
Chapter 10
Offline Trajectory Analytics

Panagiotis Tampakis, Stylianos Sideridis, Panagiotis Nikitopoulos,
Nikos Pelekis, Christos Doulkeridis, and Yannis Theodoridis

Abstract In recent years, there has been observed an “explosion” of trajectory
data production due to the proliferation of GPS-enabled devices, such as mobile
phones and tablets. This massive-scale data generation has posed new challenges
in the data management community in terms of storing, querying, analyzing, and
extracting knowledge out of such data. Knowledge discovery out of mobility data
is essentially the goal of every mobility data analytics task. Especially in the
maritime and aviation domains, this relates to challenging use-case scenarios, such
as discovering valuable behavioral patterns of moving objects, identifying different
types of activities in a region of interest, environmental fingerprint, etc. In order
to be able to support such scenarios, an analyst should be able to apply, at massive
scale, several knowledge discovery techniques, such as trajectory clustering, hotspot
analysis, and frequent route/network discovery methods.

10.1 Introduction

Location aware devices such as mobile phones, tablets, and automobiles carry
numerous networked sensors, which create huge amounts of data that represent
some kind of mobility. In addition, the massive participation of individuals on
location-based social networks will continue to fuel exponential growth in the
production of this kind of data. This enormous volume of data has posed new
challenges in the world of mobility data management in terms of storing, querying,
analyzing, and extracting knowledge out of them in an efficient way.

P. Tampakis · S. Sideridis · P. Nikitopoulos · N. Pelekis (�) · C. Doulkeridis · Y. Theodoridis
University of Piraeus, Piraeus, Greece
e-mail: ptampak@unipi.gr; ssider@unipi.gr; nikp@unipi.gr; npelekis@unipi.gr;
cdoulk@unipi.gr; ytheod@unipi.gr

© Springer Nature Switzerland AG 2020
G. A. Vouros et al. (eds.), Big Data Analytics for Time-Critical Mobility
Forecasting, https://doi.org/10.1007/978-3-030-45164-6_10

275

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45164-6_10&domain=pdf
mailto:ptampak@unipi.gr
mailto:ssider@unipi.gr
mailto:nikp@unipi.gr
mailto:npelekis@unipi.gr
mailto:cdoulk@unipi.gr
mailto:ytheod@unipi.gr
https://doi.org/10.1007/978-3-030-45164-6_10

276 P. Tampakis et al.

10.1.1 About Mobility Data Analytics

Concerning the analysis of mobility data, mobility data analytics aim to describe the
mobility of objects, to extract valuable knowledge by revealing motion behaviors or
patterns, to predict future mobility behaviors or trends, and in general, to generate
various perspectives out of data, useful for many other scientific fields. To serve
its purpose, mobility data analytics follows a series of steps. Having assured the
collection and efficient storage of mobility data, the next step for an analyst is
to familiarize with the mobility data by employing a number of techniques (e.g.,
statistics, data visualization, and visual analytics) to form a compact and complete
picture of the available mobility data. Afterwards, the analyst, depending on the
application requirements, proceeds to the appropriate preprocessing steps. The goal
is to bring mobility data in a form that serves its later usage by various processes
and algorithms that respond to given questions. Data preparation is essential for
successful mobility data analytics, since low-quality data typically result in incorrect
and unreliable conclusions, as mentioned in chapters in Part I. Finally, mobility
data are ready for the application of knowledge extraction methods that will satisfy
the given application requirements. There are already several analytical methods
and algorithms available from the scientific community and an analyst has the
capability either to employ some of the existing techniques or implement some ad
hoc solutions that better serve the problems’ needs.

The overall objective is to develop advanced, beyond current state-of-the-art data
analytics methods and tools over the repository of trajectories of moving objects.
The challenge to be addressed here is that information is not purely spatiotemporal;
it is contextually enhanced by exploiting integrated data. The big data solutions
proposed in this chapter focus onto the problems of cluster analysis and motion
pattern detection, hotspot analysis, and semantic-aware mobility network discovery.

In more detail, we designed and implemented a scalable distributed trajectory
join method, which utilizes the popular MapReduce distributed programming
model. This approach plays a key role as it is the building block upon which
our clustering analytics methods are based, as it tackles the scalability bottleneck
problem present in mobility data. In addition, we devised and implemented a
novel, scalable distributed (sub)trajectory clustering method, which utilizes the
aforementioned distributed trajectory join method in order to cluster massive-scale
datasets of trajectories. The goal of this approach, that is the upshot of our clustering
methods, is to provide a hybrid solution for the whole-trajectory as well as for the
subtrajectory clustering problems in an efficient and scalable way. Furthermore, we
designed and implemented a scalable distributed trajectory-based hotspot analysis
method. In this line of research, we followed a different clustering approach that
provides statistical guarantees for the identified clusters. More interestingly, with
this approach we solve a different clustering problem that is also inherent in
the maritime and aviation domains. Specifically, as a proof of concept, with this
approach, we were able to discover hotspots that in the maritime domain can
be used to measure the fishing pressure at sea, while in the aviation domain it

10 Offline Trajectory Analytics 277

identifies air-blocks that present demand-capacity problems. Finally, we designed
and implemented a method that discovers mobility networks, which consist of
synthetic, pattern-based, compact representations of data. This method employs a
semantic-aware methodology, applicable for big contextually enhanced trajectory
data (actually the synopses generated the respective component), which results
in a network representation of mobility data (actually, spatial graphs enhanced
with thematic annotations) that can be utilized to support prediction/forecasting
problems.

The rest of the chapter is organized as follows: Section 10.2 familiarizes the
reader with some background knowledge. In more detail, Sect. 10.2.1 presents
sufficient background knowledge about (sub)trajectory clustering, Sect. 10.2.2 about
hotspot analysis, and Sect. 10.2.3 about enriched mobility networks. Subsequently,
in Sect. 10.3 we present two big data solutions to the problem of (sub)trajectory
clustering and more specifically Sect. 10.3.1.1 employs off-the-shelf clustering algo-
rithms provided by Spark MLib in order to identify clusters of entire trajectories,
while Sect. 10.3.2 presents a highly scalable solution to the problem of Distributed
Subtrajectory Clustering. Moreover, Sect. 10.4 introduces the reader with a big
data solution to the problem Distributed Hotspot Analysis and Sect. 10.5 with the
discovery of Semantic-aware Mobility Networks in a distributed way. Section 10.6
presents the related state-of-the-art approaches to the problems identified in this
chapter, and finally, Sect. 10.7 concludes the chapter.

10.2 Background

10.2.1 (Sub)trajectory Clustering

Given a set D of moving object trajectories, a trajectory r ∈ D is a sequence of
timestamped locations {r1, . . . , rN }. Each ri = (loci, ti) represents the i-th sampled
point, i ∈ 1, . . . , N of trajectory r , where N denotes the length of r (i.e., the number
of points it consists of). Moreover, loci denotes the spatial location (2D or 3D) and
ti the time coordinate of point ri , respectively.

A subtrajectory ri,j is a subsequence {ri, . . . , rj } of r which represents the
movement of the object between ti and tj , where i < j and i, j ∈ 1, . . . , N .
Let ds(ri, sj) denote the spatial distance between two points ri ∈ r , sj ∈ s.
In our case we adopted the Euclidean distance; however, other distance functions
might be applied. Also, let dt (ri, sj) denote the temporal distance, defined as
|ri .t − sj .t |. Furthermore, let �tr symbolize the duration of trajectory r (similarly
for subtrajectories).

278 P. Tampakis et al.

10.2.2 Hotspot Analysis

In geospatial analysis, a hotspot is a geographic area that contains unusually high
concentration of activities (e.g., moving objects). The difference between a hotspot
and a cluster is that the former aims to discover areas that are statistically significant,
whereas the latter focuses on grouping similar objects.

Statistical significance determines whether the relationship between two or more
variables is caused by chance. For example, the number of vehicles moving in a
specific geospatial area is statistically significant, if it can be proved that it is not the
result of chance. In statistical hypothesis testing, the statistical significance can be
determined by testing the null hypothesis. To this end, a p-value (probability value)
needs to be calculated which represents the probability that the relationship between
two or more variables rejects the null hypothesis. In geospatial analysis a p-value
can be determined by calculating a z-score value for a given geospatial area. Such
z-scores can be calculated by using several geospatial statistics defined in literature,
namely the Getis–Ord statistic [23] or the Moran’s I [18].

Motivated by the need for big data analytics over trajectories of moving objects,
we focus on discovering trajectory hotspots in the maritime domain, as this relates
to various challenging use-case scenarios [5], as, for instance, detecting fishing
pressure, as discussed in Part I of this book. Trajectory hotspot analysis is related
to geospatial hotspot analysis, since both discover hotspots on geographical areas.
However, the former analysis has two main differences: (a) it considers an additional
variable, namely the temporal dimension in the z-score calculation, and (b) it
discovers hotspots based on trajectories of objects rather than individual traced
object locations. In the following we formally define the problem of trajectory
hotspot analysis.

10.2.3 Data-Enriched Mobility Networks

In both the maritime and the aviation domain, we notice a plethora of moving
objects. At the same time with the advances in tracking technology there is an
abundance of information, not always valuable, concerning the movement of such
objects. This has enabled a wide spectrum of novel applications and services.
Among them is the process of using the traces of moving entities to produce maps
of transportation networks.

This quantity of information leads to the need of discovering new efficient and
effective ways to infer the underlying transportation network driven by the data of
moving objects itself. Although both ships and aircraft should follow predefined
movement plans, there exist many cases where, for various reasons (weather,
protected areas, congestion, etc.), objects do not follow these routes plans. Such
deviations are crucial to be instantly identified so that preventative measures can
be taken to avoid the occurrence of safety-compromising events, such as natural
disasters or accidents.

10 Offline Trajectory Analytics 279

10.3 Distributed Trajectory Clustering

As mentioned in Sect. 10.1, one of the challenges when trying to extract knowledge
out of mobility data is cluster analysis, which aims at identifying clusters of moving
objects, as well as detecting moving objects that demonstrate abnormal behavior and
can be considered as outliers. By discovering these clusters, the underlying hidden
patterns of collective behavior can be revealed.

10.3.1 Distributed Whole-Trajectory Clustering

The research so far has focused mainly on dealing with the trajectory clustering
problem in a centralized way. However, the problem that we are trying to deal with in
this section is that of whole-trajectory clustering in a distributed way. The intuition
here is to use the off-the-shelf clustering algorithms provided by Spark MLlib, such
as k-means, Gaussian mixture model, power iteration clustering, and bisecting k-
means, in order to identify clusters of entire trajectories. To achieve this, we need to
transform each trajectory into a vector that will be given as input to the respective
clustering algorithm of Spark MLlib.

10.3.1.1 Clustering Trajectories in a Distributed Way with Spark MLlib

The solution to the distributed whole-trajectory clustering problem proposed here
is pretty simple, since it utilizes off-the-shelf algorithms of Spark MLlib. In order
to achieve this, we just need to transform each trajectory into a N -dimensional
vector, where N is the number of samples that constitute a trajectory. Subsequently,
these vectors will be given as input to the respective clustering algorithm of Spark
MLlib. The actual challenge here is how to transform a dataset of trajectories into
vectors, which will be the input for a series of clustering algorithms included in
Spark MLlib. In order to vectorize each trajectory, some kind of resampling needs
to be performed, due to the fact that different trajectories might have different
number of samples. Selecting the resampling method is a crucial decision because
it determines what kind of clustering (spatial-only or spatiotemporal) we will
end up in performing. This applies because, implicitly, the position j inside a
vectorized trajectory determines the time of the observation of vj . In this analysis,
two alternative resampling methods are adopted: the interpolation method and the
normalized interpolation method.

More specifically, a trajectory vector v is a vector (2D or 3D) representing a
trajectory. The size of the vector for each trajectory T ∈ D has a fixed length s

which is defined a priori. Each element vj of v, where j ∈ 1, . . . , s, represents the
spatial location (2D or 3D) of the respective trajectory. The interpolation method,
as depicted in Algorithm 10.1, takes as input a set of trajectories D and the vector
length s and outputs a set D′ of vectorized trajectories. In more detail, for each
trajectory T (line 3) it creates a vector of size s (line 4) by selecting s timestamps
stj , with j ∈ 1, . . . , s, of duration (T N.t − T 1.t)/s, where (T N.t − T 1.t) is the

280 P. Tampakis et al.

duration of trajectory T , starting from st1 = T 1.t and ending at sts = T N.t . For
each stj , the algorithm finds the corresponding position of T by performing cubic
interpolation and stores this position in vj (lines 5–6). Finally, v is added to D′ (line
6) and when all trajectories of D get vectorized, D′ is returned (line 9).

Algorithm 10.1 Vectorization by interpolation
1: Input: D, s

2: Output: D′
3: for each T ∈ D do
4: create v;
5: for j = 1 . . . s do
6: stj = T 1.t + (j − 1)(T N.t − T 1.t)/s;
7: vj ← cubic_interpolation(T , stj);
8: v → D′;
9: return D′;

Now, let us consider two trajectories q and r and their vectorized versions v(q)

and v(r), respectively, with qN .t − q1.t �= rN .t − r1.t . This means that for any
given j ∈ 1, . . . , s, v(q)j will depict the position of trajectory q at a different
timestamp than the position depicted for trajectory r by v(r)j . However, in order
for the algorithms that will be employed to perform spatiotemporal clustering, for
any given pair of trajectories q and r and for any given j ∈ 1, . . . , s, it must hold that
v(q)j and v(r)j represent the position of trajectory q and r at the same timestamp.
For this reason, the vectorization by interpolation is used to perform spatial-only
clustering. However, if the goal is to perform spatiotemporal trajectory clustering
the interpolation vectorization method has the aforementioned shortcoming and in
order to overcome this, another vectorization method needs to be employed. For this
reason, we propose the normalized interpolation vectorization method which takes
as input a set of trajectories D, the vector length s, and the time of the temporally
first and last observed sample D.ti and D.te, respectively, of D and output a set D′
of vectorized trajectories.

In more detail, as depicted in Algorithm 10.2, we first create the universal
resampling vector rsv (line 3) by selecting s timestamps stj , with j ∈ 1, . . . , s, of
duration (D.te − D.ti)/s, where (D.te − D.ti) is the duration of the dataset, starting
from st1 = D.ti and ending at sts = D.te (lines 4–6). The utility of rsv is to help
resample each T ∈ D in such a way so that for any given pair of trajectories q and r

and for any given j ∈ 1, . . . , s, it holds that v(q)j and v(r)j represent the position
of trajectory q and r at the same timestamp. Subsequently, for each trajectory T we
create a vector v of size s (lines 7–8). Then, for each sample j , we examine whether
the corresponding time in rsvj is contained by the lifespan of T (lines 9–10). If
it is contained, then we find the corresponding position of T by performing cubic
interpolation and we store this position in vj (line 11). If rsvj is not contained by
the lifespan of T and rsvj is less or equal to the first timestamp of the trajectory
T1.t , then the first recorded position of T is stored in vj (lines 13). Otherwise, if
rsvj is not contained by the lifespan of T and rsvj is greater or equal to the last

10 Offline Trajectory Analytics 281

Algorithm 10.2 Vectorization by normalized interpolation
1: Input: D, s, D.ti and D.te
2: Output: D′
3: create rsv;
4: for j = 1 . . . s do
5: stj = D.ti+(j − 1)(D.te − D.ti)/s;
6: rsvj ← stj ;
7: for each T ∈ D do
8: create v;
9: for j = 1 . . . s do

10: if rsvj ∈(T1.t, TN .t) then
11: vj ← cubic_interpolation(T , rsvj);
12: else if rsvj ≤ T1.t then
13: vj ← T1.p

14: else
15: vj ← TN .p

16: v → D′;
17: return D′;

timestamp of the trajectory TN .t , then the last recorded position of T is stored in
vj (line 15). Finally, v is added to D′ (line 16) and when all trajectories of D get
vectorized, D′ is returned (line 17).

10.3.2 Distributed Subtrajectory Clustering

However, identifying clusters of complete trajectories can result in disregarding
significant patterns that might exist only for some portions of their lifespan. The
following motivating example shows the merits of subtrajectory clustering.

Example 10.1 (Subtrajectory Clustering) Figure 10.1a illustrates six trajectories
moving in the xy-plane, where each one of them has a different origin–destination
pair. More specifically, these pairs are A → B, A → C, A → D, B → A, B → C,
and B → D. These six trajectories have the same starting time and similar speed. A
typical trajectory clustering technique would fail to identify any clusters. However,
the goal of a subtrajectory clustering method is to identify 4 clusters (A → O (red),
B → O (blue), O → C (purple), O → D (orange)) and 2 outliers (O → A and
O → B (black)), as depicted in Fig. 10.1b.

The problem of subtrajectory clustering is shown to be NP-Hard (cf. [1]).
In addition, the objects to be clustered are not known beforehand (as in entire-
trajectory—from now on—clustering algorithms), but have to be identified through
a trajectory segmentation procedure. Efforts that try to deal with this problem in a
centralized way do exist [1, 15, 28]; however, applying these centralized algorithms
over massive data in a scalable way is far from straightforward. This calls for parallel
and distributed algorithms that address the scalability requirements.

282 P. Tampakis et al.

A

B

C

D

O

(a)

A

B

C

D

O

(b)

Fig. 10.1 (a) Six trajectories moving in the xy-plane and (b) 4 clusters (red, blue, orange, and
purple) and 2 outliers (black)

Algorithm 10.3 DSC(D)
1: Input: D

2: Output: set C of clusters, set O of outliers
3: Preprocessing: Repartition D;
4: for each partition Di ∈ ∪P

i=1Di do
5: perform Point-level Join;
6: group by Trajectory;
7: for each Trajectory r ∈ D do
8: perform Subtrajectory Join
9: perform Trajectory Segmentation;

10: group by Di ;
11: for each subtrajectory r ′ ∈ Di do
12: calculate Sim(r ′, s′) ∀s′ ∈ Di ;
13: perform Clustering;
14: perform Refine Results;
15: return C and O;

10.3.2.1 Definitions

Subtrajectory clustering relies on the use of a similarity function between subtrajec-
tories. Although various similarity measures have been defined in the literature, our
choice of similarity function is motivated by the following (desired) requirements:
variable sampling rate and lack of alignment, variable trajectory length,
temporal displacement, symmetry, and efficiency.

In order to meet with the aforementioned specifications we utilize the longest
common subsequence (LCSS) for trajectories, as defined in [36].

Sim(r, s) = LCSSεt ,εsp (r, s)

min(|r|, |s|) (10.1)

10 Offline Trajectory Analytics 283

where |r| (|s|) is the length of r (s, respectively). Moreover, it holds that Sim(r, s)
= Sim(s, r).

However, LCSS considers as equally similar all the points that exist within an
εsp spatial range from r , which is a fact that might compromise the quality of the
clustering results. Ideally, given two matching points ri ∈ r and sj ∈ s, sj (ri ,
respectively) should contribute to LCSSεt ,εsp (r, s), proportionally to the distance
ds(ri, sj). For this reason, we propose a “weighted” LCSS similarity between
trajectories, that incorporates the aforementioned distance proportionality. In more
detail:

Sim(r, s) =
�

min(|r|,|s|)
k=1

(
1 − ds (rk,sk)

εsp

)

min(|r|, |s|) (10.2)

where (rk, sk) is a pair of matched points.
Our approach to subtrajectory clustering splits the problem into three steps. The

first step is to retrieve for each trajectory r ∈ D all the moving objects, with their
respective portion of movement, that moved close enough in space and time with
r , for at least some time duration. This is a well-defined problem in the literature
of mobility data management, known as subtrajectory join (the case of self-join).
The subtrajectory join will return for each pair of (sub)trajectories, all the common
subsequences that have at least some time duration, which are actually candidates
for the longest common subsequence. Formally:

Problem 10.1 (Subtrajectory Join) Given a temporal tolerance εt , a spatial
threshold εsp, and a time duration δt , retrieve all pairs of subtrajectories (r ′, s′)
∈ D such that: (a) for each pair �tr ′ ,�ts′ ≥ δt , (b) ∀ri ∈ r ′ there exists at least one
sj ∈ s′ so that ds(ri, sj) ≤ εsp and dt (ri, sj) ≤ εt , and (c) ∀sj ∈ s′ there exist at
least one ri ∈ r ′ so that ds(sj , ri) ≤ εsp and dt (sj , ri) ≤ εt .

The second step takes as input the result of the first step and aims at segmenting
each r ∈ D into a set of subtrajectories. In our case, the way that a trajectory
is segmented into subtrajectories is neighborhood-aware, meaning that a trajectory
will be segmented every time its neighborhood changes significantly.

Problem 10.2 (Trajectory Segmentation) Given a trajectory r , discover the set
of timestamps CP (cutting points), where the neighborhood (the density or the
composition) of r changes significantly. Then according to CP , r is partitioned
to a set of subtrajectories {r ′

1, . . . , r
′
M }, where M = |CP | + 1 is the number of

subtrajectories for a given trajectory r , such that r = ∪M
k=1r

′
k and k ∈ [1,M].

Given the output of Problem 10.1, applying a trajectory segmentation algorithm
for the trajectories D will result in a new set of subtrajectories D′. The third
step takes as input D′ and the goal is to create clusters (whose cardinality is
unknown) of similar subtrajectories and at the same time identify subtrajectories
that are significantly dissimilar from the others (outliers). More specifically, let
C = {C1, . . . , CK } denote the clustering, where K is the number of clusters, and for

284 P. Tampakis et al.

every pair of clusters Ci and Cj , with i, j ∈ [1,K], it holds that Ci ∩Cj = Ø. Now,
let us assume that each cluster Ci ∈ C is represented by one subtrajectory Ri ∈ Ci ,
called Representative. Furthermore, let R denote the set of all representatives.
Actually, the problem of clustering is to discover clusters of objects such that the
intra-cluster similarity is maximized and the inter-cluster similarity is minimized.
Therefore, if we ensure that the similarity between the representatives is zero,
then the problem of subtrajectory clustering can be formulated as an optimization
problem as follows.

Problem 10.3 (Subtrajectory Clustering and Outlier Detection) Given a set of
subtrajectories D′, partition D′ into a set of clusters C, and a set of outliers O, where
D′ = C ∪ O, in such a way so that the sum of similarity between cluster members
and cluster representatives (SSCR) is maximized:

SSCR = �∀Ri∈R�∀r ′
j ∈Ci

Sim(Ri, r
′
j) (10.3)

However, trying to solve Problem 10.3 by maximizing Eq. (10.3) is not trivial,
since the problem to segment trajectories to subtrajectories, select the set of rep-
resentatives R and its cardinality |R| that maximizes Eq. (10.3), has combinatorial
complexity.

Here, we address the challenging problem of subtrajectory clustering in a
distributed setting, where the dataset D is distributed across different nodes, and
centralized processing is prohibitively expensive.

Problem 10.4 (Distributed Subtrajectory Clustering) Given a distributed set of
trajectories, D = ∪P

i=1Di , where P is the number of partitions of D, perform the
subtrajectory clustering task in a parallel manner.

Actually, Problem 10.4 can be broken down to solving Problems 10.1–10.3 (in
that order) in a parallel/distributed way. In what follows, we adopt this approach and
outline a solution that is based on MapReduce.

The overall subtrajectory clustering algorithms are presented in Algorithm 10.3.
Each of the major steps in this algorithm is presented in subsequent paragraphs.
Initially, we Repartition the data into P equi-sized, temporally sorted temporal
partitions (files), which are going to be used as input to the distributed subtrajectory
join algorithm (line 3). Note that this is actually a preprocessing step that only
needs to take place once for each dataset D. However, it is essential as it enables
load balancing by addressing the issue of temporal skewness in the input data.
Subsequently, for each partition Di ∈ ∪P

i=1Di and for each trajectory (the reference
trajectory) we discover parts of other trajectories that move close enough in space
and time (line 5). Successively, we group by reference trajectory in order to
perform the subtrajectory join (line 8). At this phase, since our data is already
grouped by trajectory, we also perform trajectory segmentation in order to split
each trajectory to subtrajectories (line 9). In turn, we utilize the temporal partitions
created during the Repartition phase and re-group the data by temporal partition.
For each Di ∈ ∪P

i=1Di we calculate the similarity between subtrajectories and
perform the clustering procedure (line 12). At this point we should mention that

10 Offline Trajectory Analytics 285

if a subtrajectory intersects the borders of multiple partitions, then it is replicated in
all of them. This will result in having duplicate and possibly contradicting results.
For this reason, as a final step, we specify the Refine Results procedure (line 14).
Finally, a set C of clusters and a set O of outliers are produced.

10.3.2.2 Distributed Subtrajectory Join

As already mentioned, the first step is to perform the subtrajectory join in a
distributed way. For this reason, we exploit the work presented in [34], coined DTJ
(Distributed subTrajectory Join), which introduces an efficient and highly scalable
approach to deal with the subtrajectory join problem (Problem 10.1) by means of
MapReduce. More specifically, DTJ is comprised of a Repartitioning phase and a
Query phase. The Repartitioning phase is a preprocessing step that takes place only
once and it is independent of the actual parameters of the problem, namely εsp, εt ,
and δt . The goal for this step is to produce load balanced temporal partitions. The
idea is to construct an equi-depth histogram based on the temporal dimension, where
each of the M bins contains the same number of points and the borders of each bin
correspond to a temporal interval [ti , tj). The histogram is constructed by taking a
sample of the input data. Then, the input data is partitioned to processing tasks based
on the temporal intervals of the histogram bins. This guarantees temporal locality in
each partition, as well as equi-sized partitions, thus balancing the load fairly.

In the Query phase, the actual join processing takes place. It consists of two steps,
the Join and the Refine step, which are implemented as a Map and a Reduce function,
respectively. The output of this MapReduce job is, for each reference trajectory
r ∈ D, all the moving objects, with their respective portion of movement, that
moved close enough with r in space and time for at least some time duration. In
Fig. 10.2, the DTJ query corresponds to Job 1 until the Refine() procedure.

For more technical details about the algorithms involved in DTJ, their complexity
and an extensive experimental study, we refer to [34].

10.3.2.3 Distributed Trajectory Segmentation

The Trajectory Segmentation Algorithm (TSA) takes as input a single trajectory,
along with information about its neighborhood, and partitions it to a set of subtra-
jectories. We propose two alternative segmentation algorithms. The first algorithm,
coined T SA1, identifies the beginning of a new subtrajectory whenever the density
of its neighborhood changes significantly. For this purpose, we use the concept of
voting as a measure of density of the surrounding area of a trajectory. For a given
point ri and any trajectory s, the voting V (ri) is defined as:

V (ri) = �∀s∈D

ds(ri, sk)

εsp

(10.4)

286 P. Tampakis et al.

Eq
ui

-d
ep

th

H
ist

og
ra

m
Pa

rt
 it i

on
 1

[t
1,t

2)

Pa
rt

 it i
on

 P
[t

P-
1,t

P]

. . .

ST
P

Pa
rt

 it i
on

 1
Tr

aj
ec

to
ry

 1
Re

fin
e(

)
Se

gm
en

t(
)

Si
m

ila
rit

y(
)

Tr
aj

ec
to

ry
 2

Re
fin

e(
)

Se
gm

en
t(

)
Si

m
ila

rit
y(

)

Tr
aj

ec
to

ry
 L

Re
fin

e(
)

Se
gm

en
t(

)
Si

m
ila

rit
y(

)

. .

Re
du

ce
O

ut
pu

t
to

 H
DF

S

ST
P

Pa
rt

 it i
on

 2

ST
P

Pa
rt

 it
io

n
P

. .ST
 P

ar
t it

 io
n

1

ST

Pa
rt

 it i
on

 2

ST

Pa
rt

 it
io

n
P

In
pu

t S
pi

t
Cr

ea
t i

on

. . .

Sp
lit

 1
Jo

in
(⋈

)

Sp
lit

 2
Jo

in
(⋈

)

Sp
lit

 M
Jo

in
(⋈

)

. .

M
ap

G
ro

up
 b

y
Tr

aj
ec

to
ry

&

 S
or

t B
y

t

Sp
lit

 1
 D

at
a

[t
1-

ε t
,t 2

+ε
t)

Sp
lit

 2
 D

at
a

[t
2-

ε t
,t 3

+ε
t)

Sp
lit

 P
 D

at
a

[t
P-

1-
ε t

,t P
+ε

t)

Sp
lit

 1
Si

m
ila

rit
y(

)
Cl

us
te

rin
g(

)

Sp
lit

 2
Si

m
ila

rit
y(

)
Cl

us
te

rin
g(

)

Sp
lit

 P
Si

m
ila

rit
y(

)
Cl

us
te

rin
g(

)

. .

M
ap

G
ro

up
 b

y
In

te
rs

ec
t in

g
or

no

t &
 s

or
t b

y
Pa

rt
 it i

on

In
te

rs
ec

t in
g

Re
fin

eR
es

ul
ts

()

N
ot

 In
te

rs
ec

t in
g

em
it

Re
su

lts
()

Re
du

ce

Jo
b

1
Jo

b
2

F
ig

.1
0.

2
T

he
D

SC
al

go
ri

th
m

.(
Jo

b
1)

D
T

J
an

d
Tr

aj
ec

to
ry

Se
gm

en
ta

ti
on

an
d

(J
ob

2)
C

lu
st

er
in

g
an

d
R

efi
ne

R
es

ul
ts

10 Offline Trajectory Analytics 287

where sk is the matching point of s with ri , as emitted by the subtrajectory join
procedure.

Finally, the voting of a trajectory (or subtrajectory) is defined as:

V (r) = 1

N
�N

i=1V (ri) (10.5)

The second segmentation algorithm, coined T SA2, identifies the beginning
of a new subtrajectory whenever the composition of its neighborhood changes
substantially. This algorithm takes as input a list L(ri)[] of the trajectory ids
that have been produced as output by the DTJ procedure. The following example
explains intuitively the difference between the two segmentation algorithms.

Example 10.2 Consider the example of Fig. 10.3a that illustrates five trajectories:
A → B, A → C, A → D, C → B, and D → B. Figure 10.3b and c depict the
result of TSA1 and TSA2, respectively. In more detail, we can observe that both TSA1
and TSA2 segmented trajectory A → D to subtrajectories A → O and O → D, due
to the fact that after O, both the density and the composition of the neighborhood
change. The same holds for trajectories A → C, C → B, and D → B, which are
segmented to subtrajectories A → O, O → C, C → O, O → B, D → O, and
O → B. However, when it comes to trajectory A → B, we can observe that while
TSA2 segments it to subtrajectories A → O and O → B, TSA1 does not perform
any segmentation. This is due to the fact that, after O, even though the density of
the neighborhood remains the same (i.e., 3 moving objects), the composition of the
neighborhood changes completely.

Both segmentation algorithms share a common methodology, which employs two
consecutive sliding windows W1 and W2 of size w (i.e., w samples) to estimate the
point ri ∈ CP (cutting point) where the “difference” between the two windows
is maximized. This methodology has been successfully applied in the past on
signal segmentation [24, 25]. To exemplify, let us consider trajectory A → D of
Example 10.2. For simplicity, we assume that the voting of the specific trajectory
from A to O is 3 and from O to D is 1. Figure 10.4 illustrates the two sliding
windows W1 and W2 that traverse the voting signal of trajectory A → D.

Similar Subtrajectories The next step is to calculate the similarity between all
the pairs of subtrajectories, using Eq. (10.2). This cannot be done completely after
the segmentation at the Reducer phase of Job 1, illustrated in Fig. 10.2, because
at that point each reduce function has information only about the segmentation of
the reference trajectory to subtrajectories. For this reason, at this point we cannot
calculate the denominator of Eq. (10.2). However, for each subtrajectory r ′ ∈ r ,
where r is the reference trajectory, we can calculate the similarity between the
matching points (enumerator of Eq. (10.2)).

At this point, each Mapper has now all the information needed to calculate the
similarity between all the pairs of subtrajectories (Eq. (10.2)), for each temporal par-
tition separately. The similarity between subtrajectories is output in a new relation,

288 P. Tampakis et al.

B

A

C

DO

(a)

B

A

C

DO

(b)

B

A

C

DO

(c)

Fig. 10.3 (a) Five trajectories A → B, A → C, A → D, C → B, and D → B, (b) T SA1
segmentation, (c) T SA2 segmentation

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9 10

Vo
tin

g

Time

W1 W2

Fig. 10.4 The two consecutive sliding windows W1 and W2 used by the segmentation algorithms

called SP. Each tuple of this relation holds information about a subtrajectory r ′ and
its similarity with all the other subtrajectories, whenever this similarity is larger than
zero. More specifically, SP contains a set of key-value pairs where the key is the ID
of the subtrajectory (r ′.ID) and the value is a list AdjLst containing elements of the
form (s′.ID, Sim), where s′ is a subtrajectory for which it holds that Sim(r ′, s′)> 0.

10.3.2.4 Distributed Subtrajectory Clustering

Clustering After having calculated the similarity between all pairs of subtrajec-
tories for each temporal partition, we can proceed to the actual clustering and
outlier detection procedure. The intuition behind the proposed solution to the
subtrajectory clustering and outlier detection problem (Problem 10.3) is to select as
cluster representatives highly voted subtrajectories that have zero similarity with the
already selected representatives Ri ∈ R, thus addressing the inter-cluster distance
minimization. Then, we assign each subtrajectory to the cluster (i.e., Representative)
with which it has the greatest similarity.

The input of the clustering algorithm is SP , ST , and parameters k and α and
the output is the set of clusters C and the set of outliers O. More specifically, k

is a threshold for setting a lower bound on the voting of a representative. This
prevents the algorithm from identifying clusters with small support. Parameter α

is a similarity threshold used to assign subtrajectories to cluster representatives.

10 Offline Trajectory Analytics 289

It ensures that a subtrajectory assigned to a cluster has sufficient similarity with
the representative of the cluster. This actually poses a lower bound to the average
distance between the representatives and the cluster members and, consequently,
guarantees a minimum quality in the identified clusters (intra-cluster distance).

Refinement of Results At this point we successfully accomplished to deal with
Problem 10.3 for each temporal partition. However, this might result in having
duplicates due to the fact that each subtrajectory that temporally intersects multiple
partitions is replicated to each one of them. The actual problem that lies here is
not the duplicate elimination problem itself but the fact that the result for such
a subtrajectory might be contradicting in different partitions. In more detail, for
each partition, the clustering procedure will decide whether a subtrajectory is a
Representative (R), a Cluster Member (C), or an Outlier (O). Hence, for each
intersecting subtrajectory q and for each pair of consecutive temporal partitions
(i, j) with which q intersects, q can have the following pairs of states: (a) O–O, (b)
R–R, (c) C–C, (d) R–C (C–R), (e) R–O (O–R), and (f) C–O (O–C).

For each of the above cases a decision has to be made, in order to eliminate
duplicates and provide the correct result according to the problem definition. More
specifically, in case of (a), q is marked as outlier in both partitions; hence, we only
need to eliminate duplicates. In case of (b), the two clusters are “merged,” since all
of the subtrajectories that belong to them are similar “enough” with q, which is the
representative of both clusters. In case of (c), let us assume that q belongs to cluster
Ci(R(q)) in Partition i and Ci+1(R(q)) in Partition i + 1. Then, q is assigned to
the cluster with which it has the largest similarity with its representative. In case
of (d), q remains to be a cluster representative and is removed from the cluster C

in which it is a member. Finally, in case of (e) and (f), q is removed from O. For
more details concerning the Distributed Subtrajectory Clustering solution presented
in this section, please refer to [35].

10.3.2.5 Experimental Results

In this section, we provide our experimental study on the solution that we proposed
in order to address the Distributed Subtrajectory Clustering problem. The datasets
employed for our experiments are:

• IFS (April 2016)—Flights between Madrid and Barcelona during April 2016 of
size 43 MB and consisting of approximately 900K records.

• NARI/Brest Area (6 months) Raw—Vessels moving in Brest area, consisting
of approximately 18 million records of size 697 MB.

• FlightAware (April 2016)—Trajectories of aircraft that consist of approximately
250 million records of 11.4 GB.

• IMIS (3 years)—consists of 699,031 trajectories of ships moving in the Eastern
Mediterranean for a period of 3 years. This dataset contains approximately 1.5
billion records, 56 GB in total size.

290 P. Tampakis et al.

Our experimental methodology is as follows: Initially, we illustrate that the
subtrajectory clustering solution produces results of high quality as compared to
the whole-trajectory clustering solution. Finally, we verify the scalability of our
algorithms by varying the dataset size.

The experiments were conducted in a 49 node Hadoop 2.7.2 cluster. One node
acted as the master and 48 nodes acted as slaves. The master node consists of 8 CPU
cores, 8 GB of RAM, and 60 GB of hard disk, while each slave node is comprised
of 4 CPU cores, 4 GB of RAM, and 60 GB of hard disk. Our configuration enables
each slave node to launch 4 containers, thus resulting that at a given time the cluster
can run up to 192 jobs (Map or Reduce). The operating system running on all the
nodes is Debian 8.3.

Quality of Clustering Analysis To illustrate the quality of the results we employed
the IFS (April 2016) (Fig. 10.5a). To assist with our analysis, we performed a
preprocessing step where all trajectories were aligned to start at the same time.
In order to be able to compare the two approaches (i.e., whole- and subtrajectory
clustering), we deactivated the segmentation step of the subtrajectory clustering
solution. The subtrajectory clustering algorithm identified 6 clusters, 3 clusters from
Madrid to Barcelona and 3 clusters from Barcelona to Madrid. Moreover, an outlier
was detected, which is not something common in aviation data. Both the cluster
representatives and the outlier are depicted in Fig. 10.5b. However, if we consider
only the spatial dimension, these 6 clusters and 1 outlier seem to be actually 2
clusters. But if we also take into consideration the temporal dimension, as presented
in the space-time cube of Fig. 10.5d, we will actually see that there are clusters that
follow the same path but have different behavior as far as it concerns the speed
and/or the duration of the flight. These probably correspond to different types of
aircrafts. In order to compare with the Spark MLlib-based solution, we vectorized
the data and utilized the k-means algorithm on the same dataset with k = 6, which
is the number of clusters that was previously identified. Figure 10.5c illustrates the
result of k-means and Fig. 10.5d the corresponding space-time cube.

To conclude, the distributed subtrajectory clustering approach presents several
advantages over the Spark MLlib-based. To begin with, an important issue is that
the number of clusters is discovered by the algorithm and is not up to the user to give
as input the correct number of clusters. In addition, another important functionality
that a trajectory clustering algorithm should have is the outlier detection. Finally,
due to the fact that the Spark MLlib-based solution with both vectorization methods
does some kind of resampling, some movement patterns might be “lost,” depending
on the number of out samples of the resampling procedure.

Scalability We vary the size of our dataset and measure the execution time of our
algorithms. To study the effect of dataset size, we created 4 datasets: 20%, 40%,
60%, and 80% of each of the original datasets. For the purpose of this analysis

10 Offline Trajectory Analytics 291

(a) (b) (c)

(d) (e)

Fig. 10.5 (a) Raw data, (b) cluster representatives (6 clusters discovered), (c) k-means with k = 6,
(d) cluster representatives—space-time cube, (e) k-means with k = 6—space-time cube

0.00E+00
2.00E+03
4.00E+03
6.00E+03
8.00E+03
1.00E+04
1.20E+04
1.40E+04
1.60E+04
1.80E+04
2.00E+04

2 0 % 4 0 % 6 0 % 8 0 % 1 0 0 %

)sdnoces ni (e
mi T n oitucexE

Dataset Percentage

OVERALL

FlightAware Raw

(a)

0.00E+00

5.00E+02

1.00E+03

1.50E+03

2.00E+03

2.50E+03

3.00E+03

3.50E+03

4.00E+03

4.50E+03

2 0 % 4 0 % 6 0 % 8 0 % 1 0 0 %

)sdnoces ni(e
mi T noit uce xE

Dataset Percentage

OVERALL

AIS Brest Raw

(b)

0.00E+00

5.00E+03

1.00E+04

1.50E+04

2.00E+04

2.50E+04

2 0 % 4 0 % 6 0 % 8 0 % 1 0 0 %

)sdnoces ni (e
mi T noituce xE

Dataset Percentage

OVERALL

Imis 3 years

(c)

Fig. 10.6 Scalability analysis varying the size of the (a) FlightAware (April 2016), (b) NARI/Brest
Area (6 months) Raw, and (c) IMIS (3 years) dataset

we are going to use the following datasets: NARI/Brest Area (6 months) Raw,
FlightAware (April 2016), and IMIS (3 years).

As shown in Fig. 10.6, as the size of the dataset increases, the proposed clustering
algorithm turns out to have linear behavior.

292 P. Tampakis et al.

10.4 Distributed Hotspot Analysis

In this section, we present the THS (trajectory hotspot) and aTHS (approximate
trajectory hotspot) algorithms for distributed hotspot analysis over big trajectory
data, as presented in [20]. Our approach to Hotspot discovery and analysis is based
on spatiotemporal partitioning of the 3D data space in cells. Accordingly, we try to
identify cells that constitute hotspots, i.e., not only do they have high density, but
also that the density values are statistically significant. We employ the Getis–Ord
statistic [23], a popular metric for hotspot analysis, which produces z-scores and
p-values. A cell is considered as a hotspot, if it is associated with high z-score and
low p-value. Unfortunately, the Getis–Ord statistic is typically applicable in the case
of 2D spatial data, and even though it can be extended to the 3D case, it has been
designed for point data. In contrast, our application scenario concerns trajectories
of moving objects, temporally sorted sequences of spatiotemporal positions, and
the applicability of hotspot analysis based on a metric, such as the Getis–Ord
statistic (but also any other metric), is far from straightforward. To this end, we
formulate the problem of trajectory hotspot analysis, where our main intuition is
that the contribution of a moving object to a cell’s density is proportional to the
time spent by the moving object in the cell. In particular, we adapt the Getis–
Ord statistic in order to capture this intuition for the case of trajectory data. Then,
we propose a parallel and scalable processing algorithm for computing hotspots in
terms of spatiotemporal cells produced by grid-based partitioning of the data space
under study. Our algorithm achieves scalability by parallel processing of z-scores
for the different cells and returns the exact result set. Moreover, we couple our exact
algorithm with a simple approximate algorithm that only considers neighboring cells
at distance h (in number of cells), instead of all cells, thus achieving significant
performance improvements. More importantly, we show how to quantify the error
in z-score computation, thereby developing a method that can trade-off accuracy for
performance in a controlled manner.

10.4.1 Definitions

Consider a database that contains trajectories of moving objects. A trajectory is
a sequence of data points p described by 2D geospatial coordinates (p.x for
longitude and p.y for latitude), a timestamp (p.t), and the moving object’s id (p.o).
Furthermore, consider a spatiotemporal partitioning P which partitions the 3D
spatiotemporal domain into n 3D cells {c1, . . . , cn} ∈ P . Every data point p is
mapped to one cell ci , which is determined based on the spatiotemporal location of
p. Individual objects moving inside single cells constitute a subset of data points p

which form individual subtrajectories τ . The earliest (latest) point of a subtrajectory
τ is denoted as τ.pstart (τ.pend). Also, we use cistart , ciend

to refer to temporal start
and end of a cell ci .

10 Offline Trajectory Analytics 293

We also define the attribute value xi of the cell ci as: xi = �τ∈ci

τ.pend .t−τ.pstart .t
ciend

−cistart
.

Thus every object that moves in a spatiotemporal cell ci contributes to the cell’s
attribute value by its temporal duration τ.pend .t − τ.pstart .t normalized by dividing
with the cell’s temporal lifespan ciend

− cistart . This definition implies that the
longer a moving object’s subtrajectory stays in a spatiotemporal cell, the higher
its contribution to the cell’s attribute value.

Having calculated an attribute value for each cell, we opt to use the Getis–Ord
statistic to calculate z-scores. The Getis–Ord statistic G∗

i is defined as [23]:

G∗
i = �n

j=1wi,j xj − X�n
j=1wi,j

S

√
[n�n

j=1w
2
i,j −(�n

j=1wi,j)2]

n−1

(10.6)

where xj is the attribute value for cell j , wi,j is the spatiotemporal weight between
cell i and j , n is equal to the total number of cells, and

X = �n
j=1xj

n
(10.7)

S =
√

�n
j=1x

2
j

n
− (X)2 (10.8)

The spatiotemporal weight wi,j used in the Getis–Ord statistic represents the
score influence between neighboring cells; a cell needs to have a neighborhood
of high attribute values to be considered as hotspot. Our goal is to have the
influence of a neighboring cell ci to a given cell cj to be decreasing with
increased spatiotemporal distance. Thus we employ a weight function that decreases
exponentially with increasing distance; we define: wi,j = a1−ρ , where a > 1 is an
application-dependent parameter, and ρ represents the distance between cell i and
cell j measured in number of cells. For immediate neighboring cells, where ρ = 1,
we have wi,j = 1, while for the next neighbors we have, respectively: 1/a, 1/a2,
. . . .

Based on this, the problem of trajectory hotspot analysis is to identify the k most
statistically significant cells according to the Getis–Ord statistic and can be formally
stated as follows:

Problem 10.5 (Trajectory Hotspot Analysis) Given a trajectory dataset and a
space partitioning P , find the top-k cells T OPK = {c1, . . . , ck} ∈ P based on
the Getis–Ord statistic G∗

i , such that: G∗
i ≥ G∗

j , ∀ci ∈ TOPK, cj ∈ P − TOPK.

Our aim is to study the problem of trajectory hotspot analysis over massive
spatiotemporal data by proposing a parallel and scalable solution. Thus, we assume
that the trajectory dataset is stored in multiple nodes, without any more specific

294 P. Tampakis et al.

assumptions about the exact partitioning mechanism. Hence, here, we study a
distributed version of the trajectory hotspot analysis problem.

10.4.2 Exact THS Algorithm

The proposed Exact THS algorithm is designed to be efficiently executed over a
set of nodes in parallel and is implemented in Apache Spark. The input dataset D is
assumed to be stored in a distributed file system, in particular HDFS. Intuitively, our
solution consists of three main steps, which are depicted in Fig. 10.7. In the first step,
the goal is to compute all the cells’ attribute values of a user-defined spatiotemporal
equi-width grid. To this end, the individual attribute values of trajectory data points
are aggregated into cell attribute values, using Eq. (10.6). Then, during the second
step, we calculate the cells’ attribute mean value and standard deviation which will
be provided to the Getis–Ord formula later. Furthermore, we compute the weighted
sum of the values for each cell ci : �n

j=1wi,j xj . Upon successful completion of the
second step, we have calculated all the individual variables included in the Getis–
Ord formula, and we are now ready to commence the final step. The goal of the
third step is to calculate the z-scores of the spatiotemporal grid cells by applying
the Getis–Ord formula. The trajectory hotspots can then be trivially calculated by
selecting either the top-k cells with the higher z-score values or the cells having a
p-value below a specified threshold.

10.4.3 An Approximate Algorithm: aTHS

The afore-described algorithm (THS) is exact and computes the correct hotspots
over widely distributed data. However, its computational cost is relatively high
and can be intolerable when the number of cells n in P is large. This is because
every cell attribute value must be sent to all other cells of the grid, thus leading to
data exchange through the network of O(n2) as well as analogous computational
cost, which is prohibitive for large values of n. Instead, in this section, we propose
an approximate algorithm, denoted aTHS, for solving the problem. The rationale
behind aTHS algorithm is to compute an approximation Ĝ∗

i of the value G∗
i of a

cell ci by taking into account only those cells at maximum distance h from ci .
The distance is measured in a number of cells. Intuitively, cells that are located
far away from ci will only have a small effect on the value G∗

i and should not
affect its accuracy significantly when neglected. More interestingly, we show how
to quantify the error �G∗

i = G∗
i − Ĝ∗

i of the computed hotspot z-score of any cell
ci , when taking into account only neighboring cells at distance h. In turn, this yields
an analytical method that can be used to trade-off accuracy with computational
efficiency, having bounding error values.

10 Offline Trajectory Analytics 295

Fig. 10.7 Overview of THS algorithm

Fig. 10.8 Example of cells at distance from a reference cell cj (the dark color indicates the weight
of their contribution to cj ’s value xj)

The aTHS Algorithm Based on the problem definition, cells located far away from
a reference cell ci only have a limited contribution to the Getis–Ord value G∗

i of ci .
Our approximate algorithm (aTHS) exploits this concept and can be parameterized
with a value h, which defines the subset of neighboring cells that contribute to the
value of ci . We express h in terms of cells, for instance, setting h=2 corresponds
to the case depicted in Fig. 10.8, where only the colored cells will be taken into
account by aTHS for the computation of Ĝ∗

i (an approximation of the value of G∗
i).

In practice, the relationship between cell cj and white cells can be expressed by

296 P. Tampakis et al.

setting their weight factor equal to zero. In algorithmic terms, aTHS is differentiated
from THS in the second and third step.

10.4.4 Experimental Study

In this section, we evaluate the performance of our approach for trajectory hotspot
analysis. We implemented all algorithms in Java, using Apache Spark 2.2.0 Core
API.

Datasets We employed a real dataset containing surveillance information from the
maritime domain. The data was collected over a period of 3 years, consisting of
83,735,633 individual trajectories for vessels moving in the Eastern Mediterranean
Sea. This dataset is 89.4 GB in total size and contains approximately 1.9 billion
records. Each record represents a point in the trajectory of a vessel and is made up
by <trajectoryID;timestamp;latitude;longitude>. The dataset is stored in 720 HDFS
blocks, in uncompressed text format.

Evaluation Methodology We picked four parameters to study their effect on the
efficiency of our algorithm, namely (a) the spatial size of cells (in terms of both
latitude and longitude), (b) the temporal size of cells, (c) the h distance which
defines the number of neighboring cells contributing to the score of a reference cell
ci , and (d) the k number of hotspots to be reported in the final result set. In practice,
the first two parameters affect the number n of cells of P , the third parameter h

refers to the number of broadcasting messages which occur during the second step,
and the fourth parameter k affects exclusively the last step of our algorithm. Also,
we set a equal to 2 in all experiments.

Metrics Our main evaluation metric was the execution time needed for each
individual step of our algorithm on the Spark cluster. In the following, the actual
execution times will be presented, omitting any overhead caused by Spark and
YARN initialization procedures. All execution times are depicted using the number
of milliseconds elapsed for processing each step.

We deployed our code on a Hadoop YARN 2.7 cluster consisting of 10 computing
nodes. Node 1 has 6 GB of RAM and 4 single-core CPUs running at 2.1 GHz. Nodes
2–10 have 8 GB of RAM, 4 single-core CPUs running at 2.1 GHz, and 100 GB
hard disk each. Node 1 is configured to run the HDFS NameNode and YARN
ResourceManager services, whereas all other nodes run the HDFS DataNode and
YARN NodeManager services. In all our experiments, we use the YARN cluster
deploy mode. We initiate 9 Spark executors, configured to use 5.5 GB of main
memory and 2 executor cores each. We also configured HDFS with 128 MB block
size and a replication factor of 2. On each node, Java 8 is installed on Ubuntu 16.04.

10 Offline Trajectory Analytics 297

Fig. 10.9 Performance of our algorithm for various (a) spatial cell sizes of P , (b) temporal cell
sizes of P , (c) values of h, and (d) values of k

10.4.4.1 Experimental Results

Varying the Spatial Cell Size In Fig. 10.9a, we demonstrate the results of our
experiments by varying the spatial cell size of P . Higher sized spatial cells decrease
the total number of cells n used in the grid partitioning of the 3D space. In turn, this
is expected to lead to reduced execution time, since fewer cells need to be computed
and lower communication is required by the algorithm. Indeed, the overall execution
time is reduced when the grid is of coarser granularity.

Varying the Temporal Cell Size Figure 10.9b demonstrates the efficiency of our
algorithm for various temporal cell sizes. The effect of larger cells in the temporal
dimension to the overall execution time is similar to the previous experiment:
Larger temporal cell size leads to fewer total cells in the grid, thus reducing the
overall execution time. The experiment with the most coarse temporal partitioning
(12 h) was measured to be twice more efficient than the experiment using the finest
partitioning, in total execution time.

298 P. Tampakis et al.

Varying h aT HS can be parameterized with a user-defined variable h, which
defines the set of neighboring cells contributing to the calculation of each cell’s
z-score. Figure 10.9c demonstrates the experimental results when using different
values for variable h. The overall execution time is significantly reduced for lower
values of h, since each cell broadcasts its attribute value to less neighboring cells,
thus reducing the network overhead for exchanging such information between cells.
By using a value of 3 for variable h, we measured three times higher overall
execution time compared to the experiment having a value of 1. This significant
reduction to the total execution time in aT HS, results in an approximate result Ĝ∗

i .

However, the deviation of Ĝ∗
i to G∗

i can be quantified as already explained.

Varying Top-k The value of top-k affects the size of the final result set. Fig-
ure 10.9d demonstrates the impact of this variable on dataset sizes throughout the
execution of our algorithm and the individual steps’ processing times. The overall
execution time is not significantly affected by the value of this variable.

10.5 Distributed Data-Enriched Mobility Networks

Inference of the underlying network, given a large number of moving traces, both in
aviation and maritime domain, is a challenging task that we try to address. The goal
is to discover the directed graph of transitions, i.e., the set V of vertices and the set E

of edges that form the routes network. Additionally, enriched information has to be
taken into account in order to produce enriched graphs with contextual information.
Domain experts may benefit a lot from such additional information. For example,
one can then easily produce analytics of trajectories based on specific weather
conditions and reveal how these conditions affecting or not the paths followed.
Moreover, flight plans or predefined sea routes can be compared with real paths
followed by ships or planes and the domain expert would be able to identify and
explain the reason more easily.

10.5.1 Definitions

Definition 10.1 (Enriched Point) An enriched point ri corresponds to a (raw
point) pi of a moving object and is defined as a tuple < pi, ti , vi >, where vi is
a multi-dimensional vector consisting of categorical and/or numerical variables that
annotate the raw point with associated context data.

Examples of vi attribute values could be any user-defined tag or annotation valid
regarding the specific domain application (e.g., consider annotations made by an
event recognition module that detects the “top-of-climb” or “top-of-descent,” “stop,”

10 Offline Trajectory Analytics 299

“turn,” etc.) or any numerical variable that can be attached to pi , such as weather
information (e.g., temperature, wind speed, humidity, etc.).

Definition 10.2 (Semantic Trajectory) An enriched trajectory R corresponds to
a (raw) trajectory T of a moving object, which is defined as the sequence of the
enriched points of T .

Definition 10.3 (Data-Enriched Mobility Network) A data-enriched mobility
network N is a graph denoted by N = (V,E), where V is a set of vertices and
E ⊆ V × V is a set of edges.

The set V of vertices corresponds to the union of sets of enriched points where
each set of enriched points is of the same enriched category, while the set E of
edges corresponds to the union of paths in between vertices found. Given the above
definitions the problem can now be formally expressed.

Problem 10.6 (Data-Enriched Network Inference) Given a database of enriched
trajectories, infer the underlying data-enriched network.

The data-enriched network that is to be found should meet the following
requirements, in order to provide added value to domain experts:

1. Consistency. Network vertices inferred ideally should belong to one connected
component, or the network must be of a number of connected components.

2. Node Validity. Vertices of the network correspond to enriched categories and
are valid if derived from an aggregation or an assemblage (depending on the
corresponding method that is used) of a number of more than m enriched points,
thus having real value for the domain experts. For example, if a network vertex
is derived from less than m points, then this vertex might be excluded from the
final vertices set.

3. Edge Validity. Edges must correspond to frequent paths followed by objects.
The frequency of paths is determined as defined by an application-dependent
threshold σ .

10.5.2 Discovering Data-Enriched Mobility Networks

We follow an approach where first the vertices are discovered and then edges
connecting these vertices are inferred from the trajectories. The input to the process
comprises of a set of enriched trajectories. An enriched trajectory is modeled as a
sequence of timestamped enriched points. The output of the process is a semantic-
aware mobility network modeled as a directed graph G = (V ,E), where the vertices
V correspond to semantic nodes and the edges E correspond to the discovered
paths between semantic nodes. The process comprises two main steps, described
subsequently in detail and illustrated in Fig. 10.10a–d.

The network discovery method described above is applicable to both domains,
maritime and aviation, although the set of enriched trajectories which is the input to

300 P. Tampakis et al.

the process is formed differently for each domain. In the maritime domain the input
is comprised of trajectories made by one vessel and covers a large temporal time
frame. Thus, one maritime network is discovered for each vessel. Similarly, in the
aviation domain the input is comprised of trajectories of aircraft that flew between
two given airports. This way, one network is computed for every pair of airports.
Note that the network is a directed graph, meaning that, e.g., Madrid–Barcelona
is treated differently than the Barcelona–Madrid, implying that flights of only one
direction at a time are taken for each pair of airports.

10.5.2.1 Step 1: Enriched Nodes Extraction

The input dataset of enriched trajectories is efficiently managed according to the
enriched points and the enriched information each trajectory carries. By exploiting
that each enriched point belongs to a semantic category (i.e., points carry an
application depended tag, e.g., HOME, SPORT, etc., and these tags then make up
the categories), we can split the input into enriched points of the same category. For
every such input, nodes are formed based on a spatial-only clustering algorithm.
Then, each cluster becomes a network node, carrying also semantic information
from the corresponding category (Fig. 10.11). Moreover, the membership of a node
in its corresponding cluster is above a given threshold m, thus having real value for
the domain experts (i.e., suppress outliers).

Additionally, for each cluster/node several statistics are calculated and used later
to refine and enhance the prediction accuracy. Statistics are modeled as Normal
distributions (mean and standard deviation). Timing distributions describe when a
ship or aircraft traverses the corresponding cluster/node within a day (24-h time
frame). Elapsed time statistics describe the duration of staying in each cluster/node
and speed statistics provide the mean speed passing through the corresponding
cluster/node. Note that statistics may well be calculated after the discovery of the
network as a post-processing step.

10.5.2.2 Step 2: Enriched Paths Discovery

Trajectories are processed separately of each other to identify enriched nodes and
edges of the network, resulting in the discovery of semantic paths. More specifically,
each cluster/node (i.e., corresponding enriched points of a moving object that
clustered together) is processed separately and sequentially, ordered in the temporal
dimension. If any two consecutive trajectory points correspond to two different
network nodes/clusters, then a transition is recorded from one network node to
the other. For each such transition, the beginning (from) and end (to) nodes of the
network are identified and marked as additional information of the transition. These
transitions form the set of candidate network edges.

Moreover, multiple transitions between pairs of network nodes are recorded by
increasing (+1) the corresponding weight of the edge. In the end of the process,

10 Offline Trajectory Analytics 301

Fig. 10.10 Overview of semantic-aware network inference solution in maritime domain: (a) all
enriched points from input, (b) enriched trajectories formed from enriched points, (c) enriched
nodes extraction, (d) enriched path discovery

Fig. 10.11 Overview of network nodes extraction step in maritime domain: (a) all enriched points
from input, (b) enriched points clustered spatially to candidate nodes, (c) semantic nodes extraction

all the edges/transitions are identified, along with their weights, which are simply
the cardinality (absolute number) of all trajectories from the same edge. As an
optional post-processing step, a threshold filtering can be applied by the domain
expert if needed, in order to keep routes only above a specific weight or support.
Finally, semantic nodes and edges are assembled to produce the complete map of
the network. The weighted-edge network allows us to create a hierarchy of networks
based on filtering edges with weight less than an application defined threshold σ .
An example of paths discovery for maritime is shown in Fig. 10.12.

302 P. Tampakis et al.

Fig. 10.12 Overview of network paths discovery step in maritime domain: (a) all paths found, (b)
only edges with more than σ weight are kept

Algorithm 10.4 SeaAirNet
Input: A semantic trajectory database STD, node membership m
Output: A semantic-aware spatial network N
1: for e ∈ ST D do
2: /* e is the category of points (CP) in STD */
3: ClP ← SpatialClustering(CPe)
4: /* ClP are tuples of the form < clid, oid, pi , ti , e > */
5: for ClPi ∈ ClP do
6: if ClPi �= Noise ∧ |ClPi | > m then
7: N.V ← N.V ∪ createNode(ClPi)
8: ClPs ← ClPs ∪ ClPi

9: N.E ← discoverEdges(ClP s,N.V)
10: return N

10.5.3 The SeaAirNet Algorithm

We presented the steps of our methodology from an abstract point of view,
accompanied with a running example and respective figures. Next, we present these
steps in an algorithmic view. The main algorithm, named SeaAirNet, is the starting
point.

Algorithm SeaAirNet takes as input a semantic trajectory database (STD) and
a node membership limit m and outputs a semantic-aware mobility network. In
line 1 all enriched points of the STD are partitioned based on the category each
one belongs (semantic category) and then each partition is processed separately.
In line 3 a spatial clustering algorithm is utilized to cluster enriched points of the
specific category. For each cluster found (line 5), if the cluster is not considered
as “noise” and its membership is over the application-dependent limit m (line 6),
then it is considered valid and a network node is created (line 7) along with its
statistics. It must be noted that the clustering algorithm might identify some points
as noise: These do not belong in any cluster, or they do belong to a non-valid cluster
depending on the clustering algorithm. In line 5 the newly created node is added
to the set of network nodes. In line 8 each valid cluster is added to the set of valid

10 Offline Trajectory Analytics 303

Algorithm 10.5 discoverEdges
Input: Clusters of enriched points ClPs , network nodes V

Output: Network edges E

1: nodesAndPoints ← CIPs .join V on (clid, e)

2: P ← partition(nodesAndPoints on oid).orderBy(t)

3: for each Pi ∈ P do
4: Ei ← edge(getNode, getNextNode, 1)
5: /* each Ei is of form < f romNode, toNode, weight > */
6: if Ei.node <> Ei.nextNode ∧ Ei.nextNode isValid then
7: E ← E ∪ Ei

8: E ← aggregate(E on f romNode, toNode).sum(weight)

9: return E

clusters that will later be used for the discovery of network edges. After extracting
the semantic nodes (step 1), the paths discovery (step 2) task follows, where (in line
9) the discoverEdges algorithm is called by passing the set of valid clusters found
and the set of network nodes extracted. Lastly, the returned nodes and edges (line
10) form the desired mobility network.

The algorithm discoverEdges discovers network-weighted edges from the clus-
ters and network nodes found in algorithm SeaAirNet. Initially (line 1), variable
nodesAndPoints holds a join of network nodes found (V) and corresponding
enriched points that formed the node. In line 2, a partitioning technique is applied.
In detail, the join set is partitioned by the object identifier (i.e., the id of vessel or
aircraft), while the data of each partition is ordered based on time (t). Now, every
partition holds one semantic trajectory with its enriched points ordered in time and
also, each enriched point holds the cluster (network) node it belongs. For each such
partition (line 3), enriched points are scanned sequentially in line 4 and every two
consecutive points form an edge with weight of 1. Validity of the edge is checked
in line 6: To be valid, the two network nodes it connects must be different and also
the last node must be valid too, due to the sequential scanning of enriched points.
If the edge is a valid network edge, then it is considered a candidate edge (line 7)
and is added to the set of edges. When all partitions are processed, then results are
aggregated on weight w.r.t. the beginning and ending nodes of each edge.

10.5.4 Experimental Results

In this section, we evaluate our approach of computing semantic-aware mobility
networks both on aviation and on maritime domains. Our approach in this study is
qualitative, meaning that we evaluate the produced networks by visually inspecting
whether the network provides an accurate representation of the data used to extract
it. We implemented all algorithms in Scala programming language, using Apache
Spark 2.2.0 API. We implement a grid-density-based clustering algorithm in Spark
to avoid the need of predefining the number of clusters in the beginning.

304 P. Tampakis et al.

All algorithms are packed in one Scala project and when necessary, intermediate
results are stored and retrieved using a database to avoid long lineages. Parameters
of the algorithms are:

• epsilon: the radius of the disk that defines the neighborhood of a point;
• minPts: minimum number of members to consider a neighborhood as a valid

cluster;
• m: node membership to consider a cluster as a valid network node;
• σ : threshold to keep edges of a certain weight and above in post-processing.

10.5.4.1 Datasets

In the maritime domain we selected to explore the movement of the DELOS vessel.
DELOS has an mmsi of 241087000 and the spatiotemporal extend of its data is set
to: extend[x, y, t] = [23.61 → 25.43, 36.39 → 37.95, 2016−01−0100:11:34 →
2016 − 01 − 3121:46:28]. The above extent consists of 5761 raw points from IMIS
Global AIS messages concerning specific vessel. These raw points are passed from
synopses generator (SG) (cf. Chap. 3 of this book), which produced 2195 synopses
whose enriched points are used for discovering the network.

In the aviation domain the MADRID (MAD)–BARCELONA (BCN) airports
pair is selected using IFS radar surveillance data provided by CRIDA. The temporal
extent is set to 2016-04-01 05:16:54 until 2016-04-30 20:06:08. The dataset consists
of 997,450 raw points (both directions) which are derived from 1396 flights. The
number of corresponding synopses produced by the SG are 254,330.

The methodology of discovering semantic-aware networks can be applied to
raw trajectories as well as to semantic trajectories. Due to space limitations in the
following we show an application of the methodology to raw trajectories in the
aviation domain and an application to enriched trajectories in the maritime domain.

10.5.4.2 Qualitative Results in Aviation

We apply algorithm to raw 447,234 points of MAD to BCN airport pair (one
direction), with parameters: epsilon = [10000, 10000, 1000], minP ts = 100,
m = 200. We get 54 clusters (Fig. 10.13).

Fig. 10.13 All points colored by cluster; (a) with noise (19,882) and (b) without noise

10 Offline Trajectory Analytics 305

These clusters are transformed to nodes by keeping only the medoid of each
cluster. We consider only clusters with more than 200 members; thus we get 39
nodes (Fig. 10.14).

Then edges are discovered between above nodes. In total we found 182 edges
with weights from 1 to 1274 (average 89.51). Based on domain expert, edges can be
filtered out using their weight (Fig. 10.15).

Fig. 10.14 Medoids of the 39 clusters found (a) and how medoids cover the whole dataset (b)

Fig. 10.15 Discovering paths (edges) of the network, (a) all edges found with weight over 0 (182),
(b) keep only edges with weight over 2 (130)

10.5.4.3 Qualitative Results in Maritime

We applied our algorithm to the 2195 points of trajectories’ synopses of DELOS
in the Aegean Sea, with parameters epsilon = [1000, 1000, 100], minP ts = 1,
m = 5. Synopses are grouped in two groups: either as stops and/or as changes
(Fig. 10.16).

These clusters are transformed to nodes, where each node represents one cluster.
In total we get 128 nodes with membership from 1 to 224 (average 19.84). We
consider only clusters with more than 5 members and thus we get 73 nodes
(Fig. 10.17).

Then edges are discovered between these nodes. The algorithm finds 359 edges
with weights from 1 to 91 (average 4.98). Figure 10.18 shows network edges for
various values of σ .

From the above qualitative evaluation, it can be concluded that the higher
the weight of the edges, the higher the compactness in the representation of the

306 P. Tampakis et al.

Fig. 10.16 All points colored by cluster above (a) and grouped based on their semantics in (b)

Fig. 10.17 Medoids of the 73 clusters found (a) and colored by type in (b)

dataset with this data-enriched network structure. Also, the network extracted from
synopses is more or less the same as the one produced by the raw data. The
advantage of this is that not only we may extract the network by processing much
less data, but more importantly, we exploit the synopses to attach semantics to the
vertices of the network.

10.6 Related Work

In recent years, an increased research interest has been observed in knowledge
discovery out of mobility data. Towards this direction, several methods, which are
directly related to our work, have been proposed.

Co-movement Patterns One of the first approaches for identifying such collective
mobility behavior is the so-called flock pattern [14]. Inspired by this, a less “strict”

10 Offline Trajectory Analytics 307

Fig. 10.18 Discovering paths (edges) of the network, (a) all edges found with weight over 0 (359),
(b) edges with weight over 1 (226), (c) edges with weight over 2 (176), (d) edges with weight over
3 (136)

definition of flocks was proposed in [12] where the notion of a moving cluster was
introduced. There are several related works that emerged from the above ideas, like
the approaches of convoys, swarms, platoons, traveling companion, and gathering
pattern [39]. However, all of the aforementioned approaches are centralized and
cannot scale to massive datasets. In this direction, the problem of efficient convoy
discovery was studied both in centralized [22] and distributed environment by
employing the MapReduce programming model [21]. An approach that defines a
new generalized mobility pattern is presented in [9]. In more detail, the general
co-movement pattern (GCMP) is proposed, which models various co-movement
patterns in a unified way and is deployed on a modern distributed platform (i.e.,
Apache Spark) to tackle the scalability issue.

Trajectory Clustering Most of the aforementioned approaches operate at specific
predefined temporal “snapshots” of the dataset, thus ignoring the route of each
moving object between these “snapshots.” Another line of research tries to discover
groups of either entire or portions of trajectories considering their routes. A

308 P. Tampakis et al.

typical strategy in dealing with trajectory clustering is to transform trajectories to
a multi-dimensional space and then apply well-known clustering algorithms such
as OPTICS [2] and DBSCAN [8]. Alternatively, another approach is to define an
appropriate similarity function and embed it to an extensible clustering algorithm. In
this direction, there are several approaches whose goal is to group whole trajectories,
including T-OPTICS [19], that incorporates a trajectory similarity function into the
OPTICS [2] algorithm. CenTR-I-FCM [26], a variant of Fuzzy C-means, proposes
a specialized similarity function that aims to tackle the inherent uncertainty of
trajectory data. Nevertheless, trajectory clustering is a computationally intensive
operation and centralized solutions cannot scale to massive datasets. In this con-
text, [6] introduces a scalable GPU-based trajectory clustering approach which is
based on OPTICS [2].

Subtrajectory Clustering Nonetheless, discovering clusters of complete trajec-
tories can overlook significant patterns that might exist only for portions of
their lifespan. To deal with this, another line of research has emerged, that
of Subtrajectory Clustering. The predominant approach here is TraClus [15], a
partition-and-group framework for clustering 2D moving objects (i.e., the time
dimension is ignored) that enables the discovery of common subtrajectories. A more
recent approach to the problem of subtrajectory clustering is S2T-Clustering [28],
where the goal is to partition trajectories into subtrajectories and then form groups of
similar ones, while, at the same time, separate the ones that fit into no group, called
outliers. It consists of two phases: a neighborhood-aware trajectory segmentation
(NaTS) phase and a sampling, clustering, and outlier (SaCO) detection phase. A
slightly different approach is presented in QuT-Clustering [27] and [33], where the
goal is, given a temporal period of interest W , to efficiently retrieve the clusters
and outliers at subtrajectory level that temporally intersect W . In order to achieve
this, a hierarchical structure, called ReTraTree (for Representative Trajectory Tree)
that effectively indexes a dataset for subtrajectory clustering purposes, is built
and utilized. An alternative viewpoint to the problem of subtrajectory clustering
is presented in [1], where the goal is to identify “common” portions between
trajectories, w.r.t. some constraints and/or objectives, cluster these “common”
subtrajectories, and represent each cluster as a pathlet, which is a point sequence
that is not necessarily a subsequence of an actual trajectory. A pathlet can be viewed
as a portion of a path that is traversed by many trajectories. Similarly, in [40] the goal
is to identify corridors, which are frequent routes traversed by a significant number
of moving objects. As already mentioned, all of the above subtrajectory clustering
approaches are centralized and cannot scale to the size of today’s trajectory data.

Hotspot Analysis The problem of trajectory hotspot analysis is related to the
spatial and spatiotemporal hotspot analysis. Several studies exist for conducting
hotspot spatiotemporal analysis, such as [11, 17]. Spatiotemporal event data are
analyzed and visualized in [17]. It consists of two steps: first, it uses multivariate
kernel density estimation in space and time to estimate the density of the input
data. Interestingly, different kernels in spatial and temporal domains can be used.
In the second step it identifies hotspots from the most dense kernels and proposes

10 Offline Trajectory Analytics 309

a new visualization technique, based on Reeb graphs to illustrate the identified
spatiotemporal hotspots. Hong et al. [11] studied the case of human mobility data
such as taxi trips, bike rides, and subway trips. This data can be modeled by
using spatiotemporal directed graphs (STG). The goal is to find subgraphs of the
STG that have interesting flows (e.g., a black hole has the overall inflow greater
than the overall outflaw). The user needs to input a threshold in order for the
algorithm to successfully identify the interesting flows. A similar study is presented
in [13] where human mobile traffic data are analyzed to discover hotspots on
graphs. This study identifies spatial locations where the data volumes from wireless
network transmissions are unusually high, based on user-defined thresholds. After
identifying these locations, the algorithm detects the distribution of mobile data
traffic hotspots to propose an efficient cell deployment strategy.

The trajectory hotspot analysis problem is also related to the trajectory mining
domain [39]. Such trajectory and subtrajectory clustering techniques have been
presented previously, in this section.

Data-Enriched Network Discovery Several methods rely on k-means clustering
of raw tracking data using distance and direction as criteria to introduce cluster
seeds at fixed locations along a trajectory. Edelkamp and Schroedl [7] use various
heuristics for segmentation, map matching, and lane clustering from GPS traces.
Schroedl et al. [30] use k-means clustering to refine an existing network map rather
than construct the entire network starting from a blank terrain. Other methods
transform GPS traces to density-based discretized images and are based on kernel
density estimation (KDE). Most of these algorithms function well either when the
data are frequently sampled (e.g., once per second) or when there is a lot of data
redundancy. Biagioni and Eriksson [3] use a dataset which is being sampled very
frequently (from 2 to 6 s). Steiner and Leonhardt [32] present an approach which
uses tracking data of lower frequency, but still with intervals not exceeding 15 s.
The limitation of KDE-based algorithms is that they are quite sensitive with respect
to noisy data and outliers.

Another category, to which the present work relates, involves trace clustering
approaches. These methods either adopt map matching or heuristics by aggregating
GPS traces into an incrementally built transportation network. Moving object’s
heading and distance measures are also used to perform additions and deletions onto
the incremental construction of the map. Rogers et al. [29] use trace clustering to
refine an existing network rather than extracting it from scratch. Cao and Krumm [4]
eliminate noise in GPS traces, while Fathi and Krumm [10] provide an approach
that discovers intersections by using a prototypical detector trained on ground truth
data from an existing map. This approach works best for well-aligned transportation
networks (e.g., vertically aligned road networks) and with frequently sampled data
of up to 5 s. Liu et al. [16] efficiently build a map but require accurate data and
high sampling rates (i.e., 1 s). Zhang et al. [38] use a method similar to GPS trace
clustering to continuously refine existing maps.

310 P. Tampakis et al.

In general, although the problems of map construction, update, and enhancement
are complementary, typically each individual work focuses on a single one of them.
For example, a recent work by Wang et al. [37] applies trace clustering techniques to
introduce a new KDE-based road fitting algorithm. The authors achieve an important
contribution in terms of map entries in terms of data records on the OpenStreetMap
collection, but their application mainly focuses on updating a map rather than
constructing it. Similarly, Shan et al. [31] extend by proposing an automatic map
update system which focuses on the identification of missing segments and is robust
w.r.t. low sampling rates (on average of 120 s). Wang et al. [37] efficiently tackle
the hard time performance of current approaches, deal with tracking data of low
sampling rate but they mainly focus on inferring a map attributed with topological
characteristics.

10.7 Discussion: Lessons Learnt

In this chapter, we reported on offline data analytic methods over moving object
trajectories. The overall objective was to develop advanced, beyond current state-
of-the-art data analytics methods and tools over a repository of trajectories of
moving objects. In detail, we initially studied the problem of trajectory clustering
by utilizing a methodology, which transforms trajectories to vectors, so as existing
big-data-ready, point-based clustering algorithms (such as those provided by the
Spark MLlib machine learning library) can be used. The goal of this approach is on
the one hand to first provide solutions for the whole-trajectory clustering problem
and to study the limitations of using off-the-shelf clustering algorithms for big
trajectory data. Subsequently, the problem of distributed (sub)trajectory clustering
over massive mobility data [35] has been addressed. In order to provide a solution
to this we build upon a scalable distributed trajectory join method [34], which
utilizes the popular MapReduce distributed programming model. Successively, we
presented a scalable distributed trajectory-based hotspot analysis [20]. In this line
of research, we followed a different clustering approach that provides statistical
guarantees for the identified clusters. Interestingly, as a proof of concept, with this
approach, we are able to discover hotspots that in the maritime domain can be used
to measure the fishing pressure at sea, while in the aviation domain it identifies
air-blocks that present demand-capacity problems. Finally, we studied the problem
of distributed data-enriched mobility network discovery. The algorithms proposed
provide contextually enhanced spatial graphs, which can successfully be utilized to
support online location and trajectory prediction/forecasting scenarios (cf. Chap. 8).

10 Offline Trajectory Analytics 311

References

1. Agarwal, P.K., Fox, K., Munagala, K., Nath, A., Pan, J., Taylor, E.: Subtrajectory clustering:
models and algorithms. In: PODS, pp. 75–87 (2018)

2. Ankerst, M., Breunig, M.M., Kriegel, H., Sander, J.: OPTICS: ordering points to identify the
clustering structure. In: SIGMOD, pp. 49–60 (1999)

3. Biagioni, J., Eriksson, J.: Map inference in the face of noise and disparity. In: Proceedings of
the 20th International Conference on Advances in Geographic Information Systems, pp. 79–88
(2012)

4. Cao, L., Krumm, J.: From GPS traces to a routable road map. In: Proceedings of the 17th ACM
SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp.
3–12 (2009)

5. Claramunt, C., Ray, C., Camossi, E., Jousselme, A., Hadzagic, M., Andrienko, G.L.,
Andrienko, N.V., Theodoridis, Y., Vouros, G.A., Salmon, L.: Maritime data integration and
analysis: recent progress and research challenges. In: Proceedings of the 20th International
Conference on Extending Database Technology, EDBT, pp. 192–197 (2017)

6. Deng, Z., Hu, Y., Zhu, M., Huang, X., Du, B.: A scalable and fast OPTICS for clustering
trajectory big data. Clust. Comput. 18(2), 549–562 (2015)

7. Edelkamp, S., Schrödl, S.: Route Planning and Map Inference with Global Positioning Traces,
pp. 128–151. Springer, Berlin (2003)

8. Ester, M., Kriegel, H., Sander, J., Xu, X.: A density-based algorithm for discovering clusters
in large spatial databases with noise. In: KDD, pp. 226–231 (1996)

9. Fan, Q., Zhang, D., Wu, H., Tan, K.: A general and parallel platform for mining co-movement
patterns over large-scale trajectories. Proc. VLDB Endowment 10(4), 313–324 (2016)

10. Fathi, A., Krumm, J.: Detecting road intersections from GPS traces. In: Geographic
Information Science, pp. 56–69 (2010)

11. Hong, L., Zheng, Y., Yung, D., Shang, J., Zou, L.: Detecting urban black holes based on human
mobility data. In: Proceedings of the 23rd International Conference on Advances in Geographic
Information Systems SIGSPATIAL, pp. 35:1–35:10 (2015)

12. Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data.
In: SSTD, pp. 364–381 (2005)

13. Klessig, H., Suryaprakash, V., Blume, O., Fehske, A.J., Fettweis, G.: A framework enabling
spatial analysis of mobile traffic hot spots. IEEE Wirel. Commun. Lett. 3(5), 537–540 (2014).
https://doi.org/10.1109/LWC.2014.2349520

14. Laube, P., Imfeld, S., Weibel, R.: Discovering relative motion patterns in groups of moving
point objects. Int. J. Geogr. Inf. Sci. 19(6), 639–668 (2005)

15. Lee, J., Han, J., Whang, K.: Trajectory clustering: a partition-and-group framework. In:
SIGMOD, pp. 593–604 (2007)

16. Liu, X., Biagioni, J., Eriksson, J., Wang, Y., Forman, G., Zhu, Y.: Mining large-scale, sparse
GPS traces for map inference: comparison of approaches. In: Proceedings of the 18th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 669–677
(2012)

17. Lukasczyk, J., Maciejewski, R., Garth, C., Hagen, H.: Understanding hotspots: a topological
visual analytics approach. In: Proceedings of the 23rd International Conference on Advances
in Geographic Information Systems SIGSPATIAL, pp. 36:1–36:10 (2015)

18. Moran, P.: Notes on continuous stochastic phenomena. Biometrika 37(1), 17–23 (1950)
19. Nanni, M., Pedreschi, D.: Time-focused clustering of trajectories of moving objects. J. Intell.

Inf. Syst. 27(3), 267–289 (2006)
20. Nikitopoulos, P., Paraskevopoulos, A., Doulkeridis, C., Pelekis, N., Theodoridis, Y.: Hot spot

analysis over big trajectory data. In: IEEE International Conference on Big Data, Big Data
2018, Seattle, WA, 10–13 December 2018, pp. 761–770 (2018). https://doi.org/10.1109/
BigData.2018.8622376

21. Orakzai, F., Calders, T., Pedersen, T.B.: Distributed convoy pattern mining. In: IEEE MDM,
pp. 122–131 (2016)

https://doi.org/10.1109/LWC.2014.2349520
https://doi.org/10.1109/BigData.2018.8622376
https://doi.org/10.1109/BigData.2018.8622376

312 P. Tampakis et al.

22. Orakzai, F., Calders, T., Pedersen, T.B.: k/2-hop: fast mining of convoy patterns with effective
pruning. Proc. VLDB Endowment 12(9), 948–960 (2019)

23. Ord, J.K., Getis, A.: Local spatial autocorrelation statistics: distributional issues and an
application. Geogr. Anal. 27(4), 286–306 (1995)

24. Panagiotakis, C., Tziritas, G.: A speech/music discriminator based on RMS and zero-crossings.
IEEE Trans. Multimedia 7(1), 155–166 (2005)

25. Panagiotakis, C., Kokinou, E., Vallianatos, F.: Automatic p-phase picking based on local-
maxima distribution. IEEE Trans. Geosci. Remote Sens. 46(8), 2280–2287 (2008)

26. Pelekis, N., Kopanakis, I., Kotsifakos, E.E., Frentzos, E., Theodoridis, Y.: Clustering uncertain
trajectories. Knowl. Inf. Syst. 28(1), 117–147 (2011)

27. Pelekis, N., Tampakis, P., Vodas, M., Doulkeridis, C., Theodoridis, Y.: On temporal-
constrained sub-trajectory cluster analysis. Data Min. Knowl. Discov. 31(5), 1294–1330 (2017)

28. Pelekis, N., Tampakis, P., Vodas, M., Panagiotakis, C., Theodoridis, Y.: In-DBMS sampling-
based sub-trajectory clustering. In: EDBT, pp. 632–643 (2017)

29. Rogers, S., Langley, P., Wilson, C.: Mining GPS data to augment road models. In: Proceedings
of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 104–113 (1999)

30. Schroedl, S., Wagstaff, K., Rogers, S., Langley, P., Wilson, C.: Mining GPS traces for map
refinement. Data Min. Knowl. Discov. 9, 59–87 (2004)

31. Shan, Z., Wu, H., Sun, W., Zheng, B.: Cobweb: a robust map update system using GPS
trajectories. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive
and Ubiquitous Computing, pp. 927–937 (2015)

32. Steiner, A., Leonhardt, A.: A map generation algorithm using low frequency vehicle position
data contents. In: 90th Annual Meeting of the Transportation Research Board (2011)

33. Tampakis, P., Pelekis, N., Andrienko, N.V., Andrienko, G.L., Fuchs, G., Theodoridis, Y.: Time-
aware sub-trajectory clustering in hermes@postgresql. In: ICDE, pp. 1581–1584 (2018)

34. Tampakis, P., Doulkeridis, C., Pelekis, N., Theodoridis, Y.: Distributed subtrajectory join on
massive datasets. ACM Trans. Spatial Algorithms Syst. 6(2) (2019). https://doi.org/10.1145/
3373642

35. Tampakis, P., Pelekis, N., Doulkeridis, C., Theodoridis, Y.: Scalable distributed subtrajectory
clustering. In: IEEE BigData 2019, pp. 950–959 (2019)

36. Vlachos, M., Gunopulos, D., Kollios, G.: Discovering similar multidimensional trajectories.
In: ICDE, pp. 673–684 (2002)

37. Wang, S., Wang, Y., Li, Y.: Efficient map reconstruction and augmentation via topological
methods. In: Proceedings of the 23rd SIGSPATIAL International Conference on Advances in
Geographic Information Systems, pp. 25:1–25:10 (2015)

38. Zhang, L., Thiemann, F., Sester, M.: Integration of GPS traces with road map. In: Proceedings
of the Third International Workshop on Computational Transportation Science, pp. 17–22
(2010)

39. Zheng, Y.: Trajectory data mining: an overview. ACM Trans. Intell. Syst. Technol. 6(3), 29:1–
29:41 (2015)

40. Zygouras, N., Gunopulos, D.: Corridor learning using individual trajectories. In: IEEE MDM,
pp. 155–160 (2018)

https://doi.org/10.1145/3373642
https://doi.org/10.1145/3373642

	10 Offline Trajectory Analytics
	10.1 Introduction
	10.1.1 About Mobility Data Analytics

	10.2 Background
	10.2.1 (Sub)trajectory Clustering
	10.2.2 Hotspot Analysis
	10.2.3 Data-Enriched Mobility Networks

	10.3 Distributed Trajectory Clustering
	10.3.1 Distributed Whole-Trajectory Clustering
	10.3.1.1 Clustering Trajectories in a Distributed Way with Spark MLlib

	10.3.2 Distributed Subtrajectory Clustering
	10.3.2.1 Definitions
	10.3.2.2 Distributed Subtrajectory Join
	10.3.2.3 Distributed Trajectory Segmentation
	10.3.2.4 Distributed Subtrajectory Clustering
	10.3.2.5 Experimental Results

	10.4 Distributed Hotspot Analysis
	10.4.1 Definitions
	10.4.2 Exact THS Algorithm
	10.4.3 An Approximate Algorithm: aTHS
	10.4.4 Experimental Study
	10.4.4.1 Experimental Results

	10.5 Distributed Data-Enriched Mobility Networks
	10.5.1 Definitions
	10.5.2 Discovering Data-Enriched Mobility Networks
	10.5.2.1 Step 1: Enriched Nodes Extraction
	10.5.2.2 Step 2: Enriched Paths Discovery

	10.5.3 The SeaAirNet Algorithm
	10.5.4 Experimental Results
	10.5.4.1 Datasets
	10.5.4.2 Qualitative Results in Aviation
	10.5.4.3 Qualitative Results in Maritime

	10.6 Related Work
	10.7 Discussion: Lessons Learnt
	References

