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Preface

This research monograph is motivated by problems in mathematical physics that
involve fractional kinetic equations. These equations describe transport dynamics in
complex systems which are governed by anomalous diffusion and non-exponential
relaxation patterns. Such fractional equations are usually derived asymptotically
from basic random walk models; among them we quote the fractional Brownian
motion, the continuous-time random walk, the Lévy flight, the Schneider-Grey
Brownian motion, and, more generally, random walk models based on evolution
equations of single and distributed fractional order in time and/or in space (see
Appendix C, for a description of the literature). Although there exists some
mathematical theory about the solvability of nonlinear parabolic fractional kinetic
equations, of the kind introduced in the monograph, none of the known results
could be used to prove global existence and global regularity of solutions for these
systems in a unifying and systematic fashion. In this situation, we gave proofs
under quite transparent conditions on the nonlinearities involved, for a large class
of unbounded operators that typically arise in the applications (see Chap. 1, for a
complete overview). Afterwards, it turns out that these methods can be generalized
and applied to reaction–diffusion systems of fractional kinetic equations. Among
them, we have considered the fractional Volterra–Lotka model and the fractional
nuclear model, as canonical examples that arise in population dynamics and nuclear
dynamics. For the time being, the subject is clearly still open with many issues that
remain still unresolved (see Sect. 1.3 and Chap. 5, for further discussions).

The reader is assumed to be familiar with the elementary theory of differential
equations (such as the application of fixed-point theorems to parabolic problems)
and have some basic understanding of the Lebesgue integration theory. A working
knowledge of nonlinear PDE theory may be helpful, but it is not absolutely required.
In this regard, the monograph may be used as a first graduate course on fractional
differential equations for students in the mathematical and physical sciences. The

v
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stimulation of additional work by researchers in all scientific disciplines is also one
of our other objectives.

Miami, FL, USA Ciprian G. Gal
Fairfax, VA, USA Mahamadi Warma
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About This Book

We consider fractional kinetic equations characterized by the presence of a nonlinear
time-dependent source, generally of arbitrary growth in the unknown function,
a time derivative in the sense of Caputo, and the presence of a large class of
diffusion operators. Besides classical examples involving the Laplace operator,
subject to standard (namely Dirichlet, Neumann, Robin, dynamic/Wentzell, and
Steklov) boundary conditions, our framework includes also nonstandard diffusion
operators of “fractional” type subject to appropriate boundary conditions. We aim
to give a unified scheme and analysis for the existence and uniqueness of strong and
mild solutions and then deal separately with the global regularity problem. Then
we extend the analysis to systems of fractional kinetic equations that include prey–
predator models of Volterra–Lotka type and chemical reactions models, all of them
containing possibly some fractional kinetics.
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Chapter 1
Introduction

In this monograph we address some topics related to the well-posedness problem
(in the sense of Hadamard) of nonlocal partial differential equations, which, in the
context of mathematical physics, are also often referred to as fractional in time
parabolic equations. These are known to possess solutions that exhibit anomalous
behaviors [27, 28].

The nonlocal in time problem may be formulated roughly as follows. Consider
an evolving nonlinear system, either described in terms of a partial or ordinary
nonlocal differential equation, containing possibly some fractional kinetics. In
brief, fractional kinetic equations occur often in the description of transport
dynamics in complex systems which are governed by anomalous diffusion and/or
non-exponential relaxation patterns. These equations are generally derived asymp-
totically from basic random walk models by various approaches in probability
theory (see Appendix C). Given a time interval 0 < t ≤ T , and an initial state u0,
the goal is to determine whether the corresponding initial-boundary value problem
(or initial-exterior value problem) can be solved globally and uniquely for any time
T > 0. More precisely, the problem reads1 for 0 < α ≤ 1,

∂αt u = Au+ f (x, t, u) in X× (0, T ], u (·, 0) = u0 in X. (1.0.1)

Here X stands for an appropriate physical domain and f is a nonlinear, possibly
time-dependent source, that is generally of arbitrary growth in the unknown function
u. The precise assumptions regarding the operator A and the space X shall be stated
precisely in Chap. 2. More concrete examples of operators and spaces X that enter
in our framework will be given in Sect. 2.3. Finally, we shall introduce the classes
of admissible nonlinearities f in Sect. 3.1. A preliminary discussion regarding the
nonlinearity f will be done in Sect. 1.2.

1The fractional derivative ∂αt is meant in a generalized Caputo sense, see Sect. 2.1.

© Springer Nature Switzerland AG 2020
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2 1 Introduction

1.1 Historical Remarks

This is a classical problem in the theory of differential equations for α = 1 and
the scientific literature on its global solvability is quite large when α = 1. We refer
for instance to the book of Henry [19], Arendt et al. [5], Engel and Nagel [17] and
Cholewa and Dlotko [10] for an introduction to this topic. There has been intensive
research in this area for the ordinary problem when α ∈ (0, 1) and A = 0 in the last
two decades (see Agarwal et al. [1], Kilbas et al. [21], Kiryakova [22]). The survey
paper [1] collects a sufficiently large number of results established up to 2008, that
give sufficient conditions for the (local) solvability of the ordinary problem subject
also to local, nonlocal and integral initial conditions. Multivalued versions of these
problems, that include fractional-in-time ordinary differential inclusions, are also
considered. In the specific context of partial differential equations for (1.0.1), when
A is an unbounded operator and α ∈ (0, 1), there has been only little success to
address the global solvability problem in a satisfactory manner in view of the many
applications that this important area holds (see Appendix C).

In this monograph, it is our main goal to focus on this latter, more difficult cases
and aim to place this theory on solid footing by devising a unified approach and by
giving a complete solution to the above global solvability problem as well as the
global regularity problem. However, one still has to recall some pertinent literature
and describe any attempts at giving a successful solution to the solvability problem,
in various special cases for the nonlocal problem (1.0.1). The nonautonomous
problem (f = f (t)) with a second-order differential (possibly quasilinear) operator
A in divergence form and a Riemann-Liouville fractional derivative Dα

t has been
considered by Bazhlekova [6]. Among the most important results of [6] are maximal
regularity results based on two distinct approaches; one that is based on theLp (Lq)-
regularity for the corresponding linear problem and, another that exploits the
theory of sums of accretive operators in a Hilbert space setting. We should point
out that one distinctive disadvantage of considering a parabolic equation with a
Riemann-Liouville fractional derivative is that it needs to consider unpleasant initial
conditions that are generally nonlocal in nature (see also [7]). The nonautonomous
problem (1.0.1) (f = f (t)) whenA is roughly the Laplacian, but with a Caputo-like
derivative ∂αt , is also considered by Eidelman and Kochubei [16]. They construct a
fundamental solution and then investigate its various asymptotic properties. The
latter become important, for instance, to establish the optimal (namely, polynomial)
decay properties of solutions to problem (1.0.1), when A = � and f = 0
(see Kemppainen et al. [20] and Vergara and Zacher [35]). Mostly for the same
operator but with a semilinear f = f (u), the problem of blow-up in finite time
of some solutions and some criteria of stability-instability are developed further in
Vergara and Zacher [36], whereas some a priori bounds for some related singular
evolutionary partial integro-differential equations are given in Vergara and Zacher
[34]. Besides, a more general approach to the nonautonomous problem (f = f (t)),
that is based instead on sesquilinear forms a (t, ·, ·) , to which a certain diffusion
operator A can be associated with, is also used by Zacher [40] to prove existence
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and uniqueness of weak solutions in an appropriate regularity solution class. In
addition, Zacher [41] provides interior Hölder regularity estimates for (1.0.1) in
the case when A = � and f = f (t), in the spirit of the classical De Giorgi-Nash
regularity theorem.

Some further progress for the abstract problem (1.0.1) has also been made by
Clement et al. [11], assuming f = f (u) and α ∈ (0, 2) , and by analyzing (1.0.1)
in continuous spaces BUC1−μ ([0, T ] ; Y ) , μ ∈ (0, 1). This approach allows solu-
tions to have a prescribed singularity at the origin in the sense that t1−μ ‖u (t)‖Y →
0, as t → 0+. The local existence of smooth solutions is established via maximal
regularity results for the linear equation associated with (1.0.1), by assuming that
α + μ > 1, for μ ∈ (0, 1) and α ∈ (0, 2). However, these results rely too
heavily on interpolation results and abstract conditions on (A, f ) (see [11, Theorem
13 and (46)-(47)]) that renders their application to specific situations difficult,
if not impossible. This is valid especially in those instances when the diffusion
operator A turns out to be of “fractional” type. Indeed, due to the well recognized
role of fractional operators in the presence of anomalous transport behaviors in
some physical phenomena (see Appendix C), it is clearly important to investigate
the global solvability and regularity problems for (1.0.1) in those cases. This is
for instance, the case of fractional Laplace operators (−�)sX , s ∈ (0, 1) (see
Sect. 2.3), which as we shall see, turn out to have quite different properties than
the classical Laplacian. In particular, such operators are known to generally lack,
with the exception of some special cases, an explicit characterization in terms of
(Sobolev) function spaces for any fractional powers Yθ := D((−A)θ ), θ ∈ (0, 1).
For this reason, the application of the results of [11] seems then best suited in those
situations when A is a “local” operator, say a second-order quasilinear operator
in divergence form (see the example of [11, Section 9]). Unfortunately, this is
also the point taken by Andrade, Carvalho et al. [13] and Guswanto and Suzuki
[18], who establish a local theory of mild solutions for problem (1.0.1), when
f = f (u) and A is a sectorial (nonpositive) operator, using the concept of the
so-called θ -regular maps (see also Neto [14, Chapter 3]). The latter means that the
nonlinearity f is locally Lipschitz as a mapping from Y1+θ to Yγ (θ), for some
γ (θ) ∈ (0, 1), a choice which turns out to be useful in the treatment of the
problem (1.0.1) with nonlinearities of critical and subcritical polynomial growth.
Here criticality is meant in the sense that there exist some critical exponent q,
given by some well-known continuous embedding results in Sobolev theory, that
controls the polynomial growth of the function f (u) as |u| → ∞. However, these
techniques also suffer from several drawbacks: first, they are not well suited to
deal with nonlinearities that are also x-dependent (f = f (x, u)), and secondly,
such Lipschitz conditions lack any transparency and simplicity since once again
they strongly rely on the explicit characterization of Yθ in terms of known Sobolev
spaces. Indeed, most of the applications of these techniques seem to be found only
in the case of classical operators, such as, when A = � (cf. [13, 18]). Notably,
other works by Liu and Liu [25, 26], Ouahab [29], Zhang and Liu [42], Wang and
Zhou [37] and Wang et al. [38] (and the references there in), have obtained similar
comparable results on the local existence of mild solutions, but with conditions
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on the nonlinearity which are also too strong; namely, by assuming either that
f = f (u) is a globally Lipschitz function, or locally Lipschitz with a sufficiently
small Lipschitz constant and/or a sufficiently small growth as a function of u. In
the case when A is related to a fractional operator, in particular, A = (−�)sX ,

s ∈ (0, 1), for a compact Riemannian manifold X (without boundary), some local
existence results for (1.0.1) with f = f (u) assuming some polynomial growth,
are also contained in the lecture notes by Taylor [33]. Hölder continuity for the
problem (1.0.1) assuming f = f (t) and an operator A that is related to the
fractional Laplacian, has been established by Allen, Caffarelli et al. [3], when ∂αt
is meant as a (one-sided) nonlocal derivative in the sense of Marchaud.2 Some
related nonlocal ordinary differential equations associated with a Marchaud type
of fractional derivative are also investigated in [8] and [24], with the latter also
providing an extensive comparison between the Marchaud, Riemann-Liouville and
Caputo fractional derivatives, respectively. Further applications of the framework
from [24] to nonlinear time fractional PDEs are also given in [23]. Most recently,
the case 1 < α < 2 is further investigated in [4], where the existence of weak and
strong (energy-like) solutions in various settings are among the central results. The
work in [4] offers a new and fresh alternative from the contribution in [11] in the
sense that the assumptions imposed on the operator A, as well as the nonlinearity
f , are once again more natural and transparent than the conditions imposed by
[11]. It is worth emphasizing that fractional kinetic equations typically exhibit a
variety of behaviors which are completely different from the classical case, while in
fact solutions of fractional equations can sometimes be “arbitrarily” complicated, as
shown in [9, 15].

1.2 On Overview of Main Results and Applications

But none of these theories address the global regularity problem for the full semilin-
ear problem (1.0.1) in a meaningful way for practical applications. Furthermore,
these theories are far from being applicable to reaction–diffusion systems with
vectorial quantities u ∈ R

m, m > 1, which contain some fractional kinetics, but
which draw their breath from important applications in biology, chemistry and
finance. This is particularly relevant in the context of biological systems where
the mechanism is necessarily more involved and complex due to a richer structure
associated to the corresponding couplings under consideration (especially when
different nonlocal derivatives ∂αit , with αi ∈ (0, 1], i ∈ {1, . . . ,m} are involved).
As a matter of fact, understanding the connections between the right fractional
parameter in concrete biological settings, also in relation to the environment, seem
to be an important topic in optimization, see e.g. [32]. Interesting applications also
arise in neuroscience and in neural networks, see e.g. [31]. As one knows, there is

2See Sect. 2.1, for further details.
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an extensive literature on the topic of reaction–diffusion systems when ∂
αi
t ≡ ∂t ,

for all i ∈ {1, . . . ,m} (see, for instance, Yagi [39]). Although, the techniques and
methodologies developed in this monograph for the scalar equation (1.0.1) shall
prove quite useful, the problem of global solvability and regularity for m-systems
needs to be addressed directly and independently. The main tools are borrowed
essentially from the methodology that deals with the scalar equation. But let us
first mention our unified approach and the type of results one can obtain for the
scalar equation (1.0.1), in a successful manner that also covers the existing theory
for (1.0.1) when α = 1 and/or A is a uniformly elliptic (second-order) operator.
Although we cannot give a complete review of the literature for the problem (1.0.1)
when α = 1 and A = �, the lecture notes of Rothe [30] give a good account of
the main developments concerning the global existence of solutions for semilinear
parabolic equations in that case.

The present work is concerned with some fundamental questions for the initial-
boundary (or initial-exterior) value problem (1.0.1), namely,

• the global existence of non-regular (mild) solutions;
• the existence of sufficiently smooth (strong) solutions, for which the nonlocal

equation is satisfied pointwise in time;
• the global regularity problem, to establish sufficient conditions and uniform a

priori bounds in such a way that each non-regular solution becomes a global
smooth solution on (0,∞), and

• what happens to any global solution of (1.0.1) as α→ 1?

These aspects are studied in a unified framework for the scalar equation (1.0.1) in
a first part, and then for general nonlocal reaction–diffusion m-systems, and some
of their applications, in the second part. Of course, in this part only some non-
trivial examples, which are motivated by applications in mathematical biology and
chemistry, will be investigated thoroughly. But the general setting developed here
allows to derive similar results for other important nonlocal reaction–diffusion m-
systems which can be handled by the same techniques.

In our unified framework, the essential assumption about the semigroup S (t),
associated with the diffusion operatorA, is an ultracontractivity estimate of the form

‖S(t)‖L(Lp(X),Lq(X)) ≤ Ct
−βA

(
1
p
− 1

q

)
, ∀t > 0, (1.2.1)

for 1 ≤ p ≤ q ≤ ∞, and some positive constantC = C (p, q,X) > 0. The constant
βA > 0 is assumed independent of p, q; it plays the role of capturing the degree of
“smoothness” of the fundamental solution associated with the diffusion operator
A. For symmetric semigroups, it is well-known that (1.2.1) is also connected to
optimal Sobolev inequalities (see, for instance, Davies [12]). For instance, when
A = � is subject to classical boundary conditions and X ⊂ R

N is a smooth
bounded domain, it holds βA = N/2, while for A = (−�)sX , s ∈ (0, 1), we
have βA = N/2s. Condition (1.2.1) constitutes the main assumption upon which
our general theory is built on. Indeed, it allows to consider a general family of
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diffusion operators, including the classical ones as well as ones of “fractional”
type, in addition to other non-standard examples of diffusion. We refer the reader to
Sect. 2.3 for many examples of operators that are covered by our framework. Next,
our main assumption on the nonlinearity f = f (x, t, u) is quite transparent and
easy to verify in applications; in addition to other basic conditions (which imply
that f is locally Lipschitz as a function of u, with the same c,Q; see (F4)), it is
simply measurable and satisfies (as |u| → ∞) a growth condition of the form

|f (x, t, u)| ≤ c (x, t)Q (u) , for all u ∈ R, a.e (x, t) ∈ X× (0,∞) , (1.2.2)

for some (nonnegative) integrable function3 c ∈ Lq1,q2 , 1 ≤ q1, q2 ≤ ∞. Of
course, the real-valued (positive) function Q generally captures the growth of the
nonlinearity as |u| → ∞. In some cases, we will allow it to behave polynomially in
the sense that

Q(u) ∼ |u|γ , γ ≥ 1, as |u| → ∞. (1.2.3)

In this monograph, we look for complete results regarding the solvability of
problem (1.0.1) in such a way that also the case α = 1 is automatically included. To
this end, let us define a number W = W (α, f, p0, q1, q2,Q) ∈ R, by

W := n

q1
+ 1

q2
+ (γ − 1)

n

p0
, n := βAα, α ∈ (0, 1],

as the essential range for problem (1.0.1) for which (at least local) well-posedness
can be established. Theorem 3.1.4 establishes the existence of (locally-defined) mild
solutions for (1.0.1) for non-regular initial data u0 ∈ Lp0 (X) , 1 ≤ p0 ≤ ∞, in the
following cases:

(i) W ≤ α, under the assumptions (1.2.2)–(1.2.3) for some γ ∈ [1,∞) and p0 ∈
[1,∞).

(ii) When n
q1
+ 1

q2
< α, p0 = ∞ and Q is an arbitrary positive function.

The critical case, defined by the equality W = α in case (i), is included; this
range turns out to be also optimal in the sense that for some p0 ∈ [1,∞] and
γ ≥ 1 that satisfy W > α, there are no locally-defined mild solutions for certain
initial data u0 ∈ Lp0 (X) (see Chap. 5, Remark 5.0.2). In the above cases (i)–
(ii), Theorem 3.1.10 proves the existence of mild solutions on a maximal interval
of existence (0, Tmax), such that (non-regular) mild solutions are always locally
bounded, namely, u ∈ L∞ ((0, Tmax);L∞ (X)). As usual the time Tmax > 0 is
such that, either Tmax = ∞ or Tmax < ∞ with ‖u (t)‖L∞(X) → ∞ as t → T −max.

In other words, knowledge of the a priori bound u ∈ L∞ ((0, T );L∞ (X)), for any
(fixed) time T > 0, is essential for both the global solvability problem and the

3See Sect. 3.1, for the precise definition of Lq1,q2 .
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global regularity problem, as we shall see in what follows. It is worth stressing out
that we recover the essential range for local solvability in the case when βA = N/2
and α = 1 (see Rothe [30]).

A major development in the monograph is a unified theory of strong solutions
that contains the case α = 1 as a particular case. Denote by Ap the generator
of the semigroup S (t) on Lp(X) so that A2 ≡ A. Our next goal is to show
that any maximally-defined mild solution can become, under natural conditions,
a strong bounded solution on (0, Tmax); the latter is by definition a sufficiently
smooth solution of the abstract equation (1.0.1) in some Banach space. In particular,
Theorem 3.2.2 proves the aforementioned statement in the space Lp(X), 1 ≤ p ≤
∞, for an initial datum u0 ∈ D

(
Ap

)
, p ∈ (βA,∞) ∩ (1,∞), under either one of

the following two alternatives:

(a) if p ≥ q1, assume f satisfies (1.2.2) and a locally Lipschitz-Hölder condition
(see (F4)–(F5)) with q2 ∈ (1/α,∞] and θ ∈ (βA/p, 1) satisfying

α (1− θ)− n

(
1

q1
− 1

p

)
>

1

q2
;

(b) if p ≤ q1, assume f satisfies (1.2.2) and a locally Lipschitz-Hölder condition
(see (F4)–(F5)) with q2 ∈ (1/α,∞] and θ ∈ (βA/p, 1) satisfying

α (1− θ) >
1

q2
.

The conditions (F4)–(F5) are generally satisfied in practical applications, as it
can be observed in the context of specific examples, and there are situations when
(F5) can be even entirely dropped, especially when f = f (x, u). Besides, we show
in Theorem 3.2.6 that every bounded (maximally-defined) mild solution constructed
in case (ii), becomes indeed a strong solution on (0, Tmax). The techniques exploited
in Sect. 3.2 provide several important developments among which we can mention
the fact that the same a priori bound u ∈ L∞ ((0, T );L∞ (X)), for the maximal
strong solution, suffices for its global regularity. We refer the reader to Sect. 3.2 for
further details and more precise statements of the above regularity results. Finally,
in Sect. 3.3 we obtain some results on the differentiability properties of strong
solutions in the case α ∈ (0, 1) (the case α = 1 is well known, see e.g., [17, 19]).
Such results are necessary in order to estimate the error in numerical approximations
of the solution of (1.0.1). They turn out to be also important in existence proofs of
certain energy inequalities that are used to derive the long term behavior for such
solutions as time goes to infinity (see, for instance, the discussion in Sect. 3.4).

Perhaps then the next important point is the construction of uniform a priori
bounds that imply the aforementioned bound in u ∈ L∞ ((0, T );L∞ (X)), which is
necessary to completely solve the global regularity problem. This problem may be
formulated roughly as follows. Restricting to a smooth initial datum u0 ∈ D

(
Ap

)
,

consider the corresponding (unique) strong solution of (1.0.1) whose existence is
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assured by one of the previous statements. The main idea is to take a weak bound
of the form u ∈ Lr1 ((0, T );Lr2 (X)), that is known to be satisfied a priori for some
1 ≤ r1, r2 ≤ ∞, and to convert this information into an explicit bound for the
strong solution in L∞ ((0, T );L∞ (X)), for any T > 0. This goal will be achieved
by two essentially different methods. On one hand, we shall employ and extend a
“feedback” argument used by Rothe [30] in the case βA = N/2 and α = 1, to
provide such a statement in Theorem 3.4.1. This method has the advantage that it
employs only elementary inequalities and bootstrapping arguments involving only
space and time integrals. The second method we use to derive such a priori estimates
is based on an iterative Moser procedure that was exploited by Alikakos [2] once
again in the case βA = N/2 and α = 1. We extend this procedure in our general
setting when α ∈ (0, 1] andA is a “properly-behaved” diffusion operator that covers
many of the examples we have in mind (see Sect. 2.3); one advantage of this scheme
is that the estimates remain uniform as the order α of the fractional in time derivative
∂αt approaches 1. Although, the precise statements of these global estimates are
somewhat more complicated to state here, we refer the reader to Sect. 3.4 for the
corresponding results. Furthermore, taking into account the above developments,
we do mention that we can finally address the important issue of convergence as
α → 1 for problem (1.0.1) under quite natural conditions on (A, f ). The statement
of Theorem 3.5.1 (in Sect. 3.5) shows in particular that for nonlinearities that satisfy
f (x, t, u) u ≤ c0 (x, t)

(
1+ u2

)
, for some c0 ∈ L∞,∞, any globally bounded mild

solution u = uα of the abstract problem (1.0.1) converges in the sense that

lim
α→1

sup
t∈(0,T )

‖uα (t)− u1 (t)‖L∞(X) = 0, for any T > 0, (1.2.4)

to a bounded mild solution u1 of problem (1.0.1) in the case when α = 1. Finally,
one further important application of these results is that they guarantee the global
solvability and regularity of solutions to a fractional in time Fischer-KPP like
equation (see Sect. 3.7), for a large class of interesting diffusion operators A, as
well as the aforementioned convergence result (1.2.4) holds.

1.3 Results on Nonlocal Reaction–Diffusion Systems

The setting in the first part of the monograph, which deals solely with the scalar
equation (1.0.1), can be extended and applied to reaction–diffusion systems for an
unknown vectorial quantity u = (u1, . . . , um) ∈ R

m, m ∈ N. Let di = 0 for
i = 1, . . . , r and di > 0 for i = r+1, . . . ,m. We also allow the case r = 0 to occur
so that all di > 0 for i = 1, . . . ,m. Next, letD = diag (d1, . . . , dm) be the diagonal
matrix of diffusion coefficients and assume that u0 = (u01, . . . , u0m) (x) ∈ R

m,

for x ∈ X, models the initial data. Let f = (f1, . . . , fm) (x, t, u1, . . . , um)

be a nonlinear function that models possible interactions between the various
quantities ui (i = 1, . . . ,m). After that we can set the diagonal (matrix) operator
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A = diag (A1, . . . , Am) , where each Ai is a proper diffusion operator, and then
introduce the following notation ∂αt u = (

∂
α1
t u1, . . . , ∂

αm
t um

) ∈ R
m, where each

nonlocal derivative ∂αit ui ∈ R is understood in the generalized sense of Caputo (see
Sect. 2.1) for αi ∈ (0, 1) , whereas for αi = 1, ∂1

t = ∂t = d/dt.

Consider then the following nonlocal reaction–diffusion system

∂αt u = DAu+ f (x, t, u) , (x, t) ∈ X× (0,∞) , u|t=0 = u0 in X. (1.3.1)

Of course, the above framework allows a general study of (1.3.1) when diffusion
can be also completely ignored in some of the components of u. In this case, we
are looking for sufficiently general conditions on (A, f ) such that it possesses
maximally-defined bounded (mild) solutions as well as strong solutions. For u0 ∈
L∞ (X,Rm), Theorem 4.1.2 proves the existence of (maximal) bounded mild
solutions under natural assumptions on f and analogous conditions on the operators
Ai , as in the scalar case (1.0.1). The conditions on the nonlinearity roughly imply
that f is locally Lipschitz-Hölder in bounded subsets B of X × [0,∞) × R

m

(see (SF1)–(SF2)). For more regular initial data u0, Theorem 4.1.3 even shows
the existence of (maximal) unique strong solutions; these are sufficiently smooth
solutions satisfying (1.3.1) pointwise in time on the maximal interval of existence.
In Chap. 4, we shall introduce the classes of diagonal matrix operatorsA and matrix
diffusion coefficients D, and give the class of admissible nonlinearities that enter in
the framework of the system (1.3.1).

As it was pointed out at the beginning of the introduction, the issues of global
solvability and regularity for (1.3.1) must be instead addressed independently for
problems that are suggested by a practical application. To this end, our main
focus now turns onto some nonlocal systems that arise in population dynamics
(see Sect. 4.2) and nuclear dynamics (see Sect. 4.3). The first one is a nonlocal
model of Volterra–Lotka type and consists of a coupled system for two nonlocal
partial differential equations, with the “nonlocality” being expressed in both space
and time, in one of the equations. The second systems consists of a coupled
system similar to the first one, but one of the components satisfies instead a
nonlocal ordinary differential equation (namely, diffusion is totally ignored for that
component). The results developed for the scalar equation (1.0.1) in the first part
of the monograph, are crucial to the investigation of global solvability and global
regularity for these specialized systems. They allow to prove sharper results by
applying the corresponding theorems in the first part, to the diffusion equations for
each individual component ui of u, and by treating the other remaining components
uj , j 
= i, in the nonlinearity fi , as part of a special “weight” function c (x, t).
The advantage of this approach is that only very little information, such as some
a priori Lq1,q2 -bound is required for c (x, t), to deduce global information on that
component ui . Then these arguments can be repeated for each component of u, one
by one, until the entire range of i ∈ {1, . . . ,m} is exhausted. We refer the reader to
Chap. 4 for the precise statements of these results and further details.

Finally, as we said above, the coverage of particular cases of nonlocal reaction–
diffusion systems in this monograph is necessarily limited. But their successful
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treatment proves to be considerable progress in this area especially when such feats
do not seem to have been attempted before. Nevertheless, we emphasize that other
(more complicated) nonlocal systems can be included and treated within the above
framework; we hope that their investigation might be of interest for other researchers
in this area.

The content of this monograph is as follows. In Chap. 2 we make a complete
study in the context of linear nonhomogeneous equations. Chapters 3 and 4 are
devoted to the main results related to the global solvability and global regularity
problems for the scalar equation (1.0.1) and reaction–diffusion system (1.3.1),
respectively. Chapter 5 is devoted to some open problems and future directions
of research. Three different appendices are included. Appendix A includes a
number of supportive technical tools. Appendix B contains a complete discussion
of the properties of the regional fractional Laplace operator in a bounded domain.
Appendix C gives a full account of the physical literature on fractional kinetic
equations and several applications involving evolution equations of single and
distributed fractional order in time and/or in space.
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Chapter 2
The Functional Framework

We first introduce some background. Let Y,Z be two Banach spaces endowed with
norms ‖·‖Y and ‖·‖Z , respectively. We denote by Y ↪→ Z if Y ⊆ Z and there exists
a constant C > 0 such that ‖u‖Z ≤ C ‖u‖Y , for u ∈ Y ⊆ Z. In particular, this
means that the injection of Y into Z is continuous. In addition, if Y is dense in Z,

then we denote by Y
d
↪→ Z, and finally if the injection is also compact we shall

denote it by Y
c
↪→ Z. We denote by L(Y,Z) the space of all continuous (bounded)

operators from Y to Z. If Y = Z, we let L(Y,Z) = L(Y ). By the dual Y ∗ of Y , we
think of Y ∗ as the set of all (continuous) linear functionals on Y . When equipped
with the operator norm ‖·‖Y ∗ , Y ∗ is also a Banach space. Let also X be a (relatively)
compact Hausdorff space and m a Radon measure on X such that m is supported on
X. By X a relatively compact Hausdorff space, we mean that there exists a metric
space X̃ such that X ⊂ X̃ and the closure X (in X̃) of X is a compact set. We denote
by (·, ·) the inner product in L2 (X) = L2(X,m) and consider Lp(X) = Lp(X,m)
to be the corresponding Banach space for p 
= 2, with norm ‖·‖Lp(X) .

2.1 The Fractional-in-Time Linear Cauchy Problem

Before introducing the mentioned Cauchy problem, we recall the definition and
some useful properties of convolutions that will be frequently used throughout
the monograph. Given two measurable functions u and v defined on (0,∞), the
convolution of u and v, denoted by u ∗ v, is the function defined on (0,∞) and
given by

(u ∗ v)(t) :=
∫ t

0
u(t − τ )v(τ ) dτ, t > 0,

© Springer Nature Switzerland AG 2020
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whenever the integral exists. If v ∈ C([0,∞)) and (u ∗ v′)(t) is well defined for
t > 0, then for every t > 0,

d

dt
[(u ∗ v)(t)] = u(t)v(0)+ (u ∗ v′)(t).

In general, let k ∈ N. If u ∈ Ck−1((0,∞)), v ∈ Ck−1([0,∞)) and (u ∗ v(k))(t) is
well defined for t > 0, then for every t > 0,

dk

dtk
[(u ∗ v)(t)] =

k−1∑
j=0

u(k−1−j)(t)v(j)(0)+ (u ∗ v(k))(t).

We refer to the monograph [11, Section 1.3] for more and precise properties of
convolutions.

We next recall the notion of fractional-in-time derivative in the sense of Caputo.
Let α ∈ (0, 1) and define

gα (t) =

⎧
⎪⎨
⎪⎩

tα−1


(α)
if t > 0,

0 if t ≤ 0,
(2.1.1)

where 
 is the usual Gamma function.

Definition 2.1.1 Let Y be a Banach space, T > 0 and let f ∈ C ([0, T ]; Y ), with
g1−α ∗ f ∈ W 1,1 ((0, T ); Y ) . The Riemann-Liouville fractional derivative of order
α ∈ (0, 1) is given by

Dα
t f (t) := d

dt

(
g1−α ∗ f

)
(t) = d

dt

∫ t

0
g1−α (t − τ ) f (s) dτ,

for almost all t ∈ (0, T ]. We define the fractional derivative of order α, of Caputo-
type, as follows:

∂αt f (t) := Dα
t (f (t)− f (0)) , a.e. t ∈ (0, T ]. (2.1.2)

We notice that (2.1.2) in Definition 2.1.1 gives a weaker notion of (Caputo)
fractional derivative compared to the original definition introduced by Caputo in the
late 1960s (see [22]). In particular, (2.1.2) does not require f to be differentiable.
In addition we have that ∂αt (c) = 0, for any constant c. For this reason, (2.1.2)
offers a better alternative than the classical notion of Caputo derivative. Refer to, for
instance, [28, Proposition 2.34], which shows the two notions coincide when f is
smooth enough, namely,

∂αt f = g1−α ∗ ∂tf, for f ∈ C1 ([0, T ]; Y ) . (2.1.3)
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For such smooth f , one may use also integration by parts in the Caputo defini-
tion (2.1.3) to show the equivalent formula

∂αt f (t) = 1


 (1− α)

f (t)− f (0)

tα
+ α


 (1− α)

∫ t

0

f (t)− f (τ)

(t − τ )1+α
dτ.

If in addition we set f (t) = f (0) for t < 0, then we also get the following
equivalent formulation

∂αt f (t) = α


 (1− α)

∫ t

−∞
f (t)− f (τ)

(t − τ )1+α
dτ, (2.1.4)

which is known as a (one-sided) nonlocal derivative in the sense of Marchaud [56,
Section 5.4]. Clearly, both generalizations of the classical Caputo derivative have the
advantage of working with “less than C1-smooth” functions f (see, for instance,
[46], for a more extensive comparison of these notions). Indeed, assuming C1-
regularity may place some severe restrictions on the problem [59]. Note that the
integral (2.1.4) is well-defined for bounded functions that satisfy a local Hölder
condition, f ∈ C0,λ ((0, T ); Y ) with λ > α (also this may be weakened to λ = α,

if a bounded f belongs to a kind of Hölder space Hα,−a, a > 1, that consists
of functions satisfying a Hölder condition with a logarithmic “correction”, see [56,
Definition 1.7]). The integral definition in (2.1.2) seems to be more natural for the
treatment of the nonlinear problem (see Chap. 3). Furthermore, (2.1.2) also appears
as a more suitable notion to establish some compactness criteria and time regularity
estimates for nonlinear time fractional PDEs; some examples involve time fractional
compressible Navier–Stokes equations and time fractional Keller-Segel equations
(see [45]). Finally, in the classical case when α = 1, we let ∂1

t := d/dt (= ∂t ).

Remark 2.1.2 It is worth mentioning the following facts.

(a) Firstly, we notice that if f (0) = 0, then (2.1.3) holds without the C1-
regularity assumption on f . Secondly, we mention that if the Banach space
Y has the Radon-Nikodym property, then (2.1.3) holds for every function
f ∈ AC([0, T ]; Y ) (that is, the space of all absolutely continuous functions
on [0, T ] with values in Y ). The latter space coincides with the classical vector-
valued Sobolev space W 1,1((0, T ); Y ). More emphasis on this topic will be
given in Chap. 3 (after Remark 3.3.3).

(b) If one considers Eq. (1.0.1) with the classical Caputo fractional derivative, that
is,

g1−α ∗ ∂tu = Au+ f (x, t, u) in X× (0, T ], u(·, 0) = u0 in X, (2.1.5)

then Eqs. (1.0.1) and (2.1.5) will have the same mild solutions given by the
integral representation in Definition 3.1.1. In addition, far away from t = 0,
they will enjoy the same regularity. The main difference between solutions of
the mentioned equations is their behavior when the time t is close to 0. We also
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mention that strong solutions of (1.0.1) and (2.1.5) coincide provided that some
assumptions on the nonlinearity are satisfied (see Theorem 3.3.4).

For 0 < α ≤ 1 we consider first the following nonhomogeneous linear Cauchy
problem

∂αt u (t) = Au (t)+ f (t) , t ∈ (0, T ), u(0) = u0. (2.1.6)

Here, A is a closed linear operator with domain D(A) in a Banach space Y ,
f : [0,∞)→ Y is a given function and u0 is a given vector in Y . The system (2.1.6)
reduces to the classical parabolic equation when α = 1. Our main goal is to
investigate the problem of well-posedness for (2.1.6) in an unifying fashion, in all
cases 0 < α ≤ 1; this requires us to eventually introduce a suitable representation of
solutions for (2.1.6). This will be done by means of the mild solution theory using
integral solutions which we investigate subsequently. Thus, we need first to discuss
the operators involved in such integral solutions.

Firstly, recall the definition of the Wright type function [37, Formula (28)] (see
also [52, 56, 67]) is

�α(z) :=
∞∑
n=0

(−z)n
n!
(−αn + 1− α)

, 0 < α < 1, z ∈ C. (2.1.7)

This is also sometimes called the Mainardi function. Following [14, p.14] (see also
[37]), �α(t) is a probability density function, namely,

�α(t) ≥ 0, t > 0;
∫ ∞

0
�α(t)dt = 1.

Furthermore, �α(0) = 1/
 (1− α) and the following formula on the moments of
the Wright function is well-known (see [37]),

∫ ∞

0
tp�α(t)dt = 
(p + 1)


(αp + 1)
, p > −1, 0 < α < 1. (2.1.8)

For more details on the Wright type functions, we refer the reader to [14, 37, 48, 67]
and the references therein. We note that the Wright functions have been used by
Bochner to construct fractional powers of semigroup generators [68, Chapter IX].

Secondly, assume that the operator A generates a strongly continuous semigroup
S = (S(t))t≥0 on Y . For t > 0 we define the two operators

Sα(t) : Y → Y, Pα(t) : Y → Y
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as follows. For v ∈ Y , we set

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Sα(t)v :=
∫ ∞

0
�α(τ)S(τ t

α)vdτ,

Pα(t)v := αtα−1
∫ ∞

0
τ�α(τ)S(τ t

α)vdτ.

(2.1.9)

The operators Sα andPα are known in the literature as resolvent families. In addition
one does not need that A generates a semigroup in order to define resolvent families
associated with A. The notion of resolvent families, their fine properties and their
relations to abstract Cauchy and/or Volterra kind of equations have been introduced
and intensively studied by Prüss in the monograph [53]. These notions have been
used and extended by several authors. We refer for example to [4, 14, 47] and their
references. The representation of resolvent families given in (2.1.9) also known
as the principle of subordination has been introduced and studied for example in
[14, 42–44] and their references. Finally, both formulas for the operators Sα, Pα
in (2.1.9) can be recasted in terms of Mittag-Leffler functions (see, for instance,
[28, Theorem 4.2]), but this further connection is not essential in our subsequent
analysis.

We note that the semigroup property does not hold for the operators Sα, Pα ,
namely, Sα (t + s) 
= Sα (t) Sα (s), for all t, s ≥ 0 (and the same is valid for Pα)
unless α = 1. Moreover, by definition the operator Sα is strongly continuous, that
is,

lim
t→0+

‖Sα (t) v − v‖Y = 0 (2.1.10)

provided that v ∈ Y but this is not the case for Pα unless α = 1. Namely for
0 < α < 1, we have that limt→0+ ‖t1−αPα(t)v − 
(α)v‖Y = 0 for every v ∈ Y .
With these definitions, we have the following properties.

Proposition 2.1.3 Let A with domain D(A) be a closed and linear operator on
the Banach space Y . Assume that A generates a strongly continuous and bounded
semigroup (S(t))t≥0 on Y , that is, there exists a constant M > 0 such that for all
t ≥ 0 and f ∈ Y , we have

‖S(t)f ‖Y ≤ M‖f ‖Y .

Then there exists a constant C > 0 such that for all t ≥ 0 and f ∈ Y we have

‖Sα(t)f ‖Y ≤ C‖f ‖Y and ‖t1−αPα(t)f ‖Y ≤ C‖f ‖Y . (2.1.11)

Proof The proposition follows by a simple application of the representation (2.1.9).
��
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Finally, in the remainder part of this subsection, we consider the solvability of the
linear problem (2.1.6). We use the following notion of smooth solution for (2.1.6).

Definition 2.1.4 Let 0 < T1 ≤ T2 < T . We say that u is a strong solution for (2.1.6)
on the interval I = [0, T ] , if the following conditions are satisfied:

(i) (The case α = 1). The function u ∈ C ([0, T ); Y ) such that u (0) = u0, u (t) ∈
D (A), for all t ∈ [T1, T2] ⊂ I, and ∂tu ∈ C ([T1, T2] ; Y ). Moreover, the
differential equation ∂tu (t) = Au (t)+ f (t) is satisfied on [T1, T2] ⊂ I .

(ii) (The case α ∈ (0, 1)). The function u ∈ C([0, T ), Y ) such that u (0) = u0,

u (t) ∈ D (A) for t ∈ [T1, T2], and

∂αt u =
d

dt

(
g1−α ∗ (u− u (0))

)
∈ C ([T1, T2] ; Y ) . (2.1.12)

The differential equation ∂αt u (t) = Au (t)+ f (t) is satisfied on [T1, T2] .

Remark 2.1.5 Let α ∈ (0, 1). Observe that (2.1.12) implies that u ∈
C0,α ([T1, T2] ; Y ) but not vice-versa, see, for instance, [24]. To the best of our
knowledge, our notion of strong solutions has not been studied in the literature.
For fractional in time Cauchy problems when α ∈ (0, 1), the notion of mild and
classical solutions have been intensively studied. In this case, several authors have
also investigated the asymptotic behavior of mild and classical solutions of (2.1.6).
We refer the reader to the following references [4, 14, 25, 36, 42–44, 60] for further
details. Our notion of strong solutions does not enjoy all the required regularity
properties of classical solutions. For problem (2.1.6), a comparable notion of strong
solutions that is similar to our kind has only been investigated in the reference [60]
under the assumption that the operator A is quasi-sectorial on a Banach space Y,
which also guarantees that A generates an analytic semigroup on Y . However, we
emphasize that the linear problem (2.1.6) is not the only concern of the present
paper. This constitutes only an appetizer that aims to give us some useful tools
to investigate the semi-linear problem which is our main objective in subsequent
chapters.

The existence of a strong solution in the sense of Definition 2.1.4, for prob-
lem (2.1.6) in the case α = 1, is well known when A is a sectorial operator in Y

and f is a suitable Hölder-continuous function (cf. [41, Theorem 3.2.2]). In what
follows, we aim to deduce the corresponding result in the case α ∈ (0, 1) under
similar conditions on A and f. Since the corresponding operators Sα, Pα are no
longer semigroups when α ∈ (0, 1) , the existence result requires a non-trivial proof;
this extends the classical result (α = 1) due to Henry [41, Theorem 3.2.2] to the
non-standard case α ∈ (0, 1) . But first, we need the following result.
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Lemma 2.1.6 Let α ∈ (0, 1) and q ∈ (1/α,∞) such that
∫ T0

0
‖f (t)‖qY dt <

∞, for some T0 > 0. In addition, assume that A is sectorial in Y and f ∈
C0,β((0, T ); Y ) for some β > 0. For 0 ≤ t < T , we define

F(t) :=
∫ t

0
Pα(t − τ )f (τ )ds. (2.1.13)

Then F ∈ C([0, T ); Y ) ∩ C0,γ ((0, T ); Y ), for some γ > 0 and F(0) = 0. In
addition, we have (g1−α∗(F−F(0)) ∈ C1((0, T ); Y ), F (t) ∈ D(A) for 0 < t < T

and

∂αt F (t) = AF(t)+ f (t), 0 < t < T .

Proof We prove the lemma in several steps.

Step 1 First we claim that F ∈ C([0, T ); Y ) and F(0) = 0. Define for a sufficiently
small real number ρ > 0,

Fρ (t) :=
⎧⎨
⎩

∫ t−ρ

0
Pα(t − s)f (s)ds, for t > ρ

0, for t ≤ ρ

(and also set f (s) = 0, for s < 0 and s > T ). We then notice that there exists a
constant Cα > 0 depending only on α such that (by using (2.1.11))

∥∥Fρ (t)− F (t)
∥∥
Y
≤ Cα

∫ t

t−ρ
‖Pα(t − τ )‖Y ‖f (τ)‖Y dτ (2.1.14)

≤ Cα

∫ t

t−ρ
(t − τ )α−1 ‖f (τ)‖Y dτ

≤ Cα

(∫ t

t−ρ
(t − τ )p(α−1) dτ

)1/p (∫ t

t−ρ
‖f (τ)‖qY dτ

)1/q

,

where p (1− 1/q) = 1 and we have used the Hölder inequality for the last estimate.
Since q > 1

α
and hence, p < 1

1−α , clearly εα := p (α − 1)+ 1 > 0. Obviously,

∫ t

t−ρ
(t − τ )p(α−1) dτ = ρεα

εα
→ 0 as ρ → 0,

so that the right-hand side of (2.1.14) tends to zero as ρ → 0+, uniformly in 0 ≤
t ≤ T0 with T0 < T. Namely, F is the uniform limit as ρ → 0 of the sequence Fρ .
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Analogously, for t ∈ (0, T0), we have

‖F (t)‖Y ≤
∫ t

0
‖Pα(t − τ )‖Y ‖f (τ)‖Y dτ

≤ Cα

(∫ t

0
(t − τ )p(α−1) dτ

)1/p (∫ t

0
‖f (τ)‖qY dτ

)1/q

≤ Cα,pt
εα

(∫ T0

0
‖f (τ)‖qY dτ

)1/q

,

which tends to zero as t → 0+; the latter estimate proves the continuity of F at t =
0. To show that F is continuous on [0, T ), it suffices to show that Fρ is continuous
on [0, T ) since F is the uniform limit (as ρ → 0) of Fρ. We thus need to look at the
difference

Fρ (t + h)− Fρ (t) (2.1.15)

=
∫ t−ρ

0
(Pα(t + h− τ )− Pα(t − τ )) f (τ )dτ +

∫ t+h−ρ

t−ρ
Pα(t + h− τ )f (τ ) dτ,

for 0 < t ≤ t + h ≤ T0 ≤ T . In a similar fashion, we can estimate the second
summand in (2.1.15), for any ρ > 0,

∥∥∥∥
∫ t+h−ρ

t−ρ
Pα(t + h− τ )f (τ ) ds

∥∥∥∥
Y

≤ Cα

(∫ t+h−ρ

t−ρ
‖f (τ)‖qY dτ

)1/q (∫ t+h−ρ

t−ρ
(t + h− τ )p(α−1)dτ

)1/p

≤ Cα,p

(
(ρ + h)εα − ρεα

)(∫ t+h−ρ

t−ρ
‖f (τ)‖qY dτ

)1/q

which once again tends to zero as h → 0 since εα > 0. For the first summand
in (2.1.15), it is clear that

lim
h→0

‖ (Pα(t + h− τ )− Pα(t − τ )) f (s)‖Y = 0. (2.1.16)

In addition, by assumption (indeed, since A is sectorial, we infer from (2.1.9) that
Pα is analytic for t > 0, and t1−α ‖Pα (t)‖L(Y,Y ) ≤ Cα), the following estimate
holds:

‖ (Pα(t + h− τ)− Pα(t − τ)) f (τ)‖Y ≤ ‖Pα(t + h− τ)f (τ)‖Y + ‖Pα(t − τ)f (τ)‖Y
≤ Cα

(
(t + h− τ)α−1 + (t − τ)α−1

)
‖f (τ)‖Y

≤ 2Cα(t − τ)α−1‖f (τ)‖Y . (2.1.17)
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Since

∫ t−ρ

0
(t − τ)α−1‖f (τ)‖Y dτ ≤

(∫ t−ρ

0
(t − τ)p(α−1)dτ

)1/p (∫ t−ρ

0
‖f (τ)‖qY dτ

)1/q

≤ Cα,p(t − ρ)
εα
p

(∫ t−ρ

0
‖f (τ)‖qY dτ

)1/q

<∞, (2.1.18)

it follows from the Lebesgue dominated convergence theorem (by using (2.1.16)–
(2.1.18)) that

∫ t−ρ

0
‖ (Pα(t + h− τ )− Pα(t − τ )) f (τ )‖Y dτ → 0 as h→ 0.

We have shown that Fρ ∈ C([0, T ); Y ) and the claim that F ∈ C([0, T ); Y ) is
immediate. Next, we check that F ∈ C0,γ ((0, T ); Y ) for some 0 < γ < 1. Indeed,
let 0 < t1 < t2 < T and observe that

F(t2)− F(t1) =
∫ t1

0
Pα(τ) (f (t2 − τ) − f (t1 − τ)) dτ +

∫ t2

t1

Pα(τ)f (t2 − τ)dτ

=
∫ t1

0
Pα(τ) (f (t2 − τ) − f (t1 − τ)) dτ +

∫ t2−t1

0
Pα(t2 − τ)f (τ)dτ.

For the second summand, using the Hölder inequality we get that there exists a
constant C = C (α, p) > 0 such that

∫ t2−t1
0

‖Pα(t2 − τ)f (τ)‖Y dτ ≤Cα
∫ t2−t1

0
(t2 − τ)α−1‖f (τ)‖Y dτ

≤Cα
(∫ t2−t1

0
(t2 − τ)p(α−1) dτ

) 1
p
(∫ t2−t1

0
‖f (τ)‖q

Y
dτ

) 1
q

≤Cα,p
(
t
εα
2 − t

εα
1

) 1
p

(∫ t2−t1
0

‖f (τ)‖q
Y
dτ

) 1
q

.

Using the mean value theorem and the fact that the mapping t �→ tp(α−1) is
decreasing on [t1, t2], we get that

t
εα
2 − t

εα
1 ≤ εαt

p(α−1)
1 (t2 − t1).

This together with the previous estimate give

∫ t2−t1

0
‖Pα(t2 − τ )f (τ )‖Y dτ ≤ Cα,pt

α−1
1 |t2 − t1|

1
p

(∫ t2−t1

0
‖f (τ)‖qY dτ

) 1
q

.

(2.1.19)
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For the first summand, we use the fact that f ∈ C0,β((0, T ); Y ), to estimate

∫ t1

0
‖Pα(τ) (f (t2 − τ )− f (t1 − τ )) ‖Y dτ (2.1.20)

≤ Cα

∫ t1

0
τα−1‖f (t2 − τ )− f (t1 − τ )‖Y dτ

≤ CαMf |t2 − t1|β
∫ t1

0
τα−1 dτ

≤ CαMf t
α
1 |t2 − t1|β,

where Mf denotes the Hölder constant of f . Letting γ := min{1/p, β}, it follows
from (2.1.19) and (2.1.20) that ‖F(t2) − F(t1)‖Y = O(|t2 − t1|γ ). Hence, F ∈
C0,γ ((0, T ); Y ).
Step 2 We show that F(t) ∈ D(A) for all 0 < t < T . We use the fact that A is
a sectorial operator in Y , namely, ‖AS (t)‖L(Y ) ≤ Ct−1, for t ∈ (0, T ). We can

exploit the formula (2.1.9) for Pα, to find that
∥∥t1−αAPα (t)

∥∥L(Y )
≤ Cαt

−α , and so

‖APα (t)‖L(Y ) ≤ Cαt
−1, for t ∈ (0, T ) . (2.1.21)

In particular, this implies that as 0 ≤ τ < t and f (τ) ∈ Y , Pα (t − τ ) f (τ ) ∈
D (A), and the Riemann sums forFρ (t) (t > ρ), namely

∑
τi≤t−ρ Pα

(
t − τj

)
f
(
τj
)

�τj , also belongs to D (A) . Moreover,

lim
�τ→0

A
∑

τ≤t−ρ
Pα (t − τ ) f (τ )�τ = lim

�τ→0

∑
τ≤t−ρ

APα (t − τ ) f (τ )�τ

=
∫ t−ρ

0
APα(t − τ )f (τ )dτ.

This yields Fρ(t) ∈ D (A) since A is closed. On the other hand, we have

AFρ (t) =
∫ t−ρ

0
APα(t − τ )f (τ )dτ (2.1.22)

=
∫ t−ρ

0
APα(t − τ ) (f (τ )− f (t)) dτ + (Sα (ρ)− Sα (t)) f (t) .

Thus owing to (2.1.22), as ρ → 0+, it holds

AFρ (t)→
∫ t

0
APα(t − τ ) (f (τ )− f (t)) dτ + (I − Sα (t)) f (t) . (2.1.23)
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Indeed, the second summand in (2.1.23) follows from (2.1.22) in view of the
continuity of Sα (ρ) as ρ → 0+. For the first summand, it is a consequence
of the following estimate and (2.1.21). More precisely, using by assumption that
‖f (τ)− f (t)‖Y = O(|t − τ |β), for some β > 0,

∥∥∥∥
∫ t

t−ρ
APα(t − τ ) (f (τ )− f (t)) dτ

∥∥∥∥
Y

(2.1.21)≤ Cα

∫ t

t−ρ
(t − τ )β−1 dτ = Cα,βρ

β,

and this tends to zero as ρ → 0+. Hence, the claim in (2.1.23) is immediate; since A
is closed, AFρ (t) → AF (t) as ρ → 0+, from which we infer that F (t) ∈ D (A)

for 0 < t < T .

Step 3 We finally claim that g1−α ∗ (F − F(0)) ∈ C1((0, T ); Y ) and F satisfies a
proper differential equation. Since F(0) = 0, we have

(g1−α ∗ (F − F(0)))(t) = (g1−α ∗ F)(t) = (g1−α ∗ Pα ∗ f )(t) = (Sα ∗ f )(t).

The operator Sα(t) is analytic for t > 0, so that the mapping s �→ (Sα ∗ f )(t) is
differentiable and

d

dt

[
(Sα ∗ f )(t)

]
= d

dt

∫ t

0
Sα(t − τ )f (τ )dτ = Sα(0)f (t)+

∫ t

0
S′α(t − τ )f (τ )dτ

(2.1.24)

=f (t)+
∫ t

0
APα(t − τ )f (τ )dτ = f (t)+ A

∫ t

0
Pα(t − τ )f (τ )dτ.

This also shows in particular that F is Riemann-Liouville (as well as Caputo)
differentiable of order α and Dα

t F (t) = ∂αt F (t) for all 0 < t < T . Since
A is sectorial, Pα(t)u, Sα(t)u ∈ D(A) for every u ∈ Y and for every t >

0. In addition we have that the mapping t �→ Sα(t)u is differentiable with

d
dt

(
Sα(t)u

)
= APα(t)u. Let now G(t) :=

∫ t

0
Sα(t − τ )f (τ )dτ . Then by (2.1.24),

G is differentiable with G′(t) = f (t)+ AF(t). On the other hand, we clearly have
G(t) = (g1−α ∗ Pα ∗ f ) (t). This implies that

G′(t) = d

dt

(
g1−α ∗ Pα ∗ f

)
(t) = Dα

t (Pα ∗ f )(t) = Dα
t F (t) = ∂αt F (t),

in view of the fact that F(0) = 0. We have shown that

∂αt F (t) = AF(t)+ f (t), 0 < t < T .

The proof of lemma is finished. ��
We can then conclude with the following existence result for problem (2.1.6).
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Theorem 2.1.7 Assume A is sectorial in Y and let u0 ∈ Y . Consider the following
two cases.

(a) (The case α = 1). Let f ∈ C0,β((0, T ); Y ), β > 0 and assume∫ T0
0 ‖f (t)‖Y dt <∞, for some T0 > 0.

(b) (The case α ∈ (0, 1)). Let q ∈ (1/α,∞) such that
∫ T0

0 ‖f (t)‖qY dt < ∞ for
some T0 > 0 and f ∈ C0,β((0, T ); Y ), for some β > 0.

Then there exists a unique strong solution of problem (2.1.6) in the sense of
Definition 2.1.4. This strong solution is given by

u(t) = S(t)u0 +
∫ t

0
S(t − τ )f (τ )dτ

in the first case (a), and by

u(t) = Sα(t)u0 +
∫ t

0
Pα(t − τ )f (τ )dτ

in the second case (b), respectively.

Proof Case (a) is proved in [41, Theorem 3.2.2]. We complete the proof of the
second case exploiting the conclusions of Lemma 2.1.6. Let v(t) := Sα(t)u0 =
(g1−α ∗ Pα)(t)u0. Since A generates an analytic semigroup on Y, the mapping t �→
Sα(t)u0 is differentiable for any t > 0. In addition, for all 0 < t < T ,

∂αt v(t) =
∫ t

0
g1−α(t − τ )S′α(τ )u0dτ =

∫ t

0
g1−α(t − τ )APα(τ)u0dτ (2.1.25)

=A
∫ t

0
g1−α(t − τ )Pα(τ )u0dτ = Av(t).

Let w(t) := ∫ t
0 Pα(t − τ )f (τ )dτ . Then Lemma 2.1.6 yields ∂αt w(t) = Aw(t) +

f (t), for all 0 < t < T . Clearly, u = v + w is the desired solution of (2.1.6).
Uniqueness is easy to see and the proof is finished. ��
Remark 2.1.8 In the second statement of Theorem 2.1.7 when α ∈ (0, 1), the
assumption that A generates an analytic semigroup on Y is actually not required.
This is only necessary for the case α = 1 as treated in the monograph [41]. In the
case α ∈ (0, 1), it has been shown in [14, Theorem 3.4] that ifA generates a strongly
continuous semigroup (that is not necessarily analytic in Y ), then the operators Sα(t)
and Pα(t) are automatically analytic for every t > 0. Notice that these properties
were the only required ingredients in the proof of the second alternative (b).

One has additional smoothness for the strong solution of (2.1.6) if f is smooth
enough. The result can prove quite useful in those instances when the multiplication
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of (2.1.6) by the test function ∂tu is required in order to perform additional estimates
for the corresponding solutions of (2.1.6).

Proposition 2.1.9 Let f ∈ W 1,q ((0, T ) ; Y ) for some q ∈ (1/α,∞] and assume
that A generates a strongly continuous semigroup. Let u be a strong solution in
the sense of Definition 2.1.4 in the case when α ∈ (0, 1). Then it also holds that
u ∈ C1 ((0, T ) ; Y ) .
Proof This follows directly by exploiting the formula for the integral solution owing
to the fact that

u
′
(t) = S

′
α(t)u0 + Pα(t)f (0)+

∫ t

0
Pα(t − τ )f

′
(τ )dτ. (2.1.26)

In view of Remark 2.1.8, the families Sα(t) and Pα(t) are both analytic as functions
of t > 0; in particular, S

′
α(t) = APα (t) , for all t > 0. Obviously since f ∈

W 1,q ((0, T ) ; Y ), the value f (0) ∈ Y is well-defined. Both the first two summands
in (2.1.26) belong to C ((0, T ) ; Y ); for the last summand, one argues exactly as
in the proof of Lemma 2.1.6 to show that Pα ∗ f ′ ∈ C ([0, T ); Y ). The proof is
finished. ��

2.2 Ultracontractivity and Resolvent Families

In this subsection we assume that our Banach space Y = L2(X) and that the operator
A generates a strongly continuous semigroup (S(t))t≥0 on L2(X).
Proposition 2.2.1 Assume that the semigroup S is submarkovian in the sense that
it is positive and L∞-contractive, that is,

S(t)u ≥ 0 for all t ≥ 0, whenever 0 ≤ u ∈ L2(X),

and

‖S(t)f ‖Lp(X) ≤ ‖f ‖Lp(X) for all f ∈ Lp(X)∩L2 (X) , p ∈ [1,∞]. (2.2.1)

Then Sα(t) and Pα(t) are positive and for all f ∈ Lp(X)∩L2 (X), p ∈ [1,∞], we
have

‖Sα(t)f ‖Lp(X) ≤ ‖f ‖Lp(X) and ‖
(α)t1−αPα(t)f ‖Lp(X) ≤ ‖f ‖Lp(X).

(2.2.2)

Proof Since S(t) is a positive operator, it follows from (2.1.9) that Sα(t) and Pα(t)
are also positive. Let f ∈ Lp(X)∩L2 (X) for p ∈ [1,∞]. Since ‖S(t)‖L(Lp(X))≤ 1
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for all t ≥ 0, it follows from (2.1.9) that

‖Sα(t)f ‖Lp(X) ≤
∫ ∞

0
�α(τ)‖S(τ tα)f ‖Lp(X)dτ

≤
∫ ∞

0
�α(τ)dτ‖f ‖Lp(X) = ‖f ‖Lp(X).

Similarly it follows from (2.1.9) and (2.1.8) that

‖
(α)t1−αPα(t)f ‖Lp(X) ≤α
(α)tα−1t1−α
∫ ∞

0
τ�α(τ)dτ‖f ‖Lp(X)

=α
(α) 
(2)


(α + 1)
‖f ‖Lp(X) = ‖f ‖Lp(X).

We have shown (2.2.2) and the proof is finished. ��
Proposition 2.2.2 Assume that the semigroup S is ultracontractive in the sense that
for every 1 ≤ p ≤ q ≤ ∞, the operator S(t) maps Lp(X) into Lq(X) and there
exist two constants C > 0, βA > 0 such that for all t > 0,

‖S(t)‖L(Lp(X),Lq(X)) ≤ Ct
−βA

(
1
p− 1

q

)
. (2.2.3)

Here the constant βA is assumed independent of p, q . Then the following assertions
hold.

(a) If βA
(
p−1 − q−1

)
< 1, then there exists C > 0 such that for all t > 0,

‖Sα(t)‖L(Lp(X),Lq(X)) ≤ Ct
−αβA

(
1
p
− 1

q

)
. (2.2.4)

(b) If βA
(
p−1 − q−1

)
< 2, then there exists C > 0 such that for all t > 0,

‖t1−αPα(t)‖L(Lp(X),Lq(X)) ≤ Ct
−αβA

(
1
p
− 1

q

)
. (2.2.5)

Proof Let 1 ≤ p ≤ q ≤ ∞ and f ∈ Lp(X).
(a) Assume that βA

(
p−1 − q−1

)
< 1. Using (2.1.9), (2.2.3) and (2.1.8) we deduce

that

‖Sα(t)f ‖Lq(X) ≤
∫ ∞

0
�α(τ)‖S(τ tα)f ‖Lq(X)dτ

≤ C

∫ ∞

0
�α(τ)τ

−βA
(

1
p
− 1

q

)
t
−αβA

(
1
p
− 1

q

)
‖f ‖Lp(X)dτ



2.2 Ultracontractivity and Resolvent Families 27

≤ ‖f ‖Lp(X)Ct
−αβA

(
1
p
− 1

q

) ∫ ∞

0
�α(τ)τ

−βA
(

1
p
− 1

q

)
dτ

= C

(1 − βA

(
p−1 − q−1

)
)


(1 − αβA
(
p−1 − q−1

)
)
‖f ‖Lp(X)t

−αβA
(

1
p− 1

q

)
.

(b) Now assume that βA
(
p−1 − q−1

)
< 2. Then using (2.1.9), (2.2.3) and (2.1.8)

we obtain

‖t1−αPα(t)f ‖Lq (X) ≤ α

∫ ∞

0
τ�α(τ)‖S(τ tα)f ‖Lq (X)dτ

≤ αC

∫ ∞

0
�α(τ)τ

1−βA
(

1
p− 1

q

)
t
−αβA

(
1
p− 1

q

)
‖f ‖Lp(X)dτ

≤ ‖f ‖Lp(X)αCt
−αβA

(
1
p
− 1

q

) ∫ ∞

0
�α(τ)τ

1−βA
(

1
p
− 1

q

)
dτ

= α
(2− βA
(
p−1 − q−1

)
)


(1+ α − αβA
(
p−1 − q−1

)
)

(
C‖f ‖Lp(X)

)
t
−αβA

(
1
p− 1

q

)
.

The proof is finished. ��
Remark 2.2.3 The explicit constant in (2.1.8) allows us to see that all the constants
C = C (α) > 0 involved in the estimates of Propositions 2.2.1, 2.2.2 are bounded
as α → 1. In particular, all constants involved in subsequent estimates are also
bounded as α → 1. In particular, these features allow us to recover the results in the
case α = 1 in a natural way.

Next, let V and H be Hilbert spaces such that V
d
↪→ H . Recall that in that case

we have the Gelfand triple

V
d
↪→ H

d
↪→ V �.

Let E : V × V → R be a bilinear and symmetric form. Throughout the rest of the
paper we will use the following terminology.

• We shall say that E is closed if {un}n∈N ⊂ V is such that

lim
n,m→∞

[
E(un − um, un − um)+ ‖un − um‖2

H

]
= 0,

then there exists u ∈ V such that limn→∞
[
E(un−u, un−u)+‖un−u‖H

]
= 0.

• We will say that it is continuous if there exists M > 0 such that

|E(u, v)| ≤ M‖u‖V ‖v‖V for all u, v ∈ V.
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• We will say that E is H -elliptic, if there exist constant C > 0 and ν ∈ R such
that

E(u, u)+ ν‖u‖2
H ≥ C‖u‖2

V , ∀ u ∈ V.

• Finally, E will be said coercive, if there exists C > 0 such that

E(u, u) ≥ C‖u‖2
V for all u ∈ V.

It is clear that if E is coercive, then it is H -elliptic.

Remark 2.2.4 Now assume that E is closed, symmetric, continuous and H -elliptic.
Define the operator

A : V → V � by 〈Au, v〉V �,V := E(u, v), ∀ u, v ∈ V. (2.2.6)

Let A be the part of the operator A in H in the sense that

D(A) = {u ∈ V : Au ∈ H }, Au = Au. (2.2.7)

It is easy to show that

D(A) =
{
u ∈ V : ∃ w ∈ H and E(u, v) = (w, v)H ∀ v ∈ V

}
, Au = w.

(2.2.8)

In addition we have that the operator A := −A generates a strongly continuous and
analytic semigroup (etA)t≥0 on H .

We give a general abstract setting that will imply ultracontractivity with the
precise constant. A complete proof of this result and a more general version can
be found in [51, Chapters 3, 4 and 6] (see also [27, Chapters 1 and 2]). Here and
below we set w ∧ 1 := min {1, w} for any w ≥ 0.

Theorem 2.2.5 Let V be a Hilbert space such that V
d
↪→ L2(X). Let E with

domain V be a symmetric, closed, continuous and L2(X)-elliptic bilinear form on
L2(X). Let A be the self-adjoint operator on L2(X,m) associated with E in the
sense of Remark 2.2.4 and let (etA)t≥0 be the strongly continuous semigroup on
L2(X) generated by A. Assume in addition that the semigroup is submarkovian in
the sense that it is positive and L∞(X)-contractive. Then the following assertions
are equivalent.

(a) There exists a constant C > 0 such that for all u ∈ V,

‖u‖2

L
2μ
μ−2 (X)

≤ CE(u, u) for some μ > 2. (2.2.9)

(b) The semigroup is ultracontractive with constant βA = μ
2 .
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Remark 2.2.6 Let V , E and A be as in Theorem 2.2.5. The following situations are
well known (see e.g. [27, 32, 51]).

(i) The semigroup (etA)t≥0 is positive if and only if for every u ∈ V we have that
u+ = max {u, 0}, u− = max {−u, 0} ∈ V and

E(u+, u−) ≤ 0.

(ii) Assume that the semigroup (etA)t≥0 is positive. Then it is L∞(X)-contractive
if and only if for every 0 ≤ u ∈ V , we have that u ∧ 1 ∈ V and

E(u ∧ 1, u ∧ 1) ≤ E(u, u).

In what follows, our main working assumption is that (S (t))t≥0 is ultracontrac-
tive and submarkovian in the aforementioned sense. For instance, we note that the
submarkovian property implies from [27, Theorem 1.4.1] that (S (t))t≥0 can then be
extended to contraction semigroups Sp (t) on Lp(X) for every p ∈ [1,∞], and each
semigroup is strongly continuous if p ∈ [1,∞) and bounded analytic if p ∈ (1,∞).
Denote by Ap the generator of the semigroup on Lp(X) so thatA2 ≡ A. In that case
if p ∈ (2,∞), then we have that Ap is the part of A = A2 in Lp(X) ↪→ L2(X) in
the sense that

D(Ap) =
{
u ∈ D(A) ∩ Lp(X) : Au ∈ Lp(X)

}
, Apu = Au. (2.2.10)

The operator A∞ is defined as (λ − A∞)−1 = [
(λ− A1)

−1
]�

for all λ > 0. If A is
an unbounded operator then the semigroup on L∞(X) is not strongly continuous or
equivalently D(A∞) is not dense in L∞(X). In any case we shall set

L∞(X) := D(A∞)
L∞(X)

.

We mention that in most situations we shall have

C(X) ⊆ L∞(X) ⊂ L∞(X).

For more details on this topic we refer to the monograph [27, Chapter 1]. For
p ∈ (1, 2), a description of Ap exactly as in (2.2.10) is in general not an easy
task. However, by [51, Theorem 3.9], for every p ∈ (1,∞), if u ∈ D(Ap), then

u|u| p2−1 ∈ D(E) = V and

4 (p − 1)

p2 E
(
u|u| p2−1, u|u| p2−1

)
≤
(
−Apu, |u|p−1sgnu

)
L2(X)

≤2E
(
u|u| p2−1, u|u| p2−1

)
. (2.2.11)
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We also mention that the semigroups are also consistent in the sense that for all
t ≥ 0, Sp (t) f = Sq (t) f, for all t ≥ 0 whenever f ∈ Lp(X)∩Lq(X) andAq ⊆ Ap

for any q ≥ p; namely, D
(
Aq

) ⊆ D
(
Ap

)
and Aqf = Apf, for all f ∈ D

(
Aq

)
.

Since Lp (X) ⊆ L1 (X) (recall that X is a relatively compact Hausdorff space) and
Sp (t) ⊆ S1 (t) for all p ∈ [1,∞], we can drop the index p and merely write S

for the semigroup, for the sake of notational simplicity. We shall also apply this
convention to the operators Sα, Pα from (2.1.9). Clearly by (2.2.3), S (t) defines a
bounded (linear) operator from Lp(X) into Lq(X) for 1 ≤ p ≤ q ≤ ∞. For the
sake of brevity, in what follows we may write (and define) its operator norm

‖S (t) ‖q,p := sup
‖f ‖

Lp(X)
≤1

(
‖S (t) f ‖Lq(X)

)
.

Of course, we have ‖S (t) f ‖Lq(X) ≤ ‖S (t) ‖q,p‖f ‖Lp(X), for all t > 0 and f ∈
Lp(X), and

‖S (t) ‖q,p ≤ Ct
−βA

(
1
p− 1

q

)
, for all t > 0.

Therefore, on account of (2.2.4) and (2.2.5), we also see for all t > 0,

‖Sα (t) ‖q,p ≤ Ct
−βAα

(
1
p
− 1

q

)
and ‖t1−αPα(t)‖q,p ≤ Ct

−βAα
(

1
p
− 1

q

)
(2.2.12)

provided that βA
(
p−1 − q−1

)
< 1 and βA

(
p−1 − q−1

)
< 2, respectively, for any

(fixed) 1 ≤ p ≤ q ≤ ∞.
The following continuity result will be used in Sect. 3.

Proposition 2.2.7 Let (2.2.3) be satisfied by the semigroup S. Let θ ∈ (0, 1] and
p ∈ (1,∞) such that θp > βA. Then D((−Ap)

θ ) ↪→ L∞ (X) .
Proof It suffices to show that the operator

(
I − Ap

)−θ
maps Lp (X) into L∞ (X)

continuously. The assertion follows from the ultracontractivity estimate (2.2.3) and
the well-known formula

(
I − Ap

)−θ = 1


 (θ)

∫ ∞

0
tθ−1e−t S (t) dt.

The proof is finished. ��

2.3 Examples of Sectorial Operators

In this section, we give a sufficiently large number of examples of “diffusion”
operators that satisfy the assumptions of the previous section (in particular, the
statements of Propositions 2.2.1, 2.2.2). Many classical operators, that include
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uniformly (second-order) elliptic operators with sufficiently smooth coefficients
defined on a smooth domain � ⊂ R

N and subject to classical Dirichlet, Neumann
or/and Robin boundary conditions, can be considered already by this analysis
(see, for instance, [55]). However, the classical mathematical literature does not
place much emphasis on the regularity of the domain and its immediate affect on
the ultracontractivity estimates, although this kind of issues have been considered
only recently (see, for instance, [9, 10, 63]; cf. also [34] and references therein).
Most of our “diffusion” operators below take also into account a weaker regularity
assumption on the domain, by allowing � to be non-smooth, as well as, we aim to
present a number of recent examples that involve diffusion operators of “fractional”
type; our goal is also to place more emphasis on the later kind. Nevertheless, we
point out once again that the mapping assumptions we are going to employ out of
Sect. 2.1 are more general, and as a result do not require any specific form of the
diffusion operator. Such an abstraction allows us to represent a much larger family
of fractional kinetic models that have not been explicitly studied in detail so far to
the best of our knowledge.

But first, we need to introduce some general classes of Sobolev spaces. Let � ⊂
R
N be an arbitrary bounded open set. Let

W 1,2(�) :=
{
u ∈ L2(�) :

∫

�

|∇u|2dx <∞
}

be the first order Sobolev space endowed with the norm defined by

‖u‖W 1,2(�) =
(∫

�

|u|2dx +
∫

�

|∇u|2dx
) 1

2

.

We also let

W
1,2
0 (�) := D(�)

W 1,2(�)
,

where D(�) denotes the space of all infinitely continuous differentiable functions
with compact support in �. It is well-known that

W
1,2
0 (�)

d
↪→ Lq(�), (2.3.1)

with
⎧⎪⎪⎨
⎪⎪⎩

1 ≤ q ≤ 2N
N−2 if N > 2,

1 ≤ q <∞ if N = 2,

1 ≤ q ≤ ∞ if N = 1.

(2.3.2)
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Remark 2.3.1 If � has the W 1,2-extension property, that is, for every u ∈ W 1,2(�),
there exists U ∈ W 1,2(RN) such that U |� = u a.e. on �, then

W 1,2(�)
d
↪→ Lq(�) (2.3.3)

with q as in (2.3.2).

Next, let

W :=
{
u ∈ W 1,2(�) ∩ C(�) :

∫

∂�

|u|2dσ <∞
}
,

where σ denotes the restriction to ∂� of the (N−1)-dimensional Hausdorff measure
HN−1. The Maz’ya space W 1,2

2 (�, ∂�) is defined to be the completion of W with
respect to the norm

‖u‖
W

1,2
2 (�,∂�)

:=
(∫

�

|∇u|2dx +
∫

∂�

|u|2dσ
) 1

2

.

We have that

W
1,2
2 (�, ∂�) ⊂ Lq(�), (2.3.4)

with

1 ≤ q ≤ 2N

N − 1
if N > 1 and 1 ≤ q ≤ ∞ if N = 1. (2.3.5)

Remark 2.3.2 Firstly, we notice that the inclusion (2.3.4) is continuous but is not
always an injection. The latter property requires a regularity of the open set. For this

reason, in (2.3.4) we did not use the notation W 1,2
2 (�, ∂�)

d
↪→ Lq(�). Secondly,

if � has a Lipschitz continuous boundary, then W
1,2
2 (�, ∂�) = W 1,2(�) and

hence, (2.3.4) holds with q as in (2.3.2).

We refer to [17, 18, 49, 50] for a complete description of the Maz’ya type spaces.
Finally for 0 < s < 1, we introduce the fractional order Sobolev space

Ws,2(�) :=
{
u ∈ L2(�) :

∫

�

∫

�

|u(x)− u(y)|2
|x − y|N+2s dxdy <∞

}

endowed with the norm

‖u‖Ws,2(�) =
(∫

�

|u|2dx +
∫

�

∫

�

|u(x)− u(y)|2
|x − y|N+2s dxdy

) 1
2

.
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We let Ws,2
0 (�) := D(�)

Ws,2(�)
, and

W
s,2
0 (�) :=

{
u ∈ Ws,2(RN) : u = 0 on R

N \�
}
,

and

W̃
s,2
0 (�) :=

{
u|� : u ∈ W

s,2
0 (�)

}
.

Here also we have that

W
s,2
0 (�), W̃

s,2
0 (�) ↪→ Lq(�), (2.3.6)

with
⎧
⎪⎪⎨
⎪⎪⎩

1 ≤ q ≤ 2N
N−2s if N > 2s,

1 ≤ q <∞ if N = 2s

1 ≤ q ≤ ∞ if N < 2s.

(2.3.7)

Remark 2.3.3 If � has the Ws,2-extension property, that is, for every u ∈ Ws,2(�),
there exists U ∈ Ws,2(RN) such that U |� = u a.e. on �, then (2.3.6) holds with
W

s,2
0 (�) replaced with Ws,2(�).

We also observe the following facts.

Remark 2.3.4 Let � ⊂ R
N be a bounded domain. Then we have the following

situations.

(a) D(�) ⊂ W
s,2
0 (�) but is not always a dense subspace. If � has a continuous

boundary, then D(�) is dense in W
s,2
0 (�). As a direct consequence, we have

that D(�) ⊂ W̃
s,2
0 (�) and is dense under the assumption that � has a

continuous boundary.
(b) The spaces Ws,2

0 (�) and W̃ s,2
0 (�) do not always coincide.

(c) Assume that � has a Lipschitz continuous boundary ∂�. Then, by [38,
Corollary 1.4.4.10] for every 0 < s < 1,

W̃
s,2
0 (�) =

{
u ∈ W

s,2
0 (�) : u

δs
∈ L2(�)

}
, (2.3.8)

where δ(x) := dist(x, ∂�), x ∈ �. By [38, Corollary 1.4.4.5] if s 
= 1
2 , then

W
s,2
0 (�) = W̃

s,2
0 (�). But if s = 1

2 , then W̃
s,2
0 (�) is a proper subspace of

W
1
2 ,2

0 (�). Notice also that Ws,2
0 (�) = Ws,2(�) for every 0 < s ≤ 1

2 .

We refer to [2, 29, 38, 63] for a complete description and further properties of
fractional order Sobolev spaces.
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Our first example is the Laplace operator with various boundary conditions.

Example 2.3.5 (The Laplace Operator with Various Boundary Conditions) Let
� ⊂ R

N be an arbitrary bounded open set. All the considered bilinear forms are
symmetric, closed, continuous and elliptic.

(a) The Dirichlet boundary condition. Let ED with D(ED) := W
1,2
0 (�) be given

by

ED(u, v) :=
∫

�

∇u · ∇vdx. (2.3.9)

Let �D be the self-adjoint operator on L2(�) associated with ED . Then �D is
a realization in L2(�) of −� with the Dirichlet boundary condition. Using an
integrating by parts argument, it is classical to show that

D(�D) =
{
u ∈ W

1,2
0 (�), �u ∈ L2(�)

}
, �Du = −�u.

It follows from the coercivity of the form (2.3.9) and the embedding (2.3.1) with
the value of q given in (2.3.2) that ED satisfies the estimate (2.2.9) with μ = N

if N > 2 and μ > 2 an arbitrary real number if N ≤ 2. Then Propositions 2.2.1
and 2.2.2 hold with A = −�D and in that case βA = N

2 if N > 2 and βA > 1
arbitrary if N ≤ 2. We also have that

L∞(�) = C0(�) := {u ∈ C(�) : u = 0 on ∂�},

if and only if � is regular in the sense of Wiener. If � is not Wiener regular,
then we have that C0(�) � L∞(�) � L∞(�). We refer to [5, 6, 16] and their
references for more details on this topic.

(b) The Neumann boundary conditions. Assume that � has the W 1,2-extension
property in the sense of Remark 2.3.1. Let EN with D(EN) := W 1,2(�) be
defined by

EN(u, v) :=
∫

�

∇u · ∇vdx. (2.3.10)

Let �N be the self-adjoint operator on L2(�) associated with EN in the
sense of (2.2.7). Then �N is a realization in L2(�) of −� with the Neumann
boundary conditions. Using (2.3.3), we get that EN+(·, ·)L2(�) satisfies (2.2.9)
with μ = N if N > 2 and μ > 2 arbitrary if N ≤ 2. Hence, Propositions 2.2.1
and 2.2.2 hold with A = −�N − I in which case βA = N

2 if N > 2 and
βA > 1 arbitrary if N ≤ 2. If � has a Lipschtiz continuous boundary, then an
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integration by parts argument gives that

{
D(�N) = {u ∈ W 1,2(�) : �u ∈ L2(�) and ∂νu = 0 on ∂�},
�Nu = −�u,

where ∂νu := ∇u ·ν denotes the normal derivative of u. In addition, in that case
we have that L∞(�) = C(�) (see e.g. [61] and the references therein).

(c) The Robin boundary conditions. Let β ∈ L∞(∂�) satisfy β(x) ≥ β0 > 0 for
σ -a.e. x ∈ ∂� and let Eβ be the bilinear and symmetric form defined by

Eβ(u, v) =
∫

�

∇u · ∇vdx +
∫

∂�

β(x)uvdσ, u, v ∈ W 1,2(�) ∩ C(�).

It is clear that Eβ is not closed and by [9, 10] it is also not always closable, but
it always has a closable part. Let ER be the closure of the closable part of Eβ . It
has been shown in [9, 10] that there exists a relatively closed set 
 ⊂ ∂� such
that

D(ER) =
{
u ∈ W̃ 1,2(�) : ũ ∈ L2(
)

}

and

ER(u, v) :=
∫

�

∇u · ∇vdx +
∫




β(x)ũṽdσ. (2.3.11)

Here W̃ 1,2(�) = W 1,2(�) ∩ C(�)W
1,2(�)

and ũ denotes the relatively quasi-
continuous representative (with respect to the capacity defined on subsets
of � with the regular Dirichlet space W̃ 1,2(�)) of the function u. We also
have that D(ER) ↪→ Lq(�) with q as in (2.3.5) if � is arbitrary and as in
Remark 2.3.2 if � has a Lipschitz continuous boundary. In addition ER is
closed, symmetric, continuous and coercive. Let�R be the self-adjoint operator
on L2(�) associated with ER in the sense of (2.2.7). Then �R is a realization
in L2(�) of −� with the Robin boundary conditions. If � is an arbitrary
bounded open set, then it follows from the coercivity of the form (2.3.11) and
the embedding (2.3.4) that ER satisfies (2.2.9) with μ = 2N if N > 1 and
μ > 2 arbitrary if N = 1. In that case, Propositions 2.2.1 and 2.2.2 hold with
A = −�R and βA = N if N > 1 and βA > 1 arbitrary if N = 1. If � has
a Lipschitz continuous boundary, then D(ER) = W 1,2(�) (see Remark 2.3.2)
and

ER(u, v) =
∫

�

∇u · ∇vdx +
∫

∂�

β(x)uv dσ.
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Therefore, by (2.3.3), we have that ER satisfies (2.2.9) with μ = N if N > 2
and μ > 2 arbitrary if N ≤ 2. Hence, Propositions 2.2.1 and 2.2.2 hold with
A = −�R and βA = N

2 if N > 2 and βA > 1 arbitrary if N ≤ 2. In addition
we have that

{
D(�R) = {u ∈ W 1,2(�) : �u ∈ L2(�) and ∂νu+ βu = 0 on ∂�},
�Ru = −�u.

Furthermore (always under the assumption that � has a Lipschitz continuous
boundary) it has been shown in [61] that L∞(�) = C(�). We refer to [9, 10,
17, 18, 26] for more details.

(d) The Wentzell boundary conditions. Assume that� has a Lipschitz continuous
boundary. Let β ∈ L∞(∂�) be as in part (c), δ ∈ {0, 1} and

W
1,δ,2(�) :=

{
U = (u, u|∂�) : u ∈ W 1,2(�) and δu|∂� ∈ W 1,2(∂�)

}
,

be endowed with the norm

‖u‖
W1,δ,2(�) =

⎧
⎪⎪⎨
⎪⎪⎩

(
‖u‖2

W 1,2(�)
+ ‖u‖2

W 1,2(∂�)

) 1
2

if δ = 1
(
‖u‖2

W 1,2(�)
+ ‖u‖2

W
1
2 ,2(∂�)

) 1
2

if δ = 0.

Then

W
1,0,2(�) ↪→ Lq(�)× Lq(∂�), (2.3.12)

with

1 ≤ q ≤ 2(N − 1)

N − 2
if N > 2 and 1 ≤ q <∞ if N ≤ 2, (2.3.13)

and

W
1,1,2(�) ↪→ Lq(�)× Lq(∂�), (2.3.14)

with

1 ≤ q ≤ 2N

N − 2
if N > 2 and 1 ≤ q <∞ if N ≤ 2. (2.3.15)

Let Eδ,W with D(Eδ,W ) :=W
1,δ,2(�) be given by

Eδ,W (U, V ) :=
∫

�

∇u · ∇vdx + δ

∫

∂�

∇
u · ∇
vdσ +
∫

∂�

β(x)uvdσ.

(2.3.16)
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Let �δ,W be the self-adjoint operator in L2(�)×L2(∂�) associated with Eδ,W
in the sense of (2.2.7). Then �δ,W is a realization in L2(�) × L2(∂�) of(
− �,−�


)
with the generalized Wentzell boundary conditions. More

precisely, we have that

D(�δ,W ) =
{
(u, u|
) ∈W

1,δ,2(�) : �u ∈ L2(�) and

− δ�
(u|∂�)+ ∂νu+ β(u|∂�) ∈ L2(∂�)
}
,

and

�δ,W(u, u|
) =
(
−�u,−δ�
(u|∂�)+ ∂νu+ β(u|∂�)

)
.

We notice that for 1 ≤ q ≤ ∞, the space Lq(�)× Lq(∂�) endowed with the
norm

‖(f, g)‖Lq(�)×Lq(∂� =
⎧
⎨
⎩

(
‖f ‖q

Lq(�)
+ ‖g‖q

Lq(∂�)

)1/q
if 1 ≤ q <∞,

max{‖f ‖L∞(�), ‖g‖L∞(�) if q = ∞,

can be identified with Lq(�,m) where the measure m on � is defined for a
measurable set A ⊂ � by m(A) = |� ∩ A| + σ(∂� ∩ A). It follows from
the coercivity of the form (2.3.16) and the embeddings (2.3.12) and (2.3.14)
with q given in (2.3.13) and (2.3.15) that E0,W and E1,W satisfy (2.2.9) with
μ = 2(N − 1) if N > 2, μ > 2 arbitrary if N ≤ 2, and with μ = N if N ≥ 2,
μ > 2 arbitrary if N ≤ 2, respectively. We have shown that Propositions 2.2.1
and 2.2.2 hold with A = −�0,W and with A = −�1,W . In addition we have
that in both cases L∞(�) = {U = (u, u|∂�) : u ∈ C(�)} ∼= C(�). For more
details we refer to [61] and the references therein.

In all cases described by Example 2.3.5 one may replace the Laplace operator
−� by a general second order elliptic operator L of the form

Lu = −
N∑

i,j=1

Di

(
aij (x)Dju

)
, (2.3.17)

where the coefficients aij ∈ L∞(�), aij (x) = aji(x) for all i, j = 1, 2, . . . , N and
a.e. x ∈ �, and

N∑
i,j=1

aij (x)ξiξj ≥ ν|ξ |2, ∀ ξ ∈ R
N and for some constant ν > 0.
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All the above results remain true when −� is replaced by L with the appropriate
modifications.

Next we consider realizations of the fractional Laplace operator with various
boundary conditions. For 0 < s < 1,

u ∈ Ls(R
N) :=

{
u : RN → R measurable and

∫

RN

|u(x)|
(1+ |x|)N+2s dx <∞

}
,

and ε > 0 we let

(−�)sεu(x) := CN,s

∫

{y∈RN : |x−y|>ε}
u(x)− u(y)

|x − y|N+2s
dy, x ∈ R

N,

and we define the fractional Laplace operator (−�)su as the following singular
integral

(−�)su(x) := CN,sP.V.
∫

RN

u(x)− u(y)

|x − y|N+2s dy = lim
ε↓0

(−�)sεu(x), x ∈ R
N,

(2.3.18)

provided that the limit exists for a.e. x ∈ R
N , where the normalization constant

CN,s is given by

CN,s := s22s

(
N
2 + s

)

π
N
2 
 (1− s)

.

If, for a given function u, (−�)su ∈ L2(RN), then we can let

(−�)su := 1


(−s)
∫ ∞

0

(
et�u− u

) dt

t1+s

where 
(−s) = −
(1−s)
s

and (et�)t≥0 is the semigroup on L2(RN) generated by
�. That is, we can define (−�)s as the fractional s-power of the classical Laplace
operator −�. Furthermore, (−�)s can be also defined as the pseudo-differential
operator with symbol |ξ |2s by using Fourier transforms.
Throughout the following we shall write (−�)su ∈ L2(�) if the limit in (2.3.18)
exists almost everywhere, and the function x �→ (−�)su(x) belongs to L2(�).

Let � ⊂ R
N be a bounded open set. For u ∈ Ls (�) and ε > 0, we let

(−�)s�,εu(x) = CN,s

∫

{y∈� |x−y|>ε}
u(x)− u(y)

|x − y|N+2s dy, x ∈ �.
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We set

(−�)s�u(x) = CN,sP.V.
∫

�

u(x)− u(y)

|x − y|N+2s dy = lim
ε↓0

(−�)s�,εu(x), x ∈ �,

(2.3.19)

provided that the limit exists for a.e. x ∈ �, which is called the regional fractional
Laplace operator. We notice that Ls(R

N) and Ls (�) are the right spaces on which
(−�)sεu(x) and (−�)s�,εu(x) exist for every ε > 0, respectively, and are continuous
at the continuity points of u (see e.g. [19, 39, 40, 64] and their references).

Let us notice that even on the space D(�) of test functions, the operator (−�)s
and (−�)s� are different. More precisely, a simple calculation shows that for u ∈
D(�) we have

(−�)su(x) = (−�)s�u(x)+ κ(x)u(x), x ∈ �,

where the function κ is given by

κ(x) :=
∫

RN \�
1

|x − y|N+2s
dy, x ∈ �.

For more details we refer to the above references.

Example 2.3.6 (Fractional Laplace Operator with Various Exterior Conditions)
Let � ⊂ R

N be an arbitrary bounded open set. Here also all the bilinear forms
that we will consider are symmetric, closed, continuous and elliptic.

(a) The fractional Laplacian with Dirichlet exterior condition. Before given our
operator, let us first recall the following integration by parts formula. Let u ∈
W

s,2
0 (�) be such that (−�)su ∈ L2(�). Then, for every v ∈ W

s,2
0 (�) the

identity

∫

�

v(−�)su dx = CN,s

2

∫

RN

∫

RN

(u(x)− u(y))(v(x)− v(y))

|x − y|N+2s dxdy

(2.3.20)

holds.
Next, we consider the following Dirichlet exterior value problem:

(−�)su = f in �, u = 0 in R
N \�. (2.3.21)

Let f ∈ L2(�). By a weak solution of (2.3.21) we mean a function u ∈
W

s,2
0 (�) such that

CN,s

2

∫

RN

∫

RN

(u(x)− u(y))(v(x)− v(y))

|x − y|N+2s dxdy =
∫

�

f v dx
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for all v ∈ W
s,2
0 (�). Using the well-know Lax-Milgram theorem, it is

straightforward to show that the Dirichlet problem (2.3.21) has a unique weak
solution.
Let u ∈ W

s,2
0 (�) be a weak solution of the Dirichlet problem (2.3.21). We have

the following situation.

• We do not know if u is a strong solution of (2.3.21) in the sense that
(−�)su (as defined in (2.3.19)) is well-defined almost everywhere and that
(−�)su = f a.e. in �. Such a result always holds in the classical case of the
Laplace operator.

• Here we just know that u ∈ W
2s,2
loc (�) (see e.g. [15]). But this maximal

inner regularity result is not enough to show that weak and strong solutions
coincide. Let us notice that strong solutions are always weak solutions (this
follows directly from the integration by parts formula (2.3.20)) as in the
classical case s = 1. For this reason the operators we shall define are
selfadjoint realizations of the fractional Laplace operator.

Let Es,D with D(Es,D) := W̃
s,2
0 (�) be given by

Es,D(u, v) := CN,s

2

∫

RN

∫

RN

(uD(x)− uD(y))(vD(x)− vD(y))

|x − y|N+2s
dxdy,

where for a function w ∈ L2(�) we have denoted

wD :=
{
w in �

0 in R
N \�,

and we recall that

W̃
s,2
0 (�) :=

{
u|� : u ∈ W

s,2
0 (�)

}
.

Let (−�)sD be the selfadjoint operator on L2(�) associated with Es,D in the
sense of (2.2.8). It has been shown in [23] that

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

D((−�)sD) =
{
u ∈ W̃

s,2
0 (�) : ∃ f ∈ L2(�) such that uD is a weak solution

of (2.3.21) with right hand side f
}
,

(−�)sDu = f.

Then (−�)sD is the realization in L2(�) of (−�)s with the Dirichlet exterior
condition uD = 0 on R

N \�. It follows from (2.3.6) with q given in (2.3.7) that
Es,D satisfies (2.2.9) with μ = N

s
if N > 2s and μ > 2 arbitrary if N ≤ 2s.

Hence, Propositions 2.2.1 and 2.2.2 hold with A = −(−�)sD in which case
βA = N

2s if N > 2s and βA > 1 arbitrary if N ≤ 2s. If � is of class C1,1,
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then using the regularity results obtained in [54] one can show that L∞(�) =
C0(�). Let us mention that differently from the classical case, the fractional
Laplacian also naturally admits boundary explosive solution, see e.g. [1, 31, 66].

(b) The fractional Laplacian with nonlocal Neumann exterior condition. Let
� ⊂ R

N be a bounded open set with Lipschitz continuous boundary. For 0 <

s < 1 we define the Hilbert space (see [30, Proposition 3.1] for the proof)

W
s,2
� :=

{
u : RN → R measurable and ‖u‖

W
s,2
�

<∞
}
,

where

‖u‖2
W

s,2
�

:=‖u‖2
L2(�)

+
∫ ∫

R2N\(RN\�)2
|u(x)− u(y)|2
|x − y|N+2s dxdy,

and

R
2N \ (RN \�)2 = (�×�) ∪ (�× (RN \�)) ∪ ((RN \�×�).

For u ∈ W
s,2
� we define the nonlocal fractional normal derivative of u as

Nsu(x) := CN,s

∫

�

u(x)− u(y)

|x − y|N+2s dy, x ∈ R
N \�, (2.3.22)

provided that the integral exists.
We have the following integration by parts formula. Let u ∈ W

s,2
� be such that

(−�)su ∈ L2(�) and Nsu ∈ L2(RN \�). Then for every v ∈ W
s,2
� ∩L2(RN \

�) the identity

∫

�

v(−�)su dx =CN,s

2

∫ ∫

R2N\(RN\�)2
(u(x)− u(y))(v(x)− v(y))

|x − y|N+2s
dxdy

−
∫

RN \�
vNsu dx (2.3.23)

holds. For a function u ∈ L2(�), we define it extension uN on R
N as follows

uN(x) :=
⎧⎨
⎩
u(x) if x ∈ �,

1

ρ(x)

∫

�

u(y)

|x − y|N+2s dy if x ∈ R
N \�.

where

ρ(x) :=
∫

�

1

|x − y|N+2s dy, x ∈ R
N \�. (2.3.24)
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Since we have assumed that � is bounded, using the Hölder inequality, we have
that for every u ∈ L2(�) and a.e. x ∈ R

N \�,

|uN(x)| ≤
‖u‖L1(�)

ρ(x)

1

(dist(x,�))N+2s .

Thus, uN is well-defined for every u ∈ L2(�). It follows from the definition of
uN , that NsuN = 0 in R

N \�.
Next, for f ∈ L2(�) we consider the following Neumann exterior value
problem:

(−�)su = f in �, Nsu = 0 in R
N \�. (2.3.25)

Let f ∈ L2(�). By a weak solution of (2.3.25) we mean a function u ∈ W
s,2
�

such that

CN,s

2

∫ ∫

R2N\(RN\�)2
(u(x)− u(y))(v(x)− v(y))

|x − y|N+2s
dxdy =

∫

�

f v dx

(2.3.26)

for all v ∈ W
s,2
� . Using the Lax-Milgram theorem, it is easy to see that the

Neumann problem (2.3.25) has a weak solution.
Let u ∈ W

s,2
� be a weak solution of the Neumann problem (2.3.25). Here also

we do not know if u is a strong solution of (2.3.25) in the sense described above.
We just know that the exterior condition is satisfied a.e. in R

N\�. Indeed, taking
v ∈ D(RN \�) as a test function in (2.3.26) and calculation we get that (notice
that v = 0 in �)

0 =CN,s

2

∫ ∫

R2N\(RN\�)2
(u(x)− u(y))(v(x)− v(y))

|x − y|N+2s dxdy

=CN,s
∫

�

∫

RN\�
(u(x)− u(y))(v(x)v(y))

|x − y|N+2s
dxdy

=CN,s
∫

RN\�
v(y)

(∫

�

u(x)− u(y)

|x − y|N+2s
dx

)
dy

=
∫

RN \�
v(y)Nsu(y) dy.

Since v ∈ D(RN \ �) was arbitrary, we can deduce that Nsu = 0 a.e. in
R
N \�. In addition, contrarily to the Dirichlet case, here we even do not know

if weak solutions belong to W 2s,2
loc (�). As in the Dirichlet case, here also strong

solutions are always weak solutions. This also follows from the integration by
parts formula (2.3.23).
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Now let Es,N be the form on L2(�) with domain

D(Es,N) := {u ∈ L2(�) : uN ∈ W
s,2
� }

and given by

Es,N(u, v) :=CN,s
2

∫ ∫

R2N\(RN\�)2
(uN(x)− uN(y))(vN(x)− vN(y))

|x − y|N+2s dxdy.

Let us notice that it has been shown in [23] that

D(Es,N) :=
{
u|� : u ∈ W

s,2
�

}

and

Es,N(u, u) := inf
{
E(v, v) : v|� = u, v ∈ W

s,2
�

}
,

where for v,w ∈ W
s,2
� , we have set

E(v,w) := CN,s

2

∫ ∫

R2N\(RN\�)2
(v(x)− v(y))(w(x)−w(y))

|x − y|N+2s dxdy.

It is easy to see thatD(Es,N) ↪→ Ws,2(�). Hence, it follows from Remark 2.3.3
that D(Es,N) ↪→ Lq(�) with q as in (2.3.7). Let (−�)sN be the selfadjoint

operator on L2(�) associated with Es,N in the sense of (2.2.8). It has been
shown in [23] (see also [30, Section 3]) that

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

D((−�)sN) =
{
u ∈ L2(�) : uN ∈ W

s,2
� : ∃ f ∈ L2(�) such that uN is a

weak solution of (2.3.25) with right hand side f
}
,

(−�)sNu = f.

Then (−�)sN is the realization in L2(�) of (−�)s with the nonlocal fractional

Neumann exterior condition NsuN = 0 on R
N \�. Notice that the form Es,N is

not coercive since the constant function 1 ∈ D(Es,N) and clearly Es,N(1, 1) =
0. Instead we have that Es,N+ (·, ·)L2(�) is coercive and hence, satisfies (2.2.9)

with μ = N
s

if N > 2s and μ > 2 arbitrary if N ≤ 2s. This implies that
Propositions 2.2.1 and 2.2.2 hold with A = −(−�)sN − I in which case βA =
N
2s ifN > 2s and βA > 1 arbitrary ifN ≤ 2s. Since we do not know if weak and
strong solutions of the Neumann problem (2.3.25) coincide, we cannot deduce
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that (−�)sNu = (−�)suN)|� for every u ∈ D((−�)sN). For more details
on the operator (−�)sN and the nonlocal fractional normal derivative given
in (2.3.22) we refer the interested reader to [23, 30] and their references.

(c) The fractional Laplacian with nonlocal Robin exterior condition. Let � ⊂
R
N be a bounded open set with Lipschitz continuous boundary and let 0 < s <

1. Let β ∈ L1(RN \ �) be a non-negative function. We define the fractional
order Sobolev type space

W
s,2
β,� :=

{
u ∈ W

s,2
� :

∫

RN\�
β|u|2 dx <∞

}

and we endow it with the norm given by

‖u‖
W

s,2
β,�

:=
(
‖u‖2

W
s,2
�

+
∫

RN\�
β|u|2 dx

) 1
2

.

It has been shown in [30, Proposition 3.1] that Ws,2
β,� is a Hilbert space.

Next we consider the following Robin exterior value problem:

(−�)su = f in �, Nsu+ βu = 0 in R
N \�. (2.3.27)

Let f ∈ L2(�). By a weak solution of (2.3.27) we mean a function u ∈ W
s,2
β,�

such that

CN,s

2

∫ ∫

R2N\(RN\�)2
(u(x)− u(y))(v(x)− v(y))

|x − y|N+2s dxdy +
∫

RN\�
βuv dx

=
∫

�

f v dx (2.3.28)

for all v ∈ W
s,2
β,�. Here also using the Lax-Milgram theorem, it is straightfor-

ward to see that the Robin problem (2.3.27) has a unique weak solution.
Let u ∈ W

s,2
β,� be a weak solution of the Robin problem (2.3.27). We do not

know if u is a strong solution of (2.3.27) in the sense described above, and if
u belongs to W 2s,2

loc (�). As in the Neumann case we just know that the exterior
condition in (2.3.27) is satisfied a.e. in R

N \�. Indeed, taking v ∈ D(RN \�)
as a test function in (2.3.28) and calculation we get that (notice that v = 0 in �)

0 =CN,s

2

∫ ∫

R2N\(RN\�)2
(u(x)− u(y))(v(x)− v(y))

|x − y|N+2s dxdy +
∫

RN\�
βuv dy

=CN,s
∫

�

∫

RN\�
(u(x)− u(y))(v(x)v(y))

|x − y|N+2s dxdy +
∫

RN\�
βuv dy
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=CN,s
∫

RN\�
v(y)

(∫

�

u(x)− u(y)

|x − y|N+2s dx

)
dy +

∫

RN\�
βuv dy

=
∫

RN\�
v(y)

(
Nsu(y)+ β(y)u(y)

)
dy.

Since v ∈ D(RN \�) was arbitrary, we can deduce that Nsu+ βu = 0 a.e. in
R
N \�.

Next, for a function u ∈ L2(�), we define its extension uR on R
N as follows:

uR(x) :=
⎧
⎨
⎩
u(x) if x ∈ �,

Cn,s

Cn,sρ(x)+ β(x)

∫

�

u(y)

|x − y|n+2s dy if x ∈ R
N \�,

where we recall that ρ(x) is given by (2.3.24). As in the Neumann case, we
have that uR is well-defined for every u ∈ L2(�). It has been shown in [23]
that for every u ∈ W

s,2
� , we have the equality.

N suR(x)+ β(x)uR(x) = 0, x ∈ R
N \�. (2.3.29)

We call (2.3.29) the nonlocal Robin exterior condition.
Now we introduce the realization in L2(�) of (−�)s with the nonlocal Robin
exterior condition. Let

D(Es,R) :=
{
u ∈ L2(�) : uR ∈ W

s,2
� and

∫

RN\�
β(x)u2

R(x) dx <∞
}

and Es,R : D(Es,R)×D(Es,R)→ R given by

Es,R(u, v) =CN,s

2

∫ ∫

R2N\(RN\�)2
(uR(x)− uR(y))(vR(x)− vR(y))

|x − y|N+2s dxdy

+
∫

RN\�
β(x)uR(x)vR(x) dx.

Then Es,R is a closed, symmetric and densely defined bilinear form on L2(�).
The selfadjoint operator (−�)sR associated with Es,R (in the sense of (2.2.8)) is
given by

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

D((−�)sR) =
{
u ∈ L2(�) : uR ∈ W

s,2
β,� : ∃ f ∈ L2(�) such that uR is a

weak solution of (2.3.27) with right hand side f
}
,

(−�)sRu = f.
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It is easy to see that D((−�)sR) ↪→ Ws,2(�). Hence, it follows from
Remark 2.3.3 that D((−�)sR) ↪→ Lq(�) with q as in (2.3.7). We notice
that if β 
= 0 a.e. in R

N \ �, then the form Es,R is in addition coercive.
We mention that as in the Neumann case, since we do not know if weak and
strong solutions of the Robin problem (2.3.27) coincide, we cannot conclude
that (−�)sRu = (−�)suR)|� for every u ∈ D((−�)sR). For more details we
refer to [3, 23].

(d) The regional fractional Laplacian with Dirichlet boundary condition. Let
E�,s,D with D(E�,s,D) := W

s,2
0 (�) be defined by

E�,s,D(u, v) := CN,s

2

∫

�

∫

�

(u(x)− u(y))(v(x)− v(y))

|x − y|N+2s dxdy. (2.3.30)

Let (−�)s�,D be the self-adjoint operator on L2(�) associated with E�,s,D .
Here also an integration by parts argument gives that

D((−�)s�,D) =
{
u ∈ W

s,2
0 (�) : (−�)s�u ∈ L2(�)

}
, (−�)s�,Du = (−�)s�u.

The operator (−�)s�,D is the realization in L2(�) of (−�)s� with the Dirichlet
boundary condition u = 0 on ∂�. It follows from (2.3.6) with q given in (2.3.7)
that E�,s,D satisfies (2.2.9) with μ = N

s
if N > 2s and μ > 2 arbitrary if

N ≤ 2s. Hence, Propositions 2.2.1 and 2.2.2 hold with A = −(−�)s�,D in

which case βA = N
2s if N > 2s and βA > 1 arbitrary if N ≤ 2s. If � is of

class C1,1 and 1
2 < s < 1, then it follows from the results obtained in [39] that

L∞(�) = C0(�).
(e) The regional fractional Laplacian with Neumann boundary conditions.

Assume that� has a Lipschitz continuous boundary. Let 1
2 < s < 1 and E�,s,N

with D(E�,s,N) := Ws,2(�) be given by

E�,s,N(u, v) := CN,s

2

∫

�

∫

�

(u(x)− u(y))(v(x)− v(y))

|x − y|N+2s dxdy. (2.3.31)

Let (−�)s
�,N be the self-adjoint operator on L2(�) associated with E�,s,N. It

has been shown in [35, 62] by using the Green formula (B.0.7) that

⎧
⎨
⎩
D((−�)s

�,N) = {u ∈ Ws,2(�) : (−�)s�u ∈ L2(�) and N2−2su = 0 on ∂�},
(−�)s

�,Nu = (−�)s�u,

where N2−2su denotes the fractional normal derivative of u in the sense
of Definition B.0.7 (see Appendix B below). The operator (−�)s

�,N is the

realization in L2(�) of (−�)s� with the fractional Neumann type boundary
conditions. Using Remark 2.3.3 we get that E�,s,N+ (·, ·)L2(�) satisfies (2.2.9)
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with μ = N
s

if N > 2s and μ > 2 arbitrary if N ≤ 2s. This implies that
Propositions 2.2.1 and 2.2.2 hold with A = −(−�)s

�,N − I in which case

βA = N
2s if N > 2s and βA > 1 arbitrary if N ≤ 2s. We notice that the

assumption that 1
2 < s < 1 is not a restriction. In fact, if 0 < s ≤ 1

2 , since

W
s,2
0 (�) = Ws,2(�) (by Remark 2.3.4), we have that the forms E�,s,D and

E�,s,N given in (2.3.30) and (2.3.31), respectively, coincide. Thus, in this case
Dirichlet and Neumann boundary conditions are the same.

(f) The regional fractional Laplacian with Robin boundary conditions.
Assume that � has a Lipschitz continuous boundary and let β ∈ L∞(∂�)
satisfy β(x) ≥ β0 > 0. Let 1

2 < s < 1 and E�,s,R with D(E�,s,R) := Ws,2(�)

be given by

E�,s,R(u, v) := CN,s

2

∫

�

∫

�

(u(x) − u(y))(v(x) − v(y))

|x − y|N+2s
dxdy +

∫

∂�

β(x)uvdσ.

Let (−�)s�,R be the self-adjoint operator on L2(�) associated with E�,s,R.
Using again the Green formula (B.0.7), it follows from [35] that

⎧
⎪⎪⎨
⎪⎪⎩

D((−�)s�,R) = {u ∈ Ws,2(�) : (−�)s�u ∈ L2(�)

and CsN2−2su+ βu = 0 on ∂�},
(−�)s�,Ru = (−�)s�u,

where Cs is a normalization constant depending only on s (see Appendix B
below). The operator (−�)s�,R is the realization in L2(�) of (−�)s� with the
fractional Robin type boundary conditions. Here also E�,s,R satisfies (2.2.9)
with μ = N

s
if N > 2s and μ > 2 arbitrary if N ≤ 2s and this implies that

Propositions 2.2.1 and 2.2.2 hold with A = −(−�)s�,R in which case βA = N
2s

if N > 2s and βA > 1 arbitrary if N ≤ 2s. As above, here also, the assumption
1
2 < s < 1 is not a restriction.

(g) The regional fractional Laplacian with general Wentzell boundary condi-
tions. Let β, s and � be as in part (e). Let δ ∈ {0, 1} and

W
s,δ,2(�) :=

{
U = (u, u|∂�) : u ∈ Ws,2(�) and δu|∂� ∈ Ws,2(∂�)

}
,

be endowed with the norm

‖u‖
Ws,δ,2(�) =

⎧
⎪⎪⎨
⎪⎪⎩

(
‖u‖2

Ws,2(�)
+ ‖u‖2

Ws,2(∂�)

) 1
2

if δ = 1
(
‖u‖2

Ws,2(�)
+ ‖u‖2

W
s− 1

2 ,2(∂�)

) 1
2

if δ = 0.
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Then

W
s,0,2(�) ↪→ Lq(�)× Lq(∂�), (2.3.32)

with

1 ≤ q ≤ 2(N − 1)

N − 2s
if N > 2s and 1 ≤ q <∞ if N ≤ 2s, (2.3.33)

and

W
s,1,2(�) ↪→ Lq(�)× Lq(∂�), (2.3.34)

with

1 ≤ q ≤ 2N

N − 2s
if N > 2s and 1 ≤ q <∞ if N ≤ 2s. (2.3.35)

Let Es,δ,W with D(Eδ,W ) :=W
s,δ,2(�) be given by

Es,δ,W (U, V ) :=CN,s

2

∫

�

∫

�

(u(x)− u(y))(v(x)− v(y))

|x − y|N+2s
dxdy +

∫

∂�

β(x)uvdσ

+ δ
CN−1,s

2

∫

∂�

∫

∂�

(u(x)− u(y))(v(x)− v(y))

|x − y|N−1+2s
dσxdσy.

Let (−�)sδ,W be the self-adjoint operator on L2(�) × L2(∂�) associated with

Es,δ,W in the sense of (2.2.7). Then (−�)sδ,W is a realization in L2(�)×L2(∂�)

of
(
(−�)s�, δ(−�)s


)
with the generalized Wentzell boundary conditions. Here

by (−�)s
 we mean the operator defined formally for

v ∈ Ls (∂�) :=
{
v : ∂�→ R measurable and

∫

∂�

|v(x)|
(1+ |x|)N−1+2s

dσx <∞
}
,

by

(−�)s
v := CN−1,sP.V.
∫

∂�

v(x)− v(y)

|x − y|N−1+2s
dσy, x ∈ ∂�.

More precisely, we have that

D((−�)sδ,W ) =
{
U = (u, u|
) ∈W

s,δ,2(�) : (−�)s�u ∈ L2(�)

and δ(−�)s
(u|∂�)+ CsN2−2su+ β(u|∂�) ∈ L2(∂�)
}
,
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and

(−�)sδ,WU =
(
(−�)s�u, δ(−�)s
(u|∂�)+ CsN2−2su+ β(u|∂�)

)
.

Using (2.3.32) with q given in (2.3.33) and (2.3.34) with q given in (2.3.35),
we get that Es,0,W and Es,1,W satisfy (2.2.9) with μ = 2(N−1)

2s−1 If N > 2s,

μ > 2 arbitrary if N ≤ 2s, and μ = N
s

if N > 2s, μ > 2 arbitrary if
N ≤ 2s, respectively. We have shown that Propositions 2.2.1 and 2.2.2 hold
with A = −(−�)s0,W in which case βA = N−1

2s−1 if N > 2s, βA > 1 arbitrary if

N ≤ 2s, and with A = −(−�)s1,W in which case βA = N
2s if N > 2s, βA > 1

arbitrary if N ≤ 2s. We refer to [33] for more details on this topic.

For the cases (b), (c), (e), (f) and (g) in Example 2.3.6, there is no regularity result
available in the literature that can be used to characterize the corresponding space
L∞(�) or L∞(�).

We mention that in Example 2.3.6 parts (a) and (d), one may replace the kernel
|x − y|−N−2s by a general symmetric kernel K : RN × R

N → [0,∞) satisfying

C1 ≤ K(x, y)|x − y|N+2s ≤ C2

for a.e. x, y ∈ R
N and for some constants 0 < C1 ≤ C2. In that case our

corresponding operators (2.3.18) and (2.3.19) are given by

Asu(x) = CN,sP.V.
∫

RN

K(x, y)(u(x)− u(y))dy

and

As
�u(x) = CN,sP.V.

∫

�

K(x, y)(u(x)− u(y))dy,

respectively.
Next, we consider some Dirichlet-to-Neumann type operators.

Example 2.3.7 Throughout this example we assume that � ⊂ R
N is a bounded

open set with a Lipschitz continuous boundary ∂�.

(a) The classical Dirichlet-to-Neumann operator. Recall that the operator �D

defined in Example 2.3.5(a) has a compact resolvent and its eigenvalues form
a sequence of real numbers 0 < λD1 ≤ λD2 ≤ · · · ≤ λDn · · · satisfying
limn→∞ λDn = ∞. We denote its spectrum by σ(�D). Let λ ∈ R\σ(�D),
g ∈ L2(∂�) and let u ∈ W 1,2(�) be the weak solution of the Dirichlet problem

−�u = λu in �, u|∂� = g. (2.3.36)
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The classical Dirichlet to Neumann map is the operator D1,λ on L2(∂�) with
domain

D(D1,λ) =
{
g ∈ L2(∂�) : ∃ u ∈ W 1,2(�) solution of (2.3.36)

and ∂νu exists in L2(∂�)
}
,

and given by

D1,λg = ∂νu.

It is well known that one has the following orthogonal decomposition

W 1,2(�) = W
1,2
0 (�)⊕H1,λ(�),

where

H1,λ(�) =
{
u ∈ W 1,2(�), −�u = λu

}
,

and by −�u = λu we mean that

∫

�

∇u · ∇udx = λ

∫

�

uvdx, ∀ v ∈ W
1,2
0 (�).

Let

W
1
2 ,2(∂�) :=

{
u|∂� : u ∈ W 1,2(�)

}

be the trace space. Since λ ∈ R\σ(�D), we have that the trace operator

restricted to H1,λ(�), that is, the mapping u ∈ H1,λ(�) �→ u|∂� ∈ W
1
2 ,2(∂�),

is linear and bijective. Letting

‖u|∂�‖
W

1
2 ,2(∂�)

= ‖u‖H1,λ
(�)

,

thenW
1
2 ,2(∂�) becomes a Hilbert space. By the closed graph theorem, different

choice of λ ∈ R\σ(�D) leads to an equivalent norm on W
1
2 ,2(∂�). Moreover,

we have that W
1
2 ,2(∂�)

c
↪→ L2(∂�) and W

1
2 ,2(∂�)

d
↪→ L2(∂�). In addition

we have the continuous embedding

W
1
2 ,2(∂�) ↪→ Lq(∂�) (2.3.37)
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with

1 ≤ q ≤ 2(N − 1)

N − 2
if N > 2 and 1 ≤ q <∞ if N ≤ 2. (2.3.38)

It has been shown in [7] that D1,λ is the self-adjoint operator on L2(∂�)

associated with the bilinear, symmetric and continuous form E1,λ with domain

W
1
2 ,2(∂�) given by

E1,λ(ϕ,ψ) =
∫

�

∇u · ∇vdx − λ

∫

�

uvdx,

where ϕ,ψ ∈ W
1
2 ,2(∂�) and u, v ∈ H1,λ(�) are such that u|∂� = ϕ and

v|∂� = ψ . The operator −D1,λ generates a strongly continuous and analytic
semigroup on L2(∂�) which is also submarkovian if λ ≤ 0. If λ < 0 we also
have that E1,λ is coercive. In that case (by using (2.3.37) and (2.3.38)) we get
that E1,λ satisfies (2.2.9) with X = ∂� and the constant μ = 2(N−1) if N > 2
and μ > 2 arbitrary if N ≤ 2. Hence, Propositions 2.2.1 and 2.2.2 hold with
A = −D1,λ in which case βA = N−1 if N > 2 and βA > 1 arbitrary if N ≤ 2.
In addition we have that L∞(∂�) = C(∂�). We refer to [7, 8, 12] and their
references for more details on this topic.

(b) The fractional Dirichlet-to-Neumann operator. Let 1
2 < s < 1. We notice

that the operator (−�)s�,D defined in Example 2.3.6(b) has a compact resolvent

and its eigenvalues form a sequence of real numbers 0 < λ
s,D
1 ≤ λ

s,D
2 ≤

· · · ≤ λ
s,D
n · · · satisfying limn→∞ λ

s,D
n = ∞. We denote its spectrum by

σ((−�)s�,D). Let λ ∈ R \ σ((−�)s�,D) be a real number, g ∈ L2(∂�) and

let u ∈ Ws,2(�) be the weak solution of the following Dirichlet problem

(−�)s�u = λu in �, u|∂� = g. (2.3.39)

The fractional Dirichlet-to-Neumann map is the operator Ds,λ on L2(∂�) with
domain

D(Ds,λ) =
{
g ∈ L2(∂�) : ∃ u ∈ Ws,2(�) solution of (2.3.39)

and N2−2su exists in L2(∂�)
}
,

and given by

Ds,λg = CsN2−2su,
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where Cs is a normalized constant depending only on s (see Appendix B). One
has the following orthogonal decomposition

Ws,2(�) = W
s,2
0 (�)⊕Hs,λ(�),

where

Hs,λ(�) =
{
u ∈ Ws,2(�), (−�)s�u = λu

}
,

and by (−�)s�u = λu we mean that

CN,s

2

∫

�

∫

�

(u(x)− u(y))(v(x)− v(y))

|x − y|N+2s dxy = λ

∫

�

uvdx, ∀ v ∈ W
s,2
0 (�).

Let

Ws− 1
2 ,2(∂�) :=

{
u|∂�, u ∈ Ws,2(�)

}

be the trace space. Since λ ∈ R\σ((−�)s�,D), we have that the trace

operator restricted to Hs,λ(�), that is, the mapping u ∈ Hs,λ(�) �→ u|∂� ∈
Ws− 1

2 ,2(∂�), is linear and bijective. Letting

‖u|∂�‖
W

s− 1
2 ,2(∂�)

= ‖u‖Hs,λ
(�)

,

then Ws− 1
2 ,2(∂�) becomes a Hilbert space. By the closed graph theorem,

different choice of λ ∈ R\σ((−�)s�,D) leads to an equivalent norm on

Ws− 1
2 ,2(∂�). Moreover, Ws− 1

2 ,2(∂�)
d
↪→ L2(∂�) and one has the continuous

embedding

Ws− 1
2 ,2(∂�) ↪→ Lq(∂�) (2.3.40)

with

1 ≤ q ≤ 2(N − 1)

N − 2s
if N > 2s and 1 ≤ q <∞ if N ≤ 2s. (2.3.41)

By [62], Ds,λ is the self-adjoint operator associated with the closed and

symmetric form Es,λ with domain Ws− 1
2 ,2(∂�) and given by

Es,λ(ϕ,ψ) = CN,s

2

∫

�

∫

�

(u(x)− u(y))(v(x)− v(y))

|x − y|N+2s dxdy − λ

∫

�

uvdx,
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where ϕ,ψ ∈ Ws− 1
2 ,2(∂�) and u, v ∈ Hs,λ(�) are such that u|∂� = ϕ and

v|∂� = ψ , and the operator−Ds,λ generates a strongly continuous and analytic
semigroup on L2(∂�) which is also submarkovian if λ ≤ 0. If λ < 0, then Es,λ
is also coercive. In that case we have that Es,λ satisfies (2.2.9) with X = ∂�

and the constant μ = 2(N−1)
2s−1 if N > 2s and μ > 2 arbitrary if N ≤ 2s. This

implies that Propositions 2.2.1 and 2.2.2 hold with A = −Ds,λ in which case
βA = N−1

2s−1 if N > 2s and βA > 1 arbitrary if N ≤ 2s. There is no regularity
results available in the literature that can help to characterize the spaceL∞(∂�).
We refer to [62, 65] for more details on this topic.

We conclude this section by considering fractional powers of operators. Before
giving some concrete examples we introduce a general abstract theory. Let V and

H be Hilbert spaces such that V
d
↪→ H . Recall that in that case we have the Gelfand

triple

V
d
↪→ H

d
↪→ V �.

Let E : V × V → R be a symmetric, bilinear, continuous and coercive form. Let
A : V → V � be the operator given by 〈Au, v〉V �,V = E(u, v) for all u, v ∈ V .

Next we consider functions defined from (0,∞) into X where X = V , H or V �.

In general if X and Y are Hilbert spaces such that X
d
↪→ Y and 0 < s <1, we define

the space

Ws(X,Y ) :=
{
U ∈ L1

loc((0,∞);Y) : U′ ∈ L1
loc((0,∞);X),

(
t �→ t sU(t)

)
∈ L2

(
(0,∞);Y, dt

t

)
and

(
t �→ t sU′(t)

)
∈ L2

(
(0,∞);X, dt

t

)}
.

In order to avoid clutter we write ts for the function t �→ ts . It is clear thatWs(X, Y )

endowed with the norm

‖U‖Ws(X,Y ) =
( ∫ ∞

0

(
‖U(t)‖2

Y + ‖U′(t)‖2
X

)
t2s−1dt

) 1
2

is a Hilbert space.
An s-harmonic function with respect to E is a function U ∈ W1−s(H, V ) such

that t1−2sU′ ∈ Ws(V
�,H) and

−
(
t1−2sU′)′ + t1−2sAU = 0 in V� for a.e. t ∈ (0,∞). (2.3.42)

We notice that (2.3.42) is equivalent to the following equation

U′′(t)+ 1− 2s

t
U′(t)−AU(t) = 0, t ∈ (0,∞).
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It has been shown in [13, Theorem 3.4], that given u ∈ [H,V ]s (the complex
interpolation space), there exists a unique s-harmonic function U such that U(0) =
u. In addition, given v ∈ [V �,H ]1−s = ([H,V ]s )�, there exists a unique s-
harmonic function U such that − limt↓0 t

1−2sU′(t) = v. Now define the operator
Ds : [H,V ]s → ([H,V ]s)� as follows. Let u ∈ [H,V ]s and let U be the
unique s-harmonic function satisfying U(0) = u. Then we set Dsu = v where
v := − limt↓0 t

1−2sU′(t) in V �. We call Ds the Dirichlet-to-Neumann operator
with respect to E. Notice that

[H,V ]s d
↪→ H

d
↪→ ([H,V ]s)�.

Now let Ds be the part of the operator Ds in H , that is,

D(Ds) =
{
u ∈ [H,V ]s : Dsu ∈ H

}
, Dsu = Dsu.

Let also A be the part of the operator A in H and denote by A
s the fractional power

of A. By [13, Theorem 4.1] we have that csDs = A
s where cs := 22s−1 
(s)


(1−s) . In
addition the operator−As generates a strongly continuous semigroup on H .

In the case where H = L2(RN), V = W 1,2(RN),

E(u, v) =
∫

RN

∇u · ∇vdx,

that is A = −� (the Laplace operator on the whole space R
N ), the above

construction of As is known as the Caffarelli-Silvestre extension [20] and in that
case one has that As = (−�)s . The extension of this construction to the case where
A is a self-adjoint operator with compact resolvent has been done first by Stinga and
Torrea [58] and later by several other authors. The description given above is taken
from [13] where general operators associated to sesquilinear and continuous (both
coercive and non-coercive) forms have been considered.

Next, assume that H = L2(X), Hs(X) := [L2(X), V ]s (the complex interpola-
tion space) and that the strongly continuous semigroup generated by the associated
operator −As is submarkovian and ultracontractive. The latter is equivalent to the
continuous embedding Hs(X) := [L2(X), V ]s ↪→ Lq(X) for some q > 2. Then
our Propositions (2.2.1) and (2.2.2) hold in this abstract setting. Now we give some
concrete examples.

Example 2.3.8 Throughout this example we assume that � ⊂ R
N is a bounded

open set with Lipschitz continuous boundary ∂�.

(a) The spectral fractional Dirichlet operator. Let L be the uniformly elliptic
operator introduced in (2.3.17). Let EL,D with D(EL,D) = W

1,2
0 (�) be given

by

EL,D(u, v) =
N∑

i,j=1

∫

�

aij (x)DiuDjvdx.
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Let LD be the self-adjoint operator associated with EL,D and denote by

(e−tLD)t≥0 the strongly continuous semigroup generated by −LD . Since LD

has a compact resolvent (this follows from the compact embeddingW 1,2
0 (�)

c
↪→

L2(�)) and EL,D is coercive, we have that its eigenvalues form a non-
decreasing sequence 0 < λD1 ≤ λD2 ≤ · · · ≤ λDn ≤ · · · of real numbers
satisfying limn→∞ λDn = ∞. We denote by ϕDn the orthonormal eigenfunction
associated with λDn .

For any s ≥ 0, we also introduce the following fractional order Sobolev
space:

H
s
0(�) :=

{
u =

∞∑
n=1

unϕ
D
n ∈ L2(�) : ‖u‖2

H
s
0(�)

:=
∞∑
n=1

(λDn )
su2

n <∞
}
,

where un = (u, ϕDn )L2(�) =
∫

�

uϕDn dx. If 0 < s < 1, then

H
s
0(�) =

⎧
⎪⎪⎨
⎪⎪⎩

Ws,2(�) = W
s,2
0 (�) if 0 < s < 1

2 ,

W
1
2 ,2

00 (�) if s = 1
2 ,

W
s,2
0 (�) if 1

2 < s < 1,

(2.3.43)

where

W
1
2 ,2

00 (�) :=
{
u ∈ W

1
2 ,2(�) :

∫

�

|u(x)|2
(dist(x, ∂�))2

dx <∞
}
.

In fact we have that

H
s
0(�) =

[
W

1,2
0 (�),L2(�)

]
1−s .

It follows from (2.3.43) that (2.3.6) holds with Ws,2
0 (�) replaced by H

s
0(�).

Let 0 < s < 1 and let (LD)
s denote the fractional s-power of the

operatorLD . We describe three different ways to define (LD)
s . But all the three

definitions coincide.

(i) The spectral fractional s power of LD is defined on the space Hs
0(�) by

(LD)
su :=

∞∑
n=1

(λDn )
sunϕ

D
n with un =

∫

�

uϕDn dx.
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(ii) The operator (LD)
s can be also defined by using the semigroup

(e−tLD)t≥0 as follows: for u ∈ H
s
0(�) we set

(LD)
su(x) = 1


(−s)
∫ ∞

0

(
e−tLDu(x)− u(x)

) dt

t1+s
, (2.3.44)

where 
(1 − s) = −s
(−s).
(iii) Finally we have that (LD)

s = csDs whereDs is the Dirichlet-to-Neumann
operator associated with EL,D, as constructed before the beginning of this
example.

The operator (LD)
s is unbounded, densely defined and with bounded inverse

(LD)
−s in L2(�). But it can also be viewed as a bounded operator from H

s
0(�)

into its dual (Hs
0(�))

�. The following integral representation of (LD)
s given in

[21, Theorem 2.3] will be useful. For every u, v ∈ H
s
0(�), we have that

〈(LD)
su, v〉(Hs

0(�))
�,Hs

0(�)
=
∫

�

∫

�

(
u(x)− u(y)

)(
v(x)− v(y)

)
Ks(x, y)dxdy

+
∫

�

κs(x)u(x)v(x)dx, (2.3.45)

where

0 ≤ Ks(x, y) := s


(1− s)

∫ ∞

0

WD
� (t, x, y)

t1+s
dt, x, y ∈ �,

and

0 ≤ κs(x) = s


(1− s)

∫ ∞

0

(
1− e−tLD1(x)

) dt

t1+s
, x ∈ �.

Here, WD
� is the heat kernel associated to the semigroup (e−tLD)t≥0, that is,

WD
� (t, x, y) =

∞∑
n=1

e−tλDn ϕDn (x)ϕDn (y), t > 0, x, y ∈ �.

We mention that even if in the case ai,j = δij , that is, L = −�, the operator
(LD)

s is different from the operators (−�)sD and (−�)s�,D introduced in
Example 2.3.6 (a) and (d), respectively. For more details on this topic we refer
to [57] and their references.
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Firstly, we notice that it follows from (2.3.45) that (LD)
s is associated with the

closed, bilinear, symmetric, continuous and coercive form EsD with D(EsD) =
H
s
0(�) and given by

EsD(u, v) =
∫

�

∫

�

(
u(x)− u(y)

)(
v(x)− v(y)

)
Ks(x, y) dxdy

+
∫

�

κs(x)u(x)v(x)dx.

Secondly, let u ∈ H
s
0(�). Proceeding as in [63, Lemma 2.7] we get that

u+, u− ∈ H
s
0(�) and EsD(u+, u−) ≤ 0. This shows that the semigroup

(e−t (LD)
s
)t≥0 generated by the operator −(LD)

s is positive. Let 0 ≤ u ∈
H
s
0(�). Using [63, Lemma 2.7] again we get that u ∧ 1 ∈ H

s
0(�) and

EsD(u ∧ 1, u ∧ 1) ≤ EsD(u, u). By Remark 2.2.6(ii) (see also e.g. [32, p.5])
this implies that the semigroup is submarkovian.
Thirdly, since H

s
0(�) satisfies the embedding (2.3.6) with q given by (2.3.7),

we have that the semigroup is ultracontractive.
In summary, we have shown that EsD satisfies (2.2.9) with μ = N

s
if N > 2s

and μ > 2 arbitrary if N ≤ 2s. Hence, Propositions 2.2.1 and 2.2.2 hold with
A = −(LD)

s in which case βA = N
2s if N > 2s and βA > 1 arbitrary if

N ≤ 2s. In addition one can show that L∞(�) = C0(�).
(b) The spectral fractional Neumann operator. Let L be as in (2.3.17) and let

b ∈ L∞(�) be such that there exists a constant b0 satisfying b(x) ≥ b0 > 0 a.e.
on �. Let EL,N with D(EL,N) = W 1,2(�) be given by

EL,N(u, v) =
N∑

i,j=1

∫

�

aij (x)DiuDjvdx +
∫

�

b(x)uvdx.

Let LN be the self-adjoint operator associated with EL,N and denote by

(e
−tLN)t≥0 the strongly continuous semigroup generated by−LN. Since LN

has a compact resolvent (this follows from the compact embeddingW 1,2(�)
c
↪→

L2(�)) and the form is coercive, it follows that its eigenvalues form a non-

decreasing sequence 0 < λN1 ≤ λN2 ≤ · · · ≤ λNn ≤ · · · of real numbers

satisfying limn→∞ λNn = ∞. Denoting by ϕNn the orthonormal eigenfunction

associated with λNn , then for 0 < s < 1, the fractional s power (LN)s of
the operator LN can be defined exactly as in parts (i), (ii) or (iii) above. In
addition one also has the corresponding representation (2.3.45). Proceeding as
in part (a) we get that Propositions 2.2.1 and 2.2.2 hold with A = −(LN)s in
which case βA = N

2s if N > 2s and βA > 1 arbitrary if N ≤ 2s. In addition
L∞(�) = C(�).



58 2 The Functional Framework

(c) The spectral fractional Robin operator. Let L be as in (2.3.17) and let β ∈
L∞(∂�) satisfy β(x) ≥ β0 > 0 σ -a.e. on ∂�, for some constant β0. Let EL,R
with D(EL,R) = W 1,2(�) be given by

EL,R(u, v) =
N∑

i,j=1

∫

�

aij (x)DiuDjvdx +
∫

∂�

β(x)uvdσ.

Let LR be the self-adjoint operator associated with EL,R and denote by

(e−tLR )t≥0 the strongly continuous semigroup generated by −LR . Since LR

has a compact resolvent (this follows from the compact embeddingW 1,2(�)
c
↪→

L2(�)) and the form is coercive, we have that its eigenvalues form a non-
decreasing sequence 0 < λR1 ≤ λR2 ≤ · · · ≤ λRn ≤ · · · of real numbers
satisfying limn→∞ λRn = ∞. Denote by ϕRn the orthonormal eigenfunction
associated with λRn . Then for 0 < s < 1, we define the fractional s power
(LR)

s of LR as in parts (i), (ii) or (iii) above. In addition one also has the
corresponding representation (2.3.45). Here also, proceeding as in part (a) we
get that Propositions 2.2.1 and 2.2.2 hold with A = −(LR)

s in which case
βA = N

2s if N > 2s and βA > 1 arbitrary if N ≤ 2s. In addition we have that
L∞(�) = C(�).

We conclude this section with the following remark.

Remark 2.3.9 We mention the following facts.

(a) In our definition of the ultracontractivity, we have assumed that the esti-
mate (2.2.3) holds for every t > 0. Usually if the estimate also holds for all
0 < t ≤ 1, or more precisely,

‖S(t)‖L(Lp(X),Lq(X)) ≤ C(t ∧ 1)
−βA

(
1
p− 1

q

)
, ∀ t > 0, (2.3.46)

then the semigroup is also ultracontractive. As we have seen in Theorem 2.2.5,
the estimate (2.2.3) implies that the associated bilinear form is in particular
coercive. Instead, (2.3.46) does not requires the form to be coercive.

(b) In all the above examples the bilinear forms associated with the considered
operators are coercive. This is due to the fact that we would like to have the
estimate (2.2.3). But we notice that this is not a restriction. Recall that we would
like to investigate the existence and regularity of solutions to the system (1.0.1).
If the bilinear form associated with the operatorA is not coercive, then we write
our system as

{
∂αt u = Au− u+ f (x, t, u)+ u = Ãu+ f̃ (x, t, u) in X× (0, T ],
u (·, 0) = u0 in X,
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for some given T > 0, where Ãu = Au− u and f̃ (x, t, u) = f (x, t, u)+ u. In
that case the bilinear form associated with the operator Ã will be coercive and
our new nonlinearity f̃ will also satisfy the same assumptions as f .

From the above observations one can also consider that the semigroup S satisfies
the estimate (2.3.46) which is more general than (2.2.3). Also in all the above
Neumann type boundary conditions one does not need to consider a perturbation
of the classical operator with the identity mapping.
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Chapter 3
The Semilinear Parabolic Problem

In the present chapter, we rely on the crucial results of Chap. 2 to develop well-
posedness results in the same spirit of Rothe [22] where second order elliptic
operators in divergence form have been considered for the classical parabolic
problem (α = 1). In fact, we aim to extend parts of the theory in [22] not only to the
case α ∈ (0, 1) but also by considering a larger class of operatorsA, beyond the case
of second order elliptic operators, as well as to impose more general assumptions
on the nonlinearity.

3.1 Maximal Mild Solution Theory

To this end, we need to introduce some further notations and basic definitions. Let
T > 0 be fixed but otherwise arbitrary, p ∈ [1,∞] and δ ∈ [0,∞). We begin with
defining the Banach space

Ep,δ,T :=
{
u : X× (0, T ] → R measurable and u (·, t) ∈ Lp (X) for a.e t ∈ (0, T ]

and ‖u‖Ep,δ,T
= |||u|||p,δ,T := sup

t∈(0,T ]
(t ∧ 1)δ ‖u (·, t)‖Lp(X) <∞

}
.

We also introduce the Banach space

Lp1,p2,T :=
{
u : X× (0, T ] → R measurable, ‖u‖Lp1,p2,T

= ‖u‖p1,p2,T <∞
}
,
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where

‖u‖p1,p2,T = sup
t1,t2∈[0,T ],0≤t2−t1≤1

(∫ t2

t1

‖u(·, τ )‖p2

Lp1
(X) dτ

) 1
p2
,

for p1, p2 ∈ [1,∞), with the obvious modifications when p1 = p2 = ∞. Also
denote

Lp1,p2 = Lp1,p2,∞ and ‖·‖p1,p2
= ‖·‖p1,p2,∞ .

In this case, for u ∈ D (A) we can conveniently rewrite problem (1.0.1) as
follows:

∂αt u = Au+ f (x, t, u) in X× (0, T ], u (·, 0) = u0 in X. (3.1.1)

Our main goal in this section is to state sufficiently general conditions on f for
which we can infer the existence of properly-defined solutions for (3.1.1). Once
again, let T ∈ (0,∞) and denote by I a time interval of the form [0, T ] , [0, T ) or
[0,∞).

Definition 3.1.1 By a mild solution of (3.1.1) on the interval I , we mean that the
measurable function u has the following properties:

(a) u (·, t) ∈ L1 (X), for all t ∈ I\ {0} .
(b) f (·, t, u (·, t)) ∈ L1 (X) , for almost all t ∈ I\ {0} .
(c)

∫ t

0
‖f (·, τ, u (·, τ ))‖L1

(X) dτ <∞, for all t ∈ I.

(d) u (·, t) = Sα (t) u0 +
∫ t

0
Pα (t − τ ) f (·, τ, u (·, τ )) dτ, for all t ∈ I\ {0} ,

where the integral is an absolutely converging Bochner integral in the space
L1 (X) .

(e) The initial datum u0 is assumed in the following sense:

lim
t→0+

‖u (·, t)− u0‖Lp0
(X) = 0,

for u0 ∈ Lp0 (X) , if p0 ∈ [1,∞), and u0 ∈ L∞(X) := D(A∞)
L∞(X)

if
p0 =∞.

For simpler notation we define the functions

u (t) : x ∈ X �→ u (t) (x) = u (x, t) ∈ R

and

f̃ (t, u (t)) : x ∈ X �→ f̃ (t, u (t)) (x) = f (x, t, u (x, t)) ∈ R;



3.1 Maximal Mild Solution Theory 65

denote the superposition operator

f̃ : (t, v) ∈ [0,∞)× L1 (X) �→ f̃ (t, v) = f (·, t, v (·)) ∈ L1 (X)

on its natural domain of definition provided that the L1 (X)-norm of f (·, t, v (·)) is
finite. Thus, after dropping the “∼”, condition (d) can be written more simply as

u (t) = Sα (t) u0 +
∫ t

0
Pα (t − τ ) f (τ, u (τ )) dτ. (3.1.2)

Of course, in the case α = 1, both operators Sα (t) , Pα (t) in (3.1.2) are simply
replaced by the semigroup S (t) .

Remark 3.1.2 We recall that both operators Sα, S are strongly continuous on
Lp0 (X) , if p0 ∈ [1,∞); the semigroup S (t) is not strongly continuous on L∞(X).
However, by definition we also have that S is strongly continuous on L∞(X). For
simplicity of notation, in what follows for p0 ∈ [1,∞], we also denote

Lp0(X) = Lp0(X) if p0 ∈ [1,∞).

Thus for every p0 ∈ [1,∞] and u0 ∈ Lp0(X), we have

lim
t→0+

‖Sα (t) u0 − u0‖Lp0
(X) = 0.

We observe that condition (e) of Definition 3.1.1 holds if and only if

lim
t→0+

‖Sα (t) u0 − u (·, t)‖Lp0
(X) = 0. (3.1.3)

However, in view of this remark (3.1.3), we can introduce a more general version
of mild solutions in the case when u0 ∈ L∞ (X) . The difference between the
following mild solution and the one introduced above in Definition 3.1.1 is only
in what sense the initial datum is satisfied.

Definition 3.1.3 Let u0 ∈ L∞ (X) . If a mild solution satisfies all conditions (a)–
(d) of Definition 3.1.1, and (e) is replaced by (3.1.3) in the case p0 = ∞, then we
call this solution a quasi-mild solution on the interval I . In other words, the initial
datum u0 for the nonlinear problem (3.1.1) is assumed to be “as good as” for the
corresponding linear problem with f ≡ 0.

We aim to establish the existence of locally defined mild solutions under some
suitable assumptions on the nonlinear function f . Let γ ∈ [1,∞), q1, q2 ∈ [1,∞]
and a function c = c (x, t) ≥ 0 such that c ∈ Lq1,q2 . These assumptions are as
follows.
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(F1) f (x, t, ·) : R→ R is a measurable function such that

|f (x, t, ξ)| ≤ c (x, t) (1+ |ξ |)γ , for all ξ ∈ R, a.e. (x, t) ∈ X× (0,∞) .

(F2) For all ξ, η ∈ R, assume the local Lipschitz condition

|f (x, t, ξ)−f (x, t, η)| ≤ c (x, t) (1+ |ξ | + |η|)γ−1 |ξ − η| , a.e. (x, t)∈X×(0,∞) .

(F3) There exists a positive increasing function Q : R+ → R+ such that

|f (x, t, ξ)| ≤ c (x, t)Q (|ξ |) , for all ξ ∈ R, a.e. (x, t) ∈ X× (0,∞) .

(F4) For all ξ, η ∈ R, assume the local Lipschitz condition

|f (x, t, ξ)− f (x, t, η)| ≤ c (x, t)Q (|ξ | + |η|) |ξ − η| , a.e. (x, t) ∈ X× (0,∞) .

We notice that conditions (F3) and (F4) are more general alternatives to (F1)
and (F2), respectively, since precise growth conditions (as |ξ | , |η| → ∞) are not
imposed for the nonlinearity f . Our main assumption on the operator A is the
following.

(HA) The closed operator A generates a strongly continuous semigroup (S (t))t≥0
on L2(X) that satisfies all the assumptions of Propositions 2.2.1 and 2.2.2.

In particular, assumption (HA) implies all the estimates of (2.2.12); these
estimates become crucial in our subsequent analysis. We employ a contraction
argument in the Banach space Ep,δ,T , p ∈ [1,∞], p ≥ p0, (with a singularity
at t = 0) to construct a solution u locally in time. In what follows, let βA be the
constant mentioned in Proposition 2.2.2 and set

n := βAα > 0, where βA > 1, 0 < α ≤ 1. (3.1.4)

Our first result is concerned with the existence of locally defined mild solutions
under suitable assumptions on the parameters p0, γ , q1 and q2.

Theorem 3.1.4 (Local Existence) Assume (HA) and either one of the following.

(a) Assume (F1)–(F2) for some γ ∈ [1,∞), q1 ∈ [1,∞]∩(βA,∞], q2 ∈ (1/α,∞]
and let u0 ∈ Lp0 (X) , for some p0 ∈ [1,∞) such that

n

q1
+ 1

q2
+ (γ − 1)

n

p0
< α.

(b) Assume (F3)–(F4) for some q1 ∈ [1,∞] ∩ (βA,∞], q2 ∈ (1/α,∞] such that

n

q1
+ 1

q2
< α

and let u0 ∈ L∞ (X) ⊂ L∞ (X) .
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(c) Assume (F1)–(F2) for some γ ∈ (1,∞), q1 ∈ [1,∞]∩(βA,∞], q2 ∈ (1/α,∞]
and let u0 ∈ Lp0 (X) , for some p0 ∈ (1,∞), satisfy

n

q1
+ 1

q2
+ (γ − 1)

n

p0
= α.

Then there exists a time T > 0 (depending on u0) such that the initial value
problem (3.1.1) has a unique mild solution in the sense of Definition 3.1.1 on the
interval [0, T ] .

The assertions of Theorem 3.1.4 will follow after we prove the following three
lemmas.

Lemma 3.1.5 Assume that hypothesis (a) of Theorem 3.1.4 is satisfied. Then the
assertion of Theorem 3.1.4 holds. Furthermore, u ∈ Ep,δ,T , for some p ≥ p0 and
u is unique in this space.

Proof The proof is developed using the crucial ultracontractivity estimates of
Proposition 2.2.2 (see also (2.2.12)). In this proof and elsewhere, the constantC > 0
is independent of the times t, τ, T . We shall explicitly state its further dependence
on other parameters whenever necessary. Let now p ∈ [1,∞] such that p ≥ p0
with q1 ∈ [1,∞] ∩ (βA,∞], q2 ∈ (1/α,∞], γ ∈ [1,∞) satisfy

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

q1
+ γ

p
≤ 1,

1

q2
+ γ δ < 1,

1

q2
+ n

q1
+ (γ − 1) (δ + n

p
)+ ε < α,

0 ≤ δ := n

p0
− n

p
< α,

(3.1.5)

for a sufficiently small ε > 0. We note that if p0 ≥ max (βA, 1) we automatically
have δ ∈ [0, α), for arbitrary p ∈ [p0,∞] while for p0 < βA this holds provided
that p0 ≤ p < p0/ (1− p0/βA). Having the restriction δ ∈ [0, α) is required
only in the case α ∈ (0, 1) due to (2.2.12). When α = 1, such a restriction can
be eliminated and we require instead that δ ≥ 0. The conditions (3.1.5) are then
sought for such p. We also remark that the third condition of (3.1.5) is an immediate
consequence of the main condition in the statement of the theorem (see part (a), from
which we can infer the existence of such a small ε). The proof exploits a Picard
iteration argument. To this end, let T ∈ (0, 1) and fix an element u1 ∈ Ep,δ,T which
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is otherwise arbitrary. We define a sequence

um+1 (·, t) = Sα (t) u0 +
∫ t

0
Pα (t − τ ) f (τ, um (·, τ )) dτ, t ∈ (0, T ], (3.1.6)

for all m ∈ N. We first show by induction that um ∈ Ep,δ,T , for all m ∈ N. To this
end, let s1 ∈ [1,∞] be such that

1

q1
+ γ

p
≤ 1

s1
and

n

s1
+ 1

q2
+ (γ − 1) δ + ε < α + n

p
, (3.1.7)

and suppose that um ∈ Ep,δ,T is already known. The bound (F1) and the Hölder
inequality with exponents (s1, s1/ (s1 − 1)) yield

(t ∧ 1)δ ‖um+1 (·, t)‖Lp(X) (3.1.8)

≤ (t ∧ 1)δ ‖Sα (t) u0‖Lp(X) + (t ∧ 1)δ
∫ t

0
‖Pα (t − τ)‖p,s1

‖f (τ, um (·, τ))‖Ls1 (X) dτ

≤ (t ∧ 1)δ ‖Sα (t)‖p,p0
‖u0‖Lp0

(X)

+ (t ∧ 1)δ
∫ t

0
‖Pα (t − τ)‖p,s1

‖c (·, τ)‖Lq1
(X) (τ ∧ 1)−γ δ ×

×
[
(τ ∧ 1)δ

(
‖1+ |um(·, τ)|‖Lp(X)

)]γ
dτ,

where we have also used that q1 ≥ s1 and p ≥ γ s1. The first term on the right-hand
side of (3.1.8) can be estimated owing to (2.2.12) for p ≥ p0 and the definition
of δ = n/p0 − n/p, n := βAα. For the second term we apply Lemma A.0.1 (see
Appendix) with r (τ ) ≡ ‖c (·, τ )‖Lq1

(X) (note that ps2 (r) = ‖c‖q1,q2
), θ := γ δ

and s2 = q2 ∈ (1/α,∞], whose assumptions are satisfied, owing to (3.1.5)–(3.1.7),
since

1

q2
+ γ δ < 1,

1

q2
+ γ δ + ε ≤ α + δ

and

n

s1
− n

p
+ 1− α < 1− 1

q2
,

n

s1
+ 1

q2
+ γ δ + ε < α + n

p
+ δ.

In the space Ep,δ,T , from (3.1.8) and using (2.2.12) we get

|||um+1|||p,δ,T (3.1.9)

≤C ‖u0‖Lp0
(X)

+ sup
t∈(0,T ]

[
(t ∧ 1)δ

∫ t

0
‖Pα (t − τ )‖p,s1 (τ ∧ 1)−γ δ ‖c (·, τ )‖Lq1

(X) dτ
]
×
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× |||1+ |um||||γp,δ,T
≤C

(
‖u0‖Lp0

(X) + (T ∧ 1)ε ‖c‖q1,q2
|||1+ |um||||γp,δ,T

)
,

for some constant C > 0 independent of t and um, u0. Henceforth, um+1 ∈ Ep,δ,T

and the claim is proved. Analogously, exploiting the Lipschitz condition (F2), the
Hölder inequality together with the application of Lemma A.0.1 as above, we also
find the uniform estimate

|||um+1 − um|||p,δ,T (3.1.10)

≤ C (T ∧ 1)ε ‖c‖q1,q2
|||1+ |um| + |um−1||||γ−1

p,δ,T |||um − um−1|||p,δ,T ,

for all m ≥ 2 and T ∈ (0, 1). Define U := |||u1|||p,δ,T + 2 |||u2 − u1|||p,δ,T and
choose a small enough time T∗ ∈ (0, 1] such that

C (T∗ ∧ 1)ε (1+ 2U)γ−1 ≤ 1

2
. (3.1.11)

By induction, it follows from (3.1.10) and (3.1.11) that

{ |||um|||p,δ,T∗ ≤ U, for all m ≥ 1,
|||um+1 − um|||p,δ,T∗ ≤ 1

2 |||um − um−1|||p,δ,T∗ , for all m ≥ 2.
(3.1.12)

Thus, by iteration in (3.1.12), the sequence {um}m∈N is Cauchy in the Banach space
Ep,δ,T∗ . Thus, it has a limit u ∈ Ep,δ,T∗ such that

lim
m→∞ |||um − u|||p,δ,T∗ = 0. (3.1.13)

It now remains to show that the limit u has all the required properties of Defi-
nition 3.1.1, (a)–(e) on the time interval [0, T∗] . Property (a) is immediate since
u ∈ Ep,δ,T∗ . By ignoring the factor ‖Pα (t − s)‖p,s1

in (3.1.9), (b) and (c) follow
from the estimate

‖f ‖1,1,T∗ ≤
∫ T∗

0
‖f (τ, u (·, τ ))‖Ls1 (X) dτ (3.1.14)

≤
∫ T∗

0
(τ ∧ 1)−γ δ ‖c (·, τ )‖Lq1

(X)
[
(τ ∧ 1)δ ‖1+ |u (·, τ )|‖Lp(X)

]γ
dτ

≤ C (q2)

1− γ δ − 1
q2

(T∗)
1−γ δ− 1

q2 ‖c‖q1,q2
|||1+ |u||||γp,δ,T∗ ,

owing to the bound (F1), the Hölder inequality, the fact that 0 < T∗ ≤ 1 and
0 < 1

q2
+ γ δ < 1. Similar reasoning, using the Lipschitz bound (F2), the properties
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of Pα(t) and the Hölder inequality once more, yields for all t ∈ (0, T∗],
∥∥∥∥
∫ t

0
Pα (t − τ )

(
f (τ, um (·, τ ))− f (τ, u (·, τ ))

)
dτ

∥∥∥∥
L1

(X) (3.1.15)

≤
∫ t

0
‖f (τ, um (·, τ ))− f (u (·, τ ))‖Ls1 (X) dτ

≤
∫ t

0
(τ ∧ 1)−γ δ ‖c (·, τ )‖Lq1

(X) dτ |||1+ |um| + |u||||γ−1
p,δ,T∗ |||um − u|||p,δ,T∗

≤ C (q2)

1− γ δ − 1
q2

(T∗)
1−γ δ− 1

q2 ‖c‖q1,q2
|||1+ |um| + |u||||γ−1

p,δ,T∗ |||um − u|||p,δ,T∗

which converges to zero as m → ∞, by (3.1.13). Both (3.1.13) and (3.1.15) allow
us to take the limit in L1 (X)-norm as m → ∞ in the integral equation (3.1.6) in
order to deduce the integral equation in Definition 3.1.1, (d). For the last property
(e), by Remark 3.1.2 it suffices to check that

lim
t→0+

‖u (·, t)− Sα(t)u0‖Lp0
(X) = 0.

To this end, let s0 ∈ [1,∞) be such that

1

q2
+ γ δ ≤ 1

s0
and

n

s0
+ 1

q2
+ γ δ + ε < α + n

p0
,

for some ε ∈ (0, α−1/q2]. The subsequent computation is similar to (3.1.9) but now
we apply the statement of Lemma A.0.1 (see Appendix) with the choices p := p0,

s1 := s0, s2 := q2 ∈ (1/α,∞], θ := γ δ, δ := 0 and ε := ε (note again that
r (τ ) ≡ ‖c (·, τ )‖Lq1

(X) and ps2 (r) = ‖c‖q1,q2
). Of course, if s0 ≥ p0 is arbitrary

we have once again that n/s0−n/p0 ∈ [0, 2α) is trivially satisfied, while if s0 < p0
one may choose s0 sufficiently close to p0 ∈ [1,∞) such that 1/s0 < 2/βA+ 1/p0.
Note that the assumptions of Lemma A.0.1 are satisfied with the above choices of
δ, s1, s2, p, ε, θ , since

1

q2
+ γ δ < 1,

1

q2
+ ε + γ δ ≤ α

and

n

s0
+ 1

q2
< α + n

p0
and

n

s0
+ 1

q2
+ ε < α + n

p0
.
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Indeed, the bound (F1) and by virtue of Hölder’s inequality, for all t ∈ (0, T∗] we
have

‖u (·, t)− Sαu0‖Lp0
(X) (3.1.16)

≤
(∫ t

0
‖Pα (t − τ )‖p0,s0 (τ ∧ 1)−γ δ ‖c (·, τ )‖Lq1

(X) dτ
)
|||1+ |u||||γp,δ,T∗

≤ C (t ∧ 1)ε ‖c‖q1,q2
|||1+ |u||||γp,δ,T∗ ,

which implies the desired assertion (e) of Definition 3.1.1.
The uniqueness of the mild solution follows from a similar computation which

resembles (3.1.10). Indeed, let T ∈ (0, T∗] and let u1, u2 ∈ Ep,δ,T be any two mild
solutions of (3.1.1) corresponding to the same initial datum u0. As in (3.1.10), we
get

|||u1 − u2|||p,δ,T ≤ C (T ∧ 1)ε ‖c‖q1,q2
|||1+ |u1| + |u2||||γ−1

p,δ,T
|||u1 − u2|||p,δ,T .

(3.1.17)

for all T ∈ (0, T∗]. Hence, there exists a small time T̂ ∈ (0, T∗] such that u1 (·, t) ≡
u2 (·, t) for t ∈ [0, T̂ ] and uniqueness over the whole interval [0, T∗] follows by a
continuation argument (see Theorem 3.1.10 below for more details). The proof is
finished. ��

Next, we derive the corresponding result in the case (c) of Theorem 3.1.4.

Lemma 3.1.6 Assume that the hypothesis (c) of Theorem 3.1.4 is satisfied for some
γ ∈ (1,∞) and p0 ∈ (1,∞) . Then the assertion of Theorem 3.1.4 holds. The mild
solution is unique in the space Ew,p,δ,T ⊂ Ep,δ,T , for some p ≥ p0 (see (3.1.19)
below for the definition of Ew,p,δ,T ).

Proof Choose a value p ∈ (1,∞] such that p ≥ p0 and q1 ∈ [1,∞] ∩ (βA,∞],
q2 ∈ (1/α,∞], γ ∈ [1,∞) satisfy

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

q1
+ γ

p
≤ 1,

1

q2
+ γ δ < 1,

1

q2
+ n

q1
+ (γ − 1) (δ + n

p
) = α,

0 ≤ δ = n

p0
− n

p
< α.

(3.1.18)
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We may apply the whole statement of Lemma A.0.2 (see Appendix) with the
following choices p := p0, q := p and the (singleton) � := {u0} ⊂ Lp0 (X).
Consider the functions g,w constructed in Lemma A.0.2 and recall that (w (t))−δ =
g (t) (t ∧ 1)−δ . The proof is in the same spirit of [22, Lemma 8] where in the proof
of previous Lemma 3.1.5, we perform the uniform estimates in a new (weighted)
Banach space Ew,p,δ,T ⊂ Ep,δ,T given by

Ew,p,δ,T :=
{
u ∈ Ep,δ,T , ‖u‖w,p,δ,T := sup

t∈(0,T ]

(
(w (t))δ ‖u (·, t)‖Lp(X)

)
<∞

}
.

(3.1.19)

As we mentioned already, the proof is based on the same iteration argument
performed for the sequence (3.1.6) taking place now in the space Ew,p,δ,T . First, to
show that um ∈ Ew,p,δ,T is well-defined for all m ∈ N, we again apply an induction
argument. Suppose that u1 ∈ Ew,p,δ,T is arbitrary and assume that um ∈ Ew,p,δ,T

is already proved. Next choose s1 ∈ [1,∞] such that the equality

n

q1
+ γ n

p
= n

s1
= α − 1

q2
− (γ − 1) δ + n

p
(3.1.20)

holds. The bound (F1), the estimate (A.0.6) (see Lemma A.0.2),

‖Sα(t)‖p,p0
≤ Cw (t)−δ = Cg (t) (t ∧ 1)−δ

and the Hölder inequality give

‖um+1‖w,p,δ,T ≤ C
(
‖u0‖Lp0

(X) + ϕ (T ) ‖1+ |um|‖γw,p,δ,T
)
,

where

ϕ (T ) := sup
t∈(0,T ]

(w (t))δ
∫ t

0
‖Pα (t − τ)‖p,s1

(w (τ))−γ δ ‖c (·, τ)‖Lq1
(X) dτ (3.1.21)

= (g (T ))γ−1 sup
t∈(0,T ]

(t ∧ 1)δ
∫ t

0
‖Pα (t − τ)‖−γ δp,s1 (τ ∧ 1)−δγ ‖c (·, τ)‖Lq1

(X) dτ.

The second factor on the right-hand side of (3.1.21) can be estimated by application
of Lemma A.0.1 with the choices p := p, s1 := s1, s2 := q2, θ := γ δ, δ := δ

and ε := 0 (as well as r (s) ≡ ‖c (·, s)‖Lq1
(X) , where ps2 (r) = ‖c‖q1,q2

).

Then one has ϕ (T ) ≤ C(g (T ))γ−1 ‖c‖q1,q2
and limT→0 ϕ (T ) = 0. Henceforth,

um+1 ∈ Ew,p,δ,T , for all m ∈ N and the claim is proved. The rest of the proof
goes exactly as in the proof of Lemma 3.1.5. We briefly mention the (modified)
estimates without giving the full details. In view of the Lipschitz condition (F2) and
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the Hölder inequality, we get

||um+1 − um||w,p,δ,T
≤ ϕ (T ) ||1+ |um| + |um−1|||γ−1

w,p,δ,T ||um − um−1||w,p,δ,T ,

for all m ≥ 2. As usual, defining U := ||u1||w,p,δ,T + 2 ||u2 − u1||w,p,δ,T and
choosing a small enough time T∗ ∈ (0, 1] such thatCϕ (T∗) (1+ 2U)γ−1 ‖c‖q1,q2

≤
1/2, we obtain the analogue of (3.1.12) in the space Ew,p,δ,T∗ instead of Ep,δ,T∗ .
Therefore, we deduce again the existence of a limit point u ∈ Ew,p,δ,T∗ such that

lim
m→∞ ||um − u||w,p,δ,T∗ = 0.

The estimates (3.1.14) and (3.1.15) concerning the nonlinearity f are proved
exactly as in Lemma 3.1.5. The estimate (3.1.16) concerning the initial datum u0
reads

‖u (·, t)− Sα(t)u0‖Lp0
(X) ≤ C(g (t))γ ‖c‖q1,q2

||1+ |u|||γw,p,δ,T∗ , (3.1.22)

for all t ∈ [0, T∗]. We now recall that limt→0 g (t) = 0 by Lemma A.0.2 (b) (see
Appendix). Thus, u is a mild solution of (3.1.1) in the sense of Definition 3.1.1 on
the time interval [0, T∗] . The uniqueness of the mild solution in the space Ew,p,δ,T∗
follows from an argument that is similar to the computation (3.1.17); we omit the
details. ��
Remark 3.1.7 If the set of initial data � ⊂ Lp0 (X) is bounded and the set

k (�) :=
{
u(·, t)‖u(·, t)‖−1

Lp(X)
: u(·, t) ∈ Lp(X), t ∈ [0, Tmax), ‖u(·, t)‖Lp(X) 
= 0

}

is precompact in Lp (X), then the function w = w (t) as well as the numbers U, T∗
can be chosen independent of u0 ∈ �.

We conclude the proof of Theorem 3.1.4 by verifying the following statement.

Lemma 3.1.8 Assume (F3)–(F4) for some q1 ∈ (βA,∞] ∩ [1,∞], q2 ∈ (1/α,∞]
and let u0 ∈ L∞ (X) ⊂ L∞ (X) . Then the assertion of Theorem 3.1.4 is satisfied.
Furthermore, u ∈ E∞,0,T and u is unique in this space.

Proof In this case δ = 0, p0 = p = ∞; we choose some ε ∈ (0, α − 1/q2) such
that

n

q1
+ 1

q2
+ ε < α (3.1.23)

and let u0 ∈ L∞ (X). The proof exploits a Picard iteration argument for the
sequence (3.1.6) in the space E∞,0,T , for some T ≤ 1. As in the previous lemma,
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begin with T ∈ (0, 1) and fix an element u1 ∈ E∞,0,T which is otherwise arbitrary.
We first show by induction that um ∈ E∞,0,T , for all m ∈ N. Assume that
um ∈ E∞,0,T is already known, and proceed with an estimate for um+1, using
the bound (F3) and the contractivity estimates of Proposition 2.2.1. We deduce that

‖um+1 (t)‖L∞(X) (3.1.24)

≤ ‖u0‖L∞(X) +Q
(|||um|||∞,0,T

) (∫ t

0
‖Pα (t − τ )‖∞,q1

‖c (·, τ )‖Lq1
(X) dτ

)

since ‖Sα (t)‖∞ ≤ 1. Owing also to the fact that n/q1 < 2α (i.e., q1 > βA/2), we
infer by (2.2.12),

∥∥∥t1−αPα (t)
∥∥∥∞,q1

≤ C (α, q1) t
− n

q1 , for all t ∈ (0, T ]. (3.1.25)

We now apply Lemma A.0.1 with r (τ ) = ‖c (·, τ )‖Lq1
(X) , p := ∞, s1 := q1,

s2 := q2, θ := 0, δ := 0, ε := ε. Assumptions of Lemma A.0.1 with these choices
of p, s1, s2, θ, δ, ε are satisfied owing to (3.1.23). Therefore, we get

|||um+1|||∞,0,T ≤ C
(
‖u0‖L∞(X) + T ε ‖c‖q1,q2

Q
(|||um|||∞,0,T

))
,

which proves that um+1 ∈ E∞,0,T . By a similar argument, using the local Lipschitz
condition (F4) and the Hölder inequality, we get that

|||um+1 − um|||∞,0,T (3.1.26)

≤ CT ε ‖c‖q1,q2
Q

(|||um|||∞,0,T + |||um−1|||∞,0,T
) |||um − um−1|||∞,0,T ,

for all m ∈ N\ {1}. Let U := |||u1|||∞,0,T +2 |||u2 − u1|||∞,0,T and choose a small
enough time T∗ ∈ (0, 1] such that

CT ε∗ ‖c‖q1,q2
Q(2U) ≤ 1

2
.

It follows from (3.1.26) by induction that

{ |||um|||∞,0,T∗ ≤ U, for all m ≥ 1,
|||um+1 − um|||∞,0,T∗ ≤ 1

2 |||um − um−1|||∞,0,T∗ , for all m ≥ 2.
(3.1.27)

Thus, by iteration in (3.1.27), the sequence {um}m∈N is Cauchy in the Banach space
E∞,0,T∗ . Thus, it has a limit u ∈ E∞,0,T∗ such that

lim
m→∞ |||um − u|||∞,0,T∗ = 0.
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The latter convergence and the local Lipschitz condition (F4) then implies

lim
m→∞ |||f (·, um)− f (·, u)|||∞,0,T∗ = 0.

Hence, as usual we can take the limit in the iteration (3.1.6) in the norm of E∞,0,T∗ .
More precisely, we see that u satisfies the integral equation and is indeed a mild
solution on the interval [0, T∗]. For the uniqueness argument, we let u1, u2 ∈
E∞,0,T be two mild solutions for any T ∈ (0, T∗] with the same initial data u0.
Similarly to (3.1.26), we get

|||u1 − u2|||∞,0,T

≤ CT ε ‖c‖q1,q2
Q

(|||u1|||∞,0,T + |||u2|||∞,0,T
) |||u1 − u2|||∞,0,T ,

and therefore, u1 ≡ u2 on [0, T0] for some T0 ∈ (0, T ]. Now uniqueness on the
whole interval [0, T∗] follows by a continuation argument (see Theorem 3.1.10
below for more details).

Finally, it remains to check that the solution satisfies the initial condition (see
Definition 3.1.1, (e)). We let u0 ∈ L∞ (X) and estimate using the bound (F3) as
follows:

‖u (·, t)− Sα(t)u0‖L∞(X)

≤ Q
(|||u|||∞,0,T

) (∫ t

0
‖Pα (t − τ )‖∞,q1

‖c (·, τ )‖Lq1
(X) dτ

)
.

All the same arguments leading to the proof of (3.1.26), then give

‖u (·, t) − Sα(t)u0‖L∞(X) ≤ Ctε ‖c‖q1,q2
Q

(|||u|||∞,0,T
)
, (3.1.28)

for all t ∈ (0, T∗]. This implies the desired claim in view of Remark 3.1.2, which
then implies that

lim
t→0+

‖u (·, t)− u0‖L∞(X) = 0.

The proof of lemma is finished. ��
We also conclude that the mild solution is also locally bounded in time in the

space L∞ (X) for as long as it exists.

Theorem 3.1.9 (Local Boundedness) Let the assumptions of Theorem 3.1.4 be
satisfied. Then the mild solution of problem (3.1.1) on the interval [0, T ] satisfies

sup
t∈[T0,T ]

‖u (·, t)‖L∞(X) <∞, for all T0 ∈ (0, T ]. (3.1.29)
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Proof It suffices to check (3.1.29) on (0, T ], where T > 0 is the existence
time defined in the statement of Theorem 3.1.4. Obviously, the case p0 = ∞ is
already contained in the proof of Theorem 3.1.4 (part (b)), so it suffices to take
p0 < ∞. Consider the two sequences {pi} , {δi} as constructed by Lemma A.0.3
(see Appendix) such that δi ∈ (0, α) , i = 1, .., k, and p0 < p1 < . . . < pk = ∞.
One can now inductively apply for each i = 1, .., k, the statements of Lemma 3.1.5
(in the case (a)) and Lemma 3.1.6 (in the case (c)), to show

sup
t∈[T0,T ]

‖u (·, t)‖Lpi (X) ≤ CT0,T , i = 1, . . . , k. (3.1.30)

We start the argument by applying the statements of Lemmas 3.1.5, 3.1.6 with the
following choices p0 := p0, p := p1, δ := δ1 and initial data u0 ∈ Lp0 (X). More
precisely, there exist a time T > 0 and a mild solution u on [0, T ] in the sense of
Definition 3.1.1. The mild solution satisfies (3.1.30) for i = 1 since u ∈ Ep1,δ1,T .
We now use an induction argument; assume that (3.1.30) is already known for some
i = j−1 (j ≥ 2) and prove that it also holds for i = j . Let T0 ∈ (0, T ] be arbitrary.
For all τ ∈ [T0, T ] we apply once again Lemma 3.1.5 with the choices p0 := pj−1,
p := pj , δ := δi and use u0 := u (τ) as an initial datum. Hence there exist a
time Tj ∈ (0, 1] (independent of τ since (3.1.30) holds with i = j − 1) and mild
solutions uτj associated with initial data u (τ) on the time interval

[
τ, τ + Tj

]
, for

all τ ∈ [T0, T ]. Furthermore, uτj (·, τ + ·) ∈ Epj ,δj ,Tj is also unique in this space.
Hence, by uniqueness we infer that uτj (t) = u (t) for all t ∈ (τ, τ + Ti) ∩ (0, T ].
Besides the conclusion of Lemma 3.1.5 (as well as Lemma 3.1.6, in the case (c) of
Theorem 3.1.4) gives

sup
τ∈[T0,T ]

∣∣∣
∣∣∣
∣∣∣uτj

∣∣∣
∣∣∣
∣∣∣
pj ,δj ,Tj

<∞,

and since T0 ∈ (0, T ] is chosen arbitrary, the latter implies the statement (3.1.30)
for i = j . This concludes the induction argument. We can now apply it inductively
to get (3.1.30) for i = k (and so pk = ∞), which is also the desired claim (3.1.29)
of the theorem. ��

We can now conclude with the result on the existence of (maximally-defined)
mild solutions.

Theorem 3.1.10 (Existence of Maximal Mild Solutions) Let the assumptions of
Theorem 3.1.4 be satisfied. Then the mild solution of problem (3.1.1) has a maximal
time interval of existence [0, Tmax) and either Tmax =∞, or 0 < Tmax <∞ and

lim
t→Tmax

‖u (·, t)‖Lp0
(X) = ∞. (3.1.31)
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In the case (c) of Theorem 3.1.4, (3.1.31) only holds under the additional assumption
that the set

κ (�) :=
{
u (·, t) ‖u (·, t)‖−1

Lp0
(X) : u (·, t) ∈ Lp0 (X) , and,

t ∈ [0, Tmax), ‖u (·, t)‖Lp0
(X) 
= 0

}

is precompact in Lp0 (X). Finally, every mild solution satisfies

sup
t∈[T1,T2]

‖u (·, t)‖L∞(X) <∞, for all T1, T2 ∈ (0, Tmax) . (3.1.32)

Proof A local mild solution on the interval (0, T ] for some initial datum u0 ∈
Lp0 (X) , p0 ∈ [1,∞] was constructed in Theorem 3.1.4. This solution can be
extended to a global one on [0, Tmax) with the aforementioned properties (3.1.31)–
(3.1.32). This follows from a continuation argument, owing to the conclusions
of Lemmas 3.1.5, 3.1.6, 3.1.8 and 3.1.9, and another constructive argument that
is given below (see Step I–II). For the sake of convenience, we outline these
arguments in the second case (b) of the theorem. In order to extend the local solution
to a global one, one employs a simple inductive procedure. Similar procedures are
applied also in the other two cases (a), (c) of Theorem 3.1.4.

To this end, define an increasing sequence {Tm} and let um be the mild solution
for the initial datum u0 on the intervals [0, Tm], for all m ∈ N, defined as follows:

• Let T1 = T and u1 be the local mild solution for initial datum u0 on the interval
[0, T ], furnished by the statement of Theorem 3.1.9.

• Assume that the mild solution um on the interval [0, Tm] is already defined, as

um (t) = Sα (t) u0 +
∫ t

0
Pα (t − s) f (s, um (s)) ds,

and apply the Step II provided below (at the end of the proof) to construct an
extension vm of um. Then there exist Tm < Tm+1 and a mild solution vm for
the problem on the interval [0, Tm+1] . The sequence of mild solutions um+1 is
naturally defined as

um+1 (t) =
{
um (t) , t ∈ (0, Tm],
vm (t) , t ∈ (Tm, Tm+1].

In particular, um+1 is a mild solution of (2.1.6) on the time interval [0, Tm+1].
Clearly, um+1 ∈ E∞,0,Tm+1 and ‖um (Tm)‖L∞(X) ≤ U <∞, for m ≥ 1 (see the
proof of Lemma 3.1.8).

• The maximal time Tmax > 0 is defined as limm→∞ Tm = Tmax.
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Step I. The mild solution u (t) for the initial datum u0 on the interval [0, Tmax)

is defined as u (t) = um (t) , for all t ∈ (0, Tm], m ∈ N. Since by Lemma 3.1.8 and
Theorem 3.1.9, we have

sup
t∈[Tm,Tm+1]

‖u (t)‖L∞(X) <∞, for all m ∈ N

and supt∈[T0,T1] ‖u (t)‖L∞(X) < ∞, for all T0 ∈ (0, T1], it follows that the mild
solution u satisfies (3.1.32). It remains to prove that if Tmax <∞, then

lim sup
m→∞

‖u (t)‖L∞(X) = ∞. (3.1.33)

One argues by contradiction by assuming that if (3.1.33) does not hold, then Tmax <

∞ and

lim
t∈[T1,Tmax)

‖u (t)‖L∞(X) = U <∞. (3.1.34)

As one can see from the arguments provided below in Step II, the length of the
interval [Tm, Tm+1] of the extension vm depends only on q1, q2, ‖c‖q1,q2

, the func-
tionQ from the assumptions of the function f , and also non-increasingly in terms of
‖um (Tm)‖L∞(X) (and so on U ). Then (3.1.34) implies that supm∈N (Tm+1 − Tm) =
τ > 0, which contradicts the fact that limm→∞ Tm = Tmax < ∞. Therefore,
(3.1.33) must hold and the proof of Step I is finished.

Finally, in the final Step II, we provide the constructive details for the extension
vm ∈ Kτ , for some τ ∈ (0, 1]. More precisely, the set Kτ is defined as the set of all
functions that satisfy vm (t) = um (t) , for all t ∈ [0, Tm] , and such that

‖vm (t)− um (Tm)‖L∞(X) ≤ R, for all t ∈ [Tm, Tm + τ ] .

Next, we define the mapping

�(vm (t)) = Sα (t) u0 +
∫ t

0
Pα (t − s) f (s, vm (s)) ds.

Our goal is to show that � : Kτ → Kτ is a contraction, for some appropriately
chosen τ, R > 0. Notice that, for all t ∈ [0, Tm] , we have �(vm (t)) = vm (t) , and
so there is nothing to prove since um is already the unique fixed point of �(vm) =
�(um). For t ∈ [Tm, Tm + τ ] , we first notice that

�(vm (t))− um (Tm)

= Sα (t) u0 − Sα (Tm) u0 +
∫ t

Tm

Pα (t − s) f (s, vm (s)) ds

= Sα (t) u0 − Sα (Tm) u0 +
∫ t−Tm

0
Pα (t − Tm − s) f (s + Tm, vm (s + Tm)) ds.
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It follows (owing to ‖Sα (t)‖∞ ≤ 1, for any t ≥ 0, and estimates (3.1.24)–(3.1.25);
also set ‖w‖∞,τ = supt∈[Tm,Tm+τ ] ‖w (t)‖L∞(X)) that

‖�(vm (t))− um (Tm)‖L∞(X)

≤ 2 ‖u0‖L∞(X)

+Q
(‖vm‖∞,τ

) ∫ t−Tm

0
‖Pα (t − Tm − s)‖∞,q1

‖c (·, s)‖Lq1
(X) ds

≤ 2 ‖u0‖L∞(X) + τ ε ‖c‖q1,q2
Q

(‖vm‖∞,τ

)

≤ 2 ‖u0‖L∞(X) + τ ε ‖c‖q1,q2
Q(U + R) ,

since ‖um (Tm)‖L∞(X) ≤ U. Choosing now R ≥ 4 ‖u0‖L∞(X) and a sufficiently
small τ ∈ (0, 1] such that

τ ε ‖c‖q1,q2 Q(U + R) ≤ R

2
, (3.1.35)

shows that � is well defined mapping from Kτ to Kτ . A similar argument shows
that, for any vm,wm ∈ Kτ , and t ∈ [Tm, Tm + τ ] ,

‖�(vm (t))−�(wm (t))‖L∞(X)

≤ Q
(‖vm‖∞,τ + ‖wm‖∞,τ

) ‖vm −wm‖∞,τ

×
∫ t−Tm

0
‖Pα (t − Tm − s)‖∞,q1

‖c (·, s)‖Lq1
(X) ds

≤ Cτε ‖c‖q1,q2
Q(2R + 2U) ‖vm − wm‖∞,τ ,

for some positive constant C independent of τ, Tm. Thus, � is a contraction on Kτ

provided that τ ∈ (0, 1] satisfies (3.1.35) and

Cτε ‖c‖q1,q2
Q(2R + 2U) ≤ 1

2
.

Therefore, we may conclude that � has a unique fixed point vm ∈ Kτ . This
completes the proof of the final Step II (and, of the theorem). ��

In addition, we can conclude with the following.

Corollary 3.1.11 Let u0 ∈ L∞ (X) and assume (F3)–(F4) for some q1 ∈
(βA,∞] ∩ [1,∞], q2 ∈ (1/α,∞] such that

n

q1
+ 1

q2
< α.
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Then there exists a unique quasi-mild solution on [0, Tmax) in the sense of
Definition 3.1.3, such that either Tmax = ∞, or Tmax <∞ and (3.1.31) is satisfied
with p0 =∞. Furthermore, it holds (3.1.32).

3.2 Maximal Strong Solution Theory

We are next concerned with further regularity properties for the mild solution
of (3.1.1). To this end, we introduce the notion of strong solution for the semilinear
problem (3.1.1).

Definition 3.2.1 Let p ∈ (1,∞) and α ∈ (0, 1]. By a strong solution u of (3.1.1)
on the time interval I = (0, T ) we mean

(a) u is a mild solution in the sense of Definition 3.1.3 (with p0 = ∞), where the
initial datum u (0) = u0 is meant in the following sense:

lim
t→0+

‖u (·, t)− u0‖L∞(X) = 0. (3.2.1)

(b) u ∈ C0,κ (I ;L∞ (X)), for some κ > 0.
(c) u (·, t) ∈ D

(
Ap

)
, for all t ∈ I and ∂αt u ∈ C (I ;Lp (X)) .

(d) ∂αt u (·, t) = Apu (·, t) + f (·, t, u (·, t)) is satisfied for t ∈ I.

Theorem 3.2.2 (Strong Solutions on (0, Tmax)) Let q1 ∈ (βA,∞] ∩ [1,∞] , 0 <

α ≤ 1 and u0 ∈ D
(
Ap

)
for some p ∈ (βA,∞) ∩ (1,∞). Consider the following

alternatives:

(a) If p ≥ q1, assume f obeys conditions (F3)–(F4) with q2 ∈ (1/α,∞] and
θ ∈ (βA/p, 1) satisfying

α (1− θ)− n

(
1

q1
− 1

p

)
>

1

q2
. (3.2.2)

(b) If p ≤ q1, assume f obeys conditions (F3)–(F4) with q2 ∈ (1/α,∞] and
θ ∈ (βA/p, 1) satisfying

α (1− θ) >
1

q2
. (3.2.3)

Suppose either (a) or (b) is satisfied and consider the following assumption:
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(F5) For all t, s > 0, for almost1 all x ∈ X and max {|ξ | , |η|} ≤ M ∈ R+, there
exists d = dM (x) ∈ Lp (X) such that

|f (t, x, ξ)− f (s, x, η)| ≤ d
(|t − s|γ + |ξ − η|ρ) ,

for some γ, ρ > 0.

Then there exists a unique strong solution of (3.1.1) in the sense of Defini-
tion 3.2.1 on the time interval (0, Tmax), such that either Tmax = ∞, or Tmax < ∞
and (3.1.31) is satisfied with p0 = ∞. This strong solution also satisfies

u ∈ C0,κ ([0, Tmax);D((−Ap)
θ )) ∩ C((0, Tmax);D(Ap)). (3.2.4)

for some real number κ > 0.

Proof For p ∈ (βA,∞), let η ∈ (βA/p, 1) such that η < θ, and a sufficiently small
μ ∈ (0, 1), η + μ = θ . By Proposition 2.2.7, u0 ∈ D

(
Ap

)
↪→ D

(
(−Ap)

θ
)
↪→

L∞ (X). Notice that (3.2.2) implies that we are in the assumptions of Theorem 3.1.4
since α − n/q1−1/q2 > αθ + n/p > 0 (recall n = βAα). Hence, by application
of Theorem 3.1.10 (or Corollary 3.1.11) there exists a (unique) mild solution u ∈
E∞,0,T , T ∈ (0, Tmax), that is given by an integral solution (see Definition 3.1.1-
(d)) that also satisfies (3.1.32) on [0, Tmax). When (3.2.3) is in full force and instead
p ≤ q1 we obtain the same conclusion. Next, in view of assumption (HA) for the
operator A, we also recall from [17, p. 26] (since the semigroup S is analytic) that
for all t > 0,

∥∥∥(−Ap)
−(1−τ ) (S (t)− I)

∥∥∥
p,p

≤ Cpt
1−τ , for all τ ∈ (0, 1) (3.2.5)

and

∥∥(−Ap)
τS (t)

∥∥
p,p

≤ Cpt
−τ , for all τ ∈ [0, 1] . (3.2.6)

In all the estimates that follow, we let 0 < t ≤ t + h ≤ T < Tmax such that
h ∈ [0, T − t] (w.l.o.g, we assume that h ≤ 1). We observe preliminarily that since
η < θ and q2 ∈ (1/α,∞], the first alternative (a) yields

α (1− η)− n

(
1

q1
− 1

p

)
− 1

q2

(3.2.2)
> 0 (3.2.7)

1Here and everywhere else, by the statement “for almost all x ∈ X” it is understood that x ∈ X\J,
where m (J) = 0.
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and

1

q2
+ n

q1
< α, η + βA

(
1

q1
− 1

p

)
< θ + βA

(
1

q1
− 1

p

)
(3.2.2)
< 1. (3.2.8)

On the other hand, from assumption (b) of the theorem we infer that

α (1− η)− 1

q2

(3.2.3)
> 0 (3.2.9)

as well as the first of (3.2.8) holds once again.

Step 1 (Uniform estimates for Sα, Pα, α ∈ (0, 1)). Based on definition (2.1.9),
we have

Pα((2t)1/α) = α (2t)(α−1)/α
∫ ∞

0
τ�α(τ)S(2τ t)dτ,

for all t > 0. The semigroup property S (2τ t) = S (tτ ) S (tτ ) and the
ultracontractivity estimate for S (see (2.2.3)) imply that

(2t)
1
α−1

∥∥∥(−Ap)
ηPα((2t)1/α)

∥∥∥
p,q1

(3.2.10)

≤
∫ ∞

0
τ�α(τ)

∥∥(−Ap)
ηS(τ t)

∥∥
p,p

‖S (τ t)‖p,q1
dτ

(3.2.6)≤ C (p, η) t
−η−βA

(
1
q1
− 1

p

) ∫ ∞

0
τ

1−η−βA
(

1
q1
− 1

p

)
�α(τ)dτ

≤ C (p, η, βA, q1) t
−η−βA

(
1
q1
− 1

p

)
,

since the last integral in (3.2.10) is finite owing to the second of (3.2.8) (see
once again (2.1.8)). The constant C = C (p, η, βA, q1) is bounded as α → 1.
Rescaling t �→ tα/2 in this estimate, we derive

t1−α
∥∥(−Ap)

ηPα(t)
∥∥
p,q1

≤ Ct
−ηα−βAα

(
1
q1
− 1

p

)
, whenever p ≥ q1.

(3.2.11)

On the other hand, when p ≤ q1 we have ‖S (t)‖p,q1
≤ ‖S (t)‖p,p ≤ C. Arguing

in a similar fashion to estimate (3.2.10), the analogue of (3.2.11) then reads

t1−α
∥∥(−Ap)

ηPα (t)
∥∥
p,q1

≤ Ct−ηα, whenever p ≤ q1. (3.2.12)
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Let us now recall θ ∈ (βA/p, 1) . The analytic estimates (3.2.5)–(3.2.6) also
imply the following estimates for all t > 0,

∥∥∥(−Ap)
−(1−θ) (Sα (t)− I)

∥∥∥
p,p

≤ Ctα(1−θ) (3.2.13)

and

t1−α
∥∥(−Ap)

θPα (t)
∥∥
p,p

≤ Ct−αθ ; (3.2.14)

they follow easily owing to the definition (2.1.9) for the operators Sα, Pα, α ∈
(0, 1).

Step 2 (Regularity properties for the mild solution). Since every mild solution is
an integral solution, we have

u (t + h)− u (t) = (Sα (t + h)− Sα (t)) u0 +
∫ t+h

t

Pα (t + h− τ) f (τ, u (τ)) dτ

(3.2.15)

+
∫ t

0
(Pα (t + h− τ)− Pα (t − τ)) f (τ, u (τ)) dτ.

We now check that the initial condition is satisfied at least in the sense of (3.2.1).
By virtue of the bound u ∈ L∞ ((0, T );L∞ (X)) with T < Tmax (indeed,
supt∈[0,T ] ‖u‖L∞(X) ≤ U, u ∈ E∞,0,T ) and assumption (F3), we deduce for
t ∈ [0, 1] ,

‖u (t)− u0‖L∞(X) (3.2.16)

≤C
∥∥∥(−Ap)θ (u (t)− u0)

∥∥∥
Lp(X)

≤C
∥∥∥(−Ap)θ (Sα (t) u0 − u0)

∥∥∥
Lp(X)

+ C

∫ t

0

∥∥∥(−Ap)θPα (t − τ)

∥∥∥
p,q1

‖f (τ, u (τ))‖Lq1(X) dτ

≤C
∥∥∥(−Ap)−(1−θ) (Sα (t)− I )

∥∥∥
p,p

∥∥Apu0
∥∥
Lp(X)

+ C

∫ t

0

∥∥∥(−Ap)θPα (t − τ)

∥∥∥
p,q1

‖c (·, τ )‖Lq1(X) dτQ (U)

(3.2.13)≤ Ctα(1−θ) ‖u0‖D(Ap) +Q(U)

(∫ t

0

∥∥∥(−Ap)θPα (t − τ)

∥∥∥q
p,q1

dτ

) 1
q

C ‖c‖q1,q2 ,

by Hölder’s inequality where q (1− 1/q2) = 1. The first summand on the right-
hand side of (3.2.16) clearly tends to zero as t → 0+. For the second summand,
we argue slightly differently according to the cases whether p ≥ q1 or p ≤ q1,
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respectively. Let us first assume p ≥ q1 and set χ := α− 1− θα− βAα
(

1
q1
− 1

p

)
.

By virtue of the estimate (3.2.11) we have then

(∫ t

0

∥∥(−Ap)
θPα (t − τ)

∥∥q
p,q1

dτ

) 1
q

≤ C

(∫ t

0
(t − τ)

(α−1)q−θαq−βAα
(

1
q1
− 1

p

)
q
dτ

) 1
q

= Ctχ+1/q

(χq + 1)1/q
→ 0, (3.2.17)

as t → 0+, since χ+1/q > 0⇔ χ−1/q2 > −1, where the latter is also equivalent
to assumption (3.2.2). In the other case p ≤ q1, we set χ := α− 1− θα and exploit
the estimate (3.2.12) instead. Namely, we get

(∫ t

0

∥∥(−Ap)
θPα (t − τ )

∥∥q
p,q1

dτ

)1/q

≤ C

(∫ t

0
(t − τ )χq dτ

) 1
q

(3.2.18)

= Ctχ+1/q

(χq + 1)
1
q

→ 0, as t → 0+,

since χ + 1/q > 0 ⇔ α (1− θ) > 1/q2, which is satisfied by (3.2.3). We thus
conclude that the mild solution satisfies (3.2.1) (as well as limt→0+ u (t) = u0 in
the D

(
(−Ap)

θ
)
-norm) for every u0 ∈ D

(
Ap

)
, with p ∈ (βA,∞) .

We claim next that u ∈ C0,κ ((0, T );L∞ (X)), for some κ > 0. We consider α ∈
(0, 1) since the case α = 1 follows with minor (and straight-forward) modifications.
More precisely, in that case we can further take advantage of the fact that S is also a
semigroup, as well as of the simple identity

u (t + h)− u (t) = (S (h)− I) S (t) u0 +
∫ h

0
S (h− τ ) f (t + τ, u (t + τ )) dτ.

Let us recall that η, θ ∈ (βA/p, 1) and η < θ = η + μ. In particular, it still holds
D

(
(−Ap)

η
)
↪→ L∞ (X). We now estimate the first summand in (3.2.15), based on

the definition for the operator Sα ,

∥∥∥
(
Sα (t + h)− Sα (t)

)
u0

∥∥∥
L∞

(X) (3.2.19)

≤ ∥∥(−Ap)
η (Sα (t + h)− Sα (t)) u0

∥∥
Lp

(X)

≤
∫ ∞

0
�α(τ)

∥∥∥(−Ap)
η
(
S
(
τ (t + h)α

)− S
(
τ tα

) )
u0

∥∥∥
Lp

(X) dτ

≤
∫ ∞

0
�α(τ)

∥∥∥(−Ap)
−μ(S (

τ (t + h)α − τ tα
)− I

)∥∥∥
p,p

∥∥(−Ap)
μ+ηS

(
τ tα

)
u0

∥∥
Lp

(X) dτ
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(3.2.5)≤ C (p,μ)

∫ ∞

0
�α(τ)

(
τ (t + h)α − τ tα

)μ ∥∥(−Ap)
θS

(
τ tα

)
u0

∥∥
Lp

(X) dτ

≤ C (p,μ, θ)
∥∥Apu0

∥∥
Lp

(X)
(∫ ∞

0
�α(τ)τ

μdτ

)(
CT h

μ/s
)

≤ C (p,μ, θ, T ) ‖u0‖D(Ap) h
μ/s ,

for some 1/s < α; here, we have also exploited the D
(
Ap

)
-contractivity of the

operator S and the application of Lemma A.0.4-(i) with ε := α. In the second
inequality we have also used the semigroup property

S
(
τ (t + h)α

)− S
(
τ tα

) = S
(
τ (t + h)α − τ tα

)
S
(
τ tα

)− S
(
τ tα

)
(3.2.20)

= (
S
(
τ (t + h)α − τ tα

)− I
)
S
(
τ tα

)
.

We deal now with the second summand in (3.2.15). Assume the first alternative (a)
(when p ≥ q1) and recall (3.2.7)–(3.2.8) hold. By assumption (F3), we have

∥∥∥∥
∫ t+h

t

Pα (t + h− τ ) f (τ, u (τ )) dτ

∥∥∥∥
D(A

η
p)

(3.2.21)

≤
∫ t+h

t

∥∥(−Ap)
ηPα (t + h− τ )

∥∥
p,q1

‖f (τ, u (τ ))‖Lq1
(X) dτ

≤
∫ t+h

t

∥∥(−Ap)
ηPα (t + h− τ )

∥∥
p,q1

‖c (·, τ )‖Lq1
(X) dτQ (U)

(3.2.11)≤ CQ(U)

(∫ t+h

t

(t + h− τ )(α(1−η)−1−βAα(1/q1−1/p))q dτ

) 1
q

‖c‖q1,q2
,

by Hölder’s inequality where q (1− 1/q2) = 1. Notice that for

ξ := α (1− η)− 1− βAα (1/q1 − 1/p) ,

we have that ξq + 1 > 0 ⇔ ξ − 1/q2 > −1, in light of (3.2.7). Therefore, since
D

(
(−Ap)

η
)
↪→ L∞ (X) from (3.2.21) we immediately deduce

∥∥∥∥
∫ t+h

t

Pα (t + h− τ ) f (τ, u (τ )) dτ

∥∥∥∥
L∞

(X) ≤
(
Q(U) ‖c‖q1,q2

) Chξ+1/q

(ξq + 1)1/q
.

(3.2.22)

When the second alternative (b) holds with p ≤ q1, we employ the estimate (3.2.12)
instead of (3.2.11). Similarly to the derivation of (3.2.22), with a different value
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ξ := α (1− η) − 1 (such that ξq + 1 > 0 ⇔ condition (3.2.9)), we arrive at the
estimate

∥∥∥∥
∫ t+h

t

Pα (t + h− τ ) f (τ, u (τ )) dτ

∥∥∥∥
L∞

(X) (3.2.23)

≤ Q(U)

(∫ t+h

t

C (t + h− τ )(α(1−η)−1)q dτ

)1/q

‖c‖q1,q2

≤ (
Q(U) ‖c‖q1,q2

) Chξ+1/q

(ξq + 1)1/q
.

Finally, we estimate the last and most difficult summand in (3.2.15). We begin with
the following identity which holds in light of the definition (2.1.9) for the operator
Pα :

Pα (t + h− τ )− Pα (t − τ ) (3.2.24)

=α (t + h− τ )α−1
∫ ∞

0
σ�α (σ)

(
S
(
σ (t + h− τ )α

)− S
(
σ (t − τ )α

))
dσ

+ α
(
(t + h− τ )α−1 − (t − τ )α−1

) ∫ ∞

0
σ�α (σ) S

(
σ (t − τ )α

)
dσ

=:Lh (t, τ )+Kh (t, τ ) .

Arguing in a similar fashion as we did in the estimate (3.2.19), taking advan-
tage of the semigroup property (3.2.20) and the fact that

∥∥(−Ap)
ηS (t)

∥∥
p,q1

≤
Ct−η−βA(1/q1−1/p), we get

∥∥(−Ap)ηLh (t, τ )
∥∥
p,q1

(3.2.25)

≤ Cα (t+h−τ)α−1 (t−τ)−αη−βAα(1/q1−1/p)
(∫ ∞

0
σ 1+μ−θ−βA(1/q1−1/p)�α (σ ) dσ

)

× (
(t + h− τ)α − (t − τ)α

)μ

(Lemma A.0.4-(i))≤ CT (t + h− τ)α−1 (t − τ)−αη−βAα(1/q1−1/p) hμ/τ0 ,

for some 1/τ0 < α, provided that we are in the assumptions of the first alternative
(a). With the second alternative (b), the corresponding estimate reads

∥∥(−Ap)
ηLh (t, τ )

∥∥
p,q1

≤ CT (t + h− τ )α−1 (t − τ )−αη hμ/τ0 . (3.2.26)
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Let us set � (η) := −αη − βAα (1/q1 − 1/p) < 0 if p ≥ q1 and � (η) :=
−αη < 0 if p ≤ q1. By virtue of the uniform estimates (3.2.25)–(3.2.26) we find
for t ∈ (0, 1] (the proof of the case t > 1 can be reduced to the case t ∈ (0, 1], by
choosing k ∈ N such that k < t ≤ k + 1 and by arguing exactly as in the proof of
Lemma A.0.1),

∥∥∥∥
∫ t

0
Lh (t, τ ) f (τ, u (τ )) dτ

∥∥∥∥
D(A

η
p)

≤
∫ t

0

∥∥(−Ap)
ηLh (t, τ )

∥∥
p,q1

‖f (τ, u (τ ))‖Lq1
(X) dτ

≤ Q(U) ‖c‖q1,q2

(∫ t

0

∥∥(−Ap)
ηLh (t, τ )

∥∥q
p,q1

dτ

) 1
q

≤ CT h
μ/τ0

(∫ t

0
(t + h− τ )q(α−1) (t − τ )�q dτ

) 1
q

Q (U) ‖c‖q1,q2
,

where once again q (1− 1/q2) = 1. Since (t + h− τ )(α−1)q ≤ (t − τ )(α−1)q , for
0 ≤ τ < t ≤ t + h ≤ T , the previous estimate then implies that

∥∥∥∥
∫ t

0
Lh (t, τ ) f (τ, u (τ )) dτ

∥∥∥∥
D((−Ap)η)

(3.2.27)

≤ CT h
μ/τ0Q(U) ‖c‖q1,q2

(∫ t

0
(t − τ )(�+α−1)q dτ

) 1
q

≤ CT (ω, βA, α, q1, p) h
μ/τ0Q(U) ‖c‖q1,q2

T
α+�− 1

q2 .

We observe that α+� (η)−1/q2 > 0 in both cases of (a)–(b) due to (3.2.7)–(3.2.9).
Concerning the second summand in (3.2.24) with the same value � = � (η) < 0
as above, we find

∥∥(−Ap)
ηKh (t, τ )

∥∥
p,q1

(3.2.28)

≤ α

∣∣∣(t + h− τ )α−1 − (t − τ )α−1
∣∣∣
∫ ∞

0
σ�α (σ)

∥∥(−Ap)
ηS

(
σ (t − τ )α

)∥∥
p,q1

dσ

≤ C (t − τ )�
(∫ ∞

0
σ 1−�/α�α (σ) dσ

)(
(t − τ )α−1 − (t + h− τ )α−1

)

≤ C (�, α) (t − τ )�
(
(t − τ )α−1 − (t + h− τ )α−1

)
.
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In view of this estimate and the Hölder inequality with q (1− 1/q2) = 1,
r2 (1− 1/r1) = 1, we obtain

∥∥∥∥
∫ t

0
Kh (t, τ ) f (τ, u (τ )) dτ

∥∥∥∥
D((−Ap)η)

(3.2.29)

≤ Q(U) ‖c‖q1,q2

(∫ t

0
C (t − τ )�q

(
(t − τ )α−1 − (t + h− τ )α−1

)q
dτ

) 1
q

≤ Q(U) ‖c‖q1,q2

(∫ t

0
C (t − τ )�qr1 dτ

) 1
qr1 ×

×
(∫ t

0

(
(t − τ )α−1 − (t + h− τ )α−1

)qr2
dτ

) 1
qr2

≤ Q(U) ‖c‖q1,q2

(∫ t

0
C (t − τ )�qr1 dτ

) 1
qr1 ×

×
(∫ t

0

(
(t − τ )α−1 − (t + h− τ )α−1

)qr2
dτ

) 1
qr2

.

Notice that by (3.2.7)–(3.2.9), there exists a sufficiently small ε ∈ (0, α − 1/q2)

such that α +� − 1/q2 > ε > 0. To this end, select r1 <∞ such that 1/ (qr1) =
α − 1/q2 − ε > 0; clearly 1/ (qr2) = 1 − α + ε > 0 and (α − 1) qr2 + 1 =
ε/ (1− α + ε) > 0. By application of Lemma A.0.4-(ii), we get for t ≤ T ,

(∫ t

0
C (t − τ )�qr1 dτ

) 1
qr1

(∫ t

0

(
(t − τ )α−1 − (t + h− τ )α−1

)qr2
dτ

) 1
qr2

(3.2.30)

≤ C (q, r1, r2,�) T �+1/qr1

(∫ t

0
(t − τ )(α−1)qr2 − (t + h− τ )(α−1)qr2 dτ

) 1
qr2

≤ C (q, r1, r2,�) T �+1/qr1
(
−tα−1+1/qr2 − hα−1+1/qr2 + (t + h)α−1+1/qr2

)

≤ C (q, r1, r2,�) T �+1/qr1
(
hα−1+1/qr2 + h1/̃s

)
,

for some 1/̃s < α− 1+ 1/qr2 = ε, owing also to the application of Lemma A.0.4-
(i). Inserting (3.2.30) into the estimate (3.2.29), we infer that

∥∥∥∥
∫ t

0
Kh (t, τ ) f (τ, u (τ )) dτ

∥∥∥∥
D((−Ap)η)

≤CT �+1/qr1
(
hα−1+1/qr2 + h1/̃s

)
Q(U) ‖c‖q1,q2

. (3.2.31)
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Collecting all the uniform estimates (3.2.19), (3.2.27) and (3.2.31) and recalling the
identity (3.2.15), we obtain

‖u (t + h)− u (t)‖L∞(X) ≤ CTQ (U) ‖c‖q1,q2
hκ ,

for κ := min (μ/s, ξ + 1/q, 1/̃s) > 0, which gives the desired regularity

u ∈ C0,κ ([0, T ];L∞ (X)) . (3.2.32)

Step 3 (Final argument). We are now ready to conclude the proof. For any mild
solution of Problem (3.1.1), we define H (·, t) : [0, T ] → Lp (X), as H (·, t) :=
f (t, ·, u (·, t)) where we recall that the locally Lipschitz function f obeys
the assumptions (F3)–(F4). By the additional assumption (F5) of the theorem,
we then have H (·, t) ∈ C0,σ ((0, T );Lp (X)) , for some σ > 0, by means
of (3.2.32). Note that the (mild) integral solution can be also written as

u (·, t) = Sα (t) u0 +
∫ t

0
Pα (t − τ )H (·, τ ) dτ, α ∈ (0, 1)

and

u (·, t) = S (t) u0 +
∫ t

0
S (t − τ )H (·, τ ) dτ, α = 1,

for all t ∈ [0, T ], T < Tmax. Hence, in view of this formula and the application
of Theorem 2.1.7 with the choice Y = Lp (X), we can infer the remaining
properties (c), (d) of Definition 3.2.1. We have verified that u is a strong solution
in the sense of Definition 3.2.1. The proof of the theorem is finished. ��
The additional assumption (F5) of Theorem 3.2.2 can be essentially dropped in

some special (albeit interesting) cases provided that f (t, x, ξ) is independent of t .

Corollary 3.2.3 Let u0 ∈ D
(
Ap

)
for some p ∈ (βA,∞) ∩ (1,∞) and assume

that f = f (x, ξ) satisfies conditions (F3)–(F4) for some function c = c (x) ∈
Lp (X). Then there exists a unique strong solution to Problem (3.1.1) in the sense of
Definition 3.2.1 on the time interval (0, Tmax), such that either Tmax = ∞, or Tmax <

∞ and (3.1.31) is satisfied with p0 = ∞. The strong solution also satisfies (3.2.4).

Proof Indeed, observe that c = c (x) ∈ Lp,∞, with q1 := p, q2 := ∞, and the
second alternative (b) of Theorem 3.2.2 is automatically satisfied. By assumption
(F4) together with the regularity property (3.2.32) we can then infer once again that
H (·, t) = f (·, u (·, t)) ∈ C0,σ ((0, T );Lp (X)) , for some σ > 0. By following
the same argument from Step 3 in the proof of Theorem 3.2.2, we easily arrive at
the desired conclusion. ��

We view the regularity property (b) of Definition 3.2.1 as “minimally smooth”,
that our strong solution possesses under the general assumption (HA). When more
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detailed information is a priori known on the operator A, such smoothness can be
essentially improved beyond the L∞ (X)-spatial regularity.

Remark 3.2.4 Indeed, let X = � ⊂ R
N be an open set having a boundary of class

C2, and A is a sectorial operator in Y = Lp (�) , p ∈ (1,∞) with D
(
Ap

) ⊂
W 2,p (�) and βA = N/2. In particular, all the operators defined previously in
Example 2.3.5 (see (a)–(d)) satisfy these assumptions. By Proposition 2.2.7, there
exists a small ν > 0 such that θ > ν/2 + N/ (2p). It follows from [17, Theorem
1.6.1] that D

(
(−Ap)

θ
)
↪→ C0,ν

(
�
)

and then by virtue of Theorem 3.2.2, that
every strong solution also satisfies

u ∈ C0,κ
(
[0, T ];C0,ν (�))

, for some κ, ν > 0 (3.2.33)

and

u ∈ C
(
(0, T ];W 2,p (�)

)
, (3.2.34)

where T < Tmax.

Remark 3.2.5 We also mention the following.

(a) For the operators A defined in Example 2.3.8 (a)–(c) we have the following
situation. Recall that A = A2 = −(−B)s where B is as in Remark 3.2.4 above
and 0 < s < 1. In that case (always under the assumption that � is smooth and
the coefficients of the initial operator are also smooth) we have that D(Ap) ⊂
W 2s,p(�) for every p ∈ (1,∞) (see e.g. [23, Theorem 7.1] or [16]) and βA =
N
2s . Let θ > 0. Since (−A)θ = (−B)sθ , it follows from Proposition 2.2.7 that
there exists a small νs > 0 such that θ > νs/2 + N/ (2sp). Hence, by [17,
Theorem 1.6.1] we have that D

(
(−Ap)

θ
)
↪→ C0,νs

(
�
)

and then by virtue of
Theorem 3.2.2, it follows that every strong solution also satisfies

u ∈ C0,κs
(
[0, T ];C0,νs

(
�
))
, for some κs, νs > 0 (3.2.35)

and

u ∈ C
(
(0, T ];W 2s,p (�)

)
, (3.2.36)

where T < Tmax.
(b) For the operators given in Example 2.3.6, even if assuming that � is smooth,

there is no global regularity results as the ones in part (a) available. In fact it
is even known that in that case D(Ap) 
⊂ W 2s,p(�). But most recently a local
regularity result has been obtained in [2, 3] where the authors have shown that



3.2 Maximal Strong Solution Theory 91

if p ∈ [2,∞) then D(Ap) ⊂ W
2s,p
loc (�) and if 1 < p < 2, then D(Ap) ⊂

(Bs
p,2)loc(�). Therefore in those cases we will have that

⎧⎨
⎩
u ∈ C

(
(0, T ];W 2s,p

loc (�)
)

if 2 ≤ p <∞,

u ∈ C
(
(0, T ]; (Bs

p,2)loc(�)
)

if 1 < p ≤ 2,

where T < Tmax. Here Bs
p,2(R

N) denotes the Besov space.

We shall not pursue the issue of spatial regularity any further under the general
assumption (HA). Nevertheless, we wanted to emphasize that such an additional
regularity for the strong solution, like in (3.2.33)–(3.2.36), can be expected in more
specific situations as a consequence of (3.2.4).

Finally, we conclude that every (maximal) bounded mild solution constructed
by Theorem 3.1.10 (or any quasi-mild solution, as given by Corollary 3.1.11)
regularizes to a strong solution for all positive times provided that q1, q2 and f

satisfy the assumptions of Theorem 3.2.2.

Theorem 3.2.6 (Global Regularity of the Bounded Mild Solution) Let u be the
corresponding mild solution in the sense of Definition 3.1.1 (or Definition 3.1.3) on
the interval I = [0, T ] or I = [0,∞) and let M := supt∈I ‖u (·, t)‖L∞(X) < ∞.

Consider either alternative (a) or (b) of Theorem 3.2.2, along with assumption (F5)
for the nonlinearity f = f (t, x, ξ) (when f is independent of t, assume instead that
f = f (x, ξ) satisfies conditions (F3)–(F4) for some function c = c (x) ∈ Lp (X) ,
p ∈ (βA,∞) ∩ (1,∞)). Then for all T0 ∈ I\ {0}, u is a strong solution on the time
interval I0 := [T0, T ] (or I0 =: [T0,∞)) in the sense of Definition 3.2.1 (namely,
(b)–(d) are satisfied for any p ∈ (βA,∞) ∩ (1,∞)).

Proof For θ ∈ (βA/p, 1), with p ∈ (βA,∞)∩ (1,∞) , the formula for the integral
solution allows to get the estimate

∥∥(−Ap)
θu (·, t)∥∥

Lp
(X) (3.2.37)

≤ ∥∥(−Ap)
θSα (t) u0

∥∥
Lp

(X) +Q(M)

∫ t

0

∥∥(−Ap)
θP (t − τ)

∥∥
p,q1

‖c (·, τ)‖Lq1
(X) dτ

≤ ∥∥(−Ap)
θSα (t)

∥∥
p,p

‖u0‖Lp(X)

+Q(M)

(∫ t

0

∥∥(−Ap)
θP (t − τ)

∥∥q
p,q1

dτ

)1/q

‖c‖q1,q2
,

where q (1− 1/q2) = 1, for all t ∈ [T0, T ]. Exploiting the estimate (3.2.6) and
recalling (3.2.17)–(3.2.18), we infer from (3.2.37) that

∥∥(−Ap)
θu (·, t)∥∥

Lp
(X) ≤ CT −θα0 ‖u0‖Lp(X) +Q(M) ‖c‖q1,q2

(
CT χ+1/q

)
,

(3.2.38)
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where χ+1/q > 0, for all T0 ≤ t ≤ T . Consider next the integral formula (3.2.15),
which holds for all T0 ≤ t < t+h ≤ T . Let η < θ = η+μ such that η ∈ (βA/p, 1)
and argue verbatim as in the proof of Theorem 3.2.2 (see Step 2, estimates (3.2.19)–
(3.2.31)) with the exception of the first summand

∥∥(−Ap)
η (Sα (t + h)− Sα (t)) u0

∥∥
Lp

(X)

(3.2.5)≤ C (p,μ)

∫ ∞

0
�α(τ)

(
τ (t + h)α − τ tα

)μ ∥∥(−Ap)
θS

(
τ tα

)
u0

∥∥
Lp

(X) dτ

≤ C (p,μ, η) t−ηα
(∫ ∞

0
�α(τ)τ

−ηdτ
) (

CT h
μ/s

)

≤ C (p,μ, θ, T ) T
−ηα
0 hμ/s,

where 1/s < α. We once again derive

∥∥(−Ap)
η (u (·, t + h)− u (·, t))∥∥

Lp
(X) (3.2.39)

≤ ∥∥(−Ap)
η (Sα (t + h)− Sα (t)) u0

∥∥
Lp

(X)

+
∫ t+h

t

∥∥(−Ap)
ηPα (t + h− τ )

∥∥
p,q1

‖f (τ, u (τ ))‖Lq1
(X) dτ

+
∫ t

0

∥∥(−Ap)
η (Pα (t + h− τ )− Pα (t − τ ))

∥∥
p,q1

‖f (τ, u (τ ))‖Lq1
(X) dτ

≤
(
Q(M) ‖c‖q1,q2

+ CT T
−ηα
0

)
hκ ,

with the same value κ > 0, see (3.2.32). The embedding D((−Ap)
η) ↪→ L∞ (X)

yields from estimate (3.2.39) the desired claim that u is κ-Hölder continuous
on [T0, T ] with respect to the L∞ (X)-norm. Thus we may conclude the thesis
exploiting the same step employed at the end of the proof of Theorem 3.2.2, on
any time interval [T0, T ] ⊂ I . The proof is finished. ��

3.3 Differentiability Properties in the Case 0 < α < 1

The problem of determining some additional smoothness for the strong solutions
of the semilinear problem (3.1.1) is rather a complex one. Indeed in the case
α ∈ (0, 1) , by Definition 3.2.1 and Theorem 3.2.2 each (maximally-defined) strong
solution has the property

∂αt u ∈ C
(
(0, T ];Lp (X)) , u ∈ C0,κ ([0, T ] ;L∞ (X)) , for some 0 < κ < 1,

(3.3.1)
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for any T < Tmax. By Remark 2.1.5, the first of (3.3.1) implies that u ∈
C0,α ((0, T ];Lp (X)) but u is not generally known to be in C1 ((0, T ];Lp (X)).
This is automatically true in the standard case when α = 1. The existence of
singularities in the derivative u

′
(t) at t = 0 is immediately apparent from the

notion of integral solution in (3.1.2); such singularities are present through the
operator Pα (t) which now becomes unbounded as t → 0+ (in the case α = 1,
Pα (t) = S (t) = eAt is no longer singular as t → 0+). In the linear case (2.1.6),
when the source f = f (x, t) is independent of the variable u, the C1-in time
regularity can be found in the result of Proposition 2.1.9.

Our aim is to address the issue of C1-regularity for the full semilinear prob-
lem (3.1.1) provided that f = f (x, t, u) is smooth enough as a function in (t, u).
We consider again the integral solution (3.1.2) and first compute its formal derivative

u
′
(t) = S

′
α (t) u0 + Pα (t) f (0, u (0)) (3.3.2)

+
∫ t

0
Pα (t − τ )

[
∂tf (τ, u (τ ))+ ∂uf (τ, u (τ )) u

′
(τ )

]
dτ.

We also recall that S
′
α (t) u0 = Pα (t)

(
Apu0

)
for u0 ∈ D

(
Ap

)
. We can rewrite

Eq. (3.3.2) in the form

V (t) = v (t)+
∫ t

0
Pα (t − τ ) ∂uf (τ, u (τ )) V (τ) dτ (3.3.3)

where we have set V (t) = u
′
(t) and

v (t) := S
′
α (t) u0+Pα (t) f (0, u (0))+

∫ t

0
Pα (t − τ ) ∂tf (τ, u (τ )) dτ. (3.3.4)

In the sequel, we will need some additional hypotheses on the nonlinear function f.
But first, a preliminary lemma is required.

Lemma 3.3.1 Let p ∈ (1,∞) and T > 0 be fixed but otherwise arbitrary. Consider
the following pair of nonlinear equations

wj (t) = Fj (t)+
∫ t

0
Pα (t − s) fj

(
s,wj (s)

)
ds,

for some Fj ∈ L1 ((0, T ) ;Lp (X)) and assume thatwj ∈ L1 ((0, T ) ;Lp (X)) exist
a.e. in (0, T )× X, for j = 1, 2. In addition assume the following:

(i) For almost all x ∈ X, the functions f1 (t, ξ) (x) = f1 (x, t, ξ) and
f2 (t, ξ) (x) = f2 (x, t, ξ) are continuous in (t, ξ) ∈ [0, T ]× R.

(ii) For almost all x ∈ X and all t ∈ [0, T ], f1 (x, t, ξ) is Lipschitz continuous in ξ
with Lipschitz constant L > 0, independent of t and ξ.
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Define

Q(t) := F1 (t)− F2 (t)+
∫ t

0
Pα (t − τ )

(
f1 (τ,w2 (τ ))− f2 (τ,w2 (τ ))

)
dτ.

Then for all t ∈ (0, T ] one has the estimate

‖w1 (t)−w2 (t)‖Lp(X) (3.3.5)

≤ ‖Q(t)‖Lp(X) + C

∫ t

0
(t − τ )α−1 Eα,α

(
c (t − τ )α

) ‖Q(τ)‖Lp(X) dτ,

for some C, c > 0 independent of t and wj .

Proof Define z := w1 −w2, F := F1 − F2 and the function

G(t) :=
⎧⎨
⎩
f1 (t, w1 (t))− f1 (t, w2 (t))

z (t)
, if z (t) 
= 0,

0, if z (t) = 0.

Then G ∈ L∞ ((0, T ) ;L∞ (X)) and ‖G(t)‖L∞(X) ≤ L, a.e. on (0, T ) , by
assumption (ii). Based on the definition of wj , we have

z (t) = F (t)+
∫ t

0
Pα (t − τ ) (f1 (τ,w2 (τ ))− f2 (τ,w2 (τ ))) dτ

+
∫ t

0
Pα (t − τ ) (f1 (τ,w1 (τ ))− f1 (τ,w2 (τ ))) dτ

= Q(t)+
∫ t

0
Pα (t − τ )G (τ) z (s) dτ

which then yields

‖z (t)‖Lp(X) ≤ ‖Q(t)‖Lp(X) +
∫ t

0
‖Pα (t − τ )‖p,p ‖G(τ)‖L∞(X) ‖z (τ )‖Lp(X) dτ

(3.3.6)

≤ ‖Q(t)‖Lp(X) + (
Cp · L

) ∫ t

0
(t − τ )α−1 ‖z (τ )‖Lp(X) dτ,

owing to the bound ‖Pα (t)‖p,p ≤ Cpt
α−1, for all t > 0. The final estimate (3.3.5)

follows as an application of the (Gronwall) Lemma A.0.9 and (3.3.6). This
concludes the proof of the lemma. ��

We have the following result for each strong solution on [0, T ] (with T < Tmax
and p ∈ (βA,∞) ∩ (1,∞)) that is given by (3.1.2).
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Theorem 3.3.2 Let the assumptions of Theorem 3.2.2 be satisfied and assume the
following hypotheses:

(a) For almost all x ∈ X and all t ∈ [0, T ] , the function f (t, ξ) (x) = f (x, t, ξ)

is continuously differentiable in (t, ξ) ∈ [0, T ] × [−M,M], for some M > 0;
moreover, for a.e. x ∈ X and

(
tj , ξ

) ∈ [0, T ] × [−M,M] (j = 1, 2), the
estimate holds

|∂tf (x, t1, ξ)− ∂tf (x, t2, ξ)| ≤ dM (x) |t1 − t2|β , (3.3.7)

for some β > 0 and dM ∈ Lp (X).
(b) For almost all x ∈ X and t ∈ [0, T ] , the function ∂ξf (t, ξ) (x) = ∂ξf (x, t, ξ)

satisfies for all ξ1, ξ2 ∈ [−M,M] ,

∣∣∂ξf (x, t, ξ1)− ∂ξf (x, t, ξ2)
∣∣ ≤ eM,T (x) |ξ1 − ξ2| , (3.3.8)

for some eM,T ∈ Lp (X).
Let V be a solution of (3.3.3) with v given by (3.3.4). Then the strong solution

of Theorem 3.2.2 belongs to C1 ((0, T ];Lp (X)) and u
′
(t) = V (t) on the interval

0 < t ≤ T .

Proof Let δ ∈ (0, T /3) be an arbitrarily small number and consider the right-
difference

Z (t, h) := h−1 (u (t + h)− u (t)) , for h ∈ (0, δ] and 0 < t ≤ T − δ.

Notice that Z (t − h, h) coincides with the left-difference. Moreover, since each
strong solution is bounded, namely, u ∈ L∞ ((0, T ) ;L∞ (X)), without loss of
generality we may set

M := ‖u‖L∞(
(0,T );L∞(X)) <∞.

It follows that f (t, ξ) (x) , ∂tf (t, ξ) (x) and ∂uf (t, ξ) (x) are all bounded (con-
tinuous) functions on [0, T ] × [−M,M], as functions in Lp (X) , as well as
∂uf (t, ξ) (x) is globally Lipschitz continuous in ξ ∈ [−M,M] on account
of (3.3.8). In particular, let K > 0 be a bound for the following quantities

sup
t∈[0,T ]

‖∂uf (x, t, u)‖Lp(X) <∞,

sup
t∈[0,T ]

(
‖∂tf (x, t, u)‖Lp(X) + ‖f (x, t, u)‖Lp(X)

)
<∞.
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We recall once again that every strong solution u has the regularity (3.3.1). Since
u (t) also satisfies the integral equation (3.1.2), Z (t, h) satisfies an equation of the
form

Z (t, h) = R (t, h)+
∫ t

0
Pα (t − τ ) ∂uf

(
τ, u∗ (τ )

)
Z (τ, h) dτ, (3.3.9)

where u∗ (t) is between u (t) and u (t + h) and θ (h) ∈ (0, h), where

R (t, h) := h−1 (Sα (t + h)− Sα (t)) u0

+ h−1
∫ t+h

t

Pα (τ ) f (t + h− τ, u (t + h− τ )) dτ

+
∫ t

0
Pα (τ) ∂tf (t + θ (h)− τ, u (t − τ )) dτ.

We now apply the Gronwall Lemma 3.3.1 to the difference Z (t, h) − V (t) . For
every 0 < t ≤ T − δ, we find

‖Z (t, h)− V (t)‖Lp(X) ≤ ‖Q(t, h)‖Lp(X) (3.3.10)

+ C

∫ t

0
(t − τ )α−1 Eα,α

(
c (t − τ )α

) ‖Q(τ, h)‖Lp(X) dτ,

where

Q(t, h) := R (t, h)− v (t)+
∫ t

0
Pα (t − τ )

(
∂uf

(
τ, u∗ (τ )

)− ∂uf (τ, u (τ ))
)
dτ

(3.3.11)

The foregoing equation can be further split up into four distinct terms, as follows:

I (t, h) := Sα (t + h)− Sα (t)

h
u0 − S

′
α (t) u0, (3.3.12)

II (t, h) := h−1
∫ t+h

t

Pα (τ) f (t + h− τ, u (t + h− τ)) dτ − Pα (t) f (0, u (0)) ,

(3.3.13)

III (t, h) :=
∫ t

0
Pα (τ) (∂tf (t + θ (h)− τ, u (t − τ))− ∂tf (t − τ, u (t − τ))) dτ,

(3.3.14)

IV (t, h) :=
∫ t

0
Pα (t − τ)

(
∂uf

(
τ, u∗ (τ )

)− ∂uf (τ, u (τ))
)
dτ. (3.3.15)
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To prove the claim of the theorem, we need to check first the following two steps:

(i) ‖Q(t, h)‖Lp(X) → 0 in the limit of h→ 0+, uniformly for t ∈ [δ, T − δ] .

(ii) ‖Q(τ, h)‖Lp(X) ≤ K0 + K1τ
α−1, for all 0 < τ < t, for some constants

K0,K1 > 0 independent of t, h.

For (i), we have ‖I (t, h)‖Lp(X) → 0 as h → 0+ uniformly in t ∈ [δ, T − δ]

since Sα (t) is analytic for t ≥ δ > 0 and S
′
α (t) u0 = Pα (t)

(
Apu0

)
, u0 ∈ D

(
Ap

)
.

We use assumption (a) via the inequality (3.3.7), to estimate the third term:

‖III (t, h)‖Lp(X) (3.3.16)

≤
∫ t

0
‖Pα (τ)‖p,p ‖∂t f (t + θ (h)− τ, u (t − τ))− ∂tf (t − τ, u (t − τ))‖Lp(X) dτ

≤ Cp ‖dM‖Lp(X) θ (h)β
∫ t

0
τα−1dτ

≤ CT αθ (h)β ,

which also goes to zero as h → 0+ (and so θ (h) → 0), uniformly for t ∈
[δ, T − δ] . We estimate the fourth term, owing to assumption (b) and (3.3.1),

‖IV (t, h)‖Lp(X) (3.3.17)

≤
∫ t

0
‖Pα (t − τ )‖p,p

∥∥∂uf
(
τ, u∗ (τ )

)− ∂uf (τ, u (τ ))
∥∥
Lp

(X) dτ

≤ Cp

∫ t

0
(t − τ )α−1

∥∥eM,T

∥∥
Lp

(X) ∥∥u∗ (τ )− u (τ)
∥∥
L∞(X)

dτ

≤ Cp
∥∥eM,T

∥∥
Lp

(X)
∫ t

0
(t − τ )α−1 ‖u (τ + h)− u (τ)‖L∞(X) dτ

≤ CT αhκ .

This also converges to zero, as h → 0+, uniformly for t ∈ [δ, T − δ]. Finally, in
order to estimate the summand II (t, h), we note that w0 := f (0, u (0)) ∈ Lp (X)
(on account of the fact u0 = u (0) ∈ D

(
Ap

) ⊂ L∞ (X)) and that Pα (t) is
continuously differentiable for all t ≥ δ, which then yields

1

h

∥∥∥∥
∫ t+h

t

Pα (τ )w0ds − Pα (t) w0

∥∥∥∥
Lp

(X) dτ → 0, as h→ 0+, (3.3.18)
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uniformly for all t ∈ [δ, T − δ] . Let ε > 0 be given. We can pick a sufficiently
small h0 ≤ δ, such that for 0 < h ≤ h0, it holds

‖II (t, h)‖Lp(X)

≤ 1

h

∥∥∥∥
∫ t+h

t

Pα (τ )w0 − Pα (t) w0dτ

∥∥∥∥
Lp

(X)

+ 1

h

∥∥∥∥
∫ t+h

t

Pα (τ ) (f (t + h− τ, u (t + h− τ ))− f (0, u (0))) dτ

∥∥∥∥
Lp

(X)

≤ ε + Cph
−1

∫ t+h

t

τα−1
[
(t + h− τ )+ ‖u (t + h− τ )− u (0)‖L∞(X)

]
dτ

≤ ε + Cp,T h
−1

∫ t+h

t

τα−1 (t + h− τ )κ
[
1+ (t + h− τ )1−κ

]
dτ

≤ ε + Cp,T ,δ

(
1+ T 1−κ)h−1

∫ t+h

t

(t + h− τ )κ dτ

≤ ε + Cp,T ,δ
(
T 1−κ + 1

)

κ + 1
hκ

≤ 2ε,

owing once again to the second of (3.3.1). Here the constant Cp,T ,δ ∼ δα−1 occurs
as the maximum of the function τ �→ τα−1 over [δ, T ]. Collecting all these previous
estimates, we have completed the proof of (i).

We next give a proof of (ii). Recall the definition of Q(τ, h) from (3.3.11). We
begin with the basic estimate for 0 < τ < t,

‖v (τ )‖Lp(X) ≤
∥∥∥S ′α (τ ) u0

∥∥∥
Lp

(X) + ‖Pα (τ) f (0, u (0))‖Lp(X) (3.3.19)

+
∫ τ

0
‖Pα (s − ξ)‖p,p ‖∂tf (ξ, u (ξ))‖Lp(X) dξ

≤ Cpτ
α−1

(∥∥Apu0
∥∥
Lp

(X) + ‖w0‖Lp(X)
)
+K · Cpτα

≤ Cp,T ,K (u0) τ
a−1,

for some constant Cp,T ,K > 0 independent of h, τ and t . Clearly, whenever 0 <

h ≤ h0 and 0 < τ < t,

h−1 ‖(Sα (τ + h)− Sα (τ )) u0‖Lp(X) ≤ 1+
∥∥∥S ′α (τ ) u0

∥∥∥
Lp

(X) (3.3.20)

≤ 1+ Cp
∥∥Apu0

∥∥
Lp

(X) τα−1.
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Moreover, it follows that

h−1
∫ τ+h

τ

‖Pα (ξ) f (s + h− ξ, u (τ + h− ξ))‖Lp(X) dξ ≤ h−1Cp,K

∫ τ+h

τ

ξα−1dξ,

with a function on the right hand side that equals C ((τ + h)α − τα) h−1, for some
constant C > 0 depending only on Cp,K and α. We have (τ + h)α − τα ≤ hτα−1

for all h, τ > 0 (indeed set r := h/τ and notice that (1+ r)α ≤ 1+r , for any r > 0
and α ∈ (0, 1)). Then for all 0 < τ < t,

h−1
∥∥∥∥
∫ τ+h

τ

Pα (ξ) f (τ + h− ξ, u (τ + h− ξ)) dξ

∥∥∥∥
Lp

(X) ≤ Cτα−1. (3.3.21)

Next, it is also obvious that

∥∥∥∥
∫ τ

0
Pα (ξ) ∂tf (τ + θ (h)− ξ, u (τ − ξ))

∥∥∥∥
Lp

(X) dξ ≤ Cp ·Kτα−1. (3.3.22)

Combining all the estimates from (3.3.19)–(3.3.22), we can write a bound in the
form

‖R (τ, h) − v (τ )‖Lp(X) ≤ K0 +K1τ
α−1, for 0 < τ < t. (3.3.23)

Finally, for the summand IV (τ, h) in (3.3.15), whenever 0 < τ < t < T, we have

‖IV (τ, h)‖Lp(X) ≤ 2K · Cp
∫ τ

0
(τ − ξ)α−1 dξ ≤ Cτα. (3.3.24)

Collecting the foregoing inequalities (3.3.23)–(3.3.24), we have thus concluded the
estimate for Q(τ, h) in (ii).

We now finalize the proof of the theorem. Set ζ := cT αEα,α+1 (cT
α) for the

same constant c > 0 from (3.3.10) and observe also that by (A.0.19), we have that

∫ T

0
τα−1Eα,α

(
cτα

)
dτ = ζ.

Let K2 > 0 be a bound for the function t �→ Ctα−1Eα,α (ct
α) over δ ≤ t ≤ T − δ.

Given ε > 0, pick η ∈ (0, δ] sufficiently small so that

∫ η

0
K2

(
K0 +K1τ

α−1
)
dτ < ε (2+ ζ )−1 .

Now pick h0 so small such that whenever 0 < h ≤ h0, ‖Q(t, h)‖Lp(X) ≤
ε (2+ ζ )−1 , uniformly in the range δ ≤ t ≤ T − δ. Then for all h ∈ (0, h0]
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and t ∈ [δ, T − δ] one has from (3.3.10) that

‖Z (t, h)− V (t)‖Lp(X) (3.3.25)

≤‖Q(t, h)‖Lp(X)

+ C

∫ η

0
(t − τ )α−1 Eα,α

(
c (t − τ )α

) ‖Q(τ, h)‖Lp(X) dτ

+ C

∫ t

η

(t − τ )α−1 Eα,α

(
c (t − τ )α

) ‖Q(τ, h)‖Lp(X) dτ

≤ε (2+ ζ )−1 +
∫ η

0
K2

(
K0 +K1τ

α−1
)
dτ

+ ε (2+ ζ )−1
∫ t

η

(t − τ )α−1 Eα,α

(
c (t − τ )α

)
dτ

≤2ε (2+ ζ )−1 + ε (2+ ζ )−1
∫ T

0
τα−1Eα,α

(
cτα

)
dτ

≤ 2ε

2+ ζ
+ ε (2+ ζ )−1 ζ = ε.

Since ε > 0 is arbitrary, (3.3.25) shows that Z (t, h) → V (t) as h → 0+
uniformly in δ ≤ t ≤ T − δ. But δ > 0 is also arbitrary so that this argument
also gives that V (t) is the continuous right derivative of u (t) on the interval
t ∈ (0, T ). Since the convergence Z (t, h)→ V (t) is also uniform on any interval
of the form [δ, T − δ] , the set {Z (·, h) : 0 < h < δ} of Lp (X)-valued functions is
equicontinuous. Therefore,

lim
h→0+

Z (t, h) = lim
h→0+

Z (t − h, h) = V (t) (3.3.26)

uniformly on any interval t ∈ [δ, T − δ] (the second limit in (3.3.26) shows that
V (t) is also the continuous left derivative of u (t) on [δ, T − δ]). But since δ > 0
was arbitrary, it follows that u

′
(t) = V (t) for all t ∈ (0, T ) . Finally, arguing in a

similar fashion as above, we also deduce that V (T ) is the left-derivative of u (t) at
t = T , and therefore, the conclusion of the theorem follows. ��
Remark 3.3.3 More involved arguments should also give that u is Ck ((0, T ];
Lp (X)) for any integer k ≥ 1, provided that the nonlinear function f is sufficiently
smooth (see Chap. 5, Problem 4).

We conclude the section by formulating the following fundamental question.
Under what conditions can we say that the notions of generalized Caputo

derivative (see Definition 2.1.1) and the classical Caputo derivative g1−α ∗ ∂tf
are equivalent for a solution of problem (3.1.1)?
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A classical result states this equivalency, for every t ∈ [0, T ] , for functions u :
[0, T ] → Y that are differentiable everywhere on [0, T ] (see (2.1.3)). However, any
strong solution u : [0, T ] → Y = Lp (X) , of Eq. (3.1.1), even in the homogeneous
linear case of (2.1.6), is not differentiable at t = 0, no matter how smooth the
initial condition is.2 It turns out that a more general result that does not require
(classical) differentiability at t = 0 can hold based on [8, Theorem 3.1], namely,
∂αt u (t) = (g1−α ∗ ∂tu) (t) , for almost all t ∈ (0, T ], for as long as the function
u ∈ AC ([0, T ] ; Y ) and Y is Gelfand (i.e., Y has the Radon-Nikodym property with
respect to the Lebesgue measure on the Borel sets of [0, T ]). Here AC ([0, T ] ; Y )
denotes the space of all absolutely continuous functions on [0, T ] with values in the
Banach space Y , namely, for each ε > 0 there exists a δ > 0 such that if (an, bn) is
a sequence of disjoint subintervals of [0, T ] , with

∑
n (bn − an) < δ, then

∑
n

‖u (bn)− u (an)‖Y < ε.

The space Y = Lp (X), 1 < p < ∞, is an example of such a Gelfand-space (see
[7, Chapter IV, Section 3 and Chapter V]). In this case, it also follows directly from
the Radon-Nikodym theorem (see again [7]) that

AC
(
[0, T ] ;Lp (X)) ∼= W 1,1 ([0, T ] ;Lp (X)) ,

provided that X satisfies all the assumptions of Chap. 2.
The next result provided us with the first concrete evidence of the validity of the

equivalency problem for any strong solution of problem (3.1.1).

Theorem 3.3.4 Let the assumptions of Theorem 3.3.2 be satisfied. Then every
strong solution on [0, T ] (with T < Tmax), of problem (3.1.1), also satisfies the
initial value problem

g1−α ∗ ∂tu = Au+ f (x, t, u) , for almost all X× (0, T ], u (·, 0) = u0 in X.
(3.3.27)

Proof The proof is an immediate consequence of the proof of Theorem 3.3.2; it is
an easy exercise since

u ∈ C1((0, T ];Lp (X)) ∩ C0,κ ([0, T ] ;L∞ (X)) , 0 < κ < 1.

Indeed, it follows that ‖∂tu (t)‖Lp(X) ≤ Cp,T t
α−1, for all t ∈ (0, T ], and therefore,

it holds

u ∈ W 1,q ([0, T ] ;Lp (X)) ⊆ W 1,1 ([0, T ] ;Lp (X)) ,
for any 1 ≤ q < 1/ (1− α) . Based on the prior statements above, the proof then
follows. ��

2This is in contrast to the case α = 1.
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3.4 Global A Priori Estimates

Our goal in this subsection is to derive an explicit uniform L∞-estimate from some
givenLr -estimate of the mild (or quasi-mild) solution. Indeed, according to previous
results, the L∞-bound is crucial for the global regularity problem as well as it is
essential in the investigation of the long-time behavior as time goes to infinity (see,
for instance, [11–13]). In what follows we shall implicitly make use of the fact that
every mild solution constructed in this section is in fact a strong solution on some
maximal interval of existence. In the case u0 ∈ L∞ (X), this statement is already
a consequence of Theorem 3.2.6 and the local boundedness of the mild solution
(see Theorem 3.1.9). In the case when u0 ∈ Lp0 (X), p0 ∈ [1,∞) the arguments
below can still be made rigorous by employing a regularization procedure in which
u0j ∈ D

(
Ap

) ⊂ L∞ (X), for p ≥ p0 with p ∈ (βA,∞) ∩ (1,∞) , such that
u0j → u0 in Lp (X) (sinceD

(
Ap

)
is dense in Lp (X)). This is no serious drawback

since the corresponding mild solutions associated with the initial datum u0j are
indeed strong solutions and every mild solution associated with the initial datum u0
is locally bounded (see again Theorem 3.1.9).

We shall present two methods which are of different nature. First, we appeal
to a method exploited in [22] for classical systems of parabolic equations (α =
1) with standard diffusion �, and which is based on “feedback” and some
bootstrap arguments. The advantage of the “feedback” argument is that it uses only
elementary inequalities. The next theorem generalizes the “feedback” argument to
nonlocal problems with a fractional-in-time Caputo derivative and a larger class of
“diffusion” operators A, possibly also nonlocal (see Sect. 2.3). Besides, it also has
direct application in the theory dealing with nonlinear systems of fractional kinetic
equations. We refer the reader to Chap. 4 below and the corresponding sections.

As before, we recall that q1 ∈ (βA,∞] ∩ [1,∞] and q2 ∈ (1/α,∞], and

n := βAα > 0, 0 ≤ δ := n

p0
− n

p
< α

where βA > 0, 0 < α ≤ 1, for all p ∈ [p0,∞] . Let

ϒ (t) :=
{
tε, if t ∈ (0, 1]
t, if t > 1.

We note that if p0 ≥ max (βA, 1) we automatically have δ ∈ [0, α), for
arbitrary p ∈ [p0,∞] while for p0 < βA this holds provided that p0 ≤ p <

p0/ (1− p0/βA). Having the restriction δ ∈ [0, α) is required only in the case
α ∈ (0, 1) due to (2.2.12). When α = 1, such a restriction can be eliminated and it
suffices to ask instead that δ ≥ 0. Further conditions on p ∈ [p0,∞] will be sought
in the proofs of the supporting lemmatas below.
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Theorem 3.4.1 (Global A Priori Estimate) Let r1, r2 ∈ [1,∞], q1, q2 and γ ∈
[1,∞) satisfy

n

q1
+ 1

q2
+ (γ − 1)

(
n

r1
+ 1

r2

)
< α and

1

q1
+ γ − 1

r1
< 1, if r1 <∞. (3.4.1)

Let p0 ∈ [1,∞] be arbitrary and assume f obeys the conditions (F1)–(F2) for
some γ ∈ [1,∞) and q1, q2 satisfying (3.4.1). Let now u0 ∈ Lp0 (X) ⊆ Lp0 (X)
(p0 ∈ [1,∞]) for which the corresponding mild solution satisfies

‖u‖r1,r2,T ≤ L(‖u0‖Lp0
(X)) (3.4.2)

on any time interval [0, T ] , for some positive increasing function L (independent
of u, u0) but which depends on the Lp0 (X)-norm of u0. Then Problem (3.1.1) has
a unique global mild (or quasi-mild, if p0 = ∞) solution on [0,∞) in the sense
of Definition 3.1.1 (and Definition 3.1.3, respectively). In particular, there exist
numbers ρ > 0 and ε > 0 such that the mild solution u satisfies the estimates:

sup
t∈(0,∞)

(t ∧ 1)δ ‖u (·, t)‖Lp(X) <∞, for all p ∈ [p0,∞] (3.4.3)

and

‖u (·, t)‖L∞(X) ≤ C (t ∧ 1)
− n

p0

[
‖u0‖Lp0

(X) +ϒ (t)
(
�+�ρ

)]
, (3.4.4)

where � = �
(
‖u0‖Lp0

(X)
)
:=

(
1+ L

(
‖u0‖Lp0

(X)
))

(1 + ‖c‖q1,q2
). Esti-

mate (3.4.4) holds with ρ = γ if one assumes that

n

q1
+ 1

q2
+ γ

(
n

r1
+ 1

r2

)
< α and

1

q1
+ γ

r1
≤ 1.

The proof of this theorem is based on some subsequent lemmas. Note that the
next lemma does not use the Lipschitz condition (F2).

Lemma 3.4.2 Let p0 ∈ [1,∞] , r1, r2 ∈ [1,∞], γ ∈ [1,∞), b ∈ [0, 1] , ε ∈
(0, α) and p ∈ [p0,∞] such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n

q1
+ 1

q2
+ γ (1− b)

(
n

r1
+ 1

r2

)
< α + (1− γ b)

n

p
− ε,

1

q1
+ γ

(1− b)

r1
+ γ

b

p
≤ 1,

1

q2
+ γ

(1− b)

r2
+ γ bδ < α − ε,

γ b < 1, with δ = n

p0
− n

p
∈ [0, α).

(3.4.5)



104 3 The Semilinear Parabolic Problem

Let f obey the condition (F1) for some γ ∈ [1,∞) satisfying (3.4.5). Let the mild
solution u for Problem (3.1.1) with an initial datum u0 ∈ Lp0 (X) ⊂ Lp0 (X)
satisfy the a priori estimate ‖u‖r1,r2,T < ∞, for any T > 0. Furthermore assume
|||u|||p,δ,T <∞ and for b > 0 define

U := ‖1+ |u|‖γ (1−b)r1,r2,T
‖c‖q1,q2

.

Then there exists a constant C∗ > 0 independent of u0, u,U, t and T such that

|||u|||p,δ,T ≤ C∗
[
‖u0‖Lp0

(X) +ϒ (T ) (U + U1/(1−γ b))
]
. (3.4.6)

Proof We shall exploit again the integral formulation for the mild solution (see
Definition 3.1.1). By (3.4.5), there exist s1, s2 ∈ [1,∞] such that

n

s1
+ 1

s2
≤ α + n

p
− ε, (3.4.7)

1

s2
+ γ bδ < α − ε ≤ 1− ε, (3.4.8)

1

q1
+ γ (1− b)

r1
+ γ b

p
≤ 1

s1
, (3.4.9)

1

q2
+ γ (1− b)

r2
≤ 1

s2
. (3.4.10)

We have

‖u (·, t)‖Lp(X) ≤‖Sα(t)‖p,p0 ‖u0‖Lp0(X)+
∫ t

0
‖Pα (t−τ)‖p,s1

‖f (τ, u (·, τ ))‖Ls1(X) dτ.

We use (F1), to split the nonlinear term into several terms. First, by (3.4.9) and the
Hölder inequality we get for all t > 0,

(t ∧ 1)δ ‖u (·, t)‖Lp(X) (3.4.11)

≤ (t ∧ 1)δ ‖Sα(t)‖p,p0
‖u0‖Lp0

(X)

+ (t ∧ 1)δ
∫ t

0
‖Pα (t − τ)‖p,s1 ‖c (·, τ)‖Lq1

(X) ‖1+ |u (τ)|‖γ (1−b)
Lr1

(X) (τ ∧ 1)−γ bδ dτ

×
(
|||1+ |u||||γ bp,δ,T

)
.

The first summand on the right-hand side of (3.4.11) can be estimated using the
ultracontractivity property (2.2.12) for Sα(t) as a bounded operator from Lp0 (X)
into Lp (X). For the second summand we apply Lemma A.0.1 with the choice
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p, s1, s2, δ, ε as above, θ :=γ bδ and r (τ ) := ‖c (·, τ )‖Lq1
(X) ‖1+|u (·, τ )|‖γ (1−b)

Lr1
(X) .

Hence from (3.4.11), we deduce

|||u|||p,δ,T ≤ C ‖u0‖Lp0
(X) + Cϒ (T ) ps2 (r) |||1+ |u||||γ bp,δ,T . (3.4.12)

The function ps2 (r) can be estimated from the same Lemma A.0.1 using
the Hölder inequality on account of (3.4.10). It follows that ps2 (r) ≤
‖c‖q1,q2

‖1+ |u|‖γ (1−b)r1,r2,T
= U . Therefore, (3.4.12) implies that

|||u|||p,δ,T ≤ C ‖u0‖Lp0
(X) + Cϒ (T )U |||1+ |u||||γ bp,δ,T . (3.4.13)

Observe now that (3.4.13) is already the assertion (3.4.6) when b = 0. In order
to show the estimate in the case when b > 0, we apply a “feedback” argument
to (3.4.13) by employing the “feedback” inequality of Lemma A.0.6 with the
following choices

y := |||u|||p,δ,T , z0 := C
(
‖u0‖Lp0

(X) +ϒ (T )U
)
, z1 := Cϒ (T )U

with σ := γ b < 1. Indeed, (3.4.13) yields that y ≤ z0 + z1y
σ and therefore, we

obtain

y ≤ z0

1− σ
+ z

1
1−σ
1 .

The foregoing inequality yields (3.4.6) with constant C∗ = C/ (1− γ b) +
C1/(1−γ b).

Next, we can also check in what sense the initial datum is satisfied. By the
integral formula and the bound (F1) we have

‖u (·, t)− Sα (t) u0‖Lp0
(X)

≤
∫ t

0
‖Pα (t − τ)‖p0,s1

‖c (·, τ )‖Lq1
(X) ‖1+ |u (·, τ )|‖γ (1−b)

Lr1
(X) ‖1+ |u (·, τ )|‖γ b

Lr1
(X) dτ

on which we can once again apply Lemma A.0.1 with the same s1, s2 and choice
of function r (s) as above, and δ := 0, p := p0, θ := γ bδ and ε := ε. By (3.4.7)
and (3.4.8), we can easily verify that the assumptions of Lemma A.0.1 are indeed
verified. We get

‖u (·, t)− Sα (t) u0‖Lp0
(X) ≤ Cϒ (t) ps2 (r) |||1+ |u||||γ bp,δ,T (3.4.14)

≤ Cϒ (t) U |||1+ |u||||γ bp,δ,T ,
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for all t ∈ (0, T ]. Notice that ϒ (t)→ 0 as t → 0+. Finally, it is also easy to check
that ‖f (s, u (s))‖1,1,T < ∞, for any T > 0 for which u satisfies (3.4.6). Indeed,
we get

‖f (s, u (s))‖1,1,T ≤ C (T +ϒ (T ))U |||1+ |u||||γ bp,δ,T
(3.4.6)
<∞ .

The proof is finished. ��
Note also that the next supporting result does not use the Lipschitz condition

(F2).

Lemma 3.4.3 Let q1, q2, and r1, r2 ∈ [1,∞], γ ∈ [1,∞), b ∈ [0, 1] , ε ∈ (0, α)
satisfy

n

q1
+ 1

q2
+γ (1− b)

(
n

r1
+ 1

r2

)
< α − ε, (3.4.15)

1

q1
+ γ (1− b)

r1
≤ 1, (3.4.16)

γ b < 1. (3.4.17)

Let p0 ∈ [1,∞] be arbitrary and let f satisfy condition (F1) for some γ ∈ [1,∞)

that obeys (3.4.15)–(3.4.17). Let the mild solution u for problem (3.1.1) with an
initial datum u0 ∈ Lp0 (X) satisfy U < ∞ for any T > 0, where U is
defined in the statement of Lemma 3.4.2. Furthermore for b > 0 assume that
supt∈(0,T ] ‖u (·, t)‖L∞(X) < ∞. Then there exists a constant C∗ > 0 independent
of u0, u,U, t and T such that

‖u (·, t)‖L∞(X) ≤ C∗ (t ∧ 1)
− n

p0

[
‖u0‖Lp0

(X) +ϒ (t)

(
U + U1/(1−γ b))] ,

(3.4.18)

for all t ∈ (0, T ].
Remark 3.4.4 In the case b > 0 the a priori information supt∈(0,T ] ‖u (·, t)‖L∞(X)
<∞ is essential to deduce the explicit estimate (3.4.18) with a constant independent
of time and of any T > 0. Otherwise, no conclusion can be drawn from the
“feedback” argument. On the other hand since every mild solution of Theorem 3.1.4
is locally bounded by Theorem 3.1.9 on (0, Tmax), we can infer from (3.4.18) that
Tmax =∞ for as long as U is finite on any time interval [0, T ] .

Proof (Proof of Lemma 3.4.3) First, we observe that when p0 = ∞ or b = 0, the
assumptions (3.4.5) of Lemma 3.4.2 are satisfied with p := ∞, δ := 0 and r1, r2, γ

as above in (3.4.15)–(3.4.17). In this case, the assertion (3.4.18) is equivalent to
the estimate (3.4.6) of Lemma 3.4.2. Thus, we may assume that p0 ∈ [1,∞) and
b ∈ (0, 1]. We apply an inductive argument with help from Lemmas 3.4.2 and A.0.5
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in the appendix. To this end, consider the finite sequences {pi} with p0 < p1 <

. . . < pk = ∞, and {δi} ∈ (0, α) for i = 1, .., k as given by Lemma A.0.5. We then
apply Lemma 3.4.2 with the choices p0 := pi−1, p := pi, δ := δi , the exponents
r1, r2, γ , b as above in (3.4.15)–(3.4.17), and initial datum u0 := u (t) for arbitrary
t ∈ (0, T ]. It follows that (3.4.6) of Lemma 3.4.2 yields for all h ∈ (0, T − t],
i = 1, .., k,

|||u (t + h)|||pi,δi ,h ≤ Ci

[
‖u (·, t)‖Lpi−1

(X) +ϒ (h)
(
U + U1/(1−γ b))] .

(3.4.19)

The choice t = ih− h in (3.4.19) then gives

(h ∧ 1)δi ‖u (·, ih)‖Lpi (X) (3.4.20)

≤ Ci

[
‖u (·, ih− h)‖Lpi−1

(X) +ϒ (h)
(
U + U1/(1−γ b))] ,

for all i = 1, .., k and h ∈ (0, T /i], for some Ci < ∞. An induction argument
in (3.4.20) for i = 1, . . . , k implies

(h ∧ 1)δ1+...+δi ‖u (·, ih)‖Lpi (X) ≤ Ci

[
‖u0‖Lp0

(X) +ϒ (h)

(
U + U1/(1−γ b))] .

(3.4.21)

Since δi = n/pi−1 − n/pi , we readily have δ1 + . . .+ δk = n/p0 − n/pk = n/p0
and (3.4.21) with i = k, gives no other than the required estimate (3.4.18). This
completes the proof of the lemma. ��
Remark 3.4.5 The statements of Lemmas 3.4.2 and 3.4.3 reduce exactly to those
of [22, Lemma 19 and Lemma 20] in the case α = 1 and A = � (with
βA = N/2). Finally, we also observe that when u0 ≥ 0 and u ≥ 0, the
assumption (F1) in these lemmas can be replaced by the weaker one-sided bound
f (x, t, u) ≤ c (x, t) (1+ uγ ) . Indeed, since both families {Sα (t)}, {Pα (t)} are
positive by Proposition 2.2.1, the following pointwise estimate holds

0 ≤ u (t) ≤ v (t) := Sα (t) u0 +
∫ t

0
Pα (t − τ )

(
c (·, τ ) (1+ uγ (τ )

))
dτ,

and the whole arguments of Lemmas 3.4.2 and 3.4.3 can be instead applied to the
integral family v.

Before we can finish the proof of Theorem 3.4.1 we also need the following
continuous dependence estimate. This result uses the Lipschitz condition (F2) in a
crucial way.
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Lemma 3.4.6 Let p0 ∈ [1,∞] , r1, r2 ∈ [1,∞], ε ∈ (0, α), p ∈ [p0,∞] and
assume (F2) for some γ ∈ [1,∞), q1, q2 that satisfy

n

q1
+ 1

q2
+ (γ − 1)

(
n

r1
+ 1

r2

)
< α − ε, (3.4.22)

1

q1
+ γ − 1

r1
+ 1

p
≤ 1, (3.4.23)

1

q2
+ γ − 1

r2
+ δ < α − ε, (3.4.24)

and the a priori estimate (3.4.2). Let ui be any two mild solutions in the sense of
Definition 3.1.1 for any two initial data u0i ∈ Lp0 (X) ⊆ Lp0 (X) , i = 1, 2. Then
there exists a constant C > 0 independent of ui, t, T and u0i , such that

|||u1 − u2|||p,δ,T ≤C ‖u01 − u02‖Lp0
(X) (3.4.25)

+ Cϒ (T ) ‖1+ |u1| + |u2|‖γ−1
r1,r2,T

|||u1 − u2|||p,δ,T ,

for all t ∈ (0, T ].
Proof The argument follows in a similar fashion to the computation (3.4.12)–
(3.4.13) using the local Lipschitz condition (F2). Choose s1, s2 ∈ [1,∞] such that

1

q1
+ γ − 1

r1
+ 1

p
≤ 1

s1
,

1

q2
+ γ − 1

r2
≤ 1

s2

and

n

s1
+ 1

s2
− n

p
+ ε < α,

1

s2
+ δ ≤ α − ε.

By the integral solution representation for each ui, by the Hölder inequality and
(F2) we have

‖(u1 − u2) (·, t)‖Lp(X) (3.4.26)

≤‖Sα (t)‖p,p0
‖u01 − u02‖Lp0(X)

+ |||u1 − u2|||p,δ,T

×
∫ t

0
‖Pα (t − τ)‖p,s1

‖c (·, τ )‖Lq1(X) ‖1+ |u1 (·, τ )| + |u2 (·, τ )|‖γ−1
Lr1(X) (τ ∧ 1)−δ dτ.

The first term at the right hand side of (3.4.26) can be estimated as before using the
ultracontractivity estimate for Sα(t). For the second summand in (3.4.26), we apply
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Lemma A.0.1 (whose assumptions are satisfied) with the choices

r (τ ) := ‖c (·, τ )‖Lq1
(X) ‖1+ |u1 (·, τ )| + |u2 (·, τ )|‖γ−1

Lr1
(X)

and p, s1, s2, ε as above, and θ := δ. The foregoing inequality then yields

|||u1 − u2|||p,δ,T ≤ C ‖u01 − u02‖Lp0
(X) + Cϒ (T ) ps2 (r) |||u1 − u2|||p,δ,T .

(3.4.27)

The functional ps2 (r) can be estimated exploiting Lemma A.0.1 once more to find

ps2 (r) ≤ ‖c‖q1,q2
‖1+ |u1| + |u2|‖γ−1

r1,r2,T
<∞,

which is finite by virtue of the assumption (3.4.2). Thus, (3.4.27) implies the desired
assertion (3.4.25) of Lemma 3.4.6. ��
Proof (Proof of Theorem 3.4.1) Let u0 ∈ Lp0 (X) and consider a sequence
{u0j }j∈N ⊂ D

(
Ap

) ⊂ L∞ (X) for p ≥ p0, p ∈ (βA,∞), such that

lim
j→∞

∥∥u0j − u0
∥∥
Lp0

(X) = 0 (3.4.28)

(recall that D
(
Ap

)
is dense in Lp0 (X)). By Theorem 3.1.4 there exists a unique

mild solution uj for problem (3.1.1), which is also smooth by Theorem 3.2.2, on
the time interval [0, Tj ), where Tj > 0 is the maximal existence time. We can show
that Tj = ∞, for all j ∈ N. The assumption (3.4.1) of Theorem 3.4.1 implies that
there exist numbers ε ∈ (0, α) and b ∈ [0, 1/γ ) such that the assumptions (3.4.15)–
(3.4.17) of Lemma 3.4.3 are satisfied. Then we can infer from the estimate (3.4.18)
that

∥∥uj (·, t)
∥∥
L∞

(X) ≤ C∗ (t ∧ 1)
− n

p0

[
‖u0‖Lp0

(X) +ϒ (t)

(
U + U1/(1−γ b))] ,

(3.4.29)

for all j ∈ N, and t ∈ (
0, Tj

)
. The constant C∗ > 0 is clearly independent of j .

The assertion (3.1.31) together with (3.4.29) and the fact that

U = sup
j∈N

{
‖c‖q1,q2

(∥∥1+ ∣∣uj
∣∣∥∥γ (1−b)
r1,r2,T

)
: T ∈ (0,∞)

}
<∞

uniformly in j , owing to condition (3.4.2), shows that Tj = ∞ for all j ∈ N.
The final goal of the proof is to show, along a proper subsequence (still denoted

by)
{
uj

}
, that uj converges to a function u on any interval (0, T ] ⊂ (0,∞).

To this end, we also observe that due to the uniform estimate (3.4.29) and the
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assumption (3.4.2), we have

V := sup
j,m∈N

{
‖c‖q1,q2

(∥∥1+ ∣∣uj
∣∣+ |um|

∥∥γ−1
r1,r2,T

)
: T ∈ (0,∞)

}
(3.4.30)

≤ ‖c‖q1,q2

(
1+ 2L

(
‖u0‖Lp0

(X)
))γ (1−b)

.

We choose the initial time ih for an arbitrary h ∈ (0,∞) and i ∈ N0 := N ∪
{0}. The continuous dependence estimate (3.4.25) yields in light of the uniform
bound (3.4.30) that

∣∣∣∣∣∣(uj − ul
)
(ih+ ·)∣∣∣∣∣∣

p,δ,h
(3.4.31)

≤ C
∣∣∣∣(uj − ul

)
(·, ih)∣∣∣∣

Lp0
(X) + Cϒ (h) V

∣∣∣∣∣∣(uj − ul
)
(ih+ ·)∣∣∣∣∣∣γ b

p,δ,h
,

for all j, l ∈ N, and i ∈ N0 and h > 0. Choosing h � 1 small enough such that
Cϒ (h) V = ChεV ≤ 1/2, from (3.4.31) we get for all i ∈ N0 that

∣∣∣∣∣∣(uj − ul
)
(ih+ ·)∣∣∣∣∣∣

p,δ,h
≤ C

∣∣∣∣(uj − ul
)
(·, ih)∣∣∣∣

Lp0
(X) .

In particular, owing to (3.4.28) and a continuation argument, we obtain that
{
uj

}
j∈N

is a Cauchy sequence in the Banach space Ep,δ,T , for all T ∈ (0,∞). Therefore
there exists a function u ∈ Ep,δ,T , for any T ∈ (0,∞) , such that

lim
j→∞

∣∣∣∣∣∣uj − u
∣∣∣∣∣∣

p,δ,T
= 0, for all T ∈ (0,∞) . (3.4.32)

Fixing now a time t ∈ (0, T ] ⊂ (0,∞) and recalling that X is relatively
compact and Hausdorff, (3.4.32) also yields that uj (x, t) → u (x, t) (at least for
a subsequence) for almost all x ∈ X; we conclude that (3.4.29) also holds for
u (·, t) (as well as the estimate (3.4.3) is verified). Thus, u is well-defined globally on
(0,∞). In order to show that the limit solution u is also a mild solution in the sense
of Definition 3.1.1, we argue exactly as in the proof of Theorem 3.1.4, by taking
advantage of the strong convergence (3.4.32) to pass to the limit in the integral
solution representation for uj . We leave the simple details to the interested reader.

��
As a consequence of Theorem 3.4.1 we have the following.

Corollary 3.4.7 Under the assumptions of Theorems 3.1.4 and 3.4.1, every mild
(globally-defined) solution of Problem (3.1.1) with initial datum u0 ∈ Lp0 (X) ,
p0 ∈ [1,∞], is also a strong solution on [T0,∞), for any T0 > 0 in the sense of
Definition 3.2.1.

A second method to derive global a priori L∞-estimate is based on an iterative
Moser procedure used by Alikakos to treat semilinear parabolic problems with
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diffusion operators that are uniformly elliptic and second-order (see [1]). In this
method, the diffusion equation (3.1.1) for α = 1 is tested by powers of the
solution. Then, estimates of the norms ‖u‖

L2k , are given for k ∈ N, successively
at each step. In [1], each step uses the Gagliardo-Nirenberg inequality but this is
not always required (cf. [11–13]). One can cut down on the use of interpolation
inequalities by employing instead some Poincaré-Young inequality associated with
the corresponding diffusion operator. The latter turns out to be of advantage in
the treatment of reaction–diffusion equations (α = 1) with “rough” data [12],
containing possibly some fractional kinetics [11, 13] (cf. also [10]), when no such
interpolation inequalities are in fact available.

Our final goal in this section is to generalize the Moser-Alikakos procedure for
the reaction–diffusion equation (3.1.1) in the case α ∈ (0, 1) , that contain all the
above studied cases and much more. It is worth mentioning that a prioriL∞-bounds
were also recently obtained in [24] for a special case of (3.1.1) with α ∈ (0, 1) , that
include quasilinear equations of second order, by exploiting the De Giorgi’s iteration
technique and suitable truncated energy estimates for weak solutions. Although
more general kernels were used, we note that the a prioriL∞ ((0, T )× X)-estimates
(as obtained by [24]) are weaker than the ones contained here, due to the nature of
assumptions contained therein, as well as the following basic observation.

Remark 3.4.8 We have L∞ ((0, T ) ;L∞ (X)) � L∞ ((0, T )× X) with strict
inclusion (see [9, Chapter 12, Section 2]); the latter space is equipped with norm
sup(t,x)∈(0,T )×X |u (x, t)|. Note that the Moser procedure always produces a bound
in L∞ ((0, T ) ;L∞ (X)) , which is equipped with norm supt∈(0,T ) ‖u (t)‖L∞(X).

We first recall an importantLp-norm inequality for the fractional-order derivative
∂αt , which has been established recently in [18] (cf. also [25]).

Proposition 3.4.9 Let the assumptions of Theorem 3.2.6 be satisfied and let H ∈
C1 (R) be a convex function. Then, for any bounded mild (or quasi-mild) solution
of problem (3.1.1), the following inequality holds:

H
′
(u (t)) ∂αt u (t) ≥ ∂αt (H (u (t))) = d

dt

(
g1−α ∗ [H (u (t))−H (u0)]

)
(t) ,

for all t ∈ (0, Tmax) and almost all x ∈ X. In particular, for H (y) = (1/p) |y|p ,
we have for all t ∈ (0, Tmax) and almost all x ∈ X,

p |u (t)|p−2 u (t) ∂αt u (t) ≥ ∂αt
(|u (t)|p) = d

dt

(
g1−α ∗

[|u|p − |u0|p
] )

(t) ,

for any p ∈ [2,∞).

Proof By Theorem 3.2.6, any bounded mild solution is a strong solution on [t, T ] ,
for any 0 < t ≤ T < Tmax, namely,

u ∈ C0,κ ([t, T ] ;L∞ (X)) , ∂αt u ∈ C
(
[t, T ] ;Lp (X))
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and

u ∈ C
(
[t, T ] ;D (

Ap

))
.

The statement is then a consequence of the proof of [18, Corollary 6.1] and a
standard approximation argument (see [18, pg. 973]) that allows to replace the
singular kernel g1−α by its Yosida regularization g1−α,n ∈ W 1,1 [0, T ] . ��
Remark 3.4.10 We note that alternatively the result of Proposition 3.4.9 is also a
consequence of [20, Proposition 2.18] provided that u ∈ C1 ((0, T ) ;Lp (X)) ∩
C ([0, T );Lp (X)) . Such regularity is in fact readily available for the strong
solution of (3.1.1) provided that some natural additional conditions are satisfied by
the source f = f (x, t, ξ) (see Sect. 3.3).

Let T ∈ (0,∞) be given and set c0 := supt∈(0,T ) ‖c (·, t)‖L∞(X) > 0. We thus
assume that

(F6) f (x, t, ξ) ξ ≤ c (x, t)
(
1+ |ξ |2) , for all ξ ∈ R, a.e. (x, t) ∈ X× (0,∞) .

This additional assumption on f is quite natural in the classical theory for
reaction–diffusion equations (see [1]). We note that (F6) is not an assumption
about the growth of the nonlinearity as |ξ | → ∞, but rather it is a coercivity
condition since it allows for a large class of (dissipative) polynomial nonlinearities.
In particular, the following example of

f (x, t, ξ) = −cf |ξ |n ξ +
n−1∑
i=0

ci+1 (x, t) |ξ |i ξ + c0 (x, t) ,

for some cf > 0, ci ∈ R and n ∈ N, is frequently encountered in applications
dealing with the (large time) asymptotic behavior of solutions for (3.1.1) when α =
1 (see, for instance, [11–13], and the references therein).

Theorem 3.4.11 (Global L∞-Estimate) Let the assumptions of Theorem 3.2.6 be

satisfied. Suppose that the operatorA = A2 (as given by (2.2.7)) hasD (E) = V
d
↪→

L2 (X) and V ↪→ L2q (X) , for some q := qA > 1. Under the assumption (F6), any
maximal mild (or quasi-mild) solution of Problem (3.1.1), α ∈ (0, 1) , is globally
bounded on (0,∞) , namely, Tmax = ∞. In particular, the following estimate holds

sup
t∈(0,T )

‖u (t)‖L∞(X) ≤ C
(
‖u0‖L∞(X) + C0Eα,1

(
C0T

α
)+ T αEα,α

(
C0T

α
))
,

(3.4.33)
for some C = C (α) > 0 and C0 > 0, both independent of t, T , u0 and u. The
constant C = C (α) is bounded as α → 1− and C0 is independent of α.

Proof By the first hypothesis of the theorem, any mild solution is a strong solution
on [t, T ] , for all 0 < t ≤ T < Tmax, and therefore, it satisfies the differential
equation in (3.1.1), pointwise in time and for almost all x ∈ X. Thus, we can
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multiply the equation by p |u|p−2 u, p ∈ [2,∞) and integrate the resulting identity
over X. Applying the inequality on the left of (2.2.11), namely,

4
p − 1

p
E
(
u|u| p2−1, u|u| p2−1

)
≤ p

(
−Apu, |u|p−2 u

)
L2

(X) ,

we derive by virtue of Proposition 3.4.9, the following inequality:

∂αt (‖u‖pLp(X))+ 4 (p − 1)

p
E
(
u|u| p2−1, u|u| p2−1

)
≤ pc0

(
m (X)+ ‖u‖p

Lp
(X)

)
.

(3.4.34)

We note that (3.4.34) is the key in proving the desired estimate (3.4.33).

Step 1 (The iterative procedure). To this end, setting p (= pk) = 2k , k ≥ 1, and

xk (t) :=
∫

X
|u (t)|2k dm, k ≥ 1,

and having established (3.4.34), we obtain

∂αt xk (t)+
4pk − 1

pk
E
(
|u (t)|(pk−2)/2 u (t) , |u (t)|(pk−2)/2 u (t)

)
(3.4.35)

≤ Cpkxk (t)+ Cpk , ∀t ≥ 0,

for some C = C (c0,m (X)) > 0. As usual, our goal is to derive a recursive
inequality for xk using (3.4.35). In order to do so, for q > 1 fixed such that
V ↪→ L2q (�), we define

pk :=
pk − pk−1

qpk − pk−1
= 1

2q − 1
< 1, qk := 1− pk = 2

q − 1

2q − 1
.

We aim to estimate the xk-term on the right-hand side of (3.4.35) in terms of xk−1.
Next, the Hölder inequality, the Sobolev inequalityD (E) = V ↪→ L2q (�) together
with the Poincaré inequality [10, Proposition 2.1], namely, for every η ∈ (0, 1) ,
there exists m > 0 such that

‖v‖2
L2

(X) ≤ ηE (v, v) + η−m ‖v‖2
L1

(X) (3.4.36)

yield

xk =
∫

X
|u|pk dm ≤

(∫

X
|u|pkq dm

)pk (∫

X
|u|pk−1 dm

)qk
(3.4.37)

≤ C

[
E
(
|u|(pk−2)/2 u, |u|(pk−2)/2 u

)
+

(∫

X
|u|pk−1 dm

)2
]sk (∫

X
|u|pk−1 dm

)qk

.
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Here, sk = pkq ≡ q/ (2q − 1) ∈ (0, 1) (also note that pk/2 = pk−1). Here, note
that we have also used that

E (|u|pk−1 , |u|pk−1
) = E

(
|u|(pk−2)/2 u, |u|(pk−2)/2 u

)
, for pk = 2k, k ≥ 1,

which holds as a consequence of the fact that |u|pk−1 sgn (u) = |u|(pk−2)/2 u.
Applying Young’s inequality on the right-hand side of (3.4.37), we get for every
η > 0,

pk

∫

X |u|
pk dm ≤ ηE

(
|u|(pk−2)/2 u, |u|(pk−2)/2 u

)
+ η

(∫

X |u|
pk−1 dm

)2

(3.4.38)

+Qη (pk)

(∫

X
|u|pk−1 dm

)2

,

for some function Qη (·) : R+ → R+ independent of k, owing to the fact that
zk := qk/ (1− sk) ≡ 2 (indeed, Qη (y) = Cηy

4/qk = Cηy
2(2q−1)/(q−1), for some

constantCη > 0). Therefore, inserting (3.4.38) into the inequality (3.4.35), choosing
a sufficiently small η ∈ (0, 1) , independent of k, we obtain for t ≥ 0,

∂αt xk (t)+ E
(
|u (t)|(pk−2)/2 u (t) , |u (t)|(pk−2)/2 u (t)

)
(3.4.39)

≤ Qη

(
2k
)
(xk−1 (t))

2 + C2k.

By application of (3.4.36) once more, we infer that

ηE
(
|u|(pk−2)/2 u, |u|(pk−2)/2 u

)
≥

∫

X |u|
pk dμ− η−m

(∫

X |u|
pk−1 dm

)2

(3.4.40)

= xk − η−m (xk−1)
2 ,

for some m > 0 independent of u, k. We can now combine (3.4.40) with (3.4.39) to
deduce

∂αt xk (t)+ xk (t) ≤ Qη

(
2k
)
(xk−1)

2 + C2k, ∀t ≥ 0. (3.4.41)

The foregoing inequality together with the application of Lemma A.0.8, gives

xk ≤ C (α)max

{∫

X
|u0|2k dm,Qη

(
2k
)

sup
t≥0

(xk−1 (t))
2 + C2k

}
, (3.4.42)
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for all k ≥ 1. On the other hand, let us observe that there exists a positive
constant C∞ = C∞(‖u0‖L∞(X)) ≥ 1, independent of k, such that ‖u0‖L2k

(X) ≤
C∞. Taking the 2k-th root on both sides of (3.4.42), and defining Mk :=
supt≥0 ‖u (t)‖L2k (�)

, we easily arrive at

Mk ≤ C (α)max

⎧
⎨
⎩C∞,

(
Cη

(
2k
) 2(2q−1)

q−1

) 1
2k

Mk−1 + C2k2−k
⎫
⎬
⎭ , for all k ≥ 1.

(3.4.43)

We can now iterate in a standard way in (3.4.43) (see, for instance, [5, Lemma
9.3.1]), to finally obtain

sup
t≥0

‖u (t)‖L∞(X) ≤ lim
k→+∞Mk (3.4.44)

≤ C (α)max

(
C∞, sup

t≥0
‖u (t)‖L2

(X) + 1

)
,

for some C (α) > 0 which is bounded as α→ 1 but is independent of t ≥ 0.

Step 2 (The L∞t L2
x -estimate). In this final step, we derive the required

L∞
(
(0, T );L2 (X))-bound, for any T > 0; this combined together with (3.4.44)

gives the desired inequality (3.4.33). The latter also shows in particular that one
can take Tmax = ∞. Taking k = 1 into (3.4.41), we deduce

∂αt (‖u (t)‖2
L2

(X)) ≤ C0

(
‖u (t)‖2

L2
(X) + 1

)
, ∀t ≥ 0,

for some C0 > 0 independent of time and α. Consider now the linear problem,
given by ∂αt z = C0 (z+ 1) , z (0) = ‖u0‖2

L2
(X) ≥ 0, and observe that its unique

solution (see the proof of Lemma A.0.8 and (A.0.19)) is given by

z (t) = Eα,1
(
C0t

α
)
z (0)+ C

1−1/α
0 tαEα,α+1

(
C0t

α
)
, t ≥ 0.

The comparison principle in Lemma A.0.7 then gives

‖u (t)‖2
L2

(X) ≤ Eα,1
(
C0t

α
) ‖u0‖2

L2
(X) + C

1−1/α
0 tαEα,α+1

(
C0t

α
)
,

for any t ≥ 0. Hence, the smoothing property (3.4.44) immediately entails the
assertion of the theorem since Eα,α+1 (τ ) ≤ (1/α)Eα,α (τ ) for τ ≥ 0. ��

We can improve the previous result so that the bound is also uniform with respect
to the final time T > 0.
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Corollary 3.4.12 Let the assumptions of Theorem 3.4.11 be satisfied and assume
that c0 < λ1 where λ1 = inf σ (−A) > 0 is the first eigenvalue of −A. Then the
mild (or quasi-mild) solution is bounded in L∞ ((0, T );L∞ (X)), also uniformly
with respect to T > 0.

Proof By (3.4.34) with p = 2, we have

∂αt (‖u‖2
L2

(X))+ 2E (u, u) ≤ 2c0

(
m (X)+ ‖u‖2

L2
(X)

)

which yields, for d0 := 2 (λ1 − c0) > 0,

∂αt (‖u‖2
L2

(X))+ d0 ‖u‖2
L2

(X) ≤ 2c0m (X) , for t ∈ (0, T ) .

The application of Lemma A.0.8 then gives

‖u (t)‖2
L2

(X) ≤ 2C (α)max

{
‖u0‖2

L2
(X) ,

2c0m (X)
d

1/α
0

}
.

Inserting this once again into (3.4.44), we immediately get the desired claim. ��
Corollary 3.4.13 The conclusions of Theorem 3.4.11 as well as of Corollary 3.4.12
are valid for the entire class of diffusion operators A, as given in Sect. 2.3.

Remark 3.4.14 Note that in the limit of α → 1, we recover the global estimate
stated in Corollary 3.4.13 for the classical diffusion problem (1.0.1) with α = 1.
This result can be seen as a generalization of a number of similar results proven
recently in [11–15].

3.5 Limiting Behavior as α → 1

We conclude this section with a convergence result as α→ 1−, which in light of the
previous two results, is now possible due to the uniformL∞t L∞x -bound. For the sake
of convenience and to simplify any further technicalities, we also take c ∈ L∞,∞ in
assumptions (F3)–(F4) (i.e., q1 = q2 = ∞), and elsewhere in the assumptions of
the corresponding theorems. Let T > 0 be given, but otherwise arbitrary.

Theorem 3.5.1 Let the assumptions of Theorem 3.4.11 be satisfied and let u0 ∈
L∞ (X). Let v be the bounded mild solution for

∂tv = Av + f (x, t, v) , (x, t) ∈ X× (0, T ], v|t=0 = u0
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and let u = uα be the corresponding bounded mild solution of (3.1.1) when α ∈
(0, 1) . Then the following convergence holds:

lim
α→1−

sup
t∈[T0,T ]

‖uα (t)− v (t)‖L∞(X) = 0, (3.5.1)

for any 0 < T0 ≤ T <∞.

Proof We first recall that

uα (t) = Sα (t) u0 +
∫ t

0
Pα (t − s) f (s, uα (s)) ds

and

v (t) = S (t) u0 +
∫ t

0
S (t − s) f (s, v (s)) ds.

By [6, Theorem 2.42], we have Sα (t) = Eα,1 (t
αA) and Pα (t) = tα−1Eα,α (t

αA) ,

α ∈ (0, 1), where both operators Eα,1 (t
αA) and Eα,α (t

αA) have a Cauchy integral
representation over a proper Hankel path, see [6, Theorem 2.41]. Application of
[6, Lemma 3.12] then yields, for all u0 ∈ L∞ (X), Sα (t) u0 → S (t) u0 and
Pα (t) u0 → S (t) u0, as α → 1−; these convergences are also uniform on
bounded subsets of L∞ (X) and on intervals [T0, T ] , for any T0 > 0. Since
uα, v ∈ L∞ ((0, T );L∞ (X)) uniformly with respect to α → 1−, we obtain on
account of the Lebesgue dominated convergence theorem, that

lim
α→1−

∥∥∥∥
∫ t

0
(Pα (t − s)− S (t − s)) f (s, v (s)) ds

∥∥∥∥
L∞

(X) = 0. (3.5.2)

Taking the difference between uα and v, we then see that

‖uα (t)− v (t)‖L∞(X) (3.5.3)

≤ Aα (t)+
∥∥∥∥
∫ t

0
Pα (t − s) (f (s, uα (s))− f (s, v (s))) ds

∥∥∥∥
L∞

(X) ,

where

Aα (t) := ‖Sα (t) u0 − S (t) u0‖L∞(X) (3.5.4)

+
∥∥∥∥
∫ t

0
(Pα (t − s)− S (t − s)) f (s, v (s)) ds

∥∥∥∥
L∞

(X) .

Note that Aα (t) → 0 as α → 1− in light of (3.5.2) and the fact that
Sα (t) u0 → S (t) u0. Since f is also locally Lipschitz owing to (F4), we further
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derive from (3.5.3) that

‖uα (t)− v (t)‖L∞(X) ≤ Aα (t)+ Q(M)


 (α)

∫ t

0
(t − s)α−1 ‖uα (s)− v (s)‖L∞(X) ds,

(3.5.5)

for all t ∈ (0, T ), where Q(M) > 0 is independent of α → 1−. Here, we have set
M := supt∈(0,T ) max{‖uα (t)‖L∞(X) , ‖v (t)‖L∞(X)}. We infer from (3.5.5) and the
application of the Gronwall lemma (see Lemma A.0.9), that

‖uα (t)− v (t)‖L∞(X) (3.5.6)

≤ Aα (t)+Q(M)

∫ t

0
(t − s)α−1 Eα,α

(
Q(M) (t − s)α

)
Aα (s) ds.

The right-hand side of (3.5.6) converges to zero as α → 1−, by virtue of (3.5.4) and
the Lebesgue dominated convergence theorem (for the last summand). The proof is
finished. ��

3.6 Nonnegativity of Mild Solutions

We show that each mild solution constructed in Sect. 3.1 is nonnegative on its
maximal interval of existence. We shall take advantage of their strong regularity
proven in Sect. 3.2.

Theorem 3.6.1 Let the assumptions of Theorem 3.1.10 be satisfied and assume that

f (x, t, 0) ≥ 0, for a.e. (x, t) ∈ X× (0,∞) .

If u0 ≥ 0 then the mild solution of problem (3.1.1) satisfies u ≥ 0 on (0, Tmax) .

Proof

Step 1. We first prove the claim for a (quasi) mild solution on [0, T ], T < Tmax,
associated with an initial datum u0 ∈ L∞ (X). We need to mollify both the
nonlinearinity f and the function c = c (x, t) . This can be done by following
a similar procedure as in the construction exploited in the proof of [22, Lemma
10, pg. 43]. Thus we may infer the existence of families {fk} ⊂ L∞,∞,T and
{ck} ⊂ L∞,∞,T , such that:

• For a.e. (x, t) ∈ X× (0,∞) and ξ, η ∈ R,

⎧
⎨
⎩
|fk (x, t, ξ)| ≤ ck (x, t) Q (|ξ |) ,
|fk (x, t, ξ)− fk (x, t, η)| ≤ ck (x, t)Q (|ξ | + |η|) |ξ − η| ,
fk (x, t, 0) ≥ 0.

(3.6.1)
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• The functions fk : ξ ∈ [−U,U ] �→ fk (·, ·, ξ) ∈ Lq1,q2,T are uniformly
bounded and equicontinuous for all k ∈ N,

lim
k→∞ sup

ξ∈[−U,U ]
‖(f − fk) (·, ·, ξ)‖q1,q2,T

= 0. (3.6.2)

• The functions ck satisfy supk∈N ‖ck‖q1,q2,T ≤ C ‖c‖q1,q2,T , for some C > 0
independent of k, t and T .

These properties then imply that each bounded (quasi) mild solution uk associ-
ated with the nonlinearity fk , given by

uk (t) = Sα (t) u0 +
∫ t

0
Pα (t − τ ) fk (τ, uk (τ )) dτ, (3.6.3)

satisfies supk∈N |‖uk‖|∞,0,T ≤ U (see the proof of Lemma 3.1.8). Moreover, uk is
a strong solution on (0, Tmax) in the sense of Definition 3.2.1 (namely, (b)–(d) are
satisfied for a sufficiently large p ∈ (βA,∞) ∩ [2,∞)) by Theorem 3.2.6.

Let H ∈ C1 (R) be given by H (y) = (1/2) y2 for y ∈ (−∞, 0) and H (y) = 0
for y ≥ 0, and notice that H is convex and H

′
(y) = min {y, 0} ≤ 0 for all y ∈ R.

Since uk is a strong solution, it pointwise satisfies the equation

∂αt uk = Auk + fk (·, ·, uk) . (3.6.4)

Multiplying (3.6.4) by H
′
(uk) and integrating over X, we immediately find

∫

XH
′
(uk) ∂

α
t ukdm+

(
−Auk,H ′

(uk)
)
L2

(X) (3.6.5)

=
∫

XH
′
(uk) fk (·, ·, uk) dm.

Set now ψ (t) = ∫
XH (uk (t)) dm and observe that

∂tψ (t) =
∫

XH
′
(uk (t)) ∂tuk (t) dm (3.6.6)

when α = 1 (see [26, (1.100), pg. 52]), while in the case α ∈ (0, 1), by
Proposition 3.4.9 it holds

∫

XH
′
(uk (t)) ∂

α
t uk (t) dm ≥ ∂αt ψ (t) . (3.6.7)
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On the other hand, since S (t) is positive by assumption (HA), application of
Remark 2.2.6-(i) gives

(
−Auk,H ′

(uk)
)
L2

(X) = E
(
uk,H

′
(uk)

)
≥ 0 (3.6.8)

since H
′
(uk) = −u−k . For the term on the right-hand side of (3.6.5), we argue as

follows:
∫

XH
′
(uk) fk (x, t, uk) dm (3.6.9)

=
∫

XH
′
(uk) (fk (x, t, uk)− fk (x, t, 0)) dm+

∫

XH
′
(uk) fk (x, t, 0) dm

(3.6.1)≤
∫

XH
′
(uk) (fk (x, t, uk)− fk (x, t, 0)) dm

(3.6.1)≤
∫

X
∣∣∣H ′

(uk)

∣∣∣ |uk| ‖ck‖∞,∞,T Q (|uk|) dm

≤ 2 ‖H (u)‖L1
(X)Q(U) ‖ck‖∞,∞,T .

Putting the estimates (3.6.6)–(3.6.9) together into Eq. (3.6.5), we obtain

∂αt ψ (t) ≤ χψ (t) , χ := 2Q(U) ‖ck‖∞,∞,T ,

for all t ∈ [0, T ] , T < Tmax. Application of the comparison principle (see
Lemma A.0.7) in the case α ∈ (0, 1), together with the Gronwall inequality when
α = 1, yields3

ψ (t) ≤ ψ (0)Eα,1
(
χtα

)
,

for all t ∈ [0, T ] and α ∈ (0, 1]. Hence, since uk (0) = u0 ≥ 0, ψ (0) = 0 implies
that ψ (t) = 0, namely, uk (t) ≥ 0 for all t ∈ [0, T ] .

Step 2 (The limit procedure). We take the limit as k → ∞ in the integral
solution (3.6.3) by arguing exactly as in the proof of Lemma 3.1.8. We observe
that

uk − u =
∫ t

0
Pα (t − τ ) (f (τ, u (τ ))− f (τ, uk (τ ))) dτ

+
∫ t

0
Pα (t − τ ) (f (τ, uk (τ ))− fk (τ, uk (τ ))) dτ.

3The Mittag-Leffler function E1,1 (x) = ex .
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Next, as in the proof of Lemma 3.1.8, choose a sufficiently small time T∗ ∈ (0, 1]
such that

CT ε∗ ‖c‖q1,q2
Q(2U) ≤ 1

2
. (3.6.10)

Analogously to arguments leading up to the estimate (3.1.26), by virtue of (3.6.1)
and the assumptions on f , we arrive at

|‖uk − u‖|∞,0,T∗ ≤ CT ε∗ ‖c‖q1,q2
Q(2U) |‖uk − u‖|∞,0,T∗ (3.6.11)

+C sup
u∈[−U,U ]

‖(f − fk) (·, ·, u)‖q1,q2,T∗ ,

for some C > 0 independent of k, t and T∗. In particular, (3.6.10) and (3.6.2)
yield

lim
k→∞ |‖uk − u‖|∞,0,T∗ = 0.

Now uk ≥ 0 on [0, T∗] implies that u ≥ 0 on [0, T∗] , and a standard continuation
argument allows us to extend this property on [0, T ] , with T < Tmax.

Step 3 (The extension). We extend the above argument to a local mild solution
associated with an initial datum u0 ∈ Lp0 (X) , with p0 ∈ [1,∞), satisfying
all the assumptions of Theorem 3.1.4-(a). We choose a sequence u0n ∈ L∞ (X)
such that ‖u0n − u0‖Lp0

(X) → 0 as n→ ∞, with u0n ≥ 0 and ‖u0n‖Lp0
(X) ≤

‖u0‖Lp0
(X), for all n ∈ N. We then infer from Lemma 3.1.5 the existence T ∈

(0, 1] andU <∞ and a (quasi) mild bounded solution un ∈ Ep,δ,T for the initial
datum u0n, on the interval [0, T ] , such that

sup
n∈N

|‖un‖|p,δ,T ≤ U. (3.6.12)

Then similarly to estimates (3.1.10)–(3.1.12), we derive that

|||un − u|||p,δ,T ≤C ||u0n − u0||Lp0
(X)

+ CT ε ‖c‖q1,q2
|||1+ |un| + |u||||γ−1

p,δ,T |||un − u|||p,δ,T
for a time T ≤ 1 that satisfies

CT ε (1+ 2U)γ−1 ≤ 1

2
.

Therefore, (3.6.12) yields

|||un − u|||p,δ,T ≤ C ||u0n − u0||Lp0
(X) .



122 3 The Semilinear Parabolic Problem

Since un ≥ 0 for all n ∈ N by Step 2, passing to the limit as n→∞ in the foregoing
inequality gives that u ≥ 0 on [0, T ] . In the case when 0 ≤ u0 ∈ Lp0 (X) \ {0},
with p0 ∈ (1,∞) satisfying the assumptions of Theorem 3.1.4-(c), we can choose
a sequence u0n ∈ L∞ (X) such that � := {u0, u0n : n ∈ N} ⊂ Lp0 (X) \ {0}. Then
one argues instead in the space Ew,p,δ,T by means of the proof of Lemma 3.1.6.
Since the details remain the same as above but for some minor modifications, we
may omit them completely and thus conclude the proof of the theorem. ��

3.7 An Application: The Fractional Fisher-KPP Equation

As one straight-forward application of our abstract results in the previous sections,
we may consider the Fisher-KPP equation with fractional-in-time derivative

∂αt u = Au+ f (u) in �× (0,∞) , u|t=0 = u0 in �, (3.7.1)

and a diffusion operator A that satisfies the assumption (HA). The nonlinearity f ∈
C [0, 1] is such that

f > 0 on (0, 1) with f (0) = f (1) = 0. (3.7.2)

The basic instructive example is f (u) = u (1− u). Here, � denotes a bounded
domain with sufficiently smooth boundary. An important example is A = � (see
Example 2.3.5) but also the fractional Laplacian (−�)s�, we refer to Example 2.3.6
in Sect. 2.3. For the latter example, in the case α = 1, the existence of a unique
bounded mild solution was recently obtained in [4], where the large time behavior
of front solutions has also been investigated. We mention that the problem (3.7.1)–
(3.7.2) has been also considered in [19] in the case where A is the discrete
fractional Laplace operator. We point out that the occurrence of an exponent
α ∈ (0, 1) in (3.7.1), other than the classical one α = 1, is a consequence of
physical phenomena in reactive systems (such as, plasma, flames and chaotic phase-
transitions) whose diffusive behavior is anomalous (see [21]). We refer the reader to
Appendix C for a complete description of models that contain fractional kinetics. In
the context of phase-transitions for binary materials, Eq. (3.7.1) for α = 1 is usually
referred as the Allen-Cahn equation, where u denotes the atom concentration of one
of the material components (see, for instance, [13]).

Our first result is on the existence of global strong solutions for (3.7.1). We
conveniently extend f by continuity to the whole of R such that f < 0 on
(−∞, 0) ∪ (1,∞). We recall once again that Ap stands for the generator of the
associated semigroup S (t) on Lp(�). For p ≥ 2, such generator possesses even an
explicit characterization (2.2.10).

Theorem 3.7.1 Let (3.7.2) be satisfied and assume 0 ≤ u0 ≤ 1, u0 ∈ D
(
Ap

)
for

p ∈ (βA,∞)∩ (1,∞) . Then problem (3.7.1), α ∈ (0, 1], admits a unique globally-
defined strong solution in the sense of Definition 3.2.1 such that 0 ≤ u ≤ 1.
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Proof Application of Corollary 3.2.3 and Theorem 3.6.1 yields the existence of a
strong solution u on a maximal interval (0, Tmax) and u ≥ 0 on (0, Tmax). The time
Tmax > 0 is such that either Tmax = ∞ or Tmax <∞ and limt→Tmax ‖u (t)‖L∞(�) =
∞. In order to show that Tmax = ∞, it then suffices to show that u ≤ 1 for all t > 0.
To this end, define H (y) = 1

2 (y − 1)2, for y > 1, and H (y) = 0, for y ∈ [0, 1]
and observe that H ∈ C2[0,∞) is convex. As in the proof of Theorem 3.6.1 (see
Step 1, (3.6.7)–(3.6.8)), settingψ (t) = ∫

� H (u (t)) dx and then testing (3.7.1) with

H
′
(u) , gives

∂αt H (u) ≤
∫

{×∈�:u>1}
f (u) (u− 1) dx ≤ 0.

The comparison principle (Lemma A.0.7) yields H (u (t)) ≤ H (u0) = 0 and
therefore, u ≤ 1 pointwise in time. This concludes the proof. ��

For rough initial datum, we deduce the following well-posedness result.

Theorem 3.7.2 Let u0 ∈ L∞ (�) such that u0 ∈ [0, 1]. Then Problem (3.7.1) has a
unique global and bounded quasi-mild solution in the sense of Definition 3.1.3 such
that 0 ≤ u ≤ 1. This solution also satisfies

lim
t→0

‖u (t)− u0‖Lp(�) = 0, ∀p ∈ [1,∞),

such that p = ∞, if we additionally assume that u0 ∈ L∞(�). Furthermore, this
mild solution is also a strong solution on [T0,∞), for every T0 > 0.

Proof The proof follows from Theorem 3.7.1 and an approximation procedure
similar to Step 2 of Theorem 3.6.1. The last statement of the theorem is a
consequence of Theorem 3.2.6. ��

We can conclude with a basic comparison between solutions of (3.7.1) in the
cases when α ∈ (0, 1) and α = 1, respectively. Indeed, by Theorem 3.5.1 it follows

Corollary 3.7.3 Every bounded mild solution u = uα of (3.7.1) converges strongly
as α → 1 in the sense of (3.5.1) on the interval (0,∞), to a bounded mild solution
of problem (3.7.1) with α = 1.
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Chapter 4
Systems of Fractional Kinetic Equations

In this chapter, we consider some general classes of reaction–diffusion systems
that contain some fractional kinetics occurring in applications (cf. Appendix C
below), and then investigate their local and global existence of solutions in detail.
In a preliminary step, we derive results that allow for the existence of sufficiently
smooth solutions which are needed in order to rigorously justify other precise
and explicit calculations (namely, maximum principles, energy estimates and
comparison arguments) which will be performed on more specific models in the
sequel. It turns out that the techniques employed for the scalar equation (3.1.1) in
the previous chapter will prove quite useful in the analysis.

4.1 Nonlinear Fractional Reaction–Diffusion Systems

Let m ∈ N and u = (u1, . . . , um) ∈ R
m where each ui (i = 1, . . . ,m) is

a measurable physical quantity. Let di = 0 for i = 1, . . . , r and di > 0 for
i = r + 1, . . . ,m. We allow the case r = 0 to occur so that all di > 0 for
i = 1, . . . ,m in some cases. Next, let D = diag (d1, . . . , dm) be the diagonal
matrix of diffusion coefficients and assume that u0 = (u01, . . . , u0m) (x) ∈ R

m,

for x ∈ X, models the initial data. Let f = (f1, . . . , fm) (x, t, u1, . . . , um) with

f : (x, t, u) ∈ X× [0,∞)× R
m → f (x, t, u) ∈ R

m,

be a nonlinear function that models possible interactions between the various
quantities ui (i = 1, . . . ,m). Finally, consider a family of closed operators (Ai)

m
i=1

that satisfies the assumptions of Propositions 2.2.1, 2.2.2. Namely, we assume that
each Ai satisfies assumption (HA) with a possible different value βAi > 0 for
i = 1, . . . ,m. In particular, let (Si (t))mi=1 be the corresponding family of analytic
semigroups associated with Ai, each Si (i = 1, . . . ,m) can be extended to a
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contraction semigroup Si,pi (t) on Lpi (X), pi ∈ [1,∞], whose generator is Ai,pi

such that Ai,2 = Ai . For any αi ∈ (0, 1), the corresponding operators (2.1.9)
associated with these semigroups Si can also be defined analogously, to give the
families of operators

(
Sαi (t)

)m
i=1 and

(
Pαi (t)

)m
i=1, satisfying the ultracontractivity

estimates of (2.2.12), after setting βA := βAi , α := αi. Finally, we set the diagonal
(matrix) operator A = diag (A1, . . . , Am) and introduce the following notion of
Caputo-fractional derivative

∂αt u =
(
∂
α1
t u1, . . . , ∂

αm
t um

) ∈ R
m,

where each ∂αit ui ∈ R is understood in the sense of Definition 2.1.1 for αi ∈ (0, 1).
As usual, when αi = 1, ∂1

t = ∂t = d/dt.

Our problem is to look for solutions u = (u1, . . . , um) (x, t) ∈ R
m of the

following system

∂αt u = DAu+ f (x, t, u) , (x, t) ∈ X× (0,∞) , (4.1.1)

subject to the initial condition

u|t=0 = u0 in X. (4.1.2)

Note that components which do not diffuse as well as different kinds of “diffusion”
operators for the diffusing components may occur in (4.1.1)–(4.1.2). Our goal is
to construct bounded mild solutions for this initial-value problem and then turn to
strong solutions. To this end, our assumptions on the nonlinearity f, from Sect. 3,
are adapted to our new case, as follows.

(SF1) f (x, t, ·) : Rm → R
m is a measurable function for all (x, t) ∈ X × (0,∞)

such that, for every bounded set B ⊂ X×[0,∞)×R
m, there exists a constant

L = L (B) > 0 such that

|f (x, t, ξ)| ≤ L (B) , for all (x, t, ξ) ∈ B

and

|f (x, t, ξ)− f (x, t, η)| ≤ L (B) |ξ − η| , for all (x, t, ξ) , (x, t, η) ∈ B.

(SF2) For every boundedB ⊂ X×[0,∞)×R
m, there exists a constant L (B) > 0

such that, for all (x, t, ξ) , (x, s, η) ∈ B,

|f (x, t, ξ)− f (x, s, η)| ≤ L (B)
(|t − s|γ + |ξ − η|) ,

for some γ > 0.

As in Chap. 3, the assumption (SF2) will only be needed when the nonlinear
source f is also time dependent; when f = f (x, ξ) this condition is no longer
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necessary for the existence of strong solutions, we refer the reader to the proof of
Corollary 3.2.3 (and Theorem 4.1.3 below).

First, we consider the initial-value problem (4.1.1)–(4.1.2) with f ≡ 0 and let
u0 ∈ L∞ (X,Rm). The solution u = u (x, t) of the linear system for bounded initial
datum u0 defines a formal solution operator in the space L∞ (X,Rm) by setting

u (x, t) = (Sα (t) u0) (x) =
(
Sα,1 (t) u01 (x) , . . . ,Sα,m (t) u0m (x)

)
,

for all x ∈ X, t ∈ [0,∞). The linear system is decoupled, the operator Sα (t) acts
componentwise; namely, for all t ∈ [0,∞), we set

⎧
⎪⎨
⎪⎩

Sα,i (t) = Sαi (t) ≡ I, for i = 1, . . . , r (when di = 0),

Sα,i (t) = Sαi (dit)|L∞(X) , for i = r + 1, . . . ,m (when di > 0).

Of course, r = 0 is still allowed. In view of Remark 3.1.2, Sα (t) is not strongly
continuous in the Banach space L∞ (X,Rm) , which we equip with the canonical
sup-norm

‖u‖∞ = max
1≤i≤m

‖ui‖L∞(X) .

However, owing to the statement of Proposition 2.2.1, we have ‖Sα (t) u0‖∞ ≤
‖u0‖∞ , for all u0 ∈ L∞ (X,Rm) and t ∈ [0,∞). In order to deal with the full
nonlinear system, we also define the operator (Pα (t) f ), for f = (f1, . . . , fm) ∈
R
m, also acting componentwise:

Pα (t) f =
(
Pα,1 (t) f1, . . . ,Pα,m (t) fm

)
,

where, for i = r + 1, . . . ,m,

Pα,i (t) fi ≡ Pαi (dit) fi = αit
αi−1

∫ ∞

0
τ�αi (τ )Si(τ (dit)

αi )fidτ

and Pα,i (t) fi ≡
(
gαi ∗ fi

)
(t) , for i = 1, . . . , r , in the case of non-diffusing

components. Of course, we keep the convention that when some αi ≡ 1 for
i = r + 1, . . . ,m, we let Sαi ≡ Si and Pαi ≡ Si .

Our notion of mild solution for (4.1.1)–(4.1.2) is stronger than the notion of mild
solution from Definition 3.1.3. For the sake of notational convenience, we again let
u (t) = u (·, t) and f (t, u (t)) = f (·, t, u (·, t)) .
Definition 4.1.1 Let T > 0 be given, but otherwise arbitrary (and, possibly, T =
∞) and let u0 ∈ L∞ (X,Rm). We say u ∈ E∞,0,T is a mild solution of problem
(4.1.1)–(4.1.2) on the time interval [0, T ) if:
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(a) u : (x, t) ∈ X × (0, T ) �→ u (x, t) ∈ R
m is measurable and u (·, t) ∈

L∞ (X,Rm) such that

sup
s∈(0,t )

‖u (·, s)‖∞ =: U <∞, for all t ∈ (0, T ).

(b) u (t) = Sα (t) u0 +
∫ t

0
Pα (t − τ ) f (τ, u (τ )) dτ, for all t ∈ (0, T ) , where the

integral is an absolutely converging Bochner integral in L∞ (X,Rm).
(c) u satisfies the initial condition in the following sense:

lim
t→0+

‖u (t)− Sα (t) u0‖∞ = 0.

We have the first result of this section.

Theorem 4.1.2 (Existence of Maximal Bounded Mild Solutions) Let assump-
tion (HA) be verified for each operator Ai (i = 1, . . . ,m) and the conditions of
(SF1) for the nonlinearity f . For any given u0 ∈ L∞ (X,Rm), there exists a time
T ∈ (0,∞] such that the initial-value problem (4.1.1)–(4.1.2) possesses a unique
mild solution in the sense of Definition 4.1.1 on the interval [0, T ). Furthermore,
the existence time T ∈ (0,∞] can be chosen maximal (i.e., the previous statement
does not hold for a larger time). In that case, T = Tmax and

lim
t→Tmax

‖u (t)‖∞ = ∞, if Tmax <∞.

Proof Consider the following

Case1 : all αi ≡ 1, i = 1, . . . ,m.
Case2 : at least one αi ∈ (0, 1) , i = 1, . . . ,m.

Let U0 ∈ [0,∞) be such that ‖u0‖∞ ≤ U0. Choose U > U0, T0 ∈ (0, 1]
arbitrarily and define the bounded set B := X× [0, T0]× [−U,U ]m . Let L (B) > 0
be the constant from assumption (SF1) and choose T ∈ (0, T0] such that

U0 + θ̃ (T ) ≤ U, (4.1.3)

where the function θ̃ is defined as follows:

⎧⎪⎪⎨
⎪⎪⎩

θ̃ (t) := eL(B)t − 1, in case 1,

θ̃ (t) := Eαm0 ,1

(


(
αm0

)
L(B)



(
αM0

) tαm0

)
− 1, in case 2.

(4.1.4)

Here, we have set αm0 := min1≤i≤m (αi) ∈ (0, 1) and αM0 := max1≤i≤m (αi) ∈
(0, 1], and we recall that Eκ,β (z) (κ > 0, β ∈ C) is the generalized Mittag-Leffler
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function

Eκ,β (z) =
∞∑
n=0

zn


(κn+ β)
, k ∈ (0, 1).

For initial data u0 ∈ L∞ (X,Rm) with ‖u0‖∞ ≤ U0, we define the sequence u(l)

in L∞ (X× [0, T ] ,Rm), by

⎧
⎨
⎩
u(1) (t) = Sα (t) u0,

u(l+1) (t) = Sα (t) u0 +
∫ t

0 Pα (t − s) f
(
s, u(l) (s)

)
ds,

for l ∈ N and t ∈ [0, T ] . We claim by induction that the following (4.1.5)–(4.1.9)
are satisfied for all t ∈ [0, T ], and all l ∈ N. We have the estimates:

∥∥∥
(
u(l+1) − u(l)

)
(t)

∥∥∥∞ (4.1.5)

≤ L (B) max
1≤i≤m

1


 (αi)

∫ t

0
(t − τ )αi−1

∥∥∥
(
u(l) − u(l−1)

)
(τ )

∥∥∥∞ dτ

and
∥∥∥
(
u(l+1) − u(l)

)
(t)

∥∥∥∞ = max
1≤i≤mq

i
l (t) ≤ θl (t) , (4.1.6)

where
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

θl (t) := (L(B)t)l

l! , in case 1,

θl (t) := 1


(
lαm0+1

)
(


(
αm0

)
L(B)



(
αM0

) tαm0

)l

, in case 2.

(4.1.7)

Also, we have

∥∥∥u(l) (t)
∥∥∥∞ ≤ U (4.1.8)

and

∑
1≤j≤l

∥∥∥
(
u(j+1) − u(j)

)
(t)

∥∥∥∞ ≤ θ̃ (t) . (4.1.9)
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We can easily check these claims for l = 1 on account of the definition for u(l),
the properties of Sα (t) , Pα (t) and the conditions of (SF1). For instance,

∥∥∥u(1) (t)
∥∥∥∞ = ‖Sα (t) u0‖∞ ≤ ‖u0‖∞ < U ;

since
∥∥Pαi (t)

∥∥
L∞

(X) ≤ tαi−1/
 (αi) , for t ∈ (0, T ], we also get

q1
2 (t) :=

∥∥∥u(2)i (t)− u
(1)
i (t)

∥∥∥
L∞

≤
∫ t

0

∥∥Pαi (t − τ )
∥∥∞,∞

∥∥∥fi
(
τ, u(1) (τ )

)∥∥∥
L∞

(X) dτ

≤ L (B)


 (αi)

∫ t

0
(t − τ )αi−1 dτ ≤ θ1 (t) .

Indeed, the Gamma function 
 (x) > 0 is non-increasing on (0, μ] and non-
decreasing on [μ,∞), for some μ ∈ (1, 2) (in fact, μ = 1.46163..). This yields that


(
αM0

) ≤ 
 (αi) ≤ 

(
αm0

)
in the second case, as well as max1≤i≤m tαi ≤ tαm0 ,

for t ∈ [0, T ] ⊆ [0, 1] ; henceforth, we deduce

∥∥∥u(2) (t)− u(1) (t)

∥∥∥∞ = max
1≤i≤m

qi2 (t) ≤ θ1 (t) .

Suppose now (4.1.5)–(4.1.9) are already known for some l − 1 ∈ N. We have to
prove these assertions for l ∈ N. Inequality (4.1.5) is immediate owing to the second
condition of (SF1), while the assertions (4.1.6) and (4.1.9) are also immediate in the
first case by merely performing explicit integration and recalling the series for the
exponential function. We now show the same assertions in the second case when at
least one of αi ∈ (0, 1). By the second condition of (SF1), and a change of variable
rt = s we have

qil (t) ≤
∫ t

0

∥∥Pαi (t − s)
∥∥∞,∞

∥∥∥f
(
s, u(l) (s)

)
− f

(
s, u(l−1) (s)

)∥∥∥
L∞

(X) ds

(4.1.10)

≤ L (B)



(
αM0

)
∫ t

0
(t − s)αi−1 θl−1 (s) ds

=
(

L (B)



(
αM0

)
)l



(
αm0

)l−1
tαi+(l−1)αm0



(
(l − 1) αm0 + 1

) B

(
αi, (l − 1) αm0 + 1

)
,

where

B (x, y) =
∫ 1

0
(1− r)x−1 ry−1dr



4.1 Nonlinear Fractional Reaction–Diffusion Systems 131

is the standard (symmetric) Beta function. Since

B

(
αi, (l − 1) αm0 + 1

)
≤ B

(
αm0 , (l − 1) αm0 + 1

)

and

B

(
αm0 , (l − 1) αm0 + 1

)
= 


(
αm0

) 
 (
(l − 1) αm0 + 1

)



(
lαm0 + 1

)

we deduce from (4.1.10) that

qil (t) ≤ θl (t) , for all i = 1, . . . ,m,

for all t ∈ [0, T ] ⊆ [0, 1] . This proves (4.1.6) for any l ∈ N; (4.1.9) follows from
the series of the Mittag-Leffler function Eαm0 ,1

. It remains to show (4.1.8). Using

the definition of the sequence u(l), we get

∥∥∥u(l) (t)
∥∥∥∞ ≤

∥∥∥u(1) (t)
∥∥∥∞ +

∑
1≤j<l

∥∥∥
(
u(j+1) − u(j)

)
(t)

∥∥∥∞

≤ U0 + θ̃ (t) ≤ U,

owing to (4.1.3). Therefore, (4.1.5)–(4.1.9) holds for all l ∈ N. It follows that there
exists a function u ∈ L∞ (X× [0, T ] ;Rm) such that

sup
t∈[0,T ]

∥∥∥
(
u(l) − u

)
(t)

∥∥∥∞ ≤
∑

l≤j<∞

∥∥∥
(
u(j+1) − u(j)

)
(T )

∥∥∥∞ → 0,

as l → ∞. It is now straightforward to show that the limit u is a solution of our
initial-value problem (4.1.1)–(4.1.2) on the time interval [0, T ]. Since this interval
is determined uniformly for all u0 ∈ L∞ (X;Rm) such that ‖u0‖∞ ≤ U0, we also
have

inf
{
T (u0) : u0 ∈ L∞

(X;Rm) , ‖u0‖∞ ≤ U0
}
> 0, (4.1.11)

for all U0 ∈ [0,∞). We prove the second part in the statement of the theorem. We
argue by contradiction. Suppose now that there exists U0 ∈ (0,∞) and a sequence
tn > 0 such that

lim
n→∞ tn = Tmax <∞ and sup

n∈N
‖u (tn)‖∞ ≤ U0.

Hence by (4.1.11), there exists a number τ ∈ (0,∞) and mild solutions vn : (x, t) ∈
X× [tn, tn + τ ) �→ vn (x, t) ∈ R

m of problem (4.1.1) for an initial datum u (tn) on
the interval [tn, tn + τ ). Hence by uniqueness, we get a mild solution u for the
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initial datum u0 on the larger interval [0, Tmax + τ ), which is a contradiction. This
completes the proof. ��

If the initial datum is sufficiently regular, the mild solution becomes a strong one
on any time interval [T0, Tmax), for any T0 > 0.

Theorem 4.1.3 (Existence of Maximal Strong Solutions) Let assumption (HA)
for each operator Ai (i = 1, . . . ,m) and the conditions of (SF1)–(SF2) for the
nonlinearity f be satisfied. Assume u0i ∈ L∞ (X) for i = 1, . . . , r (of course,
r = 0 is allowed) and u0i ∈ D

(
Ai,pi

) ⊂ L∞ (X) with pi ∈
(
βAi ,∞

) ∩ (1,∞) for
i = r + 1, . . . ,m. Then every bounded mild solution of Theorem 4.1.2 satisfies

u ∈ C0,κ ([0, Tmax);L∞
(X,Rm

))
(4.1.12)

and

g1−αi ∗ (ui − ui (0)) ∈ C1,γ ([0, Tmax) ;L∞ (X)), i = 1, . . . , r, (4.1.13)

g1−αi ∗ (ui − ui (0)) ∈ C1 ((0, Tmax) ;L∞ (X)), i = r + 1, . . . ,m, (4.1.14)

ui ∈ C((0, Tmax);D(Ai,pi )), i = r + 1, . . . ,m, (4.1.15)

for some κ, γ > 0. The bounded mild solution also satisfies the initial-value
problem (4.1.1)–(4.1.2) in a strong sense, namely, all equations are satisfied for
t ∈ (0, Tmax) and almost all x ∈ X, and

lim
t→0+

‖u (t)− u0‖L∞(X) = 0. (4.1.16)

Proof We define for i = 1, . . . ,m, vi (x, t) = Sα,i (t) u0i , Gi (x, t) =
fi (x, t, u (x, t)) ∈ R, for (x, t) ∈ X × (0, Tmax). The integral solution for the
mild solution can be written, with the usual convention, for i = 1, . . . ,m,

ui (t) = vi (t)+
∫ t

0
Pαi (t − s)Gi (s) ds, for t ∈ (0, Tmax) .

We argue separately for the diffusing and nondiffusing components. Let i = r +
1, . . . ,m, and recall that each Ai generates an analytic semigroup Si

(= Si,pi
)

in
the space Lpi (X). Let T ∈ [T0, Tmax) be arbitrary for any T0 > 0 and let 0 < T0 ≤
t < t + h ≤ T in the estimates below. We first show in what sense the initial datum
is satisfied. We first have

‖u (t)− Sα (t) u0‖∞ = max
1≤i≤m

∥∥ui (t)− Sα,i (t) u0i
∥∥
L∞

(X) (4.1.17)

≤ max
1≤i≤m

∫ t

0

∥∥Pαi (t − s)
∥∥∞,∞ ‖fi (s, u (s))‖∞ ds
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≤ L (U) max
1≤i≤m

1


 (αi)

∫ t

0
(t − s)αi−1 ds

≤ L (U) max
1≤i≤m

tαi


 (αi) αi
→ 0,

as t → 0+. Next, choose θi > ηi, θi, ηi ∈
(
βAi /pi, 1

)
such that θi = ηi + μi.

Recall that we have (by Step 2 of the proof of Theorem 3.2.2),

t1−αi
∥∥(−Ai,pi )

ηi Pαi (t)
∥∥
p,∞ ≤ Cit

−ηiαi

as well as
∥∥∥(−Ai,pi )

−(1−ηi) (Sαi (t)− I
)∥∥∥

pi,pi
≤ Cit

αi (1−ηi).

Thus, we can argue as in Step 2 of the proof of Theorem 3.2.2 (see, in particu-
lar (3.2.16)–(3.2.18) by letting q = 1, χ + 1/q = αi (1− θi)) to deduce

‖ui (t)− u0i‖L∞(X) ≤ C
∥∥(−Ai,pi )

θi (ui (t)− u0i )
∥∥
Lpi

(X) (4.1.18)

≤ Ctαi (1−θi)
(
‖u0i‖D(

Ai,pi

) + L (U)

)
,

for some C > 0, independent of t , which clearly shows (4.1.16) for the diffusing
components. We also need to prove that ui is continuous with respect to the time
variable. As in the proof of Theorem 3.2.2 (p := pi, Ap := Ai,pi , q1 = q2 = ∞,

and so forth), see (3.2.19)–(3.2.31), we get

‖ui (t + h)− ui (t)‖L∞(X) ≤ CT L (U) h
κ, i = r + 1, . . . ,m,

for some κ > 0 which depends on αi, βAi , ηi . This yields (4.1.12) for the diffusing
components, namely

ui ∈ C0,κ ([0, Tmax);L∞ (X)) , i = r + 1, . . . ,m. (4.1.19)

Now we consider the non-diffusing components. Letw = (u1, . . . , ur ) be the vector
of non-diffusing components and define

H : (x, t, w) ∈ X×[0, Tmax)×Rr �→ H (x, t, w) = f (x, t, w, ur+1, . . . , um) ∈ R
r

with f = (f1, . . . , fr ). The components i = 1, . . . , r , of the integral solution for
the mild solution then yields

wi (x, t) = w0i (x)+
∫ t

0
gαi (t − s)Hi (x, s,w (x, s)) ds. (4.1.20)



134 4 Systems of Fractional Kinetic Equations

The assumption (SF2) together with (4.1.19) implies that

|H (x, t, ξ)−H (x, s, η)| ≤ LT (U)
(|t − s|γ + |ξ − η|) , (4.1.21)

for all (x, t, ξ) , (x, s, η) ∈ X× [0, T ]× [−U,U ]r (the existence of U > 0 follows
by construction of the mild solution u). Then we deduce for t ≥ τ ≥ 0 and i =
1, . . . , r,

‖wi (x, t)−wi (x, τ )‖L∞(X)

≤ LT (U)


 (αi)

∫ t

τ

(t − s)αi−1 ds = LT (U) (t − τ )αi


 (αi + 1)

and so wi ∈ C0,αi ([0, Tmax) ;L∞ (X)), which together with (4.1.19)
yields (4.1.12). The foregoing inequality also implies that

lim
t→0+

‖wi (t)− w0i‖L∞(X) = 0, i = 1, . . . , r.

Recalling once again (4.1.19) and the Hölder-Lipschitz condition (4.1.21), we easily
infer that Hi ∈ C0,γ ([0, Tmax) ;L∞ (X)), i = 1, . . . , r, for some γ > 0. Hence, for
i = 1, . . . , r, by (4.1.20) and the fact that g1−α ∗ gα = 1, it follows that

∂
αi
t wi (t) = Hi (·, t, w) ∈ C0,γ ([0, Tmax) ;L∞ (X)). (4.1.22)

We finally get the first of (4.1.13). To prove (4.1.14)–(4.1.15) and the remaining
part of the statement of the theorem, we argue in a similar fashion as in Step 3 of
the proof of Theorem 3.2.2. Thus, the theorem is proved. ��

4.2 The Fractional Volterra–Lotka Model

We assume � is a bounded domain with Lipschitz continuous boundary ∂� and
consider a predator-prey model which assumes a fractional version of the mass
action law for the interaction of the two species, predator and prey. As usual, denote
the density of prey by u = u (x, t) and of the predator by v = v (x, t). The dynamics
of the prey-predator interaction is governed by the following system of reaction–
diffusion equations

{
∂αt u+Du(−�)s�u = u (f − bv) , (x, t) ∈ �× (0,∞) ,

∂t v +Dv(−�)l�v = v (−g + au) , (x, t) ∈ �× (0,∞) ,
(4.2.1)
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subject to the following set of boundary conditions

N2−2su = N2−2lv = 0 on ∂�× (0,∞) , (4.2.2)

and initial conditions

(u, v)|t=0 = (u0, v0) in �. (4.2.3)

We refer to Appendix B below for a complete description of the boundary operator
appearing in (4.2.2). In general a, b, f, g are assumed to be positive constants.
Following a discussion in [10], a more general situation can be considered such
as, an inhomogeneous environment, symbiosis and saturation can be included by
letting the sources f, g depends on x and u, v. We shall consider this situation in
a forthcoming article. We assume diffusion rates Du,Dv ∈ (0,∞) and consider
the case s, l ∈ (1/2, 1) since the boundary conditions (4.2.2) makes sense only
in this case. Indeed, following an accumulation of evidence from a variety of
experimental, theoretical, and field studies [6, 9] we observe that both diffusion
operators (−�)s�, (−�)l� offer a better foraging mechanism, than the classical
counterpart of Laplacian �, for the movement of animals around their natural
habitat (cf. also Appendix C, part I). When s, l ∈ (0, 1/2] and/or s, l ∈ {1}, the
subsequent results also hold with some minor modifications and different boundary
conditions than in (4.2.2) (see Sect. 2.3, for many other possible examples of
diffusion operators). The boundary conditions (4.2.2) play a similar role as in the
case of no-flux Neumann boundary conditions in that both populations of predator
and prey cannot penetrate the boundary ∂�. Indeed, we recall that each unforced
equation of (4.2.1)–(4.2.2) corresponds to a reflected Lévy process forced to stay
inside � (see, for instance, [1–3, 5, 7, 8, 12] for the probabilistic point of view). The
possible occurrence of a nonlocal derivative ∂αt , α ∈ (0, 1] in the first equation
of (4.2.1) accounts for possible effects due to processes with time delay (i.e.,
“trapping” due environmental and/or predatory effects) in the population of prey
(see, for instance, Appendix C.1).

Let As,2 and Al,2 be the operators on L2(�) associated with the closed forms

Es(ϕ, φ) = CN,s

2
Du

∫

�

∫

�

(ϕ(x)− ϕ(y))(φ(x)− φ(y))

|x − y|N+2s dxdy, ϕ, φ ∈ Ws,2(�),

and

El (ϕ, φ) = CN,l

2
Dv

∫

�

∫

�

(ϕ(x)− ϕ(y))(φ(x)− φ(y))

|x − y|N+2l dxdy, ϕ, φ ∈ Wl,2(�),

respectively. Using the Green formula (B.0.7) we can show that As,2 and Al,2 are
realizations in L2(�) of Du(−�)s� and Dv(−�)l� with the fractional Neumann
boundary conditions N2−2sϕ = 0 on ∂� and N2−2lϕ = 0 on ∂�, respectively.
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More precisely we have that

⎧
⎨
⎩
D(As,2) =

{
ϕ ∈ Ws,2(�) : Du(−�)s�ϕ ∈ L2(�), N2−2su = 0 on ∂�},

As,2ϕ = Du(−�)s�ϕ.

and

{
D(Al,2) = {ϕ ∈ Wl,2(�), Dv(−�)l�ϕ ∈ L2(�), N2−2lu = 0 on ∂�},
Al,2ϕ = Dv(−�)l�ϕ.

It follows from [4] (cf. also Sect. 2.3) that the operators As := As,2 = −As,2
and Al := Al,2 := Al,2 satisfy the assumption (HA). Throughout the following
for p ∈ [1,∞] we shall denote by As,p and Al,p the generator of the associated
semigroup on Lp(�). For p ≥ 2, each such generator possesses in fact the explicit
characterization (2.2.10). In addition we shall let

L∞s (�) := D(As,∞)
L∞(�)

and L∞l (�) := D(Al,∞)
L∞(�)

.

We have the following existence result of global strong solutions in the sense
introduced in the previous section (see Theorem 4.1.3).

Theorem 4.2.1 Let 1/2 < s, l < 1, βAs := N/(2s) and βAl := N/(2l). Take
initial data u0 ∈ D(As,ps ) ⊂ L∞(�), v0 ∈ D(Al,pl ) ⊂ L∞(�) for some ps ∈
(βAs ,∞) ∩ (1,∞), pl ∈ (βAl ,∞) ∩ (1,∞) such that u0 ≥ 0, v0 ≥ 0. Then the
system (4.2.1)–(4.2.3) has a unique global strong solution u ≥ 0, v ≥ 0 on the time
interval (0,∞) satisfying

lim
t→0

‖u(t)− u0‖L∞(�) = 0, (4.2.4)

lim
t→0

‖v(t) − v0‖L∞(�) = 0. (4.2.5)

In addition for every T ∈ (0,∞) the following estimates hold:

sup
0<t<T

‖u(t)‖L∞(�) <∞, (4.2.6)

sup
0<t<T

‖v(t)‖L∞(�) <∞. (4.2.7)

Proof Let u0 and v0 be as in the statement of the theorem. Recall that the operator
As,2 and Al,2 satisfy the assumption (HA). Define the function F : � × [0,∞) ×
R

2 → R
2 by F(x, t, (ξ, η)) :=

(
ξ(f − bη), η(−g + aξ)

)
. Then F satisfies the

assumptions (SF1) and (SF2) with γ = 1. It follows from Theorem 4.1.3 that
the system (4.2.1)–(4.2.3) has a strong solution (u, v) on some maximal interval
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[0, Tmax). The strong solution is given by the integral representation

u(t) = Su,α(t)u0 +
∫ t

0
Pu,α(t − τ ) (u(f − bv)) (τ )dτ, (4.2.8)

v(t) = Sv(t)v0 +
∫ t

0
Sv(t − τ ) (v(−g + au)) (τ )dτ, (4.2.9)

where Su,α(t), Sv(t) denote the resolvent family and semigroup onL2(�) generated
by the operators As,2 and Al,2, respectively. Here we have also defined

Su,α (t) ω :=
∫ ∞

0
�α(τ)Su(τ t

α)ωdτ, Pu,α(t)ω := αtα−1
∫ ∞

0
τ�α(τ)Su(τ t

α)ωdτ

and set Pu,1(t) ≡ Su,1 (t) := Su (t). Recall that u0 ≥ 0 and v0 ≥ 0 on � and define
the functions k, h : � × (0,∞) × R → R by k(x, t, ξ) = ξ(f − bv(x, t)) and
h(x, t, ξ) = ξ(−g + au(x, t)). Since k(x, t, 0) = h(x, t, 0) = 0, it follows from
Theorem 3.6.1 that u(x, t) ≥ 0 and v(x, t) ≥ 0 for a.e. (x, t) ∈ �× [0, Tmax).

Note that each component of F satisfies the assumption (F6) for u ≥ 0, v ≥ 0.
Applying Theorem 3.4.11, we get that there exist two constantsC,C0 > 0 such that
for every 0 < T <∞,

sup
0<t<T

‖u(t)‖L∞(�) ≤ C
(‖u0‖L∞(�) + Eα,1 (C0T )+ T αEα,1 (C0T ) f

)

(4.2.10)

and we have shown (4.2.6) for any α ∈ (0, 1]. Next we consider (4.2.9) and let
p(x, t, ξ) = (−g + au). Since g is a positive constant and u ≥ 0, we have

h (x, t, ξ) ξ = p(x, t, ξ)ξ2 = (−g + au)ξ2 ≤ au(x, t)ξ2.

It follows from (4.2.10) that c0 := supt∈(0,T ) ‖au(x, t)‖L∞(�) < ∞. We have
shown that h also satisfies the assumption (F6). Then applying Theorem 3.4.11
once again and recalling Corollary 3.4.14, we get that there there exist two constants
C,C0 > 0 such that for every 0 < T <∞,

sup
t∈(0,T )

‖v(t)‖L∞(�) ≤ C
(
‖v0‖L∞(�) + c0 (T + 1) eC0T

)
. (4.2.11)

We have shown (4.2.7). Together with (4.2.6) we can conclude that Tmax = ∞ (see
Sect. 4.1). For (4.2.4)–(4.2.5), we refer once again to the proof of Theorem 4.1.3
(see (4.1.18), (4.1.17) and set α1 = α, α2 = 1, in which case Pα1 ≡ Pu,α,

Pα2 ≡ Sv); they easily follow now on the account of (4.2.10)–(4.2.11). The proof is
finished. ��

We recall from (3.1.4) that ns := βAsα, α ∈ (0, 1] and nl := βAl .



138 4 Systems of Fractional Kinetic Equations

Theorem 4.2.2 Let p0, q0 ∈ [1,∞] such that βAs/p0 < 1 and consider initial
data 0 ≤ u0 ∈ Lp0 (�), 0 ≤ v0 ∈ Lq0 (�). Then the fractional Lotka-Volterra
system (4.2.1)–(4.2.3) has a unique global mild solution u ≥ 0, v ≥ 0 on the time
interval [0,∞), given by (4.2.8)–(4.2.9), which is also a strong solution on (0,∞).
Moreover, the pair (u, v) satisfies

lim
t→0+

‖u (t)− u0‖L1(�) = 0, lim
t→0+

‖v (t)− v0‖Lk(�) = 0, for k ∈ [1, q0),

(4.2.12)

and the following estimates, for any T ∈ (0,∞):

sup
t∈(0,T )

(t ∧ 1)δs ‖u (t)‖Lp(�) <∞, p ∈ [p0,∞] , (4.2.13)

sup
t∈(0,T )

(t ∧ 1)δl ‖v (t)‖Lq(�) <∞, q ∈ [q0,∞] , (4.2.14)

where

δs := ns

p0

(
1− p0

p

)
,

δl := nl

q0

(
1− q0

q

)
.

The proof of the theorem follows from a series of propositions and lemmas that
we subsequently give. In what follows one can start with more regular initial data
due to the statement of Theorem 4.2.1 and then deduce all the required estimates
with less regular initial data by exploiting a standard approximation argument.

Proposition 4.2.3 Every nonnegative solution (u, v) satisfies the following esti-
mate1

‖u (t)‖Lp0 (�) ≤ ‖u0‖Lp0 (�)

(
Eα,1

(
f tα

) ) 1
p0 , (4.2.15)

for all t ∈ (0,∞) and α ∈ (0, 1], p0 ∈ [1,∞).

Proof We derive the estimate in case p0 ∈ (1,∞), the cases p0 ∈ {1,∞} follow
directly from a limit argument in (4.2.15). Multiply the first equation of (4.2.1) by
p0u

p0−1, integrate the resulting identity over �, then exploit the first inequality of
Proposition 3.4.9 if α ∈ (0, 1) and use the fact that u, v ≥ 0. We find that

∂αt

(
‖u (t)‖p0

Lp0 (�)

)
≤ f ‖u (t)‖p0

Lp0 (�)
,

1The Mittag-Leffler function E1,1 (x) = ex .
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for all t ≥ 0. The comparison principle of Lemma A.0.7 then immediately yields
the result since the unique solution of ∂αt y = fy is y = y (0)Eα,1 (f t

α). ��
Lemma 4.2.4 Let p0 ∈ [1,∞] such that βAs/p0 < 1 and assume sufficiently
smooth data (u0, v0). Then for every T ∈ (0,∞) there exists a constant M =
M (T,�, a, b, f, g) ∈ (0,∞) such that

sup
t∈(0,T )

(t ∧ 1)δs ‖u (t)‖Lp(�) ≤M, p ∈ [p0,∞] . (4.2.16)

Proof We apply Lemma 3.4.3 to the equation in u and use the one-sided version due
to Remark 3.4.5 since u, v ≥ 0. The weight function c (x, t) = f is constant, we
have q1 = q2 = r2 = ∞, r1 = p0 and γ = 1 and we can find a number b̃ ∈ [0, 1)

satisfying
(

1− b̃
)
βAs α

p0
< α − ε, for some ε ∈ (0, α). Note that βAs /p0 < 1 is

equivalent to βAsα/p0 = ns/p0 < α. The assertion (3.4.18) of Lemma 3.4.3 then
implies the existence of a constant C∗ > 0 independent of u0, u,U, t and T such
that

‖u (·, t)‖L∞(�) ≤ C∗ (t ∧ 1)
− ns

p0

[
‖u0‖Lp0 (�) +ϒ (t)

(
U + U

1/
(

1−b̃
))]

,

(4.2.17)

for all t ∈ (0, T ]. This yields (4.2.16) for p = ∞ since by the definition of U, c
and (4.2.15), we have

U := f ‖1+ |u|‖
(

1−b̃
)

p0,∞,T <∞.

In case p = p0, estimate (4.2.16) is just the a priori estimate (4.2.15), namely, it
follows that

sup
t∈(0,T )

‖u (t)‖Lp0 (�) ≤ M1 (T , f ) <∞. (4.2.18)

Since both Lp0 (�) and L∞ (�)-estimates are now readily available by (4.2.18)
and (4.2.17), we can use the interpolation inequality

‖u‖Lp(�) ≤ ‖u‖p0/p

Lp0 (�)
‖u‖1−p0/p

L∞(�) , p ∈ [p0,∞] , (4.2.19)

to derive the desired estimate in (4.2.16) for arbitrary p. ��
Lemma 4.2.5 Under the assumptions of Lemma 4.2.4, every nonnegative solution
v of (4.2.1)–(4.2.3) satisfies

sup
t∈(0,T )

‖v (t)‖Lq0 (�) <∞, for q0 ∈ [1,∞] . (4.2.20)
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Proof Consider the weight function c (x, t) = −g+ au (x, t) and notice that v ≥ 0
is a solution of

∂tv + Al,2v = cv, v (0) = v0.

Multiply this equation by qvq−1 and integrate the resulting identity over �. Since

(
Al,2v, v

q−1
)
L2(�)

≥ 0

by (2.2.11), we find

∂t ‖v (t)‖qLq(�) ≤ q ‖v (t)‖qLq(�) ‖c (t, ·)‖L∞(�) ,

for all t ∈ [0, T ]. This inequality implies that

∂t ‖v (t)‖Lq(�) ≤ ‖v (t)‖Lq(�) ‖c (t, ·)‖L∞(�)
and the application of Gronwall’s inequality yields

‖v (t)‖Lq(�) ≤ ‖v0‖Lq(�) e
∫ t

0 ‖c(s,·)‖L∞(�)ds, (4.2.21)

for any q ∈ [1,∞). Notice that in view of (4.2.17), ‖c (t, ·)‖L∞(�) ∼ t−ns/p0 for
t ∈ (0, 1) and ‖c (t, ·)‖L∞(�) ≤ CT for t ≥ 1; thus we have ‖c (t, ·)‖L∞(�) ∈
L1 (0, T ) since ns/p0 < α ≤ 1 by assumption. In particular, we infer from (4.2.21)
and (4.2.17) the existence of a constant M = M(T, p0, ns, g, a, f, u0) > 0,
independent of q , such that

‖v (t)‖Lq(�) ≤ M ‖v0‖Lq(�) , t ∈ [0, T ] ,

which is exactly the primary estimate (4.2.20) for q = q0 ∈ [1,∞). Passing to the
limit as q → ∞ in the previous inequality, we also get the estimate (4.2.20) for
q0 = ∞. We thus conclude the proof. ��

We can now show that v satisfies the smoothing property (4.2.14).

Lemma 4.2.6 Under the assumptions of Lemma 4.2.4, for every T ∈ (0,∞) there
exists a constant M =M (T,�, a, b, f, g) ∈ (0,∞) such that

sup
t∈(0,T )

(t ∧ 1)δl ‖v (t)‖Lq(�) ≤M, q ∈ [q0,∞] . (4.2.22)

Proof We first notice that estimate (4.2.16) with p = ∞ implies that ‖u‖∞,q2
≤M,

for some q2 ∈ (1, 1/δ) , δ := ns/p0 < α ≤ 1. This time we apply Lemma 3.4.3
to the equation in v with the weight function c (x, t) = −g + au (x, t) which now
satisfies ‖c‖∞,q2

≤ M1, and set q1 = r2 = ∞, q2 := q2 ∈ (1, 1/δ), r1 = q0



4.2 The Fractional Volterra–Lotka Model 141

and γ = 1. The constant M1 ∈ (0,∞) depends on the final time T > 0 but is
independent of t . Indeed, we can find a new number b̃ ∈ [0, 1), sufficiently close to
1, satisfying

1

q2
+

(
1− b̃

) nl

q0
< 1− ε,

for some ε ∈ (0, 1). It follows from the assertion (3.4.18) of Lemma 3.4.3 that there
exists a constant C∗ > 0 independent of v0, v, V and t such that

‖v (·, t)‖L∞(�) ≤ C∗ (t ∧ 1)
− nl

q0

[
‖u0‖Lq0 (�) + ϒ (t)

(
V + V

1/
(

1−b̃
))]

,

(4.2.23)

for all t ∈ (0, T ]. Here, V <∞ is defined as

V := ‖1+ |v|‖
(

1−b̃
)

q0,∞,T ‖c‖∞,q2
.

This yields estimate (4.2.22) for q = ∞. Next, recall that v also satisfies (4.2.20);
this allows us to exploit an interpolation similar to (4.2.19) in the spaces L∞ (�) ⊂
Lq (�) ⊂ Lq0 (�). Thus we arrive at the desired estimate (4.2.14) for an arbitrary
q ∈ [q0,∞] and we conclude the proof. ��
Proposition 4.2.7 Assume p0, q0 ∈ [1,∞] are such that βAs/p0 < 1. Then the
following assertions hold.

(a) There exists a constant M > 0 such that for every t ∈ (0, 1), we have

∥∥u (t)− Su,α (t) u0
∥∥
Lq0 (�)

≤ Mtε, ‖v (t)− Sv (t) v0‖Lq0 (�) ≤ Mtε,

(4.2.24)

for some ε > 0, for p0, q0 ∈ [1,∞).
(b) For i = 1, 2, let (ui, vi ) be a solution of (4.2.1)–(4.2.3) corresponding to an

initial datum (u0i , v0i ) . Then for every T ∈ (0,∞), there exists a constant
C = C (T ) ∈ (0,∞), independent of (ui , vi), such that

|‖u1 − u2‖|∞,δ,T + |‖v1 − v2‖|q0,0,T (4.2.25)

≤ C
(‖u01 − u02‖Lp0 (�) + ‖v01 − v02‖Lq0 (�)

)
.

Proof By the integral formula (4.2.8) and estimate (4.2.13) with p = ∞ and
δ = ns/p0, for t ∈ (0, 1) we have as in (3.1.16) (with s0 := q0, p0 := q0,
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q2 := ∞, q1 := q0),

∥∥u (t)− Su,α (t) u0
∥∥
Lq0 (�)

≤ C

∫ t

0
(τ ∧ 1)−δ dτ

(|‖u‖|∞,δ,1
) (

1+ |‖v‖|q0,0,1
)

≤ Mtε,

for some ε > 0. The same argument applied to the difference v (t) − Sv (t) v0
in (4.2.9) gives the required estimate in (4.2.24).

In order to show (4.2.25), we take ε := 1−δ > 0, where δ = ns/p0. Subtracting
the integral equations (4.2.8) corresponding to each i = 1, 2 and ui , we obtain

‖u1 (t)− u2 (t)‖L∞(�) ≤
∥∥Su,α (t)

∥∥∞,p0
‖u01 − u02‖Lp0 (�) (4.2.26)

+!(ui, vi)

∫ t

0
C
∥∥Pu,α (t − s)

∥∥∞,q0
(s ∧ 1)−δ ds,

where

!(ui, vi) := |‖u1 − u2‖|∞,δ,T

(
1+ |‖v1‖|q0,0,T

)
(4.2.27)

+ (
1+ |‖u2‖|∞,δ,T

) |‖v1 − v2‖|q0,0,T .

We can apply Lemma A.0.1 to the second summand in (4.2.26) and exploit the
global bounds (4.2.13)–(4.2.14) to estimate the corresponding norms for u2 and v1.
We deduce

|‖u1 − u2‖|∞,δ,t (4.2.28)

≤ C ‖u01 − u02‖Lp0 (�)

+ CTϒ (t)
(|‖u1 − u2‖|∞,δ,T + |‖v1 − v2‖|q0,0,T

)
,

for all t ∈ (0, T ], for some C > 0 independent of t . Arguing similarly for the
v-component, we find

‖v1 (t)− v2 (t)‖Lq0 (�) ≤ ‖Sv (t)‖q0,q0
‖v01 − v02‖Lq0 (�)

+ CT ! (ui, vi)

∫ t

0
(s ∧ 1)−δ ds

which yields

|‖v1 − v2‖|q0,0,t ≤ C ‖v01 − v02‖Lq0 (�) (4.2.29)

+ CT ϒ (t)
(|‖u1 − u2‖|∞,δ,T + |‖v1 − v2‖|q0,0,T

)
,
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for all t ∈ (0, T ]. Choose now a small enough h > 0 such that CTϒ (h) ≤ 1/2
into (4.2.28)–(4.2.29). We obtain

|‖u1− u2‖|∞,δ,h+|‖v1− v2‖|q0,0,h ≤ M (T )
(‖u01− u02‖Lp0 (�)+‖v01− v02‖Lq0 (�)

)
.

(4.2.30)

With the same proof, we can also infer that

|‖(u1 − u2) (·, t0 + ·)‖|∞,δ,h + |‖(v1 − v2) (·, t0 + ·)‖|q0,0,h (4.2.31)

≤M (T )
(‖(u1 − u2) (t0)‖Lp0 (�) + ‖(v1 − v2) (t0)‖Lq0 (�)

)
,

for all t0 ∈ [0, T ). We can now apply the estimate (4.2.31) successively for j =
0, 1, 2, . . . , with initial data (u, v) (t0 + jh). Then the assertion (4.2.25) follows by
induction on j and we finish the proof of the proposition. ��
Proof (Proof of Theorem 4.2.2) The proof follows now by a simple procedure
where we approximate any rough nonnegative initial data (u0, v0) ∈ Lp0 (�) ×
Lq0 (�) by a sequence of nonnegative functions (u0n, v0n) ∈ D(As,ps ) ×D(Al,pl )

(for some sufficiently large ps ∈
(
βAs ,∞

)
, pl ∈

(
βAl ,∞

)
and ps, pl ≥ 2) such

that

‖u0n − u0‖Lp0 (�) → 0, ‖v0n − v0‖Lq0 (�) → 0, as n→∞

with

‖u0n‖Lp0 (�) ≤ ‖u0‖Lp0 (�) , ‖v0n‖Lq0 (�) ≤ ‖v0‖Lq0 (�) .

The above lemmata and propositions then hold with the constants M,M1, C,C∗ >
0 independent of n for the sequence of strong solutions (un, vn). Thus, asser-
tion (4.2.25) of Proposition 4.2.7 implies that the sequence (un, vn) converges to
(u, v) in E∞,δ,T ×Eq0,0,T , and all the a priori estimates derived in this section also
hold for the limit solution (u, v). It is then straightforward to show from (4.2.8)–
(4.2.9) that (u, v) is also the mild solution of system (4.2.1)–(4.2.3) for an initial
datum (u0, v0) ∈ Lp0 (�)×Lq0 (�) (see Chap. 3 and Sect. 4.1). In particular every
such mild solution (u, v) is global and bounded on [T0,∞) for every T0 > 0, and
one can use arguments as in the proofs of Theorems 4.1.3 and 3.2.6, respectively,
to show that (u, v) is also a strong solution on [2T0,∞). The continuity properties
in (4.2.12) follow also immediately by virtue of (4.2.24) and Remark 3.1.2. ��
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4.3 A Fractional Nuclear Reactor Model

Let � ⊂ R
N be a bounded domain with Lipschitz continuous boundary ∂� and

consider the following parabolic system as a prototype for a nuclear reactor model
that we believe has a more realistic physical interpretation than the classical one (see
Appendix C). Let u = u (x, t) represent the fast neutron density and v = v (x, t)

be the fuel temperature at any point x ∈ � and for any time t ≥ 0. The system for
(u, v) reads

{
∂αt u+ (−�)s�u = u (λ− bv) , (x, t) ∈ �× (0,∞) ,

∂
β
t v = −cv + au, (x, t) ∈ �× (0,∞) ,

(4.3.1)

subject to the following set of boundary and initial conditions:

N2−2su = 0 on ∂�× (0,∞) , (u, v)|t=0 = (u0, v0) in �. (4.3.2)

Here s ∈ (1/2, 1), α, β ∈ (0, 1) and λ, a, b, c are positive constants in the model
equations (4.3.1)–(4.3.2) and (−�)s� is the regional fractional Laplace operator in�
(see (2.3.19)) and N2−2s denotes the corresponding fractional Neumann derivative
(see Sect. 2.3). The first (unforced) equation of (4.3.1) may be derived from a
continuous-time random walk with temporal memory (see Appendix C.3), while
incorporating avalanche-like transport effects in the neutron density and the second
equation can be analogously derived on similar principles as those considered in
Appendix C, by ignoring any diffusion effects in the fluid temperature v. We note
that the case s = α = β = 1 has been treated by Rothe [10] in some detail as a
simple reactor model proposed in [11].

Note that the first equation of (4.3.1) is structurally the same as the equation
for prey in the fractional Lotka-Volterra model investigated in Sect. 4.2. Thus the
arguments appear to be even more simple than in that case provided that we can
derive suitable a priori estimates for the fluid temperature in (4.3.1). Let Su(t)
denote the semigroup on L2(�) generated by the operatorAs,2, as given previously.
Consider a sufficiently smooth initial datum (u0, v0) and its corresponding solution.

Proposition 4.3.1 The fluid temperature v satisfies the following estimate

sup
t∈(0,T )

‖v (t)‖Lq(�) ≤ C1/q max

{
‖v0‖Lq(�) ,

ε1/q−1

(Cεq)
1/αq sup

t∈(0,T )
‖u (t)‖L∞(�)

}
,

(4.3.3)

for some ε > 0 depending only on a, c, and some constants C,Cε > 0 independent
of q ∈ [1,∞] .
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Proof By application of Proposition 3.4.9 into the second equation of (4.3.1), we
get

∂
β
t

(
‖v (t)‖qLq(�)

)
+ cq ‖v (t)‖qLq(�)

≤ aq ‖v (t)‖q−1
Lq(�)

‖u (t)‖L∞(�)

≤ aε1−q
(

sup
t∈(0,T )

‖u (t)‖L∞(�)

)q

+ aε (q − 1) ‖v (t)‖qLq(�) ,

for all t ≥ 0. This inequality implies for a sufficiently small ε ∈ (0, ca/2] and
Cε = c/2, that

∂
β
t

(
‖v (t)‖qLq(�)

)
+ Cεq ‖v (t)‖qLq(�)

≤ M := a

(
ε1/q−1 sup

t∈(0,T )
‖u (t)‖L∞(�)

)q

.

We infer by Lemma A.0.8 the existence of a constantC > 0, independent of q , such
that

‖v (t)‖qLq(�) ≤ C max

{
‖v0‖qLq(�) ,

a

(Cεq)
1/q

(
ε1/q−1 sup

t∈(0,T )
‖u (t)‖L∞(�)

)q}
.

Taking the 1/q-root on both sides, this inequality gives the desired assertion
in (4.3.3) for every q ∈ [1,∞). Since the constants C,Cε involved in (4.3.3) are
independent of q , we also recover the estimate in case q = ∞, by passing to the
limit as q →∞ in (4.3.3). ��

In view of the simple estimate of Proposition 4.3.1, we can derive the existence
of unique global strong solution in the sense of Theorem 4.1.3.

Theorem 4.3.2 Let 1/2 < s < 1 and βAs := N/(2s). Take initial data u0 ∈
D(As,ps ) ⊂ L∞(�), v0 ∈ L∞(�) for some ps ∈ (βAs ,∞) ∩ (1,∞) such that
u0 ≥ 0, v0 ≥ 0. Then the system (4.3.1)–(4.3.2) has a unique global strong solution
u ≥ 0, v ≥ 0 on the time interval (0,∞) satisfying

lim
t→0

‖u(t)− u0‖L∞(�) = 0, lim
t→0

‖v(t) − v0‖L∞(�) = 0. (4.3.4)

In addition for every T ∈ (0,∞) the following estimates hold:

sup
0<t<T

‖u(t)‖L∞(�) <∞, sup
0<t<T

‖v(t)‖L∞(�) <∞. (4.3.5)
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Proof Let u0 and v0 be as in the statement of the theorem. We can infer the existence
of a maximally defined strong solution by Theorem 4.1.3, given as

u(t) = Su,α(t)u0 +
∫ t

0
Pu,α(t − τ ) (u(λ− bv)) (τ )dτ, (4.3.6)

v(t) = v0 +
∫ t

0
gβ (t − τ ) (−cv + au) (τ )dτ, (4.3.7)

for t ∈ (0, Tmax). A similar argument to the proof of Theorem 4.2.1 successively
yields that u(x, t) ≥ 0 and then v(x, t) ≥ 0 for a.e. (x, t) ∈ � × [0, Tmax) since
g (u, 0) = au ≥ 0 (for g (u, v) := −cv + au). Moreover, the first bound of (4.3.5)
is satisfied by the same arguments of Theorem 4.2.1. Consequently, so is the second
bound of (4.3.5) on account of (4.3.3) in case q = ∞. The continuity properties
in (4.3.4) follow also by similar arguments on account of (4.3.5) with the exception
that for the integral solution v we have a more direct estimate from (4.3.7). The
proof is finished. ��

As a consequence of Proposition 4.2.3 and Lemma 4.2.4 we immediately have
the following estimate since the equation for u is the same as for the fractional
system (4.2.1)–(4.2.2).

Proposition 4.3.3 Let p0 ∈ [1,∞] such that βAs /p0 < 1 and assume a sufficiently
smooth datum u0. Then for every T ∈ (0,∞) there exists a constant M =
M (T,�, b, λ) ∈ (0,∞) such that

sup
t∈(0,T )

(t ∧ 1)δs ‖u (t)‖Lp(�) ≤ M, p ∈ [p0,∞] , (4.3.8)

where δs ≥ 0 is as in the statement of Theorem 4.2.2.

We now derive some uniform a prioriLq -estimate for the temperature. Of course,
there is no smoothing effect in the component v other than the one implied by u. In
other words, v turns out to be as regular as u but no more. Since u, v ≥ 0, we have
by (4.3.7) that pointwise in time,

v (t) ≤ v (t) := v0 + a

∫ t

0
gβ (t − τ ) u(τ )dτ (4.3.9)

and so it suffices to derive the required estimate for v.

Proposition 4.3.4 Under the assumptions of Proposition 4.3.3, it holds for any v0 ∈
Lq (�), q ≤ p with p ∈ [p0,∞] and T ∈ (0,∞), the estimate

sup
t∈(0,T )

‖v (t)‖Lq(�) <∞ if β ≥ δs
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and

sup
t∈(0,T )

(t ∧ 1)δs−β ‖v (t)‖Lq(�) <∞ if β < δs.

Proof We have

‖v (t)‖Lq(�) ≤ ‖v0‖Lq(�) + a

∫ t

0
gβ (t − τ ) ‖u(τ)‖Lq(�) dτ (4.3.10)

≤ ‖v0‖Lq(�) + C

(
sup

t∈(0,T )
(t ∧ 1)δs ‖u (t)‖Lp(�)

)

×
∫ t

0
gβ (t − τ ) (τ ∧ 1)−δs dτ.

A basic change of variable s = τ/t gives for t < 1,

∫ t

0
gβ (t − τ ) (τ ∧ 1)−δs dτ = Cβt

β−δs
∫ 1

0
s−δs (1− s)β−1 dτ,

where the latter integral is convergent since β > 0 and δs = ns
p0

(
1− p0

p

)
<

α
(

1− p0
p

)
< α < 1. When t > 1 we argue as in the proof of Lemma A.0.1 to

split the integral over intervals k < t ≤ k + 1, such that

∫ t

0
=

∫ 1

0
+

∫ 2

1
+ . . .+

∫ k−1

k−2
+

∫ t−1

k−1
+

∫ t

t−1
.

It follows that

∫ t

0
gβ (t − τ ) (τ ∧ 1)−δs dτ ≤ C (k + 1) ≤ 2Ct,

for some constant C > 0 independent of t, T . We then infer the existence of a
positive constant M2 =M2 (M,�, a, T , v0) ∈ (0,∞) such that

sup
t∈(0,T )

(t ∧ 1)δs−β ‖v (t)‖Lq(�) ≤ M2, if β ≤ δs

and

sup
t∈(0,T )

‖v (t)‖Lq(�) ≤M2, if β > δs.

We may now conclude using (4.3.9). ��



148 4 Systems of Fractional Kinetic Equations

Proposition 4.3.5 Let the assumptions of Proposition 4.3.3 be satisfied and let q0 ∈
[1, p0] such that v0 ∈ Lq0 (�) . Then the following estimate holds:

sup
t∈(0,T )

‖v (t)‖Lq0 (�) ≤ ‖v0‖Lq0 (�) + CT , (4.3.11)

for some constant CT ∈ (0,∞) that depends only on the Lp0 (�)-norm of u0, T

and the other physical parameters of the problem.

Proof Let T ∈ (0,∞) be arbitrary. The Hölder inequality on the bounded interval
[0, T ] yields in (4.3.11), owing to the fact that gβ ∈ L1 (0, T ),

sup
t∈(0,T )

‖v (t)‖Lq0 (�) ≤ ‖v0‖Lq0 (�) + CT ‖u‖L∞(0,T ;Lp0(�)) ,

for some CT = C (a,�, T , β) > 0 independent of t . Application of (4.3.8) with
p = p0 then gives the desired estimate in (4.3.11) since δs = 0 and v ≤ v. ��
Proposition 4.3.6 Assume p0 ∈ [1,∞] such that βAs /p0 < 1 (⇔ ns/p0 < α) and
q0 ∈ [1, p0] ∩ (βAs ,∞]. Then the following assertions hold.

(a) There exists a constant M > 0 such that for every t ∈ (0, 1), we have

∥∥u (t)− Su,α (t) u0
∥∥
Lp0 (�)

≤ Mtε, ‖v (t)− v0‖Lq0 (�) ≤ Mtβ, (4.3.12)

for some small ε > 0.
(b) For i = 1, 2, let (ui, vi ) be a solution of (4.3.1)–(4.3.2) corresponding to an

initial datum (u0i, v0i ) . Then for every t ∈ (0, T ), there exists a constant C =
C (T ) ∈ (0,∞), independent of (ui, vi ), such that

|‖u1 − u2‖|p0,0,t + |‖v1 − v2‖|q0,0,t (4.3.13)

≤ C
(‖u01 − u02‖Lp0 (�) + ‖v01 − v02‖Lq0 (�)

)
.

Proof We first prove (4.3.12) by following a similar argument that we employed in
the proof of Lemma 3.1.5 (see (3.1.16)) by viewing c (x, t) := λ−bv, f (x, t, u) =
c (x, t) u, with q1 := q0, q2 := ∞. To this end, let T ∈ (0, 1) , 0 ≤ t ≤ T and
recall the uniform estimates (4.3.8), (4.3.11), which imply that

|||c|||q0,0,T ≤ C |||1+ v|||q0,0,T ≤ N1, ||||u||||p,δs,T ≤ N2. (4.3.14)

Then let s0 ∈ [1,∞) be such that

δs ≤ 1

s0
and

ns

s0
+δs + ε < α + n

p0
,

for a sufficiently small ε ∈ (0, α] such that ε + δs ≤ α. We subsequently apply the
statement of Lemma A.0.1 with the choices p := p0, s1 := s0, s2 := ∞, θ := δs,
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δ := 0 and ε := ε (note again that r (τ ) ≡ ‖c (·, τ )‖Lq0
(X) and ps2 (r) = ‖c‖q,∞).

Once again if s0 ≥ p0 is arbitrary we have that ns/s0 − ns/p0 ∈ [0, 2α) is trivially
satisfied, while if s0 < p0 one may choose s0 sufficiently close to p0 ∈ [1,∞) such
that 1/s0 < 2/βAs + 1/p0. Note that the assumptions of Lemma A.0.1 are satisfied
with the above choices of δ, s1, s2, p, ε, θ , since 0 ≤ δs < α < 1 and ε + δs ≤ α,
and

ns

s0
< α + ns

p0
.

Indeed, by virtue of Hölder’s inequality, for all t ∈ (0, T ] ⊂ (0, 1) we have

∥∥u (·, t)− Su,αu0
∥∥
Lp0 (�)

(4.3.15)

≤
(∫ t

0

∥∥Pu,α (t − τ )
∥∥
p0,s0

(τ ∧ 1)−δs ‖λ− bv‖Lq0
(X) dτ

)
|||u|||p,δs,T

≤ C |||1+ v|||q0,0,T t
ε ||||u||||p,δs,T

≤ CN1N2t
ε

owing once again to (4.3.14). This gives the first of the assertion (4.3.12). For the
second estimate, by (4.3.7) we have for every 1 ≤ q ≤ q0,

‖v (t)− v0‖Lq(�) ≤
∫ t

0
gβ (t − τ ) ‖(−cv + au) (τ )‖Lq(�) dτ (4.3.16)

≤ C
(||||v||||q0,0,T + ||||u||||p0,0,T

) ∫ t

0
gβ (t − τ ) dτ

≤ C (N1 +N2) t
β ,

for all 0 ≤ t ≤ T < 1.
Next, we prove the continuous dependence estimate (4.3.13). By virtue

of (4.3.14), from (4.2.27) we have the uniform bound

!(ui, vi) ≤ |‖u1 − u2‖|p0,0,t (1+N1)+ (1+N2) |‖v1 − v2‖|q0,0,t

so that the same argument exploited in (4.3.15) in the integral formulation (4.3.6)
for the difference u, yields for t ∈ (0, 1) ,

||||u1 − u2||||p0,0,t ≤ C ‖u01 − u02‖Lp0 (�) + Ctε ||||v1 − v2||||q0,0,t . (4.3.17)

By (4.3.7), we obtain as in (4.3.16), for q ≤ q0 ≤ p0, that

‖v1 (t)− v2 (t)‖Lq(�) (4.3.18)
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≤‖v01 − v02‖Lq(�) +
∫ t

0
gβ (t − τ ) ‖(−cv + au) (τ )‖Lq(�) dτ

≤‖v01 − v02‖Lq(�) + Ctβ
(||||v1 − v2||||q0,0,t + ||||u1 − u2||||p0,0,t

)
.

Define ρ := min {ε, β} > 0 and the function

ψ (t) := ||||v1 − v2||||q0,0,t + ||||u1 − u2||||p0,0,t .

By the estimates (4.3.17)–(4.3.18), for a sufficiently small t < 1, it holds

ψ (t) ≤ C
(‖u01 − u02‖Lp0 (�) + ‖v01 − v02‖Lq0 (�)

)+ Ctρψ (t) , (4.3.19)

for some constant C > 0 independent of t . Further choose t0 � 1 such that Ctρ0 ≤
1/2 and observe that (4.3.19) also implies

ψ (t) ≤ 2C
(‖u01 − u02‖Lp0 (�) + ‖v01 − v02‖Lq0 (�)

)
, (4.3.20)

for all t ∈ (0, t0]. Finally, we can employ (4.3.20) successively with initial data
(u, v) (t + it0) , for i = 0, 1, 2,. . . , since by (4.3.8) and (4.3.11),

sup
i∈N

(‖u (t + it0)‖Lp0 (�) + ‖v (t + it0)‖Lq0 (�)

) ≤ N3.

Indeed, for the same step size t0, the assertion (4.3.20) yields the estimate

sup
t∈[t0+it0,t0+(i+1)t0]

(||||v1 − v2||||q0,0,t + ||||u1 − u2||||p0,0,t
)

(4.3.21)

≤ C
(‖(u1 − u2) (t0 + it0)‖Lp0 (�) + ‖(v1 − v2) (t0 + it0)‖Lq0 (�)

)
,

for all i ∈ {0, 1, 2, . . . .}. Then the assertion (4.3.13) on the whole interval (0, T )
follows by an induction procedure on i, applied successively in (4.3.21). Thus, the
proposition is proved. ��

We conclude the section with the second result concerning the well-posed
problem of mild solutions.

Theorem 4.3.7 Assume p0 ∈ [1,∞] such that βAs /p0 < 1 and q0 ∈ [1, p0] ∩
(βAs ,∞], and let 0 ≤ u0 ∈ Lp0 (�) , 0 ≤ v ∈ Lq0 (�) be such that u0 ≥ 0
and v0 ≥ 0 a.e. on �. If p0 = ∞, in addition assume u0 ∈ L∞s (�). Then the
fractional system (4.3.1)–(4.3.2) has a unique global mild solution u ≥ 0, v ≥
0 on the time interval [0,∞), given by (4.3.6)–(4.3.7), which hold as absolutely
convergent Bochner integrals in L1 (�). Moreover, the pair (u, v) satisfies

lim
t→0+

‖u (t)− u0‖Lp0 (�) = 0, lim
t→0+

‖v (t)− v0‖Lq0 (�) = 0 (4.3.22)

and the uniform estimates stated in Propositions 4.3.3 and 4.3.5.
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Proof The proof follows by a standard approximation procedure. The initial datum
(u0, v0) ∈ Lp0 (�) × Lq0 (�) can be approximated by a convenient sequence of
regular initial data (u0n, v0n) , according to the statement of Theorem 4.3.2. In
particular, this sequence may be chosen such that

lim
n→∞

[
‖u0n − u0‖Lp0 (�) + ‖v0n − v0‖Lq0 (�)

]
= 0 (4.3.23)

and

‖u0n‖Lp0 (�) ≤ ‖u0‖Lp0 (�) , ‖v0n‖Lq0 (�) ≤ ‖v0‖Lq0 (�) , (4.3.24)

for all n ∈ N. Let now (un, vn) be the global strong solution for an initial datum
(u0n, v0n). All the constants occurring in Propositions 4.3.3–4.3.5 can be chosen
independent of n ∈ N, owing to (4.3.24). Furthermore, the assertion (4.3.13)
of Proposition 4.3.6, together with (4.3.23), implies that the sequence (un, vn)

converges to (u, v) ∈ Ep0,δs ,T × Eq0,0,T , in the sense that

||||vn − v||||q0,0,t + ||||un − u||||p0,0,t → 0, as n→∞,

for all t ∈ (0, T ) . Besides, all the estimates of Propositions 4.3.3–4.3.5 hold for the
limit solution (u, v) as well. By the same arguments as in the proof of Lemma 3.1.5,
it is now straightforward to show that (u, v) is indeed the mild solution of the
system (4.3.1)–(4.3.2), for any initial datum (u0, v0) . The conclusion (4.3.22) is
also a consequence of Proposition 4.3.6 and Remark 3.1.2. ��
Corollary 4.3.8 The mild solution (u, v) of (4.3.1)–(4.3.2) is also regularizing in
the sense that its first component u becomes a global strong solution on [T0,∞),

for every T0 > 0, as well as, the second component v ∈ L∞ ([T0,∞);L∞ (�)).

References

1. K. Bogdan, K. Burdzy, Z.-Q. Chen, Censored stable processes. Probab. Theory Relat. Fields
127(1), 89–152 (2003)

2. Z.-Q. Chen, T. Kumagai, Heat kernel estimates for stable-like processes on d-sets. Stoch.
Process. Appl. 108(1), 27–62 (2003)

3. A.A. Dubkov, B. Spagnolo, V.V. Uchaikin, Lévy flight superdiffusion: an introduction. Int. J.
Bifurcat. Chaos Appl. Sci. Eng. 18(9), 2649–2672 (2008)

4. C.G. Gal, M. Warma, Nonlocal transmission problems with fractional diffusion and boundary
conditions on non-smooth interfaces. Commun. Partial Differ. Equ. 42(4), 579–625 (2017)

5. R. Gorenflo, F. Mainardi, A. Vivoli, Continuous-time random walk and parametric subordina-
tion in fractional diffusion. Chaos Solitons Fractals 34(1), 87–103 (2007)

6. N.E. Humphries, N. Queiroz, J.R.M. Dyer, N.G. Pade, M.K. Musyl, K.M. Schaefer, D.W.
Fuller, J.M. Brunnschweiler, T.K. Doyle, J.D.R. Houghton et al., Environmental context
explains lévy and brownian movement patterns of marine predators. Nature 465(7301), 1066
(2010)



152 4 Systems of Fractional Kinetic Equations

7. M. Jara, Nonequilibrium scaling limit for a tagged particle in the simple exclusion process
with long jumps. Commun. Pure Appl. Math. 62(2), 198–214 (2009)

8. A. Mellet, S. Mischler, C. Mouhot, Fractional diffusion limit for collisional kinetic equations.
Arch. Ration. Mech. Anal. 199(2), 493–525 (2011)

9. A.M. Reynolds, C.J. Rhodes, The Lévy flight paradigm: random search patterns and
mechanisms. Ecology 90(4), 877–887 (2009)

10. F. Rothe, Global Solutions of Reaction-Diffusion Systems. Lecture Notes in Mathematics, vol.
1072 (Springer, Berlin, 1984)

11. E.T. Rumble III, W.E. Kastenberg, On the application of eigenfunction expansions to problems
in nonlinear space-time reactor dynamics. Nucl. Sci. Eng. 49(2), 172–187 (1972)

12. D. Schertzer, M. Larchevêque, J. Duan, V.V. Yanovsky, S. Lovejoy, Fractional Fokker-Planck
equation for nonlinear stochastic differential equations driven by non-Gaussian Lévy stable
noises. J. Math. Phys. 42(1), 200–212 (2001)



Chapter 5
Final Remarks and Open Problems

In this monograph, we first consider a semilinear fractional kinetic equation that is
characterized by the presence of a nonlinear time-dependent source f = f (x, t, u),
a generalized time derivative ∂αt in the sense of Caputo and the presence of a large
class of diffusion operators A. Many examples of diffusion operators that satisfy
our assumptions are given in Sect. 2.3. We give a unified analysis, using tools
in semigroups theory and the theory of partial differential equations (Sects. 2.1
and 2.2), in order to obtain sharp results for the well-posedness problem of mild and
strong solutions (Sects. 3.1 and 3.2), as well as for the global regularity problem
in Sect. 3.4. Further properties, such as nonnegativity of the mild (and/or strong)
solutions and their limiting behavior as α → 1, are also provided in Sects. 3.6
and 3.5, respectively. Finally, in Sect. 3.7 an application of these results is given.

The framework we develop for the scalar equation in Chap. 3 is then extended
in the second part of the monograph (Chap. 4) to nonlinear systems of fractional
kinetic equations. Here, we first develop a general scheme that allows to establish
sharp results for the well-posedness problem of (locally-defined) mild and strong
solutions associated with such general systems (Sect. 4.1). We then combine this
analysis with that of the previous chapters to derive well-posedness results in terms
of globally defined mild and strong solutions, for a fractional prey-predator model
(Sect. 4.2) and a simple fractional nuclear reaction model (Sect. 4.3). In addition,
we provide a number of important technical tools in Appendix A, in support of the
analysis developed in this monograph; this appendix is followed by Appendix B,
which contains several results concerning the regional fractional Laplace operator
associated with fractional Neumann and/or Robin boundary conditions. Finally, in
Appendix C, we recall the current scientific literature for different kinds of fractional
kinetic equations that are suggested by concrete problems in mathematical physics,
probability and finance, and which fully motivated the analysis in this monograph.

We give next a number of final comments and discuss possible open problems.

© Springer Nature Switzerland AG 2020
C. G. Gal, M. Warma, Fractional-in-Time Semilinear Parabolic Equations
and Applications, Mathématiques et Applications 84,
https://doi.org/10.1007/978-3-030-45043-4_5

153

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45043-4_5&domain=pdf
https://doi.org/10.1007/978-3-030-45043-4_5


154 5 Final Remarks and Open Problems

Remark 5.0.1 Our main working hypothesis in this monograph is that the underly-
ing physical space X is a (relatively) compact Hausdorff space. However, we note
that this assumption has been placed just for the sake of technical convenience.
Much of the results developed in Chap. 3 are true for instance when X is only
locally compact (say when X is replaced by either R

N , or half-space R
N+ or an

unbounded open set � ⊂ R
N ). Indeed, all the supporting technical results given

in Appendix A, with the exception of Lemma A.0.2, are still valid when X is
only locally compact. In particular, it means that the results on well-posedness
of (locally-defined) mild and strong solutions are still true in that case, with the
exception of case (c) of Theorem 3.1.4; we recall that this case uses Lemma A.0.2 in
a crucial way. Moreover, one may obtain the same global bounds derived in Sect. 3.4
by making proper modifications in the proofs when X is only locally compact.

Problem 1 Prove the analogue of Lemma A.0.2 when X is only locally compact.

Remark 5.0.2 Let us consider the semilinear parabolic problem (3.1.1) with the
nonlinearity f (x, t, u) = c (x, t) |u|γ−1 u, for some c ∈ Lq1,q2 . We note that
the critical exponent γ, as stated by Theorem 3.1.4,

n

q1
+ 1

q2
+ (γ − 1)

n

p0
≤ α, n := βAα, α ∈ (0, 1], (5.0.1)

is in fact optimal in the sense that there are always locally-defined mild solutions
for some u0 ∈ Lp0 (X). When instead γ ≥ 1 and p0 ≥ 1 satisfy the inequality

n

q1
+ 1

q2
+ (γ − 1)

n

p0
> α, (5.0.2)

we conjecture that problem (3.1.1) does not have any locally-defined mild solution
for certain initial data u0 ∈ Lp0 (X). Indeed, this was already discovered by Weissler
[12, 13] for the classical problem when α = 1, βA = N/2 and q1 = q2 = ∞; (5.0.2)
recovers the super-critical range (γ − 1) N

2p0
> 1 in that case.

Problem 2 Prove the above conjecture in the super-critical case (5.0.2).

Problem 3 Consider the problem (3.1.1) in the subcritical and limiting cases as
defined by (5.0.1). Several further open problems can be considered:

(a) Under the same assumptions of Chap. 3, investigate the long-term behavior
of (3.1.1) in terms of global attractors and ω-limit sets.

(b) Under proper conditions on the nonlinearity and the diffusion operatorA, show
that each globally defined solution converges to a unique steady state u∗ as time
goes to infinity, where u∗ is a proper solution of the corresponding stationary
problem.

(c) Investigate the blow-up phenomenon for Problem (3.1.1) for various diffusion
operators. We refer the reader to [11] when A = �.
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(d) Give a further refined regularity analysis to show the (Hölder) continuity
of solutions for the abstract problem (3.1.1) for a large class of diffusion
operators A. We recall that such result has already been proven in [1] for the
corresponding problem with f = f (x, t) and A is given by Example 2.3.6(a).
When A = � or a second-order operator in divergence form, this has been
proven in [14].

Problem 4 The current framework can be extended to accommodate more general
transmission problems than the ones considered in [4, 5].

Problem 5 The framework in Sect. 3.3 can be further developed to show higher-
order differentiability properties for the strong solution under additional assump-
tions of the nonlinear function f.

Remark 5.0.3 The framework developed in this monograph can be exploited to
obtain global existence of solutions to other interesting reaction–diffusion systems
that contain some fractional kinetics. Among them, one can consider more general
systems based on ecological interactions and physical models based on chemical
reactions with anomalous diffusion that may occur in spatially inhomogeneous
media (cf. Appendix C). Among such interesting systems, one may mention the
fractional Brusselator for reaction kinetics [9] which was considered in [6] as a
physical model for activator-inhibitor dynamics that exhibits anomalous behavior.

Problem 6 Consider the fractional Brusselator discussed by Henry and Wearne [6]
and prove the existence of globally-defined strong and mild solutions. This is an
open problem in light of the difficulties that arise from the nature of the coupling in
the system and the corresponding nonlinear terms. We refer the reader to the survey
paper of Pierre [8] for more information regarding the classical reaction–diffusion
problem when αi ≡ 1, i ∈ {1, . . . ,m} .
Problem 7 Investigate the long-term behavior of solutions, as time goes to infinity,
to the fractional Volterra–Lotka and nuclear reactor systems introduced in Sects. 4.2
and 4.3, respectively.

Remark 5.0.4 The contribution [7] contains an analogue of the classical Aubin-
Lion compactness lemma in order to obtain existence of weak solutions to some
nonlinear systems that involve a fractional Caputo derivative. This approach can be
also applied to the semilinear problem (1.0.1) in order to develop a well-defined
L2-theory. However, our approach doesn’t require any compactness arguments and
is of more general interest since it is developed in the Lp-setting. Moreover, our
theory can be also extended for problems (1.0.1) with notions other than the Caputo
fractional derivative for as long as one can provide a formula for the solution similar
to (3.1.2). This is in particular very useful in those situations where the integral
kernel in the Caputo derivative is slightly more general than g1−α (see (2.1.1)).
These issues shall be addressed in future contributions.
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To conclude this section we list some open problems regarding the exterior value
elliptic problems (Eqs. (2.3.21), (2.3.25) and (2.3.27)) for the fractional Laplace
operator. We refer to [3] for more details.

Problem 8 Let u ∈ W
s,2
0 (�) be a weak solution of the Dirichlet exterior value

problem (2.3.21). Prove or disprove that u is a strong solution of (2.3.21).

Remark 5.0.5 Assume that� ⊂ R
N is a bounded domain of class C1,1. Let (ϕn)n≥0

be the eigenfunctions of the operator (−�)sD (see Example 2.3.6(a)). It has been
shown in [2, Section 5] (see also [10] for the case N = 1) that for every n ≥ 1,
ϕn ∈ C0,s (�) and ϕn 
∈ C0,γ (�) for any γ > s.

Problem 9 Let u ∈ W
s,2
� be a weak solution of the Neumann exterior value

problem (2.3.25). Prove that u ∈ C(RN) and u|� ∈ W
2s,2
loc (�). Prove or disprove

that u is a strong solution of (2.3.25).

Problem 10 Assume that � ⊂ R
N is a bounded domain of class C1,1. Let (ψn)n≥0

be the eigenfunctions of the operator (−�)sN (see Example 2.3.6(b)). Prove that for

every n ≥ 1, ψn ∈ C0,s(�) and ψn 
∈ C0,γ (�) for any γ > s.

Problem 11 Let u ∈ W
s,2
β,� be a weak solution of the Robin exterior value

problem (2.3.27). Prove that u|� ∈ W
2s,2
loc (�). Prove or disprove that u is a strong

solution of (2.3.27). Assume that β ∈ L1(RN \ �) ∩ L∞(RN \ �). Prove that
u ∈ C(RN).

Problem 12 Assume that � ⊂ R
N is a bounded domain of class C1,1 and that

β ∈ C1
c (R

N \ �). Let (φn)n≥0 be the eigenfunctions of the operator (−�)sR (see
Example 2.3.6(c)). Prove that for every n ≥ 1, φn ∈ C0,s(�) and φn 
∈ C0,γ (�) for
any γ > s.
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Appendix A
Some Supporting Technical Tools

We first state a result that gives an estimate on time convolution integrals involving
the ultra-contractive bounded operator Pα(t), α ∈ (0, 1].
Lemma A.0.1 Define n = βAα > 0. Let p, s1 ∈ [1,∞] such that
n (1/s1 − 1/p) < 2α and s2 ∈ (1/α,∞] , θ ≥ 0, ε ∈ [0, α), δ ∈ [0,∞) satisfy

n

s1
+ 1

s2
< α + n

p
,

n

s1
+ 1

s2
+ θ + ε ≤ α + n

p
+ δ (A.0.1)

and

1

s2
+ θ < 1,

1

s2
+ θ + ε ≤ α + δ. (A.0.2)

Let r : [0,∞)→ r (t) ∈ R be a measurable function such that

ps2 (r) := sup
t1,t2∈[0,∞),0≤t2−t1≤1

(∫ t2

t1

|r (t)|s2 dt

) 1
s2
<∞.

Define the function

g (t) := (t ∧ 1)δ
∫ t

0
‖Pα (t − τ )‖p,s1 (τ ∧ 1)−θ r (τ ) dτ, ∀ t ≥ 0.

Then there exists a constant C > 0 independent of t such that

|g (t)| ≤ C (t ∧ 1)ε ps2 (r) , for any t ∈ (0, 1]
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and

|g (t)| ≤ tCps2 (r) , for any t > 1.

Proof The idea is to combine the proof of [44, Lemma 6] with the new ultracon-
tractivity estimate of Proposition 2.2.2 (see (b)). To this end, we define s ∈ [1,∞]
such that 1/s + 1/s2 = 1. In what follows, if p ≤ s1 we let β = 0; otherwise if
p > s1, we choose β ∈ (0, 1/s + α − 1) such that

n

s1
− n

p
< β and

1

s2
+ β + θ + ε ≤ α + δ. (A.0.3)

Note that β ∈ (0, 1/s + α − 1) is equivalent to β ∈ (0, α − 1/s2) , where we
recall that s2 ∈ (1/α,∞] . Also notice that (A.0.3) can be achieved owing to the
assumption (A.0.1). By Proposition 2.2.2, part (b), there exists a constant C > 0,
independent of t, such that

‖Pα(t)‖p,s1 ≤ C(t ∧ 1)
−n

(
1
s1
− 1

p

)
+α−1 ≤ C(t ∧ 1)−β+α−1

for all t > 0. We divide the proof into two cases according to whether t ≤ 1 or
t > 1. In the first case (t ∧ 1 ≡ t), we have by the Hölder inequality with exponents
(s, s2) ,

|g (t)| = tδ
∫ t

0
‖Pα (t − τ )‖p,s1

τ−θ r (τ ) dτ (A.0.4)

≤ Ctδ
∫ t

0
(t − τ )−(β+1−α)τ−θ r (τ ) dτ

≤ Ctδ
(∫ t

0
(t − τ )−(β+1−α)sτ−θsdτ

)1/s

ps2 (r) .

Now, by a basic change of variable s = τ/t , we have

(∫ t

0
(t − τ )−(β+1−α)sτ−θsdτ

)1/s

(A.0.5)

= t1/s−(β+1−α)−θ
(∫ 1

0
(1− s)−(β+1−α)ss−θsds

)1/s

≤ Ct1/s−(β+1−α)−θ ,

where the last integral on the right-hand side converges provided that θs < 1 (⇔
θ < 1− 1

s2
) and β+1−α < 1/s = 1−1/s2. Note that the first condition coincides
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with the first assumption of (A.0.2). Therefore, from (A.0.4) we deduce

|g (t)| ≤ Ct1/s−(β+1−α)−θ+δps2 (r) ≤ Ctεps2 (r) , for t ≤ 1,

where we have noticed once again the second of (A.0.3). The proof of the case t > 1
can be reduced to the first case by choosing k ∈ N such that k < t ≤ k + 1 (i.e.,
t ∧ 1 ≡ 1). Indeed, we can separate the integral in the definition of g (t) into a sum

∫ t

0
=

∫ 1

0
+

∫ 2

1
+ . . .+

∫ k−1

k−2
+

∫ t−1

k−1
+

∫ t

t−1
,

and then apply the Hölder inequality to each summand separately. Observe that this
decomposition allows the restriction t2 − t1 ≤ 1 in the definition of ps2 (r). By a
similar reasoning to (A.0.5), we get

|g (t)| ≤ Cps2 (r)
∑(∫

(t − τ )−(β+1−α)sτ−θsdτ
)1/s

≤ Cps2 (r)

((∫ 1

0
τ−θsdτ

)1/s

+ 1+ . . .+ 1+
∫ t

t−1
(t − τ )−(β+1−α)sdτ

)

≤ Cps2 (r) (k + 1)

≤ 2 (Ct) ps2 (r) ,

Here we have majorized all the intermediate summands by the value one since on
each of the corresponding intervals the integrands are bounded above by 1. This
completes the proof of the lemma. ��

The ultracontractivity property of the operator Sα (see (2.2.12)) allows us to also
deduce the following lemma.

Lemma A.0.2 Let p, q ∈ [1,∞] such that p < q and set δ := n/p−n/q ∈ (0, α).
Given a subset � ⊂ Lp (X), assume that the set

κ (�) :=
{
u ‖u‖−1

Lp
(X) : u ∈ �, u 
= 0

}

is precompact in Lp (X). Then there exists a continuous and nondecreasing function
g : [0,∞)→ [0, 1], depending only on p, q, δ and the set� such that the following
assertions hold.

(a) For all t > 0 and u ∈ �,

‖Sα (t) u‖Lq(X) ≤ Cg (t) (t ∧ 1)−δ ‖u‖Lp(X) . (A.0.6)
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(b) We have limt→0+ g (t) = 0. The function w = w (t) defined by

(w (t))−δ = g (t) (t ∧ 1)−δ

has the properties

lim
t→0+

w (t) = 0 and (t ∧ 1) ≤ w (t) ≤ (t ∧ 1)
1
2 .

Proof The proof of this statement is similar to that of [44, Lemma 4] but requires
some nontrivial modifications since Sα is not a semigroup for α ∈ (0, 1). By
assumption, the set κ (�) is precompact in Lp (X) . Since p < ∞ and X is a
relatively compact (Hausdorff) space,Lq (X) ⊂ Lp (X) is a dense subset of Lp (X).
Hence, for any ε > 0, there exists a finite set {v1, . . . , vM } ⊂ Lq (X) \ {0} such that

min
1≤m≤M

∥∥∥∥u ‖u‖−1
Lp

(X) − vm

∥∥∥∥
Lp

(X) ≤ ε, for all u ∈ �, u 
= 0. (A.0.7)

Define now the function h : (t, u) ∈ (0,∞)×�\ {0} → h (t, u) ∈ [0, 1] , by

h (t, u) := ‖Sα (t) u‖Lq(X) C−1
0 tδ ‖u‖−1

Lp
(X) ,

where C0(= C) > 0 is the constant from the ultracontractivity estimate (2.2.4) for
the operator Sα . We observe that for all vm ∈ Lq (X) \ {0} , m = 1, . . . ,M , we have
owing to the fact that ‖Sα (t)‖q,q ≤ 1,

0 ≤ h (t, vm) = ‖Sα (t) vm‖Lq(X) C−1
0 tδ ‖vm‖−1

Lp
(X)

≤ C−1
0 tδ ‖vm‖−1

Lp
(X) ‖vm‖Lq(X) .

Therefore, since δ > 0 it holds

lim
t→0+

h (t, vm) = 0, for all vm ∈ Lq (X) \ {0} , m = 1, . . . ,M. (A.0.8)

Clearly, by (A.0.7) we also have ‖vm‖Lp(X) ≤ (1+ ε). Next, we estimate for a
suitably chosen m ∈ {1, ..,M},

C−1
0 tδ

∥∥∥∥Sα (t) u ‖u‖−1
Lp

(X)
∥∥∥∥
Lq

(X) (A.0.9)

≤ C−1
0 tδ

∥∥∥∥Sα (t)
(
u ‖u‖−1

Lp
(X) − vm

)∥∥∥∥
Lq

(X) + C−1
0 tδ ‖Sα (t) vm‖Lq(X)

≤
∥∥∥∥u ‖u‖−1

Lp
(X) − vm

∥∥∥∥
Lp

(X) + C−1
0 tδ ‖Sα (t) vm‖Lq(X)



A Some Supporting Technical Tools 163

≤ ε + C−1
0 tδ ‖Sα (t) vm‖Lq(X)

≤ ε + (1+ ε) h (t, vm) ,

where in the first term we have applied the ultracontractivity estimate for Sα . Also,
in the estimate we have recalled (A.0.7) and the fact that, by definition,

h (t, vm) ‖vm‖Lp(X) = ‖Sα (t) vm‖Lq(X) C−1
0 tδ.

Consequently, (A.0.9) then yields

h (t, u) ≤ ε + (1+ ε) h (t, vm) , for all u ∈ �, u 
= 0. (A.0.10)

Define now a new function h (t) = sup {h (s, u) : s ∈ [0, t] , u ∈ �\ {0}}. By virtue
of (A.0.8) and estimate (A.0.10), we have that 0 ≤ h ≤ 1 and limt→0+ h (t) = 0.
The definitions of h and h allow one to get, for t > 0,

‖Sα (t) u‖Lq(X) ≤ C0h (t) t
−δ ‖u‖Lp(X) , for all u ∈ �\ {0} .

Setting g (t) = sup
{
h (t) , (t ∧ 1)δ/2

}
, all the assertions (a)–(b) of the lemma are

fulfilled by the operator Sα . The proof is complete. ��
Lemma A.0.3 Consider the following cases:

(a) Let p0, γ ∈ [1,∞), q1 ∈ [1,∞] ∩ (βA,∞], q2 ∈ (1/α,∞] satisfy

n

q1
+ 1

q2
+ (γ − 1)

n

p0
< α. (A.0.11)

(b) Let p0, γ ∈ (1,∞), q1 ∈ [1,∞] ∩ (βA,∞], q2 ∈ (1/α,∞] satisfy

n

q1
+ 1

q2
+ (γ − 1)

n

p0
= α.

Then there exist ε ∈ (0, α), k ∈ N and finite sequences {pi} , {δi} such that
δi ∈ (0, α) and p0 < p1 < . . . < pk = ∞, for i = 1, .., k. In addition, the
following are satisfied:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
q2
+ n

q1
+ (γ − 1) (δi + n

pi
)+ ε < α, for i = 1, .., k; i 
= 1 in case (b).

1

q1
+ γ

pi
≤ 1, for i = 1, .., k.

1

q2
+ γ δi < 1, for i = 1, .., k.

n

pi−1
− n

pi
=: δi, for i = 1, .., k.

(A.0.12)
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Proof The proof is similar to that of [44, Lemma 12]. We include the details for
the proof of (a) for the sake of completeness. The case (b) is similar. The crucial
point is to choose p1 ∈ [1,∞] such that the first and second of (A.0.12) hold with
δ1 ∈ (0, α) given by the fourth condition for i = 1. These conditions can be written
more clearly as follows:

γ n

p0
>

γ n

p1
,

γ n

p1
≤ n− n

q1
(A.0.13)

and

1

q2
+ γ n

p0
− α <

γ n

p1
. (A.0.14)

It turns out that there exists a value p1 ∈ [1,∞] such that (A.0.13)–(A.0.14) are
satisfied if and only if the following hold:

1

p0
> 0,

1

q1
≤ 1,

1

q2
< α < 1 and

1

q2
+ n

q1
+ (γ − 1)

n

p0
< α + n

(
1− 1

p0

)
.

(A.0.15)

But the assumed condition (A.0.11) (which also coincides with the first of (A.0.12)
for i = 1) automatically implies the last of (A.0.15); the other conditions of (A.0.15)
are also satisfied since q1 ∈ [1,∞]∩ (βA,∞], q2 ∈ (1/α,∞]. Thus, there exist p1
and δ1 satisfying (A.0.12) for i = 1. Next choose p2 < p3 < . . . < pk = ∞ and
δi = n/pi−1 − n/pi , for i = 2, . . . , k, such that δi ≤ δ1 for i = 2, . . . , k. Then all
the assertions of the lemma are obviously satisfied. ��

We have used the following simple estimates repeatedly in Chap. 3.

Lemma A.0.4 The following assertions hold.

(i) Let ε ∈ (0, 1] and 0 ≤ t ≤ t + h ≤ T . Then there exists q > 1/ε ≥ 1 such that

(t + h)ε − tε ≤ ε (q − 1)

εq − 1
T

εq−1
q−1 h1/q.

(ii) For a ≥ b ≥ 0 and q ≥ 1, the following inequality holds:

(a − b)q ≤ aq − bq.

Proof

(i) The case ε = 1 is obvious. Let p > 1 such that p (1− 1/q) = 1. We estimate

(t + h)ε − tε = ε

∫ t+h

t

sε−1ds ≤ ε

(∫ t+h

t

s(ε−1)pds

)1/p

h1/q
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≤ ε

(ε − 1) p + 1
(t + h)(ε−1)p+1 h1/q

≤ ε (q − 1)

εq − 1
T

εq−1
q−1 h1/q,

since (ε − 1) p > −1 owing to qε > 1. To prove the second claim (ii), we
first notice that equality holds when b = 0 and a ≥ 0 or q = 1. Thus we
may assume that b > 0, q > 1 and denote by x = a/b ≥ 1. The inequality
we need to prove is equivalent to (x − 1)q ≤ xq − 1, for all x ≥ 1. Set then
h (x) = xq −1− (x − 1)q , and notice that h

′
(x) = qxq−1−q (x − 1)q−1 ≥ 0,

due to q > 1 and x ≥ 1. Hence, h (x) ≥ h (1) = 0 and the claim follows. ��
Lemma A.0.5 Let 0 < α ≤ 1. Let p0 ∈ [1,∞] be arbitrary and q1 ∈ (βA,∞] ∩
[1,∞] , q2 ∈ (1/α,∞], r1, r2 ∈ (0,∞], γ ∈ [1,∞), b ∈ [0, 1] such that

n

q1
+ 1

q2
+ γ (1− b)

(
n

r1
+ 1

r2

)
< α,

1

q1
+ γ (1− b)

r1
≤ 1 and γ b ≤ 1.

Then there exist ε ∈ (0, α), k ∈ N and finite sequences {pi} , {δi} such that δi ∈
(0, α) and p0 < p1 < . . . < pk = ∞, for i = 1, .., k. In addition, the following are
satisfied:

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

q1
+ γ

1− b

r1
+ γ

b

pi
≤ 1, for i = 1, .., k;

1

q2
+ γ

1− b

r2
+ γ bδi < α − ε, for i = 1, .., k.

δi = n

pi−1
− n

pi
, for i = 1, .., k.

Proof The proof follows closely that of [44, Lemma 16] with some minor (inessen-
tial) modifications; we leave it to the interested reader. ��

The following basic “feedback” inequality is taken from [44, Lemma 18].

Lemma A.0.6 Let y, z0, z1 ∈ [0,∞) and σ ∈ (0, 1) be such that y ≤ z0 + z1y
σ .

Then

y ≤ z0

1− σ
+ z

1
1−σ
1 .

We next state a simple comparison principle for some ordinary differential
equation associated with ∂αt .

Lemma A.0.7 Let yi ∈ C [0, T ] such that g1−α ∗ yi ∈ C1 (0, T ) , for i = 1, 2
and let a ∈ R, f ∈ L1 [0, T ] . Assume that yi satisfy the following inequalities, for
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almost all t ∈ (0, T ],
{
∂αt y1 (t)+ ay1 (t) ≤ f (t) ,

∂αt y2 (t)+ ay2 (t) ≥ f (t) ,

and y1 (0) ≤ y2 (0). Then y1 (t) ≤ y2 (t) on [0, T ] .

Proof Let us set u := y1 − y2, and subtract the second equation from the first
equation. We obtain the inequality

∂αt u (t)+ au (t) ≤ 0, u (0) = y1 (0)− y2 (0) ≤ 0.

Observe that the unique solution of ∂αt z (t)+az (t) = 0, with z (0) = u0, is given by
z (t) = Eα,1 (−atα) z0 (see, for instance, [5, Corollary 2.39]). By the comparison
principle for linear fractional differential equations (see [19]), we then deduce that
u (t) ≤ z (t) , t ∈ [0, T ]. Since z(0) = z0 ≤ 0, it follows that u (t) ≤ z (t) ≤ 0,
which is the desired claim. ��

We now state an important inequality that allows one to deduce uniform bounds
with respect to time and with respect to the parameter α → 1−.

Lemma A.0.8 Let T ∈ (0,∞] be given. Let y ∈ C [0, T ] such that g1−α ∗ y ∈
C1 (0, T ) and let a > 0, 0 ≤ f ∈ C[0, T ) such that supt∈[0,T ) f (t) = M > 0.
Suppose that (a nonnegative) y satisfies the inequality

∂αt y (t)+ ay (t) ≤ f (t) , a.e. on (0, T ) ,

such that y (0) = y0 ≥ 0. Then

sup
t∈[0,T )

[y (t)] ≤ C max

{
y0,

M

a1/α

}
, (A.0.16)

for some C = C (α) > 0 (independent of t, T , y0 and y), which is bounded as
α → 1−. Furthermore, if T = ∞, we have

lim sup
t→∞

[y (t)] ≤ C
M

a1/α , α ∈ (0, 1) . (A.0.17)

Proof By assumption, f is bounded on [0, T ). Let z ≥ 0 be the corresponding
(unique) solution for the problem

{
∂αt z (t)+ az (t) = f (t) , t ∈ (0, T ),
z (0) = y (0) = y0 ≥ 0.
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This solution is given by

z (t) = y0Eα,1
(−atα)+

∫ t

0
(t − s)α−1 Eα,α

(−a (t − s)α
)
f (s) ds, (A.0.18)

see, for instance, [5, Chapter 3]. We know that for any x ≤ 0, β1 ∈ (0, 2) and
β2 > 0,

Eβ1,β2 (x) ≤
C

1+ |x| ,

for some C = C (β1, β2) > 0 (see [41]). Furthermore, we have the following
formula (cf. [34, Chapter 2]) for any ξ > 0 and b ∈ R,

∫ ξ

0
sα−1Eα,α

(
bsα

)
ds = bξαEα,α+1

(
bξα

)
. (A.0.19)

It follows from (A.0.18) that

z (t) ≤ y0
C (α)

1+ atα
+M

∫ t

0
(t − s)α−1 Eα,α

(−a (t − s)α
)
ds (A.0.20)

≤ y0
C (α)

1+ atα
+ M

a1/α

∫ a1/αt

0
xα−1Eα,α

(−xα) dx

= y0
C (α)

1+ atα
+ M

a1/α

(
atαEα,α+1

(−atα))

≤ y0
C (α)

1+ atα
+Ma1−1/αC (α)

tα

1+ atα

≤ 2C (α)max
{
y0,Ma−1/α

}
,

for all t ∈ (0, T ). The constant C (α) > 0 is bounded as α → 1. Finally,
estimate (A.0.20) together with the comparison principle (see Lemma A.0.7), which
yields that y (t) ≤ z (t) on [0, T ), gives (A.0.16). ��

We recall the following version of Grönwall lemma [26, Lemma 7.1.1] (cf. also
[5, Theorem 2.19] for a proof).

Lemma A.0.9 Given b ≥ 0 and 0 ≤ l, ω ∈ L1
loc (R+) , satisfying

ω (t) ≤ l (t)+ b


 (α)

∫ t

0
(t − s)α−1 ω (s) ds,
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it holds

ω (t) ≤ l (t)+ b

∫ t

0
(t − s)α−1 Eα,α

(
b (t − s)α

)
l (s) ds,

for all t ∈ [0, T ] .



Appendix B
Integration by Parts Formula
for the Regional Fractional Laplacian

The main objective of this appendix is to give an integration by parts formula
for the regional fractional Laplace which can be used to define the fractional
Neumann and/or Robin boundary conditions. To do this we first introduce a notion
of fractional normal derivative that we have mentioned in the previous chapters. We
assume first that � ⊂ R

N is a bounded open set with boundary of class C1,1. We
will also use the following notations:

ρ(x) = dist(x, ∂�) = inf{|y − x| : y ∈ ∂�}, ∀ x ∈ �,

�δ = {x ∈ � : 0 < ρ(x) < δ}, δ > 0 is a real number,

ν(z) = the outer normal vector of ∂� at the point z ∈ ∂�.

The following definition is taken from [20, Definition 2.1] (see also [22,
Definition 7.1] for the one-dimensional case).

Definition B.0.1 For u ∈ C1(�), z ∈ ∂� and 0 ≤ α < 2, we define the boundary
operator Nα by

Nαu(z) = lim
t↓0

du(z+ ν(z)t)

dt
tα, (B.0.1)

whenever the limit exists.

Remark B.0.2 Let 0 ≤ α < 2 and let Nα be the boundary operator defined
in (B.0.1).

(a) It is easy to see that if u ∈ C1(�) ∩ C(�) then for every z ∈ ∂�,

Nαu(z) = lim
t↓0

u(z+ tν(z))− u(z)

t2s−1
.
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(b) If α = 0, then N0u(z) = ∇u · ν(z) = ∂u(z)
∂ν

for every u ∈ C1(�) and z ∈ ∂�.
(c) If 0 < α < 2, then Nαu(z) = 0 for every u ∈ C1(�) and z ∈ ∂�.

For β > 0 we define the space

C2
β(�) =

{
u : u(x) = f (x)ρ(x)

β−1+g(x), ∀ x ∈ �, for some f, g ∈ C2(�)
}
.

When β > 1, we always assume that u ∈ C2
β(�) is defined on � by continuous

extension. The following explicit representation of the operator Nα is taken from
[54, Lemma 5.3].

Lemma B.0.3 Let 1 < β ≤ 2 and u ∈ C2
β(�). Then the following assertions hold.

(a) If β ∈ (1, 2), then for z ∈ ∂�,

N2−βu(z) = (1− β) lim
��x→z

u(x)− u(z)

ρ(x)β−1 . (B.0.2)

(b) If β = 2, then for z ∈ ∂�,

N0u(z) = − lim
��x→z

u(x)− u(z)

ρ(x)
. (B.0.3)

Next, for 1
2 < s, 1, we let

Cs := C1,s

2s(2s − 1)

∫ ∞

0

|τ − 1|1−2s − (τ ∨ 1)1−2s

τ 2−2s dτ.

One can show that lims↑1 Cs = 1. For more details on this topic we refer to [15, 53–
55] and their references.

We have the following fractional Green type formula for the regional fractional
Laplace operator.

Theorem B.0.4 Let 1
2 < s < 1. Then, for every u ∈ C2

2s (�) and v ∈ Ws,2(�) we
have that

∫

�

v(x)(−�)s�u(x)dx =
CN,s

2

∫

�

∫

�

(u(x)− u(y))(v(x)− v(y))

|x − y|N+2s dxdy

(B.0.4)

− Cs

∫

∂�

vN2−2sudσ.

We mention that the identity (B.0.4) has been first obtained in [20, Theorem
3.3] under the assumption that v also belongs to C2

2s(�). Its validity for every v ∈
Ws,2(�) has been proved in [54, Theorem 5.7] by using a density argument (see
also [55] for a more general operator).
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Definition B.0.5 For 1
2 < s < 1 and u ∈ C2

2s (�), we call the function CsN2−2su

the strong fractional normal derivative of u in direction of the outer normal vector.

We make some comments about the fractional normal derivative introduced
above.

Remark B.0.6 It is worth to observe the following facts.

(a) The nonlocal normal derivative, has been introduced in [8, 23] (see also [7])
for functions u defined on R

N . More precisely, recall that for 0 < α < 1 and
u ∈ L1(RN), the non-local normal derivative is defined by

Nαu(x) = CN,s

∫

�

u(x)− u(y)

|x − y|N+2α dy, x ∈ R
N\�, (B.0.5)

provided that the integral exists. The definition of Nαu in (B.0.5) requires that
the function is defined on all RN . This is different from the fractional Normal
derivative Nαu given in (B.0.1) where the function u is defined only on �.
Starting with a function defined only on �, it seems impossible to deal with
Nαu. For example if u ∈ Ws,2(�) and letting ũ ∈ Ws,2(RN) be an extension
to all RN , then the relation (B.0.5) can make sense but the definition cannot be
independent of the extension, except in the case where there is only one such
possible extension. This shows that the expression Nαu cannot be used in the
case of the fractional Laplace operator where one considers functions defined a
priori only on �. It has been shown in [7, Proposition 5.1] (see also [8, 23]) that
if � ⊂ R

N is a bounded domain with Lipschitz continuous boundary ∂�, then
for every u, v ∈ C2

0 (R
N),

lim
α↑1

∫

R
N \�

vNαudx =
∫

∂�

∂u

∂ν
vdσ.

(b) As we have seen in Remark B.0.2, the fractional normal derivative Nαu is
continuous with respect to α, so that for every u ∈ C2

2 (�) = C1(�) we have
that N1u = ∂u

∂ν
, i.e., the classical normal derivative of u in direction of the outer

normal vector ν.

Next, we introduce a weak formulation on non-smooth domains of a fractional
normal derivative.

Definition B.0.7 Let 1
2 < s < 1 and � ⊂ R

N a bounded domain with Lipschitz
continuous boundary ∂�.

(a) Let u ∈ Ws,2(�). We say that (−�)s�u ∈ L2(�) if there exists w ∈ L2(�)

such that

CN,s

2

∫

�

∫

�

(v(x)− v(y))(u(x)− u(y))

|x − y|N+2s
dxdy =

∫

�

wvdx

for all v ∈ W
s,2
0 (�). In that case we write (−�)s�u = w.
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(b) Let u ∈ Ws,2(�) such that (−�)s�u ∈ L2(�). We say that u has a fractional
normal derivative in L2(∂�) if there exists g ∈ L2(∂�) such that

∫

�

v(−�)s�udx =
CN,s

2

∫

�

∫

�

(v(x) − v(y))(u(x) − u(y))

|x − y|N+2s dxdy −
∫

∂�

gvdσ

(B.0.6)

for all v ∈ Ws,2(�). In that case, the function g is uniquely determined
by (B.0.6), we write CsN2−2su = g and call g the weak fractional normal
derivative of u.

Using Definition B.0.7 and an approximation argument we get the following
more general Green’s type formula for the regional fractional Laplace operator.

Theorem B.0.8 Let 1
2 < s < 1 and let � ⊂ R

N be a bounded open set with
Lipschitz continuous boundary. Then for all v ∈ Ws,2(�) the identity

∫

�

v(−�)s�u dx =
CN,s

2

∫

�

∫

�

(v(x)− v(y))(u(x)− u(y))

|x − y|N+2s dxdy (B.0.7)

− Cs

∫

∂�

vN2−2sudσ,

holds, whenever u ∈ Ws,2(�), (−�)s�u ∈ L2(�) and N2−2su exists in L2(∂�).

We mention that if � is a bounded open set of class C1,1 and u ∈ C2
2s(�),

then by [20, 54], N2−2su ∈ L2(∂�), (−�)s�u ∈ L2(�) and in that case weak and
strong fractional normal derivatives of u coincide in the sense that they are equal
everywhere on ∂�.



Appendix C
A Zoo of Fractional Kinetic Equations

Fractional kinetic equations involving diffusion and/or diffusion-advection provide
a useful approach for the description of transport dynamics in complex systems
which are governed by anomalous diffusion and non-exponential relaxation pat-
terns. Such fractional equations are usually derived asymptotically from basic
random walk models [36]; among them we quote the fractional Brownian motion,
the continuous time random walk, the Lévy flight, the Schneider-Grey Brownian
motion and, more generally, random walk models based on evolution equations of
single and distributed fractional order in time and/or in space [9, 25, 33, 47, 51].
Indeed, in mathematical physics it is often more convenient to have a deterministic
equation for the probability density function of a process, given as the analogue of
the classical heat equation, to be solved under given initial and boundary conditions.

C.1 Fractional Equation with Nonlocality in Space

We present next a diffusion equation that is generated by Lévy statistics, and can
be also derived asymptotically from a simple exclusion process with long-range
random jumps [29]. From the probabilistic point of view, the best way to understand
Lévy statistics when compared to Brownian statistics is the random walk formalism.
In the latter, particles make only small steps with finite probability such that the
interaction between close neighbors is always short-ranged while in the former,
particles are also allowed to take “arbitrarily” large steps (up to the system size)
with a small finite probability for each such step, and so the interaction between
particles is long-ranged. Physical phenomena that exhibit deviations from normal
diffusion is usually dubbed as anomalous diffusion and seems to be inherent in
dynamical systems far from equilibrium [39, 49, 52]. Let K : R

N → [0,∞) be an
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even function such that

∑

k∈ZN
K(k) = 1. (C.1.1)

Given a small h > 0, we consider a random walk on the lattice hZN . We suppose
that at any unit time τ (which may depend on h) a particle jumps from any point of
hZN to any other point. The probability for which a particle jumps from a point hk ∈
hZN to the point hk̃ is taken to be K(k− k̃) = K(k̃− k). Note that, differently from
the standard random walk, in this process the particle may experience arbitrarily
long jumps, though with small probability. Let u(x, t) be the probability that our
particle lies at x ∈ hZN at time t ∈ τZ. Then u(x, t + τ ) is the sum of all the
probabilities of the possible positions x + hk at time t weighted by the probability
of jumping from x + hk to x. That is,

u(x, t + τ ) =
∑

k∈ZN
K(k)u(x + hk, t).

Using (C.1.1) we have the evolution law:

u(x, t + τ )− u (x, t) =
∑

k∈ZN
K(k) [u(x + hk, t)− u(x, t)] . (C.1.2)

In particular, in the case when τ = h2s and K is homogeneous (i.e., K(y) =
|y|−(N+2s) for y 
= 0, K(0) = 0, and 0 < s < 1), (C.1.1) holds and K(k)/τ =
hNK(hk). Therefore, we can rewrite (C.1.2) as follows:

u(x, t + τ )− u(x, t)

τ
= hN

∑

k∈ZN
K(hk) [u(x + hk, t)− u(x, t)] . (C.1.3)

Notice that the term on the right-hand side of (C.1.3) is just the approximating
Riemann sum of

∫

R
N
K(y) [u(x + y, t)− u(x, t)] dy.

Thus letting τ = h2s → 0+ in (C.1.3), we obtain

∂tu(x, t) =
∫

R
N

u(x + y, t)− u(x, t)

|y|N+2s dy. (C.1.4)

The integral on the right-hand side of (C.1.4) has a singularity at y = 0. However
when 0 < s < 1 and u is smooth and bounded, such integral is well defined as a
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principal value, that is,

lim
ε↓0

∫

R
N \B(0,ε)

u(x + y, t)− u(x, t)

|y|N+2s dy (C.1.5)

= lim
ε↓0

∫

R
N \B(x,ε)

u(z, t)− u(x, t)

|z− x|N+2s dz

= − (
CN,s

)−1
(−�)su(x, t),

for a proper normalizing constant CN,s > 0 (see (C.1.6) below and Sect. 2.3). This
shows that a simple random walk with possibly long jumps produces at the limit a
singular integral with a homogeneous kernel. For more details on this topic we refer
to [51]. In the case when in (C.1.5), RN is replaced by an arbitrary open set G ⊂ R

N

and the integral kernel is restricted only to the open set, we formally obtain the so-
called regional fractional Laplacian −(−�)sG (cf. [1, 3, 20–22]). More precisely,
for

u ∈ L1
s (G) =

{
u : G→ R measurable,

∫

G

|u(x)|
(1+ |x|)N+2s dx <∞

}
,

and ε > 0, we let

(−�)sG,εu(x) = CN,s

∫

{y∈G,|y−x|>ε}
u(x)− u(y)

|x − y|N+2s dy,

with

CN,s =
s22s


(
N+2s

2

)

π
N
2 
(1 − s)

, (C.1.6)

where 
 denotes the usual Gamma function. Define

(−�)sGu(x) = CN,sP.V.
∫

G

u(x)− u(y)

|x − y|N+2s dy = lim
ε↓0

(−�)sG,εu(x), x ∈ G,

provided that the limit exists. With the latter definition, the evolution law

∂tu+ (−�)sGu = 0 (C.1.7)

corresponds to a kind of “censored” stable process in G ⊂ R
N, which is a Lévy

motion forced to stay inside G. It is interesting to note that the fractional heat
equation (C.1.4) also emerges as the hydrodynamic limit of interacting particle
systems that are superdiffusive in nature, that is, the limit of systems on which
particles may perform long jumps in the context of Lévy processes [29]. Such
“restricted” Lévy motions show up an important models in both applied mathemat-
ics and applied probability [1, 3, 9, 25, 29, 35, 46] (cf. also [13–15, 18], on fractional
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semilinear parabolic equations), as well as in ecological contexts to model the
foraging patterns of a variety of organisms (such as, fruit flies, sharks, etc.) [27, 43].
Lévy processes are also well suited to describe turbulent diffusion in rotating flows
[48], chaotic phase-transitions in binary systems [10–12], nonlocal transmission
phenomena subject to fractional diffusion [16, 17, 32], micelle dynamics and vortex
dynamics, and image processing [31].

C.2 Fractional Equation with Nonlocality in Time

Such equations are commonly found in continuum mechanics in the theory of
viscoelastic materials [42, Chapter 5], and the theory of heat flows in homogeneous
isotropic conductors with fading memory developed between 1960s and 1970s
by Coleman, Gurtin, Pipkin and Nunziato (see, for instance, [4, 24, 40]). Let
u = u (x, t) denote the (relative) temperature in a rigid body G ⊂ R

N, at time
t > 0 and position x ∈ G and let e = e (x, t) denote the density of internal energy,
q = q (x, t) the heat flux, and r = r (x, t) is the external heat supply. According to
[4, 24, 40] the balance of energy reads

∂t e + div (q) = r, (C.2.1)

and we consider the following constitutive relations

e =
∫ ∞

0
eG (t − τ ) u (τ ) dτ, q = −d (u)∇u. (C.2.2)

Here d = d (u) is a positive smooth function and eG ∈ L1 (R+) is an internal
energy relaxation function that is also assumed sufficiently smooth. Without loss
of generality assume eG (0) = 0. An interesting family of models is obtained in
the case of heat flows with fading memory of “power-type” when eG ≡ g1−α for
α ∈ (0, 1), gα is given by (2.1.1). The second equation of (C.2.2) can be recognized
as the classical Fourier law for heat flow in G. Let us now further assume that
u (t, x) = u0 (x) , for all x ∈ G and t ≤ 0. We then observe that (C.2.1)–(C.2.2) is
equivalent to an equation with a fractional-in-time derivative, of the form

∂αt u− div (d (u)∇u) = r. (C.2.3)

This easily follows from Definition 2.1.1 in view of the basic computation

∂te (x, t) = ∂t

(
g1−α ∗ u+

∫ ∞

t

g1−α (τ ) u (t − τ ) dτ

)

= ∂t

(
g1−α ∗ u+ u0 (x)

∫ ∞

t

g1−α (τ ) dτ
)
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= ∂t (g1−α ∗ u)− u0 (x) g1−α (t)

= ∂t (g1−α ∗ (u− u0)) (x, t) .

Equation (C.2.3) is usually prescribed with a boundary condition for the temperature
on the boundary of G, and an initial condition u (0, x) = u0 (x). Among classical
boundary conditions one can take either Dirichlet or Neumann boundary conditions
for u. Nonlocal equations of the form (C.2.3) also occur in fluid flows through
porous media when the fluid reacts chemically with the medium enlarging the pores
and/or obstructing some of the pores. Such problems are of intrinsic interest to
geothermic theory. Caputo [2] has proposed to modify the classical empirical law of
Darcy by introducing a memory formalism represented by a derivative of fractional
order simulating the effect of a decrease of the permeability in time. In this context,
the function u has the meaning of fluid pressure and q is related to the fluid mass
flow rate per unit volume/area, and d = d (u) stands for the permeability of the
porous medium. The classical mass conservation equation of the infiltrating pore
fluid is assumed to be

∂tu+ div (q) = h. (C.2.4)

Instead of the classical form of Darcy’s law for the mass q, one assumes instead that

q := −∂1−α
t

(
d (u)∇u

)
, α ∈ (0, 1) , (C.2.5)

in order to account for any memory effects present during geothermal flows
(see [2]). In view of these considerations, (C.2.4)–(C.2.5) then becomes once
again (C.2.3) assuming that r := ∂α−1

t h. The fractional kinetic equation (C.2.3)
is also dubbed as the equation of fractional Brownian motion and arises in various
important classes of problems in economics, the study of fluctuations in solids and
water flows in hydrology (see [33]; cf. also [37]).

C.3 Space-Time Fractional Nonlocal Equation

Firstly, let us also mention that fractional diffusion equations can be derived from
the Continuous-Time Random Walk (CTRW). In fact, a CTRW is a random walk
that permits intervals between successive walks to be independent and identically
distributed. In this process, the walker starts at the point zero at time T0 = 0 and
waits until time T1 when he makes a jump of size x1, which is not necessarily
positive. He then waits until time T2 and makes another jump of size x2, and so
on. The jump sizes xi are assumed to be independent and identically distributed.
The intervals τi = Ti − Ti−1, i = 1, 2, . . ., are called the waiting times and are
assumed to be independent and identically distributed. Let T denote the waiting
time and X the jump size. Let fX(x) and fT (t) denote the PDF of X and the PDF
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of T , respectively. Let u(x, t) denote the probability that the position of the walker
at time t is x, given that it was in position 0 at time t = 0; that is,

u(x, t) = P [X(t) = x|X(0) = 0].

Let RT (t) := P [T > t] be the survival probability, which is the probability that the
waiting time, when the process is in a given state, is greater that t . If fT (t) = λe−λt
(t > 0), then RT (t) = e−λt and satisfies the ODE:

R′T (t) = −λRT (t), t > 0, RT (0+) = 1. (C.3.1)

A generalization of (C.3.1) that gives rise to anomalous relaxation and power-law
tails in the waiting time PDF can be written as

(
g1−α ∗ R′T

)
(t) = −λRT (t), t > 0, 0 < α < 1, RT (0+) = 1,

where we recall that g1−α ∗ R′T is the classical Caputo fractional derivative of RT .
In that case RT (t) = Eα,1(−λtα) and the corresponding PDF of the waiting time
is fT (t) = tα−1Eα,α(−λtα). If one assumes that both fX(x) and fT (t) exhibit
algebraic tails such as fX(x) ∼ |x|−(1+β) and fT (t) ∼ t−(1+α), then we can derive
a space-time fractional diffusion equation for the dynamics u(x, t) as follows:

g1−α ∗ ∂tu(x, t) = Cα,β
∂βu(x, t)

∂|x|β ,

where Cα,β is a diffusion coefficient. For more details on this topic we refer to the
monograph [28, Section 10.7.1].

Secondly, the fractional kinetic equations (C.1.7) and (C.2.3) can be viewed as
different limit cases of a more general family of fractional equations, with the first
limit being related to Lévy processes (see Appendix C.1) and the second to the
problem of fractional Brownian motion assuming that d ≡ d0 > 0 is constant (see
Appendix C.2). Both of these two limit cases can be also derived asymptotically
from continuous time random walks [36] and can be unified by the following
fractional kinetic equation

∂αt u+
(
CN,s

)−1
(−�)su = 0, s ∈ (0, 1) , (C.3.2)

where as before in Appendix C.1, u(x, t) is the probability that our particle lies at
x ∈ R

N at time t . Equation (C.3.2) is derived by Montroll-Weiss in [38] using an
integral equation, the so-called generalized master equation, for processes with time
delay that may account for possible trapping of the particles in certain regions before
returning to their initial point. It turns out that an equivalence between such master
equations and continuous-time random walks (CRWs) can be established (see [30])
by means of an explicit relationship between the (pausing) time distribution function
ψ (t) in the theory of CRWs and a memory function φ that shows up in the kernel of
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the master equation. On the basis of the latter equation, there is another probability
function K(x−x) = K(x−x) used by the particle to make a step from the position
at x ∈ R

N to the point x ∈ R
N . Some explicit examples of ψ,φ and a transition

density K are presented, for instance, in [45, Section IV], leading to the fractional
equation (C.3.2) (cf. also [50], for a more general discussion). Fractional equations
of the form

∂αt u+ (−�)sGu = f, (C.3.3)

where f = f (x, t, u) is a source, arise as macroscopic transport models for
the probability density function of tracer particles in turbulent plasmas [6], which
incorporate in a unified way space-time nonlocality. The fractional derivative ∂αt
accounts for the trapping of tracer particles in turbulent eddies while the diffusion
operator (−�)sG is responsible for anomalous transport of the tracer particles.
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