
Chapter 4
Systems of Fractional Kinetic Equations

In this chapter, we consider some general classes of reaction–diffusion systems
that contain some fractional kinetics occurring in applications (cf. Appendix C
below), and then investigate their local and global existence of solutions in detail.
In a preliminary step, we derive results that allow for the existence of sufficiently
smooth solutions which are needed in order to rigorously justify other precise
and explicit calculations (namely, maximum principles, energy estimates and
comparison arguments) which will be performed on more specific models in the
sequel. It turns out that the techniques employed for the scalar equation (3.1.1) in
the previous chapter will prove quite useful in the analysis.

4.1 Nonlinear Fractional Reaction–Diffusion Systems

Let m ∈ N and u = (u1, . . . , um) ∈ R
m where each ui (i = 1, . . . , m) is

a measurable physical quantity. Let di = 0 for i = 1, . . . , r and di > 0 for
i = r + 1, . . . , m. We allow the case r = 0 to occur so that all di > 0 for
i = 1, . . . , m in some cases. Next, let D = diag (d1, . . . , dm) be the diagonal
matrix of diffusion coefficients and assume that u0 = (u01, . . . , u0m) (x) ∈ R

m,

for x ∈ X, models the initial data. Let f = (f1, . . . , fm) (x, t, u1, . . . , um) with

f : (x, t, u) ∈ X × [0,∞) × R
m → f (x, t, u) ∈ R

m,

be a nonlinear function that models possible interactions between the various
quantities ui (i = 1, . . . , m). Finally, consider a family of closed operators (Ai)

m
i=1

that satisfies the assumptions of Propositions 2.2.1, 2.2.2. Namely, we assume that
each Ai satisfies assumption (HA) with a possible different value βAi

> 0 for
i = 1, . . . , m. In particular, let (Si (t))mi=1 be the corresponding family of analytic
semigroups associated with Ai, each Si (i = 1, . . . , m) can be extended to a
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contraction semigroup Si,pi (t) on Lpi (X), pi ∈ [1,∞], whose generator is Ai,pi

such that Ai,2 = Ai . For any αi ∈ (0, 1), the corresponding operators (2.1.9)
associated with these semigroups Si can also be defined analogously, to give the
families of operators

(
Sαi (t)

)m

i=1 and
(
Pαi (t)

)m

i=1, satisfying the ultracontractivity
estimates of (2.2.12), after setting βA := βAi

, α := αi. Finally, we set the diagonal
(matrix) operator A = diag (A1, . . . , Am) and introduce the following notion of
Caputo-fractional derivative

∂α
t u = (

∂
α1
t u1, . . . , ∂

αm
t um

) ∈ R
m,

where each ∂
αi
t ui ∈ R is understood in the sense of Definition 2.1.1 for αi ∈ (0, 1).

As usual, when αi = 1, ∂1
t = ∂t = d/dt.

Our problem is to look for solutions u = (u1, . . . , um) (x, t) ∈ R
m of the

following system

∂α
t u = DAu + f (x, t, u) , (x, t) ∈ X × (0,∞) , (4.1.1)

subject to the initial condition

u|t=0 = u0 in X. (4.1.2)

Note that components which do not diffuse as well as different kinds of “diffusion”
operators for the diffusing components may occur in (4.1.1)–(4.1.2). Our goal is
to construct bounded mild solutions for this initial-value problem and then turn to
strong solutions. To this end, our assumptions on the nonlinearity f, from Sect. 3,
are adapted to our new case, as follows.

(SF1) f (x, t, ·) : Rm → R
m is a measurable function for all (x, t) ∈ X × (0,∞)

such that, for every bounded set B ⊂ X×[0,∞)×R
m, there exists a constant

L = L (B) > 0 such that

|f (x, t, ξ)| ≤ L (B) , for all (x, t, ξ) ∈ B

and

|f (x, t, ξ) − f (x, t, η)| ≤ L (B) |ξ − η| , for all (x, t, ξ) , (x, t, η) ∈ B.

(SF2) For every bounded B ⊂ X×[0,∞)×R
m, there exists a constant L (B) > 0

such that, for all (x, t, ξ) , (x, s, η) ∈ B,

|f (x, t, ξ) − f (x, s, η)| ≤ L (B)
(|t − s|γ + |ξ − η|) ,

for some γ > 0.

As in Chap. 3, the assumption (SF2) will only be needed when the nonlinear
source f is also time dependent; when f = f (x, ξ) this condition is no longer
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necessary for the existence of strong solutions, we refer the reader to the proof of
Corollary 3.2.3 (and Theorem 4.1.3 below).

First, we consider the initial-value problem (4.1.1)–(4.1.2) with f ≡ 0 and let
u0 ∈ L∞ (X,Rm). The solution u = u (x, t) of the linear system for bounded initial
datum u0 defines a formal solution operator in the space L∞ (X,Rm) by setting

u (x, t) = (Sα (t) u0) (x) = (
Sα,1 (t) u01 (x) , . . . ,Sα,m (t) u0m (x)

)
,

for all x ∈ X, t ∈ [0,∞). The linear system is decoupled, the operator Sα (t) acts
componentwise; namely, for all t ∈ [0,∞), we set

⎧
⎪⎨

⎪⎩

Sα,i (t) = Sαi (t) ≡ I, for i = 1, . . . , r (when di = 0),

Sα,i (t) = Sαi (di t)|L∞(X) , for i = r + 1, . . . , m (when di > 0).

Of course, r = 0 is still allowed. In view of Remark 3.1.2, Sα (t) is not strongly
continuous in the Banach space L∞ (X,Rm) , which we equip with the canonical
sup-norm

‖u‖∞ = max
1≤i≤m

‖ui‖L∞(X) .

However, owing to the statement of Proposition 2.2.1, we have ‖Sα (t) u0‖∞ ≤
‖u0‖∞ , for all u0 ∈ L∞ (X,Rm) and t ∈ [0,∞). In order to deal with the full
nonlinear system, we also define the operator (Pα (t) f ), for f = (f1, . . . , fm) ∈
R

m, also acting componentwise:

Pα (t) f = (
Pα,1 (t) f1, . . . ,Pα,m (t) fm

)
,

where, for i = r + 1, . . . , m,

Pα,i (t) fi ≡ Pαi (di t) fi = αit
αi−1

∫ ∞

0
τ	αi

(τ )Si(τ (di t)
αi )fidτ

and Pα,i (t) fi ≡ (
gαi

∗ fi

)
(t) , for i = 1, . . . , r , in the case of non-diffusing

components. Of course, we keep the convention that when some αi ≡ 1 for
i = r + 1, . . . , m, we let Sαi

≡ Si and Pαi
≡ Si.

Our notion of mild solution for (4.1.1)–(4.1.2) is stronger than the notion of mild
solution from Definition 3.1.3. For the sake of notational convenience, we again let
u (t) = u (·, t) and f (t, u (t)) = f (·, t, u (·, t)) .

Definition 4.1.1 Let T > 0 be given, but otherwise arbitrary (and, possibly, T =
∞) and let u0 ∈ L∞ (X,Rm). We say u ∈ E∞,0,T is a mild solution of problem
(4.1.1)–(4.1.2) on the time interval [0, T ) if:
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(a) u : (x, t) ∈ X × (0, T ) 
→ u (x, t) ∈ R
m is measurable and u (·, t) ∈

L∞ (X,Rm) such that

sup
s∈(0,t)

‖u (·, s)‖∞ =: U < ∞, for all t ∈ (0, T ).

(b) u (t) = Sα (t) u0 +
∫ t

0
Pα (t − τ) f (τ, u (τ )) dτ, for all t ∈ (0, T ) , where the

integral is an absolutely converging Bochner integral in L∞ (X,Rm).
(c) u satisfies the initial condition in the following sense:

lim
t→0+ ‖u (t) − Sα (t) u0‖∞ = 0.

We have the first result of this section.

Theorem 4.1.2 (Existence of Maximal Bounded Mild Solutions) Let assump-
tion (HA) be verified for each operator Ai (i = 1, . . . , m) and the conditions of
(SF1) for the nonlinearity f . For any given u0 ∈ L∞ (X,Rm), there exists a time
T ∈ (0,∞] such that the initial-value problem (4.1.1)–(4.1.2) possesses a unique
mild solution in the sense of Definition 4.1.1 on the interval [0, T ). Furthermore,
the existence time T ∈ (0,∞] can be chosen maximal (i.e., the previous statement
does not hold for a larger time). In that case, T = Tmax and

lim
t→Tmax

‖u (t)‖∞ = ∞, if Tmax < ∞.

Proof Consider the following

Case1 : all αi ≡ 1, i = 1, . . . , m.

Case2 : at least one αi ∈ (0, 1) , i = 1, . . . , m.

Let U0 ∈ [0,∞) be such that ‖u0‖∞ ≤ U0. Choose U > U0, T0 ∈ (0, 1]
arbitrarily and define the bounded set B := X× [0, T0]× [−U,U ]m . Let L (B) > 0
be the constant from assumption (SF1) and choose T ∈ (0, T0] such that

U0 + θ̃ (T ) ≤ U, (4.1.3)

where the function θ̃ is defined as follows:

⎧
⎪⎪⎨

⎪⎪⎩

θ̃ (t) := eL(B)t − 1, in case 1,

θ̃ (t) := Eαm0 ,1

(
�

(
αm0

)
L(B)

�
(
αM0

) tαm0

)
− 1, in case 2.

(4.1.4)

Here, we have set αm0 := min1≤i≤m (αi) ∈ (0, 1) and αM0 := max1≤i≤m (αi) ∈
(0, 1], and we recall that Eκ,β (z) (κ > 0, β ∈ C) is the generalized Mittag-Leffler
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function

Eκ,β (z) =
∞∑

n=0

zn

�(κn + β)
, k ∈ (0, 1).

For initial data u0 ∈ L∞ (X,Rm) with ‖u0‖∞ ≤ U0, we define the sequence u(l)

in L∞ (X × [0, T ] ,Rm), by

⎧
⎨

⎩

u(1) (t) = Sα (t) u0,

u(l+1) (t) = Sα (t) u0 + ∫ t

0 Pα (t − s) f
(
s, u(l) (s)

)
ds,

for l ∈ N and t ∈ [0, T ] . We claim by induction that the following (4.1.5)–(4.1.9)
are satisfied for all t ∈ [0, T ], and all l ∈ N. We have the estimates:

∥∥
∥
(
u(l+1) − u(l)

)
(t)

∥∥
∥∞ (4.1.5)

≤ L (B) max
1≤i≤m

1

� (αi)

∫ t

0
(t − τ)αi−1

∥
∥∥
(
u(l) − u(l−1)

)
(τ )

∥
∥∥∞ dτ

and
∥
∥∥
(
u(l+1) − u(l)

)
(t)

∥
∥∥∞ = max

1≤i≤m
qi
l (t) ≤ θl (t) , (4.1.6)

where
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

θl (t) := (L(B)t)l

l! , in case 1,

θl (t) := 1
�

(
lαm0+1

)

(
�

(
αm0

)
L(B)

�
(
αM0

) tαm0

)l

, in case 2.

(4.1.7)

Also, we have

∥
∥∥u(l) (t)

∥
∥∥∞ ≤ U (4.1.8)

and

∑

1≤j≤l

∥∥∥
(
u(j+1) − u(j)

)
(t)

∥∥∥∞ ≤ θ̃ (t) . (4.1.9)
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We can easily check these claims for l = 1 on account of the definition for u(l),

the properties of Sα (t) , Pα (t) and the conditions of (SF1). For instance,

∥∥∥u(1) (t)

∥∥∥∞ = ‖Sα (t) u0‖∞ ≤ ‖u0‖∞ < U ;

since
∥∥Pαi (t)

∥∥
L∞(X) ≤ tαi−1/� (αi) , for t ∈ (0, T ], we also get

q1
2 (t) :=

∥∥
∥u

(2)
i (t) − u

(1)
i (t)

∥∥
∥

L∞

≤
∫ t

0

∥
∥Pαi (t − τ)

∥
∥∞,∞

∥∥
∥fi

(
τ, u(1) (τ )

)∥∥
∥

L∞(X) dτ

≤ L (B)

� (αi)

∫ t

0
(t − τ)αi−1 dτ ≤ θ1 (t) .

Indeed, the Gamma function � (x) > 0 is non-increasing on (0, μ] and non-
decreasing on [μ,∞), for some μ ∈ (1, 2) (in fact, μ = 1.46163..). This yields that
�

(
αM0

) ≤ � (αi) ≤ �
(
αm0

)
in the second case, as well as max1≤i≤m tαi ≤ tαm0 ,

for t ∈ [0, T ] ⊆ [0, 1] ; henceforth, we deduce

∥∥∥u(2) (t) − u(1) (t)

∥∥∥∞ = max
1≤i≤m

qi
2 (t) ≤ θ1 (t) .

Suppose now (4.1.5)–(4.1.9) are already known for some l − 1 ∈ N. We have to
prove these assertions for l ∈ N. Inequality (4.1.5) is immediate owing to the second
condition of (SF1), while the assertions (4.1.6) and (4.1.9) are also immediate in the
first case by merely performing explicit integration and recalling the series for the
exponential function. We now show the same assertions in the second case when at
least one of αi ∈ (0, 1). By the second condition of (SF1), and a change of variable
rt = s we have

qi
l (t) ≤

∫ t

0

∥∥Pαi (t − s)
∥∥∞,∞

∥∥
∥f

(
s, u(l) (s)

)
− f

(
s, u(l−1) (s)

)∥∥
∥

L∞(X) ds

(4.1.10)

≤ L (B)

�
(
αM0

)
∫ t

0
(t − s)αi−1 θl−1 (s) ds

=
(

L (B)

�
(
αM0

)

)l
�

(
αm0

)l−1
tαi+(l−1)αm0

�
(
(l − 1) αm0 + 1

) B

(
αi, (l − 1) αm0 + 1

)
,

where

B (x, y) =
∫ 1

0
(1 − r)x−1 ry−1dr
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is the standard (symmetric) Beta function. Since

B

(
αi, (l − 1) αm0 + 1

)
≤ B

(
αm0 , (l − 1) αm0 + 1

)

and

B

(
αm0 , (l − 1) αm0 + 1

)
= �

(
αm0

) �
(
(l − 1) αm0 + 1

)

�
(
lαm0 + 1

)

we deduce from (4.1.10) that

qi
l (t) ≤ θl (t) , for all i = 1, . . . , m,

for all t ∈ [0, T ] ⊆ [0, 1] . This proves (4.1.6) for any l ∈ N; (4.1.9) follows from
the series of the Mittag-Leffler function Eαm0 ,1. It remains to show (4.1.8). Using

the definition of the sequence u(l), we get

∥∥∥u(l) (t)

∥∥∥∞ ≤
∥∥∥u(1) (t)

∥∥∥∞ +
∑

1≤j<l

∥∥∥
(
u(j+1) − u(j)

)
(t)

∥∥∥∞

≤ U0 + θ̃ (t) ≤ U,

owing to (4.1.3). Therefore, (4.1.5)–(4.1.9) holds for all l ∈ N. It follows that there
exists a function u ∈ L∞ (X × [0, T ] ;Rm) such that

sup
t∈[0,T ]

∥
∥∥
(
u(l) − u

)
(t)

∥
∥∥∞ ≤

∑

l≤j<∞

∥
∥∥
(
u(j+1) − u(j)

)
(T )

∥
∥∥∞ → 0,

as l → ∞. It is now straightforward to show that the limit u is a solution of our
initial-value problem (4.1.1)–(4.1.2) on the time interval [0, T ]. Since this interval
is determined uniformly for all u0 ∈ L∞ (X;Rm) such that ‖u0‖∞ ≤ U0, we also
have

inf
{
T (u0) : u0 ∈ L∞ (X;Rm

)
, ‖u0‖∞ ≤ U0

}
> 0, (4.1.11)

for all U0 ∈ [0,∞). We prove the second part in the statement of the theorem. We
argue by contradiction. Suppose now that there exists U0 ∈ (0,∞) and a sequence
tn > 0 such that

lim
n→∞ tn = Tmax < ∞ and sup

n∈N
‖u (tn)‖∞ ≤ U0.

Hence by (4.1.11), there exists a number τ ∈ (0,∞) and mild solutions vn : (x, t) ∈
X × [tn, tn + τ) 
→ vn (x, t) ∈ R

m of problem (4.1.1) for an initial datum u (tn) on
the interval [tn, tn + τ). Hence by uniqueness, we get a mild solution u for the
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initial datum u0 on the larger interval [0, Tmax + τ), which is a contradiction. This
completes the proof. �


If the initial datum is sufficiently regular, the mild solution becomes a strong one
on any time interval [T0, Tmax), for any T0 > 0.

Theorem 4.1.3 (Existence of Maximal Strong Solutions) Let assumption (HA)
for each operator Ai (i = 1, . . . , m) and the conditions of (SF1)–(SF2) for the
nonlinearity f be satisfied. Assume u0i ∈ L∞ (X) for i = 1, . . . , r (of course,
r = 0 is allowed) and u0i ∈ D

(
Ai,pi

) ⊂ L∞ (X) with pi ∈ (
βAi

,∞) ∩ (1,∞) for
i = r + 1, . . . , m. Then every bounded mild solution of Theorem 4.1.2 satisfies

u ∈ C0,κ
([0, Tmax);L∞ (X,Rm

))
(4.1.12)

and

g1−αi
∗ (ui − ui (0)) ∈ C1,γ ([0, Tmax) ;L∞ (X)), i = 1, . . . , r, (4.1.13)

g1−αi
∗ (ui − ui (0)) ∈ C1 ((0, Tmax) ;L∞ (X)), i = r + 1, . . . , m, (4.1.14)

ui ∈ C((0, Tmax);D(Ai,pi
)), i = r + 1, . . . , m, (4.1.15)

for some κ, γ > 0. The bounded mild solution also satisfies the initial-value
problem (4.1.1)–(4.1.2) in a strong sense, namely, all equations are satisfied for
t ∈ (0, Tmax) and almost all x ∈ X, and

lim
t→0+ ‖u (t) − u0‖L∞(X) = 0. (4.1.16)

Proof We define for i = 1, . . . , m, vi (x, t) = Sα,i (t) u0i , Gi (x, t) =
fi (x, t, u (x, t)) ∈ R, for (x, t) ∈ X × (0, Tmax). The integral solution for the
mild solution can be written, with the usual convention, for i = 1, . . . , m,

ui (t) = vi (t) +
∫ t

0
Pαi (t − s) Gi (s) ds, for t ∈ (0, Tmax) .

We argue separately for the diffusing and nondiffusing components. Let i = r +
1, . . . , m, and recall that each Ai generates an analytic semigroup Si

(= Si,pi

)
in

the space Lpi (X). Let T ∈ [T0, Tmax) be arbitrary for any T0 > 0 and let 0 < T0 ≤
t < t + h ≤ T in the estimates below. We first show in what sense the initial datum
is satisfied. We first have

‖u (t) − Sα (t) u0‖∞ = max
1≤i≤m

∥∥ui (t) − Sα,i (t) u0i

∥∥
L∞(X) (4.1.17)

≤ max
1≤i≤m

∫ t

0

∥∥Pαi (t − s)
∥∥∞,∞ ‖fi (s, u (s))‖∞ ds



4.1 Nonlinear Fractional Reaction–Diffusion Systems 133

≤ L (U) max
1≤i≤m

1

� (αi)

∫ t

0
(t − s)αi−1 ds

≤ L (U) max
1≤i≤m

tαi

� (αi) αi

→ 0,

as t → 0+. Next, choose θi > ηi, θi, ηi ∈ (
βAi

/pi, 1
)

such that θi = ηi + μi.

Recall that we have (by Step 2 of the proof of Theorem 3.2.2),

t1−αi
∥∥(−Ai,pi

)ηi Pαi (t)
∥∥

p,∞ ≤ Cit
−ηiαi

as well as
∥∥∥(−Ai,pi

)−(1−ηi )
(
Sαi (t) − I

)∥∥∥
pi,pi

≤ Cit
αi(1−ηi ).

Thus, we can argue as in Step 2 of the proof of Theorem 3.2.2 (see, in particu-
lar (3.2.16)–(3.2.18) by letting q = 1, χ + 1/q = αi (1 − θi)) to deduce

‖ui (t) − u0i‖L∞(X) ≤ C
∥
∥(−Ai,pi

)θi (ui (t) − u0i )
∥
∥

Lpi
(X) (4.1.18)

≤ Ctαi(1−θi )
(
‖u0i‖D

(
Ai,pi

) + L (U)
)

,

for some C > 0, independent of t , which clearly shows (4.1.16) for the diffusing
components. We also need to prove that ui is continuous with respect to the time
variable. As in the proof of Theorem 3.2.2 ( p := pi, Ap := Ai,pi

, q1 = q2 = ∞,

and so forth), see (3.2.19)–(3.2.31), we get

‖ui (t + h) − ui (t)‖L∞(X) ≤ CT L (U) hκ, i = r + 1, . . . , m,

for some κ > 0 which depends on αi, βAi
, ηi . This yields (4.1.12) for the diffusing

components, namely

ui ∈ C0,κ
([0, Tmax);L∞ (X)

)
, i = r + 1, . . . , m. (4.1.19)

Now we consider the non-diffusing components. Let w = (u1, . . . , ur ) be the vector
of non-diffusing components and define

H : (x, t, w) ∈ X×[0, Tmax)×R
r 
→ H (x, t, w) = f (x, t, w, ur+1, . . . , um) ∈ R

r

with f = (f1, . . . , fr ). The components i = 1, . . . , r , of the integral solution for
the mild solution then yields

wi (x, t) = w0i (x) +
∫ t

0
gαi (t − s)Hi (x, s, w (x, s)) ds. (4.1.20)
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The assumption (SF2) together with (4.1.19) implies that

|H (x, t, ξ) − H (x, s, η)| ≤ LT (U)
(|t − s|γ + |ξ − η|) , (4.1.21)

for all (x, t, ξ) , (x, s, η) ∈ X× [0, T ] × [−U,U ]r (the existence of U > 0 follows
by construction of the mild solution u). Then we deduce for t ≥ τ ≥ 0 and i =
1, . . . , r,

‖wi (x, t) − wi (x, τ )‖L∞(X)

≤ LT (U)

� (αi)

∫ t

τ

(t − s)αi−1 ds = LT (U) (t − τ)αi

� (αi + 1)

and so wi ∈ C0,αi ([0, Tmax) ;L∞ (X)), which together with (4.1.19)
yields (4.1.12). The foregoing inequality also implies that

lim
t→0+ ‖wi (t) − w0i‖L∞(X) = 0, i = 1, . . . , r.

Recalling once again (4.1.19) and the Hölder-Lipschitz condition (4.1.21), we easily
infer that Hi ∈ C0,γ ([0, Tmax) ;L∞ (X)), i = 1, . . . , r, for some γ > 0. Hence, for
i = 1, . . . , r, by (4.1.20) and the fact that g1−α ∗ gα = 1, it follows that

∂
αi
t wi (t) = Hi (·, t, w) ∈ C0,γ ([0, Tmax) ;L∞ (X)). (4.1.22)

We finally get the first of (4.1.13). To prove (4.1.14)–(4.1.15) and the remaining
part of the statement of the theorem, we argue in a similar fashion as in Step 3 of
the proof of Theorem 3.2.2. Thus, the theorem is proved. �


4.2 The Fractional Volterra–Lotka Model

We assume � is a bounded domain with Lipschitz continuous boundary ∂� and
consider a predator-prey model which assumes a fractional version of the mass
action law for the interaction of the two species, predator and prey. As usual, denote
the density of prey by u = u (x, t) and of the predator by v = v (x, t). The dynamics
of the prey-predator interaction is governed by the following system of reaction–
diffusion equations

{
∂α
t u + Du(−�)s�u = u (f − bv) , (x, t) ∈ � × (0,∞) ,

∂tv + Dv(−�)l�v = v (−g + au) , (x, t) ∈ � × (0,∞) ,
(4.2.1)
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subject to the following set of boundary conditions

N2−2su = N2−2lv = 0 on ∂� × (0,∞) , (4.2.2)

and initial conditions

(u, v)|t=0 = (u0, v0) in �. (4.2.3)

We refer to Appendix B below for a complete description of the boundary operator
appearing in (4.2.2). In general a, b, f, g are assumed to be positive constants.
Following a discussion in [10], a more general situation can be considered such
as, an inhomogeneous environment, symbiosis and saturation can be included by
letting the sources f, g depends on x and u, v. We shall consider this situation in
a forthcoming article. We assume diffusion rates Du,Dv ∈ (0,∞) and consider
the case s, l ∈ (1/2, 1) since the boundary conditions (4.2.2) makes sense only
in this case. Indeed, following an accumulation of evidence from a variety of
experimental, theoretical, and field studies [6, 9] we observe that both diffusion
operators (−�)s�, (−�)l� offer a better foraging mechanism, than the classical
counterpart of Laplacian �, for the movement of animals around their natural
habitat (cf. also Appendix C, part I). When s, l ∈ (0, 1/2] and/or s, l ∈ {1}, the
subsequent results also hold with some minor modifications and different boundary
conditions than in (4.2.2) (see Sect. 2.3, for many other possible examples of
diffusion operators). The boundary conditions (4.2.2) play a similar role as in the
case of no-flux Neumann boundary conditions in that both populations of predator
and prey cannot penetrate the boundary ∂�. Indeed, we recall that each unforced
equation of (4.2.1)–(4.2.2) corresponds to a reflected Lévy process forced to stay
inside � (see, for instance, [1–3, 5, 7, 8, 12] for the probabilistic point of view). The
possible occurrence of a nonlocal derivative ∂α

t , α ∈ (0, 1] in the first equation
of (4.2.1) accounts for possible effects due to processes with time delay (i.e.,
“trapping” due environmental and/or predatory effects) in the population of prey
(see, for instance, Appendix C.1).

Let As,2 and Al,2 be the operators on L2(�) associated with the closed forms

Es(ϕ, φ) = CN,s

2
Du

∫

�

∫

�

(ϕ(x) − ϕ(y))(φ(x) − φ(y))

|x − y|N+2s
dxdy, ϕ, φ ∈ Ws,2(�),

and

El (ϕ, φ) = CN,l

2
Dv

∫

�

∫

�

(ϕ(x) − ϕ(y))(φ(x) − φ(y))

|x − y|N+2l
dxdy, ϕ, φ ∈ Wl,2(�),

respectively. Using the Green formula (B.0.7) we can show that As,2 and Al,2 are
realizations in L2(�) of Du(−�)s� and Dv(−�)l� with the fractional Neumann
boundary conditions N2−2sϕ = 0 on ∂� and N2−2lϕ = 0 on ∂�, respectively.
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More precisely we have that

⎧
⎨

⎩
D(As,2) =

{
ϕ ∈ Ws,2(�) : Du(−�)s�ϕ ∈ L2(�), N2−2su = 0 on ∂�},

As,2ϕ = Du(−�)s�ϕ.

and

{
D(Al,2) = {ϕ ∈ Wl,2(�), Dv(−�)l�ϕ ∈ L2(�), N2−2lu = 0 on ∂�},
Al,2ϕ = Dv(−�)l�ϕ.

It follows from [4] (cf. also Sect. 2.3) that the operators As := As,2 = −As,2
and Al := Al,2 := Al,2 satisfy the assumption (HA). Throughout the following
for p ∈ [1,∞] we shall denote by As,p and Al,p the generator of the associated
semigroup on Lp(�). For p ≥ 2, each such generator possesses in fact the explicit
characterization (2.2.10). In addition we shall let

L∞
s (�) := D(As,∞)

L∞(�)
and L∞

l (�) := D(Al,∞)
L∞(�)

.

We have the following existence result of global strong solutions in the sense
introduced in the previous section (see Theorem 4.1.3).

Theorem 4.2.1 Let 1/2 < s, l < 1, βAs := N/(2s) and βAl
:= N/(2l). Take

initial data u0 ∈ D(As,ps ) ⊂ L∞(�), v0 ∈ D(Al,pl
) ⊂ L∞(�) for some ps ∈

(βAs ,∞) ∩ (1,∞), pl ∈ (βAl
,∞) ∩ (1,∞) such that u0 ≥ 0, v0 ≥ 0. Then the

system (4.2.1)–(4.2.3) has a unique global strong solution u ≥ 0, v ≥ 0 on the time
interval (0,∞) satisfying

lim
t→0

‖u(t) − u0‖L∞(�) = 0, (4.2.4)

lim
t→0

‖v(t) − v0‖L∞(�) = 0. (4.2.5)

In addition for every T ∈ (0,∞) the following estimates hold:

sup
0<t<T

‖u(t)‖L∞(�) < ∞, (4.2.6)

sup
0<t<T

‖v(t)‖L∞(�) < ∞. (4.2.7)

Proof Let u0 and v0 be as in the statement of the theorem. Recall that the operator
As,2 and Al,2 satisfy the assumption (HA). Define the function F : � × [0,∞) ×
R

2 → R
2 by F(x, t, (ξ, η)) :=

(
ξ(f − bη), η(−g + aξ)

)
. Then F satisfies the

assumptions (SF1) and (SF2) with γ = 1. It follows from Theorem 4.1.3 that
the system (4.2.1)–(4.2.3) has a strong solution (u, v) on some maximal interval



4.2 The Fractional Volterra–Lotka Model 137

[0, Tmax). The strong solution is given by the integral representation

u(t) = Su,α(t)u0 +
∫ t

0
Pu,α(t − τ) (u(f − bv)) (τ )dτ, (4.2.8)

v(t) = Sv(t)v0 +
∫ t

0
Sv(t − τ) (v(−g + au)) (τ )dτ, (4.2.9)

where Su,α(t), Sv(t) denote the resolvent family and semigroup on L2(�) generated
by the operators As,2 and Al,2, respectively. Here we have also defined

Su,α (t) ω :=
∫ ∞

0
	α(τ)Su(τ tα)ωdτ, Pu,α(t)ω := αtα−1

∫ ∞

0
τ	α(τ)Su(τ tα)ωdτ

and set Pu,1(t) ≡ Su,1 (t) := Su (t). Recall that u0 ≥ 0 and v0 ≥ 0 on � and define
the functions k, h : � × (0,∞) × R → R by k(x, t, ξ) = ξ(f − bv(x, t)) and
h(x, t, ξ) = ξ(−g + au(x, t)). Since k(x, t, 0) = h(x, t, 0) = 0, it follows from
Theorem 3.6.1 that u(x, t) ≥ 0 and v(x, t) ≥ 0 for a.e. (x, t) ∈ � × [0, Tmax).

Note that each component of F satisfies the assumption (F6) for u ≥ 0, v ≥ 0.

Applying Theorem 3.4.11, we get that there exist two constants C,C0 > 0 such that
for every 0 < T < ∞,

sup
0<t<T

‖u(t)‖L∞(�) ≤ C
(‖u0‖L∞(�) + Eα,1 (C0T ) + T αEα,1 (C0T ) f

)

(4.2.10)

and we have shown (4.2.6) for any α ∈ (0, 1]. Next we consider (4.2.9) and let
p(x, t, ξ) = (−g + au). Since g is a positive constant and u ≥ 0, we have

h (x, t, ξ) ξ = p(x, t, ξ)ξ2 = (−g + au)ξ2 ≤ au(x, t)ξ2.

It follows from (4.2.10) that c0 := supt∈(0,T ) ‖au(x, t)‖L∞(�) < ∞. We have
shown that h also satisfies the assumption (F6). Then applying Theorem 3.4.11
once again and recalling Corollary 3.4.14, we get that there there exist two constants
C,C0 > 0 such that for every 0 < T < ∞,

sup
t∈(0,T )

‖v(t)‖L∞(�) ≤ C
(
‖v0‖L∞(�) + c0 (T + 1) eC0T

)
. (4.2.11)

We have shown (4.2.7). Together with (4.2.6) we can conclude that Tmax = ∞ (see
Sect. 4.1). For (4.2.4)–(4.2.5), we refer once again to the proof of Theorem 4.1.3
(see (4.1.18), (4.1.17) and set α1 = α, α2 = 1, in which case Pα1 ≡ Pu,α,

Pα2 ≡ Sv); they easily follow now on the account of (4.2.10)–(4.2.11). The proof is
finished. �


We recall from (3.1.4) that ns := βAs α, α ∈ (0, 1] and nl := βAl
.
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Theorem 4.2.2 Let p0, q0 ∈ [1,∞] such that βAs /p0 < 1 and consider initial
data 0 ≤ u0 ∈ Lp0 (�), 0 ≤ v0 ∈ Lq0 (�). Then the fractional Lotka-Volterra
system (4.2.1)–(4.2.3) has a unique global mild solution u ≥ 0, v ≥ 0 on the time
interval [0,∞), given by (4.2.8)–(4.2.9), which is also a strong solution on (0,∞).
Moreover, the pair (u, v) satisfies

lim
t→0+ ‖u (t) − u0‖L1(�) = 0, lim

t→0+ ‖v (t) − v0‖Lk(�) = 0, for k ∈ [1, q0),

(4.2.12)

and the following estimates, for any T ∈ (0,∞):

sup
t∈(0,T )

(t ∧ 1)δs ‖u (t)‖Lp(�) < ∞, p ∈ [p0,∞] , (4.2.13)

sup
t∈(0,T )

(t ∧ 1)δl ‖v (t)‖Lq(�) < ∞, q ∈ [q0,∞] , (4.2.14)

where

δs := ns

p0

(
1 − p0

p

)
,

δl := nl

q0

(
1 − q0

q

)
.

The proof of the theorem follows from a series of propositions and lemmas that
we subsequently give. In what follows one can start with more regular initial data
due to the statement of Theorem 4.2.1 and then deduce all the required estimates
with less regular initial data by exploiting a standard approximation argument.

Proposition 4.2.3 Every nonnegative solution (u, v) satisfies the following esti-
mate1

‖u (t)‖Lp0 (�) ≤ ‖u0‖Lp0 (�)

(
Eα,1

(
f tα

) ) 1
p0 , (4.2.15)

for all t ∈ (0,∞) and α ∈ (0, 1], p0 ∈ [1,∞).

Proof We derive the estimate in case p0 ∈ (1,∞), the cases p0 ∈ {1,∞} follow
directly from a limit argument in (4.2.15). Multiply the first equation of (4.2.1) by
p0u

p0−1, integrate the resulting identity over �, then exploit the first inequality of
Proposition 3.4.9 if α ∈ (0, 1) and use the fact that u, v ≥ 0. We find that

∂α
t

(
‖u (t)‖p0

Lp0 (�)

)
≤ f ‖u (t)‖p0

Lp0 (�)
,

1The Mittag-Leffler function E1,1 (x) = ex .
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for all t ≥ 0. The comparison principle of Lemma A.0.7 then immediately yields
the result since the unique solution of ∂α

t y = fy is y = y (0) Eα,1 (f tα). �

Lemma 4.2.4 Let p0 ∈ [1,∞] such that βAs /p0 < 1 and assume sufficiently
smooth data (u0, v0). Then for every T ∈ (0,∞) there exists a constant M =
M (T,�, a, b, f, g) ∈ (0,∞) such that

sup
t∈(0,T )

(t ∧ 1)δs ‖u (t)‖Lp(�) ≤ M, p ∈ [p0,∞] . (4.2.16)

Proof We apply Lemma 3.4.3 to the equation in u and use the one-sided version due
to Remark 3.4.5 since u, v ≥ 0. The weight function c (x, t) = f is constant, we
have q1 = q2 = r2 = ∞, r1 = p0 and γ = 1 and we can find a number b̃ ∈ [0, 1)

satisfying
(

1 − b̃
)

βAs α

p0
< α − ε, for some ε ∈ (0, α). Note that βAs /p0 < 1 is

equivalent to βAs α/p0 = ns/p0 < α. The assertion (3.4.18) of Lemma 3.4.3 then
implies the existence of a constant C∗ > 0 independent of u0, u, U, t and T such
that

‖u (·, t)‖L∞(�) ≤ C∗ (t ∧ 1)
− ns

p0

[
‖u0‖Lp0 (�) + ϒ (t)

(
U + U

1/
(

1−b̃
))]

,

(4.2.17)

for all t ∈ (0, T ]. This yields (4.2.16) for p = ∞ since by the definition of U, c

and (4.2.15), we have

U := f ‖1 + |u|‖
(

1−b̃
)

p0,∞,T < ∞.

In case p = p0, estimate (4.2.16) is just the a priori estimate (4.2.15), namely, it
follows that

sup
t∈(0,T )

‖u (t)‖Lp0 (�) ≤ M1 (T , f ) < ∞. (4.2.18)

Since both Lp0 (�) and L∞ (�)-estimates are now readily available by (4.2.18)
and (4.2.17), we can use the interpolation inequality

‖u‖Lp(�) ≤ ‖u‖p0/p

Lp0 (�)
‖u‖1−p0/p

L∞(�) , p ∈ [p0,∞] , (4.2.19)

to derive the desired estimate in (4.2.16) for arbitrary p. �

Lemma 4.2.5 Under the assumptions of Lemma 4.2.4, every nonnegative solution
v of (4.2.1)–(4.2.3) satisfies

sup
t∈(0,T )

‖v (t)‖Lq0 (�) < ∞, for q0 ∈ [1,∞] . (4.2.20)
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Proof Consider the weight function c (x, t) = −g + au (x, t) and notice that v ≥ 0
is a solution of

∂tv + Al,2v = cv, v (0) = v0.

Multiply this equation by qvq−1 and integrate the resulting identity over �. Since

(
Al,2v, vq−1

)

L2(�)
≥ 0

by (2.2.11), we find

∂t ‖v (t)‖q

Lq(�) ≤ q ‖v (t)‖q

Lq(�)
‖c (t, ·)‖L∞(�) ,

for all t ∈ [0, T ]. This inequality implies that

∂t ‖v (t)‖Lq(�) ≤ ‖v (t)‖Lq(�) ‖c (t, ·)‖L∞(�)

and the application of Gronwall’s inequality yields

‖v (t)‖Lq(�) ≤ ‖v0‖Lq(�) e
∫ t

0 ‖c(s,·)‖L∞(�)ds, (4.2.21)

for any q ∈ [1,∞). Notice that in view of (4.2.17), ‖c (t, ·)‖L∞(�) ∼ t−ns/p0 for
t ∈ (0, 1) and ‖c (t, ·)‖L∞(�) ≤ CT for t ≥ 1; thus we have ‖c (t, ·)‖L∞(�) ∈
L1 (0, T ) since ns/p0 < α ≤ 1 by assumption. In particular, we infer from (4.2.21)
and (4.2.17) the existence of a constant M = M(T, p0, ns, g, a, f, u0) > 0,

independent of q, such that

‖v (t)‖Lq(�) ≤ M ‖v0‖Lq(�) , t ∈ [0, T ] ,

which is exactly the primary estimate (4.2.20) for q = q0 ∈ [1,∞). Passing to the
limit as q → ∞ in the previous inequality, we also get the estimate (4.2.20) for
q0 = ∞. We thus conclude the proof. �


We can now show that v satisfies the smoothing property (4.2.14).

Lemma 4.2.6 Under the assumptions of Lemma 4.2.4, for every T ∈ (0,∞) there
exists a constant M = M (T,�, a, b, f, g) ∈ (0,∞) such that

sup
t∈(0,T )

(t ∧ 1)δl ‖v (t)‖Lq(�) ≤ M, q ∈ [q0,∞] . (4.2.22)

Proof We first notice that estimate (4.2.16) with p = ∞ implies that ‖u‖∞,q2
≤ M,

for some q2 ∈ (1, 1/δ) , δ := ns/p0 < α ≤ 1. This time we apply Lemma 3.4.3
to the equation in v with the weight function c (x, t) = −g + au (x, t) which now
satisfies ‖c‖∞,q2

≤ M1, and set q1 = r2 = ∞, q2 := q2 ∈ (1, 1/δ), r1 = q0
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and γ = 1. The constant M1 ∈ (0,∞) depends on the final time T > 0 but is
independent of t . Indeed, we can find a new number b̃ ∈ [0, 1), sufficiently close to
1, satisfying

1

q2
+

(
1 − b̃

) nl

q0
< 1 − ε,

for some ε ∈ (0, 1). It follows from the assertion (3.4.18) of Lemma 3.4.3 that there
exists a constant C∗ > 0 independent of v0, v, V and t such that

‖v (·, t)‖L∞(�) ≤ C∗ (t ∧ 1)
− nl

q0

[
‖u0‖Lq0 (�) + ϒ (t)

(
V + V

1/
(

1−b̃
))]

,

(4.2.23)

for all t ∈ (0, T ]. Here, V < ∞ is defined as

V := ‖1 + |v|‖
(

1−b̃
)

q0,∞,T ‖c‖∞,q2
.

This yields estimate (4.2.22) for q = ∞. Next, recall that v also satisfies (4.2.20);
this allows us to exploit an interpolation similar to (4.2.19) in the spaces L∞ (�) ⊂
Lq (�) ⊂ Lq0 (�). Thus we arrive at the desired estimate (4.2.14) for an arbitrary
q ∈ [q0,∞] and we conclude the proof. �

Proposition 4.2.7 Assume p0, q0 ∈ [1,∞] are such that βAs /p0 < 1. Then the
following assertions hold.

(a) There exists a constant M > 0 such that for every t ∈ (0, 1), we have

∥∥u (t) − Su,α (t) u0
∥∥

Lq0 (�)
≤ Mtε, ‖v (t) − Sv (t) v0‖Lq0 (�) ≤ Mtε,

(4.2.24)

for some ε > 0, for p0, q0 ∈ [1,∞).
(b) For i = 1, 2, let (ui, vi) be a solution of (4.2.1)–(4.2.3) corresponding to an

initial datum (u0i , v0i ) . Then for every T ∈ (0,∞), there exists a constant
C = C (T ) ∈ (0,∞), independent of (ui, vi), such that

|‖u1 − u2‖|∞,δ,T + |‖v1 − v2‖|q0,0,T (4.2.25)

≤ C
(‖u01 − u02‖Lp0 (�) + ‖v01 − v02‖Lq0 (�)

)
.

Proof By the integral formula (4.2.8) and estimate (4.2.13) with p = ∞ and
δ = ns/p0, for t ∈ (0, 1) we have as in (3.1.16) (with s0 := q0, p0 := q0,
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q2 := ∞, q1 := q0),

∥∥u (t) − Su,α (t) u0
∥∥

Lq0 (�)
≤ C

∫ t

0
(τ ∧ 1)−δ dτ

(|‖u‖|∞,δ,1
) (

1 + |‖v‖|q0,0,1
)

≤ Mtε,

for some ε > 0. The same argument applied to the difference v (t) − Sv (t) v0
in (4.2.9) gives the required estimate in (4.2.24).

In order to show (4.2.25), we take ε := 1−δ > 0, where δ = ns/p0. Subtracting
the integral equations (4.2.8) corresponding to each i = 1, 2 and ui , we obtain

‖u1 (t) − u2 (t)‖L∞(�) ≤ ∥∥Su,α (t)
∥∥∞,p0

‖u01 − u02‖Lp0 (�) (4.2.26)

+ �(ui, vi)

∫ t

0
C

∥∥Pu,α (t − s)
∥∥∞,q0

(s ∧ 1)−δ ds,

where

�(ui, vi) := |‖u1 − u2‖|∞,δ,T

(
1 + |‖v1‖|q0,0,T

)
(4.2.27)

+ (
1 + |‖u2‖|∞,δ,T

) |‖v1 − v2‖|q0,0,T .

We can apply Lemma A.0.1 to the second summand in (4.2.26) and exploit the
global bounds (4.2.13)–(4.2.14) to estimate the corresponding norms for u2 and v1.
We deduce

|‖u1 − u2‖|∞,δ,t (4.2.28)

≤ C ‖u01 − u02‖Lp0 (�)

+ CT ϒ (t)
(|‖u1 − u2‖|∞,δ,T + |‖v1 − v2‖|q0,0,T

)
,

for all t ∈ (0, T ], for some C > 0 independent of t . Arguing similarly for the
v-component, we find

‖v1 (t) − v2 (t)‖Lq0 (�) ≤ ‖Sv (t)‖q0,q0
‖v01 − v02‖Lq0 (�)

+ CT � (ui, vi)

∫ t

0
(s ∧ 1)−δ ds

which yields

|‖v1 − v2‖|q0,0,t ≤ C ‖v01 − v02‖Lq0 (�) (4.2.29)

+ CT ϒ (t)
(|‖u1 − u2‖|∞,δ,T + |‖v1 − v2‖|q0,0,T

)
,
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for all t ∈ (0, T ]. Choose now a small enough h > 0 such that CT ϒ (h) ≤ 1/2
into (4.2.28)–(4.2.29). We obtain

|‖u1− u2‖|∞,δ,h + |‖v1− v2‖|q0,0,h ≤ M (T )
(‖u01− u02‖Lp0 (�) +‖v01− v02‖Lq0 (�)

)
.

(4.2.30)

With the same proof, we can also infer that

|‖(u1 − u2) (·, t0 + ·)‖|∞,δ,h + |‖(v1 − v2) (·, t0 + ·)‖|q0,0,h (4.2.31)

≤ M (T )
(‖(u1 − u2) (t0)‖Lp0 (�) + ‖(v1 − v2) (t0)‖Lq0 (�)

)
,

for all t0 ∈ [0, T ). We can now apply the estimate (4.2.31) successively for j =
0, 1, 2, . . . , with initial data (u, v) (t0 + jh). Then the assertion (4.2.25) follows by
induction on j and we finish the proof of the proposition. �

Proof (Proof of Theorem 4.2.2) The proof follows now by a simple procedure
where we approximate any rough nonnegative initial data (u0, v0) ∈ Lp0 (�) ×
Lq0 (�) by a sequence of nonnegative functions (u0n, v0n) ∈ D(As,ps ) × D(Al,pl

)

(for some sufficiently large ps ∈ (
βAs ,∞

)
, pl ∈ (

βAl
,∞)

and ps, pl ≥ 2) such
that

‖u0n − u0‖Lp0 (�) → 0, ‖v0n − v0‖Lq0 (�) → 0, as n → ∞

with

‖u0n‖Lp0 (�) ≤ ‖u0‖Lp0 (�) , ‖v0n‖Lq0 (�) ≤ ‖v0‖Lq0 (�) .

The above lemmata and propositions then hold with the constants M,M1, C,C∗ >

0 independent of n for the sequence of strong solutions (un, vn). Thus, asser-
tion (4.2.25) of Proposition 4.2.7 implies that the sequence (un, vn) converges to
(u, v) in E∞,δ,T × Eq0,0,T , and all the a priori estimates derived in this section also
hold for the limit solution (u, v). It is then straightforward to show from (4.2.8)–
(4.2.9) that (u, v) is also the mild solution of system (4.2.1)–(4.2.3) for an initial
datum (u0, v0) ∈ Lp0 (�) × Lq0 (�) (see Chap. 3 and Sect. 4.1). In particular every
such mild solution (u, v) is global and bounded on [T0,∞) for every T0 > 0, and
one can use arguments as in the proofs of Theorems 4.1.3 and 3.2.6, respectively,
to show that (u, v) is also a strong solution on [2T0,∞). The continuity properties
in (4.2.12) follow also immediately by virtue of (4.2.24) and Remark 3.1.2. �
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4.3 A Fractional Nuclear Reactor Model

Let � ⊂ R
N be a bounded domain with Lipschitz continuous boundary ∂� and

consider the following parabolic system as a prototype for a nuclear reactor model
that we believe has a more realistic physical interpretation than the classical one (see
Appendix C). Let u = u (x, t) represent the fast neutron density and v = v (x, t)

be the fuel temperature at any point x ∈ � and for any time t ≥ 0. The system for
(u, v) reads

{
∂α
t u + (−�)s�u = u (λ − bv) , (x, t) ∈ � × (0,∞) ,

∂
β
t v = −cv + au, (x, t) ∈ � × (0,∞) ,

(4.3.1)

subject to the following set of boundary and initial conditions:

N2−2su = 0 on ∂� × (0,∞) , (u, v)|t=0 = (u0, v0) in �. (4.3.2)

Here s ∈ (1/2, 1), α, β ∈ (0, 1) and λ, a, b, c are positive constants in the model
equations (4.3.1)–(4.3.2) and (−�)s� is the regional fractional Laplace operator in �

(see (2.3.19)) and N2−2s denotes the corresponding fractional Neumann derivative
(see Sect. 2.3). The first (unforced) equation of (4.3.1) may be derived from a
continuous-time random walk with temporal memory (see Appendix C.3), while
incorporating avalanche-like transport effects in the neutron density and the second
equation can be analogously derived on similar principles as those considered in
Appendix C, by ignoring any diffusion effects in the fluid temperature v. We note
that the case s = α = β = 1 has been treated by Rothe [10] in some detail as a
simple reactor model proposed in [11].

Note that the first equation of (4.3.1) is structurally the same as the equation
for prey in the fractional Lotka-Volterra model investigated in Sect. 4.2. Thus the
arguments appear to be even more simple than in that case provided that we can
derive suitable a priori estimates for the fluid temperature in (4.3.1). Let Su(t)

denote the semigroup on L2(�) generated by the operator As,2, as given previously.
Consider a sufficiently smooth initial datum (u0, v0) and its corresponding solution.

Proposition 4.3.1 The fluid temperature v satisfies the following estimate

sup
t∈(0,T )

‖v (t)‖Lq(�) ≤ C1/q max

{

‖v0‖Lq(�) ,
ε1/q−1

(Cεq)1/αq
sup

t∈(0,T )

‖u (t)‖L∞(�)

}

,

(4.3.3)

for some ε > 0 depending only on a, c, and some constants C,Cε > 0 independent
of q ∈ [1,∞] .
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Proof By application of Proposition 3.4.9 into the second equation of (4.3.1), we
get

∂
β
t

(
‖v (t)‖q

Lq(�)

)
+ cq ‖v (t)‖q

Lq(�)

≤ aq ‖v (t)‖q−1
Lq(�)

‖u (t)‖L∞(�)

≤ aε1−q

(

sup
t∈(0,T )

‖u (t)‖L∞(�)

)q

+ aε (q − 1) ‖v (t)‖q

Lq(�) ,

for all t ≥ 0. This inequality implies for a sufficiently small ε ∈ (0, ca/2] and
Cε = c/2, that

∂
β
t

(
‖v (t)‖q

Lq(�)

)
+ Cεq ‖v (t)‖q

Lq(�)

≤ M := a

(

ε1/q−1 sup
t∈(0,T )

‖u (t)‖L∞(�)

)q

.

We infer by Lemma A.0.8 the existence of a constant C > 0, independent of q, such
that

‖v (t)‖q

Lq(�) ≤ C max

{

‖v0‖q

Lq(�) ,
a

(Cεq)1/q

(

ε1/q−1 sup
t∈(0,T )

‖u (t)‖L∞(�)

)q}

.

Taking the 1/q-root on both sides, this inequality gives the desired assertion
in (4.3.3) for every q ∈ [1,∞). Since the constants C,Cε involved in (4.3.3) are
independent of q, we also recover the estimate in case q = ∞, by passing to the
limit as q → ∞ in (4.3.3). �


In view of the simple estimate of Proposition 4.3.1, we can derive the existence
of unique global strong solution in the sense of Theorem 4.1.3.

Theorem 4.3.2 Let 1/2 < s < 1 and βAs := N/(2s). Take initial data u0 ∈
D(As,ps ) ⊂ L∞(�), v0 ∈ L∞(�) for some ps ∈ (βAs ,∞) ∩ (1,∞) such that
u0 ≥ 0, v0 ≥ 0. Then the system (4.3.1)–(4.3.2) has a unique global strong solution
u ≥ 0, v ≥ 0 on the time interval (0,∞) satisfying

lim
t→0

‖u(t) − u0‖L∞(�) = 0, lim
t→0

‖v(t) − v0‖L∞(�) = 0. (4.3.4)

In addition for every T ∈ (0,∞) the following estimates hold:

sup
0<t<T

‖u(t)‖L∞(�) < ∞, sup
0<t<T

‖v(t)‖L∞(�) < ∞. (4.3.5)
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Proof Let u0 and v0 be as in the statement of the theorem. We can infer the existence
of a maximally defined strong solution by Theorem 4.1.3, given as

u(t) = Su,α(t)u0 +
∫ t

0
Pu,α(t − τ) (u(λ − bv)) (τ )dτ, (4.3.6)

v(t) = v0 +
∫ t

0
gβ (t − τ) (−cv + au) (τ )dτ, (4.3.7)

for t ∈ (0, Tmax). A similar argument to the proof of Theorem 4.2.1 successively
yields that u(x, t) ≥ 0 and then v(x, t) ≥ 0 for a.e. (x, t) ∈ � × [0, Tmax) since
g (u, 0) = au ≥ 0 (for g (u, v) := −cv + au). Moreover, the first bound of (4.3.5)
is satisfied by the same arguments of Theorem 4.2.1. Consequently, so is the second
bound of (4.3.5) on account of (4.3.3) in case q = ∞. The continuity properties
in (4.3.4) follow also by similar arguments on account of (4.3.5) with the exception
that for the integral solution v we have a more direct estimate from (4.3.7). The
proof is finished. �


As a consequence of Proposition 4.2.3 and Lemma 4.2.4 we immediately have
the following estimate since the equation for u is the same as for the fractional
system (4.2.1)–(4.2.2).

Proposition 4.3.3 Let p0 ∈ [1,∞] such that βAs /p0 < 1 and assume a sufficiently
smooth datum u0. Then for every T ∈ (0,∞) there exists a constant M =
M (T,�, b, λ) ∈ (0,∞) such that

sup
t∈(0,T )

(t ∧ 1)δs ‖u (t)‖Lp(�) ≤ M, p ∈ [p0,∞] , (4.3.8)

where δs ≥ 0 is as in the statement of Theorem 4.2.2.

We now derive some uniform a priori Lq -estimate for the temperature. Of course,
there is no smoothing effect in the component v other than the one implied by u. In
other words, v turns out to be as regular as u but no more. Since u, v ≥ 0, we have
by (4.3.7) that pointwise in time,

v (t) ≤ v (t) := v0 + a

∫ t

0
gβ (t − τ) u(τ)dτ (4.3.9)

and so it suffices to derive the required estimate for v.

Proposition 4.3.4 Under the assumptions of Proposition 4.3.3, it holds for any v0 ∈
Lq (�), q ≤ p with p ∈ [p0,∞] and T ∈ (0,∞), the estimate

sup
t∈(0,T )

‖v (t)‖Lq(�) < ∞ if β ≥ δs
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and

sup
t∈(0,T )

(t ∧ 1)δs−β ‖v (t)‖Lq(�) < ∞ if β < δs.

Proof We have

‖v (t)‖Lq(�) ≤ ‖v0‖Lq(�) + a

∫ t

0
gβ (t − τ) ‖u(τ)‖Lq(�) dτ (4.3.10)

≤ ‖v0‖Lq(�) + C

(

sup
t∈(0,T )

(t ∧ 1)δs ‖u (t)‖Lp(�)

)

×
∫ t

0
gβ (t − τ) (τ ∧ 1)−δs dτ.

A basic change of variable s = τ/t gives for t < 1,

∫ t

0
gβ (t − τ) (τ ∧ 1)−δs dτ = Cβtβ−δs

∫ 1

0
s−δs (1 − s)β−1 dτ,

where the latter integral is convergent since β > 0 and δs = ns
p0

(
1 − p0

p

)
<

α
(

1 − p0
p

)
< α < 1. When t > 1 we argue as in the proof of Lemma A.0.1 to

split the integral over intervals k < t ≤ k + 1, such that

∫ t

0
=

∫ 1

0
+

∫ 2

1
+ . . . +

∫ k−1

k−2
+

∫ t−1

k−1
+

∫ t

t−1
.

It follows that

∫ t

0
gβ (t − τ) (τ ∧ 1)−δs dτ ≤ C (k + 1) ≤ 2Ct,

for some constant C > 0 independent of t, T . We then infer the existence of a
positive constant M2 = M2 (M,�, a, T , v0) ∈ (0,∞) such that

sup
t∈(0,T )

(t ∧ 1)δs−β ‖v (t)‖Lq(�) ≤ M2, if β ≤ δs

and

sup
t∈(0,T )

‖v (t)‖Lq(�) ≤ M2, if β > δs.

We may now conclude using (4.3.9). �
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Proposition 4.3.5 Let the assumptions of Proposition 4.3.3 be satisfied and let q0 ∈
[1, p0] such that v0 ∈ Lq0 (�) . Then the following estimate holds:

sup
t∈(0,T )

‖v (t)‖Lq0 (�) ≤ ‖v0‖Lq0 (�) + CT , (4.3.11)

for some constant CT ∈ (0,∞) that depends only on the Lp0 (�)-norm of u0, T

and the other physical parameters of the problem.

Proof Let T ∈ (0,∞) be arbitrary. The Hölder inequality on the bounded interval
[0, T ] yields in (4.3.11), owing to the fact that gβ ∈ L1 (0, T ),

sup
t∈(0,T )

‖v (t)‖Lq0 (�) ≤ ‖v0‖Lq0 (�) + CT ‖u‖L∞(0,T ;Lp0 (�)) ,

for some CT = C (a,�, T , β) > 0 independent of t . Application of (4.3.8) with
p = p0 then gives the desired estimate in (4.3.11) since δs = 0 and v ≤ v. �

Proposition 4.3.6 Assume p0 ∈ [1,∞] such that βAs /p0 < 1 (⇔ ns/p0 < α) and
q0 ∈ [1, p0] ∩ (βAs ,∞]. Then the following assertions hold.

(a) There exists a constant M > 0 such that for every t ∈ (0, 1), we have

∥∥u (t) − Su,α (t) u0
∥∥

Lp0 (�)
≤ Mtε, ‖v (t) − v0‖Lq0 (�) ≤ Mtβ, (4.3.12)

for some small ε > 0.
(b) For i = 1, 2, let (ui, vi) be a solution of (4.3.1)–(4.3.2) corresponding to an

initial datum (u0i , v0i ) . Then for every t ∈ (0, T ), there exists a constant C =
C (T ) ∈ (0,∞), independent of (ui, vi), such that

|‖u1 − u2‖|p0,0,t + |‖v1 − v2‖|q0,0,t (4.3.13)

≤ C
(‖u01 − u02‖Lp0 (�) + ‖v01 − v02‖Lq0 (�)

)
.

Proof We first prove (4.3.12) by following a similar argument that we employed in
the proof of Lemma 3.1.5 (see (3.1.16)) by viewing c (x, t) := λ−bv, f (x, t, u) =
c (x, t) u, with q1 := q0, q2 := ∞. To this end, let T ∈ (0, 1) , 0 ≤ t ≤ T and
recall the uniform estimates (4.3.8), (4.3.11), which imply that

|||c|||q0,0,T ≤ C |||1 + v|||q0,0,T ≤ N1, ||||u||||p,δs ,T ≤ N2. (4.3.14)

Then let s0 ∈ [1,∞) be such that

δs ≤ 1

s0
and

ns

s0
+δs + ε < α + n

p0
,

for a sufficiently small ε ∈ (0, α] such that ε + δs ≤ α. We subsequently apply the
statement of Lemma A.0.1 with the choices p := p0, s1 := s0, s2 := ∞, θ := δs,
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δ := 0 and ε := ε (note again that r (τ ) ≡ ‖c (·, τ )‖Lq0
(X) and ps2 (r) = ‖c‖q,∞).

Once again if s0 ≥ p0 is arbitrary we have that ns/s0 − ns/p0 ∈ [0, 2α) is trivially
satisfied, while if s0 < p0 one may choose s0 sufficiently close to p0 ∈ [1,∞) such
that 1/s0 < 2/βAs + 1/p0. Note that the assumptions of Lemma A.0.1 are satisfied
with the above choices of δ, s1, s2, p, ε, θ , since 0 ≤ δs < α < 1 and ε + δs ≤ α,
and

ns

s0
< α + ns

p0
.

Indeed, by virtue of Hölder’s inequality, for all t ∈ (0, T ] ⊂ (0, 1) we have

∥∥u (·, t) − Su,αu0
∥∥

Lp0 (�)
(4.3.15)

≤
(∫ t

0

∥∥Pu,α (t − τ)
∥∥

p0,s0
(τ ∧ 1)−δs ‖λ − bv‖Lq0

(X) dτ

)
|||u|||p,δs ,T

≤ C |||1 + v|||q0,0,T tε ||||u||||p,δs ,T

≤ CN1N2t
ε

owing once again to (4.3.14). This gives the first of the assertion (4.3.12). For the
second estimate, by (4.3.7) we have for every 1 ≤ q ≤ q0,

‖v (t) − v0‖Lq(�) ≤
∫ t

0
gβ (t − τ) ‖(−cv + au) (τ )‖Lq(�) dτ (4.3.16)

≤ C
(||||v||||q0,0,T + ||||u||||p0,0,T

) ∫ t

0
gβ (t − τ) dτ

≤ C (N1 + N2) tβ,

for all 0 ≤ t ≤ T < 1.

Next, we prove the continuous dependence estimate (4.3.13). By virtue
of (4.3.14), from (4.2.27) we have the uniform bound

�(ui, vi) ≤ |‖u1 − u2‖|p0,0,t (1 + N1) + (1 + N2) |‖v1 − v2‖|q0,0,t

so that the same argument exploited in (4.3.15) in the integral formulation (4.3.6)
for the difference u, yields for t ∈ (0, 1) ,

||||u1 − u2||||p0,0,t ≤ C ‖u01 − u02‖Lp0 (�) + Ctε ||||v1 − v2||||q0,0,t . (4.3.17)

By (4.3.7), we obtain as in (4.3.16), for q ≤ q0 ≤ p0, that

‖v1 (t) − v2 (t)‖Lq(�) (4.3.18)
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≤‖v01 − v02‖Lq(�) +
∫ t

0
gβ (t − τ) ‖(−cv + au) (τ )‖Lq(�) dτ

≤‖v01 − v02‖Lq(�) + Ctβ
(||||v1 − v2||||q0,0,t + ||||u1 − u2||||p0,0,t

)
.

Define ρ := min {ε, β} > 0 and the function

ψ (t) := ||||v1 − v2||||q0,0,t + ||||u1 − u2||||p0,0,t .

By the estimates (4.3.17)–(4.3.18), for a sufficiently small t < 1, it holds

ψ (t) ≤ C
(‖u01 − u02‖Lp0 (�) + ‖v01 − v02‖Lq0 (�)

) + Ctρψ (t) , (4.3.19)

for some constant C > 0 independent of t . Further choose t0 � 1 such that Ct
ρ
0 ≤

1/2 and observe that (4.3.19) also implies

ψ (t) ≤ 2C
(‖u01 − u02‖Lp0 (�) + ‖v01 − v02‖Lq0 (�)

)
, (4.3.20)

for all t ∈ (0, t0]. Finally, we can employ (4.3.20) successively with initial data
(u, v) (t + it0) , for i = 0, 1, 2,. . . , since by (4.3.8) and (4.3.11),

sup
i∈N

(‖u (t + it0)‖Lp0 (�) + ‖v (t + it0)‖Lq0 (�)

) ≤ N3.

Indeed, for the same step size t0, the assertion (4.3.20) yields the estimate

sup
t∈[t0+it0,t0+(i+1)t0]

(||||v1 − v2||||q0,0,t + ||||u1 − u2||||p0,0,t

)
(4.3.21)

≤ C
(‖(u1 − u2) (t0 + it0)‖Lp0 (�) + ‖(v1 − v2) (t0 + it0)‖Lq0 (�)

)
,

for all i ∈ {0, 1, 2, . . . .}. Then the assertion (4.3.13) on the whole interval (0, T )

follows by an induction procedure on i, applied successively in (4.3.21). Thus, the
proposition is proved. �


We conclude the section with the second result concerning the well-posed
problem of mild solutions.

Theorem 4.3.7 Assume p0 ∈ [1,∞] such that βAs /p0 < 1 and q0 ∈ [1, p0] ∩
(βAs ,∞], and let 0 ≤ u0 ∈ Lp0 (�) , 0 ≤ v ∈ Lq0 (�) be such that u0 ≥ 0
and v0 ≥ 0 a.e. on �. If p0 = ∞, in addition assume u0 ∈ L∞

s (�). Then the
fractional system (4.3.1)–(4.3.2) has a unique global mild solution u ≥ 0, v ≥
0 on the time interval [0,∞), given by (4.3.6)–(4.3.7), which hold as absolutely
convergent Bochner integrals in L1 (�). Moreover, the pair (u, v) satisfies

lim
t→0+ ‖u (t) − u0‖Lp0 (�) = 0, lim

t→0+ ‖v (t) − v0‖Lq0 (�) = 0 (4.3.22)

and the uniform estimates stated in Propositions 4.3.3 and 4.3.5.
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Proof The proof follows by a standard approximation procedure. The initial datum
(u0, v0) ∈ Lp0 (�) × Lq0 (�) can be approximated by a convenient sequence of
regular initial data (u0n, v0n) , according to the statement of Theorem 4.3.2. In
particular, this sequence may be chosen such that

lim
n→∞

[
‖u0n − u0‖Lp0 (�) + ‖v0n − v0‖Lq0 (�)

]
= 0 (4.3.23)

and

‖u0n‖Lp0 (�) ≤ ‖u0‖Lp0 (�) , ‖v0n‖Lq0 (�) ≤ ‖v0‖Lq0 (�) , (4.3.24)

for all n ∈ N. Let now (un, vn) be the global strong solution for an initial datum
(u0n, v0n). All the constants occurring in Propositions 4.3.3–4.3.5 can be chosen
independent of n ∈ N, owing to (4.3.24). Furthermore, the assertion (4.3.13)
of Proposition 4.3.6, together with (4.3.23), implies that the sequence (un, vn)

converges to (u, v) ∈ Ep0,δs ,T × Eq0,0,T , in the sense that

||||vn − v||||q0,0,t + ||||un − u||||p0,0,t → 0, as n → ∞,

for all t ∈ (0, T ) . Besides, all the estimates of Propositions 4.3.3–4.3.5 hold for the
limit solution (u, v) as well. By the same arguments as in the proof of Lemma 3.1.5,
it is now straightforward to show that (u, v) is indeed the mild solution of the
system (4.3.1)–(4.3.2), for any initial datum (u0, v0) . The conclusion (4.3.22) is
also a consequence of Proposition 4.3.6 and Remark 3.1.2. �

Corollary 4.3.8 The mild solution (u, v) of (4.3.1)–(4.3.2) is also regularizing in
the sense that its first component u becomes a global strong solution on [T0,∞),

for every T0 > 0, as well as, the second component v ∈ L∞ ([T0,∞);L∞ (�)).
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