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Chapter 4
Crosslinked Polymer Hydrogels

Reem K. Farag and Salma Hani

Abstract  The use of synthetic crosslinked polymer gels has increased in recent 
years, due to their unique characteristics such as high mechanical strength, service 
life and water and oil swelling, as well as being biocompatible. They have been 
studied as promising candidates in various fields such as cardiac and oil sobrieties, 
contact lenses, cosmetics, drug delivery, tissue engineering, wound dressing, among 
others. This chapter provides general information on polymer gels, including defini-
tion, classification, preparation methods and applications.
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4.1  �Introduction

Polymers are macromolecules made from small parts called monomers linked to each 
other. The behavior of the polymer depends on several factors as inter- and intramo-
lecular interactions such as van Deer Waals forces, hydrophobic association, electro-
static interactions and hydrogen bonds (Zhang et  al. 2015a, b). However, the 
hydrophobic interactions and the hydrogen bonds result in an efficient polymer-
polymer attraction which causes the association between polymers (Dai et al. 2015). 
Polymers can be divided into biopolymers and synthetic polymers. The biopolymers 
are macromolecules manufactured by the living organisms such as cellulose, DNA, 
peptides, proteins, etc. (Wang and Heilshorn 2015). These biopolymers are responsible 
in the organism for performing biological functions such as homeostasis and molecular 
motions. The synthetic polymers are chemical compounds that are man-made such as 
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nylon, poly(acrylamide) (PAAm), poly(ethylene glycol) (PEG), poly(vinyl chloride) 
(PVC), etc., which are used in different industrial purposes (Chin et al. 2017).

Crosslinked polymer gels are three-dimensional (3D) hydrophilic polymeric 
structures that can absorb huge volumes of water and other biological fluids and can 
even preserve them under pressure sometimes (Tomadoni et al. 2019). In addition, 
they have a high-water content, and with physical properties such as high flexibility 
similar to soft tissues. Crosslinked polymers are made to tolerate strong chemicals 
or eventually be disintegrated and dissolved (Peppas et al. 2000). The dissolution 
process can be carried out by altering the environmental conditions such as ioniza-
tion of the solution, pH or temperature (Shimba et al. 2017).

4.1.1  �Crosslinking Process

Crosslinking is a process in polymer chemistry that results in a network structure 
that depends on a multidimensional extension of a chain polymer by a crosslink 
which is a bond that could be ionic or covalent that works by linking a polymer to 
other (Sun et al. 2018). This crosslinking process changes the liquid polymer to a 
gel or solid by restricting the movement capacity of the polymer chains individually, 
thus increasing the molecular weight (Mw) of the polymer (Lin et al. 2015; Gutiérrez 
and González 2017; Gutiérrez et al. 2016b; Gutiérrez et al. 2015a; Gutiérrez et al. 
2016a; Gutiérrez et al. 2015b). The resulting crosslinked polymers have an essential 
elastic characteristic which gives the polymer the ability to stretch and return to its 
original structure. However, by increasing the number of crosslink, they become 
less elastic and could be prone to be fragile (Rosales et al. 2017). But, by using 
sulfur curing or vulcanization, depending on the insertion of short sulfur chains that 
work on bonding the polymer chains in the rubber can give it more strength and 
durability (Maitra and Shukla 2014), are also resistant to heat and wear, as well as 
being mechanically strong, non-soluble in aqueous fluids, since crosslinking form 
strong covalent bonds, which results in solvent insoluble materials. They can, how-
ever, absorb a larger solvent content, for this reason they are called gels (Billah et al. 
2018). Crosslinking has been implemented to improve the mechanical strength, 
insolubility, rigidity and stiffness of polymers, thus allowing polymers to be consid-
ered potential candidates in various fields, including agricultural, biomedical, envi-
ronmental and industrial (Griffith et al. 2018). Therefore, by controlling the type of 
crosslinker and the required concentration, promising crosslinked polymers with 
desired properties of pore size, thermal degradation, particle size and swelling are 
generated (Vining et al. 2019). There are two types of crosslinking which are chemi-
cal crosslinking, including (1) free-radical radiation, ultraviolet-visible (UV) radia-
tion, condensation and (2) polymerization of small molecules, in addition to the 
physical and biological crosslinking (Feng et al. 2016).
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4.1.2  �Forms of Crosslinked Polymers

Over the last two decades, natural and synthetic crosslinked polymers have been 
potentially used in several applications, since both types have advantages and disad-
vantages (Fortman et al. 2018). The natural polymers have low thermal stability, 
more solubility and no strength, so in order to improve these characteristics it is 
necessary (Gong et al. 2016). Crosslinking processes are classified into two types: 
the in-situ crosslinking and the post-crosslinking (Akhtar et al. 2016). In order to 
synthesize the in-situ hydrogels, there are two methods: the first method depends on 
the polymerization of the small molecules in the presence of crosslinkers and initia-
tors (Desai et al. 2015), while the second method depends on the direct crosslinking 
of the monomers, either naturally or synthetically, to obtain a polymer chain 
(Takashima et al. 2017). In general, the synthetic polymers are hydrophobic and 
tougher compared to natural polymers, which results in high durability in hydro-
gels, but slow degradation (Foster et al. 2015). However, the post-crosslinking pro-
cess depends on crosslinking after polymerization (Akhtar et al. 2016).

Crosslinked polymers are categorized into different types based on several parame-
ters, such as ionic charge, mechanical and structural properties and preparation method 
(Slaughter et al. 2009). According to the crosslinking mechanisms, the crosslinked poly-
mers can be divided into three types: the chemical, biological and physical crosslinked 
polymers (Pakulska et al. 2015). The crosslinking of the polymers may be reversible or 
irreversible with respect to the nature of the crosslinking (Ghobril and Grinstaff 2015). 
The chemical method produces irreversible polymers. However, physical and biological 
methods lead to reversible crosslinked polymers through the application of electricity, 
light, magnetic field, pH change, pressure or stress (Sawada et al. 2019).

4.1.2.1  �Physically Crosslinked Polymers

The physical crosslinked polymers are crosslinked by physical forces such as elec-
trostatic forces, hydrogen bonds and hydrophobic interactions (Nystrom et  al. 
1996). This type of hydrogels can form reversible stable 3D gel structures from 
polymer solutions, and this occurs by changing some external stimulus such as con-
centration, ionic strength, pH and temperature (Hennink and Van nostrum 2012). 
According to Kjoniksen et  al. (1998), an example of this hydrogels is the ethyl 
hydroxyl ethyl cellulose (EHEC) in the existence of an ionic surfactant which forms 
a thermo reversible gel at elevated temperatures.

4.1.2.2  �Chemically Crosslinked Polymers

The chemically crosslinked polymers are also known as continuous or chemical 
gels. They are responsible for primary forces such as covalent bonding through 
chemical reactions in order to achieve the crosslinking of the macromolecules in 
solution (Wang and Heilshorn 2015). They are efficient to obtain and have high 
mechanical strength and heat resistance. When the chemical crosslinked polymers 
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form a covalent bond, a permanent 3D network is formed. An example of these 
polymers are hydrogels made from HEC in the presence of a divinyl sulfone cross-
linker (Ouyang et al. 2016). Two common methods are used for preparing chemi-
cally crosslinked polymers: the first method is the 3D polymerization which depends 
on the polymerization of hydrophilic molecules as vinyl monomers in the presence 
of multifunctional crosslinkers (Cao et  al. 2015). However, the drawback of this 
method is the significant amount of the unreacted monomers which can be toxic and 
require extensive purification methods (Wu et al. 2018). The second method depends 
on the direct crosslinking of the hydrophilic polymers so that extensive purification 
procedures could be avoided due to the small available amounts of the toxic mole-
cules in the system (Mahou et al. 2015). Polymers that are water soluble, including 
PAAm, PEG, poly(vinyl alcohol) (PVA) and polysaccharides are the main systems 
used for applications in the biomedical and pharmaceutical fields, due to their bio-
compatibility and non-toxicity (Caló and Khutoryanskiy 2015).

4.1.2.3  �Biological Crosslinked Polymers

The biological crosslinking method is an evolving technique that depends on the use 
of biomolecules to achieve the crosslinking, such as opposite charged peptides, 
complementary oligonucleotides, in addition to heparin growth factors (Sadtler 
et al. 2019). While, the opposite charged peptides and the polymers can form con-
nections that allow the formation of the biological crosslink (Contessi et al. 2019). 
In addition, this method aids the polymer is not solubilized in organic solvents or 
aqueous solutions. However, this type of crosslinking is perceived as not strong 
enough as the chemical crosslinking techniques (Chaudhuri et al. 2016).

4.2  �Methods of Synthesis of Crosslinked Polymers

Several different strategies for crosslinking the polymers can be used depending on 
the nature of the polymer, which could be through the polymerization of the small 
molecules by condensation or by forming a covalent bond between the polymeric 
chains through the irradiation, which is done by using high-energy ionizing radia-
tion, such as electron beam, and gamma and X-ray (Hassan and Peppas 2000). 
However, the gamma irradiation is considered more economical, since it uses low 
doses about 80 kGy and less for large parts that have high density, while for small 
parts the electron beam is mainly used such as in the production of cables and wires 
(Maitra and Shukla 2014). It could also be through the vulcanization of sulfur which 
depend on chemical reactions by introducing different chemicals accompanied by 
heating and, in some cases, with pressure. Thus, in all the cases, the chemical struc-
ture of the polymer will be altered during the crosslinking process.

Conventional polymerization techniques, such as the condensation and the free-
radical polymerizations, are mainly used for chemically crosslinked polymers (Das 
et  al. 2018). These techniques produce a degradable or a non-degradable 
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crosslinked polymer which depends on the formation of the bond (Li et al. 2017). In 
addition, the crosslinked polymers that could be obtained from these techniques do 
not impose any difficulty during their application, i.e. due to their robust crosslink-
ing ability provided by the primary forces, while crosslinked polymers that are 
achieved by physical crosslinking can cause some difficulties throughout its appli-
cation due to its fragile crosslinking provided by secondary forces (Li et al. 2016). 
For this reason, chemical crosslinking is more preferred.

4.2.1  �Free-Radical Polymerization

Free radical polymerization is one of the most widely used synthetic methods world-
wide to produce crosslinked polymers, both by academics and industrialists. It is 
used to generate a substantial amount of the crosslinked polymers produced globally, 
comprising 45% of the industrial synthetic plastics and 40% of the manufactured 
rubber, which is equivalent to an amount of 100 and 4.6 million tons, respectively 
(Kade and Tirrell 2014). It is widely used due to the favorable properties provided 
over other polymerization methods. First, it is found to be highly reactive, which 
results in crosslinked polymers of high Mws and ‘crosslinking density’ (Pan et al. 
2015). Second, this method supports several functional groups and takes place in soft 
environments (Lansalot et al. 2016). It is thus considered an effortless approach to 
the synthesis of crosslinking polymers. Free-radical polymerization is carried out in 
the existence of an initiator and heat. Mainly, acrylic acids and small acrylate-based 
molecules are synthesized and polymerized using this method. Free radical polymer-
ization is further categorized as homopolymer, copolymer, semi-interpenetrating net-
work and interpenetrating network (Sutirman et al. 2016). The homopolymers are 
crosslinked polymers of a type of hydrophilic small molecules units, while the copo-
lymers are the result of crosslinking between two different monomers, where at least 
one is hydrophilic in order to be swellable. The interpenetrating and the semi-inter-
penetrating networks are produced due to the formation of a swelling network first 
and then to the formation of a second intermeshing network system.

4.2.1.1  �Homopolymer

It refers to the polymer network that originates from the polymerization of a single 
monomer species in the presence of a crosslinker and an initiator. Crosslinked 
homopolymers are used in various applications such as contact lenses and drug 
delivery systems. For example, homopolymerization of N-acryloylglycinamide 
through free radical polymerization using the initiator 2,2′-azobisisobutyronitrile 
(AIBN) and the crosslinker N,N′-methylenebisacrylamide (MBAm), produced a 
hydrogel (Liu et al. 2014). N-vinyl-2-pyrrolidone can also be homopolymerized in 
the presence of a radical initiator AIBN and a crosslinker MBAm to create a pH-
responsive hydrogel for the in vitro delivery of propranolol hydrochloride (Shantha 
and Harding 2002).
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4.2.1.2  �Copolymer

The copolymers are crosslinked polymers that are synthesized by polymeriza-
tion of at least two different monomers with somewhere around a hydrophilic 
compound. Depending on the structure of the polymer chain, the copolymers 
are categorized into block, random and alternating copolymers. According to 
Zhou et al. (2016) a recent report portrays the synthesis of pH-temperature dou-
ble stimuli-responsive hydrogel for medication drug release. In this study, PEG 
was reacted with methyl ether methacrylate to achieve methacrylate ended PEG, 
which copolymerized with N,N′-dimethylaminoethyl methacrylate. The solu-
tion of the copolymer was then mixed with α-cyclodextrin (α-CD) to form a 
pH-thermo double touch hydrogel, thus allowing the arrival of a model drug 
5-fluorouracil to be adequately controlled by pH and temperature (Bi and 
Liang 2016).

4.2.1.3  �Semi-Inter Penetrating Network (Semi-IPN)

It refers to a crosslinked polymer generated from the combination of two indepen-
dent synthetic or natural polymer compounds, comprised in the form of a network. 
In addition, in the semi-IPN polymer, one of the compounds is usually a crosslinked 
polymer, while the other is a non-crosslinked polymer (Zhang et al. 2009). Due to 
the absence of the restricting interpenetrating elastic network, the semi-IPNs can 
effectively reserve fast kinetic response rates to pH or temperature, while offering 
the advantages as modified pore size and slow drug release.

4.2.1.4  �Interpenetrating Polymer Systems (IPNs)

It refers to the combination of two polymers or more of which are synthesized 
immediately in the presence of the other polymer (Muniz and Geuskens 2001). 
This is achieved by the immersing a pre-polymerized crosslinked polymer in a 
solution of small molecules and an initiator. This method can overcome the ther-
modynamic incompatibility due to the permanent interlocking of the networks, 
which causes the structure stable (Zhang and Zhuo 2000). The main advantages 
of this polymer networks are that dense crosslinked polymers can be produced 
which are characterized to have a robust mechanical strength, and is more com-
petent for drug delivery compared to the conventional gels. IPN’s pore sizes and 
the surface chemistry can be controlled in order to tune the drug release (Yin 
et al. 2007). IPNs can also moderate the effect of environmental changes on the 
crosslinked polymers, thus minimizing the drug burst release during oral deliv-
ery, due to their ability to prevent the swelling of the interpenetrating phases with 
respect to the elasticity (Rana et al. 2015).
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4.2.2  �Condensation Polymerization

Condensation polymers are identified as any type of polymers formed through the con-
densation reaction by the combination of small molecules, and obtaining water or 
methanol as byproducts (Kumru et al. 2017). Condensation polymerization is used to 
produce some of the main polymers, such as poly(amide)s, poly(carbonate)s and 
poly(ester)s. It also plays a special role in the history of polymer science, while the first 
genuinely synthetic polymer, Bakelite, was developed in 1907, as a condensation prod-
uct of phenol and formaldehyde (Kade and Tirrell 2014). The polymers produced by 
this method can be degradable or non-degradable depending on the groups formed 
during the polymerization process (Kabiri et al. 2011). This polymerization method is 
performed in the existence of heat, catalyst or both. In addition, the polymers resulting 
from this method generally have low Mw (Wang et al. 2018a, b). The polymerizations 
are divided into two groups, which are the condensation and the addition, while a step 
growth method with the condensation polymerization has also been used by Song et al. 
(2016). However, not all condensation reactions use a step growth method. Nonetheless, 
the step growth mechanism is still considered the most widely used method for the 
condensation of polymers for materials of industrial importance (Jain et al. 2016).

4.2.3  �Bulk Polymerization

This technique of polymerization generates crosslinked polymers by using one or 
more types of monomers (Wu et al. 2018). This variety of the types of monomers 
permits the production of crosslinked polymers with the desired properties for dif-
ferent applications. This technique typically requires the addition of a small amount 
of a crosslinking agent during the polymer production. The polymerization of the 
monomers is usually initiated with the help of chemical catalysts or UV radiation. 
In addition, the choice of the main initiator depends on the types of solvents and 
monomers that is used. The resulting crosslinked polymer can be generated in vari-
ous forms comprising emulsions, films, membranes, particles or rods.

4.2.4  �Ultraviolet (UV) Radiation

UV radiation is considered an economical route to achieve a crosslinked polymer 
compared to condensation and free radical polymerization techniques. In addition, the 
polymerization of the crosslinked polymer through this technique is perceived as safe, 
it also has the least amount of effect on the properties of the crosslinked polymer and 
does not require the addition of any chemical compound such as initiators, solvents 
and surfactants. Thus, it allows the crosslinked polymer to retain its proper swelling, 
mechanical strength and biocompatibility properties (Wang et al. 2016).
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4.3  �Properties of Crosslinked Polymers

Much of the crosslinked polymer chains are chemically or physically linked, and 
therefore, are considered as a molecule, regardless of size. For this reason, the 
Mw of the crosslinked polymer is not perceived and are occasionally called mac-
romolecules or infinitely large molecules (Niu et  al. 2019). Minor changes in 
environmental conditions can cause reversible and fast alterations in the cross-
linked polymers. The changes in the environmental parameters, including electri-
cal signal, enzyme presence, pH or temperature, can cause a change to the 
physical structure of the crosslinked polymers (Rao et  al. 2016). The changes 
that are produced can take place at macroscopic levels, since they change the size 
and water content of the crosslinked polymer (Deng et al. 2011). The alteration 
in the ion concentrations inside the crosslinked polymer in relation to the exter-
nal solution could change, the pH and the volume of the solvent. In addition, the 
response of the crosslinked polymers with acidic or basic functional groups to 
the external environment depends on the degree of ionization of the functional 
group (Rana et al. 2015).

4.3.1  �Biocompatibility

Crosslinked polymers to be used in various applications in the biomedical field 
must be biocompatible and non-toxic. For this reason, before being applied the 
crosslinked hydrogels must pass the cytotoxicity and in-vivo toxicity tests in 
order to be applied (Nawaz et al. 2018). The biocompatibility is the ability of 
the material to respond appropriately in the host during a specific application. In 
addition, biocompatibility consists of two basic elements: biosafety and bio-
functionality (Kirschning et al. 2018). The biosafety is the performance of an 
adequate response from the host with the absence of carcinogens, cytotoxicity 
and mutagenesis. However, it is not only based on the systemic response but 
also on the local response of the neighboring tissues (Ibáñez-Fonseca et  al. 
2018), while the biofunctionality is the polymer’s ability to perform the intended 
and required tasks. This is mainly important for tissue engineering, since the 
nature of tissue construction is to continuously interact with the body through 
cell regeneration and healing processes (Szafulera et al. 2018). However, if the 
requirements are not met, this means that the gel could be fouled or that there 
are injuries and scars to the connected tissues (Molpeceres et al. 2018). In addi-
tion, the toxic chemicals such as emulsifiers, initiators, solvents, stabilizers and 
unreacted monomers that are used in the polymerization of the synthesis of 
crosslinked polymers could interact with the body if the conversion is not per-
formed 100% correctly. This presents a challenge for biocompatibility in vivo. 
These chemicals are toxic to host cells if they are filtered to encapsulated cells 
or tissues (Choi et al. 2015).
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4.3.2  �Degree of Crosslinking (DC)

The DC of the polymers is often measured using the swelling experiment, where the 
crosslinked terpolymer sample is placed in a solvent which is usually water at suit-
able temperature conditions (Nam et al. 2016). The DC is assessed by measuring the 
changes that occur in the mass or the volume of the crosslinked polymer. It should 
be noted that more crosslinked hydrogels have less swelling capacity. The DC will 
be calculated according to Flory (1953), where the sample is weighed dry then 
placed in the solvent for 24  hours and subsequently weighed at different time 
intervals.

4.3.3  �Mechanical Properties

The mechanical properties of crosslinked polymers vary and can be tailored depend-
ing on the nature of the material. To achieve a gel with a higher toughness, the DC 
could be increased (Najdahmadi et  al. 2018). A stronger gel can be acquired by 
increasing the DC, while decreasing the DC leads to a more brittle gel structure. The 
mechanical properties of crosslinked polymers have a great role in the biomedical 
and pharmaceutical fields, as they can be used for tendon and ligament repair, as 
well as they could be used as a matrix for the delivery of drugs, tissue engineering, 
and cartilage replacement and wound dressing material (Ahmadi et al. 2015; Chai 
et al. 2017). It is worth noting that crosslinked polymers can maintain their physical 
texture during the delivery of therapeutic medications (Benjamin 2017).

4.3.4  �Swelling Characteristics

Crosslinked polymers are networks that can be swollen in a fluid medium. The liq-
uids that are absorbed functions as a selective medium or filter to allow the entry of 
some solute molecules, while the network of polymers act as a matrix that holds the 
liquid together (Bukhari et  al. 2015). Crosslinked polymers can contain up to a 
thousand times of their weight in liquids (Wang et al. 2018a, b). The nature of the 
water in the polymer can establish a complete infiltration of the nutrients into and 
the cell products out of the gel. When a dry crosslinked polymer absorbs water, the 
first molecules of water move towards the matrix working to hydrate the most polar 
hydrophilic groups. Since the polar groups are primarily linked, these results cause 
swelling of polymer bonds, exposing the hydrophobic groups, which also interact 
with the water molecules, which leads to secondary water binding. As a result, the 
network absorbs additional water due to the osmotic driving force of the network 
system to be diluted (Wang et al. 2018a, b). This swelling is opposed by the covalent 
or physical crosslinking, thus generating an elastic network withdrawal force. 
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Finally, the crosslinked polymer reaches the swelling equilibrium level. The extra 
water that is absorbed after the saturation of the polar and the hydrophobic groups 
will be defined as bulk water and acts as a filling to the space between the network 
chains and the pores (Zhu et al. 2019). Gradually, as the swelling of the networks 
increases, if the crosslinks are degradable, the gel will begin to dissolve at rates that 
depend on its structure (Chen et al. 2018).

4.4  �Application of Crosslinked Polymers

4.4.1  �Anti-Biological Crosslinked Polymers

Infections caused by pathogenic organisms such as bacteria, parasites and 
viruses are a major health problem despite the expansion in the medical field 
and health care. Conventional techniques for the treatment of the microbial 
agent as antibiotics usually lead to the development of resistance to the antibiot-
ics (Anjum et al. 2016). Recent studies have found a new method to treat the 
microbial agents by using the anti-biological crosslinked polymers (Jones et al. 
2015). The crosslinked polymers work on the rupture of the cell membranes of 
the microbial agent, resulting in the leakage of the cytoplasmic content and cell 
death (Tian et al. 2018). Several types of anti-biological crosslinked polymers 
have been developed in the recent years (Konwar et  al. 2016). According to 
Echazú et al. (2017), crosslinked polymers based on chitosan containing vary-
ing concentrations of benzoyl have demonstrated high antibacterial and antifun-
gal activity. The elevation of antimicrobial activity was associated with the 
increase in crosslinking concentration. Some researchers have also produced 
cellulose-based crosslinked polymers exhibiting high biocompatibility, mechan-
ical strength, swelling property and antimicrobial activity against Saccharomyces 
cervisiae, thus showing the possibility of using crosslinked polymers as an anti-
microbial candidate (Nordström and Malmsten 2017; Hu et al. 2018). It has also 
been reported that crosslinked polymers based on peptides show a significant 
antibacterial effect. In this sense, Rinehart et al. (2016), reported the develop-
ment of a β-hairpin crosslinked polymer that had an anti-biological effect. 
Although the anti-biological crosslinked polymers have demonstrated remark-
able activity against microbes. However, it was found that the interaction 
between the polymer and the cell membrane was nonspecific, thus causing in 
most cases the death of the mammalian cells (Picone et al. 2019). The solution 
that was proposed in order to use the crosslinked polymer as an antimicrobial 
agent, was to combine the crosslinked polymer with the antibiotics, in order to 
decrease the associated toxicity (Gallagher et al. 2016). Some researchers have 
also proposed another type of NP-loaded composite polymers which could be 
used in various applications such as wound dressing and against microbes 
(Mishra et al. 2018).
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4.4.2  �Artificial Muscles

The first generation of the crosslinked polymer has been used to mimic the 
neuromuscular and neurosensory systems (Miyamae et al. 2015). The muscles 
work by converting chemical reactions into mechanical actions. The artificial 
muscles that have been generated form the crosslinked polymers are comprised 
of an elastomer layer present between two layers of crosslinked polymers, 
while the elastomer layer acts as a di-electric, while the crosslinked polymer 
layers behave as a conductor (Iwaso et al. 2016). Metallic cables are used in 
order to connect the two layers of the crosslinked polymer to a power source. 
Upon the application of the voltage, the mobile electrons in the metal and the 
mobile ions present in the crosslinked polymer will move away or approach 
each other (Chandler 2018). Furthermore, accumulation of the mobile ions 
occurs between the elastomer and the polymer, simultaneously (Shi et  al. 
2016). In addition, due to the opposite polarities of the crosslinked polymers 
and the elastomer layers, this leads to a reduction in the thickness and an eleva-
tion in the elastomer layer. However, this could be avoided by generating a 
softer crosslinked polymer to prevent the deformation of the elastomer layer 
(Lee et al. 2016). Different designs of the artificial muscles could be generated 
depending on the electromechanical coupling which is based on the geometry 
of the layers (Fig. 4.1) (Dicker et al. 2017).
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Fig. 4.1  Crosslinked polymer hydrogels for artificial muscle applications. Adapted with permis-
sion from Yang and Suo (2018)
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4.4.3  �Cancer Research

Crosslinked polymers have been implemented in many applications, including the 
cancer research (Song et al. 2015). Although most drugs are hydrophobic and this 
reduces their efficacy to be loaded and released from a crosslinked polymer (Pires 
et al. 2018). Two solutions to improve the release and loading of the drug from the 
polymer have been proposed, which are introducing a hydrophobic compound into 
the crosslinked polymer and incorporating nanoparticles (NP) which will act as an 
encapsulation for the hydrophobic domain (Norouzi et  al. 2016). Recent studies 
have established that the crosslinked polymer nanostructures can help the develop-
ment of novel devices for various medical and industrial applications (Baek et al. 
2018). The nanocomposite crosslinked polymers are robust and have a greater 
capacity for controlled drug release (Pellá et  al. 2018). This polymer structure 
allows a better quality of life by intra-peritoneal administration of the chemotherapy 
drug for the cancer patient (Jamal et al. 2018). According to Fisher et al. (2018), 
hyaluronic acid (HA)-based crosslinked polymers have been studied for their effect 
on the invasion of breast cancer cells, and the results have shown that upon increas-
ing the crosslink density, the invasion of cancer cells from breast decreases. This 
study proves that the crosslinked polymers could be a promising candidate in cancer 
treatments (Huang and Huang 2018).

4.4.4  �Contact Lenses and Ocular Implants

The production of contact lenses is one of the most widely used applications of 
crosslinked polymers, while one of the main properties of the crosslinked polymers 
is their ability to be perfectly tailored to the global ocular curvature (Schafer et al. 
2018). In addition, they allow the oxygen to permeate the cornea by diffusing into 
the lens. One of the methods used in the contact lens production industry is the 
Lathe cutting technique, in which the lenses would be molded from ‘buttons’ of 
solid dehydrated crosslinked polymers (Fig. 4.2) (Caló and Khutoryanskiy 2015). 
According to Maulvi et al. (2016), the crosslinked poly(2-hydroxyethyl methacry-
late) (PHEMA) polymers have been used for producing contact lenses, due to their 
mechanical properties and biocompatibility. In addition, a significant number of 
companies have developed a range of crosslinked polymer contact lenses com-
pounds comprising different types of monomers in order to acquire a contact lens 
that holds the highest amount of water content and mechanical properties, thus 
allowing the lens to resist the eyelid strength with an increased oxygen permeation 
(Pitt et  al. 2015). Furthermore, with these applicable contact lenses, this has 
increased the researches in the field of ophthalmic drug delivery, due to their ability 
to increase the residence time of the drug in the precorneal region that is provided 
due to the geometric barrier of the lenses to the medicine upon the diffusion out of 
the gel matrix to the tear film (Wolffsohn et al. 2015).
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4.4.5  �Drug Delivery

Crosslinked polymers right after their discovery were used in antibiotics and anti-
cancer drug delivery researches (Deen and Loh 2018). They have been seen as a 
potential solution to achieve a sustainable and targetable drug release at appropriate 
and specific sites, while working on increase the influence of the drug and decrease its 
side effects simultaneously (Xing et al. 2015). Crosslinked polymers have a porous 
system, which could eventually be controlled by the compactness of the crosslink or 
by altering the swelling affinity of the polymer in the environment (Sharma et  al. 
2018). Due to this porous property, this aids the crosslinked polymer gels release the 
drugs, which is achieved by monitoring the diffusion coefficient of the drugs (Fig. 4.3) 
(Wang et  al. 2016). Crosslinked polymers when used through topical transdermal 
application, comprise many advantages, since they prevent liver metabolism, and 
therefore, increase the drug effectiveness and bioavailability (Culver et al. 2017). Due 
to the swelling property of the crosslinked polymers, they promise to be used in trans-
dermal drug delivery, since the crosslinked polymer are similar to living tissues which 
can be effortlessly removed compared to ointments or patches (Dimatteo et al. 2018). 
In addition, crosslinked polymers comprising gentamycin have been shown to be 
more efficient in the treatment of skin infections compared to parenteral delivery of 
the gentamycin which causes severe disorders (García-Astrain and Avérous 2018).

Fig. 4.2  Schematic representation of Lathe cutting technique for the production of contact lenses. 
Adapted with permission from Caló and Khutoryanskiy (2015)
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4.4.6  �Gene Delivery

Crosslinked polymers have been proposed as a promising candidate for 
gene delivery, since they can reserve the activity of the viral and non-viral 
vectors, and protect them from the immune system attack (Yang et al. 2016). 
Crosslinked hydrogels can be injectable, in addition to being biologically 
sensitive, so it has great promise in the field of gene delivery (Nurunnabi 
et  al. 2015). On the other hand, the crosslinked polymers implemented in 
the gene delivery require advanced strength for the prolonged transgene 
expression to occur (Nguyen et al. 2017). According to Zhang et al. (2017), 
lentivirus gene therapy is generated from crosslinked fibrin polymers com-
prising hydroxyapatite NPs that have the ability to interact with the lentivi-
rus and the fibrin, this interaction leads to the stabilization of the crosslinked 
polymer and subsequently improved the vector release and cell infiltration 
rate. Therefore, with the appropriate biomaterial system and vector, gene 
delivery could be improved, thus improving transgenic expression (Xiang 
et al. 2017).

Fig. 4.3  Schematic representation of the release of a drug through a crosslinked polymeric mem-
brane and a matrix. Adapted with permission from Li and Mooney (2016)
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4.4.7  �Oil Sorbers

Crosslinking with chemical covalent bonds linking the crystalline and amorphous 
domains is responsible for the 3D network structure that characterizes these materi-
als. This drastically improves a large number of low-, room- and especially high 
temperature properties, such as abrasion, chemical and stress- cracking resistance 
impact, heat deformation, tensile strength and viscous deformation, and also adds 
new useful properties, such as shape memory. The elasticity and swelling properties 
are attributed to the presence of chemical or physical crosslinks within the polymer 
chains. Many authors have reviewed the advances in crosslinking technology for oil 
sobers. For example, Jang and Kim (2000) studied the copolymerization of styrene 
monomer with several long-chain alkyl acrylate monomers such as, 2-ethylhexyl 
acrylate (EHA), lauryl acrylate (LA), lauryl methacrylate (LMA) and stearyl acry-
late (SA). These acrylates with long chain alkyl groups are generally known as 
hydrophobic materials. Therefore, a highly absorbent property of oil can be obtained 
by controlling the composition and the crosslinking density of the copolymer.

Jang and Kim (2000) conducted a detailed study on the swelling properties of the 
crosslinked copolymers. The influence of the synthetic variables (amount of cross-
linking agent and initiator, monomer feed ratio, polymerization temperature and 
type of acrylate monomer) of the crosslinked copolymers on the oil absorption 
capacity was examined.

Atta and Arndt (2005) synthesized new oil- absorbing polymers containing alkyl 
acrylate via different types of chemical crosslinkers and irradiation techniques. 
These authors conducted a detailed study on the swelling properties of the cross-
linked 1-octene-isodecyl acrylate copolymers. The crosslinking polymerizations 
were carried out in the presence of different concentrations of ethylene glycol diac-
rylate (EGDA) and ethylene glycol dimethacrylate (EGDMA) crosslinkers via cata-
lytic initiation and electron beam irradiation at a dose rate of 80  kGy. More oil 
sorption capacities were performed upon using longer alkyl acrylate, reaching a 
maximum of 20.5 and 38.8 g of crude oil/g of sample, respectively. In addition, 
crosslinked reactive macromonomers based on octadecyl acrylate (ODA) and poly-
isobutylene modified with maleic anhydride and cinnamoyloxy ethyl methacrylate 
(CEMA) moieties were prepared and oil sorption was evaluated. Farag et al. (2011) 
also synthesized linear and crosslinked copolymers with different compositions of 
1-hexadecene and trimethylolpropane distearate monoacrylate monomers, and eval-
uated the oil absorption. Different concentrations of EGDA and EGDMA cross-
linkers were varied from 0.5 to 2%. These authors concluded that the oil absorbency 
and swelling rate were mainly influenced by the DC and the hydrophobicity of the 
copolymer units. Keeping this in view, El-Ghazawy and Farag (2014) prepared a 
series of comb-like crosslinked dodecyl acrylate-co-ODA-co-vinyl acetate terpoly-
mers (DOVs) with four different feed ratios of vinyl acetate while remaining con-
stant the other monomer ratios. Crosslinking was carried out using trimethylol 
propane triacrylate (hexafunctional) or divinyl benzene (tetrafunctional). The struc-
ture-performance relationship was discussed, especially with respect to crosslinker 
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type, crystallinity and feed ratio. These authors found that the highest oil absorption 
of crosslinked DOVs was 43.22 g of oil/g of sample after 20 min. of immersion. 
Lauren et al. (2014) illustrated an example system of thermally crosslinked octene-
styrene-divinylbenzene (OS-DVB) copolymers. In the molecular models, the DC 
was ranged from 0 to 100%, and the resulting structural and thermal properties were 
examined. The simulations reveal an increase in the free volume with higher DCs.

On the other hand, Abdel-Azim et  al. (2007) synthesized porous crosslinked 
copolymers for the sorption of oil spills by CEMA copolymerized with different 
monomer feed ratios of ODA and crosslinked using AIBN as a initiator and N,N′,N″-
trisacryloyl melanine (AM) or N,N′,N″-trismethacryloylmelanine (MM) as cross-
linkers. These authors observed that the sol fraction values of the CEMA/ODA 
crosslinked copolymer were lower when MM was used instead of AM, and the 
thermal stability of the crosslinked network increased as the ODA concentration 
increased and also in the presence of MM crosslinker, as a consequence of a higher 
crosslinking density. In addition, SEM results showed micropores that were formed 
as the ODA content increased. Similarly, the flexibility of the network was improved 
by incorporating MM instead of AM.

El-Ghazawy et al. (2014) prepared linear and branched polyesters by transesteri-
fication of methyl recinoleate without or with diethylene glycol, pentaerithirtol or 
trimethylol propane for different durations. Mws of the synthesized polyesters were 
determined using gel permeation chromatography and hydroxyl number. As an 
example, Fig. 4.4 represents the crude oil sorption by the crosslinked polymethyl 
recinoleates.
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Fig. 4.4  Crude oil sorption by crosslinked polymethyl recinoleates. Reproduced with permission 
from El-Ghazawy et al. (2014)
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4.4.8  �Plastic Replacement

Plastics are synthetic polymers, which are considered easy to manufacture, as well 
as being economical and efficient, although they are not ecological. Previously, 
crosslinked gels were not perceived as suitable alternatives to plastics (Kondo et al. 
2015). However, it was discovered that when the crosslinked polymer is binds to 
clays, they retain properties as robust and can be easily molded, in addition to hav-
ing the ability to self-heal when cut, thus allowing them to be a potential substitute 
for plastics (Cuadri et al. 2018).

4.4.9  �Prevention of Soil Erosion

Crosslinked polymers have been applicable in the field of the environment for more 
than a decade, while the soluble crosslinked polymers have been used to reduce the 
soil erosion and improve the water infiltration from fine agricultural soils (Hotta 
et al. 2016). According to Guilherme et al. (2015), the soluble crosslinked PAAm 
polymers are dissolved in the irrigation water to form a thin slimy film that would 
protect the soil surface of the wash floor. As the irrigation water causes erosion to 
bare soils, and by the presence of a thin film that could hydrate the soil and allow 
irrigation water to permeate easily (Cheng et al. 2018). Several investigations have 
been carried out on different types of soils using the crosslinked PAAm polymer, 
which are suitable for soil degradation and erosion (Kabir et al. 2017). It has also 
been shown that the use of anionic soluble crosslinked PAAm polymer is more effi-
cient than cationic crosslinked PAAm polymers in reducing soil erosion (Neethu 
et al. 2018).

4.4.10  �Wound Dressing

The treatment that is applicable for damaged skin and the diabetic ulcers. These 
polymers are used prosthetic skin engineering and have a high value, since it implies 
many requirements for patients that are generally not met (Hamedi et  al. 2018). 
Thus, wound dressing is considered the potential new way to restore damaged skin 
tissues and diabetic ulcers with the applicability of high biocompatible bioactive 
compounds (Mohamad et al. 2018). Crosslinked polymers can retain the water and 
the injected drug for an enough time. Attributing to this ability, they were applied to 
contain wound exudates (Qu et al. 2018). According to Kamoun et al. (2017), the 
sodium alginate and the gelatin crosslinked polymers have been used to protect and 
cover the wounds from any bacterial infections. Zhang et al. (2015a, b) found that 
gelatin and HA crosslinked polymers are promising compounds for the treatment of 
skin regeneration.
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4.5  �Conclusions

This chapter gave a general description of the crosslinked polymer hydrogels, forms 
of the polymers (biological, chemical and physical), processes and methods for 
preparation (free-radical polymerization, condensation polymerization, bulk polym-
erization and ultra-violet radiation). In addition, the chapter shows the swelling, 
mechanical and biocompatible properties of crosslinked polymers. An emphasis on 
different applications of hydrophilic networks mentioned in literature is provided. 
Finally, the chapter shows several workers have successfully use oil sorbers with 
their different categories in cleaning oil spills for hydrophobic networks applications.
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