
Chapter 5
Final Remarks and Open Problems

In this monograph, we first consider a semilinear fractional kinetic equation that is
characterized by the presence of a nonlinear time-dependent source f = f (x, t, u),
a generalized time derivative ∂α

t in the sense of Caputo and the presence of a large
class of diffusion operators A. Many examples of diffusion operators that satisfy
our assumptions are given in Sect. 2.3. We give a unified analysis, using tools
in semigroups theory and the theory of partial differential equations (Sects. 2.1
and 2.2), in order to obtain sharp results for the well-posedness problem of mild and
strong solutions (Sects. 3.1 and 3.2), as well as for the global regularity problem
in Sect. 3.4. Further properties, such as nonnegativity of the mild (and/or strong)
solutions and their limiting behavior as α → 1, are also provided in Sects. 3.6
and 3.5, respectively. Finally, in Sect. 3.7 an application of these results is given.

The framework we develop for the scalar equation in Chap. 3 is then extended
in the second part of the monograph (Chap. 4) to nonlinear systems of fractional
kinetic equations. Here, we first develop a general scheme that allows to establish
sharp results for the well-posedness problem of (locally-defined) mild and strong
solutions associated with such general systems (Sect. 4.1). We then combine this
analysis with that of the previous chapters to derive well-posedness results in terms
of globally defined mild and strong solutions, for a fractional prey-predator model
(Sect. 4.2) and a simple fractional nuclear reaction model (Sect. 4.3). In addition,
we provide a number of important technical tools in Appendix A, in support of the
analysis developed in this monograph; this appendix is followed by Appendix B,
which contains several results concerning the regional fractional Laplace operator
associated with fractional Neumann and/or Robin boundary conditions. Finally, in
Appendix C, we recall the current scientific literature for different kinds of fractional
kinetic equations that are suggested by concrete problems in mathematical physics,
probability and finance, and which fully motivated the analysis in this monograph.

We give next a number of final comments and discuss possible open problems.
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Remark 5.0.1 Our main working hypothesis in this monograph is that the underly-
ing physical space X is a (relatively) compact Hausdorff space. However, we note
that this assumption has been placed just for the sake of technical convenience.
Much of the results developed in Chap. 3 are true for instance when X is only
locally compact (say when X is replaced by either R

N , or half-space R
N+ or an

unbounded open set � ⊂ R
N ). Indeed, all the supporting technical results given

in Appendix A, with the exception of Lemma A.0.2, are still valid when X is
only locally compact. In particular, it means that the results on well-posedness
of (locally-defined) mild and strong solutions are still true in that case, with the
exception of case (c) of Theorem 3.1.4; we recall that this case uses Lemma A.0.2 in
a crucial way. Moreover, one may obtain the same global bounds derived in Sect. 3.4
by making proper modifications in the proofs when X is only locally compact.

Problem 1 Prove the analogue of Lemma A.0.2 when X is only locally compact.

Remark 5.0.2 Let us consider the semilinear parabolic problem (3.1.1) with the
nonlinearity f (x, t, u) = c (x, t) |u|γ−1 u, for some c ∈ Lq1,q2 . We note that
the critical exponent γ, as stated by Theorem 3.1.4,

n

q1
+ 1

q2
+ (γ − 1)

n

p0
≤ α, n := βAα, α ∈ (0, 1], (5.0.1)

is in fact optimal in the sense that there are always locally-defined mild solutions
for some u0 ∈ Lp0 (X). When instead γ ≥ 1 and p0 ≥ 1 satisfy the inequality

n

q1
+ 1

q2
+ (γ − 1)

n

p0
> α, (5.0.2)

we conjecture that problem (3.1.1) does not have any locally-defined mild solution
for certain initial data u0 ∈ Lp0 (X). Indeed, this was already discovered by Weissler
[12, 13] for the classical problem when α = 1, βA = N/2 and q1 = q2 = ∞; (5.0.2)
recovers the super-critical range (γ − 1) N

2p0
> 1 in that case.

Problem 2 Prove the above conjecture in the super-critical case (5.0.2).

Problem 3 Consider the problem (3.1.1) in the subcritical and limiting cases as
defined by (5.0.1). Several further open problems can be considered:

(a) Under the same assumptions of Chap. 3, investigate the long-term behavior
of (3.1.1) in terms of global attractors and ω-limit sets.

(b) Under proper conditions on the nonlinearity and the diffusion operator A, show
that each globally defined solution converges to a unique steady state u∗ as time
goes to infinity, where u∗ is a proper solution of the corresponding stationary
problem.

(c) Investigate the blow-up phenomenon for Problem (3.1.1) for various diffusion
operators. We refer the reader to [11] when A = �.
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(d) Give a further refined regularity analysis to show the (Hölder) continuity
of solutions for the abstract problem (3.1.1) for a large class of diffusion
operators A. We recall that such result has already been proven in [1] for the
corresponding problem with f = f (x, t) and A is given by Example 2.3.6(a).
When A = � or a second-order operator in divergence form, this has been
proven in [14].

Problem 4 The current framework can be extended to accommodate more general
transmission problems than the ones considered in [4, 5].

Problem 5 The framework in Sect. 3.3 can be further developed to show higher-
order differentiability properties for the strong solution under additional assump-
tions of the nonlinear function f.

Remark 5.0.3 The framework developed in this monograph can be exploited to
obtain global existence of solutions to other interesting reaction–diffusion systems
that contain some fractional kinetics. Among them, one can consider more general
systems based on ecological interactions and physical models based on chemical
reactions with anomalous diffusion that may occur in spatially inhomogeneous
media (cf. Appendix C). Among such interesting systems, one may mention the
fractional Brusselator for reaction kinetics [9] which was considered in [6] as a
physical model for activator-inhibitor dynamics that exhibits anomalous behavior.

Problem 6 Consider the fractional Brusselator discussed by Henry and Wearne [6]
and prove the existence of globally-defined strong and mild solutions. This is an
open problem in light of the difficulties that arise from the nature of the coupling in
the system and the corresponding nonlinear terms. We refer the reader to the survey
paper of Pierre [8] for more information regarding the classical reaction–diffusion
problem when αi ≡ 1, i ∈ {1, . . . , m} .

Problem 7 Investigate the long-term behavior of solutions, as time goes to infinity,
to the fractional Volterra–Lotka and nuclear reactor systems introduced in Sects. 4.2
and 4.3, respectively.

Remark 5.0.4 The contribution [7] contains an analogue of the classical Aubin-
Lion compactness lemma in order to obtain existence of weak solutions to some
nonlinear systems that involve a fractional Caputo derivative. This approach can be
also applied to the semilinear problem (1.0.1) in order to develop a well-defined
L2-theory. However, our approach doesn’t require any compactness arguments and
is of more general interest since it is developed in the Lp-setting. Moreover, our
theory can be also extended for problems (1.0.1) with notions other than the Caputo
fractional derivative for as long as one can provide a formula for the solution similar
to (3.1.2). This is in particular very useful in those situations where the integral
kernel in the Caputo derivative is slightly more general than g1−α (see (2.1.1)).
These issues shall be addressed in future contributions.
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To conclude this section we list some open problems regarding the exterior value
elliptic problems (Eqs. (2.3.21), (2.3.25) and (2.3.27)) for the fractional Laplace
operator. We refer to [3] for more details.

Problem 8 Let u ∈ W
s,2
0 (�) be a weak solution of the Dirichlet exterior value

problem (2.3.21). Prove or disprove that u is a strong solution of (2.3.21).

Remark 5.0.5 Assume that � ⊂ R
N is a bounded domain of class C1,1. Let (ϕn)n≥0

be the eigenfunctions of the operator (−�)sD (see Example 2.3.6(a)). It has been
shown in [2, Section 5] (see also [10] for the case N = 1) that for every n ≥ 1,
ϕn ∈ C0,s(�) and ϕn 
∈ C0,γ (�) for any γ > s.

Problem 9 Let u ∈ W
s,2
� be a weak solution of the Neumann exterior value

problem (2.3.25). Prove that u ∈ C(RN) and u|� ∈ W
2s,2
loc (�). Prove or disprove

that u is a strong solution of (2.3.25).

Problem 10 Assume that � ⊂ R
N is a bounded domain of class C1,1. Let (ψn)n≥0

be the eigenfunctions of the operator (−�)sN (see Example 2.3.6(b)). Prove that for

every n ≥ 1, ψn ∈ C0,s(�) and ψn 
∈ C0,γ (�) for any γ > s.

Problem 11 Let u ∈ W
s,2
β,� be a weak solution of the Robin exterior value

problem (2.3.27). Prove that u|� ∈ W
2s,2
loc (�). Prove or disprove that u is a strong

solution of (2.3.27). Assume that β ∈ L1(RN \ �) ∩ L∞(RN \ �). Prove that
u ∈ C(RN).

Problem 12 Assume that � ⊂ R
N is a bounded domain of class C1,1 and that

β ∈ C1
c (RN \ �). Let (φn)n≥0 be the eigenfunctions of the operator (−�)sR (see

Example 2.3.6(c)). Prove that for every n ≥ 1, φn ∈ C0,s(�) and φn 
∈ C0,γ (�) for
any γ > s.
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