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Abstract. The construction of reachability graphs is suited to verify the
properties and behavior of Petri net models based on the structure of the net and
the initial marking. It allows checking whether a model conforms to the intended
specification of a system and to obtain information about it. This paper proposes
an algorithm to compute the reachability graphs of IOPT (Input-Output Place-
Transition) nets, which is a Petri net class, using NVIDIA’s CUDA (Compute
Unified Device Architecture), which supports the co-processing using GPU and
CPU. While CPU is used to schedule threads on GPU, GPU is used to calculate
all the child nodes of the reachability graph, including the management of a
hash-table for efficiently storing the new states and retrieving the states stored in
the database. The presented algorithm takes advantage of CUDA memory
functions to allocate and access data that can be used by code running on CPU
or GPU, supporting the share of data between the two processor units. Six IOPT
net models were used to validate the proposed algorithm.
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1 Introduction

The increasing complexity of distributed embedded systems have been a motivation for
the use of Petri nets [1, 2]. This graphical modelling formalism enables the explicit
specification of concurrent systems, their synchronization and conflicts, and the share
of resources [3]. As a result, they ensure that systems behavior conforms to the
intended specification so as not to endanger people.

IOPT-Tools, which are online available at http://gres.uninova.pt/IOPT-Tools/
supports the development of embedded systems controller using Petri nets [4, 5]. This
framework offers a set of tools to support the creation of IOPT-net models [1], their
verification, and the automatic code generation (C and VHDL) [6, 7]. To enable the
verification, an automatic code generator is used to compute the models’ reachability
graphs [8]. As real world applications can present exponential reachability graphs with
a huge number of states, their generation can take a long time to compute [2], requiring
high computational performance [9]. Some tools generate the condensed reachability
graph of a Petri net model, preventing the exponential growth of the graph [10–12].
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The work presented in this paper is focused on obtain the complete reachability
graph of a model, based on a new model-checking algorithm to compute the reacha-
bility graphs of IOPT Petri net models using NVIDIA’s CUDA. NVIDIA’s CUDA
supports CPU-GPU co-processing for parallel computing [13]. As a matter of fact,
GPU calculates all the child nodes of the reachability graph and handles their storing
with the support of a hash-table. In addition, the CPU schedules the threads to be
launched on the GPU, which are needed to process a new set of unprocessed states of
the graph.

Section 2 mentions how this paper contributes to life improvement. In Sect. 3 IOPT
Petri nets and IOPT-Tools are briefly described, including the current reachability
graph generation tool. In the following section, it is mentioned how CUDA Toolkit
contributes to program and run parallel C++ applications on GPU. Section 5 presents
the proposed algorithm, for the computation of reachability graphs, for IOPT Petri net
models. In Sect. 6 are presented the results supported by an NVIDIA Titan V GPU, and
finally in Sect. 7 the conclusions about the results and future work are presented.

2 Relationship to Life Improvement

Currently, technological advances enabled the creation of many types of distributed
embedded systems that contribute to a significant improvement in people’s quality of
life across different areas, ranging from appliances and home products, medical and
health solutions, surveillance and security equipment, to transportation and commu-
nication systems, among others.

Concerning to safety-critical systems, to make sure that they are safe and free of
development errors, they must be formally verified, by checking all possible interac-
tions and potential unwanted properties [14–16]. There are large number of Petri net
tools [17], which support not only the models edition and simulation, but also their
formal verification and analysis, to ensure that the system specification conforms to the
desired properties or has no unwanted properties. This work, addressing the con-
struction of reachability graph for IOPT nets, aims to contribute for the safety-critical
systems properties verification.

3 IOPT Nets

The IOPT nets are a low-level and non-autonomous Petri net class proposed to develop
automation and embedded systems, allowing the rapid prototyping of system con-
trollers through IOPT-Tools framework [18–20]. The IOPT Petri net relies on signals
and events to specify the interaction of the models with the environment: while input
signals and events constraint the evolution of the net, directly associated with transition
firing, outputs are updated according with the marking of the net and transition firing.
In detail, a transition fires if it is enabled from the point of view of place marking, the
associated events occur and if the associated guards are verified. When more than one
transition is enabled, but not all of them are allowed to firing, transition priorities and
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test arcs can be used [8]. As a result, each system’s state is composed of a vector of all
places’ marking; and an output event signal vector, with the values of all signals
associated with output events [19].

3.1 Reachability Graph Generator

The IOPT-Tools offer a tool to compute the reachability graphs [19] of IOPT Petri net
models. During graph generation, the tool gathers information about the model, namely
the influence of input signals and events on the firing of transitions, as well as all
combinations of all enabled transitions. The automatic C code generated by the
reachability graph generator provides libraries to compute a model’s reachability graph,
managed with a hash-table that allows ordering multiple states for each key, to help
search for repeated states. At the end of the computation, the resulting reachability
graph is stored in a hierarchical XML file, in which the connections between the states
are represented.

The reachability graph algorithm [21] initiates with the creation of the database and
initial state, obtained from the initial marking M0 and the values of all output event
signals presented on the net at that moment. After that, the initial node is added into the
database and hash-table, and the algorithm proceeds from there or any other state by
modifying the value of net’s initial marking. The algorithm will continue until all the
unprocessed states are treated, or the graph reaches the maximum size, which is
specified according to the computation platform available resources. Each evaluation of
an unprocessed state is carried out with the calculation of its child states (the next
unprocessed states), by executing a function that recursively analyzes all transitions
that are enabled to firing. Then, all child nodes are stored in the database and sorted in
the hash-table if they are not repeated states, whose marking and outputs refer to
previously existing nodes. Finally, the new child nodes are added to the set of
unprocessed states, waiting to be processed. The generated reachability graph includes
the nodes, the arcs that connect them, and links that represent existing nodes.

4 CUDA Architecture

To increase the performance of the IOPT reachability graphs generation, the use of
GPU is proposed in this paper. The GPU is used to improve the processing of each
state, parallelizing the calculation and analysis of its child nodes. For that, it was used a
NVIDIA GPU and the CUDA Toolkit, which enable the co-processing of C++ pro-
grams in platforms with CPU and GPU [22, 23]. The execution starts and ends in the
CPU, which exchanges data with the GPU and launch the kernels to running on the
GPU.

A kernel is a sequential program that runs in parallel as many times as the number
of threads running on the GPU distributed by blocks in a grid. Although, there is a limit
to the number of threads per block, a kernel can be executed by multiple blocks in
parallel, so the total number of threads launched is equal to the number of threads per
block times the number of blocks thar compose the grid. A set of functions, such as
__threadfence, __syncthreads, and atomic operations, can be used to ensure the correct
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access to shared and global memory, avoiding hazards that can occur from simulta-
neous read and write operations at the same memory address [24].

5 Proposed Approach and Algorithm

The reachability graph generation at IOPT-Tools is mainly composed of two parts: for
each state, it is calculated its child nodes; and for each child node it is inspected if it is a
new independent state or if it is equal to a previously existing one. In the generator of
the IOPT tool framework, this entire process is done sequentially in CPU, with each
state being analyzed one at a time. An algorithm proposed in [25] reused part of IOPT-
Tools generator code and adapted it to run on a GPU used to perform the calculation all
the child nodes of unprocessed states in parallel, while the CPU schedules threads on
the GPU, handles the hash-table and the categorization of states.

The algorithm proposed in this paper also uses co-processing, taking even more
advantage of the GPU. For that, the initialization of the database and the creation of the
initial state are handled by the CPU, and from that moment onwards the task of
searching for new states it’s responsibility of the GPU until all graph it’s done. During
the computation, the CPU receives feedback on the status of the graph through memory
copies from the device to the host, receiving the update of the number of calculated
states and the number of states to be processed. This allows the continuity of the
algorithm that ends only when there are no more unprocessed states to process or the
maximum number of states associated with the allocation of the database is reached.
So, three kernels were implemented, each one responsible for a specific part of the
algorithm, as described in Fig. 1.

When the kernel calc_ChildrenStates, presented in Algorithm 1, is invoked, the
values of the number of states to be processed and the current number of states stored in
the database are passed. The first instruction performed is the assignment of an
unprocessed state from the array states to the threads of a block. At this point, CPU has
been launched as many blocks as the number of unprocessed states that need to be
processed, and as many threads as the number of transitions of the Petri net. The way to

GPU

CPU

Start Database initialization Creation of initial state EndStates to 
process?

Launch nr of threads equal to 
the nr of unprocessed states 
times nr of net transitions

Launch nr of threads equal to 
the nr of calculated states

Launch nr of threads equal to 
the nr of calculated states

find_RepeatedChildren: 
Find repeated states 
between the children

find_RepeatedStates: Find 
repeated states between the 
children states and database

calc_ChildrenStates: 

Yes

No

Calculate all the children states 

Fig. 1. Sequence of actions of the algorithm.
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provide each thread the state to process is using the unique index of the block, the size
of the array states, that stores all the states, and the number of blocks launched.

Algorithm 1. Kernel calc_ChildrenStates

program calc_ChildrenStates(unp_states, n_states)
__shared__ state s*
netMarking init_m, m, avail_m
eventOutputSignals init_out, out
outputSignalEvents ev
begin
IF threadIdx.x == 0
s = &states[blockIdx.x+n_states-gridDim.x]

__syncthreads()
calc_FiringBlends(threadIdx.x, init_m, m, avail_m, unp_states,
n_states, s->id, ev, out, init_out)

end.

Using the __syncthreads() function all the threads in the current block will syn-
chronize, waiting for thread 0 to share the state that needs to be processed. The kernel
continues with a recursively analysis of all enabled transitions of a state, calculating all
the combinations between them. The transition with the highest priority will analyze
the remaining ones; the second most priority will analyze the other ones except the first
one, and so on. The latter transition will only consider itself. As there is one thread per
transition, each one of them will analyze the combinations in parallel for each state,
saving the founded new states inside the array childs.

After that, the kernel returns the number of child nodes calculated to proceed with
the search of repeated children. The CPU launches a number of threads equal to the
number of founded states, one for each thread to compare with the others. The com-
parison of the states is made at find_RepeatedChildren kernel, presented in Algorithm
2, by comparing the marking and outputs of the Petri net. If there is a repeated sibling,
the value of the link flag and the id of the state are changed, followed by the storage of
the state in the array links.

Algorithm 2. Kernel find_RepeatedChildren

program find_RepeatedChildren(n_links)
For i=0; i<threadIdx; i++:
int cmp = memcmp(childs[threadIdx.x].m, childs[j].m)
IF cmp == 0:
cmp = memcmp(childs[threadIdx.x].o, childs[j].o)
IF cmp == 0:
childs[threadIdx.x].link = -1
childs[threadIdx.x].id = dev_childs[j].id
memcpy(links[atomicAdd(n_links,1)], childs[threadIdx.x])

end.

The last kernel, presented in Algorithm 3, compare the child nodes that have not
been copied to the array links with all existing nodes. For that, it was implemented a
multivalue hash-table where multiple values for the same key are represented by
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different key-state_id pairs. In the same way as the previous kernel, the CPU launches a
number of threads equal to the number of founded states. Each thread will search on
hash-table for repeated states starting by calculating the key based on the marking and
outputs of the state, using it to limit the search to elements with the same key. Several
threads could access the hash-table, including threads whose states have the same key.
If there is no repeated state at the database, the value of the id of the child state is
actualized, and the state is stored in the array states; if there is a repeated state it is
stored in the array links.

Algorithm 3. Kernel find_RepeatedStates

program find_RepeatedStates(unp_states, n_states, n_links)
IF childs[threadIdx.x].link != -1:
key = calcHash(childs[threadIdx.x].m, childs[threadIdx.x].o)
p = findHash(key, childs[threadIdx.x].m, childs[threadIdx.x].o)
IF p < 0:
state_id = atomicAdd(n_states,1)
addHash(h, state_id, -p)
childs[threadIdx.x].id = state_id
memcpy(states[state_id], childs[threadIdx.x])

Else:
childs[threadIdx.x].id = p
memcpy(links[atomicAdd(n_links,1)], childs[threadIdx.x])

end.

6 Results of Experiments

The algorithm presented was applied to six IOPT-net models. These models were also
used to document the results at [25], and are available online at http://gres.uninova.pt/
IOPT-Tools/, in the user account “models”. Using these models, we could compare the
results between the two approaches. The results are presented in Table 1. Considered the
amount of time that GPU took to calculate the entire reachability graph and the time spent
on co-processing we have obtained much better results with this algorithm. The results
are, in some cases, two or three orders of magnitude better than the ones presented at [25].

Table 1. Results obtained with an GPU TITAN V.

Models Trans. Cycles States Links Time
CPU + GPU(ms)

Time on
GPU(ms)

ICIT13_bldc_commut 24 2 7 0 0.8 0.6
PNSE-53b 8 9 21 8 2.3 1.8
ICIT13_denoise 14 9 14 11 2.5 2.0
concrete_mixer_6xA 11 56 110 108 17.5 14.7
ICIT13_quad_encoder 12 103 1025 1020 67.3 59.7
ICIT13_pwm_gen 6 1025 4096 12287 655.5 561.7
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The number of cycles and nodes presented express the graph with the respect to its
size and format. This characteristic can affect the execution time depending on the
number of states processed in parallel as well as the number of transitions of the net.
The models PNSE−53b and ICIT13_denoise presented the same number of cycles
processed; for the first was calculated 29 nodes and for the second 25. Although the
number of transitions in the second is almost twice that of the first, the execution times
obtained were approximately equal, such that parallel threads were launched and used
at the same time to exploit the computing power of the GPU.

7 Conclusions and Future Work

The proposed algorithm presents an improvement in the computation of the reacha-
bility graph for IOPT Petri net models in GPU. Threads were used to analyze com-
binations of transitions in parallel, improving the calculation of child states; and the use
of a hash-table implemented in GPU prevented the time spent with memory man-
agement. As future work we intend to analyze the impact of the proposed algorithm
using GPU as a function of the number of global states obtained, namely as a function
of the initial marking. Additionally, the impact of computation efforts necessary for
evaluating transition enabling conditions and output expressions is intended to be
analyzed.
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