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This book is dedicated to all those who
struggle for a better own and others’
trajectory with philotimo,1 respect and with
no obsession.

1Philotimo (or filotimo) is a Greek word, which is difficult to translate. One may start from here,
among other references: https://en.wikipedia.org/wiki/Philotimo.

https://en.wikipedia.org/wiki/Philotimo


Preface

Spatiotemporal mobility data has a significant role and impact on the global
economy and our everyday lives. The improvements along the last decades in
terms of data management, planning of operations, security of operations, infor-
mation provision to operators and end-users have been driven by location-centered
information. While a shift of paradigm regarding mobility data towards trajectory-
oriented tasks is emerging in several domains, the ever-increasing volume of data
emphasizes the need for advanced methods supporting detection and prediction
of events and trajectories, supplemented by advanced visual analytic methods,
over multiple heterogeneous, voluminous, fluctuating, and noisy data streams of
moving entities. This book provides a comprehensive and detailed description
of Big Data solutions towards activity detection and forecasting in very large
numbers of moving entities spread across large geographical areas. Specifically,
following a trajectory-oriented approach, this book reports on the state-of-the-
art methods for the detection and prediction of trajectories and important events
related to moving entities, together with advanced visual analytics methods, over
multiple heterogeneous, voluminous, fluctuating, and noisy data streams from
moving entities, correlating them with data from archived data sources expressing,
among others, entities’ characteristics, geographical information, mobility patterns,
regulations, and intentional data (e.g., planned routes), in a timely manner. Solutions
provided are motivated, validated, and evaluated in user-defined challenges focusing
on increasing the safety, efficiency, and economy of operations concerning moving
entities in the air-traffic management and maritime domains.

The book contents have been structured into six parts:
The first part provides the motivating points and background for mobility

forecasting supported by trajectory-oriented analytics. It presents specific problems
and challenges in the aviation (air-traffic management) and the maritime domains
and clarifies operational concerns and objectives in both domains. It presents
domain-specific terminology used in examples and cases, in which technology
is demonstrated, evaluated/validated, throughout the book. Equally important to
the above is the presentation of the data sources exploited per domain, the big
data challenges ahead in both domains, and of course, the requirements from

vii



viii Preface

technologies presented in subsequent parts of the book. These chapters present data
exploited for operational purposes in the aviation and maritime domains and provide
an initial understanding of spatiotemporal data through specific examples. They also
present challenges and motivating points by means of operational scenarios where
technology can help, putting the technologies presented in subsequent parts of the
book in a unique frame: This helps us understand why technological achievements
are necessary, what are the domain-specific requirements driving developments
in analytics, data storage, and processing, and what are the data processing, data
management, and data-driven analytics tools needed to advance operational goals
towards trajectory-based operations.

The second part focuses on big data quality assessment and processing, as applied
in the data sources and according to the requirements and objectives presented in
the first part of the book. This, second part of the book, presents novel technologies,
appropriate to serve mobility analytics components that are presented in subsequent
sections. In doing so, workflows regarding data sources’ quality assessment via
visual analytics methods are considered to be essential to understand inherent
features and imperfections of data, affecting the ways data should be processed
and managed, as the first section of this part shows. In addition to this, methods
for online construction of streamed data synopses are presented, towards addressing
big data challenges presented by surveillance, mostly, data sources.

The third part of this book specifies solutions towards managing big spatiotem-
poral data: The first section specifies a generic ontology revolving around the
notion of trajectory so as to model data and information that is necessary for
analytics components. This ontology provides a generic model for constructing
knowledge graphs integrating data from disparate data sources. In conjunction
to this, this part describes novel methods for integrating data from archived and
streamed data sources. Special emphasis is given to enriching data streams and
integrating streamed and archival data to provide coherent views of mobility: This
is addressed by real-time methods discovering topological and proximity relations
among spatiotemporal entities. Finally, distributed storage of integrated dynamic
and archived mobility data—i.e. large knowledge graphs constructed according to
the generic model introduced—are within focus.

The next part focuses on mobility analytics methods exploiting (online) pro-
cessed, synopsized, and enriched data streams as well as (offline) integrated,
archived mobility data. Specifically, online future location prediction methods
and trajectory prediction methods are presented, distinguishing between short-
term and the challenging long-term predictions. Recognition of complex events
in challenging cases for detecting complex events is thoroughly presented. In
addition to this, an industry-strong maritime anomaly detection service capable
of processing daily real-world data volumes is presented. This part focuses also
on offline trajectory analytics, addressing trajectory clustering and detection of
routes followed by mobile entities. Novel algorithms for subtrajectory clustering
are proposed and evaluated.

The fifth part presents how methods addressing data management, data pro-
cessing, and mobility analytics are integrated in a big data architecture that
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has distinctive characteristics when compared to known big data paradigmatic
architectures. We call this architectural paradigm, which is based on well-defined
principles for building analytics pipelines δ. This paradigm is instantiated to a
specific architecture realizing the datAcron integrated system prototype. This part
presents the software stack of the datAcron system, together with issues concerning
individual, online, and offline components integration.

The last part focuses on important ethical issues that research on mobility
analytics should address: This is deemed to be crucial, given the growth of interest
in that topic in computer science and operational stakeholders, necessitating the
sharing of data and distributing the processing among stakeholders.

All chapters present background information on the specific topics they address,
detailed and rigorous specification of scientific and technological problems consid-
ered, and state-of-the-art methods addressing these problems, together with novel
approaches that authors have developed, evaluated, and validated, mainly during
the last 3 years of their involvement in the datAcron H2020 ICT Big Data Project.
Evaluation and validation results per method are presented using data sets from
both, maritime and aviation domain, showing the potential and the limitations of
methods presented, also according to the requirements specified in the first part
of the book. The chapters present also technical details about implementations of
methods, aiming to address big data challenges, so as to achieve the latency and
throughput requirements set in both domains.

In doing so, this book aims to present a reference book to all stakeholders in
different domains with mobility detection and forecasting needs and computer sci-
ence disciplines aiming to address data-driven mobility data exploration, processing,
storage, and analysis problems.

I would like to take the opportunity to thank everybody who contributed to the
exciting effort of developing mobility data processing, storage, analysis solutions
in time-critical domains, whose state of the art is summarized in this book. These,
as part of a much wider community, include all co-editors and chapter authors of
this publication. This book is a concerted effort of many people who worked and
continue to work together in different, but always exciting, lines of research for
mobility analytics.

Piraeus, Greece George A. Vouros
February 2020
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Part I
Time Critical Mobility Operations

and Data: A Perspective from the Maritime
and Aviation Domains

The first part of this book provides the motivating points and background for
mobility forecasting supported by trajectory-oriented analytics. It presents specific
problems and challenges in the Aviation (Air Traffic Management (ATM)) and the
Maritime domains, clarifies operational concerns and objectives in both domains,
and explains domain-specific terminology. It presents challenging cases which
motivate technology presented in subsequent chapters of this book and which drive
evaluation and validation of solutions presented. Equally important to the above is
the presentation of the data sources exploited, the big data challenges ahead in both
domains and, of course, the requirements from technologies presented in subsequent
parts of the book.



Chapter 1
Mobility Data: A Perspective
from the Maritime Domain

Cyril Ray, Anne-Laure Jousselme, Clément Iphar, Maximilian Zocholl,
Elena Camossi, and Richard Dréo

Abstract This chapter overviews maritime operational situations and underlying
challenges that the automated processing of maritime mobility data would support
with the detection of threats and abnormal activities. The maritime use cases and
scenarios are geared on fishing activities monitoring, aligning with the European
Union Maritime Security Strategy. Six scenarios falling under three use cases are
presented together with maritime situational indicators expressing users’ needs
when conducting operational tasks. This chapter also presents relevant data sources
to be exploited for operational purposes in the maritime domain, and discusses the
related big data challenges to be addressed by algorithmic solutions. An integrated
dataset of heterogeneous sources for maritime surveillance is finally described,
gathering 13 sources. This chapter concludes on the generation of specific datasets
to be used for algorithms evaluation and comparison purposes.

1.1 Maritime Operational Scenarios: Challenges
and Requirements

Effective Maritime Situation Awareness (MSA) requires not only detecting, track-
ing, and classifying vessels but also detecting, classifying, and predicting their
behavior. This challenging and crucial task is at the core of the compilation of a

The material presented in this chapter is a compilation of excerpts from [7, 8, 14, 17].
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maritime picture,1 which involves extracting relevant contextual information (for
instance, maritime routes or loitering areas) but also monitoring the real-time
maritime traffic. The use of a set of sensors mixing cooperative self-identification
systems such as the Automatic Identification System (AIS) and non-cooperative
systems such as coastal radars or satellite imagery provides complementary and
redundancy in information, as necessary to overcome the quite common spoofing
of AIS signals and increase the clarity and the accuracy of the maritime picture. In
many cases, intelligence information can also be helpful in refining and guiding the
search in the huge amount of data to be processed, filtered, and analyzed, as well as
representing the contextual information for some MSA problems.

Ensuring security and control of fishing activities is one of the most important
aspect of the European Union Maritime Security Strategy (EUMSS) Action Plan,2

which defines several strategic interests for the European Union and the Member
States. Europe is the world’s biggest market for seafood and the aim of the EUMSS
is to promote better international governance across the world’s seas and oceans to
keep them clean, safe, and secure. Since fishing is an activity that exploits common
natural resources, it needs to be regulated to safeguard fair access, sustainability,
and profitability for all.

The Big Data Analytics for Time Critical Mobility Forecasting (datAcron)
project aimed to develop novel methods for threat and abnormal activity detection
in very large fleets of moving entities. To motivate and support the development
of vessel movement analytics algorithms within datAcron, we present below
operational challenges linked to the monitoring of fishing activities in European
waters, through six scenarios organized in three use cases. Relevant Maritime
Situational Indicator (MSI)s express users’ needs for appropriate awareness of the
situation, targeting expected outcomes for algorithms.

1.1.1 Monitoring Fishing Activities

Fishing activity monitoring is a complex maritime surveillance mission that encom-
passes several maritime risks and environmental issues such as environmental
destruction and degradation but also maritime accidents, Illegal, Unreported, and
Unregulated (IUU) fishing and trafficking problems. In particular, IUU fishing is a
global threat to the marine environment and honest fishermen alike, whose global
cost is estimated in about 10 Billion Euros per year. The European Union, in
collaboration with International organizations, is committed to fighting IUU fishing
worldwide.

1The maritime picture is a geographic presentation of all contacts in the maritime environment
arising from all available sources, commercial or military.
2EUMSS Action Plan: http://ec.europa.eu/maritimeaffairs/policy/maritime-security/doc/20141216
-action-plan_en.pdf (published December 2014), accessed January 2020.

http://ec.europa.eu/maritimeaffairs/policy/maritime-security/doc/20141216-action-plan_en.pdf


1 Mobility Data: A Perspective from the Maritime Domain 5

Besides the detection of IUU fishing activities, safety is another core issue of
the EUMSS. In times of peace, fishing is one of the deadliest occupations. Fishing
vessels may fish in areas with dense traffic, like traffic lanes and waiting areas, and
to keep the fishing place hidden from others, they sometimes intentionally switch
off their AIS device while fishing, endangering themselves and the surrounding
traffic. Therefore, preserving the maritime environment from illegal fishing and
ensuring fishing safety requires live processing and prediction of fishing vessel
trajectories, identifying movement patterns (e.g., close-encounters, change in speed
and course), detecting vessel activities (e.g., fishing, loitering, tugging, rendezvous),
forecasting potential collisions between surrounding ships within a typical time
scale of 5–15 min.

The maritime use cases and associated scenarios3 described herein have been
developed in collaboration with operational experts to capture domain requirements.
The scenarios highlight the needs for live tracking of fishing vessels and surrounding
traffic, as well as of contextually enhanced offline data analytics, including, for
instance, cluster and spatial analysis together with motion pattern detection.

These scenarios have been elaborated in order to (1) stress trajectory and event
detection, prediction and visualization algorithms against big data challenges in
terms of velocity, veracity, variety, and volume (see Sect. 1.2) and (2) provide
operational relevance to their future use. Each scenario of the three use cases
of Secured fishing, Maritime sustainable development, and Maritime security
highlights different users’ goals and possible actions, as well as information needs
expressed in terms of Maritime Situational Indicators as illustrated in Table 1.1.

1.1.1.1 Secured Fishing

Fishing is known to be one of most dangerous activity. Detecting and preventing
collisions between ships and by optimizing rendezvous between rescuing ships in
proximity of a vessel in danger and emergency services certainly contributes to
Secured fishing, as detailed in the two scenarios below.

Collision Avoidance

Collisions involving fishing vessels are frequent, not only while fishing, which
makes collision avoidance crucial for secured fishing. Figure 1.1a shows a collision
between a cargo and a fishing vessel, which occurred during the night between
the fishing vessel Sokalique and the cargo Ocean Jasper. Ocean Jasper continued

3While “[a] use case is the story of how the business or system and the user interact,” the
“[s]cenarios tell the full story” [4].
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Fig. 1.1 Illustrations of operational scenarios for monitoring fishing activities. (a) Secured fishing:
Collision between a cargo and a fishing vessel. (b) Secured fishing: Accident on a fishing ship.
(c) Sustainable development: Track of the Komarovo in September 2013 (source Global Fishing
Watch). (d) Sustainable development: Estimated fishing activity for scallop dredging vessels per
month [9]. (e) Maritime security: The vessel Phoenix (screenshot from MarineTraffic.com). (f)
Maritime security: Path of the Dona Liberta (Source SkyTruth)

her4 route without assisting the sinking Sokalique, which asked the ships in her
vicinity for help. While vessels maintain the responsibility to comply with Collision
Regulations (COLREGs),5 data analytics techniques may be used to enhance the
situational awareness between vessels, specifically when it is anticipated that a

4In the remainder of the chapter vessels are referred to as “she” because it is commonplace in the
maritime domain.
5COLREGs: www.imo.org/en/About/Conventions/ListOfConventions/Pages/COLREG.aspx
(accessed January 2020).

MarineTraffic.com
www.imo.org/en/About/Conventions/ListOfConventions/Pages/COLREG.aspx
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vessel will be required to “give way” to a fishing vessel (sailing vessels and power-
driven vessels).

Scenario: Secured fishing use case—collision avoidance.

Goal: In order to prevent a collision of fishing vessels with other ships, in the
collision avoidance scenario the Vessel Traffic System (VTS) operator wants to
predict which other vessels (such as cargos, tankers, ferries) will cross the areas
where the fishing vessels are fishing.

Actions: Upon the prevention of possible collisions, the user can send a warning
to the two vessels, so they can perform the appropriate action. The captains of the
ships will base their decisions on the potential risk highlighted by the monitoring
system.

Vessel in Distress/Man Overboard

Beside collisions, technical problems or accidents occurring on-board can put the
fishing vessel in difficulty. Figure 1.1b displays the AIS data of a fishing vessel
before and after an accident on-board. After leaving the port, the fishing vessel went
towards a first fishing zone, then disappeared (i.e., likely switched the AIS off).
After 35 min, the vessel re-appeared (the AIS unit was switched on), moved towards
another fishing area, and switched off the AIS transmitter for another 35 min. Then,
it re-appeared again, moved towards a third fishing area where it started fishing
(AIS was off). The accident location, highlighted with a red ellipse in Fig. 1.1b,
occurred in the morning, 7 h after the AIS unit was switched off. The AIS on-board
was re-enabled immediately after the accident while the ship was heading back to
the port. The rescue helicopter reached the boat 1 h later (red circle in the figure).
A system that could alert vessels in the vicinity of a vessel in distress or in a Man
Overboard (MOB) situation would be a valuable capability to optimize rescuing
operations. Moreover, the information from Emergency Position Indicating Radio
Beacon (EPIRB) and MOB equipped with AIS devices (fishermen sometimes wear
small individual AIS beacon broadcasting in a range of 5–10 miles), if integrated in
the system, could provide almost immediate event cueing.

Scenario: Secured fishing use case—vessel in distress.

Goal: In order to effectively intervene and help a vessel in distress, the VTS
operator wants to identify the vessels in the vicinity of the vessel in distress,
so they can provide early assistance while awaiting for the Search and Rescue
team. In the case of a collision and escape of the responsible vessel, the VTS
operator also wants to predict the trajectory of the fugitive.

Actions: Once the position of the vessel in distress/MOB is known or predicted,
the VTS operator alerts the vessels in proximity, and the Navy or the Coast
Guards launch the Search And Rescue (SAR) operation, involving helicopters
and, if necessary, rescue vessels. In case of the collision and escape, the Navy or
the Coast Guards start an interception of the fugitive.
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1.1.1.2 Maritime Sustainable Development

Estimating the spatial distribution and the intensity of fishing activities is necessary
for natural resources management, impact assessment, and maritime planning.
However, the access to such information at high resolution is still a challenge.
Since the European Union adopted the Vessel Monitoring System (VMS) to monitor
fishing vessels, significant advances have been made [10]. Nevertheless, the results
achievable by VMS analysis are limited by the restricted access and incompleteness
of VMS data. Indeed, VMS data are confidential, and the use of the VMS is not
mandatory for small vessels (i.e., less than 12 m long). In addition, VMS data
analysis is usually conducted at a spatial resolution from 1 to 10 km, which can
be too coarse for secure fishing operations.

Recently, the AIS data has been considered for the monitoring of fishing activities
[11]. Characterizing the potential impacts of legal and illegal fishing activities
on species and on the geographical areas and providing relevant information for
European resources management based on AIS data remains however challenging.
Two typical scenarios for maritime sustainable development can be distinguished:
Protection of marine areas from fishing and fishing pressure on area.

Protection of Areas from Fishing

As stated in the recent report from Global Fishing Watch,6 the IUU fishing around
the world “has escalated rapidly as the chance for profit outweighs concerns about
the health and sustainability of our oceans.” Among others, the annex of European
report COM/2016/0134 final—2016/074 COD defines regulated areas for fishing.7

These areas have potentially associated temporal fishing constraints specifying
periods during which fishing is legal and periods during which fishing is prohibited.

Figure 1.1c shows the trajectory of the Komarovo, a trawler registered in Russia.
It appears to be fishing five times inside the Dzhugdzhursky State Nature Reserve
in September 2013. The Komarovo has fished there at least for 13 days exhibiting
different behaviors (e.g., slow motions, fast traveling speed, erratic use of the AIS).

Scenario: Maritime sustainable development use case—protection of areas.

Goal: In order to control fishing in areas at the European level, the operator from
the fisheries control agency in charge of monitoring an area to protect it from
fishing needs to monitor ships in real time. Entrances, exits, and movements
inside the surveyed areas have to be detected. Taking into consideration the
identity declared by the ships as well as their type monitoring systems should
evaluate their right to be in these areas of interest correlating with the information
from the fleet register, fishing licenses, blacklist, and historical data. Detected and

6www.oceana.org (accessed January 2020).
7There are about 6600 marine protected areas covering about 2% of the world’s oceans.

www.oceana.org
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visualized fishing patterns together with predicted fishing polygons would help
the operator to monitor the fishing grounds.

Actions: Besides the control of fishing itself, there are regions that have to
be protected from all activities as they correspond to geographic areas where
protected species live (e.g., marine reserves). The operator from the fisheries
control agency would also be alerted about ships navigating and stopping in
such areas. Detected offenders would be tracked, their trajectory and destination
verified. Navy, Coast Guards, or port authorities would control them and verify
their freight. Erratic use of the AIS to mask such IUU should result in blacklisting
a fishing vessel.

Fishing Pressure on Areas (Density of Fishing)

Regular and legal fishing activities can also have negative impact on the maritime
environment and sea resources. There is an increasing concern for the preservation
of natural resources against overfishing. Developed by Halpern in 2007, the concept
of cumulative impacts mobilizes methods of spatial and quantitative analysis.
It considers the potential impact of anthropogenic pressures on the ecosystem
components. This has been applied to evaluate spatial and temporal changes in
cumulative human impacts on the world’s ocean over a period of 5 years [3].
The identification of fishing efforts, based on AIS data, has been also recently
considered by [12]. Figure 1.1d shows the estimated fishing activity for scallop
dredging vessels per month in Brest bay. Fishing areas and corresponding fishing
efforts have been identified by the analysis AIS data and the discovery of typical
dredging patterns (speedbased). Algorithms calculating cumulative fishing activities
over time and seasons would be valuable for the identification of overfishing areas
and consequently for the preservation of marine resources.

Scenario: Maritime sustainable development use case—fishing pressure.

Goal: In order to identify overfishing areas, the operator from the fisheries control
agency wants to identify fishing areas, visualize and evaluate changes over
time/seasons, and see the cumulative impact.

Actions: Upon detection of intensive fishing areas and regarding concerned
species, local, national, and European authorities provide new regulations and
update the list of protected areas.

1.1.1.3 Maritime Security

Fishing vessels are often used to conceal illegal activities that may affect maritime
security. In particular, illegal immigration or human trafficking and generically
illicit activities occurring at sea are of primary concerns of European authorities,
as described in the two scenarios below.
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Human Trafficking

Human trafficking dramatically increased in the last years, as a large number of
migrants risk their lives trying to reach Europe through Mediterranean routes. While
the majority of the vessels transporting migrants are small vessels that do not
transmit AIS, fishing vessels have been known to be engaged in these activities as
well. Accordingly, a fishing vessel detected along a common smuggling route and
not engaged in fishing may be identified by the Maritime Security authorities as a
“suspicious vessel.” For instance, the fact the vessel would lack the fishing gear may
suggest it might have been involved in an illicit activity and further investigation
may be necessary. In some cases, the presence of a vessel in the area can be licit,
but it can still raise an alarm. For instance, the Phoenix, the vessel in Fig. 1.1e, is a
former trawler (fishing vessel) reconditioned by an Non-Governmental Organization
(NGO) to help migrants. Her presence in an area under surveillance may be an
indicator of nearby migrant vessels.

Scenario: Maritime security use case—human trafficking.

Goal: In order to detect and rescue migrants and identify human trafficking activ-
ities, the operator from the border control services wants to detect fishing vessels
that are heading within migrants routes or loitering in these areas. Additional
information on such vessels (fishing gear or previous negative records) should be
at hand to help identify them and predict their movements.

Actions: Once a vessel is detected traveling within a human trafficking route, the
operator from the border control services would further investigate on the vessel
records and decide to launch a mission for escorting it.

Illicit Activities

A number of criminal activities conducted at sea such as piracy, environmental
pollution, and drug smuggling are often linked to transnational crime organizations
and are difficult to be detected, thwarted, and prosecuted. Predicted and real-
time detection of vessels rendezvous in areas known for trafficking, or any other
“anomalous” behavior as defined by the operator from the border control services,
could enhance the ability to detect and intervene in real time and to prosecute illicit
activities.

Figure 1.1f displays the path of the rusty refrigerated cargo vessel Dona Liberta,
followed from 2011 to 2014 along the coasts of Africa and Europe. During that
period, the Dona Liberta was reported to abandon crew members, abuse stowaways,
dump oil, and commit other crimes along the way.8 Port calls were the main means
of locating the ship, which often switched off the AIS.

8http://www.nytimes.com/2015/07/19/world/stowaway-crime-scofflaw-ship.html?_r=0 (accessed
January 2020).

http://www.nytimes.com/2015/07/19/world/stowaway-crime-scofflaw-ship.html?_r=0
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Scenario: Maritime security use case—illicit activities.

Goal: In order to prevent and act against illicit activities at sea, the operator from
the border control services wants to detect vessels following a predefined or
customized suspicious behavior, such as heading or loitering in an area known
for trafficking (rendezvous), identify the vessels involved, and crosscheck them
against existing records of illicit activities. The operator from the border control
services wants also to predict the next positions of the vessels involved.

Actions: Once a rendezvous or another suspicious behavior is detected, the
operator from the border control services may decide to launch a mission for
intercepting the suspicious vessels with helicopters or by sea.

1.1.2 Maritime Situational Indicators

For each scenario, user information needs are expressed through combinations of
MSIs. MSIs match maritime events of interest, such as behavioral patterns and
singularities in vessel traffic data. Twenty-eight (28) MSIs have been formalized
in datAcron (cf. [7]). This list of MSIs is a synthesis of outcomes of workshops
gathering user’s requirements on important events and indicators to be detected
reported in the literature (e.g., [1, 18]). These MSIs have been selected according
to their ability to be automatically detected or predicted by processing mainly AIS
data. For instance, any MSI referring to visual sighting has been excluded from this
list. Table 1.1 lists meaningful samples of the associated MSIs to the three use cases
and associated six scenarios. A complete specification is available in [7].

For instance, the collision avoidance scenario addresses the task of protection
of fishing vessels from collision with large vessels (cargos, tankers, ferries). With
the help of dedicated big data analytics techniques, maritime operators should be
able to warn fishing vessels at risk of collision and warn large vessels heading
to fishing areas. As illustrated in Table 1.1, relevant MSIs in this scenario help
the operators identify vessels potentially at risk (e.g., vessels engaged in fishing,
loitering or those whose movement mobility is affected, with null speed, drifting, or
that are positioned on a maritime route), large vessels doing unexpected maneuvers
(e.g., vessels that suddenly change course), or vessels in proximity to other vessels,
which could participate in SAR operations.

1.2 Big Mobility Data in the Maritime Domain

The development of algorithms processing maritime data in real time and covering
large areas requires datasets prepared to challenge the components of a system
against big data dimensions, such that velocity, veracity, variety, and volume stress
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Table 1.1 Relevant Maritime Situational Indicators for the maritime use cases and scenarios
(from [16], elaborated from [7, 8])

Use case Scenario Description MSIs, (e.g.)

Collision
prevention

Protecting fishing
vessels from
collision with
large vessels
(cargos, tankers,
ferries)

MSI#3 On a maritime route

MSI#4 Proximity of other vessels

MSI#6 Null speed

MSI#12 Change of course

MSI#21 Movement mobility affected

MSI#23 Engaged in Fishing

MSI#26 Loitering

MSI#27 Dead in water/drifting
Secured
fishing

Vessel in distress
Man Overboard
(SAR)

Provide early
assistance to a
vessel in distress

MSI#4 Proximity of other vessels

MSI#6 Null speed

MSI#16 AIS emission has interrupted

MSI#21 Movement mobility affected

MSI#23 Engaged in Fishing

MSI#25 In SAR operation

MSI#26 Loitering

MSI#27 Dead in water/drifting

Protection of
ecological areas

Protect specific
areas from illegal
fishing activities

MSI#2 Within a given area

MSI#6 Null speed

MSI#13 Course not compatible with
expected destination

MSI#16 AIS emission has interrupted

MSI#18 AIS error detection

MSI#26 LoiteringSustainable
development

Fishing pressure

Estimate and
predict fishing
pressure, identify
areas at risk

MSI#2 Within a given area

MSI#4 Proximity of other vessels

MSI#6 Null speed

MSI#16 AIS emission has interrupted

MSI#23 Engaged in fishing

MSI#26 Loitering

Migration and
human
trafficking

Detect possible
human trafficking
involving fishing
vessels (or the like)

MSI#13 Course not compatible with
expected destination

MSI#15 No AIS emission/reception

MSI#16 AIS emission has interrupted

MSI#17 Change of AIS static informa-
tionMaritime

security Illicit activities Detect suspicious
activities involving
fishing vessels

MSI#1 Close to a critical infrastructure

MSI#4 Proximity of other vessels

MSI#5 In stationary area

(continued)
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Table 1.1 (continued)

Use case Scenario Description MSIs, (e.g.)

MSI#7 Change of speed

MSI#12 Change of course

MSI#13 Course not compatible with
expected destination

MSI#15 No AIS emission/reception

MSI#17 Change of AIS static informa-
tion

MSI#18 AIS error detection

MSI#26 Loitering

MSI#28 Rendezvous

the algorithms in realistic conditions as outlined in the fishing monitoring use cases
presented in Sect. 1.1.

The current section first discusses the four big data challenges, listing relevant
data sources for supporting the monitoring of maritime activities related to fishing
(Sect. 1.2.1). The integrated dataset prepared for testing algorithms against these
four challenges in this specific operational context is then presented in Sect. 1.2.2,
while Sect. 1.2.3 presents enriched datasets encoding specific operational scenarios.

1.2.1 Maritime Big Data Challenges

MSA requires processing in real time a high volume of information of different
nature (numerical, natural language statements, objective or subjective assessments,
etc.), originating from a variety of sources (like sensors and humans, respectively,
hard and soft sources), with a lack of veracity (i.e., being uncertain, imprecise,
vague, ambiguous, incomplete, conflicting, incorrect, etc.). The algorithms to be
designed in support to MSA should cope with these big data challenges and this
ability should be reflected in the quality of the results provided.

1.2.1.1 Variety

Different types of data are available and only if properly combined and integrated
they can provide useful information. Different sensor technologies are being
developed and the data coming from multiple sources need to be cleaned up from
inconsistencies, standardized in format and summarized. The set of sources of
data to be processed should cover a wide range of variety to benefit from their
complementarity and redundancy:
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• Physical sensors such as AIS, VMS, coastal or on-board radars as traditionally
used for tracking objects, synthetic aperture imagery, cameras, etc.;

• Automated processors such as trackers, Automatic Target Recognition algo-
rithms, or classifiers in general;

• Human sources including operators or analysts themselves possibly manipulating
lower level data (e.g., videos, radar images) to reflect the chain of information
processing, from automation to possible subjective assessments, intelligence
reports;

• Databases as records of past events (e.g., piracy, accidents, illegal fishing
activities), records of vessels such as the Lloyds database9 or blacklisted vessels.

Other sources could be considered as well such as social media, or open-source
media.

1.2.1.2 Veracity

Data may lack of veracity which has to be handled by the processing method. For
instance, position reports provided by the AIS data are incomplete, intermittent, with
errors and the messages can be spoofed (e.g., fields may be intentionally wrongly
filled, such as the type of vessel but also the MMSI).

1.2.1.3 Volume

The growing number of sensors (in coastal and satellite networks) makes the
coverage of wide areas more effective, but the data processing techniques have to be
designed to handle this large volume of data. The need for methods able to scale in
time and space the processing of vessel motion data is highly critical for maritime
security and safety. The interactive visualization of such a volume of data is also
challenging.

1.2.1.4 Velocity

The analysis of streaming data from multiple sensors is essential to detect critical
events at sea as soon as they occur. This poses the emphasis on incremental
techniques able to process new data as soon as they are added to those already
processed, and on methods able to detect critical events by processing data in a
continuous way.

9https://www.lloydslistintelligence.com.

https://www.lloydslistintelligence.com


1 Mobility Data: A Perspective from the Maritime Domain 15

1.2.1.5 Context

Moreover, the context in which maritime data is processed and analyzed is a crucial
aspect to be characterized within the use case. It is a relative notion that depends
on the user’s goal. For instance, the maritime route is contextual information for
vessel’s destination prediction, while the maritime navigation rules is contextual
information for the route extraction problem. Consequently, the user’s goal highly
influences what contextual information is required for the analysis purposes tar-
geted. We identify the following dimensions of context to be considered:

• Areas of interest: It should include all information that could be extracted
relatively to the area of interest. For instance, harbor zones characteristics, such
as water depths, channels, restricted areas, protected areas, fishing areas, borders,
harbors (fishing, recreational, etc.), shipping lanes, ferry lanes, military and
Liquid Natural Gas (LNG) anchorage areas, islands, offshore platforms, etc.;

• Rules: It should gather together the legislation about navigation or electronic
emission such as the AIS transmission or other mandatory reports;

• Patterns of life: it should give information about past behaviors, usually followed
patterns, routes, etc. It concerns both individual vessels and groups of vessels;

• Meteorological conditions: The Meteorological and Oceanographic (METOC)
information is mainly about the sea state, the weather, the wind;

• Traffic density: This is a current contextual information deduced from the number
of vessels in a given area;

• Time/period: This could be either the period of the day (night versus day, morning
versus afternoon), but also seasonal information;

• User: The user’s characteristics are considered as part of the context and are
crucial components, as information needs are directly derived from the role
or mission (see examples of users and missions in Sect. 1.1.1). The user’s
characteristics include the role and hierarchical position together with a possible
communication network, the mission, the decision as the list of possible actions,
and the reaction time.

As an illustration of the velocity and volume challenges, the IMIS Global
company provides a stream of ships’ positions covering the majority of European
waters of about 5,300,000 positioning messages per 24 h (cf. Fig. 1.2).

Dealing with the variety and veracity of data is as challenging as dealing
with their volume, both in terms of processing and visualization. Mastering the
processing of variety and veracity of data is absolutely required where data with
known issues of quality are analyzed despite a lack of “ground truth.” It is
also a means of understanding the quality of the methods that are processing
the data, typically: data compression, event detection and prediction, interactive
visualization.

With this aim, we performed a board inventory and detailed characterization of
available data sources that could contribute to improve MSA of the user fulling the
tasks described by the use cases (see Sect. 1.1.1). The resulting reference dataset is
specifically designed to challenge research solutions in terms of variety and veracity.
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Fig. 1.2 One month of ships’ AIS positions in European waters (data from IMIS Global)

Furthermore, it has been enriched (e.g., annotation) or degraded (e.g., contacts have
been removed, fields emptied) for the design of operational scenarios as illustrated
in Sect. 1.2.3. More details about the methodology of semi-automatic generation of
scenarios and associated pseudo-synthetic datasets can be found in [6, 21, 23].

1.2.2 Heterogeneous Integrated Dataset for Maritime
Intelligence, Surveillance and Reconnaissance (ISR)

We identified over 40 data sources, classified within 16 categories (cf. [14]). Based
on this preliminary study, a representative heterogeneous maritime dataset was built
to support the algorithms developments. Table 1.2 summarizes the data prepared and
aggregated for this purpose, detailing, for each data piece, type, source, originator,
file format (with Comma Separated Value (CSV), JavaScript Object Notation
(JSON), Environmental Systems Research Institute, Inc. (ESRI) shapefiles), spatial
and temporal extent, size, and approximate average stream rate (with msg, messages;
obs, observations).

As illustrated in Table 1.2, the maritime reference dataset relies on the most
widely used maritime reporting system, AIS. The AIS is one of the electronic
systems that enable ships to broadcast their position and nominative information via
radio communication. In addition to this system, to understand maritime activities
and their impact on the environment, spatially and temporally aligned maritime
data capturing additional features to ships’ kinematic from complementary data
sources (environmental, contextual, geographical, etc.) are of great interest. The
dataset described below contains ship information collected through the AIS,
prepared together with correlated contextual data, spatially and temporally aligned,
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characterizing the vessels, the area where they navigate and the situation at sea.
The dataset contains four categories of data: navigation data, vessel-oriented data,
geographic data, and environmental data. It covers a time span of 6 months, from
October 1st, 2015 to March 31st, 2016 and provides ship positions over the Celtic
Sea, the North Atlantic Ocean, the English Channel, and the Bay of Biscay (France).

For all contextual data, European institutions and projects (e.g., SeaDataNet,10

Copernicus,11 EMODnet12 and Ifremer13, and the European Commission14) have
been the preferred data providers and distributors.

Besides, a technical note describing which (licensed) nautical charts and objects
are useful for the dataset and the necessary scripts to process them has been shared
publicly [13]. Figure 1.4g, c provides examples of such data. Figure 1.4g shows
different types of areas that constrain the movement of vessels. Figure 1.4c shows a
traffic separation scheme.

1.2.2.1 Navigation-Related Data

The AIS communicates 27 kinds of messages, each one having its own purpose in
information transmission (positioning, nominative information, management, etc.).
The messages are broadcast in a theoretical range of about 40 nautical miles. These
AIS messages are binary messages that comply with the Standard developed by the
International Telecommunication Union (ITU)-R.M 1371-5 [5] and the National
Marine Electronics Association (NMEA) 4.0 standards.15 In the reference dataset,
two main classes of messages are considered for reporting vessel data: those
providing positioning information and those providing nominative information.

Positioning and Nominative Information

Positioning messages (ships’ dynamic messages): Several AIS messages pro-
vide vessel positions that are acquired automatically by AIS transponders using
embedded sensors (typically, Global Positioning System (GPS), gyroscope, loch,
compass). To build the dataset, the ITU message types ITU 1, ITU 2, ITU 3, ITU
18, and ITU 19 were selected from which the following fields have been extracted
from the vessel data:

10Pan-European Infrastructure for Ocean & Marine Data Management (SeaDataNet) data search:
https://www.seadatanet.org (accessed April 2019).
11Copernicus Maritime Environment Monitoring Service: http://marine.copernicus.eu (accessed
April 2019).
12European Marine Observation and Data Network (EMODnet): http://www.emodnet.eu (accessed
April 2019).
13Institut français de recherche pour l’exploitation de la mer (Ifremer): https://www.ifremer.fr
(accessed April 2019).
14Joint Research Centre Data Catalogue: https://data.jrc.ec.europa.eu (accessed April 2019).
15https://www.nmea.org/content/nmea_standards/nmea_standards.asp.

https://www.seadatanet.org
http://marine.copernicus.eu
http://www.emodnet.eu
https://www.ifremer.fr
https://data.jrc.ec.europa.eu
https://www.nmea.org/content/nmea_standards/nmea_standards.asp
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• The Maritime Mobile Service Identity (MMSI), which is an international and
unique ship identifier;

• The coordinates (longitude and latitude expressed using World Geodetic System
(WGS)84 reference system);

• The associated Speed Over Ground (SOG) in knots;
• The true heading in degrees (relative to True North) and the associated Course

Over Ground (COG) also in degrees (direction of motion);
• The rate of turn, when available, expressed in degrees per minute;
• The navigational status, which is an integer encoding the current motion status

of the ship (e.g., anchored, on the way, sailing, etc.).

These messages constitute an ordered time series. However, AIS messages do
not embed the timestamp of the emission. Therefore, each message has been
timestamped, with an integer corresponding to a UNIX epoch time upon reception
by the receiving workstation. Figure 1.3 illustrates the content of positioning
messages reported on a map. The dashed lines correspond to the bounding box of
data.

Fig. 1.3 Navigation data (purple background represents fishing areas computed by [19])

Nominative messages (ships’ static messages): Several message types provide
ship meta-information such as the ship name or voyage-related information. Some
of this data is fully static (i.e., set at the initialization of the AIS device onboard)
and is not expected to change during ship’s life (e.g., ship dimension), while few
others can evolve (e.g., the name can change depending on the owner) with varying
frequency (e.g., destination should be updated at each voyage). These fields are
manually set and thus prone to errors, imprecision, or simply not fed. Nominative
information collected for this dataset contains the following vessel data:
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• The MMSI and the ship identification number (an integer) provided by the
International Maritime Organisation (IMO);

• The international radio call sign (a string of characters);
• The name of the vessel (a string of characters) and associated ship type encoded

with an integer;
• The reference point for reported position (biggest ships can reach 400 m in

length) and overall dimensions of the ship expressed with four integers describing
a rectangle based on the reference point.

In addition, voyage-related information contains:

• The destination (next port of call) of the current trip (a string of characters
manually entered) and associated Estimated Time of Arrival (ETA) expressed
in a month-day-hour-minute format (using the Coordinated Universal Time with
time zone);

• The draught of the ship for the current voyage (expressed in meters by a real
number between 0.1 and 25.5).

These fields have been extracted from ITU messages of types ITU 5, ITU 19, and
ITU 24. Similarly to dynamic messages, each message has been timestamped with
UNIX epoch time at the receiving workstation.

Positioning messages (search and rescue dynamic messages): Some SAR aircraft
operating at sea are also equipped with AIS transceivers. These particular emitters
provide positioning information using message type ITU 9. The information
extracted from SAR messages contains:

• The MMSI;
• The coordinates (longitude and latitude expressed using WGS84 reference

system);
• The associated SOG in knots;
• The COG expressed in degrees (with respect to the True North);
• The altitude of the search and rescue aircraft (an integer ranging from 0 to

4094 m).

Each message has been also timestamped with UNIX epoch time at the receiving
workstation.

Positioning messages (aids to navigation dynamic messages): Dynamic data
of the AIS also include locations of Aids to Navigation (AtoN), typically buoys
and lighthouses. An aid to navigation can be physical or virtual. Virtual Aids
to Navigation (AtoN) do not exist physically and can be useful in time-critical
situations and in marking/delineating dynamic locations or areas where navigational
conditions change regularly. This equipment communicates information through the
message type ITU 21. Information extracted from AtoN messages contains:

• The MMSI;
• The type of the aid to navigation encoded with an integer and associated name (a

string of characters);
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• The coordinates (longitude and latitude expressed using WGS84 reference
system);

• The nature of AtoN (a Boolean value to distinguish between virtual and physical
AtoNs). Figure 1.4d shows a selection of aids to navigation.

Each message has been also timestamped with UNIX epoch time at the receiving
workstation.

AIS Status, Codes, and Types

Some data fields of AIS messages are encoded, usually with integer codes. To
facilitate the understanding and the analysis of AIS data, these enumerations and
the associated information have been included in the dataset, in CSV files.

• Status: The navigational status provided by positioning messages is encoded by
an integer corresponding to 16 different statuses, whose names are themselves
described by predefined strings of characters (e.g., moored, under way);

• Country Codes: Each ship is registered in a country (flag). The country of each
ship is encoded in the first three digits of each MMSI number (e.g., “227” is used
for France). Country codes and names (string of characters) are included in the
dataset.

• Types: The ship type is encoded by an integer in nominative messages (e.g.,
“30” is the code used for fishing vessels). The correspondence between 38 codes
(integer) and the ship types (string of characters) as described in [5] is provided
in this dataset. Additionally, a list of 233 refined ship types has been provided
for advanced classification of the vessel data (this extended list is based on the
details in “MarineTraffic”16);

• AtoN: The type of aid to navigation (e.g., floating vs. fixed buoy, light, beacon)
is encoded by an integer in the ITU 21 dynamic messages. This CSV data file
provides a textual description (nature and type) for these codes.

AIS Receiver

Receptor location: The AIS messages have been collected using a single terrestrial
receiver. It is a two-dimensional geometry of type point (i.e., the altitude is not
considered) with coordinates (longitude and latitude) expressed using the WGS84
reference system.

Theoretical coverage of the receiver: Each terrestrial AIS receiver has a theo-
retical coverage that depends on its location and the surrounding topography. The
theoretical coverage of the AIS receiver is given as a geometrical polygon with

16MarineTraffic: https://help.marinetraffic.com/hc/en-us/articles/205579997-What-is-the-
significance-of-the-AIS-SHIPTYPE-number- (accessed January 2020).

https://help.marinetraffic.com/hc/en-us/articles/205579997-What-is-the-significance-of-the-AIS-SHIPTYPE-number-
https://help.marinetraffic.com/hc/en-us/articles/205579997-What-is-the-significance-of-the-AIS-SHIPTYPE-number-


22 C. Ray et al.

coordinates (longitude and latitude) expressed using the WGS84 reference system.
The receiver’s theoretical coverage has been calculated using the definition of sea
areas from IMO resolution A801(19). It computes a circle of radius R nautical miles
where R is equal to the transmission distance between a ship’s Very High Frequency
(VHF) antenna at a height of four meters above the sea level and the VHF antenna
of the coastal station (at a height of H meters) which lies at the center of the circle.
The coverage has been computed with an antenna at 70 m above the sea level (66 m
being the altitude of the location, plus four additional meters for the height of the
building where the antenna is located).

1.2.2.2 Vessel Data

Other nominative vessel information is available in official registers. For the vessels
navigating in the area covered by the dataset, two of the most relevant institutional
registers are included in this dataset.

Community Fishing Fleet Register (European Commission)17

The European Commission freely provides a list of all fishing vessels that fly a flag
of one of the countries of the Union. This fleet register concerns fishing vessels
which represent only a fraction of the navigating vessels. Nevertheless, this register
can provide a fair reference sample to some algorithms and could be extended later
with additional vessel types when available. The data fields that can be matched
with AIS data are the international reference call sign, the name, and the vessel
length. The fleet register also includes few technical details like length, gear type
(61 different types), year of construction, and engine power of the vessels.

Civilian Ships Registered by ANFR (Agence Nationale des Fréquences)18

The fleet register provided by the French Frequencies Agency (ANFR) gathers a
large number of French-registered vessels. The data fields include several normative
information (MMSI, IMO numbers, registration numbers, ship name) that can be
matched with AIS fields. The dataset also provides characteristics of the ship (type,
length, and tonnage). Communication facilities (e.g., VHF) and information about
ship license (i.e., active, not active, and associated dates) are also described.

17Community Fishing Fleet Register, Fleet Register On the Net: ec.europa.eu/fisheries/fleet/
index.cfm (accessed January 2020).
18Données radio maritime: data.gouv.fr/fr/datasets/donnees-radio-maritime (accessed July 2018).

https://ec.europa.eu/fisheries/fleet/index.cfm
https://data.gouv.fr/fr/datasets/donnees-radio-maritime
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1.2.2.3 Geographic Data

Geographic data provide complementary information to vessel movement data
about topographic or regulatory context of vessel navigation.

Ports

A lot of ships (e.g., tankers, cargos, passengers, ferries) have origins and destinations
corresponding to ports. Having official lists of ports is therefore crucial. It can be
used, for instance, to disambiguate the destination field of AIS message 5 (filled
manually). The dataset encompasses a detailed list of local ports and two worldwide
lists (passing traffic around Brittany include world destinations).

• Ports of Brittany.19 This dataset proposed by the Brittany region gathers the
location of 222 ports around Brittany with names and coordinates expressed in
the WGS84 system.

• World Port Index.20 It is a publication of the National Geospatial-intelligence
Agency and contains location and physical characteristics of, and the facilities
and services offered by major ports and terminals worldwide. About 3700 ports
throughout the world are included in this dataset. Figure 1.4a depicts an excerpt
of the World Port Index (WPI).

• SeaDataNet Ports Gazetteer.21 This dataset is provided by the Pan-European
Infrastructure for Ocean and Marine Data Management22 and focuses on halieu-
tic ports. It contains names and coordinates of almost 5000 fishing ports
throughout the world.

European Coastline (European Environmental Agency) [7]

The knowledge of the coastline is essential for the understanding of maritime
movements. This dataset is a high resolution (1:100,000 scale) coastline of European
shores (polylines and polygons, as shapefile), created by the European Environmen-
tal Agency (EEA) enabling highly detailed spatial analysis, such as the assessment
of the proximity of vessels to coastlines or islands in support to maritime safety.

19Région Bretagne, Ports de Bretagne: data.gouv.fr/fr/datasets/ports-appartenant-a-la-region-breta
gne (accessed July 2018).
20National Geospatial-intelligence Agency, World Port Index: msi.nga.mil/NGAPortal/MSI.port
al?_nfpb=true&_pageLabel=msi_portal_page_62&pubCode=0015 (accessed July 2018).
21SeaDataNet Ports Gazetteer: seadatanet.maris2.nl/v_bodc_vocab_v2/welcome.asp (accessed
July 2018).
22EMODnet, the European Marine Observation and Data Network: emodnet.eu (accessed July
2018).

https://data.gouv.fr/fr/datasets/ports-appartenant-a-la-region-bretagne
https://msi.nga.mil/NGAPortal/MSI.portal?_nfpb=true&_pageLabel=msi_portal_page_62&pubCode=0 015
https://seadatanet.maris2.nl/v_bodc_vocab_v2/welcome.asp
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It is a data derived from two sources: EU-Hydro23 and the Global Self-consistent,
Hierarchical, High-resolution Geography Database (GSHHG).24

Sea Areas (International Hydrographic Organization)

The dataset contains the main seas of the world (101) as polygons representing
contiguous bodies of water, regionalized and divided into maritime basins.25 It can
be useful to determine if two vessels are in the same region of the world. Areas
covered (polygons concerned) by the navigation data are the Celtic Sea, the North
Atlantic Ocean, the English Channel, and the Bay of Biscay.

FAO Major Fishing Areas (Food and Agriculture Organization)26

This dataset contains the worldwide fishing regions established by the Food and
Agriculture Organization (FAO) of the United Nations (UN). The boundaries
were determined in consultation with international fishery agencies considering the
distribution of the natural resources, national practices and boundaries, international
conventions. It can be used for example to assess the declared provenance of fish
against the areas in which a vessel effectively sailed or exhibited a fishing behavior.

Exclusive Economic Areas (Flanders Marine Institute)27

All the Exclusive Economic Zones (EEZs) of the world are gathered in this dataset.
This can be useful to determine the quality of some at-sea operations as well as the
competent court in some activities. Exclusive Economic Zones boundaries are given
as polygons and polylines. Areas beyond these boundaries can be classified as high
seas. Figure 1.4b depicts an excerpt of the EEZs.

23EU-Hydro: land.copernicus.eu/pan-european/satellite-derived-products/eu-hydro (accessed July
2018).
24National Oceanographic and Atmospheric Administration, Global Self-consistent, Hierarchical,
GSHHG [online]. ngdc.noaa.gov/mgg/shorelines (accessed July 2018)
25International Hydrographic Organization, IHO Marine Regions:
marineplan.es/ES/fichas_kml/iho.html, available at marineregions.org/downloads.php (accessed
July 2018).
26FAO Major Fishing Areas: fao.org/fishery/area/search/en (accessed July 2018).
27Flanders Marine Institute, Exclusive Economic Areas v10: marineregions.org/downloads.php
(accessed July 2018).

https://land.copernicus.eu/pan-european/satellite-derived-products/eu-hydro
ngdc.noaa.gov/mgg/shorelines
https://marineplan.es/ES/fichas_kml/iho.html
marineregions.org/downloads.php
fao.org/fishery/area/search/en
https://marineregions.org/downloads.php
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European Maritime Boundaries (European Environment Agency)28

The dataset provided by the European Environmental Agency contains maritime
boundaries in Europe that include territorial waters, bi- or multi-lateral boundaries
as well as contiguous and Exclusive Economic Zone (EEZ)s.

Natura 2000 Areas (European Environment Agency)29

The European database on Natura 2000 collects the reporting of the European
protected areas, as an ecological network developed for the preservation of species
and habitats (terrestrial and maritime areas). The dataset is managed by the
European Environmental Agency and is built upon data submitted by European
member states. The dataset contains descriptive data (e.g., the list of all species
and habitat types) and spatial data (borders of sites). The version included in the
dataset covers 2017 reporting.

European Fishing Areas (European Commission Joint Research Centre) [19]

This dataset was created by the European Commission Joint Research Centre
(JRC)30 and provides the fishing grounds in European waters, which can be used to
assess the behavior of fishing vessels. An assessment on the fishing pressure can also
be extracted from this database. Fishing grounds have been derived from ship AIS
positions collected along 1 year (from September 2014 until September 2015) and
emitted by selected categories of fishing vessels exhibiting a fishing behavior. Raw
AIS data are originated from Volpe Center of the U.S. Department of Transportation,
the U.S. Navy, and MarineTraffic. Figure 1.4e depicts an excerpt of the JRCs fishing
effort layer.

Fishing Constraints

This dataset contains two geographic areas where shellfish fishing activity is
forbidden in the time window of the dataset.

28Maritime Boundaries: eea.europa.eu/data-and-maps/data/maritime-boundaries (accessed July
2018).
29Natura 2000 data—the European network of protected sites: natura2000.eea.europa.eu. Data
available at eea.europa.eu/data-and-maps/data/natura-9 (accessed July 2018).
30JRC—AIS derived high resolution fishing effort layer for European trawlers of more than 15 m
long 2014–2015: https://data.jrc.ec.europa.eu/dataset/jrc-fad-ais1415 (accessed December 2018).

https://eea.europa.eu/data-and-maps/data/maritime-boundaries
https://natura2000.eea.europa.eu
https://eea.europa.eu/data-and-maps/data/natura-9
https://data.jrc.ec.europa.eu/dataset/jrc-fad-ais1415
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1.2.2.4 Environmental Data

Weather data and ocean data from forecast models and from observations (e.g.,
insitu sensor data) which are openly available from several providers can help
validate analysis results and explain abnormal behavior. For example, sea and
weather conditions can force vessels to change direction or modify their normal
route. They can also be used to characterize seasonal trends in traffic routes and to
contextualize vessels kinematics such as speed.

Ocean Conditions [2]

The ocean conditions were extracted from an hindcast database built with a
WAVEWATCH III model [2] and provided by Institut français de recherche pour
l’exploitation de la mer (IFREMER).31 Initially built for the design of marine
energy converters, it can also be used to study ships behavior. Therefore, only the
parameters relevant to this context were selected and stored in 6 CSV files (one file
per month). The values are provided every 3 h for each point of a regular spatial
grid over the dataset bounding box. The grid spacing is 2 arc min, for both latitude
and longitude. The parameters include coordinates (longitude and latitude expressed
using the WGS84 reference system); bottom depth in meters; sea surface height
above sea level in meters (tidal effect); significant height of wind and swell waves;
mean wave length in meters; wave mean direction; and a timestamp expressed using
epoch time. Figure 1.4f shows an excerpt of the WAVEWATCH III dataset.

Weather Observations32

The coastal weather observations were recorded by 16 stations located in the south
of England and along the French coasts. The data have been cleaned and formatted
in the same way for the 16 selected stations, providing the most relevant fields
such as temperature, atmospheric pressure, wind direction/speed, and horizontal
visibility, every hour over the 6 months period (Fig. 1.4h). The unformatted or
potentially biased fields, especially those based on the human perception, have been
removed.

31Institut français de recherche pour l’exploitation de la mer (IFREMER): ifremer.fr (accessed July
2018).
32Weather history and forecast: rp5.ua/archive.php (accessed July 2018).

ifremer.fr
https://rp5.ua/archive.php
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Fig. 1.4 Selection of maritime data. (a) Ports for the WPI in blue and from SeaDataNet Port
Index (in red). (b) Exclusive Economic Zones (EEZs). (c) TSS. (d) Aids to Navigation (AtoN)
(hexagons) and Search and Rescue (planes). (e) European Commission Joint Research Centre
(JRC) AIS derived high resolution fishing effort layer for European trawlers of more than 15 m
long, 2014–2015. (f) Wave height (m) and direction (◦) forecast example based on Wavewatch
III model (NOAA), 2016/01/09—00h00 UTC. (g) Movement constraints (light blue), speed
restrictions (green), Waiting zones for oil tankers (pink) and cargos (yellow), anchorage areas
(purple), crustacean sanctuaries (dark blue). (h) Air temperature (black), mean wind speed (green)
and relative humidity (blue) for coastal station #3803 over 6 months
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1.2.3 Generating Operational Scenario for Experiments

To support the evaluation of the algorithms, the reference dataset has been enriched
with contextual historical information. Raw data have been processed to extract
maritime patterns and clusters, specifically maritime routes, which facilitate the
operators assessment. Additionally, a library of functions has been designed and
implemented to systematically degrade and enrich the AIS batch dataset. The
modifications applicable to each AIS field have been categorized along kinematic,
coverage, and spoofing dimensions. This library of functions provides a rich set of
basic constructs to build different modification patterns in a non-unique manner [6].
Having different ways to produce equivalent patterns or to provide a wide diversity
in similar patterns is desirable to create realistic synthetic datasets.

A semi-automatic process was designed to generate dedicated scenarios [6, 23]
following several steps of data enrichment, data injection, resulting in a story match-
ing the maritime surveillance challenges. As an example, the situation representing
a collision avoidance scenario consists of a set of real AIS tracks enriched with
specific events such as:

• A collision between a real vessel trajectory and a synthetic vessel trajectory;
• A collision between a real vessel trajectory and the shifted trajectory in time and

space of another real vessel trajectory;
• A synthetic near-collision;
• The shift in time of a real tugging case;
• The shift in time and space of specific trajectories in order to simulate a given

behavior (e.g., the individuation of fishing patterns);
• The simulation of a rendezvous behavior.

In the collision avoidance scenario, the mission of the VTS operator is to prevent
and avoid a collision involving fishing vessels. The maritime security system can
also enhance the situational awareness of the captains of the involved vessels,
anticipating that a vessel will be required to “give way” to a fishing vessel.

Figure 1.5a, b illustrates scenario data generated for experiments. For the first
experiment, the chosen area is a part of the Brest roadstead, where traffic entering
and exiting both the Brest port and the roadstead cross. The second experiment
takes place in the Four channel, a maritime channel located off the West coast
of Brittany, between the mainland and a series of islands (Béniguet, Quénémès,
Molène, Ushant), leading to the entrance of the Brest roadstead.

1.3 Conclusions

Facing the huge volume of various information with high velocity, which often lacks
veracity, a system to automatically process both historical and timely information
would greatly support the Vessel Traffic System (VTS) operator in monitoring and
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(a) (b)

Fig. 1.5 Examples of two collision avoidance scenarios built from real and simulated AIS data.
(a) All contacts points from the first scenario (gray: Brest harbor, each MMSI is assigned a color).
(b) All contacts points from the second scenario (each MMSI is assigned a color)

performing several types of analysis of situations at sea. This has been the aim of
the 3-year Big Data Analytics for Time-Critical Mobility Forecasting (datAcron)
project33 that ran from January 2016 to December 2018 and whose main research
objectives addressed the development of highly scalable methods for advancing:

1. Spatiotemporal data integration and management solutions;
2. Real-time detection and forecasting accuracy of moving entities’ trajectories;
3. Real-time recognition and prediction of important events concerning these

entities;
4. General visual analytics infrastructure supporting all steps of the analysis through

appropriate interactive visualizations;
5. Producing streaming data synopses at a high-rate of compression.

The operational scenarios and challenges together with the supporting datasets
described in this chapter were aimed at supporting the design and development
of big data analytics tools for maritime surveillance. Six scenarios corresponding
to three use cases of Secure fishing, Sustainable development, and Maritime
security were proposed, while the collision avoidance scenario under the Secure
fishing use case was retained as the main one. A set of 28 Maritime Situational
Indicators was proposed to both capture user information needs and provide targets
to event detectors to be designed by the datAcron partners and integrated in the
final prototype. The scenario was described with relevant MSIs, for which big
data analytics solutions—presented in subsequent chapters of this book—were
proposed and implemented. The algorithms thus designed have been exercised on
an heterogeneous dataset gathering timely AIS data and other contextual data. The
open heterogeneous maritime dataset has been made publicly available to enable
other further maritime experimentation in realistic operational settings, challenging
specifically the variety dimension of big data.

33datAcron project website: http://www.datacron-project.eu (accessed January 2020).

http://www.datacron-project.eu
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The datAcron maritime prototype has been setup following a human-centric
approach involving maritime experts and tying together scenario definition, data
preparation, visualization, and human evaluation. Finally, the evaluation of the mar-
itime prototype has been conducted according to a methodology further described
in [22].
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Chapter 2
The Perspective on Mobility Data
from the Aviation Domain

Jose Manuel Cordero and David Scarlatti

Abstract Air traffic management is facing a change of paradigms looking for
enhanced operational performance able to manage increasing traffic demand (num-
ber of flights and passengers) while keeping or improving safety, and also remaining
environmentally efficient, among other operational performance objectives. In
order to do this, new concepts of operations are arising, such as trajectory-based
operations, which open many new possibilities in terms of system predictability,
paving the way for the application of big data techniques in the Aviation Domain.
This chapter presents the state of the art in these matters.

2.1 Introduction

The current air traffic management (ATM) system worldwide has reached its limits
in terms of predictability, efficiency, and cost effectiveness. Nowadays, the ATM
paradigm is based on an airspace management that leads to demand imbalances that
cannot be dynamically adjusted. This entails higher air traffic controllers’ (ATCO)
workload, which, as a final result, determines the maximum system capacity.

With the aim of overcoming such ATM system drawbacks, different initiatives,
dominated by Single European Sky ATM Research SESAR in Europe and NextGen
in the USA, have promoted the transformation of the current environment towards
a new trajectory-based ATM paradigm. This paradigm shift changes the old fash-
ioned airspace management to the advanced concept of trajectory-based operations
(TBO). In the future ATM system, the trajectory becomes the cornerstone upon
which all the ATM capabilities will rely on. The trajectory life cycle describes
the different stages from the trajectory planning, negotiation, and agreement, to
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the trajectory execution, amendment, and modification. The envisioned advanced
decision support tools (DSTs) required for enabling future ATM capabilities will
exploit trajectory information to provide optimized services to all ATM stakeholders
(airlines, air navigation service providers (ANSPs), air traffic control (ATC), etc.).

The proposed transformation requires high fidelity aircraft trajectory prediction
capabilities, supporting the trajectory life cycle at all stages efficiently.

Current Trajectory Predictors (TPs) are based on deterministic formulations of
the aircraft motion problem. Although there are sophisticated solutions that reach
high levels of accuracy, all approaches are intrinsically simplifications to the actual
aircraft behaviour, which delivers appropriate results for a reasonable computational
cost. TPs outputs are generated based on a priori knowledge of the planned flight
plan, the expected command and control strategies released by the pilot or the flight
management system (FMS)—to ensure compliance with ATC restrictions and user
preferences (all together known as aircraft intent), a forecast of weather conditions
to be faced throughout the trajectory, and the aircraft performance. This model
or physics-based approach is deterministic: It returns always the same trajectory
prediction for a set of identical inputs.

Although the use of the concept of aircraft intent [1] together with very precise
aircraft performance models such as Base of Aircraft Data (BADA) [2] has helped to
improve the prediction accuracy, the model-based approach requires a set of input
data that typically are not precisely known (i.e., initial aircraft weight, pilot/FMS
flight modes, etc.). In addition, accuracy varies depending on the intended prediction
horizon (look-ahead time). In summary one can identify current TP as an area of
improvement with consequent benefits supporting TBO.

Recent efforts in the field of aircraft trajectory prediction have explored the
application of statistical analysis and machine learning techniques to capture non-
deterministic influences that arise when an aircraft trajectory prediction is requested
by a DST. Linear regression models [3, 4] or neural networks [5, 6] have returned
successful outcomes for improving the trajectory prediction accuracy on the vertical
plane and for traffic flow forecasting. Generalized linear models [7] have been
applied for the trajectory prediction in arrival management scenarios and multiple
linear regression [8, 9] for predicting estimated times of arrival (ETA). Although
most of these efforts include as input dataset the available surveillance data, there
is no consensus on the additional supporting data required for robust and reliable
trajectory predictions. Such additional supporting data may include filed or amended
flight plans, airspace structure, ATC procedures, airline strategy, weather forecasts,
etc.

The outcome of these recent efforts provides promising results in terms of
accuracy prediction [10]; however, there is still a lack of global vision on how
to apply data-driven approaches to real ATM scenarios, and what the expected
improvement will be. The disparity of the datasets used for validating different
methods makes difficult the comparison among those studies, and, therefore,
prevents from extending the applicability of such techniques to more realistic and
complex scenarios.
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Another strong limitation found in the current state-of-the-art research is that
the proposed data-driven approaches are mostly limited to individual trajectory
predictions. The trajectories are predicted one by one based on the information
related to them, ignoring the expected traffic at the prediction time lapse, hence
disregarding contextual aspects on the individual predictions. Consequently, the
network effect resulting from the interactions of multiple trajectories is not con-
sidered at all, which may lead to huge prediction inaccuracies. The complex nature
of the ATM system impacts the trajectory predictions in many different manners.
Capturing this complexity and being able to devise prediction methods that take
the relevant information into account will improve the trajectory prediction process:
This is a considerable leap from the classical model-based approaches.

2.2 Trajectory Prediction Approaches in the Aviation
Domain

A new strategy for trajectory prediction in Aviation is to exploit available trajectory
information to predict future trajectories based on the knowledge acquired from
historical data. This innovative approach is in contrast to the classic model-based
approach in which different models are involved in the computation of aircraft
motion.

First of all, it is required to have a common understanding of what a trajectory is.
Basically, a trajectory in the Aviation Domain is a chronologically ordered sequence
of aircraft states described by a list of state variables. Most relevant state variables
are airspeeds (true airspeed (TAS), calibrated airspeed (CAS) or Mach number (M)),
3D position (latitude (φ), longitude (λ) and geodetic altitude (h) or pressure altitude
(Hp)), the bearing (χ) or heading (ψ), and the instantaneous aircraft mass (m).
Additionally, a predicted trajectory can be defined as the future evolution of the
aircraft state as a function of the current flight conditions, a forecast of the weather
conditions, and a description of how the aircraft is to be operated from this initial
state and on.

According to the formulation of the motion problem, there are two possible
model-based alternatives:

2.2.1 Kinematic Trajectory Prediction Approach

This solution does not consider the causalities of motion, only takes into account the
speeds, altitude, and lateral profiles that may represent the evolution of the aircraft
position with time. The accuracy of kinematics Trajectory Predictors (TP) strongly
relies on the accuracy of datasets used to model the aircraft’s performance and how
well they match the actual aircraft’s behaviour in all possible flight conditions. The
main advantage is that kinematic TPs are usually orders of magnitude faster than
other alternatives.
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2.2.2 Kinetic Trajectory Prediction Approach

This formulation describes the forces and momentums that cause the aircraft motion.
For ATM applications, a simplified 3 degrees of freedom (DoF) approach (point-
mass model (PMM)) is typically assumed because it provides enough information to
support further decision-making processes. More sophisticated 6 DoF approaches,
applied, for instance, in simulators, increase the fidelity to the predicted trajectories
by modelling the aircraft attitude, which is of no interest for ATM purposes. To
pose a well-formulated kinetic problem, models of the aircraft performance, weather
conditions, and aircraft intent (description of command and control directives that
univocally turns into in a unique trajectory when applied to aircraft by the pilot or
the flight management system (FMS)) are required.

Even though there might be available extremely accurate aircraft performance
models, such as BADA models released by EUROCONTROL, in conjunction to
accurate weather forecasts, such as those generated by the Global Forecast System
(GFS) provided by the National Oceanic and Atmospheric Administration (NOAA),
there are intrinsic errors that produce unavoidable deviations between predicted
and actual trajectories. Those deviations are the result of representing a stochastic
process (prediction of an aircraft trajectory affected by stochastic sources) by
a deterministic approach (formulation of a kinematic or kinetic aircraft motion
problem).

The concept of data-driven trajectory prediction is a completely different
approach than those mentioned above. It does not consider any representation of
any realistic aircraft behaviour, only exploits trajectory information recorded from
the ground-based surveillance infrastructure or by onboard systems (e.g., flight data
recorder (FDR) or quick access recorder (QAR) data) and other contextual data
that may impact the final trajectory. This decoupled solution from the mathematical
formulation of the aircraft motion should capture variations of the trajectory that
cannot be derived directly from the filed flight plans (i.e., intended trajectories),
both during the strategic (before departure) and tactical phases (after departure).
These discrepancies usually come from air traffic control interventions to ensure
optimum traffic management and safe operations (e.g., delays added due the effect
of adverse weather). If these interventions respond to a pattern, big data analytics
and machine learning algorithms might potentially identify them once the proper
system features are considered.

Thus, the preparation of available trajectory data is crucial to train the algorithms
in accordance to the expected data-driven TP performance accuracy. Several
solutions aim at predicting some aircraft state variables (time at a fix/waypoint)
for a representative scenario. In general, different generic prediction methods can
be applied in different possible scenarios envisioned in the future trajectory-based
operations environment, in which the ATM paradigm will evolve from current
tactical airspace-based to a strategic trajectory-based traffic management.
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Subsequently we provide a literature review of prominent techniques applied to
the problem of predicting an aircraft trajectory leveraging historical recorded flight
data.

2.2.3 Data-Driven Trajectory Prediction Approaches

The following list of approaches describes the current state-of-the-art techniques
applied to aircraft trajectory prediction driven by data.

Statistical Prediction of Aircraft Trajectory: Regression Methods vs Point-
Mass Model [11] This approach proposes a statistical regression model combined
with a total energy model (simplified version of the classical point-mass model
for aircraft) to predict the altitude of a climb procedure with a 10-min look-ahead
time starting from an initial flight level (FL180). The input dataset are radar tracks
and meteorological data. The study uses the already flown aircraft positions, the
observed calibrated airspeed (CAS) at the current altitude, the temperature deviation
with respect to the International Standard Atmosphere (ISA) conditions, and the
predicted conditions at different levels of pressure. The main assumption of this
approach is that the climb procedure is represented by a CAS/Mach transition for
all predicted trajectories. Three techniques were assessed: linear regression, neural
networks, and locally weighted polynomial regression, being the latter the one that
provides higher accuracy with respect to reference recorded data.

Data Mining for Air Traffic Flow Forecasting: A Hybrid Model of Neural
Network and Statistical Analysis [6] This approach employs a combination
of feed forward and back propagation neural networks combined with statistical
analysis to predict the traffic flow. The basic information required that represents
a forecasted traffic sample is the estimated time of arrival (ETA) at designated
fixes and airports. Initially, a 5-step data mining process is proposed as preliminary
stage to process the radar tracks to generate the input dataset to the neural network.
The analysis of historical data suggests that the traffic flow series can be classified
in 7 classes from Sunday to Saturday; thus, the applied algorithms uses 7 back
propagation neural networks that are trained separately. A relevant outcome of the
study is that 1 hidden layer of approximately 5–10 neurons provides best results.
The accuracy of the predictions degrades with the look-ahead time.

Using Neural Networks to Predict Aircraft Trajectories [5] This work deals
with the problem of predicting an aircraft trajectory in the vertical plane (altitude
profile with the time). Two separate approaches have been analysed: the case of
strategic prediction considering that the aircraft is not flying yet; and the case of
tactical prediction in which flown aircraft states are used to improve the prediction.
The study is focused on predicting trajectories for a unique aircraft type. The
prediction algorithm is based on a feed forward neural network with a single
hidden layer. The neural network is parameterized to learn from the difference
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between the Requested Flight Level (RFL), which defines the cruise altitude, and
the actual altitude. This strategy facilitates capturing of the evolution of the Rate
of Climb (ROC) with the altitude. Two neural networks methods (standard and
sliding windows) were studied according to the data availability (i.e., tactical or
strategically prediction) to predict the aircraft altitude separately. A main conclusion
of this work is the higher number of samples describing the trajectories building the
training set, the better prediction results.

A Methodology for Automated Trajectory Prediction Analysis [12] According
to this approach the prediction process is split in separated stages according to
the flight phases. This facilitates the process of identifying the recorded flights
(described by actual radar tracks) that show unpredictable modifications of their
aircraft intent, removing these outliers from the training dataset. This process is
referred to as segmentation. This process is of high interest when preparing a dataset
to be fed to machine learning algorithms for trajectory prediction. This methodology
relies on the definition of rules for segmenting trajectories and removing outliers
from a trajectory dataset.

Trajectory Prediction for Vectored Area Navigation Arrivals [9] This work
introduces a new framework for predicting arrival times by leveraging probabilistic
information about the trajectory management patterns that would be applied by
an air traffic controller (ATCO) to ensure safe operations (i.e., avoiding breaches
of separation minima) and manage the traffic efficiently. The likelihood of those
trajectory management patterns is computed from the patterns of preceding aircraft.
This work considers a dataset of recorded radar tracks, representing trajectories
of aircraft of the same wake vortex category. This homogenizes the dataset by
removing the variability in arrival times because of the variability of aircraft
types. The proposed machine learning algorithm predicts the ETA at the runway
considering the time at entry waypoint (fix). The major patterns of vectored
trajectories are found by clustering recorded radar tracks for the airspace of interest.
The clusters are built upon the computation of the relative Euclidian distance of a
trajectory from the other. However, time misalignment among trajectories can result
in large distances. To solve this issue, the dynamic time warping (DTW) measure
is applied, providing with the optimal alignment of two trajectories. Multiple linear
regression models for travel time are designed for each of those identified patterns.
Finally, among all identified patterns, the most suitable according to the patterns of
trajectory management, flown by the preceding traffic, is chosen.

A 4-D Trajectory Prediction Model Based on Radar Data [7] This work
proposes a four-dimensional trajectory prediction model that makes use of historical
and real-time radar tracks. Both strategic and tactical prediction processes are
designed according to the available datasets. The strategic prediction is used as the
baseline against which the tactical predictions are compared to detect deviations
and improve prediction accuracy by updating the trajectory prediction. The process
is designed in two stages: prediction of total flying time, and prediction of flying
positions and altitudes. The former prediction is performed by using a multiple
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regression method that relates the influences of traffic flow and wind conditions.
The latter prediction requires from a process to normalize the flying positions and
altitudes of different trajectories (i.e., different recorded radar tracks) to the same
time interval. The conclusion from this work is that high prediction accuracy can be
achieved, although at the cost of modelling the trajectories individually.

A Machine Learning Approach to Trajectory Prediction [7] A supervised
learning regression problem, which implements the so-called generalized linear
models (GLM) to trajectory prediction for sequencing and merging of traffic,
following fixed arrival routes, is described and evaluated using actual aircraft
trajectory and meteorological data. This study selects two aircraft types according
to the availability of Automatic Dependent Surveillance-Broadcast (ADS-B) tracks.
The first aircraft is a narrow body aircraft in the ICAO wake vortex medium category
and the second aircraft is a wide body aircraft in the wake vortex heavy category.
Trajectories of flights that were vectored off the arrival route or showed signs of
speed control were removed from the dataset. To determine which regressors to
include in the GLM, a stepwise regression approach is applied. Stepwise regression
provides a systematic approach to add or remove regressors from the GLM based
on their statistical significance in explaining the output variable. Due to the scarce
availability of input variables obtained from current surveillance systems, only
arrival time predictions for aircraft following fixed arrival routes in combination
with continuous descent operations (CDO) were made.

An Improved Trajectory Prediction Algorithm Based on Trajectory Data
Mining for Air Traffic Management [10] This work uses data mining algorithms
to process historical radar tracks and to derive typical trajectories coming from
the original tracks by applying clustering algorithms (i.e., Density-Based Spatial
Clustering of Application with Noise (DBSCAN)). For predicting a trajectory, the
typical trajectory is used to feed a hybrid predictor that instantiates an interacting
multiple model Kalman filter. The use of the typical trajectory ensures that the
associated flight intent represents better the intended trajectory and, therefore, the
errors of long-term prediction diminish.

Aircraft Trajectory Forecasting Using Local Functional Regression in Sobolev
Space [8] According to this approach, a time window between 10 and 30 min
is considered, in which an aircraft trajectory prediction is to be generated. The
proposed algorithm based on local linear functional regression exploits 1 year
radar tracks over France as primary source to learn from. The learning process is
designed in two separated stages: localization of data using k nearest neighbours;
and solving of regression using wavelet decomposition in Sobolev space. The paper
describing this approach concludes that this method returns efficient results with
high robustness, although the proposed approach does not consider the effect of the
weather conditions (especially the wind) in the prediction.

Terminal Area Aircraft Intent Inference Approach Based on Online Trajectory
Clustering [13] This work proposes a two-stage process to obtain an inferred
estimation of the aircraft intent that represents a flown trajectory. The first stage is
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devoted to identify the associated intent model, while the second one computes the
specific intent based on the knowledge of the referred model. The intent modelling is
formulated as an online trajectory clustering problem where the real-time intended
routes are represented by dynamically updated cluster centroids extracted from
radar tracks without flight plan correlations. Contrary, the intent identification is
implemented with a probabilistic scheme integrating multiple flight attributes (e.g.,
call sign, destination airport, aircraft type, heading angle, and the like). This work
suggests that the detection of outlier trajectories based on the clustering process
requires a detailed analysis and a review considering the actual ATCO interventions
on the considered flights.

New Algorithms for Aircraft Intent Inference and Trajectory Prediction [14]
Considering the requirements of aircraft tracking and trajectory prediction accuracy
of current and future ATM environments, a hybrid estimation algorithm, called the
residual mean interacting, is proposed, with the objective to predict future aircraft
states and flight modes using the knowledge of air traffic control (ATC) regulations,
flight plans, pilot intent, and environment conditions. The intent inference process
is posed as a discrete optimization problem whose cost function uses both spatial
and temporal information. The trajectory is computed thanks to an intent-based
trajectory prediction algorithm. Using ADS-B messages, the algorithm computes
the likelihood of possible flight modes, selecting the most probable one. The
trajectory is determined by a sequence of flight modes that represent the solvable
motion problems to be integrated to obtain the related trajectory.

Predicting Object Trajectories from High Speed Streaming Data [15] This
approach introduces a machine learning model, which exploits geospatial time
series surveillance data generated by sea vessels, in order to predict future tra-
jectories based on real-time criteria. Historical patterns of vessels movement are
modelled in the form of time series. The proposed model exploits the past behavior
of a vessel in order to infer knowledge about its future position. The method
is implemented within the MOA toolkit [16] and predicts the position of any
vessel within the time range of 5 min. In that context, online vessel’s records are
processed as they arrive and treated as a single trajectory which directly feeds the
forecasting model without taking into account contextual information (i.e., vessel
types, geographic area, and other explicit parameters). As this method becomes
suitable for real-time applications, it does not contribute to improving the accuracy
of predictions and it allows for model replicability and scalability to any prediction
model of moving objects’ trajectories.

Aircraft Trajectory Prediction Made Easy with Predictive Analytics [17] This
approach proposes a novel stochastic approach to aircraft trajectory prediction
problem, which exploits aircraft trajectories modelled in space and time by using
a set of spatiotemporal data cubes. Airspace is represented in 4D joint data cubes
consisting of aircraft’s motion parameters (i.e., latitude, longitude, altitude, and
time) enriched by weather conditions. It uses the Viterbi algorithm [18] to compute
the most likely sequence of states derived by a Hidden Markov Model (HMM),
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which has been trained over historical surveillance and weather conditions data. The
algorithm computes the maximal probability of the optimal state sequence, which is
best aligned with the observation sequence of the aircraft trajectory.

2.3 Aviation Datasets

As may have been apparent from state-of-the-art methods, the trajectory prediction
process requires different datasets to compute the prediction that represents the
aircraft motion. Those datasets are basically grouped in the following categories
[19]:

Initial Conditions Data, representing the initial aircraft state for which the
trajectory will be predicted; mainly including location, altitude, speed, and time,
and if possible, aircraft mass.

Surveillance Information, which might not be required in all prediction use cases,
but it is necessary in any data-driven trajectory prediction system, being an essential
component of Aviation datasets. It is highly dependent on local implementations,
but in general a radar track file consists on tabular data rows with a timestamp key
and several rows of geospatial information for each one of these timestamps. The
usual update interval is 5 s (radar rotation time).

Alternatively, ADS-B surveillance data is generic and so independent from local
systems. This data source refers to the ADS-B messages broadcasted by many
airplanes (practically all airliners) using their transponders. These messages are
received by ground-based receivers and can be used to reconstruct the trajectory
of the flight. There are several types of messages that can be found but the relevant
ones are these about aircraft identification and position.

Flight Plan (FP) declaring the intended route, cruise altitude and speed, as well as
estimated times at different waypoints. FPs also contain additional information, not
directly used for predicting a trajectory such as alternative airports or, potentially,
aircraft equipage.

Flight plans contain the information that triggers a lot of operational decision,
both in planning and execution phase, and both on the Air Navigation Service
Provision (ANSP) side, and in the Airline one. The flight plan is the specified
information provided to air traffic services units, relative to an intended flight or
portion of a flight of an aircraft.

Weather Information, describing the atmosphere temperature and pressure, and
the wind field faced by the aircraft along the trajectory. Multiple sources provide
weather data to air traffic systems like satellite, met radar, and the aircraft itself.
Some examples are METAR, NOAA models, SIGMET, or TAF:

METAR (Meteorological Terminal Aviation Routine Weather Report) is a format
for reporting weather information. METARs typically come from airports or
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permanent weather observation stations. Reports are generated once an hour or
half hour, but if conditions change significantly, a report known as a special
(SPECI) may be issued. Some METARs are encoded by automated airport weather
stations located at airports, military bases, and other sites. Some locations still
use augmented observations, which are recorded by digital sensors, encoded via
software, and then reviewed by certified weather observers or forecasters prior
to being transmitted. Observations may also be acquired and reported by trained
observers or forecasters who manually observe and encode their observations prior
to transmission. Raw METAR is the most common format in the world for the
transmission of observational weather data. It is highly standardized through the
ICAO, which allows it to be understood throughout most of the world. METAR
information includes runway visual range, dew point, visibility, and surface winds.

NOAA models are used mainly to obtain the weather conditions at the position
an aircraft is at any given time of the flight. Weather models use a Grid with a
specific resolution. Forecast models can be run several times a day. Forecast models
have a time resolution, or “forecast step”, depending on the use case. Data for
weather models is typically distributed in “GRIB” format files. GRIB (GRIdded
Binary or General Regularly distributed Information in Binary form) format allows
to compress a lot the weather data and includes metadata about the content of the
file, so it is very convenient for transferring the data. The data can be extracted with
many available tools.

SIGMET (Significant Meteorological Information) is a weather advisory that
contains meteorological information concerning the safety of all aircraft. This
information is usually broadcast on the Automatic Terminal Information Service
at ATC facilities, as well as over VOLMET (French origin vol (flight) and météo
(weather report)) stations. A new alphabetic designator is given each time a
SIGMET is issued for a new weather phenomenon, from N through Y (excluding
S and T). SIGMETs are issued as needed, and are valid up to 4 h. SIGMETs for
hurricanes and volcanic ash outside the CONUS are valid up to 6 h.

Terminal aerodrome forecast (TAF) is a format for reporting weather forecast
information. TAFs are issued every 6 h for major civil airfields: 0000, 0600, 1200,
1800 UTC, and generally apply to a 24- or 30-h period, and an area within
approximately five statute miles (or 5NM in Canada) from the center of an airport
runway complex. TAFS are issued every 3 h for military airfields and some civil
airfields, and cover a period ranging from 3–24 h. TAFs complement and use similar
encoding to METAR reports. They are produced by a human forecaster based
on the ground. For this reason there are considerably fewer TAF locations than
there are airports for which METARs are available. TAFs can be more accurate
than Numerical Weather Forecasts, since they take into account local, small scale,
geographic effects.

Airspace can be divided in a set of ways, with a different number of segregation/-
compartments, called sectors. Each sector is controlled by a single controller, thus
the open sectors’ configuration depends on airspace demand. A sector configuration
is a particular configuration of “open” sectors segregating an airspace. For example,
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the 9A sector configuration denotes that a particular airspace is divided into 9
sectors, in a particular way. 9B also mean 9 sectors, but divided in a different way.
Typically, due to low traffic at nights, the configuration set at those times is a 1A,
meaning that a single sector (thus, a single controller) is in place. This leads to the
fact that configurations available are fixed, but configuration “in place” varies during
day, adapting capacity resources (air traffic controllers, mainly, as more sectors open
mean more capacity, but also more controllers) to the expected demand.

It must be noted that, in the case of data-driven trajectory predictions, different
inputs need to be considered. For instance, information about aircraft performance
is not necessary because the aircraft motion will be predicted by learning from
historical recorded tracks, not by solving a mathematical formulation of the aircraft
motion problem. In addition, data related to the day of operation, airline, airspace
sector configuration, or average delay at departure airport could be of interest to
obtain accurate data-driven predictions.

These datasets represent the usual information used to predict a trajectory driven
by data as summarized in most of the trajectory prediction approaches described.
However, there are gaps that reduce the capability of predicting completely the
evolution of the aircraft state vector with the time. For example, there is no available
information about the aircraft mass. This information is of high commercial
sensitiveness and, therefore, airspace users (i.e., airlines) are often reluctant to share
it to protect their business strategies.

Aeronautical data is heavily regulated, especially in Europe according to
Eurocontrol Standards. For example, flight plan filing information follows ICAO
FPL2012 format, radar information is provided following ASTERIX standard
(Asterix Cat62 for fused data), datalink between airlines dispatcher and aircraft
follows A702-A format, airspace information is mostly provided in AIXM format.
Thus, research results can be applied nationwide in Europe, while the highest
quality data is usually at the local side, with national service providers. Is to be
mentioned that all datasets to be used as input on any investigation need to be linked
amongst them to ensure coherent geographical and temporal alignment, which is
not always due to complexity of different formats, volume, and (lack of) veracity of
data.

Alignment of the different data sources ensures common geographical and
temporal coverage, which is paramount for datasets usage and effective data-driven
learning. The data sources need to be combined usually using an ad-hoc reference
to ensure that they will refer to the same time and space, as well as to enable
links (associations) between them when necessary (for instance, radar tracks with
flight plan for a particular flight). The specific linkage criteria will depend on the
data sources composing the dataset, as well as the datasets features, ensuring a
temporal and spatial common reference. Typically UTC time is the main reference
for temporal alignment, using or correcting the different data sources to fit it.
Regarding spatial alignment, geographic coordinates are usually the best cross
index. Combined indexes using flight callsign, date, time, and aircraft type are
usually used. The particular combination method, however, will depend on the
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specific dataset (and the different data sources it originates from). A significant
challenge is in terms of aligning subjective phenomena (such as those described in
SIGMET, related to sectors), with quantitative measures of NOAA grid, for instance.

Two drawbacks can be found for these datasets:

• Data-driven algorithms typically work better with great number of data points,
but surveillance data is not always available at high resolution. This is for
instance the case for QAR data: The number of data points available per flight
may be insufficient.

• Surveillance data only includes positions of the aircraft, however there are other
variables in a trajectory that may be easier to predict than the coordinates (they
may show more clear patterns) and which can be derived from the position with
some extra information (e.g., heading, bearing, or ground speed).

To overcome these difficulties, an enhanced dataset generated from the original
raw data can be obtained and, then, this can be exploited by the big data analytics and
machine learning algorithms. A technique is proposed in which the raw surveillance
data can be enhanced, adding much more data points and much more variables; all
being compatible with the real flight.

The following paragraphs detail how we can produce enhanced datasets exploit-
ing raw data, so as to include additional information not being originally available.

2.4 Reconstructed Trajectory

A main drawback of data-driven TP based on surveillance datasets is the low
granularity and diversity of available data. Even considering ADS-B or QAR, which
contain broader information than typical latitude-longitude-altitude-time included in
radar tracks, the availability of accurate information about airspeeds, ground speed
is almost ineffective, while there is no availability of the aircraft mass, which is the
key state variable to compute other related kinetic state variables.

However, making use of the aircraft intent (AI) instance inferred from the raw
data, as subsequent paragraphs explain, it is possible to launch an aircraft mass infer-
ence and a trajectory reconstruction process [20, 21] that populates the state vector
with times (increased granularity) and state variables (state vector enrichment) not
included in the original surveillance-based trajectory representation.

2.4.1 Aircraft Intent

The aircraft intent (AI) can be defined as a set of instructions to be executed by the
aircraft in order to realize its intended trajectory. These instructions represent the
basic commands issued by the pilot of the FMS to steer the operation of the aircraft.
The pilot can issue instructions by, for example, directly controlling the stick and
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the throttle, commanding the autopilot and the auto-throttle or programming the
FMS. Instructions can be instantaneous, if they are considered to be issued at a
specific instant in time, or continuing, if they are issued throughout a finite time
interval. For example, consider an instruction requiring the flaps to be deflected a
certain angle. In this case, it can be assumed that the time taken by the pilot to move
the flap deployment lever is very short, so that the instruction can be considered
instantaneous. Consider now a pilot taking control of the stick and commanding
it during a certain interval of time. In this case, the resulting instruction would be
continuing.

The Aircraft Intent Description Language (AIDL) is a formal language designed
to describe AI instances in a rigorous but flexible manner. The AIDL contains an
alphabet and a grammar. The alphabet defines the set of instructions used to close
each of the DoF of the mathematical problem of the aircraft motion. The grammar
contains both lexical and syntactical rules. The former govern the combination
of instructions into words of the language, which are called operations, and the
latter govern the concatenation of words into valid sentences, i.e. sequences of
operations [22].

The AIDL captures the mathematics underlying trajectory computation into
a rigorous, flexible, and simple logical structure that allows both human and
computers to correctly describe meaningful operating strategies without the need to
understand the underlying mathematics. In addition, the flexibility of the language
allows defining aircraft intent with different levels of detail (e.g., aircraft intent
formats employed by different TPs) using a common framework [1, 23].

The relationship between AI instance and (predicted) trajectory is unique; thus,
once an AI instance is well formulated, a unique trajectory can be computed once the
aircraft performance model (APM) corresponding to the actual aircraft is available
and (resp. forecasted) weather conditions are known. Based on this property, it
is possible to derive the AI instance that represents an actual trajectory from the
chronologically ordered sequence of surveillance reports that identifies it.

Figure 2.1 exemplifies a descent trajectory from cruise altitude (FL320) up to
capturing a geodetic altitude of 4500 ft. During this flight segment, the speed is also
reduced from Mach 0.88 to 180kn calibrated airspeed (CAS). The lateral profile is
described by a fly-by procedure around a waypoint of coordinates N37o 9’ 45.72”
W3o 24’ 38.01”. The associated AI instance is determined once the 6 threads
(3 motions + 3 configurations) are well defined:

• Configuration Profiles. The flight is executed at clean configuration, meaning
that high lift devices (HL), landing gear (LG), and speed breaks (SB) are held
retracted. This is specified by the instruction Hold HL (HHL), Hold LG (HLG),
and Hold SB (HSB).

• Motion profiles (described for each one of the 3 degrees of freedom, which allow
representation of the trajectory).
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Fig. 2.1 Relationship between aircraft intent and trajectory

– 1st DoF. The cruise Mach is held up until the CAS reaches 280kn by applying
a Hold Speed (HS) instruction, and then this CAS value is held up to 4500 ft
altitude. From this instant, the altitude is maintained constant (Hold Altitude
(HA) instruction).

– 2nd DoF. Cruise altitude is constant up to the Top of Descent (TOD) when the
descent starts by setting the engine regime (Throttle Law (TL) instruction)
to idle. This setting ends when CAS reaches 180kn. Then, the speed is
maintained constant.

– 3rd DoF. The lateral path is described by the geodesic defined from the initial
location and the established waypoint—indicated with an asterisk—(Track
Lateral Path (TLP) instruction), a circular arc of radius R that determines the
fly-by procedure up to capturing the exiting geodesic defined by a constant
heading (Hold Course (HC) instruction).

Applying inference algorithms and techniques [18], and based on the assumption
that the aircraft motion can be represented as a point-mass model of 3 DoF, it is
possible to compute the AI instance that best describes an actual trajectory. Using
therefore the raw surveillance data, and matching them with the weather forecasts
that represent the atmosphere conditions of the day of operation and with the aircraft
type that actually executed the planned trajectory, we can enhance the available
surveillance dataset by adding this valuable information that cannot be immediately
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derived from the raw data. This additional set of information will enable additional
hybrid data-driven capabilities, in which big data analytics and machine learning
algorithms can be used to predict the most suitable AI instance, and then, compute
it by using a model-based TP to obtain a 4D description of the trajectory. Figure 2.2
shows a schematic representation of the whole process.

Fig. 2.2 Data-driven trajectory prediction based on aircraft intent (AI) instances

It is necessary to note that the AI representation of this kind of data is compliant
to the well-established notion of semantically annotated or enriched trajectories, in
the mobility data management and mining literature. Instead of a sequence of space-
time information (as in a raw trajectory), in an enriched trajectory the motion is
represented as a sequence of semantically meaningful episodes (typically in human
mobility these are stops, e.g. “at home”, “at office”, “for shopping”, and moves,
e.g. “walking”, “driving”, etc., which results in detecting homogeneous fractions
of movement. Extracting and managing semantics from (raw) trajectory data is a
promising channel that leads to significant storage savings. Maintaining semantic
information turns out to be quite useful in terms of context-aware movement
analysis. In fact, semantic aware abstractions of motion enable applications to better
understand and exploit mobility: for instance, concerning human mobility, analysis
methods may identify those locations where some activity (work, leisure, relax,
etc.) takes place, infer how long does it take to get from one place of interest to
another using a specific transportation means, conclude about the frequency of an
individual’s outdoor activities, calculate indices related to environmentally friendly
or sustainable mobility, and so on. Similarly, in our context, aircraft’ routes may be
transformed to sequences of critical points (see Chap. 4 for details) where certain
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events take place (e.g., “take-off”, “climb out”, “descent”, “landing”, or any of the
AIDL instructions mentioned above).

The main advantages of the aircraft intent (AI)-based approach are:

• This formulation based on the notion of enriched (or semantic) trajectory is
suitable to be used with highly sophisticated analytics AI/ML algorithms that
can potentially capture in better ways hidden patterns;

• The complete description of the 4D trajectory is obtained from a mathematical
model that provides the evolution of all possible states with time, contrary to the
case of using only raw data in which every state variable needs to be predicted
separately.

• The aircraft intent decouples the influence of the aircraft type and weather
conditions, providing purely information about how the aircraft is operated along
a time interval. This could help the process of finding command and control
patterns that are common to all aircraft flying within the same airspace volume,
although they fly dissimilar trajectories due to the effect of those decoupled
factors.

2.4.2 The Trajectory Reconstruction Process

As already pointed out, making use of the aircraft intent instance inferred from
the raw data, it is possible to launch a trajectory reconstruction process [20, 21]
that populates the state vector with times (increased granularity) and state variables
(state vector enrichment) not included in the original surveillance-based trajectory
representation.

Figure 2.3 depicts the enriched list of aircraft state variables obtained from the
trajectory reconstruction and enrichment process such as the Mach, CAS, TAS,
VG (ground speed), FC (fuel consumption), wind components (Wx, Wy), or OAT
(outside air temperature), not usually available in the input datasets used by the
algorithms proposed in the literature.

The reconstruction process requires an aircraft performance model and also a
model of the actual weather conditions faced by the aircraft along a real trajectory.
Thanks to such a process, the heading (true with respect to the geographic North),
speed (e.g., Mach number) and altitude (geopotential pressure altitude) profiles that
univocally define each trajectory can be obtained for any of the recorded tracks.
These heading, speed, and altitude profiles will be used as input to the big data
analytics algorithms that will generate a prediction of the evolution of these three
state variables with the same granularity as that selected for reconstructing the
original training dataset. The remaining variables will be computed by building an
AI instance upon those three predicted variables. According to the AIDL rules, it is
possible to describe a trajectory by setting three non-dependent motion constraints.
Thus, the evolution of those three state variables along the trajectory determines
univocally the trajectory to be predicted, and, therefore, AIDL-based TP can be
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Fig. 2.3 Trajectory reconstruction and enrichment process

used to solve the aircraft motion problem and generate the related prediction. This
approach can be seen as a hybrid solution that requires—given the AI instance
built—the computation of the complete state vector that defines a 4D trajectory.

The main advantage of this method is twofold:

• The usage of extended and enriched datasets leads to better trained algorithms,
and should turn into better trajectory predictions;

• The hybrid approach reduces significantly the training effort because only three
independent state variables are to be predicted out of the complete aircraft state
vector.

2.5 Aviation Operational Scenarios: Big Data Challenges
and Requirements

The current air traffic management (ATM) is nowadays changing its point of view
from a time-based operations concept to a trajectory-based operations (TBO) one,
which means a better exchange, maintenance, and use of the aircraft trajectories
for a collaborative decision-making environment, involving all the stakeholders in
the process. In addition to that, real-time tracking and forecasting of trajectories, and
early recognition of events related to aircraft are essential for operations. Essentially,
the trajectory becomes the cornerstone upon which all the ATM capabilities will
rely on. The trajectory life cycle describes the different stages from the trajectory
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planning, negotiation, and agreement, to the trajectory execution, amendment,
and modification. This life cycle requires collaborative planning processes, before
operations. The envisioned advanced decision support tools required for enabling
future ATM capabilities will exploit trajectory information to provide optimized
services to all ATM stakeholders.

To address these challenges the knowledge of more accurate and more pre-
dictable trajectories is needed. Thus, the more accurate and rich information on
trajectories and related events we have, and as we increase our abilities to predict
trajectories and forecast events regarding moving entities’ behaviour, the more
we will advance situational awareness, and consequently the decision-making
processes.

Once the decision-making process has been improved, there are direct conse-
quences in safety, efficiency, and economy in the ATM domain. For instance, by
having a better understanding of the air navigation data (historical data of flight
plans, sector configurations, and weather), the number of published regulations
could be more accurately forecasted to improve the adherence to scheduled
trajectories, with less delays and operational costs.

Due to the complexity of the ATM system, the current techniques for predicting
trajectories are limited to a short-term horizon, while the event detection and
forecasting abilities are limited. This is also due to the lack of methodologies
to exploit the big amount of data from heterogeneous data sources with lack of
veracity for (actual, historical, and planned) trajectories and other contextual aspects
(e.g., airspace sector configurations, regulations and policies, weather patterns, for
instance).

Efficiency in the air traffic management system requires minimizing costs for
both the airspace users (mainly airlines) and the operators (ANSPs). In general,
one key enabler for reducing costs is the predictability of the system. In particular,
from the point of view of the ANSP, maintaining the balance between the demand
(number of users trying to use limited resources like airports, airspace sectors. . . )
and the capacity (number of users which can safely use the mentioned resources)
is one of the main challenges. For the airline, flying according to the plan,
avoiding delays or extra fuel consumption represents the ideal way to achieve daily
operations, which however cannot be met.

The role of the trajectory in this efficiency enhancement endeavour is obvious: it
defines which resources of the air traffic management system will be used by each
flight (airports, airways, sectors. . . ), and it defines the achievable schedules, as well
as the implied costs.

Big data technology presents opportunities to increase predictability capacities
which are based mainly on complex theoretical models of the different components
of the air traffic management system. Exploitation of very large historical and
streaming data sources for positioning, contextual aspects, and weather is now
possible, thanks to state of the art in data management.

Surveillance is an ever-increasing data source since new technologies are
deployed (like ADS-B) which allow to collect data more widely (space-based
ADSB-B promises global coverage) and more frequently. Weather data, identically,
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each time is offered with more resolution both geographical and temporal. Contex-
tual data like flight plans, waypoints, or airways is increasing, linked to the traffic
growth, year after year. While each dataset is big, correlating and jointly exploiting
all of them together is what makes big data technology necessary.

The aircraft trajectory must be understood not only as the 4D collection of
points but also, including events relevant for the traffic management and the airline
operations. So, predicting the aircraft trajectory implies predicting these events too,
and vice versa. The amount of information involved in this trajectory prediction
process requires advanced visual analytics aids in order to understand the patterns
of the predicted trajectories and events, inspect the exact reasons for deviating from
plans towards either making adjustments to the actual system, or tune trajectory and
event detection and prediction methods for more accurate results.

Accurate predictions of trajectories will further advance adherence to flight plans
(intended trajectories) reducing many factors of uncertainty, allowing stakeholders
to do better planning of the operations, reducing risk of disruptions.

In this context, the Demand and Capacity Balancing (DCB) operational problem
has been addressed, as it is a cornerstone of ATM operations: how to be able to
accommodate the existing traffic demand with the available airspace capacity. The
DCB problem considers two important types of objects in the ATM system: aircraft
trajectories and airspace sectors. Sectors, as already explained, are air volumes
segregating the airspace, each defined as a group of airblocks. These are specified
by a geometry (the perimeter of their projection on earth) and their lowest and
highest altitudes. Airspace sectors configuration (one is active at any time) changes
frequently during the day, given different operational conditions and needs. This
happens transparently for flights.

The capacity of sectors is of utmost importance: this quantity determines the
maximum number of flights flying within a sector during any time period of specific
duration (e.g., in any 20 min period). The demand for each sector is the quantity that
specifies the number of flights that co-occur during any time period within a sector.
The duration of these periods is equal to the duration of periods used for defining
capacity. Demand must not exceed sector capacity for any time interval.

There are different types of measures to monitor the demand evolution, with the
most common ones being Entry Count and Occupancy Count. In this work Entry
Count it is considered, as this is the one normally used by network managers at real
world operations.

The Entry Count (EC) for a given sector is defined as the number of flights
entering in the sector during a time period, referred to as an Entry Counting Period.
This Entry Counting Period is defined given a “picture” of the entry traffic, taken
at every time “step” value along a period of fixed duration: The Step value defines
the time difference between two consecutive Entry Counting Periods. The Duration
value defines the time difference between the start and end times of an Entry
Counting Period. For example, for a 20-min step value and a 60-min duration value,
entry counts correspond to pictures taken every 20 min, over a total duration of
60 min.
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2.5.1 Regulations Detection and Prediction

The objective of this operational case is to demonstrate how regulations detection
and prediction capability is useful for reproducing Flow Management behaviour.
This behaviour is mainly represented by the applied regulations that the system must
learn to reproduce and to anticipate in specific problematic situations, as it would
happen in a realistic scenario.

Regulation is a measure that a flow manager takes to solve a specific situation,
in a punctual moment in a certain sector and it is applied over those flights that
have not yet took off. Thus, regulations are consequence of specific situations as
those in which there is an excess of demand vs capacity in sectors, or those caused
by different weather conditions, among others. In this case we are interested on
regulations that impose effective delays to flights still on ground, given that these
flights are planned to cross a volume of airspace where demand will exceed capacity.

The main consequence of a regulation is the reschedule of an ETOT (Estimated
take off time) by a CTOT (Calculated take off time), that is a new time to take off
after the scheduled one, causing a delay. ETOTs that are replaced by the CTOTs
concern only those flights that were going to fly in the affected sector (i.e., a sector
with an imbalance between demand and capacity), during a punctual moment.

Hence, there are three objectives:

1. Investigate the available historical data in order to identify patterns in the
emergence of the regulations. The patterns thus identified should suggest possible
approaches to regulation prediction.

2. Develop a method or methods for regulation prediction based on the patterns
identified.

3. Verify the method(s) by comparing predictions based on available historical data
(without regulation data) with the real regulations.

It is not known at the beginning what kinds of patterns can exist. It is therefore
necessary to analyse data from various perspectives using interactive visual displays
as well as various filters and data transformations. The possible types of patterns are:

Temporal Patterns, such as regularities with respect to the daily and weekly time
cycles.

Spatial Patterns, determining how regulations emerging in a certain area affect
flights associated with certain origin and/or destination.

Spatiotemporal Patterns, identifying different temporal patterns of regulations in
different areas.

Dependencies Among Regulations, identifying kinds of regulations with certain
properties that lead (after some time) to other regulations.

Once regulations and their cause (e.g.: weather, ATC capacity, accident/incident,
etc.) are known, flight plans have to be checked on how these regulations affect
them.
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2.5.2 Demand and Capacity Imbalance Detection
and Prediction

The objective of this operational case is to demonstrate the detection/prediction of
demand and capacity imbalances by means of indicators monitoring.

Those indicators are based on real demand (Hourly Entry Count) and declared
capacity (maximum number of flights allowed to enter in a sector during 1 h) of the
current configuration of airspace. These indicators are calculated using the initial
flight plans (deregulated traffic) instead of the real (finally flown) flight plans. The
main reason for using the initial flight plans relays on the fact that if a flight has been
regulated with delay, then the detected excess of demand may have been resolved.

Although in theory an imbalance could be produced by an excess of capacity
compared with the demand, it should be an unusual situation that is out of scope.

The final objective is to reconstruct the system’s behaviour in handling and
resolving demand capacity imbalances. This will allow us, in particular, to inves-
tigate propagation of the consequences of the regulations, as delaying some flights
in a given entry time period may lead to increasing the demand in a next entry
time period, in the same or another sector. It may also be useful to investigate the
consequences of regulations on various entry time period lengths: E.g., what would
happen if the currently adopted time period length of 1 h is replaced by a 30-min
period. Furthermore, it may be also reasonable to compare the use of fixed time
periods with the use of a sliding time period. In the latter approach, the demand is
calculated not from the beginning of an hour but from the time when each flight
enters a sector.

2.5.3 Trajectory Prediction: Preflight

This operational case of study objective is to demonstrate how predictive analytics
capability can help in trajectory forecasting. For a given flight plan, a forecasted
trajectory will be obtained and compared with the real one finally flown (as recorded
in the historical dataset).

The prototype will be used to select the flight plans desired for the evaluation.
These need to be “searchable” by callsign, aircraft model, airline, origin and
destination airports, estimated time of departure (ETD), estimated time of arrival
(ETA), equipage, cruise level, cruise speed. Thus, one may select a number of flight
plans (typically all) and request a predicted trajectory for each of them. As we
need to cover large fleets for large geographical regions, scalability issues emerge.
Therefore, the trajectory prediction abilities should be able to scale effectively.
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2.5.4 Trajectory Prediction: Real Time

The objective of this operational case is to analyse how predictive analytics
capability can help in trajectory forecasting in real time. For a given flight plan and
the current surveillance data arriving to the platform, a forecasted trajectory will be
obtained and updated continuously. This real-time need will be paramount in the
new TBO setting, in particular in a highly automated scenario where decisions will
be taken with the support of machine learning systems which will need to rely on
accurate, and very updated, trajectory forecasts.

2.6 Conclusions

The vision of the future ATM system evolving towards higher levels of automation,
as a key driver to enhanced ATM performance, is expressed in successive releases
of the European ATM Master Plan. This emerges both, as a mid-term need (with
EUROCONTROL as Network Manager forecasting increases in traffic of +50% in
2035 compared to 2017, meaning 16 million flights across Europe) and as a long-
term need (2035+).

The effects of collapsed sectors can be observed, for instance, in the yearly
Performance Review Report (PRR), addressed by EUROCONTROL Performance
Review Commission, which allocates a high share of the overall Air Traffic Flow
Management (ATFM) delays to this reason (over 90% in some airspaces). It was
significantly bad in 2018 when AFTM delays across Europe more than doubled, due
to the increase in traffic among other factors, a trend expected to keep. In general,
all performance analysis and studies lead to the idea that the ATM system is very
close to, or already at, a saturation level.

Effective automation that will enable an increase in capacity is considered
one of the pillars of future ATM, but this means facing some difficulties and
challenges. This has been evident in recent times with some potentially optimistic
implementation of automation features, which allegedly may have impacted the
situational awareness and reaction capabilities of the operators.

Complementarily, new opportunities have arisen for the enhancement of the
ATM approach to automation, in particular with the widespread introduction of
artificial intelligence/machine learning (AI/ML) techniques in society in general.
These techniques bring to the ATM research domain new opportunities, in particular
as key enabler to reach the necessary higher levels of automation.

On the other hand, predictability is considered as the main driver to enhance
operational performance key performance areas (KPAs), such as capacity, efficiency,
and even safety. Trajectory prediction, in particular within the TBO concept of
operations, is the paramount enabler for this new stage of ATM operations. This
chapter addresses the state of the art, as well as the main operational scenarios where
these capabilities bring significant benefits.
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Part II
Visual Analytics and Trajectory Detection

and Summarization: Exploring Data
and Constructing Trajectories

The second part of this book focuses on big data quality assessment, processing and
exploration, focusing on the detection and compression of trajectories according to
the requirements and objectives presented in the first part of the book. This, second
part of the book, presents novel technologies, appropriate to serve with compressed
and high quality data the mobility analytics components that are presented in
subsequent chapters. In doing so, preparatory workflows regarding data sources’
quality assessment via visual analytics methods are presented in the first chapter.
These are considered to be essential to understand inherent features of the data,
affecting the ways data should be processed and managed. In addition to this, the
second chapter presents methods for online construction of data synopses, towards
addressing big data challenges presented by surveillance, mostly, data sources in the
Maritime and ATM domains.
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Visual Analytics in the Aviation
and Maritime Domains
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and Rodrigo Marcos

Abstract Visual analytics is a research discipline that is based on acknowledging
the power and the necessity of the human vision, understanding, and reasoning
in data analysis and problem solving. It develops a methodology of analysis
that facilitates human activities by means of interactive visual representations of
information. By examples from the domains of aviation and maritime transportation,
we demonstrate the essence of the visual analytics methods and their utility for
investigating properties of available data and analysing data for understanding
real-world phenomena and deriving valuable knowledge. We describe four case
studies in which distinct kinds of knowledge have been derived from trajectories
of vessels and airplanes and related spatial and temporal data by human analytical
reasoning empowered by interactive visual interfaces combined with computational
operations.
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3.1 Introduction

Visual Analytics (VA) has been defined as ‘the science of analytical reasoning
facilitated by interactive visual interfaces’ [25, p. 4]. Visual analytics is a research
discipline that is based on acknowledging the power and the necessity of the human
vision, understanding, and reasoning in data analysis and problem solving. An
essential idea of visual analytics is to combine the power of human reasoning
with the power of computational processing. It thus aims at developing methods,
analytical workflows, and software systems that can support the unique capabilities
of humans by providing appropriate visual displays of data and involving as much
as possible the capabilities of computers to store, process, analyse, and visualise
data.

As facilitators of human understanding and reasoning, VA techniques and tools
can greatly support analysts in all stages of a typical analytical process. They can be
used for the following purposes:

• gain awareness of properties and problems of available data and understand how
the data need to be corrected, transformed, enriched, and/or complemented to
become suitable for the intended analysis;

• comprehend the phenomena reflected in the data, grasp essential features,
relationships, patterns, trends, and understand how to represent these in models;

• create valid and useful models of the phenomena by involving human critical
thinking in model design, preparation, configuration, evaluation, comparison, and
iterative improvement.

A substantial body of research in VA has been focusing on data and problems
related to mobility and transportation [6]. This chapter includes several examples
of applying visual analytics approaches to data and tasks in the domains of air
and maritime transportation. The aim is to demonstrate how interactive visual
displays in combination with relatively simple computational techniques support
the involvement of human understanding and reasoning in the analytical process.

3.2 Related Work

A particularly active sub-field of research in visual analytics deals with the analysis
of movement data [3, 6], with approaches including trajectory-centred techniques [4,
5, 8], representation and analysis of overall mobility patterns [13, 27], discovery of
interactions between moving objects [15], and support of domain-specific decision-
making processes [8, 9, 18] in complex transportation systems.

A comprehensive survey of the visual analytics research dedicated to mobility
and transportation has been published recently [6]. Particularly, there have been
research works focusing on the aviation or maritime transportation domains.
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VA approaches have been proposed for various specific problems in air traffic
analysis. Methods for detection of holding loops, missed approaches, and other
aviation-specific events and patterns were implemented in a system integrating
a moving object database with a visual analytics environment [22]. Albrecht et
al. [1] calculate air traffic density and, considering aircraft separation constraints,
assess the conflict probability and potentially underutilized air space. The traffic
density and conflict probability are aggregated over different time scales to extract
fluctuations and periodic air traffic patterns. Hurter et al. [14] propose a procedure
for wind parameter extraction from the statistics of the speeds of planes that
pass the same area at similar flight levels in different directions. Buchmüller et
al. [10] describe techniques for studying the dynamics of landings at Zurich airport
with the goal to detect cases of violating the rules imposed for decreasing the
noise in populated areas. The detected violations can be examined in relation to
weather conditions and air traffic intensity. Sophisticated domain-specific analyses
can be done by applying clustering to interactively selected relevant parts of aircraft
trajectories [8]. Andrienko et al. presented an approach to detection of deviations
of the routes of actual flights from the planned routes and exploration of the
distributions of the deviations over space, time, set of flights, trajectory structures,
and spatiotemporal contexts [9].

Related to the maritime domain, a state-of-the-art survey [2] uses a set of vessel
trajectories as a running example to show how different visual analytics techniques
can support understanding of various aspects of movement. Andrienko et al. [7] use
vessel movement data to demonstrate the work of an interactive query tool called
TimeMask that selects subsets of time intervals in which specified conditions are
fulfilled. This technique is especially suited for analysing movements depending on
temporally varying contexts. Scheepens et al. [24] have designed special glyphs for
visualizing maritime data. Tominski et al. [26] apply a 3D view to show similar
trajectories as bands stacked on top of a map background. The bands consist of
coloured segments representing variation of dynamic attributes along vessel routes.
Lundblad et al. [19] employ visual and interactive techniques for analysing vessel
trajectories together with weather data. Variants of dynamic density maps combined
with specialized computations and techniques for interaction [17, 23, 28] were
proposed to support exploration of the density and other characteristics of maritime
traffic. Kernel density estimation can be used to compute a volume of the traffic
density in space and time [12], which can be represented visually in a space-
time cube [16] with two dimensions representing the geographical space and one
dimension the time.

Apart from these researches aiming at understanding of the phenomena, events,
and processes pertinent to the domains of aviation and maritime traffic, there has
been research focusing on exploration of properties of movement data and the
use of VA techniques for detection of various quality problems that may occur in
such data [5]. In the next section, we shall demonstrate several examples of visual
detection of some quality problems in aviation and maritime data.
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3.3 Visual Exploration of Data Quality

Possible quality problems in movement data include errors in spatial positions of
objects, gaps in spatiotemporal coverage, low temporal and/or spatial resolution,
use of the same identifiers for multiple objects, and others [5]. It is essential to
reveal such problems before starting to use the data in the planned analysis. The
use of inappropriate data or reliance on unchecked assumptions concerning data
properties can lead to invalid analysis results and wrong conclusions.

Let us present several examples of quality problems that may occur in data
concerning vessel or aircraft movement. Figure 3.1 demonstrates obvious errors in
recorded spatial positions: here, many points from trajectories of vessels are located
on land. Such wrong records need to be removed from the data, e.g., by filtering.

Fig. 3.1 Some trajectories of vessels include positions located on land far from the sea

Positioning errors in trajectories are not always so obvious. A good indication
of a recorded position being out of the actual path of a vessel is an unrealistically
high value of the computed speed in the previous position. The computed speed
is the ratio between the distance to the next position and the length of the time
interval between the positions. If wrong position records detected in this way occur
occasionally in the data, they are not difficult to filter out. However, trajectories
containing many positions supposedly reached at unrealistic speeds require special
investigation. Thus, it may happen that the same identifier is assigned to two or more
simultaneously moving objects. Connecting consecutive points of such trajectories
results in zigzagged or more complex shapes, as demonstrated in Fig. 3.2. Such
problems may occur due to errors in manually entered data fields, such as flight call
signs.



3 Visual Analytics in the Aviation and Maritime Domains 63

Fig. 3.2 Visual investigation of a trajectory with a high number of erroneous positions. On the left,
the trajectory is shown on a map, and on the right in a space-time cube, where the base represents
the geographic space and the vertical dimension represents the time

Zigzagged shapes may also result from incorrect integration of data from
multiple sources, such as different radars. Thus, the shape in Fig. 3.3 resembles a
mixture of two flight trajectories, but it is unlikely that there were two simultaneous
flights following parallel routes and keeping a constant distance between them, as
could be deduced from the shape. It is more likely that the same flight is represented
twice in the dataset, and at least one set of records contains systematically shifted
positions with respect to the real flight trajectory.

Fig. 3.3 An unrealistic shape of a trajectory indicates either systematically occurring positioning
errors (displaced positions) or a mixture of movements of two airplanes
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When such positioning errors are identified, it is necessary either to devise
special, case-specific algorithms for data correction or to discard the problematic
trajectories from the analysis.

The example in Fig. 3.4 prominently demonstrates the problem of gaps in the
spatial coverage of a dataset consisting of flight trajectories. The trajectories are
drawn in a semi-transparent mode. Respectively, darker colours reflect higher
density of the flights. Some regions where we expect flights to be frequent, appear
as completely empty on the map. In other regions, the density of flights is lower
than in neighbouring areas. Obviously, large pieces of data describing the flights are
missing, which makes the dataset unsuitable for any meaningful analysis.

Fig. 3.4 An example of problems with spatial coverage in a dataset with aircraft trajectories

Another example in Fig. 3.5 comes from the maritime domain. Here, there are
spatiotemporal gaps in some trajectories, that is, absence of position records for
long time intervals of vessel movement. These gaps appear as long straight lines
when the trajectories are drawn on a map (Fig. 3.5, top). Such segments must be
excluded from the trajectories when it is necessary to analyse the paths of the
vessels or to aggregate the trajectories into overall traffic flows; otherwise, the
results will be wrong and misleading. A suitable way to exclude spatiotemporal
gaps is to divide the trajectories with the gaps into several smaller trajectories,
so that the point preceding a gap is treated as the end of the previous trajectory
and the following point is treated as the beginning of the next trajectory. A gap is
defined by choosing appropriate thresholds for the spatial and temporal distances
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between consecutive trajectory points. Suitable thresholds can be chosen based on
domain-specific knowledge, such as usual speeds of vessel movement and normally
expected frequencies of position reporting, and taking into account the statistics of
the distances in the data.

Fig. 3.5 Top: Long straight line segments in vessel trajectories correspond to spatiotemporal gaps,
i.e., long time intervals in which position records for the vessels are missing. Bottom: The result
of dividing the trajectories by the spatiotemporal gaps in which the spatial distance exceeded 2 km
and the time interval length exceeded 30 min

Many trajectory analysis methods assume that temporal resolution of position
records is constant. Very often datasets do not comply with this requirement.
Figure 3.6 presents an example of a dataset where the sampling rates of 15, 30,
and 60 s occur the most frequently, but other values occur as well. Hence, before
applying an analysis method that assumes equal-length time steps between positions
or attribute values, it is necessary to re-sample the data to make the time steps equal;
otherwise, the method results may be invalid.

Figure 3.7 demonstrates that errors may occur not only in positions or identifiers
but also in attribute values associated with the positions. In this example, the
values of the attribute reporting the navigation status of vessels are unreliable.
Hence, if the analysis requires the navigation status to be taken into account, it is
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Fig. 3.6 Variability of sampling rates in trajectories

necessary to determine the actual status based on movement characteristics rather
than attribute values. For example, when analysis requires extraction of stops, they
can be identified by finding parts of trajectories where the positions are nearly the
same during a chosen minimal stop time.

Fig. 3.7 Fragments of vessel trajectories with wrongly reported navigation status. The reported
status in the upper left and bottom images is ‘at anchor’, whereas the vessels were actually moving.
On the upper right, the reported status is ‘under way using engine’, while the vessels remained at
the same places and should have reported ‘at anchor’

The examples shown in this section do not cover all possible kinds of errors and
problems that may occur in movement data, in particular, in trajectories of aircraft
and vessels. Our intention was to demonstrate the utility of visual displays for
detecting existing problems, understanding their likely reasons and possible impacts
on the analysis, and finding suitable remedies.
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3.4 Examples of Visual Analytics Processes

This section briefly presents several case studies intended to demonstrate the use of
visual analytics approaches for gaining understanding of different phenomena in the
air and maritime traffic. As mentioned in the introduction, visual analytics combines
interactive visual displays with computational techniques for data selection, trans-
formation, and automated derivation of various analytical artefacts that can supply
relevant information for human reasoning.

A case study performed in the maritime traffic domain mostly aims at demon-
strating the use of data transformations for supporting visual analysis and reasoning.
The transformations include extraction of relevant parts of trajectories, detection
and extraction of particular events, and spatiotemporal aggregation of events and
movements.

As an example of using a computational analysis method, two case studies
include clustering of flight trajectories based on geometric similarity of the routes.
The general approach is to use a density-based clustering algorithm with a special
distance function that matches corresponding points and segments of trajectories
according to their spatial proximity. The specifics of the case studies we undertook
was that not all parts of trajectories might be relevant to the analysis goals. Thus,
in studying route choices, the initial and final parts of trajectories were irrelevant
because these parts depend on the wind direction and not subject to choice by
airlines. In studying the separation scheme of the approach routes to multiple
airports of London, we needed to disregard the holding loops as inessential parts of
the routes. To be able to apply clustering only to task-relevant parts of trajectories,
we adapted the distance function so that it could account for results of interactive
filtering of trajectory segments [8]. The main idea is that the distance function
receives two trajectories to compare together with two binary masks specifying
which points of the trajectories to take into account and which to ignore.

One case study in the aviation domain demonstrates exploratory analysis made
with three different kinds of data, planned flight trajectories, geometries of airspace
configurations, and temporal succession of the configurations. The aim of the
analysis was to understand the relationships between characteristics of the air
traffic and the choices of the airspace configurations for controlling the traffic.
The analytical process involved seeking evidence to support or refute hypotheses
generated by the analyst based on patterns observed.

All examples presented in this section do not merely demonstrate application of
visual analytics techniques to data. They also highlight the importance of human
perception, interpretation, understanding, and analytical reasoning and show how
visual analytics techniques provide inputs to these cognitive processes.
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3.4.1 Detection and Analysis of Anchoring Events in Maritime
Traffic

In this example, visual analytics approaches are used for exploration and analysis
of trajectories of vessels that moved between the bay of Brest and the outer
sea [21]. The specific analysis task is to study when, where, and for how long
the cargo vessels were anchoring and understand whether the events of anchoring
may indicate waiting for an opportunity to enter or exit the bay (through a narrow
strait) or the port of Brest. The dataset consists of about 18M positions of 5,055
vessels during 6 months from the 1st of October, 2015 till March 31, 2016. The
exploration of the data properties revealed many problems, some of which have
been demonstrated in the previous section.

After cleaning the data, we selected the task-relevant data subset consisting of
trajectories of 346 cargo vessels that passed the strait connecting the bay of Brest to
the outer sea at least once. From these trajectories, we took only the points located
inside the bay of Brest, in the strait, and in the area extending to about 20 km west
of the strait. To exclude the long straight line segments corresponding to periods of
position absence (Fig. 3.5, top), we divided the trajectories into sub-trajectories by
the spatiotemporal gaps with distance thresholds 2 km in space and 30 min in time
(Fig. 3.5, bottom). Next, we further divided the trajectories by stops (segments with
low speed) within the Brest port area and then selected from the resulting trajectories
only those that passed through the strait and had duration of at least 15 min. An
outcome of these selections and transformations is a set 1718 trajectories suitable for
the further analysis. Of these trajectories, 945 came into the bay from the outer area,
914 moved from the bay out, and 141 trajectories include incoming and outgoing
parts.

Fig. 3.8 Delineation of anchoring zones: violet points show positions from all trajectories
marked as anchoring in the data, tan polygons outline anchoring zones containing dense enough
concentrations of the anchoring points outside the port and major traffic lanes
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Fig. 3.9 The trajectories selected for analysis with the anchoring events (stops) marked in red

The analysis goal requires us to identify the anchoring events. As we cannot rely
completely on the navigation status in position records (see Fig. 3.7), we apply the
following heuristics. First, we identify areas where many trajectories had records
marked as anchoring. We consider these areas as only anchoring zones (Fig. 3.8),
thus ignoring occasional records marked as anchoring but located in unusual places.
Next, we assume that any sufficiently (at least 5 min) long stop in an anchoring zone
corresponds to anchoring. So, we get a set of 212 anchoring events (we shall further
call them shortly ‘stops’) that happened in 126 trajectories. Fig. 3.9 shows these
trajectories in light blue and the positions of the stops in red.

Since we want to understand how the stops are related to passing the strait
between the bay and the outer sea, we find the part corresponding to strait passing
in each trajectory. For this purpose, we interactively outline the area of the strait
as a whole and, separately, two areas stretching across the strait at the inner and
outer ends of it. The segments of the trajectories located inside the whole strait area
are treated as strait passing events. For these events, we determine the times of
vessel appearances in the areas at the inner and outer ends of the strait. Based on
the chronological order of the appearances, we determine the direction of the strait
passing events: inward or outward with respect to the bay. Then we categorise the
stops based on the directions of the preceding and following events of strait passing.

The pie charts on the map in Fig. 3.10 represent the counts of the different
categories of the stops that occurred in the anchoring areas. The most numerous
category ‘inward;none’ (105 stops) includes the stops of the vessels that entered
the bay, anchored inside the bay, and, afterwards, entered the port. The category
‘outward;inward’ (36 stops) contains the stops of the vessels that exited the bay,
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Fig. 3.10 The pie charts represent the counts of the stops in the anchoring zones categorized with
regard to the directions of the strait passing by the vessels

Fig. 3.11 A 2D time histogram represents the counts of the anchoring events by the hours of the
day (horizontal axis) and days of the week (vertical axis) by the heights of the corresponding bars

anchored in the outer area, then returned to the bay and came in the port. 34 stops
took place before entering the bay (‘none;inward’), 18 happened after exiting the
bay (‘outward;none’), and 11 before exiting the bay (‘none;outward’). In 7 cases,
vessels entered the bay from the outside, anchored, and then returned back without
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visiting the port (‘inward;outward’), and there was one stop that happened after
entering the strait at the inner side and returning back (‘in2in;none’).

We see that the majority of the stop events (yellow pie segments) happened after
entering the bay and, moreover, a large part of the stops that took place in the outer
area happened after exiting the bay and before re-entering it (orange pie segments).
It appears probable that the vessels stopped because they had to wait for being served
in the port. Most of them were waiting inside the bay but some had or preferred to
wait outside. Hence, the majority of the anchoring events can be related to waiting
for port services rather than to a difficult traffic situation in the strait.

Additional evidence can be gained from the 2D time histogram in Fig. 3.11. It
shows us that the number of anchoring vessels reaches the highest levels on the
weekend (two top rows) and on Monday (the bottom row). It tends to decrease
starting from the morning of Wednesday (the third row from the bottom of the
histogram) till the morning of Thursday (the fourth row), and then it starts increasing
again. The accumulation of the anchoring vessels by the weekend and gradual
decrease of their number during the weekdays supports our hypothesis that the stops
may be related to the port operation.

Fig. 3.12 Subsets of the trajectories under study are represented in an aggregated form on flow
maps. Left: The trajectories having stops after entering the bay of Brest. Right: The trajectories
having stops before entering the bay

To refine our conclusions, we also look at the routes of the vessels that made
stops after entering the bay of Brest and before that. In Fig. 3.12, the trajectories
of the vessels having stops after (left) and before (right) entering the bay have been
aggregated into flows between interactively defined areas. The flows are represented
by curved lines with the widths proportional to the move counts and the curvature
increasing in the direction of the flow. The image on the left shows us that most
of the vessels that stopped after entering the bay came from the outer sea. After
stopping, they eventually moved into the port of Brest. Evidently, the reason for
the stops was waiting for the port services. The image on the right shows that a
large fraction of the vessels that anchored in the outer area before entering the bay
previously came from the port. After stopping, they returned in the bay and moved
back into the port. A likely explanation could be that these vessels were unloaded
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in the port and had to move to the outside area for waiting until the next cargo to be
transported is ready for loading.

3.4.2 Exploring Separation of Airport Approach Routes

This case study was conducted using 5045 trajectories of actual flights that arrived at
5 different airports of London during 4 days from December 1 to December 4, 2016.
The goals were, first, to reconstruct the major approach routes, second, to determine
which of them may be used simultaneously and, third, to study how the routes that
can be used simultaneously are separated in the three-dimensional airspace, i.e.,
horizontally and vertically.

A suitable approach to identifying the major approach routes is clustering of the
trajectories by route similarity. A problem we had to deal with was the presence of
holding loops in many trajectories (Fig. 3.13). It was necessary to identify the loops
in the trajectories and filter them out so that they could not affect the clustering.
We have found a combination of query conditions involving derived attributes of
trajectory segments, such as sum of turns during 5 min, which allowed us to separate
the loops from the main paths and filter them out [8]. The clustering was then applied
to the remaining parts of the trajectories.

Fig. 3.13 Holding loops in the trajectories of the flights arriving to London are marked in red
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Fig. 3.14 The routes that were used on the first day till 18:25 (top) and on the following days after
the wind change (bottom)

By means of clustering, we have identified 34 distinct routes, 16 of which were
used only on the first day out of four. A major change in the use of the routes
happened at about 10 AM on the second day, when the east-west component of the
wind direction changed from the western to the eastern. This refers to all airports
except Stansted, where the approach routes changed on the first day at about 18:25
in response to a change of the north-south component of the wind. This was due
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to the northeast-southwest orientation of the runway in Stansted, which is different
from the east-west orientation of the runways in the other airports.

Knowing when each route was used, we could investigate the groups of the routes
that were used simultaneously. Figure 3.14 shows the routes that were used on the
first day till 18:25 (top) and the routes that were used after 10:00 on the second
day, i.e., after the wind change. Using the 3D representation of the trajectories, we
observe that the routes coming to the same airport from different sides join in their
final parts.

Fig. 3.15 Investigation of the route separation
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Some routes going to different airports intersect or overlap on the 2D map. To
investigate whether they are separated vertically, we repeatedly applied a spatial
filter for selecting various groups of intersecting and overlapping trajectories.
An example is shown in Fig. 3.15. The filter (Fig. 3.15, top) selects two partly
overlapping routes ending at Luton and Stansted (pink and orange, respectively) that
apparently intersect two routes ending at Heathrow. In a 3D view (Fig. 3.15, bottom),
we see that the former two routes overlap also in the vertical dimension but there
is no intersection with the routes to Heathrow due to differences in the flight levels.
Our interactive investigation shows that it is a general pattern: where segments of
different routes overlap in the horizontal dimension, their altitude ranges overlap as
well, and routes intersecting in 2D are separated vertically. Hence, relevance-aware
clustering of trajectories and interactive exploration with the use of temporal and
spatial filters and a combination of a geographic map and a 3D view helped us to
understand how air traffic services organise and manage a huge number of flights
following diverse routes within a small densely packed air space.

3.4.3 Revealing Route Choice Criteria of Flight Operators

In this study, we wish to reveal the criteria used by airlines in choosing particular
flight routes from many possible routes connecting a given origin-destination pair.
This translates to a significant improvement in terms of predictability at pre-tactical
phase (in particular for routes near local airspace boundaries, for which subtle route
changes might imply the appearance or disappearance of hotspots), among other
potential applications. As a representative example, we consider the flights from
Paris to Istanbul. This example provides rich information for the study: there are
many flights conducted by multiple airlines, which take diverse routes crossing the
air spaces of different European countries whose navigation charges greatly vary.
Some airlines may prefer such flight routes that minimize the navigation costs by
avoiding expensive airspaces or travelling shorter distances across such airspaces.
One of the questions in the study was to check if indeed some airlines are likely to
have such preferences.

We apply our analysis to trajectories constructed from flight plans, because the
route choices are made at the stage of planning. We use the plans of 1717 flights
performed during 5 months from January to May, 2016. Additionally, we use a
dataset specifying the boundaries of the navigation charging zones in Europe and the
unit rate in each. The map background in Fig. 3.16 represents the navigation rates
by proportional darkness of shading. The labels show the exact values, in eurocents
per mile. On top of this background, coloured lines represent the result of clustering
of the trajectories by route similarity excluding the initial and final parts. On the
bottom left, the area around Paris is enlarged; the initial parts of the trajectories are
shown in dashed lines. The lines are coloured according to their cluster membership.
Through clustering, we have revealed 9 major routes. The most frequent was route
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Fig. 3.16 Trajectories according to flight plans have been clustered by route similarity to reveal
the major flight routes from Paris to Istanbul. The initial and final parts of the trajectories, which
are represented by dashed lines, were disregarded in the clustering

Fig. 3.17 Route choices by 6 major flight operators labelled FOP1 to FOP6. The length of each
coloured bar represents the frequency of using the corresponding route by the flight operator
specified in the respective row of the graph. The topmost row corresponds to all operators in total

1 shown in red; it was used 1031 times, i.e., in 60% of the flights. Route 2 (green)
was used 217 times (12.6% flights), and the others were much less frequent.

It can be observed that the green route goes through cheaper airspaces than the
other routes. This is the “cheapest” route among all, with the total navigation cost
ranging from 434.9 to 492.8 euro, with the median 459.4 euro. The most popular
route 1 costs from 472.2 to 547.3 euros, with the median 515.6 euros. Route 2 is the
longest among all, except route 9 (yellow) that was taken only 11 times; however,
the difference from route 1 is not dramatic, only about 12 km.

The graph in Fig. 3.17 shows how many times each of the 6 major flight operators
(airlines) conducting flights from Paris to Istanbul chose each of the routes. The
operators are labelled FOP1 to FOP6. It can be seen that FOP4 used only the
cheapest route 2. This route was also occasionally used by FOP1, who conducted
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the largest number of flights (41.9% of all) but not by any other airline. Possibly,
this route has disadvantages that overweigh the navigation cost saving. Apart from
the path length difference, which is not very large, it may be lower flight levels or
frequent deviations from the flight plans. Indeed, the flight levels on route 2 are
lower than on route 1 by about 6 levels on the average and the difference between
the third quartiles is 20. We have also calculated the deviations of the actual flights
from the planned routes (i.e., the distances between the corresponding points in
the planned and actual trajectories) and found that they are higher on route 2 than
on route 1 by about 0.8 km on the average while the third quartiles differ by 3.2 km.
Route 2 may also have other disadvantages that are not detectable from the available
flight data.

Hence, we see that the navigation costs is not the main route choice criterion for
most airlines, but it has high importance for some airlines.

Further details on analysis and modelling route choice preferences can be found
in paper [20].

3.4.4 Understanding Airspace Configuration Choices

A sector configuration is a particular division of an airspace region into sectors, such
that each sector is managed by a specific number of air traffic controllers (typically
two, Executive and Planning Controllers). The number of active sectors depends, on
the one hand, on the expected traffic features (such as number of flights within a time
interval and their associated complexity/workload given the traffic complexity) and,
on the other hand, on the available number of controllers for that given shift (which
depends on the strategical demand forecast, which diverges from actual flights for a
set of reason).

On the other hand, often there are multiple ways to divide a region into a given
number of sectors. The choice of a particular division depends on the flight routes
within the region. Sector configurations schedule is continuously refined as getting
closer to operation, when the available flight plan information is progressively
refined. The flight plan information available the day before operation, while is
sure to change in tactical phase, already allows to prepare a schedule of sector
configurations for the next shifts of the air traffic controllers.

Ideally, configurations should be chosen so that the demand for the use of the
airspace in each sector does not exceed the sector capacity while making efficient
and balanced use of resources (controllers). In reality, demand-capacity imbalances
happen quite often for a set of reasons (deviations of actual flights from flight
plans, weather conditions, etc.), causing flight regulations and delays. In search
for predictive models that might support enhanced pre-tactical planning (able to
forecast deviations), researchers would like to understand how configuration choices
are made by airspace managers. They would also like to find a way to predict
which configuration will be used at each time moment during the day of operation,
considering uncertainty caused by operational factors in search for a more accurate
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sector configuration schedule in the day before operation (or earlier), allowing
better management of demand-capacity imbalances. However, it is unclear what
features should be used for building a predictive model. We utilised visual analytics
approaches to gain understanding of the configuration system, patterns of change,
and probable reasons for preferring one configuration over another. We performed
interactive visual exploration of configurations used in several regions.

Fig. 3.18 Top: A state transition graph shows changes of airspace configurations in one region
during a month. Bottom: The configurations are represented by differently coloured bar segments
in a periodic time view. The rows correspond to time intervals of 1 week length
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As an example, the upper image in Fig. 3.18 shows the configurations that were
used in one of the regions in Spain (namely, LECMCTAS) during 1 month. The
configurations are denoted by labels starting with a digit showing the number of
sectors in which the region is divided. Almost for each number of sectors, there
are two or more variants, some of which are used quite rarely. The lower image
shows the use of the different configurations over time. The configurations are
represented by coloured segments of horizontal bars. The light colours correspond
to small numbers of sectors and dark blue to dark purple colours to 7 and 8
sectors, respectively. The positions of the segments correspond to the times when the
configurations were used. The rows correspond to time intervals of 1 week length.
The temporal bar graph shows that the changes of the configurations happen quite
periodically. The configurations with small numbers of sectors are used in nights,
when the air traffic is low. The configurations with 7 and 8 sectors are usually used
from 07:30 till 22:30.

While the choices between configurations differing in the number of sectors
can be explained by differences in the traffic volume, the reasons for choosing
between configuration variants with the same number of sectors are not obvious.
To understand how configurations differ from each other, we used a 3D view as
shown in Fig. 3.19. The example in Fig. 3.19 shows two configurations in which the
region is divided into 8 sectors, CNF8A1 on the left and CNF8A2 on the right. The
sectors are represented by distinct colours. The configurations are almost identical,
except the vertical division of the sub-region on the west. In CNF8A1, the sub-area
is divided into two sectors at the flight level 325, and in CNF8A2 at the flight level
345. These two configurations are often used interchangeably during a day.

Fig. 3.19 Two configurations with the same number of sectors differ only in the vertical division
of the sub-region on the west
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The density graph in Fig. 3.20, in which the horizontal dimension represents time
and the vertical dimension flight level, shows the traffic intensity in the western
sub-region in 1 day when the configuration CNF8A1 was used in time interval
from 12:30 till 14:00 and CNF8A2 in the remaining time from 07:30 till 22:30.
These times are marked in the graph by vertical lines. The horizontal lines mark the
flight levels 325 and 345. The flight intensity is represented by shading from light
yellow (low) to dark red (high). The upper image shows the temporal density of all
trajectory positions within the western sub-region and the lower image shows the
density of the positions where the flight level changed with respect to the previous
positions.

Fig. 3.20 The horizontal and vertical dimensions of the graph represent the time and flight level,
respectively. The vertical lines mark the times 07:30, 12:30, 14:00, and 22:30. The horizontal lines
mark the flight levels 325 and 345. The shading shows the variation of the traffic intensity in the
western sub-region; top: all trajectory segments; bottom: segments where the flight level changed
with respect to the previous position
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A reasonable hypothesis for explaining the choice between different subdivisions
would be that the traffic managers strive to balance the workload among the
operators controlling different sectors, according to the behaviour of the specific
traffic. Indeed, we see that the traffic intensity at the flight levels above 345
decreased after 12:30, and the division level was lowered from 345 to 325. However,
after 14:00, when the division level returned to 345, there was no corresponding
increase of traffic at the higher levels; so, our hypothesis would not be supported by
this exclusive factor. Another possible decision rationale would be to choose such
a division level that fewer flights have to cross this level while they are within the
area. However, this hypothesis is not supported by the lower image in Fig. 3.20,
where we see many intersections of both level 325 and level 345 at the time of using
either of the two configurations. Hence, the vertical distribution of the flights does
not explain the reasons for preferring one configuration over the other, and further
investigation is needed. Domain experts suggest that the sector configuration change
was motivated by controller workload, not always precisely represented by traffic
counts or intensity. For this model, controller workload was not an input, so this
factor could only be taken into account indirectly through traffic.

3.5 Discussion and Conclusion

This chapter fulfils several purposes. First, it introduces the concept of visual
analytics as a methodology of data analysis where the key role belongs to the human
reasoning. The methodology involves the use of interactive visual representations of
information for facilitating the cognitive activities of human analysts. Second, the
chapter provides multiple examples that can help readers grasp the essence of the
VA methodology and see its utility in investigating properties of data (Sect. 3.3)
and in analysing data for understanding real-world phenomena (Sect. 3.4). Third, it
describes analysis scenarios in the domains of maritime and air traffic that resulted
in gaining valuable knowledge concerning the design and planning of the business
activities in these domains. This kind of knowledge can be potentially used for
building predictive models and/or for improvement of the businesses.

We would like to emphasise that it is humans, not machines, who can generate
new knowledge. Although the term ‘knowledge discovery’ is commonly applied to
computational techniques for data analysis, their outcomes can not be called ‘knowl-
edge’ in the sense usually meant by humans. They require human apprehension and
reasoning for being transformed to knowledge. Therefore, it is absolutely necessary
that human reasoning is involved in analyses aimed at gaining new knowledge and
finding possible or new, better ways to solve problems. Visual analytics techniques,
which support human reasoning, have therefore high importance and high potential.

This potential has been illustrated by four different cases corresponding to
diverse operating environments and different data sources. The results have been
discussed and validated with domain experts to ensure applicability to operational
needs. Particularly, in the domain of air traffic management (ATM), the analysis
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scenarios demonstrated the value of the VA methods to identify decision criteria
as key aspects of the ATM system, able to feed predictive or analytic models
applicable in planning phase. The scenarios especially highlighted the power
of these techniques to derive knowledge from spatiotemporal patterns. The VA
techniques also proved their utility for assessment of data quality. The domain
experts admitted that in some cases, as well as in data quality assessment, similar
results can be achieved by means of non-visual techniques, but at a significantly
higher cost of data preparation and analysis. Visual analytics techniques have proven
as time-efficient for these purposes.

In the aviation domain, several Single European Sky ATM Research (SESAR)
projects concluded that visual analytics is an important instrument for data analysis
and modelling. The white paper [11] supports the use of visual analytics for perfor-
mance modelling. The improvement in data quality and reliability at planning stages
that SESAR new concepts will deliver (i.e., by means of shared business trajectory
(SBT), reference business trajectory (RBT), and Trajectory-Based Operations) will
only enhance the benefits demonstrated by reducing data uncertainty. However,
current day data are already usable by this kind of techniques, delivering applicable
results.

Acknowledgments This research was supported by Fraunhofer Cluster of Excellence on “Cog-
nitive Internet Technologies” and by EU in SESAR project TAPAS (Towards an Automated and
exPlainable ATM System.

References

1. Albrecht, G., Lee, H.T., Pang, A.: Visual analysis of air traffic data using aircraft density and
conflict probability. https://doi.org/10.2514/6.2012-2540

2. Andrienko, N., Andrienko, G.: Visual analytics of movement: an overview of methods, tools
and procedures. Inf. Vis. 12(1), 3–24 (2013). https://doi.org/10.1177/1473871612457601

3. Andrienko, G., Andrienko, N., Jankowski, P., Keim, D., Kraak, M., MacEachren, A., Wrobel,
S.: Geovisual analytics for spatial decision support: setting the research agenda. Int. J. Geogr.
Inf. Sci. 21(8), 839–857 (2007). https://doi.org/10.1080/13658810701349011

4. Andrienko, G., Andrienko, N., Bak, P., Keim, D., Wrobel, S.: Visual Analytics of Movement.
Springer (2013). https://doi.org/10.1007/978-3-642-37583-5

5. Andrienko, G., Andrienko, N., Fuchs, G.: Understanding movement data quality. J. Locat.
Based Serv. 10(1), 31–46 (2016). https://doi.org/10.1080/17489725.2016.1169322

6. Andrienko, G., Andrienko, N., Chen, W., Maciejewski, R., Zhao, Y.: Visual analytics of
mobility and transportation: state of the art and further research directions. IEEE Trans. Intell.
Transp. Syst. 18(8), 2232–2249 (2017). https://doi.org/10.1109/TITS.2017.2683539

7. Andrienko, N., Andrienko, G., Camossi, E., Claramunt, C., Cordero Garcia, J.M., Fuchs,
G., Hadzagic, M., Jousselme, A.L., Ray, C., Scarlatti, D., Vouros, G.: Visual exploration of
movement and event data with interactive time masks. Vis. Inf. 1(1), 25–39 (2017). https://doi.
org/10.1016/j.visinf.2017.01.004

8. Andrienko, G., Andrienko, N., Fuchs, G., Garcia, J.M.C.: Clustering trajectories by relevant
parts for air traffic analysis. IEEE Trans. Vis. Comput. Graph. 24(1), 34–44 (2018). https://
doi.org/10.1109/TVCG.2017.2744322

https://doi.org/10.2514/6.2012-2540
https://doi.org/10.1177/1473871612457601
https://doi.org/10.1080/13658810701349011
https://doi.org/10.1007/978-3-642-37583-5
https://doi.org/10.1080/17489725.2016.1169322
https://doi.org/10.1109/TITS.2017.2683539
https://doi.org/10.1016/j.visinf.2017.01.004
https://doi.org/10.1016/j.visinf.2017.01.004
https://doi.org/10.1109/TVCG.2017.2744322
https://doi.org/10.1109/TVCG.2017.2744322


3 Visual Analytics in the Aviation and Maritime Domains 83

9. Andrienko, N., Andrienko, G., Cordero Garcia, J.M., Scarlatti, D.: Analysis of flight variability:
a systematic approach. IEEE Trans. Vis. Comput. Graph. 25(1), 54–64 (2019). https://doi.org/
10.1109/TVCG.2018.2864811

10. Buchmüller, J., Janetzko, H., Andrienko, G., Andrienko, N., Fuchs, G., Keim, D.A.: Visual
analytics for exploring local impact of air traffic. Comput. Graph. Forum 34(3), 181–190
(2015). https://doi.org/10.1111/cgf.12630

11. Cordero Garcia, J., Herranz, R., Marcos, R., Prats, X., Ranieri, A., Sanchez-Escalonilla, P.:
Vision of the future performance research in SESAR. White paper. SESAR 2020 (2018)

12. Dems̆ar, U., Virrantaus, K.: Space–time density of trajectories: exploring spatio-temporal
patterns in movement data. Int. J. Geogr. Inf. Sci. 24(10), 1527–1542 (2010). https://doi.
org/10.1080/13658816.2010.511223

13. Huang, X., Zhao, Y., Ma, C., Yang, J., Ye, X., Zhang, C.: TrajGraph: a graph-based visual
analytics approach to studying urban network centralities using taxi trajectory data. IEEE
Trans. Vis. Comput. Graph. 22(1), 160–169 (2016). https://doi.org/10.1109/TVCG.2015.
2467771

14. Hurter, C., Alligier, R., Gianazza, D., Puechmorel, S., Andrienko, G., Andrienko, N.: Wind
parameters extraction from aircraft trajectories. Comput. Environ. Urban Syst. 47, 28–
43 (2014). https://doi.org/10.1016/j.compenvurbsys.2014.01.005. Progress in Movement
Analysis - Experiences with Real Data

15. Konzack, M., McKetterick, T., Ophelders, T., Buchin, M., Giuggioli, L., Long, J., Nelson, T.,
Westenberg, M.A., Buchin, K.: Visual analytics of delays and interaction in movement data.
Int. J. Geogr. Inf. Sci. 31(2), 320–345 (2017). https://doi.org/10.1080/13658816.2016.1199806

16. Kraak, M.J.: The space-time cube revisited from a geovisualization perspective. In: Proceed-
ings of the 21st International Cartographic Conference, pp. 1988–1996 (2003)

17. Lampe, O.D., Hauser, H.: Interactive visualization of streaming data with kernel density
estimation. In: IEEE Pacific Visualization Symposium, PacificVis 2011, Hong Kong, 1–4
March 2011, pp. 171–178 (2011). https://doi.org/10.1109/PacificVis.2011.5742387

18. Lu, M., Lai, C., Ye, T., Liang, J., Yuan, X.: Visual analysis of route choice behaviour based
on GPS trajectories. In: 2015 IEEE Conference on Visual Analytics Science and Technology
(VAST), pp. 203–204 (2015). https://doi.org/10.1109/VAST.2015.7347679

19. Lundblad, P., Eurenius, O., Heldring, T.: Interactive visualization of weather and ship data. In:
Proceedings of the 13th International Conference on Information Visualization IV2009, pp.
379–386. IEEE Computer Society, Washington (2009)

20. Marcos, R., Cantu Ros, O., Herranz, R.: Combining visual analytics and machine learning for
route choice prediction. Application to pre-tactical traffic forecast. In: Proceedings of the 7th
SESAR Innovation Days, Belgrade (2017)

21. Ray, C., Dreo, R., Camossi, E., Jousselme, A.L.: Heterogeneous integrated dataset for maritime
intelligence, surveillance, and reconnaissance (2018). https://doi.org/10.5281/zenodo.1167595

22. Sakr, M., Andrienko, G., Behr, T., Andrienko, N., Güting, R.H., Hurter, C.: Exploring
spatiotemporal patterns by integrating visual analytics with a moving objects database system.
In: Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems, GIS ’11, pp. 505–508. ACM, New York (2011). https://
doi.org/10.1145/2093973.2094060

23. Scheepens, R., Willems, N., van de Wetering, H., Andrienko, G.L., Andrienko, N.V., van Wijk,
J.J.: Composite density maps for multivariate trajectories. IEEE Trans. Vis. Comput. Graph.
17(12), 2518–2527 (2011). https://doi.org/10.1109/TVCG.2011.181

24. Scheepens, R., van de Wetering, H., van Wijk, J.J.: Non-overlapping aggregated multivariate
glyphs for moving objects. In: IEEE Pacific Visualization Symposium, PacificVis 2014,
Yokohama, 4–7 March 2014, pp. 17–24 (2014). https://doi.org/10.1109/PacificVis.2014.13

25. Thomas, J., Cook, K.: Illuminating the path: the research and development agenda for visual
analytics. IEEE, Los Alamitos (2005)

26. Tominski, C., Schumann, H., Andrienko, G., Andrienko, N.: Stacking-based visualization of
trajectory attribute data. IEEE Trans. Vis. Comput. Graph. 18(12), 2565–2574 (2012). https://
doi.org/10.1109/TVCG.2012.265

https://doi.org/10.1109/TVCG.2018.2864811
https://doi.org/10.1109/TVCG.2018.2864811
https://doi.org/10.1111/cgf.12630
https://doi.org/10.1080/13658816.2010.511223
https://doi.org/10.1080/13658816.2010.511223
https://doi.org/10.1109/TVCG.2015.2467771
https://doi.org/10.1109/TVCG.2015.2467771
https://doi.org/10.1016/j.compenvurbsys.2014.01.005
https://doi.org/10.1080/13658816.2016.1199806
https://doi.org/10.1109/PacificVis.2011.5742387
https://doi.org/10.1109/VAST.2015.7347679
https://doi.org/10.5281/zenodo.1167595
https://doi.org/10.1145/2093973.2094060
https://doi.org/10.1145/2093973.2094060
https://doi.org/10.1109/TVCG.2011.181
https://doi.org/10.1109/PacificVis.2014.13
https://doi.org/10.1109/TVCG.2012.265
https://doi.org/10.1109/TVCG.2012.265


84 G. Andrienko et al.

27. von Landesberger, T., Brodkorb, F., Roskosch, P., Andrienko, N., Andrienko, G., Kerren, A.:
MobilityGraphs: visual analysis of mass mobility dynamics via spatio-temporal graphs and
clustering. IEEE Trans. Vis. Comput. Graph. 22(1), 11–20 (2016). https://doi.org/10.1109/
TVCG.2015.2468111

28. Willems, N., van de Wetering, H., van Wijk, J.J.: Visualization of vessel movements. Comput.
Graph. Forum 28(3), 959–966 (2009). https://doi.org/10.1111/j.1467-8659.2009.01440.x

https://doi.org/10.1109/TVCG.2015.2468111
https://doi.org/10.1109/TVCG.2015.2468111
https://doi.org/10.1111/j.1467-8659.2009.01440.x


Chapter 4
Trajectory Detection and Summarization
over Surveillance Data Streams

Kostas Patroumpas, Eva Chondrodima, Nikos Pelekis,
and Yannis Theodoridis

Abstract In this chapter, we present Synopses Generator, a stream-based process-
ing framework that can provide online summarized representations of trajectories
specifically for sailing vessels and flying aircraft. Assuming that surveillance
data monitoring their locations over a large geographical area is available in a
streaming fashion, this novel methodology drops any predictable positions (along
trajectory segments of “normal” motion characteristics) with minimal loss in
accuracy. Effectively, it can keep only those positions conveying salient mobility
events (annotated as stop, change in speed, heading, or altitude, etc.), identified
when the mobility pattern of a given vessel or aircraft changes significantly.
Moreover, this framework specifies parametrized conditions for detecting such
mobility features, as well as suitable heuristics that can eliminate inherent noise and
can provide succinct trajectory synopses in one pass over the incoming streaming
positions. A prototype implementation on top of Apache Flink and Kafka has
been set up in modern cluster infrastructures to enable parallelization of the
trajectory summarization process against such big mobility data. A comprehensive
experimental evaluation has been conducted against various surveillance data in
the maritime and aviation domain, and offers concrete evidence of its timeliness,
scalability, and compression efficiency, with tolerable concessions to the quality
of resulting trajectory approximations. The resulting compressed trajectories can
be particularly useful in efficient online or offline post-processing (e.g., mobility
analytics, statistics, pattern mining, etc.) while also facilitating their comparison
irrespectively of differing update frequencies.
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4.1 Introduction

Detecting trajectories from a large number of moving entities like vessels (maritime
domain) or aircraft (aviation domain) is a challenging task, especially if it has to
be carried out in online fashion against multiple, heterogeneous, voluminous, fluc-
tuating, and noisy data streams. In such scenarios, trajectories must be constructed
from online surveillance data: terrestrial or satellite Automatic Identification System
(AIS) messages1 from vessels, and Automatic Dependent Surveillance–Broadcast
(ADS-B) messages2 from aircraft or tracklogs from Air Traffic Control (ATC)
radars.

To address this challenge, in this chapter we present Synopses Generator, a
stream-based framework employing single-pass techniques for succinct, lightweight
representation of trajectories without harming the quality of the resulting approxi-
mation. Instead of retaining every incoming position for each object, this framework
drops any predictable positions along trajectory segments of “normal” motion
characteristics. Except for adverse weather conditions, traffic regulations, local
manoeuvres close to ports and airports, congestion situations, accidents, etc., most
vessels and aircraft normally follow almost straight, predictable routes at open sea
and in the air, respectively. It turns out that a large amount of raw positional updates
may be suppressed with minimal losses in accuracy, as they hardly contribute
additional knowledge about their actual motion patterns. Instead of resorting to
a costly trajectory simplification algorithm, we opt to reconstruct their traces
approximately from judiciously chosen critical points along their trajectories.

Effectively, this Synopses Generator keeps only those positions conveying salient
mobility events (stop, slow motion, change in heading, change of speed, change of
altitude, etc.). As a first step, trajectory construction is being applied, i.e., offering
distinct sequences of timestamped positions per moving object. This process also
involves discarding any inherent noise detected in the streaming positions due to,
e.g., delayed arrival of input messages, duplicate positions, crosswind or sea drift,
discrepancies in Global Positioning System (GPS) measurements, etc. In a second
step, any predictable positions along “normal” segments are dropped with minimal
loss in accuracy. As exemplified in Fig. 4.1, effectively this framework keeps only
those positions detected as mobility events when the pattern of movement changes
significantly. The derived stream of the so-called trajectory synopses must keep in
pace with the incoming raw streaming data so as to get incrementally annotated
with semantically important mobility features once they get detected. Thanks to
the computation of such synopses, the derived motion paths remain lightweight
for efficient real-time processing without sacrificing accuracy, and can be actually
compared to each other irrespectively of the actual reporting frequency that may

1http://www.imo.org/OurWork/Safety/Navigation/Pages/AIS.aspx.
2https://www.faa.gov/nextgen/programs/adsb/.
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Fig. 4.1 Example synopses of critical points for (a) the maritime and (b) aviation use cases

differ amongst objects. No context (weather, areas of interest, characteristics of
moving objects, etc.) is taken into account when constructing trajectory synopses.

It should be noted that our Synopses Generator works in a stream-in-stream-
out fashion, i.e., consuming position updates arriving at varying frequencies from
numerous objects and producing a derived stream of distinct subsequences of
(expectedly noise-free) timestamped positions as their evolving trajectory. Most
importantly, this framework can be used to obtain summarized, connected motion
paths concerning each object’s whereabouts. In addition, spatiotemporal features
(speed, travel time, rate of climb, etc.) of each trajectory can be computed with
minimal error. Hence, the resulting trajectory synopses are incrementally emitted
online as a derived stream, carrying not just the original timestamp and coordinates
of selected locations (i.e., those actually detected as critical points), but also their
annotation and several calculated spatiotemporal measurements (speed, travel time,
travelled distance, rate of climb/descent, etc.). This information may be further
exploited online or offline by other modules, e.g., for recognition and forecasting
of complex events, visual and mobility analytics, statistical analysis, clustering, etc.
Besides, the detected trajectory features can be archived into a data repository (e.g.,
an RDF graph or a database), where they can be contextually enriched with other
static or streaming information.

Another major objective is to address the issue of cross-stream processing of
surveillance data by reconciling and aligning parts of synopses from different
sources into a unified streaming summary. In particular, cross-stream processing of
ADS-B data can be seen as a means of “filling-in” gaps in trajectory representations
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with information obtained from other sources despite differences in object identi-
fication schemes, reporting frequencies, conflicting coordinates, etc. This real-time
integration of data from different sources effectively allows the correlation of data
from multiple sources in order to provide a coherent trajectory representation.

Overall, the proposed Synopses Generator addresses the following challenges:

• Timeliness. Trajectory detection and summarization must be carried out in real-
time. Critical points concerning evolving trajectories of vessels and aircraft must
be issued at operational latency (ideally within milliseconds, or at most a few
seconds) in order to enable immediate action, if necessary.

• Compression. Since trajectory synopses per moving object are extracted from the
incoming positions by retaining salient movement features only, this online data
reduction can yield huge space savings. Empirical results indicate that at least
70–80% of the raw data may be discarded as redundant, while compression ratio
can be up to 99% when frequency of position updates is high.

• Quality. Such compressed representations are also reliable enough in reconstruct-
ing trajectories with small deviations (i.e., tolerable approximation error) from
original traces, also coping with imperfections (such as network delays, noise,
etc.) inherent in real-world surveillance streams.

• Scalability. This framework can be deployed in both centralized and distributed
infrastructures and can manage scalable volumes of frequently updated, stream-
ing positions from large fleets of vessels or aircraft moving over a large area.

The remainder of this chapter proceeds as follows. Section 4.2 surveys related
work with a particular focus on trajectory management. In Sect. 4.3, we discuss
the major characteristics, as well as issues concerning streaming data sources used
for maritime and aviation surveillance. Section 4.4 presents basic notions regarding
trajectory representation and an overview of the data processing flow as applied by
the Synopses Generator. Section 4.5 consolidates our methodology towards effective
and efficient trajectory summarization in online fashion, formulates the types of
detected critical points, and describes the derived synopses. Section 4.6 discusses
the implemented software prototype and core technical aspects of its geostreaming
functionality. In Sect. 4.7, we report indicative results from a comprehensive
validation of the prototype against real surveillance streams, both in terms of
performance and quality of the derived synopses. Section 4.8 presents a cross-stream
processing methodology, together with a brief proof-of-concept evaluation. Finally,
Sect. 4.9 summarizes the methodology and underscores the substantial benefits from
this approach in maritime and aviation surveillance.
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4.2 Related Work

Stream Processing frameworks like Apache Flink,3 Apache Spark streaming,4 or
Apache Storm5 offer powerful capabilities to ingest, process, and aggregate enor-
mous amounts of streaming information from diverse big data sources. Note that
these are general-purpose platforms, which allow customizations and extensions
for specific applications. A recent survey [7] discusses their pros and cons, along
with an experimental study of their current processing capabilities with a particular
focus on analytics. Besides, several spatial extensions have emerged for big data
platforms, like SpatialHadoop [5], GeoSpark [29], or Simba [28]. These modules
offer support for representation and indexing of spatial entities, as well as basic
topological operators for querying, but they focus on point locations and simple
spatial features, ignoring entirely any spatiotemporal notions concerning mobility.
Hence, trajectories of moving objects cannot be managed by any of these platforms.
Only recently, UlTraMan [4] introduces support for storing and querying historical
trajectories over Spark. In our prototype implementation of the Synopses Generator
framework, we use Apache Flink as a stream processing engine and we add custom
functionality for trajectory detection and summarization on top of it. To the best
of our knowledge, no other streaming framework has been specifically tailored for
surveillance over noisy, intermittent, geostreaming messages from large fleets of
vessels and aircraft.

Regarding trajectory simplification, state-of-the-art algorithms like [12, 16]
operate in batch (offline) fashion since they require beforehand knowledge of all
points (i.e., complete trajectories). In contrast, due to the high arrival rate of stream-
ing locations in maritime and aviation surveillance, trajectory synopses detecting
significant mobility features must be updated in real time (online). Ideally, retained
samples in these synopses should keep each compressed trajectory as much closer
to its original course, chiefly by minimizing approximation error as in trajectory
fitting methods [2, 14]. For instance, the sliding window approach in [14] keeps
simplifying points along a line until error exceeds a given threshold. The STTrace
algorithm in [23] uses the concept of safe areas to generate a simplified trajectory
by keeping samples that deviate from predefined speed and direction error bounds.
Under a similar error-based principle, SQUISH [15] drops samples by employing a
priority queue in order to achieve a target compression ratio λ. Its adaptive variant
called SQUISH-E [16] aims not only to maximize λ but also to minimize estimated
error below a user-specified bound μ. Time-decaying approximation of streaming
trajectories can be carried out in an ageing-aware fashion [24], by gradually evicting
older samples and offer greater precision along the most recent segments. Dead-
reckoning policies like [27] and mobility tracking protocols in [8] may be employed

3https://flink.apache.org/.
4http://spark.apache.org/streaming/.
5http://storm.apache.org/.

https://flink.apache.org/
http://spark.apache.org/streaming/
http://storm.apache.org/
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on board of the moving objects to relay positional updates only upon significant
deviation from the course already known to a centralized server. Recently, a bounded
quadrant technique was introduced in FBQS [11] by applying an open window
over the recent (not yet compressed) trajectory portion and enabling estimation of
various compression error bounds. The one-pass, error-bounded OPERB algorithm
in [10] is based on a novel local distance checking method and involves several
optimizations to achieve higher compression. To the best of our knowledge, none
of the aforementioned techniques has ever been applied on streaming trajectories of
vessels or aircraft, and certainly do not support annotation of the retained samples.

In [20, 21] we had introduced a maritime surveillance framework specifically for
tracking vessel trajectories and also recognizing complex events (e.g., suspicious
vessel activity). This technique applied a sliding window over the incoming
positions and distinguished instantaneous events (e.g., a sudden change in heading)
from long-lasting ones deduced after examining a sequence of instantaneous events
over a recent time period (e.g., a smooth turn). Detected events were reported
periodically (i.e., critical point locations evicted from the window when it slides)
with all recent “delta” changes. Extensive tests showed that this summarization
method could yield a compression ratio better than 95% over the raw data, and
also sustain scalable volumes of streaming vessel positions. Synopses Generator
differs substantially and not just because it also deals with aircraft trajectories,
i.e., locations having an extra z-ordinate; this is not trivial, as it involves handling
of additional events (e.g., change in altitude, takeoff, landing). Most importantly,
mobility events can now be emitted at operational latency, i.e., within milliseconds
(or a few seconds at most) since the arrival of raw messages instead of relying on
the slide step of windows (which can even be hours). We now prescribe more noise
elimination filters and support multiple annotations per location in order to capture
richer semantics of all mobility-related information at a given location. Finally, the
prototype implementation of the Synopses Generator is now specifically designed
so as to enable scalability and can be executed in multiple concurrent threads or in
distributed cluster infrastructures.

The Synopses Generator framework is distinct from either deterministic or
probabilistic techniques towards trajectory prediction. For instance, a stochastic
Hidden Markov Model is employed in [1] to make such predictions by taking into
account weather observations, aircraft specifications, as well as historical trajecto-
ries indexed in a fixed three-dimensional grid in space. Our approach also differs
from Complex Event Processing (CEP) methods, like CEP-traj [25] applied over
vessel traces, as we only consider spatiotemporal information in detecting mobility
events. Overall, our framework is geared towards a data-driven summarization and
semantic annotation of streaming trajectories, as a means of reducing the amount of
information to be further processed (e.g., for mining or prediction) and associating
extra knowledge to the retained locations (with annotations like stop, slow motion,
turn, etc.).
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4.3 Streaming Data Sources in Maritime
and Aviation Surveillance

Maritime and aviation surveillance must cope with data stream imperfections, e.g.,
the noise inherent in vessel or aircraft positions due to sea drift, delayed arrival
of messages, discrepancies in GPS signals, etc. Next, we outline some issues that
may hinder mobility tracking from surveillance data streams, while the proposed
heuristics regarding noise reduction will be discussed in Sect. 4.5.1.1.

4.3.1 Maritime Data Sources

Nowadays, online tracking of vessels across the seas has become commonplace
largely thanks to the Automatic Identification System (AIS). A vessel equipped with
AIS transponders periodically broadcasts messages that include information about
its movement. In our Synopses Generator, we only consider positional messages
(AIS types: 1, 2, 3, 18, 19, 27) concerning timestamped locations of vessels from:

• terrestrial AIS (T-AIS) continuously collected by onshore receiving stations; and
• satellite AIS messages (S-AIS) arriving in bursts when satellites transfer buffered

data into a ground station.

These types of AIS messages include location-based and spatiotemporal infor-
mation about vessels: longitude, latitude, Speed over Ground (SoG), Course over
Ground (CoG), Rate of Turn (RoT), navigational status, and true heading.

Reporting Frequency of AIS messages can be quite low (in messages/hour),
especially when vessels are sailing at open seas. The range of AIS signals is typically
about 70 km due to the curvature of the Earth; therefore, satellites may be used
for monitoring instead of onshore base stations. But due to the small number of
available satellites, the update frequency between two consecutive measurements
can range from several minutes up to a few hours. Unfortunately, such a very sparse
sampling of AIS locations (sometimes, just a handful of positions per hour from
a single vessel) can have serious repercussions both on vessel monitoring as well
as on trajectory maintenance. Reporting frequency also depends on the vessel type,
e.g., boats often switch off their AIS transponders while fishing, hence contact may
be lost over several hours or even longer.

Timestamping Timestamp values are suitably expressed in UNIX epochs (i.e.,
seconds) and can be used as time reference for each incoming AIS message.
However, the timestamp in each message does not reflect the measurement on
board, but is assigned when this message is received by the station(s). Hence, it
might be affected by the accuracy of their clock, occasionally leading to disorder
in the resulting stream items. More frequent than not, streaming AIS messages
do not arrive chronologically. This imperfection is an inherent problem caused by
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collecting AIS data from various sources (terrestrial or satellite) or by combining
streams that are out of sync. More specifically, a message of timestamp τ could
arrive with a lag L = τmax − τ epochs with respect to the latest timestamp τmax

seen in the stream thus far. Admitting messages with a delay would distort proper
ordering of stream items by time [13].

Vessel Identification Each vessel can be uniquely identified by its 9-digit Marine
Mobile Service Identifier (MMSI). Duplicate or invalid MMSIs should be cleaned
by the data provider, and any problematic cases or inconsistencies (e.g., blacklisted
vessels) should be marked if they must be excluded from any further processing.

Geopositioning Geospatial reference for vessel positions is in geographical coordi-
nates (longitude, latitude) referenced in the World Geodetic System 1984 (WGS84).
Occasionally, vessels report locations in the mainland, sometimes at a long distance
from the coast and not along rivers, lakes, canals, etc., so these positions should be
eliminated altogether in a preprocessing step.

Deduplication of AIS messages is another concern. It can happen that a position
is reported twice from a single vessel, i.e., identical coordinates at the same
timestamp. Perhaps this occurs because the same message is collected from multiple
base stations. However, duplicate messages may cause trouble in their processing,
especially if values in some attributes differ between these messages. As will be
discussed in Sect. 4.5.1.1 regarding inherent noise in AIS messages, it may happen
that the same message is received by two base stations with deferred clocks, so it
may get differing timestamps. Such problems necessitate additional filters against
the incoming AIS stream in order to discard duplicates.

4.3.2 Aviation Data Sources

The Synopses Generator framework may accept raw surveillance data concerning
timestamped positions of aircraft from various sources:

• ADS-B messages broadcast by airplanes and collected by providers. Such
messages may be available via APIs or as historical files (in JSON or CSV
format).

• Secondary radar tracks in log files collected from ATC providers, typically
available in historical CSV files that can be replayed for simulations.

As discussed in Chap. 3 of this book, these data sources track aircraft at different
fashion and granularity, have diverse attribute schemata, while also differ in their
spatial coverage. More specifically:

Reporting Frequency varies widely amongst aviation data providers. Tracklogs
from ATC secondary radars have a regular frequency of updates every 5 s, while
ADS-B messages are relayed less frequently (on average, less than one message
per minute from each aircraft). There is no fixed rate of reporting even for a single
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flight; instead, this rate fluctuates a lot, with messages sometimes generated with
a 5 s difference in time and afterwards having to wait even a minute until the next
one. This can potentially hamper precise measurements of spatiotemporal features
(speed, rate of climb, etc.) that are indispensable in trajectory detection.

Timestamping Timestamp values in ADS-B data are expressed at the granularity
of seconds or milliseconds, thus leading to different precision in all derived
spatiotemporal calculations (speed, rate of climb, etc.). Yet, as previously observed
with AIS messages, ADS-B messages may also not arrive chronologically ordered.
However, in the aviation use case, such delays in transmission are more critical,
since airplanes move at a very high speed; so their actual position could be off by
several kilometres even for a lag of a few seconds in their position reports.

Aircraft Identification There is no standard identification scheme for incoming
positional messages. Several identifiers may be available in ADS-B messages or
radar tracklogs, like airline and flight codes, hexadecimal aircraft identifiers, etc.

Geopositioning Geospatial reference for aircraft is provided via geographical
WGS84 coordinates (longitude, latitude). Nevertheless, spatial coverage of the
reported positions varies amongst data providers, as some offer good coverage over
the entire planet with a few “holes” over the oceans, while other sources have a
more cluttered coverage, so it may not be possible to track a long-haul flight in its
entirety.

Insufficient Positions Near Airports In general, there is lack of sufficient samples
near airports across data sources, which can seriously deter detection of certain
critical points in trajectory synopses. In general, it seems that very few positions
per flight are reported in airport areas, thus affecting identification of several stages
of a flight such as standing, pushback, taxiing, take-off, and landing.

Altitude-Related Information Most data providers report altitude of aircraft in
hundreds of feet (e.g., 1700, 1800, 1900, etc.). Such a coarse resolution may cause
problems in detecting changes in altitude, whereas it is also susceptible to noise.

4.4 System Overview

In this section, we first discuss some basic concepts regarding representation of
streaming trajectories of moving objects and their synopses. Then, we outline the
components of Synopses Generator and its processing flow.
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4.4.1 Trajectory Representation

We consider that trajectories must be constructed from streaming surveillance data
in order to provide representation in real time of the original (raw) positions from
vessels or aircraft. Our objective with Synopses Generator is to maintain distinct
summarized sequences of timestamped positions per moving object (vessel or
aircraft), after excluding any inherent noise detected in streaming positions due to,
e.g., delays, duplicate messages, etc. Streaming timestamped positions are three-
dimensional (3-d) for vessels, but 4-d for aircraft, so they, respectively, consist of
tuples:

• 〈xi, yi, τi〉 for vessels, and
• 〈xi, yi, zi , τi〉 for aircraft,

where xi, yi ∈ R are coordinates in the respective axis of the spatial reference
system (typically, in WGS84), zi represents the altitude, and τi is the timestamp
value. Without loss of generality, we assume all coordinates in the same georefer-
ence system; altitude values z are expressed in feet, whereas (x, y) represent GPS
longitude/latitude pairs. Overall:

Definition 4.1 Trajectory To is abstracted as a (possibly unbounded) sequence
of tuples 〈o, pi, τi〉 for a given moving object o (either vessel or aircraft). Each
successive position pi ∈ R

d in the Euclidean space has d-dimensional coordinates
recorded at timestamp τi ∈ T.

Timestamp values τ are considered as discrete, totally ordered time instants from
a time domain T, e.g., UNIX epochs at the granularity of milliseconds. Note that
timestamps may have different interpretations [17]. In maritime AIS messages,
timestamps denote the transaction time, i.e., when the message was received by
the base station. The case is similar with ADS-B messages and locations from
secondary radars in aviation. Ideally, each location should report the valid time of the
actual measurement in the real-world, but this is not the case in any dataset available
in either use case. Thus, in our methodology, we accept the original timestamp
values as included in each incoming message, and our processing is based on them
in order to identify the sequence of positions per object.

For maintaining trajectory synopses in real time, “critical points” along each
trajectory must be identified strictly based on mobility features, effectively discard-
ing redundant locations along a “normal” course. A detected event may require one,
two, or multiple critical points to be issued (e.g., the start and end point of a slow
motion event), but always in a streaming fashion. Formally:

Definition 4.2 A synopsis So over trajectory To of an object o consists of a possibly
unbounded, time-ordered sequence of critical points, each represented as a tuple
〈o, pi, Ai〉, where 〈o, pi〉 ∈ To and Ai is a set of annotations for mobility events.

For a given object o, it holds that So ⊂ To; ideally, such summarization should
result into |So| � |To| in order to provide a concise synopsis, but with minimal
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Fig. 4.2 Online processing flow of the Synopses Generator framework

deviation from the original trajectory. Set Ai denotes multiple annotations for a
single timestamped location, acting like a bitmap where setting a bit signifies that a
particular mobility event (e.g., a change in heading) was detected at that position.

4.4.2 Framework Architecture

Figure 4.2 illustrates the processing flow in the Synopses Generator. Streaming
messages carrying 3-d timestamped positions for vessels (4-d for aircraft) may
be admitted via external connectors to online surveillance sources or replayed
from historical files using custom data feeders from public-subscribe systems (e.g.,
Apache Kafka6 in our prototype). The Synopses Generator consists of two major
components:

Trajectory Constructor Constructing trajectories from surveillance data relies on
timely admission of the original positions being received as input. In effect, a Noise
Reduction module provides distinct sequences of timestamped positions per object,
after excluding any inherent noise detected in the streaming positions due to, e.g.,
delayed or duplicate messages, GPS discrepancies, etc. The resulting noise-free
locations are issued in a streaming fashion (derived stream #1 in Fig. 4.2). The
m latest positions per object are maintained as its persistent state by the Mobility
States module. This enables calculation of its mean velocity vector and useful
spatiotemporal estimates (rate of turn, rate of climb, etc.) over its recent movement.

6https://kafka.apache.org/.

https://kafka.apache.org/
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Trajectory Compressor Incremental maintenance of trajectory synopses from
surveillance data offers timely detection of characteristic positions from each
moving object. Based on the noise-free locations per trajectory obtained from the
previous component, the Mobility Event Detection module can track major changes
along each object’s movement in isolation from the rest. By tracking vessels or
aircraft in real time, this process instantly identifies “critical points” along each
trajectory, essentially maintaining their synopses in a streaming fashion (indicated
as derived stream #2 in Fig. 4.2). To this end, spatiotemporal measurements
maintained in each object’s state are useful in order to avoid issuing false positives.

Besides, the Mobility Event Detection module also signals out possible disrup-
tions in communication. Typically in real-world surveillance streams, a vessel or
aircraft may stop relaying positions for quite a while (e.g., flights over oceans).
Of course, such a case can only be detected with some delay with respect to the
last known location of the object. Importantly for mission-critical or emergency
situations, once such a communication gap is spotted, this last reported location is
emitted into a derived stream of notifications (marked as #3 in Fig. 4.2). We make
no attempt to “fill-in” such gaps either via interpolation, extrapolation, or historical
patterns, but with a cross-stream method that checks against other available data
sources.

The entire operation is controlled by a user-specified parametrization concerning
both noise reduction and mobility event detection on trajectories. Choosing a proper
parametrization strongly depends on stream data characteristics (e.g., arrival rate of
positions) and the type of moving objects (e.g., fishing vessels, passenger ships) and
should be fine-tuned in order to trade compression efficiency with quality of results.

4.5 Online Processing of Streaming Trajectories

In the sequel, we suppose that a tuple 〈o, pcur 〉 has just streamed in, reporting
pcur as the latest known location of a given object o. Similarly, let pprev be the
previously known position of object o relayed at time pprev.τ < pcur .τ . For
detecting significant motion changes, we employ an instantaneous velocity vector−→v cur per object over its two latest known positions pprev , pcur . We also maintain
the mean velocity −→vm per object to get its short-term course based on m recent
positions in its mobility state. In trajectory computations, we typically employ linear
interpolation [2], assuming that any two consecutive positions (pprev, pcur ) in a
trajectory lie in a small area, which can be locally approximated with a Euclidean
plane using Haversine distances.

In this section, we first discuss trajectory construction including noise reduction
from surveillance data streams. Next, we present our approach for effective and
efficient trajectory summarization in online fashion. We formulate the types of
detected critical points, as well as the rules and conditions guiding their annotation.
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4.5.1 Trajectory Construction

The Trajectory Constructor component in the Synopses Generator provides time-
ordered point locations for each monitored object o (vessel or aircraft) in a streaming
fashion; such a sequence of points can then be used to construct its trajectory To.
No fictitious tuples like punctuations [26] are embedded to this derived stream,
but positions considered as noise are removed. Based on each incoming positional
message, trajectory construction involves the following steps:

• Extracts attributes 〈o, pi, τi〉 from the raw (AIS or ADS-B) message;
• Identifies o as the object (vessel or aircraft) concerned based on its unique

identifier as included in the original message, and fetches its currently maintained
trajectory To composed of a subset of previously reported “noise-free” locations;

• Computes basic spatiotemporal features of its movement (speed, heading, accel-
eration, rate of climb, etc.) as derived from each successive pair of incoming
positions, which are indispensable for filtering out noise in the data;

• If the resulting position is considered valid (i.e., not qualifying as noise), then
this timestamped position should be appended to trajectory To.

This process works in a stream-in-stream-out fashion. Indeed, it consumes
position updates arriving at varying frequencies from numerous objects and main-
tains their evolving trajectories, while also issuing distinct sequences of noise-free
timestamped positions as a derived stream (marked as #1 in Fig. 4.2).

4.5.1.1 Noise Reduction

Despite their high value in maritime and aircraft surveillance, positional data
streams are not error-free as discussed in Sect. 4.3. To remedy such imperfections
as much as possible, while also avoiding costly offline cleansing, we apply online,
single-pass empirical filters upon admission of each incoming streaming position.
These heuristics examine the instantaneous velocity vector −→v cur of each object as
computed by its two most recent observations. Since trajectory compression is our
principal objective, we can afford to lose garbled, out-of-sequence positions and not
consider correcting their timestamps. In such a streaming context, an object should

Table 4.1 Parameter settings for noise reduction from maritime and aviation surveillance streams

Parameter Threshold description Aviation Maritime

vmax Max speed of movement for any aircraft (in knots) 1000 50

δmax Max rate of change in speed (in knots/h) 50,000 50,000

	φ Max difference between successive headings (in degrees) 120◦ 120◦

ρmax Max rate of turn between successive positions (in ◦/sec) 10 3

γmax Max rate of climb between successive positions (in feet/sec) 200 –

h0 Max altitude to consider an aircraft as landed (in feet) 100 –
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(a) (b)

(c)

(d)

(e)

Fig. 4.3 Noise-related situations along trajectories of vessels and aircraft. (a) Off-course position.
(b) Zig-zag distortion. (c) Out-of-sequence positions. (d) Altitude perturbation. (e) Altitude
discrepancy

soon relay another fresh, noise-free location, compensating for the removal of any
preceding erroneous position(s). Subject to a careful parametrization (Table 4.1), a
noisy situation may be identified if at least one of the following conditions apply:

• Off-course positions incur an abrupt change both in speed and heading of −→v cur .
Figure 4.3a illustrates such an outlier with an abnormal temporary deviation from
the known (anticipated) course as abstracted by mean velocity −→vm of the object
over its previous m positions. In that case, it is most probable that vcur > vmax ,
e.g., exceeding a speed limit of vmax =1000 knots is not expected by an aircraft.

• Vessels and aircraft normally take a turn smoothly, marked by a series of
transmitted locations. So, if the latest update indicates a very abrupt turn (e.g.,
more than 	φ ≥ 120◦) with respect to its known course, then this message
should better be ignored. In case of adverse situations (e.g., a storm) a trajectory
may look like a “zig-zag” with a series of such abrupt turns as shown in Fig. 4.3b.
Dropping those points as noise is not typically correct; yet, in terms of data
reduction this is quite desirable, as the object evidently tries to keep to its planned
course.

• Sometimes, an object appears to accelerate far too much (over δmax knots/hour),
rather unusual for vessels or aircraft. This is typical for out-of-sequence messages
with twisted timestamps. As shown in Fig. 4.3c, all locations are along the known
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course, but due to the late arrival of the three red spots to the base station, the
object looks like suddenly retracting backwards at an unrealistic speed.

• Identical locations from the same moving object should qualify as noise. When
objects are stationary (e.g., aircraft stationed at a terminal gate), slight agitations
in their GPS measurements are acceptable. Instead, coincidental coordinates
in succession and only differing slightly on their timestamp values are almost
certainly duplicate messages that arrived to multiple base stations.

• A similar problem occurs with conflicts in timestamping, when the same
timestamp is assigned to distinct messages from a given object, each reporting
different coordinates. To resolve such ties, we arbitrarily choose one of them.

• Upon a sudden surge in the rate of turn, e.g., above a given threshold ρmax ≥
10o/sec, the current location should be considered as noise so as to avoid
improbable, very sharp turns not expected by vessels or airplanes.

• To filter out discrepancies in altitude, we take advantage of the mobility state
maintained per aircraft over its latest m positions. Computing a moving average
in the rate of climb generally seems to eliminate false indications regarding
altitude change, as the one in Fig. 4.3d. These are mainly caused by the lack
of precision in altitude measurements usually reported at discrete flight levels
(multiples of 100 ft). This rule is also needed to filter out small deviations
in altitude not actually qualifying as mobility events, as the one in Fig. 4.3e
where the aircraft momentarily appears to be cruising at 29,800 ft while clearly
descends.

• Ascents or descents at a rate more than γmax (e.g., 200 ft/s) between two
successive locations are erroneous. We discard such temporary steep climbs or
drops in altitude caused by false timestamping or imprecise altitude values.

• Of course, an aircraft cannot be stopped in the air, so it is impossible to have
a speed vcur

∼= 0 at an altitude above a threshold h0 (e.g., 100 ft); up to h0 an
aircraft may be safely considered as landed to the ground.

We experimentally verified that noise may concern a significant portion of
received positions, qualifying to one of the aforementioned cases, so data cleaning
is a necessary step before any further processing. Most importantly, accepting noisy
positions would drastically distort the resulting synopses (as in Fig. 4.3a), and also
hamper proper detection of mobility events, as discussed next.

4.5.1.2 Mobility State Maintenance

Position updates 〈o, pi, τi〉 pertinent to a given object o are chronologically buffered
in memory, and used internally by the Synopses Generator in all computations.
So, in order to extract annotations of critical points (to be discussed next in
Sect. 4.5.2) the most recent portion of its evolving trajectory T ω

o is available as a
distinct sequence of m “clean”, time-ordered point locations. We call this trajectory
portion the current mobility state of object o, which is continuously maintained
as a count-based sliding window [19] ranging over its m most recent, noise-free
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locations. Parameter m is a small integer, e.g., m = 10, which may depend on
the reporting frequency of objects, so it can vary for vessels and aircraft. Anyway,
from information available in this state, the mean velocity vector −→v mean of that
object can be calculated, as well as several derived spatiotemporal measurements
(such as distance, travel time, overall change in heading, rate of climb, etc.). To
avoid considering obsolete locations in velocity vector calculations, we also set a
maximum time span to ωmax for the contents of this window back from current
timestamp τcur .

4.5.2 Trajectory Summarization

The second major component in Synopses Generator concerns a Trajectory Com-
pressor, which maintains coherent trajectory synopses online, i.e., summarized,
approximate trajectory segments as a derived, append-only data stream. Each such
synopsis contains detected critical points based on mobility features characterizing
the observed course of a moving object (e.g., stop, turn, speed change, etc.).

Next, we specify intuitive heuristics that can be used to capture mobility events
along vessel and aircraft trajectories. As listed in Table 4.2, some types of events,
e.g., stops or changes in heading, are captured on the (x, y) plane. Other events
involve computations in the z-dimension, like changes in altitude, while others
(communication gaps) rely strictly on temporal features (t-dimension). Depending
on the type of the mobility event, either one, two, or multiple critical points may
be issued to fully describe it. For example, stops are characterized by their start and
end points (to indicate the duration of this event). Instead, when a significant change
in heading is observed, then a single critical point is emitted to mark this location as
a turning point in the trajectory; and in case of smooth turns, a series of such critical
points may be emitted in order to better capture this event.

Table 4.2 Types of mobility events detected along various dimensions in both use cases

Mobility event Parameter Critical point(s) Use case

(x
,
y
)

Stop vmin (knots) Start point and end point Aviation; maritime

Slow motion vσ (knots) Start point and end point Aviation; maritime

Change in heading 	θ (◦) One or multiple points Aviation; maritime

Change of speed α (%) Start point and end point Aviation; maritime

z

Change in altitude 	γ (ft/s) One or multiple points Aviation

Takeoff h0 Start point Aviation

Landing h0 Start point Aviation

t Communication gap 	T (s) Start point (notifications) and
End point (synopses)

Aviation; maritime
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4.5.2.1 Mobility Events on (x, y) Dimensions

Stop indicates a stationary object (e.g., at ports or airports) over a period of time,
so actually several nearby positions may be received due to GPS discrepancies. To
capture its duration, two critical points should be emitted as shown in Fig. 4.4a:

• Start of stop annotates a fresh location once vcur ≤ vmin,

where vmin is an appropriately chosen speed threshold for denoting immobility (e.g.,
1 knot). Any subsequent locations also validating this condition are not emitted as
critical with respect to stop, implying that this phenomenon is still ongoing.

• End of stop is identified once vcur > vmin and this object was previously stopped
(i.e., a Start of stop had been issued).

Thus, the stop event and its duration may be inferred by associating this pair of
critical points for a given vessel or aircraft.

Slow Motion indicates an object moving at a very low speed (below a suitably
chosen threshold vσ , e.g., 5 knots) over some time. For aircraft, this essentially
concerns a subtrajectory on the ground, e.g., while taxiing on runways. Vessels
may move at slow speed even at open sea, e.g., boats approaching fishing areas.
Provided that sufficient position reports exist, the first and the last positions in
this subsequence should be emitted as critical points (Fig. 4.4b) with the following
annotations:

• Start of slow motion in case that (vcur ≤ vσ ) ∧ (vprev > vσ ).

Subsequent positions also having a speed below vσ are not marked as critical
with respect to slow motion, as long as the vessel or aircraft still continues to move
according to the same pattern.

• End of slow motion is issued either when the object stops (i.e., concurrently with
a Start of stop) or once (vcur > vσ )∧(vprev ≤ vσ ), so it no longer moves slowly.

Change in Heading may be spotted when actual heading has just changed by
more than a given threshold angle 	θ ; e.g., if there is a difference of 	θ > 10◦
w.r.t. the previous heading. In particular, we calculate its current bearing (azimuth)
as the angle in degrees (clockwise) between North and the direction of its current
velocity vector −→v cur . To avoid emitting false indications caused by occasional GPS
errors, we propose to detect such changes in heading employing the mean velocity
−→v m from the mobility state of that object. Since angle φ = arccos

( −→v cur ·−→v m

‖−→v cur‖‖−→v m‖
)

indicates the deviation between mean velocity −→v m and instantaneous bearing −→v cur

(from previous pprev to current location pcur ), an event regarding

• Change in Heading is detected once it holds that φ ≥ 	θ .

Although such a change gets actually detected at the current location pcur , the
previous one pprev must be annotated as critical point; this offers a more precise
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(a) (b)

(c) (d)

Fig. 4.4 Mobility events (of one, two, or multiple critical points) on (x, y) dimensions detected
along trajectories of vessels or aircraft. (a) Stop. (b) Slow motion. (c) Changes in heading. (d)
Change of speed

trajectory approximation, as at pcur the object already moves along a changed
course.

In addition, we also need to check whether the cumulative change of instan-
taneous headings across a few previous positions exceeds threshold 	θ (as we
applied in [21] for vessels only). Indeed, due to their large size and aviation
regulations, aircraft and vessels usually make smooth turns or manoeuvres, e.g.,
awaiting permission for landing (a holding situation) or when docking to the port.
As illustrated in Fig. 4.4c, a series of such critical points need be issued to achieve a
more reliable piecewise approximation of the actual motion path. Of course, the
lesser the angle threshold 	θ , the more the critical points denoting such slight
changes in heading. The last point in the series should be the one at which no
significant change in heading is observed anymore, i.e., from now on the object
is about to follow a straight course.

Note that a change in heading for aircraft may be also combined with ascent or
descent along the z-dimension (as discussed next), e.g., during manoeuvres before
landing or at holding patterns.

Change of Speed occurs once current speed vcur deviates by more than α% from
mean speed vm. Given a parameter α, which quantifies a cutoff threshold for
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ignoring occasional perturbations in speed estimations due to GPS error, wind drift,
etc., a pair of critical points (Fig. 4.4d) should be annotated:

• Start of speed change is marked once it holds | vcur−vm

vm
| > α.

Subsequent positions where this condition still holds (i.e., the object keeps
speeding up or slowing down) need not emitted as critical with respect to speed
change, as long as the object is considered to continue moving by the same pattern.

• End of speed change occurs once | vcur−vm

vm
| ≤ α, and also a critical point was

earlier annotated as Start of speed change.

This end point indicates that the object’s speed practically stabilizes close to the
mean vm based on its mobility state. Speed change may be further distinguished into
acceleration or deceleration, effectively by taking the sign (+/–) of the fraction (and
not just the absolute value) in the aforementioned rules.

Ideally, this pair of critical points should be matched (i.e., a starting point
followed by one marking the end of this event) so as to characterize a subtrajectory
where the object changes its speed significantly. However, often other events
suddenly occur (e.g., communication gap) and disrupt the sequence, so the latter
point may be missing from the resulting synopsis.

4.5.2.2 Mobility Events on z-Dimension

This set of mobility events concern aircraft trajectories only, since they are based on
their reported altitude measurements. More specifically:

Change in Altitude may be detected once there is a significant change at the
altitude, i.e., points of transition to a different cruise flight level, as depicted in
Fig. 4.5a. Essentially, this aims to capture positions with significant change at the
rate of climb (or descent) of the aircraft. Due to occasional spurious jumps in
reported altitudes as shown in Fig. 4.3d, we avoid checking directly against altitude
values.

Instead, we employ the rate of climb (or rate of descent) γ , which is the vertical
speed of an aircraft (in feet/sec) between its previous and current location when
ascending (respectively, descending):

γ = pcur .z − pprev.z

pcur .τ − pprev.τ
.

Ideally, when γ > 0 the aircraft is ascending, and with γ < 0 it is descending;
once γ = 0, then the aircraft flies at a cruise level. However, small fluctuations
in altitude (especially when measured in hundreds of feet) may erroneously infer
ascent or descent (Fig. 4.3d). Our goal is to identify positions where changes in
this rate start or cease to take place. On first sight, by setting a threshold 	γ for
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(a) (b) (c)

Fig. 4.5 Mobility events on the z-dimension detected along aircraft trajectories. (a) Changes in
altitude. (b) Takeoff. (c) Landing

significant changes in this rate (e.g., more than 20 ft/s), a critical point should be
issued once it is found that |γcur | > 	γ , where γcur expresses the rate of climb (or
descent) of the aircraft at timestamp pcur .τ . As with changes in heading, note that
actually the previous location pprev must be annotated as critical, because at current
location pcur the aircraft is already on its ascent (or descent). In addition, we should
avoid characterizing as critical all locations along such a climb (or descent), as long
as there is no significant change in the previously calculated rate γprev. Moreover,
to avoid emitting potentially invalid critical points caused by numeric imprecision
in timestamp and altitude values, we may conservatively detect such changes by
also checking with the mean rate of climb (or descent) |γmean| computed over the
m most recently reported locations of the aircraft available in its state. Therefore,
we annotate the previous location pprev (with the same rationale as for changes in
heading) as

• Change in Altitude if (|γcur | > 	γ )∧ (|γprev| ≤ 	γ )∧ (|γcur − γmean| > 	γ ).

A series of critical points may be annotated to mark a smooth ascent (or descent),
as this can yield a more reliable trajectory approximation along the z-dimension.

Takeoff concerns the last location reporting that the aircraft was still on the ground.
ADS-B messages carry a Boolean flag indicating whether ground squat switch7 is
active, i.e., whether the aircraft is grounded, although this flag is usually null in real
datasets. But, since tracklogs from secondary radars do not include such a flag at all,
checking with absolute altitude values is the only option for possibly detecting such
an event. To overcome discrepancies in measurements, altitude values should be
compared against a threshold h0 indicating the highest altitude at which an aircraft
may be considered as landed to the ground (e.g., h0 = 100 ft). So,

• Takeoff is issued if (!pcur .grounded ∧ pprev.grounded) ∨ ((pcur .z > h0) ∧
(pprev.z ≤ h0)).

7A sensor that identifies if the weight of the aircraft is resting on its gear.
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Note that the previous location pprev gets annotated as takeoff so as to provide a
better trajectory approximation, as illustrated in Fig. 4.5b.

Landing concerns the location at which an aircraft touches the ground (Fig. 4.5c).
With a rationale similar to takeoffs, we check against threshold h0, and also inspect
ADS-B-specific flag grounded, so current location pcur is annotated as

• Landing in case that (pcur .grounded ∧ !pprev.grounded) ∨ ((pcur .z ≤ h0) ∧
(pprev.z > h0)).

4.5.2.3 Mobility Events on t-Dimension

Communication Gaps occur often in long-haul flights or vessel itineraries across
oceans when contact with the base stations is lost. As illustrated in Fig. 4.6, when no
message is received from the moving object for at least a time interval 	T , e.g., over
the past 10 min, its actual course is unknown. Such communication gaps might be
also caused by accidents or other suspicious situations (e.g., hijacks). Obviously, this
event is concluded when contact is restored, sometimes after a period much longer
than 	T . To maintain trajectory synopses in append-only fashion at operational
latency, current location pcur is promptly annotated as

• End of communication gap if (pcur .τ − pprev.τ > 	T ).

This rule only depends on the elapsed time between current pcur and previously
known location pprev of a given aircraft, hence is based on time measurements only.

Still, a notification may be issued concerning the location at which contact was
lost, i.e., the previous position pprev is annotated as

• Start of communication gap once (τnow − pprev.τ > 	T ).

In contrast with other types of critical points, we stress that these latter notifica-
tions cannot be issued online, but with at least 	T time units delay from system time
τnow. To avoid disrupting temporal ordering of critical points in trajectory synopses,
notifications are derived as a separate stream (as shown in Fig. 4.2).

4.5.2.4 Discussion

It is worth explaining the difference in semantics amongst three types of critical
points (stop, slow motion, change in speed) that are all based on speed measure-
ments. Clearly, stop aims to identify when an object remains stationary, i.e., its
speed is practically zero. During this period of immobility, checking for the other
two types of events is switched off in the Synopses Generator. Next, slow motion
is particularly designed to capture movements along a path at consistently very low
speed (below a threshold vθ , e.g., 5 knots). Such an event may follow or precede a
stop (e.g., a vessel leaving or entering a port), as well as slow movements along a
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Fig. 4.6 Mobility events on the t-dimension marking start/end of a communication gap with a
moving vessel or aircraft

path (e.g., a boat in a fishing area), as illustrated in Fig. 4.4b. Finally, a change in
speed is intended to find cases where an object suddenly accelerates or decelerates
while on the move, before its speed stabilizes at another (higher or lower) value after
a while. So, this latter type of event captures such “spikes” of speedup or slowdown
in order to distinguish subtrajectories at different speed levels, i.e., before the start
and after the end critical point of such a change in speed, respectively. It cannot
be ruled out that the same location may be marked as both an endpoint of change
in speed and of slow motion, e.g., a vessel was slowing down and now it moves
at a very low speed. So, events may be consecutive in time, but occasionally there
may be overlaps (excluding stops). We intentionally avoid a “crisp” separation of
such events in order to extract as much information about mobility features in the
resulting trajectory synopses.

4.6 Prototype Implementation

We implemented a software prototype8 for our application framework in Scala using
the DataStream API of Apache Flink with Apache Kafka as broker for streaming
messages. Flink is an open-source stream engine able to execute complex dataflow
applications in a data-parallel, pipelined manner. Flink adopts a tuple-at-a-time
model for its stream operators, offering results at low latency and achieving higher
throughput [3, 6] compared to the micro-batch approach in Spark Streaming. Flink
also supports exactly-once semantics for fault tolerance, guaranteeing that each tuple
will be processed to ensure correct results. This is particularly important for our
application, as losing tuples may completely alter spatiotemporal estimates (e.g.,
distance, speed) and distort identification of events.

8Source code available at https://github.com/DataStories-UniPi/Trajectory-Synopses-Generator.

https://github.com/DataStories-UniPi/Trajectory-Synopses-Generator
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4.6.1 Custom Support for Mobility Features

Flink currently lacks native support for spatial entities (e.g., points, polygons), let
alone representation of spatiotemporal data and handling of mobility features like
speed, heading, acceleration, etc. Thus, we had to introduce custom data structures
in Scala for maintaining trajectories and support all mobility operations required in
our processing flow (Sect. 4.5). We also specified an extensible attribute schema in
Avro9 with all spatiotemporal properties involved in aircraft trajectories. Further,
we defined specific topics in Kafka, for handling messages from input surveillance
sources and the derived streams (Fig. 4.2).

Flink offers powerful partitioning features for its operators (Map, Reduce,
Filter, Window, etc.). An operator can have a “state” organized as list (typically, a
distributed key-value map) scoped locally to the operator’s task. Flink automatically
distributes streaming items by a key (in our case, a unique identifier per vessel or
aircraft) into parallel instances of each operator, each maintaining its own local
state. In our case, this feature caused more trouble than benefit, exactly because it
is established at operator level. Indeed, our processing strategy needs to maintain a
mobility state per object, i.e., its most recent trajectory segments. Once each fresh
position is admitted, it must be processed by a pipeline of operators (Fig. 4.7) that
actually encapsulate our custom methods. Therefore, we absolutely need to keep
a separate persistent state per vessel or aircraft not per operator, but across all
operators in the entire pipeline. As Flink did not provide any flexibility to maintain
a globally accessible state, we resorted to implementing a custom hashing scheme
in Scala. This is based on vessel or aircraft identifiers (key) and keeps a small
number m of recent locations per object (its mobility state), as well as certain flags
that immediately inform on its current status (e.g., is stopped, in slow motion, has
changed speed). Of course, this incurs some overhead (once a fresh location arrives,
the state must be updated) and housekeeping (discard obsolete items in a count-
based window fashion [19]), but otherwise trajectory-aware processing would not
have been possible.

Most importantly for real-world applications, Flink provides support for event
time semantics, i.e., using timestamps generated by the data sources. In our case,
timestamp values in relayed positions are assigned upon reception to a base station
or when captured by radars, hence a vessel or aircraft may momentarily appear go
back and forth along its course due to delayed messages. In real-world aviation and
maritime surveillance streams, temporal disorder caused by such delayed messages
is not the exception, but rather the norm. Note that disorder [9] may occur due to
time skew between input streams, induced by operators (e.g., joins), etc. However,
establishing order amongst streaming data items is necessary for their effective and
consistent processing. To deal with this inherent disorder, we specified a lag value,

9https://avro.apache.org/docs/current/.

https://avro.apache.org/docs/current/
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Fig. 4.7 Pipeline of Flink and Kafka operators in the prototype implementation

so the pipeline will accept messages delayed by at most lag (say, 5) seconds behind
the latest known timestamp and accordingly reorder messages chronologically.

4.6.2 Processing Through a Pipeline of Operators

Figure 4.7 illustrates the pipeline of Kafka and Flink operators utilized in our
prototype implementation. More specifically:

Kafka Consumer To simulate streaming input into our application, we have built
data feeders in Scala that can parse historical records of vessel or aircraft traces and
push positional messages to a specified Kafka topic. Records are replayed either
according to their original arrival rate or consumed by a user-specified fixed stream
rate (e.g., 10,000 messages/s). A custom consumer subscribes to a particular Kafka
topic and starts receiving timestamped stream messages. It is very important that
those messages have timestamps, although temporal order is not a strict prerequisite
in the input data, as our prototype can extract timestamps and rearrange items in
chronological order even in the case of lagged messages, as explained above.

Map Each incoming message is mapped to the Avro attribute schema. From now
on, this message will travel through the operator pipeline as a tuple; annotations
may be assigned next, after further checking by subsequent operators.

Filter This discards noisy locations, which are not further considered. In case that
a newly arrived location concerns an object currently not yet known to the system,
its mobility state is initialized; otherwise, this location is appended to the existing
state evicting the oldest location therein.

Timestamp Extractor We employ time watermarks in Flink that allow processing
of delayed stream items according to an application-specified lag parameter.

Keyed Windowing Flink offers several types of windows, which split a stream
into temporary finite “pieces” used in computations. We employed count-based
sliding windows with a size set to two tuples keyed by object identifier, in order
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to calculate instantaneous spatiotemporal estimates (distance, heading, altitude
change, etc.) between two consecutive locations. Thus, spatiotemporal computation
is streamlined with the arrival of each fresh message and the resulting estimates can
be assigned to the tuple as it is being processed by all subsequent operators in the
pipeline.

Reduce The core of our application logic is encapsulated in a series of custom
functions under the generic Reduce operator in Flink. Essentially, this Reduce
operator takes a pair of consecutive locations (pprev, pcur ) and triggers evaluation
of the detection rules in Sect. 4.5.2. If a location qualifies as a critical point for an
event, the respective bit in its annotation is set; eventually, multiple bits may be set.

Kafka Producers Output is pushed into distinct Kafka topics by three producers,
each dealing with a derived stream ( noise-free raw locations, trajectory synopses,
notifications as explained in Sect. 4.4.2). Functionality in each producer is similar,
but they differ in the filtering applied to the streaming output of the Reduce operator.

4.7 Empirical Validation

Synopses Generator has been tested extensively against real and synthetic datasets
with diverse characteristics in the maritime and aviation use cases. These experi-
ments confirmed its advanced performance in terms of timeliness, scalability, and
compression efficiency, as well as the quality of approximation in the resulting syn-
opses. Next, we report some indicative results from this comprehensive validation.

Maritime Dataset (AIS) This dataset10 contains AIS messages from 5055 vessels
sailing in the Atlantic Ocean around the port of Brest, Brittany, France, and spans
a period from 1 October 2015 to 31 March 2016. After deduplication of the
original AIS messages, this dataset yielded 18,495,677 point locations (kinematic
AIS messages only), which were used as input at their original arrival rate.

Aviation Dataset (ADS-B) This data11 comes from ADS-B messages collected
via the FlightAware API during one full day (10 March 2017). After parsing the
original messages in JSON format and keeping position reports only, this dataset
yielded 3,701,966 raw point locations from 24,416 airplanes flying over Europe.
These positions were consumed in the simulations at their original arrival rate; on
average, there is a message every 67.83 s from any given aircraft.

Online detection and summarization of trajectories is very sensitive to proper
parametrization. Parameter values listed in Table 4.1 regarding noise reduction and

10Available at https://zenodo.org/record/1167595#.WxVrJy97HOR.
11Available at http://chorochronos.datastories.org/?q=content/flightaware-ads-b-march-2017.

https://zenodo.org/record/1167595#.WxVrJy97HOR
http://chorochronos.datastories.org/?q=content/flightaware-ads-b-march-2017
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Table 4.3 Parameter settings in the Synopses Generator for annotating critical points

Symbol Description AIS ADS-B

vmin Minimum speed (in knots) for asserting movement 0.5 1

vσ Maximum speed (in knots) for asserting slow motion 5 5

α Minimum rate for asserting speed change between locations 25% 10%

	T Minimum time interval (in minutes) for asserting communication gaps 30 2

	θ Threshold for asserting change in heading (in degrees) 5◦ 5◦

	γ Threshold for asserting changes on rate of climb (feet/sec) N/A 20

m Positions in each object’s mobility state 5 5

Table 4.4 Timeliness of Synopses Generator against real datasets

Dataset Throughput (messages/s) Latency (s)

AIS (maritime) 16,874.5 0.238

ADS-B (aviation) 8470.5 0.321

Table 4.3 for annotating critical points represent typical settings deduced after
consistent data exploration and consultation with domain experts in both use cases.

4.7.1 Performance Results

First, we examine timeliness of the Synopses Generator simulating a streaming
operation by accepting data at the original arrival rate. Concerning throughput,
i.e., the amount of input messages that may be processed per second concerning
the entire operator pipeline (Fig. 4.7), Table 4.4 confirms that the framework can
cope with thousands of streaming positions per second. Aviation data also involves
computations on the z-dimension, so performance is not that high as in the maritime
use case. Regarding the average latency of incoming messages, i.e., how long each
one remains in the operator pipeline, results show that the Synopses Generator
achieves operational latency, as it can provide results in near real time (less than a
second), keeping up with the arrival rate of the incoming surveillance stream. Note
that these performance results were obtained in tests against a centralized instance
(i.e., single thread) of the framework without any data partitioning. Scalability tests
(detailed in [22] for the aviation use case) with parallelized execution on multiple
threads or in cluster infrastructure indicate even more advanced performance gains.

As every data reduction process, effectiveness of trajectory summarization is
a trade-off between compression efficiency and approximation accuracy. Hence,
regarding maintenance of trajectory synopses, we measured compression ratio λ as
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Fig. 4.8 Compression ratio with a varying angle threshold and breakdown of annotated positions.
(a) Compression ratio (AIS). (b) Compression ratio (ADS-B). (c) Annotated positions (AIS). (d)
Annotated positions (ADS-B)

the percentage (%) of positions dropped from the approximate trajectory synopses
over the raw ones originally obtained, or equivalently:

λ = 1 − #critical points

#raw positions
.

The higher this ratio, the more compressed and lightweight the resulting syn-
opses. A compression ratio λ closer to 1 signifies stronger data reduction, as the
vast majority of original locations are dropped and few critical points suffice to
approximately represent the entire trajectories.

Next, we show how compression ratio varies with respect to angle threshold 	θ

used for detecting changes in heading; the pattern is similar with other parameters.
With a lower 	θ , even slight deviations in direction can be spotted, and thus extra
critical points get issued. Bar charts in Fig. 4.8a, b illustrate the breakdown of critical
points in each class retained from either dataset. Clearly, every further increase in
threshold 	θ suppresses more and more turning points and does not affect the share
of any other class of critical points, but incurs extra reduction in the total amount
of emitted critical points. Hence, relaxing this parameter value leads to a stronger
compression. Compression ratio always remains above 70% in the maritime use
case (AIS), and with a more relaxed 	θ it reaches as much as 80%, meaning
that only 20% of the original positions are retained in the synopses. Eliminating
noise also plays an important role in data reduction, as erroneous points need not
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be retained. Similar conclusions regarding compression efficiency can be drawn
from tests against the aviation dataset (ADS-B). Compression ratio never exceeds
70%, because the available ADS-B messages have a low reporting frequency, so
an incoming position may indicate an important change in mobility and thus has
more chances to qualify as critical. Note that most of the annotated critical points in
Fig. 4.8b concern changes in heading, speed, and altitude.

Figure 4.8c, d depict an overall account of annotations assigned to all raw
locations obtained from each dataset. Clearly, the Synopses Generator eliminates
more than two thirds of the incoming positions as redundant, while retaining the rest
in the trajectory synopses. The suppressed points are either “normal” locations or
noise (which anyway must be discarded). Notice that there seems to be some noise
in the maritime dataset (AIS), but it is only marginally present in aviation ADS-B
messages. However, in tests over other datasets, we have identified that sometimes
even 20% of the raw positions may be noisy. Here, it is also notable the almost
complete lack of critical points concerning movement of aircraft on or close to the
ground (i.e., stop, slow motion, takeoff, landing), as discussed in Sect. 4.3.

4.7.2 Approximation Error

Preserving only critical points in trajectory synopses incurs a lossy approximation.
To assess the quality of such compressed trajectories, we estimated their deviation
from original ones, i.e., without discarding any raw positions (except for those
qualified as noise). Such deviation on (x, y) plane (concerning both vessels and
aircraft) can be assessed by computing the pairwise Haversine distance H between
synchronized locations from an original trajectory and its synopsis (consisting only
of critical points). If an original location pi at timestamp τi is not critical, then its
corresponding time-aligned p′

i in the synopsis is estimated via linear interpolation
along the path that connects the two critical points before and after τi . A similar
assessment is made regarding deviation on the z-dimension for aircraft trajectories.
For each original altitude zi reported at timestamp τi from an aircraft, we estimate
via linear interpolation a time-aligned altitude z′

i in its trajectory synopsis.
Overall, for each object that reported M raw positions in total, we assessed the

Root Mean Square Error (RMSE) between the original and synchronized sequences
of its locations on the (x, y) plane and over its respective altitudes in the z-
dimension:

RMSExy =
√√
√
√ 1

M
·

M∑

i=1

(H(pi, p
′
i ))

2, and RMSEz =
√√
√
√ 1

M
·

M∑

i=1

(zi − z′
i )

2.

For each trajectory, RMSExy is in metres, while RMSEz is in feet. Table 4.5(a)
displays the average RMSE over the entire fleet for maritime dataset by varying
angle threshold 	θ that is used to recognize significant changes in heading.
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The approximation error is almost negligible, mostly due to the increased update
frequency in most vessels, but also because movement is constrained in a rather
small radius around the port of Brest. Even in the worst case examined with
	θ = 10◦, average RMSE is only 35 m, which provably indicates the quality
of synopses derived from this dataset. In practice, a moderate angle threshold of
5◦ seems adequate for balancing compression efficiency without losing important
details in vessel mobility.

However, approximation error is much higher for aircraft trajectory synopses
as detailed in Table 4.5(b). This error is not because the approximate spatial path
based on critical points deviates significantly from the original. Instead, such an
error is caused by the fact that speed of aircraft in the air is orders of magnitude
higher compared to that of vessels. Combined with the inherent flaws in timestamp
precision and reporting frequency of the original data, this yields a position estimate
p′ during computation of RMSExy that deviates a lot from the respective original
location p at timestamp τ . Both p and p′ are spatially along an almost common path
shared between the original and the compressed trajectory, but p′ is either ahead or
behind p because of speed discrepancies. We deem that this phenomenon could have
been alleviated if original data were more precise and had increased arrival rate.
Anyway, this error is always less than a nautical mile (∼=1852 m) and certainly can
ensure horizontal separation of flights, given that international regulations usually
specify a separation of at least 3 miles as a safety precaution.

Quality of the synopses with respect to altitude is far better, as testified in
Table 4.5(c). Given that the granularity of reported altitudes is expressed in hundreds
of feet, achieving an average RMSEz up to a few hundred feet is certainly tolerable
given the lack of precision in spatiotemporal information as discussed in Sect. 4.3.
As international aviation standards specify a vertical separation between commer-
cial flights at 1000 ft, this error magnitude on altitudes is more than acceptable.

4.7.3 Comparison with Trajectory Simplification Methods

Furthermore, we performed a short qualitative comparison regarding the effects of
simplification over vessel and aircraft trajectories in terms of compression efficiency
and approximation quality. We examined several state-of-the-art algorithms for

Table 4.5 Approximation error of the trajectory synopses on (x, y) and z dimensions

(a) AIS (x, y) (b) ADS-B (x, y) (c) ADS-B (z)

	θ (◦) RMSE (m)

2.5 6.5

5 16.3

7.5 26.1

10 35.2

	θ (◦) RMSE (m)

2.5 1056.1

5 1237.5

7.5 1449.9

10 1691.0

	γ (feet/sec) RMSE (in feet)

10 288.5

20 395.4

30 533.5
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trajectory simplification [30] working in online mode,12 but concerning strictly
locations on the (x, y) plane (hence, no z-dimensional data is involved). In
contrast, our Synopses Generator framework not only identifies which positions
matter in terms of simplification but it also labels these points as critical with
specific annotations (stop, change in heading, speed, etc.). Since a comprehensive
evaluation is beyond the scope of this chapter, we stress that parametrization of
each simplification method was not fine-tuned, hence these results can only be seen
as indicative.13

As detailed in Table 4.6, all methods generally drop many original locations
in order to yield a simplified trajectory, although at a different compression ratio
depending on the specifications of each algorithm and its objectives. Therefore, they
also differ in the resulting approximation quality (i.e., RMSE error). In particular,
FBQS [11] is more balanced and yields trajectory approximations with good quality
while also drastically reducing the amount of retained locations. SQUISH-E [16]
offers supreme quality with minimal error in the resulting simplified trajectories.
Yet, it has to retain too many locations (more than 96% of the original ADS-B
messages in this test) to achieve such accuracy, hence its compression efficiency
inevitably worsens. OPERB [10] seems competitive to FBQS in terms of quality
and compression, but it apparently needs to keep more original locations to better
approximate each trajectory, especially for the aviation dataset, hence its reduced
error. STTrace [23] offers high-quality synopses against the maritime dataset when
its target compression ratio is set to λ = 80%, given that it intends to keep locations
that incur minimal error and preserve the shape of the original trajectory. However,
quality is much worse against the aviation dataset, most probably because the
lack of precision in timestamp values negatively affects good velocity estimations.
Compared to these state-of-the-art simplification algorithms, the proposed Synopses
Generator framework offers a good balance between approximation quality and
compression efficiency. Especially in the maritime use case, proper fine-tuning of
the framework parameters has certainly paid off, as it achieves the least approxima-
tion error, while also it discards almost 75% of the raw positions. However, it is less
successful over the aviation data in terms of approximation quality given the low
reporting frequency in the original ADS-B messages, but still it manages to keep
only a third of the raw positions.

Overall, these tests indicate that the suggested Synopses Generator can provide
quite acceptable accuracy and can annotate online most, if not all, critical changes
along each object’s course, whereas it also remains competitive to other trajectory
simplification techniques.

12Source code handling moving objects with locations on (x, y) dimensions is available at https://
github.com/uestc-db/traj-compression.
13Performance efficiency is not examined here, since algorithms are implemented in different
languages and frameworks, so a fair comparison would not be possible in terms of execution times.

https://github.com/uestc-db/traj-compression
https://github.com/uestc-db/traj-compression
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Table 4.6 Compression efficiency of trajectory simplification tech-
niques on (x, y) dimensions

Avg. compression ratio (λ) Avg. RMSE (m)

Algorithm AIS ADS-B AIS ADS-B

FBQS [11] 0.900 0.521 187.5 373.8

SQUISH-E [16] 0.653 0.035 21.3 18.4
OPERB [10] 0.895 0.438 206.4 323.3

STTrace [23] 0.800 0.803 31.6 1417.9

Synopses generator 0.746 0.667 16.3 1237.5

Values in bold indicate the most efficient algorithm with respect to
compression ratio or RMSE

4.8 Towards Cross-Stream Trajectory Maintenance

Next, we introduce our solution for processing surveillance data in order to reconcile
and align parts of trajectories from different sources into a unified representation.

4.8.1 Methodology

We apply cross-stream processing to “fill-in” gaps in a trajectory representation
from a single source with trajectory segments available from another data source
regarding the same moving object. Such correlation of geostreaming data from two
sources is particularly challenging, as both streams are of different quality, evolve
at diverse and time-varying update frequencies, and present considerable geospatial
deviation.

Consider two sources S1 and S2 collecting data streams of the same moving
objects at different frequencies. These streams pass through the Synopses Generator
in order to detect critical points in real time, as described in Sect. 4.4.2. The objective
of the cross-stream algorithm is to fill-in the missing information of S1 by using
positions from S2 concerning a specific object o. The algorithm is invoked once a
communication gap is identified in S1, at timestamp τi (Fig. 4.6). Then, the method
looks at S2 to identify any appropriate positions that can “fill-in” the missing ones in
S1. Once possible replacements are found, we calculate the spatiotemporal deviation
(error) between the “available past points” of the two sources. The “available past
points” refer to the locations held in the mobility states of that particular object o

in each of the two sources, since these are buffered by the Synopses Generator;
Synopses Generator makes use of a small buffer per aircraft holding the latest
measurements. If the buffered locations for S2 include critical points concerning
end of communication gap or end of stop or landing, then the “available past
points” are those recorded after the detection of these critical points and before
τi . The “available past points” of the two sources are being used for calculating
the spatiotemporal deviation between the two sources. We are able to calculate the
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Fig. 4.9 Identifying replacement locations for filling the gaps along a trajectory

deviation of the points between the two sources at each timestep of S1 by applying
an 1-D linear interpolation formula to the “available past points” of S2. Thus, the
produced deviation errors are being used to calculate the mean and median errors.
Then, the calculated deviation (either median or mean error) is added to each one of
the locations of S2 that are suitable to “fill-in” the communication gap in S1. Finally,
the “fill-in” stage inserts the calculated points into o’s trajectory from source S1.
This procedure results in a “filled-in” S′

1. Figure 4.9 illustrates two trajectories of
the same source S2, which correspond to the above-mentioned possible scenarios
of identifying the “available past points”. Note that, the past locations, i.e., the
positions prior to the identified communication gap of S′

1, are collected according
to the proposed algorithm. In the first case, the past points include less than those
buffered in the mobility state, because of a critical point. In the second case, the past
locations include all those currently available in the mobility state.

4.8.2 Proof-of-Concept Evaluation

A challenging case of cross-stream processing would be the correlation of sources
of ADS-B messages collected by different providers: (a) FlightAware and (b)
ADSBHub. Since ADSBHub covers only Europe and reports positions every
second, but with many periods of missing data, there is an urgent need of recovering
the missing trajectory information from other sources. In contrast, FlightAware
lacks sufficient information only around airports, while the reporting frequency
varies across Europe.

We conducted a proof-of-concept evaluation of our cross-stream processing
method against data from those two sources regarding all flights of 369 aircrafts
that had landed or taken off from Amsterdam on 6 April 2016. For this evaluation,
we created artificial gaps in the ADSBHub data, by randomly deleting batches of
consecutive positions. The deleted locations are named real points. Subsequently,
the proposed method was applied to the incomplete ADSBHub, as described in
Sect. 4.8.1, i.e., S1, S2, and S′

1 stand for the incomplete ADSBHub, the FlightAware,
and the “filled-in” ADSBHub, respectively. Finally, the RMSE was calculated by
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(a) (b)

Fig. 4.10 Errors between artificial gaps in ADSBHub “filled-in” with locations from FlightAware.
(a) Median. (b) Mean

using the aforementioned real points in conjunction with the “filled-in” points of
S′

1.
Figure 4.10 depicts the results generated by the aforementioned evaluation proce-

dure. Considering the speed of an aircraft and the inherent errors in geopositioning
and timestamping, a deviation about 300–500 m is quite acceptable. The percentage
of aircrafts with RMSE below 500 m is about 60% and 56%, for the median and
mean error in calculated deviations, respectively. In both cases, the error is less than
3000 m for 90% of the aircraft. Thus, it can be inferred that the proposed technique
advances the real-time integration of data from different sources and allows the
successful reconstruction of trajectories.

4.9 Conclusions

In this chapter, we considered concise representations of trajectories of vessels (in
the maritime use case) or aircraft (in the aviation use case). We introduced the
Synopses Generator framework that can detect and summarize trajectories from
a large set of such moving objects. Input is arriving online from surveillance
data streams concerning position reports: terrestrial or satellite AIS messages from
vessels; ADS-B messages from aircraft or traces from ATC secondary radars in
aviation. This methodology is based on a simple idea, yet very effective in practice:
instead of retaining every incoming position, we propose to drop any positions
that can be predicted with minimal loss in accuracy, and only keep those that may
indicate stops, changes in speed or heading or altitude, etc. We have implemented
a prototype system that is able: (a) to construct trajectories from input locations in
real time and then (b) incrementally maintain trajectory synopses that include only
salient mobility features from the incoming surveillance data. We have empirically
tested the functionality of this prototype against diverse surveillance data streams
in both aviation and maritime domains. Our results confirm that, under careful
parametrization and deep knowledge of data characteristics, this software addresses
many challenging objectives in a geostreaming context.
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Indeed, trajectory detection and summarization is carried out in online fashion,
thus offering incremental, timely results at operational latency. On average, a point
can be emitted in the synopses and properly annotated as critical mostly within
milliseconds since admission of the corresponding raw message in the input stream.

The framework achieves a particularly high throughput, as it is able to consume
thousands of messages per second from a large set of moving vessels or aircraft,
each streaming its own mobility data over large geographical areas and across
varying periods of time. This process is also parallelizable, offering reduced latency
in mobility detection and higher throughput and has been confirmed to cope with
tens of thousands of incoming messages per second. This confirms the scalability
and robustness of this mechanism.

The Synopses Generator can achieve dramatic compression over the raw stream-
ing data, effectively digesting massive amounts of position reports into lightweight,
annotated trajectory synopses. In case of very frequent position reports, its compres-
sion ratio can exceed 95% without harming the quality of trajectory representation.
At lower arrival rates in the input as is the case in most real data sources, data
reduction is more conservative, but still quite large (around 80% with respect to the
input data volumes), as it must not result into distorted compressed representations
and lose important mobility features in the data.

Furthermore, compressed representations of the trajectories have more than toler-
able approximation error with generally small deviations from original traces, also
coping with imperfections (such as network delays, noise) inherent in real-world
surveillance streams. Even with a first-cut, empirical parametrization, information
loss due to summarization is minimized both in terms of location accuracy (in
both use cases) as well as with respect to altitude (in aviation), indicating a high
spatiotemporal quality in the resulting synopses.

Finally, we have dealt with the issue of cross-stream processing by correlating
surveillance data from multiple sources in order to “fill-in” trajectories with missing
points due to communication gaps and thus provide a coherent trajectory represen-
tation. A seamless combination of summarized trajectory segments derived from
different input sources is even more demanding to accomplish in an incremental
fashion from sparse, time-varying, noisy, and sometimes overlapping motion paths,
which are being collected from different data sources in real time. However, the
proposed method was tested against real datasets and the results turned out to be
very promising in terms of quality.

References

1. Ayhan, S., Samet, H.: Aircraft trajectory prediction made easy with predictive analytics. In:
KDD, pp. 21–30 (2016)

2. Cao, H., Wolfson, O., Trajcevski, G.: Spatio-temporal data reduction with deterministic error
bounds. VLDB J. 15(3), 211–228 (2006)

3. Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi, S., Tzoumas, K.: Apache Flink:
stream and batch processing in a single engine. IEEE Data Eng. Bull. 38, 28–38 (2015)



4 Trajectory Detection and Summarization over Surveillance Data Streams 119

4. Ding, X., Chen, L., Gao, Y., Jensen, C.S., Bao, H.: UlTraMan: a unified platform for big
trajectory data management and analytics. Proc. VLDB Endowment 11(7), 787–799 (2018)

5. Eldawy, A., Mokbel, M.F.: SpatialHadoop: a MapReduce framework for spatial data. In:
ICDE, pp. 1352–1363 (2015)

6. Hagedorn, S., Götze, P., Sattler, K.-U.: Big spatial data processing frameworks: feature and
performance evaluation. In: EDBT, pp. 490–493 (2017)

7. Kipf, A., Pandey, V., Böttcher, J., Braun, L., Neumann, T., Kemper, A.: Analytics on fast
data: main-memory database systems versus modern streaming systems. In: EDBT, pp. 49–60
(2017)

8. Lange, R., Dürr, F., Rothermel, K.: Efficient real-time trajectory tracking. VLDB J. 20(5),
671–694 (2011)

9. Li, J., Tufte, K., Shkapenyuk, V., Papadimos, V., Johnson, T., Maier, D.: Out-of-order
processing: a new architecture for high-performance stream systems. Proc. VLDB Endowment
1(1), 274–288 (2008)

10. Lin, X., Ma, S., Zhang, H., Wo, T., Huai, J.: One-pass error bounded trajectory simplification.
Proc. VLDB Endowment 10(7), 841–852 (2017)

11. Liu, J., Zhao, K., Sommer, P., Shang, S., Kusy, B., Jurdak, R.: Bounded quadrant system:
error-bounded trajectory compression on the go. In: ICDE, pp. 987–998 (2015)

12. Long, C., Chi-Wing Wong, R., Jagadish, H.V.: Trajectory simplification: on minimizing the
direction-based error. Proc. VLDB Endowment 8(1), 49–60 (2014)

13. Maier, D., Li, J., Tucker, P., Tufte, K., Papadimos, V.: Semantics of data streams and operators.
In: ICDT, pp. 37–52 (2005)

14. Meratnia, N., de By, R.A.: Spatiotemporal compression techniques for moving point objects.
In: EDBT, pp. 765–782 (2004)

15. Muckell, J., Hwang, J.-H., Patil, V., Lawson, C.T., Ping, F., Ravi, S.S.: SQUISH: an online
approach for GPS trajectory compression. In: COM.Geo, pp. 13:1–13:8 (2011)

16. Muckell, J., Olsen, P.W. Jr., Hwang, J.-H., Lawson, C.T., Ravi, S.S.: Compression of trajectory
data: a comprehensive evaluation and new approach. Geoinformatica 18(3), 435–460 (2014)

17. Ozsoyoglu, G., Snodgrass, R.T.: Temporal and real-time databases: a survey. IEEE Trans.
Knowl. Data Eng. 7(4), 513–532 (1995)

18. Pandey, V., Kipf, A., Neumann, T., Kemper, A.: How good are modern spatial analytics
systems? Proc. VLDB Endowment 11(11), 1661–1673 (2018)

19. Patroumpas, K., Sellis, T.: Maintaining consistent results of continuous queries under diverse
window specifications. Inf. Syst. 36(1), 42–61 (2011)

20. Patroumpas, K., Artikis, A., Katzouris, N., Vodas, M., Theodoridis, Y., Pelekis, N.: Event
recognition for maritime surveillance. In: EDBT, pp. 629–640 (2015)

21. Patroumpas, K., Alevizos, E., Artikis, A., Vodas, M., Pelekis, N., Theodoridis, Y.: Online event
recognition from moving vessel trajectories. GeoInformatica 21(2), 389–427 (2017)

22. Patroumpas, K., Pelekis, N., Theodoridis, Y.: On-the-fly mobility event detection over aircraft
trajectories. In: ACM SIGSPATIAL, pp. 259–268 (2018)

23. Potamias, M., Patroumpas, K., Sellis, T.: Sampling trajectory streams with spatiotemporal
criteria. In: SSDBM, pp. 275–284 (2006)

24. Potamias, M., Patroumpas, K., Sellis, T.: Online amnesic summarization of streaming
locations. In: SSTD, pp. 148–165 (2007)

25. Terroso-Saenz, F., Valdés-Vela, M., den Breejen, E., Hanckmann, P., Dekker, R., Skarmeta-
Gómez, A.F.: CEP-traj: an event-based solution to process trajectory data. Inf. Syst. 52, 34–54
(2015)

26. Tucker, P.A., Maier, D., Sheard, T., Fegaras, L.: Exploiting punctuation semantics in
continuous data streams. Trans. Knowl. Data Eng. 15(3), 555–568 (2003)

27. Wolfson, O., Sistla, A.P., Chamberlain, S., Yesha, Y.: Updating and querying databases that
track mobile units. Distrib. Parallel Databases 7(3), 257–287 (1999)

28. Xie, D., Li, F., Yao, B., Li, G., Zhou, L., Guo, M.: Simba: efficient in-memory spatial analytics.
In: SIGMOD, pp. 1071–1085 (2016)



120 K. Patroumpas et al.

29. Yu, J., Zhang, Z., Sarwat, M.: Spatial data management in Apache Spark: the GeoSpark
perspective and beyond. GeoInformatica 23(1), 37–78 (2019)

30. Zhang, D., Ding, M., Yang, D., Liu, Y., Fan, J., Shen, H.T.: Trajectory simplification: an
experimental study and quality analysis. Proc. VLDB Endowment 11(9), 934–946 (2018)



Part III
Trajectory Oriented Data Management

for Mobility Analytics

The third part of this book specifies solutions towards managing big spatiotemporal
data, oriented to the notion of trajectory: The first chapter specifies a generic
ontology revolving around the notion of trajectory so as to model data and
information that is necessary for trajectory analytics components. This ontology
provides a generic model for constructing knowledge graphs integrating data from
disparate data sources. In conjunction to this, this chapter describes novel methods
for transforming data from archived and streamed data sources to populate the
ontology. The second chapter proposes advanced solutions to integrating data.
Emphasis is given to enriching data streams and integrating streamed and archival
data to provide coherent views of mobility: This is addressed by real-time methods
discovering topological and proximity relations among spatiotemporal entities.
Finally, the third chapter presents solutions for distributed storage of integrated
dynamic and archived mobility RDF data—i.e., large knowledge graphs constructed
according to the generic model introduced.



Chapter 5
Modeling Mobility Data
and Constructing Large Knowledge
Graphs to Support Analytics:
The datAcron Ontology

Georgios M. Santipantakis, George A. Vouros, Akrivi Vlachou,
and Christos Doulkeridis

Abstract This chapter presents modeling and representation techniques for mobil-
ity data, focusing on semantic representations that build around the central concept
of semantic trajectory. Moving from mobility data to enriched representations of
positional information, associated with contextual data and furthermore with events
that occur during the movement of an object, is critical to support advanced mobility
analytics. Motivated by these requirements, this chapter describes the datAcron
ontology that satisfies these requirements to a larger extent than previous works on
semantic representations of trajectories, at multiple, interlinked levels of detail. In
addition, we show that this ontology supports data transformations that are required
for performing advanced analytics tasks, such as visual analytics, and we present
use-case scenarios in the Air Traffic Management and maritime domains.

5.1 Introduction

Analysis of mobility data is often involved in many tasks in critical domains
w.r.t. economy and safety. It is often important to combine surveillance data
with descriptions of the moving objects, (e.g., geometric information, objects’
physical and operational characteristics) and contextual information (e.g., areas and
points of interest, weather information, traffic, etc.), originating from disparate and
heterogeneous data sources.

Challenging problems include effective information provision for situation
awareness, identification of recurrent patterns, decision-making at different scales
and levels of abstraction, as well as the prediction of moving objects’ behavior
under specific circumstances. These challenges are significant, given that their
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achievement aims to reduce factors of uncertainty regarding operations, enhance
punctuality of activities, advance planning efficiency, and reduce operational costs
in time critical domains, such as aviation and maritime.

The complexity of these challenges increases significantly to the number of
moving objects. Towards reducing this complexity, a shift of operations’ paradigm
from location-based, as it is today, to a trajectory-based has been proposed.
Trajectories are turned into the main asset and placed in the core of decision-making,
assessment of situations, and planning of operations tasks.

Towards addressing these challenges, we need to consider how we represent tra-
jectories to satisfy the data needs and requirements of analysis tasks. Our approach is
based on two principles: First, trajectories should reveal objects’ behavior in explicit
terms, at different levels of abstraction considering their geometric, contextual, and
analysis-specific features. In doing so, analysis tasks can retrieve data about trajec-
tories at any level of abstraction that is appropriate for their purposes, switching
between abstraction levels, delving into the details of mobility phenomena, and
providing overviews in generic terms. Second, data transformations (or conversions)
require trajectories to integrate spatial events into temporal sequences, while, on the
other hand, these events need to be aggregated into spatial time series, associated
with geographic contexts. Combining these abilities allows identifying re-occurring
patterns of behavior at varying levels of abstraction, enhancing our understanding
of mobility phenomena and thus, decision-making. In this chapter, an “abstraction”
is considered any possible combination of aggregation and generalization. When it
is necessary, we specify explicitly which kind of abstraction is required.

In this chapter we describe the datAcron ontology for modeling semantic
trajectories, integrating spatiotemporal information regarding mobility of objects at
multiple, interlinked levels of abstraction, supporting appropriate data transforma-
tions, as needed by visual analysis tasks. Visual analytics, as also shown in Chap. 3
of this book, impose specific requirements to support the combination of human
and computational data processing through interactive visual interfaces, enabling
analysis of spatiotemporal [6] and mobility data [7], sophisticated data analysis,
and informed decision-making [5], at varying levels of abstraction.

Existing models and ontologies for the representation of semantic trajectories do
not associate data and events at multiple levels of abstraction. They usually specify
models for representing trajectories at different levels (from raw to semantic), where
each level associates trajectories with a different kind of information. In models
where some form of abstractions is supported, these are restricted to specific types
and levels. Consequently, switching between levels of abstraction as needed by
exploratory analysis tasks is limited; thus, these representation models can hardly
serve tasks for visual analytics. These issues are further discussed in detail with
explicit references to existing trajectory models, in Sect. 5.3.

The main contributions via this and our previous work on the datAcron ontology
[29] are the following:

• We revisit fundamental data types for visual analysis tasks revolving around the
notion of semantic trajectory, specifying conversions among these types of data.
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These types and conversions provide an in-principle framework for identifying
trajectories’ constituents, as well as a comprehensive framework for validating
ontological specifications towards the provision of appropriately transformed
data, satisfying data requirements of visual analysis methods.

• We revisit the notion of “semantic trajectory”, as a meaningful sequence of
trajectory parts at any level of abstraction. By being meaningful, a semantic
trajectory is associated with human-interpretable and machine-processable infor-
mation, revealing objects behavior in explicit terms. Dealing with multiple levels
of abstraction, we support analysis of moving objects’ behavior at any scale
and/or level of abstraction that is appropriate for analysis tasks.

• We demonstrate the ontology by means of enhanced SPARQL queries, using
real-world data from the Air Traffic Management domain and maritime domain.

Section 5.2 of this chapter motivates the need for an ontology, for the repre-
sentation of semantic trajectories and specifies the requirements. It also outlines
the fundamental data types and data transformations for supporting analytics tasks
w.r.t. trajectories of moving objects. Section 5.3 briefly reviews weaknesses and
limitations of existing proposals for representing semantic trajectories. Section 5.4
presents the datAcron ontology for the representation of semantic trajectories, and
Sect. 5.5 demonstrates how data transformations are supported by the ontological
specifications, supporting visual analytics tasks for the purposes of Flow Man-
agement and maritime cases. A more extensive presentation of the Air Traffic
Management cases is also available in a previous work [29]. The chapter concludes
with discussion remarks in Sect. 5.6.

5.2 Requirements for Enriched Representation of Mobility
Data

In this section, we specify the requirements for the representation of semantic
trajectories defining important terms, and then we recall the fundamental types
of spatiotemporal mobility data and data transformations/conversions appropriate
for supporting visual analytics: Fundamental data types and conversions provide a
comprehensive framework for validating ontological specifications.

5.2.1 Requirements for the Representation of Semantic
Trajectories

Towards a comprehensive semantic model of trajectories that integrates mobility
data, we describe the features that are necessary to the representation of semantic
trajectories, including geometric, geographic, and application-specific information
[31].
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The authors in [31] indicate that geometric information concerns the progression
of positions of a moving object during a given time interval. The temporal
sequence of raw (surveillance) data specifying the moving object spatiotemporal
positions reported from sensing devices defines a raw trajectory [19]. The geometric
information enables queries like “Return objects which were located at x, y, z at time
t.” It may be specified at various levels of aggregation, revealing representations
regarding the patterns of a moving object at different spatiotemporal scales.
For example, computations regarding spatial/topological relations or patterns of
movement are often easier when a trajectory is represented as a line, rather than
a sequence of positions. Alternatively, a trajectory can be represented as a temporal
sequence of lines representing sub-trajectories, each one of special interest on its
own (e.g., each one crossing a specific region of interest, or corresponding to a
specific phase of movement), or as a sequence of aggregated raw positions with
high concentration in spatiotemporal regions or points of interest.

Apparently, the significance of specifying a trajectory at multiple levels of
geometric abstraction is strongly related with geographical (e.g., areas or points
of interest) and application-specific (e.g., phases of movement) information. The
usefulness of having multiple levels of geometric abstractions is that each one serves
different purposes towards representing and analyzing the behavior of moving
objects. Having these geometric abstractions, we may answer queries like “Return
objects that crossed the spatial region X during the time interval [t_begin, t_end],”
“Return objects whose trajectories crossed spatial regions that properly include
region X during the time interval [t_begin, t_end],” and “Return objects whose
trajectories include an aggregation of positions close to a specific point of interest.”

Different levels of geometric abstraction provide alternative constituents for
structuring trajectories. According to [19] a structured trajectory consists of a
sequence of trajectory parts that can be either raw positions reported from any
sensing devise, aggregations of raw positions referred as nodes, or trajectory
segments.

A trajectory segment is a trajectory itself, which may be part of a whole trajectory.
A node provides an aggregation of raw positions. Segments and nodes aggregate
information that may instantiate a behavior pattern. For example, a sequence of
raw positions may instantiate a “turn” or a “stop” event (e.g., the critical points
mentioned in Chap. 4). These aggregations can be represented by a single node or
segment, associated with an event type (e.g., “turn” or “stop,” respectively), and to
the corresponding set of raw positions.

It must be noted that events aggregate different types of features, as mentioned
in Chap. 9 of this book. An event pattern may comprise contextual features
(e.g., crossing a spatial region, or a region with a specific weather condition),
features of moving objects (e.g., reaching highest possible altitude), geometric and
geographical features, and/or other events regarding the mobility of the object (e.g.,
moving in low-speed or descending). Events may be low-level—associated with
basic behavior—or complex—associated with complex patterns of behavior.

Segments of trajectories and nodes can be defined with different objectives
depending on the application and target analysis and are thus associated with
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application-specific information. As defined in [19], a maximal sequence of raw data
that comply with a given pattern defines an episode. In this work we consider events
as a generalization of episodes. Events represent specific or abstract happenings
and are associated with trajectory parts, providing application-specific information
that is relevant to the trajectory. As a consequence, queries such as “Return objects
whose trajectories contributed to congestion events in a specific spatial-temporal
region” or “Return objects whose trajectories comprise a segment that is associated
with a high-speed event” can be answered.

Geographical features allow turning the geometric information representing the
spatial path into a geographical trace [31] which is meaningful for humans and
computational processing tasks. This requires associating trajectory parts to (types
of) geographic regions, as, for example, link discovery methods that Chap. 6
presents do. These regions of interests may be shops/spots/buildings of different
kinds, regions of special interest (e.g., touristic, commercial or industrial), etc.
Generalizing geographical features, we can draw semantic associations between
trajectory parts, supporting further the abstraction of trajectories (e.g., any trajectory
crossing many shops can be a “shopping trajectory,” without considering the kind
of shops crossed. Specific types of shopping trajectories may indicate specific types
of shops crossed). In this work, we generalize geographical features to contextual.
This comprises features of the moving objects, as well as features of moving
objects’ environment, considering that these features are associated with objects’
movement. These may include weather attributes, space configuration features, as
well as aggregated data about co-occurring trajectories—i.e., traffic. This enables
answering queries such as “Return trajectories that crossed any region with specific
weather conditions [specified as conditions in weather attributes].” A trajectory part
may be associated with any event that co-occurs with it spatially and/or temporally:
For example, Bad weather conditions, or traffic regulations associated with a spatial
region may co-occur with a trajectory crossing-it (thus, related spatially) during a
time period (related temporally).

A semantic trajectory is a sequence of trajectory parts, associated with contextual
information and related events. The association with such information reveals
objects’ deliberative or accidental behavior in explicit terms, thus contributes to
understanding the rationale for that behavior.

It follows that a semantic trajectory can be specified at different levels of
abstraction, depending on the geometric features, contextual features, and events
considered. Abstraction may happen by means of aggregation, generalization, or
both. In doing so, we may retrieve semantically associated trajectories, based on
the semantic features they aggregate and information to which they are associated.
For instance, we may retrieve “trajectories crossing sensitive areas and associated
with suspicious events.” Such trajectories may be represented at varying aggregation
levels. They may cross areas with different types of sensitivity and they may be
associated with different types of suspicious events.

We conjecture that abstractions of a single trajectory should be interlinked, so as
any application to be able to get any relevant information that is necessary for its
purposes, being able to move in a continuum between specialized/basic information
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and generalized/aggregated information, through querying and applying data trans-
formations. This supports, for instance, delving into the details regarding a trajectory
part associated with a complex event of type “suspicious behavior,” by inspecting
geometrical, contextual, and application-specific features at the appropriate level of
detail.

5.2.2 Fundamental Data Types and Data Transformations
for Visual Analytics

Given our aim to represent trajectories towards supporting data-driven approaches
to challenging problems in critical domains, this section presents generic spatiotem-
poral data transformations to serve analysis goals on mobility data. As mentioned
in [8], there are three fundamental types of spatiotemporal data associated with
mobility: trajectories of moving objects, spatial event data, and spatial time series.

Individual trajectories provide information on the movement of individual
objects. Aggregated traffic data are spatial time series describing how many moving
objects were present in different spatial locations and/or how many objects moved
from one location to another during different time intervals. The time series may
also include aggregate characteristics of the movement, such as the average speed
and travel time. Time series describing the presence of objects are associated with
distinct locations, and time series describing aggregated moves (often called fluxes
or flows) are associated with directed links between pairs of locations. In both cases
spatial time series are represented as chronologically ordered sequences of values of
time-variant thematic attributes associated with spatial locations or spatial entities
(for example, regions of special interest).

Spatial events emerge at spatial locations and exist for a period of time. Spatial
events are described by their spatial regions, existence times, and contextual
features. Events may occur irrespectively of trajectories, but somehow be related
to trajectories (e.g., weather events, regulations imposed in a spatiotemporal region)
or may be derived from trajectories (e.g., a turn of a moving object, short distance
between a pair of objects, or large number of moving objects in a spatiotemporal
region).

Based on these types of spatiotemporal data and following the approach of [20],
the fundamental types of queries can be seen as transformations combining three
basic components: (a) space (where), (b) time (when), (c) object or event (what).
These components can be used in three basic types of queries:

• Retrieve the trajectories/events in a region for a time period (when&where→
what).

• Retrieve the region occupied by a trajectory/event or set of trajectories/events, at
a given time instant or period (when&what→where).

• Retrieve the time periods that a non-empty set of trajectories/events appear in a
specific location or area (i.e., where&what→when).
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Fig. 5.1 Conversions between different representations

Exploiting these fundamental data types and queries, we aim to support the
generic transformations depicted in Fig. 5.1 [8], in support of visual analytics tasks.
Briefly, as Fig. 5.1 shows, trajectories integrate spatial events (transformation I),
while these events, similarly to trajectories, may be aggregated to spatial time series.
These may be either place-based, i.e., associated with a specific spatial region
(transformation III), or link-based, such as flows of trajectories between pairs of
spatial regions (transformation II). Projections of spatial time series may result in
spatially referenced time series or to spatial situations (transformations VI). These
transformations impose specific requirements to representations, so as to answer
queries regarding trajectories, aggregations of features and events.

More specifically, the left part of the diagram in Fig. 5.1 shows the tight
relationships between spatial events and trajectories. In fact, trajectories comprise
parts that are associated with spatial events. Even in raw trajectories, each record
represents the presence of an object at a specific location at some instant in time. As
it is further shown in Fig. 5.1, trajectories are obtained by integrating spatial events.
In the simplest case, for each moving object, all (raw) position records are linked
in a chronological sequence. Reciprocally, trajectories can be transformed to spatial
events either by full disintegration back into the constituent events or by extraction
of particular events of interest such as sharp turns, entering/exiting a region, crossing
a waypoint, etc. Spatial events that are close in space and time can be united into
more complex spatial events. For example, a spatiotemporal concentration of many
moving objects entering/crossing a spatial region during a small time window may
be treated as a single event of traffic congestion.

Spatial time series can be obtained from spatial events or trajectories through
spatiotemporal aggregation. For instance, spatial regions specify spatial compart-
ments, and time can be divided into intervals called time windows. For each spatial
compartment and time window, the spatial events or moving objects that appear
in the compartment during the associated time window are binned together and
counted. The result is a place-based time series in which temporal sequences of
aggregate values are associated with the spatial compartments. From such spatial
time series, in turn, it is possible to extract more complex spatial events; for example,
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events of high traffic density and high demand for a specific spatial region and for
specific temporal intervals.

Trajectories can also be aggregated into link-based time series: for each pair
of spatial compartments and for a specific time window, the objects that moved
from the first to the second compartment during this time interval (specifying a link
between compartments during that period) are counted. Aggregated characteristics
of their movement may be calculated.

Discrete place-based and link-based spatial time series can be viewed in
two complementary ways. On the one hand, they consist of temporally ordered
sequences of (aggregated) values associated with individual places or links, i.e.,
local time series. On the other hand, a spatial time series is a temporally ordered
sequence of the distribution of spatial events, moving objects, or collective moves
(flows) of objects over the whole space of interest, together with the spatial variation
of various aggregate characteristics. These distributions are called spatial situations
[7].

Based on the requirements for the representation of semantic trajectories spec-
ified in the first part of this chapter and the framework of fundamental types of
mobility data and conversions between them presented in this part of the chapter,
we proceed in Sect. 5.4 to propose a model for the representation of semantic
trajectories, which aims at (a) supporting the representation of semantic trajectories
at multiple, interlinked levels of abstraction, (b) structuring trajectories by means
of different types of trajectory parts, (c) associating events at varying levels of
abstraction with trajectory parts, (d) supporting the transformations needed for
visual analysis tasks.

5.3 Semantic Representations of Trajectories: Related Work

Existing approaches for the representation of trajectories can be categorized into
those that (a) use plain textual annotations instead of semantic associations to
features of interest [3, 9, 10], having limitations towards machine-processable
information for the purposes of mobility analysis tasks; (b) constrain the types
of events that can be used for structuring a trajectory [3, 9, 26, 31]; or (c) make
specific assumptions about the constituents of trajectories [10, 12, 14, 17, 26, 30],
thus providing limitations to the specification of trajectories at varying levels of
abstraction according to needs.

To a greater extent than previous approaches, we aim to support the representa-
tion of trajectories at multiple, interlinked levels of detail [29].

More specifically, although authors in [12] provide a rich set of constructs for
the representation of semantic trajectories, these are specified as sequences of
episodes, each associated with raw trajectory data, and optionally, with a spatiotem-
poral model of movement. Beyond representing trajectories only as sequences of
episodes, there is no fine association between abstract models of movement and raw
data, providing limitations to analysis tasks that need both of them in association.
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On the other hand, [10, 26] and [30] provide a two-levels analysis where semantic
trajectories are lists of semantic sub-trajectories, and each sub-trajectory is a list of
spatial points. The authors in [14], based on the two-levels analysis of trajectory
models, introduce an ontological pattern for the specification of trajectories.

Regarding events and episodes, most of the proposed models are based on the
“stop-move” model [27, 31], or they are connected to features at specific levels of
abstraction: In [10] events—mostly related to the environment rather than to the
trajectory itself—are connected to points. This may lead to ambiguities as far as the
association of events to trajectories crossing the same points is concerned, especially
for the events concerning the trajectory itself rather than the environment. In [12]
episodes concern things happening in the trajectory itself and may be associated
with specific models of movement. However, it is not clear how multiple models
of a single trajectory—each at a different level of analysis—connected to a single
episode, are associated. Contextual information in [12] is related to movement
models, episodes, or semantic trajectories, which is quite generic as a model, while
in [26, 30] and [14] fixes and states represent basic behavioral features of the
moving object. These may also represent contextual features and are associated
with trajectory points, or in [26] they specify domain-specific features. Finally, in
[10] environment attributes are associated with points only and can only be assigned
specific values.

As noted in the previous section, the specification of trajectories at various layers,
from raw to semantic, depending on the information associated with trajectories
(as it is done in [31]) is orthogonal to the goal of providing specifications of
trajectories at multiple levels of abstraction. A different approach to that is proposed
in [18], where trajectories are associated with qualitative descriptions of movement,
at different aggregation levels, much like the distinction between low-level and
complex events made above. However, trajectories are specified as sequences of
segments associated with at least two key points providing quantitative information
on movement, with no association to any type of events or activities.

This lack of flexibility to specify semantic trajectories at multiple levels of
abstraction regarding geometric and contextual information, as well as events, and
the lack of the capability to link these specifications so as to be able to switch
between abstractions flexibly, is a common feature among previous efforts. In
addition to that, to the best of our knowledge, there is no work that considers
the requirements of analysis tasks in structuring trajectories, so as to support
fundamental types of data and transformations between them.

Specifically, considering data transformations for analysis tasks, apart from the
structural transformations between or within the different types of spatiotemporal
data specified in Sect. 5.2, there exist transformations that change the scale, or level
of detail, which may be beneficial for particular tasks. For example, Chu et al. [11]
transform trajectories into sequences of traversed map regions (e.g., streets) and
apply text mining methods for discovery of “topics,” i.e., combinations of regions
that have a high probability of co-occurrence in one trip. The extraction of “topics”
is done for different time intervals. By investigating the temporal evolution of the
topics, it is possible to understand where objects travel in different times of the
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day and days of the week. Al-Dohuki et al. [1] transform trajectories into texts
consisting of region names and text labels denoting speeds (low, medium, and high).
Furthermore, a discrete representation of aggregated movements between places can
be treated as a graph, to which graph analysis methods can be applied [13, 16]. As
such, these various transformations enable the comprehensive analysis of traffic data
from multiple complementary perspectives [4].

To the best of our knowledge, the ontology presented in this chapter, namely the
datAcron ontology, is the first one to provide the flexibility needed to represent
trajectories at multiple, interlinked levels of abstractions. Furthermore, and to a
greater extent than other models and ontologies proposed, it is validated in the
context of data transformations needed by analysis tasks, in highly complex problem
cases in the aviation and maritime domains.

The datAcron ontology has been succinctly presented in [21, 22, 29]. In this
chapter we provide the details of the specifications, while we show how the
datAcron ontology supports a range of generic data transformations that are required
by analysis tasks in air traffic management and maritime domains, supporting the
provision of information at various levels of analysis and form.

5.4 The datAcron Ontology

The datAcron ontology1 was developed by group consensus over a period of 12
months following a data-driven approach according to the HCOME methodology
[15]. It has been designed to be used as a core ontology towards integrating data
from heterogeneous data sources of surveillance and contextual data, in association
to recognized (low-level and high-level) events, towards supporting analysis tasks
exploiting semantic trajectories. It has been designed and implemented as a generic
ontology, to satisfy needs for the representation of trajectories across domains,
supporting a wide range of generic data transformations that are required by analysis
tasks. As a proof of concept, the ontology has been successfully used in both
aviation and maritime domains. For this reason, the ontology also describes aviation
and maritime specific concepts and relations.

Following the HCOME methodology, the following specific phases of engineer-
ing have been followed:

Specification of Aim, Scope, Requirements, and Identification of Collaborators In
this initial phase, we had to be acquainted with terminology regarding semantic
trajectories and with analysis goals related to mobility data in several scenarios in
two critical domains: Air Traffic Management and Maritime Situation Awareness
(cf. Chaps. 1 and 2). Thus, we had to identify the data requirements of analysis
tasks and specify the queries to be answered from the ontology. The fundamental

1http://ai-group.ds.unipi.gr/datacron_ontology/.

http://ai-group.ds.unipi.gr/datacron_ontology/
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data types specified in Sect. 5.2.2 provide the basic framework for representing and
exploiting mobility data through transformations.

Knowledge Acquisition, Development, and Ontology Maintenance The develop-
ment of the datAcron ontology has been driven by ontologies related to our
objectives: DUL, SimpleFeature, NASA Sweet and SSN, as well as schemes and
specifications regarding data from different data sources. These ontologies served
as top ontologies, whose specifications are further refined to the specification of
datAcron and domain-specific classes/properties. Standard ontology development
and maintenance tasks (e.g., improvisation, versioning, documentation), together
with consultation from experts on data analysis and domain-specific tasks took
place. It must be pointed out that following a data-driven approach, the major goal
was to provide “interfaces” with computational and analysis tasks that either provide
data to populate the ontology or fetch data to be exploited for analysis purposes.
Thus, ontological specifications should support ontology population and querying
in adequate and lossless ways. That is, annotating, representing, and associating
data using the appropriate terms, adequately, and without losing any valuable bit of
information that would affect analysis results.

Exploitation and Validation During this phase, the ontological specifications have
been validated in (a) populating the ontology by means of RDF generators, and
in (b) providing data in appropriate forms for data analysis tasks. Refinements of
ontological specifications proposed during this phase, or changes in the required
features to be exploited, had to be incorporated in the ontology.

It must be pointed out that these phases happened iteratively, for example, the
specification of a new data source providing any kind of features in different forms,
trigger the first phase, with potential consequent activities in the other phases.

5.4.1 Core Vocabulary and Overall Structure

As explained in Sect. 2.1 and illustrated in Fig. 5.2, a trajectory (Trajectory) can
be segmented to several trajectory parts (TrajectoryParts). Each trajectory
part can be a trajectory segment, a trajectory node, or a position provided by a raw
surveillance data source. Segments and nodes can be further analyzed iteratively to
other, less abstract trajectory parts.

The generic pattern of specifying structured trajectories is presented in
Sect. 5.4.2.

Trajectories and trajectory parts can be associated with geometric and contextual
information, as well as with events represented by the class dul:Event. As
already pointed out, events are important happenings associated with the mobility
of objects. These may occur in the environment of moving objects and affect their
mobility, or may be derived from trajectories. Ontology patterns for associating
contextual information and events to trajectory parts are presented in Sect. 5.4.2.
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Fig. 5.2 The main concepts and relations of the proposed ontology

5.4.2 Patterns for the Representation of Semantic Trajectories

Figure 5.3 illustrates the generic pattern of structured trajectories. The main concept
in this pattern is the Trajectory, which is a subclass of Spatiotemporal Struc-
tured Entities represented by the class ST_StructuredEntity. This, being a
subclass of dul:Region represents a region in a dimensional space and time,
used as a value for a quality of an entity (e.g., a storm covering an area), while it
also represents (structured) trajectories and their parts. A structured trajectory, as
well as any of its parts of type TrajectoryPart, can be a temporal sequence of
TrajectoryPart entities.

Direct subclasses of Trajectory are the

– IntendedTrajectory: planned trajectories specified by an dul:Infor-
mationEntity. These are different from actual trajectories, since they may
not be realized. They specify the intention of a moving object. A specific example
from the FM domain is a FlightPlan,

– ActualTrajectory: trajectories constructed from actual positioning data2

and associated with low-level events representing important trajectory changes
(e.g., turns, increase/decrease of speed, change of altitude, etc.),

– RegulatedTrajectory: trajectories that have been modified by an opera-
tional event, such as a regulation,

2In datAcron we construct actual trajectories after compression of the raw data, as Chap. 4 presents.
In general, different applications may have different requirements in aggregating raw data.
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– RawTrajectory: trajectories constructed by the raw unprocessed sequence of
positional data of moving objects.

An ActualTrajectory can be further distinguished to a Closed
Trajectory (i.e., a trajectory that has reached its destination) and to an
OpenTrajectory (i.e., a trajectory in progress).

The TrajectoryPart class is further refined to the following subclasses:

– Segment: associated with a spatial region and a time proper interval.
– Node: associated with a point in space and a time instant, or time interval. The

latter holds in case the node aggregates several raw positions. A Node can be the
result of a data processing component computing aggregations and abstractions
of raw positional data.

– RawPosition: represents the raw (unprocessed) positional data. Each raw
position instance is associated with a point in space and a time instant.

Fig. 5.3 The pattern of structured trajectories. Domain-specific concepts in gray

A specific trajectory, as well as any of its trajectory parts, being instances of
dul:Region can be associated with its parts via the dul:hasPart property
or via the subproperties hasInitial, hasLast which indicate the first and
last part of the ST_StructuredEntity, respectively. For instance, a trajectory
may comprise a sequence of trajectory segments (e.g., segments within sectors),
who on their own turn comprise other segments (e.g., segments within air blocks),
nodes (e.g., entering or exiting any airspace compartment), raw positions, and so on.
The temporal sequence of structured entities is specified by means of the property
dul:precedes. Trajectories related via the property dul:precedes represent
subsequent trajectories of a specific object, and thus, we can keep a long history of
its movement. It must be noted that this combination of properties supports sharing
trajectory parts between trajectories even of the same object with no ambiguity: For
instance, a trajectory node or segment can be shared between the actual and the
intended trajectory of an aircraft, without mixing the trajectories.
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Each structured entity (i.e., trajectory or trajectory part) can be associated with a
specific geometry (sf:Geometry), representing a point or region of occurrence,
and a temporal entity (dul:TimeInterval) specifying a time interval of occur-
rence. The geometries of structured entities can be serialized into Well-Known-Text
(WKT) and asserted as values to the data property hasWKT, which is sub-property
of geosparql:hasSerialization.

Fig. 5.4 The pattern of trajectories linked with events. Domain-specific concepts in gray

Trajectories and trajectory parts can be associated with events and contextual
features of importance. Specifically, events can be associated with any
ST_Structu-redEntity (i.e., with any trajectory and trajectory part), via
the property occurs. This is illustrated in Fig. 5.4. An event can be associated
with other events via the properties dul:hasConstituent or dul:hasPart.
This is the case for high-level (complex) events (e.g., hotspot occurrence in
the FM domain) associated with other high-level (e.g., regulation imposed to
a sector and events signifying individual flights entering a sector) or low-
level events. An event may involve participants (associated via the property
dul:hasParticipant) and it holds for a specific TimeInterval specified
by the property dul:hasTimeInterval. An event can be a:

– Low-Level event, in case its detection requires data from a single trajectory:
For instance, a TopOfClimb is such an event. These events are detected by
low-level event detectors, such as those incorporated in the synopses generator
presented in Chap. 4 of this book, or by link discovery methods, such as those
presented in Chap. 6.
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– High-Level event, in case its detection requires contextual data and maybe
data from multiple trajectories. For example, events of type EnterSector
involve information about sectors crossed by a trajectory. As another example,
the occurrence of hotspots requires data about sectors and multiple trajectories.
These events are detected by complex events processing engines, such as the
RTEC presented in Chap. 9 of this book.

Orthogonal to the classification between low-level and high-level events, we also
have the following classes of events:

– Operational event, if it is issued by operators, affecting regions or groups of
entities for a specific time interval. For example, a regulation (Regulation) is
applied on a sector and remains active for a time interval and indirectly affects
all the trajectories crossing the sector.

– Environmental event, if it happens in the environment and affects the
mobility of moving objects. Extreme weather conditions are such events.

It must be noted that associating events to trajectory parts satisfies the require-
ment to associate events at varying levels of trajectory aggregation. For instance,
a low-level event associated with a node (e.g., a “turn” event) is associated
with any trajectory part (e.g., trajectory segment) that comprises that node. Also,
each trajectory part may be associated with multiple events, and thus, provide
rich information about objects’ behavior. For example, a low-level “turn” event
associated with a node may co-occur with a low-level “descend” event associated
with a trajectory segment comprising that node. In addition to that, the trajectory
segment can be further associated with other types of events (e.g., events of type
“CrossingSector”).

Fig. 5.5 The pattern of trajectories linked with contextual information. Domain-specific concepts
in gray
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In addition to events, trajectory parts can be linked to contextual information.
Such information may concern static aspects of the environment (e.g., airports,
airspaces, etc.), dynamic aspects (e.g., changing sector configurations, opening
schemes, forecasts of weather conditions). The pattern for linking trajectory parts
with contextual information is illustrated in Fig. 5.5. Without loss of generality,
subsequent paragraphs and Fig. 5.5 provide examples of associating trajectories to
contextual entities of interest for the FM cases.

In general, each TrajectoryPart can be associated with entities of
type ssn:FeatureOfInterest, providing contextual information. For
example, given the importance of weather conditions in the FM domain, each
TrajectoryPart can be associated with entities of type WeatherCondition,
which is defined as a subclass of ssn:FeatureOfInterest. This represents
any entity whose properties are being estimated or calculated in the course of an
observation.

Additionally, as in many domains where specific regions and places are of
importance, airspace regions are of major importance in the FM domain. In general,
structured entities can be linked to spatial regions (instances of dul:Region)
of particular interest through the properties within and dul:nearTo. Also,
although any trajectory part can be associated with an entity, the departure and
destination of a trajectory can be considered as contextual information, linked to
trajectories via the properties hasDeparture and hasDestination, respec-
tively. These properties range to the class dul:Physical-Place. These in the
case of the aviation (maritime) domain can be further refined to domain-specific
classes such as Airport or Heliport (or port, fishing area for the maritime
domain, respectively).

Finally, an IntendedTrajectory is associated via the property reports
Trajectory with an entity of type dul:InformationEntity, specifying
the details of the intended trajectory. For example, flight plans in the FM domain
provide information on the intended trajectory and, in case a regulation has affected
the trajectory, report the regulated intended trajectory.

As a concrete and simple example of a trajectory specified at multiple levels of
abstraction, Fig. 5.6 shows the representation of a trajectory crossing an airspace
compartment: The trajectory is represented both as a geometry projected in two
dimensions, and as a temporal sequence of trajectory segments, which are indicated
in different color, depending on whether each segment occurs within the compart-
ment or not. This structure results through a topological link discovery process
where the trajectory geometry is used as a first indication of the potential fact that
the trajectory crosses the air compartment (filtering step). This is further verified by
exploiting the raw trajectory positional data and identifying the trajectory segments
that spatially occur within the compartment. Chapter 6 of this book provides further
details on the link discovery process. Additional information to trajectory segments
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is provided by associated events that are not shown in the figure, to keep it simple.
Hence, beyond the representation of the trajectory as a sequence of trajectory
segments, at a second level of abstraction, the trajectory is represented as a temporal
sequence of semantic nodes, each one signifying an important event occurring
across the trajectory. For instance, trajectory nodes H, L, M, and K are associated
with entry/exit events, representing the relation of raw positions with the airspace
compartment. Trajectory segments and nodes are further associated with positional
raw data.

Fig. 5.6 A simple example of representing a trajectory crossing an airspace compartment

As a furthermore elaborated example, Fig. 5.7 shows an example of associating
trajectories with information about events and contextual information. The two
maps in the upper part show the trajectories of the flights performed between Paris
Orly and Lisbon (left) and between London Heathrow and Madrid (right) during
April 2016. Information about crossing sectors in which various types of regulations
were applied has been attached to the points of the trajectories, denoting the
regulation reason codes. In the map, the trajectories are represented by segmented
lines; the segments are colored according to the regulation reasons of their starting
points. For the segments that were not in regulated sectors, the regulation reason
code is empty. These segments are represented by thin dashed lines.
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Fig. 5.7 Examples of trajectories enriched with information about crossing sectors in which
regulations were applied (Figure provided by G.Andrienko, IAIS Fraunhoffer)

5.5 Supporting Data Transformations

In this section we show how the proposed ontology supports the data transforma-
tions, regarding the needs of visual analysis tasks in two major FM cases in the
aviation domain: Case FM01, aiming to the discovery of patterns of regulations, and
case FM02, aiming to the analysis of hotspots occurrences. Regarding the maritime
domain, we demonstrate aggregations of cargo and fishing vessels’ trajectories
intersecting with high risk areas, by transforming these to spatial time series (place
based). Cases specify scenarios with specific analysis objectives and data needs.
Appropriate visualizations show data-driven exploratory analysis results towards
identifying patterns of behavior and supporting decision-making.

5.5.1 Data Sets

To explore the capacities of the ontology to support visual analysis tasks we exploit
the following data sets for aviation cases, as also described Chap. 2 of this book:

• Network Manager Regulations: This data set provides historical data of regu-
lations applied by the Network Manager on sectors in the European airspace,
during April 2016.

• Sector Configuration: This data set describes the structure of sector configura-
tions for specific periods of time within April 2016.
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• Flight Plans: This data set contains the submitted flight plans prior to the takeoff
for the flights operated during April 2016, to/from airports worldwide. However,
only a few flights have destination/origin a non-European airport.

• Entry/Exit points: This data set is derived from the combination of sector config-
urations and flight plans. A spatiotemporal link discovery task [23] interpolates
the altitude, latitude, longitude, and time an aircraft enters/exits each air block
(and sector), as also described in Chap. 6 of this book. Having these entry/exit
points we can specify trajectories as sequences of trajectory segments, each one
topologically being “within” a crossed airspace compartment (shown in Fig. 5.6).

• NOAA grib binary files: This data set is a collection of 96 binary files reporting
3-h weather forecasts, starting from April 1st to April 24th, 2016.

For the maritime case we exploit the following data sets,3 as these have been
described also in Chap. 1 of this book:

• Maritime surveillance data in Europe during January 2016.
• World Port Index, reporting 3684 major ports worldwide.
• Vessel types as reported in AIS messages during 2016.

These data sets are provided by heterogeneous (and often voluminous) data
sources. We have introduced the RDF-Gen [24, 25] method which converts data
into triples with low latency, w.r.t. a given ontology (in our case, the datAcron
ontology). The main idea of RDF-Gen is to use a SPARQL-like triple template
for each data source, to convert raw data from the source to RDF triples. RDF-
Gen templates allow the use of custom functions for cleaning and converting
data values, generating URIs, and generating triples populating the ontology. This
ontology population task by means of the appropriate RDF generator, is an ontology
validation task performed during ontology development.

Among the data sets listed, the flight plans data set is the most voluminous.
Specifically, this data set reports 958,288 flight plans (please recall that flight plan
updates are possible, and flight plans can report at most three trajectory types),
which are converted to 1,548,628,183 RDF triples. The link discovery task for
interpolating entry/exit positions for air blocks and constructing the corresponding
trajectory segments for each trajectory generates 283,906,720 additional RDF
triples, resulting in a total of 1,832,534,903 triples.

The absence of an information document to report the indented trajectory in the
maritime domain restricts the identification of trajectories to be only on runtime,

3Also available online at https://zenodo.org/record/1167595.

https://zenodo.org/record/1167595
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i.e., there is no trivial method to construct intended/planned trajectories of moving
objects in this domain. The method that computes the (actual) trajectories from
reported positions reconstructs each trajectory in memory, appending a list of
aggregated nodes from reported positions for each moving object. The method takes
into consideration the annotations attached to aggregated nodes and applies three
basic criteria, when the last node in the list of aggregated nodes of some moving
object reports zero speed:

1. If the current node reports non-zero speed, then a new trajectory starts on the
current node,

2. if the current node has temporal distance from the last node greater than tth, then
a new trajectory starts on current node,

3. if the current node has spatial distance from the last node greater than sth, a new
trajectory starts.

An important difference between aviation and maritime trajectories is that while
the first have exactly one and defined origin and destination places, the latter have
not a defined origin/destination and these have to be identified. This also indicates
that there can be cases of trajectories in the maritime domain that do not end (or
start) within some port. When a trajectory ends (respectively, starts) near to some
port, we associate the trajectory with the port as its destination (respectively, origin).
If both origin and destination of a trajectory have been assigned to some port, the
trajectory is classified as “closed” (otherwise it is considered to be “open”). The
threshold tth expresses the amount of time a vessel has to spend at some place in
order to be considered to be stopped (in our experiments we set this threshold to 1 h).
The threshold sth aims to distinguish trajectory termination from communication
gaps within the trajectory.

5.5.2 datAcron Namespaces for Functions

Most of the queries involve spatial and temporal functions, thus data transfor-
mations cannot be fully supported by standard SPARQL 1.1. For this reason we
have extended standard SPARQL 1.1 with the following namespaces regarding
functions:

• SPARQL_functions.converters: These include functions for converting given
values to a specific format, e.g., the conversion of latitude, longitude, altitude, and
time values into a single string representation for each 4D point. An important
function in this namespace is the getWeatherAVG(), which given the name of
a weather variable, a geometry, an altitude range, and a timestamp retrieves the
average value for the weather variable within the airspace volume defined from
the geometry and the altitude range.
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• SPARQL_functions.distance: These are various distance functions between
geometries. For cases where high performance is preferred over accuracy, the
GeoEllipticDistance() function (based on Vincenty’s formulae [28]) can be
used in the computations. For all the cases where accuracy is important, this
namespace provides the function geodesicDistance() which is implemented
on top of geographicLib.4 This function computes the distance between the
centroids of given geometries in meters and provides accuracy up to 10−9 m.

• SPARQL_functions.spatial: These are functions implementing all the OGC
topological relations between pairs of geometries. Each function accepts WKT
representations of geometries as arguments and returns Boolean true if the
topological relation holds or false otherwise.

• SPARQL_functions.temporal: These are functions implementing all the temporal
relations described in Allen’s interval algebra [2]. Each function returns true if
the corresponding temporal relation holds, or false otherwise. For example, the
function during_sf() returns true if the temporal interval defined by the first two
arguments (start and end time instants), is during, starts or finishes within the
interval specified by the third and fourth arguments.

5.5.3 Validation Setup

We have set up a SPARQL 1.1 endpoint, on top of which we have developed
procedures for producing the required time series spanning within specific time
periods. These procedures take as input duration and time step of a shifting time
window, instantiate query parameters (e.g., moving object types), and pose the
queries. Subsequently, placeholders of parameters in queries are identified by “$.”
The results are returned in tabular form, such that any visualization tool can be used.

For instance, in cases where we need to generate time series of counts of entities,
the corresponding procedure uses a parameterized SPARQL query, where the time
period of interest, the time window, and the time step for shifting the window
are parameters to be instantiated. The procedure builds a sequence of queries for
subsequent time windows of a given duration. The starting points of subsequent
windows differ by a number of minutes equal to the time step specified.

Specifically, given a time step 	t , a time window duration wd and a
period [T imeStart, T imeEnd], the i-th query of n iterations, where n =
(T imeEnd−wd−T imeStart)

	t
, concerns the time interval [TimeStart + (i ∗ 	t),

TimeStart+wd+(i ∗ 	t)].

4Publicly available online at https://geographiclib.sourceforge.io/.

https://geographiclib.sourceforge.io/
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5.5.4 Pre-processing Steps and Auxiliary Structures

To increase the efficiency of query answering, we pre-compute intermediate results
and store these in auxiliary structures. This method is by analogy to the spatial
databases which rely on specialized indices (e.g., spatial indices such as R-Tree) to
improve query answering performance. This is an additional way of exploiting data
fetched via the SPARQL endpoint. Furthermore, the auxiliary structures (in addition
to custom made functions) overcome limitations of SPARQL (such as forming
iterative queries), and in the same time simplify the SPARQL queries used in the
end (e.g., to increase the computational efficiency of query answering, no nested
queries are used for the use cases) without affecting the validation of ontological
specifications.

As already specified above, the link discovery process segments a trajectory to
those parts that are within air blocks for the aviation domain (or regions in general),
by computing the spatiotemporal entry/exit points per trajectory and air block. Given
that sectors comprise air blocks we can represent trajectories at different aggregation
levels, depending on whether we are focusing on air blocks or sectors, according to
the ontology specifications. The additional triples computed by the link discovery
process are of the form (?x :within ?y.) representing trajectory segments?x
that occur spatially in air blocks ?y. Similar relations can of course be computed
for the maritime domain, representing trajectories crossing, for instance, fishing or
protected areas.

To further increase efficiency we use an in-memory HashMap relating sectors
with sets of airblocks. For the cases where a sector comprises another sector, we
associate the former with the set of airblocks composing the latter. The HashMap is
constructed using the query:

PREFIX : <http://www.datacron-project.eu/datAcron#>
PREFIX dul: <http://www.ontologydesignpatterns.org/ont/dul/DUL.owl#>
PREFIX sp: <java:SPARQL_functions.spatial.>
SELECT ?s ?airblock_wkt (str(?lower) as ?lowerLevel)
(str(?upper) as ?upperLevel) WHERE {
?s dul:hasPart+ ?airblock .
?airblock :hasGeometry ?g ;
:hasLowerLevel ?lower ;
:hasUpperLevel ?upper .
BIND(sp:getGeom(?g) as ?airblock_wkt) .
}
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where (?s dul:hasPart+ ?airblock.) traverses the property path built
from one or more occurrences of dul:hasPart, specifying the structure of
sectors in terms of constituent air blocks and sectors. The above query reports
the URIs of sectors, as well as the air block projection geometry in WKT and the
lower/upper flight levels for each air block that a sector comprises.

Furthermore, the ontology is populated with triples stating regulations imposed
on sectors (i.e., regulation events) for specific time intervals, with a potential cancel-
lation time per regulation. The duration of a regulation is the time interval between
the starting time and the earliest time instant between regulation cancellation (if it
is specified) and ending time.

5.5.5 Visual Analytics Enhanced Via Data Transformations
on Aviation Use Cases

As a use case demonstrating data transformations supported by the proposed
ontology in the aviation domain, we discuss the rationale for the choice of sector
configurations, based on the expected evolution of demand. In doing so, we first
retrieve all sectors (active or not) crossed by any trajectory and then, we provide a
time series of the number of trajectories intended to cross any sector, providing the
evolution of demand per sector.

To compute the evolution of demand we aggregate the trajectories speci-
fied by flight plans into spatial time series by sectors and time windows. Two
time-dependent attributes may be computed for any sector: entry count (how many
flights enter the sector during each time interval) or occupancy (how many flights
are present in that sector during each time interval). These may be counted in
overlapping time windows, depending on the step used for shifting the time window.
As usually, to produce spatial time series we use a time window of specific duration
and a time step, which specifies the time difference between the starting points of
two consecutive windows.

These cases require in the first place transforming trajectories (as specified by
flight plans) into time series of spatial events, and then, transforming trajectories into
spatial time series of demands by aggregating them by (active) sectors (aggregation
II in Fig. 5.1). A more detailed analysis and additional transformations have been
presented in [29].

(a) This case first requires for a given intended trajectory specified by a flight
plan to retrieve the series of sectors S (active and inactive) crossed by that trajectory,
and the trajectory segments crossing each sector in S. For example, the following
query returns the sectors crossed by the trajectory of a given flight plan, e.g.,
:flight_plan_AA51147955:
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PREFIX : <http://www.datacron-project.eu/datAcron#>
PREFIX dul: <http://www.ontologydesignpatterns.org/ont/dul/DUL.owl#>
SELECT ?sector (min(?start) as ?timeEnter) (max(?end) as ?timeExit)
WHERE {
:flight_plan_AA51147955 :reportsTrajectory ?t .
?t a :IntendedTrajectory ;
dul:hasPart ?segment .
?segment a :Segment ;
:within ?airblock ;
:hasTemporalFeature ?time .
?time :TimeStart ?start ;
:TimeEnd ?end .
?sector dul:hasPart+ ?airblock .
} Group By ?sector
Order By ?timeEnter

A more restricted version of the above query concerns only the active sectors
during the time period of the flight defined by the first and last node of the trajectory
reported by the given flight plan, according to the active sector configurations. The
query is as follows:

PREFIX : <http://www.datacron-project.eu/datAcron#>
PREFIX dul: <http://www.ontologydesignpatterns.org/ont/dul/DUL.owl#>
PREFIX tmp: <java://SPARQL_functions.temporal.>
SELECT ?sector (min(?start) as ?timeEnter) (max(?end) as ?timeExit)
WHERE {
:flight_plan_AA51147955 :reportsTrajectory ?t .
?t a :IntendedTrajectory ;
dul:hasPart ?segment .
?segment a :Segment ;
:within ?airblock ;
:hasTemporalFeature ?time .
?time :TimeStart ?start ;
:TimeEnd ?end .
?sector dul:hasPart+ ?airblock .
?f a :FM_Configuration ; :configurationOfAirspace ?airspace ;
:hasTemporalFeature ?time.
?airspace dul:hasPart ?sector.
?time :TimeStart ?ts ; :TimeEnd ?te.
FILTER(tmp:overlap(?start,?end,?ts,?te))
} Group By ?sector
Order By ?timeEnter
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Finally, we use the following query to compute per sector and time window,
the demand for that sector, i.e., the number of trajectories intended to cross that
sector during the corresponding period specified by the temporal window. The time
window shifts with a step of 	t minutes.

PREFIX : <http://www.datacron-project.eu/datAcron#>
PREFIX dul: <http://www.ontologydesignpatterns.org/ont/dul/DUL.owl#>
PREFIX tmp: <java://SPARQL_functions.temporal.>
SELECT (count(DISTINCT ?tr) as ?demand) WHERE
{
?flightPlan :reportsTrajectory ?tr .
?tr a :IntendedTrajectory ;
dul:hasPart ?segment .
?segment :within ?airblock ;
:hasTemporalFeature ?time .
$Sector$ dul:hasPart+ ?airblock .
:entersRegion :occurs ?segment .
?time :TimeStart ?s .
FILTER(tmp:during_sf(?s,?s,$t+k*	t$,$t+wd+k*	t$))
}

We can restrict this query to the number of trajectories crossing active sectors
(i.e., considering the periods in which each sector is active):

PREFIX : <http://www.datacron-project.eu/datAcron#>
PREFIX dul: <http://www.ontologydesignpatterns.org/ont/dul/DUL.owl#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX tmp: <java://SPARQL_functions.temporal.>
PREFIX sp: <java://SPARQL_functions.spatial.>
SELECT (count(DISTINCT ?t) as ?demand) WHERE
{
?f a :FM_Configuration ;
:configurationOfAirspace ?airspace ;
:hasCapacity ?capacity ;
:hasTemporalFeature ?time .
?airspace dul:hasPart $Sector$ .
?sector dul:hasPart+ ?airblock .
?time :TimeStart ?ts ; :TimeEnd ?te.
?t a :IntendedTrajectory ;
dul:hasPart ?segment .
?segment :within ?airblock ;
:hasTemporalFeature ?tn .
?tn :TimeStart ?s ;
:TimeEnd ?e .
FILTER(sp:overlaps(?s,?e,?ts,?te) &&
tmp:during_sf(?s,?s,$t+k*	t$,$t+wd+k*	t$))
}
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5.5.6 Visual Analytics Enhanced Via Data Transformations
on Maritime Use Cases

As a use case demonstrating data transformations and visual analytics enabled by
the proposed ontology in the maritime domain, we make the hypothesis that regions
at sea with high potential of a polluting incident are those that are crossed by
trajectories of vessels carrying hazardous cargo, and fishing vessels during the same
time period. This hypothesis requires aggregating trajectories to spatial time series
(place based) and providing their projection to spatial situations, indicating high
risk in areas where trajectories of cargo and fishing vessels intersect. We partition
the space into cells of 0.5◦ (latitude/longitude) and we assume that the risk of
pollution incident is higher in those cells that trajectories of cargo and fishing vessels
frequently intersect. The query is similar to computing the demand of airblocks in
the air traffic management domain: we aggregate the trajectories of specific vessel
types that intersect in a given cells, for a sliding window.

It is important to highlight at this point that the proposed ontology enables the
trajectory reconstruction method from spatial events, which subsequently allows
the computation of intersecting points from these trajectories simply by their
geometries. Indeed, the SPARQL query to retrieve all the trajectories within a
predefined sliding window (using also as a parameter $vesselType for the vessel
type), is the following:

PREFIX : <http://www.datacron-project.eu/datAcron#>
PREFIX dul: <http://www.ontologydesignpatterns.org/ont/dul/DUL.owl#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX tmp: <java://SPARQL_functions.temporal.>
SELECT ?tr WHERE
{
?v a $vesselType .
?tr :ofMovingObject ?v ;
:hasGeometry ?g ;
:hasInitial ?start ;
:hasLast ?end .
?g :hasWKT ?wkt .
?start :hasTemporalFeature/:TimeStart ?s .
?end :hasTemporalFeature/:TimeStart ?e .
FILTER(
tmp:during_sf(?s,?s,$t+k*	t$,$t+wd+k*	t$))
}

Each trajectory of vessels type {Tanker, Cargo, TankerHazard} and {Fishing}
is partitioned into its constituent trajectory parts within each constructed cell. Each
trajectory is associated with its trajectory parts via the dul:hasPart relation. The
trajectory parts are also associated with the temporal feature that describes the time
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that the vessel enters and exits each cell. We can therefore retrieve and count the
trajectory parts that intersect within each cell specified, using the query:

PREFIX : <http://www.datacron-project.eu/datAcron#>
PREFIX dul: <http://www.ontologydesignpatterns.org/ont/dul/DUL.owl#>
PREFIX tmp: <java://SPARQL_functions.temporal.>
PREFIX sp: <java://SPARQL_functions.spatial.>
SELECT count(distinct ?tr1) as ?intersections WHERE
{
?v1 a $vesselTypeA .
?v2 a $vesselTypeB .

?tr1 :ofMovingObject ?v1 ;
dul:hasPart ?p1 .
?tr2 :ofMovingObject ?v2 ;
dul:hasPart ?p2 .
?p1 :hasTemporalFeature/:TimeStart ?s1 .
?p1 :hasTemporalFeature/:TimeEnd ?e1 .
?p2 :hasTemporalFeature/:TimeStart ?s2 .
?p2 :hasTemporalFeature/:TimeEnd ?e2 .
?p1 :hasGeometry/:hasWKT ?g1 .
?p2 :hasGeometry/:hasWKT ?g2 .

FILTER(
tmp:during_sf(?s1,?s1,$t+k*	t$,$t+wd+k*	t$) &&
tmp:during_sf(?e1,?e1,$t+k*	t$,$t+wd+k*	t$) &&
tmp:during_sf(?s2,?s2,$t+k*	t$,$t+wd+k*	t$) &&
tmp:during_sf(?e2,?e2,$t+k*	t$,$t+wd+k*	t$) &&
sp:intersects(?g1,?g2) &&
sp:within(?g1, $cellWKT) &&
sp:within(?g2, $cellWKT)
)
}

The arguments $vesselTypeA and $vesselTypeB in the above query correspond
to one of the types {Tanker, Cargo, TankerHazard} and {Fishing}, respectively, and
$cellWKT defines the WKT of each cell to be evaluated.

Please notice that all of s1, e1, s2, e2 need to be within the sliding time window.
Thus, the sliding window has to be sufficiently wide, so that any of the vessels

observed can cover the distance of
√

2
2 deg, which is the hypotenuse of a 0.5 × 0.5

cell. Also, the above query counts the distinct intersections between trajectories, i.e.,
multiple intersections between the same trajectories are count as one.

Figure 5.8 illustrates the computed regions for the entire surveillance data set of
January 2016. We observe that the reported positions of antipollution vessels in the
surveillance data set (as indicated by the red dots in this figure) validate the initial
hypothesis.
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Fig. 5.8 Regions where trajectories of Tanker, Cargo, and Fishing vessels intersect. Red dots
indicate antipollution vessel activity

5.6 Conclusions

This work contributes a generic ontology for the representation of semantic
trajectories of moving objects at varying levels of spatiotemporal analysis. This
representation improves our understanding of moving phenomena and of significant
events that affect entities’ mobility, through analysis tasks. Trajectories can be seen
as temporal sequences of moving objects’ positional data, aggregations of positional
data signifying meaningful events, as temporal sequences of trajectories segments,
or as geometries.

Delving into these specifications, we have shown how the different levels of
trajectory enable data transformations required for visual analysis tasks at query
time, in both aviation and maritime domains. We also provide the SPARQL queries
executed in the populated ontology for the purposes of the demonstrated real-world
cases. Generic data transformations shown in the complex Air Traffic Management
and maritime examples adapt available data to the analysis goals, or to specific
requirements of the methods that the analyst wants to apply.

In the process of developing this ontology, several lessons have been learned.
The ontology can be re-used in different domains where trajectories are important
in the analysis of behavior of the subjects. Each domain can enrich the ontology
with domain-specific events that can be described by any combination of spatial,
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temporal, or other domain-specific relations with trajectory parts of moving objects.
Furthermore, having in mind the requirements of the analytical tasks to be supported
can guide the decision of the level of abstraction to be applied on the trajectory.
For example, if some analytical task requires the identification of those trajectories
that cross a specific region of interest, it usually suffices to use trajectory segments
instead of positional data. Finally, the presence of multiple levels of abstraction
for the representation of trajectories enables more efficient processing of queries
regarding trajectories. The more abstract representation of a trajectory is usually less
complex to be evaluated against a set of regions or points of interest, compared to
the more detailed representation of the same trajectory. Thus, having multiple levels
of abstraction for the same trajectory allows the application of a “filter and refine”
approach, where during “filtering” the more abstract representation of a trajectory is
evaluated, and during the “refinement,” the appropriate representation of the same
trajectory (as required by the analytical task) is evaluated against detailed criteria.
This approach will eliminate a large number of trajectories that definitely are not
related by any means with the regions or points of interest.

As future work we aim to re-use and expand this ontology in different domains
where trajectories play important role in analysis of behavior: Either for traffic
analysis in cities, or for human behavior analysis in crowded places (e.g., buildings,
touristic places, festivals, etc.), under normal or emergency circumstances, or even
in domains where trajectories do not involve spatiotemporal entities, but space-
temporal entities, where space is any n-dimensional space where information
entities (e.g., images) do exist.
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Chapter 6
Integrating Data by Discovering
Topological and Proximity Relations
Among Spatiotemporal Entities

Georgios M. Santipantakis, Christos Doulkeridis, Akrivi Vlachou,
and George A. Vouros

Abstract Link discovery (LD) is the process of identifying relations (links)
between entities that originate from different data sources, thereby facilitating
several tasks, such as data deduplication, record linkage, and data integration.
Existing LD frameworks facilitate data integration tasks over multidimensional
data. However, limited work has focused on spatial or spatiotemporal LD, which is
typically much more processing-intensive due to the complexity of spatial relations.
This chapter targets spatiotemporal link discovery, focusing on topological and
proximity relations, proposing a framework with several salient features: support
both for streaming and archival data, support of spatial relations in 2D and
3D, flexibility in terms of input consumption, improved filtering techniques, use
of blocking techniques, proximity-based LD instead of merely topological LD,
and a data-parallel design and implementation. The efficiency of the proposed
spatiotemporal LD framework is demonstrated by means of experiments on real-
life data from the maritime and aviation domains.

6.1 The Role of Link Discovery in Data Integration

Data integration is a critical task for applications managing data that originates from
different and often heterogeneous data sources. In the current era of big data [9],
where data is of massive volume, generated at unprecedented rates in the form of
data streams, and in different representation models, formats and modalities, big
data integration [6] raises additional challenges.

One significant step to facilitate data integration is link discovery (LD) [11],
which is defined as the process of identifying relations (links) between entities/ob-
jects that originate from different data sources. In the following, we present different
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applications of link discovery tasks that are meaningful in real-life scenarios: record
linkage [4], entity resolution [5, 16], and data deduplication [7].

Example 6.1 (Record Linkage Between Data Sources) Consider a merge taking
place between two companies, which requires that their customer databases need
to be reconciled. Customers are described by their names and identifying com-
mon customers requires joining records based on alphanumeric values (names).
However, in practice, using exact matching does not work sufficiently well, due
to various reasons, such as spelling errors (e.g., “Jon Smith” vs. “John Smith”), use
of middle name (e.g., “George Vouros” vs. “George A. Vouros”), etc. Therefore,
approximate matching techniques (a.k.a. approximate or fuzzy joins) are required,
which constitute a special case of link discovery between entities.

Example 6.2 (Entity Resolution) Consider two different data representations corre-
sponding to two entities, where the problem is to determine if the two entities are
identical. For instance, a Wikipedia page describing an athlete and a record in a table
of a relational database of athletes. The problem is to discover that two entities refer
to the same real-world object.

Example 6.3 (Deduplication) Consider the case of two persons that perform data
entry using different naming conventions. In this case, we may encounter multiple
records that are not identical, yet they refer to the same object. As a representative
example one can think of “Los Angeles” vs. “LA”, “fifth avenue” vs “5th avenue”,
etc.

In order to support application scenarios such as the above, efficient and effective
link discovery techniques are sought. This book chapter focuses on a special case of
link discovery, where the underlying data sets are of spatiotemporal nature and the
relations to be discovered are also spatial or spatiotemporal.

The remainder of this book chapter is structured as follows: Section 6.2
provides background knowledge on link discovery and explains the problem of
spatiotemporal link discovery. Section 6.3 presents the design and implementation
of a spatiotemporal link discovery framework. Then, Sect. 6.4 focuses on scalability
aspects of link discovery, under the prism of streaming data and also for voluminous
data sources. Section 6.5 presents the results of an empirical study of link discovery
over real-world spatiotemporal data sets. Finally, Sect. 6.6 summarizes the most
important findings regarding spatiotemporal link discovery.

6.2 Background on Spatiotemporal Link Discovery

In this section, we briefly introduce basic concepts of link discovery, followed by
the problem of spatiotemporal link discovery, and an overview of existing systems
and frameworks.
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6.2.1 Principles of Link Discovery

Link discovery is a challenging topic which relates to record linkage [4], deduplica-
tion [7], and data fusion [2].

The problem of link discovery can be formalized as follows. Consider two data
sets T and S, which are usually called target and source, respectively. Also, consider
a relation r that may hold between entities of the two data sets, i.e., r(τ, σ ), such
that: τ ∈ T , σ ∈ S, and the pair (τ, σ ) satisfies the relation r . We use r(τ, σ ) to
denote that relation r holds over entities τ and σ .

A brute force link discovery algorithm would have to evaluate all entities in T

against all entities in S, thereby producing the result using O(n · m) comparisons,
where n = |T |,m = |S|. However, this cost may be prohibitively expensive in
practice for large data sets.

Hence, blocking techniques [16] are typically employed to reduce this cost.
Essentially, entities are grouped in blocks in such a way that only entities within
the same block need to be compared against each other for potential satisfaction
of the given relation. In turn, this drastically reduces the processing cost of link
discovery in practice.

Two of the most popular link discovery frameworks that have appeared in the
literature are LIMES [15] and SILK [8]. LIMES is a generic link discovery frame-
work which facilitates different approximation techniques to compute estimates
of the similarity between instances. Specifically, the approaches implemented in
LIMES include the original LIMES [15], HR3 [13] (which aims to further reduce
the number of comparisons), HYPPO [12] (a hyperspace approximation algorithm),
and ORCHID [14] (a combination of the Hausdorff and orthodromic metrics to
compute the distance between geo-spatial objects). The original LIMES algorithm
uses the triangular inequality in order to avoid processing all possible pairs of
objects. For this purpose, it employs the concept of exemplars, which are used
to represent areas in the multidimensional space, and tries to prune entire areas
(and the respective enclosed entities) from consideration during the refinement step.
Another link discovery framework is SILK, proposing a novel blocking method
called MultiBlock, which uses a multidimensional index in which similar objects are
located near to each other. In each dimension the entities are indexed by a different
property or different similarity measure. Then, the indices are combined together to
form a multidimensional index, which is able to prune more entities by taking into
account the combination of dimensions.

6.2.2 The Problem of Spatiotemporal Link Discovery

Spatiotemporal link discovery is a subarea of link discovery where the underlying
data sets are spatial or spatiotemporal and the relations of interest are also of
spatiotemporal nature. In this chapter, we focus mainly on two types of spatial
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relations: topological and proximity relations. However, we also consider the
extension of these relations for spatiotemporal data, rather than just spatial data.

6.2.2.1 Topological Relations

Topological relations are defined for spatial objects, such as points, polylines, and
polygons, in order to express the location of one object with respect to the other [10].
One of the most popular models for topological relations between spatial objects is
the Dimensionally Extended nine-Intersection Model (DE-9IM). For any pair of
spatial objects (e.g., a and b), the following nine relations are defined:

• equals: a and b are topologically equal, i.e., a ∩ b = a and a ∩ b = b.
• disjoint: a and b have no common point, i.e., a ∩ b = ∅.
• intersects: a and b have at least one common point, i.e., a ∩ b �= ∅.
• touches: a and b have at least one common boundary point, but no interior

point.
• contains: a contains b if it holds that a ∩ b = a.
• covers: a covers b if every point of b lies in the interior of a.
• coveredBy: this is symmetrical to covers, i.e., a is covered by b, if b covers a.
• within: a lies in the interior of b.

Some additional properties can be derived based on the definitions above.
For instance, equals(a, b), if within(a, b) and contains(a, b). Also,
disjoint(a, b), if intersects(a, b)=false. Also, covers(a, b) is equivalent
to within(b, a).

6.2.2.2 Proximity Relations

Proximity relations are also known as distance relations and practically determine
distances between spatial objects. The most common proximity relation is nearby,
which uses a spatial distance threshold θ to determine pairs of spatial objects
a, b whose distance is at most θ . Obviously, this requires the use of a distance
function, and the definition of distance between spatial objects (e.g., point to
polygon or polyline to polygon). Another proximity relation is nearest (and its
generalization k-nearest) which identifies the nearest object b (the k nearest
objects {b1, . . . , bk}, respectively) to a given object a.

6.2.2.3 Temporal Relations

Temporal relations between temporal intervals are based on Allen’s interval algebra,
a calculus for temporal reasoning [1]. Practically, the calculus defines a set of 13
possible relations between time intervals. The following list describes 7 relations,
while for the first 6 there exists the inverse relation too. Consider two temporal
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intervals a, b, each associated with begin and end timestamps, then the temporal
relations can be defined as follows:

• before: a is before b, if a ends prior to the begin of b.
• meets: a meets b, if the end of a coincides with the begin of b.
• overlaps: a overlaps b, if a begins before b and a ends after the begin of b.
• starts: a starts b, if their begins coincide.
• during: a begin is after b begin, and a end is prior to b end.
• finishes: a finishes b, if their ends coincide.
• equals: both begin and end of a coincide with begin and end of b, respectively.

6.2.2.4 Motivating Real-Life Applications and Examples

Figure 6.1 depicts two real-life data sets, namely spatiotemporal positions of vessels
and protected Natura2000 areas (represented as spatial regions) in the wider area
of Spain. Maritime surveillance authorities as well as environmental agencies are
interested in monitoring obedience to rules regarding crossing such protected areas.
This can be seen as a link discovery task, which aims at identifying a spatial relation
such as within between the position of a vessel and a polygon representing the
protected area.

Fig. 6.1 Natura2000 regions and vessels recorded to be within these regions (different colours
represent different vessels)
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Another application of spatiotemporal link discovery is complex activity recog-
nition. For example, in the maritime domain vessels are required to report their
positions using systems such as AIS,1 and authorities are interested in the detection
of different (complex) patterns, such as trawling, loitering, potential collision,
approaching a point/region of interest (cf. Chap. 1 of this book). For the detection
of such complex patterns, especially at large scale or in real time, complex event
recognition software can be greatly assisted by spatiotemporal link discovery, which
detects spatiotemporal relations between moving and static objects [18].

6.2.3 Existing Spatial Link Discovery Systems and Frameworks

Despite the wide applications of link discovery and the interest that it has attracted
lately (see [11] for a survey), there is not much work on the challenging topic
spatiotemporal link discovery, and practically no work on spatial link discovery for
big data. In this section, we provide an overview of existing spatial link discovery
systems that target relatively small and static data sets.

HR3 [13] and HYPPO [12] address link discovery tasks when the property values
that are to be compared are expressed in an affine space with a Minkowski distance.
Both approaches are designed with main objectives to be efficient and lossless. In
addition, HR3 [13] comes with theoretical guarantees on reduction ratio, a metric
that corresponds to the percentage of the Cartesian product of two data sources
that was not explored before reporting the link discovery results. However, the two
aforementioned approaches for LD do not explicitly focus on spatiotemporal link
discovery, nor do they tackle the streaming nature of data sources.

In the case of link discovery for spatial data, the prevalent blocking mechanism
is to apply grid partitioning of the 2D space (also known as space tiling [14]).
Essentially, the space is partitioned to cells, and any entity is assigned to the cells
that include this or any of its parts (e.g., in the case of entities represented by points,
we need to consider the cell that includes the point, and in case of areas, we need to
consider the set of cells overlapping with the area).

The spatial link discovery methods [14, 20] apply grid partitioning on the input
data sources in order to create blocks of entities and avoid comparisons between
entities of different blocks, which are guaranteed not to result to a link association.
Then, during the processing of each individual block, different optimizations are
employed in order to minimize the number of computations necessary to produce
the correct result set.

RADON [20] is the most recent approach for discovering topological relations
between data sources of areas, and can discover efficiently multiple relations using
space tiling. One of its main techniques for efficiency relies on the use of caching

1The automatic identification system (AIS) is an automatic tracking system that uses transponders
on ships and is used by vessel traffic services (VTS).
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to avoid recomputing distances. However this imposes non-negligible requirements
for main memory, especially for large data sources. Furthermore, RADON employs
techniques that achieve efficiency for data sets that consist of polygons rather than
points. In this sense, it addresses a specific case of spatial LD.

ORCHID [14] is another grid partitioning method, which studies the problem of
discovering all pairs of polygons, whose Hausdorff distance (practically Max–Min
distance) is below a given threshold. As most spatial link discovery approaches, it
also employs space tiling to improve the filtering step, and bounding circles are
used as approximations of polygons. Moreover, already computed distances are
maintained in order to avoid (re-)computing new distances, when possible. Finally,
the triangular inequality is used for pruning areas without distance computations.

Smeros et al. [21] study link discovery on spatiotemporal RDF data. The authors
study several topological relations that are defined on polygons. As usual, the
algorithm relies on a grid to filter out cells that contain polygons which cannot
satisfy the relation. Unfortunately, the topological relations do not take into account
proximity nor distance between polygons, and their approach primarily targets
polygons (rather than points).

6.3 A New Spatiotemporal LD Framework

In this section, we present the design and implementation of a generic link
discovery framework [19] that is tailored for spatiotemporal data. We present its
extensible design and flexibility in terms of supported spatiotemporal data types and
relations (Sect. 6.3.1). Then, we outline a state-of-the-art method for link discovery
of topological relations (Sect. 6.3.2). To complement this approach, we present
improvements that apply to certain cases of spatiotemporal data and may lead to
performance gains (Sect. 6.3.3). We then present methods for proximity-based link
discovery (Sect. 6.3.4). Last, but not least, we consider the case of more complex
geometries, such as polylines (Sect. 6.3.5).

6.3.1 The Architecture of a Spatiotemporal Link Discovery
Framework

The generic architecture of the spatiotemporal link discovery stLD framework is
illustrated in Fig. 6.2. Its input is two data sources represented in RDF format.2

RDF is the de-facto standard for semantic data representation, and it makes possible
to express the discovered relations (links) also in RDF. Hence, the output of stLD is

2Any other data source can be transformed in RDF using an appropriate data transformation tool,
such as RDF-Gen [17].
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also provided in RDF and can be either: (a) only the linked entities discovered or (b)
the linked entities concatenated with the input RDF fragment. The first option allows
to decouple the processing of input data sets from the processing of discovered
links and reduces the overall link discovery time. The second option provides
synchronized and sequential RDF fragments to the output, which is beneficial for
certain applications that need to process enriched input entities (i.e., with additional
spatiotemporal links and properties).

Fig. 6.2 High-level architecture of the spatiotemporal link discovery framework stLD

The stLD framework follows the filter-and-refine methodology for performing
the link discovery task. In the filtering step, a blocking method is employed
to drastically reduce the number of candidate pairs of entities, whereas in the
refinement step the candidate pairs need to be examined to check if they satisfy
the relation of interest. In brief, the main components of the stLD framework (also
presented in Fig. 6.2) include:

• Connectors: responsible to parse and validate the input RDF fragments, and
select only those entities and their properties that are necessary for the link
discovery tasks. We distinguish the two connectors by their name (SourceCon-
nector and TargetConnector), because the two sources may in principle represent
different types of spatiotemporal data.

• Consumption Strategy: specifies the order in which the target (T ) and source (S)
data sets are consumed by the framework. As will be explained shortly, this offers
flexibility and makes the framework suitable for a variety of link discovery tasks.

• Blocking Methods: determine the type of blocking employed by the stLD
framework from a pool of available blocking methods, and practically correspond
to the filtering part of the filter-and-refine methodology.

• Link Evaluation: performs the actual evaluation of the specified relation r ∈ R

over candidate pairs (τ, σ ), with τ ∈ T ′ and σ ∈ S′, where T ′ and S′ are subsets
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of T and S, respectively (T ′ ⊆ T and S′ ⊆ S), determined by the blocking
method. Essentially, this corresponds to the refinement part of the methodology.

6.3.1.1 Connectors and Configurations

The Connectors implement access to the input RDF fragments based on a Config-
uration, which is also expressed in RDF format. Table 6.1 reports the core terms
of the configuration namespace. A complete example of a configuration file is also
available in Fig. 6.3. The core part of a configuration is the link specification. It
states the conditions that need to be satisfied by properties of entities, for a given
link to be established between these entities. The conditions are implemented as
functions (called “evaluation functions”), executed during the refinement part of the
link discovery task. The evaluation functions vary from arbitrary combinations of
simple or weighted distance/similarity functions to combinations of Boolean spatial
relations, as specified by the Open Geospatial Consortium (OGC).

Table 6.1 The core terms of the configuration namespace

Name Description

dcf:prefix Specifies the prefices used in the SPARQLfilter part. Zero
or more prefices can be used.

dcf:source Specifies the path to the data source (it can be local or
remote).

dcf:SPARQLfilter Provides a SPARQL query as a filter to the triples provided
by the data source. The results of the SPARQL query
are used for the compilation of spatiotemporal entities
evaluated in the link discovery tasks.

dcf:compiler Specifies the implemented function to be used to com-
pile entities in the source from the query results of
dcf:SPARQLfilter.

dcf:EvaluationFunction Specifies the implemented function applied to evaluate if a
relation holds.

dcf:Link Defines the term to be used for associating entities that
satisfy a relation. This option affects the triples generated
for the linked entities.

dcf:output Configures the framework to either report (a) only the
computed links (using the value “links_only”) or (b) the
consumed data enriched with computed links (using the
value “all”).
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. . .
< dc f : P r e fi x r d f : abou t =" h t t p : / / www. da t a c r on −p r o j e c t . eu / c o n fi g # p r e fi x 1 ">
< dc f : P refixKey >: < / dc f : P refixKey >
< dc f : P r efixVa l u e >
h t t p : / / www. da t a c r on−p r o j e c t . eu / da tAcron #
</ dc f : P r efixVa l u e >
</ dc f : P r e fi x >
< dc f : P r e fi x r d f : abou t =" h t t p : / / www. da t a c r on −p r o j e c t . eu / c o n fi g # p r e fi x 2 ">
< dc f : P refixKey > du l : < / dc f : P refixKey >
< dc f : P r efixVa l u e >
h t t p : / / www. o n t o l o g y d e s i g n p a t t e r n s . o rg / on t / du l /DUL. owl#
</ dc f : P r efixVa l u e >
</ dc f : P r e fi x >

< dc f : LD_Configu ra t i on
r d f : abou t =" h t t p : / / t e s t / 20170329 / s o u r c e / a i s _ b r e s t _ s o u r c e ">

< dc f : sou rce > . . / a i s _da t a_20170329 . t t l < / d c f : sou rce >
< dc f : SPARQLfilter >SELECT ? v e s s e l I D ? nodeID ? head ing ? t ime ? wkt WHERE{

? even t : o c c u r s ? nodeID .
? nodeID : ofMovingObjec t ? v e s s e l I D ;

: hasHead ing ? head ing ;
du l : h a s C o n s t i t u e n t ? t ;
du l : h a s C o n s t i t u e n t ?g .

? t : T imeS t a r t ? t ime .
?g : hasWKT ? wkt .

}
</ dc f : SPARQLfilter >
< dc f : compi l e r >g r . u n i p i . a i l a b . d a t a c r o n . . . movingVessel < / dc f : compi l e r >
< dc f : E v a l u a t i o n F u n c t i o n >gr . u n i p i . a i l a b . d a t a c r o n . . . w i t h i n
</ dc f : E v a l u a t i o n F u n c t i o n >
< dc f : Link >: w i t h i n < / dc f : Link >

< dc f : ou tpu t > a l l < / dc f : ou tpu t >
. . .

Fig. 6.3 Example of a link discovery task configuration

6.3.1.2 Consumption Strategy

The consumption strategy specifies how input data should be processed, and
it is specified in the configuration. The stLD framework supports a variety of
strategies:

• target-first: This strategy processes first the target data set in its entirety,
organizes its entities using a blocking method, and then proceeds to the source
data set. This strategy enables tuning for better performance, such as swapping
target-source data sources, asserting in the grid the smaller data set, and reducing
the overall processing time.

• target-first-n: This strategy is applicable on data sources where a single entity
is referenced on multiple spatiotemporal positions. For instance, a trajectory is
represented as a sequence of spatiotemporal positions, so it is practically a list
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of records. Thus, a trajectory needs to be reconstructed as an object, prior to
identifying links with entities of the other data source.

• jointly: This strategy processes and consumes the two data sources together. This
method is quite different from strategies used by state-of-the-art link discovery
frameworks, which typically first consume and organize one data source and then
process the other. Instead, it can be applied for the consumption of two streaming
data sources.

6.3.1.3 Blocking Methods (Filter)

As already mentioned, LD tasks rely on blocking techniques [11] to split the space in
blocks (cells in geographical terms)—a process known as grid partitioning or space
tiling—assign spatial objects to cells based on overlap, and eventually compare only
pairs of objects in each cell. This avoids the cost of exhaustive comparison (O(|T | ·
|S|)) between each pair of objects. Essentially, the grid cells help in filtering the
majority of pairs of objects, thus retaining only few candidate pairs (typically those
within a cell), which need to be evaluated in a subsequent refinement step.

The proposed framework supports different blocking methods, from grid struc-
tures to spatial indexes (such as R-trees). In the following, for clarity of presentation,
we restrict the discussion to a grid structure that consists of cells, but the ideas are
applicable to other indexing structures.

The grid specifies how the spatiotemporal entities of the target data source should
be organized. In its general form, it consists of a set of cells and the functions to add
and retrieve entities to and from the cells, respectively. In the implementation of
stLD, two different types of grid structures are provided: (a) EquiGrid, which given
the granularity of each dimension, constructs equally sized cells, (b) Hierarchical
grid, where multiple EquiGrids are employed with different granularities organized
in a hierarchy. The functions that add and retrieve entities to/from cells are very
efficient. Specifically, for a given entity we retrieve the cells in O(D), where D

is the dimensionality of entities. For low dimensionality values,3 this is practically
performed in constant time.

6.3.1.4 Link Evaluation

This component practically corresponds to the refinement phase of link discovery.
Its input are pairs of entities (τ, σ ) that have been output from the filtering step,
and are candidate pairs for producing a link r , i.e., a valid relation r(τ, σ ). The
link evaluation implements the necessary algorithms for checking the condition for
a link to hold, according to the specifications. The link specifications are set in

3Only 2 dimensions are needed to represent spatial data, whereas 3 dimensions are needed for
spatiotemporal data.
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the configuration of the source data set. Commonly used links include nearby,
within, equals, and depend on proximity and topological relations, between
any combination of entities.

In the implementation, all relations between any type of spatial objects, as
specified by the Open Geospatial Consortium (OGC),4 are supported: points,
polygons, and polylines. In addition, proximity relations have been implemented
and the framework has been generalized to be applicable in 3D geographical space.

6.3.2 Link Discovery of Topological Relations

In this section, we present solutions for link discovery of topological relations
between areas, as the ones mentioned above. At first, the focus is on a baseline
approach, followed by the state-of-the-art algorithm called RADON [20]. Finally,
we present the proposed solution MaskLink.

6.3.2.1 A Baseline Link Discovery Algorithm

Given the target T , and source S data sources, and a relation r in the set of
topological relations R defined above, the goal of link discovery is to detect the
pairs (σ, τ ) ⊆ S × T , where σ ∈ S and τ ∈ T , such that (σ, τ ) satisfies r .

As already mentioned, a brute force link discovery algorithm would have to
perform the geometrical test between all pairs of entities. To avoid this excessive
cost, blocking techniques are typically employed in order to prune the candidate
pairs of entities and reduce the number of candidates considered during the
refinement step. In the case of link discovery for spatial data, the prevalent blocking
mechanism is to apply grid partitioning of the 2D space (also known as space tiling).

Essentially, the space is partitioned to cells, and any entity is assigned to the cells
that include this or any of its parts (e.g., in the case of entities represented by points,
we need to consider the cell that includes the point, and in case of areas, we need to
consider the set of overlapping cells).

Grid Construction For the construction of the grid and its constituent
cells, the first step is to derive the bounding box of the two data sets S

and T . Essentially, this bounding box is the 2D data space, which is of
interest for the current LD task. The bounding box is defined by two points:
its lower left corner (xL,yL)=(min∀i xi, min∀i yi) and its upper right corner
(xU ,yU )=(max∀i xi, max∀i yi), where xi and yi represent the X- and Y -coordinate
value of the i-th point of a spatial object. Let a function MBR(.) s.t. the bounding
box of a given geometry g is denoted as MBR(g)=〈 (xL, yL), (xU, yU ) 〉.

4Definition and requirements of relations are available online at https://www.opengeospatial.org/
standards/geosparql.

https://www.opengeospatial.org/standards/geosparql
https://www.opengeospatial.org/standards/geosparql
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The second step is to construct the grid cells. For this purpose, two parameters
mx and my need to be set, corresponding to the number of splits in the X-axis and Y -
axis, respectively. As a result, the number of grid cells is mx · my . These parameters
also define the granularity of the grid, since the sides of a cell are xU−xL

mx
and yU −yL

my
,

respectively. For example, a 2D grid with 0.5 × 1.5 granularity is built by cells of
size 0.5◦ by 1.5◦.5

Assignment to Grid Cells After the grid has been constructed, the next step is
to organize the entities of the given data sets in grid cells. This step is performed
using a function that assigns each entity to one or more cells of the grid. We say
that a spatial representation σ ∈ S is assigned to a cell c, if c intersects with σ .
Then, to compute each relation r ∈ R, the spatial representation σ is compared only
against those entities in T assigned to the cells where σ has been assigned. This
approach results to much fewer comparisons of candidate pairs, since only pairs
corresponding to the same cell need to be examined. We refer to this link discovery
technique as baseline.

6.3.2.2 The RADON Algorithm

RADON [20] is an efficient algorithm for topological link discovery, which is
optimized for polygons and static data sources. Its basic operation relies on the
use of an equi-grid partitioning of the 2D space, where an arbitrary number of
rectangular cells are created. As a result, RADON relies on the same baseline
(admittedly with optimizations): first, it organizes the target data source T in the
grid, by assigning minimum bounding boxes (MBBs) of areas to cells, and then it
processes each polygon of S by assigning also to overlapping cells.

To achieve improved performance, RADON utilizes the following techniques.
First, it selects the data set that will be organized in the cells, based on a heuristic,
thus offering performance gain at runtime (this is called swapping). Second, it only
assigns areas σ ∈ S to a cell that already contains areas from data set T . This is
mentioned as sparse space tiling. Third, it applies a caching mechanism in order to
avoid re-computing relations for pairs (σ, τ ) that have been previously computed,
e.g., due to σ, τ spanning multiple cells.

Despite the benefits in efficiency offered by these techniques, their adoption also
limits the applicability of RADON. For instance, swapping requires that both data
sets are available beforehand, thereby rendering this technique (and consequently
RADON) inapplicable in the case of streaming data sources. Also, RADON requires
both data sets to be stored in-memory, and in combination with the caching
mechanism, it adds a significant overhead in main memory.

5Other parameters for the construction of the grid include (but are not limited to) the precision of
the spatiotemporal representations and the Coordinate Reference System (CRS) to be used.
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In contrast, in the following, the MaskLink approach is presented where only the
target data source T is organized in memory, thus: (a) offering scalability regardless
of the size of S and (b) making it applicable in the case of a streaming data source.

6.3.3 The MaskLink Technique for Link Discovery of
Topological Relations

In this section, we present the MaskLink technique in the case where at least the
target data source includes entities whose spatial representation are polygons. The
MaskLink technique is in the core of the proposed Link Discovery framework.

The basic idea exploited by MaskLink is that in several cases of spatial link
discovery, grid cells contain a significant amount of “empty space”, namely the
part of the cell that overlaps with no areas of the target data set T . Consider
a spatial representation σ ∈ S of an entity that overlaps with a cell, and k

spatial representations {τ1, . . . , τk} ∈ T that also overlap with the given cell. Our
observation is that if σ is disjoint to all the spatial representations in {τ1, . . . , τk} in
this cell, then we can safely infer that there are no other (except “disjointness”)
topological relations to be discovered in this cell between σ and any area in
{τ1, . . . , τk}.

Motivated by this observation, we propose the masking technique to explicitly
represent the empty space within cells as yet another area. Thus, for each grid cell c,
we construct an artificial polygon called mask of c, which is defined as the difference
between the cell and the union of areas overlapping with the cell, i.e.,

mask(c) = area(c) − (area(c) ∩
⋃

i

area(τi)).

Figure 6.4 shows an example of the mask of a cell; the middle cell overlaps with
areas in {τ1, . . . , τ5}, and the mask of the cell is the area represented in black colour.

Having the mask of a cell as yet another area, we can devise an efficient algorithm
for link discovery that eagerly avoids comparisons to geometries for spatial
representations enclosed in the mask of a cell. In practice, first we identify a cell
c to which the spatial representation σ is assigned. On case σ is a polygon, we first
construct the Overlap_S(c, σ ). We then compare Overlap_S(c, σ ) to the mask of
the cell, to check if it is enclosed in the empty space. If this single comparison
returns true, we stop processing this entity, thereby saving k comparisons. For
the typical case where a cell contains several areas, this technique prunes several
candidate pairs of entities, saving computational time in the refinement step of the
LD process.

Algorithm 6.1 presents the pseudo-code for discovering any topological relation
link between the spatial representation σ and the spatial representations of T . As a
prerequisite, the grid has already been constructed and the spatial representations
of T have been assigned to cells. This is essentially a pre-processing step. In
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Fig. 6.4 Illustration of the mask of a grid cell that overlaps with five areas τ1, . . . , τ5

Algorithm 6.1 Spatial LD algorithm for topological relations using mask
1: Input: Grid cells C = {c1, . . . , cm}, spatial representations T = {τ1, . . . , τn}, σ

2: Output: Set of relations r(σ, τi ) s.t. r is a topological relations and τi ∈ T

3: Requires: Grid has been constructed, and spatial representations in T have been assigned to
overlapping cells

4: T w ← ∅
5: locate cells � ⊆ C that enclose or overlap with σ

6: for each ci ∈ � do
7: if within(Overlap_S(ci , σ ), mask(ci )) then
8: for each τj ∈ ci do
9: T w ← T w ∪ {disjoint(σ, τj )}

10: return T w

11: else
12: for each τj assigned to ci do
13: for each relation r do
14: if (σ, τ ) then
15: T w ← T w ∪ {r(σ, τj )}
16: return T w

the first step, the cells � to which σ is assigned are determined (line 5). This
operation is performed in constant time O(1) in the case of equi-grids. Then, for
each ci ∈ � , the algorithm checks if Overlap_S(ci, σ ) is enclosed in the mask
mask(ci) of cell ci (line 7). In the latter case, no further processing is required, and
the algorithm terminates returning the inferred set of disjoint relations to the spatial
representations assigned to ci . If it is not contained, then each relation against all
areas τj in cell ci (line 12) is checked. For those areas τj that satisfy a relation
r(σ, τj ), we append the discovered links in the result set T w (line 15), and return
T w .

The lines 12–15 of Algorithm 6.1 can be processed in parallel, i.e., each iteration
in the for loop is carried out by a different thread (“worker”). The number of
concurrent workers is usually a predefined constant w.r.t. system configuration, to
allow uninterrupted system operation (in the experiments, 4 workers are used).
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Multi-thread processing is enabled using a pool of tasks, populated with the
refinement tasks of r(σ, τj ). As soon as a worker is available and the pool contains
tasks, the next task is selected and assigned to the worker for processing.

6.3.4 Link Discovery of Proximity Relations

Interestingly, the MaskLink technique is applicable also for link discovery of
proximity relations between spatial representations of entities in S and T . More
concretely, let us consider the nearby relation. Recall that the nearby relation is
defined using a spatial threshold θ and returns true when it holds that dist(σ, τ )≤ θ ,
for two spatial representations σ, τ .

Proximity link discovery concerns the identification of all such relations between
entities in data sets S and T . In more detail, given the spatial representation of any
entity (either a point or a polygon) σ ∈ S, we wish to discover the subset of spatial
representations in T that are located at most at distance θ from σ .

Let τ ′ = buff(τ, θ ) denote the expanded area of τ that contains all points in space
located in distance less or equal to θ from any point in τ , and can be computed
using a standard library for computational geometry. Any such area, depending on
threshold θ , is called θ -buffered area.

Assuming that σ is an area, we make the following basic observation: if
σ ,buff(τ, θ ) are disjoint, then nearby(σ, τ, θ )= f alse. We extend this observation
for more than one area τ , to make it applicable for cells.

More formally, given a cell c that overlaps with the area σ ∈ S and k areas
{τ1, . . . , τk} ⊆ T , if Overlap_S(c, σ ) is disjoint to any buff (τ, θ ), then we can
infer that nearby(σ, τ, θ )= f alse for all τi , 1 ≤ i ≤ k. A similar case holds
in case σ is a point: if σ is not enclosed in any buff (τ, θ ), then we can infer that
nearby(σ, τ, θ )= f alse for all τi , 1 ≤ i ≤ k.

Based on these observations, MaskLink can be slightly adjusted to support the
relation nearby. The main adjustment concerns the way the mask of each cell
is computed. First, we expand each area τi by θ , and then the mask of the cell is
computed as previously, using the θ -buffered areas instead of the actual areas τi . To
differentiate this mask of a cell c from the one used in the previous algorithm, we
denote it by maskθ (c).

Algorithm 6.2 presents the pseudo-code for LD of relation nearby. Notice that
the grid is constructed exactly as before, using the original areas in T . In the pre-
processing stage, the algorithm computes the mask maskθ (ci) for each cell using
the θ -buffered areas τj assigned to ci . First, the cells � that enclose or overlap with
σ (i.e., the cells to which σ is assigned) are located (line 5). For each cell ci ∈ � ,
if maskθ (ci) encloses Overlap_S(ci, σ ) (line 7), then only disjoint relations to τj

areas assigned to ci can be inferred. This is because of the way maskθ (ci) has been
constructed. If this is not true, all areas τj assigned to ci need to be examined,
and if buff (τ, θ ) overlaps or encloses Overlap_S(ci, σ ), then we append with the
discovered link nearby(σ, τ, θ ) the result set T n (lines 12–14).
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Algorithm 6.2 Spatial link discovery algorithm for relation nearby using mask
1: Input: Grid cells C = {c1, . . . , cm}, Areas T = {τ1, . . . , τn}, σ , threshold θ

2: Output: Set of relations r(σ, τj ) s.t. r ∈ {nearby, disjoint} and τj ∈ T

3: Requires: Grid has been constructed and areas have been assigned to cells
4: T n ← ∅
5: locate cells � ⊆ C to which σ is assigned
6: for each ci ∈ � do
7: if within(Overlap_S(ci , σ ),maskθ (ci )) then
8: for each τj ∈ ci do
9: T n ← T n ∪ {disjoint(σ, τj )}

10: return T n

11: else
12: for each τj assigned to ci do
13: if buff (τ, θ) overlaps or encloses σ then
14: T n ← T n ∪ {nearby(σ, τj )}
15: return T n

6.3.5 Refined Blocking Method

An important part of the blocking-based link discovery is the process followed for
deciding the cells of the grid for a given spatial representation. A fast approach that
can be used efficiently for most of the spatial representations (polygons or points)
is to compute the MBR of the given geometry, and assign the cells for the MBR
instead of the given geometry. Since usually a geometry has more points than its
MBR, this method can be efficient in terms of performance for most of the cases,
i.e., finding the cells overlapping with MBR is trivial, while deciding the cells for
the actual geometry may require considerably more evaluations w.r.t. the cell size
and geometry type.

However, the MBR-based blocking cannot be as efficient when blocking poly-
lines. This is particularly true when polylines span large geographic areas as it is
the case for trajectories of moving objects, such as aircraft or vessels. For example,
the trajectory of a flight from London to Moscow will produce an MBR that will
cover a large part of the northern Europe, thus filtering will include a considerable
amount of cells, far away from the trajectory, wasting computational resources on
comparisons that will not lead to links.

To address this limitation, an improvement on the blocking method can be
applied. In this method, the minimum necessary set of cells is computed that are
needed to cover any given polyline, w.r.t. the granularity of the grid. The general idea
of the method is to compute the cells for each point of the polyline, and for the case
of closed geometries, the cells for all the interior points. This approach will provide
the minimum necessary cells to cover the polyline (the proof is trivial). A naive
implementation would be to iterate all the points of the given polyline (including
the interpolated points w.r.t. grid granularity) and compute the corresponding cells.
This method however would result to linear complexity to the number of points in a
polyline, which will be expensive, for polylines consisting of many points.
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On the other hand, the proposed “refined blocking” method recursively segments
the polyline and terminates when both ends of the segment are within the same cell.
This method has linear complexity to the number of cells that will be used for the
geometry, w.r.t. the grid granularity. The cost of refined blocking is not higher than
the cost of using simply the MBR of the geometry, since the computation of MBR
iterates through all the points of the geometry to decide the minimum and maximum
latitude/longitude values of the MBR. On the other hand, the proposed method has
a worst-case scenario of iterating all the points (i.e., the case where each point of
the geometry should be placed in a separate cell w.r.t. the grid granularity).

In addition to that, selecting the minimum number of cells is an important
benefit for the refinement task. For example, consider the case of Fig. 6.5, where
the blue line illustrates the trajectory of a flight, the red cells are those that will
be selected using an MBR blocking method, and the green cells are those selected
by our proposed method. We observe that for a trajectory with (max(latitude) −
min(latitude))= m cells and (max(longitude) − min(longitude))= n cells w.r.t.
the granularity of the grid, the MBR method will return m × n cells, while the
“refined blocking” returns considerably fewer number of cells. In the example of
Fig. 6.5, the MBR returns 1170 cells, while the refined blocking method returns
86 cells. If we consider that each cell contributes with a number of candidate
entities to be compared with the trajectory for discovering a link, the benefit from
refined blocking method is clear. Obviously this blocking method can be applied on
buffered trajectories as well, to include adjacent cells when computing proximity
relations.

6.4 Scalable LD for Spatiotemporal Data

In this section, we show how the link discovery framework can be adapted to support
scalable link discovery, by exploiting big data technologies. Consequently, we
focus on parallel data processing methods, which aim at sharing computation with
multiple computers (workers), in order to complete the link discovery task, while
satisfying real-life performance requirements, focusing on low-latency processing.

6.4.1 Setup for Scalable Link Discovery

Consider a cluster of commodity machines that is available for the task of link
discovery in the context of big data. We consider two aspects of big data: volume
and velocity. By volume, we refer to data sets of such size that cannot be handled
by traditional database systems. By velocity, we refer to streaming data sources of
high input rate. In both cases, our problem is how to exploit the available cluster
infrastructure in order to minimize the completion time for link discovery.
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Trajectory refined blocking MBR blocking

Fig. 6.5 The trajectory of a moving object and the cells computed by MBR-based blocking (red
cells), and by refined blocking (green cells) on a grid of 0.5◦ × 0.5◦ granularity

Our premise is to exploit big data technologies that come with various salient
features, such as scalability, fault-tolerance, ease of programming, etc., in order
to devise a solution for parallel link discovery. We choose Apache Flink [3] as
the underlying big data framework, which provides a high-throughput, low-latency
streaming engine that fits our requirements, even though our techniques can be
developed on top of other frameworks as well.

6.4.2 Stream-Based Link Discovery

In the following, we present our techniques for link discovery having as inputs a
streaming data source and a static data source (stream-static). Then, we discuss other
potential setups, such as static-static or stream-stream.

We demonstrate two variants for parallelization, which are applicable in different
setups. The first setup concerns a streaming data source and a static data set, which
is additionally not extremely large. The second setup is applicable for two streaming
data sources, but also for the case of extremely large static data sets.

Stream-Static In the case that the target data set is static and not extremely large,
we parallelize the LD task by broadcasting the blocks of this data set to all worker
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Fig. 6.6 Parallel LD for one streaming data source and a static data set

nodes, as depicted in Fig. 6.6. Then, parallelism is achieved by having each entity
of the source data set sent to a worker using either a round-robin strategy or by
hash-based partitioning. In this way, each worker can discover links between entities
of the target data set and the portion of the source data set that was assigned to
it. Moreover, this is performed independently of other workers, thus it is expected
that throughput can increase linearly when adding more workers, as long as the
partitioning strategy distributes the source data set fairly to workers.

Fig. 6.7 Parallel LD for two streaming data sources

Stream-Stream In the more general case, both data sets may be stream based or
too large to be broadcast. In this case, the idea is to split the blocking structure to
the workers, by having each worker being responsible for a subset of blocks (i.e.,
grid cells).

Figure 6.7 depicts this case, where both data sources are blocked in the same
way and subsets of the same blocks are distributed to worker nodes. Essentially,
all entities of the target and source data sets that are located in the same block are
assigned to the same worker, which can then proceed with the discovery of the
requested relations.



6 Integrating Spatiotemporal Data 175

One subtle issue is how to guarantee correctness of link discovery, i.e., avoid the
case that two entities τ ∈ T and σ ∈ S that satisfy the relation of interest end up
in different workers. This largely depends on the link discovery task at hand, and it
has to be carefully addressed when assigning entities to blocks.

In more concrete terms, consider the case of proximity-based LD, where we are
interested in finding pairs of entities with distance below a given application-defined
threshold. In this case, the mapping of entities to grid cells is not necessarily one-
to-one. For example, consider the case of vessel positions and ports, and the link
discovery task is to identify vessels that have distance to a port below a threshold
value. In this case, the target data set (ports) is assigned to grid cells based on
containment, but a vessel position may have to be assigned to multiple cells, which
are determined based on overlap with a circle centered at the vessel’s position and
radius equal to the distance threshold. In turn, this guarantees correctness of the LD
task.

6.5 Empirical Evaluation

This section presents the results of an empirical study using real-life data sets, in
order to demonstrate the efficiency of spatiotemporal link discovery. The goal of the
empirical evaluation is twofold:

• To demonstrate the efficiency of MaskLink compared to the state of the art
for topological link discovery (RADON [20]), while being more generally
applicable.

• To quantify the performance gain achieved by the extension of MaskLink for
proximity-based link discovery compared to the baseline approach.

6.5.1 Experimental Setup

For the first experiment on topological link discovery, we employ the data sets used
in the evaluation of RADON [20], namely CLC and NUTS:

• S=CORINE Land Cover6 (CLC) is provided by the European Environment
Agency, which collects data regarding the land cover of European countries.

• T =NUTS,7 provided by Eurostat group of the European Commission, contains a
detailed hierarchical description of statistical areas for the whole Europe.

6See also https://datahub.io/dataset/corine-land-cover.
7Version 0.91 (http://nuts.geovocab.org/data/0.91/).

https://datahub.io/dataset/corine-land-cover
http://nuts.geovocab.org/data/0.91/
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Since CLC contains 44 data sets varying in size (from a few hundreds to hundreds
of thousands), we merged all data sets into one big data set. For testing scalability,
we exported from CLC data sets of varying size {500K, 1M, 1.5M, 2M, 2.5M}
and evaluated MaskLink against RADON8 and baseline. We also preprocessed the
NUTS data sets, to convert the ngeo:posList serialization to Well-Known-Text
format. All the reported experimental results do not include the preprocessing step.
RADON has been configured using the default settings, as in [20]. The MaskLink
and the baseline technique use a 2.5◦ granularity grid.

For the second experiment on proximity link discovery, we evaluate the proxim-
ity relation nearby using real-world data sets compiled from positions of vessels
and fishing areas. Specifically, we use as S a data set that contains kinematic
messages of vessels in the Mediterranean Sea spanning between 01-11-2016 and
31-01-2016, whereas T is a data set of fishing areas that contains 5076 polygons
generated from raster images depicting the fishing intensity in European waters
(reported by European Union). The goal is to identify links between vessel positions
and fishing areas that these vessels approach. We report results for different numbers
of position messages {500K, 1M, 1.5M, 2M, 2.5M}, while using the complete data
set of fishing areas in the Mediterranean Sea. Since RADON does not support point-
to-region relations (the heuristic for deciding the size of cells based to the size of
areas in input, cannot be applied), the MaskLink technique has been evaluated only
against the baseline approach.

Table 6.2 Comparison of total execution time (in sec) of RADON, MaskLink, and baseline for all
topological relations
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6.5.2 Results for Region-to-Region Topological Relations

We compare the MaskLink technique for all topological relations to RADON using
the data sets CLC and NUTS. RADON requires that the entire data sets are loaded

8Downloaded from https://github.com/dice-group/LIMES, accessed on December 2017.

https://github.com/dice-group/LIMES


6 Integrating Spatiotemporal Data 177

in memory, which is not possible in our experimental setting. We overcome this
memory limitation, by loading NUTS (as the smaller data set) in memory, and
accessing CLC in batches of lines. For a fair comparison of techniques, we repeat
the same procedure for MaskLink, although it can be directly applied on the given
data sources.

Table 6.2 and the corresponding chart on its left report the total execution time
of MaskLink for different number of CLC entries, in comparison to RADON and
baseline. Specifically, the first column of the table indicates the size of CLC data
set, and the next columns present the total processing time for RADON, MaskLink,
and baseline for computing all topological relations.

We observe that the MaskLink consistently outperforms RADON by approxi-
mately 10%. This is an important finding, as the main interest is the scalability of
LD methods with input size. Also, recall that MaskLink achieves this performance
using less memory and even when one data source is streaming. When comparing
MaskLink to baseline, we observe that the gain achieved by MaskLink increases
with the size of the data source, indicating that large instances of the problem cannot
be efficiently solved by the baseline algorithm.

As regards the overhead imposed due to the computation of the geometry of a
mask, we observed that the time needed to compute the mask areas of all cells for
the given target data set was approximately 3 s. This is deemed tolerable, since it
is a one-time cost and provides a considerable gain as shown by comparing the
processing time of MaskLink to that of baseline.

Table 6.3 Total execution time (in sec) for topological and proximity relations between points and
areas using MaskLink and baseline
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6.5.3 Results for Point-to-Region Proximity-Based Relations

In this experiment, we report results for different number of position messages and
using the complete data set of fishing areas in the Mediterranean Sea. Table 6.3 and
the chart on its left report the total processing time for all topological and proximity
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relations that computed between points and areas. The first column indicates the size
of source data set, while the second and third columns report the total processing
time for MaskLink and baseline, respectively.

Again, MaskLink outperforms the baseline consistently, but this time by a much
larger margin, since the problem of proximity link discovery is harder in general. It
is very significant to notice that the baseline is not scalable for this problem, as it
does not terminate in reasonable time when the input size is larger than 1500K. In
contrast, MaskLink scales gracefully with the size of input data.

In the case of very small input sizes, the baseline is faster than MaskLink. This
can be explained by the fact that for small data sets the cost of computing the mask
of each cell becomes comparable to the total processing time. In any case, our focus
is to improve the performance of LD for large data sets.

Furthermore, as a side-note, we observed in this experiment that the time required
for preparing the target data set (i.e., populating the grid and computing the mask) is
considerably larger than the time needed for the first experiment. This is explained
by the fact that the geometries used in the second experiment are produced from
raster images (vectorized), thus the geometries have more fine-grained detail and
the mask computation requires more processing time.

6.6 Conclusions

Spatiotemporal link discovery is a challenging topic with numerous applications in
mobility analytics. This chapter provided an overview of the current landscape in
link discovery focusing primarily on spatial and spatiotemporal data.

Limitations of existing works in this field include handling the temporal dimen-
sion together with spatial data as well as the lack of scalable link discovery
frameworks targeting big spatial and spatiotemporal data.

Motivated by such shortcomings, this chapter presents a framework for spa-
tiotemporal link discovery, along with its constituent modules, which covers several
link discovery tasks, both for the detection of topological as well as proximity
relations. In addition, the proposed framework targets spatiotemporal data, rather
than spatial only. Last, but not least, a scalable, data-parallel version of the
spatiotemporal link discovery framework has been demonstrated, aiming at link
discovery over big data, such as streaming data sources or voluminous data that
cannot be processed on a single computer.
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Chapter 7
Distributed Storage of Large Knowledge
Graphs with Mobility Data

Panagiotis Nikitopoulos, Nikolaos Koutroumanis, Akrivi Vlachou,
Christos Doulkeridis, and George A. Vouros

Abstract This chapter presents novel solutions for storage and querying of large
knowledge graphs, represented in RDF, which consist of mobility data. Such
knowledge graphs are generated and updated daily based on incoming positional
information of moving entities, possibly linked with contextual information and
weather data. To cope with the massive size of knowledge graphs, several challenges
need to be addressed related to distributed storage and parallel query processing.
This chapter presents the design and implementation of a parallel processing engine
for spatiotemporal RDF data built on top of Apache Spark. The engine is comprised
of a storage layer, which stores deliberately encoded spatiotemporal RDF triples
and a dictionary of mappings between integer identifiers and RDF resources, and
also uses Property tables and columnar storage layout for improved performance.
Also, the engine uses a processing layer, which is comprised by a query parsing
component, a logical query builder, and a physical query constructor in order to
produce execution plans that efficiently handle spatiotemporal constraints along
with SPARQL processing. The performance of our engine is demonstrated by means
of experiments over large knowledge graphs of real-life mobility data.

7.1 Introduction

Knowledge graphs of mobility data represented in RDF are produced from data
integration of positional information of moving objects with other external data
sources: static databases, weather and contextual data. Efficient management of
large knowledge graphs is of utmost importance, since it may assist in the advanced
data analysis of integrated data for the discovery of hidden patterns of movement.
For example, visual analytics (cf. Chap. 3) and trajectory analytics (cf. Chap. 10) can
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exploit scalable querying of large knowledge graphs in order to efficiently retrieve
integrated data for further analysis.

Even though scalable management and querying of large RDF graphs has been
extensively studied recently [1, 7], one differentiating factor of knowledge graphs
of mobility data is the spatiotemporal dimension of data, which requires special
treatment. The reason is that queries to such knowledge graphs typically entail
both constraints imposed to the structure of the graph as well as spatiotemporal
constraints on some entities. Practically, when confronted with such spatiotemporal
RDF data, existing distributed RDF engines would have to process the spatiotem-
poral constraint in a post-processing step, after having evaluated the RDF part of
the query. However, this incurs significant overhead, because large portions of data
that could be filtered based on the spatiotemporal constraint need to be processed.
In turn, this deteriorates the performance of query processing.

Motivated by these shortcomings, in this chapter, the design and implementation
of a parallel/distributed RDF engine capable to store spatiotemporal RDF data
is presented. The prototype engine, called DiStRDF, consists of a storage layer
that keeps spatiotemporal data using an encoding scheme and a processing layer
implemented in Apache Spark. By means of a detailed experimental evaluation, the
performance of DiStRDF is studied for various queries over large knowledge graphs
constructed from real-life mobility data.

The rest of the chapter is organized as follows. In Sect. 7.2, we familiarize the
reader with related work on the field of scalable querying on large knowledge
graphs. Section 7.3 presents the encoding scheme for spatiotemporal RDF data.
Section 7.4 provides a high-level overview of DiStRDF, whereas Sects. 7.5 and 7.6
present its storage and processing layers, respectively. The results of the empirical
evaluation are discussed in Sect. 7.7, while Sect. 7.8 provides concluding remarks.

7.2 Background

The Resource Description Framework (RDF) is a specification recommended by
W3C1 for modeling and interchanging data over the Web. It specifies a structured
way for storing data from various data sources, while providing several techniques
for managing semantic heterogeneity, namely schema matching, ontologies, and
schema repositories. RDF data is represented as a set of triples (subject, property,
object) or 〈s, p, o〉, also known as statements.

W3C recommends the use of the declarative SPARQL language for querying
RDF datasets. SPARQL relies on graph pattern matching queries to extract relevant
data. A triple pattern (tp) is an RDF triple where variables may occur in subject,
predicate, or object position. Conjunctive queries are expressed by using shared

1https://www.w3.org/.

https://www.w3.org/
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variables across different triple patterns, also called basic graph patterns. Thus, a
basic graph pattern is evaluated to a set of RDF triples.

In terms of geospatial and spatiotemporal standardization, the Open Geospatial
Consortium (OGC)2 has proposed standards for modeling and querying spatial data
and queries in a unified manner. OGC standardizes the representation of geometries
by using a text representation, called Well Known Text (WKT).3 WKT can represent
various geometry types in 2D or 3D space (e.g., line, point, polygon, etc.), by
referencing the respective coordinates. Moreover, OGC has proposed a standardized
language for querying geospatial data, namely the GeoSPARQL language.4 This is
an extension to the standard SPARQL query language, which provides additional
features (vocabulary) for querying this type of data. The study in [8] has proposed
the use of stRDF model and stSPARQL language for modeling and querying
spatiotemporal data, respectively. The work of [9] describes the various models and
query languages that exist in more details.

7.2.1 Distributed Processing Frameworks

Apache Hadoop5 is a popular open source fault-tolerant distributed processing
framework. It uses the MapReduce [4] processing model to operate on a distributed
set of data. The Hadoop project is comprised of two major components: the
processing framework, namely YARN (Yet Another Resource Negotiator) and the
storage component, namely HDFS (Hadoop Distributed File System).

YARN is the computing resource management and job scheduling service of
Hadoop; it manages the execution of Hadoop jobs by allocating CPU cores and
RAM on every node of the Hadoop cluster. It also schedules tasks to be executed on
different nodes of the Hadoop cluster. Unexpected disruptions of nodes availability
are handled by restarting failed or timed-out tasks on other available nodes.
YARN is comprised by two major services: the ResourceManager and the Node-
Manager service. Typically, a Hadoop cluster consists of one ResourceManager
acting as the master node and several NodeManagers acting as slave nodes. The
ResourceManager service collects information from all NodeManagers (e.g., their
availability, number of CPU cores, amount of memory, etc.) and coordinates the
execution of Hadoop jobs. A Hadoop job is split to tasks, which are assigned to
the NodeManagers by the ResourceManager service. The ResourceManager may
reschedule a failed task to other NodeManagers. The NodeManager services are
responsible for executing the tasks assigned to them and reporting their status back
to the ResourceManager.

2http://www.opengeospatial.org/.
3https://www.opengeospatial.org/standards/wkt-crs.
4https://www.opengeospatial.org/standards/geosparql.
5https://hadoop.apache.org/.

http://www.opengeospatial.org/
https://www.opengeospatial.org/standards/wkt-crs
https://www.opengeospatial.org/standards/geosparql
https://hadoop.apache.org/
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HDFS is a generic distributed file system which is optimized for storing large sets
of data on a set of computing nodes. It is fault tolerant and designed to be run on
low-cost hardware. The files written to HDFS are split to blocks of user-defined size
(the default size of an HDFS block is 128MB). Every block is stored on one of the
available nodes and optionally replicated to other nodes to increase the availability
of the stored data. Hence, every file stored in HDFS is distributed and replicated
among the available nodes. Typically, the user needs to define a replication factor
which indicates the number of times a block will be replicated to other nodes. This
setting can be defined system-wide, folder-wide, or for individual files. HDFS is
comprised by two major services: the Namenode and the Datanode. The Namenode
service is responsible for: (a) keeping the metadata of the file system (i.e., file
names and directory structure) and (b) managing the Datanodes by assigning blocks
to them and monitoring their availability. The Datanode is responsible for storing
the data assigned by the Namenode service, into the node’s secondary memory.
Typically, an HDFS cluster hosts one Namenode service acting as the master node
and several Datanode services acting as slave nodes of the cluster.

Apache Spark6 is an open source distributed processing engine that operates
on a cluster of commodity computing nodes. It provides a set of abstractions
which facilitate working seamlessly with distributed data, while ensuring that the
processing will not be affected by any hardware failure. Spark is able to operate
either standalone, or by utilizing other resource managers such as YARN. It can also
read and write data from various data sources and destinations, including popular
databases and regular files on local disk and HDFS.

Spark offers several APIs for querying distributed data: (a) the Spark Core API
which is the foundation of the overall Spark project, (b) the Spark SQL API for
querying data using SQL language, (c) the Spark Streaming API for monitoring
streaming data, (d) the Spark MLlib API for applying machine learning techniques,
and (e) the Spark GraphX API for distributed processing of graph data. The
DiStRDF project relies on Spark SQL API, since it provides a high-level API for
executing query operations on distributed data. The main abstraction of Spark SQL
is the DataFrame which is an immutable data structure containing distributed data
residing in the available nodes. It is comprised by a fixed set of named columns and
provides several operations to be executed on the distributed data, such as filtering,
sorting, grouping, etc. Every operation on a DataFrame produces a new immutable
DataFrame containing the processed data.

7.2.2 Scalable Querying of Large Knowledge Graphs

The topic of parallel and scalable SPARQL query processing has been extensively
studied in literature (cf. [1, 7] for related surveys). However, most of these works do

6https://spark.apache.org/.

https://spark.apache.org/
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not deal with spatial or spatiotemporal query processing. For example, the studies
in [13, 16, 17] propose innovative techniques for in-memory, distributed query pro-
cessing, but do not handle efficiently the special case of spatiotemporal data. Such
systems need an additional step prior or after query execution to apply the spatial
or spatiotemporal filters on the input data. Instead, a system supporting natively
the management of spatiotemporal data must be able to incorporate spatiotemporal
processing during query execution. Hence, the aforementioned techniques lead to
reduced performance when dealing with spatial or spatiotemporal data, since they
are inclined to add an expensive processing step.

Other studies [2, 6, 8, 10] focus on centralized processing of spatiotemporal RDF
data. However, these proposals cannot handle the increased complexity of vast-sized
distributed data. Novel parallel data processing techniques need to be employed
to cope with data that do not fit in main memory of a single node. Furthermore,
distributed systems need to minimize the interaction between the nodes to reduce
the overhead incurred by network latency.

Motivated by these limitations, we focus on distributed systems for parallel
processing of spatial and spatiotemporal RDF data. The requirements include:
handling RDF data, supporting spatial and spatiotemporal representations and
querying, as well as scalable processing of complex queries that combine triple
patterns and spatiotemporal constraints.

7.3 One-Dimensional Encoding

To encode the spatiotemporal information of a moving entity, we map its spatial and
temporal constituents to a single integer value. The spatial location can be in 2D
(for cars, vessels, etc.) or 3D (for aircraft). However, only the 2D case is presented
in the following descriptions for simplicity of the presentation. The mapping of the
spatial location is based on the grid partitioning method, where space is split into
2m =(2m/2*2m/2) equi-sized cells. Also, a space-filling curve is used, providing an
ordering for the spatial cells of the grid. Figure 7.1 shows an example for the 2D
case for m = 4, where the Hilbert and Z-order curves are depicted together, with
an integer value (ID) assigned to each cell. Space-filling curves aim to preserve the
spatial locality by having nearby cells be also close on the curve. Obviously, some
information loss is inevitable when going from 2D to 1D, but the spatial locality is
mostly preserved. In principle, both curves can be used in the proposed encoding,
albeit Z-order is easier to extend for higher dimensions (e.g., 3D).

Every entity whose spatial location is enclosed in a spatial cell is assigned with a
unique identifier. Therefore, k bits are reserved for assigning unique IDs to different
entities in the same spatial cell. As such, the maximum number of entities that fit in
a spatial cell is 2k.

The temporal dimension is handled as follows; a temporal partitioning T =
{T0, T1, . . . } of the time domain is considered, where Ti represents a temporal
interval. No assumptions on specific properties of the partitioning are made, i.e.,
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Fig. 7.1 Space-filling curves (Hilbert and Z-order) used for ordering the spatial cells [14]

Fig. 7.2 IDs encoding using bits: b total bits, m bits for spatial part (cell id), k bits for uniqueness,
b − (m + k + 1) bits for the temporal partition [14]

the length (or duration) of temporal partitions can vary, apart from the fact that the
partitions are disjoint, covering the entire time domain (

⋃
Ti = T ), and that Ti

precedes Ti+1 in the temporal order. Every temporal partition Ti is associated with
a spatial grid, as depicted in Fig. 7.1. The only restriction is that the identical grid
structure (i.e., 2m equi-sized cells) is used for all temporal partitions Ti .

Figure 7.2 shows how the information is combined together, resulting to a unique
identifier for any spatiotemporal position of a moving entity. The figure depicts the
binary representation of the identifier, consisting of b bits. The k least significant bits
are used to encode the identifier of an entity in a specific spatiotemporal cell. The ID
of the cell is recorded in the next m bits. The most-significant bit is reserved so as to
discern between spatiotemporal RDF entities and other RDF entities. By convention,
the most-significant bit is set to 0 for all IDs of spatiotemporal RDF entities, while
for IDs of all other RDF entities is set to 1. The remaining b − (m + k + 1) bits
are used for encoding the time, thus 2b−(m+k+1) temporal partitions can be stored
in total. The following example explains how the one-dimensional (1D) identifier of
an entity is generated.

Example 7.1 In Fig. 7.2, the case of b = 16, m = 4, and k = 3 is considered,
and the depicted identifier is 28 + 25 + 24 + 2 = 306. The spatial cell in which
it belongs is 6 (=0110), and the spatial grid contains 24 = 16 cells in total. This
encoding can accommodate at most 2b−(m+k+1) = 28 = 256 temporal partitions.
It can be observed that this ID corresponds to the second entity found in the given
spatiotemporal cell and that the entity is located in the second temporal partition.
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Given the ID of a spatiotemporal entity, the 3D spatiotemporal cell where the
entity belongs to can be identified. Also, given a 3D cell, a range of IDs that
correspond to any entity belonging to the cell can be computed. The encoding
scheme guarantees that entities with similar spatiotemporal representations are
assigned nearby IDs (that belong to small ranges of values), thus preserving data
locality. For example, given a time partition Ti , all entities in Ti belong to the interval
[2i · (2m+k), 2i+1 · (2m+k)], where 2m is the number of spatial cells, and 2k is the
maximum number of objects within each spatial cell. Essentially, 2i is used to shift
the time intervals, thus different temporal partitions can be mapped to different 1D
intervals of identifiers.

In summary, the encoding scheme (a) allows to identify a spatiotemporal
approximation of a position in the spatiotemporal domain given an ID, and (b)
achieves to reflect the spatiotemporal locality of spatiotemporal positions in the 1D
integer domain, by assigning nearby integer values to positions which are close to
each other in the spatiotemporal space. More details considering the computation
of the identifier as well as various strategies for partitioning the temporal domain
dynamically, are provided in [19].

7.4 Overview of the DiStRDF Engine

The DiStRDF engine is a distributed query processing engine able to process
spatiotemporal SPARQL queries in parallel. Since it focuses on analyzing massive
datasets, it uses Apache Spark as an execution engine to evaluate the queries on the
stored data. At a high abstraction level, the DiStRDF engine consists of two layers:
the storage layer, described in more details in Sect. 7.5 and the processing layer,
described in more details in Sect. 7.6.

The storage layer interacts with the query execution engine to provide the
query-relevant data when needed. Essentially, it is a scalable parallel storage
solution which supports replication, in-memory lookups, indexing, compression,
and efficient query execution. It consists of two data stores: (a) the dictionary
which stores the mappings between RDF triples and their encoded values and (b)
the RDF data store which contains the encoded RDF triples stored in HDFS. The
storage layer is designed as a distributed storage solution. Hence, even in the case
of hardware failures on some nodes of the cluster, the availability of the stored data
will be unaffected.

The processing layer takes as input a SPARQL query and outputs the result of the
query. Since the result might be relatively large, we opt to store the result on HDFS
and report a sample of the result to the user’s screen. The processing layer consists
of the following components:

• The SPARQL Query Parsing component, which transforms the input SPARQL
query into an internal representation that facilitates the process of building a
logical plan.
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• The Logical Plan Builder component, which builds the logical plan: a tree
representation of the SPARQL query consisting of a set of logical operators.

• The Logical Plan Optimizer component, which optimizes the previously built
logical plan to make its execution more efficient.

• The Physical Plan Constructor component, which composes a query execution
plan by selecting an implementation algorithm for each operator of the logical
plan.

• The Execution Engine component, which executes the query on the data.

7.5 The Storage Layer

The storage layer is a scalable storage solution of high availability, which stores
RDF data in a set of cluster computing machines (nodes). Its high availability feature
is supported by replicating the stored data in the available nodes. Hence, if a node
goes offline, the remaining nodes will have the replicated data to answer the queries.

Since the data of interest are of spatiotemporal nature, and the goal of DiStRDF
engine is to support efficient execution of spatiotemporal queries, we employ
the encoding technique described in Sect. 7.3, to encode the RDF triples having
spatiotemporal information. By using this technique, our DiStRDF engine benefits
by increased compression of the stored data and increased efficiency in querying the
stored data with spatiotemporal criteria. However, the encoding technique requires
the storage of the dictionary—a mapping table between the encoded and decoded
values. Hence, the DiStRDF storage layer stores the dictionary and the encoded
RDF triples in distributed and highly available data stores.

7.5.1 Storing the Dictionary

The DiStRDF dictionary data store needs to support efficient lookups, and hori-
zontal scalability. Hence, we turn our attention to use an in-memory, distributed
key-value store, such as Memcached,7 MICA [11], or Redis.8 A key-value store is a
NoSQL database that is designed for storing, retrieving, and managing dictionaries
or hash tables. A dictionary in a NoSQL store is a data structure that contains a set
of keys associated with their respective values. The store is responsible for storing
those pairs and retrieving the corresponding value when a key is provided. Any of
the aforementioned key-value stores is a good candidate for building the dictionary,
but in DiStRDF we opt to use Redis to store the dictionary, since it is one of the
most popular distributed key-value stores [12].

7https://memcached.org/.
8https://redis.io/.

https://memcached.org/
https://redis.io/
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Redis answers the queries by looking up data stored in main memory; the
secondary memory is only used for persisting snapshots of the data in case a restart
is needed. Redis also supports replication to enable high availability of the stored
data and partitioning for horizontal scaling. It also uses hash-based indices which
enable lookups in constant time for most of the queries. It supports several types of
data types, such as strings, hashes, lists, sets, sorted sets with range queries, bitmaps,
hyperloglogs, and even geospatial indexes with radius queries. Notice that in the
DiStRDF engine we use the 1D encoding to support spatiotemporal queries rather
than the native spatial-only feature of Redis.

We also have implemented a data loading mechanism, which takes as input
the source RDF data and transforms it into integer values as follows: if the
subject/object concerns spatiotemporal information, then the 1D encoding scheme
is used; otherwise, a random unique negative integer value is provided9 to a non-
spatiotemporal subject/object or property. Then, the dictionary stores the mapping
between the integer (key) and the RDF representation (value, of type string). In
addition, we also keep a reverse dictionary mapping between the RDF representation
(key) and the integer identifier (value), since we need both dictionaries to efficiently
compute the SPARQL queries and translate results from and back to the application.

7.5.2 Storing RDF Triples

There are several works that study the problem of distributed storage of RDF data
(cf. [1, 7] for related surveys). In DiStRDF, the RDF triples are transformed to
encoded integer values and stored in an HDFS cluster. Our design covers several
aspects of the data store, such as compression, file layout, data organization,
indexing, and partitioning.

Table 7.1 RDF property table example

Node ofMovingObject hasHeading hasGeometry hasTemporalFeature

node15 ves376609000 15 15.3W 47.8N 2017-01-03 02:20:05

node22 ves369715600 0 19.4E 35.9N 2017-01-30 17:20:00

node58 ves376609000 3 23.2E 35.7N 2017-02-05 10:42:08

The RDF nodes containing spatiotemporal information are organized in Property
tables as demonstrated in Table 7.1. Property tables show good performance when
a group of properties always exists for a given resource, thereby avoiding the need
of costly joins to reassemble this information. In our case, the majority of the query
workload targets nodes representing the position of moving objects (a.k.a. semantic

9Negative integer values are preferred to avoid collisions with integer values generated from the
1D encoding.
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nodes), therefore we build a property table that maintains information related to
the positions of moving objects. In Table 7.1, the nodes 15, 22, and 58 correspond
to traced positions of moving vessels. These nodes contain spatial and temporal
information (hasGeometry and hasTemporalFeature predicates, respectively). Thus,
these RDF nodes are stored as property tables, along with other useful predicates,
such as the moving object’s identifier. A spatiotemporal query benefits from such
data organization, since it will probably require fewer joins to process upon
answering a query.

The RDF nodes containing no spatiotemporal information are stored separately
in a table called leftover triples. This table is used as a regular triples data store,
which stores subject, predicate, and object in three different columns. An example
of a leftover triples table is depicted in Table 7.2, where non spatiotemporal
information is stored, such as event occurrence and static information about the
moving vessels.

Table 7.2 RDF leftover triples example

Subject Predicate Object

turnInit occurs node22

stoppedInit occurs node15

ves376609000 hasBuildDate 2009-05-31

These tables are stored in Parquet formatted files; Apache Parquet10 is a column-
based data layout with native support for several compression codecs (lzo, gzip,
snappy). Parquet formatted datasets are usually split into several files; every file
contains a set of metadata such as ranges of values for every column of the file.
This metadata can significantly boost query performance, e.g., in case a query
retrieves few columns of a property table. Predicate and projection pushdown are
also features supported by Parquet, which avoids the cost of reading all data from
disk at query time.

The partitioning mechanism used in DiStRDF storage layer partitions the data
according their spatiotemporal similarity. More specifically, we use the 1D encoded
integers computed for the spatiotemporal data to range-partition them across the
available nodes. Notice that since in the 1D encoding scheme the temporal value
has greater impact on the encoding, the similarity between the spatiotemporal nodes
is considered to be on the temporal dimension first; a range will contain similar
nodes on their temporal dimension, which may not be that similar in their spatial
dimension. Leftover triples which do not have spatiotemporal information to be
encoded are distributed evenly among the cluster nodes.

10https://parquet.apache.org/.

https://parquet.apache.org/
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7.6 The Processing Layer

The DiStRDF processing layer is a SPARQL query engine that processes batch
queries over huge amounts of spatiotemporal RDF data. The processing layer
is implemented on Apache Spark, a popular engine for parallel in-memory data
processing based on the MapReduce model. Apache Spark addresses many of
the limitation of Hadoop [5] and can achieve significant performance gains to
competitor systems, such as Hadoop [18].

The processing layer is comprised of the following components (a) the SPARQL
Query Parsing, (b) the Logical Plan Builder, (c) the Logical Plan Optimizer, and (d)
the Physical Plan Constructor.

7.6.1 The SPARQL Query Parsing Component

When a SPARQL query is declared, the first task that is performed prior to its
execution is the query parsing task, which:

• checks the correctness of syntax and ensures that the query is specified correctly,
and

• transforms the query into an internal representation, used by the other modules
of the processing engine.

Assuming that the syntax is correct, the SPARQL query is translated into a set of
basic graph patterns (BGP). These graph patterns are given to the logical planner
so as to construct a logical query plan (depicted in Fig. 7.3). The query parsing
component is built using the functionality of the Apache Jena software so as to
obtain the BGPs from the SPARQL query.

7.6.2 The Logical Plan Builder

After query parsing has been completed successfully, the logical query builder is
assigned with the task of constructing a logical query plan, which consists of logical
operators ordered in hierarchical form. Specifically, the logical plan represents a
way to execute the respective SPARQL query.

Five types of logical operators are used for processing the BGP part of a SPARQL
query. Obviously, these operators do not cover the entire SPARQL specification
(such as grouping, sorting, etc.), but they cover a wide variety of SPARQL queries
most commonly encountered in practice. The operators constitute a fundamental and
challenging part of a distributed RDF processing engine. Nominally, the operators
are described as follows:
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Fig. 7.3 Example of a SPARQL query (left) that is translated into BGPs and then provided to the
logical planner in order to construct the query plan (right)

• Join operator (��): A binary operator which takes as input two sets of data,
performing join based on the following triple pattern fields; Subject-Object,
Object-Object, Object-Subject, and Subject-Subject.

• Projection operator (π): A unary operator that keeps only a subset of the
available fields of the input set of data.

• Selection operator (σ ): A unary operator that takes as input a set of data and a
triple pattern and returns the data that match the pattern.

• Distinct operator: A unary operator that takes as input a set of data and selects
only the distinct values of a field.

• Sort operator: A unary operator that takes as input a set of data and performs a
sorting operation on the records, based on a field.

• Limit operator: A unary operator that takes as input a set of data and limits the
records (results) to a number.

• Datasource operator (d): A unary operator that is used to access a set of data
stored at a data source.

• Spatiotemporal filter estimation operator (σε ): This operator is provided with a
spatiotemporal box constraint and applies approximate filtering by exploiting the
1D encoding scheme introduced in Sect. 7.3. It inspects only the subject field
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to extract the embedded approximate spatiotemporal information (i.e., cell and
temporal partition), keeping only the data which satisfy the range constraint. Due
to the fact that the extracted information is approximate, a refinement is needed
to discard the false positives from the result set. To this end, a spatiotemporal
refinement operator is introduced.

• Spatiotemporal filter refinement operator (σρ ): This operator is provided with a
spatiotemporal box constraint and performs exact filtering, based on the exact
spatiotemporal information provided in the data, namely in the corresponding
spatial and temporal fields.

Commonly, a query plan is represented as a tree that consists of a set of connected
nodes corresponding to logical operators. The nodes take as input the results
of their children nodes and calculate the result of the operation defined by their
Logical Operator; these results (a node’s output) are given to their parent nodes for
continuing the query execution. If a node has zero children (equivalently, if it is a
leaf node), then its input data is a physical source of data. If a node has no parent
(equivalently, if it is a root node), then its input is considered to be the query result.

Algorithm 7.1 Logical Plan Builder
1: Input: SPARQL query
2: Output: Logical Plan Tree
3: LP ← {}
4: for each triple pattern ti ∈ query.BGP do
5: soi ← newSelectOperator(ti )
6: for each field fij ∈ ti (j ∈ {Subject, P redicate,Object}) do
7: if fij is value then
8: soi .addFilter(fij )
9: LP .add(soi )

10: while LP .size > 1 do
11: jo ← new JoinOperator(LP1, LP2)
12: LP .remove(LP1, LP2)
13: LP .add(jo)
14: operator ← getTreeRoot(LP )
15: if FILTER exists in query then
16: operator ← new SelectOperator(operator)
17: if DIST INCT exists in query then
18: operator ← new DistinctOperator(operator)
19: if ORDERBY exists in query then
20: operator ← new SortOperator(operator)
21: if LIMIT exists in query then
22: operator ← new LimitOperator(operator)
23: operator ← new ProjectOperator(operator)
24: return operator

The pseudocode of the logical plan builder is depicted in Algorithm 7.1. Getting
the BGP as an input (which is provided by the query parsing component), it outputs
the root node of the logical plan tree. Initially, it iterates through the triple patterns of
the BGP (lines 4–9) and creates a select operator for every triple pattern (line 5). For
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every value specified in the three fields of the triple pattern (subject, predicate, or
object), the select operator is assigned with a filter value (lines 6–8). The Selection
operator is added to the LP list (line 9) in order to be used later in the construction
of the plan. Adopting this approach, the Selection operators are pushed down (as
low as possible in the plan), thus minimizing the amount of data provided to the
parent nodes. For this reason, the leaf nodes of the query plan are usually Selection
operators.

In the second step, the logical plan builder iterates through the operators
contained in the LP list in order to form Join operators. In every execution of the
loop (lines 10–13), the first two elements of the LP are combined under a Join
operator. Then, the combined operators are removed from the LP list before adding
the new Join operator in it. The loop ends when one operator is left in the LP list.
Such an example is illustrated on Fig. 7.3. In case that two Select operators with
common variable names between their corresponding filters are combined under a
Join operator, the Join corresponds to an inner join between the underlying datasets.
Otherwise, the Join corresponds to a cross join between them.

The third step integrates the procedure of transforming the elements (operators)
of the LP list (line 14) into a tree (hierarchical) structure and then forming its root
node (lines 15–24). It is certain that the type of root node of the final tree will be
a Projection operator which is the output of the Logical Plan Builder component.
By forming the tree structure of the LP list, the tree may obtain a new root node
(operator) whose type will be one of: Select, Distinct, Sort, or Limit.

7.6.3 The Logical Plan Optimizer

Optimizations of the logical plan are classified in two main categories:

• Rule-based optimizations: based on a set of pre-defined rules that are known to
result in improved performance.

• Cost-based optimizations: based on estimates of the output size of operators,
where the estimates are derived from the maintained statistics of the underlying
data.

In rule-based optimization, the joins that are performed on the subject node
are discerned from other joins. Essentially, join-subject operators are identified,
in order to be differentiated from typical join operators. The rationale behind this
differentiation is that they can be exploited during physical planning to perform in
a more efficient way.

In technical terms, the procedure performing this task attempts to form star joins
(as subqueries of the initial query) among the triple patters, whenever possible. If a
set of triple patterns (corresponding to Selection operators) form a star join, a join-
subject operator is created and becomes the parent node of these Selection operators.
Put differently, these triple patterns share a common variable in the subject field. The
remaining triple patterns that do not form a star join remain as Selection operators



7 Distributed Storage of Large Knowledge Graphs with Mobility Data 195

Fig. 7.4 The resulting logical query plan of rule-based optimization of SPARQL query depicted
in Fig. 7.3

in the logical plan. Then, Join operators are formed by taking into account the
remaining Selection operators and the join-subject operators (see Fig. 7.4), where
the SPARQL query of Fig. 7.3 is used.

In cost-based optimization, the formation and the ordering of Join operators is
determined, as this is well-known to have a significant impact on the performance
of query execution.

• Join operators Formation. By having the Select operators added in the LP list
(lines 4–9 of Algorithm 7.1), the optimizer iterates the list to find common
variable names between their corresponding filters. The matching operators are
combined together by a Join operator, along with their matching fields which are
used as the join condition. The optimizer prioritizes the formation of Joins that
are to be performed on the datasource that constitutes a property table (dp).

• Operators ordering. After the formation of the Join operators, the optimizer
exploits statistics (in the form of histograms) that are constructed during the data
loading phase. Specifically, for each operator, the cardinality of its output size
is estimated. The optimizer that determines the ordering of nodes prioritizes the
execution of operators that return the fewest results. We refer to Fig. 7.5 for an
illustrative example. This final logical query plan corresponds to the initial query
plan that was formed.
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Fig. 7.5 The resulting logical query plan of cost-based optimization of SPARQL query depicted
in Fig. 7.3. The numbers indicate estimations of output size

7.6.4 The Physical Plan Constructor

The physical plan constructor component takes as input the optimized logical plan
and transforms it to a physical query plan. A physical query plan is comprised of a
set of physical operators, which represent an algorithm for every stage (operation)
of the query execution. Hence, the physical plan constructor aims to choose the
best performing algorithm for every stage of the query execution. In this section we
present the various physical operators supported by DiStRDF engine.

All operators are designed to operate by utilizing the features of Apache Spark
SQL API. They process a distributed set of data (i.e., a Spark DataFrame) by
performing parallel operations on it. Therefore, the workload of any DiStRDF
physical operator is in fact distributed among the available computing nodes to be
computed in parallel.

7.6.4.1 Datasource Operators

In DiStRDF there are two variants of data sources: the property table data source
and the leftover triples data source. The implementation of the physical Datasource
operator is straightforward for both of these data sources: it creates a new Spark
SQL DataFrame from the specific Parquet file data source. Notice that, in DiStRDF,
typically the next operation, right after a Datasource operator, is to filter the data
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needed by the query (Selection operation). As already discussed, Spark supports
filter push-down, thus the first selection operator will be pushed down to the
data source level. This is handled automatically by Spark; however, we need to
emphasize that caching the DataFrame before applying the selection operation will
break the filter push-down mechanism. Hence we opt to not cache any data source,
to benefit by the improved performance of predicate push-down.

In the case of a property table data source, the resulting DataFrame contains a
table similar to Table 7.1. The first column contains the subject of all the triples that
are joined together, and all other columns correspond to the individual predicates
found in the RDF triples; the values inside the cells are the values found in the
object position of the underlying triples.

On the other hand, the leftover triples data source results to a DataFrame
containing a table similar to Table 7.2. It contains three columns, one for each
position of an RDF triple: subject, predicate, and object. Notice that this data
representation is different from the one used for the property table data. This
anomaly could result to handling increased complexity during query evaluation,
since each representation needs different processing algorithms. To overcome this
issue, we transform the current one-triples representation to the property table one,
during the next selection operation applied on this DataFrame.

7.6.4.2 Selection Operators

The physical Selection operators take as input a DataFrame and apply one or more
filters on it, based on the parameters defined in the corresponding logical Selection
operator. Since in DiStRDF the Selection operators are created by both BGP and
FILTER parts of the SPARQL query, the physical selection operators can handle
any of these cases. Two physical selection operators are supported in DiStRDF: the
IndexScan and TableScan operations.

The IndexScan operation is applied only in the case the Selection operation is
placed immediately after a Datasource operator. Basically, it applies a filter on the
DataFrame which is pushed-down on the data source level. The IndexScan operator
is very efficient, since it reads only the data that are relevant to the query, decreasing
the overhead posed by having to read the whole dataset from disk. Since both
data sources are stored as Parquet files, the IndexScan operator can be used on
DataFrames from both of them. The TableScan operator is applied whenever an
index is not provided (i.e., in the case the Selection operator is not immediately
after a Datasource operator). It filters a DataFrame by scanning all the containing
data and keeping those that satisfy the filtering criteria.

If the Selection operator is performed on top of a leftover triples Datasource
operator, then before applying the IndexScan operation, it transforms the DataFrame
as shown in Table 7.3. In order to make this transformation, the Selection operator
first filters the DataFrame to keep only the records containing the correct value of
the “Predicate” field. Hence, the resulting DataFrame contains only records of a
single value on the Predicate column, as shown in Table 7.3(a). Then, the Predicate
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Table 7.3 Example of transforming leftover triples to property table format
(a) Leftover triples format

Subject Predicate Object

ves376609000 hasLength 52

ves376609005 hasLength 97

ves376609008 hasLength 65

→ (b) Property table format

Subject hasLength

ves376609000 52

ves376609005 97

ves376609008 65

column is deleted, and the Object column is renamed to match the value of the
fields on the Predicate column. The example depicted in Table 7.3(b) uses the name
“hasLength” on the Object column, since all Predicate field values are filtered to
have the value “hasLength.” After applying this transformation, the DataFrame is
filtered by applying the IndexScan or TableScan filters, as described earlier.

7.6.4.3 Join Operators

The physical Join operator takes as input two tables and combines their tuples based
on a related column between them. Notice that in some cases, the join operation
is pre-computed by the stored property tables. The DiStRDF processing layer is
designed to exploit such information and avoids evaluating a pre-computed join
operation.

Given the fact that data is distributed, processing a join operator requires
distributed join processing. This is a challenging operation because it usually results
in transferring large amounts of data from one node to another, and this cost can
dominate the entire execution cost. As a result, optimizing the processing of joins is
a critical factor for a distributed RDF processing engine.

By exploiting the Spark SQL API, we can utilize two physical join operators:
Broadcast Hash Join and Sort-merge Join. The details of these algorithms can be
found in [3]. However, they are briefly described in the following, assuming that
datasetA and datasetB are joined together, when the size of datasetB is estimated to
be smaller than the size of datasetA, based on the available statistics:

• Broadcast Hash Join. This algorithm is typically more efficient for smaller sizes
of datasetB. It broadcasts datasetB to all nodes available in the cluster. Then, each
node performs a join operation, using the portion of datasetA available locally.
The execution steps of this algorithm are described below:

1. datasetB is collected at a single node of the cluster (also called driver node).
2. A hashed structure of datasetB is built locally on the driver node.
3. Hashed datasetB is broadcast to all the nodes.
4. The broadcast datasetB is joined with local portions of datasetA in parallel,

using the hash join algorithm.

• Sort-merge Join. This algorithm performs better for larger sizes of datasetB.
It can also be used when the actual size of datasetB is unknown and cannot be
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estimated accurately. It performs a shuffling (i.e., repartitioning) of both datasetA
and datasetB on all nodes of the cluster and then joins together the local subsets.
Sort-merge Join is a more decentralized algorithm compared to Broadcast Hash
Join, at the cost of potentially higher network bandwidth consumption.

1. datasetA and datasetB are repartitioned (shuffled) using the same parti-
tioner11 on their respective join keys. Thus, records from both datasets will
reside on the same node if and only if these records share the same join keys.

2. Each local subset of datasetA is sorted in parallel on all nodes.
3. The Sort-merge Join algorithm is applied on the subsets of sorted datasetA

and datasetB.

7.6.4.4 Projection Operator

The Projection operator takes as input a Spark DataFrame and adjusts the number,
names, and order of columns according to the parameters defined in the logical
Projection Operator. Its primary purpose in DiStRDF is to select, rename, and order
the columns that will be delivered to the user as the final result set. Hence, the users
will be able to recognize the resulting set of columns, according to the query they
have provided.

7.6.4.5 Spatiotemporal Operators

The spatiotemporal operators are special cases of Selection operators with spa-
tiotemporal criteria. Since DiStRDF engine is designed to specifically to address
efficient execution of SPARQL queries with spatiotemporal criteria, these operators
are essential towards achieving the DiStRDF’s goal. When the physical plan
constructor identifies spatiotemporal criteria in the logical plan, it intervenes in the
execution plan, by adding two operators: the approximate spatiotemporal operator
and the exact spatiotemporal operator.

Essentially, the approximate spatiotemporal operator is always pushed to the
bottom of the execution plan tree, to prune early and efficiently as many records
as possible. It utilizes the 1D spatiotemporal encoding, described in Sect. 7.3,
to prune all records that are not enclosed in a spatiotemporal box determined
by the spatial and temporal constraints. To accomplish this, two numbers are
computed corresponding to the lower and upper cells that enclose the spatiotemporal
box, respectively. Since these cells are a superset of the spatiotemporal box,
these numbers represent the approximate location of the spatiotemporal box, in
the spatiotemporal grid constructed by the 1D encoding. This filter returns only
an approximate result, thus an additional step is required to prune the records

11A partitioner is a mechanism that determines the location (i.e., node) of each record, on the
repartitioning process.
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that do not belong in the final result set (false positives). To this end, the exact
spatiotemporal filter is added later in the execution plan, to refine the results based
on the actual spatiotemporal filter defined in the SPARQL query.

7.6.4.6 Other Operators

All other operators, such as Distinct, Limit, and Sort, are designed to exploit the
corresponding native Spark SQL DataFrame operations and their description is out
of scope of this book chapter.

7.7 Experimental Evaluation

In this section, we present the results of our experimental study. Our algorithms are
implemented using Scala 2.11 and Apache Spark 2.1. We deployed our code on a
proprietary cluster of 10 physical nodes, each having 64GB RAM, a 6-core 1.7GHz
processor and running Ubuntu 16.04.

7.7.1 Experimental Setup

DataSets The datasets that are used in the experiments contain surveillance
and static information from the maritime and aviation domains. The maritime
surveillance data cover the Mediterranean Sea and part of the Atlantic Ocean for
the entire month of January 2016. The aviation surveillance data cover the entire
space of Europe for a week of April 2016. In order to represent all data in RDF
format, the datAcron ontology is used (cf. Chap. 5), described in [15].

The total size of the dataset is about 400 million triples: 300 and 100 million
triples compose the maritime and aviation domain, respectively. These triples are
encoded to integer values using the encoding scheme described in Sect. 7.3 to
form the one-triples table, which is approximately 9GB in text format, and 4GB
in Parquet format using snappy compression. Also, property tables are built for the
Semantic Node and Vessel entities of datAcron Ontology so as to enable efficient
access to their corresponding properties during query execution. In the context of
the experiments data is stored in HDFS using Parquet file format, to enable efficient
access for the Spark applications and benefit from columnar storage, compression,
and predicate push-down.

Furthermore, a dictionary is used for the mapping of the encoded and decoded
values. It is stored in a Redis cluster instance, running on the cluster, with no
replication enabled. The total number of records (key-value pairs) stored in the
Redis dictionary is roughly 106 million.
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Configuration Apache Spark was configured on YARN, using Hadoop 2.7.2. One
node was set to be the driver node, while the others contained the Spark Executors.
For all of the conducted experiments, 9 Spark Executors are used, with 5 executor
cores and 4GB memory each. HDFS was configured with replication factor of 3.
Also, Jedis12 library was used in order to establish the communication with the
Redis cluster.

Data Statistics The Statistics Manager component is configured to build equi-
width histograms with 1000 buckets per dimension. This resulted in 103 buckets for
the Predicate histogram, and 106 buckets for Subject-Predicate and Object-Predicate
histograms. The max frequency values held in the buckets of the histogram are used
during query planning; hence, the logical query optimizer is based on worst-case
estimations for calculating the occurrence frequency of any field value.

Metrics The execution time needed for a SPARQL query to be performed on the
Spark cluster, is the main evaluation metric used in the experiments. Specifically,
the actual execution time needed for the queries to be evaluated is measured, by
omitting (a) any overhead caused by Spark initialization processes and (b) the time
needed to store the result set in HDFS. In technical terms, only the time needed to
calculate the result set in main memory is measured. This is feasible by executing a
call to the count method of the Spark DataFrame containing this result.

Moreover, each experiment is performed for 10 times before reporting any
time needed for query’s execution; only the time needed for the 11th execution is
mentioned, as a warm-up procedure takes place. This ensures that the cost of the
Java JIT compiler and the overhead for establishing connections to the Redis cluster
from all YARN containers is also omitted. The output size of our experiments in
terms of number of records is also reported, as an indication of query selectivity
(i.e., the number of records that matches the query’s basic graph pattern).

Methodology The experiments are presented with 2 real-world SPARQL queries,
one for each domain (maritime and aviation). The logical and physical optimizers
are enabled for these experiments while no spatiotemporal box filter is employed.
Then, the efficiency improvements provided by adopting the logical and physical
plan optimizers are evaluated. Lastly, the gained performance by enabling the
filtering based on 1D encoding information is measured for various spatiotemporal
box sizes.

7.7.2 Experiments on Real-World Queries

In this section, the performance of the datAcrondistributedRDFengine is studied, by
executing queries over the integrated data used in the two domains. Two queries are

12https://github.com/xetorthio/jedis.

https://github.com/xetorthio/jedis
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selected, and the execution time required by the datAcrondistributedRDFengine in
order to compute the result set for the corresponding domain field is measured.

7.7.2.1 Queries for Maritime and Aviation Domain

Two queries are selected, denoted Qm and Qa , to demonstrate the performance
of the datAcrondistributedRDFengine for the maritime and aviation domain corre-
spondingly.

The query Qm related to the maritime domain returns all of the semantic nodes
(and their related information of properties that are mentioned in the query) of
vessels that sail with minimum wind direction 77.13083.

PREFIX : < h t t p : / / www. d a t a c r o n −p r o j e c t . eu / d a tAcro n #>
SELECT ∗
WHERE {

?n : o fMov ingObjec t ? ves ;
: hasGeometry ? g ;
: h a s T e m p o r a l F e a t u r e ? t ;
: h a s W e a t h e r C o n d i t i o n ?w .
? v es a ? Vesse lTy p e ;
: h a s _ v e s s e l F i x i n g D e v i c e T y p e ? d e v i c e ;
: vesse lName ? name .
? e v e n t : o c c u r s ?n .
?g : hasWKT ? pos .
? t : T i m e S t a r t ? t im e .
?w : w i n d D i r e c t io n M in " 7 7 . 1 3 0 8 3 " .

}

The resulted data of the Qm query include:

• The vessels’ type, name, device type
• The known semantic nodes of the vessels
• The spatiotemporal position of the semantic nodes
• The events that are related to the semantic nodes
• The prevailing weather conditions
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Fig. 7.6 Query graph for the Qm query used in the experiments for the maritime domain

Fig. 7.7 Query graph for the Qa query used in the experiments for the aviation domain

The query Qa related to the aviation domain returns all of the semantic nodes
(and their related properties mentioned in the query) of aircrafts manufactured by
Boeing.
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Fig. 7.8 Performance and output size for the different domain queries. (a) Execution time (sec).
(b) Output size (# Records)

PREFIX : < h t t p : / / www. d a t a c r o n −p r o j e c t . eu / d a tAcro n #>
PREFIX r d f s : < h t t p : / / www. w3 . o rg / 2 0 0 0 / 0 1 / r d f−schema#>
SELECT ∗
WHERE {

? node : o fMo v in g Objec t ? a i r c r a f t ;
: hasGeometry ? g ;
: h a s T e m p o r a l F e a t u r e ? t .
? e v e n t : o c c u r s ? node .
?g : hasWKT ? pos .
? t : T i m e S t a r t ? t im e .
? a i r c r a f t : i sTypeOf ? model .
? model : h a s M a n i f a c t u r e r "BOEING" ;
: A i r c r a f t M o d e l D e s c r i p t i o n ? m o d e l D e s c r i p t i o n .

}

The resulted data of the Qa query include:

• The known semantic nodes of the aircrafts
• The events that are related to the semantic nodes
• The spatiotemporal position of the semantic nodes
• The aircraft’s model and Description

7.7.2.2 Evaluation

Figures 7.6 and 7.7 depict the two RDF query graphs, for the maritime and aviation
queries, respectively. The graph edges indicated with a dashed line need a join
operation so as to be computed. The remaining edges indicated using solid lines
are stored as pre-computed joins in Property tables, thus avoiding the need for a join
operation.
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Figure 7.8 presents the results for the two real-world queries. As shown in
Fig. 7.8a, Qm query, related to the maritime domain, result in higher execution
times, since the input dataset contains more triples from that domain. Another factor
having a strong impact on execution time is the workload of a given query; queries
that require more join operations result in increased processing cost, regardless of
their output sizes, which are depicted in Fig. 7.8b. Notice that Fig. 7.8b uses log
scale on the y-axis.

More specifically, queries Qm
1 ,Qm

2 ,Qm
3 include 4, 5, and 8 join operations,

respectively. The queries that need more join operations result to increased process-
ing time regardless of the fact that their output size is decreasing. This observation
justifies the need for employing a physical optimizer to pick a suitable join operator
whenever needed. Similarly, the same trend is observed for the aviation queries
where Qa

1,Qa
2 ,Qa

3 include 3, 6, and 10 join operations, respectively.
In the rest of this section, we arbitrarily select one query from those presented

here, in order to demonstrate the gain provided by the physical optimization, the
logical optimization, and the 1D encoding scheme.

7.7.3 Experiments on Physical Query Optimization

We evaluate our physical optimizer by focusing on query Qa
2. We report the logical

plan produced for this query in Fig. 7.9, along with the estimated input and output
sizes for each node involved. We focus only to the 6 nodes which perform an actual
join operation (i.e., they refer to relationships which are not maintained in Property
Tables), namely J1, J2, J3, JS2, J4, and J5. Clearly, the estimated input size of J1, J2,
J3, and J5 is larger than the estimations calculated for JS2 and J4. Our physical plan
optimizer utilizes these statistical values to determine the physical join operators
that should be used.

In this section, we evaluate the performance of Qa
2, by using various physical

planning strategies, as depicted in Fig. 7.10. The first strategy is to pick the Sort-
Merge Join operator for all the aforementioned nodes (denoted as Sort Merge
Always). The second strategy (denoted as Spark Optimizer) uses the default
behavior employed by Spark optimizer which performs a Sort Merge Join on all
nodes except for JS2 performing a Broadcast Hash Join. The third strategy (denoted
as datAcron Optimizer) utilizes the statistics provided by our Statistics Manager to
pick a physical join operator based on its estimated input sizes: If the estimated
input size of one of its children is below a user-defined threshold, we opt to use a
Broadcast Hash Join; otherwise a Sort Merge Join is used. Hence, the third strategy
performs a Sort Merge Join on all nodes, except for JS2 and J4, which as depicted
in Fig. 7.9, have low estimated input sizes. We have also experimented with a fourth
strategy which performs a Broadcast Hash Join on all nodes, but its execution time
is at least 4 times worse than the others. We deliberately excluded this strategy from
Fig. 7.10 to enable clearer comparison between the remaining three.
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Fig. 7.9 Estimated cardinality output sizes of all operators of Qa
2
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Fig. 7.10 Performance of Qa
2 when using various physical planners

Figure 7.10 demonstrates the query execution time needed for each of the
aforementioned strategies. As expected, Sort Merge Always strategy is performing
worse than the other two, since the processing cost for performing a Sort Merge
Join on lower input sizes is larger than that of Broadcast Hash Join. Moreover, our
physical optimizer outperforms the Spark optimizer, since a Broadcast Hash Join
on J4 is a better choice than a Sort Merge Join. Notice that Spark optimizer also
relies on statistical values obtained by Parquet files to pick a physical join operator.
However, these statistics prove to be inadequate for efficiently evaluating Qa

2 in
parallel.
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7.7.4 Experiments on Logical Query Optimization

We select query Qm
2 to evaluate our logical plan optimizer. Figure 7.11 shows the

SPARQL query, and two alternative logical plans. The plan on the right (called
Basic) is the one produced when the logical optimizer is switched off, and the order
of operations practically corresponds to the order of joins in the syntax of the query.
Instead, the plan on the left (called Optimized) is produced by the logical optimizer.
Each node in the plan is annotated with the cardinality estimation of its output, based
on the maintained statistics.

As shown in Fig. 7.11, the logical plan optimizer performs join re-ordering
using the cardinality estimations, in an attempt to start processing from operators
estimated to produce small outputs. In turn, this results in smaller intermediate
results, thereby improving performance.

Figure 7.12 demonstrates the improved efficiency provided by our logical plan
optimizer. As shown in the chart, rearranging the order of join operations on
Q2

m results in approximately 40% improved efficiency in execution time. For
convenience, recall that the result size of this query is roughly 600 records. This
experiment demonstrates the benefits that can be attained by using the logical plan
optimizer, which is a key component towards building an efficient (distributed) RDF
processing engine.

7.7.5 Experiments on Spatiotemporal Filtering

In our distributed RDF query engine, a spatiotemporal box filter can be evaluated by
employing either the 1D Filtering or the Regular Filtering method. The 1D Filtering
method applies an approximate filter first, based on the embedded spatiotemporal
information provided by our 1D encoding scheme; then, a refinement process is
employed at the end of query execution to prune the false positives produced by the
approximate filter. On the other hand, the Regular Filtering method prunes records
by comparing the spatial and temporal columns against the query’s spatiotemporal
predicates.

We select query Qa
2 to compare its performance when employing 1D Filtering

against Regular Filtering method. To this end, we experiment with 3 spatiotemporal
boxes (SF 1, SF 2, SF 3) of increasing size, as depicted in Table 7.4. Notice that
the latitude and longitude values of Table 7.4 are expressed in degrees, while the
altitude is expressed in meters.

Figure 7.13a demonstrates the execution time needed for the queries to be
evaluated. Clearly, our 1D filter outperforms Regular filtering, providing even
better performance as the spatiotemporal box size decreases. As expected, the
Regular filter consistently requires higher time to filter out non-matching records: it
applies the same number of comparisons regardless of the spatiotemporal box size.
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Fig. 7.11 Optimized (left) vs Basic (right) logical planning for Q2
m

However, our 1D filter is able to quickly prune records based on the 1D encoded
information, thus reducing the input size of the refinement process.

Naturally, the output size of Qa
2 is affected by the size of the spatiotemporal

box filtering employed. Therefore, we report the output size for each such box
in Fig. 7.13b. For convenience, we recall that the output size of Qa

2 without any
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Fig. 7.13 Performance and output size for the different sizes of spatiotemporal boxes on Qa
2. (a)

Execution time (sec). (b) Output size (# Records)

Table 7.4 Spatiotemporal box boundaries for Qa
2

SF 1 SF 2 SF 3

Lower Spatial (lat, lon, alt) (47, 0, 5000) (45, -3, 4000) (44, -4, 3000)

Upper Spatial (lat, lon, alt) (53, 6, 9000) (54, 7, 12000) (55, 8, 13000)

Lower Time 2016-04-15 00:00:00 2016-04-15 00:00:00 2016-04-15 00:00:00

Upper Time 2016-04-15 23:59:59 2016-04-16 23:59:59 2016-04-17 23:59:59

filtering was roughly 2 million records, while the largest spatiotemporal box that we
experimented with results to approximately 450 thousand records.

7.8 Conclusions

Scalable management of large knowledge graphs represented in RDF is a challeng-
ing topic; especially in the case of spatiotemporal RDF data, existing distributed
RDF management fall short, as they are not optimized for joint processing of graph
pattern queries together with spatiotemporal queries.
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The design and implementation of DiStRDF, a parallel processing engine for
spatiotemporal RDF data, is motivated by these limitations. To devise a scalable data
processing engine many contributions were needed: a deliberate encoding scheme
that captures spatiotemporal information of a moving entity in a one-dimensional
value, a storage layer based on scalable technologies, and a processing layer that
encompasses the basic modules of a typical database engine developed over a big
data processing framework.

However, many issues remain open: First, we need to extend the capabilities of
the engine so as to cover a wider class of spatiotemporal RDF queries. Then, we
need to implement more efficient join algorithms and build a more mature query
optimizer based on more advanced techniques for query optimization. These are
some of the issues that are expected to be addressed by future work.
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Part IV
Analytics Towards Time Critical Mobility

Forecasting

This part focuses on mobility analytics methods exploiting processed, synopsized,
and enriched data streams as well as integrated mobility data that is stored in
large distributed knowledge graphs: While the first two chapters present online
methods for trajectory prediction and events detection, the third chapter presents
offline methods focusing on trajectory analytics. Specifically, the first chapter
presents online future location prediction methods and trajectory prediction meth-
ods, distinguishing between short-term predictions and challenging long-term
online predictions. Online recognition of complex events for providing situation
awareness and anomaly detection, are presented in the second chapter. The last
chapter focuses on offline trajectory analytics, addressing trajectory clustering and
detection of routes followed by mobile entities.



Chapter 8
Future Location and Trajectory
Prediction

Harris Georgiou, Petros Petrou, Panagiotis Tampakis, Stylianos Sideridis,
Eva Chondrodima, Nikos Pelekis, and Yannis Theodoridis

Abstract This chapter presents modern approaches and frameworks for predicting
trajectories with detailed descriptions of three main research pillars. The first
pillar is the problem formulation regarding two complementary tasks, namely
the Future Location Prediction (FLP) and the Trajectory Prediction (TP). The
second pillar tackles the issue of effectiveness, efficiency, and scalability for the
corresponding predictive analytics models for big fleets of moving objects. Finally,
the third pillar takes into account historical patterns and semantically rich contextual
information, so as to improve the prediction accuracy, especially for long-term time
windows. The overall assessment of these methods shows that the suite of FLP and
TP algorithms developed addresses all the major prediction challenges regarding
mobility patterns in terms of points or trajectories, respectively. It is expected that
these modeling approaches can be transferred to other domains of similar challenges
and with similar success.

8.1 Introduction

8.1.1 Purpose, Scope, Motivation

The increasing use of portable devices such as navigation systems and the wide
range of location-aware applications have led to a huge amount of mobility data
being produced on a daily basis. As a result, a plethora of research challenges have
emerged in order to manage or analyze such data. One of the most challenging data
analytics task is to transform data into actionable knowledge in terms of exploiting
historical mobility patterns, in order to gauge what the moving entities may do in the
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future and develop efficient online algorithms for short- and long-term prediction of
movements [26, 43].

In real-time scenarios where new positions are traced in streaming mode,
prediction algorithms evaluate whether the moving object remains on route or
deviates, e.g., online outlier detection. The algorithms take advantage of offline
data analytics results based on archived information to produce accurate and
reliable predictions regarding future movements and events. Moreover, maritime
and aviation surveillance exhibits various types of uncertainty, including spatial
(e.g., due to GPS errors), temporal (e.g., different sensor refresh rates, transmission
delays, asynchronous sensor clocks, and reporting frequency), or contextual (e.g.,
maritime or airspace regulations, adverse weather conditions that may affect the
actual routes, etc.). A probabilistic treatment with error assessment and guarantees
is required to address such imperfections in the raw data. In order to address these
challenges, the knowledge of historical patterns of movement is used to enhance the
accuracy in the prediction of moving object locations on a long-term time window.

Moreover, there may be problem-specific resources or constraints that need to
be taken into account when designing predictive models for mobility and traffic
flows in various domains. For example, online processing in near real time may be
necessary; hence, retrieval of complex models and historic data may not be feasible
in practice, and faster filtering-based models have to be employed. On the other
hand, path-specific constraints may be available and, thus, these can be incorporated
in the corresponding model designs (e.g., maritime routes or flight plans).

The algorithms presented here exploit various types of uncertainty, supporting
probabilistic treatment of error assessment and probabilistic bounds (e.g., confi-
dence intervals), addressing imperfections in the raw data, as well as uncertain
external factors during the realization of the movement (e.g., local weather).
Building upon the current state-of-the-art, novel extensions and improvements are
presented here, including final decisions and optimized configurations, nominal
conditions for stable and reliable operation, together with extended experiments and
results.

The presentation of the material in this chapter evolves around three aspects:
(a) provide a thorough but compact formalization of the main components and
problems; (b) present recent developments and representative novel approaches; and
(c) provide related work, comparable approaches, and discussion on the results.

Closely related to this chapter, our work regarding TP in aviation [12] introduces
flight plans, localized weather, and aircraft properties as trajectory annotations that
enable modeling in a space higher than the typical 4-D spatiotemporal. This results
in a multi-stage hybrid approach for a new variation of the core TP task, the so-called
Future Semantic Trajectory Prediction (FSTP). This constrained-based approach for
training a predictive model per each waypoint is described in detail in Sect. 8.4.

Specifically, the structure of this chapter is as follows: After a short introduction,
the background section provides all the necessary definitions for enriched points
and trajectories, specifies the core problems of future location prediction (FLP)
and Trajectory Prediction (TP) and associated terms, and provides a quick review
of the datasets exploited. Next, the FLP problem is explored under the scope of
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short-term routes-agnostic (limited “memory”) predictors using LSTM and long-
term network-aware (increased “memory”) predictors using a hybrid medoids-based
approach, providing experimental results for both. For the TP problem, a semantic-
aware formalization is provided for the aviation domain and the core task is
explored with the exploitation of enrichment data (e.g., weather) together with the
flight plans, in a hybrid medoids-based “constrained” training with historic data,
providing experimental results for various linear and non-linear choices for the
predictors. Finally, related work and discussion sections explore other approaches
and comparable methods, with hints to future trends and prospects, and the
conclusions section closes the chapter.

8.2 Background

For better understanding of the two main tasks, FLP and TP, the following defi-
nitions are provided with regard to the spatiotemporal nature of the corresponding
data.

The (raw) trajectory T of an aircraft is defined as a 4-D polyline consisting of
a sequence of |T | pairs < pi, ti >, i ∈ [0, |T | − 1], where pi is a location data
point (xi, yi, zi ) in the 2-D or 3-D space and ti is a timestamp, assuming linear
interpolation between two consecutive pairs < pi, ti > and < pi+1, ti+1 >. Having
these definitions at hand, we define their semantic-aware variants.

Definition 8.1 (Enriched Point) An enriched point ri corresponds to a (raw) pair
< pi, ti > and is defined as a triplet < pi, ti , vi >, where vi is a vector consisting
of categorical and/or numerical variables that annotate the raw point with associated
enrichment data.

Examples of vi attribute values can be any user-defined label or annotation
regarding the specific application, for example, generated by an event recognition
module that detects the “top-of-climb” or “top-of-descent,” etc. Similarly, any
numerical variable can be attached to pi , such as weather variables regarding
temperature, wind speed, humidity, etc.

Definition 8.2 (Enriched Trajectory) A semantically enriched trajectory R corre-
sponds to a (raw) trajectory T of a moving object, which is defined as the sequence
of the enriched points of T .

The FLP and TP tasks build upon these definitions to formulate and describe
each case separately in the following sections.

8.2.1 Future Location Prediction

As the maritime and air traffic management (ATM) domains have major impact
on the global economy, a constant need is to advance the capability of systems to
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improve safety and effectiveness of critical operations involving a large number of
moving entities in large geographical areas [9]. Towards this goal, the exploitation
of heterogeneous data sources, which offer vast quantities of archival and high-rate
streaming data, is crucial for increasing the accuracy of results when analyzing and
predicting future states of moving entities. However, operational systems in these
domains for predicting trajectories are still limited mostly to a short-term look-ahead
time frame while facing increased uncertainty and lack of accuracy.

Motivated by these challenges, we present a big data solution for online TP
by exploiting mined patterns of trajectories from historical data sources. Our
approach offers predictions such as “estimated flight of an aircraft over the next 10
minutes” or “predicted route of a maritime vessel in the next hour,” based on their
current movement and historical motion patterns inside a specific region of interest.
The proposed framework incorporates several innovative modules, operating in
streaming mode over surveillance data, to deliver accurate long-term predictions
with low latency requirements. Incoming streams of moving objects’ positions are
cleansed, compressed, integrated, and linked with archival and contextual data by
means of link discovery methods.

This part of the work includes three main contributions: (a) devise a big data
methodology/algorithm that solves the FLP problem in an effective and highly
scalable way; (b) design and implement this algorithm on top of state-of-the-art
big data technologies, namely Spark and Kafka; and (c) conduct an extensive
experimental study in large real datasets from the maritime and aviation domains.
In the proposed methodology we efficiently identify the hidden mobility patterns in
an offline unsupervised manner and, subsequently, the prediction algorithm exploits
these patterns in order to extend the FLP temporal horizon upon these “discovered”
routes. To the best of our knowledge, in contrast to related state-of-the-art systems
[8] and research approaches, our approach is unique as a big data framework capable
of providing long-term trajectory predictions in an online fashion.

Given definitions 8.1 and 8.2 and assuming a historic Trajectory Database (TD),
we define the Future Location Prediction (FLP) problem as follows:

Definition 8.3 (Future Location Prediction) Given: (a) the incomplete trajectory
< (p0, t0), (p1, t1), . . . , (pi−1, ti−1) > of a moving object o, consisting of its time-
stamped locations recorded at past i time instances and (b) an integer value j ≥ 1,
Predict: < (p∗

i , ti ), . . . , (p
∗
i+j−1, ti+j−1) >, i.e., the objects’ anticipated locations

at the following j time instances.

There are two major directions when dealing with the FLP problem: (a) vector-
based prediction, or the spatial database management approach, and (b) pattern-
based prediction, or the data mining and machine learning approach. Each has its
own advantages and drawbacks and, most importantly, they are based on different
assumptions regarding the input data and their organization.

The vector-based approaches, inspired by the spatial database management
domain, aim to model current locations (and perhaps a short history) of objects
as motion functions, in order to be able to predict future locations by some kind of
extrapolation. In practice, they take into consideration space and time and predict
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future locations of moving objects within a given time interval using a mathematical
or probabilistic model, which aims to simulate the anticipated movement. First-
or second-degree physics models of movement are commonly used, employing
extrapolation with velocity or velocity and acceleration components, respectively,
to estimate the evolution of movement, provided that these can be assumed to be
constant in a short-term look-ahead time window.

The constant-speed assumption is also very useful in the development of proper
transformations of the input space, enabling time-invariant representations, e.g., via
the Hough-X transformation. Essentially, the evolving position of a moving object
remains a stationary point in dual space as soon as it does not change its velocity
vector; thus, it can be efficiently indexed in a spatial access method.

The pattern-based approaches, inspired by the spatial data mining domain,
identify and exploit motion patterns by analyzing historic data of moving objects,
i.e., classification models, repetitive patterns, clusters of “similar” movements, etc.,
based upon historical mobility data. An important difference with respect to the
vector-based approaches is that in this case the models are built upon the history of
movements, not only of the object of interest, but also of the other objects moving
in the same area; therefore, they are able to build better models and use them for
addressing the FLP task in a more generic and data-driven way.

A more detailed description of related works to FLP is provided later in Sect. 8.5.

8.2.2 Trajectory Prediction

The problem of predictive analytics over mobility data in the aviation or maritime
domains involves applications where moving objects are tracked in real time, in
order to compute, e.g., short- or long-term predictions. Short-term prediction [43],
which is time-critical and requires immediate response, facilitates the efficient
planning, management, and control procedures while assessing traffic conditions.
The latter is extremely important as safety, credibility, and cost are critical factors
in immediate decision-making. On the other hand, long-term prediction [41]
enhances pre-flight strategic planning to achieve cost efficiency or, when contextual
information is provided (e.g., weather conditions), to ensure safety. In the future of
the air traffic management (ATM), trajectories will be used as the core component
of many ATM procedures.

In this part, TP is explored under the general scope of the aviation domain. Flight
plans are exploited as the central element for constraint-based training of the TP
models. A flight plan announced by an airline is a low-resolution trajectory that
consists of the waypoints and time points that the aircraft is constrained to cross or
fly by them. In order for a flown trajectory, annotated with data such as localized
weather conditions, to be comparable with a flight plan, the latter has to be annotated
in a similar way to encapsulate the same information as the semantic trajectories,
e.g., weather information attached to the corresponding waypoints.
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Given the previous definitions and assuming a historic Semantic Trajectory
Database (STD), we define the Future Semantic Trajectory Prediction (FSTP)
problem as follows:

Definition 8.4 (Future Semantic Trajectory Prediction) Given a STD consisting
of semantic trajectories R =< (pl, tl , vl ) >, l ∈[0, i−1], a distance function dist (.)

that quantifies the dissimilarity between two semantic trajectories, an enriched flight
plan F defined as R, and a target region G,
Predict the semantic trajectory RF =< (p∗

o, to, v
∗
o ) >, where o ≥ i and p∗ is

located in G, i.e., the object’s anticipated sequence of enriched points within G,
where RF ∈ STD and satisfies the following property:

RF = Rj = arg min
j

{dist(F,Rj )}, ∀j ∈ [1, N] (8.1)

where N is the number of points in R.
In principle, the TP problem can be approached as a generalization of the future

location prediction problem (FLP) [16, 36, 40, 43], which is the task of predicting
the next spatiotemporal position(s) of a moving object, based on its previous track,
typically in the short-term context (up to a few minutes). On the other hand, the
TP problem is to predict the entire anticipated track of the moving object given
a set of constraints and/or historic data. A FLP method could be transformed to
address the TP problem, given a specific granularity upon which the same method is
applied iteratively. However, in that case the prediction errors are accumulated with
each step (e.g., via multi-step regression), thus making the next predicted points
increasingly error-saturated. In contrast, “pure” TP methods aim to forecast the
trajectory itself as a whole, thus making each predicted point uniformly error-prone.

A more detailed description of related approaches to TP is provided later in
Sect. 8.5.

8.2.3 Related Datasets Used

The experimental setup for validating the FLP proposed framework is based on
aviation and maritime data. We conducted experiments against real datasets, namely
IFS message and AIS messages, correspondingly. Table 8.1 summarizes some basic
statistics about these datasets.

Table 8.1 Dataset Description

Aviation (IFS) Maritime (AIS)

Number of points 455,000 16,000,000

Number of objects 680 flights 5055 MMSI

Spatial coverage Spain (Madrid–Barcelona flights) Brest Area

Time span April 2016 (1 week) 6 months
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The experimental setup for validating the FSTP proposed framework is based on
a set of flights between Madrid (LEMD) and Barcelona (LEBL). More specifically,
the flight plans (the latest submitted before departure), the IFS radar tracks,1 NOAA
weather data and additional aircraft properties (aircraft type, wake category/size),
and calendar (weekday) were included in the enriched trajectories dataset from
April 2016. The specific pair of airports was selected as the one with the heaviest
traffic on a monthly basis compared to any other airport pair in Spain2 and because
it involves different flight plans (reference waypoints) and multiple takeoff and
landing approaches.

Table 8.2 summarizes the dataset used in the experimental study for FSTP;
Fig. 8.1 illustrates an example of a flight with matched flight plan (F ) and actual
trajectory (R) reference waypoints; Fig. 8.2 shows the IFS (red) and flight plan
(blue) points of the entire dataset; and Fig. 8.3 presents the medoids (colored) of all
the clusters generated (stage-1).

Table 8.2 Datasets used

Element Description Comments

Airport pair Madrid/Barcelona (LEMD/LEBL),

1–31 April 2016 → 696 flights

Flight plans F Pre-takeoff latest submitted for
each flight.

Each F consists of 11–18 waypoints.

Actual route R Reference waypoints from the full-
resolution IFS radar track actual
route R matched against F (closest
waypoints)

Waypoint matching was conducted
only on the spatiotemporal basis

Weather W Latest NOAA weather parameters
estimated via interpolation upon
each F waypoint

Wind speed, wind direction, temper-
ature, humidity

Other information S Additional parameters used in the
enrichment process

Aircraft type, wake category (size),
weekday

8.3 Distributed Online Future Location Prediction (FLP)

There are various aspects and trade-offs in the design of FLP methods, primarily
with regard to “memory” versus look-ahead time and, subsequently, simpler/faster
versus more complex/demanding algorithms, lower or higher volume/rate of avail-
able input data, etc.

1For the area of the utilized dataset, i.e., flights between Barcelona and Madrid in Spain, the true
geodesic resolution (mean) is 111.133 km/deg Lat and 83.921 km/deg Lon.
2LEMD/LEBL geodesic ranges: Lat = [40, . . . , 43]o, Lon = [−3, . . . ,+3]o, Alt =
[0, . . . , 40K] ft.
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Fig. 8.1 Example of per-waypoint spatial comparison between flight plan (blue) and actual route
(red)

Fig. 8.2 LEMD/LEBL
dataset, April 2016, IFS
tracks (red) and flight plans
(blue)

Fig. 8.3 LEMD/LEBL dataset, April 2016, cluster medoids of the enriched trajectories
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In this section, two major viewpoints of FLP are presented, namely one for short-
term routes-agnostic (limited “memory”) FLP and one for long-term network-aware
(increased “memory”) FLP.

8.3.1 Short-Term FLP: Routes-Agnostic Approach

8.3.1.1 Long Short-Term Memory (LSTM)

Over the last decade, neural networks (NNs) have attracted a renewed research
interest, in order to reveal their true power on forecasting aircraft locations. Recent
literature review has highlighted that a large number of papers employ the power
of the special recurrent neural network (RNN) architecture. RNNs have become the
state-of-the-art for sequence modeling, due to the fact that they naturally handle
temporal and sequential data.

More specifically, an RNN is a natural generalization of feed-forward neural
networks (FFNN) applied to sequences. A standard FFNN is comprised of an input
layer, one or more hidden layers, and one output layer. The structure of an RNN
is similar to that of an FFNN with the distinction of employing weighted feedback
connections between the hidden units or/and the output units, in order to maintain a
kind of internal memory. However, RNNs suffer from the well-known “vanishing”
and “exploding” gradients [17]. In order to remedy the RNNs’ drawbacks, i.e.,
hinder the processing of long sequences, the long short-term memory (LSTM)
network [17] architecture, a special kind of RNNs was proposed.

Motivated by LSTM networks, Shi et al. [30] proposed an LSTM-based flight
prediction method, which can accurately predict 3D and 4D flight trajectories with-
out using the physical model of the aircraft. In [20], in order to predict aircraft 4D
trajectories, high-dimension meteorological features and information from the last
filed flight plans before departure (latitude, longitude, altitude, latitude speed, and
longitude speed) were fed into an NN generative model, which consists of a multi-
layer encoder LSTM, a multi-layer decoder LSTM, and a set of convolutional layers.
Another LSTM encoder–decoder mechanism has been employed to model flight
routes by analyzing sequences of legitimate ADS-B messages [14]. Considering the
scene movement state of an aircraft as three-type (acceleration, deceleration, and
uniform movement), Ma et al. [22] introduced the attenuation memory window,
in order to enhance the prediction accuracy of an LSTM model. Zhang et al. [42]
achieved more accurate flight prediction by employing the Ant Lion optimization
algorithm to optimize the initial weights and thresholds of the LSTM network.

Motivated by the aforementioned works, we propose a “vanilla” LSTM-based
framework for the aircraft FLP task. This framework provides satisfactory pre-
dictions of aircraft future locations by using only historical IFS data, i.e., without
requiring other information such as flight plans.
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Vanilla LSTM

LSTM constitutes a special kind of RNNs, which are explicitly designed to avoid the
long-term dependency problem. Unlike RNNs, LSTM contains special units, called
memory blocks, and each memory block is composed of gates. A lot of variants
of LSTM architectures have been introduced, which use slightly different versions.
The initial version of the LSTM block [17, 30] included input and output gates.
However, the most commonly used LSTM block includes three gates: forget f, input
i, output o.

For the sake of consistency, we briefly state the update rules for the employed
vanilla LSTM layer below. For more details, the interested reader is referred to the
original publication [17]. An LSTM cell, for each time-step t, is fed with the input
vector u(t) and the updating process can be described by the following equations as
also shown in Fig. 8.4:

i(t) = σ(Wi · u(t) + Ri · h(t − 1) + bi )

f(t) = σ(Wf · u(t) + Rf · h(t − 1) + bf )

o(t) = σ(Wo · u(t) + Ro · h(t − 1) + bo)

c̃(t) = tanh(Wg · u(t) + Rg · h(t − 1) + bg) (8.2)

c(t) = f(t) � c(t − 1) + i(t) � c̃(t)

h(t) = o(t) � tanh(c(t))
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Fig. 8.4 A graphical representation of a vanilla LSTM memory cell
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where:

• c is the cell state vector,
• c̃ is the candidate value for the states of the memory cells,
• Wf , Wi , Wo, Wc are the input-to-hidden weight matrices,
• Rf , Ri , Ro, Rc are the state-to-state recurrent weight matrices,
• bf , bi , bo, bc are the bias terms,
• � is the Hadamard product (element-wise product) of the vectors, and
• σ(), tanh() are the sigmoid and Hyperbolic tangent functions, respectively.

Problem Formulation: LSTM-based Aircraft FLP

The FLP problem as stated in Definition 8.3 can be refined here for LSTM,
timestamp-focused and oriented to the aviation domain. Specifically, given the
features of timestamp tsj (p), longitude x̃s

j (p), latitude ỹs
j (p), and altitude z̃s

j (p),
for each aircraft s, for each trajectory j , for each record-point p, we seek to learn a
model that at the next record-point p + 1, i.e., at timestamp tsj (p + 1), predicts the
3-D aircraft trajectories composed of longitude x̃s

j (p + 1), latitude ỹs
j (p + 1), and

altitude ỹs
j (p + 1) coordinates.

In order to allow Euclidean geometry computations, for each record-point p, the
geodetic coordinates longitude and latitude are converted according to the Universal
Transverse Mercator (UTM) system, into Cartesian coordinates. Also, to enhance
the performance of the LSTM network, the time information together with the
coordinates are incorporated to the network by employing the first-order differential
processing between two consecutive points described in [22]. For instance, the
time difference between p and p − 1 entries in the trajectory j of aircraft s can
be calculated as: 	tsj (p) = tsj (p) − tsj (p − 1). Similarly, the intervals of UTM
longitude, UTM latitude, and UTM altitude are denoted by 	xs

j (p), 	ys
j (p), and

	zs
j (p), respectively. Moreover, in order to better predict an aircraft next location,

the Euclidean distance dist sj (p) between two consecutive points p and p − 1 is fed
to the network.

To this end, the proposed model, for each aircraft s and each trajectory j ,
predicts the 3D vector [	xs

j (p + 1), 	ys
j (p + 1), 	zs

j (p + 1)], by using the input
vector [	tsj (p + 1),	tsj (p),	xs

j (p),	ys
j (p),	zs

j (p), dist sj (p)]. Subsequently,
the predicted coordinates intervals are transformed to the actual coordinates. Note
that the input feature 	tsj (p + 1) indicates the desired time interval that the
prediction must take place.

Furthermore, to demonstrate the inherent effectiveness of the LSTM networks
we do not use sliding windows, or a constant length window for all instances, but
instead, we feed the network with the whole trajectory. Due to the fact that flight
trajectories are of variable length, a zero pre-padding procedure is employed to
extend all trajectories to match the length of the longest trajectory.

Experimental results and overall assessment of the proposed Vanilla LSTM
approach are presented in Sect. 8.4.3.
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8.3.2 Long-Term FLP: Routes-Based Approach

In this section we describe the architecture of our proposed framework [28, 29],
which follows a typical lambda architecture that combines streaming and batch
layers to implement an end-to-end big data prediction solution. The proposed
framework, as depicted in Fig. 8.5, consists of two main modules, namely pattern
extraction (PE) and FLP. All modules are built on top of big data engines, so that
they can be scalable and offer low latency. Kafka is used as an integration network
for online toolboxes and a shared storage (i.e., Apache Hadoop HDFS) is used in
order to update existing patterns or add new ones. Subsequently, the FLP module
can “read” these patterns and execute the prediction pipeline.

At first, each moving object sends its location via traditional network protocols
and then a Kafka producer collects all positions and pushes them to a Kafka topic.
The PE module identifies “common routes,” in an offline manner. Finally, these
“typical routes” are broadcast among all workers and the FLP module combines
them with the live incoming stream of data in order to predict the future location for
each object.

Fig. 8.5 Architecture of the proposed framework

8.3.2.1 Offline Step: Routes Network Discovery (Medoids)

The goal of this module is to identify frequent patterns of movement that will assist
the FLP module to increase the accuracy of the predictions. The research so far has
focused mainly in methods that aim to identify specific collective behavior patterns
among moving objects, such as flocks, convoys, and swarms [43], or methods
that try to identify patterns that are valid for the entire lifespan of the moving
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objects [23]. However, discovering clusters of entire trajectories can overlook
significant patterns that might exist only for small portions of their lifespan.

Furthermore, most of the approaches either operate at specific predefined tempo-
ral “snapshots” of the dataset and ignore the movement between these “snapshots”
and/or ignore the temporal dimension and perform spatial-only clustering and/or
assume that the length (number of samples) of the trajectories and the sampling rate
are fixed, which is unrealistic. Another thing that should be taken into account when
designing a prediction-oriented trajectory clustering algorithm is that the resulting
clusters should have a small extent in order for the predictions to be more accurate.
Obviously, this rules out a large number of approaches that perform density-based
clustering which might lead to spatially extended clusters through expansion.

For the previous reasons, the desired specifications that such a trajectory
clustering algorithm should hold, in order to be able to predict the movement of
future trajectories, are the following:

• Discovering of clusters of subtrajectories, instead of whole trajectories.
• Spatiotemporal clustering, instead of spatial only.
• Support of trajectories with variable sampling rate, length, and with temporal

displacement.
• Distance-based clustering of trajectories.

There have been some approaches to deal with the problem of subtrajectory
clustering in a centralized way [1, 19]; however, all these do not scale with the size
of today’s trajectory data, thus calling for parallel and distributed algorithms. For
this reason, we utilize the work presented in [35], coined DSC, which introduces
an efficient and highly scalable approach to deal with the problem of Distributed
Subtrajectory Clustering, by means of MapReduce. More specifically, the authors
of [35] split the original problem to three sub-problems, namely Subtrajectory Join,
Trajectory Segmentation, and Clustering and Outlier Detection, and deal with each
one in a distributed fashion by utilizing the MapReduce programming model (cf.
Chap. 10).

To elaborate more, the Subtrajectory Join step aims at retrieving for each
trajectory r ∈ D all the moving objects, with their respective portion of movement,
that moved close enough in space and time with r , for at least some time duration.
Subsequently, the Trajectory Segmentation step takes as input the result of the Sub-
trajectory Join step, which is actually a trajectory and its neighboring trajectories
and targets at segmenting each trajectory r ∈ D into a set of subtrajectories in a
neighborhood-aware fashion, meaning that a trajectory will be segmented whenever
its neighborhood changes significantly. Finally, the third step takes as input the
output of the first two steps and the goal is to create clusters of similar subtrajectories
and at the same time identify subtrajectories that are significantly dissimilar from
the others (outliers).

For more details about the algorithms involved in DSC and an extensive
experimental study, please refer to Chap. 10 of this book, as well as to [34] and [35].
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8.3.2.2 Online Step: Network-Based Prediction

In this section, based on the observation that moving objects often follow the same
routes, we describe how the FLP module takes advantage of an individual’s typical
movement, referred to as cluster medoids, in order to predict the future location of a
moving object in an online and streaming fashion. This observation is well-fitted to
the maritime and aviation domains where sea vessels or aircraft have more or less
strict routes between ports or airports, either implied due to route optimization (e.g.,
minimizing ship’s fuel consumption) or explicitly required as official regulation
(flight plans). The FLP module, as described earlier, aims to make an accurate
estimation of the next position of a moving object within a specific look-ahead time
frame.

Most approaches do not take advantage of any other historic data available,
either from the object itself or other “similar” objects moving within the same area
and context, making them susceptible to errors associated with noise, artifacts, or
outliers in the input. This results in inaccurate predictions and only with a short
horizon (seconds or few minutes). A very different approach for the FLP problem
is making the associated predictive models less adaptive but more reliable, by
introducing specific “memory” based on historic data of an entire fleet of objects
relevant to the context at hand.

On the other hand, this requires a combination of historical and streaming data
which is not a trivial task. A big challenge of our proposed framework is how to
handle thousands of records efficiently in the context of online streaming data,
join each object with the appropriate medoids, and finally do all the necessary
model calculations to produce predictions for the future locations of an object.
In practice, several such medoids are pre-computed and stored in an efficient way
(partitioned by object identifier), so that they can be retrieved on demand or even
kept in-memory for several thousands of objects, making long-term FLP feasible in
a large scale. This task is addressed by employing a big data engine that is designed
to conduct fast joins between streaming data and historical data. Spark module
(SQL or Streaming) can efficiently join historical and streaming data, either with
map-side-join (a.k.a broadcast join) or using dataset (Spark structure) metadata to
achieve extra optimizations. For example, if the medoids can be sent to all workers
(broadcast) at the initial phase, it is recommended to replicate medoids in each
worker and for each object in MapReduce phase we select its medoids to perform
prediction. On the other hand, if the medoids’ size cannot stored in each workers’
memory, we partition the medoids by the objects’ identifier in order to have quick
access for a specific object and create distributed structures that can be easily joined
with streaming data via Spark SQL API.

In the first step (medoid matching) we try to match the object’s recent history
with the medoids. More specifically, for all the medoids, we find the closest to the
object’s current trajectory. In the second step (prediction) the algorithm has already
identified the last point from the best-matched medoid, according to the previous
stage. Then, it follows the medoid’s points one by one until it reaches the prediction
horizon.
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In summary, the FLP approach described here is inherently intuitive and self-
explanatory. It relies on past routes of the same or similar objects in order to forecast
how a specific object will move while it is already residing on a specific frequently
traversed route. In order to assign a moving object to the most similar medoid we
adopt the similarity function proposed in [24].

The algorithm itself can be implemented in Spark MapReduce API as follows:

1. Receiving and parsing messages from input Kafka topic (map),
2. Reduce by object identifier over a window period,
3. Join objects streaming data with the proper medoids,
4. Map partition (process each object for the current window) in order to perform

prediction.

Step 3 is required only for the dataset join, otherwise (broadcast join) step 3 is
performed inside step 4. Figure 8.6 illustrates an example of this FLP approach over
a flight between Madrid and Barcelona, where the red points are the actual data and
the blue points are the predictions.

Fig. 8.6 Madrid–Barcelona flight example of the FLP-L approach. Red points/locations are real
data and blue points are the predictions

8.3.3 Experimental Study

8.3.3.1 Short-Term FLP: Routes-Agnostic Approach

LSTM: Experimental Setup and Results

In this section, we present the results of our experimental study for the routes-
agnostic FLP approach, employed in the aviation domain. In this work, a set of
flights between Madrid (LEMD) and Barcelona (LEBL) reported in Sect. 8.2.3 was
employed for experimental purposes. The available trajectories were allocated to
three subsets (training, validation, and testing) randomly, using 50% of the data
for training, 25% for validation, and 25% for testing the proposed network [2].
Moreover, the employed NN architecture consists of an input layer, a vanilla LSTM
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Fig. 8.7 Performance over the testing set for each prediction horizon by using boxplots (a)
including outliers and (b) excluding outliers

layer of 50 neurons, a fully connected layer of 20 neurons and an output fully
connected layer of 3 neurons.

The results were validated by calculating the RMSE and MAE of the Euclidean
distance between the original locations and the predicted ones [30]. Figure 8.7a
reports graphically the performance over the testing set by using boxplots, one
for each prediction horizon. The error, which is the Euclidean distance between
the actual and the predicted points in meters is shown in the vertical axis. The
circles above and below the whiskers represent the outliers. Also, the same results,
excluding the outliers, are depicted in Fig. 8.7b. Obviously, as the time horizontally
increases, the error increases too. Furthermore, the errors (RMSE and MAE) and
per individual spatial dimension are represented in Table 8.3.
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Table 8.3 Performance over the testing
set for each dimension in Root Mean
Squared Error (RMSE) and Mean Abso-
lute Error (MAE)

Dimension RMSE(m) MAE(m)

All 77.30 41.39

x (longitude) 59.55 26.84

y (latitude) 46.51 20.53

z (altitude) 16.31 10.19

8.3.3.2 Long-Term FLP: Routes-Based Approach

In this section, we present the results of our experimental study for the network-
aware FLP approach, employed in the aviation and maritime domains. Our cluster
consists of 10 nodes (1 master, 9 workers) with 5 executor cores per worker and
4 GB memory per worker. Input streams are provided by a Kafka topic and FLP
is implemented on top of Spark SQL Streaming engine and Apache Yarn used as
a resource manager. Spark SQL streaming tasks are processed using a micro-batch
processing engine, which processes data streams as a series of small batch jobs,
thereby achieving low latency and exactly once guarantees.

Based on the optimal Spark/Kafka configuration described in Fig. 8.8, the total
delay originates almost entirely from the processing time, which asymptotically
stabilizes at around 5 s. This essentially translates to 60,000 Kafka messages (points)
per 10 s or 6000 points/s, which corresponds to 8-min look-ahead window. In other
words, with an average sampling rate of 5 s for each moving object, this system
configuration of the FLP module can accommodate up to 30,000 moving objects
with 5-s update and 8-min look-ahead predictions.

As described above, in this option an FLP approach is employed for exploiting
the cluster medoids as “guidelines” for providing online predictions, e.g., as the
actual flight evolves in real time. The general clustering method in this case is the
same as described in Sect. 8.3.2.1. We use up to 14 clusters in order to perform future
location prediction. The FLP module uses sliding windows of 2 min of past positions
in order to optimally match the most recent segment of the current trajectory to one
of the available medoids, using a custom spatiotemporal similarity function. Then,
the best-matched medoid is used as the maximum-likelihood trajectory evolution
and the predicted positions are taken along its path for a specific (user-defined)
look-ahead step.

Figure 8.9 illustrates the histogram of the horizontal error, i.e., the distribution of
errors, for all the trajectories in the aviation (Madrid/Barcelona) and maritime (Brest
Area) datasets and with spatial-only comparison (point-wise Euclidean distance).
Specifically, they illustrate the boxplots of the per-complete-trajectory mean error
for multiple look-ahead steps (1, 2, 4, 8, 16, 32 min). Additionally, the notation of
the boxplot provides hints of the underlying error distributions, i.e., means, medians,
upper/lower quartiles, non-outlier ranges, etc. These verify that the prediction
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errors are indeed in accordance with the expected shape of the distribution, i.e., a
typical extreme value (EV) with medium/low skewness (Gaussian-like) towards the
lower limit and an asymptotically decreasing right tail, i.e., accumulate and expand
exponentially as the look-ahead span doubles.

Fig. 8.8 Performance metrics for 16 · 106 points, 6 · 103 points/s, batch interval 10 s, 9 workers
and 60 partitions

8.4 Semantics-Driven Trajectory Prediction (FSTP)

In this part, TP is presented under the scope of the aviation domain, specifically
for aircraft TP using enriched flight plans and past history, in accordance with
Definition 8.4 presented in Sect. 8.2.2. This is a challenging and inherently data-
driven time-series modeling problem. Adding annotation or enrichment parameters
further increases the search space complexity, especially when “blind” optimization
algorithms are employed.
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Fig. 8.9 Mean error for multiple look-ahead steps (1, 2, 4, 8, 16, 32 min), with 90%-threshold
outliers removed

Despite the fact that a flight plan is generally considered as a strict guideline
for the actual path of the aircraft in civil aviation, surveillance data show that
deviations from the reference waypoints are in the range of up to 12–15 km or more,
compared to each individual reference waypoint of the submitted flight plan. This
is verified by the surveillance (IFS) dataset used in our work, as well as other state-
of-the-art works using similar datasets and setups [4, 20]. This is due to adverse
weather conditions and local airspace restrictions w.r.t. traffic, which lead to in-
flight alterations to the initially submitted flight plan in pre-flight, e.g., a last-minute
change in the landing approach due to local weather conditions. As a result, the flight
plan data are a useful guideline but cannot be used as-is for trajectory prediction, as
the actual route of the aircraft is severely altered by stochastic factors. The proposed
approach builds upon the enrichment parameters, e.g., local weather, and introduces
flight plans as an important input for the predictive models. More specifically, given
the flight plan submitted by an airline for a specific flight, we make a prediction of
the entire flight trajectory from departure to destination airport including all phases,
e.g., top-of-climb, top-of-descent, etc.

Instead of following the typical approach of operating on the raw surveillance
data collected from various sensors, in this work we make use of semantically
enhanced data, i.e., exploiting trajectories enriched/annotated with associated infor-
mation, for example, weather. This way, the raw trajectory data is transformed into
multi-dimensional sequences (semantic trajectory data) that form a more realistic
representation model of the complex real-world flight tracks; mobility of aircrafts
belongs to this broad class of (BDA).

Our methodology exploits trajectory clustering and prediction tasks in relation
to the FSTP problem. In particular, the merits and contributions of our work are
summarized as follows:

• We define the FSTP problem and propose a multi-stage “pipelined” processing,
with clustering in the first stage dealing with dimensionality reduction from the
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N-dim enriched trajectory space to a set of “similar” (compact) clusters upon
which the predictors are trained;

• We devise a novel predictive modeling representation for semantic trajectories,
exploiting flight plans as input;

• We introduce an inherently parallelizable design with separate lightweight
predictors per reference waypoint at the subsequent stages, working with a non-
uniform graph-based grid of much lower complexity compared to the current
state-of-the-art practices;

• We provide an extensive experimental study with real aviation surveillance data
(IFS radar tracks, flight plans, weather, etc.), assessing the overall prediction
accuracy of the proposed approach in contrast to current state-of-the-art alter-
natives, illustrating at least a sixfold improvement.

This work presents a novel multi-stage approach to tackle this challenge and
verifies its effectiveness with experimental results, illustrating a full-trajectory
expected error (RMSE) in the order of <2 km. It should be noted that any other
proposed work with similar setup, e.g., [4] but with no use of flight plans and [20]
using flight plans as input, achieves comparative errors of 10–12 km and 92 km,
respectively.

8.4.1 Clustering Enriched Trajectories for FSTP

Clustering enriched trajectories imply the partitioning of a Semantic Trajectory
Database (STD) into clusters (groups), so that each cluster contains “similar”
enriched trajectories according to a specific similarity measure. Two semantic
trajectories of aircrafts may be considered similar in many ways; they may have
common departure and/or destination airports, they may fully or partly be close to
each other throughout the flight, they may be fully or partly synchronous, or they
may be disjoint in time but with similar behavior (e.g., the same control operations
as these are represented by their aircraft intent, etc.).

This clustering phase of “discovering” medoids is based on the method described
earlier in the context of long-term FLP (see Sect. 8.3.2.1). However, here there
is a somewhat different way to define trajectory similarity exploiting several of
the enrichment dimensions (e.g., weather localized conditions), instead of only
spatiotemporal as described in long-term FLP.

For our task, we adopt the SemT-OPTICS approach, which is driven by the pop-
ular OPTICS clustering method [26] tuned by the parameters, minP ts, describing
the number of elements required to form a cluster, and eps, describing the maximum
distance (radius) to consider for a sufficiently dense cluster. The outcome is also a
reachability plot, upon which we automatically extract clusters and outliers using
the ξ -clustering method, originally proposed in [3].

For our purposes, the (dis)similarity between two enriched points is composed of
two parts, one regarding their spatiotemporal distance and another regarding their
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dissimilarity on the enrichment components. In particular, we adopt an appropriate
modification of the function proposed in [25], which in its turn is a variant of
EditdistancewithRealPenalty (ERP):

Definition 8.5 (Distance Dr Between Enriched Points) Given two enriched
points ri and rj , their distance Dr (ri, rj ) is defined as:

Dr (ri , rj ) = λ · diste(ri , rj ) + (1 − λ) · distv(ri, rj ) (8.3)

diste(ri , rj ) =
√

w1 · ||pi − pj ||2 + w2
w1

· (ti − tj )2

maxEuclideanDistance(ST D)
(8.4)

distv(ri , rj ) = 1 − vi • vj

||vi ||2 + ||vj ||2 − vi • vj

(8.5)

where diste(.) is the Euclidean distance in the 4-D spatiotemporal domain
(x, y, z, t); user-defined weights w1 and w2 = 1 − w1 are regularization factors in
[0,1] for the spatial versus the temporal dimension; distv(.) is the Jaccard distance
of the enrichment components; in Eq. (8.4) the maxEuclideanDistance(STD) is
the coverage of the database in the 4-D space acting as a normalization factor for
output within [0,1]; and λ ∈ [0,1] is a user-defined parameter that tunes the relative
importance between the two components.

Specifically for the semantic distance distv(.), the part of vector vi consisting
of the numerical variables is normalized per dimension to exclude scaling effects,
whereas each categorical variable described by a set of keywords (e.g., aircraft type)
is transformed to a set of numerical values, the cardinality of which corresponds to
the vocabulary of all distinct keywords in STD. Thus, each keyword corresponds
to a numeric value that is calculated by TF-IDF. Overall, vi is the concatenation of
these two, numerical and categorical subvectors. As the Jaccard distance maps the
semantic similarity to the range [0,1], it follows that Dr (ri, rj ) always results into
[0,1].

Having defined the distance Dr between two enriched points, distance DR

between two enriched trajectories is defined as follows:

Definition 8.6 (Distance DR Between Enriched Trajectories) Given two seman-
tic trajectories Ri and Rj of arbitrary length (i.e., arbitrary number of enriched
points), their distance DR(Ri,Rj ) is defined as :

DR(Ri,Rj ) = min

⎧
⎨

⎩

DR

(
τ (Ri), τ (Rj )

) + Dr (ri,1, rj,1)
DR

(
τ (Ri), τ (Rj )

) + Dr (ri,1, h)
DR

(
τ (Ri), τ (Rj )

) + Dr (h, rj,1)

⎫
⎬

⎭
(8.6)

where τ (Ri) denotes the tail of Ri , namely the enriched points of Ri after removing
the first enriched point of the i-th semantic trajectory (ri , 1), and h or gap is a virtual
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enriched point whose spatiotemporal value is the origin of the 4-D space of the entire
dataset, while its semantic component corresponds to the zero vector.

The value of the gap element is given in a way similar to the Edit distance, where
it is determined as the first value of the timescale for the time series (i.e., typically
gap = 0). Following a similar approach as in [25], it is trivial to prove that DR is a
metric.

Given the distance DR and a corresponding clustering result C consisting of K

clusters (noise and/or outliers may also be considered as a separate cluster), we

define the average distance D
Ck

Rl
of a member Rl, (1 ≤ l ≤ m = |Ck|) of a cluster

Ck ∈ C, (k = 1, . . . ,K) from all other m − 1 members of the same cluster as:

D
Ck

Rl
= 1

m − 1

∑

i∈[m],i �=l

DR(Ri,Rj ) (8.7)

The member Rl which has the minimum average distance from all other members
in cluster Ck is considered the medoid R

Ck
μ of cluster Ck , formally defined as:

Rk
μ = RCk

μ = arg min
l

{DCk

Rl
}, l ∈ [1,m] (8.8)

Thus, each cluster Ck of enriched trajectories R can be represented by its
corresponding medoid Rk

μ.

8.4.2 Predictive Models

In this work, flight plans, localized weather, and aircraft properties are introduced
as trajectory annotations that enable modeling in a space higher than the typical 4-
D spatiotemporal. A multi-stage hybrid approach is employed for a new variation
of the core FSTP task, including clustering the enriched trajectory data using a
semantic-aware similarity function as distance metric. Subsequently, a separate
predictive model is trained for each cluster, using a non-uniform graph-based grid
that is formed by the waypoints of each flight plan. In practice, flight plans constitute
a constrained-based training of each predictive model, one for each waypoint,
independently.

The proposed method is formulated and experimentally validated with real
aviation dataset (flight plans and IFS radar tracks) and localized weather data for
a 1-month time frame of flights in the Spanish airspace. Various types of predictive
models are tested, including Hidden Markov Model (HMM), linear regressors (LR),
regression trees (CART), and feed-forward neural networks (NN).

The following sections describe briefly the predictive models employed in the
core FSTP task, trained and evaluated per-cluster, using the enriched flight plans as
input.
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Fig. 8.10 Overview of the proposed FSTP framework, HMM case

In summary, our multi-stage approach for addressing the FSTP problem, accord-
ing to Definition 8.4, is as follows:

1. Clustering (stage-1): The historic STD is clustered into a set of clusters C by
using dist (.), separating the set of enriched trajectories into K distinct groups.

2. Predictive models (stage-2): For each cluster created, we build a predictive
model, e.g., HMM or other.

3. Evaluate/Query (stage-3): Given F an enriched flight plan as input/query, we
probabilistically assign it to the correct cluster Ck based on dist (.) and RF is
estimated from the corresponding predictive model.

4. Refinement (stage-4): Within cluster Ck , perform a top-j (1 ≤ j ≤ |Ck|)
nearest neighbor query w.r.t. its members using dist (.).

Figure 8.10 illustrates schematically the approach when HMM is used as
predictive model in the second stage.

The first two stages constitute the training phase. The clustering stage is
described in detail in Sect. 8.4.1, while the various choices over the predictive
modeling are described in detail in Sect. 8.4.2. The last two stages refer to the use of
the already trained system for predicting the actual trajectory of an aircraft given its
flight plan. Stage-3 is a classification problem, where the set of classes corresponds
to the set of cluster identifiers C: < C1, . . . , CK >. More specifically, given an
unclassified flight plan F and the set θk, 1 ≤ k ≤ K , of the representative models
for the clusters (i.e., classes), we search for the model that maximizes the likelihood
of being associated with F :

CF = Ck : arg max
k

{P(F |θk)}, k ∈ [1,K] (8.9)

In the case of using HMM as the representative model in stage-2, this problem
can be straightforwardly solved by applying the Forward algorithm. Similarly, if
regressors are used instead, the model that is selected is the one maximizing the
likelihood of generating R from F , where R is the actual trajectory flown (IFS radar
track). Finally, in stage-4 we focus on the cluster that is the most probable to find the
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solution and retrieve the top-j most similar semantic trajectories from the stage-3
output by applying dist(.).

In this study, stage-4 is not included in the experimental work, as the main focus
here is to assess the performance of clustering and the various TP models, i.e.,
stages 1–3, without any positive or negative effects from the top-j nearest neighbor
query in the STD. In practice, this means that lookup in the historical database of
flights is disabled, since this would artificially increase the overall accuracy and
somewhat hide the actual performance of the proposed algorithms in stages 1–3.
Hence, the rest of this study is focused on the first three stages, without the solution
refinement stage. In the following subsections, we provide details for each step of
our methodology.

Four different designs have been investigated in this study regarding the pre-
dictive modeling in stage-2 (and, subsequently, stage-3) of the proposed approach.
Each of them is described separately in the following sections.

8.4.2.1 Hidden Markov Models (HMM)

In time-series modeling, an HMM formulates the evolution of a system by a set
of states and transitions between them, each one accompanied by a probability
that is typically extracted by analyzing historic data. In the context of FSTP, the
flight path and all the associated information (weather, semantic data, etc.) are
usually transformed into discrete values that constitute the HMM states. Then,
the trajectory itself is treated as an evolution of transitions between these states,
using the trajectory data of a large set of flights for training, plus spatiotemporal
constraints (locality) to reduce the dimensionality of the problem and, thus, the
total number of HMM states. This approach has already been tested for trajectory
prediction from raw surveillance data and recent studies show that its results on real
aviation data are very promising (e.g., see [4, 5]).

Formally, a HMM is defined by M = |S| distinct states S, St being the state
at time t (stationary, first-order Markov chain), U = |O| distinct or continuous
values O that can be observed at each state transition, Ot being the observed value
produced by the HMM at time t , the M × M matrix A = {ai,j } of transition
probabilities where ai,j = P{St = j |St−1 = i} with 1 ≤ {i, j } ≤ M , the
M × U matrix B = {bi(o)} of the probabilities of emissions o at state i where
bi(o) = P{Ot = o|St = i}, and the set � = {πi} of prior state probabilities, where
πi = P{S1 = i}, i ∈ [1,M]. The observations O can be a continuous-valued set, in
which case matrix B becomes a continuous probability distribution function rather
than a discrete matrix. Therefore, a HMM θ is specified as a triple θ = {A,B,�}.
According to this formulation, a HMM is the functional form:

P{S,O} = P{S1}
tmax∏

t=2

P{St |St−1}
tmax∏

t=1

P{Ot |St } (8.10)
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In order to apply a HMM-based modeling to already clustered enriched trajecto-
ries, the following steps are performed:

• Training (stage-2): For each enriched trajectory cluster Ck,

k ∈ [1,K], a HMM θk is trained, i.e., the model parameters θk = {Ak,Bk, πk}
are estimated for maximum likelihood upon observation sequences for the
training subset corresponding to cluster Ck . This is the HMM training phase and
it is realized by applying the EM algorithm.

• Evaluation (stage-3): For a flight plan FQ that is used as a query, the model
likelihood of FQ is computed for all possible HMM models θk, i.e., PQ,k =
P{FQ|θk}, k ∈ [1,K]. Then FQ is assigned to the cluster with the highest
likelihood PQ,k.

The final result is the predicted (future) trajectory RQ corresponding to FQ and it
can be either the medoid Rk

μ of the selected cluster or the synthetic trajectory gener-
ated by the maximum-likelihood emissions sequence Ot . The physical meaning of
the HMM emissions is typically the observed output of the system. In this approach,
given the availability of both the flight plans F and the corresponding actual
trajectories R, the emissions are designed as the deviation between these two, since
this is the actual output observed from the evolution of a flight. More specifically,
each pair of F and R defines a sequence of waypoints wpt =< rF

t , rR
t > where t

is now a sequence number instead of actual timestamp. This wpt sequence of the
medoid Rk

μ of each cluster defines the states and transitions of the corresponding θk

for this cluster. In other words, each wpt is translated to a state in S and each transit
between < wpt,wpt+1 > is translated to an observation in O , thus completely
defining θk = {Ak,Bk, πk} as described above.

In this work, the actual Ot is the 3-D deviation between F and R at wpt where t ∈
[1, Lk], k ∈ [1,K], and Lk = |F | = |R| is the number of waypoints in members of
Ck . The 3-D deviation between F and R is calculated with the typical 2-D Haversine
formula instead of simple Euclidean, extended with trapezoid approximation for
any arbitrary pair of points within the Earth’s atmosphere, for accurate spherical
geometry even at long range. An emissions model was designed for each spatial
dimension (Lat/Lon/Alt), so that each dimension can be predicted separately by the
HMM.

Since multiple flights are included in each cluster, the values of the Ot emissions
produce an empirical probability distribution function per state (i.e., wpt ), which
under moderate statistical assumptions (m = |Ck| ≥ 30) can be approximated
by a parametric Gaussian. Using such a parametric probability distribution as the
(continuous) emissions model upon each wpt of Rk

μ, the maximum-likelihood PQ,k

can be estimated for each cluster k given a query FQ. Then, the corresponding RQ

is the trajectory generated by the associated HMM θk .
Using the formulation above, proper confidence intervals can be estimated for

every μk,t .
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8.4.2.2 Linear Regressors (LR)

As described earlier, the HMM approach for stage-2 in the proposed FSTP
framework is based on an emissions model that translates deviations between flight
plans and actual routes into probabilistic predictions in the maximum-likelihood
sense. In other words, the continuous emissions model generates the “most likely”
per-waypoint deviation from the intended flight path F and, hence, the future
route R.

A more generic approach is to incorporate multiple dimensions in the input and
also to approximate R itself, instead of the deviation from F . The simplest and
straightforward way to do this is by designing proper linear regressors (LR) [38]
to replace the HMM counterparts for each waypoint. LR is defined as the first-
order approximation of an over-determined linear system of equations in a way that
minimizes a global error criterion, typically the least squares error (LSE).

In this study, LR is employed as the mapping function between a composite input
vector which is based on F and an output that is associated with R, designed and
trained per waypoint, i.e., independently for each target value. Figure 8.11 illustrates
the two main differences of LR compared to the HMM approach for stage-2, namely
(a) using multiple waypoints of F in the input vector and (b) targeting R itself
instead of the deviations from F .

Fig. 8.11 HMM versus LR designs. HMM (left) uses only the current wpt of F and R is estimated
as deviation; LR (right) uses multiple wp∗ and R is estimated directly. Vectors illustrate the pairing
in calculating the distances of nearest points to actual trajectories w.r.t. group “representatives”
(cluster medoids)

Formally, the LR approach for stage-2 can be defined by Eqs. (8.11) and (8.12)
for training (stage-2) and evaluation (stage-3), respectively:

φR
j,t = WF

j,t · bk,t + bk,0 , ∀j ∈ Ck, t ∈ Lk (8.11)

φR
Q,t = WF

Q,t · bk,t + bk,0 , t ∈ Lk (8.12)

where Ck,Lk, φ
R
j,t are defined as for HMM, WF

j,t is the (composite) input vector
based on pre-flight data, and bk,∗ are the LR coefficients that minimize the LSE.
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Based on the way the input vector bk,∗ is defined, three LR variants were
designed for use in stage-2 of the proposed FSTP framework:

• LR(1): WF
j,t = φF

j,T

• LR(3): WF
j,t = pF

j,T =< xF
j,T , yF

j,T , zF
j,T >

• LR(4): WF
j,t =< pF

j,T , vF
j,∗ >

where T ⊆ {1, . . . , t, . . . , Lk} (one or more waypoints used), pF
j,t refers to the

3-D waypoint (xt , yt , zt ) of flight plan j and vF
j,∗ refers to the associated semantic

information available in pre-flight. The three LR(.) variants were used in order to test
the effects on the final accuracy of each regressor w.r.t. the input space, i.e., when
using only same dimension φ as the target or the full 3-D p or the 3-D p plus the
semantic part v. In this study, the main waypoint-related semantics are incorporated
and exploited by the similarity function of Definition 8.5 Alternatively, in order to
reduce the complexity of the clustering task, all waypoint-invariant inputs can be
included here instead, namely aircraft properties (type and wake/size category) and
calendar variables (weekday)—hence the use of asterisk instead of sequencing t in
the vF

j,∗ notation.
It is worth noting that the HMM emissions model described in Sect. 8.4.2.1 can

be considered functionally as a special case of LR(1), with bk,t ≡ 1 and bk,0 ≡ μ̂k,t .

8.4.2.3 Regression Trees (CART)

In this study, standard Classification and Regression Trees (CART) [21] in regres-
sion mode have been employed as an alternative to LR. More specifically, the LR(4)
formulation for input/output specifications was also employed with CART regres-
sors, in order to investigate the local non-linearities of the input (composite) space
and to address this problem with hierarchical subspace partitioning. In practice,
this means that CART is inherently implementing feature selection (dimensionality
reduction) in each node and optimally trained thresholds define the proper subspace
partition for the final prediction of φR

j,t . Figure 8.12 illustrates the root portion of
such a CART model, comparing the altitude (“x44”) of a specific waypoint (wp14)
of flight plan F against various threshold values (x100 ft) and in various levels of
the tree, in order to end up with the optimal estimation leaf for the altitude in the
same waypoint of the predicted (future) route R.

8.4.2.4 Feed-Forward Neural Network Regressors (NN-MLP)

Additionally to the HMM and LR predictor models, feed-forward NN regressors,
specifically Multi-Layer Perceptrons (NN-MLP), were employed as replacements.
Again, the LR(4) formulation for input/output specifications was employed with
NN-MLP as with LR regressors, using a typical topology of one hidden layer of 10
neurons with softmax-designed activation function, as illustrated in Fig. 8.13.
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Fig. 8.12 Example of trained CART (partial) regressor predicting altitude; leaf values indicate
goodness-of-fit (0–100)

Fig. 8.13 NN-MLP topology used for non-linear regression, using NN(4) input specification with
15 waypoints (3-D) plus three global enrichments

8.4.3 Experimental Study

The general experimental setup and datasets used for evaluating the FSTP approach
is described in Sect. 8.2.3. The experiments were conducted using a variety of
software tools and programming platforms.3 The core software for each stage of
the proposed FSTP framework, including clustering, HMM, and LR models, are
currently ported to R for cross-platform prototyping, as well as to Spark (Scala)
platform.

8.4.3.1 Clustering Stage

As described earlier, the experimental work was focused on evaluating the core
stages 1 through 3 of the proposed FSTP framework, i.e., without the (optional)
top-k retrieval in stage 4, for reasons explained in Sect. 8.4.2.

In clustering (stage-1), the parameters of the composite distance metric described
according to Definitions 8.5 and 8.6 were established after extensive experimen-
tation and evaluation of the quality (size versus compactness) of the resulting
clusters. More specifically, the spatiotemporal part in Eq. (8.3) was preferred over
the semantic part (λ = 3

4 ), equally weighted spatial dimensions (w1 = 1
3 ) and time-

3Mathworks MATLAB v9.2/R2017a (x64); Octave v4.2.1; R v3.4.3; WEKA v3.8.2; custom Java
& C/C++ tools.
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invariant trajectory matching (w2 = 0) were employed. These design choices for
the distance function were specifically selected as a compromise between clustering
compactness versus ease of visualization, in order for the standard prediction error
metrics Mean Absolute Prediction Error (MAPE) and Root Mean Squared Error
(RMSE) to be easily interpreted in the 3-D spatial-only sense. The best clustering
result w.r.t. Silhouette [38] includes a partitioning of C = {255, 228, 138, 75},K =
4 and was used as baseline throughout this experimental work.

8.4.3.2 Predictive Modeling Stage

The main reason for using HMM in stage-2 of the proposed FSTP framework was,
as described in Sect. 8.4.2.1, to investigate the nominal confidence intervals for error
estimations by proper statistical methods. Since HMM is the simplest of all the
other options (LR, CART, NN-MLP), these estimations can be considered relevant
to these other models too, especially LR, as HMM can be formulated as a special
case of LR(1) (see Sect. 8.4.2.2). Figure 8.14 and Table 8.4 present the Half-Width
Confidence Interval (HWCI) [33] estimations for the best clustering result (stage-1),
including 4 main clusters of 696 flights and one of 7 outliers (excluded).

Table 8.4 HMM Half-width Con-
fidence Interval

Ck |Ck | Lk Mean [HWCI]

1 255 13 208.5

2 228 14 285.3

3 138 15 460.9

4 75 11 665.9

Fig. 8.14 Half-width confidence intervals (m) for HMM accuracy estimations per spatial
dimension and in 3-D

It should be noted that, according to the current state-of-the-art in similar setups
[4, 20], splitting the 3-D space into separate dimensions is the standard approach.
In our work, the other reason we do this is precisely to look at how each individual
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dimension affects the overall prediction error. As a result, we verify again what other
works in trajectory prediction in aviation mention [11]: altitude errors are of much
less importance compared to Lat/Lon dimensions (see Tables 8.5, 8.6, Fig. 8.14).
On the other hand, using predictors with full 3-D input for each reference waypoint
as in LR(4) is also investigated (see Sect. 8.4.2.2) and illustrated comparatively to
the 1-D alternative of LR(1).

As an example of prediction error tracking along the sequence of waypoints,
Fig. 8.15 presents the MAPE and RMSE for the LR(4) model (stage-2), trained on
the same 4-cluster partitioning of the data (stage-1).

Fig. 8.15 Example MAPE and RMSE (m) plots of LR predictor (stage-2) along the waypoints

For CART regressors, described in detail in Sect. 8.4.2.3, the training was
implemented with both node merging and tree post-pruning enabled (parent size
10), using Mean Squared Error (MSE) as the node splitting criterion [38].

For NN-MLP regressors, described in detail in Sect. 8.4.2.4, the training was
implemented using Bayesian regularization back-propagation for better conver-
gence and generalization capabilities, while tansig activation was used in the hidden
layer neurons as the softmax-like function. The training itself included k-fold cross-
validation [38] with k = 10 folds, i.e., 90% training and 10% testing randomized
subsets in each run, along with some additional training configurations of fixed splits
down to 50% training subsets, in order to explore the true generalization of the NN-
MLP regressors in this problem.

Tables 8.5 and 8.6 present the best performances for all stage-2 predictor
models using the same set of 696 flights (excluding outliers), non-clustered and
clustered (K=4), respectively. The NN-MLP model is presented comparatively but
separately from the others, since its performance was asserted by a slightly different
experimental protocol with a k-fold cross-validation scheme (k = 10).
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Table 8.5 Prediction accuracies in wp-averaged RMSE
(m), non-clustered dataset

Model Rk : Lat Rk : Lon Rk : Alt Rk : 3D

HMM 3986.0 1072.3 587.3 4169.3

LR(1) 3660.1 999.3 528.3 3830.7

LR(3) 3090.7 741.8 391.0 3202.4

LR(4) 3074.3 736.7 380.8 3184.2

CART 2830.2 1396.9 316.9 3172.0

NN-MLP 1555.7 960.1 203.9 1877.4

Table 8.6 Prediction accuracies in wp-averaged RMSE
(m), clustered dataset (K=4)

Model Rk : Lat Rk : Lon Rk : Alt Rk : 3D

HMM 3154.6 847.3 418.9 3294.6

LR(1) 3047.3 806.7 403.9 3179.9

LR(3) 2736.7 662.4 330.8 2837.4

LR(4) 2697.8 652.6 321.5 2796.4

CART 2661.4 1673.0 289.3 3377.1

NN-MLP 1527.6 1204.7 178.3 1953.6

Specifically for the NN-MLP regressors, which are the best-performing model
for stage-2, Table 8.7 presents a summary of all the per-waypoint prediction errors
for one cluster, while Fig. 8.16 shows the exact distribution of prediction errors
(signed MAPE) for one such waypoint. In the unsigned form, the histogram of
MAPE is clearly associated with a probability distribution similar to the Generalized
Extreme Value (GEV) family, i.e., with mode close to zero and heavy right tail, as
expected.

It is worth noting that the per-waypoint prediction error remains fairly close to the
mean (RMSE) value, not only in 3-D but also for each individual spatial dimension.
This is particularly important, since these results prove the robustness of the NN-
MLP predictions along the entire flight path and the validity of using the flight plan
as the main element in constraint-based training.

Finally, Fig. 8.17 presents the summary of the performance of all stage-2
predictor models for non-clustered and clustered dataset. The corresponding per-
model run times4 for combined training and testing, as illustrated in Table 8.8,
vary between only few msec for the non-clustered HMM models to 10–11 ms
for clustered LR or CART equivalents with K = 4 (sum over all clusters). The
corresponding run times for NN-MLP in stage-2 are significantly higher, ranging up
to almost a second, i.e., two orders of magnitude larger, due to the computationally

4Platform used: Intel i7 quad-core @ 2.0 GHz / 8 GB RAM / MS-Windows 8.1 (x64).
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Table 8.7 NN-MLP accuracies in per-wp RMSE (m)
for cluster 1 (example)

wp Rk : Lat Rk : Lon Rk : Alt Rk : 3D

1 279.7 70.0 37.2 290.7

2 511.3 149.2 113.1 544.5

3 1780.0 422.5 246.1 1845.9

4 1810.6 608.4 256.7 1927.3

5 1031.7 1518.9 334.7 1866.4

6 1072.7 2346.8 214.6 2589.2

7 1354.8 3709.2 64.4 3949.4

8 2076.0 1148.3 85.1 2373.9

9 1610.6 164.7 205.3 1632.0

10 2163.1 250.3 189.9 2185.8

11 1868.3 331.2 184.8 1906.4

12 319.2 3187.1 64.4 3203.7

13 46.7 34.8 8.4 58.8

Mean 1225.0 1072.4 154.2 1874.9

Fig. 8.16 Example NN-MLP distribution of prediction errors (signed MAPE)(deg) for Lat for
one waypoint (wp10)

intensive NN training process. Faster training algorithms may be employed instead
of the Bayesian regularization back-propagation used here, but at the expense of
training accuracy and robustness, while the order of magnitude remains the same
for the training times. It should be noted that these numbers do not include stage-1
processing (clustering), which is in the order of several seconds, as this runs only
once, regardless of the model selected for stage-2.

It is worth noting that, as Table 8.7 shows, the per-waypoint prediction errors of
the NN-MLP regressors remain fairly close to the mean (RMSE) value, not only in
3-D but also for each individual spatial dimension. This is particularly important,
since these results prove the robustness of the NN-MLP predictions along the entire
flight path and the validity of using the flight plan as the main element of constraint-
based training in the proposed FSTP framework.
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Fig. 8.17 Overview of all the stage-2 regressors accuracy in wp-averaged RMSE (m) (see
Tables 8.5 and 8.6)

Table 8.8 Training and testing times (msec per wp per
dimension) for all stage-2 models, averaged over 100 runs;
C(0) is for non-clustered dataset and C(4) is for clustered
dataset with K=4

HMM LR(1) LR(3) LR(4) CART NN

C(0) 2.1 4.8 5.2 10.3 5.2 870.6

C(4) 4.6 6.1 5.7 8.1 11.3 680.6

The use of flight plans for constrained-based training, specifically their waypoints
as reference points for designing independent predictors for each one, essentially
downscales the original FSTP problem to a much smaller non-uniform graph-based
grid. As presented above, a roughly 1-h flight between Madrid and Barcelona
translates to a set of 680–730 data points of the raw IFS radar track for each
flight, which is down-scaled to only 11–18 waypoints of a typical flight plan
for this route. Additionally, the clustering stage partitions the input space into
smaller, more compact groups of trajectories and at the same time incorporates
the enrichment part into this process, so that the predictive models that are to be
trained subsequently can be designed in much smaller dimensionality, even the
3-D spatial-only if necessary. These three design aspects, i.e., independent per-
waypoint model training, dimensionality reduction, and input space partitioning via
clustering, constitute this proposed approach inherently parallelizable and highly
scalable to very large volumes and rates of data. The estimated run times presented
in Table 8.8 provide some experimental evidence for this, as the best LR and CART
regressors can be trained on-the-fly per-waypoint in the order of few msec.

8.5 Related Work

Recently, there has been plenty of work on FLP and TP in the mobility [11], espe-
cially in the aviation domain. The proposed approaches include systems-engineering
view [31], splitting the flight phases [13], collaborative TP via conflict avoidance
and resolution (CA&R) [6, 41], anomaly detection [7], etc. Not surprisingly, the vast
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majority of methods are domain-specific in order to take advantage of the properties
of the moving objects. The issue of exploiting additional data or enrichments in
TP has created the notion of semantic-aware TP or FSTP as described earlier,
which enables better estimations for departure and arrival times and, hence, more
robust scheduling and logistics, especially in the congestion points (airports, major
waypoints, etc.).

A typical example of a FLP method is presented in [36], where the authors
propose TPR*-tree (index-based), which derives from TPR-tree, and exploits the
characteristics of dynamic moving objects in order to retrieve only those which will
meet specific spatial criteria within the given time interval, i.e., query window, in
the future.

During the last few years, there is a mainstream trend of using stochastic models
for TP, with Hidden Markov Models (HMM) being the most popular, as it has
proved its efficiency in modeling a wide range of trajectory types. In general
terms, a system is assumed to have the Markovian property if its future situations
depend only upon its current state. Exhibiting high accuracy in modeling sequential
data, the HMM approach has given rise to a wide range of applications, such as
speech recognition, music retrieval, human activity recognition, consumer pattern
recognition, etc.

Ayhan and Samet [4] introduce a novel stochastic approach to aircraft trajectory
prediction problem, which exploits aircraft trajectories modeled in space and time
by using a spatiotemporal data grid. They represent airspace in 4-D joint data cubes
consisting of aircraft’s motion parameters (i.e., latitude, longitude, altitude, and
time) enriched by weather conditions. In their experimental study, they demonstrate
that their methodology predicts aircraft trajectories efficiently by comparing the
prediction results with the ground truth aligned trajectories, with the error being
reasonably low for 1-h flights, i.e., within the grid’s single-cell boundaries (8–
13 km).

Two of the most widely explored approaches in TP are regression and clustering,
separately or in combination, with some also exploring the use of weather or
other data. These include methods based on generalized linear model (GLM) [9],
typical regression-based short-/mid-term TP [18, 37], combination of clustering and
Kalman filters [32], etc. Neural networks have also been used successfully for the
climb/vertical TP [10] or in relation to the air traffic flows for estimated time of
arrival (ETA).

Regarding en route climb TP, one of the major aspects of decision support for
ATM, Coppenbarger [8] discusses the exploitation of real-time aircraft data, such
as aircraft state variables, aircraft performance, pilot intent, and atmospheric data,
for improving ground-based TP. The problem of climb TP is also discussed in
Thipphavong et al. [39], as it also constitutes a very important challenge in ATM.
In that work, an algorithm dynamically adjusts modeled aircraft weights, exploiting
the observed track data to improve the accuracy of TP for climbing flights. Real-
time evaluation with actual air traffic data shows a significant improvement in
the altitude-only prediction of the trajectory, as well as the time to reach the top-
of-climb. In another work by Ayhan and Samet [5], the authors investigate the
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applicability of HMM for TP on only one phase of a flight, specifically the climb
after takeoff. A stochastic approach such as the HMM can address the TP problem
by taking environmental uncertainties into account and training a model, using
historical trajectory data along with weather observations. The results show robust
performance and high TP accuracy, proving that HMM can be applied equally well
for single-phase prediction, as well as complete-flight prediction. There are also
numerical approaches to the problem of climb-phase TP, e.g., Hadjaz et al. [15].

Despite the plethora of various TP approaches in the aviation domain, most
of them are either based on discovered mobility patterns from historical data or
“blind” predictive modeling along entire flight paths in the sense that no constraint
is imposed to the search space. In this work, the FSTP problem is addressed by
exploiting not only trajectory enrichment (e.g., weather and semantic information)
but, most importantly, flight plans. According to our research, only one very
recent work [20] exploits flight plans and enrichment data (e.g., weather) as input
for TP in the aviation domain. In particular, the authors propose a tree-based
matching algorithm to construct image-like feature maps from meteorological
datasets, then model the track points on trajectories as conditional Gaussian
mixtures with parameters to be learned from a deep generative model, which is
an end-to-end convolutional recurrent neural network (RNN) that consists of a
long short-term memory (LSTM) encoder network and a mixture density LSTM
decoder network. During the inference process, beam search, adaptive Kalman
filter, and Rauch–Tung–Striebel smoother algorithms are used to prune the variance
of generated trajectories. Although promising, this approach requires significant
computing resources and employs an image-like uniform spatiotemporal grid of
high dimensionality for every input component. In terms of accuracy, this deep
learning approach is demonstrated with a very dataset similar to ours (direct
continental flights between two heavy-traffic airports) and the resulting prediction
error is in the order of 92 km, i.e., about 7–9 times worse than the best HMM-based
state-of-the-art approaches [4, 5] that do not use flight plans.

Discovering clusters of complete trajectories can overlook significant patterns
that might exist only for portions of their lifespan. To deal with this, the authors
of [19] propose TraClus, a partition-and-group framework for clustering 2-D
moving objects which segments the trajectories based on their geometric features
and then clusters them by ignoring the temporal dimension. A more recent approach
to the problem of subtrajectory clustering is S2T-Clustering [27]. A similar method
is adopted in [1], where the authors aim at identifying common portions between
trajectories, with respect to some constraints and/or objectives, by taking into
account the “neighborhood” of each trajectory.

The approach presented for FSTP combines several aspects and ideas from the
methods cited above, in order to develop a highly adaptive, long-term, big data
framework for FLP which is experimentally evaluated with datasets from both
the maritime and the aviation domain. More specifically, this two-stage approach
includes: (a) mobility pattern discovery from the historical movement of the moving
objects and (b) employ optimal estimations of FLP in the sense of maximum
likelihood [38], as they are dictated by the identified patterns. Furthermore, some
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promising experimental results are presented for real datasets from both domains,
as well as performance indicators for deployment in a big data platform.

8.6 Discussion

The results presented for the FLP task address two different use cases: (a) when
there is no historic data or not adequate time available for processing them
and constructing network-aware predictive models and (b) when such data and
time are indeed available and common routes are discovered and included in the
predictive models. For (a) the LSTM-based approach is presented here as routes-
agnostic/short-term FLP, while for (b) the two-stage clustering/prediction approach
is presented as network-aware/long-term FLP. Both options are extremely valuable
in real-world applications, especially when treating widely different domains such
as aviation and maritime.

According to these results, the LSTM-based FLP shows very promising perfor-
mance in terms of prediction accuracy. The true power of LSTM is the automated
and robust discovery of mobility patterns from the raw data, with little to no
assumptions about their statistical properties (e.g., noise, trends, etc.), hence to need
to impose artificial constraints that are commonly implied in short-term FLP, such
as the constant-speed assumption for “adequately small” dt . It should also be noted
that the method proposed here is an inherently variable-rate approach, using the
position data (input) as they arrive, with no need for reconstructing the raw trajectory
via fixed-rate resampling, as it is usually the case with NN and other regression
models. This means that the discovered mobility patterns are not “imposed” by any
resampling algorithm, e.g., linear, quadratic, etc.

For the long-term FLP, it is important to emphasize that the proposed framework
relies end-to-end on big data technologies. Nevertheless, this framework is directly
applicable and valid in the aviation domain too, especially since the discovery of
medoids is based upon some form of spatiotemporal clustering to form groups and
common motion patterns, either with or without considering flight plans as input in
the predictive models. The accuracy in both domains, as well as the performance
results, proves that it is a very efficient and scalable big data solution for real-world
applications, easily adaptable to various other domains.

Similarly, the results presented for the FSTP approach verify the applicability
and performance of the proposed FSTP framework in the aviation domain, specif-
ically in the context of pre-flight trajectory prediction, exploiting all the available
information from flight plans, localized weather data and other semantics, e.g.,
aircraft type and category, weekday, etc. This approach was designed from the
start as lightweight, fully parallelizable and compatible with distributed computing
platforms for big data real-world applications. HMM and LR regressors are all valid
within these design specifications, as they are all low-complexity models in terms of
both training and size. Combined with the partitioning of the input data via properly
designed semantic-aware clustering, this modular approach is highly scalable and
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adaptable to any type of transit route and takeoff/landing patterns, provided that the
associated flight plan is available.

It should be noted that the current data-driven methods for long-term FSTP, e.g.,
as in [4] with “blind” HMM, produce cross-section 3-D prediction errors in the order
of 8–13 km. Although this proposed approach is not directly comparable, using
flight plans for constrained-based FSTP as described here produces per-waypoint
3-D prediction errors consistently in the order of 2–3 km and even lower when NN-
MLP regressors are used (see Fig. 8.17, Table 8.7).

8.7 Conclusion

In this work, a novel multi-stage hybrid approach was presented for the FLP and
TP tasks. More specifically, FLP is considered under the short-term/routes-agnostic
and the long-term/network-aware variants, while FSTP is incorporating extensive
exploitation of data enrichments and flight plans as constraints in the aviation
domain.

In FLP, the LSTM-based short-term variant demonstrates how streaming tra-
jectory data can be exploited to train predictive models based on variable-rate
“common” mobility patterns that are discovered from the data itself. In contrast,
the two-stage clustering/prediction long-term variant demonstrates how a rich set
of historic mobility data can be used to model extensive “common” routes in the
form of connected nodes, i.e., a routes network, which is subsequently exploited
as the base for long-term trajectory predictions for any given moving object within
the same region of interest. These two approaches are complementary and can be
adapted to various domain-specific tasks in maritime, aviation, etc.

In FSTP, clustering is introduced for grouping together “similar” enriched
trajectories, using a properly designed semantic-aware similarity function. This
enrichment includes localized weather data (e.g., wind speed & direction), aircraft
properties (e.g., type), and other external factors (e.g., weekday). Subsequently, a set
of independent predictive models are trained for each cluster, addressing the task of
TP in the context of each reference waypoint of the flight plans. HMM, linear, and
non-linear regressors were employed as base for the predictive models, exploring
the trade-off between having very simple predictors and moderate accuracies versus
more complex predictors and higher accuracies.
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Chapter 9
Event Processing for Maritime
Situational Awareness

Manolis Pitsikalis, Konstantina Bereta, Marios Vodas, Dimitris Zissis,
and Alexander Artikis

Abstract Numerous illegal and dangerous activities take place at sea, including
violations of ship emission rules, illegal fishing, illegal discharges of oil and
garbage, smuggling, piracy and more. We present our efforts to combine two
stream reasoning technologies for detecting such activities in real time: a formal,
computational framework for composite maritime event recognition, based on the
Event Calculus, and an industry-strong maritime anomaly detection service, capable
of processing daily real-world data volumes.

9.1 Introduction

Numerous illegal and dangerous activities take place at sea, such as pollution
(illegal discharges of oil and garbage, violations of ship emission rules, etc.), illegal
fishing, smuggling (drugs, arms, oil, etc.), piracy and many more [8]. Often the
vessels involved in such activities attempt to behave as common commercial ships,
concealing their true intentions. Unlike in the past, though, when there was no way
of detecting these activities as they happened, today numerous monitoring systems,
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such as the automatic identification system (AIS), produce constant streams of
surveillance data, often revealing the true intentions of suspicious vessels.

“Collaborative” monitoring systems use equipment that is mostly installed
aboard the vessels that should be monitored and rely on the collaboration of the
vessels’ crew. This equipment is used for reporting the position of the vessel, along
with information about its navigational status (e.g., destination, speed, heading,
course over ground, etc.). The automatic identification system (AIS) [6], for
example, is such a system and is based on the transmission of messages through
VHF transponders installed aboard the vessels themselves and received using VHF
receivers installed on other vessels sailing close by, coastal stations and/or satellites.
Other collaborative systems include the long-range identification and tracking
(LRIT) system [7], and the vessel monitoring system (VMS) [4], which is a system
designed for managing fishing activity. ‘Non-collaborative’ monitoring systems, on
the other hand, do not rely on the collaboration of the crew and include systems such
as coastal and high-frequency radar, active and passive sonar, ground- and vessel-
based (e.g., thermal) cameras, satellite and airborne Earth Observation systems, such
as optical and synthetic aperture radar systems.

The data streams produced by maritime monitoring systems may be consumed by
stream reasoning systems, in order to support Maritime Situational Awareness [20,
21], i.e. the effective understanding of activities, events and threats in the maritime
environment that could impact the global safety, security, economic activity and the
environment (Chap. 1 of this book provides further details on maritime data sources
and operational needs). Terosso-Saenz et al. [18], for example, presented a system
detecting abnormally high or low vessel speed, as well as when two vessels are in
danger of colliding. SUMO [5] is an open-source system combining AIS streams
with synthetic aperture radar images for detecting illegal oil dumping, piracy and
unsustainable fishing. van Laere et al. [19] evaluated a workshop aiming at the
identification of potential vessel anomalies, such as tampering, rendez-vous between
vessels and unusual routing. Mills et al. [14] described a method for identifying
trawling using speed and directionality rules, thus helping in studies of how trawling
impacts on species, habitats and the ecosystem. Millefiori et al. [13] proposed a
distributed framework that uses AIS data to identify port operational regions.

In this chapter, we present our effort to combine two stream reasoning technolo-
gies for maritime situational awareness. First, a formal, computational framework
for composite maritime event recognition, based on the Event Calculus [16].1

Second, an industry-strong maritime anomaly detection service, processing daily
real-world data volumes [8].2 Our integrated system aims to pave the way for the
real-time recognition of a wide variety of maritime events of high significance,
including forms of illegal and suspicious vessel activity. We build on our previous
work in this domain by presenting the architecture and implementation details
of our approach, as used in real-world operational conditions to analyse actual

1http://cer.iit.demokritos.gr/cermm.
2www.marinetraffic.com.
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sensor data, received from the MarineTraffic network. Our novel approach combines
automated reasoning (based on complex event processing) with massive amounts of
historical observational data used for the extraction of contextual information, so
as to improve maritime situational awareness and assist an operational end user
in the decision-making process by providing real-time notifications. The novel
data processing architecture presented here supports large-scale multistage analysis
of data generated by a distributed network of sensors and in situ data (from
computations). In this context we address the modalities of processing combinations
of data stored in massive observational archives and streaming data. The multistage
workflow demonstrates how several state-of-the-art technologies can be combined
(synopsis engine, distributed processing, etc.) to achieve real-time response times.

The remainder of this chapter is structured as follows: Section 9.2 presents
the proposed architecture of the integrated stream reasoning technology. Then,
Sect. 9.3 presents a set of maritime events that may be identified by our technology.
Subsequently, Sect. 9.4 presents a service making available the detected events
to users. Finally, in Sect. 9.5 we summarise our work and present further work
directions.

9.2 System Architecture

9.2.1 Setting the Scene

We support maritime situational awareness following two online tasks/steps: (a)
computing a set of spatial relations among vessels, such as proximity, and among
vessels and areas of interest (e.g., fishing areas), as described in Chap. 6 of this book
and (b) labelling position signals of interest as ‘critical’—such as when a vessel
changes its speed, turns, stops, moves slowly or stops transmitting its position, as
Chap. 4 of this book describes. Figure 9.1 illustrates these steps. Streaming-in AIS
position signals go through a spatial preprocessing step, for the computation of the
spatial relations required by maritime situational awareness [17]. These relations are
displayed at the top of Table 9.1. Then, the relevant position signals are annotated
as critical—see the middle part of Table 9.1. Subsequently, the position signals may
be consumed by our stream reasoning technology either directly (see ‘enriched AIS
stream’ in Fig. 9.1) or after being compressed, that is, after removing all signals that
have not been labelled as critical (see ‘critical point stream’ in Fig. 9.1).

Critical point labelling is performed as part of trajectory synopsis generation,
whereby major changes along each vessel’s movement are tracked (cf. Chap. 4).
This process instantly identifies critical points along each trajectory, such as a stop,
a turn, or slow motion. Using the retained critical points, we may reconstruct a vessel
trajectory with small acceptable deviations from the original one. Empirical results
have indicated that 70–80% of the input data may be discarded as redundant, while
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Fig. 9.1 Steps required for maritime situational awareness

compression ratio can be up to 99% when the frequency of position updates is high
[15].

9.2.2 Maritime Stream Reasoning

We have been developing two stream reasoning technologies for maritime
situational awareness. More precisely, we have been constructing a formal,
computational framework for composite maritime event recognition, based on
RTEC [1], a logic programming implementation of the Event Calculus [16].
RTEC is designed to compute continuous narrative assimilation queries for pattern
matching on data streams and includes several optimisation techniques allowing
for real-time event recognition. To facilitate the interaction of RTEC with state-
of-the-art distributed systems, we have been re-implementing RTEC in the Scala
programming language. This way, we may integrate RTEC with the industry-strong
maritime anomaly detection service of MarineTraffic [8]. This service is based
on a hybrid architecture, comprised of stream and batch processing components.
The stream processing component is based on the actor model—specifically, the
Akka framework—for concurrency and event-driven processing. In what follows,
we briefly present RTEC and illustrate its use for maritime stream reasoning. Then,
in Sect. 9.4 we present MarineTraffic’s service, and the way these two stream
reasoning technologies are being integrated.

The ‘Event Calculus for Run-Time reasoning’ (RTEC) is an Event Calculus
dialect optimised for composite event recognition over high-velocity data streams
[1]. For example, RTEC may detect the composite events displayed at the bottom of
Table 9.1. The time model in RTEC is linear and includes integer time-points. An
event description includes rules that define the event instances with the use of the
happensAt( predicate, the effects of events on fluents—time-varying properties—
with the use of the initiatedAt( and terminatedAt( predicates and the values of the
fluents with the use of the holdsAt( and holdsFor( predicates. Table 9.2 summarises
the main predicates of RTEC.
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Table 9.1 Events for maritime situational awareness: Input events are presented above the double
horizontal line, while the output stream is presented below this line. The input events above the
single horizontal line are detected at the spatial preprocessing step, while the remaining ones are
detected by the trajectory synopsis generator (critical events). With the exception of proximity, all
items of the input stream are instantaneous, while all output activities are durative

Event/Activity Description

In
pu

t

Sp
at

ia
l entersArea(V,A) Vessel V enters area A

leavesArea(V,A) Vessel V leaves area A

proximity(V1, V2) Vessels V1 and V2 are close

C
ri

ti
ca

l

gap_start(V ) Vessel V stopped sending position signals

gap_end(V ) Vessel V resumed sending position signals

slow_motion_start(V ) Vessel V started moving at a low speed

slow_motion_end(V ) Vessel V stopped moving at a low speed

stop_start(V ) Vessel V started being idle

stop_end(V ) Vessel V stopped being idle

change_in_speed_start(V ) Vessel V started changing its speed

change_in_speed_end(V ) Vessel V stopped changing its speed

change_in_heading(V ) Vessel V changed its heading

O
ut

pu
t

C
om

po
si

te

highSpeedNC(V ) Vessel V has high speed near coast

anchoredOrMoored(V ) Vessel V is anchored or moored

drifting(V ) Vessel V is drifting

trawling(V ) Vessel V is trawling

tugging(V1, V2) Vessels V1 and V2 are engaged in tugging

pilotBoarding(V1, V2) Vessels V1 and V2 are engaged in pilot boarding

rendez-Vous(V1, V2) Vessels V1 and V2 are having a rendez-vous

loitering(V ) Vessel V is loitering

sar(V ) Vessel V is engaged in a search and rescue (SAR) operation

Fluents are ‘simple’ or ‘statically determined’. In brief, simple fluents are
defined by means of initiatedAt( and terminatedAt( rules, while statically determined
fluents are defined by means of application-dependent holdsFor( rules, along with
the interval manipulation constructs of RTEC: union_all(, intersect_all( and rela-
tive_complement_all(. See Table 9.2 for a brief explanation of these constructs and
Fig. 9.2 for an example visualisation. Composite events/activities are typically
durative; thus, the task generally is to compute the maximal intervals for which
a fluent expressing a composite activity has a particular value continuously. Below,
we discuss the representation of fluents/composite maritime activities and briefly
present the way in which we compute their maximal intervals.
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Table 9.2 Main predicates of RTEC. ‘F = V ’ denotes that fluent F has value V

Predicate Meaning

happensAt(E, T ) Event E occurs at time T

holdsAt(F = V, T ) The value of fluent F is V at time T

holdsFor(F = V, I ) I is the list of the maximal intervals for which F = V holds

continuously

initiatedAt(F =V, T ) At time T a period of time for which F = V is initiated

terminatedAt(F =V , T) At time T a period of time for which F = V is terminated

union_all(L, I ) I is the list of maximal intervals produced by the union of the

lists of maximal intervals of list L

intersect_all(L, I ) I is the list of maximal intervals produced by the intersection

of the lists of maximal intervals of list L

relative_complement_all I is the list of maximal intervals produced by the relative

(I ′, L, I ) complement of the list of maximal intervals I ′ with respect to

every list of maximal intervals of list L

Time

I1
I2
I3

union_all([I1,I2,I3],I)

I

(a)

Time

I1
I2
I3

intersect_all([I1,I2,I3],I)

I

(b)

Time

I1
I2
I3

relative_complement_all(I1,[I2,I3],I)

I

(c)

Fig. 9.2 A visual illustration of the interval manipulation constructs of RTEC. In these examples,
there are three input streams, I1, I2 and I3, coloured black. The output of each interval manipulation
construct I is coloured light blue. (a) Union. (b) Intersection. (c) Relative complement

9.3 Maritime Events

To analyse the behaviour at sea, we need to spatially define the implicated sites,
such as ports, sea structures, fishing areas and sea zones. In [13], for example, we
presented a data-driven implementation of a distributed method for calculating port
operational areas and other activity areas. Then, we need to define the spatiotem-
poral patterns of vessel activity of interest. Such patterns have been documented
in various papers, including [8, 13, 16, 18, 19]. In this section, we present a set of
indicative patterns in the language of RTEC following [16]. The hierarchy supported
by our integrated stream reasoning technology is displayed in Fig. 9.3. In this figure,
an arrow from pattern A to pattern B denotes that A is used in the specification of B.
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Fig. 9.3 Event hierarchy

9.3.1 Building Blocks

We begin by presenting a set of building blocks that will be later used for the
construction of more involved patterns.

9.3.1.1 Vessel Within Area of Interest

Calculating the intervals during which a vessel is in an area of some type, such as a
(protected) Natura 2000, fishing or anchorage area, is particularly useful in maritime
(e.g., fishing) patterns. Consider the formalisation below:

initiatedAt(withinArea(Vessel, AreaType) = true, T ) ←
happensAt(entersArea(Vessel, AreaID), T ),
areaType(AreaID,AreaType).

terminatedAt(withinArea(Vessel, AreaType) = true, T ) ←
happensAt(leavesArea(Vessel, AreaID), T ),
areaType(AreaID,AreaType).

terminatedAt(withinArea(Vessel, AreaType) = true, T ) ←
happensAt(gap_start(Vessel), T ).

(9.1)
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Variables start with an uppercase letter, while predicates and constants start with
a lower-case letter. withinArea(Vessel, AreaType) is a simple fluent indicating
that a Vessel is within an area of some type. entersArea(Vessel, AreaID) and
leavesArea(Vessel, AreaID) are input events computed at the spatial preprocessing
step (see the top part of Table 9.1), indicating that a V essel entered (respectively,
left) an area with AreaID. areaType(AreaID, AreaType) is an atemporal predicate
storing the areas of interest of a given dataset. withinArea(Vessel, AreaType)= true
is initiated when a Vessel enters an area of AreaType and terminated when the
Vessel leaves the area of AreaType. withinArea(Vessel, AreaType)= true is also
terminated when the trajectory synopsis generator produces a gap_start event (see
the middle part of Table 9.1), indicating the beginning of a communication gap (in
the subsection that follows we discuss further communication gaps). In this case
we chose to make no assumptions about the location of the vessel. With the use of
rule-set (9.1), RTEC computes the maximal intervals during which a vessel is said
to be within an area of some type.

9.3.1.2 Communication Gap

According to the trajectory synopsis generator, a communication gap takes place
when no message has been received from a vessel for at least 30 min. All numerical
thresholds, however, may be tuned—for example, by machine learning algorithms—
to meet the requirements of the application under consideration. A communication
gap may occur when a vessel sails in an area with no AIS receiving station nearby,
or because the transmission power of its transceiver allows broadcasting in a shorter
range, or when the transceiver is deliberately turned off. The rules below present a
formalisation of communication gap:

initiatedAt(gap(Vessel) = nearPorts, T ) ←
happensAt(gap_start(Vessel), T ),
holdsAt(withinArea(Vessel, nearPorts) = true, T ).

initiatedAt(gap(Vessel) = farFromPorts, T ) ←
happensAt(gap_start(Vessel), T ),
not holdsAt(withinArea(Vessel, nearPorts) = true, T ).

terminatedAt(gap(Vessel) = _Value, T ) ←
happensAt(gap_end(Vessel), T ).

(9.2)

gap is a simple, multi-valued fluent, gap_start and gap_end are input critical events
(see Table 9.1), ‘not’ expresses Prolog’s negation-by-failure [3], while variables
starting with ‘_’, such as _Value, are free. We chose to distinguish between
communication gaps occurring near ports from those occurring in the open sea,
as the first ones usually do not have a significant role in maritime monitoring.
According to rule-set (9.2), a communication gap is said to be initiated when the
synopsis generator emits a ‘gap start’ event and terminated when a ‘gap end’ is
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detected. Given this rule-set, RTEC computes the maximal intervals for which a
vessel is not sending position signals.

9.3.2 Maritime Situational Indicators

Our aim is to detect in real-time maritime situational indicators [9], that is,
composite maritime activities of special significance, building upon the blocks
presented above. As mentioned earlier, Fig. 9.3 displays the hierarchy of our
formalisation, that is, the relations between the indicators’ specifications.

9.3.2.1 Vessel with High Speed Near Coast

Several countries have regulated maritime zones. In French territorial waters, for
example, there is a 5 knots speed limit for vessels or watercrafts within 300 m from
the coast. One of the causes of marine accidents near the coast is vessels sailing
with high speed; thus, the early detection of violators ensures safety by improving
the efficiency of law enforcement. Figure 9.4 displays the case of a vessel not
conforming to the above regulations. Consider the following formalisation:

initiatedAt(highSpeedNC(Vesseltext) = true, T ) ←
happensAt(velocity(Vessel, Speed, _CoG, _TrueHeading), T ),
holdsAt(withinArea(Vessel, nearCoast) = true, T ),
threshold(vhs, Vhs), Speed > Vhs.

terminatedAt(highSpeedNC(Vessel) = true, T ) ←
happensAt(velocity(Vessel, Speed, _CoG, _T rueHeading), T ),
threshold(vhs, Vhs), Speed ≤ Vhs.

terminatedAt(highSpeedNC(Vessel) = true, T ) ←
happensAt(end(withinArea(Vessel, nearCoast) = true), T ).

(9.3)

highSpeedNC(Vessel) is a Boolean simple fluent indicating that a Vessel is exceeding
the speed limit imposed near the coast. velocity is input contextual information
expressing the speed, course over ground (CoG) and true heading of a vessel. This
information is attached to each incoming AIS message. Recall that variables starting
with ‘_’ are free. withinArea(Vessel, nearCoast) = true expresses the time periods
during which a Vessel is within 300 m from the French coastline (see rule-set (9.1)
for the specification of withinArea). threshold is an auxiliary atemporal predicate
recording the numerical thresholds of the maritime patterns. The use of this predi-
cate supports code transferability, since the use of different thresholds for different
applications requires only the modification of the threshold predicate, and not the
modification of the patterns. end((F =V ) (respectively, start((F =V )) is an RTEC
built-in event indicating the ending (resp. starting) points for which F =V holds
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100 0 100 200 300 400 m 

Critical points
AIS messages
Trajectory
Area within 300m from coast

Fig. 9.4 A vessel near the port of Brest, France, with speed above the 5 knots limit. The marked
circles denote the AIS position signals that are labelled as ‘critical’ by the synopsis generator

continuously. According to rule-set (9.3), therefore, highSpeedNC(V essel) = true
is initiated when the Vessel sails within 300 m from the French coastline with
speed above 5 knots and terminated when its speed goes below 5 knots, sails away
(further than 300 m) from the coastline or stops sending position signals (recall that
withinArea is terminated/ended by gap_start).

9.3.2.2 Anchored or Moored Vessel

A vessel lowers its anchor in specific areas; for example, when waiting to enter
into a port or taking on cargo or passengers where insufficient port facilities
exist. Figure 9.5 displays an example of a vessel stopped in an anchorage area.
Furthermore, a vessel may be moored, that is, when a vessel is secured with ropes
in any kind of permanent fixture such as a quay or a dock. Consider the specification
below:

holdsFor(anchoredOrMoored(Vessel( = true, I ) ←
holdsFor(stopped(Vessel( = farFromPorts, Isffp),
holdsFor(withinArea(Vessel, anchorage( = true, Iwa),
intersect_all([Isffp, Iwa ], Isa),
holdsFor(stopped(V essel) = nearPorts, Isn),
union_all([Isa, Isn], Ii ),
threshold(vaorm, Vaorm), intDurGreater(Ii , Vaorm, I ).

(9.4)

anchoredOrMoored(V essel) is a statically determined fluent, that is, it is specified
by means of a domain-dependent holdsFor( predicate and interval manipulation
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Fig. 9.5 Anchored vessel

Time

Iwa
Isffp

Isn

I

Ii
T1 T2 T3 T4 T5 T6

Isa

Fig. 9.6 Interval computation example of anchoredOrMoored

constructs—intersect_all( and union_all( in this case, that compute, respectively, the
intersection and union of lists of maximal intervals (see Table 9.2 and Fig. 9.2).
stopped is a fluent recording the intervals in which a vessel is stopped—this may
be far from all ports or near some port(s). intDurGreater(I ′, Vt , I ) is an auxiliary
predicate keeping only the intervals I of list I ′ with length greater than Vt .
anchoredOrMoored(Vessel)= true, therefore, holds when the Vessel is stopped in
an anchorage area or near some port, for a time period greater than some threshold
(see Vaorm in rule (9.4)). The default value for this threshold is set to 30 min, as
suggested by domain experts.

Figure 9.6 illustrates with the use of a simple example the computation of the
anchoredOrMoored intervals. The displayed intervals I , Isffp, etc., correspond to
the intervals of rule (9.4). In the example of Fig. 9.6, the second interval of Ii ,
[T3, T4], is discarded since it is not long enough according to the Vaorm threshold.
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Fig. 9.7 A drifting vessel. In this example, all AIS position signals have been labelled as ‘critical’
(change_in_heading(

9.3.2.3 Drifting Vessel

A vessel is drifting when its course over ground, that is, the direction calculated
by the GPS signal, is heavily affected by sea currents or harsh weather conditions,
or when the vessel is not under control (say due to engine failure). Typically, as
illustrated in Fig. 9.7, when the course over ground deviates from the true heading of
a sailing vessel, that is, the direction of the ship’s bow, then the vessel is considered
drifting. Consider the formalisation below:

initiatedAt(drifting(Vessel) = true, T ) ←
happensAt(velocity(Vessel, _Speed,CoG, TrueHeading), T ),
angleDiff(CoG, TrueHeading, Ad),
threshold(vad , Vad ), Ad > Vad,

holdsAt(underWay(Vessel) = true, T ).

terminatedAt(drifting(Vessel) = true, T ) ←
happensAt(velocity(Vessel, _Speed,CoG, TrueHeading), T ),
angleDiff(CoG, TrueHeading, Ad),
threshold(vad , Vad ), Ad ≤ Vad.

terminatedAt(drifting(Vessel) = true, T ) ←
happensAt(end((underWay(Vessel) = true), T ).

(9.5)
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drifting is a Boolean simple fluent, while, as mentioned earlier, velocity is input
contextual information, attached to each AIS message, expressing the speed, course
over ground (CoG) and true heading of a vessel. angleDiff(A,B,C) is an auxiliary
predicate calculating the absolute minimum difference C between two angles A and
B. The use of underWay in the initiation and termination conditions of drifting (see
rule-set (9.5)) expresses the constraint that only moving vessels can be considered
to be drifting.

9.3.2.4 Tugging

A vessel that should not move by itself, such as a ship in a crowded harbour or a
narrow canal, or a vessel that cannot move by itself is typically pulled or towed by a
tug boat. Figure 9.8 shows an example. During tugging, the two vessels are typically
close and their speed is lower than normal, for safety and manoeuvrability reasons.
We have formalised tugging as follows:

holdsFor(tugging(Vessel1, Vessel2) = true, I ) ←
oneIsTug(Vessel1, Vessel2),
holdsFor(proximity(Vessel1, Vessel2) = true, Ip),
holdsFor(tuggingSpeed(Vessel1) = true, Its1),
holdsFor(tuggingSpeed(Vessel2) = true, Its2),
intersect_all([Ip, Its1, Its2], Ii ),
threshold(vtug, VT ug), intDurGreater(Ii , VT ug, I ).

(9.6)

tugging is a relational fluent referring to a pair of vessels, as opposed to the fluents
presented so far that concern a single vessel. oneIsTug(V1, V2) is an auxiliary
predicate stating whether one of the vessels V1, V2 is a tug boat. proximity is a
durative input fluent computed at the spatial preprocessing step (see Table 9.1),
expressing the time periods during which two vessels are ‘close’ (that is, their
distance is less than a 100 m). tuggingSpeed is a simple fluent expressing the
intervals during which a vessel is said to be sailing at tugging speed. According to
rule (9.6), two vessels are said to be engaged in tugging if one of them is a tug boat,
and, for at least VT ug time-points, they are close to each other and sail at tugging
speed.

9.3.2.5 Vessel rendez-vous

A scenario that may indicate illegal activities, such as illegal cargo transfer, is
when two vessels are nearby in the open sea, stopped or sailing at a low speed.
See Fig. 9.9 for an illustration. A specification of a potential ‘rendez-vous’, or
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Bulk Carrier trajectory
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Fig. 9.8 Example of bulk carrier tugging. In this example, all position signals are labelled as
‘critical’

‘ship-to-ship transfer’, may be found below:

holdsFor(rendez-Vous(Vessel1, Vessel2) = true, I ) ←
notoneIsT ug(Vessel1, Vessel2),
holdsFor(proximity(Vessel1, Vessel2) = true, Ip),
holdsFor(lowSpeed(Vessel1) = true, Il1),
holdsFor(stopped(Vessel1) = farFromPorts, Is1),
union_all([Il1, Is1], I1),
holdsFor(lowSpeed(Vessel2) = true, Il2),
holdsFor(stopped(Vessel2) = farFromPorts, Is2),
union_all([Il2, Is2], I2),
intersect_all([I1, I2, Ip], If ),
holdsFor(withinArea(Vessel1, nearPorts) = true, Inp1),
holdsFor(withinArea(Vessel2, nearPorts) = true, Inp2),
holdsFor(withinArea(Vessel2, nearCoast) = true, Inc1),
holdsFor(withinArea(Vessel2, nearCoast) = true, Inc2),
relative_complement_all(If , [Inp1, Inp2, Inc1, Inc2], Ii ),
threshold(vrv, Vrv), intDurGreater(Ii , Vrv, I ).

(9.7)

rendez-Vous is a relational fluent, while lowSpeed is a fluent recording the inter-
vals during which a vessel sails with a speed between 0.5 and 5 knots. rela-
tive_complement_all( is an interval manipulation construct of RTEC (see Table 9.2
and Fig. 9.2). According to rule (9.7), rendez − V ous(V1, V2) holds when neither
of the two vessels V1, V2 is a tug boat, V1, V2 are close to each other, and they are
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Fig. 9.9 Fishing vessels in close proximity. In this example, the vessels started sailing at a low
speed before they came close to each other. Hence, these critical events (slow_motion_start) are
not displayed in the figure

stopped or sail at low speed far from the coast and ports. Depending on the chosen
distance thresholds for nearCoast and nearPorts, a vessel may be ‘far’ from the
coastline and at the same time ‘near’ some port. Moreover, a vessel may be ‘far’
from all ports and ‘near’ the coastline.

We require that the two vessels are not near the coastline since illegal ship-to-ship
transfer typically takes place far from the coast. We also require that both vessels
are far from ports, as two slow moving or stopped vessels near some port would
probably be moored or departing from the port.

9.4 Anomaly Detection Service

As mentioned earlier, we have been re-implementing RTEC in the Scala program-
ming language, in order to integrate it with the industry-strong maritime anomaly
detection service of MarineTraffic [8]. MarineTraffic is currently the world’s leading
platform offering vessel tracking services and actionable maritime intelligence. It
offers an end-to-end service that tracks vessel positions across the globe based on
AIS and disseminates this information to the general public though its interactive
website, www.MarineTraffic.com. With an open community network of more than
3200 coastal AIS stations, MarineTraffic is capable of tracking vessels on their
journeys across the coastlines of more than 140 countries. While the MarineTraffic
terrestrial-based AIS network provides excellent coverage of several thousands of
ports, the limited range of AIS results in restricted ocean coverage. To address this,

www.MarineTraffic.com
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Fig. 9.10 MarineTraffic anomaly detection service architecture

Terrestrial AIS is combined with Satellite AIS in order to support almost global
vessel monitoring.

On top of the vessel tracking services, MarineTraffic has deployed an anomaly
detection service, which is based on a modified Lambda architecture [11]. This
scheme allows the decoupling of batch processing, performed upon historical data,
and online streaming analysis, which typically exploits the knowledge extracted
from the batch processing (see Fig. 9.10).

The speed layer involves the trajectory synopsis generation engine as described
in the previous section.

The batch layer performs the analysis of historical positional data of vessels and
extracts the so-called Patterns of Life, that is, ‘normal’ maritime activity [2]. Batch
processing is a long-running process which takes several hours to complete. Once
completed, the Patterns of Life are fed into the online layer in order to accommodate
detection of vessel anomalies in real time. Upon detection, those incidents are
displayed to the end user. Furthermore, historical data are sent from this layer back
to the batch layer at specific time intervals, defined from the seasonality of the data,
thus replacing previously constructed patterns with new ones.

The online component is based on the actor model, specifically the Akka
framework, for concurrency and event-driven processing. Actors are versatile, light-
weight objects that have a state, communicate with each other and process the
messages sent to them sequentially. By designing different types of actors and
flows of information between them, we can create quite complex topologies, such
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Fig. 9.11 Area’s incidents page: the incidents/events occurring in an area are displayed on the
map. Red dots, for example, display potential ‘rendez-vous’ incidents

as that displayed in Fig. 9.3, where each actor is responsible for recognising a
maritime event and may be implemented in (the Scala version of) RTEC. Our current
implementation includes ‘ship actors’ and ‘cell actors’. The former type of actor
receives the stream of AIS messages of a particular ship and detects propositional
events concerning that ship, such as ‘high speed near coast’ (see Sect. 9.3.2.1)
and ‘drifting’ (see Sect. 9.3.2.3). The latter type of actor detects relational events,
where data from different ships within a grid cell need to be compared, such as
tugging (Sect. 9.3.2.4) and potential ‘rendez-vous’ (Sect. 9.3.2.5). In the occasion of
a recognition of a maritime event, users registered in the anomaly detection service
are automatically alerted via email, or through the graphical user interface (see
Figs. 9.11 and 9.12). The main goal of the design of the user interface was to reduce
fatigue and the cognitive overload of the operators when having to search through
numerous surveillance datasets and alerts. Towards this, the entire structure and
format of the produced maritime situational awareness picture follows an interactive
goal-driven approach.

An Example of a Real Case SBI Jaguar is a vessel sailing under the flag of
Marshall Islands. On the 28th of March 2018, as the vessel was heading out of the
Western Scheldt, a cylinder of the steering gear sheared off and the vessel was not
under command. Then, SBI Jaguar ran aground on a sandbar in line with Perkpolder,
and seven tugs were engaged in the vessel’s re-floating operation. Subsequently,
the vessel was towed to the Everingen’s anchorage for an underwater inspection.
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Fig. 9.12 Incident’s details page. This screenshot shows a ‘route deviation’ incident/event (see
also Fig. 9.3). Such an event is recognised when a ship is found travelling outside its expected
route or speed patterns in a given area and time. The past track (in blue colour) and the normal
route (in blue-green colour) are displayed on the map together with the vessel’s speed, course over
ground and the time the incident occurred

Fig. 9.13 The SBI Jaguar grounding

Figure 9.13 showcases that the vessel was sailing within its ‘safe path’, displayed
by the polygon with turquoise colour, when the cylinder sheared off. At that point,
the vessel started drifting having multiple changes of course over ground, which was
detected by our service.
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9.5 Summary & Further Work

We presented our on-going efforts towards integrating two state-of-the-art stream
reasoning technologies for maritime situational awareness. A formal, computational
framework has been re-implemented in the Scala programming language to allow
for the interaction with the distributed implementation of MarineTraffic, thus paving
the way for the real-time recognition of a wide variety of maritime events.

There are several directions for current and further work. First, we are currently
evaluating the performance of the integrated system on real-world and synthetic
datasets. (Results on the individual technologies have been already documented
and indicate their capability for real-time performance [8, 16].) Second, we are
developing online machine learning techniques for continuously refining maritime
patterns given new streaming data [10, 12]. Finally, we are integrating satellite
images with position signals and geographical information for a more complete
account of maritime situational awareness.
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Chapter 10
Offline Trajectory Analytics

Panagiotis Tampakis, Stylianos Sideridis, Panagiotis Nikitopoulos,
Nikos Pelekis, Christos Doulkeridis, and Yannis Theodoridis

Abstract In recent years, there has been observed an “explosion” of trajectory
data production due to the proliferation of GPS-enabled devices, such as mobile
phones and tablets. This massive-scale data generation has posed new challenges
in the data management community in terms of storing, querying, analyzing, and
extracting knowledge out of such data. Knowledge discovery out of mobility data
is essentially the goal of every mobility data analytics task. Especially in the
maritime and aviation domains, this relates to challenging use-case scenarios, such
as discovering valuable behavioral patterns of moving objects, identifying different
types of activities in a region of interest, environmental fingerprint, etc. In order
to be able to support such scenarios, an analyst should be able to apply, at massive
scale, several knowledge discovery techniques, such as trajectory clustering, hotspot
analysis, and frequent route/network discovery methods.

10.1 Introduction

Location aware devices such as mobile phones, tablets, and automobiles carry
numerous networked sensors, which create huge amounts of data that represent
some kind of mobility. In addition, the massive participation of individuals on
location-based social networks will continue to fuel exponential growth in the
production of this kind of data. This enormous volume of data has posed new
challenges in the world of mobility data management in terms of storing, querying,
analyzing, and extracting knowledge out of them in an efficient way.
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10.1.1 About Mobility Data Analytics

Concerning the analysis of mobility data, mobility data analytics aim to describe the
mobility of objects, to extract valuable knowledge by revealing motion behaviors or
patterns, to predict future mobility behaviors or trends, and in general, to generate
various perspectives out of data, useful for many other scientific fields. To serve
its purpose, mobility data analytics follows a series of steps. Having assured the
collection and efficient storage of mobility data, the next step for an analyst is
to familiarize with the mobility data by employing a number of techniques (e.g.,
statistics, data visualization, and visual analytics) to form a compact and complete
picture of the available mobility data. Afterwards, the analyst, depending on the
application requirements, proceeds to the appropriate preprocessing steps. The goal
is to bring mobility data in a form that serves its later usage by various processes
and algorithms that respond to given questions. Data preparation is essential for
successful mobility data analytics, since low-quality data typically result in incorrect
and unreliable conclusions, as mentioned in chapters in Part I. Finally, mobility
data are ready for the application of knowledge extraction methods that will satisfy
the given application requirements. There are already several analytical methods
and algorithms available from the scientific community and an analyst has the
capability either to employ some of the existing techniques or implement some ad
hoc solutions that better serve the problems’ needs.

The overall objective is to develop advanced, beyond current state-of-the-art data
analytics methods and tools over the repository of trajectories of moving objects.
The challenge to be addressed here is that information is not purely spatiotemporal;
it is contextually enhanced by exploiting integrated data. The big data solutions
proposed in this chapter focus onto the problems of cluster analysis and motion
pattern detection, hotspot analysis, and semantic-aware mobility network discovery.

In more detail, we designed and implemented a scalable distributed trajectory
join method, which utilizes the popular MapReduce distributed programming
model. This approach plays a key role as it is the building block upon which
our clustering analytics methods are based, as it tackles the scalability bottleneck
problem present in mobility data. In addition, we devised and implemented a
novel, scalable distributed (sub)trajectory clustering method, which utilizes the
aforementioned distributed trajectory join method in order to cluster massive-scale
datasets of trajectories. The goal of this approach, that is the upshot of our clustering
methods, is to provide a hybrid solution for the whole-trajectory as well as for the
subtrajectory clustering problems in an efficient and scalable way. Furthermore, we
designed and implemented a scalable distributed trajectory-based hotspot analysis
method. In this line of research, we followed a different clustering approach that
provides statistical guarantees for the identified clusters. More interestingly, with
this approach we solve a different clustering problem that is also inherent in
the maritime and aviation domains. Specifically, as a proof of concept, with this
approach, we were able to discover hotspots that in the maritime domain can
be used to measure the fishing pressure at sea, while in the aviation domain it
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identifies air-blocks that present demand-capacity problems. Finally, we designed
and implemented a method that discovers mobility networks, which consist of
synthetic, pattern-based, compact representations of data. This method employs a
semantic-aware methodology, applicable for big contextually enhanced trajectory
data (actually the synopses generated the respective component), which results
in a network representation of mobility data (actually, spatial graphs enhanced
with thematic annotations) that can be utilized to support prediction/forecasting
problems.

The rest of the chapter is organized as follows: Section 10.2 familiarizes the
reader with some background knowledge. In more detail, Sect. 10.2.1 presents
sufficient background knowledge about (sub)trajectory clustering, Sect. 10.2.2 about
hotspot analysis, and Sect. 10.2.3 about enriched mobility networks. Subsequently,
in Sect. 10.3 we present two big data solutions to the problem of (sub)trajectory
clustering and more specifically Sect. 10.3.1.1 employs off-the-shelf clustering algo-
rithms provided by Spark MLib in order to identify clusters of entire trajectories,
while Sect. 10.3.2 presents a highly scalable solution to the problem of Distributed
Subtrajectory Clustering. Moreover, Sect. 10.4 introduces the reader with a big
data solution to the problem Distributed Hotspot Analysis and Sect. 10.5 with the
discovery of Semantic-aware Mobility Networks in a distributed way. Section 10.6
presents the related state-of-the-art approaches to the problems identified in this
chapter, and finally, Sect. 10.7 concludes the chapter.

10.2 Background

10.2.1 (Sub)trajectory Clustering

Given a set D of moving object trajectories, a trajectory r ∈ D is a sequence of
timestamped locations {r1, . . . , rN }. Each ri = (loci, ti ) represents the i-th sampled
point, i ∈ 1, . . . , N of trajectory r , where N denotes the length of r (i.e., the number
of points it consists of). Moreover, loci denotes the spatial location (2D or 3D) and
ti the time coordinate of point ri , respectively.

A subtrajectory ri,j is a subsequence {ri, . . . , rj } of r which represents the
movement of the object between ti and tj , where i < j and i, j ∈ 1, . . . , N .
Let ds(ri, sj ) denote the spatial distance between two points ri ∈ r , sj ∈ s.
In our case we adopted the Euclidean distance; however, other distance functions
might be applied. Also, let dt (ri , sj ) denote the temporal distance, defined as
|ri .t − sj .t|. Furthermore, let 	tr symbolize the duration of trajectory r (similarly
for subtrajectories).
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10.2.2 Hotspot Analysis

In geospatial analysis, a hotspot is a geographic area that contains unusually high
concentration of activities (e.g., moving objects). The difference between a hotspot
and a cluster is that the former aims to discover areas that are statistically significant,
whereas the latter focuses on grouping similar objects.

Statistical significance determines whether the relationship between two or more
variables is caused by chance. For example, the number of vehicles moving in a
specific geospatial area is statistically significant, if it can be proved that it is not the
result of chance. In statistical hypothesis testing, the statistical significance can be
determined by testing the null hypothesis. To this end, a p-value (probability value)
needs to be calculated which represents the probability that the relationship between
two or more variables rejects the null hypothesis. In geospatial analysis a p-value
can be determined by calculating a z-score value for a given geospatial area. Such
z-scores can be calculated by using several geospatial statistics defined in literature,
namely the Getis–Ord statistic [23] or the Moran’s I [18].

Motivated by the need for big data analytics over trajectories of moving objects,
we focus on discovering trajectory hotspots in the maritime domain, as this relates
to various challenging use-case scenarios [5], as, for instance, detecting fishing
pressure, as discussed in Part I of this book. Trajectory hotspot analysis is related
to geospatial hotspot analysis, since both discover hotspots on geographical areas.
However, the former analysis has two main differences: (a) it considers an additional
variable, namely the temporal dimension in the z-score calculation, and (b) it
discovers hotspots based on trajectories of objects rather than individual traced
object locations. In the following we formally define the problem of trajectory
hotspot analysis.

10.2.3 Data-Enriched Mobility Networks

In both the maritime and the aviation domain, we notice a plethora of moving
objects. At the same time with the advances in tracking technology there is an
abundance of information, not always valuable, concerning the movement of such
objects. This has enabled a wide spectrum of novel applications and services.
Among them is the process of using the traces of moving entities to produce maps
of transportation networks.

This quantity of information leads to the need of discovering new efficient and
effective ways to infer the underlying transportation network driven by the data of
moving objects itself. Although both ships and aircraft should follow predefined
movement plans, there exist many cases where, for various reasons (weather,
protected areas, congestion, etc.), objects do not follow these routes plans. Such
deviations are crucial to be instantly identified so that preventative measures can
be taken to avoid the occurrence of safety-compromising events, such as natural
disasters or accidents.
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10.3 Distributed Trajectory Clustering

As mentioned in Sect. 10.1, one of the challenges when trying to extract knowledge
out of mobility data is cluster analysis, which aims at identifying clusters of moving
objects, as well as detecting moving objects that demonstrate abnormal behavior and
can be considered as outliers. By discovering these clusters, the underlying hidden
patterns of collective behavior can be revealed.

10.3.1 Distributed Whole-Trajectory Clustering

The research so far has focused mainly on dealing with the trajectory clustering
problem in a centralized way. However, the problem that we are trying to deal with in
this section is that of whole-trajectory clustering in a distributed way. The intuition
here is to use the off-the-shelf clustering algorithms provided by Spark MLlib, such
as k-means, Gaussian mixture model, power iteration clustering, and bisecting k-
means, in order to identify clusters of entire trajectories. To achieve this, we need to
transform each trajectory into a vector that will be given as input to the respective
clustering algorithm of Spark MLlib.

10.3.1.1 Clustering Trajectories in a Distributed Way with Spark MLlib

The solution to the distributed whole-trajectory clustering problem proposed here
is pretty simple, since it utilizes off-the-shelf algorithms of Spark MLlib. In order
to achieve this, we just need to transform each trajectory into a N-dimensional
vector, where N is the number of samples that constitute a trajectory. Subsequently,
these vectors will be given as input to the respective clustering algorithm of Spark
MLlib. The actual challenge here is how to transform a dataset of trajectories into
vectors, which will be the input for a series of clustering algorithms included in
Spark MLlib. In order to vectorize each trajectory, some kind of resampling needs
to be performed, due to the fact that different trajectories might have different
number of samples. Selecting the resampling method is a crucial decision because
it determines what kind of clustering (spatial-only or spatiotemporal) we will
end up in performing. This applies because, implicitly, the position j inside a
vectorized trajectory determines the time of the observation of vj . In this analysis,
two alternative resampling methods are adopted: the interpolation method and the
normalized interpolation method.

More specifically, a trajectory vector v is a vector (2D or 3D) representing a
trajectory. The size of the vector for each trajectory T ∈ D has a fixed length s

which is defined a priori. Each element vj of v, where j ∈ 1, . . . , s, represents the
spatial location (2D or 3D) of the respective trajectory. The interpolation method,
as depicted in Algorithm 10.1, takes as input a set of trajectories D and the vector
length s and outputs a set D′ of vectorized trajectories. In more detail, for each
trajectory T (line 3) it creates a vector of size s (line 4) by selecting s timestamps
stj , with j ∈ 1, . . . , s, of duration (T N.t − T 1.t)/s, where (T N.t − T 1.t) is the
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duration of trajectory T , starting from st1 = T 1.t and ending at sts = T N.t . For
each stj , the algorithm finds the corresponding position of T by performing cubic
interpolation and stores this position in vj (lines 5–6). Finally, v is added to D′ (line
6) and when all trajectories of D get vectorized, D′ is returned (line 9).

Algorithm 10.1 Vectorization by interpolation
1: Input: D, s

2: Output: D′
3: for each T ∈ D do
4: create v;
5: for j = 1 . . . s do
6: stj = T 1.t + (j − 1)(T N.t − T 1.t)/s;
7: vj ← cubic_interpolation(T , stj );
8: v → D′;
9: return D′;

Now, let us consider two trajectories q and r and their vectorized versions v(q)

and v(r), respectively, with qN.t − q1.t �= rN .t − r1.t . This means that for any
given j ∈ 1, . . . , s, v(q)j will depict the position of trajectory q at a different
timestamp than the position depicted for trajectory r by v(r)j . However, in order
for the algorithms that will be employed to perform spatiotemporal clustering, for
any given pair of trajectories q and r and for any given j ∈ 1, . . . , s, it must hold that
v(q)j and v(r)j represent the position of trajectory q and r at the same timestamp.
For this reason, the vectorization by interpolation is used to perform spatial-only
clustering. However, if the goal is to perform spatiotemporal trajectory clustering
the interpolation vectorization method has the aforementioned shortcoming and in
order to overcome this, another vectorization method needs to be employed. For this
reason, we propose the normalized interpolation vectorization method which takes
as input a set of trajectories D, the vector length s, and the time of the temporally
first and last observed sample D.ti and D.te, respectively, of D and output a set D′
of vectorized trajectories.

In more detail, as depicted in Algorithm 10.2, we first create the universal
resampling vector rsv (line 3) by selecting s timestamps stj , with j ∈ 1, . . . , s, of
duration (D.te − D.ti )/s, where (D.te − D.ti ) is the duration of the dataset, starting
from st1 = D.ti and ending at sts = D.te (lines 4–6). The utility of rsv is to help
resample each T ∈ D in such a way so that for any given pair of trajectories q and r

and for any given j ∈ 1, . . . , s, it holds that v(q)j and v(r)j represent the position
of trajectory q and r at the same timestamp. Subsequently, for each trajectory T we
create a vector v of size s (lines 7–8). Then, for each sample j , we examine whether
the corresponding time in rsvj is contained by the lifespan of T (lines 9–10). If
it is contained, then we find the corresponding position of T by performing cubic
interpolation and we store this position in vj (line 11). If rsvj is not contained by
the lifespan of T and rsvj is less or equal to the first timestamp of the trajectory
T1.t , then the first recorded position of T is stored in vj (lines 13). Otherwise, if
rsvj is not contained by the lifespan of T and rsvj is greater or equal to the last
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Algorithm 10.2 Vectorization by normalized interpolation
1: Input: D, s, D.ti and D.te
2: Output: D′
3: create rsv;
4: for j = 1 . . . s do
5: stj = D.ti+(j − 1)(D.te − D.ti )/s;
6: rsvj ← stj ;
7: for each T ∈ D do
8: create v;
9: for j = 1 . . . s do

10: if rsvj ∈(T1.t, TN .t) then
11: vj ← cubic_interpolation(T , rsvj );
12: else if rsvj ≤ T1.t then
13: vj ← T1.p

14: else
15: vj ← TN.p

16: v → D′;
17: return D′;

timestamp of the trajectory TN.t , then the last recorded position of T is stored in
vj (line 15). Finally, v is added to D′ (line 16) and when all trajectories of D get
vectorized, D′ is returned (line 17).

10.3.2 Distributed Subtrajectory Clustering

However, identifying clusters of complete trajectories can result in disregarding
significant patterns that might exist only for some portions of their lifespan. The
following motivating example shows the merits of subtrajectory clustering.

Example 10.1 (Subtrajectory Clustering) Figure 10.1a illustrates six trajectories
moving in the xy-plane, where each one of them has a different origin–destination
pair. More specifically, these pairs are A → B, A → C, A → D, B → A, B → C,
and B → D. These six trajectories have the same starting time and similar speed. A
typical trajectory clustering technique would fail to identify any clusters. However,
the goal of a subtrajectory clustering method is to identify 4 clusters (A → O (red),
B → O (blue), O → C (purple), O → D (orange)) and 2 outliers (O → A and
O → B (black)), as depicted in Fig. 10.1b.

The problem of subtrajectory clustering is shown to be NP-Hard (cf. [1]).
In addition, the objects to be clustered are not known beforehand (as in entire-
trajectory—from now on—clustering algorithms), but have to be identified through
a trajectory segmentation procedure. Efforts that try to deal with this problem in a
centralized way do exist [1, 15, 28]; however, applying these centralized algorithms
over massive data in a scalable way is far from straightforward. This calls for parallel
and distributed algorithms that address the scalability requirements.
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Fig. 10.1 (a) Six trajectories moving in the xy-plane and (b) 4 clusters (red, blue, orange, and
purple) and 2 outliers (black)

Algorithm 10.3 DSC(D)
1: Input: D

2: Output: set C of clusters, set O of outliers
3: Preprocessing: Repartition D;
4: for each partition Di ∈ ∪P

i=1Di do
5: perform Point-level Join;
6: group by Trajectory;
7: for each Trajectory r ∈ D do
8: perform Subtrajectory Join
9: perform Trajectory Segmentation;

10: group by Di ;
11: for each subtrajectory r ′ ∈ Di do
12: calculate Sim(r ′, s′) ∀s′ ∈ Di ;
13: perform Clustering;
14: perform Refine Results;
15: return C and O;

10.3.2.1 Definitions

Subtrajectory clustering relies on the use of a similarity function between subtrajec-
tories. Although various similarity measures have been defined in the literature, our
choice of similarity function is motivated by the following (desired) requirements:
variable sampling rate and lack of alignment, variable trajectory length,
temporal displacement, symmetry, and efficiency.

In order to meet with the aforementioned specifications we utilize the longest
common subsequence (LCSS) for trajectories, as defined in [36].

Sim(r, s) = LCSSεt ,εsp (r, s)

min(|r|, |s|) (10.1)
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where |r| (|s|) is the length of r (s, respectively). Moreover, it holds that Sim(r, s)
= Sim(s, r).

However, LCSS considers as equally similar all the points that exist within an
εsp spatial range from r , which is a fact that might compromise the quality of the
clustering results. Ideally, given two matching points ri ∈ r and sj ∈ s, sj (ri ,
respectively) should contribute to LCSSεt ,εsp (r, s), proportionally to the distance
ds(ri, sj ). For this reason, we propose a “weighted” LCSS similarity between
trajectories, that incorporates the aforementioned distance proportionality. In more
detail:

Sim(r, s) =
�

min(|r |,|s|)
k=1

(
1 − ds (rk,sk)

εsp

)

min(|r|, |s|) (10.2)

where (rk, sk) is a pair of matched points.
Our approach to subtrajectory clustering splits the problem into three steps. The

first step is to retrieve for each trajectory r ∈ D all the moving objects, with their
respective portion of movement, that moved close enough in space and time with
r , for at least some time duration. This is a well-defined problem in the literature
of mobility data management, known as subtrajectory join (the case of self-join).
The subtrajectory join will return for each pair of (sub)trajectories, all the common
subsequences that have at least some time duration, which are actually candidates
for the longest common subsequence. Formally:

Problem 10.1 (Subtrajectory Join) Given a temporal tolerance εt , a spatial
threshold εsp, and a time duration δt , retrieve all pairs of subtrajectories (r ′, s′)
∈ D such that: (a) for each pair 	tr ′,	ts ′ ≥ δt , (b) ∀ri ∈ r ′ there exists at least one
sj ∈ s′ so that ds(ri, sj ) ≤ εsp and dt (ri , sj ) ≤ εt , and (c) ∀sj ∈ s′ there exist at
least one ri ∈ r ′ so that ds(sj , ri ) ≤ εsp and dt (sj , ri ) ≤ εt .

The second step takes as input the result of the first step and aims at segmenting
each r ∈ D into a set of subtrajectories. In our case, the way that a trajectory
is segmented into subtrajectories is neighborhood-aware, meaning that a trajectory
will be segmented every time its neighborhood changes significantly.

Problem 10.2 (Trajectory Segmentation) Given a trajectory r , discover the set
of timestamps CP (cutting points), where the neighborhood (the density or the
composition) of r changes significantly. Then according to CP , r is partitioned
to a set of subtrajectories {r ′

1, . . . , r
′
M }, where M = |CP | + 1 is the number of

subtrajectories for a given trajectory r , such that r = ∪M
k=1r

′
k and k ∈ [1,M].

Given the output of Problem 10.1, applying a trajectory segmentation algorithm
for the trajectories D will result in a new set of subtrajectories D′. The third
step takes as input D′ and the goal is to create clusters (whose cardinality is
unknown) of similar subtrajectories and at the same time identify subtrajectories
that are significantly dissimilar from the others (outliers). More specifically, let
C = {C1, . . . , CK } denote the clustering, where K is the number of clusters, and for
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every pair of clusters Ci and Cj , with i, j ∈ [1,K], it holds that Ci ∩Cj = Ø. Now,
let us assume that each cluster Ci ∈ C is represented by one subtrajectory Ri ∈ Ci ,
called Representative. Furthermore, let R denote the set of all representatives.
Actually, the problem of clustering is to discover clusters of objects such that the
intra-cluster similarity is maximized and the inter-cluster similarity is minimized.
Therefore, if we ensure that the similarity between the representatives is zero,
then the problem of subtrajectory clustering can be formulated as an optimization
problem as follows.

Problem 10.3 (Subtrajectory Clustering and Outlier Detection) Given a set of
subtrajectories D′, partition D′ into a set of clusters C, and a set of outliers O , where
D′ = C ∪ O , in such a way so that the sum of similarity between cluster members
and cluster representatives (SSCR) is maximized:

SSCR = �∀Ri∈R�∀r ′
j ∈Ci

Sim(Ri, r
′
j ) (10.3)

However, trying to solve Problem 10.3 by maximizing Eq. (10.3) is not trivial,
since the problem to segment trajectories to subtrajectories, select the set of rep-
resentatives R and its cardinality |R| that maximizes Eq. (10.3), has combinatorial
complexity.

Here, we address the challenging problem of subtrajectory clustering in a
distributed setting, where the dataset D is distributed across different nodes, and
centralized processing is prohibitively expensive.

Problem 10.4 (Distributed Subtrajectory Clustering) Given a distributed set of
trajectories, D = ∪P

i=1Di , where P is the number of partitions of D, perform the
subtrajectory clustering task in a parallel manner.

Actually, Problem 10.4 can be broken down to solving Problems 10.1–10.3 (in
that order) in a parallel/distributed way. In what follows, we adopt this approach and
outline a solution that is based on MapReduce.

The overall subtrajectory clustering algorithms are presented in Algorithm 10.3.
Each of the major steps in this algorithm is presented in subsequent paragraphs.
Initially, we Repartition the data into P equi-sized, temporally sorted temporal
partitions (files), which are going to be used as input to the distributed subtrajectory
join algorithm (line 3). Note that this is actually a preprocessing step that only
needs to take place once for each dataset D. However, it is essential as it enables
load balancing by addressing the issue of temporal skewness in the input data.
Subsequently, for each partition Di ∈ ∪P

i=1Di and for each trajectory (the reference
trajectory) we discover parts of other trajectories that move close enough in space
and time (line 5). Successively, we group by reference trajectory in order to
perform the subtrajectory join (line 8). At this phase, since our data is already
grouped by trajectory, we also perform trajectory segmentation in order to split
each trajectory to subtrajectories (line 9). In turn, we utilize the temporal partitions
created during the Repartition phase and re-group the data by temporal partition.
For each Di ∈ ∪P

i=1Di we calculate the similarity between subtrajectories and
perform the clustering procedure (line 12). At this point we should mention that
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if a subtrajectory intersects the borders of multiple partitions, then it is replicated in
all of them. This will result in having duplicate and possibly contradicting results.
For this reason, as a final step, we specify the Refine Results procedure (line 14).
Finally, a set C of clusters and a set O of outliers are produced.

10.3.2.2 Distributed Subtrajectory Join

As already mentioned, the first step is to perform the subtrajectory join in a
distributed way. For this reason, we exploit the work presented in [34], coined DTJ
(Distributed subTrajectory Join), which introduces an efficient and highly scalable
approach to deal with the subtrajectory join problem (Problem 10.1) by means of
MapReduce. More specifically, DTJ is comprised of a Repartitioning phase and a
Query phase. The Repartitioning phase is a preprocessing step that takes place only
once and it is independent of the actual parameters of the problem, namely εsp, εt ,
and δt . The goal for this step is to produce load balanced temporal partitions. The
idea is to construct an equi-depth histogram based on the temporal dimension, where
each of the M bins contains the same number of points and the borders of each bin
correspond to a temporal interval [ti , tj ). The histogram is constructed by taking a
sample of the input data. Then, the input data is partitioned to processing tasks based
on the temporal intervals of the histogram bins. This guarantees temporal locality in
each partition, as well as equi-sized partitions, thus balancing the load fairly.

In the Query phase, the actual join processing takes place. It consists of two steps,
the Join and the Refine step, which are implemented as a Map and a Reduce function,
respectively. The output of this MapReduce job is, for each reference trajectory
r ∈ D, all the moving objects, with their respective portion of movement, that
moved close enough with r in space and time for at least some time duration. In
Fig. 10.2, the DTJ query corresponds to Job 1 until the Refine() procedure.

For more technical details about the algorithms involved in DTJ, their complexity
and an extensive experimental study, we refer to [34].

10.3.2.3 Distributed Trajectory Segmentation

The Trajectory Segmentation Algorithm (TSA) takes as input a single trajectory,
along with information about its neighborhood, and partitions it to a set of subtra-
jectories. We propose two alternative segmentation algorithms. The first algorithm,
coined T SA1, identifies the beginning of a new subtrajectory whenever the density
of its neighborhood changes significantly. For this purpose, we use the concept of
voting as a measure of density of the surrounding area of a trajectory. For a given
point ri and any trajectory s, the voting V (ri) is defined as:

V (ri ) = �∀s∈D
ds(ri, sk)

εsp

(10.4)
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where sk is the matching point of s with ri , as emitted by the subtrajectory join
procedure.

Finally, the voting of a trajectory (or subtrajectory) is defined as:

V (r) = 1

N
�N

i=1V (ri ) (10.5)

The second segmentation algorithm, coined T SA2, identifies the beginning
of a new subtrajectory whenever the composition of its neighborhood changes
substantially. This algorithm takes as input a list L(ri)[] of the trajectory ids
that have been produced as output by the DTJ procedure. The following example
explains intuitively the difference between the two segmentation algorithms.

Example 10.2 Consider the example of Fig. 10.3a that illustrates five trajectories:
A → B, A → C, A → D, C → B, and D → B. Figure 10.3b and c depict the
result of TSA1 and TSA2, respectively. In more detail, we can observe that both TSA1
and TSA2 segmented trajectory A → D to subtrajectories A → O and O → D, due
to the fact that after O , both the density and the composition of the neighborhood
change. The same holds for trajectories A → C, C → B, and D → B, which are
segmented to subtrajectories A → O , O → C, C → O , O → B, D → O , and
O → B. However, when it comes to trajectory A → B, we can observe that while
TSA2 segments it to subtrajectories A → O and O → B, TSA1 does not perform
any segmentation. This is due to the fact that, after O , even though the density of
the neighborhood remains the same (i.e., 3 moving objects), the composition of the
neighborhood changes completely.

Both segmentation algorithms share a common methodology, which employs two
consecutive sliding windows W1 and W2 of size w (i.e., w samples) to estimate the
point ri ∈ CP (cutting point) where the “difference” between the two windows
is maximized. This methodology has been successfully applied in the past on
signal segmentation [24, 25]. To exemplify, let us consider trajectory A → D of
Example 10.2. For simplicity, we assume that the voting of the specific trajectory
from A to O is 3 and from O to D is 1. Figure 10.4 illustrates the two sliding
windows W1 and W2 that traverse the voting signal of trajectory A → D.

Similar Subtrajectories The next step is to calculate the similarity between all
the pairs of subtrajectories, using Eq. (10.2). This cannot be done completely after
the segmentation at the Reducer phase of Job 1, illustrated in Fig. 10.2, because
at that point each reduce function has information only about the segmentation of
the reference trajectory to subtrajectories. For this reason, at this point we cannot
calculate the denominator of Eq. (10.2). However, for each subtrajectory r ′ ∈ r ,
where r is the reference trajectory, we can calculate the similarity between the
matching points (enumerator of Eq. (10.2)).

At this point, each Mapper has now all the information needed to calculate the
similarity between all the pairs of subtrajectories (Eq. (10.2)), for each temporal par-
tition separately. The similarity between subtrajectories is output in a new relation,
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Fig. 10.3 (a) Five trajectories A → B, A → C, A → D, C → B, and D → B, (b) T SA1
segmentation, (c) T SA2 segmentation
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Fig. 10.4 The two consecutive sliding windows W1 and W2 used by the segmentation algorithms

called SP. Each tuple of this relation holds information about a subtrajectory r ′ and
its similarity with all the other subtrajectories, whenever this similarity is larger than
zero. More specifically, SP contains a set of key-value pairs where the key is the ID
of the subtrajectory (r ′.ID) and the value is a list AdjLst containing elements of the
form (s′.ID, Sim), where s′ is a subtrajectory for which it holds that Sim(r ′, s′)> 0.

10.3.2.4 Distributed Subtrajectory Clustering

Clustering After having calculated the similarity between all pairs of subtrajec-
tories for each temporal partition, we can proceed to the actual clustering and
outlier detection procedure. The intuition behind the proposed solution to the
subtrajectory clustering and outlier detection problem (Problem 10.3) is to select as
cluster representatives highly voted subtrajectories that have zero similarity with the
already selected representatives Ri ∈ R, thus addressing the inter-cluster distance
minimization. Then, we assign each subtrajectory to the cluster (i.e., Representative)
with which it has the greatest similarity.

The input of the clustering algorithm is SP , ST , and parameters k and α and
the output is the set of clusters C and the set of outliers O . More specifically, k

is a threshold for setting a lower bound on the voting of a representative. This
prevents the algorithm from identifying clusters with small support. Parameter α

is a similarity threshold used to assign subtrajectories to cluster representatives.
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It ensures that a subtrajectory assigned to a cluster has sufficient similarity with
the representative of the cluster. This actually poses a lower bound to the average
distance between the representatives and the cluster members and, consequently,
guarantees a minimum quality in the identified clusters (intra-cluster distance).

Refinement of Results At this point we successfully accomplished to deal with
Problem 10.3 for each temporal partition. However, this might result in having
duplicates due to the fact that each subtrajectory that temporally intersects multiple
partitions is replicated to each one of them. The actual problem that lies here is
not the duplicate elimination problem itself but the fact that the result for such
a subtrajectory might be contradicting in different partitions. In more detail, for
each partition, the clustering procedure will decide whether a subtrajectory is a
Representative (R), a Cluster Member (C), or an Outlier (O). Hence, for each
intersecting subtrajectory q and for each pair of consecutive temporal partitions
(i, j) with which q intersects, q can have the following pairs of states: (a) O–O , (b)
R–R, (c) C–C, (d) R–C (C–R), (e) R–O (O–R), and (f) C–O (O–C).

For each of the above cases a decision has to be made, in order to eliminate
duplicates and provide the correct result according to the problem definition. More
specifically, in case of (a), q is marked as outlier in both partitions; hence, we only
need to eliminate duplicates. In case of (b), the two clusters are “merged,” since all
of the subtrajectories that belong to them are similar “enough” with q , which is the
representative of both clusters. In case of (c), let us assume that q belongs to cluster
Ci(R(q)) in Partition i and Ci+1(R(q)) in Partition i + 1. Then, q is assigned to
the cluster with which it has the largest similarity with its representative. In case
of (d), q remains to be a cluster representative and is removed from the cluster C

in which it is a member. Finally, in case of (e) and (f), q is removed from O . For
more details concerning the Distributed Subtrajectory Clustering solution presented
in this section, please refer to [35].

10.3.2.5 Experimental Results

In this section, we provide our experimental study on the solution that we proposed
in order to address the Distributed Subtrajectory Clustering problem. The datasets
employed for our experiments are:

• IFS (April 2016)—Flights between Madrid and Barcelona during April 2016 of
size 43 MB and consisting of approximately 900K records.

• NARI/Brest Area (6 months) Raw—Vessels moving in Brest area, consisting
of approximately 18 million records of size 697 MB.

• FlightAware (April 2016)—Trajectories of aircraft that consist of approximately
250 million records of 11.4 GB.

• IMIS (3 years)—consists of 699,031 trajectories of ships moving in the Eastern
Mediterranean for a period of 3 years. This dataset contains approximately 1.5
billion records, 56 GB in total size.
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Our experimental methodology is as follows: Initially, we illustrate that the
subtrajectory clustering solution produces results of high quality as compared to
the whole-trajectory clustering solution. Finally, we verify the scalability of our
algorithms by varying the dataset size.

The experiments were conducted in a 49 node Hadoop 2.7.2 cluster. One node
acted as the master and 48 nodes acted as slaves. The master node consists of 8 CPU
cores, 8 GB of RAM, and 60 GB of hard disk, while each slave node is comprised
of 4 CPU cores, 4 GB of RAM, and 60 GB of hard disk. Our configuration enables
each slave node to launch 4 containers, thus resulting that at a given time the cluster
can run up to 192 jobs (Map or Reduce). The operating system running on all the
nodes is Debian 8.3.

Quality of Clustering Analysis To illustrate the quality of the results we employed
the IFS (April 2016) (Fig. 10.5a). To assist with our analysis, we performed a
preprocessing step where all trajectories were aligned to start at the same time.
In order to be able to compare the two approaches (i.e., whole- and subtrajectory
clustering), we deactivated the segmentation step of the subtrajectory clustering
solution. The subtrajectory clustering algorithm identified 6 clusters, 3 clusters from
Madrid to Barcelona and 3 clusters from Barcelona to Madrid. Moreover, an outlier
was detected, which is not something common in aviation data. Both the cluster
representatives and the outlier are depicted in Fig. 10.5b. However, if we consider
only the spatial dimension, these 6 clusters and 1 outlier seem to be actually 2
clusters. But if we also take into consideration the temporal dimension, as presented
in the space-time cube of Fig. 10.5d, we will actually see that there are clusters that
follow the same path but have different behavior as far as it concerns the speed
and/or the duration of the flight. These probably correspond to different types of
aircrafts. In order to compare with the Spark MLlib-based solution, we vectorized
the data and utilized the k-means algorithm on the same dataset with k = 6, which
is the number of clusters that was previously identified. Figure 10.5c illustrates the
result of k-means and Fig. 10.5d the corresponding space-time cube.

To conclude, the distributed subtrajectory clustering approach presents several
advantages over the Spark MLlib-based. To begin with, an important issue is that
the number of clusters is discovered by the algorithm and is not up to the user to give
as input the correct number of clusters. In addition, another important functionality
that a trajectory clustering algorithm should have is the outlier detection. Finally,
due to the fact that the Spark MLlib-based solution with both vectorization methods
does some kind of resampling, some movement patterns might be “lost,” depending
on the number of out samples of the resampling procedure.

Scalability We vary the size of our dataset and measure the execution time of our
algorithms. To study the effect of dataset size, we created 4 datasets: 20%, 40%,
60%, and 80% of each of the original datasets. For the purpose of this analysis



10 Offline Trajectory Analytics 291

(a) (b) (c)

(d) (e)

Fig. 10.5 (a) Raw data, (b) cluster representatives (6 clusters discovered), (c) k-means with k = 6,
(d) cluster representatives—space-time cube, (e) k-means with k = 6—space-time cube
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Fig. 10.6 Scalability analysis varying the size of the (a) FlightAware (April 2016), (b) NARI/Brest
Area (6 months) Raw, and (c) IMIS (3 years) dataset

we are going to use the following datasets: NARI/Brest Area (6 months) Raw,
FlightAware (April 2016), and IMIS (3 years).

As shown in Fig. 10.6, as the size of the dataset increases, the proposed clustering
algorithm turns out to have linear behavior.
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10.4 Distributed Hotspot Analysis

In this section, we present the THS (trajectory hotspot) and aTHS (approximate
trajectory hotspot) algorithms for distributed hotspot analysis over big trajectory
data, as presented in [20]. Our approach to Hotspot discovery and analysis is based
on spatiotemporal partitioning of the 3D data space in cells. Accordingly, we try to
identify cells that constitute hotspots, i.e., not only do they have high density, but
also that the density values are statistically significant. We employ the Getis–Ord
statistic [23], a popular metric for hotspot analysis, which produces z-scores and
p-values. A cell is considered as a hotspot, if it is associated with high z-score and
low p-value. Unfortunately, the Getis–Ord statistic is typically applicable in the case
of 2D spatial data, and even though it can be extended to the 3D case, it has been
designed for point data. In contrast, our application scenario concerns trajectories
of moving objects, temporally sorted sequences of spatiotemporal positions, and
the applicability of hotspot analysis based on a metric, such as the Getis–Ord
statistic (but also any other metric), is far from straightforward. To this end, we
formulate the problem of trajectory hotspot analysis, where our main intuition is
that the contribution of a moving object to a cell’s density is proportional to the
time spent by the moving object in the cell. In particular, we adapt the Getis–
Ord statistic in order to capture this intuition for the case of trajectory data. Then,
we propose a parallel and scalable processing algorithm for computing hotspots in
terms of spatiotemporal cells produced by grid-based partitioning of the data space
under study. Our algorithm achieves scalability by parallel processing of z-scores
for the different cells and returns the exact result set. Moreover, we couple our exact
algorithm with a simple approximate algorithm that only considers neighboring cells
at distance h (in number of cells), instead of all cells, thus achieving significant
performance improvements. More importantly, we show how to quantify the error
in z-score computation, thereby developing a method that can trade-off accuracy for
performance in a controlled manner.

10.4.1 Definitions

Consider a database that contains trajectories of moving objects. A trajectory is
a sequence of data points p described by 2D geospatial coordinates (p.x for
longitude and p.y for latitude), a timestamp (p.t), and the moving object’s id (p.o).
Furthermore, consider a spatiotemporal partitioning P which partitions the 3D
spatiotemporal domain into n 3D cells {c1, . . . , cn} ∈ P . Every data point p is
mapped to one cell ci , which is determined based on the spatiotemporal location of
p. Individual objects moving inside single cells constitute a subset of data points p

which form individual subtrajectories τ . The earliest (latest) point of a subtrajectory
τ is denoted as τ.pstart (τ.pend ). Also, we use cistart , ciend to refer to temporal start
and end of a cell ci .
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We also define the attribute value xi of the cell ci as: xi = �τ∈ci

τ.pend .t−τ.pstart .t
ciend

−cistart
.

Thus every object that moves in a spatiotemporal cell ci contributes to the cell’s
attribute value by its temporal duration τ.pend .t − τ.pstart .t normalized by dividing
with the cell’s temporal lifespan ciend − cistart . This definition implies that the
longer a moving object’s subtrajectory stays in a spatiotemporal cell, the higher
its contribution to the cell’s attribute value.

Having calculated an attribute value for each cell, we opt to use the Getis–Ord
statistic to calculate z-scores. The Getis–Ord statistic G∗

i is defined as [23]:

G∗
i = �n

j=1wi,j xj − X�n
j=1wi,j

S

√
[n�n

j=1w2
i,j −(�n

j=1wi,j )2]
n−1

(10.6)

where xj is the attribute value for cell j , wi,j is the spatiotemporal weight between
cell i and j , n is equal to the total number of cells, and

X = �n
j=1xj

n
(10.7)

S =
√

�n
j=1x

2
j

n
− (X)2 (10.8)

The spatiotemporal weight wi,j used in the Getis–Ord statistic represents the
score influence between neighboring cells; a cell needs to have a neighborhood
of high attribute values to be considered as hotspot. Our goal is to have the
influence of a neighboring cell ci to a given cell cj to be decreasing with
increased spatiotemporal distance. Thus we employ a weight function that decreases
exponentially with increasing distance; we define: wi,j = a1−ρ , where a > 1 is an
application-dependent parameter, and ρ represents the distance between cell i and
cell j measured in number of cells. For immediate neighboring cells, where ρ = 1,
we have wi,j = 1, while for the next neighbors we have, respectively: 1/a, 1/a2,
. . . .

Based on this, the problem of trajectory hotspot analysis is to identify the k most
statistically significant cells according to the Getis–Ord statistic and can be formally
stated as follows:

Problem 10.5 (Trajectory Hotspot Analysis) Given a trajectory dataset and a
space partitioning P , find the top-k cells T OPK = {c1, . . . , ck} ∈ P based on
the Getis–Ord statistic G∗

i , such that: G∗
i ≥ G∗

j , ∀ci ∈ TOPK, cj ∈ P − TOPK.

Our aim is to study the problem of trajectory hotspot analysis over massive
spatiotemporal data by proposing a parallel and scalable solution. Thus, we assume
that the trajectory dataset is stored in multiple nodes, without any more specific
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assumptions about the exact partitioning mechanism. Hence, here, we study a
distributed version of the trajectory hotspot analysis problem.

10.4.2 Exact THS Algorithm

The proposed Exact THS algorithm is designed to be efficiently executed over a
set of nodes in parallel and is implemented in Apache Spark. The input dataset D is
assumed to be stored in a distributed file system, in particular HDFS. Intuitively, our
solution consists of three main steps, which are depicted in Fig. 10.7. In the first step,
the goal is to compute all the cells’ attribute values of a user-defined spatiotemporal
equi-width grid. To this end, the individual attribute values of trajectory data points
are aggregated into cell attribute values, using Eq. (10.6). Then, during the second
step, we calculate the cells’ attribute mean value and standard deviation which will
be provided to the Getis–Ord formula later. Furthermore, we compute the weighted
sum of the values for each cell ci : �n

j=1wi,j xj . Upon successful completion of the
second step, we have calculated all the individual variables included in the Getis–
Ord formula, and we are now ready to commence the final step. The goal of the
third step is to calculate the z-scores of the spatiotemporal grid cells by applying
the Getis–Ord formula. The trajectory hotspots can then be trivially calculated by
selecting either the top-k cells with the higher z-score values or the cells having a
p-value below a specified threshold.

10.4.3 An Approximate Algorithm: aTHS

The afore-described algorithm (THS) is exact and computes the correct hotspots
over widely distributed data. However, its computational cost is relatively high
and can be intolerable when the number of cells n in P is large. This is because
every cell attribute value must be sent to all other cells of the grid, thus leading to
data exchange through the network of O(n2) as well as analogous computational
cost, which is prohibitive for large values of n. Instead, in this section, we propose
an approximate algorithm, denoted aTHS, for solving the problem. The rationale
behind aTHS algorithm is to compute an approximation Ĝ∗

i of the value G∗
i of a

cell ci by taking into account only those cells at maximum distance h from ci .
The distance is measured in a number of cells. Intuitively, cells that are located
far away from ci will only have a small effect on the value G∗

i and should not
affect its accuracy significantly when neglected. More interestingly, we show how
to quantify the error 	G∗

i = G∗
i − Ĝ∗

i of the computed hotspot z-score of any cell
ci , when taking into account only neighboring cells at distance h. In turn, this yields
an analytical method that can be used to trade-off accuracy with computational
efficiency, having bounding error values.



10 Offline Trajectory Analytics 295

Fig. 10.7 Overview of THS algorithm

Fig. 10.8 Example of cells at distance from a reference cell cj (the dark color indicates the weight
of their contribution to cj ’s value xj )

The aTHS Algorithm Based on the problem definition, cells located far away from
a reference cell ci only have a limited contribution to the Getis–Ord value G∗

i of ci .
Our approximate algorithm (aTHS) exploits this concept and can be parameterized
with a value h, which defines the subset of neighboring cells that contribute to the
value of ci . We express h in terms of cells, for instance, setting h=2 corresponds
to the case depicted in Fig. 10.8, where only the colored cells will be taken into
account by aTHS for the computation of Ĝ∗

i (an approximation of the value of G∗
i ).

In practice, the relationship between cell cj and white cells can be expressed by
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setting their weight factor equal to zero. In algorithmic terms, aTHS is differentiated
from THS in the second and third step.

10.4.4 Experimental Study

In this section, we evaluate the performance of our approach for trajectory hotspot
analysis. We implemented all algorithms in Java, using Apache Spark 2.2.0 Core
API.

Datasets We employed a real dataset containing surveillance information from the
maritime domain. The data was collected over a period of 3 years, consisting of
83,735,633 individual trajectories for vessels moving in the Eastern Mediterranean
Sea. This dataset is 89.4 GB in total size and contains approximately 1.9 billion
records. Each record represents a point in the trajectory of a vessel and is made up
by <trajectoryID;timestamp;latitude;longitude>. The dataset is stored in 720 HDFS
blocks, in uncompressed text format.

Evaluation Methodology We picked four parameters to study their effect on the
efficiency of our algorithm, namely (a) the spatial size of cells (in terms of both
latitude and longitude), (b) the temporal size of cells, (c) the h distance which
defines the number of neighboring cells contributing to the score of a reference cell
ci , and (d) the k number of hotspots to be reported in the final result set. In practice,
the first two parameters affect the number n of cells of P , the third parameter h

refers to the number of broadcasting messages which occur during the second step,
and the fourth parameter k affects exclusively the last step of our algorithm. Also,
we set a equal to 2 in all experiments.

Metrics Our main evaluation metric was the execution time needed for each
individual step of our algorithm on the Spark cluster. In the following, the actual
execution times will be presented, omitting any overhead caused by Spark and
YARN initialization procedures. All execution times are depicted using the number
of milliseconds elapsed for processing each step.

We deployed our code on a Hadoop YARN 2.7 cluster consisting of 10 computing
nodes. Node 1 has 6 GB of RAM and 4 single-core CPUs running at 2.1 GHz. Nodes
2–10 have 8 GB of RAM, 4 single-core CPUs running at 2.1 GHz, and 100 GB
hard disk each. Node 1 is configured to run the HDFS NameNode and YARN
ResourceManager services, whereas all other nodes run the HDFS DataNode and
YARN NodeManager services. In all our experiments, we use the YARN cluster
deploy mode. We initiate 9 Spark executors, configured to use 5.5 GB of main
memory and 2 executor cores each. We also configured HDFS with 128 MB block
size and a replication factor of 2. On each node, Java 8 is installed on Ubuntu 16.04.
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Fig. 10.9 Performance of our algorithm for various (a) spatial cell sizes of P , (b) temporal cell
sizes of P , (c) values of h, and (d) values of k

10.4.4.1 Experimental Results

Varying the Spatial Cell Size In Fig. 10.9a, we demonstrate the results of our
experiments by varying the spatial cell size of P . Higher sized spatial cells decrease
the total number of cells n used in the grid partitioning of the 3D space. In turn, this
is expected to lead to reduced execution time, since fewer cells need to be computed
and lower communication is required by the algorithm. Indeed, the overall execution
time is reduced when the grid is of coarser granularity.

Varying the Temporal Cell Size Figure 10.9b demonstrates the efficiency of our
algorithm for various temporal cell sizes. The effect of larger cells in the temporal
dimension to the overall execution time is similar to the previous experiment:
Larger temporal cell size leads to fewer total cells in the grid, thus reducing the
overall execution time. The experiment with the most coarse temporal partitioning
(12 h) was measured to be twice more efficient than the experiment using the finest
partitioning, in total execution time.
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Varying h aT HS can be parameterized with a user-defined variable h, which
defines the set of neighboring cells contributing to the calculation of each cell’s
z-score. Figure 10.9c demonstrates the experimental results when using different
values for variable h. The overall execution time is significantly reduced for lower
values of h, since each cell broadcasts its attribute value to less neighboring cells,
thus reducing the network overhead for exchanging such information between cells.
By using a value of 3 for variable h, we measured three times higher overall
execution time compared to the experiment having a value of 1. This significant
reduction to the total execution time in aT HS, results in an approximate result Ĝ∗

i .

However, the deviation of Ĝ∗
i to G∗

i can be quantified as already explained.

Varying Top-k The value of top-k affects the size of the final result set. Fig-
ure 10.9d demonstrates the impact of this variable on dataset sizes throughout the
execution of our algorithm and the individual steps’ processing times. The overall
execution time is not significantly affected by the value of this variable.

10.5 Distributed Data-Enriched Mobility Networks

Inference of the underlying network, given a large number of moving traces, both in
aviation and maritime domain, is a challenging task that we try to address. The goal
is to discover the directed graph of transitions, i.e., the set V of vertices and the set E
of edges that form the routes network. Additionally, enriched information has to be
taken into account in order to produce enriched graphs with contextual information.
Domain experts may benefit a lot from such additional information. For example,
one can then easily produce analytics of trajectories based on specific weather
conditions and reveal how these conditions affecting or not the paths followed.
Moreover, flight plans or predefined sea routes can be compared with real paths
followed by ships or planes and the domain expert would be able to identify and
explain the reason more easily.

10.5.1 Definitions

Definition 10.1 (Enriched Point) An enriched point ri corresponds to a (raw
point) pi of a moving object and is defined as a tuple < pi, ti, vi >, where vi is
a multi-dimensional vector consisting of categorical and/or numerical variables that
annotate the raw point with associated context data.

Examples of vi attribute values could be any user-defined tag or annotation valid
regarding the specific domain application (e.g., consider annotations made by an
event recognition module that detects the “top-of-climb” or “top-of-descent,” “stop,”
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“turn,” etc.) or any numerical variable that can be attached to pi , such as weather
information (e.g., temperature, wind speed, humidity, etc.).

Definition 10.2 (Semantic Trajectory) An enriched trajectory R corresponds to
a (raw) trajectory T of a moving object, which is defined as the sequence of the
enriched points of T .

Definition 10.3 (Data-Enriched Mobility Network) A data-enriched mobility
network N is a graph denoted by N = (V,E), where V is a set of vertices and
E ⊆ V × V is a set of edges.

The set V of vertices corresponds to the union of sets of enriched points where
each set of enriched points is of the same enriched category, while the set E of
edges corresponds to the union of paths in between vertices found. Given the above
definitions the problem can now be formally expressed.

Problem 10.6 (Data-Enriched Network Inference) Given a database of enriched
trajectories, infer the underlying data-enriched network.

The data-enriched network that is to be found should meet the following
requirements, in order to provide added value to domain experts:

1. Consistency. Network vertices inferred ideally should belong to one connected
component, or the network must be of a number of connected components.

2. Node Validity. Vertices of the network correspond to enriched categories and
are valid if derived from an aggregation or an assemblage (depending on the
corresponding method that is used) of a number of more than m enriched points,
thus having real value for the domain experts. For example, if a network vertex
is derived from less than m points, then this vertex might be excluded from the
final vertices set.

3. Edge Validity. Edges must correspond to frequent paths followed by objects.
The frequency of paths is determined as defined by an application-dependent
threshold σ .

10.5.2 Discovering Data-Enriched Mobility Networks

We follow an approach where first the vertices are discovered and then edges
connecting these vertices are inferred from the trajectories. The input to the process
comprises of a set of enriched trajectories. An enriched trajectory is modeled as a
sequence of timestamped enriched points. The output of the process is a semantic-
aware mobility network modeled as a directed graph G = (V ,E), where the vertices
V correspond to semantic nodes and the edges E correspond to the discovered
paths between semantic nodes. The process comprises two main steps, described
subsequently in detail and illustrated in Fig. 10.10a–d.

The network discovery method described above is applicable to both domains,
maritime and aviation, although the set of enriched trajectories which is the input to
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the process is formed differently for each domain. In the maritime domain the input
is comprised of trajectories made by one vessel and covers a large temporal time
frame. Thus, one maritime network is discovered for each vessel. Similarly, in the
aviation domain the input is comprised of trajectories of aircraft that flew between
two given airports. This way, one network is computed for every pair of airports.
Note that the network is a directed graph, meaning that, e.g., Madrid–Barcelona
is treated differently than the Barcelona–Madrid, implying that flights of only one
direction at a time are taken for each pair of airports.

10.5.2.1 Step 1: Enriched Nodes Extraction

The input dataset of enriched trajectories is efficiently managed according to the
enriched points and the enriched information each trajectory carries. By exploiting
that each enriched point belongs to a semantic category (i.e., points carry an
application depended tag, e.g., HOME, SPORT, etc., and these tags then make up
the categories), we can split the input into enriched points of the same category. For
every such input, nodes are formed based on a spatial-only clustering algorithm.
Then, each cluster becomes a network node, carrying also semantic information
from the corresponding category (Fig. 10.11). Moreover, the membership of a node
in its corresponding cluster is above a given threshold m, thus having real value for
the domain experts (i.e., suppress outliers).

Additionally, for each cluster/node several statistics are calculated and used later
to refine and enhance the prediction accuracy. Statistics are modeled as Normal
distributions (mean and standard deviation). Timing distributions describe when a
ship or aircraft traverses the corresponding cluster/node within a day (24-h time
frame). Elapsed time statistics describe the duration of staying in each cluster/node
and speed statistics provide the mean speed passing through the corresponding
cluster/node. Note that statistics may well be calculated after the discovery of the
network as a post-processing step.

10.5.2.2 Step 2: Enriched Paths Discovery

Trajectories are processed separately of each other to identify enriched nodes and
edges of the network, resulting in the discovery of semantic paths. More specifically,
each cluster/node (i.e., corresponding enriched points of a moving object that
clustered together) is processed separately and sequentially, ordered in the temporal
dimension. If any two consecutive trajectory points correspond to two different
network nodes/clusters, then a transition is recorded from one network node to
the other. For each such transition, the beginning (from) and end (to) nodes of the
network are identified and marked as additional information of the transition. These
transitions form the set of candidate network edges.

Moreover, multiple transitions between pairs of network nodes are recorded by
increasing (+1) the corresponding weight of the edge. In the end of the process,
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Fig. 10.10 Overview of semantic-aware network inference solution in maritime domain: (a) all
enriched points from input, (b) enriched trajectories formed from enriched points, (c) enriched
nodes extraction, (d) enriched path discovery

Fig. 10.11 Overview of network nodes extraction step in maritime domain: (a) all enriched points
from input, (b) enriched points clustered spatially to candidate nodes, (c) semantic nodes extraction

all the edges/transitions are identified, along with their weights, which are simply
the cardinality (absolute number) of all trajectories from the same edge. As an
optional post-processing step, a threshold filtering can be applied by the domain
expert if needed, in order to keep routes only above a specific weight or support.
Finally, semantic nodes and edges are assembled to produce the complete map of
the network. The weighted-edge network allows us to create a hierarchy of networks
based on filtering edges with weight less than an application defined threshold σ .
An example of paths discovery for maritime is shown in Fig. 10.12.
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Fig. 10.12 Overview of network paths discovery step in maritime domain: (a) all paths found, (b)
only edges with more than σ weight are kept

Algorithm 10.4 SeaAirNet
Input: A semantic trajectory database STD, node membership m
Output: A semantic-aware spatial network N
1: for e ∈ ST D do
2: /* e is the category of points (CP ) in STD */
3: ClP ← SpatialClustering(CPe)
4: /* ClP are tuples of the form < clid, oid, pi , ti , e > */
5: for ClPi ∈ ClP do
6: if ClPi �= Noise ∧ |ClPi| > m then
7: N.V ← N.V ∪ createNode(ClPi )
8: ClPs ← ClPs ∪ ClPi

9: N.E ← discoverEdges(ClP s,N.V )
10: return N

10.5.3 The SeaAirNet Algorithm

We presented the steps of our methodology from an abstract point of view,
accompanied with a running example and respective figures. Next, we present these
steps in an algorithmic view. The main algorithm, named SeaAirNet, is the starting
point.

Algorithm SeaAirNet takes as input a semantic trajectory database (STD) and
a node membership limit m and outputs a semantic-aware mobility network. In
line 1 all enriched points of the STD are partitioned based on the category each
one belongs (semantic category) and then each partition is processed separately.
In line 3 a spatial clustering algorithm is utilized to cluster enriched points of the
specific category. For each cluster found (line 5), if the cluster is not considered
as “noise” and its membership is over the application-dependent limit m (line 6),
then it is considered valid and a network node is created (line 7) along with its
statistics. It must be noted that the clustering algorithm might identify some points
as noise: These do not belong in any cluster, or they do belong to a non-valid cluster
depending on the clustering algorithm. In line 5 the newly created node is added
to the set of network nodes. In line 8 each valid cluster is added to the set of valid
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Algorithm 10.5 discoverEdges
Input: Clusters of enriched points ClPs , network nodes V

Output: Network edges E

1: nodesAndP oints ← CIPs .join V on (clid, e)

2: P ← partition(nodesAndP oints on oid).orderBy(t)

3: for each Pi ∈ P do
4: Ei ← edge(getNode, getNextNode, 1)
5: /* each Ei is of form < f romNode, toNode, weight > */
6: if Ei.node <> Ei.nextNode ∧ Ei.nextNode isValid then
7: E ← E ∪ Ei

8: E ← aggregate(E on f romNode, toNode).sum(weight)

9: return E

clusters that will later be used for the discovery of network edges. After extracting
the semantic nodes (step 1), the paths discovery (step 2) task follows, where (in line
9) the discoverEdges algorithm is called by passing the set of valid clusters found
and the set of network nodes extracted. Lastly, the returned nodes and edges (line
10) form the desired mobility network.

The algorithm discoverEdges discovers network-weighted edges from the clus-
ters and network nodes found in algorithm SeaAirNet. Initially (line 1), variable
nodesAndPoints holds a join of network nodes found (V ) and corresponding
enriched points that formed the node. In line 2, a partitioning technique is applied.
In detail, the join set is partitioned by the object identifier (i.e., the id of vessel or
aircraft), while the data of each partition is ordered based on time (t). Now, every
partition holds one semantic trajectory with its enriched points ordered in time and
also, each enriched point holds the cluster (network) node it belongs. For each such
partition (line 3), enriched points are scanned sequentially in line 4 and every two
consecutive points form an edge with weight of 1. Validity of the edge is checked
in line 6: To be valid, the two network nodes it connects must be different and also
the last node must be valid too, due to the sequential scanning of enriched points.
If the edge is a valid network edge, then it is considered a candidate edge (line 7)
and is added to the set of edges. When all partitions are processed, then results are
aggregated on weight w.r.t. the beginning and ending nodes of each edge.

10.5.4 Experimental Results

In this section, we evaluate our approach of computing semantic-aware mobility
networks both on aviation and on maritime domains. Our approach in this study is
qualitative, meaning that we evaluate the produced networks by visually inspecting
whether the network provides an accurate representation of the data used to extract
it. We implemented all algorithms in Scala programming language, using Apache
Spark 2.2.0 API. We implement a grid-density-based clustering algorithm in Spark
to avoid the need of predefining the number of clusters in the beginning.
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All algorithms are packed in one Scala project and when necessary, intermediate
results are stored and retrieved using a database to avoid long lineages. Parameters
of the algorithms are:

• epsilon: the radius of the disk that defines the neighborhood of a point;
• minPts: minimum number of members to consider a neighborhood as a valid

cluster;
• m: node membership to consider a cluster as a valid network node;
• σ : threshold to keep edges of a certain weight and above in post-processing.

10.5.4.1 Datasets

In the maritime domain we selected to explore the movement of the DELOS vessel.
DELOS has an mmsi of 241087000 and the spatiotemporal extend of its data is set
to: extend[x, y, t] = [23.61 → 25.43, 36.39 → 37.95, 2016−01−0100:11:34 →
2016 − 01 − 3121:46:28]. The above extent consists of 5761 raw points from IMIS
Global AIS messages concerning specific vessel. These raw points are passed from
synopses generator (SG) (cf. Chap. 3 of this book), which produced 2195 synopses
whose enriched points are used for discovering the network.

In the aviation domain the MADRID (MAD)–BARCELONA (BCN) airports
pair is selected using IFS radar surveillance data provided by CRIDA. The temporal
extent is set to 2016-04-01 05:16:54 until 2016-04-30 20:06:08. The dataset consists
of 997,450 raw points (both directions) which are derived from 1396 flights. The
number of corresponding synopses produced by the SG are 254,330.

The methodology of discovering semantic-aware networks can be applied to
raw trajectories as well as to semantic trajectories. Due to space limitations in the
following we show an application of the methodology to raw trajectories in the
aviation domain and an application to enriched trajectories in the maritime domain.

10.5.4.2 Qualitative Results in Aviation

We apply algorithm to raw 447,234 points of MAD to BCN airport pair (one
direction), with parameters: epsilon = [10000, 10000, 1000], minP ts = 100,
m = 200. We get 54 clusters (Fig. 10.13).

Fig. 10.13 All points colored by cluster; (a) with noise (19,882) and (b) without noise
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These clusters are transformed to nodes by keeping only the medoid of each
cluster. We consider only clusters with more than 200 members; thus we get 39
nodes (Fig. 10.14).

Then edges are discovered between above nodes. In total we found 182 edges
with weights from 1 to 1274 (average 89.51). Based on domain expert, edges can be
filtered out using their weight (Fig. 10.15).

Fig. 10.14 Medoids of the 39 clusters found (a) and how medoids cover the whole dataset (b)

Fig. 10.15 Discovering paths (edges) of the network, (a) all edges found with weight over 0 (182),
(b) keep only edges with weight over 2 (130)

10.5.4.3 Qualitative Results in Maritime

We applied our algorithm to the 2195 points of trajectories’ synopses of DELOS
in the Aegean Sea, with parameters epsilon = [1000, 1000, 100], minP ts = 1,
m = 5. Synopses are grouped in two groups: either as stops and/or as changes
(Fig. 10.16).

These clusters are transformed to nodes, where each node represents one cluster.
In total we get 128 nodes with membership from 1 to 224 (average 19.84). We
consider only clusters with more than 5 members and thus we get 73 nodes
(Fig. 10.17).

Then edges are discovered between these nodes. The algorithm finds 359 edges
with weights from 1 to 91 (average 4.98). Figure 10.18 shows network edges for
various values of σ .

From the above qualitative evaluation, it can be concluded that the higher
the weight of the edges, the higher the compactness in the representation of the
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Fig. 10.16 All points colored by cluster above (a) and grouped based on their semantics in (b)

Fig. 10.17 Medoids of the 73 clusters found (a) and colored by type in (b)

dataset with this data-enriched network structure. Also, the network extracted from
synopses is more or less the same as the one produced by the raw data. The
advantage of this is that not only we may extract the network by processing much
less data, but more importantly, we exploit the synopses to attach semantics to the
vertices of the network.

10.6 Related Work

In recent years, an increased research interest has been observed in knowledge
discovery out of mobility data. Towards this direction, several methods, which are
directly related to our work, have been proposed.

Co-movement Patterns One of the first approaches for identifying such collective
mobility behavior is the so-called flock pattern [14]. Inspired by this, a less “strict”
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Fig. 10.18 Discovering paths (edges) of the network, (a) all edges found with weight over 0 (359),
(b) edges with weight over 1 (226), (c) edges with weight over 2 (176), (d) edges with weight over
3 (136)

definition of flocks was proposed in [12] where the notion of a moving cluster was
introduced. There are several related works that emerged from the above ideas, like
the approaches of convoys, swarms, platoons, traveling companion, and gathering
pattern [39]. However, all of the aforementioned approaches are centralized and
cannot scale to massive datasets. In this direction, the problem of efficient convoy
discovery was studied both in centralized [22] and distributed environment by
employing the MapReduce programming model [21]. An approach that defines a
new generalized mobility pattern is presented in [9]. In more detail, the general
co-movement pattern (GCMP) is proposed, which models various co-movement
patterns in a unified way and is deployed on a modern distributed platform (i.e.,
Apache Spark) to tackle the scalability issue.

Trajectory Clustering Most of the aforementioned approaches operate at specific
predefined temporal “snapshots” of the dataset, thus ignoring the route of each
moving object between these “snapshots.” Another line of research tries to discover
groups of either entire or portions of trajectories considering their routes. A
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typical strategy in dealing with trajectory clustering is to transform trajectories to
a multi-dimensional space and then apply well-known clustering algorithms such
as OPTICS [2] and DBSCAN [8]. Alternatively, another approach is to define an
appropriate similarity function and embed it to an extensible clustering algorithm. In
this direction, there are several approaches whose goal is to group whole trajectories,
including T-OPTICS [19], that incorporates a trajectory similarity function into the
OPTICS [2] algorithm. CenTR-I-FCM [26], a variant of Fuzzy C-means, proposes
a specialized similarity function that aims to tackle the inherent uncertainty of
trajectory data. Nevertheless, trajectory clustering is a computationally intensive
operation and centralized solutions cannot scale to massive datasets. In this con-
text, [6] introduces a scalable GPU-based trajectory clustering approach which is
based on OPTICS [2].

Subtrajectory Clustering Nonetheless, discovering clusters of complete trajec-
tories can overlook significant patterns that might exist only for portions of
their lifespan. To deal with this, another line of research has emerged, that
of Subtrajectory Clustering. The predominant approach here is TraClus [15], a
partition-and-group framework for clustering 2D moving objects (i.e., the time
dimension is ignored) that enables the discovery of common subtrajectories. A more
recent approach to the problem of subtrajectory clustering is S2T-Clustering [28],
where the goal is to partition trajectories into subtrajectories and then form groups of
similar ones, while, at the same time, separate the ones that fit into no group, called
outliers. It consists of two phases: a neighborhood-aware trajectory segmentation
(NaTS) phase and a sampling, clustering, and outlier (SaCO) detection phase. A
slightly different approach is presented in QuT-Clustering [27] and [33], where the
goal is, given a temporal period of interest W , to efficiently retrieve the clusters
and outliers at subtrajectory level that temporally intersect W . In order to achieve
this, a hierarchical structure, called ReTraTree (for Representative Trajectory Tree)
that effectively indexes a dataset for subtrajectory clustering purposes, is built
and utilized. An alternative viewpoint to the problem of subtrajectory clustering
is presented in [1], where the goal is to identify “common” portions between
trajectories, w.r.t. some constraints and/or objectives, cluster these “common”
subtrajectories, and represent each cluster as a pathlet, which is a point sequence
that is not necessarily a subsequence of an actual trajectory. A pathlet can be viewed
as a portion of a path that is traversed by many trajectories. Similarly, in [40] the goal
is to identify corridors, which are frequent routes traversed by a significant number
of moving objects. As already mentioned, all of the above subtrajectory clustering
approaches are centralized and cannot scale to the size of today’s trajectory data.

Hotspot Analysis The problem of trajectory hotspot analysis is related to the
spatial and spatiotemporal hotspot analysis. Several studies exist for conducting
hotspot spatiotemporal analysis, such as [11, 17]. Spatiotemporal event data are
analyzed and visualized in [17]. It consists of two steps: first, it uses multivariate
kernel density estimation in space and time to estimate the density of the input
data. Interestingly, different kernels in spatial and temporal domains can be used.
In the second step it identifies hotspots from the most dense kernels and proposes



10 Offline Trajectory Analytics 309

a new visualization technique, based on Reeb graphs to illustrate the identified
spatiotemporal hotspots. Hong et al. [11] studied the case of human mobility data
such as taxi trips, bike rides, and subway trips. This data can be modeled by
using spatiotemporal directed graphs (STG). The goal is to find subgraphs of the
STG that have interesting flows (e.g., a black hole has the overall inflow greater
than the overall outflaw). The user needs to input a threshold in order for the
algorithm to successfully identify the interesting flows. A similar study is presented
in [13] where human mobile traffic data are analyzed to discover hotspots on
graphs. This study identifies spatial locations where the data volumes from wireless
network transmissions are unusually high, based on user-defined thresholds. After
identifying these locations, the algorithm detects the distribution of mobile data
traffic hotspots to propose an efficient cell deployment strategy.

The trajectory hotspot analysis problem is also related to the trajectory mining
domain [39]. Such trajectory and subtrajectory clustering techniques have been
presented previously, in this section.

Data-Enriched Network Discovery Several methods rely on k-means clustering
of raw tracking data using distance and direction as criteria to introduce cluster
seeds at fixed locations along a trajectory. Edelkamp and Schroedl [7] use various
heuristics for segmentation, map matching, and lane clustering from GPS traces.
Schroedl et al. [30] use k-means clustering to refine an existing network map rather
than construct the entire network starting from a blank terrain. Other methods
transform GPS traces to density-based discretized images and are based on kernel
density estimation (KDE). Most of these algorithms function well either when the
data are frequently sampled (e.g., once per second) or when there is a lot of data
redundancy. Biagioni and Eriksson [3] use a dataset which is being sampled very
frequently (from 2 to 6 s). Steiner and Leonhardt [32] present an approach which
uses tracking data of lower frequency, but still with intervals not exceeding 15 s.
The limitation of KDE-based algorithms is that they are quite sensitive with respect
to noisy data and outliers.

Another category, to which the present work relates, involves trace clustering
approaches. These methods either adopt map matching or heuristics by aggregating
GPS traces into an incrementally built transportation network. Moving object’s
heading and distance measures are also used to perform additions and deletions onto
the incremental construction of the map. Rogers et al. [29] use trace clustering to
refine an existing network rather than extracting it from scratch. Cao and Krumm [4]
eliminate noise in GPS traces, while Fathi and Krumm [10] provide an approach
that discovers intersections by using a prototypical detector trained on ground truth
data from an existing map. This approach works best for well-aligned transportation
networks (e.g., vertically aligned road networks) and with frequently sampled data
of up to 5 s. Liu et al. [16] efficiently build a map but require accurate data and
high sampling rates (i.e., 1 s). Zhang et al. [38] use a method similar to GPS trace
clustering to continuously refine existing maps.
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In general, although the problems of map construction, update, and enhancement
are complementary, typically each individual work focuses on a single one of them.
For example, a recent work by Wang et al. [37] applies trace clustering techniques to
introduce a new KDE-based road fitting algorithm. The authors achieve an important
contribution in terms of map entries in terms of data records on the OpenStreetMap
collection, but their application mainly focuses on updating a map rather than
constructing it. Similarly, Shan et al. [31] extend by proposing an automatic map
update system which focuses on the identification of missing segments and is robust
w.r.t. low sampling rates (on average of 120 s). Wang et al. [37] efficiently tackle
the hard time performance of current approaches, deal with tracking data of low
sampling rate but they mainly focus on inferring a map attributed with topological
characteristics.

10.7 Discussion: Lessons Learnt

In this chapter, we reported on offline data analytic methods over moving object
trajectories. The overall objective was to develop advanced, beyond current state-
of-the-art data analytics methods and tools over a repository of trajectories of
moving objects. In detail, we initially studied the problem of trajectory clustering
by utilizing a methodology, which transforms trajectories to vectors, so as existing
big-data-ready, point-based clustering algorithms (such as those provided by the
Spark MLlib machine learning library) can be used. The goal of this approach is on
the one hand to first provide solutions for the whole-trajectory clustering problem
and to study the limitations of using off-the-shelf clustering algorithms for big
trajectory data. Subsequently, the problem of distributed (sub)trajectory clustering
over massive mobility data [35] has been addressed. In order to provide a solution
to this we build upon a scalable distributed trajectory join method [34], which
utilizes the popular MapReduce distributed programming model. Successively, we
presented a scalable distributed trajectory-based hotspot analysis [20]. In this line
of research, we followed a different clustering approach that provides statistical
guarantees for the identified clusters. Interestingly, as a proof of concept, with this
approach, we are able to discover hotspots that in the maritime domain can be used
to measure the fishing pressure at sea, while in the aviation domain it identifies
air-blocks that present demand-capacity problems. Finally, we studied the problem
of distributed data-enriched mobility network discovery. The algorithms proposed
provide contextually enhanced spatial graphs, which can successfully be utilized to
support online location and trajectory prediction/forecasting scenarios (cf. Chap. 8).
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Part V
Big Data Architectures for Time Critical

Mobility Forecasting

This part presents how methods addressing data management, data processing, and
mobility analytics are integrated in a big data architecture for time critical mobility
analytics. We propose an architecture paradigm that has distinctive characteristics
compared to well-known big data paradigmatic architectures. The chapter included
in this part presents the δ architecture and its instantiation in the datAcron
integrated system. The software stack of the datAcron architecture is provided in
detail, together with technical solutions concerning individual, online, and offline
components integration.



Chapter 11
The δ Big Data Architecture for Mobility
Analytics

George A. Vouros, Apostolis Glenis, and Christos Doulkeridis

Abstract Motivated by needs in mobility analytics that require joint exploitation
of streamed and voluminous archival data from diverse and heterogeneous data
sources, this chapter presents the δ architecture: Denoting “difference,” δ empha-
sizes on the different processing requirements from loosely coupled components,
which serve intertwined processing purposes, forming processing pipelines. The
δ architecture, being a generic architectural paradigm for realizing big data ana-
lytics systems, contributes principles for realizing such systems, focusing on the
requirements from the system as whole, as well as from individual components
and pipelines. The chapter presents the datAcron integrated system as a specific
instantiation of the δ architecture, aiming to satisfy requirements for big data
mobility analytics, exploiting real-world mobility data for performing real-time and
batch analysis tasks.

11.1 Introduction

The technical challenges associated with big data analysis are manifold, and perhaps
better illustrated in [1] using a Big Data Analysis Pipeline, such as the one depicted
in Fig. 11.1. Similar pipelines have been proposed elsewhere, e.g. the Ingest-Enrich-
Store-Train-Query pipeline of IBM Watson discovery generic process.

The different snapshots of the big data analysis process result from the need
to “ingest and digest,” i.e. gather, process, integrate, and analyze the increasing
amounts of data coming from different data sources. These sources may include
sensors providing data-in-motion (streamed data) or stores providing data-at-rest
(archival or historical data). The aim is to satisfy requirements for realizing internet
of things and cyber-physical systems exploiting big data, as well as for advancing
the human monitoring, awareness, prediction, and decision-making abilities in
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Fig. 11.1 The big data analysis process

critical domains, such as in transportation and traffic. As discussed in the first
two chapters of this book, the goal is to support data analytics in order to
reveal models that provide sufficient abilities towards identifying and predicting
important happenings, occurring trends, important situations, as well as prescribing
appropriate actions and plans.

The major question to be answered is how such an abstract process should be
realized as a big data architecture, orchestrating the functionality and satisfying
domain-specific requirements related (a) to the variety of data coming from
different, isolated data sources designed for different purposes, and including data
with different semantics and formats; (b) to the volume, velocity, and veracity of
data to be processed and/or managed by the overall system.

Proposals for paradigmatic architectures or architectural patterns for big data
systems emphasizing on “analytics” include the λ and κ architectures. The λ

architecture separates the batch from the real-time processing needs, incorporating
components that realize the same data processing tasks in separate layers. However,
to resolve a query function [2], one has to merge results from the batch view and
the real-time view. This blending of results from different layers may hinder the
satisfaction of real-time requirements. Aiming to prove results from a real-time
layer without using a batch layer, the κ architecture [3] considers that any data
source can be treated as a provider of streamed data. This view impacts the way
we do batch processing: For instance, we may need to fetch a well-selected subset
of pre-processed historical data from a store, not retained in any log, and do any
batch task that inherently requires voluminous data, computationally demanding
processing steps, human involvement, application of iterative exploration-filtering-
subset selection, data-transformation steps in visual analytics workflows, etc. Thus,
we need a type of architecture where both batch and real-time layers co-exist,
following the λ prescriptions, but enabling different functionality at different layers
of processing, allowing components to run quite independently from those in
other layer(s), much like the κ paradigm. Hence, to realize the overall big data
pipeline, we need to decide on the arrangement of individual components in
architecture layers according to functionality and performance requirements. This
may result in multiple pipelines, each one serving specific purposes and adhering
to specific performance requirements. Different pipelines may share components or
incorporate components that realize the same data processing tasks, much like the λ

paradigm.
The work reported in this chapter is motivated by requirements on mobility

analytics in time-critical domains, specifically, in aviation and maritime (as these
have been presented in the first part of this book), and contributes a paradigmatic



11 The δ Big Data Architecture for Mobility Analytics 317

big data architecture that emphasizes on the need for different layers of processing,
targeting to different, albeit interacting, real-time and batch analytics tasks, aiming
to satisfy their performance requirements. We opt for denoting the differences on
layers’ components requirements and call the architecture “delta,” i.e. δ.

The δ architecture, going beyond mobility analytics tasks, contributes generic
principles for incorporating components into a layered architecture, realizing
multiple facets of the generic big data analysis pipeline, where each component
may function both as a consumer and as a producer. In doing so, we clearly separate
the functionality and performance requirements from each of the components and
provide rules on performance constraints that should be satisfied by pipelines. The
article describes an implemented instantiation of the δ architecture: The datAcron
integrated system for real-world big mobility data analytics.

The chapter is organized as follows: Sect. 11.2 presents background concepts
and requirements for exploiting mobility data in time-critical domains. Section 11.3
presents the proposed architecture paradigm and snapshots of the δ architecture.
Section 11.4 presents a specific realization of δ: The datAcron implemented proto-
type for mobility analytics. Section 11.6 presents specific architectural choices to
support performance requirements in time-critical domains. The chapter concludes
with discussion on the strengths and limitations of δ and presents plans for future
work in Sect. 11.7.

11.2 Background, Motivating Points, and Requirements

11.2.1 Motivating Points and Background

Transportation, either at sea, in air, or in urban areas, has a significant role and
impact on the global economy and our everyday lives. The improvements along the
last decades of these transportation means in terms of traffic management, planning
of operations, security, information to operators and end-users have been driven by
location-based information, while the current traffic control approaches are based
on feedback loops or model-based predictive methods. Increased traffic introduces
new challenges that these “classical” approaches cannot address effectively: This
presents challenges for data-driven traffic management approaches. Thus, we need
to process, manage, and exploit systematically mobility data [4], so as to provide
insights on happenings, reveal the rationale driving these happenings, gain insight
into situations occurring, build valid models for long-term predictions, driving
decision-making and effective planning of operations. These are issues that have
been presented and discussed in the other chapters of this book. We have seen that
there are requirements that span from real-time to batch analytics.

To achieve these goals, beyond historical data, we need to exploit multiple data
sources, including surveillance data, contextual data about entities’ environment
(e.g., weather, traffic, regulations imposed, infrastructure, and constraints on using
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the infrastructure), and data regarding the entities themselves (e.g., attributes of
aircraft/vessels): The integrated exploitation of these sources presents emerging
challenges for analytics that are as big as the data itself, in all four dimensions:
Volume, Velocity, Variety, and Variety [4]: Regarding volume, the ever-increasing
amount of data emphasizes the need for advanced, computationally efficient,
scalable data processing, query-answering, and analysis. Also, regarding veloc-
ity, it is true that we need to process data—in most of the cases—under tight
performance constraints (e.g., with low latency and high-throughput) addressing
operational needs for large fleets of moving objects, covering large geographic
areas. Batch processing is also important to process the bulk of historical data,
serving multiple analysis needs. Variety is an important aspect, since data come
from disparate sources providing either data-at-rest (e.g., past trajectories of moving
entities, attributes of entities, data regarding infrastructure) or data-in-motion (e.g.,
surveillance data, weather forecasts, timely regulations, and dynamically adjusted
infrastructure): While integrating data from these sources under a common model
is a challenge, the variety of data imposes the need to apply transformations to data
according to analysis goals, which on their own turn, may require changes to the way
data are aggregated, projected, or extracted. Finally, the veracity of data is important
to the analysis tasks. However, it is very difficult to achieve the ideal quality of data,
and thus, analysis methods have to deal with noisy and fluctuating data.

11.2.2 Requirements

Given the above-mentioned motivating points, data processing, management, and
analysis components need to perform under various performance requirements. For
the purposes of this chapter, focusing mostly on throughput and latency require-
ments, we consider a continuum from high-throughput and real-time processing,
to low-throughput and batch processing. For instance, in mobility analytics, the
latency requirements for real-time tasks are in the order of milliseconds, and these
tasks need to process data coming in high velocity, covering large fleets and large
geographical areas. We characterize any task that is not real time, as a batch task.
Therefore, for the purposes of this chapter we consider that the batch mode ranges
from a few seconds to some minutes.

Driven by processing/exploitation and analytics requirements on mobility data,
specific issues and requirements from a big data architecture include:

– Detecting errors in raw data and signifying errors’ existence, indicating also
the type of error, as discussed in Chaps. 3 and 4. Errors are frequent in raw
surveillance data and may be due either to human error or to data provision
system quality or malfunctions. Depending on the modality of the data source,
there may co-exist different error detection components, each with different
performance requirements.
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– Detecting low-level events in raw data, i.e. detecting “primitive” types of events
coming from a single source and concerning each single moving entity: These
events may further trigger patterns of high-level (or complex) events. Examples
of low-level events, as discussed in Chap. 4, include “moving in high speed,”
“abrupt turn,” “lack of communication.” These events should be detected by
exploiting streamed surveillance data in real time, as required by monitoring and
situation awareness applications.

– Aggregating and compressing data so as to reduce data volume, as presented
in Chap. 4. These tasks usually need to be done under tight performance
requirements. For instance, tasks aggregating and compressing surveillance data
for large numbers of moving objects must adhere to the pace and volume of data.

– “Ingesting and digesting” data from any source, as presented in Chaps. 5 and
6: This includes converting data to the appropriate format and form, as needed
by system components. There may be more than one “ingesting and digesting”
component, depending on the types of data sources and on the requirements
imposed by the components exploiting this data.

– Answering spatiotemporal queries and transforming data to appropriate forms,
providing subsets of data to other components, as discussed in Chap. 7. This
is a typical batch task, although transformation of data in appropriate forms—
discussed in Chap. 5—(e.g., transforming time series of events into moving
entities trajectories), if chosen to be done in query time, should be computed
with low latency.

– Integrating data from multiple sources: Regarding data integration for supporting
mobility analytics, as discussed in Chap. 6, special emphasis is given in identi-
fying spatiotemporal relations among entities, as well as in the enrichment of
surveillance data with additional features. This task should be performed in real-
time given that typically this data is exploited by real-time analytics components.
On the other hand, some data integration tasks may be done in batch mode (e.g.,
integrating historical trajectories with weather and moving entities attributes or
detecting relations between archived trajectories and areas of interest [5]).

– Analysis tasks for predicting mobility and events (cf. Chaps. 8–10), for prescrib-
ing actions to be taken to resolve problems, or for data exploration via visual
means (cf. Chap. 3) can have low latency performance requirements (e.g., for
monitoring and prediction/prescription), or they may target to batch processing
with increased latency, towards providing analysis results over voluminous
archived data. In particular, visual analytics [6], aiming to provide tools and
methods that combine human and computational data processing, are inherently
batch tasks.

Given these specific issues and processing requirements,

• ranging in a continuum from strict real time (high-throughput) to “pure” batch
(resp. low-throughput) processing, and

• taking into account the intertwined functionality of different components realiz-
ing these requirements’ (i.e., the fact that components act as consumers and as
producers); in conjunction with the fact that
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• the same functionality may be realized by multiple components adhering to
different processing requirements,

it is evident that the λ and the κ architectural patterns do not suffice themselves
to realize an architecture that incorporates all necessary components implementing
multiple processing and storage tasks adhering to various processing requirements.

11.2.3 Related Work

This section describes efforts to fill the gap between the generic prescriptions for a
Big Data Analysis Pipeline and the intertwined requirements of data processing and
analysis components for domain-specific real-world purposes.

Purpose-based approaches, aiming to satisfy the performance requirements of
analysis goals for specific purposes, support analysis components to have direct
access to data sources or allow them to store and process data as needed. These
solutions have major drawbacks: (a) Each component needs its own access point to
any of the data sources available, while (b) components need their own data pro-
cessing, transformation, data integration sub-components, increasing the software
management costs, and the required computational resources. High performance
is not guaranteed in this case, as complex pipelines may be implemented. (c)
Components cannot in principle access results provided by other components, but
only in cases where special connectors are provided; and (d) components should
handle access to own copies of data, while consistency should be guaranteed among
replicas.

In a more principled way, two paradigmatic architectures have been proposed.
The λ architecture [2] separates the batch from the real-time processing needs,
incorporating components that realize the same data processing tasks, with different
performance requirements, in separate layers. In doing so, input data is sent to both a
batch and a real-time processing system. Both systems execute the same processing
logic and output results to a service layer. Queries from back-end systems are
executed based on the data in the service layer, reconciling the results produced
by the batch and real-time processing systems. Beyond the software management
cost incurred and increasing the computational resources required, reconciling the
results from the real-time and batch layers incurs performance cost beyond the one
introduced by the batch layer, while in many cases this is not necessary: Having
different components operating in different layers independently, each with specific
latency requirements, is sufficient, given that these components have access to
the data sources, via a common point. It must be pointed out that although the λ

architecture does not cater for components implementing different functionality, a λ

pattern in an architecture may be necessary. Approaches following the λ paradigm
include SOLID [7] which is a 3-tier architecture, Alljoyn Lambda [8], and Spark
Structured Streaming [9].

The κ architecture [3] introduces a stream processing pattern. Layers of process-
ing do exist here as well, but for executing on the same data in parallel. Results
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finally provided are those produced by one of the processing layers. Although this
pattern resolves the software management issues implied by the λ architecture,
it provides a paradigm where the “mere” batch layer (e.g., the advanced data
management operations) is missing: Such a layer is necessary in cases where (a)
batch analytics in large amounts of data need to be performed (e.g., to feed a
machine learning algorithm with meticulously filtered integrated views of training
data), (b) analysis is done interactively with humans (e.g., in visual analytics tasks),
or in any case where (c) data needs to be transformed according to analysis needs
in low latency. The κ pattern is necessary in cases where different processing
components operating in parallel need to access the same data from a single log.

An architecture that is very close to the κ architecture and our proposal is Liquid
[10]. Liquid accentuates the need for satisfying different latency requirements,
focusing on data integration tasks. Latency requirements, incremental processing
(i.e., avoiding re-processing all data after updates), cost effectiveness (low oper-
ational cost), and resource isolation executing many components concurrently are
major issues addressed. The proposed architecture is separated into two independent
layers: The processing layer providing low latency results and incremental process-
ing, and the messaging layer for storing high-volume data with high availability and
ability to access data through metadata annotations. As noted in [10], this decouples
producers and consumers, without affecting each other’s performance. In addition,
the separation improves the operational characteristics of the data integration stack
in a large organization, allowing for management flexibility. Independency of layers
is what distinguishes Liquid from a κ architecture.

Beyond the in-principle architectural approaches, domain-specific architectures
for intelligent transportation systems related to our proposal either focus in
implementation-specific issues using big data analytics technologies, e.g. [11],
or in cloud-based architectures, e.g. [12, 13], mostly focusing on batch processing
tasks. An exception to that is the approach specified in [11], built on using Kafka
as the main communication medium between the traffic system and the analysis
module. While the architectural solution targets at real-time analytics, it is an
instantiation of the κ pattern, at a single layer of processing.

11.3 The δ Big Data Architecture

11.3.1 The δ Architecture: An Overview

The overall pattern of the δ architecture is depicted in Fig. 11.2. This comprises
multiple processing layers, each comprising multiple processing components that
typically do not interact. Components, connected in a loosely coupled way, act as
consumers or producers, or in both roles, subscribing to logs, or publishing data
in logs. By “logs” we refer to append-only messaging systems (such as Kafka)
with high-throughput and low latency reads, independent of log size, able to serve
multiple consumers. Logs can retain (where possible) a huge volume of data for
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a time period using a natural sequential order. Subsequently, we use the term
communication medium to refer to a specific implementation of a log.

In addition to logs, data management components, supported by high-volume
store(s), may be used to provide query-answering services: While data logs may
also be used as data stores, we use the term “stores” to refer to facilities for
storing voluminous, integrated archival data from disparate sources, according
to a meticulously crafted model, supporting efficient query-answering and data
transformations services, serving specific analysis tasks. Although query-answering
services for data stores can be efficient, we consider that data from stores cannot
serve real-time analysis needs, as logs could do.

Fig. 11.2 The δ architecture

Therefore, architecture components interact by means of exchanging data either
via data logs or via data stores.

This distinction between data stores and data logs has certain implications:

• By retaining multiple logs shared among components, a system may implement
multiple, interacting processing pipelines. Each pipeline realizes a specific flow
of data between components and has own processing requirements. Pipelines
may share components and/or logs, interacting with other pipelines via con-
stituent components’ interactions.

• Components requiring a fast communication medium for satisfying demanding
end-to-end performance requirements (e.g., high-throughput, low latency) can
communicate by publishing/subscribing data to logs, while others that have
batch processing requirements on large amounts of archival data, demanding the
retrieval and transformation of archival data, may, in addition to accessing logs,
fetch data by querying one of the architecture’s data stores.

11.3.2 Principles and Rules

To be more specific on the δ architecture, we will provide background information,
definitions of important terms, and introduce the denotation of important aspects.
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A pipeline P is any sequence of processing components and communication
media realized as a series of data processing, publishing, and fetching steps, as
follows:

P = (C1, CM1, C2, CM2, . . . .CMk, Ck), (11.1)

where any processing component Cm, 1 ≤ m < k, publishes results to a com-
munication medium CMm and the next component Cm+1 fetches and exploits the
specific results published by Cm. The subscripts in components are not associated
to the placements of components into layers.

We denote a pipeline P in which a component Ci participates, by (Ci · · · P),
while a component Ci in a pipeline P is denoted (P · · · Ci).

It must be noted that the main aspect here is not the “layered” configuration of
δ to which other architectural paradigms adhere to, as well, but the satisfaction of
performance requirements imposed on individual components and analysis tasks.
However, architecture layers (or levels) serve as a means to make an architecture
concrete, making explicit the processing pipelines and the ways requirements should
be satisfied. So, starting from performance requirements, we may clarify what is
the role of the δ architecture layers, and how one should decide the placement of
processing components into these layers.

Given a set of performance indicators I (e.g., throughput and latency), the
performance requirements on any component C are expressed as sets of constraints
on a subset of indicators in I. Such constraints take the form of equalities or
inequalities among performance indicators and specific values (e.g., Latency ≤
10 ms).

Performance requirements from a specific, isolated component C are denoted by
constr(C), and performance requirements of the component through a pipeline P

are denoted by constr(P · · · C). The performance constraints on a pipeline P are
denoted by constr(P ).

The placement of components in architecture layers depends on the flow of data
and on the processing requirements imposed on components: Considering perfor-
mance requirements, typically, components in layer1 have more strict performance
requirements w.r.t. performance indicators (e.g., they must provide results in real-
time) than components in a higher layer layeri, i > 1.1 We assume data flows from
lower to higher layers’ components. Thus, performance requirements on higher-
layer components in any pipeline affect the requirements of components in lower
layers in this pipeline. We will elaborate on this issue in subsequent paragraphs.

This ordering of components to layers implies that, typically, only processing
components in higher layers should have batch processing requirements, requiring
demanding (in terms of computational resources) access on system’s data stores.
Components with strict processing requirements typically should fetch data from
logs. However, all components, at any layer, may provide/subscribe to logs and
provide data to data stores.

1As the index of a layer becomes larger, the layer is considered to be higher in the architecture.
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To ease presentation, we consider a single indicator I ∈ I, assuming, without
loss of generality, a discretization of values that this indicator may be assigned. For
instance, regarding latency, we may define an ordered set of discrete values in which
latency can range: real time, very low latency, nearline, batch with considerable
latency, batch with high latency. Of course, in a real system we may impose very
specific constraints that processing components must satisfy, using quantitative
constraints, but discrete values for indicators may suffice as well, corresponding
to humans’ understanding of indicator values.

In general we assume that the following values can be assigned to I , ordered
by magnitude: {V0, V1, V2, V3, . . .}. We further assume a summation operation on
these values, satisfying the well-known properties of summation on integers, such
that Vi + Vj = Vk, where 0 ≤ i, j and max(i, j) ≤ k. Let V0 be the zero element.

We denote by IC the performance indicator’s I value regarding a component C,
including the tasks of fetching and publishing data: Similarly, we denote by I(P ···C)

and IP the performance indicator value regarding the performance of C through a
pipeline P , and regarding the performance of a pipeline P as a whole, respectively.
For example, I(C···P) is the performance indicator regarding a pipeline P in which
the component C participates.

To see the differences between these indicators, let us assume three components
C1, C2, and C3 in a pipeline P = (C1, CM1, C2, CM2, C3), and let IC1 = Vi and
IC2 = Vj . Then, the performance of C2 through the pipeline P is IP ···C2 = Vi +Vj ,
which may be greater than Vi and Vj . Also, the performance of the pipeline P is
IP =ICi ···P = IP ···C2+ IC3 , for i = 1, 2, 3.

Regarding performance requirements, and thus, constraints on performance
indicators, it holds that, given a requirement

constr(P · · ·Ck) = (I(P ···Ck) < Vj ), j = 0, 1, 2, . . . (11.2)

on any component Ck , and a pipeline

P = (C1, CM1, C2, CM2, . . . .CMk, Ck . . .), (11.3)

it must hold that

IC1 + IC2 + · · · + ICk ≤ IP ···Ck ≤ Vj , (11.4)

or equivalently, that

IP ···Ck−1 + ICk ≤ IP ···Ck ≤ Vj . (11.5)

It must be pointed out that the equality in the first part of relations (11.4) and (11.5)
holds when IP ···Ck−1 or ICk is equal to V0.

Therefore, given any pipeline

(C · · · P) = (C1, CM1, C2, CM2, . . . .CMk, Ck = C . . .) (11.6)
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up to C, which may be part of a larger pipeline, then each constraint IC···P ≤ Vx in
constr(C · · · P) implies further constraints in constr(Ci), for any other component
Ci , 1 ≤ i ≤ k, participating in (C · · · P ). For example, requiring that C · · · P should
provide results with latency less than 1 s, then the sum of each component’s latency
in that pipeline must be less than 1 s.

More specifically, given the constraint

IC···P ≤ Vx, (11.7)

then it holds that

(IP ···Ci < VP ···Ci ) ∈ constr(P · · ·Ci), (11.8)

where VP ···Ci = Vx−∑
j �=i ICj ,2 and ICj is the performance indicator of component

Cj , i ≤ j ≤ k.
Furthermore, given the participation of a component C in different pipelines, the

performance requirement for C regarding I is as follows:

constr(Ci) = (ICi ≤ minP {VP ···Ci }). (11.9)

Although the main objective is not on the placement of components to layers,
this is necessary towards realizing a Big Data Analysis Pipeline (comprising
multiple processing pipelines), as a whole. Generally, we should expect components
having “nearly the same performance” requirements to be assigned to the same
layer, if there is not any data flow between them. Therefore, given a pipeline
P=(. . . Ci, CMi, . . . Cj , . . . .), components Ci and Cj will be placed in different
layers, with Cj in a higher layer than Ci , given that there is a data flow from Ci

to Cj . The exact layer of Ci depends not only of the performance constraints on
Cj , and thus Ci , but on the requirements on any pipeline Ci · · · P in which Ci

participates.
To formulate the term “nearly the same performance,” we define that two

components Cx and Cy have negligible performance difference w.r.t. the indicator
I , when for any i ∈ {x, y} it holds that ICi = Vm, for a specific m in { 0, 1, 2, . . .}.
More generally, it must hold that ICx − ICy < ε, where ε is a threshold value
specifying the minimum performance difference in order two components to be
considered to have negligible performance difference.

Denoting the layer of a component Ci by layer(Ci), ranging in {1, 2, 3 . . .}, the
following rules determine the placement of components in layers in a δ architecture:

R1: Components Cx and Cy in a pipeline (. . . .Cx, . . . .Cy . . . .) are placed at
different layers, such that layer(Cx) < layer(Cy). The placement of each
component is with respect to constr(Ci), i.e. with respect to all the pipelines
in which it participates. An exception to this rule may concern components in
cyclic pipelines (see R4, below).

2The result of Vi − Vj is Vk s.t. Vi = Vk + Vj .
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Fig. 11.3 The 1 log snapshot of δ (a), the n logs snapshot of δ (multiple pipelines) (b), alternative
view of the n logs snapshot of δ (c)
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R2: Components with negligible performance difference are placed at the same
layer, given that no flow of data exists between them.

R3: Components Cx and Cy with non-negligible performance difference are placed
at different layers: If ICx < ICy , then layer(Cx) < layer(Cy).

R4: Components Cx and Cy that participate in a cyclic pipeline have negligible
performance difference through that pipeline and should be placed in the same
layer. That is, layer(Cx) = layer(Cy), given that both components do not
participate in other non-cyclic pipelines.

It must be noted that the exact layer of a component may be a more complicated
decision, given that performance constraints imposed to pipelines (thus, to compo-
nents) may concern multiple performance indicators, while processing components
may inherit constraints on different indicators from multiple pipelines. In this gen-
eral case where multiple indicators are considered, we need to use multiple-criteria
decision-making algorithms, given the specification of performance requirements in
terms of constraints. In addition to this, we may also decide to take advantage of the
existing flexibility to having multiple components for the same functionality, each
with different performance requirements.

In these cases, more interestingly, in order to maximize the performance of
multiple (interacting) pipelines w.r.t. multiple performance indicators (which may
present conflicting decisions as to which component to be used) we need to use
multi-objective search algorithms [14].

11.3.3 Snapshots of the δ Architecture

This subsection provides specific configurations of the δ architecture, in generic
forms, showing its potential to realize different paradigms of data processing archi-
tectures. Given our interest in mobility analytics tasks that exploit big surveillance
data in conjunction with other sources, we consider that there is at least one log
(the input log) that provides real-time data to all components and to which all
components subscribe.

11.3.3.1 A Single Log, No Data Management Configuration

This is the most simple and trivial configuration of the architecture shown in
Fig. 11.3a: Each layer comprises one component, and each component fetches data
from the input log and publishes results to a common log. Here, components process
input data in parallel, requiring no interaction with others.
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The single log where results are being published implies that results are ordered
according to the time published, but may require these to be tagged by the
producer component. This is useful in cases where two components having different
performance requirements target similar analysis results.

11.3.3.2 Multiple Logs, No Data Management Configuration

In this configuration of the δ architecture, shown in Fig. 11.3b, components do
interact and form pipelines. The interaction happens via publishing results and sub-
scribing to common logs. The final architecture may comprise several—interacting
or not—pipelines. An alternative view of it, showing clearly the pipelines and flows
of data, is shown in Fig. 11.3c.

In the configurations already presented, each component may have access to
archival data according to own processing needs, although there is not any provision
for a data store in the overall architecture.

11.3.3.3 The λ Architecture in Multiple Layers

This snapshot, shown in Fig. 11.4, follows the same pattern of the “one log, no
data management” snapshot in Fig. 11.3a, but all components do publish results in
a common data store.

The component at the highest layer may reconcile results published by other
components and provides a service layer where queries from back-end systems are
executed. In case processing components realize the same processing tasks with
different processing requirements, this snapshot of δ resembles the λ architecture at
multiple layers.

11.3.3.4 The κ Architecture in Multiple Layers Configuration

This configuration, shown in Fig. 11.5, follows a similar pattern as the “multiple
logs, no data management” snapshot, but the component at the highest layer fetches
results from all logs and provides final results. In case processing components
realize the same processing tasks, this snapshot of δ resembles the κ architecture
at multiple layers, where (a) each component produces results in parallel to other
components, executing on the same input data and (b) the component at the higher
layer may switch between logs.

Concluding this section, it must be noted that these snapshots of the δ architecture
are the most simple and primitive ones. Of course, mixtures of these generic patterns
may result in more sophisticated, albeit more complex, architectures.
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Fig. 11.4 The λ snapshot of δ architecture

Fig. 11.5 The κ snapshot of δ architecture

11.4 Instantiating δ in the datAcron Big Data System for
Mobility Analytics

This section presents an implemented instantiation of the δ architecture, shown in
Fig. 11.6, realizing the datAcron integrated prototype, which supports real-time and
batch analytics over big mobility data.

Given that datAcron aims at mobility analytics for large number of moving
objects in the aviation and maritime domains, emphasis is put on the latency and
throughput performance indicators, both for the individual components, as well as
for the implemented pipelines. While throughput is measured by the number of
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messages per second, translated to the number of moving objects whose position
is processed, latency ranges in the following set of values ordered by orders of
magnitude: {operational, tactical, strategic}.3 Thus, the datAcron system must
operate so as to serve large numbers of moving objects, covering large geographical
areas, with various latency requirements.

As shown in Fig. 11.6, the datAcron architecture consists of the following
components, addressing the requirements of big data mobility analytics specified
in Sect. 11.2.2.

The raw surveillance data feeders provide maritime data from a range of terres-
trial AIS receivers and orbit satellites and aviation data from European Surveillance
data feeds. The input data stream is collected, tested for veracity using a streaming
analytics module, cleaned and annotated with various error flags.

These in situ (i.e., close to the data sources) components detect errors and detect
and compress trajectories from raw surveillance data. Trajectories are enriched with
low-level events. These events can be provided by the Low-Level Event Detector
(LED) and the Synopses Generator (SG) [15]: For the purposes of this presentation
we consider that both functionalities are implemented in a single component in a
seamless way, the SG component, as also described in Chap. 4 in this book.

Fig. 11.6 The datAcron integrated prototype

The Semantic Integrator (SI) components transform data from any source into a
common model [24] (RDF-Gen component [23]), addressing also data integration

3Operational latency: milliseconds, Tactical latency: few seconds, Strategic latency: tens of
seconds or minutes.
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requirements (Link Discovery (LD) component) [16], as also presented in Chaps. 5
and 6. The requirements for providing data loading and storage, query-answering,
and data transformation services are addressed by the Data Management component
[17], also presented in Chap. 7.

All components at level 2 and at level 1 must operate in operational latency,
consuming the stream fed into the system in low latency and contributing to large
throughput of the system pipelines.

The components at the next level perform data analysis tasks, with varying
performance requirements. Specifically, the FLP module of the Trajectory/Future
Location Predictor (TP/FLP) [18] predicts the short-term future location of a mov-
ing object in operational latency [19]. TP presents a similar functionality, targeting at
predicting the future trajectory of a moving object as far in time horizon as possible,
with tactical latency [20]. These components are presented in Chap. 8 in this book.
The CER module of the Complex Event Recognition/Forecasting (CER/F) compo-
nents aims at detection of complex events [15], whereas CEF aims to forecasting
and prediction of complex events [21]. These components (cf. Chap. 9) perform
at operational (online components) or strategic (offline components). The online
components are working on synopses of trajectories and exploit spatial relations
provided by the link discovery tasks performed by the SI. The output of CER is a
stream with detected events. On the other hand, CEF enriches the input stream with
a probability of events occurrence, per event monitored. Real-time visualizations
of moving entities and their semantic trajectories are also supported by the Real-
time visualization (Viz) component. This provides a map-based visualization of
the stream of enriched spatiotemporal events generated by the TP/FLP and CER/F
components operating with operational latency and large throughput. It is able to
display different event types simultaneously, with an individual visual encoding for
each type. Finally, the Interactive Visual Analytics (IVA) components build on top
of the visualization module to provide limited analytical capacity on streaming data,
either with operational or with strategic latency. The primary use is to allow analysts,
and possibly maritime and aviation operators, to fine-tune and observe the impact
of parameter adjustments to the TP/FLP and CER/F modules compared to actual
data. Functionality and paradigmatic workflows for visual analytics components are
presented in Chap. 3.

Finally, the Trajectory Data Analytics (TDA) modules (cf. Chap. 10) provides
advanced trajectory analytics (e.g., data-driven discovery of the networks/routes
upon which the movement of the vessels/aircrafts take place), while on the other
hand it provides global patterns that represent meta-models (e.g., clusters and
sequential patterns of trajectories, as in [22]). It operates with strategic latency.

The flows of data between components in the integrated datAcron system result
in three different pipelines. In particular:

• Information processing and management pipeline: This comprises (a) the in situ
components in the first layer, as well as (b) the SI components in the second
system layer.
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• Real-time analytics pipelines: Each of these pipelines comprises an analytics
component in the third architecture layer, operating with operational latency.
Each of these pipelines must be able to accommodate a sufficient fleet of moving
objects. TP/FLP, CER/F components operate in parallel, with no flow of data
between them.

• Batch analytics pipelines consume the available stored information by querying
the RDF store [17] and store selected results back to the RDF store for future use.

11.5 Implementation of datAcron Integrated Prototype

In this section, we provide more technical details on the datAcron pipelines and
flows, thus presenting implementation of system pipelines, describing also specific
interactions between the individual components.

11.5.1 Information Processing and Data Management

In this pipeline, the prototype consumes as input raw surveillance data, both for
maritime and aviation surveillance sources. This input is provided as a Kafka stream.
The components that this pipeline comprises are as follows:

• LED is a Flink component consuming streaming data. It processes a stream of
raw messages and enriches it with derived attributes such as min/max, average,
and variance of original fields (e.g., of speed). The output is provided as a Kafka
stream that contains the original data, enriched with the afore-described fields.

• SG accesses the output of LED and performs two major operations. First,
it performs data cleansing, thus eliminating noisy data. Second, it identifies
“critical points” on per trajectory basis. The output is provided in Avro4 format
as a Kafka stream.

• SI receives the Kafka stream produced by SG and performs transformation
to RDF (using the RDFgen component) as well as data integration (i.e., link
discovery, using the Link Discovery (LD) component), by enriching trajectory
positions with information about weather as well as other contextual information.
The output is provided in RDF, encoded in Terse RDF Triple Language (TTL)5

and serialized in binary format as Java objects, also provided as a Kafka stream.
The implementation of RDF data generators (RDFgen) is in Java, whereas
the link discovery (LD) framework—which is the most processing-intensive
operation in SI—is implemented in Apache Flink.

4https://avro.apache.org/.
5https://www.w3.org/TR/turtle/.

https://avro.apache.org/
https://www.w3.org/TR/turtle/
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• Viz receives this enriched stream of information and provides real-time visualiza-
tions that can be used by operational users for improved situational monitoring
and awareness.

As an extension of the previous pipeline, we can consider the pipeline ending at
the Distributed RDF Store, which receives the RDF data provided by SI in a Kafka
stream and stores it in the distributed RDF store, offering query-answering services.

11.5.2 Online Future Location Prediction and Trajectory
Prediction

This pipeline addresses the trajectory and future location prediction (TP/FLP) in an
online fashion.

The pipeline in the datAcron architectural diagram ends at the TP/FLP compo-
nents. Normally, this involves data from full-resolution data, synopses and enriched
data integrated and then published in the “enhanced surveillance data stream”
provided to the TP/FLP (online) components.

The TP/FLP components operate in two different modes: (a) normal mode, in
which they consume the output of the information processing and management
pipeline, or (b) streaming simulation mode, in which they consume CSV files in
a streaming fashion, mainly for testing their functionality.

The output from TP/FLP components includes forecasts of variables and they
are (a) stored as JSON Arrays in HDFS, in order to further enrich synopses results
(e.g., by filling communication gaps) and give extended input to the batch analytics
components; (b) published in the “enhanced surveillance data stream” according to
a stream specification that is used as template for the final integration with IVA. The
stream specification is Kafka in JSON format.

11.5.3 Complex Event Recognition/Forecasting Online

The modules Complex Event Recognition (CER) and Complex Event Forecasting
(CEF) consume the data provided by the SI module and either read in the data from
files or from a Kafka topic. Outputs are produced as streams on Kafka.

The complex events forecasting (CEF) component is implemented in Flink with
Java and forecasts complex patterns of events that are sent to Kafka.

Regarding event recognition, the CER module consumes serialized ST_RDF java
objects and produces serialized ComplexEvent java objects that contain a JSON
string with the recognized complex events. Several complex events patterns have
been implemented.
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11.5.4 Visualization and Interactive Visual Analytics: Online

Viz digests the enriched stream produced by fusing output streams from SI, TP/FLP,
and CER/F components into the single enhanced surveillance data stream. This
stream is automatically integrated into trajectory objects, displayed jointly as points
and lines, respectively, on a (2D) map display.

The IVA module builds on top of Viz to provide limited analytical capacity on
streaming data. Therefore, the principal input to the IVA is identical to that of the
Viz. As already specified above, the primary use of IVA is to allow analysts, and
possibly operators, to fine-tune analytics processes and observe impact of parameter
adjustments. For this purpose, there is a flow of parameter settings from the TP/FLP,
CER/F, and SG components to the IVA module and a flow of analysis results from
these modules to IVA: Given the cyclic pattern of interaction between IVA and the
analysis components, and the fact that CER/F, TP/FLP, and IVA have negligible
performance differences, these components are shown to be at the same architecture
layer.

In terms of actual integration of these modules, the networked connection
between modules Viz, CER/F, and TP/FLP utilizes the same Kafka with JSON-
encoded payload.

The implementation of the real-time visualization VA module follows the client-
server architecture. On the server side, Kafka streams are consumed. All the
applications on the server side are developed in Java. The client side is browser-
based and written in JavaScript. The incoming messages from the Kafka streams
are processed one by one and from every incoming Kafka message a JSON object is
generated. Each JSON object is forwarded to the client using WebSockets. In fact,
any input source providing enriched positional information of moving objects can be
consumed and fed to the visualization front end, as long as it is provided as a Kafka
stream. Essentially, this facilitates the integration with the Kafka streams provided
by the components TP/FLP and CER/F, as well as with the enhanced surveillance
stream provided by SI.

11.5.5 Trajectory Data Analytics Offline

There is a cyclic interaction pattern between the offline Trajectory Data Analytics
(TDA) and the Data Management (DM) components. More specifically, the input
from the DM is provided to the offline Trajectory Data Analytics component, which
writes back the output to the DM.

Actually, the analyst selects the desired process of the offline TDA component
(shown in Fig. 11.7) and poses a SPARQL query to the DM so as to retrieve the
transformed RDF triples into the appropriate format (one record per point, including
the moving object id, the timestamp, and the spatial position attributes).



11 The δ Big Data Architecture for Mobility Analytics 335

Fig. 11.7 The offline Trajectory Data Analytics (TDA) module

The output of this component is again converted to RDF, stored to the DM, and
is available to the analyst via the SPARQL interface provided by DM. This output
can comprise one trajectory cluster per record, specifying the id of the cluster and a
list of the sub-trajectories that belong to the cluster.

11.5.6 Complex Event Recognition/Forecasting Offline

This flow realizes the offline complex event recognition and forecasting function-
ality. This is an example of a datAcron pipeline that is technically possible in the
architecture, but actually it was not required from datAcron: However, it has been
kept as a placeholder for future developments, given that currently, the functionality
of the online counter-component suffices.

11.5.7 Interactive Visual Analytics Offline

The IVA component provides facilities for the visual exploration of data and visual-
interactive support for building and refining models and their parameter settings. It
therefore targets analysis experts working on the strategic level using data-at-rest,
but may in suitable cases also provide visualizations with limited interactivity on the
tactical or even operational level. Therefore, the IVA component operating in batch
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mode (offline) can be fed with data from a wide variety of data sources, including
data from the DM.

The purpose of the Visual Analysis approach is to combine algorithmic analysis
with the human analyst’s insight and tacit knowledge in the face of incomplete or
informal problem specifications, and noisy, incomplete, or conflicting data.

11.6 Experimental Evaluation

To evaluate the datAcron instantiation of the δ architecture we performed a “per-
component” evaluation (Fig. 11.8), and a “per pipeline” evaluation focusing on the
pipelines required to operate in real time and with large enough throughput to cover
a sufficient number of moving objects.

To show the scalability of the prototype, we measure throughput and latency of
individual components and of the system pipelines, increasing the number of cores
available to the system (parallelism). Our computational platform consists of 10

Fig. 11.8 Throughput and latency for each component
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nodes (2*XEON e5-2603v4 6-core 1.7 GHz, 128 GB of RAM, 256 GB SSD). Three
nodes are configured as Kafka brokers. One of the nodes was designated as the
driver node; hence, all the parallelism configurations are a multiple of 9.

Per-Component Evaluation In terms of throughput, as shown in Fig. 11.8a, the
Synopses Generator (SG) scales effectively achieving 100K messages/s using 9
workers and 360K messages/s for 18 workers. The throughput of SG decreases with
36 workers, because the YARN cluster could not allocate sufficient resources for the
execution. Therefore, for this component, it does not make sense to test higher level
of parallelism in the given infrastructure. As mentioned, the Semantic Integrator
incorporated RDF generators implemented with RDFgen and Link Discovery (LD)
component. The RDFgen and FLP components scale well up to 36 workers reaching
17K and 15K messages/s, respectively. For the LD component we observe that
the maximum speedup is detected in the configuration of 36 workers, reaching
7.6K messages/s. Given an average sampling rate of 1 message per 5 s for each
moving object, this means that LD is able to accommodate 38K moving objects
with 5 s update.

Figure 11.8b depicts the latency for all components. The latency of the Synopses
Generator (SG) is approx. 60 ms given 18 workers. This is an improvement over the
centralized case, where the average latency is around 120 ms. The latency remains
under 2 ms for all executions of the RDFgen and LD components. This proves that
the RDFgen scales gracefully as the parallelism increases. Thus, all the components
in the information processing and data management pipeline manage to meet the
requirement of operational latency. The FLP component has the highest latency of
all the components, reaching 32 s for the single worker case and 20 s for the 18 and
36 workers case. The batch interval for the FLP component was set at 10 s.

Per Pipeline Evaluation For this type of experiments each component was given
9 or 18 workers, so that all the components can achieve maximum performance.

The results obtained for the Semantic Integrator (SI) pipeline, which is the most
crucial part of the architecture given the high-throughput and operational latency of
the SG component, show that for parallelism equal to 9 it achieves 3.5K messages/s
for the slowest component (which is also the last component in the pipeline). For
parallelism equal to 18 the SI pipeline achieves 4.8K messages/s for the slowest
component. For the FLP pipeline (one of the real-time analytics pipelines) and for
parallelism equal to 9 the throughput achieved is approx. 10K messages/s, while
for parallelism 18 is approx. 15K messages/s. This means that the FLP pipeline
can accommodate a very large fleet of moving objects with quite frequent update
of positioning information (covering large parts or even the whole Europe in sea or
air), thus achieving the requirements of the overall datAcron prototype.
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11.7 Concluding Remarks

In this chapter, we introduced the δ architecture for big data processing, and
an instantiation of this architecture for the domain of mobility analytics. The δ

architecture offers an in-principle architecture that can be instantiated to other
big data architectural patterns—such as κ or λ—focusing on loosely coupled
components that act both as producers and consumers. One major advantage is
its flexibility; components may act independently or be placed in pipelines whose
performance may be fine-tuned according to application requirements. Last, but
not least, we demonstrate and evaluate an implemented instantiation of the generic
architecture, realizing the datAcron system for mobility analytics.

Fig. 11.9 The datAcron software stack and related big data technologies

In summary, the datAcron integrated prototype demonstrates its functionality
and operation in real-time processing and online scenarios, most notably with low-
level event detection, detection and generation of trajectory synopses, semantic
enrichment of positional data with contextual and weather data, as well as with
higher data analysis tasks, including future location prediction, complex event
recognition and forecasting and real-time visualizations. Also, the prototype is able
to demonstrate batch processing and offline analytics over integrated RDF data,
using Spark as the big data platform for development. Figure 11.9 provides an
illustration of the datAcron software stack, showing the individual modules and the
big data technologies on which they rely.
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Part VI
Ethical Issues for Time Critical Mobility

Analytics

This last part focuses on important ethical issues that research on mobility analytics
should address: This is deemed to be crucial, given the growth of interest in that
topic in computer science and operational stakeholders, necessitating the sharing of
data and distributing the processing among stakeholders.



Chapter 12
Ethical Issues in Big Data Analytics
for Time Critical Mobility Forecasting

Gemma Galdon Clavell and Victoria Peuvrelle

Abstract Big data analytics for time critical mobility forecasting involves the use
of large amounts of data from different sources, which are combined to gather
new insights and foresee potential needs and developments. Due to this intensive
use of data and the sensitivity of projects involving critical infrastructures and
technologies, the use of big data analytics for time critical mobility forecasting has
legal and ethical impacts and risks that need to be addressed and mitigated. While
this may not be obvious at first glance in some cases, as the presence of personal data
and direct impacts on individuals may be minimal, ethics issues are still relevant.
These are related to the possible privacy- and security-related consequences, as
well as potential misuse and “function creep”, both during product development
and testing and in the actual use of the final product. This chapter thus seeks to
tackle those ethical challenges as they were addressed by an expert ethics team
in the EC-funded datAcron project. We start by explaining the efforts made at the
EU level to ensure the ethical development of publicly funded technologies and the
framework and risks all projects need take into account, and then we briefly go
over the different insights and actions regarding the datAcron project to ensure the
ethics compliance of the project. While the process and advice developed is specific
to datAcron, we believe it holds lessons for other similar initiatives seeking to be
aware of and comply with their ethics obligations.

12.1 Introduction

There is an increasing awareness of the need to combine investment in new,
innovative technologies with a deeper understanding of their legal, social, and
ethical impacts. Recent controversies surrounding the legality, acceptability, and
unexpected impact of technological developments in the field of security have led
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to an increased interest and concern in addressing societal issues in the field of EU
research and innovation, with a specific emphasis on legal compliance, longer-term
phenomena, and the need to better govern and exploit, at an early/conception stage,
the negative and positive externalities of technological innovation processes and
products in the short, medium, and long term.

Big data is defined as “high-volume, high-velocity, and/or high-variety informa-
tion assets that demand cost-effective, innovative forms of information processing
that enable enhanced insight, decision-making, and process automation” [6]. In
projects dealing with big data, responsible research is a particularly sensitive
issue, as data from different sources and of different times is gathered/generated,
mined, combined, shared, and used to forecast future events in ways that are often
unaccountable or that render the information vulnerable. The positive impact of
these innovations can nevertheless be maximized if the necessary legal, social,
and ethical precautions and mechanisms are put in place. In this context, our
involvement in the datAcron mobility analytics project aimed at addressing these
issues in big data analytics for time critical mobility forecasting. While this was
considered a low-risk project, the main ethics issues were related to the possible
consequences of event recognition and trajectory analytics for privacy and the
potential misuse or “function creep” (defined below) of the technologies developed.
The identification and monitoring of these issues involved a continued relationship
with the research team and the review of several key documents to anticipate and
tackle potentially sensitive activities. In the process, the awareness of the team
around these issues was raised and several mitigation strategies were incorporated
in the project.

The following sections of this chapter thus go over the necessary steps to
address the aforementioned ethical issues in a way that is consistent with the
principles of responsible research and innovation, privacy and data protection
rules and guidelines, and ethical safeguards, specifically in the handling of data,
development of experiments, and potential future use of the technology. First,
existing methodologies to carry out ethical research at the European level are
presented. Secondly, ethics issues in mobility forecasting are explored, focusing on
the mobility of moving objects. Recommendations are made to tackle those ethics
issues in the third and final part of this chapter.

12.2 Ethics in Research at the EU Level

Several methodologies and definitions have been provided at the EU level to
ensure responsible research and innovation, linking the specific needs of projects
with broader principles. In 2010, for instance, researchers from several EU-funded
projects got together to compile a policy brief on “Responsible Research and
Innovation in the Information and Communication Technologies and Security
Technologies Fields.” The group agreed on the following shared definition of
responsible research and innovation:
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Responsible Research and Innovation is a transparent, interactive process by which societal
actors and innovators become mutually responsive to each other with a view on the
(ethical) acceptability, sustainability and societal desirability of the innovation process and
its marketable products (in order to allow a proper embedding of scientific and technological
advances in our society). [8]

At around the same time, the European Commission’s Directorate-General for
Enterprise and Industry (DG ENTR) commissioned a report from an Expert Work-
ing Group on Societal Impact, mentioning how the Security Research Programme
was at a “key moment,” as “the agenda for security research and development in
Horizon 2020 is gradually taking shape” [5]. The group comprised of experts from
the security industry, academia, the non-governmental organizations, and policy
communities concluded, among other things, that:

• Citizen rights should be a fundamental requirement which could and should lead
to drawing boundaries of what is and what is not acceptable in EC funded security
research.

• The principles of research ethics should include accountability for scientific pro-
cedures, clarification of criteria, and choice of research objects, disinterestedness,
regard for conflicts of interest, consent of participants in research, confidentiality,
transparency of methods and results, respect for data protection, and ownership.

• EC-funded research should lead to enhancing the security of European citizens
and show how it will affect the lives of citizens in doing so.

• Societal impact should be addressed in the following phases: work program and
annual calls, proposals, negotiation, project execution, and implementation of a
completed product, system, or techniques in different contexts.

These concerns have since then been embedded in the ethics monitoring scheme
of the European Commission,1 which identifies, tracks, and monitors the ethical
compliance of all EC-funded projects dealing with sensitive issues and, most
notably, using personal data. Thus, consortia wishing to be funded by the European
Commission must fulfill a number of ethics requirements in order to receive funding.
This entails explaining to the Commission the project’s commitment to ethics in
the proposal and completing an ethics table, for which the Commission has issued
a Guidance.2 Throughout any project, the consortium must hand in a number of
documents that guarantee the project’s compliance with ethical guidelines and
regulations, such as:

• A data management plan explaining how the data processed within the project
will be handled;

• A legal document explaining the regulations to be followed and how the project
complies with them;

1https://ec.europa.eu/programmes/horizon2020/en/h2020-section/ethics.
2https://ec.europa.eu/research/participants/data/ref/h2020/grants_manual/hi/ethics/h2020_hi_
ethics-self-assess_en.pdf.

https://ec.europa.eu/programmes/horizon2020/en/h2020-section/ethics
https://ec.europa.eu/research/participants/data/ref/h2020/grants_manual/hi/ethics/h2020_hi_ethics-self-assess_en.pdf
https://ec.europa.eu/research/participants/data/ref/h2020/grants_manual/hi/ethics/h2020_hi_ethics-self-assess_en.pdf
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• A document explaining how the technologies developed follow the principle of
privacy by design;

• A guidance brief on how the consortium is carrying out research ethically.

Other documents are added according to the specificities of each project, and
thus ensure that any ethical issues are tackled before and throughout the project’s
duration. Following this type of rigorous ethical process is mandatory for H2020
projects, but can also be of use for any projects developing new technologies,
especially those such as datAcron, where ethical issues may not be clear at first
glance. The following section goes over the ethics issues that are linked to new
technologies.

12.3 Ethical Issues

12.3.1 Consequences of Outputs for Privacy

Data protection and privacy risks depend on the specific features of the developed
system; it depends on the types of data involved, whether it is personal, and on
the uses of that data. Indeed, privacy risks are particularly heightened when the
personal data being processed is of a sensitive nature, such as biometric data, or
data concerning religious, sexual, or political beliefs.

Mobility forecasting of humans can be problematic as it can divulge sensitive
information about individuals. Indeed, the grand majority of people have routines
and patterns of movements. Hence for many, if their movements are divulged,
their workplace or home address can easily be found by correlating the location
data with maps. This applies to more sensitive and personal data as well, such
as an individual’s religious activity, political meetings, or other types of personal
hobbies which such individual would rather keep personal. If a person with the
wrong intentions has access to this data, the physical security of the person can be
jeopardized. Not only this, national security can be put at stake, for instance, in the
case of the fitness apps Strada and Polar, which released flow maps of their users’
movements, thus divulging the location of military bases and soldiers’ training
patterns in at-risk areas [7, 9].

These privacy issues are greatly reduced when exploited data concern moving
objects rather than individuals, as was the case in datAcron scenarios. The privacy
issues linked to the processing of the personal data themselves were low in that case,
for the following reasons:

• Only the movement of vessels and airplanes was subject to monitoring. Most
large moving entities do not belong to individuals and therefore do not constitute
personal data nor can they be linked to individuals. However, smaller moving
entities that do belong to individuals can be more problematic as the analysis of
their moment might lead to the identification of their owner. In order to minimize
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this risk, datAcron only considered the movement of very large numbers of
entities; hence, the potential issues due to the singling out of individual vessels
and airplanes was highly reduced;

• datAcron only used publicly available information concerning the movement of
vessels and airplanes. This decision also lowered the ethics risks of the project.

Nevertheless, the following privacy and security concerns continued to be
relevant concerning the monitoring of the movement of entities;

• For individually owned vessels and planes, the technologies developed could lead
to the unintended revelation of the owner’s identity;

• The tracking of moving entities linked to governmental activities or actors could
compromise national security, as well as the security of those on board of such
vessels.

These privacy risks, however, are understood in terms of probabilities, which
means measuring the likelihood of an undesired event and weighing the conse-
quences (e.g., the potential identification of vessels/aircraft that should remain
anonymous and the potential outcomes of this situation).

12.3.2 Function Creep and Dual Use

The concept of “function creep” refers to the “gradual widening of the use of a
technology or system beyond the purpose for which it was originally intended,
especially when this leads to potential invasion of privacy” [3]. Different aspects of a
project or system can vary with time—functions, scope and objectives, geographical
reach, end-users, etc. and so risks that were addressed at one point or deemed
non-problematic from an ethical perspective may later on have legal or ethical
implications, cause unforeseen or unintended privacy harms, or even constitute
criminal offenses. Therefore, while not each and every future practice or use of
technology can be anticipated, it is important to assess what the possibilities for
function or mission creep for any given project may be.

Function/mission creep is particularly relevant when the technologies or proce-
dures being developed can be used in different contexts. In the context of datAcron,
the need to specify users and actors was a clear priority, as the contexts of utilization
the technology include:

• Military/Security
• ATM and maritime management

– Transportation of passengers
– Transportation of goods
– Private use

• Government—Management of infrastructures
• Industrial/commercial
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Furthermore, the capacity of these technologies to be used for military purposes
opens the door to dual-use risks which is something that should also be considered,
as the restrictions on the funding, usage, and selling of dual-use items have
important limitations.

When technologies can be used for military purposes, they are called dual-use
items and are subject to the EU dual use Regulation (EC, No 428/2009) [4]. This
regulation provides a list of dual-use items and sets up a Community regime for the
control of their exports, transfer, brokering, and transit. Any project seeking funding
from an EU public body should ensure that none of the products or components is
part of that list and provides specific guarantees to this effect.

12.3.3 Other Ethics Issues

Other ethical issues in the context of big data analytics for time critical mobility
forecasting can arise. These relate mainly to unexpected or controversial uses, as
was the case with Strada and Polar flow maps, and data management issues, such as
lack of transparency and accountability, which can later lead to bigger issues such as
data breaches. In the context of datAcron, for instance, we identified the following
issues and discarded them as risks after going over their likelihood in the specific
context of the project and in the potential use of the technologies developed later on.

12.3.3.1 Subjective Thresholds

Thex technologies developed within datAcron included among their aims the
detection of “threatening” or “abnormal” activity and “important” events. There are
culturally charged definitions that require that specific protocols to determine what
is “threatening,” “abnormal” and “important” are defined to ensure the consistency
of the decisions made by the relevant actors or automatic processes. Projects faced
with similar challenges therefore need to define clearly the terms they employ when
they are setting their goals and see whether these might be subject to a range of
interpretations.

Clearly defining terms helps ensure that certain negative values are not inad-
vertently built into systems. Additionally, thinking through the terms in light
of equality, fairness, and non-discrimination promotes accountability and social
acceptability.

12.3.3.2 Algorithms and Automatic Decision-Making

Forecasting tools use algorithms to make decisions, e.g. on the potential future
location and trajectory of a moving object, or on events that may occur. If these
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algorithms only make simple decisions (identify speed gating and displacement of
vessels, for instance), they may not be problematic.

However, if at any point algorithms are expected to make complex decisions
(beyond database matching, for instance), the potential societal impact and risk of
these should be assessed and established. It is crucial in such cases that the teams
developing the algorithms be trained on these issues, as well as on the topic of
algorithmic bias. Algorithmic bias can occur at various stages of the algorithm’s
development. It may be due to the data exploited by the algorithm, which might be
biased or outdated or wrong; or it may be due to the way the design of the algorithm
translates the developers’ societal biases, or because the algorithm’s output is
wrongly used or interpreted. Assessing these biases is important in ensuring that
the algorithm fulfills its purpose properly.

12.3.3.3 Accuracy of Data

Data can be contradictory or imprecise. Making decisions on the basis of bad and
low-quality data (e.g., noisy, imprecise, inadequate, biased, outdated, uncleaned). In
essence, data unfit for its purpose can have important consequences for data-driven
technology developments and the decision-making processes. The adequacy and
reliability of data sources in conjunction with our abilities to identify “corner cases”
(i.e., cases where our algorithms are not trained at all, or not trained properly) are
therefore crucial to the development of successful technological outcomes.

12.3.3.4 Undesirable Reuse and Threat Modeling

Once data is created, it cannot be protected against all risks, as the possibility of a
threat gaining access to it is never zero. Therefore, it is important to define who
or what would constitute the threat model of the forecasting tool—could other
entities want unwarranted access to its input data and/or forecasting? Could this
data benefit any category of entities (insurance companies, for instance)? Would the
data developed by the tool have any commercial value that would make it attractive
to third parties? These are questions that need to be discussed in all projects.

12.3.3.5 Technological Divide and Discrimination

The use of technology is not evenly distributed geographically or socially. There-
fore, any data-driven initiative needs to take steps to ensure that it does not reproduce
or reinforce existing discrimination. In the case of datAcron, for instance, only
60% of all passenger aircraft around the world are equipped with an Automatic
Dependent Surveillance-Broadcast (ADS-B) transponders. Hence, whether those
entities using less or different technologies can be left out of the benefits of the tools
developed should be envisaged. Furthermore, whether this is due to geographical
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differences that can limit the scope of the solutions developed, and if this will
translate into a differential access to its benefits for different actors, and to what
extent this can be minimized, should be considered.

All of these ethical issues are to be kept in mind and delved into when developing
tools and systems for big data analysis in time critical mobility forecasting. The
following section goes over the actions to take in order to avoid ethics issues in big
data analytics for time critical mobility forecasting, taking as a model the European
Commission’s monitoring scheme.

12.4 Tackling Ethics Issues

12.4.1 Identification of Factors for Privacy Concerns

In order to evaluate the privacy risks in big data analytics for time critical mobility
forecasting, it is essential to first understand the data ecosystem surrounding the
technology. Therefore, three factors should be taken into account: the types of
moving entities covered, the provenance and type of data exploited, and the actors
and end-users involved.

12.4.1.1 Types of Moving Entities Involved

A key factor to determine the potential privacy risks and issues depends directly
on the kind of moving entities that are monitored, as their nature might render their
monitoring problematic from a privacy perspective, or even illegal. If only very large
fleets of moving entities are included, the privacy risks decrease immensely; how-
ever, privacy issues may arise when datasets include data on smaller individually
owned moving entities, or governmentally owned moving entities. During the design
of the system, it is necessary to consider the potential (intended or unintended)
effects of the identification of the moving entities:

• If the identification of a certain model of vessel or aircraft could provide
information on its use beyond what the owner/s disclosed;

• If the combination of model and geolocation data could facilitate the identifica-
tion of a specific model or type of vessel or aircraft—information that, in its turn,
could reveal information on use or other types of information that one may want
to keep private.

When developing a technology which tracks movement, these risks should be
taken into account, and specific security, privacy, and data protection processes
should be created to tackle them.
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12.4.1.2 Provenance and Type of Data

Another factor to determine the risks related to privacy and personal data is the
type of data processed and its provenance. Since big data exploitation implies
the processing of several data sources, it is necessary to evaluate the potential
consequences of the correlation of various data sources (archival or streams). Hence,
the following concerns arise:

• The existence of unique identifiers for mobile entities (e.g., aircraft and vessels),
and the potential development of “reverse search” mechanisms.

• The consequences of “in situ” data processing (i.e., processing of data close to
the sources that generate this).

• The use of open data and the possibilities of re-identification (both for the
retrieved data as for the resulting datasets).

• Exploitation of messaging systems (e.g., Controller Pilot Data Link): content,
meta-data, etc.

• Data revealed by monitoring and information provision systems like the Auto-
matic Identification System and others.

A possible solution to ensure good practices is the development of a specific
protocol for the selection of data sources. This includes a comprehensive list of
all the data sources and of interesting links between them, and their assessment in
terms of whether they include or allow the inference of personal data, among other
relevant aspects.

12.4.1.3 Actors/End-Users

Identifying the actors involved in the development of technology and identifying the
foreseen end-users can also help identify issues. Depending on the characteristics of
the collected, stored, and shared data, confidentiality concerns could also arise. For
this reason, once the data sources and resulting datasets are defined, it is necessary
to define who will be able to access them and how this information will be recorded
(logs to monitor the activities in the system).

It is important to foresee who will have access not only to the technology, but also
to the resulting information, and under which conditions and protocols, i.e. who will
be able to monitor the moving entities, what technical and managerial capabilities
will they have, which is the responsibility chain in case of an unforeseen event, and
which processes need to be in place, for instance, in case criminal activities are
discovered. Setting out the interfaces used and the context in which the technology
is being used also helps in assessing possible vulnerabilities.
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12.4.2 Identification of Factors to Avoid Function Creep

The identification of these three factors will help foresee possible privacy issues. In
the same vein, the steps to be taken to avoid function creeps include:

• Describing the initial definition of the expected application of the project at
hand:

– Geographical areas/countries included:

Areas covered,
Open sea/coastline, also indicating potential function differences,
Airspace volumes included;

– Entities and end-users that are expected to have access to the information and
make use of the system;

– Utilization guidelines and protocols (especially in case of abnormal events).

• Considering the later incorporation of data sources through the scalability
options.

– Broadening of the scope of the system;
– Moving entities involved;
– Utilization possibilities (e.g., for law enforcement purposes).

• Updating and reviewing the system and its function/mission creep risks.
• Avoiding the use of the resulting systems and tools for other contexts/other

moving entities (e.g., vehicle traffic management), as different moving entities
might pose different privacy issues.

• Identifying unexpected actors that may make use of the technologies developed
(e.g., criminals attempting to act in open seas).

Once these identification exercises have been carried out, it is much easier to
determine the likelihood of privacy concerns, function creeps, or the occurrence of
an undesired event.

12.4.3 The Integration of Privacy by Design Within the Process

“Privacy by Design” (PbD) is a concept developed back in the 1990s by Ann
Cavoukian, Information and Privacy Commissioner for Ontario (Canada) [2]. It
aims at establishing privacy assurance as the default mode of operation of an
organization. Principles of Privacy by Design should apply to all types of processing
which might involve personal information. The objectives are to ensure privacy to
achieve control over one’s information (even indirectly), and gaining a sustainable
competitive advantage for organizations.
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In the case of projects like datAcron, the rather low probability of ethics issues
due to the low occurrence of personal data did not mean Privacy by Design should
not be followed. It rather meant that applying the principles is easier, as less
areas and processes need to be developed. Even in such projects, following a PbD
approach is important to avoid ethics issues linked to privacy, but also other ethics
issues such as unforeseen disclosure of information.

The Privacy by Design approach is based on 7 foundational principles, which are
the following:

1. Proactive Not Reactive; Preventative Not Remedial

The Privacy by Design (PbD) approach is characterized by proactive rather than reactive
measures. It anticipates and prevents privacy invasive events before they happen. PbD
does not wait for privacy risks to materialize, nor does it offer remedies for resolving
privacy infractions once they have occurred—it aims to prevent them from occurring. In
short, Privacy by Design comes before-the-fact, not after.

2. Privacy as the Default Setting

We can all be certain of one thing—the default rules! Privacy by Design seeks to
deliver the maximum degree of privacy by ensuring that personal data are automatically
protected in any given IT system or business practice. If an individual does nothing, their
privacy still remains intact. No action is required on the part of the individual to protect
their privacy—it is built into the system, by default.

3. Privacy Embedded into Design

Privacy by Design is embedded into the design and architecture of IT systems and
business practices. It is not bolted on as an add-on, after the fact. The result is that
privacy becomes an essential component of the core functionality being delivered.
Privacy is integral to the system, without diminishing functionality.

4. Full Functionality—Positive-Sum, Not Zero-Sum

Privacy by Design seeks to accommodate all legitimate interests and objectives in
a positive-sum “win-win” manner, not through a dated, zero-sum approach, where
unnecessary trade-offs are made. Privacy by Design avoids the pretense of false
dichotomies, such as privacy vs. security, demonstrating that it is possible to have both.

5. End-to-End Security—Full Lifecycle Protection

Privacy by Design, having been embedded into the system prior to the first element of
information being collected, extends securely throughout the entire lifecycle of the data
involved—strong security measures are essential to privacy, from start to finish. This
ensures that all data are securely retained, and then securely destroyed at the end of the
process, in a timely fashion. Thus, Privacy by Design ensures cradle to grave, secure
lifecycle management of information, end-to-end.

6. Visibility and Transparency—Keep It Open

Privacy by Design seeks to assure all stakeholders that whatever the business practice
or technology involved, it is in fact, operating according to the stated promises and
objectives, subject to independent verification. Its component parts and operations
remain visible and transparent, to users and providers alike. Remember, trust but verify.
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7. Respect for User Privacy—Keep It User-Centric

Above all, Privacy by Design requires architects and operators to keep the interests of the
individual uppermost by offering such measures as strong privacy defaults, appropriate
notice, and empowering user-friendly options. Keep it user-centric. [2]

Privacy by Design includes both operational and organizational measures. Since
the use of personal data in the big data analytics for time critical mobility forecasting
of moving objects is minimal, there are perhaps less measures to put in place to
ensure Privacy by Design, though these might be harder to identify.

In the case of big data analytics for time critical mobility forecasting, the
following table provides recommendations for the application of Privacy by Design
for operational issues:

Principle Application to big data analytics for time critical
mobility forecasting

Proactive not Reactive • Consider the risks of the processed data by
listing all the expected data sources and its
characteristics.

• Consider the actors/end-users involved.

Privacy as the Default Setting • Consider the possibility of not tracking if it is
not compulsory by the law.

• Put measures in place to avoid the identifica-
tion of individuals.

Privacy Embedded into
Design

• Assess the privacy issues that might arise.

Full Functionality • Consider privacy as important as other factors.

End-to-End Security • Taking into account the risks vs. benefits, con-
sider implementing end-to-end encryption.

Visibility and Transparency • Allow the inspection and verification of the
resulting system through external evaluation
audits.

Respect for User Privacy • Inform the affected identifiable users about the
monitoring activities.

These recommendations overlap with the identification of factors developed in
the two previous sections and are meant to give the developers a better idea of how
to develop their project in a manner that respects the privacy of those whose personal
data might be involved. It is worth mentioning that the application of Privacy by
Design principles is especially relevant in case of unexpected situations. In those
cases, the pertinent staff responsible for the system should have event management
procedures to ensure good practice.
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12.4.4 Drafting a Data Management Plan

The identification of the previously-listed items is the first step to drafting a Data
Management Plan (DMP), a necessary step to ensure compliance with Privacy
by Design principles. DMPs set out the whole ecosystem surrounding data and
especially personal data within a project. They are divided into three sections (and
are to be adapted according to the specificities of every project):

• A data summary: This gives the overall outline of the characteristics of the data
being processed, and the purposes which justify its collection. This is especially
relevant to any personal data being processed.

• Allocation of resources: This identifies the roles and responsibilities for each
actor involved in the development of a technology.

• Data security: This part gives information on data protection, storage, recovery,
transfer, and retention.

The adequate measures to put in place to protect data are dependent on the type
of data being processed, its use, and who will have access to it. Therefore, the
Data Management Plan will depend on these factors. Having an adequate DMP
is essential in order to tackle potential privacy issues as they come along.

12.4.5 Identification and Documentation of the Licensing
Options

Lastly, the identification of the appropriate licensing options is an important step
in every project, especially those involving datasets, as it helps mitigate potential
misuses by controlling the dissemination and reuse of the technologies and their
outputs.

There are currently several projects and commercial products aimed at making
available datasets reflecting the activities of aircraft and vessels. These projects give
an interesting overview of data sharing procedures, as well as the related questions
to be considered (privacy policies, licensing, provenance of datasets, etc.). These
are some of the relevant initiatives that can be used as benchmarking for big data
analytics for time critical mobility forecasting:

OpenFlights.org This website shares with the public airport, airline, and route data
since 2009. The databases are made available under the Open Database License and
any rights in individual contents of the database are licensed under the Database
Contents License. http://openflights.org/data.html

FlightRadar24 Flightradar24 is a flight tracking service that provides users with
real-time info about thousands of aircraft around the world. Under the terms and
conditions section, the group refers to the “non-transferable right to access and use
the services.” This right is granted for personal, non-commercial use only. There

http://openflights.org/data.html
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are also references to frame the data collection and transmission procedures and
possible unauthorized uses. https://www.flightradar24.com/data/

Sea-Web Sea-web combines comprehensive ships, owners, shipbuilders, fixtures,
casualties, port state control, and real-time ship movements and ports information
into a single application. Sea-web is an enhanced service that includes all informa-
tion from the Internet Ships Register but provides many additional benefits. It covers
over 180,000 ships down to 100 GT. http://www.ships-register.com/

FleetMon This database allows searches by name, identification numbers, flag
state, length, and vessel type; it also allows tracking specific vessels to follow their
activity. The website grants a limited, revocable, non-exclusive, non-transferable,
and non-sublicensable license for beneficial use of the content accessible on the
site. https://www.fleetmon.com/vessels/

MarineTraffic It is a vessel tracking service that covers monthly up to 800 million
vessel positions and 18 million vessel and port related events; it also provides details
of over 650 thousand marine assets available (vessels, ports, lights). Regarding
utilization rights, it states that “the user shall use the information and data for
his/her own internal use only and shall have no other rights with respect to the data,
including without limitation, any right otherwise to use, distribute, furnish or resell
the data or any portion or derivative thereof.” http://www.marinetraffic.com

In the case of big data analytics for time critical mobility forecasting, the
following licensing issues are to be tackled:

Licensing of the Source Data Licensing issues do not only concern the technology
or output data, but also the rights in terms of the use of data sources. Once the
provenance of the data is detailed, it is necessary to ensure that all utilization
permissions are granted (including all types of data, like ship pictures). Mapping
systems may be based on different alternatives like OpenStreetMap (OSM) or
Google Maps. Product and company names may be the trademarks of their
respective owners. Open data sources also have conditions and limitations for their
use, which depend on the type of license upon which they were published.

Licensing of the Output Data The output data should be subject to clear licensing
options. It is necessary to foresee the use scenarios and the scope of end-users
and look at the terms regarding storage, property rights, reuse, reutilization, and
commercialization.

Licensing of the Resulting Tools The resulting tools (interfaces, analysis software,
etc.) will be subject to specific distribution, utilization, and, in certain cases,
modification rights.

Transparency and Open Data Issues In case of publicly accessible data, trans-
parency regulations are subject to limitations related to privacy and security issues.

Protocols It is recommendable to designate a contact person and define protocols
in case of misuse or conflict.

https://www.flightradar24.com/data/
http://www.ships-register.com/
https://www.fleetmon.com/vessels/
http://www.marinetraffic.com
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A useful solution to keep control of the licensing issues is to create a table
where source data and output data are listed, and adding a column for the licensing
concerns as they arise.

Taking these issues into account, the following standard licensing options for
output data and tools allow enough flexibility and control to be used for projects
such as datAcron [1]:

• Creative Commons:

Creative Commons is a non-profit corporation set up in 2001 for the purpose of
producing simple yet robust licenses for creative works. While originally aimed at works
such as music, images and video, Creative Commons licenses have been used widely for
most forms of original content, including data. There are six main Creative Commons
licenses. While the spirit behind them has remained constant, the wording of their legal
deeds has been revised over time, resulting in different versions, and adapted to different
legal jurisdictions, resulting in different ports.

All versions of the licenses treat datasets and databases as a whole: they do not treat
the individual data themselves differently from the collection/database. This might be
considered an advantage in terms of simplicity, but means they cannot be used without
difficulty in certain complex cases such as collections of variously copyrighted works.
Similarly, the licenses do not distinguish using data as part of a new collection/database
from using them to generate content (graphs, models, maps, etc.).

• Open Data Commons:

The Open Data Commons Project was set up in 2007 to develop a successor to the
Talis Community License (TCL). The first license to be produced was a public domain
dedication for databases. The project transferred to the Open Knowledge Foundation in
2009 and has produced two further licenses having some of the character of the Creative
Commons licenses, but designed specifically for databases. The Open Data Commons
Attribution License (ODC-By) allows licensees to copy, distribute and use the database,
to produce works from it and to modify, transform and build upon it for any purpose. If
content is generated from the data, that content should include or accompany a notice
explaining that the database was used in its creation. The Open Data Commons Open
Database Licence (ODC-ODbL) is the same as ODC-By but for a couple of additional
conditions.

Deciding on the licensing option once again depends on the nature of the
technology or dataset, its use, and the desired openness assigned to it.

12.5 Conclusion

This chapter has gone over the ethics issues that projects such as datAcron might
encounter and how to solve such issues. The efforts carried out at the European level
to tackle ethics issues in research projects developing new technologies were first
explained. These led to the ethics monitoring scheme developed by the European
Commission in order to ensure that the projects it funds follow international
standards in terms of ethics.
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The most relevant ethics issues were then delved into. These are the possible
consequences of event recognition, trajectory analytics, and misuse by end-users for
privacy and security, which can arise when individually owned vessels and planes
are included in the dataset, and potential misuse of the technology by end-users.
Other potential issues were also discussed, such as subjective thresholds in defining
terms, automated decision-making, accuracy of data, undesirable reuses of data, and
technological divide and discrimination. These, however, are more high-level and
linked to data management.

Lastly, recommendations were made to tackle ethics. To this effect, the useful-
ness of the identification of certain factors which can lead to issues was explained,
followed by an explanation of the concept of Privacy by Design and of a data
management plan. Finally, licensing options and their relevance were discussed.
The implementation of these measures leads to robustly tackling ethics issues
both before and during the development of projects developing new data-driven
technologies such as datAcron.
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