Chapter 2 ®
The Perspective on Mobility Data Qs
from the Aviation Domain

Jose Manuel Cordero and David Scarlatti

Abstract Air traffic management is facing a change of paradigms looking for
enhanced operational performance able to manage increasing traffic demand (num-
ber of flights and passengers) while keeping or improving safety, and also remaining
environmentally efficient, among other operational performance objectives. In
order to do this, new concepts of operations are arising, such as trajectory-based
operations, which open many new possibilities in terms of system predictability,
paving the way for the application of big data techniques in the Aviation Domain.
This chapter presents the state of the art in these matters.

2.1 Introduction

The current air traffic management (ATM) system worldwide has reached its limits
in terms of predictability, efficiency, and cost effectiveness. Nowadays, the ATM
paradigm is based on an airspace management that leads to demand imbalances that
cannot be dynamically adjusted. This entails higher air traffic controllers’ (ATCO)
workload, which, as a final result, determines the maximum system capacity.

With the aim of overcoming such ATM system drawbacks, different initiatives,
dominated by Single European Sky ATM Research SESAR in Europe and NextGen
in the USA, have promoted the transformation of the current environment towards
a new trajectory-based ATM paradigm. This paradigm shift changes the old fash-
ioned airspace management to the advanced concept of trajectory-based operations
(TBO). In the future ATM system, the trajectory becomes the cornerstone upon
which all the ATM capabilities will rely on. The trajectory life cycle describes
the different stages from the trajectory planning, negotiation, and agreement, to
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the trajectory execution, amendment, and modification. The envisioned advanced
decision support tools (DSTs) required for enabling future ATM capabilities will
exploit trajectory information to provide optimized services to all ATM stakeholders
(airlines, air navigation service providers (ANSPs), air traffic control (ATC), etc.).

The proposed transformation requires high fidelity aircraft trajectory prediction
capabilities, supporting the trajectory life cycle at all stages efficiently.

Current Trajectory Predictors (TPs) are based on deterministic formulations of
the aircraft motion problem. Although there are sophisticated solutions that reach
high levels of accuracy, all approaches are intrinsically simplifications to the actual
aircraft behaviour, which delivers appropriate results for a reasonable computational
cost. TPs outputs are generated based on a priori knowledge of the planned flight
plan, the expected command and control strategies released by the pilot or the flight
management system (FMS)—to ensure compliance with ATC restrictions and user
preferences (all together known as aircraft intent), a forecast of weather conditions
to be faced throughout the trajectory, and the aircraft performance. This model
or physics-based approach is deterministic: It returns always the same trajectory
prediction for a set of identical inputs.

Although the use of the concept of aircraft intent [1] together with very precise
aircraft performance models such as Base of Aircraft Data (BADA) [2] has helped to
improve the prediction accuracy, the model-based approach requires a set of input
data that typically are not precisely known (i.e., initial aircraft weight, pilot/FMS
flight modes, etc.). In addition, accuracy varies depending on the intended prediction
horizon (look-ahead time). In summary one can identify current TP as an area of
improvement with consequent benefits supporting TBO.

Recent efforts in the field of aircraft trajectory prediction have explored the
application of statistical analysis and machine learning techniques to capture non-
deterministic influences that arise when an aircraft trajectory prediction is requested
by a DST. Linear regression models [3, 4] or neural networks [5, 6] have returned
successful outcomes for improving the trajectory prediction accuracy on the vertical
plane and for traffic flow forecasting. Generalized linear models [7] have been
applied for the trajectory prediction in arrival management scenarios and multiple
linear regression [8, 9] for predicting estimated times of arrival (ETA). Although
most of these efforts include as input dataset the available surveillance data, there
is no consensus on the additional supporting data required for robust and reliable
trajectory predictions. Such additional supporting data may include filed or amended
flight plans, airspace structure, ATC procedures, airline strategy, weather forecasts,
etc.

The outcome of these recent efforts provides promising results in terms of
accuracy prediction [10]; however, there is still a lack of global vision on how
to apply data-driven approaches to real ATM scenarios, and what the expected
improvement will be. The disparity of the datasets used for validating different
methods makes difficult the comparison among those studies, and, therefore,
prevents from extending the applicability of such techniques to more realistic and
complex scenarios.
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Another strong limitation found in the current state-of-the-art research is that
the proposed data-driven approaches are mostly limited to individual trajectory
predictions. The trajectories are predicted one by one based on the information
related to them, ignoring the expected traffic at the prediction time lapse, hence
disregarding contextual aspects on the individual predictions. Consequently, the
network effect resulting from the interactions of multiple trajectories is not con-
sidered at all, which may lead to huge prediction inaccuracies. The complex nature
of the ATM system impacts the trajectory predictions in many different manners.
Capturing this complexity and being able to devise prediction methods that take
the relevant information into account will improve the trajectory prediction process:
This is a considerable leap from the classical model-based approaches.

2.2 Trajectory Prediction Approaches in the Aviation
Domain

A new strategy for trajectory prediction in Aviation is to exploit available trajectory
information to predict future trajectories based on the knowledge acquired from
historical data. This innovative approach is in contrast to the classic model-based
approach in which different models are involved in the computation of aircraft
motion.

First of all, it is required to have a common understanding of what a trajectory is.
Basically, a trajectory in the Aviation Domain is a chronologically ordered sequence
of aircraft states described by a list of state variables. Most relevant state variables
are airspeeds (true airspeed (TAS), calibrated airspeed (CAS) or Mach number (M)),
3D position (latitude (¢), longitude (1) and geodetic altitude (&) or pressure altitude
(Hp)), the bearing (x) or heading (1), and the instantaneous aircraft mass (m).
Additionally, a predicted trajectory can be defined as the future evolution of the
aircraft state as a function of the current flight conditions, a forecast of the weather
conditions, and a description of how the aircraft is to be operated from this initial
state and on.

According to the formulation of the motion problem, there are two possible
model-based alternatives:

2.2.1 Kinematic Trajectory Prediction Approach

This solution does not consider the causalities of motion, only takes into account the
speeds, altitude, and lateral profiles that may represent the evolution of the aircraft
position with time. The accuracy of kinematics Trajectory Predictors (TP) strongly
relies on the accuracy of datasets used to model the aircraft’s performance and how
well they match the actual aircraft’s behaviour in all possible flight conditions. The
main advantage is that kinematic TPs are usually orders of magnitude faster than
other alternatives.
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2.2.2 Kinetic Trajectory Prediction Approach

This formulation describes the forces and momentums that cause the aircraft motion.
For ATM applications, a simplified 3 degrees of freedom (DoF) approach (point-
mass model (PMM)) is typically assumed because it provides enough information to
support further decision-making processes. More sophisticated 6 DoF approaches,
applied, for instance, in simulators, increase the fidelity to the predicted trajectories
by modelling the aircraft attitude, which is of no interest for ATM purposes. To
pose a well-formulated kinetic problem, models of the aircraft performance, weather
conditions, and aircraft intent (description of command and control directives that
univocally turns into in a unique trajectory when applied to aircraft by the pilot or
the flight management system (FMS)) are required.

Even though there might be available extremely accurate aircraft performance
models, such as BADA models released by EUROCONTROL, in conjunction to
accurate weather forecasts, such as those generated by the Global Forecast System
(GFS) provided by the National Oceanic and Atmospheric Administration (NOAA),
there are intrinsic errors that produce unavoidable deviations between predicted
and actual trajectories. Those deviations are the result of representing a stochastic
process (prediction of an aircraft trajectory affected by stochastic sources) by
a deterministic approach (formulation of a kinematic or kinetic aircraft motion
problem).

The concept of data-driven trajectory prediction is a completely different
approach than those mentioned above. It does not consider any representation of
any realistic aircraft behaviour, only exploits trajectory information recorded from
the ground-based surveillance infrastructure or by onboard systems (e.g., flight data
recorder (FDR) or quick access recorder (QAR) data) and other contextual data
that may impact the final trajectory. This decoupled solution from the mathematical
formulation of the aircraft motion should capture variations of the trajectory that
cannot be derived directly from the filed flight plans (i.e., intended trajectories),
both during the strategic (before departure) and tactical phases (after departure).
These discrepancies usually come from air traffic control interventions to ensure
optimum traffic management and safe operations (e.g., delays added due the effect
of adverse weather). If these interventions respond to a pattern, big data analytics
and machine learning algorithms might potentially identify them once the proper
system features are considered.

Thus, the preparation of available trajectory data is crucial to train the algorithms
in accordance to the expected data-driven TP performance accuracy. Several
solutions aim at predicting some aircraft state variables (time at a fix/waypoint)
for a representative scenario. In general, different generic prediction methods can
be applied in different possible scenarios envisioned in the future trajectory-based
operations environment, in which the ATM paradigm will evolve from current
tactical airspace-based to a strategic trajectory-based traffic management.
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Subsequently we provide a literature review of prominent techniques applied to
the problem of predicting an aircraft trajectory leveraging historical recorded flight
data.

2.2.3 Data-Driven Trajectory Prediction Approaches

The following list of approaches describes the current state-of-the-art techniques
applied to aircraft trajectory prediction driven by data.

Statistical Prediction of Aircraft Trajectory: Regression Methods vs Point-
Mass Model [11] This approach proposes a statistical regression model combined
with a total energy model (simplified version of the classical point-mass model
for aircraft) to predict the altitude of a climb procedure with a 10-min look-ahead
time starting from an initial flight level (FL180). The input dataset are radar tracks
and meteorological data. The study uses the already flown aircraft positions, the
observed calibrated airspeed (CAS) at the current altitude, the temperature deviation
with respect to the International Standard Atmosphere (ISA) conditions, and the
predicted conditions at different levels of pressure. The main assumption of this
approach is that the climb procedure is represented by a CAS/Mach transition for
all predicted trajectories. Three techniques were assessed: linear regression, neural
networks, and locally weighted polynomial regression, being the latter the one that
provides higher accuracy with respect to reference recorded data.

Data Mining for Air Traffic Flow Forecasting: A Hybrid Model of Neural
Network and Statistical Analysis [6] This approach employs a combination
of feed forward and back propagation neural networks combined with statistical
analysis to predict the traffic flow. The basic information required that represents
a forecasted traffic sample is the estimated time of arrival (ETA) at designated
fixes and airports. Initially, a 5-step data mining process is proposed as preliminary
stage to process the radar tracks to generate the input dataset to the neural network.
The analysis of historical data suggests that the traffic flow series can be classified
in 7 classes from Sunday to Saturday; thus, the applied algorithms uses 7 back
propagation neural networks that are trained separately. A relevant outcome of the
study is that 1 hidden layer of approximately 5-10 neurons provides best results.
The accuracy of the predictions degrades with the look-ahead time.

Using Neural Networks to Predict Aircraft Trajectories [S] This work deals
with the problem of predicting an aircraft trajectory in the vertical plane (altitude
profile with the time). Two separate approaches have been analysed: the case of
strategic prediction considering that the aircraft is not flying yet; and the case of
tactical prediction in which flown aircraft states are used to improve the prediction.
The study is focused on predicting trajectories for a unique aircraft type. The
prediction algorithm is based on a feed forward neural network with a single
hidden layer. The neural network is parameterized to learn from the difference
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between the Requested Flight Level (RFL), which defines the cruise altitude, and
the actual altitude. This strategy facilitates capturing of the evolution of the Rate
of Climb (ROC) with the altitude. Two neural networks methods (standard and
sliding windows) were studied according to the data availability (i.e., tactical or
strategically prediction) to predict the aircraft altitude separately. A main conclusion
of this work is the higher number of samples describing the trajectories building the
training set, the better prediction results.

A Methodology for Automated Trajectory Prediction Analysis [12] According
to this approach the prediction process is split in separated stages according to
the flight phases. This facilitates the process of identifying the recorded flights
(described by actual radar tracks) that show unpredictable modifications of their
aircraft intent, removing these outliers from the training dataset. This process is
referred to as segmentation. This process is of high interest when preparing a dataset
to be fed to machine learning algorithms for trajectory prediction. This methodology
relies on the definition of rules for segmenting trajectories and removing outliers
from a trajectory dataset.

Trajectory Prediction for Vectored Area Navigation Arrivals [9] This work
introduces a new framework for predicting arrival times by leveraging probabilistic
information about the trajectory management patterns that would be applied by
an air traffic controller (ATCO) to ensure safe operations (i.e., avoiding breaches
of separation minima) and manage the traffic efficiently. The likelihood of those
trajectory management patterns is computed from the patterns of preceding aircraft.
This work considers a dataset of recorded radar tracks, representing trajectories
of aircraft of the same wake vortex category. This homogenizes the dataset by
removing the variability in arrival times because of the variability of aircraft
types. The proposed machine learning algorithm predicts the ETA at the runway
considering the time at entry waypoint (fix). The major patterns of vectored
trajectories are found by clustering recorded radar tracks for the airspace of interest.
The clusters are built upon the computation of the relative Euclidian distance of a
trajectory from the other. However, time misalignment among trajectories can result
in large distances. To solve this issue, the dynamic time warping (DTW) measure
is applied, providing with the optimal alignment of two trajectories. Multiple linear
regression models for travel time are designed for each of those identified patterns.
Finally, among all identified patterns, the most suitable according to the patterns of
trajectory management, flown by the preceding traffic, is chosen.

A 4-D Trajectory Prediction Model Based on Radar Data [7] This work
proposes a four-dimensional trajectory prediction model that makes use of historical
and real-time radar tracks. Both strategic and tactical prediction processes are
designed according to the available datasets. The strategic prediction is used as the
baseline against which the tactical predictions are compared to detect deviations
and improve prediction accuracy by updating the trajectory prediction. The process
is designed in two stages: prediction of total flying time, and prediction of flying
positions and altitudes. The former prediction is performed by using a multiple
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regression method that relates the influences of traffic flow and wind conditions.
The latter prediction requires from a process to normalize the flying positions and
altitudes of different trajectories (i.e., different recorded radar tracks) to the same
time interval. The conclusion from this work is that high prediction accuracy can be
achieved, although at the cost of modelling the trajectories individually.

A Machine Learning Approach to Trajectory Prediction [7] A supervised
learning regression problem, which implements the so-called generalized linear
models (GLM) to trajectory prediction for sequencing and merging of traffic,
following fixed arrival routes, is described and evaluated using actual aircraft
trajectory and meteorological data. This study selects two aircraft types according
to the availability of Automatic Dependent Surveillance-Broadcast (ADS-B) tracks.
The first aircraft is a narrow body aircraft in the ICAO wake vortex medium category
and the second aircraft is a wide body aircraft in the wake vortex heavy category.
Trajectories of flights that were vectored off the arrival route or showed signs of
speed control were removed from the dataset. To determine which regressors to
include in the GLM, a stepwise regression approach is applied. Stepwise regression
provides a systematic approach to add or remove regressors from the GLM based
on their statistical significance in explaining the output variable. Due to the scarce
availability of input variables obtained from current surveillance systems, only
arrival time predictions for aircraft following fixed arrival routes in combination
with continuous descent operations (CDO) were made.

An Improved Trajectory Prediction Algorithm Based on Trajectory Data
Mining for Air Traffic Management [10] This work uses data mining algorithms
to process historical radar tracks and to derive typical trajectories coming from
the original tracks by applying clustering algorithms (i.e., Density-Based Spatial
Clustering of Application with Noise (DBSCAN)). For predicting a trajectory, the
typical trajectory is used to feed a hybrid predictor that instantiates an interacting
multiple model Kalman filter. The use of the typical trajectory ensures that the
associated flight intent represents better the intended trajectory and, therefore, the
errors of long-term prediction diminish.

Aircraft Trajectory Forecasting Using Local Functional Regression in Sobolev
Space [8] According to this approach, a time window between 10 and 30 min
is considered, in which an aircraft trajectory prediction is to be generated. The
proposed algorithm based on local linear functional regression exploits 1 year
radar tracks over France as primary source to learn from. The learning process is
designed in two separated stages: localization of data using k nearest neighbours;
and solving of regression using wavelet decomposition in Sobolev space. The paper
describing this approach concludes that this method returns efficient results with
high robustness, although the proposed approach does not consider the effect of the
weather conditions (especially the wind) in the prediction.

Terminal Area Aircraft Intent Inference Approach Based on Online Trajectory
Clustering [13] This work proposes a two-stage process to obtain an inferred
estimation of the aircraft intent that represents a flown trajectory. The first stage is
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devoted to identify the associated intent model, while the second one computes the
specific intent based on the knowledge of the referred model. The intent modelling is
formulated as an online trajectory clustering problem where the real-time intended
routes are represented by dynamically updated cluster centroids extracted from
radar tracks without flight plan correlations. Contrary, the intent identification is
implemented with a probabilistic scheme integrating multiple flight attributes (e.g.,
call sign, destination airport, aircraft type, heading angle, and the like). This work
suggests that the detection of outlier trajectories based on the clustering process
requires a detailed analysis and a review considering the actual ATCO interventions
on the considered flights.

New Algorithms for Aircraft Intent Inference and Trajectory Prediction [14]
Considering the requirements of aircraft tracking and trajectory prediction accuracy
of current and future ATM environments, a hybrid estimation algorithm, called the
residual mean interacting, is proposed, with the objective to predict future aircraft
states and flight modes using the knowledge of air traffic control (ATC) regulations,
flight plans, pilot intent, and environment conditions. The intent inference process
is posed as a discrete optimization problem whose cost function uses both spatial
and temporal information. The trajectory is computed thanks to an intent-based
trajectory prediction algorithm. Using ADS-B messages, the algorithm computes
the likelihood of possible flight modes, selecting the most probable one. The
trajectory is determined by a sequence of flight modes that represent the solvable
motion problems to be integrated to obtain the related trajectory.

Predicting Object Trajectories from High Speed Streaming Data [15] This
approach introduces a machine learning model, which exploits geospatial time
series surveillance data generated by sea vessels, in order to predict future tra-
jectories based on real-time criteria. Historical patterns of vessels movement are
modelled in the form of time series. The proposed model exploits the past behavior
of a vessel in order to infer knowledge about its future position. The method
is implemented within the MOA toolkit [16] and predicts the position of any
vessel within the time range of 5 min. In that context, online vessel’s records are
processed as they arrive and treated as a single trajectory which directly feeds the
forecasting model without taking into account contextual information (i.e., vessel
types, geographic area, and other explicit parameters). As this method becomes
suitable for real-time applications, it does not contribute to improving the accuracy
of predictions and it allows for model replicability and scalability to any prediction
model of moving objects’ trajectories.

Aircraft Trajectory Prediction Made Easy with Predictive Analytics [17] This
approach proposes a novel stochastic approach to aircraft trajectory prediction
problem, which exploits aircraft trajectories modelled in space and time by using
a set of spatiotemporal data cubes. Airspace is represented in 4D joint data cubes
consisting of aircraft’s motion parameters (i.e., latitude, longitude, altitude, and
time) enriched by weather conditions. It uses the Viterbi algorithm [18] to compute
the most likely sequence of states derived by a Hidden Markov Model (HMM),
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which has been trained over historical surveillance and weather conditions data. The
algorithm computes the maximal probability of the optimal state sequence, which is
best aligned with the observation sequence of the aircraft trajectory.

2.3 Aviation Datasets

As may have been apparent from state-of-the-art methods, the trajectory prediction
process requires different datasets to compute the prediction that represents the
aircraft motion. Those datasets are basically grouped in the following categories
[19]:

Initial Conditions Data, representing the initial aircraft state for which the
trajectory will be predicted; mainly including location, altitude, speed, and time,
and if possible, aircraft mass.

Surveillance Information, which might not be required in all prediction use cases,
but it is necessary in any data-driven trajectory prediction system, being an essential
component of Aviation datasets. It is highly dependent on local implementations,
but in general a radar track file consists on tabular data rows with a timestamp key
and several rows of geospatial information for each one of these timestamps. The
usual update interval is 5 s (radar rotation time).

Alternatively, ADS-B surveillance data is generic and so independent from local
systems. This data source refers to the ADS-B messages broadcasted by many
airplanes (practically all airliners) using their transponders. These messages are
received by ground-based receivers and can be used to reconstruct the trajectory
of the flight. There are several types of messages that can be found but the relevant
ones are these about aircraft identification and position.

Flight Plan (FP) declaring the intended route, cruise altitude and speed, as well as
estimated times at different waypoints. FPs also contain additional information, not
directly used for predicting a trajectory such as alternative airports or, potentially,
aircraft equipage.

Flight plans contain the information that triggers a lot of operational decision,
both in planning and execution phase, and both on the Air Navigation Service
Provision (ANSP) side, and in the Airline one. The flight plan is the specified
information provided to air traffic services units, relative to an intended flight or
portion of a flight of an aircraft.

Weather Information, describing the atmosphere temperature and pressure, and
the wind field faced by the aircraft along the trajectory. Multiple sources provide
weather data to air traffic systems like satellite, met radar, and the aircraft itself.
Some examples are METAR, NOAA models, SIGMET, or TAF:

METAR (Meteorological Terminal Aviation Routine Weather Report) is a format
for reporting weather information. METARSs typically come from airports or
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permanent weather observation stations. Reports are generated once an hour or
half hour, but if conditions change significantly, a report known as a special
(SPECI) may be issued. Some METARSs are encoded by automated airport weather
stations located at airports, military bases, and other sites. Some locations still
use augmented observations, which are recorded by digital sensors, encoded via
software, and then reviewed by certified weather observers or forecasters prior
to being transmitted. Observations may also be acquired and reported by trained
observers or forecasters who manually observe and encode their observations prior
to transmission. Raw METAR is the most common format in the world for the
transmission of observational weather data. It is highly standardized through the
ICAO, which allows it to be understood throughout most of the world. METAR
information includes runway visual range, dew point, visibility, and surface winds.

NOAA models are used mainly to obtain the weather conditions at the position
an aircraft is at any given time of the flight. Weather models use a Grid with a
specific resolution. Forecast models can be run several times a day. Forecast models
have a time resolution, or “forecast step”, depending on the use case. Data for
weather models is typically distributed in “GRIB” format files. GRIB (GRIdded
Binary or General Regularly distributed Information in Binary form) format allows
to compress a lot the weather data and includes metadata about the content of the
file, so it is very convenient for transferring the data. The data can be extracted with
many available tools.

SIGMET (Significant Meteorological Information) is a weather advisory that
contains meteorological information concerning the safety of all aircraft. This
information is usually broadcast on the Automatic Terminal Information Service
at ATC facilities, as well as over VOLMET (French origin vol (flight) and météo
(weather report)) stations. A new alphabetic designator is given each time a
SIGMET is issued for a new weather phenomenon, from N through Y (excluding
S and T). SIGMETs are issued as needed, and are valid up to 4 h. SIGMETs for
hurricanes and volcanic ash outside the CONUS are valid up to 6 h.

Terminal aerodrome forecast (TAF) is a format for reporting weather forecast
information. TAFs are issued every 6 h for major civil airfields: 0000, 0600, 1200,
1800 UTC, and generally apply to a 24- or 30-h period, and an area within
approximately five statute miles (or SNM in Canada) from the center of an airport
runway complex. TAFS are issued every 3 h for military airfields and some civil
airfields, and cover a period ranging from 3-24 h. TAFs complement and use similar
encoding to METAR reports. They are produced by a human forecaster based
on the ground. For this reason there are considerably fewer TAF locations than
there are airports for which METARs are available. TAFs can be more accurate
than Numerical Weather Forecasts, since they take into account local, small scale,
geographic effects.

Airspace can be divided in a set of ways, with a different number of segregation/-
compartments, called sectors. Each sector is controlled by a single controller, thus
the open sectors’ configuration depends on airspace demand. A sector configuration
is a particular configuration of “open” sectors segregating an airspace. For example,
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the 9A sector configuration denotes that a particular airspace is divided into 9
sectors, in a particular way. 9B also mean 9 sectors, but divided in a different way.
Typically, due to low traffic at nights, the configuration set at those times is a 1A,
meaning that a single sector (thus, a single controller) is in place. This leads to the
fact that configurations available are fixed, but configuration “in place” varies during
day, adapting capacity resources (air traffic controllers, mainly, as more sectors open
mean more capacity, but also more controllers) to the expected demand.

It must be noted that, in the case of data-driven trajectory predictions, different
inputs need to be considered. For instance, information about aircraft performance
is not necessary because the aircraft motion will be predicted by learning from
historical recorded tracks, not by solving a mathematical formulation of the aircraft
motion problem. In addition, data related to the day of operation, airline, airspace
sector configuration, or average delay at departure airport could be of interest to
obtain accurate data-driven predictions.

These datasets represent the usual information used to predict a trajectory driven
by data as summarized in most of the trajectory prediction approaches described.
However, there are gaps that reduce the capability of predicting completely the
evolution of the aircraft state vector with the time. For example, there is no available
information about the aircraft mass. This information is of high commercial
sensitiveness and, therefore, airspace users (i.e., airlines) are often reluctant to share
it to protect their business strategies.

Aeronautical data is heavily regulated, especially in Europe according to
Eurocontrol Standards. For example, flight plan filing information follows ICAO
FPL2012 format, radar information is provided following ASTERIX standard
(Asterix Cat62 for fused data), datalink between airlines dispatcher and aircraft
follows A702-A format, airspace information is mostly provided in AIXM format.
Thus, research results can be applied nationwide in Europe, while the highest
quality data is usually at the local side, with national service providers. Is to be
mentioned that all datasets to be used as input on any investigation need to be linked
amongst them to ensure coherent geographical and temporal alignment, which is
not always due to complexity of different formats, volume, and (lack of) veracity of
data.

Alignment of the different data sources ensures common geographical and
temporal coverage, which is paramount for datasets usage and effective data-driven
learning. The data sources need to be combined usually using an ad-hoc reference
to ensure that they will refer to the same time and space, as well as to enable
links (associations) between them when necessary (for instance, radar tracks with
flight plan for a particular flight). The specific linkage criteria will depend on the
data sources composing the dataset, as well as the datasets features, ensuring a
temporal and spatial common reference. Typically UTC time is the main reference
for temporal alignment, using or correcting the different data sources to fit it.
Regarding spatial alignment, geographic coordinates are usually the best cross
index. Combined indexes using flight callsign, date, time, and aircraft type are
usually used. The particular combination method, however, will depend on the
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specific dataset (and the different data sources it originates from). A significant

challenge is in terms of aligning subjective phenomena (such as those described in

SIGMET, related to sectors), with quantitative measures of NOAA grid, for instance.
Two drawbacks can be found for these datasets:

» Data-driven algorithms typically work better with great number of data points,
but surveillance data is not always available at high resolution. This is for
instance the case for QAR data: The number of data points available per flight
may be insufficient.

* Surveillance data only includes positions of the aircraft, however there are other
variables in a trajectory that may be easier to predict than the coordinates (they
may show more clear patterns) and which can be derived from the position with
some extra information (e.g., heading, bearing, or ground speed).

To overcome these difficulties, an enhanced dataset generated from the original
raw data can be obtained and, then, this can be exploited by the big data analytics and
machine learning algorithms. A technique is proposed in which the raw surveillance
data can be enhanced, adding much more data points and much more variables; all
being compatible with the real flight.

The following paragraphs detail how we can produce enhanced datasets exploit-
ing raw data, so as to include additional information not being originally available.

2.4 Reconstructed Trajectory

A main drawback of data-driven TP based on surveillance datasets is the low
granularity and diversity of available data. Even considering ADS-B or QAR, which
contain broader information than typical latitude-longitude-altitude-time included in
radar tracks, the availability of accurate information about airspeeds, ground speed
is almost ineffective, while there is no availability of the aircraft mass, which is the
key state variable to compute other related kinetic state variables.

However, making use of the aircraft intent (Al) instance inferred from the raw
data, as subsequent paragraphs explain, it is possible to launch an aircraft mass infer-
ence and a trajectory reconstruction process [20, 21] that populates the state vector
with times (increased granularity) and state variables (state vector enrichment) not
included in the original surveillance-based trajectory representation.

2.4.1 Aircraft Intent

The aircraft intent (AI) can be defined as a set of instructions to be executed by the
aircraft in order to realize its intended trajectory. These instructions represent the
basic commands issued by the pilot of the FMS to steer the operation of the aircraft.
The pilot can issue instructions by, for example, directly controlling the stick and
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the throttle, commanding the autopilot and the auto-throttle or programming the
FMS. Instructions can be instantaneous, if they are considered to be issued at a
specific instant in time, or continuing, if they are issued throughout a finite time
interval. For example, consider an instruction requiring the flaps to be deflected a
certain angle. In this case, it can be assumed that the time taken by the pilot to move
the flap deployment lever is very short, so that the instruction can be considered
instantaneous. Consider now a pilot taking control of the stick and commanding
it during a certain interval of time. In this case, the resulting instruction would be
continuing.

The Aircraft Intent Description Language (AIDL) is a formal language designed
to describe Al instances in a rigorous but flexible manner. The AIDL contains an
alphabet and a grammar. The alphabet defines the set of instructions used to close
each of the DoF of the mathematical problem of the aircraft motion. The grammar
contains both lexical and syntactical rules. The former govern the combination
of instructions into words of the language, which are called operations, and the
latter govern the concatenation of words into valid sentences, i.e. sequences of
operations [22].

The AIDL captures the mathematics underlying trajectory computation into
a rigorous, flexible, and simple logical structure that allows both human and
computers to correctly describe meaningful operating strategies without the need to
understand the underlying mathematics. In addition, the flexibility of the language
allows defining aircraft intent with different levels of detail (e.g., aircraft intent
formats employed by different TPs) using a common framework [1, 23].

The relationship between Al instance and (predicted) trajectory is unique; thus,
once an Al instance is well formulated, a unique trajectory can be computed once the
aircraft performance model (APM) corresponding to the actual aircraft is available
and (resp. forecasted) weather conditions are known. Based on this property, it
is possible to derive the Al instance that represents an actual trajectory from the
chronologically ordered sequence of surveillance reports that identifies it.

Figure 2.1 exemplifies a descent trajectory from cruise altitude (FL320) up to
capturing a geodetic altitude of 4500 ft. During this flight segment, the speed is also
reduced from Mach 0.88 to 180kn calibrated airspeed (CAS). The lateral profile is
described by a fly-by procedure around a waypoint of coordinates N370 9 45.72”
W30 24’ 38.01”. The associated Al instance is determined once the 6 threads
(3 motions + 3 configurations) are well defined:

* Configuration Profiles. The flight is executed at clean configuration, meaning
that high lift devices (HL), landing gear (LG), and speed breaks (SB) are held
retracted. This is specified by the instruction Hold HL (HHL), Hold LG (HLG),
and Hold SB (HSB).

* Motion profiles (described for each one of the 3 degrees of freedom, which allow
representation of the trajectory).
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2.1 Relationship between aircraft intent and trajectory

— 1st DoF. The cruise Mach is held up until the CAS reaches 280kn by applying

a Hold Speed (HS) instruction, and then this CAS value is held up to 4500 ft
altitude. From this instant, the altitude is maintained constant (Hold Altitude
(HA) instruction).

— 2nd DoF. Cruise altitude is constant up to the Top of Descent (TOD) when the

descent starts by setting the engine regime (Throttle Law (TL) instruction)
to idle. This setting ends when CAS reaches 180kn. Then, the speed is
maintained constant.

— 3rd DoF. The lateral path is described by the geodesic defined from the initial

location and the established waypoint—indicated with an asterisk—(Track
Lateral Path (TLP) instruction), a circular arc of radius R that determines the
fly-by procedure up to capturing the exiting geodesic defined by a constant
heading (Hold Course (HC) instruction).

Applying inference algorithms and techniques [18], and based on the assumption
that the aircraft motion can be represented as a point-mass model of 3 DoF, it is
possible to compute the Al instance that best describes an actual trajectory. Using
therefore the raw surveillance data, and matching them with the weather forecasts
that represent the atmosphere conditions of the day of operation and with the aircraft
type that actually executed the planned trajectory, we can enhance the available
surveillance dataset by adding this valuable information that cannot be immediately
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derived from the raw data. This additional set of information will enable additional
hybrid data-driven capabilities, in which big data analytics and machine learning
algorithms can be used to predict the most suitable Al instance, and then, compute
it by using a model-based TP to obtain a 4D description of the trajectory. Figure 2.2
shows a schematic representation of the whole process.

Aircraft Performance
Aircraft Performance
Weather data

Neather data
P, ;
Aircraft Intent Inferred from Surveillance ] \: v
. e a g iy mr‘c/raft /’
il = ¢ i /b; ~ 2
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Predicted trajectory is obtained by
computing a predicted Al

Fig. 2.2 Data-driven trajectory prediction based on aircraft intent (AI) instances

It is necessary to note that the Al representation of this kind of data is compliant
to the well-established notion of semantically annotated or enriched trajectories, in
the mobility data management and mining literature. Instead of a sequence of space-
time information (as in a raw trajectory), in an enriched trajectory the motion is
represented as a sequence of semantically meaningful episodes (typically in human

LEINT3

mobility these are stops, e.g. “at home”, “at office”, “for shopping”, and moves,
e.g. “walking”, “driving”, etc., which results in detecting homogeneous fractions
of movement. Extracting and managing semantics from (raw) trajectory data is a
promising channel that leads to significant storage savings. Maintaining semantic
information turns out to be quite useful in terms of context-aware movement
analysis. In fact, semantic aware abstractions of motion enable applications to better
understand and exploit mobility: for instance, concerning human mobility, analysis
methods may identify those locations where some activity (work, leisure, relax,
etc.) takes place, infer how long does it take to get from one place of interest to
another using a specific transportation means, conclude about the frequency of an
individual’s outdoor activities, calculate indices related to environmentally friendly
or sustainable mobility, and so on. Similarly, in our context, aircraft’ routes may be
transformed to sequences of critical points (see Chap. 4 for details) where certain
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events take place (e.g., “take-off”, “climb out”, “descent”, “landing”, or any of the
AIDL instructions mentioned above).
The main advantages of the aircraft intent (AI)-based approach are:

e This formulation based on the notion of enriched (or semantic) trajectory is
suitable to be used with highly sophisticated analytics AI/ML algorithms that
can potentially capture in better ways hidden patterns;

e The complete description of the 4D trajectory is obtained from a mathematical
model that provides the evolution of all possible states with time, contrary to the
case of using only raw data in which every state variable needs to be predicted
separately.

e The aircraft intent decouples the influence of the aircraft type and weather
conditions, providing purely information about how the aircraft is operated along
a time interval. This could help the process of finding command and control
patterns that are common to all aircraft flying within the same airspace volume,
although they fly dissimilar trajectories due to the effect of those decoupled
factors.

2.4.2 The Trajectory Reconstruction Process

As already pointed out, making use of the aircraft intent instance inferred from
the raw data, it is possible to launch a trajectory reconstruction process [20, 21]
that populates the state vector with times (increased granularity) and state variables
(state vector enrichment) not included in the original surveillance-based trajectory
representation.

Figure 2.3 depicts the enriched list of aircraft state variables obtained from the
trajectory reconstruction and enrichment process such as the Mach, CAS, TAS,
VG (ground speed), FC (fuel consumption), wind components (Wx, Wy), or OAT
(outside air temperature), not usually available in the input datasets used by the
algorithms proposed in the literature.

The reconstruction process requires an aircraft performance model and also a
model of the actual weather conditions faced by the aircraft along a real trajectory.
Thanks to such a process, the heading (true with respect to the geographic North),
speed (e.g., Mach number) and altitude (geopotential pressure altitude) profiles that
univocally define each trajectory can be obtained for any of the recorded tracks.
These heading, speed, and altitude profiles will be used as input to the big data
analytics algorithms that will generate a prediction of the evolution of these three
state variables with the same granularity as that selected for reconstructing the
original training dataset. The remaining variables will be computed by building an
Al instance upon those three predicted variables. According to the AIDL rules, it is
possible to describe a trajectory by setting three non-dependent motion constraints.
Thus, the evolution of those three state variables along the trajectory determines
univocally the trajectory to be predicted, and, therefore, AIDL-based TP can be
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Fig. 2.3 Trajectory reconstruction and enrichment process

used to solve the aircraft motion problem and generate the related prediction. This

approach can be seen as a hybrid solution that requires—given the Al instance

built—the computation of the complete state vector that defines a 4D trajectory.
The main advantage of this method is twofold:

» The usage of extended and enriched datasets leads to better trained algorithms,
and should turn into better trajectory predictions;

* The hybrid approach reduces significantly the training effort because only three
independent state variables are to be predicted out of the complete aircraft state
vector.

2.5 Aviation Operational Scenarios: Big Data Challenges
and Requirements

The current air traffic management (ATM) is nowadays changing its point of view
from a time-based operations concept to a trajectory-based operations (TBO) one,
which means a better exchange, maintenance, and use of the aircraft trajectories
for a collaborative decision-making environment, involving all the stakeholders in
the process. In addition to that, real-time tracking and forecasting of trajectories, and
early recognition of events related to aircraft are essential for operations. Essentially,
the trajectory becomes the cornerstone upon which all the ATM capabilities will
rely on. The trajectory life cycle describes the different stages from the trajectory
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planning, negotiation, and agreement, to the trajectory execution, amendment,
and modification. This life cycle requires collaborative planning processes, before
operations. The envisioned advanced decision support tools required for enabling
future ATM capabilities will exploit trajectory information to provide optimized
services to all ATM stakeholders.

To address these challenges the knowledge of more accurate and more pre-
dictable trajectories is needed. Thus, the more accurate and rich information on
trajectories and related events we have, and as we increase our abilities to predict
trajectories and forecast events regarding moving entities’ behaviour, the more
we will advance situational awareness, and consequently the decision-making
processes.

Once the decision-making process has been improved, there are direct conse-
quences in safety, efficiency, and economy in the ATM domain. For instance, by
having a better understanding of the air navigation data (historical data of flight
plans, sector configurations, and weather), the number of published regulations
could be more accurately forecasted to improve the adherence to scheduled
trajectories, with less delays and operational costs.

Due to the complexity of the ATM system, the current techniques for predicting
trajectories are limited to a short-term horizon, while the event detection and
forecasting abilities are limited. This is also due to the lack of methodologies
to exploit the big amount of data from heterogeneous data sources with lack of
veracity for (actual, historical, and planned) trajectories and other contextual aspects
(e.g., airspace sector configurations, regulations and policies, weather patterns, for
instance).

Efficiency in the air traffic management system requires minimizing costs for
both the airspace users (mainly airlines) and the operators (ANSPs). In general,
one key enabler for reducing costs is the predictability of the system. In particular,
from the point of view of the ANSP, maintaining the balance between the demand
(number of users trying to use limited resources like airports, airspace sectors...)
and the capacity (number of users which can safely use the mentioned resources)
is one of the main challenges. For the airline, flying according to the plan,
avoiding delays or extra fuel consumption represents the ideal way to achieve daily
operations, which however cannot be met.

The role of the trajectory in this efficiency enhancement endeavour is obvious: it
defines which resources of the air traffic management system will be used by each
flight (airports, airways, sectors. .. ), and it defines the achievable schedules, as well
as the implied costs.

Big data technology presents opportunities to increase predictability capacities
which are based mainly on complex theoretical models of the different components
of the air traffic management system. Exploitation of very large historical and
streaming data sources for positioning, contextual aspects, and weather is now
possible, thanks to state of the art in data management.

Surveillance is an ever-increasing data source since new technologies are
deployed (like ADS-B) which allow to collect data more widely (space-based
ADSB-B promises global coverage) and more frequently. Weather data, identically,



2 The Perspective on Mobility Data from the Aviation Domain 51

each time is offered with more resolution both geographical and temporal. Contex-
tual data like flight plans, waypoints, or airways is increasing, linked to the traffic
growth, year after year. While each dataset is big, correlating and jointly exploiting
all of them together is what makes big data technology necessary.

The aircraft trajectory must be understood not only as the 4D collection of
points but also, including events relevant for the traffic management and the airline
operations. So, predicting the aircraft trajectory implies predicting these events too,
and vice versa. The amount of information involved in this trajectory prediction
process requires advanced visual analytics aids in order to understand the patterns
of the predicted trajectories and events, inspect the exact reasons for deviating from
plans towards either making adjustments to the actual system, or tune trajectory and
event detection and prediction methods for more accurate results.

Accurate predictions of trajectories will further advance adherence to flight plans
(intended trajectories) reducing many factors of uncertainty, allowing stakeholders
to do better planning of the operations, reducing risk of disruptions.

In this context, the Demand and Capacity Balancing (DCB) operational problem
has been addressed, as it is a cornerstone of ATM operations: how to be able to
accommodate the existing traffic demand with the available airspace capacity. The
DCB problem considers two important types of objects in the ATM system: aircraft
trajectories and airspace sectors. Sectors, as already explained, are air volumes
segregating the airspace, each defined as a group of airblocks. These are specified
by a geometry (the perimeter of their projection on earth) and their lowest and
highest altitudes. Airspace sectors configuration (one is active at any time) changes
frequently during the day, given different operational conditions and needs. This
happens transparently for flights.

The capacity of sectors is of utmost importance: this quantity determines the
maximum number of flights flying within a sector during any time period of specific
duration (e.g., in any 20 min period). The demand for each sector is the quantity that
specifies the number of flights that co-occur during any time period within a sector.
The duration of these periods is equal to the duration of periods used for defining
capacity. Demand must not exceed sector capacity for any time interval.

There are different types of measures to monitor the demand evolution, with the
most common ones being Entry Count and Occupancy Count. In this work Entry
Count it is considered, as this is the one normally used by network managers at real
world operations.

The Entry Count (EC) for a given sector is defined as the number of flights
entering in the sector during a time period, referred to as an Entry Counting Period.
This Entry Counting Period is defined given a “picture” of the entry traffic, taken
at every time “step” value along a period of fixed duration: The Step value defines
the time difference between two consecutive Entry Counting Periods. The Duration
value defines the time difference between the start and end times of an Entry
Counting Period. For example, for a 20-min step value and a 60-min duration value,
entry counts correspond to pictures taken every 20 min, over a total duration of
60 min.
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2.5.1 Regulations Detection and Prediction

The objective of this operational case is to demonstrate how regulations detection
and prediction capability is useful for reproducing Flow Management behaviour.
This behaviour is mainly represented by the applied regulations that the system must
learn to reproduce and to anticipate in specific problematic situations, as it would
happen in a realistic scenario.

Regulation is a measure that a flow manager takes to solve a specific situation,
in a punctual moment in a certain sector and it is applied over those flights that
have not yet took off. Thus, regulations are consequence of specific situations as
those in which there is an excess of demand vs capacity in sectors, or those caused
by different weather conditions, among others. In this case we are interested on
regulations that impose effective delays to flights still on ground, given that these
flights are planned to cross a volume of airspace where demand will exceed capacity.

The main consequence of a regulation is the reschedule of an ETOT (Estimated
take off time) by a CTOT (Calculated take off time), that is a new time to take off
after the scheduled one, causing a delay. ETOTs that are replaced by the CTOTs
concern only those flights that were going to fly in the affected sector (i.e., a sector
with an imbalance between demand and capacity), during a punctual moment.

Hence, there are three objectives:

1. Investigate the available historical data in order to identify patterns in the
emergence of the regulations. The patterns thus identified should suggest possible
approaches to regulation prediction.

2. Develop a method or methods for regulation prediction based on the patterns
identified.

3. Verify the method(s) by comparing predictions based on available historical data
(without regulation data) with the real regulations.

It is not known at the beginning what kinds of patterns can exist. It is therefore
necessary to analyse data from various perspectives using interactive visual displays
as well as various filters and data transformations. The possible types of patterns are:

Temporal Patterns, such as regularities with respect to the daily and weekly time
cycles.

Spatial Patterns, determining how regulations emerging in a certain area affect
flights associated with certain origin and/or destination.

Spatiotemporal Patterns, identifying different temporal patterns of regulations in
different areas.

Dependencies Among Regulations, identifying kinds of regulations with certain
properties that lead (after some time) to other regulations.

Once regulations and their cause (e.g.: weather, ATC capacity, accident/incident,
etc.) are known, flight plans have to be checked on how these regulations affect
them.
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2.5.2 Demand and Capacity Imbalance Detection
and Prediction

The objective of this operational case is to demonstrate the detection/prediction of
demand and capacity imbalances by means of indicators monitoring.

Those indicators are based on real demand (Hourly Entry Count) and declared
capacity (maximum number of flights allowed to enter in a sector during 1 h) of the
current configuration of airspace. These indicators are calculated using the initial
flight plans (deregulated traffic) instead of the real (finally flown) flight plans. The
main reason for using the initial flight plans relays on the fact that if a flight has been
regulated with delay, then the detected excess of demand may have been resolved.

Although in theory an imbalance could be produced by an excess of capacity
compared with the demand, it should be an unusual situation that is out of scope.

The final objective is to reconstruct the system’s behaviour in handling and
resolving demand capacity imbalances. This will allow us, in particular, to inves-
tigate propagation of the consequences of the regulations, as delaying some flights
in a given entry time period may lead to increasing the demand in a next entry
time period, in the same or another sector. It may also be useful to investigate the
consequences of regulations on various entry time period lengths: E.g., what would
happen if the currently adopted time period length of 1h is replaced by a 30-min
period. Furthermore, it may be also reasonable to compare the use of fixed time
periods with the use of a sliding time period. In the latter approach, the demand is
calculated not from the beginning of an hour but from the time when each flight
enters a sector.

2.5.3 Trajectory Prediction: Preflight

This operational case of study objective is to demonstrate how predictive analytics
capability can help in trajectory forecasting. For a given flight plan, a forecasted
trajectory will be obtained and compared with the real one finally flown (as recorded
in the historical dataset).

The prototype will be used to select the flight plans desired for the evaluation.
These need to be “searchable” by callsign, aircraft model, airline, origin and
destination airports, estimated time of departure (ETD), estimated time of arrival
(ETA), equipage, cruise level, cruise speed. Thus, one may select a number of flight
plans (typically all) and request a predicted trajectory for each of them. As we
need to cover large fleets for large geographical regions, scalability issues emerge.
Therefore, the trajectory prediction abilities should be able to scale effectively.
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2.5.4 Trajectory Prediction: Real Time

The objective of this operational case is to analyse how predictive analytics
capability can help in trajectory forecasting in real time. For a given flight plan and
the current surveillance data arriving to the platform, a forecasted trajectory will be
obtained and updated continuously. This real-time need will be paramount in the
new TBO setting, in particular in a highly automated scenario where decisions will
be taken with the support of machine learning systems which will need to rely on
accurate, and very updated, trajectory forecasts.

2.6 Conclusions

The vision of the future ATM system evolving towards higher levels of automation,
as a key driver to enhanced ATM performance, is expressed in successive releases
of the European ATM Master Plan. This emerges both, as a mid-term need (with
EUROCONTROL as Network Manager forecasting increases in traffic of +50% in
2035 compared to 2017, meaning 16 million flights across Europe) and as a long-
term need (2035+).

The effects of collapsed sectors can be observed, for instance, in the yearly
Performance Review Report (PRR), addressed by EUROCONTROL Performance
Review Commission, which allocates a high share of the overall Air Traffic Flow
Management (ATFM) delays to this reason (over 90% in some airspaces). It was
significantly bad in 2018 when AFTM delays across Europe more than doubled, due
to the increase in traffic among other factors, a trend expected to keep. In general,
all performance analysis and studies lead to the idea that the ATM system is very
close to, or already at, a saturation level.

Effective automation that will enable an increase in capacity is considered
one of the pillars of future ATM, but this means facing some difficulties and
challenges. This has been evident in recent times with some potentially optimistic
implementation of automation features, which allegedly may have impacted the
situational awareness and reaction capabilities of the operators.

Complementarily, new opportunities have arisen for the enhancement of the
ATM approach to automation, in particular with the widespread introduction of
artificial intelligence/machine learning (AI/ML) techniques in society in general.
These techniques bring to the ATM research domain new opportunities, in particular
as key enabler to reach the necessary higher levels of automation.

On the other hand, predictability is considered as the main driver to enhance
operational performance key performance areas (KPAs), such as capacity, efficiency,
and even safety. Trajectory prediction, in particular within the TBO concept of
operations, is the paramount enabler for this new stage of ATM operations. This
chapter addresses the state of the art, as well as the main operational scenarios where
these capabilities bring significant benefits.
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