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Abstract Software-defined networking (SDN) is a new networking paradigm that
decouples control plane from the data plane. A switch in the data plane device sends
a flow set-up request to the controller, a device in the control plane, upon the arrival
of an unknown flow. The controller responds the request with a flow entry to be
installed in the flow table of the switch. Link failures can cause disconnections
between switches and controllers. Most existing research on controller placement
in SDNs investigated controller placements without considering single-link-failure
impact on the number of dropped flow set-up requests in SDNs. In this paper, we
formulate a novel SDN controller placement problem with the aim to minimize the
average number of dropped flow set-up requests due to the single-link-failure. We
propose two efficient algorithms for multiple-controller placements. The simulation
results demonstrate that the proposed algorithms achieve competitive performance
in terms of average number of dropped flow set-up requests under single-link-failure
and average latency of flow set-up requests.

Keywords Software-defined network · Reliability · Single-link-failure ·
Network controller

1 Introduction

Software-defined networking (SDN) is a new networking paradigm that decouples
control plane from data plane [1, 2]. Multiple-controller architectures have been
introduced in SDNs and raised a new problem, the controller placement problem,
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which needs to decide the controllers positions and how to associate switches with
the controllers, since random placement is far from optimal [3, 4].

Some research has been conducted on the controller placement problem with the
objective of minimizing the node-to-controller latency. The controller placement
problem was first proposed by Heller et al. in [3] to minimize the communication
latency between the switches and the controllers. A latency metric to minimize the
total cost of flow set-up request from switches to controllers was introduced to deal
with the mapping between the switches and the controllers under dynamic flow
variations, and the metric considered the weight of switches and the delay from the
switches to the controllers simultaneously, where the weight of a switch was related
to the node degree of the switch and the maximum node degree in the network [5]. A
network partition based scheme was designed, where the network was portioned into
multiple subnetworks with revised k-means algorithm and a controller was placed
in each subnetwork to minimize the maximum latency between the controller and
the associated switches in the subnetwork [6]. A framework for deploying multiple
controllers within a WAN was proposed to dynamically adjust the number of active
controllers and delegate each controller with a subset of switches according to
network dynamics [7].

The reliability is also an important performance metric for networks. A metric
called expected percentage of control path loss due to failed network component was
introduced to characterize the reliability of SDN networks, and a heuristic algorithm
l-w-greedy was proposed to analyze the trade-off between reliability and latency;
the expected percentage of control path loss was related to the number of control
paths going through a component and the failure probability of the component [8, 9].
A controller placement strategy, Survivor, was proposed to explore the path diversity
to optimize the survivability of networks with the aim to maximize the number of
node-disjoint paths between the switches and the controllers; the strategy enhanced
connectivity by explicitly considering path diversity, avoided controller overload
by adding capacity-awareness in the controller placement, and improved failover
mechanisms by means of a methodology for composing the list of backup paths [10].
The latency-aware reliable controller placement problem was investigated by jointly
taking into account both the communication reliability and the communication
latency between the controllers and the switches if any link in the network fails
[11].

Link failures incur the breakdown of part of the network, during which some
flow set-up requests from the switches are unable to reach the corresponding
controllers and hence get dropped. To the best of our knowledge, very little attention
in literature has ever been paid on the single-link-failure impact on the number
of dropped flow set-up requests in SDNs. In this paper, we tackle the multiple-
controller placement problem with the aim to improve the reliability in terms of the
number of dropped flow set-up requests under single-link-failure.

The main contributions of this paper are as follows. We address the controller
placement problem to maximize the reliability of the flow set-up requests under
single-link-failure. We define a novel controller placement metric, the average
number of dropped flow set-up requests, and propose two efficient algorithms
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for multiple-controller placements based on the proposed placement metric. We
also evaluate the performance of the proposed algorithms through simulations.
Experimental results demonstrate the proposed algorithms are very promising.

The rest of the paper is organized as follows. Section 2 presents the problem
of this work. Section 3 discusses the proposed two algorithms: Reliability Aware
Controller placement (RAC) and Fast-RAC (FRAC). Section 4 discusses our
experimental evaluation. Section 5 concludes our work with a summary.

2 Problem Formulation

We model an SDN network topology as graph G = (V ,E), where V is the set of
switches (or nodes) and E is the set of links. Each controller is co-located with a
switch, and each switch is mapped to one controller. We assume that there is at most
one link failure in the network [12]. The notations used in the paper are listed in
Table 1.

When link e on the control path pi,k fails, we calculate the number of dropped
flow set-up requests as follows:

D(e) = ∑

si∈V
∑

ck∈C
ri,k · pe

i,k · xi,k. (1)

Our objective is to minimize the average number of dropped flow set-up requests
by

Table 1 Symbols and notations used in our description

Notation Description

si Node/switch i

ck Controller ck
C Controller set

K The number of controllers

N The number of nodes/switches

L The set of the links in all the control paths

uk The processing capacity of controller ck
ri,k The number of requests from switch si to the mapped controller ck
xi,k Indicate whether switch si is mapped to controller ck (= 1) or not (= 0)

yi,k Denote whether controller ck is co-located switch si (= 1) or not (= 0)

pi,k The link set on the control path between switch si and controller ck
pe
i,k Denote whether link e is a link on control path pi,k (= 1) or not (= 0)
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minimizing

D̄ =
∑

e∈L
D(e)

|L|
(2)

subject to

K∑

k=1

xi,k = 1, ∀si ∈ V. (3)

N∑

i=1

yi,k = 1, ∀ck ∈ C. (4)

yi,k ≤ xi,k, ∀si ∈ V,∀ck ∈ C. (5)

N∑

i=1

xi,k · ri,k ≤ uk, ∀ck ∈ C. (6)

where |L| denotes the number of links in L, and the average number of dropped
flow set-up requests due to single-link-failure in the control paths are defined with
Eq. (2). Equation (3) ensures that each switch is mapped to one and only one
controller. Equation (4) mandates that each controller is placed onto exactly one
switch. Equation (5) dictates that switch si is mapped to controller ck if controller
ck is co-located with switch si . Equation (6) signifies that the number of requests to
the controller cannot exceed the processing capacity of the controller.

3 RAC and FRAC Controller Placement Algorithms

In this section, we propose two controller placement algorithms, flow set-up request
Reliability Aware Controller placement (RAC) and Fast-RAC (FRAC).

3.1 Reliability Aware Controller Placement Algorithm

Initially, algorithm RAC assumes that there are N controllers and each controller
is co-located with a switch. The algorithm removes the redundant controllers
iteratively until the number of controllers is K . For each controller, the algorithm
evaluates the cost of removing it (steps 2–10). Assume the set of switches needing to
be re-mapped after removing controller ck is Sk . For each switch si ∈ Sk , algorithm
RAC chooses the controller which incurs the least cost. During the re-mapping,
Eq. (6) should be satisfied. After re-mapping all the switches in Sk , the algorithm
can obtain the cost of removing ck . Algorithm RAC evaluates the removal cost for
all the controllers and removes the one which incurs the least cost (steps 11–12).
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Algorithm 1 RAC
Input: Network topology G = (V ,E),

The number of requests from the switches,
The number of controllers K

Output: The set of locations placed with controllers Cp ,
Mapping relationship between switches and controllers

1: Place a controller at the location of each switch, map each switch to the co-located controller,
Cp = V , the number of placed controllers is K ′ = N ;

2: while K ′ �= K do
3: D̄min = ∞;
4: for each location k ∈ Cp do
5: Assume ck is removed, and denote the set of switches mapped to ck as Sk ;
6: Re-map each switch in Sk to the controller incurring the least average number of dropped

flow set-up requests, and denote the average number of dropped flow set-up requests after
re-mapping all the switches in Sk as D̄k ;

7: if D̄k < D̄min then
8: kmin = k, D̄min = D̄k ;
9: end if

10: end for
11: Remove the controller ckmin

which incurs the least average number of dropped flow set-up
requests D̄min;

12: Cp = Cp \ kmin, K ′ = K ′ − 1;
13: end while

Time Complexity of Algorithm RAC The algorithm needs to remove N − K

controllers. In the worst case, a controller manages N − K + 1 switches. If the
controller is removed, the algorithm performs re-mapping for the O(N − K + 1)
switches. The re-mapping for a switch checks at most N − 1 controllers. We can
calculate all the shortest paths between all the node pairs in the network within
O(N2 ·N) = O(N3) time so that we can get the link set on the control path between
each node pair before performing algorithm RAC, and hence the calculation of the
average number of dropped flow set-up requests when the switch is mapped to the
controller runs in time O(N). Therefore, the time complexity of algorithm RAC is
O((N −K) ·N · (N −K + 1) · (N − 1) ·N) = O(N3 · (N −K)2) = O(N5), since
K � N .

3.2 Fast-RAC

We propose algorithm Fast-RAC (FRAC) to reduce the time complexity of algo-
rithm RAC. FRAC maintains a mapping controller priority list PLi for each switch
si , where each item in the list is a controller and the controllers in the list are sorted in
the non-ascending order of the path lengths between the switch and the controllers.
FRAC uses two arrays Current and Next , each with length N . Current[i] = k

denotes that switch si is currently mapped to controller ck . Initially, each switch is
mapped to the co-located controller, that is, Current[i] = i. Next[i] = k′ indicates
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that switch si will be mapped to controller ck′ if controller ck is removed, where ck′
will cause the least number of dropped flow set-up requests caused by single-link-
failure. We initialize arrays Current and Next before placing a controller at each
switch (step 1), and update them when a controller is removed (step 11). During
the update, if switch si is re-mapped from ck to ck′ , Current[i] = k is updated as
Current[i] = k′ and Next[i] should be updated by searching the first controller
available in the list PLi .

Time Complexity of Algorithm FRAC The construction of the mapping controller
priority lists for all the switches can be performed in time O(N3) by calculating the
shortest paths between all the node pairs. The initialization and update of the array
Current can be performed in time O(N). Array Next can also be constructed in
time O(N), while the update of the array Next is conducted in time O(N2), since
FRAC checks at most N − 2 controllers to find the controllers available for each
of the N switches. The time consumed to re-map a switch is reduced from O(N)

with RAC to O(1) with FRAC. Therefore, the time complexity of algorithm FRAC
is O(N4).

4 Performance Evaluation

In this section, we evaluate the performance of the proposed controller placement
algorithm. We also investigate the impact of important parameters on the perfor-
mance of the proposed algorithms.

4.1 Simulation Set-up

We compare the proposed algorithms RAC, FRAC against the state of the arts:
l-w-greedy [9], SVVR [10], and CPP [3]. The two coefficients l and w are set
as l = 2 and w = 1 to enable l-w-greedy to achieve the best performance as
described in [9]. The network topologies used in the simulation are ATT (ATT North
America) and Internet2 (Internet2 OS3E) [13, 14]. All the controllers have the same
processing capacity of 1800 kilorequests/s [10]. The requests from the switches are
generated with uniform distribution pattern. 30 set of requests are generated for
each request distribution pattern randomly, while the average number of flow set-up
requests of the switches are 200 kilorequests/s. We use geographical distance as an
approximation for latency [3].

4.2 Evaluation Metrics

The performance metrics evaluated are as follows:
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1. The average number of dropped flow set-up requests under single-link-failure as
calculated via Eq. (2).

2. The average latency of flow set-up requests l̄, defined via Eq. (7), where li,k
denotes the communication latency of control path pi,k .

l̄ =
∑

si∈V
∑

ck∈C
ri,k ·xi,k ·li,k

∑

si∈V
∑

ck∈C
ri,k ·xi,k . (7)

4.3 Simulation Results

4.3.1 Average Number of Dropped Flow Set-Up Requests

In this section, we evaluate the average number of dropped flow set-up requests of
each algorithm by varying the number of controllers from 5 to 10.

Figure 1 shows that both algorithm RAC and algorithm FRAC obtain better
performance than the benchmark algorithms because the proposed algorithms
minimize the average number of dropped flow set-up requests when placing the
controllers in the network. Algorithm RAC performs slightly better than FRAC
since RAC removes the controller which incurs the least average number of dropped
flow set-up requests, while FRAC finds the controller leading to the least number of
dropped flow set-up requests.

Algorithm CPP achieves the best performance among three benchmark algo-
rithms. Algorithm SVVR aims to maximize the number of disjoint paths between
switches and controllers, l-w-greedy tries to minimize the expected percentage of
control path loss, and CPP deploys the controllers with the objective of optimizing
the average communication latency of switches and controllers. Algorithm CPP
potentially aggregates the requests on a subset of the network, which reduces the
number of links on the control paths and the total number of requests caused by the
single-link-failure.

4.3.2 Average Latency of Flow Set-Up Requests

In this section, we evaluate the average latency of flow set-up requests of each
algorithm, assuming the number of controllers varies from 5 to 10.

Figure 2 depicts the average latency of flow set-up requests of RAC, FRAC,
SVVR, l-w-greedy, and CPP. Algorithms RAC and FRAC achieve a similar perfor-
mance. Algorithm l-w-greedy results in the worst performance, because algorithm
l-w-greedy aims to optimize the reliability of control path between switches and
controllers, which potentially leads to long control paths between the switches
and controllers. Algorithms RAC and FRAC place the controllers considering
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Fig. 1 The average number of dropped requests under different number of controllers

the number of dropped flow set-up requests under single-link-failure, so the two
algorithms put the controllers close to the switches which generate a large number
of flow set-up requests. Algorithm CPP minimizes the latency between the switches
and the controllers without considering the number of flow set-up requests generated
by the switches. Therefore, algorithm CPP obtains better performance than the other
algorithms, where the distance between the switches and the controllers has an
important impact on the controller placement.
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Fig. 2 The average latency of flow set-up requests under different number of controllers

5 Conclusions

Reliability is an important concern during controller placements in SDNs since
link failures can cause disconnections between switches and controllers, and even
incur cascading failures of other controllers. In this paper, we take the transmission
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reliability of flow set-up requests into consideration during controller placements.
We formulated a novel SDN controller placement problem with the aim to minimize
the average number of dropped flow set-up requests due to the single-link-failure.
We propose flow set-up request Reliability Aware Controller placement (RAC)
algorithm and Fast-RAC (FRAC) algorithm for multiple-controller placements.
Experiments are conducted through simulations. Our experimental results demon-
strate that the proposed algorithms achieve competitive performance in terms of
average number of dropped flow set-up requests under single-link-failure and
average latency of flow set-up requests.
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