mj)

Δmi

(
λgrow(E)

)−1
. (2.10)

In our implementation of the SPS method, c and T are assumed to be constant in K
in expression (2.10). The total rate for the growth jumps in E is given by

λgrow(E) =
NE∑
i=1

G(c,T ,mi)

Δmi
.

In agglomeration jumps, two crystals ei and ej, with i < j, are involved. Such a
jump has the form

ei, ej −→ (ξ(xi, xj),mi + mj) =: ẽi.



492 R. Ahrens et al.

After having performed this jump, the crystal ej is removed from the ensemble and
the crystal ẽi has to be placed in an appropriate way in the ensemble, i.e., one has to
assign an appropriate position to ẽi. For designing a stable method, it is proposed in
[52] to choose the new position y of a crystal that emerged from coagulation of the
crystals

(
mi, xi

)
and

(
mj, xj

)
stochastically, distributed according to the probabilities

P(y = xi) = mi

mi + mj
, P(y = xj) = mj

mi + mj
,

i.e., to use the center of mass in the probabilities. Similarly as for the growth, the
total rate of agglomeration jumps is the sum of all individual agglomeration jump
rates of pairs of crystals

λaggl(E) = 1

2NE

NE∑
i,j=1

κagg(mi,mj).

The involvement of two crystals in an agglomeration jump is random with the prob-
abilities

P(ei and ej chosen for agglomeration) = κagg(mi,mj)

2NE
.

Ensembles of crystals might be changed also by insertion of crystals in the flow
domain. This process affects usually only a few mesh cells. Crystal insertion is mod-
eled by so-called inception jumps, i.e., each ensemble in mesh cells, where crystals
are injected, is equipped with an additional jump rate λin(E) and a corresponding
jump, which adds a new crystal to the ensemble.

2.4.3 Coupled Simulation with a Splitting Scheme

Our basic approach for developing a code for solving the PBS (1.1)–(1.4) numerically
consisted in coupling two separate codes: one designed for simulating the Computa-
tional Fluid Dynamic (CFD) equations (1.1)–(1.3) with deterministic methods, and
the other one designed for simulating crystal interactions with stochastic methods.
For this purpose, we used the in-house codes ParMooN [24, 68] for the CFD part
and Brush [53] for the SPS part.

The complete simulation procedure is sketched in Fig. 6. In each time instance,
first theCFDequations are solved and then the population balance equation (1.4)with
the SPS method. In order to couple the two codes, an interface was developed and
implemented that is responsible for the data transfer between the codes. Other major
extensions of Brush that were necessary include the simulation of the transport of
the crystals in three dimensions, the implementation of the sedimentation model, the
implementation of crystal-wall interactions, and the implementation of routines for
assigning the crystals to mesh cells. For more details, it is referred to [4].
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START

Compute velocity field

Interpolate data from SPS code

Compute temperature and concentration

CFD

Transport of crystals

Assign crystals to cells

Perform Markov jumps in each cell separately

SPS

t ← t + Δt

t < tstop

END

Assign interpolated CFD
data to SPS code

No

Yes

Fig. 6 Schematic sketch of the coupled simulation via a splitting scheme

2.5 Numerical Simulations of a Fluidized Bed Crystallizer

The deterministic-stochastic approach described in Sect. 2.4 was utilized for the sim-
ulation of the behavior of the crystallization process for another benchmark problem.
The second benchmark was a crystallization process in a fluidized bed crystallizer.

In a fluidized bed crystallizer, crystal growth and agglomeration can be combined,
where the main control variables are temperature profiles and flow rates. Crystals
can be separated by size and withdrawn at a varying crystallizer height. The size
separation is again controlled by the flow rates.

The experimental implementation of such a crystallizer is depicted in Fig. 7. Solu-
tion is removed from the top of the fluidized bed crystallizer through a filter. It is
pumped back into the device from the bottom to fluidize the crystals. The crystallizer
is cooled by a double jacket to increase the supersaturation over time. Crystals can
be sampled from a variable height in the fluidized bed crystallizer during an exper-
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Fig. 7 Schematic of the
benchmark experiment in the
fluidized bed crystallizer
with exemplary crystals in
different withdrawal heights

iment. As in the first benchmark problem, the crystal shape can be analyzed by a
flow-through microscope.

A PBS of the form (1.1)–(1.4) was used for modeling this process. Figure8
presents the computational domain and its decomposition in tetrahedra. The compu-
tational domain neglects the small inlet extension at the bottom, compared with the
fluidized bed crystallizer used in the experiment. This modification is caused from
an algorithmic issue, since the routine that locates the mesh cell where a crystal is
situated after a transport step requires a convex domain. A routine implemented in
the research code TetGen [63] was used for this purpose. The grid shown in Fig. 8
consists of 10,752 tetrahedra.

Preliminary numerical studies showed that the used grids were too coarse for sim-
ulating all scales of the flow field. This situation is the typical one that is encountered
in the simulation of turbulent flows and it is well known that one has to utilize a
turbulence model. There are many proposals for such models, e.g., see [54, 58]. In
our simulations, we applied the Smagorinsky Large Eddy Simulation (LES) model,
which adds to the momentum equation of the Navier–Stokes equations (1.1) the
nonlinear viscous term

νSmago‖∇u‖F∇u = CSmagoδ
2‖∇u‖F∇u, (2.11)

where δ is the local filter width, which was chosen to be piecewise constant, namely
twice the length of the shortest edge of a tetrahedron, CSmago is a user-chosen param-
eter, and ‖ · ‖F is the Frobenius norm of a tensor. Numerical studies showed that
the value CSmago = 5 × 10−4 was sufficient, which is a comparably small value and
which indicates that the flow is only slightly turbulent. In the experiments, a typical
average inflowvelocitywasU ≈ 0.08m/s. Togetherwith the choice of a characteristic
length L = 0.1 m as a typical inner diameter and the density and dynamic viscosity



14 Numerical Methods for Coupled Population Balance Systems … 495

Fig. 8 Geometry (in mm) and mesh used in the simulations, left: front view; right: top and bottom
views

of purified water, the Reynolds number is Re = μUL/ρ ≈ 6000, see Table1 for the
values of the physical coefficients. These coefficients were kept constant during the
simulation since there were only small variations of the temperature (±1 K) and the
amount of crystals was negligible.

The Navier–Stokes equations (1.1) were discretized in time with the Crank–
Nicolson scheme,which is of second order, and the equidistant time stepΔt = 0.05 s.
They were linearized with a standard Picard iteration and the arising linear saddle
point problems were discretized in space with the popular inf-sup stable pair P2/P1,
a so-called Taylor–Hood pair of finite element spaces. That means, the velocity was
approximated with continuous and piecewise quadratic functions and the pressure
with continuous piecewise linear functions. Hence, the resolution of the velocity
field is in fact twice as fine as suggested by the grid from Fig. 8. A snapshot of the
flow field is displayed in Fig. 9. For the temporal discretization of the temperature
equation (1.2) and the concentration equation (1.3) also the Crank–Nicolson scheme
was used, with the same time step as for the Navier–Stokes equations. The spatial
discretization was performed with the linear FEM-FCT scheme from [37, 42] with
P1 finite elements, see Sect. 2.3.2. Finally, the population balance equation (1.4) was
simulated with the SPS method described in Sect. 2.4. The breakage of crystals was
neglected in the numerical simulations. The coupled PBS was simulated with the
splitting scheme presented in Sect. 2.4.3. There were 49,419 degrees of freedom for
the velocity and 2349 for the pressure, temperature, and concentration.
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Table 1 Coefficients for the PBSs modeling the fluidized bed crystallizer process

Name Notation Unit Value/Function

Density of purified water ρ kg/m3 1050

Dynamic viscosity of purified water μ kg/m s 0.0014

Diffusion coefficient in (1.2) DT m2/s
λsusp

ρsuspCsusp

Thermal conductivity λsusp W/mK 0.6

Suspension density ρsusp kg/m3 1050

Suspension specific heat capacity Csusp J/kgK 3841

Scaling parameter in (1.2) gT K·m3/kg
Δhcryst

ρsuspCsusp

Crystallization enthalpy Δhcryst J/kg 89,100

Diffusion coefficient (c) Dc m2/s 5.4 × 10−10

Scaling parameter (1.2) gc mol/kg − 1
Mhydrate

Molar mass of hydrate Mhydrate kg/mol 0.4744

Density of crystals ρcryst kg/m3 1760

Boltzmann constant kB J/K 1.3806504 × 10−23

Universal gas constant R J/Kmol 8.314

Fig. 9 Snapshot of the flow
field with velocities in m/s

inflow rate 56 kg/h
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As final simulation time, tend = 1800 s = 30 min was set, such that 36,000 time
steps had to be performed. For the flow, the mass flow rate at the inlet was 56 kg/h in
the whole time interval. The flow field was allowed to develop in the first 30 s. Then,
the crystals were inserted in the flow during the time interval [30 s, 40 s]. In contrast
to the experiment, where all crystals are inserted into the crystallizer basically at the
same time, the crystals enter in the simulations during a short time interval. There is
an algorithmic reason, since the SPS method works better if there is a rather uniform
distribution of crystals. The seed mass of the crystals was 10−4 kg. It was divided
equally into two parts, one with crystals of diameter 75μm and one of crystals with
diameter 125μm. Both parts were represented via a log-normal distribution with
25μm standard deviation.

Storage for 256 computational crystals was assigned to each mesh cell of the flow
domainΩ .As alreadymentioned inSect. 2.4.1, each computational crystal represents
a number of physical crystals. In preliminary simulations, 5.0 × 108 # physical crystals/m3

was found to be an upper bound for the concentration of physical crystals away from
the bottom of the device. In this region, a linear conversion to computational crystals
was used such that this upper bound corresponds to 256 computational crystals.
Close to the bottom, the concentration of physical crystals was often higher, due to
sedimentation. In this region, still a linear conversion was applied, but the conversion
factors were increased by 10 below 0.1 m and by 100 below 0.05 m. The choice of
the conversion factor is a purely numerical issue. It influences the computational
cost and the numerical precision, but otherwise it has no effect on the results for the
physical quantities. This setup led to roughly 150,000 computational crystals in Ω

after having completed the insertion at 40 s. This number is typically reduced by
around 50% at the end of a simulation because of agglomeration and in addition
since, as explained in Sect. 2.4.1, crystals that would leave through the inlet due to
sedimentation were removed from the simulations.

The coupling term for the temperature equation (1.2) is given by

Fener,growth(c,T , f ) = gT

∫
Ωm

Gf (t, x,m) dm,

where themodel for the growth termwill be discussedbelow.Table1presents all other
coefficients for this equation. The Dirichlet boundary data for the temperature were
linearly interpolated in the time interval [0, tend], where the initial temperature was
T (0 s) = 288.95K, i.e. 15.8 ◦C, and thefinal temperaturewasT (3600 s) = 288.35K,
which is 15.2 ◦C. The right-hand side of the concentration equation (1.3) is given by

Fconc,growth(c,T , f ) = gc

∫
Ωm

Gf (t, x,m) dm.

Also the coefficients for this equation are provided in Table1. As initial condition
c(0 s) = 207 mol/m3 was chosen, which corresponds to the saturation concentration
at 17 ◦C.
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For the sedimentation, the model (2.9) was utilized. A brief numerical study in [6]
showed that one has to choose the scaling factor in thismodel rather small. Otherwise,
too many crystals would leave through the inlet of the domain due to sedimentation,
compare Sect. 2.4.1. In [6], σ = 0.1 was used. In this section, also results obtained
with σ = 0.05 are presented to continue the study with respect to the scaling factor.

For the growth term in the population balance equation (1.4), a model from [64]
is utilized

G =
{√

2

π
1
3
kG1 exp

(
− kG2

RT

) (
Shyd,H2O+ − 1

)kG3 (m/s) , if Shyd,H2O+ > 1,

0 else,

where the model parameters are given by kG1 = 5 × 107 m/s, kG2 = 75 × 103 J/mol,
kG3 = 1.4. The factor

√
2/π

1
3 comes from converting an octahedral to a spherical

crystal shape. The quantity

Shyd,H2O+ = whyd,H2O+

w
eq
hyd,H2O+

(T )
(kg/kg)

is the relative supersaturation of the solution. Here, whyd,H2O+ (kg/kg) is the current
mass loading and w

eq
hyd ,H2O+(T ) (kg/kg) is the mass loading in equilibrium given by

w
eq
hyd ,H2O+(T ) = a1 + a2T + a3T

2 + a4T
3 + a5T

4

(
kg hydrate

kg added water

)
,

with coefficientsa1 = 0.0506,a2 = 0.0023,a3 = 7.76 × 10−5,a4 = −2.43 × 10−6,
and a5 = 4.86 × 10−8. This solubility model is known to be valid in a temperature
range from 10 to 60 ◦C. To apply this growth model in our simulations, a number of
conversions had to be made, see [4, 6] for details.

For the agglomeration kernel in (1.5), the Brownian kernel

κagg(T ,m1,m2) = κ
2TkB
3μ

(
1

d(m1)
+ 1

d(m2)

)
(d(m1) + d(m2))

(
m3

/s
)

(2.12)

was utilized, where κ is a scaling parameter and d(m) = 3
√

6m/ρcrystπ (m) is the sphere
equivalent diameter. The same kernel was applied in the simulations presented in
[6], where different values of κ ≤ 5000 were tested. In fact, most results from [6]
were computed with κ = 5000. However, in other applications, where we used the
Brownian kernel, we found higher values of the scaling factor, e.g., κ = 7000 in [3]
and even κ ∈ [200,000, 300,000] for a strongly agglomeration-dominated problem
studied in [31]. For this reason, we continued the numerical studies with respect to
the scaling factor of the Brownian kernel to higher values of κ and the results will
be presented in this section.

The internal coordinate in the PBS is crystal mass. However, for the evaluation
of the numerical simulations, the sphere equivalent diameter in μ will be used, since
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Fig. 10 Dependency of the average crystal diameter on the parameter κ of the Brownian agglom-
eration kernel: left σ = 0.05, right σ = 0.1. Averaging was performed for all crystals with diameter
larger than or equal to 5μm

this facilitates the interpretation of the computational results and the comparison
with the experimental data.

In the simulations, the nucleiwere of 5μmdiameter. Figure10 presents the tempo-
ral development of the average crystal diameter in thewhole fluidized bed crystallizer
for the two considered parameters σ ∈ {0.05, 0.1} in the sedimentation model (2.9)
and for different values of the parameter κ in the Brownian agglomeration kernel
(2.12). For both values of σ there is the same tendency: the larger κ, the larger is
the average diameter. For smaller values of κ, the temporal growth of the average
diameter is approximately linear in the considered time interval. There is also a linear
growth in the first part of the time interval for larger values. But then, a flattening
of the curves can be observed. At the final time, one obtains in average larger crys-
tals with σ = 0.1. With this higher value of the sedimentation parameter, there is a
higher concentration of crystals close to the inlet, which increases the probability
for agglomeration events in this region. These crystals are comparably large since
the sedimentation velocity depends also on the mass of the crystals, such that the
agglomeration events lead to even larger crystals.

In the experiment, the smallest measurable crystals were of diameter 50μm. In
order to compare numerical results and experimental data, the same value was used
as lower threshold for computing the average diameter of the simulation results.
Experimental data are displayed in Fig. 11. One can see that in the considered time
interval, the averaged diameter increased approximately linearly by around80μm.At
thefinal time, the average diameter is between 234 and261μm.There is no separation
of different sizes of crystals in different heights of the fluidized bed crystallizer. In the
results for the simulations, Figs. 12 and 13, the value of the coordinate z comprises
all computational crystals in the interval [z − 0.025, z + 0.025] of 5 cm width.

Figure12 presents the results obtained with the parameter σ = 0.1 in the sedi-
mentation model (2.9), which is the same parameter as used in [6]. One can observe
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Fig. 11 Development of the
average diameter in different
heights (m) of the fluidized
bed crystallizer,
experimental results.
Crystals with diameter larger
than or equal to 50μm were
measured. The average
diameter is between 234 and
261μm at the final time
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that for all parameters κ of the Brownian kernel (2.12) there is more or less a linear
increase of the crystal diameter only at the beginning of the process. In the last part
of the time interval, the average diameter is nearly constant. There is a slight increase
of the average diameter with an increase of κ. For κ = 5000, the average diameter at
the final time is in the interval [187, 205] μm and for κ = 10,000, it is in the interval
[196, 215] μm. There is a clear separation of the average diameter with respect to the
regions of the fluidized bed crystallizer. The largest crystals are close to the inlet and
the smallest crystals in the upper region. Comparing the curves of Figs. 10 and 12,
one can observe that there are only comparatively small differences of the average
diameter at the final time. Hence, there are not many small crystals with diameter
lower than 50μm left in the fluidized bed crystallizer.

The results for the newly considered segmentation parameter σ = 0.05 are shown
inFig. 13. For this parameter, there is in a long part of the time interval an almost linear
increase of the average diameter. Like for σ = 0.1, the average diameter increases if
the parameter κ of the Brownian kernel increases and there is layering of the crystals
with the largest crystals close to the inlet and the smallest crystals in the upper part
of the device. The average crystal parameter at the final time is between 211 and
236μm for κ = 5000 and for κ = 10,000, it is in the interval [241, 272] μm. From
comparing Figs. 10 and 13, one can see that the average diameter at the final time
is considerably larger if the small crystals with diameter smaller than 50μm are
neglected. Hence, it seems that there are still many small crystals in the fluidized bed
crystallizer.

Altogether, the results show the enormous impact of the choice of the sedimen-
tation parameter σ in model (2.9) on the obtained computational results. The results
for σ = 0.05 are considerably closer to the experimental data, both with respect to
the nearly linear increase of the average diameter and with respect to the average
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Fig. 12 Development of the average diameter in different heights of the fluidized bed crystallizer,
σ = 0.1 and κ ∈ {5000, 6000, 7000, 8000, 9000, 10,000}, top left to bottom right. Averaging was
performed for all crystals with diameter larger than or equal to 50μm
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Fig. 13 Development of the average diameter in different heights of the fluidized bed crystallizer,
σ = 0.05 and κ ∈ {5000, 6000, 7000, 8000, 9000, 10,000}, top left to bottom right. Averaging was
performed for all crystals with diameter larger than or equal to 50μm
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diameter at the final time, than the results for σ = 0.1. There is a particularly good
agreement with respect to the second issue for κ = 8000, where the average diameter
is in the interval [232, 260] μm.

3 Bi- and Multi-variate Processes

The evolution of the crystal population is defined in (1.4) for a dint-dimensional
internal property coordinate. The internal coordinates are estimates for the crystal
size and shape. In Sect. 2.1, the description of a uni-variate substance was introduced.
An example of a bi-variate substance is potassium dihydrogen phosphate. Also for
the bi-variate system, the 3d-crystal shape of single crystals can be determined with
high accuracy [15]. For agglomerated particles, further descriptors can be selected
to describe the size and shape of a particle that is composed of several primary
particles. Primary and agglomerated potash alum crystals are depicted in Fig. 7. The
descriptors for agglomerates may again be based on a shape estimation, e.g., the
projections may be fitted to geometrical polytopes [61]. There is a large number of
further shape descriptors, such as the Feret diameter [23], the length of the boundary
curve of a projected particle, the projection area, the area of the convex hull of the
projection, the diameter, perimeter, and volume of a circle of the same projected
area, the widths of the major and minor axes of an ellipse, the convexity [23], the
eccentricity [71], the sphericity, and the fractal dimension [65]. Here, the volume of
a sphere of equivalent diameter is chosen since the agglomerates in the considered
benchmark process are compact. The volume is used to calculate themass of a crystal.
The mass is assumed to be an additive property.

3.1 Agglomeration Kernel Identification from Experiments

In Sect. 2.5, an agglomeration dominated crystallizer was presented. Agglomeration
depends on the local distribution of crystals in the fluidized bed crystallizer (FBC),
which is determined by the fluid dynamics in the FBC [6]. The particlemovementwas
therefore simulated as described in Sect. 2.5. In the agglomeration term (1.5) of the
PBE, the agglomeration kernel κagg determines the rate of agglomeration. Required
agglomeration kernels can be identified frommeasurement data and numerical simu-
lations by solving inverse problems. An example of such measurement data is shown
schematically in Fig. 14.

The agglomeration kernel is usually an unknown functional relation of the vol-
umes of agglomerating particles. Thus, the identification of the kernel is an ill-
conditioned problem. To solve the problem, two approaches can be applied. A set of
unknown parameters can be identified using measurement data. For this approach,
the structure of the kernel has to be known, which can be estimated from modeling
the agglomeration process [51] or from known approaches [17]. A second approach
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Fig. 14 Exemplary
agglomeration kernel for
stronger agglomeration of
small crystals for the internal
size coordinates x and y of
two agglomerating particles

is the solution of inverse problems [19, 69]. This approach is based on the measure-
ment data and the dynamic agglomeration model whereas a priori knowledge on the
kernel is not required. Solving the inverse problem, the kernel can be approximated
with Laurent polynomials [22]. Like this, the kernel can be described with a small
set of parameters and it is separable. An efficient calculation of a separable source
term is possible via the fast Fourier transform [16, 30].

3.2 Efficient Evaluation of Agglomeration Terms

This section is concerned with the efficient evaluation of the agglomeration terms
(1.5) in the uni-variate case (dint = 1) as well as the extension to multi-variate
distributions (dint ≥ 2). The foundation for an efficient method for the uni-variate
case has been laid in [30] and numerically realized, tested and extended in [16,
21, 56, 57, 62]. In a multi-variate case, the particle properties are denoted by
m = (m1, . . . ,mdint ) ∈ R

dint≥0 with a maximum value of mmax, i. e., mj ∈ [0,mmax].
In this section, the internal properties are not associated with physical units (e.g.
length or mass) but treated as dimensionless quantities. For simplicity of notation,
the kernel is assumed to be only dependent on the particle properties m and m′ but
neither on time nor location. Under these assumptions, the agglomeration term is
given by

Fagg(f , m) = F+
agg(f , m) − F−

agg(f , m)

= 1

2

m1∫
0

· · ·
mdint∫
0

κagg(m − m′, m′)f (m − m′)f (m′) dm′

−
mmax∫
0

· · ·
mmax∫
0

κagg(m, m′)f (m)f (m′) dm′, (3.1)
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where F+
agg(f , m) denotes the source term and F−

agg(f , m) denotes the sink term
of the agglomeration process. This definition of the source term does not account
for any particles forming with a property larger than the maximum mmax. The sink
term, however, allows a particle to disappear, when it agglomerates with another
particle to one with property larger than mmax. Hence, technically particles may be
lost over time ifmmax is too small. The choice ofmmax should reflect this consideration.
The two key ingredients toward the proposed efficient evaluation of these integrals
are a discretization of the property space Ωint on a uniform grid and a separable
approximation of the agglomeration kernel,

κagg(m, m′) ≈
M∑

ν=1

αν(m) · βν(m′) (3.2)

for a moderate separation-rank M ∈ N of the kernel κagg. This allows to simplify the
convolution-type integral ofF+

agg(f , m) to a sumofM multi-dimensional convolution
integrals,

F+
agg(f , m) = 1

2

m1∫
0

· · ·
mdint∫
0

M∑
ν=1

αν(m − m′)βν(m′)f (m − m′)f (m′) dm′

= 1

2

M∑
ν=1

m1∫
0

· · ·
mdint∫
0

φν(m − m′)ψν(m′) dm′ (3.3)

with φν(m) := αν(m)f (m) and ψν(m) := βν(m)f (m).
Analogously, the sink term results in

F−
agg(f , m) =

mmax∫
0

· · ·
mmax∫
0

M∑
ν=1

αν(m)f (m)βν(m′)f (m′) dm′

=
M∑

ν=1

φν(m) ·
mmax∫
0

· · ·
mmax∫
0

ψν(m′) dm′. (3.4)

In particular,m-dependent terms have been factored out of the integral which reduces
the complexity to evaluate F−

agg(f , m).

3.2.1 Discretization of the Property Space

In order to evaluate the integrals in (3.3) and (3.4) numerically, a suitable discretiza-
tion of the property space Ωint to discretize f (m) is introduced. One first defines a
uniform tensor grid G by choosing the number of degrees of freedom per property,
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Fig. 15 A uniform tensor
grid with dint = 2 and n = 4

C(0,0)

g(1,3)

g(3,2)

n, and divides the interval (0,mmax) into n sub-intervals of width h := mmax
n which is

used to define grid points gj = (j1h, . . . , jdinth) and cells

Cj := (j1h, j1h + h) × · · · × (jdint , jdinth + h), for j ∈ {0, . . . , n − 1}dint .

An example of this grid with dint = 2 and n = 4 is given in Fig. 15. Each of the
N := ndint cells has volume of V := hdint .

In the following derivations, the density distribution f (m) (and the kernel factors
αν(m) and βν(m′)) are discretized to be piecewise constant with respect to this grid
G, i. e.,

f (m) = f (m′) =: fj if m, m′ ∈ Cj, (3.5)

hence the function f (m) is approximated by a tensor f ∈ R
n×···×n with N entries fj.

For piecewise constant integrands, the agglomeration integrals (3.3) and (3.4) can
be evaluated exactly at all grid points through evaluation of the nested sums

F+
agg(gj+1) = V

2

M∑
ν=1

j1∑
k1=0

· · ·
jdint∑

kdint=0

φν
j−k · ψν

k =: V
2

M∑
ν=1

Q+,ν
agg (j), (3.6)

using Q+,ν
agg ∈ R

n×···×n in (3.6) to denote the unscaled and unshifted result of the
discrete convolution. The efficient evaluation of Q+,ν

agg will be the focus of Sect. 3.2.2
to reduce the complexity of the straightforward evaluation O(N 2) to a log-linear
complexity of O(N logN ). The resulting F+

agg is piecewise linear and needs to be
projected to a piecewise constant function. This issue is addressed in Sect. 3.2.3.

The sink-term (3.4) within a cell Cj is computed as

F−
agg(m)|Cj = V ·

M∑
ν=1

φν
j ·

n∑
k1=0

· · ·
n∑

kdint=0

ψν
k =: V ·

M∑
ν=1

φν
j · S−,ν

agg (3.7)
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with a scalar S−,ν
agg as the result of the summation. The computation of (3.7) is of

complexity O(kN ) and results in a piecewise constant function (in the form of a
tensor with N entries) corresponding to the number of disappearing particles in each
cell.

3.2.2 Efficient Evaluation of a Discrete Convolution via Fourier
Transform

This section deals with the efficient evaluation of

Q+
agg(j) =

j1∑
k1=0

· · ·
jdint∑

kdint=0

φj−k · ψk, (3.8)

which is required in order to compute the source term F+
agg(f , m) in (3.6). Since the

computation is analogous for all kernel factors, the index ν has been dropped.
It is well known that a discrete convolution (3.8) can be evaluated simultaneously

for all j using the multi-dimensional convolution theorem [50],

Q+
agg = F−1(F(φ) � F(ψ)), (3.9)

where F and F−1 denote the Fourier transform and its inverse and � denotes the
elementwise (or Hadamard) product.

The result of a convolution of a tensor of size n × · · · × n is a tensor of size
2n × · · · × 2n with an index j ∈ {0, . . . , 2n − 1}dint . However, one is only interested
in the n × · · · × n subtensor since all other entries go beyond the computational
domain (properties larger thanmmax). In order to calculate this full convolution result
via a sequence of uni-variate Fourier transforms, the input tensors φ and ψ need to
be enlarged to this size by adding zeros. One then obtains tensors φ̃, ψ̃ ∈ R

2n×···×2n

with entries

φ̃j, ψ̃j =
{

φj,ψj if j ∈ {0, . . . , n − 1}dint ,
0 else,

(3.10)

in a process called zero-padding.
The multi-variate Fourier transform (3.9) is defined by

F : R2n×···×2n → C
2n×···×2n, φ̃ �→ F(φ̃) with (3.11)

(F(φ̃))j :=
2n−1∑
s=0

φ̃s ·
dint∏
q=1

eiπsqjq/n.
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The function F is rewritten in the form

F(φ̃) =
2n−1∑
s=0

φ̃s ·
dint∏
q=1

eiπsqjq/n

=
2n−1∑
sdint=0

· · ·
(
2n−1∑
s1=0

φ̃ · eiπs1j1/n
)

· · · eiπsdint jdint /n

= Fdint ◦ Fdint−1 ◦ · · · ◦ F1(φ̃), (3.12)

reducing it to a composition of uni-variate Fourier transforms in the qth dimension,

Fq : C2n×···×2n → C
2n×···×2n, φ̃ �→ Fq(φ̃) with (3.13)

(F(φ̃))
q
j :=

2n−1∑
s=0

φ̃j1,··· ,jm−1,s,jm+1,...,jdint
· eiπsjq/n.

The implication is that the complete Fourier transform of φ̃ can be computed via
a sequence of one-dimensional Fourier transforms. Every Fq can be calculated via
multiple applications of the FFT-algorithm [20]. This reduces the complexity of each
one-dimensional Fourier transform to O(n log n) and hence reduces the complexity
ofF down toO(dintndint log n) = O(N logN ). The same techniques are employed for
the inverse Fourier transform to calculate the complete convolution in O(N logN )

instead of O(N 2) without using FFT.
An additional acceleration of the calculation is achieved by exploiting the zero-

padding, which is necessary to obtain the full convolution result. When computing
F1(φ̃), one needs to calculate (2n)dint−1 fast Fourier transforms of length 2n, each
one over dint − 1 fixed indices j2 through jdint from 0 to 2n − 1. By taking the zero-
pattern of φ̃ into account, many one-dimensional Fourier transforms are applied to
zero-vectors which can be skipped to save computational time. These superfluous
Fourier transforms are characterized by a multi-index j with at least one jq > n for
q > 1. This reduces the number of one-dimensional FFTs during the computation of
F1 from (2n)dint−1 to ndint−1, a factor of 2dint−1 compared to the straightforward imple-
mentation. The same argument can be used to reduce the number of one-dimensional
Fourier transforms in the subsequent calculations ofF2 toFdint−1 as part of the zero-
pattern is preserved. An illustration of this zero-pattern for dint = 3 is shown in
Fig. 16. The number of one-dimensional Fourier transforms for the computation of
Fq is reduced to 2q · ndint−1, reducing the total number of one-dimensional Fourier
transforms from d · (2n)dint−1 to (2dint − 1)ndint−1. The total complexity is thereby
reduced to O(N log n). Further details can be found in [1].
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n1 2n1

n2

2n2
n3

2n3

˜φ F1(˜φ) F2(F1(˜φ))

Fig. 16 Illustration of the non-zero-pattern of φ̃ and the intermediate results of its Fourier transform
F (̃φ)

3.2.3 Conservation of Multi-variate Moments

So far, the source term (3.6) has been calculated at the grid-points gj that can effi-
ciently be calculated via the procedure outlined inSect. 3.2.2. The functionF+

agg(f , m)

is piecewise linear with respect to all internal variables since it is the result of an
integration of a piecewise constant function. The values Fj = F(gj) of the function
at every grid point gj are given, F+

agg(f , m) is represented with the standard basis of
piecewise linear “hat” functions

�j(m) =
dint∏
q=1

Tjq(mq) with (3.14)

Tjq(mq) =

⎧⎪⎨
⎪⎩
mq/h − jq + 1, if (jq − 1) · h ≤ mq ≤ jq · h,
−mq/h + jq + 1, if jq · h ≤ mq ≤ (jq + 1) · h,
0, else,

(3.15)

with standard hat functions Tjq(·). The function �j(m) satisfies �j(gj) = 1 and
�j(g̃j) = 0 if j̃ �= j which allows to write

F+
agg(f , m) =

n−1∑
j=0

Fj · �j(m).

Since the result is piecewise linear, it does not satisfy (3.5) and requires a projection.
It is possible to construct a projection that preserves all square-free moments.

A multi-variate moment Me(f )(t) (for a vector e = (e1, . . . , edint ) ∈ N
dint
0 ) of a

particle density distribution f (m) at time t is defined by
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Me(f )(t) :=
∫∫
Ωint

f (m)

dint∏
q=1

m
eq
q dm, (3.16)

and a moment Me(f )(t) with all eq < 2 is called square-free, i. e., if e ∈ {0, 1}dint .
It is a natural choice to distribute all particles associatedwith a single basis function

�j(m) onto its 2dint cells of support denoted by Cj+k with k = {−1, 0}dint to preserve
all 2dint square-free moments. This can be done for each basis function individually
since local preservation implies global preservation of moments.

One calculates

Me(�j) =
∫∫
Ωint

�j(m)

dint∏
q=1

m
eq
q dm

= Fj

dint∏
q=1

jqh+h∫
jqh−h

m
eq
q Tjq(mq) dmq = Fj

dint∏
q=1

I jq
eq ,

with

I jq
eq :=

(jq+1)h∫
(jq−1)h

m
eq
q Tjq(m) dm =

{
h, if eq = 0,

h2jq, if eq = 1,
(3.17)

to simplify notation. A cell Cj+k with an associated piecewise constant value wj+k

carries moments determined by

Me(Cj) =
∫∫
Ωint

wj

dint∏
q=1

m
eq
q dm

= wj+k

dint∏
q=1

(jq+kq+1)h∫
(jq+kq)h

m
eq
q dmq = wj+k

dint∏
q=1

J jq+kq
eq ,

with

J jq
eq :=

(jq+1)h∫
jqh

meq dm =
{
h, if eq = 0,

h2 · (jq + 0.5), if eq = 1,
(3.18)

to again simplify the integral.
Moment equality can be preserved by choosing values wj+k that satisfy
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Me(�j) =
∑

k={−1,0}dint
Me(Cj+k)

⇐⇒ Fj

dint∏
q=1

I jq
eq =

∑
k={−1,0}dint

wj+k

dint∏
q=1

J jq+kq
eq . (3.19)

By using

J j−1
e + J j

e =
{
2h, if e = 0,
2h2j, if e = 1

}
= 2I j

e,

which follows directly from the definitions of (3.17) and (3.18), one pairs the 2dint

summands in (3.19) and obtains

wj+k = Fj

2dint
,

implying a uniform distribution of particles associated with a single grid-point gj to
its surrounding 2dint cells.

This result is somewhat surprising as it does neither rely on the size of the grid
(the cell-width h) nor the index j of the cell in question. Further details can also be
found in [2].

3.2.4 Multi-variate Moments for the Pure Agglomeration Settings

This section is devoted to the analysis ofmomentsMe(f )(t) of amulti-variate particle
distribution f (m) over time. For this, one obtains expressions to track any multi-
variate moment in the absence of breakage and growth and compares those values to
numerical moments obtained over the course of a simulation using the discretization
presented here.

Let dint = 2 and denote the internal particle properties with m = (m1,m2). The
change of a momentMe(f ) of a two-dimensional distribution f (m) over time is given
by

dMe(f )(t)

dt
=

∫∫
Ωint

me1
1 m

e2
2 Fagg(f , m) dm

= 1

2

∫∫
Ωint

me1
1 m

e2
2

m1∫
0

m2∫
0

κagg(m − m′, m′)f (m − m′)f (m′) dm′ dm

−
∫∫
Ωint

me1
1 m

e2
2

∫∫
Ωint

κagg(m, m′)f (m)f (m′) dm′ dm.
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Setting κagg(m, m′) = 1 eliminates the kernel from the equation. The domain of
integration of the inner integral in the source term can be expanded to [0,mmax]2 by
setting f (m − m′) := 0 if any component of m − m′ is negative. A further change
in the integration variable gives

dMe(f )(t)

dt
= 1

2

∫∫
Ωint

∫∫
Ωint

f (m)f (m′) · (m1 + m′
1)

e1 · (m2 + m′
2)

e2 dm′ dm

−
∫∫
Ωint

∫∫
Ωint

me1
1 m

e2
2 f (m)f (m′) dm′ dm.

The binomials in the first line are expanded in order to separate the integrations with
respect to m and m′ and then the order of summations and integrations is changed.
A similar separation in the second line leads to

dMe(f )(t)

dt

= 1

2

e1∑
k1=0

e2∑
k2=0

(
e1
k1

)(
e2
k2

) ∫∫
Ωint

mkf (m) dm ·
∫∫
Ωint

(
m′)e−k

f (m′) dm′

−
∫∫
Ωint

me1
1 m

e2
2 f (m) dm ·

∫∫
Ωint

f (m′) dm′.

Every integral is in the form of (3.16) and is replaced accordingly. The rate of change
of one moment then reads

dMe(f )(t)

dt
= 1

2

e1∑
k1=0

e2∑
k2=0

(
e1
k1

)(
e2
k2

)
· M(k1,k2)(f )(t) · M(e1−k1,e2−k2)(f )(t)

−Me(f )(t) · M(0,0)(f )(t), (3.20)

which is an ordinary differential equation in themoments, independent of the detailed
particle distribution f (m). With this, one can calculate the evolution of all moments
given the moments of an initial distribution.

By using the moments of a discrete distribution f (m) (as opposed to a continuous
distribution) as initial values for (3.20), the only error present is due to the projection
presented in Sect. 3.2.3.

For the numerical simulation with dint = 2, the initial distribution is discretized
by

f (m, 0) = N0e
−200(m1−0.1)2 · e−200(m2−0.1)2 (3.21)
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Fig. 17 Ae (3.22) over the course of a simulation for moments M e with e = (0, 0) (top left),
e = (1, 1) (top right), e = (2, 2) (bottom left) and e = (3, 3) (bottom right)

with n = 512 for both internal coordinates withmmax = 10. This results inN = 5122

degrees of freedom and a width of h = 10
512 . The constant N0 will be chosen such that

M(0,0)(f ) = 0.1 at t = 0.
Numerical simulation up to t = 50 will result in M(0,0)(f )(50) = 0.0286 at the

end. In order to keep track of the numerical moments M̃ e(f )(t) in the simulation, the
ratio between numerical and theoretical moments,

Ae = M̃ e(f )/Me(f ), (3.22)

is computed.
The ratio A(0,0) is shown in the top left of Fig. 17 which displays a small loss of

0.18% (minimal ratio is A(0,0)(50) = 0.9982) over time that is most likely caused by
coarse time steps. There is no loss in the first crossmoment as one findsM(1,1)(f ) = 1
for all t (shown in the top right of Fig. 17). A smaller ratio occurs for higher order
moments that are not square-free. It is not expected that Ae(t) = 1 for all t since the
moments are not preserved analytically. The ratio A(2,2) is shown in the bottom left of
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Fig. 17 and indicates an under-prediction over the entire time period, similar to A(3,3)

in the bottom right. The error does not exceed 0.6% and 2.3%, respectively. Even
though there is an error in the prediction of higher order moments, they are predicted
with a very good accuracy given the grid with N = 5122 degrees of freedom.

4 Summary and Outlook

The model experiment in the HCT crystallizer led to interesting and new results
concerning the particle fluid interaction. Crystal size distributions change from the
inlet to the outlet, already without growth, as crystals of varying size have a different
residence time in the HCT. This newly found effect can be used to change the width
of the CSD; or can be used under growth conditions to keep the typically observed
broadening of the CSD very low. Some first insights on the shape dependence of this
effect are encouraging to investigate this topic in more detail in our future work.

For the numerical simulation of PBSs, a deterministic-stochastic algorithm was
developed that enables the simulation of PBSs in rather complex spatial domains.
Here, it was utilized for the simulation of a crystallization process in a fluidized bed
crystallizer. To this end, two codes, one with deterministic finite element methods for
the CFD equations and one with stochastic methods for the crystals, were coupled.
Furthermore, the stochastic code was extended by all features that are due to the
transport of the crystals in the three-dimensional domain.

Future work concerning the numerical simulations comprises algorithmic and
modeling issues. From the algorithmic point of view, the code with the SPS meth-
ods should be MPI parallelized (the finite element CFD code is already) such that
simulations of PBSs can be performed on clusters of computers to enhance the effi-
ciency. From the point of view of the model, different agglomeration kernels and
sedimentation models should be implemented and the breakage of crystals should be
included. In addition, the SPS method should be extended to multi-variate crystals.
This method provides a natural framework for the simulation of crystals that are
modeled in a more complex way than with one internal coordinate.

The computational bottleneck of the expensive computation of agglomeration
terms has been overcome by the exploitation of fast Fourier transformation (FFT) for
the evaluation of convolution sums and tensor trains (TT) for the representation and
arithmetic of multi-variate density distributions. In a sense, numerical simulations
have become feasible for a much higher resolution than experimental results are
available. Future work might include the identification of models that include multi-
variate agglomeration, e.g., the determination of physically relevant agglomeration
kernels. Another point of interest would be the extension of tensor trains to the entire
population balance model, for example their adaptation to the breakage term. Future
work could also focus on a parallelization of the introduced algorithms.

The agglomeration phenomenon in the fluidized bed crystallizer clearly shows
the potential of such a device for a selective product removal, which is an important
aspect for the post-processing of solids under industrial settings. As agglomeration
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can be modeled appropriately only with very specific parameters and kernels sets,
the developed opportunity of big data acquisition within such a model experiment
can be of great interest to the community of crystallization process engineers. In
combination with the presented fast simulation methods for agglomeration and the
corresponding fluid flow calculations, onemay even start to optimize flowgeometries
in order to control the agglomeration in such crystallizers in the future.

Acknowledgements The work at this report was supported by the grants JO329/10-3, BO4141/1-
3, and SU189/6-3 within the DFG priority programme 1679: Dynamic simulation of interconnected
solids processes.
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Chapter 15
Compartmental Population Balances
by Means of Monte Carlo Methods

Gregor Kotalczyk and Frank Einar Kruis

Abstract Stochastic simulation techniques for the solution of a network of pop-
ulation balance equations (PBE) are discussed in this chapter. The application of
weighted Monte Carlo (MC) particles for the solution of compartmental PBE sys-
tems is summarized and its computational efficacy in form of a parallel GPU imple-
mentation is pointed out. Solution strategies for coagulation, nucleation, breakage,
growth and evaporation are thereby presented. An application example treats the
simultaneous coagulation, nucleation, evaporation and growth encountered during
particle production through the aerosol route. Furthermore, the simulation of a com-
partmental network is discussed and parallel simulation techniques for the transport
of weighted MC particles are presented. The proposed methodology is benchmarked
by comparison with a pivot method for a variety of test cases with an increasing
degree of complexity. Simulation conditions are identified, for which conventional,
non-weighted MC simulation techniques are not applicable. It is found, that the
specific combination of a screen unit with tear-streams cannot be simulated by con-
ventional methods, termed ‘random removal’, and make thus other techniques—like
the here introduced merging techniques necessary.

Nomenclature

b Breakage rate [s−1]
dg Geometric mean diameter [m]
Cdist Compare distance on GPU memory (integer) [–]
d∗ Kelvin diameter [m]
d Diameter of particle [m]
Ei, j Merging error of particles i and j [–]
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f A→B Relative particle exchange flow rate from compartment A to B [s−1]
FA→B Absolute particle exchange flow rate from compartment A to B [s−1]
G Growth rate [m s−1]
kB Boltzmann constant [J K−1]
m1 Atomic (resp, molecule) mass [kg]
NMC Number of MC simulation particles [–]
NG Concentration of gas atoms (or molecules) [m−3]
nC(v) PSD in compartment C [m−6]
oidx Destination index on GPU memory (integer) [–]
i∗ Number of atoms (resp. molecules) in critical cluster [–]
p(i)
A i-th property of particle A [unit of i-th property]

ps Saturation pressure [Pa]
QA→B Volumetric flow rate of carrier gas/liquid from compartment A to B [m3 s−1]
R Mixing ratio for breakage scheme [–]
RN Nucleation rate [m−3 s−1]
S Supersaturation [–]
Ssep Separation function for screen [–]
s f Reciprocal of stochastic resolution [m−3]
T Temperature [K]
t (simulation) time [s]
tchar Characteristic time [s]
v Particle volume [m3]
v∗ Kelvin volume [m3]
vM Atomic (resp. molecular) volume [m3]
VC Volume within compartment C filled with carrier liquid (or gas) [m3]
Wi Statistical weight of MC particle i [m−3]
αi Merging weight for property i
β Coagulation kernel [m3 s−1]
γ Breakage function [–]
ε Maximal admittable merging error [–]
τ Time step [s]
σ Surface tension [N m−2]

Indices

0 Initial values
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1 Introduction

The solution of the population balance equation (PBE) [1] plays an important role in a
wide area of applications ranging from natural sciences to many fields of engineering
[2]. Especially the modelling of chemical engineering problems such as crystalliza-
tion [3], milling [4], granulation [5] or particle production in aerosol reactors [6]
resort to PBE based process modelling.

The modelling of single apparatuses can be seldomly done with the assumption
of spatial uniformity (as in e.g. [7]) and the application of Computational Fluid
Dynamics (CFD) simulations and/or compartmental modelling becomes necessary
in order to describe different zones of single apparatuses correctly.

CFD modelling allows a very high spatial resolution of the investigated system:
30,000 [8]−1,000,000 [9] cells are sometimes applied. The drawback of a CFD-
PBEmodelling is its enormous computational cost, hence a PBE has to be solved for
each of these cells. Due to the high computational cost, only a rough approximation
of the particle size distribution (PSD) is encountered in such simulations which
typically resort to sectional methods with a low resolution (of ca. 12–30 discrete
points or sections [10, 11]) or to the method of moments [12, 13], limiting the
particle modelling mostly to one property—the size.

To overcome this problem, compartmental modelling is often applied, simplifying
the spatial complexity to a low number of compartments (examples are 3 compart-
ments or 10 compartments [14]). This allows, on the other hand, a more complex
particle modelling with a more detailed sectional grid (e.g. 1000 discrete sections for
3 compartments [15]) or even with aMonte Carlo (MC) simulation, where more than
one particle property allow to model a more complex morphology of the particles
[14].

The PBE for a network of compartments, like presented in Fig. 1. can be described
by the following formula:

dnC (v, t)

dt
= + 1

2

∫ v

0
βC (v′, v − v′)nC (v′, t)nC (v − v′, t)dv′

︸ ︷︷ ︸
coagulation birth term

− nC (v, t)
∫ ∞

0
βC (v, v′)nC (v′, t)dv′

︸ ︷︷ ︸
coagulation death term

+ RN,C (t) · δ(v − v∗
C (t))︸ ︷︷ ︸

nucleation

−∇v(GC (v, t)nC (v, t))︸ ︷︷ ︸
growth(G>0)/evaporation(G<0)

−bC (v) · nC (v, t)︸ ︷︷ ︸
breakage death term

+
∫ ∞

v

bC (v′) · nC (v′, t) · γC (v|v′)dv
︸ ︷︷ ︸

breakage birth term

+
∑

inflow from all compartments i

fi→C · ni (v, t)

−
∑

outflow to all compartments i

fC→i · nC (v, t) (1)
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Fig. 1 A network of compartments. Each compartmentCi models parts of a reactor (or equipment)
volume, which is filled with the carrier gas (or liquid) with a volume VC . The compartment contains
a PSD, nC , and is described by other continuous variables, like temperature TC , a gas concentration
NG,C , etc

where the coagulation kernels βC , growth rates GC , nucleation rates RN,C and sizes
of the nucleating particles v∗

C , breakage rates bC(v) and breakage functions γC(v|v′)
can be defined differently for each compartment C . The shown particle exchange
flowrates fi→C and fC→i may assume constant values, or reflect more complex—
nonlinear—and particle size or time dependent forms. The given volumetric flow
rates QA→B (shown in Fig. 1) of the carrier gas (or liquid) and the volumes of the
carrier gas (or liquid) of the outflow compartments, VA, are thereby used in order to
determine the particle exchange flowrates via:

f A→B = QA→B/VA (2)

In this way, a complex reactor structure can be modelled in more detail [16, 17]
or the interconnection of single processing units in a flowsheet simulation can be
analyzed [15, 18, 19].

Although Eq. (1) describes only one particle property, the volume v, one could
interpret v as a vector describing multiple properties of the particle, such as volume
(p(1)), surface area (p(2)), wet content (p(3)), and so on, as suggested in Fig. 1. Only
a stochastic modelling is able to solve Eq. (1) for a high number of properties and
render the complete particle morphology.

In the following, stochastic solution strategies for Eq. (1) will be discussed in
the frame-work of an operator splitting approach meaning that the single processes
coagulation, nucleation, growth/evaporation, breakage and transport of particles are
decoupled for short periods of time τ . The approximation error introduced by this
decoupling can be minimized by a choice of a low enough separation time step τ .
For this reason, the solution strategies for single processes, like coagulation, nucle-
ation, growth/evaporation and breakage are discussed for one compartment first. The
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implementation of the coagulation in the framework of a compartmental network,
as well as the transport between single compartments is discussed in the section
afterwards, where the modelling of multiple compartments is applied.

2 Weighted Monte Carlo Particles for the Solution
of the Population Balance Equation

The use of weighted simulation particles (a particle with weight w represents w
real particles within a given reactor volume) has several advantages: it allows to
describe the interaction between simulation particles having different concentrations
coming from different cells or compartments [14, 20, 21]. It can also be used as a
tool to control the number of simulation particles (e.g. to gain numerical accuracy).
In the following, some techniques will be introduced to solve the single mechanisms
presented in Eq. (1) by the application of weighted MC particles.

2.1 Coagulation

The correct description of the coagulation rates for the weighted particles, especially
for a complex coagulation scheme, like the one introduced Zhao et al. [22] shown in
Fig. 2, poses a great difficulty.

The authors [22] presented the ‘ficticious particle theory’ which leads to the
following modified coagulation kernel:

β( f p) = 2Wjmax
(
Wi ,Wj

)
Wi + Wj

β (3)

The weights of the particles are denoted by Wi and Wj . The coagulation kernel β

describes the coagulation of the original (non-weighted) system—which might be
the Brownian kernel for the freemolecular regime, etc. The resulting coagulation rate
is asymmetric, making a distinction necessary, whether particle i coagulates with j
or vice versa. This definition is 1) difficult to understand conceptually and 2) difficult
to extend on other process—like nucleation or transport of fictitious particles.

We developed in [23] the concept of the stochastic resolution which describes
each coagulation in the frame-work of equally weighted MC-particles, where each
MC-particle describes s f real particles. The value for the parameter s f can be set
arbitrarily. Figure 2 shows that the setting s f = Wmin = min

(
Wi,Wj

)
leads to the

correct description of the coagulation-scheme. The scaling factor s f depends on the
chosen coagulation pair, so that different coagulation-events are described in different
stochastic resolutions.
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Fig. 2 The concept of ‘stochastic resolution’ can be used to describe the coagulation-scheme
developed Zhao et al. [22]. Only the choice for sf = Wmin leads to the correct description of the
general rule presented in the ‘simulation entries’ line

The coagulation rate β(w) for this coagulation-scheme can be derived from the
population balance equation:

dn(v)

dt
= 1

2

v∫
0
β
(
v − v′, v′)n(

v − v′)n(
v′)dv′ − n(v)

∞∫
0

β
(
v, v′)n(

v′)dv′ (4)

Instead of the ‘original’ concentrations n(v), the concentrations of the MC-
systems n(MC)(v) = n(v)

s f
are being considered. The multiplication of the PBE with

the factor 1
s f

= 1
Wmin

leads to the following modified coagulation rate of the MC-

particles: β(MC) = Wmin ·β. Hence there is one MC-particle of theWmin-species and
Wmax
Wmin

MC-particles of the Wmax-species, the overall rate for the coagulation between
one Wmin-MC-particle and one of the Wmax-MC-particles is:

β(w) = Wmax

Wmin
· β(MC) = Wmax · β (5)
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The second case Wmax = Wmin , which is not shown in Fig. 2, is also described
with the resolution s f = Wmin . Both particle species are described by only one MC-
particle, so that only one MC-particle can be found after the coagulation. In order to
apply the constant number scheme, the weight of the simulation entry representing
this particle is divided by two and the particle properties are stored in both positions.

The thus derived coagulation kernel β(w) is easier to calculate than the origi-
nally introduced β( f p) —a speed up of the simulation up to 10% could be noticed.
Due to its symmetric form, computational advantages for the implementation of the
inverse method can be expected, as only half of the computations of the β(w) ker-
nel are necessary. The simulation results of particle coagulation for the newly esti-
mated coagulation kernel β(w) could be found to be as accurate as the β( f p)-kernel
results (which show excellent agreement with the solution produced by means of the
Discrete-sectional-method in the first place) within the MC-stochastic noise [23].

2.2 Nucleation

Homogeneous nucleation is amechanism that leads to the formation of new particles,
whichhave to be included among the simulation entries.Constant number simulation-
schemes sum up all possible algorithms, which update—somehow—the simulation
properties, but keep the number of the used simulation entries constant. Keeping the
number of simulation entries constant ensures a constant level of stochastic accuracy
and makes a simple prediction of needed computational resources possible. Figure 3
shows possible constant-number nucleation algorithms. They can be used to model
the inclusion of the nucleation particles or particles included by other processes: like
breakage or transport.

The random removal algorithm has been introduced Lin et al. [24] in the frame-
work of the concept of a ‘constant number Monte Carlo simulation’ which is based
on the not-weighted particle scheme. The algorithms applying the merging step are
based on the weighted-particles scheme and the concept of the merging error. They
cannot be used for non-weighted MC simulations. The merge-List is created each
100 merge-steps and contains 100 simulation entries with low-weights.

2.2.1 Merging

The concept of ‘merging’ of simulation entries is proposed in [23]: if two simulation
entries with exactly the same properties are merged, the resulting representation of
the particle size distribution will not change and all the physical processes will be
described in the same way. If the simulation entries differ slightly in their properties,
a small error will be introduced.
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Fig. 3 Different simulation algorithms which combine theMC constant-number simulations based
on weighted particles with the nucleation process

The merging scheme:
Each simulation entry contains the weightW, and other properties p(1), p(2), p(3), . . .

of the rendered part of the particle population (where p(i) could be the volume,
porosity, electric charge, etc.). If the simulation entry A (weight WA) and B (weight
WB) are merged into the new simulation entry C (weight WC and several properties
p(i)
C ), the following two rules should apply:

(i) The total weight of the simulation-entries before and after the merge-step should
be preserved:

WC = WA + WB (6)

(ii) If the total amount of the particle-properties is preserved one can write:

WC · p(i)
C = WA · p(i)

A + WB · p(i)
B ⇔ p(i)

C = WA · p(i)
A + WB · p(i)

B

WA + WB
(7)
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This is themost simple assumptionwhich should hold true formost of the physical
applications, but other definitions—which make a more complex calculation neces-
sary can be used. E.g., if the described property is the diameter d but the volume v

is preserved, one can write (assuming sphere-like particles):

WC · π

6
(dC)3 = WA · π

6
(dA)

3 + WB · π

6
(dB)3

⇔ dC =
(
WA · (dA)

3 + WB · (dB)3

WA + WB

)1/3

(8)

The merging error:
The error introduced into the simulation by the merging of the simulation entries can
be estimated by the following formula:

E(A,B) =
∑

all roperties i

αi ·
⎛
⎝ p(i)

A − p(i)
B

min
(
p(i)
A , ·p(i)

B

)
⎞
⎠

2

(9)

where αi are merging-weights, which can be set arbitrarily—depending on the phys-
ical process—they can be interpreted as a measure of the severity, which the devia-
tion of the property p(i)

A from p(i)
B would have—compared to the deviation of other

properties p( j)
A from p( j)

B .

2.2.2 Parallel Merging Algorithm

The merging-algorithms presented in Fig. 3. use the selection of random simulation
entries, resulting therefore in a random merging error E(A,B)—which may be exces-
sively high. The smallest possible merging error can be estimated by the comparison
of all simulation-entry-pairs—which would prove very costly: NMC · (NMC − 1)/2
comparisons are necessary, if NMC simulation-entries are used. A sound compromise
between both scenarios is the sampling of a ‘representation of the simulation entries’
and the estimation of the minimum merging error of this representation. A parallel
algorithm can be applied for this purpose, easily adaptable for GPU computing: the
merging errors for (NMC − 1) pairs of simulation-entries can be computed in paral-
lel and the comparison of the calculated merging errors is done within only log2N
computational steps, like shown in Fig. 4.

2.2.3 Validation of Coupled Coagulation and Nucleation

The nucleation is combined with the simulation of coagulation in two steps: First, a
classical event-driven MC coagulation step is performed, this includes the selection
of the coagulation pair via the fast parallel A/R-method introducedWei [25] with the
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Fig. 4 The parallel low weight merging algorithm [23]: only 8 parallel thread-executions are
necessary in order to estimate the pair (1 out of 256) of simulation-entries with the minimal merging
error

weighting scheme based on the stochastic resolution—the actual time-step 	τMC is
evaluated in this step, too. In a second step, the number of the nucleating particles is
estimated, for this purpose the solution of the differential equation (which describes
the nucleation) can be approximated by the Euler-method (more complicated Runge-
Kutta methods or other ODE-solvers can be used for the modeling of the interaction
with the continuous phase [26, 27]). The newly created simulation entry is then
included by means of the merging algorithms from Fig. 4.

A typical benchmark test case1 shows the advantage of the merging of particles
compared to the random removal method, as sketched in Fig. 3. A part of the simu-
lation results already discussed in [23] are summarized in Table 1, where the mean
values dg and standard deviations 	dg of the geometric mean diameter are shown.
Hence each MC simulation is executed with a different sequence of random num-
bers, the resulting geometricmean diameter d(i)

g is different for each simulation i . The
arithmetic mean values (dg) and standard deviations 	dg of 100 d(i)

g values resulting
from of 100 MC simulations are shown. (Similar findings could also be presented
for the number concentration of the particles or the geometric standard deviations of
the resulting PSDs.) It can be clearly seen that the application of merging techniques
leads to significantly lower noise levels. For example, 10,000 simulation particles
in combination with the random removal method cannot reach the same precision
levels as the application of 1000 simulation particles in combination with the low

1A constant nucleation rate RN is assumed, so that newly introduced simulation entries have the
weight W0 = RN · 	τMC and a predefined diameter d0. For the simulation has been set: RN =
1014 1

m3 s
, d0 = 3 nm. A monodisperse population with an initial concentration of 1017 1

m3 has been
used as start condition, the initial MC particles are equally weighted. The temperature was set to
300 K and the particle density to 1 g

cm3 . The simulated time was ca. 25.8 s, which is 500 times the
characteristic time needed to reach the self-preserving distribution [28] due to coagulation.
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Table 1 Values of the geometric mean diameter and simulation times (CPU time) for the discrete
sectional (DS) method and MC simulations using Random removal (RR) and Low weight Merging
(LWM) with 1000 and 10,000 MC particles

Method Mean value dg
[nm]

Standard deviation
	dg (absolute)
[nm]

100	dg/dg
(percent) [–]

CPU time [s]

DS (20 100) 4.736 – – 8.4

DS (250 380) 4.740 – – 332.1

RR 1000 4.820 0.544 11.29 330.3

RR 10,000 4.736 0.180 3.79 3964.2

LWM 1000 4.733 0.100 2.11 300.4

LWM 10,000 4.742 0.033 0.70 3643.2

The number of used sections and discrete points for DS are indicated by the values in the brackets
(discrete points, sections). The exact 1D grid specifications are described in [23]

weight merging. It should also be noted that the computation of 10,000 MC particles
requires ca. 10 times larger computing times than of 1000 particles. The computing
times shown in Table 1 refer to the simulation of 100 MC simulations run in parallel
on the GPU and one discrete-sectional run sequentially on the CPU.

2.3 Coupled Condensational Growth and Evaporation,
Coagulation and Nucleation

A varying nucleation rate, RN, as well as a changing critical nucleus size, d∗, is
often encountered when a metallic vapor is created and then cools down, leading to
the nucleation rate increasing over tens of orders of magnitude and then going down
when the free atoms have been largely consumed. The size of the critical nucleus, d∗,
on the other hand, decreases from very large values to atomic sizes, and rises again
when the nucleation rate is increasing. This presents a severe test for the numerical
solution, as the source term is moving rapidly through the size spectrum, leading to
a dramatic change of the growth and evaporation rates of the simulated particles, as
well. Hence particles larger than the nucleating particle (i.e. with volumes vi > v∗)
will grow, while those which are smaller (i.e. with volumes vi < v∗) will evaporate.
This is described by the equation of the growth-rate G(vi , NG) of particles with the
volumes vi in the free-molecule regime [29]:

G(vi , NG) = dvi
dt

= vM · π · d2
i√

2π · m1 · kB · T
· (kB · T · NG − ps · exp{4 · σ · vM/(kB · T · di )}) (10)
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The value of the critical diameter is given by:

d∗ = 4 · σ · υM/(kB · T · ln(S))

with S = NGkBT
Ps

(11)

So that G(vi , NG) = 0 for vi = v∗ and G(vi , NG) > 0 for vi > v∗. The growth
rate of the particles is also dependent on the number of atoms (or molecules) of the
condensable material in the gaseous phase, NG. The depletion (resp. increase) of the
monomers due to condensation on (resp. evaporation of) the particles is described
by a mass balance:

dNG

dt
= −

∑
i

Wi · G(vi , NG)/vM − RN · i∗ (12)

Thereby, the nucleation of particles is also taken into account by the nucleation
rate RN and the number of atoms (resp. molecules) i∗ in a particle of the critical size
d∗.

We proposed an operator-splitting based approach for the parallel solution of this
system [26, 27, 30], by decoupling the growth-evaporation and nucleation mecha-
nism from the coagulationmechanisms for short periods of time, like in the presented
coupled simulation of coagulation and nucleation in Sect. 2.2.3. The condensational
growth (resp. evaporation) of the simulated particles is solved in parallel by applica-
tion of time-step adaptive Runge-Kutta techniques (see e.g. [31]). A parallel addition
algorithm, similar to the presented parallel comparison algorithm in Fig. 4, is used
for the fast calculation of the term

∑
i Wi · G(vi , NG) in Eq. (12). A more detailed

description of this approach can be found in [30]. This modelling of the continu-
ous PSD with discrete MC particles avoids the effect of numerical diffusion [32,
33], encountered in models describing particle growth, in analogy to moving grid
techniques for sectional methods [34].

It has be shown, that all of the mentioned mechanisms (i.e. evaporation, conden-
sation, nucleation and coagulation) have to be considered and that the omission of
one of these mechanisms leads to severe deviations from the ‘complete’ system [26].

The thus introducedmethodology can be used to determine the influence of differ-
ent formulations of nucleation rates and allows to identify experimental conditions
for the experimental investigation of those. There exist several approaches for the
description of nucleation theories [35]. We consider in the following these three
expressions for the nucleation rate RN, as discussed in [36]:

R(cou)
N (NG) =NG ·

√
2σ

π · m1

ps
kB · T · v1

· exp
(

− 16 · π · σ 3 · v2
M

3 · k3B · T 3 · ln(S)2

)
,
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Table 2 Material constants
for Ag at a temperature of
1300 K

Symbol Description Value Source

m1 Atomic mass 1.792 × 10−25 kg [37]

vM Atomic volume 1.922 × 10−29 m3 [37]

ps Vapor pressure 1.324 pa [37]

σ Surface tension 0.9024 J/m2 [38]

with S = NGkBT

ps
(13)

R(gir)
N (NG) = R(cou)

N · exp
⎛
⎝(36 · π)

1
3 · σ · v

2
3
1

kB · T

⎞
⎠; R(cls)

N (NG) = R(cou)
N · S (14)

The influence of these different nucleation theories has been discussed for atmo-
spheric simulation scenarios [27] and are briefly sketched for a metallic system
describing the nucleation of Ag vapor in the following. The material parameters in
Eqs. (10–14) assume values summarized in Table 2 at a temperature of T = 1300K.

The simulation of a isothermal nucleation induced due to an initial supersaturation
of S0 = 100 ofAg vapor and the presence of an initial (background) PSDwith amean
geometric diameter of 2 nmand a geometric standard deviation of 1.2 rendering a total
number-concentration of 1016 m−3 is used as an initial condition. The temperature
is kept constant to 1300 K during the course of the simulation.

The monomer concentration exhibits the fastest depletion rate for the Girshick-
based nucleation rate, as is shown in Fig. 5a. This is due the highest nucleation rate
which is plotted in comparison with other nucleation theories in Fig. 5b. This leads in
turn to the highest particle concentrations for the Girshick-based nucleation theory
(see figure Fig. 5c). The nucleation theories show the most striking differences at the
early stages of the simulation, for longer simulation times, (i.e. t > 0.01 s), similar

Fig. 5 Isothermal Ag particle synthesis with initial PSD and supersaturation S0 = 100. The
saturation surplus S − 1 (a), the corresponding nucleation rates (b) and the total particle number-
concentrations (c) are shown. The nucleation rates R(cou)

N (Courtney) R(gir)
N (Girshick) and R(cls)

N
(Classic) are defined in Eqs. (13) and (14)
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Fig. 6 Isothermal Ag particle synthesis with initial PSD and supersaturation S0 = 100. Resulting
PSDs after 2.2·10−4s (a) and 1.4·10−1s (b) for the nucleation rates R(kin)

N (Kinetic) R(gir)
N (Girshick)

and R(cou)
N (Courtney) defined in Eqs. (13) and (14)

supersaturations and concentrations can be observed (in Fig. 5 a-c). This is a signature
of the similar PSDs resulting from the simulation, as they are shown in Fig. 6.

The PSDs at the initial stages of the simulation (see Fig. 6a) show tremendous
differences and allow to attribute each of the different shapes to a specific nucleation
theory. For longer simulation times, on the other hand, a self-preserving PSD is
reached and all of the presented nucleation theories can be attributed to the shown
PSDs. The shown self-preserving PSD is the result of the complex coupling of
the mechanisms of coagulation and evaporation. This PSD deviates from the self-
preserving PSD for the coagulation only as reported Vemury and Pratsinis [28].
Similar self-preserving PSDs deviating from the self-preserving PSD for coagulation
only have been already reported for similar metallic systems [26] and [30]. This
approach allows thus to roughly approximate a time window, for which specific
differences between the different nucleation rates can be expected. Allowing thus to
give hints for measurements set-ups investigating the specific forms of the nucleation
rate RN.

2.4 Breakage

Breakage of particles is relevant for the modeling of particle mills, but also for
granulation, emulsions, sprays and even for aerosols when agglomerates break up
by collisions or turbulences. The rendering of the large number of particles which
are produced during the continuous breakage process poses a major problem for
MC simulations, because large computational resources have to be provided for
this purpose. In a typical milling process, for example, reductions of the particle
diameters from 500 to 0.5 μm are encountered, the same amount of volume, which
is rendered by one simulation particle with a size of 500 μm has to be rendered by
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109 simulation particles with a diameter of 0.5μm, if all particles represent the same
number concentration of real particles.

Traditional solutions of this problem encompass the discretization of the particle
property into bins [39], which would render the combination with the developed
growth/evaporation algorithm impossible, and constant-number approaches [40],
which are known to produce a high level of statistical noise [41].The application
of merging schemes [42] (i.e. the approximation of the properties of several sim-
ulation particles by one simulation particle) would pose an attractive alternative.
However, the vast amount of newly resulting particles makes a lot of merging steps
necessary, leading to large computing times. A recent constant-number method has
been presented [41], which renders the breakage event of one particle intomany frag-
ments by a single particle. The size of the fragment is selected stochastically, the use
of many simulation particles leads to the correct distribution of fragment sizes. This
scheme is only able to render the parts of the particle size distributionwhich represent
high number concentrations of the particles. Furthermore, only binary breakage can
be described.

We developed an alternative approach [43] for the derivation of the breakage
scheme by resorting to the argument that the breakage of many MC-particles with
equal properties and weights has to lead to a particle size distribution (PSD) of
fragments, which is described by the corresponding breakage kernel. It allows to
formulate any probability distribution function (PDF) with which the new volume of
the simulation particle is selected by adjusting the statistical weight of the resulting
fragments depending on 1) the selected particle properties, 2) the used PDF and 3)
the given breakage density function. This newly proposed scheme encompasses the
already introduced SWA schemes, especially a number-based (NB, named SWA1
in [41]) and volume-based (VB, named SWA2 in [41]) breakage scheme, and it
makes novel formulations possible: the low volume scheme (LV), which renders
preferably fragment particle sizes at the lower end of the size spectrum, and the
combination of LV with the NB (NB-LV) or VB (VB-LV). Exemplary simulation
results are shown in Fig. 7. It can be seen that the SWA methods (NB and VB) are
only able to render large particle sizes, and that LV, NB-LV and VB-LV are able to
render the whole spectrum of particle sizes. Smaller noise levels are found for VB
and specific VB-LV schemes, making both more suitable for prolonged simulations
than the other presented methods. The LV based simulation method fails to predict
the correct PSDs for longer simulation times. For this reason, the combinations of
LV with VB or NB are needed, in order to ensure the correct shapes of the PSDs for
longer simulation times. The combination ratio R ∈ (0, 1) between the LV and NB
leads to different schemes, while lower ratios R lead to a higher representation of
low-volume MC particles, they also lead to higher noise levels: the setting R = 0.6
leads to more statistical noise than R = 0.9, as it can be seen in Fig. 7. The adaptive
resetting of the factor R in order to avoid the systematical errors, as it is shown in
Fig. 7 for the LV scheme is briefly discussed in [44].

The required simulation times are listed in Table 3, 105 simulation particles are
required in order to ascertain a computational accuracy of less than 1%. (I.e. the
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Fig. 7 Resulting PSDs from the simulation of a test cases describing a binary, homogeneous
particle breakage function γ (vF, vP) = 2/vP and a breakage rate b(v) = v (test case 1 in [43]) for
a monodisperse initial condition v0 and the thus defined characteristic time tchar = b(v0)−1. The
MC-simulations are compared with analytic solutions found in [46]

Table 3 Computational times required for the simulation of t = tchar × 108 in dependency on the
used number of simulation particles

Simulation particles NB VB VB-LV

1000 0.5 s 0.8 s 0.6 s

10,000 2.8 s 4.4 s 3.0 s

100,000 27.1 s 42.5 s 29.8 s

arithmetic standard deviation of the moments of the distributions performed for 100
different sets of random numbers is smaller than 1% of the mean value.)

3 Compartmental Population Balance Modelling

The modelling of flow-sheet simulations in the scope of an operator-splitting
approach (see e.g. [47]) requires a specific time step management, so that ongo-
ing simulations processes can be forced to stop at specific simulation time points.
This issue is addressed first, in a second, longer paragraph, the implementation of
particle transport between single compartments by means of weighted MC particles
is introduced and some typical simulation scenarios are presented.
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3.1 Time Step Control for Compartmental PBE Networks

The combination of simultaneous processes rendered by the PBE solver poses a
challenging task, hence the characteristic time-scales for the corresponding processes
may differ in several orders of magnitude and change vastly during the simulation.
Although the developed algorithms for the breakage, coagulation and growth (resp.
evaporation) already adapt to the optimal time-step for each single process (in the
absence of other processes), the simulation of the combined coagulation, nucleation
and growth is driven by the discrete coagulation processes providing an inherent MC
time step τMC. This is a computationally advantageous setting, if the inherent growth
step τG is smaller than the coagulation step τMC. The opposite case, in which τG is
bigger than τMC, forces the simulation to use much smaller time steps τ ′

G and thus to
use much more computationally demanding growth steps. The incorporation of the
breakage as a third process with an inherent time step τB may force the simulation
to reset this step to a lower value τ ′

B in a coagulation driven implementation, as well.
This situation becomes even more complicated, if the PBE is solved for differ-

ent compartments and a particulate flow between the compartments is simulated.
Consider, for example two compartments, in which coagulation takes place, so that
compartment 1 has an intrinsic MC coagulation time step τ

(C1)
MC , while the second

compartment has the inherent coagulation time step τ
(C2)
MC , the additional particulate

flowrate between compartment 1 and compartment 2 might make the update of the
particle populations due to the transport of particles each time interval τTr necessary.
It depends on the specific modelled application, whether the minimum of these three
time steps has to be used, or some other minimal time step τmin can be applied. In
all cases, there exists the need, to perform, at least in one of the two compartments,
a smaller time step than the one intrinsically provided (τ (C1)

MC and/or τ
(C2)
MC ).

The application of time-driven MC methods [48] allows the setting of a variable
time step, but this time step has to be set proportional to the intrinsic step in order
to avoid systematical errors [49], although smaller values are allowed. The main
disadvantage of this approach is, however, its computational costs, hence all possible
coagulation pairs have to be checked for coagulation during the suggested time step—
special book-keeping methods [50] might help to address this problem for the single
simulation of coagulation but their usage is not possible2 in the context of a PBE
network modelling multiple simultaneous processes.

We have developed the concept of ‘fractional MC time steps’ [51], in order to
address this problem. In the scope of this approach, we modified the fast GPU
acceptance-rejection algorithm [25] in such a way, that an additional stochastic prob-
ability is formulated, whether the particles coagulate or not if a smaller time step than
the intrinsic MC AR-time step is needed. We compared our methodology (marked

2Special modeling is necessary in order to capture the changes of the ‘book kept’ entries due to
other non-coagulation processes—this might or might not be possible, depending on the specific
process being modelled. Additionally, the tracking of the changes might prove more expensive than
the application of the time-driven MC methods without book-keeping.
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Fig. 8 PSDs resulting from
simulation conditions as
described in [51]

as ‘MC full step’) with (1) another approach from the literature [21], where no coag-
ulation of the particles takes place in such an event (marked as ‘no step’) and (2)
with the self-proposed approach, where the particles simply coagulate—even if the
simulated time step is smaller than the intrinsic time step (marked as ‘full step’). A
typical isothermal coagulation scenario describing Brownian motion of particles in
the free-molecule regime (full details can be found in [51]), leads to the following
simulation results shown in Fig. 8, if the simulated system is forced to perform not the
intrinsic MC time steps but an artificial time step of 1 ms. It can be clearly seen, that
only the application of the fractional MC time steps leads to the correct description
of the PSDs, which is in excellent agreement with the reference result gained by the
application of the discrete-sectional method, as described in [52, 53].

3.2 Compartmental Monte Carlo Simulation

Modelling of MC particle transport as a stochastic process with discrete events is
sometimes suggested [54]. Such a modelling, could—however— entail a large num-
ber of stochastic events for small simulation times and slow down the simulation
considerably. The other disadvantage of such an approach is the potential increase
of the stochastic noise of the simulation.

The description of weighted simulation particles makes novel simulation strate-
gies for the transport possible, the adjustment of the statistical weight of each MC
particle makes the exact description of the depletion of particles due to particle out-
flow possible—as is discussed in [20] (termed ‘rescale outflow’) and shown in the
following. First, the description of a two-step (inflow and outflow) method is sug-
gested and themerging and random removal techniques are briefly described, then the
methodologies are validated and compared by simulations of exemplary flowsheets.
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3.2.1 Transport of Weighted MC Particles

In the following, the transport of MC particles from one compartment to other com-
partments will be described. It consists of two steps: (1) the particle outflow and
(2) the particle inflow. This is being realized by the computational implementation
of ‘streams’ which are able to store a population of MC particles, as large as the
population stored for each compartment.

In the first outflow step, particles are inserted into the streams. This can be easily
done by copying all particles from the hold-up into the stream and adjusting the
statistical weights accordingly, in the stream and in the hold-up. If, for example, the
particles from compartment 1 stream into compartment 2 with the size v dependent
relative rate f1→2(v), then one can describe for each particle i the change of its
statistical weight Wi for a small interval of time 	t as:

Wi (t + 	t) = Wi (t) − 	t · f1→2(vi ) · Wi (t) (15)

This is shown as particle outflow step in Fig. 9. The new weights Ws1
i and W

c1
i

are set to Ws1
i = 	t · f1→2(vi ) · Wc1

i and W
c1
i = Wc1

i − Ws1
i .

In the inflow step in Fig. 9, the particles from the streams are inserted into the
compartments. Analogously to the already discussed nucleation of particles, one
encounters at this step the problem of the limited CPU memory: each connecting
stream contains as many particles as the destination compartment, so that only a
fraction of all MC particles can be stored in the destination compartments. This
problem has been solved in two ways in the here presented work: (1) randomly
selected particles are removed from the simulation—adjusting the statistical weights
in such a way, that the mass of the system remains constant as in the conventionally
used constant number algorithms [55, 56] and (2) the particles are merged together
using a parallel merge algorithm as it is briefly discussed in [57].

Fig. 9 MCparticles stored in thememory assigned for compartment 1 and 2, aswell as in the stream
connecting both compartments. The stages (1) before the particle outflow (2) between outflow and
inflow and (3) after the inflow during the simulation of a single time step are shown
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Fig. 10 Compartment-Streammerge pattern. Each double arrow represents one merge attempt. All
merge attempts which are executed in parallel with the destination offset oidx = 0 are shown in
comparison with all parallel merge attempts made for the offset oidx = 1

3.2.2 Parallel Merge Algorithm

The merging algorithm described in Fig. 4 could be used for the merging of MC
particles within stream and the destination compartment. However, such an approach
would be computationally not efficient due to the large number of MC particles
ranging in typical applications between 1000 and 10000. This would imply 1000
or 10000 sequential or parallel invocations of the algorithm presented in Fig. 4. In
order to accelerate the merging process, a novel parallel algorithm has been briefly
sketched in [57] and is discussed here inmore detail. TheGPU’s capability to process
a large amount of data in parallel can be exploited in a more efficient way, if not only
one (as in Fig. 4) but a large number of MC particles has to be merged together (as
in Fig. 9).

Themerging scheme described by Eq. (6) and (7) can be thereby used in combina-
tionwith themerging error described by Eq. (9). Amaximal admittablemerging error
ε can be formulated and all particle pairs (i, j) with a merging error Ei, j (Eq. (9))
smaller than ε are merged together. A large number of parallel comparisons can
thereby be performed, forming potential pairs for the merging by calculation of the
merging errors of the pairs consisting of one particle in the destination compartment
and one particle in one of the streams, as shown as ‘Compartment-stream merge
pattern’ in Fig. 10. The destination offset, oidx, is thereby increased by one after
each comparison attempt, so that different pairs are formed for the calculation of the
merging error. After 512 steps, all possible pairs between each of the compartment
particle and another stream MC particle would have been checked in this way.3 An
internal check between particles stored in the compartment (resp. streams) is also

3In order to use the GPU efficiently, larger particle numbers (like e.g. 10000) have to be divided into
data blocks consisting of e.g. 512 particle numbers. In the here presented implementation, particle
numbers that are multiples of 512 are considered.
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Fig. 11 Intern merge
pattern. All merge attempts
which are executed in
parallel within one stream or
compartment with different
compare distances Cdist

performed, in order to address situations, in which the populations in the streams
are so different from the population in the compartment, that a merging is only pos-
sible with very high merging errors. These ‘internal merges’ are shown in Fig. 11.
The multiplication of the compared distance Cdist with the factor of 2, ensures the
treatment of different pairs after each invocation of the routine.

The complete algorithm for the parallel merging is shown in Fig. 12, the following
settings are set arbitrarily:

Fig. 12 Sketch of the merge algorithm for MC particle insertion. The Compartment-Stream merge
pattern is shown in Fig. 10 and the internal merge pattern is shown in Fig. 11
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Fig. 13 Exemplary flow-sheets with and without a feedback stream

• 8 Compartment-Stream merge patterns are performed for each invoked intern
merge-pattern (‘cs_count < 7’ in Fig. 12). This combination is invoked each time
before the (rather costly) check if all particles have been merged is initiated.

• After each 4 unsuccessful checks if all particles have merged, the maximal
admittable merging error is increased (‘err_count < 3’ in Fig. 12).

• The maximal admittable merging error is increased by a factor of 4 (‘ε = ε · 4’).
These settings prove towork efficiently for the presented test cases in the validation

section. Other settings might be more appropriate for other application scenarios and
the dynamic adaptation of these values to given simulation conditions might pose an
interesting research topic for future investigations.

3.2.3 Validation

The proposed simulation techniques are validated on several test-cases, which reflect
simple engineering problems and are shown in the figures Figs. 13 and 14. The
shown flowsheets increase in complexity, hence the implementation of a tear stream
(Flowsheet 2, Fig. 13) or a sieve unit (Flowsheet 3, Fig. 14) or both in combination
(Flowsheet 4, Fig. 14) poses a greater challenge for the numerical solution than
the simple flowsheet 1 in Fig. 13. This methodology allows to identify the specific
simulation scenario, for which conventional MC strategies are not suitable and the
here presented methodology based on weighted MC particles has to be applied in
order to obtain correct results.

For each of the presented units in Fig. 13, the evolution of the PSDs nM (mixer),
nF1 (filter 1) and nF2 (filter 2) can be modelled by the explicit set of differential
equations:

dnM(v, t)

dt
= + fF2→M · nF2(v, t) − fM→F1 · nM(v, t) − fM→F2 · nM(v, t)

+ FD→M · nD(v, t)
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Fig. 14 Exemplary flow-sheets with and without feedback including a feedback stream

dnF1(v, t)

dt
= + fM→F1 · nM(v, t)

dnF2(v, t)

dt
= + fM→F2 · nM(v, t) − fF2→M · nF2(v, t) (16)

The relative particle exchange rates fA→B from unitA to unitB aremultipliedwith
the particle PSDs in A, nA, which change over time. The external particle exchange
rate FD→M is multiplied with a PSD, nD , which does not change in time, realizing
thus in a constant in-flow into the mixer unit. The explicit values for the exchange
rates used for these benchmarking test cases are summarized in Table 4.

The system in Fig. 13 described by Eq. (16) does not take specific particle sizes
v into account, so that the same particle exchange rates apply for all sizes v. The
application of a screen unit changes this situation, so that the total particle exchange
rate from the screen to both filters, fS→F, is multiplied with the separator function,
Ssep(v). This leads to the following set of equations for the flowsheets shown in
Fig. 14:

Table 4 Particle exchange rates for Eqs. (16) and (17)

Flowsheet 1 in
Fig. 13

Flowsheet 2 in
Fig. 13

Flowsheet 3 in
Fig. 14

Flowsheet 4 in
Fig. 14

FD→M or
FD→S [1/s]

3 3 3 3

fM→F1 [1/s] 1 1 – –

fM→F2 [1/s] 2 2 – –

fM→F [1/s] – – 3 3

fF2→M or
fF2→S [1/s]

0 2 0 2
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dnS(v, t)

dt
= + fF2→S · nF2(v, t) − fS→F · nM(v, t) + FD→S · nD(v, t)

dnF1(v, t)

dt
= + fS→F · nS(v, t) · Ssep(v)

dnF2(v, t)

dt
= + fS→F · nS(v, t) · (1 − Ssep(v)) − fF2→S · nF2(v, t) (17)

The explicit particle exchange rates for these equations are summarized in Table 4.
The following form of the separation function Ssep(v) has been used for the screen:

Ssep(v) =
⎧⎨
⎩

1, v > v
sep
max

(v − v
sep
min)/(v

sep
max − v

sep
min), v

sep
max > v > v

sep
min

0, v
sep
min > v

(18)

The separation cut-off values v
sep
max = π(dsep

max)
3/6 and v

sep
min = π(dsep

max)
3/6

correspond to the diameters dsep
max = 57 nm and dsep

min = 40 nm.
As initial conditions for the PSDs in the mixer n0M(v) (resp. screen n0S(v)), two

identic log-normal distributions with a geometric mean diameter of 50 nm, a geo-
metric standard deviation of 1.2 and a total number-concentration of 1010m−3 have
been used. The same distribution has been used as feed PSD, i.e. nD(v). Both filters
are empty at the beginning of the simulation (n0F1(v) = n0F2(v) = 0).

A fixed pivot method [58] has been used as benchmark. The continuous initial
PSDs are thereby discretized with the help of a geometric grid of 1000 pivot points,
covering a particle size range from 1 nm to 10 μm. In the scope of this approach,
the set of Eqs. (16) or (17) is interpreted as the rate of change for each single pivot
point with its respective volume v.

The resulting PSDs after a simulation time of 10 s are shown in Figs. 15, 16, 17,
18. It can be seen, that flowsheet 1 (without tear streams and a screen) is very well

Fig. 15 PSDs in compartments as described in Flowsheet 1 in Fig. 13 and Eq. (16)
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Fig. 16 PSDs in compartments as described in Flowsheet 2 in Fig. 13 and Eq. (16)

Fig. 17 PSDs in compartments as described in Flowsheet 3 in Fig. 14 and Eq. (17)

Fig. 18 PSDs in compartments as described in Flowsheet 4 in Fig. 14 and Eq. (17)
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reproduced by the merging as well as the random removal approach. The random
removal approach leads to larger noise levels, which can be seen in slight deviations
of the PSD in the mixer unit in Fig. 15. The addition of a tear stream leads to an
increase of these noise levels, as can be seen Fig. 16—the approximations based on
the random removal technique become less accurate but can be still considered to be
in accordance with the results obtained by the fixed pivot method.

The replacement of the mixer with a sieve unit (or replacing flowsheet 1 with
flowsheet 3) leads also to a system, which can be well simulated by the random
removal technique (see Fig. 17). The addition of a tear stream to flowsheet 3 (result-
ing in flowsheet 4) leads—however—to such a complex system, that the random
removal method is not applicable. Figure 18 shows the striking deviations of the
PSDs obtained with the random removal method—which predict a wrong particle-
number concentration in the screen and filter 2 by a factor of nearly 10. The suggested
merging techniques—on the other hand—are able to reproduce the benchmark results
with a very high accuracy. This allows to say, that the specific combination of tear-
stream and screen leads to a simulation scenario, which cannot be addressed with
conventional MC simulation techniques—as the random removal technique. This
finding also explains the failure of the random removal techniques to describe an
even more complex simulation scenario, reported in [57].

4 Conclusions

The application of weighted MC particles for the solution of a compartmental
network in the framework of an operator splitting approach (the single processes
like coagulation and nucleation are separated for short periods of time) has been
discussed.

First, the solution of a one-compartmental system has been discussed, it has been
found that:

• the application of the stochastic resolution allows to describe the coagulation
between weighted simulation particles (like already discussed in [23]).

• merging techniques allow to simulate the combined nucleation and coagula-
tion with a lower amount of statistical noise than conventional MC simulation
techniques (like already discussed in [23]).

• the parallel simulation of evaporation and condensational growth allows to simu-
late particles formation processes and investigate the role of different nucleation
theories (this has been already discussed for metallic [26] and atmospheric sys-
tems [27], but the here presented case-study of Ag-particle synthesis has not been
published prior to this work).

• novel selection andweighting techniques of theMC fragment population resulting
from particle breakage lead to simulation techniques which are able to render the
full particle size spectrum completely (these simulation techniques and findings
have already been presented in [43]).
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As a second step, the combination of the findings above in an operator splitting
approach for the full simulation of a compartmental network has been sketched. It
has been found that:

• the computationally advantageous event-driven simulation technique can be also
used for the simulation of smaller time steps than the intrinsic MC time step—
making this method applicable for a network of PBE compartments (like already
discussed in [51]).

• the merging techniques introduced in [23] can be used for the simulation of par-
ticle transport between single compartments. (These findings have already been
presented on a more complicated system in [57], the here presented description
of the simulation algorithm is, however, far more detailed.)

• out of 4 case studies of a flow-sheet with increasing degree of complexity,4 con-
ventionalMCmethods can simulate the 3 simplest caseswhilemerging techniques
are needed for the simulation of the most complex case (this finding has not been
published prior to this work).
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Chapter 16
Modeling, Simulation and Optimization
of Process Chains

Michele Spinola, Alexander Keimer, Doris Segets, Lukas Pflug,
and Günter Leugering

Abstract Processes in the field of chemical engineering do not consist of one sin-
gle step, but typically a high number of strongly interconnected unit operations
linked with recycling streams. This inherent complexity further exacerbates when
distributed particle properties, i.e., dispersity, must be considered, noteworthy being
the case whenever particulate products are in focus. Out of all five possible dimen-
sions of dispersity (size, shape, composition, surface and structure) particle size most
often determines the efficiency of particulate products. Thus, its optimization is key
to reach tailored handling and end product properties. In this work, a model-based
optimization tool for particle synthesis was elaborated which is often the first step
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of a process chain. It is described by population balance equations relying on the
method of characteristics for the numerical simulation and on the usage of gradient
information to enhance the performance of the optimization. The presented scheme to
optimize time-dependent process conditions in a time efficient manner is applicable
for a wide range of particle syntheses.

Keywords Ripening · Method of characteristics · Population balance equation ·
Gradient-based optimization · Sensitivity · Adjoint

1 Introduction

Process conditions of most nanoparticle syntheses can be adjusted over time. In
order to achieve high quality particulate products, the question arises how to optimize
synthesis processes by their process conditions.Model-based optimization of process
conditions and an efficient, gradient based concept for this will be focused in this
work.

For example, in the last decades, the class of quantum dots emerged. Due to their
semiconductor properties, they play an important role in thefield of nanoparticle tech-
nology. There, many issues regarding process design and the production on higher
scales arised which are still not fully covered [1–3]. Several contributions such as
[4–10] showed that the development of disperse properties during a chemical process
can mathematically be described by population balance equations (PBEs). Due to
their general formulation, PBEs are suitable to appropriately describe the evolution
of disperse properties of the mentioned sub-10 nm particles due to ripening [11–16].
Originally, PBEs were used to model growth mechanisms operating outside of the
nanoregime. For instance, fluidized bed spray granulation (FBSG), crystallization
and aggregation [17–19], a.o., can be depicted by this modeling. PBEs also allow to
track the dispersity in all five dimensions, i.e., size, shape, surface, composition and
structure, during the process (cf. [20]). Even though growth dynamics of the particles
can be described appropriately bymeans of PBEs, in general the modeling of process
chains with interconnected reaction modules is a complex issue to solve (cf. [21]).
This becomes especially challenging when process conditions are considered which
are varied in course of time, such as feeding rates of new nuclei into reaction sys-
tems or process-temperature profiles (see Fig. 1). The corresponding mathematical
model consists of systems of nonlinear, fully coupled differential equations. Thus,
on the one hand, numerical methods are strongly required not only to simulate the
development of the synthesis process and to predict its further development but also
to enable the path towards a model-based optimization (cf. [22]).

In literature, essentially three categories of methods for the numerical approxi-
mation of balance laws are discussed [23]. The first and most widespread are finite
volume type methods or in more generality, discontinuous Galerkin type approaches
on a—with respect to process time—fixed discretization of the spatial as well as
disperse coordinates [24–28]. The second category is a class of methods which rely
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Fig. 1 Granulation as an example for an interconnected solid production process chain with recy-
cling streams (adapted from [21, Fig. 1b])

on the method of characteristics. These methods are in terms of accuracy superior
to finite volume methods as they are not prone to numerical diffusion [29–31]. The
third category is a class based on the method of moments of the distribution [6]. In
terms of computational efficiency, they are by far superior to the two aforementioned
types of methods but, as they only compute moments of the mathematical solution,
they do not provide access to the fully distributed information itself [32]. Depending
on the dominating character of the PBEwhich can be parabolic or hyperbolic, among
the first two alternatives, the finite volume method or the method of characteristics
are preferable. As compared in [33, Fig. 3], in the absence of agglomeration and
diffusion the method of characteristics is by far superior.

Despite the fact that optimization relying on gradient information is recommend-
able if differentiable numerical schemes are provided (e.g. optimization of single
hyperbolic balance laws [34, 35] as well as networks of these [36]), in the context
of particle synthesis they are applied only in specific cases. In the literature, opti-
mization is exemplarily done by using collocation methods on finite elements (e.g.
[37]), model-predictive techniques for a quadratic cost functional (in [38]), or based
on moments of particle size distributions (PSDs), e.g. as in [39, 40]. In the last men-
tioned method it is possible to determine the therein considered PSDs by only a few
moments, which unfortunately does not hold for every synthesis process.

For a majority of optimization problems, gradient-free schemes as in [41] or
parameter studies are the commonly chosen approaches. Actually, when assuming
that process conditions hardly change over time, these methods can be exploited
successfully as described in [22]. However, the presence of time-dependent pro-
cess conditions in established complex synthesis procedure increases the number of
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degrees of freedom significantly such that gradient-free optimization methods lead
to large computation times.

Thus, here, a numerical tool relying on the method of characteristics which pro-
vides a numerical approximation of the development of the synthesis process with
high accuracy was combined with a sensitivity-based optimization ansatz in which
a fast computation of gradient information is provided. By this method, optimal
process conditions within interconnected process chains were determined. It fur-
ther reduced the mentioned computational times, also in the case of time-dependent
process parameters.

In the following, the proposed optimization method, which can be applied for a
variety of optimization problems within chemical engineering, will be pointed out
in detail. At first, the underlying mathematical model for processes in which seeded
growth occurs, will be presented and the numerical scheme will be outlined. This
is based on the method of characteristics which depicts the evolution of the PSD
in a natural way due to the incorporated conservation property and the hyperbolic
behavior of the corresponding PBE.

Relying on this scheme for the simulation of the state equation, i.e., the considered
PBE, a so-called adjoint equation was provided to require gradient information for
the here used optimization method instead of using the gradient by commonly-used
finite differences methods. Compared to finite differences methods and to gradient-
free approaches, applying this method to reaction plants, this enables the calculation
of optimal time-varying process conditions by far faster since only two equations
have to solved, the state equation and the adjoint equation. [42–44] also provided an
optimization method relying on adjoint equations. However, no explicit applications
are outlined in [42, 43]. In opposite to this contribution, no optimization of complex
process chains was performed in [44].

To show the broad applicability of this approach, a range of synthesis processes
with different growth dynamics, optimization goals and also containing process
chains with recycling streams were considered. These examples justify the usage
of the here presented model-based optimization technique in the context of particle
synthesis, especially when only time-varying process conditions yield optimal PSDs.

2 Mathematical Model and Gradient-Based Optimization
Framework

This work aims to determine several time-varying process conditions simultaneously
which will yield optimal results for the corresponding synthesis processes. Before
proposing a mathematical formulation of the optimization approach, first, the math-
ematical model for the development of PSDs will be stated, which is done in the
following primal equation (1):
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qt (t, x) + ∇x · (
G

(
uG(t),Wq(t), t, x

)
q(t, x)

) = uin(t)qin(x) − uout(t)q(t, x)

q(0, x) = u0q0(x)

Wq(t) :=
∫∫

�

γ ( y)q(t, y) d y

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(1)

For (t, x) ∈ (0, tf) × �with� := {x ∈ R
n : x ≥ xmin} and xmin ∈ R

n . Throughout
this contribution, bold symbols are used for vectors. The termG denotes the growth
velocity which can be affected by the time-dependent process condition uG over
time, i.e., such as process temperature or mass fluxes. Also influx of new particles
with PSD qin with influx rate uin and extraction of particles out of the system with
extraction rate uout are incorporated into this model. u0 represents a scaling factor of
q0, i.e., of the initial PSD. The crucial dependence of the synthesis rate with respect
to the amount of produced particles is given by the term Wq which e.g. describes
the total surface (γ (x) = 4πx2, see e.g. [45, Eq.6]), or mass (γ (x) = 4

3πx3, see e.g.
[22, Eq.2]). AsWq depends in an integral way on the solution q,Wq will be called a
nonlocal term. For this system of equations a solution theory was developed, which
also shows mathematical well-posedness for very general settings (cf. [46, 47]).

By the following optimization problem, amathematical formulation of the consid-
ered task relying on (1) will be introduced. The therein used general notation allows
to provide a framework for optimization within particle synthesis with two main
advantages: First, by (1), the evolution of PSDs is tracked, different growth dynam-
ics and inflow and outflow terms are incorporated into the model. Thus, not only
single reaction modules can be considered but also more complex process chains.
Second, a high variety of optimization tasks can be treated such as, for instance:

1. Minimizing the difference between the resulting PSD and a target PSD.
2. Reaching a preferably monodisperse PSD with a given diameter.
3. Maximizing the yield of the total product.

Moreover, it is also possible to include monetary cost terms into the framework. This
is crucial when it is desired to simultaneously reach multiple targets which can con-
tradict each other: For instance, maximizing the quality of goods and minimizing the
costs caused due to energy consumption or improving the CO2 footprint. Together
with the precise numerical discretization method for the state equation, the mathe-
matical optimization framework demonstrated in this work can handle a high amount
of different established optimization issues within the area of process engineering
and (nano)particle technology.

As already mentioned, this contribution focuses on the subsequent optimization
problem which requires information resulting from the PSD described by (1):
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min
(uG,uin,uout,u0)∈Uad

J [q, q(tf, ·)] s.t. q solves (PRI) with

Uad := {
(uG, uin, uout, u0) : uG(t) ∈ [uG, uG], uin(t) ∈ [uin, uin],

uout(t) ∈ [uout, uout] ∀t ∈ [0, tf], u0 ∈ [u0, u0]
}
.

⎫
⎪⎪⎬

⎪⎪⎭
(2)

Since in real-world applications process conditions cannot reach any arbitrary values,
e.g. due to technical or chemical restrictions, in Uad box constraints on the process
conditions are imposed which have to be set in agreement to the considered process.
By putting information of the resulting PSD, either over the whole time horizon or at
final time, into the cost functional J , a quantification of the quality of the synthesized
particles will be obtained which can now be optimized.

In the context of optimizing cost functionals which depend on the solution of
a PBE, which is the case in this article, an established and promising ansatz is the
derivation of adjoint equations [48, 49]. These equations require data given out of (1)
and due to the therein incorporated nonlocal term, this leads to (3), a linear transport
equation backwards in time with a nonlocal term contributing to the source terms
of this partial differential equation. Together with the characteristic function of �,
denoted by χ�, it leads to the following formulation:

pt (t, x) + G
(
uG(t),Wq(t), t, x

)∇x p(t, x) = −Jq [q, q(tf, ·)](t, x)

+ uout(t)p(t, x)

− γ (x)χ�(x)Yp(t, x)

p(tf, x) = Jq(tf,·)[q, q(tf, ·)](tf, x).

Yp(t, x) :=
∫∫

�

GWq

(
uG(t),Wq(t), t, y

)
q(t, y) · ∇x p(t, y) d y

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3)

For (t, x) ∈ (0, tf) × �. By speaking in terms of flowsheets and modularization of
process plants as in [21], the dynamics incorporated in the adjoint equations allow
these to be interpreted as “reactors”. This means that at least in a structural way,
adjoint equations can be included in process chains. Thus, two key elements, namely
(1) and (3), for the determination of gradient information of an optimization problem
can be depicted within a single flowsheet. This is illustrated in Fig. 2.

For the optimization method executed in this contribution, the sensitivity of the
cost functional J with respect to the process conditions (uG, uin, uout, u0) ∈ Uad

is required to determine how to adapt these optimization parameters such that J
decreases up to a minimal value. This gradient can be written by means of the
adjoint state p of (3) in the subsequent way:
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Fig. 2 Flowsheet representation of the calculation of the gradient of a cost functional with respect
to process conditions. Above the dotted line, a reactor with splitter adjusting the proportion of
recycling and generating information regarding the “error in cost functional” is shown. The latter
together with the solution of (1) itself serve as input for the “inverse reactor”, representing the
dynamics in (3) backwards in time. The following splitter leads to a recycling of information into
the system and generates the required data for the required gradient

d
duG

J [q, q(tf, ·)](t) = ∂uG J [q, q(tf, ·)](t)
+

∫∫

�

∇x p(t, x) · GuG

(
uG(t),Wq(t), t, x

)
q(t, x) dx

d
duin

J [q, q(tf, ·)](t) = ∂uin J [q, q(tf, ·)](t) +
∫∫

�

p(t, x)qin(x) dx

d
duout

J [q, q(tf, ·)](t) = ∂uout J [q, q(tf, ·)](t) −
∫∫

�

p(t, x)q(t, x) dx

d
du0

J [q, q(tf, ·)] = ∂u0 J [q, q(tf, ·)] +
∫∫

�

p(0, x)q0(x) dx

For t ∈ (0, tf). Due to the previousmathematicalmodels, the first preliminaries are set
to derive a numerical implementation of the optimization. Figure3 shows the outline
of the method. It consists of iteratively updating the process conditions such that the
value of the cost functional will be diminished at every step up to the point where
first-order optimality conditions are finally fulfilled. This means that the gradient
of J with respect to an optimization parameter u has to vanish, i.e., d

du J = 0. If
box constraints occur, then the projected gradient has to vanish (cf. [48, Chap. 5]).
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Fig. 3 Scheme of
gradient-based optimization
framework

Gradient information are used to guarantee a sufficient descent of the cost functional.
In this case, the computation of the gradients are done by using adjoint equations.

By speakingof efficiency, onemajor advantage of the adjointmethod canbe stated:
The low computational costs for a high number of optimization parameters. The
previous four derivatives state that for the computation of the gradient only two partial
differential equations have to be solved, namely (1) and (3), once, respectively. The
difference in computational effort between finite differences methods and the adjoint
method becomes even more noticeable when process conditions can change over
time. This is true for (uG, uin, uout) since, in contrast to finite differences methods,
the adjoint approach is invariant with respect to the number of discretization points
of the optimization parameters.

3 Numerical Scheme

Due to the extraordinary relevance of particle size for the quality of the final product,
this and the following sections focus on the one-dimensional case of (1) with a
positive, small xmin and � := R>xmin . A key element for this is the consideration of
so-called characteristic curves ξ . Roughly speaking and as demonstrated in Fig. 4,
these curves denote the trajectories on which particles are growing over time. These
characteristics are from a mathematical standpoint a system of ordinary differential
equations coupled by the growth dynamics G and thus by the nonlocal term Wq :

ξ̇ [t, x](τ ) = G(uG,Wq(t), t, ξ [t, x](τ ))

ξ [t, x](t) = x .

An important aspect of these characteristics is that between them the number of
particles is conserved when no influx of new particles and extraction of produced
particles occur, i.e., it holds for a set S1 ⊂ R

n:
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Fig. 4 Graphical illustration of the method of characteristics: characteristics (a) and resulting PSD
(b)

∫

ξ [t,S1](t)
q(t, y) dy =

∫

S1

q0(y) dy.

More general, for a set S2 ⊂ R
n the following is true:

d
dt

∫

S2

q(t, y) dy =
∫

S2

qt (t, y) dy =
∫

S2

uin(t)qin(y) − uout(t)q(t, y) dy.

Based on this conservation principle, the numerical scheme, also presented in [50],
will be illustrated which encodes the evolution of the PSD in a precise way over
time. At first, a semi-discretization of the required solutions and gradients will be
considered, i.e., a discretization only in the disperse property whereas the time vari-
able remains a continuous variable. After this, an arbitrary time-step method can
be used to solve the system of ordinary differential equations in time. The conver-
gence rate of the fully discretized optimization problem also depends on the chosen
time-step method. However, for the here considered equations, the usage of the well-
known explicit Euler method is reasonable. Starting with the semi-discretization of
(1), [xmin, xL ] ⊂ R where xL is a sufficiently large number will be discretized by a
K -point grid {x1, . . . , xK } with K ∈ N≥2. With the approximations:

ξ ≈ ξ̂ , Wq ≈ Ŵq , q ≈ q̂.

This yields the following numerical scheme for t ∈ [0, tf]:
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˙̂
ξ k(t) = G(uG(t), Ŵq(t), t, ξ̂ k(τ )) k ∈ {1, . . . , K }

q̇k(t) := uin(t)

ξ̂ k+1(t)∫

ξ̂ k (t)

qin(y) dy − uout(t)qk(t) k ∈ {1, . . . , K − 1}

Ŵq(t) :=
K−1∑

k=1

qk (t)

ξ̂ k+1(t)−ξ̂ k (t)

∞∫

xmin

γ (y)χ
(ξ̂ k (t),ξ̂ k+1(t))

(y) dy

Such that the piecewise constant approximation of q is given by:

q̂(t, x) :=
K−1∑

k=1

qk (t)

ξ̂ k+1(t)−ξ̂ k (t)
χ

(ξ̂ k (t),ξ̂ k+1(t))
(x).

In the following, a semi-discretization of p solving (3) will be formulated. ∇x p con-
tributes to the gradient of J with respect to process conditions. Thus, a piecewise
linear semi-discretization of p was chosen. p will be considered along the charac-
teristic curves and this leads to the following approximation for every t ∈ [0, tf],
k ∈ {1, . . . , K }:

p(t, ξ [0, xk](t)) ≈ p̂k(t)

Which yields an approximation of p at final time:

p̂k(tf) = Jq(tf,·)[q̂, q̂(tf, ·)](tf, ξ̂ k(tf)).

By the fundamental theorem of calculus, it holds for t ∈ [0, tf]:

p̂k(t) = p̂k(tf) −
tf∫

t

d
dt p̂k(s) ds.

Moreover, by computing the total derivative of p(t, ξ [0, xk](t))with respect to t , the
partial differential equation in (3) yields:

d
dt p(t, ξ [0, xk](t)) = −Jq [q, q(tf, ·)](t, ξ [0, xk](t)) + uout(t)p(t, ξ [0, xk](t))

− γ (ξ [0, xk](t))χ�(ξ [0, xk](t))Yp(t, ξ [0, xk](t)).

Combining both, gives an approach to approximate p also for t ∈ [0, tf):
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p̂k(t) = p̂k(tf) +
tf∫

t

Jq [q̂, q̂(tf, ·)](s, ξ̂ k(s)) + γ (ξ̂ k(s))χ�(ξ̂ k(s))Ŷp(s) ds

−
tf∫

t

uout(s) p̂k(s) ds

Ŷp(t) =
K−1∑

k=1

1
2

(
qk−1(t)( p̂k−1(t)+ p̂k (t))

ξ̂ k (t)−ξ̂ k−1(t)
+ qk (t)( p̂k (t)+ p̂k+1(t))

ξ̂ k+1(t)−ξ̂ k (t)

)
GWq

(
uG(t), Ŵq(t), t, ξ̂ k(t)

)

Where additionally it has to be set:

p̂0 := p̂1, p̂K+1 := p̂K , q̂0 := 0, ξ̂ 0 < ξ̂ 1.

The approximated solution of the adjoint equation p̂ cannowbeobtained as piecewise
linear interpolation of p̂k(t) on the points ξ̂ k(t). Denote the semi-discretization of
the gradient of the cost functional for a process condition u by d

du Ĵ . Together with
q̂ and p̂, the semi-discretized gradients can be formulated as follows:

d
duG

Ĵ (t) = ∂uG J [q̂, q̂(tf, ·)](t)

+
K−1∑

k=1

1
2

(
qk−1(t)( p̂k−1(t)+ p̂k (t))

ξ̂ k (t)−ξ̂ k−1(t)
+ qk (t)( p̂k (t)+ p̂k+1(t))

ξ̂ k+1(t)−ξ̂ k (t)

)
GuG

(
uG(t), Ŵq (t), t, ξ̂ k(t)

)

d
duin

Ĵ (t) = ∂uin J [q̂, q̂(tf, ·)](t) +
K−1∑

k=1

1
2 ( p̂k(t) + p̂k+1(t))

ξ̂ k+1(t)∫

ξ̂ k (t)

qin(y) dy

d
duout

Ĵ (t) = ∂uout J [q̂, q̂(tf, ·)](t) −
K−1∑

k=1

1
2 ( p̂k(t) + p̂k+1(t))q̂k(t)

d
du0

Ĵ (t) = ∂u0 J [q̂, q̂(tf, ·)] +
K−1∑

k=1

1
2 ( p̂k(0) + p̂k+1(0))

ξ̂ k+1(0)∫

ξ̂ k (0)

q0(y) dy.

Finally, in order to compare optimization results for time-dependent process con-
ditions u for constant and nonconstant instantiations, the number of discretization
points is defined by d(u) ∈ N. By this, the time interval [0, tf] will be discretized
into d(u) points ti , i ∈ {1, . . . , d(u)}, and the discretization of u is defined as the
piecewise linear interpolation of u(ti ). For a better readability and whenever it is
clear which process condition u will be considered, the argument in d(u) will be
neglected.
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4 Numerical Study

In this section, the outlined scheme for gradient approximation will be applied on
four examples. There synthesis processes and optimization goals are altered and
corresponding numerical results are shown. The first two deal with reaching desired
monomodal and bimodal PSDs, respectively, in a FBSG-like system. The third one
aims to obtain a monodisperse PSD in an Ostwald ripening like module. Eventually,
the last example considers a cycled process chain containing a FBSG-likemodule and
milling module. Furthermore, it has to be mentioned that even though the processes
in Sects. 4.3 and 4.4 cannot directly be represented by (1), the model can also be
extended to include these cases. For sake of a clearer illustration of the concepts, the
already stated (1) was chosen as the model depicting seeded growth processes. At
specific points, it is necessary to distinguish between the development of a PSD on a
whole time horizon and the corresponding PSD at a certain point in time. Thus, for
sake of a more precise notation, the “dot notation” will be introduced: If q denotes
the evolution of a PSD over [0, tf], the underlying PSD at time t of q is denoted by
q(t, ·).

4.1 Fluidized Bed Spray Granulation: Reaching Desired
Monomodal PSDs

In this example, the underlying growth dynamics is chosen as it is typical for FBSG
(cf. [19]). Here, uG denotes the effective solid mass flux for the granulation process
that can be continuously adjusted. It is assumed that external nuclei with PSD qin
flow into the system over time by the rate uin. In the following, the relative standard
deviation (RSD) of a PSD is needed. The RSD is defined as σ

μ
with the standard

deviation σ and mean particle size μ of a given PSD. Here, qin has a mean radius of
2mm and a RSD of 10%. Considering the process on the time interval [0, tf] with
tf = 1 h, the goal is to reach a desired monomodal PSD qd at final time tf. This can
be modeled by the subsequent framework:

min
(uG,uin)∈Uad

∞∫

xmin

|q(tf, x) − qd(x)|2 dx + 10−3
(
‖uG‖2H 1((0,tf))

+ ‖uin‖2H 1((0,tf))

)
s.t.

qt (t, x) + ∂x

(
100uG(t)
100+Wq (t)

q(t, x)
)

= uin(t)qin(x)

q(0, x) = q0(x)

Wq(t) :=
∞∫

xmin

4πy2q(t, y) dy

Uad := {
(uG, uin) : uG(t) ∈ [0, 50], uin(t) ∈ [0, 6] ∀t ∈ [0, tf]

}
.
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After having formulated the mathematical setting, the numerical results for this will
be focused in the following. In order to obtain a convenient graphical illustration of the
methods, the constant process conditions (uG, uin) = (40, 4) will be used in Fig. 5.
Figure5a shows that a sufficiently precise approximation of the analytical solution
was obtained. This advantage is due to the choice of the method of characteristics as
discretization scheme.

Moreover, not only a suitable numerical approximation of the solution q of the
state equation but also of the gradient are required. In Fig. 5b, c the gradient for
the process conditions (uG, uin) will be compared. As illustrated there, also for a

Fig. 5 Solution for different numbers K of grid points (a) and the gradients of the cost functional
J with respect to process parameters uG (b) and uin (c) derived with different number K of grid
points
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(a) (b)

Fig. 6 Gradients of the cost functional J with respect to process parameters uG (a) and uin (b)
derived both by finite differences and adjoint method

small number K of grid points a good agreement with the analytical gradient can
be observed for both process conditions. Thus, the numerical scheme based on the
method of characteristics yields an efficient discretization of the considered opti-
mization problem.

Now it will be demonstrated that, as stated before, the representation of the gra-
dient by the adjoint equation is indeed true, i.e., that actually the same results were
obtained when using finite differences instead. 100 is chosen as number of discretiza-
tion points for uG and uin, respectively, and the gradient is calculated on the one hand
by (3) and on the other hand by commonly used finite differences. Figure6 shows
that the the resulting functions obtained by the two approaches highly coincide. Fur-
thermore, for every gradient only (1) and (3) had to be calculated once in contrast
to finite differences where 101 times (1) had to be solved. Thus, the adjoint method
is the by far more efficient ansatz for gradient-based optimization when focusing on
computational time which will be pointed out in the following more precisely.

After having demonstrated the applicability of the discretization schemes, the
results obtained by different numbers of discretization points of the process condi-
tions are illustrated and discussed. For both uG, uin the same number of discretiza-
tion points were chosen, so (d(uG) = d(uin)). Figure7 shows for different d the
development of the relative cost functional with respect to the number of func-
tion evaluations. This number directly corresponds to computational time. In Fig. 7,
finite differences (dotted lines) and adjoint equations (straight lines) are respec-
tively used. There, the relative cost functional value is with respect to the value
obtained by the constant optimization, so where only constant uG, uin are considered
(i.e., (d(uG), d(uin)) = (1, 1)). The log-log-plot shows multiple statements. First,
the larger d is, the more the relative cost functional decreases with respect to the
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Fig. 7 Reduction of the cost functional value during the optimization using finite differences and
the adjoint by increasing the number (d(uG), d(uin)) of discretization points of uG and uin. The
normalization is with respect to the value in the constant optimization. The number of function
evaluations corresponds to computational time

constant optimization. This is due to the fact that enlarging d(u) increases the range
of realizable process conditions. Second, both methods reach the same value since
they differ only in the approximation of the same gradient. In every case a reasonable
error tolerance in the optimality condition was chosen as stopping criterion.

And the last but most important aspect is, again, that each of the obtained optimal
values is reached in the adjoint method with less function evaluations than with finite
differences. The gap in the different computational costs increases with a larger d and
becomes significant as can be seen at the logarithmically scaled abscissa. Figure8a
and b illustrate for different d the corresponding process conditions together with
the optimal ones (red lines). Both graphics show that in this example small numbers
of discretization points yield a visible difference to the optimized process condition.
Figure8c illustrates that this results in a significant deviation of the target PSD qd
which is only reached by the optimized PSD represented by the red curve. This PSD
is generated by the optimal time-varying process conditions (uG, uin). The surface
plot of the final optimized PSD is presented in Fig. 8d. In conclusion, these results
show that for solving this optimization task, the adjoint method is the preferable one.

4.2 Fluidized Bed Spray Granulation: Reaching Desired
Bimodal PSDs

This example yields an extension of the results obtained in Sect. 4.1. The same
setup as in there will be considered but the desired PSD qd is bimodal. As discussed
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Fig. 8 Obtained process parameters uG (a) and uin (b) during optimization with d(uG) = d(uin)
of discretization points together with the optimal ones illustrated in red, respectively. Generated
PSDs q(tf, ·) at the final time for d(uG) = d(uin) together with the monomodal target qd (c) and
the surface plot of the resulting optimal solution (d)

in [51–55], the transformation of monomodal PSDs into bimodal distributions is a
technically relevant issue. Since only the target PSD changes whereas the rest of the
setting remains untouched, the here presented gradient-based optimization scheme
can be used to obtain optimal process conditions despite the fact that there is a distinct
difference in the shape of the inflow PSD qin and the target PSD qd.

Figure9 shows, analogously to Fig. 8, the optimal process conditions, the final
PSDs together with the target PSD qd for different (d(uG), d(uin)) and the surface
plot of optimal PSD q. Also here time-varying optimization parameters and thus
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Fig. 9 Obtained process parameters uG (a) and uin (b) during optimization with d(uG) = d(uin)
of discretization points together with the optimal ones illustrated in red, respectively. Generated
PSDs q(tf, ·) at the final time for d(uG) = d(uin) together with the bimodal target qd (c) and the
surface plot of the resulting optimal solution (d)

higher numbers of discretization points are required to reach the desired goal. In
order to reduce computational costs, the adjoint method is suitable. Furthermore,
these examples indicate that the algorithm does not depend on the number of modi
of given PSDs even though it is not always possible to reach targets exactly.
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4.3 Ostwald Ripening: Minimization of Standard Deviation

In this example a different synthesis processwill be consideredwhere not only growth
dynamics were altered but also another optimization goal compared to Sects. 4.1 and
4.2 was aimed to reach. Even though a simplified Ostwald ripening mechanism of
particles is taken into account, it describes more complex growth of particles than in
the two previous examples. This is due to the fast ripening dynamics. The process
was started with a given monomodal PSD q0 with mean particle size of 2 nm. During
the process, the rate uin of particles with a PSD qin is added which corresponds to
the initial PSD q0.

Here, the goal is to find an optimal inflow rate leading to a desired mean particle
size μd = 6 nm and minimal standard deviation at final time tf = 100 s. Again, a
penalty term for the process condition uin will be added to the cost functional to
avoid an unnecessary inflow of new particles and an undesired oscillation in the
mentioned feeding over time. Together with the subscript 3 denoting a mass-related
PSD, the corresponding optimization problem exhibits the following structure:

min
uin

(σ [q3(tf, ·)])2 + 10−2‖uin‖2L2((0,tf))
+ 10‖u̇in‖2L2((0,tf))

s.t.

qt (t, x) + ∂x (G(Wq(t), t, x)q(t, x)) = uin(t)qin(x)

q(0, x) = 0.1q0(x) = 0.1qin(x)

Wq(t) =
∞∫

xmin

4
3πy3q(t, y) dy

μ = E[q3(tf, ·)] := E1[q3(tf, ·)] = μd = 6

uin(t) ∈ [0, 0.02]

With the regularized Ostwald ripening function G:

G(Wq(t), t, x) = smax

{
Mtot(Wq(t), t) − exp( 1

smax{x,0.1} )
smax(x, 0.1)

,−1

}

Mtot(Wq(t), t) := 2 +
t∫

0

∫

�

uin(s)qin,3(y) dy ds − 0.2Wq(t)

Where a smoothed version smax of max was used. The n-th moment En , n ∈ N≥0,
and the standard devitation σ of q3(tf, ·) are defined as follows:



16 Modeling, Simulation and Optimization of Process Chains 567

Fig. 10 Plot of the usual and
of the smoothly extended
Ostwald ripening function
together with the PSD qin,3

En[q3(tf, ·)] :=
∫

�

xnq3(tf, x) dx
∫

�

q3(tf, x) dx
if

∫

�

q3(tf, x) dx > 0

σ ≡ σ [q3(tf, ·)] :=
√
E2[q3(tf, ·)] − (E[q3(tf, ·)])2.

The choice of the smoothly extended Ostwald ripening function G and not of the
actualGOst is only due to technical reasons since in the chosen numerical approach the
growth functionmust be defined for every x ∈ R. Comparing both ripening functions
in Fig. 10, in the area where the PSD is positive, both functions coincide and thus
result in the same process dynamics. Thus, G is suitable to properly depict Ostwald
ripening dynamics. In the following, the results given by the numerical optimization
of this application are described. Figure11a illustrates the development of σ with
respect to different d(uin). By increasing d, σ decreases. And since the optimal influx
rate, illustrated in Fig. 11b, shows a highly nonlinear behavior, again the gradient-
based optimization approach using (3) can be used to obtain optimal solutions with
by far less computational time compared to deriving the gradient by finite differences.
In Fig. 11c, the optimal final PSD is depicted and it can be observed that the desired
mean particle size is reached. Finally, Fig. 11d illustrates the temporal evolution of
the optimal PSD.

4.4 Cycled Process Chain with FBSG and Mill:
Maximization of Output

This final example focuses on an interconnected process chainwith recycling streams
as depicted in Fig. 12. It starts with a FBSG module from which particles with a
given constant rate uout ≡ 0.1 are extracted. These particles are separated into three
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Fig. 11 Development of σ with respect to different d(uin) and normalization respective to σ in the
constant optimal case (a), optimal time-varying influx rate uin (b), optimal solution at final time
together with the PSD of external nuclei qin,3 (c) and surface plot of the optimal solution (d)

fractions by two screens: The large fraction which is milled and fed back to the FBSG
module, the product which is collected and the fine fraction which is also fed back to
the FBSG module. An initial PSD q0 with a mean particle size of 2mm and with an
RSD of approximately 20% is considered. At final time t f = 70 min, the goal is is
to find a proper time-dependent milling power P such that simultaneously the mass
of the total product with PSD qtot cumulated over time is maximized and the energy
consumption of the mill is minimized.
For screen 1 and screen 2, respectively, grade efficiency functions 
1,
2 according
to the model of Molerus and Hoffmann (cf. [56]) with cut size xcut,1 = 7 mm and
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Fig. 12 Granulation process chain considered (adapted from [21, Fig. 13])

xcut,2 = 6 mm with a separation sharpness of 10 for both were chosen:


i (x) :=
(
1 + ( xcut,i

x

)
exp

(
10

(
1 − (

x
xcut,i

)2)))−1
i ∈ {1, 2}.

Thegrade efficiency functions are illustrated inFig. 13.By
1,
2,qtot canbedenoted
as follows:

qtot(x) = 0.1

tf∫

0

(1 − 
1(x))
2(x)q(t, x) dt.

At first 0.1q(t, ·) is extracted from the system. Only the fine fraction of particles
and the crushed ones reenter the FBSG module. The former particles have the PSD
0.1(1 − 
1)(1 − 
2)q(t, ·) and the latter have the PSD qcrush. Thus, the source and
sink terms of the resulting PBE are:

0.1
[
(1 − 
1(x))(1 − 
2(x)) − 1

]
q(t, x) + qcrush(P(t), t, x)

Where qcrush depends on the mass flow entering the crusher and on the milling power.
To derive qcrush more precisely, the milling dynamics will be formulated and for this,
Bond’s model is used (cf. [57]):

μin(t) = E[
1(·)q3(t, ·)]

ṁ(t) = 0.1

∞∫

xmin


1(y)q3(t, y) dy

μout(t) = max

{(
P(t)

100ṁ(t) + 1√
μin(t)

)−2
, 1

}
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Fig. 13 Graphical
illustration of the grade
efficiency function of screen
1 and screen 2

Whereμin andμout, respectively, denote themean particle size of the input and output
stream of the crusher and ṁ is the incoming mass flow. In the definition of μout it
is ensured that it cannot reach arbitrary small values which is equivalent to set an
appropriate upper bound on the milling power depending on the incoming mass flow
and incoming mean particle size. By assuming a uniform crushing of the particles
and considering the conservation of mass, qcrush,3 can be obtained as follows:

∞∫

xmin

qcrush,3(P(t), t, x) dx = 0.1

∞∫

xmin


1(x)q3(t, x) dx

Such that it leads to the subsequent representation of qcrush:

qcrush(P(t), t, x) = 0.1 μin(t)
μout(t)


1

(
x μin(t)

μout(t)

)
q

(
t, x μin(t)

μout(t)

)
.

Eventually, together with the introduced terms this leads to the following represen-
tation of the optimization problem considered in this example:
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min
P

−E[qtot] + 10−2‖P‖L1((0,tf)) + 10−2‖Ṗ‖2L2((0,tf))
s.t.

qt (t, x) + ∂x
(

100
100+Wq (t)

q(t, x)
) = 0.1

[
(1 − 
1(x))(1 − 
2(x)) − 1

]
q(t, x)

+ qcrush(P(t), t, x)

q(0, x) = q0(x)

Wq(t) =
∞∫

xmin

4πy2q(t, y) dy

P(t) ∈ [0, 100]

Where it was used that a termmaximizing a property alsominimizes the sign changed
property, and vice versa. After having stated the mathematical model of the here
considered issue, the corresponding numerical results out of the optimization will be
addressed. In Fig. 14, the development of the total mass and of the energy consump-
tion of the mill, i.e., E[qtot], ‖P‖L1((0,tf)), respectively, and of the cost functional are
recorded for different numbers d(P). In every case the results are normalized with
respect to the case d(P) = 1. As can be seen in the mentioned figure, in comparison
to the constant optimization, the total mass could be increased by approximately 7%.
As illustrated in Fig. 14b, in the optimal case the energy consumption for the milling
power was reduced by about 3.5%. Here, for small d the energy consumption was
higher than in the constant case. However, this highly depends on the choice of the
weights in the cost functional.

Finally, Fig. 14c shows that overall the cost functional was improved by ca. 6.5%.
Here it has to be mentioned that actually a decreasing cost functional was obtained.

Fig. 14 Development of the relative mass (a), of the relative energy consumption (b) and of the
relative cost functional (c) with respect to d(P). The normalization is always respective to the value
in the constant optimization
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Fig. 15 Optimal milling power (a), surface plot of the resulting PSD within the reactor (b), the
development of the mass of the cumulated product over time qtot (c) and its plot (d)

This was due to the fact that the mass of the total product led to a higher contribution
than ‖P‖L1((0,tf)) such that the cost functional is negative.

Figure15 shows further correspondingoptimization results. Theoptimal nonlinear
milling power P is illustrated in Fig. 15a. In Fig. 15b a surface plot of the PSD
q in the FBSG module is depicted. Here, the milling effect is observable since
the number of larger particles decreases over time and new, smaller particles are
produced. Furthermore, the large fraction of particles diminishes over time and this
can be seen due to the fading shown there. Finally, Figs. 15c, d illustrate the evolution
of E[qtot] over time and the PSD of the cumulated product, respectively.
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It has to be mentioned that the choice of the weights in the cost functional deter-
mine the preferences between different optimization goals. For instance, a by far
higher weight of the costs of P can lead to an (almost) vanishing milling power
whereas the maximization of the total mass will be taken less into account. Thus, in
actual applications these weights have to be selected problem-specifically. Finally,
these results, especially Fig. 14, show that a larger number of discretization points of
the process conditions are required to obtain significantly better outcomes compared
to constant optimization which again leads to the advantage of adjoint equations
when computing gradients.

5 Conclusions

The mathematical framework illustrated in this publication consists out of two major
aspects. On the one hand, an on the method of characteristics relying numerical
discretization scheme was used to obtain a sufficiently precise approximation of
PSDs even for a rather coarse discretization grid. On the other hand, based on these
simulations, an optimization tool was presented which can calculate optimal process
conditions for a variety of applications within mechanical process engineering and
powder technology. The numerical simulation consists of applying the method of
characteristics on the here considered nonlocal PBEs and due to the conservation
of number of particles incorporated in the scheme, the evolution of the PSD can be
tracked with high accuracy.

To demonstrate its broad usability, it was shown that it is capable to handle PSDs
with different numbers ofmodes, growth rates and even process chainswith recycling
streams. Due to the fact that process conditions can be adjusted in a time-varying
manner, a sensitivity-based optimization scheme was chosen. This ensures that also
these complex, interconnected reaction modules can be improved in small time in
contrast to gradient-free approaches due to their high computational costs. Here, an
adjoint equation was derived and with its solution a representation of the gradient of
the cost functionalwith respect to the process conditionswas obtained.By this adjoint
method, only two partial differential equations, namely the state and the adjoint
equation, have to be solved. This decreases the number of function evaluations and
thus the computational effort by far compared to commonly used finite differences
methods.

In this contribution four cases demonstrating the applicability of the presented
methodology were considered. For the following real-world examples within chem-
ical engineering, numerical optimization results were derived and discussed also
concerning computational times:
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1. In Sects. 4.1 and 4.2, the resulting PSD in the considered FBSG module was
exactly driven to desired mono- and bimodal PSDs, respectively.

2. In Sect. 4.3 the standard deviation for a PSD with a desired mean diameter and
obtained by Ostwald ripening was minimized.

3. In Sect. 4.4, within a cycled process chain with a FBSG module, two screens and
one crusher simultaneously, the yield of the total product was maximized and the
energy consumption due to milling was minimized.

In every example, it was elaborated that time-varying process conditions led to partic-
ulate products with a quality superior to the outcome generated by constant process
conditions or, more general, with a low number of discretization points such that
they justify the usage of the here used adjoint equations. Summarized, comparing to
optimization schemes applied in the literature, gradient-based optimization methods
relying on adjoint equations are suitable approaches to compute sensitivities fast also
for a wide range of optimization tasks for particle synthesis processes.

To conclude this contribution, some possible topics for future research associated
to the optimization approach described in this work are mentioned. Since the focus
lies on the applicability to real-world processes and optimization within chemical
engineering, it is required to validate numerical results obtained by the here used
scheme to experimental data such that in case of deviations refinements of the mod-
els can be performed. Especially then when not single reaction modules but rather
process chains occur, a high degree of interconnectivity of different reactors could
lead to the case that the ansatz within this work is not fully applicable and thus it has
to be adapted properly. Moreover, due to wall effects, different types of flow velocity
profiles emerge and thus residence time distributions occur. Residence time reactors
play a significant role within chemical engineering such that the mathematical model
should be extended to include these. There, one can also include the residence time
distribution itself as a process condition one aims to adjust to enhance the quality
of the final particulate products. Finally, due to the fact that the shape of reactors
influences their residence time distribution, this shape can thus be subject for opti-
mization. By shape optimization techniques, desired residence time distributions can
be achieved and thus also the field of reactor optimization (cf. [58]) can be connected
to this work.
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Symbols Used

Abbreviations

ADJ Adjoint equation FBSG Fluidized bed spray granulation
PBE Population balance equation PRI Primal equation
PSD Particle size distribution RSD Relative standard deviation

Greek Letters

γ [a.u.] Weight function in nonlocal term μ [m] Mean particle size
ξ [a.u.] Solution of characteristic equation π [–] 3.1415 . . .

σ [m] Standard deviation 
 [–] Grade efficiency function
χ [–] Characteristic function � [–] Domain of interest

Symbols

∂ [–] Partial derivative d
dz [–] Total derivative (to z)

∇ [–] Gradient t [s] Time
tf [s] Fnal time n [–] Dimension of disperse properties
x [m] Particle radius x [a.u.] Vector of disperse properties
G [a.u.] One-dimensional growth function G [a.u.] Multi-dimensional growth function
GOst [–] Ostwald ripening function uG [a.u.] Time-dependent parameter in G
uG [a.u.] Time-dependent parameter in G uin [–] Time-dependent influx rate
uout [–] Time-dependent extraction rate u0 [–] Scaling factor of initial PSD
u [a.u.] Lower bound on process condition u u [a.u.] Upper bound on process condition u
q [a.u.] PSD q3 [a.u.] Mass-related PSD
qin [a.u.] PSD of external nuclei qin,3 [a.u.] Mass-related PSD of external nuclei
q0 [a.u.] Initial PSD qd [a.u.] Desired PSD
Wq [a.u.] Nonlocal term in (1) xmin [a.u.] Vector of minimal disperse properties
xmin [m] Minimal radius p [a.u.] Solution of (3)
Yp [a.u.] Nonlocal term in (3) J [a.u.] Cost functional
Uad [–] Set of admissible process conditions ξ̂ [m] Semi-discr. of ξ

q [a.u.] Semi-discr. of q p [a.u.] Semi-discr. of p
Ŵq [a.u.] Approx. of Wq q̂ [a.u.] Approximation of q
Ŷp [a.u.] Approx. of Yp p̂ [a.u.] Approximation of p
d(u) [–] Number of discretization points of u d [–] Number of discretization points
K [–] number of grid points xk [a.u.] Grid point
xL [a.u.] Largest grid point En [a.u.] n-th moment
E [a.u.] First moment μd [m] Desired mean particle size
μin [m] Mean particle size of entering PSD μout [m] Mean particle size of outgoing PSD
P [W] Milling power qtot [m−1] PSD of total product
qcrush [m−1] PSD of crushed particles qcrush,3 [m−1] Mass-related PSD of crushed particles
xcut [m] Cut size ṁ [kg·s−1] Mass flow

Norms

‖ · ‖L p((0,tf)) Norm on Lebesgue space of p-integrable functions on (0, tf)
‖ · ‖H1((0,tf)) Norm on Sobolev space of functions f ∈ L2((0, tf)) with ḟ ∈ L2((0, tf))
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Chapter 17
A Framework for Dynamic Simulation
of Interconnected Solids Processes

Vasyl Skorych, Moritz Buchholz, Maksym Dosta, and Stefan Heinrich

Abstract The application of flowsheet models to dynamic solids processes pose
significant challenges, especially regarding the handling of the inherent multidimen-
sionality of granular material properties, like particle size, shape and porosity distri-
butions. The novel open-source flowsheet simulation framework Dyssol deals with
this by applying an approach based on transformation matrices, which allows for the
tracking of temporal changes in the multi-dimensional distributed parameters of the
granular materials. The modelling system utilizes the sequential-modular approach
in combination with partitioning and tearing methods as well as the waveform relax-
ation method for increased modelling flexibility while offering high computational
performance. Dyssol includes an extensive and expandable model library for various
unit operations in process engineering, that in turn may be calculated by user-defined
solver units from a distinct library. To enhance the computational performance, the
user may choose from different convergence and extrapolation methods. Material
properties are defined in an extendable material database. Various case studies show
robust stability and high convergence rates. The application of a global optimization
algorithm shows promising results for the operational parameter adjustment in case
of transient system behaviour. A concept of applying artificial neural networks to
extend the scope of dynamic flowsheet simulation systems is proposed.
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HDF Hierarchical data format
NN Neuronal network
MLP Multilayer perceptron
MDB Materials database
OOP Object-oriented programming
PBE Population balance equation
RAM Random access memory
RMSE Root-mean-square error
SMA Sequential-modular approach
SMD Sauter mean diameter
SPP Schwerpunktprogramm (German), Priority Programme
WRM Waveform relaxation method

1 Introduction

The application of flowsheet simulation for process optimization and control pur-
poses is state of the art, especially in the area of systems comprising only fluid
materials. The flowsheet modelling allows for an investigation of complex processes
consisting of several interconnected apparatuses and subprocesses on long time scales
[15]. For the solids process engineering, the multidimensionality of the properties of
granular materials significantly complicates the solution of various problems, such as
design or optimization of production processes. As most solids processing systems
include unit operations that have a strong impact on the transient behaviour of the
whole process, like conveyors or bunkers, the ability to simulate the behaviour of
dynamic systems is crucial for applying flowsheet models for optimization or control
purposes in the area of solids processing technology.

Programs like Aspen Plus [4, 36], gPROMS Formulated Products [9, 18], Solid-
Sim [45], SolidSim-Dynamics [16], or JKSimMet [27], deal with the challenge of
solids process simulation.However, none of the aforementioned tools offer the option
of dynamic process simulation of solids processes with the inherent description of
the multidimensional distributed parameters of the granular material.

The aimof the Priority ProgramSPP 1679 “Dynamic simulation of interconnected
solids processes (DYNSIM-FP)” [11] of the German Research Foundation (DFG) is
to study the dynamics of different processes in the area of solids process engineering,
as well as understanding the phenomena that arise when combining various such
subprocesses into a single interconnected system. The research within SPP 1679
was classified into 3 working group consisting of 27 projects in total. On top of
that, a separate Central Project (Z-Project) was established. Its goal is to develop
a flowsheet modeling system, which should serve as a platform for combining the
results of all these individual groups into a single framework. To allow for mostly
independent model development and research, the flowsheet simulation framework
must provide high flexibility, extensible libraries and stable interfaces. The resulting



17 A Framework for Dynamic Simulation of Interconnected … 583

open-source modelling system Dyssol—an acronym for “Dynamic simulation of
solids processes”—offers these features through its high degree of modularity, open
and standardized interfaces, efficient algorithms and a clear user interface.

In the following sections, the modular architecture with its application program-
ming interfaces and data formats are introduced. Following, the main simulation
algorithm is presented, giving insights to the applied methods like waveform relax-
ation, partitioning and tearing, and transformation matrices that allow an efficient
calculation of complex processes. Various case studies are presented to demonstrate
the validity of the implemented algorithms, with a focus on handling multidimen-
sional distributed parameters of the solid phase. Additional features like unit and
solver libraries and thematerial database are discussed afterwards. The chapter closes
with the introduction to a global optimization strategy for the adjustment of dynamic
process parameters and a conceptual presentation of the coupling of flowsheet and
data-driven models for improved modelling accuracy.

2 Architecture

The Dyssol modelling system was developed and implemented using the C++
programming language [55] due to the following reasons:

• It is widely used in scientific computing, so many design patterns are known and
can be adjusted and reused for the current task.

• It supports the object-oriented programming (OOP) paradigm [56], allowing to
create robust modular solutions.

• The language has very low overhead and, therefore, provides high productivity
even for large complex problems.

• Allows flexible and efficient management of system resources.
• Has a large and active community and many affordable libraries and tools that

can simplify development.
• Is supported by various free cross-platform compilers.

2.1 Modular Structure

Given the tasks that were posed to the developingmodelling system, as well as taking
into account the heterogeneity of projects in the entire SPP, it was necessary to ensure
high flexibility, customizability and extensibility of the simulation framework. To
provide this, the development was carried out considering the techniques of modular
design [43]. Such design implies the organization of the program as a set of small
independent blocks that communicate with each other using predefined interfaces.
Since the object-oriented programming paradigm, widely supported in C++, is a
convenient method for designing modular software products, it was intensively used
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Fig. 1 General structure of the simulation framework Dyssol

during development, prototyping and implementation of the system. In the case of
OOP, a module becomes a kind of logically interconnected set of functional elements
and data designed as a program class or group of classes. At the most abstract level,
several main blocks or modules can be distinguished in Dyssol (Fig. 1) [53].

Simulator, Flowsheet and a set of predefined Equations solvers form the core of
the simulation system.Flowsheet is a central component, which serves as a repository
of all information about the process parameters and the process structure for each
individual simulation. The flowsheet is described by a set of Units and Material
streams connecting them. Material streams (see Sect. 2.2) are used to store time-
dependent information about the material parameters and to connect all the units on
flowsheet. On the one hand, eachUnit is described by a certain set of input parameters
and state variables inherent in the unit itself. On the other hand, it describes and stores
the state of the internal material at every moment in time. Thus, the structure of the
Unit itself is quite complex (see Sect. 2.3). Each unit can be calculated either using
one of the built-inEquations solvers (see Sect. 4), or using its own internal algorithms.
The main task of Simulator is to perform the modelling itself by executing the main
calculation algorithm (see Sect. 3). Additionally, it transfers data between different
units following the flowsheet structure.

The auxiliary modules provide the interaction of core components with the envi-
ronment. Among them can be distinguished: Data storage subsystem, Materials
database and Models manager.
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TheData storagemodule (see Sect. 6) implements all the functionality necessary
for accessing the hard drive for writing, storing and reading data, such as the structure
and settings of the flowsheet, material and process parameters, as well as simulation
results. To organize data, the Hierarchical Data Format HDF5 and the HDF5 library
[60] are used.During simulation, this subsystem also performs the functions of online
data caching to reduce the need for working memory.

TheMaterials database (MDB)module (see Sect. 7) is used to store, organize and
access information about materials and their properties. The database can be freely
configured and modified by users, including adding new materials and new material
properties. Constant, temperature- and pressure-dependent parameters are supported,
as well as properties describing the interaction of two materials. The functionality
of this module includes the access to properties of pure materials, phase specific
mixture properties and properties for an entire material flow. Using the developed
standardized software interfaces to access this module, one can further expand the
modelling system by connecting to other materials databases.

In order not to limit the flexibility of the system, models of units and solvers
were not directly incorporated into the simulation environment, but are delivered in
the form of separate modules, which are collected in the corresponding libraries. To
access both Units library and Solves library, Models manager is used. It provides
communication interface between the system’s core and libraries. The simulation
system comes with a specific set of predefined models (see Sect. 8). However, it can
be expanded by units and solvers in a form of dynamically linked libraries (DLL),
implemented by third-party developers. To simplify this process, Models creator
is provided with Dyssol. It can be used to develop new units and solvers using
predefined program interfaces (see Sect. 2.4). Thus, each user can adjust the system
in accordance with its tasks, implementing its own models of apparatuses, process
sub-steps and task-specific solvers.

To manage the entire program, a simplified Graphical user interface was devel-
oped, which includes the ability to setup the structure of the flowsheet, model param-
eters and simulation settings, as well as to perform a basic analysis of the results. To
provide portability and cross-platform capabilities, the graphical interface is based
on the Qt software framework and Qt library [17, 46]. Additionally, there is a Com-
mand line interface that allows changing some parameters of pre-defined flowsheets
and performing multiple simulations in batch mode.

2.2 Structure of Material Stream

Material stream is one of themain structural components of the flowsheet. It provides
storage and transfer of information about the state and parameters of the material
between units in the flowsheet. Thus, its structure determines the set of parame-
ters that can be processed in the modelling system. The material stream object was
designed to cover the following requirements:
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• allow simultaneous description of solid, liquid and vapor phases;
• provide a correct and convenient description of multidimensional distributed

properties of solid phase materials;
• enable modelling of solids processing units within a flowsheet simulation

environment;
• provide the ability to describe and track time-dependent changes in material

parameters to allow dynamic simulations.

Based on these requirements, the structure of the material stream object, which
is schematically given in Fig. 2, was developed and implemented [53]. Each stream
is described with a set of overall and phase-specific parameters. Overall ones are
defined for the total mixture of materials and include mass flow, temperature and
pressure. The solid, liquid and vapor phases can be defined separately and in any
particular combination. Each phase is described by a set of concentrated and dis-
tributed parameters. In particular, concentrated parameters contain the phase frac-
tion within the overall mass flow, whereas the distributed parameters describe the
composition or compounds content of thematerial in each phase. Both phase fraction
and composition are always present in each phase, whereas the solid phase can be
additionally distributed over several other parameters, like particle size, form factor,
or porosity, forming a set so called multidimensional distributed parameters. Their
more detailed data structure and format is given in Sect. 5.

The specific structure of the material stream may be unique for any simulation,
but it is always the same for all material streams of the respective flowsheet and stays
unaltered during the whole simulation. The following structural components can be
customized by the user depending on the process type and used models:

Fig. 2 General structure of Material stream
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• number and composition of phases;
• total number and composition of compounds;
• set of distributed parameters.

Material stream interacts closely with the materials database (see Sect. 7). Thus,
in addition to data, which is based on the general structure of the material stream,
some additional MDB-related information is always available. In accordance with a
given stream structure, various compound-related properties can be obtained for:

• Each individual material available in the database. The specific value is taken
directly from the database (for constant properties) or calculated in accordance
with the current stream temperature and pressure (for temperature- and pressure
dependent properties).

• Each phase mixture indicated in the stream. The calculation method usually
depends on the type of the phase (solid/liquid/vapor).

• Overall mixture of all available phases in the stream. Only possible for a limited
set of properties.

The calculation of mixtures can be performed either on the basis of mass flow or
on the basis of the molar amount of substance.

To describe continuous changes ofmaterial parameters through time, a discretized
representation is used.All variations that occur in thematerial streamduring the entire
modelling interval [tSTART ; tEND] are presented in the form of separate discrete states,
which are called time points. Each time point describes the state of thematerial at that
particular moment in time. Thus, in order to describe dynamic changes, the material
stream is represented as a sequence of time points with the same structure given
in Fig. 2. Wherein, access to data should be provided over the entire time interval,
regardless of whether a particular time point was directly stored in the structure of
the material stream. To do so, linear data interpolation is used to access data between
points. At the same time, to represent the dynamic process with a given accuracy, the
interval between neighbouring points should depend on the rate of change ofmaterial
parameters and the user-specified tolerance. For more details on time integration, see
Sect. 3.

In dynamic modelling, units can have an internal time-dependent state. In this
case, in the simulation system Dyssol, the so-called holdup is used to describe the
material inside the unit. Its structure is completely analogous to the structure of
the material stream, except for the fact that the mass flow parameter in this case is
replaced by the mass of the internal material.

2.3 Structure of Unit

The proposed structure of the unit (Fig. 3) was developed, on the one hand, to
support the calculation algorithm for the dynamic simulation and, on the other hand,
to provide interaction between the model, the simulation system and the user.
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Fig. 3 General structure of Unit

Ports serve as interfaces for including a unit into the flowsheet structure and are
access points to the parameters of the material streams, connected to them. The
material streams themselves, connected to the input and output ports, ensure the
interaction of units with each other by exchanging information about the state of the
material.

Dynamic units are distinguished by the presence of an internal state, which must
be stored and kept up to date during the entire simulation. If information about
the internal state has the same structure as the material stream, it can be stored
and maintained by holdups. If the variable that describes the internal state is not
among the parameters of the material stream, it is supported by an additional data
structure—state variables. Streams can be used to describe internal material flows
within the unit. Internal material streams and holdups always have the same structure
with respect to phase and material composition and a set of distributed parameters
as “external” material streams.

Unit settings can be managed by the user of the simulation system through the
block of unit parameters. Constant and time-dependent unit parameters are sup-
ported. Solvers from the solver’s library can be also accessed through this block (see
Sect. 2.4).

Despite the fact that Dyssol is a system for dynamic modelling, it is possible
to work with both steady-state and dynamic models. Moreover, both types can be
combined within one flowsheet. The structure of dynamic and steady-state units
differs to some degree, as the latter do not have access to redundant holdups and
state variables, but nevertheless can utilize time-dependent unit parameters.

2.4 Interfaces of Units and Solvers

Oneof themain requirements for themodelling framework is to provide userswith the
possibility to develop their own units and solvers with specific mathematical models
and use them in simulations along with the already available modules. Therefore,
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the units and solvers are not directly integrated into the modelling system, but are
implemented as separate objects collected in the corresponding libraries. Herewith,
the set of available units and solvers can be expanded by each user, to allow for
modelling of specific problems.

New modules to be added to the modelling system can be developed using the
C++ programming language utilizing predefined programming interfaces. Therefore,
from a structural point of view, each unit is inherited from some basic object: base
unit or base solver (Fig. 4). On the one hand, these base objects provide newmodules
with some primary functionality and give them access to other core and auxiliary
components. It allows them to treat material streams and holdups, to access com-
pounds properties through materials database, to use interfaces to internal equation
solvers, to handle transformation matrices, etc. On the other hand, such basic mod-
ules define the interfaces via which the simulation system can interact with units and
solvers. In particular, each base object defines a certain set of functions that must be
extended by the developer of the model to implement the calculation algorithm of
individual unit or solver. These functions are run by the simulation system during
the execution of the main calculation algorithm. Both dynamic and steady-state units
can be developed using the provided interfaces.

The difference between solvers and units is that solvers are most often used not
directly by the simulation system, but by units to solve some sub-tasks within them.
Moreover, it becomes possible to implement several different solvers for a single task
of a certain type, and use them interchangeably within a unit. As an example, various
approaches to solving the population balance equations (PBE) for the agglomeration
process canbe cited: usingfixedpivot, cell average, or finite volume techniques—they
all can be used within a single agglomeration unit to handle the same problem.

To simplify the development of new modules, the Dyssol installation package
contains aModels creator kit with various templates of units and solvers, examples
and comprehensive documentation.

Fig. 4 Interfaces for development of new modes
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3 Simulation Algorithm

Steady-state models do not have an internal state, so their output depends only on
the input parameters. At the same time, dynamic models are characterized by the
accumulation of material; therefore, their output streams additionally depend on
their internal state at each moment of time. For the modelling algorithm, the main
difference between them is that dynamic units are calculated at certain time intervals,
while steady-state ones are processed at individual points in time. Thus, the use of
steady-state units in a dynamic simulation system is straightforward and implies the
consistent application of the model’s algorithm to all input time points within the
considered time interval.

The main simulation algorithm of Dyssol (Fig. 5) is based on the sequential-
modular approach (Sect. 3.1) that implies individual calculation of all units on the
flowsheet, using their own computational methods, equation solvers and time steps.

Fig. 5 Main calculation algorithm
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To enable the calculation of complex process structures with recycle streams, par-
titioning and tearing algorithms are introduced at the stage of topological analysis
(Sect. 3.2). The main goal of this step is to prepare the process structure for the
sequential calculation of units. To do this, all present recycles must be initializedwith
some values, and units within the closed circuits must be associated with partitions.
Partitions are such groups of units for which there are no recycle streams between
them. Depending on the type of partition, one of the branches of the algorithm is exe-
cuted (Fig. 5). In the simplest case, when all units within the partition are connected
sequentially, the left part is chosen: units are calculated one by one on the whole
simulation time interval [tSTART ; tEND]. For partitions with recycles, a more complex
algorithm is applied: all units are calculated iteratively until the convergence in tear
streams is reached. To improve the performance of the simulation system in this
case, dynamic calculations are based on the waveform relaxation method (Sect. 3.3),
supplemented by convergence (Sect. 3.4) and extrapolation (Sect. 3.5) methods.

3.1 Sequential-Modular Approach

There exist two commonly used calculation approaches applied to flowsheet simula-
tion [38, 51, 14]: simultaneous (equation-oriented) [24] and sequential-modular [16].
The first one assumes combining all mathematical models of units, as well as the
topological structure of the flowsheet into a single system of equations and its fur-
ther simultaneous solution using a suitable integration method (Fig. 6, bottom). The
homogenization of all equations and considering the information about the topology
result in a good convergence rate, especially for flowsheets with complex structures
and, therefore, in relatively fast computations [51]. This approach is usually applied
in flowsheeting software developed for fluid processes.

However, the processes occurring in devices in the area of solid-phase process
technology are usually described by a variety of heterogeneous mathematical mod-
els. Their numerical solution may require equation solvers of various types [38].
Therefore, it may be difficult or even impossible to formulate a single generalized
system of equations for the entire flowsheet and there may be no suitable solver for it.
To overcome this problem, the sequential-modular approach (SMA) can be applied.
Here, each unit is treated as an individual entity, and can utilize its own equation
solver, calculation algorithm and time step [16, 22, 24]. In this case, the main task
of the modelling system is transferring data between units through material streams
according to the flowsheet structure and ensuring the convergence of the entire solu-
tion [53]. This method leads to relative independence between units and provides
high flexibility of the simulation system itself. The main advantages of this approach
are conceptual simplicity, correspondence to the physical structure of processes,
possibility to use different numerical methods to calculate models, greater flexibility
during the development of units and simple initialization procedure. Moreover, this
approach greatly simplifies the development of new models, which is one of the key
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Fig. 6 Differences between sequential-modular (top) and equation-oriented (bottom) approaches

requirements for this simulation framework. Considering this, sequential-modular
algorithms has been applied in Dyssol.

3.2 Topology Analysis

One of the most notable challenges applying the sequential-modular approach to the
simulation of flowsheets with complex structures is related to the handling of recycle
flows that are often present in production processes. A prerequisite for applying the
SMA is the ability to calculate the parameters of the input flows of each unit at the
time of its execution, which is not trivially achieved with recycle streams. Therefore,
a topological analysis is required before the simulation can be started. In Dyssol, it
includes [53]:

1. determination of tear streams;
2. decomposition of the flowsheet structure into partitions;
3. definition of the calculation order.

The general idea is to represent the flowsheet in the form of a directed graph,
where units correspond to its nodes, and material streams correspond to its edges,
and then apply graph algorithms to resolve these tasks [37].
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The first step of topology analysis is aimed at solving the issue with recycle
streams. The flowsheet has to be converted to a sequential form, which can be eas-
ily handled by the sequential-modular algorithm [13]. To do so, all available recy-
cle streams must be found and some predefined initial values must be set to them
[61]. This procedure is called tearing, and all found and initialized recycle flows are
referred to as tear streams. Often the set of possible tear streams in the flowsheet
is not unique, therefore, the algorithm for their selection can affect the rate of con-
vergence, and, hence, the performance of the calculations. In Dyssol, the synthetic
method of Roach [48] was implemented, which is able to find a near-to-optimal set
of tear streams. This heuristic algorithm does not require preliminary decomposition
of graph or detection of strongly coupled components, so it can be used already at
the first step of topological analysis.

To come from the predefined initial values in the tear streams to the final solu-
tion, all units covered by a recycle loop must be calculated together iteratively until
convergence. Such groups of units are known as partitions, and the process of their
allocation is called partitioning. The main idea is to break the flowsheet into blocks
that are connected exclusively sequentially. To search for partitions in Dyssol, the
Tarjan algorithm for finding strongly connected components is used [58]. It takes
a directed graph as input, distributes units into partitions in accordance with exist-
ing recycling flows, and organizes partitions in the order that corresponds to the
calculation sequence. This method is a variation of the depth-first search algorithm
and works in linear time. The original Tarjan algorithm allocates units that do not
belong to any recirculation loop into partitions with one component. Therefore, it
was supplemented by an additional step, which combines such sequentially arranged
separate partitions into larger ones to simplify further calculations.

The last step in topological analysis is to determine the calculation sequence.
The proper arrangement of partitions is already known from the previous step. To
determine the order of units within them, the algorithm of simple topological sort
based on the depth-first search [59] is applied in Dyssol simulation system. It takes
a directed graph of a partition with preliminarily removed tear streams as input.

As a result, after partitioning, tearing and ordering, a flowsheet is obtained, which
can be easily treated using the sequential-modular approach (Fig. 7).

Fig. 7 Results of applying the topological analyser
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3.3 Waveform Relaxation Method

To compute partitions with tear streams, an iterative procedure is applied in Dys-
sol. Dynamic modelling is usually performed for a large time interval, during which
process parameters can vary significantly. Moreover, the number of parameters that
participate in the convergence detection is not limited and depends on the complexity
of the scheme. Consequently, the calculation of such partitions may be computation-
ally intensive. To overcome this problem, the simulation framework Dyssol applies a
calculation approach based on the waveform relaxationmethod (WRM). It was origi-
nally proposed to accelerate calculation of systems of differential algebraic equations
by decomposing it into several subsystems, which can be then calculated separately
[33].

To apply it to the solution of the convergence problem in dynamic flowsheet mod-
elling, this method has been slightly modified [16, 53]. The entire simulation interval
[tSTART ; tEND] (Fig. 5) is sampled into smaller frames—so called time windows. The
length of these windows (tWINDOW ) is selected such that the changes in the material
parameters inside each of them are small, which ensures faster convergence. To cal-
culate each partition, the first window [tSTART ; tSTART + tWINDOW ] is selected, all the
parameters of tear streams inside the partition are initialized, and iterative calcula-
tion of all units is performed until convergence. In the simplest case, the difference
between the parameters of tear streams at two consecutive iterations can serve as a
convergence criterion. When the convergence is reached, the system initializes the
next time window [tSTART + tWINDOW ; tSTART + 2 · tWINDOW ] and proceeds to its cal-
culation according to the same procedure. Sequential calculation of all time windows
from tSTART to tEND for all partitions will lead to a rapid convergence of the entire
solution.

The application of this approach imposes some restrictions on dynamic models:
their internal simulation time step cannot be larger than the window size. Thus,
tWINDOW is an important parameter that affects the overall calculation performance.
On the one hand, large time windows lead to an increase in deviations between
successive iterations, which, in turn, can lead to poor convergence rates. On the
other hand, too short time windows will lead to correspondingly small internal steps
in the models, which can slow down the calculations. Therefore, the size of the
time window in the Dyssol system is not a constant value, but may be changed
dynamically, according to changes in the behaviour of the simulated processes. The
faster convergence is achieved on a given time window, the larger the next one can
be, and the other way around.

3.4 Convergence Methods

Iterative calculations of partitions on each time window are performed in the
following order:
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1. all parameters of tear streams in the partition are initialized;
2. units within the partition are calculated sequentially;
3. new values of tear streams’ parameters are obtained;
4. the computed and initial values are compared to check convergence;
5. based on obtained values, new initials for tear streams are calculated;
6. calculations are repeated from step 2.

In this case, the convergence criterion can be defined as

∀t ∈ [tSTART ; tSTARTT + tWINDOW ] : |xcalc(t) − xinit(t)| < |xcalc(t)| · Rtol + Atol, (1)

where xinit is initial values; xcalc is new calculated values; Rtol and Atol are relative
and absolute tolerances, respectively.

Thus, calculating the initial values is an important step for the convergence rate.
Dyssol applies special estimation algorithms, called convergence methods [13, 53],
for proper calculation of initial values at each iteration. The main idea is to use
the results of previous iterations to calculate improved initial values. Since Dyssol
utilizes a modular approach, where only units in closed form are used, generally,
there is no access to the models’ internal equations. This imposes restrictions on
the types of methods that can be applied in the framework and therefore, only the
following convergence methods have been integrated into Dyssol [53]:

• Direct substitution, which is the simplest method that uses values calculated on
the current iteration F(xk) as initial data for the next one (xk+1):

xk+1 = F(xk). (2)

• Direct substitution with relaxation introduces the parameter λ, which determines
the influence of the previous step k − 1 in addition to the results of the current
iteration k:

xk+1 = (1 − λ)F(xk−1) + λF(xk). (3)

• Wegstein’s method [64] performs a parabolic extrapolation using the results of two
iterations. This method also provides the ability to control the rate of convergence
using the acceleration parameter q [61]:

xk+1 = qxk + (1 − q)F(xk),

q = s

s − 1
,

s = F(xk) − F(xk−1)

xk − xk−1
, (4)

• Steffenson’s method that is an extension of Newton’s method with Aitken’s accel-
eration [39]. It uses the results of the current and previous two iterations. When
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applying this method, for each three iterations, two steps of the direct substitution
method and one step of the Aitkens acceleration formula are used:

xk+3 = xk − (xk+1 − xk)
2

xk+2 − 2xk+1 + xk
. (5)

The choice of the convergence methods for a specific simulation depends entirely
on the dynamics of the process under consideration.

3.5 Extrapolation Methods

After convergence has been achieved on the current time window, the simulation
system proceeds to calculate the next one. To do so, the parameters of tear streams
must be initialized again. The number of iterations and, hence, the convergence rate
in this case will significantly depend on how close these initial values are to the final
solution. TheDyssol system uses data extrapolation algorithms to calculate the initial
assumption for each subsequent time window based on the results of the calculation
of the current interval. One of the following methods can be applied for simulations
in Dyssol [53]:

• Nearest-neighbour extrapolation that initializes the whole time window TWi+1

with values obtained at the last time point of TWi.
• Linear extrapolation, which uses the first and the last time points of time window

TWi to extrapolate its values to TWi+1.
• Cubic spline extrapolation [8] uses three points from TWi to derive cubic poly-

nomials describing its behaviour, and then extrapolates the resulting function to
the next time interval TWi+1.

The effectiveness of eachmethod depends on the behaviour of a particular process:
the nearest-neighbour is well suitable for nearly constant behaviour, the linear gives
a good response if the data changes monotonously, and the cubic spline is the most
advanced method that can well predict non-monotonic changes.

3.6 Validation of the Simulation Algorithm and Performance
Analysis

To verify the developed calculation algorithms, several specially designed modelling
experiments were performed. First, to test the basic calculation algorithm, flow-
sheets consisting of purely mathematical functions were simulated, and the results
were compared to the analytical solutions from Simulink (MATLAB). For instance,
Eq. (6), which was represented by a scheme including three sine operations (marked
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in (6) with {}-blocks), two separate operations of addition, and a multiplication
block. The flowsheet also included a recycle stream to enable algorithms associated
with waveform relaxation method.

y = 0.5 · ({0.5 · sin({sin(t) + 2} + {sin(2t) + 1} + y) + 1}). (6)

Figure 8 (left) shows the outcomes of modelling the given equation in Dyssol and
MATLAB. It can be seen that the results obtained in both systems coincide.

To analyse the accuracy of calculations of the simulation system in dynamicmode,
continuous fluidized bed spray granulation with external classification of product
described in [47] was used as a reference process (Fig. 9). It includes one dynamic
(granulator) and three steady-state (two screens and a mill) units enclosed into one
recirculation loop. The granulation process in a fluidized bed apparatus is represented

Fig. 8 Comparison of simulation results of purely mathematical functions obtained in Dyssol and
Simulink (left) and comparison of simulation results of the granulation process obtained in Dyssol
and SolidSim-Dynamics (right) [53]

Fig. 9 Flowsheet of a continuous fluidized bed granulation process
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by the one-dimensional population balance equation given in [47]. Verification of
the simulation results from Dyssol showed very good agreement (Fig. 8, right) with
the results obtained in SolidSim-Dynamics [16], which was used as the reference
system.

Various test studies were performed to analyse the influence of the waveform
relaxation method as applied to dynamic flowsheet simulation, as well as to estimate
the contribution of different convergence and extrapolation methods. In one of them,
the granulation process, whose flowsheet is shown in Fig. 9, was used as a reference.
Its transient behaviour in an unstable operation mode, caused by fine milling [47],
can be seen by the changes in the mass flow of the material leaving the granulator
and by the changes in Sauter diameter of bed material inside the granulator as shown
in Fig. 10a.

Figure 10b represents the sizes of the time windows, as well as the number of
iterations required to achieve convergence at each moment of the process time. It can
be seen that withmonotonic changes in the process parameters thewindow size of the
waveform relaxation method dynamically increases, while the number of iterations
remains low. When significant changes in the process parameters occur at a certain
time interval, the number of iterations increases, and the size of the time window
decreases accordingly.

Convergence methods are involved in each iteration of the waveform relaxation
method, so they significantly affect the performance of the calculations. For the
granulation process, this effect can be seen in Fig. 10c. It shows the relationship
between the model time and the cumulative number of iterations required to achieve
convergence using different convergence methods and a fixed time window size
(10 s). The methods of Wegstein and Steffensen require significantly less iterations
to achieve convergence for the process under consideration compared to the basic
direct substitution approach. Thus, it can be concluded that both advanced methods
can provide higher convergence rates and potentially significantly shorter simulation
times, despite their greater computational complexity.

To analyse the effectiveness of extrapolationmethods that are used to initialize the
first iteration at each time window, WRM-frames were also fixed at 10 s. Figure 10d
shows the dependence of the cumulative number of necessary iterations at each
moment of simulation time for three applied extrapolation algorithms. The most
basic extrapolation using the nearest-neighbour method leads to a greater number of
iterations compared to linear and cubic spline algorithms, which provide almost the
same convergence rate in this case.

It should be noted, however, that the final choice of convergence and extrapolation
methods in the general case should depend on the dynamics of the respective process.

4 Built-in Equation Solvers

In accordance with the applied sequential-modular approach, eachmodel in the flow-
sheet can use its own equation solver. Therefore, models may have their own built-in
mechanisms for calculation, depending on the type of algorithms used. However,
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Fig. 10 Investigation of the influence of used simulationmethods applied to the granulation process:
mass flow of material leaving the granulator and Sauter diameter of bed material in the granulator
(a); number of iterations required to reach convergence at each time window and the size of the
WRM-window (b); influence of various convergencemethods on the cumulative number of required
iterations (c); influence of various extrapolation methods on the cumulative number of required
iterations (d) [53]
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since some types of equations are more common in models, several solvers were
integrated into the modelling framework to facilitate the addition of new units to the
system.

4.1 Solver of Differential-Algebraic Equations

To solve differential-algebraic equations (DAE) of form

F(t, y, ẏ) = 0, y(t0) = y0, ẏ(t0) = ẏ0, (7)

the Dyssol simulation framework uses [54] the IDA (Implicit Differential-Algebraic)
solver [25] from the SUNDIALS package [57]. It applies the variable-order, variable-
coefficient backward differentiation formula in fixed-leading-coefficient form to
solve the initial-value problem (7), transforming it into the following nonlinear
algebraic system, which must be solved for each time step:

G(yn) ≡ F

(
tn, yn, h

−1
n

q∑
i=0

αn,iyn−i

)
= 0. (8)

Here t is an independent variable denoting time; y and ẏ are a dependent variable
and its derivative, respectively; y0 and ẏ0 are initial values of the corresponding
variables; yn is the computed approximation of y at time point tn; q is the order of the
method in the range from 1 to 5; α is the coefficient, which is selected in accordance
with the method order and the history of time steps in such a way as to maximize q;
h is the time step size for each iteration, defined as

hn = tn − tn−1. (9)

Both hn and q are varied dynamically to minimize local truncation error.
The system (8) is solved applying a modified Newton algorithm in which the

calculation of the Jacobian can be skipped at some steps. The use of Newton’s
iteration leads to a linear system for Newton correction

J
[
yn(m+1) − yn(m)

] = −G
(
yn(m)

)
,

J = ∂G

∂y
= ∂F

∂y
+ αn,0

hn

∂F

∂ ẏ
, (10)

where J is the approximationof the system’s Jacobian; yn(m) is them-th approximation
of yn. The linear system for the Newton’s corrections is solved using a direct linear
solver for dense matrices. If convergence is not possible with the current Jacobian,
the time step is reduced by 4 times, and the integration step is repeated.
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Since the proposed solver has internal variables that depend on the time and
the current calculation step, there are issues associated with its application in a mod-
elling system based on iterative calculations in conjunctionwithwaveform relaxation
method. To overcome these problems, the solver was expanded with additional func-
tionality that allows saving and loading its internal state on demand when switching
between different time windows of WRM.

From the point of view of unit developers, all the necessary functionality for
describing the state variables and model equations of specific units is implemented
as call-back functions.

4.2 Nonlinear Solver

Thebuilt-in solver for systems of nonlinear equations applies theKINSOL [10] solver
from the SUNDIALS package [57]. KINSOL allows for the solution of systems of
n nonlinear equations of the type

F(�u) = 0,F : Rn → Rn (11)

using Newton’s method or Picard iteration [10]. Additionally, systems of type

G(�u) = �u,G: Rn → Rn (12)

can be solved by fixed-point iteration, which may be accelerated by Anderson
acceleration method [3].

The Newton-type method computes the iteration step δn for iteration n using the
Jacobian

J (un) = F ′(un). (13)

The updates are calculated by

un+1 = un + λδn, 0 < λ < 1 (14)

before checking for convergence. For the fixed-point solver, the updated values of
the variables

�un+1 = G(�un) (15)

are tested for convergence after each iteration. During Anderson acceleration, inter-
mediate solution steps are performed and combined with computed weights to find
the variable updates for the following iteration.

The solver class offers the user an interface for choosing the desired solving
method and for setting different solver parameters, such as the maximum number of
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iterations and the value for the Anderson acceleration. The model variables may be
automatically scaled to accommodate possibly different ranges of their values. Once
solved, the final values of the variables are stored into a system buffer for reutilization
as initial values in following time steps.

4.3 Application Examples

The DAE solver has been utilized in several models from the Dyssol unit library.
For example, in [54], it was used as part of the solution of the population balance
equation of the agglomeration process. There an approach based on the separable
approximation of the agglomeration kernel using the adaptive cross approximation
methodwas proposed.Applying the fast Fourier transformation (FFT) to the obtained
equations, it is possible to significantly speed up the calculation of agglomeration
PBE. The IDA solver was consistently applied to solve the resulting equation in the
form

∂n(v, t)

∂t
= Bagg(n, v, t) − Dagg(n, v, t) + ṅin(t) − ṅout(t), (16)

where v is the volume of particles; n(v, t) is the number density function; Bagg

and Dagg are the birth and death rates of particles calculated using the FFT solver;
ṅin(t) and ṅout(t) are the number density distributions of inlet and outlet streams
correspondingly.

Flowsheets of the processes studied, as well as some results of their modelling
are shown in Fig. 11.

Fig. 11 Flowsheet structures of the investigated agglomeration processes and the results of their
simulation [54]
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Fig. 12 Cyclone preheater process as a validation case for the KINSOL solver for systems of
nonlinear equation, implemented as a multicompartment unit (top) and as a flowsheet of serially
connected cyclone models (bottom)

Avalidation case forKINSOLsolver has been set up using a flowsheet of a cyclone
preheater which consists of five serially connected gas cyclones. The flowsheet was
implemented in two different ways, shown in Fig. 12. The multicompartment unit
(Fig. 12 (top)) uses theKINSOL solver for systems of nonlinear equations to compute
the recycle streams in the unit, that are indicated in red. The validation flowsheet
model of the cyclone preheater (Fig. 12 (bottom)) uses the calculation algorithms
implemented in Dyssol (Sect. 3) to compute the recycle streams. The cyclone units
apply the Muschelknautz approach [42] to calculate the particle separation and were
taken from the Dyssol unit library (see Sect. 8).

The main model parameters for the validation case, i.e. the stream parameters
for solid and gas inlets and the geometrical parameters of the cyclones, are given in
Table 1. The materials for the gas and the solid phase are air and sand, respectively.
The initial value of the mass flow in the recycle streams is set to zero. The initial
particle size is normally distributed.

To compare the results of the simulations, the outlet streamCoarse is investigated.
The results of both simulation cases are shown in Fig. 13, indicating the same results
for the q3-distributions.
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Table 1 Model parameters for cyclone preheating process

Input top

Solid mass flow ṁsolid 0.18 kg/h

PSD: mean diameter/standard deviation xm/σ 1.2 mm/0.6 mm

Solids density ρsolid 1600 kg/m3

Input bottom

Gas mass flow ṁgas 3.6 kg/h

Gas temperature Tgas 300 K

Cyclone 1–5

Cyclone outer diameter/total height/cylinder height dout/htot/hcyl 2 m/1 m/0.1 m

Dip leg diameter/height ddip/hdip 0.01 m/0.4 m

Entry width/height be/he 0.4 m/0.3 m

Fig. 13 Comparison of
simulation results of the
cyclone preheating process,
implemented as a
multicompartment unit and
as a flowsheet of serially
connected cyclone models

5 Multidimensional Distributed Parameters of Solids

For flowsheet modelling of the liquid and gaseous phases, it is sufficient to describe
them with a finite number of concentrated parameters, such as mass flow, tempera-
ture or pressure. But things get more complicated if the solid phase is involved in the
simulation. Typically, granular materials are composed of individual heterogeneous
particles. The parameters of these particles (for example, their size, shape or porosity)
vary in a certain range. From a mathematical point of view, with a sufficient number
of particles, the entire bed of material can be quite accurately described using sev-
eral continuous distribution functions that specify laws for all varying parameters.
However, such a representation is not always convenient for modelling and numeri-
cal analysis. Therefore, in practice, the entire range over which a certain distributed
parameter is defined is divided into several shorter discrete intervals, called classes.
For each class, a representative value is selected, for example, the average value of
this class. After that, all the material is distributed into these classes, assuming that
all particles within each interval have the same parameters. Thus, instead of contin-
uous functions, any distribution is represented as a finite set of discrete values that
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Fig. 14 Matrix
representation of
multidimensional distributed
parameters of solids

describe the amount of material (for example, mass, volume, or number of particles)
in each class. By changing the number of classes, one can represent the entire initial
distribution with the necessary accuracy.

For most models, one of the main parameters of the solid phase is the size distri-
bution of particles. However, in addition to this, some other distributions can play an
important role in individual devices, for example: yield strength in granulators [34],
porosity and saturation in agglomerators [26], moisture content in dryers [1], shape
and orientation of particles in crystallizers [29], chemical composition in many phar-
maceutical subprocesses [40]. Thus, one model can utilize several interdependent
parameters that form a multidimensional distributed set. It is usually mathematically
described by multidimensional matrices, where the number of dimensions equals to
the number of distributions (Fig. 14). Then each cell describes a fraction of material,
which has the selected combination of parameters.

Thereby, in order not to limit the scope of the simulation system, the number and
composition of the distributed properties may not be limited and must be flexibly
configurable. Such an approach greatly complicates the modeling system. One of
the major problems is that the number and composition of the distributed parame-
ters used in each model on the flowsheet may not coincide. If these parameters are
interconnected, maintaining their consistency becomes the task of the simulation
framework.

5.1 Sparse Data Format and Tree Data Structures

One of the challenges that arises when dealing with multidimensional distributed
parameters of solids, as applied to dynamic modelling, is the large amount of data
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that must be easily and efficiently accessed, treated and stored. Therefore, a special
sparse format was developed in Dyssol for multidimensional data structures (Fig. 15)
[53, 52]. This format implements the following concepts to reduce the amount of
data and to improve computing performance:

• tree topology;
• time-dependent distributions of fractions;
• relative mass fractions.

Parameters of solids are usually not distributed over the entire available grid, but
are concentrated only on certain intervals. It means that matrices describing them
may contain a lot of zero values (Fig. 14). To omit storing these unnecessary data, the
sparse data structure implements the tree topology, where each level of the hierarchy
describes the distribution of thematerial by a specific parameter (Fig. 15). Thismakes
it possible to drop some branches of the tree if they are connected to empty values of
the previous level, thereby reducing the amount of data that needs to be stored and
processed. One of the frequently performed operations is the reduction of the entire
set to only one or several dimensions. Such a tree structure greatly simplifies this
procedure, since the distributions are stored in a partially precalculated form. So,
in order to extract a distribution of the level LN from the overall set, it is necessary
to take into account only the current and higher hierarchical levels (L1 − LN ). The
higher the distribution in the structure, the fewer operations must be done to extract
it. Thus, proper sorting of levels can significantly improve data access performance.

In dynamic processes, parameters of the material are changing in time. To rep-
resent this transient behavior, time as parameter must be introduced into the tree

Fig. 15 Tree data structure for storing multidimensional distributed parameters of solids
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structure. It can be done on two structural levels: (1) as the top parameter—the
whole tree is defined for each time point; (2) as the bottom parameter—each value
of the tree is distributed over time. For the Dyssol simulation system, the second
approach was selected. Each record of the tree data structure is a time-dependent
mass fraction of material, which has a selected combination of parameters. Since
many parameters vary only slightly over time, some optimizations can be applied
here. Values c of parameters at the certain time point ti that can be obtained by linear
interpolation between two adjacent time points ti−1 and ti+1 with sufficient accuracy
via ∣∣∣∣c(ti) −

(
c(ti+1) − c(ti−1)

ti+1 − ti−1
(ti − ti−1) + c(ti−1)

)∣∣∣∣ < |c(ti)| · Rtol + Atol (17)

can be removed from the list. This approach assumes that the number of values in
each array is not constant and depends on the behavior of the simulated process.
Therefore, each stored value must be additionally labeled with a time. Data filtering
at this level not only additionally decreases the amount of values being stored, but
also further reduces the overhead of performingmassive operations on time intervals,
such as copying and mixing of streams.

Some initially empty classes can be populated during simulation, increasing the
number of existing branches in the tree and, accordingly, reducing the efficiency of
themethod. To reduce this effect, the proposed approach can be expanded by dividing
the entire structure into several time intervals, combining top-level and bottom-level
approaches. However, to achieve the best result, this will require an online analysis
of the data in order to coordinate the sizes of time intervals with the dynamics of the
simulated process.

Instead of having fractions related to the entire amount of material, the proposed
approach uses relative mass fractions. This becomes possible due to the fact that the
information is stored separately at each level of the hierarchy. The use of relativemass
fractions allows working with individual distributions without affecting information
in the rest.

5.2 Calculation of Multidimensional Distributed Parameters

In the flowsheet modelling, two main approaches can be applied to calculate the
parameters of holdups and outlets [16]:

• explicit: all distributed variables are calculated directly and set to output streams;
• implicit: inlet streams are transformed into outlet streams according to the laws

of material transfer.

The explicit approach applied for a dynamic model, schematically shown in
Fig. 16, can be described as [52]:
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Fig. 16 Simplified scheme of embedding a model into a flowsheet

{
H (t + �t) = FH (t + �t, {X (t + �t)}, {H (t)}, {Y (t)})
Y (t + �t) = FY (t + �t, {H (t + �t)}) , (18)

where H , X , and Y are holdup, input, and output stream variables, correspondingly;
FH and FY are model functions, which describe changes in holdups and output
streams, respectively.

The entire flowsheet can be defined for some set of distributed parametersN . At the
same time, in a model developed in accordance with the explicit approach, function
sets {FH } and {FY } are usually defined for a limited set of distributed parametersM .
And since the output distribution {Y } is calculated directly from the internal state {H }
and the model functions {FY }, it will also be defined in M -dimensional parameter
space:

{X } ∈ RN ,

{FH }, {FY } ∈ RM → {H }, {Y } ∈ RM , (19)

In general, if a change in the number and composition of distributed properties is
allowed in the modelling system, M and N may not coincide. Then 3 cases can be
distinguished [52]:

• RM = RN : the solution works well, since all distributed parameters can be
calculated directly;

• RM /∈ RN : the parameters cannot be calculated at all, because it requires more
information than is available;

• RM ⊂ RN : the model in the M -dimensional parameter space will be calculated
correctly, but the proper results cannot be obtained for the parameters RN/RM .

Thus, among the disadvantages of an explicit approach, it can be noted [52]:

• considering only the limited set of required distributed parameters leads to the
loss of information about the others, despite the fact that there may be enough
information to calculate them;

• all possible distributed parameters should be known and considered when
developing the model;
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• if the number or composition of the distributed parameters varies, the model itself
must track these changes and correctly respond to them;

• the model should ensure the setting of all distributions defined at the input into
the output flows, even those that are not explicitly considered in its equations.

It can be concluded that the commonly used explicit approach is not applicable for
flowsheet simulation systems with flexible number of distributed parameters. There-
fore, Dyssol implements an implicit approach based on the use of transformation
matrices [16, 45, 52]. Here, model functions {FH } and {FY } are not applied directly,
but are used to derive the laws of the material transition θ between all classes in form
of transformation matrices for holdups TH and outlets TY :

{
TH (t) = θH (FH (t))
TY (t) = θY (FY (t))

. (20)

To describe transformation of N -dimensional space of distributed parameters, a
2N -dimensional transformation matrix T is needed. Then each entry T{IN},{JN} of

T describes the fraction of material that needs to be transferred from the
{
IN

}
-th

class of some input distribution to the
{
JN

}
-th cell of the corresponding output

distribution. Here
{
IN

}
and

{
JN

}
denote a set of indices for accessing any value of

the N -dimensional parameter space, so that

{
IN

} = i1i2 . . . iN , id ∈ [1 : Ld ], d ∈ [1 : N ] , (21)

where Ld is a number of discrete classes in the distributed property d .
The final values of the holdups and the output streams can be obtained by applying

the transformation matrix to the corresponding input distribution as

{
H (t + �t) = TH (t + �t) ⊗ H (t)
Y (t + �t) = TY (t + �t) ⊗ H (t + �t),

{TH }, {TY } ∈ RM → {H }, {Y } ∈ RN , (22)

where ⊗ is the operation of applying the transformation matrix. Then for the case
RM ⊂ RN , Eq. (18) for dynamic units takes the following form:

∀{
JN

} :

⎧⎪⎪⎨
⎪⎪⎩
H{JN }(t + �t) = ∑

{IN}
H{IN}(t) · TH{IM },{JM }(t + �t)

Y{JN}(t + �t) = ∑
{IN}

H{IN}(t + �t) · TY{IM },{JM }(t + �t).
(23)

The same considerations can be applied to formulate Eqs. (18)–(23) for steady-
state units.
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5.3 Application of Transformation Matrices

From a mathematical point of view, the operation of applying the transformation
matrix⊗ on some distribution can be described as regular matrix multiplication. But
since distributed sets are represented in Dyssol in a sparse format, special algorithms
must be developed and applied. The use of a tree-like data structures with relative
mass fractions simplifies this procedure, since it allows the use of transformation
matrices for each level separately, without affecting all distributions located at higher
hierarchical levels.

If the N -dimensional distribution is represented by N hierarchy levels, where Ld
is the number of classes in the d -th dimension, and X p

q (t), Y p
q (t) and Hp

q (t) are the
relative mass fractions in the q-th class of the p-th level in the initial distribution, the
transformed distribution, and the holdup, accordingly, the application of the trans-
formation matrix T defined for the M -dimensional space of distributed parameters
(RM ⊂ RN ) will be performed in three stages [52]:

1. Apply T to the lowest M -th level of the tree structure according to (23) in the
following form:

∀{
JM

} :⎧⎪⎪⎨
⎪⎪⎩
HM{JM }(t + �t) = ∑

{IM }
ηM
I (t) · TH{IM },{JM }(t + �t)

YM{JM }(t + �t) = ∑
{IM }

ηM
I (t + �t) · TY{IM },{JM } (t + �t),

ηM
I (t) = HM{IM }(t) · HM−1{IM−1}(t) · . . . · H 2{I2}(t) · H 1{I1}(t)

(24)

2. Reduce the transformation matrix T to obtain the transformation laws at the
previous level (M − 1) and apply them using (24). Repeat this for all hierarchy
levels up to 1.

3. Apply T to calculate the remaining levels K according to:

∀K : M < K ≤ N ,∀{
JK

} :⎧⎪⎪⎨
⎪⎪⎩
HK{JK}(t + �t) =

∑L1
i1=1 ηK

J (t)·TH{I1},{J1} (t+�t)

ηK−1
J (t+�t)

YK{JK}(t + �t) =
∑L1

i1=1 ηK
J (t+�t)·TY{I1},{J1} (t+�t)

γ K−1
J (t+�t)

ηK
J (t) = HK{JK}(t) · HK−1{JK−1}(t) · . . . · H 2{J 2}(t) · H 1{J 1}(t)
γ K
J (t) = YK{JK}(t) · YK−1{JK−1}(t) · . . . · Y 2{J 2}(t) · Y 1{J 1}(t)

(25)

Applying this algorithm, using Eqs. (24) and (25), as well as sorting levels in the
hierarchical data structure, it is possible to apply any valid transformation matrix to
any input distribution.
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The type of unit slightly affects the algorithm for applying transformation
matrices:

• in steady-state units: the input distribution is copied to the output, then the
transformation matrix is applied to the output;

• in dynamic units: the input distribution is mixed with the holdup, then the
transformation matrix is applied to the holdup, after which the outputs are
calculated.

5.4 Simulation Examples

In order to test and validate the developed algorithms for lossless calculation of
the distributed parameters of the solid phase, several model experiments were per-
formed. The flowsheet of one of the simulated processes [53] is presented in Fig. 17.
It is a typical grinding process often used in the mineral processing industry [19,
50]. It consists of three successive crushing stages: pre-grinding of coarse material,
separation and further grinding of large fractions, and the final crushing in a closed
circuit.

Fig. 17 Flowsheet of the three-stage crushing process and the results of its simulation in the Dyssol
system [53]
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Each unit on the flowsheet formulates and applies a two-dimensional transforma-
tion matrix for the particle size distribution.

The screen unit is defined in terms of grade efficiency, which determines a mass
fraction of particles of a certain diameter that leaves the screen through the coarse
outlet. The transformation matrices for coarse Tc and fine T f output streams are
calculated as: {

Tc
i,i = G(xi)

T f
i,i = 1 − G(xi)

, (26)

whereG(x) is a grade efficiency for particles of size x, calculated according to Plitt’s
model [44].

Selection S(xk) and breakage B(xk , xi) functions are used to describe the model
of crusher. S(xk) determines the mass fraction of particles of size xk , which will be
crushed, while breakage function B(xk , xi) defines the number of particles of size xi
that get the size of xk after crushing. The transformation laws are calculated as

Ti,k =
{
B(xk , xi) · S(xk), i <> k
1 − S(xk), i == k

. (27)

As B(xk , xi) Vogel’s breakage function [62] was applied, whereas the selection
function S(xk) was calculated according to King [28].

The source material was described using two interdependent distributed parame-
ters:

• particle size: the main parameter that is calculated directly in all models;
• moisture content: a secondary parameter that is not considered in the models’

equations, but is calculated indirectly by applying transformation matrices.

For simplification, it was assumed that no moisture transfer between particles and
no drying occurs.

From the obtained simulation results (Fig. 17), it can be seen that, despite the fact
that all models were defined to directly calculate only the particle size distribution,
information about the secondary parameter was stored and properly considered in
accordance with the formulated transformation laws. So, for example, at the first
stage of the process (Fig. 17), one can observe a change in particle size (Inlet C—
Milled) due to the operation of the mill. At the same time, the amount of moisture
does not change. After that, the milled wet and small dry particles are mixed and
fed to the next stage. Due to mixing, one can observe a bimodal distribution of
both parameters in the Inlet 2 stream. However, the application of the screen makes
it possible to separate particles by size, while the moisture content is also mainly
distributed between two streams Coarse 2 and Fine 2. Since some initially large wet
particles were crushed in the first mill, and also due to non-ideal separation in the
screen, some mixing of different fractions is observed. At the last stage, the final
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milling of the particles occurs. As a result, the proportion of wet material in the fine
fraction increases.

In [52], new approaches for calculating transformation matrices from the popu-
lation balance equations for agglomeration and milling have been developed. The
finite volume method for spatial discretization and the second-order Runge-Kutta
method for obtaining the complete discretized form of the PBE were applied to
derive transformation laws.

Transformation matrices for agglomerator were calculated by introducing birth
wb and death wd rates, which are responsible for conservation of number and mass
of particles, in the form:

Ti,j(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 +
⎛
⎝ 1

2
∑

(i,k)∈Ii
g(xi, xk , t) · wb(xi, xk ) −

L∑
j=1

g
(
xi, xj, t

) · wd (
xi, xj

)⎞⎠�t, i = j

1
2

∑
(i,k)∈Ii

g(xi, xk , t) · wb(xi, xk ) · �t, i < j

0, i > j

,

g(xi, xk , t) = β(xi, xk ) · �xk · u(xk , t).

(28)

Here xi and xk are sizes of agglomerating particles; u(xk , t) is the mass fraction
of particles of size xk at time t; �xk is the length of the size class k; β(xi, xk) is the
agglomeration rate for particles of sizes xi and xk ; L is the number of size classes; Ii

is a set of indices for accessing each object in a L × L matrix.
A similar approach was used to calculate the values of the transformation matrix

for the mill unit:

Ti,j(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 +
⎛
⎝ϕb(xi) ·

xi∫
x
i− 1

2

B(x, xi)dx − ϕd (xi)

⎞
⎠S(xi)�t, i = j

S(xi) · ϕb(xi) ·
x
j+ 1

2∫
x
j− 1

2

B(x, xi)dx · �t, i > j

0, i < j

, (29)

where xi is the size of the crushed particles; B and S are breakage and selection
functions, respectively; ϕb and ϕd are birth and death rates, needed to conserve mass
and particles number.

The proposed approach was implemented in form of dynamic units of a mill and
an agglomerator and was then numerically investigated as applied to a part of a
pharmaceutical process. Its flowsheet structure is given in Fig. 18. To calculate the
screen unit, the same approach as it is described in Eq. (26) was used. The following
dependencies were utilized in the applied models:

• screen: Plitt’s model [44] for grade efficiency;
• mill: King’s selection function [28] and Vogel’s breakage function [62];
• agglomerator: Brownian motion agglomeration kernel [2].
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Fig. 18 Flowsheet structure of the agglomeration process

The simulated process (Fig. 18) is an agglomeration of a two-component blend.
Two feeders supply materials with different particles sizes and different concentra-
tions of an active pharmaceutical ingredient (API). Both materials mix and enter
a closed circuit, where gradual particle growth occurs. After agglomeration, parti-
cles are classified by size. Too large particles are crushed in a mill, combined with
small particles and sent back to the agglomerator. Medium sized agglomerates are
considered as product.

The agglomerator model has been additionally enhanced by introducing aver-
aging of secondary distributed parameter into transformation laws to treat the API
concentration during agglomeration of particles [52].

The presented flowsheet was simulated until a steady state was reached [52]. The
distribution of material in all apparatuses, as well as at the process outlet, is shown
in Fig. 19. The obtained results show that the loss of information on the secondary
distributed parameter is not observed, despite the fact that only the agglomerator
model explicitly takes into account the concentration of API. For example, it can
be seen that the distribution of particles with a higher concentration of API has two
peaks: the first reflects the distribution of the initial material from feeder 2 mixed
with new particles formed in the agglomerator and the mill; and the second is the
result of agglomeration of particles with an equally high concentration of API with
each other. Fractions with low API concentration are formed due to agglomeration
of particles coming from feeder 1 with each other, as well as due to grinding of larger
fractions by a mill unit. Since initially there were less particles with lowAPI content,
the distribution is more uniform. At the same time, a blend of two initial mixtures
(from feeder 1 and feeder 2), formed as a result of agglomeration of materials with
different API concentrations, is present in a significant amount, and can be clearly
distinguished.

Thus, using transformation matrices to calculate the distributed parameters of
the solid phase, it is possible to simulate complex processes involving materials
described by a large number of interconnected parameters.
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Fig. 19 Results of simulation of the agglomeration process in the Dyssol system

6 Data Storage Subsystem

6.1 Organisation of Data Storage

The data storage subsystem is responsible for writing, storing and reading all the
data generated during the operation of Dyssol. Based on the requirements for
the developed simulation framework, this subsystem should provide the following
functionality:

• serialization/deserialization of complex data structures with various types of
information;

• cross-platform access to the data regardless of operating system or file system;
• availability of data for third-party tools without using the Dyssol framework.

To ensure the fulfilment of all the requirements, the Hierarchical Data Format
HDF5 and the HDF5 library [60] were utilized in the simulation system. HDF5 has
been specifically designed to store and manage large and complex data sets. It is used
in various applications where fast data processing and/or storage of a large amount
of dynamically generated data is required. It allows developing easily extensible
platform-independent solutions for organizing complex data structures and efficient
work with large data sets. The use of the standardized data storage format and the
availability of application programming interfaces for many tools and programming
languages (for example, C/C++, Java, MATLAB, Python) allows organizing access
to simulation results from external programs and utilities.

The provided programming interface for the C++ programming language [20]
was used to integrate HDF5 into the Dyssol simulation environment. The HDF5
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library was utilized as the lower layer of the data processing subsystem, where it
is responsible for all direct work with the computer file system. The conversion
between the Dyssol data format and the HDF5 data format is performed only during
data serialization and deserialization, so the modelling system can use suitable and
optimized data structures during its operation.

6.2 Dynamic Data Caching

One of the difficulties that arise when applying distributed parameters in dynamic
simulations is the continuous generation of significant amounts of data. If the set of
distributed parameters and the number of discretization classes for each dimension
are not limited, the complexity of the flowsheets under study can be restricted by the
free RAM of the computer.

To solve this problem, a subsystem for dynamic data caching was developed and
implemented in Dyssol. Its work is based on the fact that at each moment the simula-
tion framework works only with certain groups of units (partitions) in a certain time
interval. The rest of the information is not used, so it can be temporarily unloaded
from RAM. Therefore, at each moment of operation, the system stores only informa-
tion about several time points from those material streams that are currently being
involved in the calculations. For greater flexibility, the caching algorithm is applied
for each material stream independently.

To minimize the impact of slow data backup and recovery, one must correctly
select the time interval that will be available from the working memory. Since the
Dyssol simulation system uses the waveform relaxation method, this interval should
take into account the current size of the timewindow.On the one hand, if the boundary
of the cached interval is inside the current time window, data backup and recovery
will be performed at each iteration of the WRM, on the other hand, too large cache
windows will increase the amount of unused information stored in RAM. Since for
the correct operation of thewaveform relaxationmethod, it is necessary to interpolate
data from the previous time window, the minimum size of the uncached interval is
2 · tWINDOW (current and previous window) for each material stream in the partition.

7 Materials Database

The implemented materials database gives the option to choose from a set of pre-
defined materials or to define new compounds. In addition to existing material prop-
erties, the user can define his own set. All of them are divided into constant properties
and properties depending on temperature and/or pressure. While constant parame-
ters, like molar mass, critical temperature and standard formation enthalpy, cannot
change their value during the simulations, temperature or pressure (TP) depended
parameters, like enthalpy or vapour pressure, have to be evaluated at runtime. The TP
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dependencies may be either pre-defined correlations (e.g. polynomic functions), or
lookup tables, that are directly visualized in thematerial database graphical interface.
For each dependency a valid range has to be defined. If the function is evaluated out-
side of this range, a nearest neighbour value inside the valid range is selected instead.
In addition, the user can define properties that describe the interaction between two
compounds, like surface tension at a phase boundary.

8 Units and Solvers Library

In Table 2, the units available in the Dyssol unit library are presented. The shown list
is complemented by a set of service units, like basic inlet, mixer, or splitter, which are
not described in detail. The available custom solvers from the Dyssol solver library
are listed in Table 3. Additional modules, implemented in Dyssol, are described in
Table 4.

9 Numerical Process Optimization and Parameter
Adjustment

To allow for global optimization of unit and process parameters for dynamical pro-
cesses, a genetic algorithm has been implemented according to Weicker [65]. Its
flowchart is shown in Fig. 20.

Themain optimization parameters are the number of the so-called parent solutions
nparent and the number of child solutions per parent nchild. During initialization stage,
a number of nparent solutions are generated randomly within the defined bounds of
the solution space. In the main loop, for each parent solution nchild solutions are
generated by mutation of the respective parent solution. The mutation is achieved by
addition of a random value from a gaussian function with zero mean and standard
deviation σ . The standard deviation σ determines the size of the search space in
which the child solutions may lie and influences the convergence of the optimizer.
In one iteration of the main loop, a total of nparent × nchild solutions are generated by
mutation, for which the flowsheet model is simulated. The deviation of the variables,
received from the flowsheet simulation, to the target values is evaluated using root-
mean-square error (RMSE) function. Following, the nparent best solutions are selected
according to the lowest RMSE as start values for the next iteration. Additionally, if
chosen via user input, the best parent solution may be taken to this list of selected
solutions, if its RMSE is lower than the best child solutions. After a user-defined
number of iterations, the standard deviation σ of the mutation function is adjusted.
If the RMSE is not decreasing, the value of σ is reduced—and vice versa—to adjust
the size of the solution space and therefore the convergence.



618 V. Skorych et al.

Ta
bl
e
2

L
is
to

f
un
its

av
ai
la
bl
e
in

th
e
D
ys
so
ll
ib
ra
ry

Sc
he
m
at
ic

Ty
pe

D
es
cr
ip
tio

n

A
gg
lo
m
er
at
or

D
yn
am

ic
T
he

ag
gl
om

er
at
or

un
it
[5
4]

ca
lc
ul
at
es

th
e
ou

tp
ut

pa
rt
ic
le
si
ze

di
st
ri
bu
tio

n
ba
se
d
on

si
m
pl
ifi
ed

po
pu

la
tio

n
ba
la
nc
es

th
at
do

n’
ta
cc
ou

nt
fo
r
pa
rt
ic
le

at
tr
iti
on

.T
he

un
it
pa
ra
m
et
er
s
of
fe
r
th
e
op

tio
n
to

se
le
ct
di
ff
er
en
t

ag
gl
om

er
at
io
n
ke
rn
el
s
as

w
el
la
s
to

ch
oo

se
fr
om

a
lis
to

f
av
ai
la
bl
e
so
lv
er
s

fr
om

th
e
so
lv
er

lib
ra
ry

B
un
ke
r

D
yn
am

ic
T
he

bu
nk
er

un
it
is
m
od

el
ed

w
ith

an
id
ea
lly

m
ix
ed

ho
ld
up

.T
he

ta
rg
et
m
as
s

of
th
e
bu
nk
er

is
se
tv

ia
un

it
pa
ra
m
et
er
.T

he
ou

tp
ut

m
as
s
is
co
nt
ro
lle

d
by

an
in
te
rn
al
PI
D
-c
on
tr
ol
le
r
to

m
at
ch

th
e
us
er
-d
efi
ne
d
ta
rg
et
ho
ld
up

m
as
s

C
ru
sh
er

St
ea
dy

st
at
e

T
he
re

ar
e
m
ul
tip

le
co
m
m
in
ut
io
n
la
w
s
fo
r
di
ff
er
en
ta
pp

lic
at
io
ns

av
ai
la
bl
e:

•
B
on
d’
s
po
w
er

la
w
,o
ri
gi
na
lly

de
ve
lo
pe
d
fo
r
co
m
m
in
ut
io
n
in

ba
ll
an
d
ro
d

m
ill
s
[7
]

•
C
om

m
in
ut
io
n
fo
r
co
ne

cr
us
he
r,
ap
pl
yi
ng

a
se
le
ct
io
n
fu
nc
tio

n
de
ve
lo
pe
d

by
K
in
g
[2
8]

an
d
a
br
ea
ka
ge

fu
nc
tio

n
pr
es
en
te
d
by

V
og
el
an
d
Pe
uk
er
t

[6
2]

•
A
ge
ne
ra
lp

op
ul
at
io
n
ba
la
nc
e
m
od
el
in
cl
ud
in
g
a
so
lid

ho
ld
up
,a
pp
ly
in
g
a

se
le
ct
io
n
fu
nc
tio

n
pr
es
en
te
d
by

A
us
tin

an
d
L
uc
ki
e
[6
]
an
d
a
br
ea
ka
ge

fu
nc
tio

n
sh
ow

n
by

A
us
tin

[5
]

C
ry
st
al
liz

er
D
yn
am

ic
T
he

cr
ys
ta
lli
ze
r
un

it
m
od

el
s
si
m
ul
ta
ne
ou

s
cr
ys
ta
lg

ro
w
th

an
d
ag
gr
eg
at
io
n

in
a
se
ed
ed

ba
tc
h
cr
ys
ta
lli
ze
r,
pr
es
en
te
d
by

K
ov
ac
ev
ic
an
d
B
ri
es
en

[3
0]
.T

o
so
lv
e
th
e
po

pu
la
tio

n
ba
la
nc
es

it
us
es

a
M
on

te
-C

ar
lo

m
et
ho

d

(c
on
tin

ue
d)



17 A Framework for Dynamic Simulation of Interconnected … 619

Ta
bl
e
2

(c
on
tin

ue
d)

Sc
he
m
at
ic

Ty
pe

D
es
cr
ip
tio

n

C
yc
lo
ne

St
ea
dy

st
at
e

T
he

cy
cl
on
e
m
od
el
is
ba
se
d
on

th
e
m
od
el
pr
es
en
te
d
by

M
us
ch
el
kn
au
tz

[4
2]
.I
ti
s
ap
pl
ic
ab
le
fo
r
cy
cl
on

es
w
ith

ta
ng

en
tia

l,
ax
ia
la
nd

sp
ir
al
in
le
t.

T
he
re

ar
e
tw
o
m
ec
ha
ni
sm

s
of

se
pa
ra
tio

n
co
ns
id
er
ed
,n

am
el
y
th
e
se
pa
ra
tio

n
du
e
to

a
su
rp
as
si
ng

th
re
sh
ol
d
in

so
lid

s
lo
ad
in
g
an
d
th
e
se
pa
ra
tio

n
in

th
e

in
ne
r
cy
cl
on

e
vo
rt
ex
.M

ul
tip

le
ge
om

et
ri
c
pa
ra
m
et
er
s
of

th
e
cy
cl
on

e
ca
n
be

de
fin

ed
in

th
e
us
er

in
te
rf
ac
e

E
le
ct
ro
st
at
ic
pr
ec
ip
ita

to
r

D
yn
am

ic
T
he

m
od

el
of

th
e
el
ec
tr
os
ta
tic

pr
ec
ip
ita

to
r
[4
9]

co
ns
id
er
s
a
pr
el
im

in
ar
y

se
pa
ra
tio

n
of

th
e
pa
rt
ic
le
s
ac
co
rd
in
g
to

D
eu
ts
ch

[1
2]
.T

he
y
re
si
de

in
a
la
ye
r

of
pa
rt
ic
le
s
an
d
m
ay

be
re
su
sp
en
de
d
to

th
e
ga
s
st
re
am

de
pe
nd
in
g
on

th
e

la
ye
r
th
ic
kn

es
s

G
ra
nu
la
to
r

D
yn
am

ic
T
hi
s
un

it
re
pr
es
en
ts
a
si
m
pl
ifi
ed

m
od

el
of

a
flu

id
iz
ed

be
d
gr
an
ul
at
io
n

re
ac
to
r.
T
he

m
od
el
is
ba
se
d
on

th
e
w
or
k
of

H
ei
nr
ic
h
et
al
.[
21
].
It
ac
co
un
ts

fo
r
pa
rt
ic
le
gr
ow

th
an
d
fo
r
po

ss
ib
le
ov
er
sp
ra
y,
w
hi
ch

m
ay

le
ad

to
ad
di
tio

na
ld

us
tf
or
m
at
io
n
in

th
e
sy
st
em

.T
he

at
tr
iti
on

of
pa
rt
ic
le
s
an
d
th
e

fo
rm

at
io
n
of

nu
cl
ei
is
ne
gl
ec
te
d

H
ea
te
xc
ha
ng
er

St
ea
dy

st
at
e

T
he

he
at
ex
ch
an
ge
r
is
ba
se
d
on

a
si
m
pl
ifi
ed

ap
pr
oa
ch

ca
lc
ul
at
in
g
a
he
at

flo
w
fo
r
th
e
id
ea
lc
as
e,
in

w
hi
ch

bo
th

ou
tp
ut

st
re
am

s
le
av
e
th
e
sy
st
em

w
ith

th
e
sa
m
e
te
m
pe
ra
tu
re
.A

us
er
-d
efi

ne
d
he
at
tr
an
sf
er

ef
fic

ie
nc
y
pa
ra
m
et
er

re
du
ce
s
th
e
he
at
flo

w
to

ac
co
un
tf
or

ou
tp
ut

st
re
am

s
w
ith

di
ff
er
en
t

te
m
pe
ra
tu
re
s

(c
on
tin

ue
d)



620 V. Skorych et al.

Ta
bl
e
2

(c
on
tin

ue
d)

Sc
he
m
at
ic

Ty
pe

D
es
cr
ip
tio

n

Sc
re
en

St
ea
dy

st
at
e

T
he
re

ar
e
m
ul
tip

le
m
od

el
s
fo
r
th
e
ca
lc
ul
at
io
n
of

th
e
se
pa
ra
tio

n
ef
fic
ie
nc
y
of

th
e
sc
re
en

un
it
av
ai
la
bl
e,
ba
se
d
on

th
e
re
se
ar
ch

of
th
e
fo
llo

w
in
g
au
th
or
s:

•
M
ol
er
us

an
d
H
of
fm

an
n
[4
1]

•
Pl
itt

[4
4]

•
Pr
ob

ab
ili
ty

m
od

el
sh
ow

n
in

R
ad
ic
hk
ov

et
al
.[
47
]

•
H
en
ni
ng

an
d
Te
ip
el
[2
3]

T
im

e
de
la
y

D
yn
am

ic
T
hi
s
un

it
ad
ds

a
us
er
-d
efi

ne
d
tim

e
de
la
y
to

th
e
in
co
m
in
g
si
gn

al
.T

o
de
al

w
ith

nu
m
er
ic
al
is
su
es

an
d
to

m
ak
e
it
co
m
pa
tib

le
w
ith

th
e

se
qu

en
tia

l-
m
od

ul
ar

ap
pr
oa
ch
,a

fir
st
or
de
r
tim

e
de
la
y
is
ad
di
tio

na
lly

ap
pl
ie
d
to

th
e
in
pu

tv
ar
ia
bl
es
,w

hi
ch

ac
ts
as

a
sm

oo
th
er

fo
r
st
ep

si
gn

al
s



17 A Framework for Dynamic Simulation of Interconnected … 621

Table 3 List of solvers available in the Dyssol library

Method Description

Agglomeration Cell average Based on the work of Kumar et al. [31]

Fixed pivot Based on the work of Kumar and Ramkrishna [32]

FFT-based Based on the work of Skorych et al. [54]

Table 4 List of additional modules available in Dyssol

Description

Dustiness tester This module evaluates the dust tendency of each material stream in the
flowsheet. It applies prognosis functions comparable to the testing methods
such as single drop, rotating drum and UNC dustiness tester [35]

Fig. 20 Genetic optimization algorithm for parameter adjustment

To demonstrate the work of the developed optimization algorithm, it was applied
to a simple generic flowsheet model of a grinding process, shown in Fig. 21. The units
were taken from the general unit library (see Sect. 8). The model and optimization
parameters are listed in Table 5. The model of the crusher unit uses Bond’s law with
the power input as a user parameter to adjust the degree of comminution. The splitter
recycles 50% of the milled material independent of the particle size, which is fed
back and mixed with the feed after applying a time delay of one second. The system
response to a stepwise change of the inlet mass flow is shown in Fig. 22.

The goal of the optimization case is to reach a constant value of the Sauter mean
diameter (SMD) at the outlet. The temporal progressions of the SMD and the power
input for the best solution after 30 and 65 iterations are shown in Fig. 23, in which
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Fig. 21 Exemplary flowsheet model of the crushing process

Table 5 Model and
optimization parameters for
the test simulation

Feed

ṁtot = ṁsolid (t = 0 s) 2 kg/s

ṁtot = ṁsolid (t = 50 s) 4 kg/s

xm/σ 1.5 mm/0.1 mm

Crusher

Wi 50 kWh/t

σ 0.15 mm

Splitter

ksplit 0.5

Time delay

τ 1 s

Optimization parameters

nparent 50

nchild 50

σ0 0.4

Fig. 22 Response to a
stepwise change of the feed
mass flow in the crushing
process
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Fig. 23 Temporal progression of the SMD and power input for a solution of the genetic algorithm
after 30 (top) and 65 (bottom) iterations

the dotted black line shows the target value of the SMD. In this case, the number of
parent and child solutions is 50 and the starting value of σ is set to 0.4. The optimizer
may vary the power input at 4 different time steps between 50 and 500 kW, which
leads to a total of 8 independent variables. The power input may be changed in a
time interval between 30 and 70 s.

In Fig. 23, it can be seen that the stepwise change of the input mass flow leads to a
distortion in the SMD of the outlet. To mitigate the impact of the change in the feed,
the power input of the crusher should be decreased in advance and after the change
in the feed the power input should be gradually increased until the target value of the
SMD is reached.

10 Approaches to Development of Data-Driven Flowsheet
Models

The abundance of data and the increasing computational capacities have led to a
wide use of data-driven models, like artificial neural networks (NNs), in different
fields of both science and industry. The main advantage of NNs is the efficient
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Fig. 24 Exemplary MLP neural network with two hidden layers and three neurons each

handling of large data sets for pattern recognition and information extraction. The
most commonly used neural networks are the so-called multilayer perceptron (MLP)
neural networks. An MLP consists of layers of nodes (neurons) and connecting
edges. The first layer of neurons represents the input signals and the last layer the
outputs of the network. The layers of neurons in between are called hidden layers,
which apply a limiting transformation function, like tanh or sigmoid functions, on
the respective input. An exemplaryMLPwith two inputs, one output, and two hidden
layers, consisting of three neurons each, is shown in Fig. 24.

The main objective of an MLP is to find a suitable mapping of multiple input
signals to one or more output signals. Therefore, the weights of the connecting edges
are varied during the so-called training phase by error back-propagation, until the
output data can be mapped to a certain degree. To achieve a satisfactorily trained
MLP, either the network structure, the training parameters, or the training data set
may be adjusted. After the training phase, the generalization capability of the NN is
tested during the test phase by applying an unknown data set to the trained NN. In
most cases, the training phase and testing phase is repeated multiple times to increase
the generalization properties of the NN.

The main drawback of NNs is the tendency of overfitting the training data, i.e. the
network may try to map the noise in the data set. In combination with the inacces-
sibility of the trained networks “knowledge”, the use of NNs as black-box models
for either control purposes or process optimization seems unadvisable, as the NN
behavior regarding untrained system states is rather unpredictable. To tackle this
issue, the use of hybrid models, i.e. NNs (black-box) combined with mechanistic
(white-box) models seems especially promising. There are two main types of hybrid
models, that have been presented by von Stosch et al. [63], namely by either parallel
or serial combination, shown in Fig. 25.

In the parallel model configuration (Fig. 25a), the results of the black-box and the
white-boxmodel, are combined in a user-defined way. For a simple summation of the
results, the neural network is trained on the residuals between the output data and the
results of the white-box model. This configuration is especially suitable for systems
with separable mechanisms or dynamics, such that each model will focus on distinct
features of the system [63]. For the serial configuration, two model combinations are
possible, while the structure in Fig. 25b (first black-box) has gained more attention
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Fig. 25 Overview of hybrid model combinations, based on illustration of von Stosch et al. [63]

in research while hybrid models of structure Fig. 25c (second black-box) have not
found much application in chemical engineering [63]. They are suited for systems
with unknown underlying mechanism, with the black-box model acting as a state
observer [63].

The white box model in the hybrid modeling approaches may be represented by
a flowsheet model, which takes general mechanisms like mass and energy balances
into account. In case of the parallel configuration, the flowsheet modelmay be used to
roughly predict the corresponding outputs of the systems. E.g. for a milling process,
as shown in Fig. 21, the flowsheet may predict the resulting particle size distribution
based on mass balances and a simplified comminution model. The residuals between
the computed values and the measured ones may be used as training data for a NN,
to take possible mechanisms into account that are not considered in the flowsheet
model, e.g. abrasion. After a successful training of the NN, the resulting PSD of the
hybrid model is the combined value from flowsheet and NN.

The advantage of this procedure is, on the one hand, that theNNmay takemeasure-
ment data, like acoustic measurements, into account that can’t be utilized by simple
flowsheet models. On the other the flowsheet model assures, that basic physical
principles are always considered.

11 Summary

The aim of the Z-Project in the Priority Program SPP 1679 of the German Research
Foundation (DFG) was the development of a customizable, flexible and extensi-
ble platform for dynamic flowsheet simulations of interconnected solids processes.
These requirements are met by the presented program Dyssol, offering a complete
framework with an efficient architecture, interfaces and algorithms. Furthermore,
Dyssol comprises a clear graphical user interface with the option of direct data visu-
alization, extensible unit and solver libraries, as well as amaterial database to provide
easy access to the program. The open structure of the flowsheet system also allows
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for extensive customizability and integration of external programs to meet various
requirements.

The main simulation paradigms and algorithms are presented in this chapter.
Different case studies show a successful validation, good stability properties and a
high performance of the implemented framework. An example of the application of
the developed system for parameter optimization, as well as the outlook for possible
coupling with data-driven models is given.
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