
Chapter 8
Fundamentals of Thermal Radiation

Radiation is one of the fundamental modes of heat transfer. However, the concepts of
thermal radiation are much more complicated and, hence, very difficult to perceive.
Themain features of radiation that are distinct from conduction and convection are as
follows: (a) radiation can transfer energy with and without an intervening medium;
(b) the radiant heat flux is not proportional to the temperature gradient; (c) radiation
emission is wavelength dependent, and the radiative properties of materials depend
on the wavelength and the temperature; (d) the radiant energy exchange and the
radiative properties depend on the direction and orientation [1, 2].

The dual theory explains the nature of radiation as either electromagnetic waves
or a collection of particles, called photons. Although radiation can travel in vacuum,
it originates from matter. All forms of matter emit radiation through complicated
mechanisms (e.g., molecular vibration in gases, and electron and lattice vibrations in
solids). Inmost solids and some liquids, radiation emitted from the interior is strongly
absorbed by adjoining molecules. Therefore, radiation from or to these materials is
often treated as surface phenomena, while radiation in gases and some semitrans-
parent solids or liquids has to be treated as volumetric phenomena. Nevertheless,
one must treat solids or liquids volumetrically as a medium to understand the mech-
anisms of reflection and emission, to predict the radiative properties of thin films
and small particles, and to calculate radiation heat transfer between objects placed
in close vicinity. Thermal radiation refers to a type of radiation where the emission
is directly related to the temperature of the body (or surface).

There are numerous engineering applications where radiation heat transfer is
important, such as solar energy, combustion, furnaces, high-temperature materials
processing and manufacturing, and insulation in space and cryogenic systems. Even
at room temperature, radiative heat transfer may be of the same order of magnitude
as convective heat transfer. The study of thermal radiation went along with the study
of light phenomena and led to some major breakthroughs in modern physics. It is
instructive to give a brief survey of major historical developments related to thermal
radiation.

© Springer Nature Switzerland AG 2020
Z. M. Zhang, Nano/Microscale Heat Transfer, Mechanical Engineering Series,
https://doi.org/10.1007/978-3-030-45039-7_8

407

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45039-7_8&domain=pdf
https://doi.org/10.1007/978-3-030-45039-7_8


408 8 Fundamentals of Thermal Radiation

Quantitative understanding of light phenomena began in the seventeenth century
with the discoveries of Snell’s law of refraction, Fermat’s least-time principle of light
path, Huygens’ principle of constructing the wavefront from secondary waves, and
Newton’s prism that helped him prove white light consists of many different types
of rays. In the dawn of the nineteenth century, Sir Frederick Herschel (1738–1822),
a German-born English astronomer, discovered infrared radiation [3]. His original
objective was to find a suitable color for a glass filter, which could transmit the
most of light but the least amount of heat, for use in solar observations. By moving
a thermometer along the spectrum of solar radiation that passed through a prism,
Herschel accidently found that the temperature of the thermometer would rise even
though it was placed beyond the red end of the visible light. He published several
papers in Philosophical Transactions of the Royal Society of London in 1800 and
called the unknown radiation invisible light or heat-making rays.Young’s double-slit
experiment in 1801 demonstrated the interference phenomenon and the wave nature
of light. It was followed by extensive studies on polarization and reflection led by
French physicist Augustin-Jean Fresnel (1788–1827) who contributed significantly
to the establishment of the wave theory of light. In 1803, radiation beyond the violet
end of the visible spectrum via chemical effects was also discovered. The ultraviolet,
visible, and infrared spectra were thus associated with chemical, luminous, and heat-
ing effects, respectively. Yet, the common nature of the different types of radiation
was not known until the late nineteenth century.

One of the obstacles of accurately measuring infrared radiation (or heat radiation,
as it was called in those days) was the lack of sensitive detectors. In the earlier years,
measurements were performed usingmercury-in-glass thermometers with blackened
bulbs. In 1829, Italian physicists Leopoldo Nobili (1784–1835) andMacedonioMel-
loni (1798–1854) invented the thermopile made by connecting a number of thermo-
couples in series that ismuchmore sensitive and faster than the thermometer.Melloni
used the device to study the infrared radiation from hot objects and the sun. Gustav
Kirchhoff (1824–1887), a German physicist, contributed greatly to the fundamental
understanding of spectroscopy and thermal emission by heated objects. In 1862, he
coined the term “black body” radiation and established Kirchhoff’s law, which states
that the emissivity of a surface equals its absorptivity at thermal equilibrium.

Many famous physicists and mathematicians have contributed to electromag-
netism. The complete equations of electromagnetic waves were established in 1873
by Scottish physicist James Clerk Maxwell (1831–1879), and later confirmed exper-
imentally by German physicist Heinrich Hertz (1857–1894) through the discovery of
radiowaves due to electrical vibrations. Before the existence of electronswas proved,
Dutch physicist Hendrik Lorentz (1853–1928) proposed that light waves were due
to oscillations of electric charges in the atom. His electron theory could explain the
phenomenon discovered by his mentee Pieter Zeeman (1865–1943) that the lines in
the spectrum can split into several lines under a strong magnetic field (known as the
Zeeman effect). They shared theNobel Prize in Physics in 1902 for their research into
the influence of magnetism upon radiation phenomena. The electromagnetic wave
theory has played a central role in radio, radar, television, microwave technology,
telecommunication, thermal radiation, and physical optics. Albert Einstein arrived
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at the famous formula E = mc2 in 1905, after connecting the relativity principle with
the Maxwell equations.

In 1881, Samuel Langley (1834–1906), the American astronomer, physicist, and
aeronautics pioneer, invented a highly sensitive device called a bolometer for detect-
ing thermal radiation. The bolometer used two platinum strips, connected in aWheat-
stone bridge circuit with a sensitive galvanometer, to read the imbalance of the bridge
caused by the exposure of one of the strips to radiation. Langley was the first to make
an accurate map of the solar spectrum up to a wavelength of 2.8 μm. The Stefan–
Boltzmann law of blackbody radiation is buit upon the empirical relation obtained by
Slovenian physicist Joseph Stefan (1835–1893) in 1879, through careful experimen-
tal observation. The theoretical proof was provided by Austrian physicist Ludwig
Boltzmann (1844–1906) in 1884, based on the thermodynamic relations of a Carnot
cycle with radiation as a working fluid using the concept of radiation pressure. In
the late nineteenth century, German physicist Wilhelm Wien (1864–1928) derived
the displacement law in 1893 by considering a piston moving within a mirrored
empty cylinder filled with thermal radiation. Wien also derived a spectral distri-
bution of blackbody radiation, called Wien’s formula, which is applicable to the
short-wavelength region of the blackbody spectrum but deviates from experiments
toward long wavelengths. Wien received the Nobel Prize in 1911 “for his discoveries
regarding the laws governing the radiation of heat.” In 1900, Lord Rayleigh (1842–
1919), British physicist andNobel Laureate in Physics in 1904, used the equipartition
theorem to show that the blackbody emission should be directly proportional to tem-
perature but inversely proportional to the fourth power of wavelength. Sir James
Jeans (1877–1946), a British physicist, astronomer, and mathematician, derived a
more complete expression in 1905. The Rayleigh–Jeans formula agreed with experi-
ments at sufficiently high temperatures and long wavelengths, whereWien’s formula
failed, but disagreed with experiments at short wavelengths. It is noteworthy that
Rayleigh has made great contributions to light scattering and wave phenomena, such
as the discovery of Rayleigh scattering by small objects that explains why the sky is
blue and the sunset glows red and orange. Rayleigh also predicted the existence of
surface waves, sometimes called Rayleigh waves, which propagate along the inter-
face between two different media. The amplitude of the wave, however, diminishes
in each media as the distance from the interface increases.

In an effort to obtain a better agreement with measurements at long wavelengths,
German physicist Max Planck (1858–1947) in 1900 used the maximum entropy
principle, based on Boltzmann’s entropy expression, to derive an equation, known
as Planck’s law, which agrees with experiments in the whole spectral region. Planck
obtainedhis expression independently ofRayleigh’swork,while the complete deriva-
tion of Rayleigh–Jeans formula was obtained several years later. In his book The The-
ory of Heat Radiation, Planck [4] showed that his formula would reduce to Wien’s
formula at small λT and Rayleigh–Jeans formula at large λT . In his derivation,
Planck used a bold assumption that is controversial to classical electrodynamics. His
hypothesis was that the energy of linear oscillators is not infinitely divisible but must
assume discrete values that are multiples of hν, where h is a universal constant and
ν is the frequency of the oscillator. This concept would have been easily accepted
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for a system consisting of particles, like atoms or gas molecules, but not for oscilla-
tors that radiate electromagnetic energy. Planck’s work opened the door to quantum
mechanics. The idea of quantization of radiation was further developed by Einstein,
who applied it to explain the photoelectric effect in 1905. Planck was awarded the
Nobel Prize in Physics in 1918 for the discovery of energy quanta. In 1924, Indian
mathematical physicist Satyendra Nath Bose (1894–1974) modified the Boltzmann
statistics of ideal molecular gases, by introducing the concept of different quantum
states at each energy level (degeneracy) using the phase space while treating the
light quanta as indistinguishable. Subsequently, Bose was able to statistically derive
Planck’s distribution function without using the semi-classical oscillator concept.
With the help of Einstein, Bose’s work was published in Zeitschrift für Physik in
1924. Einstein further extended Bose’s theory to atoms and predicted the existence
of a phenomenon, known as Bose–Einstein condensate, as discussed in Chap. 3. It
is clear that the journey of questing for the truth in understanding thermal radiation
has led to important discoveries in modern physics.

This chapter contains an introduction to the electromagnetic wave theory, black-
body radiation, plane wave reflection, and refraction at the boundary between two
semi-infinite media, evanescent waves and total internal reflection, and various mod-
els used to study the optical properties of different materials. A brief description of
the typical experimental methods used to measure the spectral radiative properties
is also presented. The materials covered in the following sections are intended to
provide a sound background for more in-depth studies on the applications of thermal
radiation to micro/nanosystems in subsequent chapters.

8.1 Electromagnetic Waves

In this section, we will study macroscopic Maxwell’s equations and electromagnetic
(EM) waves in isotropic media from dielectric to dissipative (lossy) to magnetic
media. The concepts of polarization, absorption, and evanescentwaves are introduced
using complexwavevectors. Poynting’s theoremdescribes the energy balance for EM
waves including transfer, storage, and dissipation. The complex dielectric function
is defined from which the complex refractive index for nonmagnetic materials can
be calculated.

8.1.1 Maxwell’s Equations

The propagation of electromagnetic waves in any media is governed by a set of
equations, first stated together by Maxwell. The macroscopic Maxwell equations
can be written in the differential forms as follows [5–9]:
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∇ × E = −∂B
∂t

(8.1)

∇ × H = J + ∂D
∂t

(8.2)

∇ · D = ρe (8.3)

∇ · B = 0 (8.4)

Here, E is the electric field, H is the magnetic field, J is the electric current density
(or charge flux according to the definition in Chap. 4),D is the electric displacement,
B is the magnetic flux density (also called magnetic induction), and ρe is the charge
density. In the SI units, E is in V/m,H in C/m s, J in A/m2, D in C/m2, B in Wb/m2,
and ρe in C/m3. Note that 1 T (T) = 1 Wb/m2 and 1 Wb (Wb) = 1 V s. The charge
conservation or continuity equation, ∇ · J+∂ρe/∂t = 0, is implicitly included in the
Maxwell equations, because it can be obtained by taking the divergence of Eq. (8.2)
and then applying Eq. (8.3). The constitutive relations for a linear isotropic medium
are

D = εmE (8.5)

B = μmH (8.6)

where εm is the electric permittivity in F/m and μm the magnetic permeability of
the medium in N/A2. Note that the farad (F) is the SI unit of capacitance: 1 F =
1 C/V. The permittivity and permeability values of free space (vacuum) are ε0 =
8.854×10−12 F/m andμ0 = 4π ×10−7 N/A2, respectively. For anisotropic media,
μm and εm are dyadic tensors. The microscopic form of Ohm’s law gives

J = σE (8.7)

where σ is the electric conductivity in A/V m.
A brief discussion on the physical interpretation of Maxwell’s equations is given

next. Equation (8.1) is an expression of Faraday’s law of induction, which states
that a time-varying magnetic field produces an electric field in a coil. In other words,
through any closed electric field line, there is a time-varying magnetic field. Combin-
ing Eq. (8.1) with Green’s theorem, Eq. (B.71), we see that the integral of the electric
field around a closed loop is equal to the negative of the integral of the time derivative
of the magnetic induction, over the area enclosed by the loop. Equation (8.2) is the
general Ampere’s law, which includes Maxwell’s displacement current (∂D/∂t). It
states that through any closed magnetic field line, there is an electric current den-
sity J or a displacement current or both. Conversely, circulating magnetic fields are
produced by passing an electrical current through a conductor or changing electric
fields or both. Equation (8.3) is Gauss’s law, which implies that the electric field
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diverges from electric charges. Using Gauss’s theorem, Eq. (B.70), it can be seen
fromEq. (8.3) that the integral of the electric field over a closed surface is proportional
to the electric charges enclosed by that surface. If there are no electric charges inside
a closed surface, there is no net electric field penetrating the surface. Equation (8.4)
is an analogy to Gauss’s law for the magnetic field. However, isolated magnetic poles
(i.e., magnetic monopoles) have not been observed, so the integration of a magnetic
field over any closed surface is zero.

The interpretations given in the preceding paragraph are straightforward since
all variables and coefficients are considered as real quantities. However, Maxwell’s
equations are most useful when all quantities are expressed in complex variables.
The material properties, such as εm and μm, are generally complex and frequency
dependent. To facilitate understanding, we will start with simple cases first and then
generalize the theory for more realistic problems.

8.1.2 The Wave Equation

Sometimes called free charge density, ρe in Eq. (8.3) should be treated as excess
charges or net charges per unit volume. Because the number of electrons equals
the number of protons in the nuclei, in most media, we can assume ρe = 0. For a
nonconductive material, σ = 0. We further assume that εm and μm are both real and
independent of position, time, and the field strength. This is true for a nondissipative
(lossless), homogeneous, and linear material. If μm = μ0, the material is said to be
nonmagnetic. Therefore, a nonconductive and nonmagnetic material is a dielectric
for which only εm is needed to characterize its electromagnetic behavior. Materials
with both εm andμm being real butμm �= μ0 are sometimes called general dielectrics
or dielectric-magnetic media. Substituting the constitutive relations into Maxwell’s
equations and then combining Eqs. (8.1) and (8.2), we obtain

∇2E = μmεm
∂2E
∂t2

(8.8)

where the vector identity given in Eq. (B.64), ∇ × (∇ × E) = ∇(∇ · E) − ∇2E =
−∇2E, has been employed. Equation (8.8) is the wave equation, which can also be
written in terms of the magnetic field. The wave equation has infinite number of
solutions (see Problem 8.1). The solution of Eq. (8.8) for a monochromatic plane
wave can be written as

E = E0e
−i(ωt−k·r) (8.9)

where E0 is the amplitude vector, ω is the angular frequency, r = x x̂ + yŷ + zẑ is
the position vector, and k = kx x̂+ ky ŷ+ kz ẑ is the wavevector, which points toward
the direction of propagation. In order for Eq. (8.9) to be a solution of Eq. (8.8), the
magnitude of k must be k = ω

√
μmεm. The complex form of the electric field is
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used in Eq. (8.9) to facilitate mathematical manipulation. The actual electric field
may be expressed as the real part of Eq. (8.9), viz.,

Re(E) = Re(E0) cosφ + Im(E0) sin φ (8.10)

where Re or Im stands for taking the real part or the imaginary part, and φ = ωt −k ·r
is the phase. Equation (8.9) is a time-harmonic solution at a fixed frequency. Because
any time-space-dependent function can be expressed as a Fourier series of many
frequency components, we can integrate Eq. (8.9) over all frequencies to obtain the
total electric field at any time and position. Therefore, understanding the nature of
Eq. (8.9) is very important to the study of electromagnetic wave phenomena.

When Eq. (8.9) is substituted into Maxwell’s equations, a time derivative ∂/∂t
can be replaced by a multiplication of −iω and the operator ∇ can be replaced by
ik. Hence, the first two Maxwell equations can be written as

k × E = ωμmH (8.11a)

and

k × H = −ωεmE (8.11b)

The two equations suggest that E, H, and k are orthogonal and form a right-handed
triplet, when both εm and μm are positive. On the surface normal to the wavevector
k, the electric or magnetic field is a function of time only, because k ·r = const. This
surface is called a wavefront. In the k-direction, the wavefront travels at the speed
given by

c = ω

k
= 1√

μmεm
(8.12)

which is called phase speed and it is the smallest speed at which the wavefront
propagates. The phase velocity is the phase speed times the unit wavevector [8].

Figure 8.1 illustrates a plane wave, propagating in the positive x-direction, whose
electric field is parallel to the y-direction andmagnetic field parallel to the z-direction.

Fig. 8.1 Illustration of a
linearly polarized
electromagnetic wave

H

E

x

y

z

Wavelength, λm

k
Speed of propagation, cz
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In such cases, k = kx and k · r = kx . The wavefront is perpendicular to the x-
direction. It can be seen clearly that the wavevector is related to the wavelength λm

in the medium by k = 2π/λm.
In free space, the speedof an electromagneticwave is given by c0 = 1/

√
μ0ε0. The

speed of light in a vacuum was instated as an exact number, c0 = 299, 792, 458 m/s,
by the General Conference on Weights and Measures (abbreviated as CGPM for
Conférence Générale des Poids etMesures) in 1983. The SI base unit meter has since
been defined as the distance that light travels in a vacuum during a time interval of
1/299, 792, 458 s. The reference on constant, units, and uncertainty can be found
from the web page of the National Institute of Standards and Technology (NIST) for
detailed discussions about the fundamental physical constants and the base SI units
[10]. For most calculations, it suffices to use c0 = 2.998 × 108 m/s. The refractive

index of a medium is given as n =
√

μmεm
μ0ε0

= c0
c . Therefore, c = c0/n and λm = λ/n,

where λ is the wavelength in vacuum. For nonmagnetic materials μm/μ0 = 1; thus,
n = √

εm/ε0.
Notice that n of a medium is a function of frequency (or wavelength) and is, in

general, temperature dependent. For polychromatic light, the phase speed usually
depends on wavelength because n = n(λ) in a dispersive medium. In a vacuum, the
energy propagation velocity is the same as the phase velocity. For polychromatic
waves in a dispersive medium, the group velocity vg determines the direction and
speed of energy flow and is defined as

vg = ∇kω = dω

dk
= ∂ω

∂kx
x̂ + ∂ω

∂ky
ŷ + ∂ω

∂kz
ẑ (8.13)

which is the gradient of ω in the k-space. In a homogeneous and isotropic medium,
vg = c0

(
n + ω dn

dω

)−1
and the direction of the group velocity will be the same as

that of the wavevector k. In a nondispersive medium, where n is not a function of
frequency, it is clear that vg = c = c0/n. A group front can also be defined based
on the constant-amplitude surface of the wave group. In general, it is not parallel to
the wavefront, when light is refracted from a nondispersive medium to a dispersive
medium; furthermore, the energy flow direction is not necessarily perpendicular to
the group front [11]. Notice that the wave equation is also applicable to other types
of waves such as acoustic waves, which are matter waves with a longitudinal and
two transverse modes, as mentioned in Chap. 5.

8.1.3 Polarization

A simple transverse wave will oscillate perpendicular to the wavevector. Because
electromagnetic waves have two field vectors that can change their directions dur-
ing propagation, the polarization behavior may be complicated. It is important to
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understand the nature of polarization in order to fully characterize an electromag-
netic wave. There are two equivalent ways to interpret a complex vector A. The first
method considers it as a vector whose components are complex, i.e.,

A = Ax x̂ + Ay ŷ + Az ẑ (8.14a)

where Ax , Ay, and Az are complex numbers:

Ax = A′
x + iA′′

x , Ay = A′
y + iA′′

y, and Az = A′
z + iA′′

z (8.14b)

The second method decomposes it into two real vectors such that

A = A′ + iA′′ (8.15a)

where A′ and A′′ are the real and imaginary parts of the complex vector, given by

A′ = A′
x x̂ + A′

y ŷ + A′
z ẑ and A′′ = A′′

x x̂ + A′′
y ŷ + A′′

z ẑ (8.15b)

In either case, a complex vector has six real scalar terms.
For the time being, let us assume all the material properties to have real values and

k to be a real vector. BothE andH are complex, according to Eq. (8.9). To ensure that
k · E = 0 at any time and location, both Re(E0) and Im(E0) must be perpendicular
to k. The same is true for the magnetic vector. Because H can be obtained from
Eq. (8.11a), the state of polarization can be based on how the electric field varies in
time and along the k-direction in space. In order to study the time dependence of the
electric field, rewrite Eq. (8.10) as

Re(E) = a cos(ωt) + b sin(ωt) (8.16)

wherea = Re(E0eik·r) andb = Im(E0eik·r) are both real vectors and perpendicular to
k. In general, the electric field will vary with time in an ellipse, called the vibration
ellipse, as shown in Fig. 8.2. If a and b are parallel or, equivalently, Re(E0) and

Fig. 8.2 Illustration of
polarization by the vibration
ellipse, for a plane wave
propagating in the positive
z-direction (out of the paper).
The electric field vector is
plotted at an increment of
ω�t = π/12 a−a

b

x

−b

y
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Im(E0) are parallel to each other, then the electric field will not change its directions.
The wave is said to be linearly polarized, and either a or b specifies the direction of
polarization. An example of a linearly polarized wave is the wave shown in Fig. 8.1.
When a⊥b and |a| = |b|, the vibration ellipse is a circle and the wave is said to be
circularly polarized. In general, a monochromatic wave described by Eq. (8.10) is
elliptically polarized. For circularly or elliptically polarized light, if a × b is in the
same direction as k, the vibration ellipse will rotate counterclockwise (left handed)
when viewed toward the light source, and if a × b is opposite to the direction of
propagation, the vibration ellipse will rotate clockwise (right handed). Similarly,
one can consider the polarization of the electric field at a fixed time and observe the
vibration ellipse along the direction of propagation as an exercise (see Problem 8.2).

Because of the random nature of thermal radiation, the Fourier component does
not varywith time exactly following e−iωt butwith somefluctuations in the amplitude.
The polarization may become completely random, which is said to be unpolarized,
randomly polarized, or completely uncorrelated. In any case, the electric field can
be decomposed into the two orthogonal directions on the vibration ellipse. This is
particularly useful for calculating energy transfer. The polarization status can be fully
described by the four Stokes parameters and the response of an optical element can be
modeled using the Mueller matrix formulation [6, 7]. For coherent monochromatic
light, however, the Jones vector and Jones matrix formulation can provide additional
phase information since it is based on the transformation of the electric field rather
than the amplitude [12].

8.1.4 Energy Flux and Density

The energy conservation for an electromagnetic field can be obtained fromMaxwell’s
equations, according to English physicist John Poynting (1852–1914). To derive
Poynting’s theorem, one can dot multiply Eqs. (8.1) and (8.2) by –H and E, respec-
tively, and then add up each side. Using the vector identity in Eq. (B.63), we get
∇ · (E × H) = (∇ × E) · H − (∇ × H) · E. After some simplifications, we obtain

−∇ · (E × H) = ∂

∂t

(
1

2
εmE · E+1

2
μmH · H

)
+ E · J (8.17)

The left-hand term represents the energy flow into a differential control volume,
the first term on the right is the rate of change of the stored energy (associated with
the electric and magnetic fields), and the last term is the dissipated electromagnetic
work or Joule heating. The Poynting vector is defined as

S = E × H (8.18a)

The Poynting vector is essentially the energy flux, which gives both the direction and
the rate of energy flow per unit projected surface area. Equations (8.17) and (8.18a)
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can be easily extended to the complex field notation. Although it is easy to write the
Poynting vector (which is always real) as S = Re(E) ×Re(H), it is not very helpful
because one would have to evaluate the real parts of E and H individually. Besides,
the frequency of oscillation is usually too high to be measured. For harmonic fields,
the time-averaged Poynting vector can be expressed as

〈S〉 = 1

2
Re(E × H∗) (8.18b)

where * signifies the complex conjugate. Similarly, the time-averaged energy density
for time-harmonic fields becomes [5]

〈u〉 = 1

4
εmE · E∗+1

4
μmH · H∗ (8.19)

For an absorbing or dissipative medium, different approaches exist regarding the
definition and determination of the electromagnetic energy density especially when
magnetic materials are involved [13, 14].

Example 8.1 Prove that Eq. (8.18b) is the time-averaged Poynting vector for time-
harmonic fields.

Solution LetE = E(r)e−iωt andH = H(r)e−iωt , whereE(r) and H(r) are complex
vectors. Integrating the Poynting vector over a period T, we have

〈S〉 = 1

T

∫

T

Re(E) × Re(H)dt

= 1

4T

∫

T

[
E(r)e−iωt + E∗(r)eiωt

] × [
H(r)e−iωt + H∗(r)eiωt

]
dt

= 1

4

(
E × H∗ + E∗ × H

) = 1

2
Re

(
E × H∗)

8.1.5 Dielectric Function

The conductivity is large at low frequencies formetals, due to free electrons. Even for
good conductors, however, the electrons are not completely free but will be scattered
by defects and phonons. At high frequencies, the current density J and the electric
fieldE are not in phase anymore, suggesting that the conductivity should be a complex
number. For insulators such as crystalline or amorphous dielectrics, electromagnetic
waves can interact with bound electrons or lattice vibrations to transfer energy to
the medium. At optical frequencies, the distinction between a conductor and an
insulator becomes ambiguous unless the optical response over a wide frequency
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region is considered. It is well known that a good conductor is highly reflective
in a broad spectral region from the near infrared all the way to radio frequencies.
Nevertheless, a dielectric material can also be highly reflective in certain frequency
bands, especially in the mid-infrared region. At certain frequencies or in a narrow
frequency band, the dielectric function ε′ + iε′′ may appear to be very similar for a
metal and a dielectric material.

Let us consider a nonmagnetic material whose conductivity is σ . The wave
equation for σ �= 0 and μm = μ0 has the following form:

∇2E = μ0σ
∂E
∂t

+ μ0εm
∂2E
∂t2

(8.20)

Suppose Eq. (8.9) is a solution of this equation. We can substitute ∂E/∂t = −iωE,
∂2E/∂t2 = −ω2E, and ∇2E = −k2E into Eq. (8.20) to obtain

k2 = iωμ0σ + ω2μ0εm (8.21)

Therefore, the wavevector becomes complex: k = k′ + ik′′, where k′ = k ′
x x̂+ k ′

y ŷ+
k ′

z ẑ and k
′′ = k ′′

x x̂+ k ′′
y ŷ+ k ′′

z ẑ are real vectors. Note that Eq. (8.21) tells us the value
of k2 = k · k = k2

x + k2
y + k2

z , where each wavevector component may be complex,
but does not specify the individual components. The complex dielectric function is
defined as

ε = ε′ + iε′′ = εm

ε0
+ i

σ

ωε0
(8.22)

For a nonmagnetic material, the complex refractive index ñ = n + iκ is related
to the complex dielectric function by ε = (n + iκ)2. The imaginary part κ of the
complex refractive index is called the extinction coefficient. By definition, we have

ε′ = n2 − κ2 and ε′′ = 2nκ (8.23)

The refractive index n and the extinction coefficient κ are also called optical con-
stants, although none of them are constant over a large wavelength region for real
materials [15]. The dielectric function is also called relative permittivity, with respect
to the permittivity of vacuum ε0. One can consider the σ/ω term in Eq. (8.22) as the
imaginary part of the permittivity. Some texts used ε = ε′ − iε′′ for the dielectric
function and ñ = n − iκ for the complex refractive index. In doing so, Eq. (8.9) must
be revised to E = E0ei(ωt−k·r). In either convention, ε′′ and σ must be nonnegative
for a passive medium. Equation (8.21) can be rewritten as

k = ñω/c0 (8.24)

For simplicity, we will remove the tilde and simply use n for the complex refractive
index, where it can be clearly understood from the context.



8.1 Electromagnetic Waves 419

By substituting ik for∇ and−iω for ∂/∂t ,we can rewriteMaxwell’s curl equations
as

k × E = ωμ0H (8.25)

and

k × H = −ωε0εE (8.26)

Similar to the definition of the complex dielectric function, one may choose to
define a complex conductivity that satisfies Ohm’s law at high frequencies, J = σ̃E,
where

σ̃ = σ ′ + iσ ′′ = σ − iωεm (8.27)

Note that we have assumed that σ is the real part of σ̃ . Therefore,

σ ′′ = −ωε0ε
′ and ε′′ = σ ′/ωε0 (8.28)

Equation (8.26) can be recast in terms of the complex conductivity as

k × H = −iσ̃E (8.29)

In the subsequent discussion, we will omit the tilde above σ , when the context
is sufficiently clear. The complex conductivity and the complex dielectric function
are related to each other. For a linear, isotropic, and homogeneous nonmagnetic
material, only two frequency-dependent functions are needed to fully characterize
the electromagnetic response. The function pairs often found in the literature are
(n, κ),

(
σ ′, ε′), (ε′, ε′′), and (σ ′, σ ′′). The principle of causality, which states that

the effect cannot precede the cause, or no output before an input, imposes additional
restrictions on the frequency dependence of the optical properties so that the real
and imaginary parts are not completely independent, but related, to each other. In
general, the relative permeability, which is complex and frequency dependent, can
be expressed as

μ = μ′ + iμ′′ = μm/μ0 (8.30)

The complex refractive index for magnetic materials should be defined as follows:

n = √
εμ (8.31)

The amplitude of the complex wavevector is k = nω/c0, same as Eq. (8.24). One
can verify that Eq. (8.9) is a solution of the wave equation. The relative permittivity
ε and permeability μ will be used to formulate the general equations, later in this
chapter. In most sections of this chapter, we deal with nonmagnetic materials, such
as metals, dielectrics, and semiconductors. However, we will devote the discussion
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of the optical properties of magnetic materials to Sect. 8.4.6, because of the emerging
interest in metamaterials, which are synthesized materials with magnetic responses
at microwave and higher frequencies (see Problem 8.6, for example).

8.1.6 Propagating and Evanescent Waves

In an absorbing nonmagnetic medium, the electric and magnetic fields will attenuate
exponentially. As an example, consider a wave that propagates in the positive x-
direction, with its electric field polarized in the y-direction. Then,

E = ŷE0e
−i(ωt−k ′x)e−k ′′x (8.32)

where k ′ = ωn/c0 and k ′′ = ωκ/c0 are the real and imaginary parts of thewavevector,
respectively, that is, k = (k ′ + ik ′′)x̂. Equation (8.32) suggests that the amplitude
of the electric field will decay exponentially according to e−(2πκ/λ)x . The magnetic
field can be obtained from Eq. (8.25) as

H = ẑ
n + iκ

μ0c0
E0e

−i(ωt−k ′x)e−k ′′x (8.33)

By substituting Eqs. (8.32) and (8.33) into Eq. (8.18a), we obtain the time-
averaged energy flux in the x-direction as

〈S〉 = n

2μ0c0
E2
0e

−2k ′′x = n

2μ0c0
E2
0e

−aλx (8.34)

where aλ = 4πκ/λ is called the absorption coefficient. The inverse of a is called the
radiation penetration depth (or photon mean free path) given by

δλ = 1

aλ

= λ

4πκ
(8.35)

It is the distance through which the radiation power is attenuated by a factor of e−1

(≈37%). (See Problem 8.6 for some typical values of the penetration depth in various
materials at different wavelengths and temperatures.)

When k is complex, the plane normal to k′ is the constant-phase plane and the
plane normal to k′′ is the constant-amplitude plane because

E = E0e
−i(ωt−k′ ·r)e−k′′ ·r (8.36)

Whenk′×k′′ = 0, thewave is said to be homogeneous; otherwise, the constant-phase
planes will not be parallel to the constant-amplitude planes, and the wave is said to
be inhomogeneous. A typical homogeneous wave is given in Eq. (8.32). Now let us
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Fig. 8.3 Schematic of an
evanescent wave near the z =
0 surface
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use an example to illustrate an inhomogeneous wave. Consider a wave, defined in
the z ≥ 0 half plane filled with vacuum, with a wavevector k = 2ω/c0x̂+ i

√
3ω/c0ẑ.

The electric field is linearly polarized in the y-direction; thus, E = ŷE0e−i(ωt−k·r).
It can be shown that k · k = k2 = ω2/c20; hence, k is indeed a valid wavevector
in vacuum. The electric field can be written as

E = ŷE0e
−i(ωt−kx x)e−ηz (8.37)

Here, kx = 2k = 4π/λ, and η = Im(kz) = 2
√
3π/λ. Clearly, thewave has a constant

phase for any constant-x plane and a constant amplitude for any constant-z plane.
Furthermore, the amplitude decays exponentially toward the positive z-direction and
becomes negligible, when z > λ, as shown schematically in Fig. 8.3. Such a wave is
called an evanescent wave, which exists in waveguides and is important for near-field
optics and nanoscale radiation heat transfer. It can be shown that the time-averaged
Poynting vector is parallel to the x-direction so that no energy is transported toward
the z-direction (see Problem 8.7).

8.2 Blackbody Radiation: The Photon Gas

This section deals with Planck’s law of blackbody radiation, which is the foundation
of far-field radiation heat transfer analysis. After the discussion of radiation ther-
mometry and radiance temperature, we will study radiation (or photon) entropy and
pressure. Photon entropy and exergy may be important for analyzing and design-
ing advanced energy harvesting systems from solar radiation to near-field thermal
radiative devices. The limitation of Planck’s law is also addressed.

8.2.1 Planck’s Law

Consider an enclosure of volume V, whose walls are at a uniform temperature T, as
shown in Fig. 8.4a. The enclosure may contain amedium (such as amolecular gas) or
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Fig. 8.4 An isothermal enclosure (blackbody cavity): a without an opening and b with a small
opening on the wall that has little effect on the equilibrium distribution

may be evacuated (vacuum). Inside the enclosure, there exist electromagnetic fields,
which may be viewed either as many transverse waves at different frequencies or as a
large number of quanta with different energies. The particle theory treats radiation as
a collection of photons. The energy and the momentum of each photon are related to
the frequency and the speed of light, by ε = hν and p = hν/c, respectively. We are
interested in finding the equilibrium distribution of photons with respect to photon
energy or frequency or momentum. Photons obey Bose–Einstein statistics, without
requiring the total number be conserved. The number of photons dN in a frequency
interval from ν to ν + dν per unit volume is equal to the mean occupation number
multiplied by the number of quantum states (degeneracy):

dN = fBE(ν)dg = dg

ehν/kBT − 1
(8.38)

The quantum states in the phase space, consisting of a volume V and a spherical shell
in the momentum space (from p to p + dp), are given by dg = 2V (4πp2dp)/h3,
where the factor 2 accounts for the two polarization states of electromagnetic waves.
Thus, we can write the density of states (DOS), which is the number of quantum
states per unit volume per unit frequency interval, as

D(ν) = 1

V

dg

dν
= 8πν2

c3
(8.39)

Notice that c is the speed of light in the medium and it is assumed that the refractive
index of the medium is real and independent of the frequency. Because the Bose–
Einstein distribution function gives the mean occupation number of each quantum
state, the number of photons per unit volume per unit frequency interval is

f (ν) = 1

V

dN

dν
= fBE(ν)D(ν) = 8πν2

c3(ehν/kBT − 1)
(8.40)
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Integrating the above equation over all frequencies yields the total number of pho-
tons at a given temperature per unit volume. Clearly, the number of photons is not
conserved in a blackbody cavity with a fixed volume V.

Since the energy of a photon is hν, the spectral energy density (energy per unit
volume per unit frequency interval) at a fixed temperature T can be written as

uν(ν) = hν f (ν) = 8πhν3

c3(ehν/kBT − 1)
(8.41)

For an area element inside the enclosure, the radiant energy flux is related to the
energy density and the speed of light by

q ′′
rad,ν = uνc

4
(8.42)

If a blackbody is placed inside the enclosure, it will absorb all incoming radiant
energy that reaches its surface; at thermal equilibrium, it must emit the same amount
of energy.After substitutingEq. (8.41) intoEq. (8.42),weobtain the spectral emissive
power of a blackbody as a function of frequency and temperature as

eb,ν(ν, T ) = 2πhν3

c2(ehν/kBT − 1)
(8.43)

Note that the spectral emissive power is the power emitted per unit area per frequency
or wavelength interval. To express the spectral emissive power in terms of the wave-
length (in vacuum), we can substitute c = c0/n, ν = c0/λ, dν = −c0dλ/λ2, and
eb,νdν = −eb,λdλ into Eq. (8.43). Therefore,

eb,λ(λ, T ) = 2πhc20n2

λ5(ehc/kBλT − 1)
= C1n2

λ5(eC2/λT − 1)
(8.44)

where C1 = 3.742 × 108 W m−2 μm4 and C2 = 1.439 × 104 μm K [10] are
called the first and second radiation constants. Equations (8.43) and (8.44) are called
Planck’s law or Planck’s distribution (of blackbody radiation) in terms of the fre-
quency and wavelength, respectively. It should be noted that the blackbody intensity
is Ib,λ(λ, T ) = eb,λ(λ, T )/π , as in Eq. (2.48), and isotropic inside the whole cavity
regardless of the radiative properties of the wall. Furthermore, when there is a small
opening, the emitted radiation is diffuse and obeys the blackbody distribution, as
shown in Fig. 8.4b. The requirement is that the opening should be sufficiently small
compared with the size of the enclosure, but large enough compared to the wave-
lengths of interest. The concept of blackbody cavity was made clear by Wien in his
1911 Nobel lecture, as seen from the excerpt below:

… there must exist, in a cavity surrounded by bodies of equal temperature, a radiation energy
that is independent of the nature of the bodies. If in the walls surrounding this cavity a small
aperture is made through which radiation issues, we obtain a radiation which is independent
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of the nature of the emitting body, and is wholly determined by the temperature. The same
radiation would also be emitted by a body which does not reflect any rays and which is
therefore designated as completely black, and this radiation is called the radiation of a black
body or blackbody radiation.

It should be noted that if the refractive index is a weak function of wavelength and
absorptionby themedium is negligible, c3 inEqs. (8.40) and (8.41) should be replaced
by c2vg where vg is the group velocity defined in Eq. (8.13). The group velocity vg
should also be used in Eq. (8.42) to replace c. Nevertheless, the expressions of the
emissive power given in Eqs. (8.43) and (8.44) remain the same. In the following,
n = 1 or vacuum is assumed for Planck’s distribution unless otherwise indicated.

Equation (8.43) or (8.44) can be integrated over the whole spectrum to obtain
the Stefan–Boltzmann law: eb = σSBT 4. In Fig. 8.5, eb,λ/σSBT 5 is plotted as
a function of λT so that the area under Planck’s distribution (solid curve) is∫ ∞
0

eb,λ(λ,T )

σSBT 5 d(λT ) = 1
σSBT 4

∫ ∞
0 eb,λ(λ, T )dλ = 1. The Planck’s distribution has a

peak and approaches zero at extremely short and long wavelengths. If C2/λT 
 1,
the right-hand side of Eq. (8.44) can be approximated by C1λ

−5e−C2/λT . This is
called Wien’s formula, which gives good approximation, even beyond the max-
imum emissive power, as can be seen from Fig. 8.5. At very long wavelengths,
Wien’s formula underpredicts the emissive power and asymptotically approaches
to C1λ

−5, suggesting that the emissive power is independent of temperature. Note
that the right-hand side of Eq. (8.44) approaches C1T/(C2λ

4) if C2/λT � 1, since
ex −1 ≈ x for x � 1. This is called the Rayleigh–Jeans formula, which is applicable
at very long wavelengths, as shown in Fig. 8.5. The significance of the Rayleigh–
Jeans formula is that it correctly predicts the temperature dependence of the black-
body spectrum, at very long wavelengths, where Wien’s formula fails. The failure
of the Rayleigh–Jeans formula at short wavelengths is called the ultraviolet catas-
trophe. The significance of Planck’s formula is more than a unified mathematical
formulation. It was derived based on the hypothesis of energy quanta that do not
exist in classical Newtonian mechanics or Maxwell’s electrodynamics. It should be

Fig. 8.5 Planck’s law for
blackbody emissive power
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noted that the preceding derivation is based on statistical thermodynamics, presented
in Chap. 3, rather than on Planck’s original semi-classical oscillator model [4].

Example 8.2 Find the wavelength λmp at which Planck’s distribution reaches a
maximum. What is the ratio of the energy emitted at λ < λmp to that at λ > λmp?

Solution By setting the derivative of Eq. (8.44) equal to zero, i.e., deb,λ/dλ = 0, we
have

hc

kBλT
+ 5 exp

(
− hc

kBλT

)
− 5 = 0

This equation can be solved by iteration or numerically to yield

λmp [μm] = 2898μmK

T [K]
(8.45)

This is Wein’s displacement law. The location of λmp is also marked on Fig. 8.5.
To find out the ratio of the energy emitted at λ < λmp to that at λ > λmp, we can

numerically evaluate
∫ λmp

0 eb,λ(λ, T )dλ/
∫ ∞
λmp

eb,λ(λ, T )dλ. The numerical result is
approximately 1:3 and independent of temperature.

Example 8.3 Assuming the sun to be a blackbody at 5800 K, calculate the emissive
power at the following wavelength intervals: λ < 0.3 μm, 0.3 μm < λ < 0.4 μm,
0.4 μm < λ < 0.7 μm, 0.7 μm < λ < 3 μm, and λ > 3 μm. Neglect the absorption
by the atmosphere. What is the radiant power arriving at the earth’s surface from the
sun?

Solution The total emissive power is σSBT 4
sun = 5.67×10−8×58004 ≈ 64 MW/m2.

We can obtain the emissive power in each spectral region by integrating Eq. (8.44),
as listed in the following table:

λ (μm) <0.3 0.3–0.4 0.4–0.7 0.7–3 >3 Total

λ2T (μmK) 1740 2320 4060 17400 ∞ _

F0→λ2 0.03 0.12 0.49 0.98 1 _

Fλ1→λ2 0.03 0.09 0.37 0.49 0.02 1

�Eb
(
MW/m2

)
1.9 5.8 23.7 31.4 1.3 64.1

Note that Fλ1→λ2 represents the fraction of radiation falling betweenλ1 andλ2. The
total power emitted by the sun equals the emissive power multiplied by the surface
area of the sun. The fraction of the power that reaches the earth equals the solid angle
of the earth divided by 4π . Note that the radius of the sun rsun = 6.955× 108 m, the
radius of the earth rearth = 6.378 × 106 m, and the earth–sun distance Rearth−sun =
1.496 × 1011 m. Therefore, the total power that will reach the earth’s surface, if the
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Table 8.1 Spectral regions expressed in different units

Wavelength
λ (μm)

Wavenumber
ν̄ (cm–1)

Frequency
ν (THz)

Angular frequency
ω (1014 rad/s)

Photon energy
E (eV)

UV 0.01–0.38 (10 – 0.26) × 105 30,000–790 1900–50 120–3.3

VIS 0.38–0.76 (2.6 – 1.3) × 104 790–400 50–25 3.3–1.6

NIR 0.76–2.5 (1.3 – 0.4) × 104 400–120 25–7.5 1.6–0.5

MIR 2.5–25 4000–400 120–12 7.5–0.75 0.5–0.05

FIR 25–1000 400–10 12–0.3 0.75–0.019 0.05–0.0012

MW 103–105 10–0.1 0.3–0.003 (19–0.19) × 10–3 (12–0.12) × 10–4

absorption by the atmosphere is neglected, is

Q̇ = 4πr2sun · σSBT 4
sun · πr2earth

4π R2
earth−sun

≈ 1.8 × 1017 W

The average irradiation on the earth is: G = Q̇/πr2earth ≈ 1377 W/m2. This
value is very close to the total solar irradiance (TSI), measured outside the earth’s
atmosphere.

Because of the broad spectral region of electromagnetic waves, alternative units
are often used, such as wavelength λ (in vacuum), wavenumber ν̄ = 1/λ, frequency
ν = c0/λ, angular frequency ω = 2πν, and photon energy E = hν. Generally
speaking, optical radiation covers the spectral region including ultraviolet (UV),
visible (VIS), near infrared (NIR), mid infrared (MIR), and far infrared (FIR).
Table 8.1 outlines the subdivisions of the spectral region in different units from
ultraviolet (UV) to microwave (MW). Note that ν̄ [cm−1] = 10, 000/λ [μm] and
E [eV] = 1.24/λ [μm]. Thermal radiation covers part of the UV from λ = 0.1 μm
through some of the MW region.

8.2.2 Radiation Thermometry

The developments of the absolute temperature scale and radiation thermometry are
among the most important applications of blackbody radiation [16]. The Stefan–
Boltzmann law eb = σSBT 4 defines an absolute thermodynamic temperature, which
is consistent with the one defined by the ideal gas law and the Carnot cycle. While
radiation thermometry can serve as a primary standard, most practical radiation
thermometers are not absolute instruments because of other considerations such as
fast response, easy operation, and lowcost.High-temperature furnaces are commonly
used as calibration standards. The cavity is a hollow cylinder, made of graphite for
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example, with a conical ending and a small aperture. The most accurate calibration
source is the fixed-point heat pipe blackbody, for which a puremetal ismelted outside
the graphite cylinder to maintain a constant temperature in a two-phase state. The
freezing temperatures are then used to define the temperature scales (1234.93 K for
Ag, 1337.33 for Au, and 1357.77 K for Cu).

To measure the absolute temperature of a thermally radiative body, two
blackbody cavities at different temperatures would be needed: one serves as
the emitter (blackbody source) and the other as the receiver (radiometer).
Quinn and Martin [17] used a blackbody source and a cryogenic radiometer
to directly determine the thermodynamic temperatures and measure the Stefan–
Boltzmann constant. The experimentally obtained Stefan–Boltzmann constant was
(5.66967 ± 0.00076) × 10−8 Wm−2K−4. The difference is 0.13% of the theoretical
value (5.67040 ± 0.00004) × 10−8 Wm−2K−4, based on Planck’s constant, Boltz-
mann’s constant, and the speed of light. Since the early 1990s, NIST has developed
a high-accuracy cryogenic radiometer (HACR) facility to serve as the primary stan-
dard for optical radiation measurements. A schematic of the original HACR receiver
is shown in Fig. 8.6. The receiver is mounted at the bottom of a liquid helium cryo-
stat in an evacuated chamber, and the optical access is through a Brewster window
below the cavity. TheHACR facility has gone through somemajor upgrades in recent
years. The receiver cavity is made of copper with a high thermal conductivity and
low specific heat at cryogenic temperatures. The inner wall of the cavity is coated
with a specular black paint to absorb the incident radiation with an effective absorp-
tance greater than 99.998%. The electrical-substitution technique links the radiant
power to the electric power to achieve an overall uncertainty within 0.02% for optical
power measurements. Detailed descriptions can be found from Pearson and Zhang
[18] and references therein. The cosmic radiation background (in the far-infrared
and microwave region), measured with cryogenic bolometers, can be fitted to the
blackbody distribution at 2.7 K; this is the temperature of the universe at the present
time. The discovery of cosmic radiation background in 1964 and the subsequent
measurements and theoretical studies have been recognized by the Nobel Prizes in
Physics to Arno Penzias and Robert Wilson in 1978 and to John Mather and George
Smoot in 2006.

Most radiation thermometers are based on spectral measurements rather than on
themeasurement of the total irradiance from the target.When a radiation thermometer
is used to measure the temperature of a real surface, the unknown emittance of
the surface and the influence of the surrounding radiation are the major issues that
affect the measurement. Various methods have been developed to deal with these
problems, including the creation of a blackbody cavity on the surface, the two-color
method, and the use of a controlled reference source. The development of optical
fibers has allowed radiometric temperature measurements for surface locations that
are otherwise inaccessible by imaging radiometers. The detailed theory and practice
of radiation thermometry can be found from the two book volumes compiled by
Zhang et al. [19]. A brief discussion of the basic operational principles of spectral
radiation thermometry is given in the following.
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Fig. 8.6 Schematic of the
receiver cavity of an absolute
cryogenic radiometer, where
GRT stands for germanium
resistance thermometer, from
Pearson and Zhang [18]

The measurement equation of a spectral radiation thermometer can be approxi-
mated as follows:

Vd = CI Iex,λ(λ) (8.46)

where V d is the detector output signal and CI is an instrument constant that is inde-
pendent of the target material and temperature. The term Iex,λ(λ) is called the exitent
spectral radiance, which includes the radiation emitted by the target and the sur-
roundings, as well as that reflected by the target. The radiance temperature Tλ (also
called the brightness temperature) is defined according to

Ib,λ(λ, Tλ) = Iex,λ(λ) (8.47)



8.2 Blackbody Radiation: The Photon Gas 429

where Ib,λ(λ, Tλ) is the blackbody intensity at the wavelength λ and temperature
Tλ. If the surrounding emission and absorption can be neglected, the exitent spectral
radiance is due only to the emission; therefore,

Iex,λ(λ) = Ie,λ(λ, T ) = ε′
λ Ib,λ(λ, T ) (8.48)

where ε′
λ is the directional-spectral emittance, and Ie,λ(λ, T ) is the intensity emitted

by the target. By combining Eqs. (8.47) and (8.48) and applyingWien’s formula, the
surface temperature is related to the radiance temperature by

1

T
= 1

Tλ

+ λ

C2
ln ε′

λ (8.49)

The uncertainty in the measured temperature due to an uncertainty in the emittance
is

δT

T
= −λT

C2

δε′
λ

ε′
λ

(8.50)

The impact of emittance on the temperature measurement decreases as λ decreases.
Equation (8.50) suggests that it may be advantageous to choose a wavelength that is
somewhat shorter than the wavelength at which Ib,λ(λ, T ) is a maximum as given
byWien’s displacement law. If the surrounding radiation is not negligible, Iex,λ(λ) is
the sum of the emitted and reflected spectral radiances. In practice, when choosing
the operating wavelength, one should also consider the material’s properties and the
effect of surrounding radiation, as well as the detector availability and sensitivity.
Hence, the choice of a radiation thermometer requires a detailed analysis of different
effects in the actual measurements.

Example 8.4 Rapid thermal processing is a semiconductor single-wafer manufac-
turing technique. A lightpipe radiation thermometer, operated at λ = 0.95 μm, is
used to measure the temperature of the wafer. The emittance or emissivity of a plain
silicon wafer is approximately 0.7 at this wavelength. Neglect the reflected radiation
from the wafer. If the wafer is at a temperature of 1200 K, what is the radiance
temperature? If the temperature needs to be determined within an uncertainty of 1 K,
how much tolerance in the emittance error is acceptable?

Solution From Eq. (8.49), Tλ ≈ 1167K, which differs from the actual temperature
by approximately 33K.One can also solve Eqs. (8.47) and (8.48), using Planck’s law,
and the result is essentially the same. Based on Eq. (8.50), to obtain a temperature
within 1 K, the emittance must be determined within an uncertainty of δε′

λ = 0.0074.
Zhou et al. [20] developed amodel to predict the effective emittance of silicon wafers
in rapid thermal processing furnaces and showed that, by using a reflective cavity,
the temperature measurement uncertainty can be significantly reduced.
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8.2.3 Radiation Pressure and Photon Entropy

Like other particles, photon gas also has the property of entropy and can be related to
other properties in equilibrium states. Express the energy density in an enclosure of
volumeV, at thermodynamic equilibrium,with a temperatureT as u = U

V = 4
c σSBT 4.

It can be seen that the specific heat at constant volume is cv = (
∂u
∂T

)
V

= 16
c σSBT 3.

The radiation entropy or photon entropy can therefore be obtained as

S =
T∫

0

V cv

dT

T
= 16

3c
V σSBT 3 (8.51a)

or

s = 16

3c
σSBT 3 (8.51b)

Note that T = (
∂U
∂S

)
V
is satisfied. The Helmholtz free energy A = U − T S =

− 4
3c V σSBT 4. Thus, the radiation pressure is

P = −
(

∂ A

∂V

)

T

= 4

3c
σSBT 4 (8.52)

The force from radiation pressure, albeit small, has some important applications in
trapping and manipulating atomic to molecular particles. This technique is called
optical traps or optical tweezers; see Lang and Block [21] for a bibliographical
review. Arthur Ashkin shared the Nobel Prize in Physics in 2018 “for the optical
tweezers and their application to biological systems.” Another way to view radiation
pressure is that photons or electromagnetic waves carry both energy and momentum.
The interaction of electromagnetic waves or photons with matter therefore involves
a change of momentum, resulting in a pressure on the object. Radiation pressure
was first predicted by J. C. Maxwell in 1873 and experimentally demonstrated by
Russian physicist P. Lebedev in 1900 andAmerican physicists E. F. Nichols and G. F.
Hull in 1901. Solar radiation pressure plays a role in the formation of a comet’s dust
tail. Radiation pressure is also important in cosmology concerning the formation and
evaluation of the stars and galaxies.

If each photon mode (frequency) is individually considered, the spectral entropy
density for unpolarized radiation can be expressed as follows [4]:

sν(ν, T ) = 8πkBν2

c3

[
x

ex − 1
+ ln

(
ex

ex − 1

)]
(8.53)

where x = hν
kBT . Note that

1
T =

(
∂sv

∂uv

)
ν

= kB
hν

ln
(
1 + 8πhν3

c3uv

)
, which is consistent with

Eq. (8.41). Similar to the energy flux (emissive power) and intensity, the radiation
entropy flux canbeobtainedbymultiplying a factor c/4 toEqs. (8.51b) and (8.53), and
the radiation entropy intensity can be obtained by dividing the flux by π , because of
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the isotropic nature of blackbody radiation. Clearly, electromagnetic radiation carries
both energy and entropy.

Example 8.5 Consider the radiation heat transfer between two parallel plates at
T 1 and T 2, respectively. Assume each plate has an area of A and both plates are
blackbodies. The separation distance is much smaller than

√
A but much greater

than the wavelength of thermal radiation.

(a) How much entropy is generated at each plate? Evaluate the ratio of entropy
generation assuming that T1 = 2T2.

(b) If a thermophotovoltaic receiver is mounted on the lower temperature side to
convert thermal radiative energy to electricity (work), what is its maximum
achievable efficiency?

Solution

(a) The net energy flow from plate 1 to 2 is Q̇12 = AσSB(T 4
1 − T 4

2 ). The
entropy of plate 1 will decrease at the rate of dS1/dt = −Q̇12/T1, and the
entropy of plate 2 will increase at the rate of dS2/dt = Q̇12/T2. On the
other hand, the net entropy flow from plate 1 to 2 can be calculated as Ṡ12 =
4
3 AσSB

(
T 3
1 − T 3

2

)
. Therefore, Ṡgen,1 = − Q̇12

T1
+Ṡ12 = AσSB

(
1
3T 3

1 − 4
3T 3

2 + T 4
2

T1

)
,

Ṡgen,2 = AσSB

(
1
3T 3

2 − 4
3T 3

1 + T 4
1

T2

)
. The combined total entropy generation is

equal to Q̇12

(
1
T2

− 1
T1

)
, as expected. It can be shown that the entropy generation

at each plate is always greater than zero if T1 �= T2, or equal to zero if T1 = T2.
When T1 = 2T2, the entropy generation by plate 1 is about one-quarter and that
by plate 2 is about three-quarters of the total entropy generated.

(b) The available energy or exergy of thermal radiation is defined as the maximum
work that can be produced by a system with respect to a large reservoir. In the
present example, we may assume that the reservoir is at the same temperature
as T2. Suppose an amount of heat is taken from the high-temperature plate. We
would like to find out the maximum work that can possibly be produced. Let us
consider a reversible heat engine at T2. The radiative energy leaving surface 1
can still be described by Q̇1 = AσSB(T 4

1 − T 4
2 ), and the entropy leaving surface

1 is Ṡ1 = 4
3 AσSB

(
T 3
1 − T 3

2

)
. Therefore, the entropy generation in plate 1 cannot

be eliminated. In other words, it is impossible to achieve the Carnot efficiency of
ηCarnot = 1−T2/T1. Themaximumwork can be obtainedwhen the irreversibility
at the lower temperature plate is negligible and the heat engine is also reversible.
It can easily be shown that the maximum work Ẇmax = Q̇1 − T2 Ṡ1, and the
optimal efficiency is given by

ηopt = Ẇmax

Q̇1
= 1 − 4(1 + y + y2)

3(1 + y)(1 + y2)
(8.54a)

where y = T1/T2 ≥ 0. When y = 2, we obtain an optimal efficiency
ηopt = 37.8%, which is less than the Carnot efficiency of 50%, because of
the unrecoverable irreversibility at plate 1.
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Consider a black receiver on the earth’s surface that converts solar radiation to
electricity. Since the incoming radiation is from a narrow solid angle, the emitted
radiation can be assumed to be in equilibriumwith the surroundings at T0. Therefore,
the received radiant power and entropy flux is Q̇1 = φ AσSBT 4

s and Ṡ1 = 4
3φ AσSBT 3

s ,
where Ts is the temperature of the sun andφ is a fraction accounting for the view angle
and atmospheric transmittance (neglecting the scattering effect). Assuming a power
Ẇ is developed, the heat transferred to the surroundings is Q̇0 = Q̇1 − Ẇ and the
entropy transferred to the surroundings is Q̇0/T0. In a reversible energy conversion
device, the entropy generation must be zero and the maximum efficiency is obtained
as

ηopt = Ẇmax

Q̇1
= 1 − 4

3

T0

Ts
(8.54b)

Different formulas on the optimal efficiency exist for solar energy conversion
devices due to the differentmodel assumptions used. For example, we can set T1 = Ts

and T2 = T0 in Eq. (8.54a) and change the denominator Q̇1 to the absorbed solar
radiation Q̇1,s = AσSBT 4

1 . Then one would obtain Petela’s formula [22]:

ηopt = Ẇmax

Q̇1,s
= 1 − 4

3

T0

Ts
+ 1

3

(
T0

Ts

)4

(8.54c)

Since T0/Ts is about one-twentieth, the difference between Eqs. (8.54b) and
(8.54c) is practically negligible. A comprehensive discussion on energy conversion
efficiency can be found from the review of Landsberg and Tonge [23]. This topic
is of contemporary interest especially when dealing with near-field radiative energy
conversion devices [24].

The next question one may ask is whether temperature can be defined for laser
radiation. The answer is yes, and the temperature for high-intensity lasers can be very
high. An intuitive guess is to define the temperature, based on the intensity Iν of the
laser or the monochromatic radiation, by setting Iν = Ib,ν(ν, Tν). The definitions of
entropy and thermodynamic temperature for optical radiation are very important for
analyzing optical energy conversion systems, such as solar cells, thermophotovoltaic
generators, luminescence devices, and laser cooling apparatus [25, 26]. Assume that
the monochromatic radiation is from a thermodynamic equilibrium state, such as
a resonance cavity that allows only a single mode to exist. The spectral entropy
intensity of unpolarized radiation can be written as follows [4, 25]:

Lν = 2kBν2

c2

[(
1 + c2 Iν

2hν3

)
ln

(
1 + c2 Iν

2hν3

)
− c2 Iν

2hν3
ln

(
c2 Iν
2hν3

)]
(8.55)

Thermodynamically, the monochromatic radiation temperature can be defined as
1

Tν (ν)
=

(
∂Lν

∂ Iν

)
ν
and given as
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1

Tν(ν)
=

(
∂Lν

∂ Iν

)

ν

= kB
hν

ln

(
1 + 2hν3

c2 Iv

)
(8.56)

This is indeed Planck’s distribution of intensity at the same temperature. The
expressions can be modified for polarized radiation. When the energy intensity is
very high, Eq. (8.56) approaches Tν(ν) = c2 Iv

2kBν2 , which is in the Rayleigh–Jeans limit.
The radiation temperature will be proportional to the intensity of the monochromatic
radiation and can exceed 1010 K, with a 1–mWHe-Ne laser at 632.8 nm wavelength
[26]. Therefore, for lasers with a moderate intensity, Tν tends to be so high that the
entropy is nearly zero; hence, the laser power can be considered as “work.” If a
collimated beam is randomly scattered by a rough surface, the scattered radiation
will have a much lower intensity because of the increase in the solid angle. The
process is accompanied with an entropy increase and is thus irreversible. It is not
possible to increase the intensity of the scattered light, back to its original intensity,
without leaving any net effect on the environment. On the other hand, if a nearly
collimated light is split into two beams with a beamsplitter, the transmitted and
reflected beams can interfere with each other to reconstruct the original beam. This
process is reversible because the twobeams are correlated. The correlated beamshave
lower entropy than those with the same intensity at thermodynamic equilibrium. The
concept of temperature is applicable only if the maximum entropy state has been
reached [25]. While the definition of the monochromatic radiation temperature is
similar to that of the radiance temperature, the physical significance is somewhat
different. In the definition of radiance temperature, the concepts of entropy and
thermodynamic equilibrium do not enter into consideration.

Consider a gray-diffuse body, for which the emissive power is proportional to the
blackbody emissive power, at any frequency and angle of emission. The monochro-
matic temperature calculated from Eq. (8.56), however, is frequency dependent. This
is because the emitted radiation, as a whole, cannot be considered as a blackbody
at any temperature. Thermal radiation of this type has been called dilute blackbody
radiation [23]. This simple example shows that photons at any given frequency can
be considered as in a thermodynamic equilibrium but not necessarily in equilibrium
with photons at other frequencies. When radiation has two linear polarizations with
different intensities, the monochromatic temperatures will be different, even for the
two polarizations. In general, it is a function of frequency, direction, and polarization.
The requirement is that each subsystem be in a thermodynamic equilibrium, even
though it is not in equilibrium with other subsystems at the same spatial location.
Photons at different frequencies, with different polarization states, or propagating in
different directions, can coexist in their own equilibrium states without any interac-
tion with each other. The concept may be called partial equilibrium, as in the case
when the two parts of a cylinder were separated by a moveable adiabatic wall. The
mechanical equilibrium would be established to maintain the same pressure on each
side, but the temperatures may be different from each other because thermal equi-
librium is reached only inside each portion but not between them. Another example
is in ultrafast laser heating of metals, as discussed in Chap. 7, where the electron
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and phonon systems can be treated as being in separate equilibrium states but not in
equilibrium with each other.

The concept of entropy intensity has recently been applied by Caldas and Semiao
[27] to study the entropy generation in an absorbing, emitting, and scatteringmedium,
based on the equation of radiative transfer (ERT) introduced in Sect. 2.4.3. The key is
that the change in entropy in an elemental path length equals the change in intensity
divided by the radiance temperature. The entropy change at steady state can be
obtained from Eq. (2.53) in Chap. 2 as follows:

dLλ

dξ
= aλ Ib,λ

Tλ(Iλ)
− (aλ + σλ)Iλ

Tλ(Iλ)
+ σλ

4π

∫

4π

Iλ(�′)
Tλ(Iλ)

�(�′,�)d�′ (8.57)

Like Iλ, the entropy intensity Lλ is a function of wavelength, location, and direc-
tion. Note that Ib,λ = Ib,λ(λ, Tg), where T g is the local temperature. Usually, Tλ(Iλ)
depends not only on the wavelength but also on the direction for a given location.
The term Iλ/Tλ(Iλ), however, is not the same as Lλ. Integrating Eq. (8.57) over the
solid angle of 4π and over all wavelengths yields the entropy change in the volume
element due to the intensity field variation. Furthermore, the entropy change in the
control volume is equal to the total energy absorbed divided by Tg . The energy rate
received per unit volume can be expressed as

q̇ =
∞∫

0

∫

4π

aλ

(
Iλ − Ib,λ

)
d�dλ (8.58)

The above equation works even with scattering since the integration of in-
scattering and out-scattering cancels out. The rate of entropy change of the medium
due to the net absorption by the matter is simply q̇/Tg , which may be either positive
or negative. The sum of the entropy change due to the field and that due to the matter
is the total entropy change that is attributed to entropy generation by irreversibility.
Therefore, we can express the volumetric entropy generation rate in terms of the
absorption, emission, and scattering as follows [27]:

ṡgen = ṡabs + emi + ṡsca (8.59)

The entropy generation due to combined absorption and emission is

ṡabs - emi =
∞∫

0

∫

4π

aλ

(
Iλ − Ib,λ

)[ 1

Tg
− 1

Tλ(Iλ)

]
d�dλ (8.60a)

The entropy generation due to scattering is
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ṡsca =
∞∫

0

∫

4π

⎡
⎣

∫

4π

Iλ(�′)
4πTλ(Iλ)

�(�′,�)d�′ − Iλ(�)

⎤
⎦σλd�dλ (8.60b)

Note that Eq. (8.60a) should be treated as the combined absorption and emission
effect since entropy generation due to absorption and emission processes cannot be
separated. Furthermore, the entropy generation due to either absorption–emission
or scattering is always greater than or equal to zero. When a surface is involved in
radiative heat transfer, the entropy generation rate per unit area can be expressed as

s ′′
gen =

∞∫

0

2π∫

0

π/2∫

0

[
Iin,λ − Iout,λ

Tw
− (L in,λ − Lout,λ)

]
cos θ sin θdθdφdλ (8.61)

where Tw is the wall temperature, and subscripts “in” and “out” signify the energy
or entropy intensity to and from the surface, respectively. If the surface is not a
blackbody, the outgoing intensity includes both the emitted and reflected intensities.
An alternative approach is to integrate the intensity over the whole sphere with a solid
angle of 4π . In Eq. (8.61), the entropy intensity is related to the energy intensity by
Eq. (8.55), which is recast in terms of wavelength as follows:

Lλ(λ, Iλ) = 2kBc

λ4

[(
1 + λ5 Iλ

2hc2

)
ln

(
1 + λ5 Iλ

2hc2

)
− λ5 Iλ

2hc2
ln

(
λ5 Iλ
2hc2

)]
(8.62)

The use of Eq. (8.62) may be disputed when multiple reflections occur. The inten-
sity of the emitted radiation is less than that of the blackbody and is reduced by each
reflection. The question still remains as to whether the blackbody intensity should
be used to calculate the entropy or the actual intensity after each reflection or the
combined intensity at any given location. An example is a system of two large par-
allel plates, separated by vacuum. One of the plates is at a temperature T 1 and is
diffuse-gray with an emittance of 0.5. The other plate is insulated and is a perfect
reflector (i.e., no emission). It is clear that a thermal equilibrium will be established
in the cavity after a long time. Again, the separation distance is much larger than the
thermal radiation wavelengths. The radiation leaving surface 1 includes the emitted
rays, as well as the first-order and higher order reflected rays. An attempt to define
the entropy of the emitted ray and each reflected ray will result in a total entropy
intensity greater than the entropy intensity calculated based on the blackbody inten-
sity Ib,λ(λ, T1). Therefore, to apply the previous analysis in a consistent way and to
obtain meaningful results, we must make the following hypotheses:

• The intensity at any given location is additive regardless of where it originates
from, as long as it fallswithin the same solid angle andwavelength intervals.While
this sounds obvious, it is untrue when interference effects become important. The
resulting intensity is called the combined intensity.
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• The monochromatic radiation temperature Tλ, defined in Eq. (8.56), is a func-
tion of the combined intensity and is, in general, dependent on the direction
and wavelength. The effect of polarization is neglected to simplify the problem.
Equation (8.56) must not be applied to each of the reflected or scattered rays.
The physical significance is that all the photons, with the same wavevector and
frequency, can be considered as a subsystem that is at thermodynamic equilibrium
with the temperature Tλ[Iλ(λ, θ, φ)].

• The entropy intensity is defined based on the combined intensity, according to
Eq. (8.62). While entropy must be additive, the entropy of all individual rays
must be calculated based on the monochromatic temperature of the combined
intensity. Because the number of photons, intensity, and entropy are additive, the
fraction of the entropy of each ray is the same as the ratio of the intensity of that
ray to the combined intensity.

With the theories presented in this section, one should be able to perform a sec-
ond law thermodynamic analysis for a given system, involving radiative transfer
of energy. Zhang and Basu [28] investigated entropy flow and generation consid-
ering incoherent multiple reflections. Different approximations exist in analyzing
the entropy of radiation. For example, the method of dilute blackbody radiation
uses a dilution factor and defines an effective temperature for each wavelength [23].
When the process is very complicated, such an effective temperature cannot be eas-
ily defined and this definition cannot be applied to multiple reflections. Entropy
generation is usually accompanied by the generation of heat, such as heating by
friction, electrical resistor, chemical reaction, or the absorption of solar radiation.
On the other hand, it appears that entropy generation can occur in radiation without
the generation of heat, such as by scattering. The definition of inelastic scattering is
based on the conservation of energy (wavelength) and momentum, which does not
impose any constraints on the reversibility. Further research is much needed in order
to better understand the nature of entropy of radiation and determine the ultimate
efficiency of photovoltaic cells and other radiative processes, including laser cooling
and trapping.Another area of possible application of radiation entropy is in nanoscale
heat conduction using EPRT, as discussed in Chap. 7. The entropy concept may be
extended to the phonon system by defining radiation entropy and entropy intensity of
phonons. Bright and Zhang [29] extended the concept of radiation entropy in a par-
ticipating medium to phonon radiation, providing a method to evaluate local entropy
generation. The conventional formula for entropy generation in heat diffusion can
be derived under the local-equilibrium assumption. Furthermore, the entropy gener-
ation mechanism during phonon transport is elucidated as due to the “absorption” of
high-frequency phonons and “emission” of lower frequency phonons, arising from
the actual phonon scattering processes [29]. There is a need to further develop photon
entropy analysis for near-field thermal radiation considering both interferences and
photon tunneling [24].
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8.2.4 Limitations of Planck’s Law

The concept that a blackbody absorbs all radiant energy that is incident upon it is
purely from the geometric-optics point of view, in which light travels in a straight
line and cannot interact with an object that does not intercept the light ray. Another
example of the geometric-optics viewpoint is that the transmittance of an iris (open
aperture) should be 1, meaning that all radiation incident on the opening will go
through but no radiation outside the opening can go through.However, for an aperture
whose diameter is comparable to the wavelength of the incident radiation, diffraction
may become important. As a result, the transmittance could exceed 1 in some cases.
Due to the diffraction effect, a particle that is sufficiently small compared to the
wavelength will interact with the radiation field, according to the scattering and
absorption cross sections, which can be greater than the projected surface area. In
some cases, it is possible for the object to absorb more energy than the product of the
radiant flux and the projection area. The absorptance can be greater than 1 and thus
exceeds the limit set by a blackbody. When such an object is placed in an isothermal
enclosure, the emitted energy will be greater than that from a blackbody having the
same dimensions. This anomaly has been discussed in detail by Bohren and Huffman
[9].

The energy density near the surface within a distance less than the wavelength can
be much greater than that given by Eq. (8.41) and increases as the distance is further
reduced. When two objects are placed at a distance much smaller than the charac-
teristic wavelength of thermal radiation, i.e., in the near field, photon tunneling can
occur and cause significant enhancement of the energy transfer. In recent years, there
have been numerous studies of light transmission through small apertures, radiation
heat transfer at nanometer distances, and light emission from nanostructures [30–
33]. Recent studies have also demonstrated that radiation heat transfer can be greatly
enhanced for micro/nanostructures even when they are separated by distances longer
than the characteristic wavelength [34]. This is still an open field with many new
developments and applications. We will study these phenomena and the underlying
physics in the following two chapters.

8.3 Radiative Properties of Semi-infinite Media

The reflection and refraction (transmission) of a semi-infinite isotropic medium are
studied based on Maxwell’s equations using suitable boundary conditions at the
interface between the incident and transmitting media. Only plane waves with differ-
ent polarizations are considered. Total internal reflection and the associated Goos–
Hänchen phase shift are also introduced. For real materials or interfaces, the bidi-
rectional reflectance distribution function (BRDF) is often needed to fully describe
the radiative properties. The emittance can be calculated based on the reflectance by
introducing Kirchhoff’s law.
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8.3.1 Reflection and Refraction of a Plane Wave

Consider radiation incident fromonemedium to another at the interface or the bound-
ary. The boundary that separates the media is assumed to be a smooth plane and
extends to infinity. Each medium is homogeneous and isotropic such that there is no
scattering within the medium. Therefore, the electric response can be characterized
by the relative permittivity or dielectric function ε, and the magnetic response can be
characterized by the relative permeability μ. For nonmagnetic materials, the refrac-
tive index is related to the dielectric function by n = √

ε. Keep in mind that these
quantities are, in general, complex and frequency dependent. The real and imaginary
parts of the refractive index are often called the optical constants. In this section, we
present the general formulation for both magnetic and nonmagnetic materials. For
certain crystalline and amorphous solids, like quartz and glass, the refractive index is
real in a wide spectral region and is the only parameter needed to fully characterize
the optical response of the material. In such a case, the expression can be largely
simplified and the results can be easily comprehended. The reduced results will also
be presented because of their importance to numerous engineering problems.

The incident radiation is a monochromatic plane wave with an angular frequency
ω. As shown in Fig. 8.7, the wavevector of the incident wave is k+

1 = (k1x , 0, k1z),
and the surface normal defines the plane of incidence, which is the x-z-plane. The
wavevectors of the reflected and transmitted waves must lie in the same plane. The
angle of incidence θ1 is the angle between the incidentwavevector and the z-direction,
i.e., sin θ1 = k1x/k1 and cos θ1 = k1z/k1, where k2

1 = k2
1x + k2

1z = μ1ε1ω
2/c20. It

is common to study the reflection and the refraction for linearly polarized waves,
with either the electric or magnetic field being parallel to the y-axis, because other
polarizations can be decomposed into the two polarization components.

When the electric field is in the y-direction, as shown in Fig. 8.7a, the wave is
called a transverse-electric (TE) wave or is said to be perpendicularly (s) polarized.
The incident electric field can be expressed as follows by omitting the time-harmonic
term of e−iωt hereafter:

Fig. 8.7 Illustration of
reflection and transmission at
an interface: a TE wave or
s-polarization. b TM wave or
p-polarization
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Ei = ŷEie
ik1z z+ik1x x (8.63)

The boundary conditions state that the tangential components of both E and
H must be continuous at the interface. This implies that the x-component of the
wavevector must be the same for the incident, reflected, and transmitted waves, i.e.,
k1x = k2x = kx . Because the angle of reflection must be the same as the angle of
incidence (specular reflection), we have k−

1 = (kx , 0,−k1z). For the transmitted or
refracted wave, we have k2 = (kx , 0, k2z) and

sin θ2 = kx

k2
= n1 sin θ1

n2
(8.64)

which is called Snell’s law. It can be easily visualized by observing the bended image
of a chopstick in a bowl of water. Note that k2

2z = k2
2 − k2

x = μ2ε2ω
2/c20 − k2

x =
k2
2 cos

2 θ2. Generally speaking, the wavevector components and the refractive indices
may be complex. Complex angles can be defined so that Eq. (8.64) is always valid.
Near the interface, the nonzero components of the electric and magnetic fields are

Ey =
{

(Eieik1z z + Ere−ik1z z)eikx x , for z < 0
Eteik2z zeikx x , for z > 0

(8.65)

Hx =
{

− k1z

ωμ0μ1
(Eieik1z z − Ere−ik1z z)eikx x , for z < 0

− k2z

ωμ0μ2
Eteik2z zeikx x , for z > 0

(8.66)

and

Hz =
{

kx
ωμ0μ1

(Eieik1z z + Ere−ik1z z)eikx x , for z < 0
kx

ωμ0μ2
Eteik2z zeikx x , for z > 0

(8.67)

where Ei, Er, and Et are, respectively, the amplitudes of the incident, reflected,
and transmitted electric fields at the interface. It is further assumed that kx is real
so that the amplitude of the field is independent of x. The Fresnel reflection and
transmission coefficients for a TE wave are defined as r12,s = Er

/
Ei and t12,s =

Et
/

Ei, respectively. Boundary conditions require that Ey and Hx be continuous at z
= 0. FromEqs. (8.65) and (8.66), we obtain 1+r12,s = t12,s and (k1z/μ1)(1−r12,s) =
(k2z/μ2)t12,s ; thus,

r12,s = Er

Ei
= k1z/μ1 − k2z/μ2

k1z/μ1 + k2z/μ2
(8.68a)

and

t12,s = Et

Ei
= 2k1z/μ1

k1z/μ1 + k2z/μ2
(8.68b)

which are generally applicable, as long as eachmedium is homogeneous and isotropic
[8]. For nonmagnetic materials, the previous equations can be written as follows:
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r12,s = n1 cos θ1 − n2 cos θ2

n1 cos θ1 + n2 cos θ2
(8.69a)

and

t12,s = 2n1 cos θ1

n1 cos θ1 + n2 cos θ2
(8.69b)

The spectral reflectivity, or simply reflectivity, ρ ′
λ is given by the ratio of the

reflected energy flux to the incident energy flux, and the absorptivity α′
λ is the ratio

of the transmitted energy flux to the incident energy flux, since all the photons
transmitted through the interface will be absorbed inside the second medium. Terms
ending with “-ivity” are typically used for a perfect interface and those with “-tance”
are for general surfaces including smooth and rough surfaces, thin films, as well as
layered structures. The energy flux is related to the time-averaged Poynting vector,
defined in Eq. (8.18b). From Eqs. (8.65) to (8.67), the x- and z-components of the
Poynting vector at the interface (z → 0) in medium 1 are

〈S1x 〉 = 1

2
Re

[
k∗

x

ωμ0μ
∗
1

(Ei + Er)(E∗
i + E∗

r )

]
(8.70a)

and

〈S1z〉 = 1

2
Re

[
k∗
1z

ωμ0μ
∗
1

(Ei + Er)(E∗
i − E∗

r )

]
(8.70b)

It can be seen that, in general, the reflectedwave and the incident wave are coupled
and the energy flow cannot be separated into a reflected flux and an incident flux.
Under the assumption that medium 1 is lossless (nonabsorbing or nondissipative)
and k2

x < k2
1 , we can write

〈S1z〉 = 〈Siz〉 − 〈Srz〉 (8.71)

where

〈Siz〉 = k1z

2ωμ0μ1

|Ei|2 and 〈Srz〉 = k1z

2ωμ0μ1

|Er|2 (8.72)

If medium 1 is lossy, there will be additional terms associated with EiE∗
r and

E∗
i Er. In this case, the power flow normal to the interface cannot be separated as

forward and backward terms, because of the cross-coupling terms. Therefore, the
lossless condition in medium 1 is required in order to properly define the energy or
power reflectivity [35]. This is usually not a problem when radiation is incident from
air or a dielectric prism onto a medium. The spectral reflectivity can then be obtained
based on the z-components of the reflected and incident Poynting vectors as

ρ ′
λ,s(θ1) = |Er|2

/ |Ei|2 = ∣∣r12,s
∣∣2 (8.73)



8.3 Radiative Properties of Semi-infinite Media 441

The Poynting vector at the interface in medium 2 can be written as

〈St〉 = 1

2ωμ0
Re

(
k∗

x x̂ + k ∗
2z ẑ

μ∗
2

)
|Et|2 (8.74)

which is not parallel to Re(k2) unless Im(μ2) = 0. Recall that the plane of constant
phase is perpendicular to Re(k2). If medium 2 is dissipative, Im(k2) is parallel to
the z-axis and the amplitude will vary along the z-direction. The wave becomes
inhomogeneous inmedium 2, except when kx = 0 (normal incidence). The definition
of the transmitted energy flux at the interface is based on the projected Poynting
vector in the z-direction. Hence, the absorptivity is the ratio of the z-components of
the transmitted and incident Poynting vectors, viz.,

α′
λ,s(θ1) = Re(k2z/μ2)

Re(k1z/μ1)

∣∣t12,s
∣∣2 (8.75)

Note that Re(k2z/μ2) = Re(k ∗
2z/μ

∗
2), and Re(k1z/μ1) = k1z/μ1 since medium 1

is lossless. It can be shown that ρ ′
λ,s + α′

λ,s = 1, as required by energy conservation:
〈S1z〉 = 〈S2z〉 at z = 0. For nonmagnetic and nondissipative materials, we have

α′
λ,s(θ1) = n2 cos θ2

n1 cos θ1

∣∣t12,s
∣∣2 (8.76)

The reflection and transmission coefficients for the transverse magnetic (TM)
wave or parallel (p) polarization are defined as the ratios of the magnetic fields:
r12,p = Hr

/
Hi and t12,p = Ht

/
Hi, respectively [7]. Hence,

r12,p = Hr

Hi
= k1z/ε1 − k2z/ε2

k1z/ε1 + k2z/ε2
(8.77a)

t12,p = Ht

Hi
= 2k1z/ε1

k1z/ε1 + k2z/ε2
(8.77b)

In the case of nonmagnetic materials, we obtain

r12,p = n2 cos θ1 − n1 cos θ2

n2 cos θ1 + n1 cos θ2
(8.78a)

and

t12,p = 2n2 cos θ1

n2 cos θ1 + n1 cos θ2
(8.78b)

At normal incidence, the reflection coefficients calculated based on Eqs. (8.69a)
and (8.78a) are related by

r12,s = n1 − n2

n1 + n2
= −r12,p (8.79)



442 8 Fundamentals of Thermal Radiation

When both n1 and n2 are real, for n1 < n2, the electric fieldwill experience a phase
reversal (phase shift ofπ ) upon reflection but themagnetic field will not. On the other
hand, for n1 > n2, it is themagnetic field that will experience a phase reversal. In fact,
based on Maxwell’s equations, the electric and magnetic quantities obey a duality
when ρe = 0. They can be interchanged with the following substitutions: E → H
and H → −E. Note that ε and μ, as well as the polarization states s and p, should
also be interchanged. The Poynting vector for a TM wave is 〈S〉 = 1

2ωε0
Re

( k
ε

)∣∣Hy

∣∣2,
which is not parallel to Re(k) when Im(ε2) �= 0. Upon refraction into an absorbing
medium, the waves become inhomogeneous and the Poynting vectors for different
polarizations may split into different directions [36]. Nevertheless, the constant-
amplitude plane is always perpendicular to the z-direction because the amplitude
cannot change along the x-y-plane. The reflectivity for p-polarization is

ρ ′
λ,p(θ1) = ∣∣r12,p

∣∣2 (8.80)

Hence, the absorptivity becomes

α′
λ,p(θ1) = Re(k2z/ε2)

Re(k1z/ε1)

∣∣t12,p

∣∣2 (8.81)

For nonmagnetic and nonabsorbing materials, we have

α′
λ,p(θ1) = n1 cos θ2

n2 cos θ1

∣∣t12,p

∣∣2 (8.82)

If the incident wave is unpolarized or circularly polarized, the reflectivity can be
obtained by averaging the values for p- and s-polarized waves, i.e.,

ρ ′
λ = ρ ′

λ,p + ρ ′
λ,s

2
(8.83)

The reflectivity for radiation incident from air (n1 ≈ 1) to a dielectric medium
(n2 = 2) and that from the dielectric to air are shown in Fig. 8.8 for each polarization
as well as for the unpolarized incident radiation. When n1 > n2, the reflectivity will
reach 1 at θ1 = θc = sin−1(n2/n1). This angle is called the critical angle, and total
internal reflection occurs at angles of incidence greater than the critical angle. This is
the principle commonly used in optical fibers and waveguides, since light is trapped
inside the high-indexmaterial and propagates along themedium. It can be seen that in
total internal reflection, kx > k2 and k2z becomes purely imaginary. The amplitude
of the wave exponentially attenuates in the positive z-direction. This is similar to
Eq. (8.37) and makes it an evanescent wave, as shown in Fig. 8.3. The time-averaged
Poynting vector is zero in the z-direction. Hence, no energy is transmitted through
the boundary.

For the TE wave, the reflectivity increases monotonically with the angle of inci-
dence and reaches 1 at the grazing angle (90°) or at the critical angle when n1 > n2.
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Fig. 8.8 Reflectivity versus the angle of incidence between air and a dielectric: a Incident from air
to a medium; b Incident from a medium to air

The reflectivity for the TM wave, on the other hand, goes through a minimum that
is equal to zero. The angle at which ρ ′

λ,p = 0 is called the Brewster angle, given by
θB = tan−1(n2/n1) for nonmagnetic materials. For p-polarization, all the incident
energy will be transmitted into medium 2, without reflection at the Brewster angle.
This phenomenon has been used to build polarizers and transmission windows in
absolute cryogenic radiometers. The physical mechanism of reflection can also be
understood as re-emission by the induced electric dipoles in the medium, based on
the Ewald–Oseen extinction theorem. At the Brewster angle, the electric dipoles
induced in the material align in the direction of the reflected wave, and the refracted
wave is perpendicular to the reflected wave (i.e., θ1 + θ2 = 90◦). The reflective
power goes to zero because an electric dipole cannot radiate along its own axis.
The situation is changed when magnetic materials are involved, such as a negative
index material. The fields radiated by both the induced electric dipoles and magnetic
dipoles are responsible for the reflection. The Brewster angle can occur for either
polarization when the radiated fields cancel each other. A detailed discussion can be
found from the publication of Fu et al. [37]. In an absorbing medium, there is a drop
in reflectivity for p-polarization, but the minimum is not zero. Furthermore, there
exists a principal angle at which the phase difference between the two reflection
coefficients equals 90° and the ratio of the reflectivity for the TM and TE waves is
near the reflectivity minimum [8]; see Problem 8.24.

The reflectivity for radiation incident from air (n1 ≈ 1) or a vacuum, at normal
incidence, becomes

ρ ′
λ,n = (n2 − 1)2 + κ2

2

(n2 + 1)2 + κ2
2

(8.84)

for any polarization. It can be seen that the normal reflectivity will be close to 1, when
either n2 � 1 or n2 
 1. The reflectivity is large for most metals in the infrared,
because both n2 and κ2 are large. The reflectivity of a conventional superconductor
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approaches 1 when the frequency is lower than that of the superconducting energy
gap, since n2 → 0 in this case. On the other hand, ρ ′

λ,n → 0 when n2 ≈ 1 and
κ2 � 1. This can occur in a dielectric material at certain mid-infrared wavelengths
and also for most metals in the x-ray region.

8.3.2 Total Internal Reflection and the Goos–Hänchen Shift

Total internal reflection (TIR) occurs when light comes from an optically denser
material to another material at incidence angles greater than the critical angle deter-
mined by Snell’s law. As discussed in the preceding section, the amplitude of the
reflection coefficient becomes unity at incidence angles greater than the critical angle.
Although no energy is transferred from medium 1 to medium 2, there exists an elec-
tromagnetic field in the second medium near the surface. This electromagnetic field
can store as well as exchange energy with medium 1 at any instant of time.

While evanescent waves do not carry energy into the second medium, there is a
shift in the phase of the reflected wave upon TIR. Consider a plane wave of angular
frequency ω incident from a semi-infinite medium 1 to medium 2, as shown in
Fig. 8.9a. The wavevector k+

1 = kx x̂+ k1z ẑ, k−
1 = kx x̂− k1z ẑ, and k2 = kx x̂+ k2z ẑ,

since the parallel wavevector component kx must be the same as required by the
phase-matching boundary condition. The magnitudes of the wavevectors are

k2
1 = k2

x + k2
1z = ε1μ1ω

2/c2 (8.85a)

and

k2
2 = k2

x + k2
2z = ε2μ2ω

2/c2 (8.85b)

where ε and μ are the relative (ratio to those of a vacuum) permittivity and per-
meability, respectively, and c is the speed of light in a vacuum (omitting the sub-
script 0). Assume that the incident wave is p polarized or a TM wave, so that
the only nonzero component of the magnetic field is in the y-direction. The mag-
netic field of the incident wave may be expressed as Hi = (0, Hy, 0), where

Fig. 8.9 Illustration of total
internal reflection.
a Schematic of the incident,
reflected, and transmitted
waves at the interface
between two semi-infinite
media. b The magnetic field
distribution for a TM wave
when total internal reflection
occurs
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Hy(x, y, z, t) = Hieik1z z+ik1x x−iωt
. For simplicity, let us omit exp( − iωt) from now

on. Recall that the Fresnel coefficients for a TM wave are defined as the ratios of the
reflected or transmitted magnetic field to the incident magnetic field. For example,
the Fresnel reflection coefficient is

rp = Hr

Hi
= k1z/ε1 − k2z/ε2

k1z/ε1 + k2z/ε2
(8.86)

The field in medium 1 is composed of the incident and reflected fields, and that
in medium 2 is the transmitted field. Therefore,

Hy

Hi
=

{
(eik1z z + rpe−ik1z z)eikx x , for z ≤ 0

(1 + rp)eik2z zeikx x , for z > 0
(8.87)

The electric fields can be obtained by applying the Maxwell equations. Hence,
we can write the electric and magnetic fields in both media as follows:

Ex

Hi

=
{

k1z

ωε1ε0
(eik1z z − rpe−ik1z z)eikx x , for z ≤ 0

k2z

ωε2ε0
(1 + rp)eik2z zeikx x , for z > 0

(8.88)

and

Ez

Hi

=
{

− kx
ωε1ε0

(eik1z z + rpe−ik1z z)eikx x , for z ≤ 0

− kx
ωε2ε0

(1 + rp)eik2z zeikx x , for z > 0
(8.89)

Assume that ε’s and μ’s are real and furthermore, ε1μ1 > ε2μ2 > 0. From
Eq. (8.85b), we have k2

2z = ε2μ2ω
2/c2 − k2

x . When
√

ε2μ2 < kx c/ω <
√

ε1μ1, the
incidence angle θ1 is defined but the refraction angle is not, because k2z becomes
imaginary. One can write k2z = iη2, where η2 = √

k2
x − ε2μ2ω2/c2 is a real positive

number. In this case,
∣∣rp

∣∣ = 1 and

rp = eiδ = e−i2α (8.90)

where tan α = (η2/ε2)/(k1z/ε1). Following Haus [38], the magnetic field at x = 0
in medium 1 can be written as

Hy = 2Hie
−iα cos(k1z z + α), z ≤ 0 (8.91a)

Similarly, Hy in medium 2 becomes

Hy = 2Hie
−iα cos(α)e−η2z, z > 0 (8.91b)

The magnetic field at x = 0 is plotted in Fig. 8.9b with respect to kzz, at the instant
of time when the phase of Hie−iα−iωt becomes zero. From this figure, one can see
that the field decays exponentially in medium 2. As a result, there is a phase shift
in medium 1 upon TIR so that the maximum amplitude is shifted from the interface
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to kzz = −α. The phase angle of the reflection coefficient δ = −2α is called the
Goos–Hänchen phase shift, which depends on the incidence angle θ1 or kx . The
difference in δ for TE and TM waves in a dielectric prism was used to construct a
polarizer called Fresnel’s rhomb, which can change a linearly polarized wave into a
circularly polarized wave, or vice versa [7].

Example 8.6 Calculate the time-averaged Poynting vector near the interface in the
case of total internal reflection.

Solution Based on Example 8.1, it can be seen that the Poynting vector S = Re(E)×
Re(H) is, in general, a function of time. The time-dependent terms that oscillate with
2ω, however, become zero after integration. The time-averaged Poynting vector is
〈S〉 = 1

2Re(E × H∗). For z > 0, 〈Sz〉 = 1
2Re(Ex H∗

y ) = 0 because k2z is purely
imaginary. It can also be shown that 〈Sz〉 = 0 for z ≤ 0 (see Problem 8.26).
Furthermore,

〈Sx 〉 = − 1
2Re(Ez H∗

y ) =
{

kx
ωε1ε0

|Hi |2
[
1 + cos(2k1z z + 2α)

]
, z ≤ 0

kx
ωε2ε0

|Hi |2[1 + cos(2α)]e−2η2z, z > 0
(8.92)

Note that 〈Sx 〉 does not have to be continuous across the interface. Depending on
whether ε is positive or negative, the sign of 〈Sx 〉 may be parallel or antiparallel to
kx . It should also be noted that 〈Sx 〉 is a sinusoidal function of z in medium 1 and
decays exponentially in medium 2 as z approaches infinity.

Newton conjectured that, when a light beam is reflected at the boundary upon TIR,
the light corpuscles would penetrate some distance into the optically rarer medium
and then reenter the optically denser medium. In addition, he suspected that the path
of the beamwould be a parabolawith its vertex in the rarermediumand, consequently,
the actual reflected beam would be shifted laterally with respect to the geometric-
optics prediction. From the Poynting vector formulation given in Eq. (8.92), the
energy must penetrate into the second medium to maintain the energy flow parallel
to the interface and reenter the first medium so that no net energy is transferred across
the interface. The actual beams have a finite extension so that the reflected beam in
the far field can be separated from the incident beam since the Poynting vector is
parallel to the wavevector. The effect of the parallel energy flow indeed causes the
reflected beam to shift forward from that expected by the geometric-optics analysis.
F. Goos and H. Hänchen were the first to observe the lateral beam shift through a
cleverly devised experiment in 1947. A schematic of this experiment is shown in
Fig. 8.10, in which a glass plate was used so that the incident light was multiply
reflected by the top and bottom surfaces. In the middle of one or both of the surfaces,
a silver strip was deposited. This way, the beam reflected by the silver film (solid line)
would essentially follow geometric optics and that by total internal reflection would
experience a lateral shift. Although the lateral shift is on the order of the wavelength,
a large number of reflections (over 100 times) allowed the shift to be observed by a
photographic plate. Lotsch [39] published a series of papers on the comprehensive
study of the Goos–Hänchen effect. Puri and Birman [40] provided an elegant review
of earlier works, including several methods for analyzing the Goos–Hänchen effect.
A quantitative study of the Goos–Hänchen effect is presented next.
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Fig. 8.10 Illustration of the Goos–Hänchen experiment: a side view, b top view

One way to model the lateral shift is to use a beam of finite width rather than an
unbounded plane wave. Another method that is mathematically simpler considers
the phase change of an incoming wave packet, which is composed of two plane
waves with a slightly different kx . Upon TIR, the phase shift δ = −2α for a given
polarization is a function of kx . The difference in the phase shift will cause the
reflected beam to exhibit a lateral shift along the interface (x-direction) given as

D = − dδ

dkx
= ε1

ε2

2kx

η2k1z

k2
1z + η2

2

k2
1z + (η2ε1/ε2)

2 , for p polarization (8.93)

where we have used α = tan−1(η2ε1/k1zε2). In formulating the above equation, kx

is always taken as positive. Equation (8.92) clearly suggests that 〈Sx 〉 and kx have the
same sign when the permittivity is positive and different signs when the permittivity
is negative [41]. When ε1 and ε2 have different signs, the lateral shift D will be
negative, which implies that the lateral shift is opposite to 〈S〉x of the incident beam.
For a TE wave, one can simply replace ε’s by μ’s in Eqs. (8.93). For two dielectrics,
we have μ1 = μ2 = 1, ε1 = n2

1, and ε2 = n2
2, where n1 and n2 are the refractive

indices of medium 1 and 2, respectively. Consequently, Eq. (8.93) reduces to the
following:

Ds = 2 tan θ1

η2
for a TE wave (8.94a)

and

Dp = 2 tan θ1

η2
(
n2
1 sin

2 θ1/n2
2 − cos2 θ1

) for a TM wave (8.94b)

At grazing incidence, k1z → 0, however, the shift in the direction parallel to
the beam is D cos θ1 = (2/η2)(ε2/ε1) sin θ1, which approaches a finite value and
does not diverge. At the critical angle, θ1 = θc = sin−1(n1/n1), η2 = δ = 0,
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and D approaches infinity. This difficulty can be removed by using the Gaussian
beam incidence [42]. Quantummechanics has also been applied to predict the lateral
beam shift [39]. The Goos–Hänchen effect also has its analogy in acoustics and is
of contemporary interest in dealing with negative index materials, waveguides, and
photon tunneling [41, 43, 44].

8.3.3 Bidirectional Reflectance Distribution Function

Real surfaces contain roughness or texture that depends on the processing method.
A surface appears to be smooth if the wavelength is much greater than the surface
roughness height. A highly polished surface can have a roughness height on the order
of nanometers. Some surfaces that appear “rough” to human eyes may appear to be
quite “smooth” for far-infrared radiation. The root-mean-square (rms) roughness
is a commonly used parameter to describe surface roughness. The power spectral
density providesmore general information on the vertical and spatial extent of surface
irregularities. Zhang et al. [31] gave a detailed discussion on the roughness parameters
as well as the instruments used for surface characterization.

The reflection of radiation by rough surfaces is more complicated. For randomly
rough surfaces, there often exist a peak around the direction of specular reflection, an
off-specular lobe, and a diffuse component.When the surface contains periodic struc-
tures, such as patterned or microfabricated surfaces, diffraction effects may become
important and several peaks may appear. The bidirectional reflectance distribution
function (BRDF), which is a function of the angles of incidence and reflection, fully
describes the reflection characteristics from a rough surface at a given wavelength.
As illustrated in Fig. 8.11, the BRDF is defined as the reflected radiance (intensity)
divided by the incident irradiance (flux) at the surface [45]

fr(λ, θi , φi, θr , φr) = dIr
Ii cos θid�i

[sr−1] (8.95)

Fig. 8.11 Geometry of the
incident and reflected beams
in defining the BRDF
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where (θi , φi ) and (θr , φr) denote the directions of incident and reflected beams,
respectively, I i is the incident irradiance (radiant power per unit area), and dI r is the
reflected radiance (intensity).

The directional-hemispherical reflectance can be obtained by integrating the
BRDF over the hemisphere:

ρ ′
λ =

∫

2π

fr cos θr d�r (8.96)

An important principle of the BRDF is reciprocity, which specifies symmetry
of the BRDF, with regard to reflection and incidence angles. In other words, the
reflectance for energy incident from (θi, φi) and reflected to (θr, φr) is equal to that
for energy incident from (θr, φr) and reflected to (θi, φi). Therefore,

fr(λ, θi , φi , θr, φr ) = fr(λ, θr, φr, θi , φi ) (8.97)

The BRDF reciprocity is an extension of the Helmholtz reciprocity principle [46].
While the reciprocity principle holds for most passive medium and surfaces, it does
not hold in some nonlinear or magnetic media.

For a diffuse or Lambertian surface, the BRDF is independent of (θr, φr) and is
related to the directional-hemispherical reflectance as fr,dif = ρ ′

λ/π . On the other
hand, the BRDF for an ideal specular, or mirror-like, reflector can be represented as

fr,spe = ρ ′
λ

cos θi
δθ (θr − θi )δφ(φr − φi − π) (8.98)

where theDirac delta function δ(x) is zero everywhere, except at x = 0. Furthermore,
the delta functions are normalized such that

∫

2π

δθ (θr − θi)δφ(φr − φi − π)d�r = 1 (8.99)

In general, the BRDF of a real surface should fall between the two extreme cases.
It should be noted that for a perfectly smooth surface, the reflectivity calculated
from the Fresnel coefficient, discussed in Sect. 8.3.1, can also be understood as the
directional-hemispherical reflectance. Further discussions on BRDF models based
on geometric optics and physical optics, as well as rigorous solutions of theMaxwell
equations, will be given in Chap. 9, where we will also study the effect of surface
microstructures on the BRDF and how to characterize a rough surface.
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8.3.4 Emittance (Emissivity) and Kirchhoff’s Law

Realmaterials have finite thicknesses. The assumption of semi-infinity or opaqueness
requires that the thickness be much greater than the radiation penetration depth. This
is usually not a problem for a metal in the visible or infrared spectral regions. When
this is not the case, we are dealing with a transparent or semitransparent material,
like a glass window. The radiative properties of semitransparent layers and thin films
will be studied in the next chapter. Laser beams or light from a spectrophotometer
do not extend to infinity and are not perfectly collimated. Nevertheless, as long as
the diameter of the beam spot is much greater than the wavelength and the beam
divergence is not very large, the directional, spectral reflectivity and absorptivity,
calculated from the previous section, are applicable to most situations and can be
integrated to obtain the properties for finite conic angles or hemispherical properties.
For real materials, we use reflectance and absorptance that depend on the nature of
surfaces and coatings.

For real surfaces, the ratio of the emissive power of the surface to that of a black-
body at the same temperature defines the hemispherical emittance (or emissivity) εhλ.
The directional emittance (or emissivity) ε′

λ is defined based on the intensity ratio.
The total emittance can be evaluated by integrating the spectral emittance over all
wavelengths weighted by the blackbody distribution function. A concise discussion
of radiative properties can be found from a popular heat transfer textbook [47] and
more complete definitions and relations can be found from Howell et al. [1] and
Modest [2].

To establish the relationship between the radiative properties, consider an opaque
surface at a temperatureTs inside a vacuumenclosurewhosewalls are at a temperature
Tw, as shown in Fig. 8.12.Whether the surface is inside the enclosure or not, we must
have

α′
λ(θ, φ) + ρ ′

λ(θ, φ) = 1 (8.100a)

Fig. 8.12 Schematic of a
blackbody enclosure for
consideration of
a hemispherical properties
and b directional properties.
Note that the outgoing
radiation has two arrows, one
represents emission and the
other reflection
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Because the incoming radiation will either be absorbed or reflected as long as
the surface is opaque, the sum of the directional absorptance and the directional-
hemispherical reflectance must be unity. Furthermore, the sum of the hemispherical
absorptance and the hemispherical–hemispherical reflectance must also be unity:

αh
λ + ρh

λ = 1 and αh
tot + ρh

tot = 1 (8.100b)

where the subscript “tot” signifies a total property.
Consider the enclosure at thermal equilibrium where no internal sources or sinks

exist in the surface element. The temperatures of the surface element and the wall
must be the same. Furthermore, as shown earlier with the blackbody cavity concept,
the intensity and emissive power inside the enclosure are independent on the location
and direction. Based on Fig. 8.12a for the hemispherical properties, we see that the
combination of the emitted and reflected power per unit area must be the same as
that of the incident. Energy balance requires that

eb,λ(λ, Tw) = εhλeb,λ(λ, Ts) + ρh
λeb,λ(λ, Tw) (8.101a)

and

σSBT 4
w = εhtotσSBT 4

s + ρh
totσSBT 4

w (8.101b)

By setting Ts = Tw and combining with Eq. (8.100b), we have

εhλ = αh
λ and εhtot = αh

tot (8.102)

The equality between emittance and absorptance is called Kirchhoff’s law. Note
that in the literature, both emissivity and absorptivity are commonly used regardless
of the nature of the surfaces. The hemispherical properties depend on the directional
and spectral behavior of the surface. Furthermore, the hemispherical absorptance
depends on the condition of the incident intensity distribution. Hence, the two equal-
ities given in Eq. (8.102) do not hold in general. Special situations exist under ideal
assumptions, for example, if a surface is diffuse, εhλ = αh

λ always holds. Furthermore,
if a surface is diffuse-gray, both the equalities in Eq. (8.102) hold without requiring
thermal equilibrium [47]. Real surfaces rarely meet these requirements, however.

Equation (8.102) can also be understood by considering the energy balance of
the surface, that is, the absorbed radiant power must equal the emitted so that the
emittance must be equal to the absorptance. This argument is justifiable for the
hemispherical properties. When dealing with directional properties, as can be seen
from Fig. 8.12b, the emitted and the reflected components toward the same direction
θ should add up to give the blackbody intensity. Under thermal equilibrium, we can
obtain the following expression [46]:

ε′
λ(λ, θ, φ) +

∫

2π

fr(λ, θ ′, φ′, θ, φ) cos θ ′d�′ = 1 (8.103a)
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Here, the integration is over the incident hemisphere. The second term in
Eq. (8.103a) is the hemispherical-directional reflectance [1, 2]. When BRDF reci-
procity holds, it is the same as the directional-hemispherical reflectance ρ ′

λ. For a
specular surface, Eq. (8.103a) can be written as

ε′
λ(λ, θ, φ) + ρ ′

λ(λ, θ ′, φ′) = 1 (8.103b)

where (θ ′, φ′) and (θ, φ) are a pair of specular incidence and reflection angles, i.e.,
θ ′ = θ and φ′ = φ + 180◦. Zhu and Fan [48] showed that Eq. (8.103b) holds even in
nonreciprocal systems such as magneto-optical materials. When BRDF reciprocity
holds, the conventionalKirchhoff’s law ε′

λ = α′
λ for the spectral directional properties

can be derived. Therefore, the spectral, directional emittance can be expressed in
terms of the spectral, directional-hemispherical reflectance as follows:

ε′
λ = 1 − ρ ′

λ (8.104)

When a material is not at thermal equilibrium with its surroundings, its emit-
tance is defined based solely on spontaneous emission and is an intrinsic property
of the material that does not depend on the surroundings. On the other hand, the
absorptance is defined based on the net absorbed energy by treating stimulated or
induced emission as negative absorption. Under appropriate conditions, Kirchhoff’s
law according to the equality given in Eq. (8.104) is valid for individual polarization
with or without thermal equilibrium. The assumptions are: (a) the material under
consideration is reciprocal and at local thermal equilibrium, though not necessarily
at equilibrium with the surroundings; (b) the external field is not strong enough to
alter the material’s intrinsic properties or cause a nonlinear effect. We can then com-
pute the directional emittance for an opaque surface or semi-infinite media, from the
directional-hemispherical reflectance for incidence from air or a vacuum.

The emittance is typically calculated by averaging over the two polarizations. The
hemispherical emittance can then be obtained by integrating the directional emittance
so that

εhλ = 1

π

2π∫

0

π/2∫

0

ε′
λ cos θ sin θdθdφ (8.105)

It can be seen from Fig. 8.8a that, when averaged over the two polarizations,
the reflectivity changes little until the Brewster angle and then increases to 1 when
the incidence angle approaches 90°. The hemispherical emittance for a nonmetal-
lic surface is about 10% smaller than the normal emittance. On the other hand, the
hemispherical emittance for metallic surfaces is about 20% greater than the normal
emittance. Diffuse emission is a good first-order approximation, even though the
surface is smooth and the reflection is specular. Thus, the hemispherical emittance
may be approximated by the normal emittance. In most studies, the emittance is
calculated from the indirect method, based on the reflectivity and Kirchhoff’s law
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given in Eq. (8.104). Direct calculations can be accomplished by considering the
emission, along with the absorption and transmission, inside the material. Accord-
ing to the fluctuation-dissipation theorem (FDT), thermal emission arises from the
induced field that originated from the random charge fluctuation. Wang et al. [49]
used the FDT to directly calculate the emittance of a layered structure and demon-
strated the equivalence between the direct method and the indirect method based on
Eq. (8.104). The fluctuational electrodynamics is essential for the study of near-field
radiation and will be carefully discussed in Chap. 10.

The total-hemispherical emittance can be evaluated using Planck’s distribution.
Therefore,

εhtot =
∫ ∞
0 εhλ(λ)eb,λ(λ, T )dλ∫ ∞

0 eb,λ(λ, T )dλ
=

∫ ∞
0 εhλ(λ)eb,λ(λ, T )dλ

σSBT 4
(8.106)

The total emittance depends on the surface temperature and the spectral variation
of the optical constants. Pure metals usually have a very low emittance, and the
emittance can increase due to surface oxidation. Spectrally selective materials that
appear to be reflective to visible light may exhibit a large total emittance, greater
than 0.9 near ambient temperature; examples are snow and white paint. An earlier
compilation of the radiative properties of many engineeringmaterials can be found in
Touloukian and DeWitt [50]. The use of surface microstructures to modify emission
characteristics will be discussed in the next chapter.

8.4 Dielectric Function Models

Unlike in dilute gases where the molecules are far apart, in solids, the closely packed
atoms form band structures. Absorption in solids usually happens in a much broader
frequency region or band. Free electrons in metals can interact with the incoming
electromagnetic waves or photons, and cause broadband absorption from the visi-
ble (or even ultraviolet) all the way to the microwave and longer wavelengths. For
semiconductors especially with high impurity (doping) concentrations or at elevated
temperatures, both the free electrons and holes contribute to the absorption process.
The absorption of a photon makes the electron or the hole transit to a higher energy
state within the same band. Therefore, free-carrier absorption is caused by intraband
transitions. In order to conserve momentum, the carriers must also collide with ion-
ized impurities, phonons, other carriers, grain boundaries, interfaces, and so forth.
The collisions act as a damping force on the motion of carriers. The Drude model
describes the oscillatory movement of an electron, driven by a harmonic field, which
is subjected to a damping force. The model is simple in form and predicts the dielec-
tric function of some metals fairly well in a broad spectral region, especially in the
mid and far infrared.
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Absorption by lattice vibrations or bound electrons, which is important for insu-
lators and lightly doped semiconductors, is due to the existence of electric dipoles
formed by the lattice. The strongest absorption is achievedwhen the frequency equals
the vibrational mode of the dipole, i.e., the resonance frequency, which is usually in
the mid- to far-infrared region of the spectrum. The contribution of bound electrons
is often modeled by the Lorentz model.

Interband transition is the fundamental absorption process in semiconductors. An
electron can be excited from the valence band to the conduction band by absorbing a
photon, whose energy is greater than the energy gap Eg. Because the absorption by
electrons is usually weak in semiconductors, a strong absorption edge is formed near
the bandgap. In this transition process, both the energy and the momentum must be
conserved.

This section discusses the formulation for different contributions to the dielectric
function. It should be noted that the real and imaginary parts of the dielectric func-
tion are interrelated according to the causality, which is discussed first. Because all
naturally occurring and most of the synthesized materials are nonmagnetic at high
frequencies, only nonmagnetic materials are considered so that μ = 1 and n = √

ε

in the following, except in Sect. 8.4.6.

8.4.1 Kramers–Kronig Dispersion Relations

The real and imaginary parts of an analytic function are related by the Hilbert trans-
form relations. Hendrik Kramers and Ralph Kronig were the first to show that the
real and imaginary parts of the dielectric function are interrelated. These relations
are called the Kramers–Kronig dispersion relations or K-K relations. The K-K rela-
tions can be interpreted as the causality in the frequency domain and are very useful
in obtaining optical constants from limited measurements. The principle of causal-
ity states that the effect cannot precede the cause, or no output before input. Some
important relations are given here, and a detailed derivation and proofs can be found
from Jackson [5], Born and Wolf [8], and Bohren and Huffman [9].

The real part ε′ and the imaginary part ε′′ of a dielectric function are related by

ε′(ω) − 1 = 2

π
℘

∞∫

0

ζε′′(ζ )

ζ 2 − ω2
dζ (8.107a)

and

ε′′(ω) − σ0

ε0ω
= −2ω

π
℘

∞∫

0

ε′(ζ ) − 1

ζ 2 − ω2
dζ (8.107b)

where σ0 is the dc conductivity,℘ denotes the Cauchy principal value of the integral,
and ζ is a dummy frequency variable. These relations can be written in terms of n
and κ as
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n(ω) − 1 = 2

π
℘

∞∫

0

ζκ(ζ )

ζ 2 − ω2
dζ (8.108a)

κ(ω) = −2ω

π
℘

∞∫

0

n(ζ ) − 1

ζ 2 − ω2
dζ (8.108b)

Equations (8.107a), (8.107b) and (8.108a), (8.108b) are the K-K relations, which
relate the real part of a causal function to an integral of its imaginary part over all
frequencies, and vice versa. A number of sum rules can be derived based on the
K-K relations and are useful in obtaining or validating the dielectric function of a
given material [15]. The K-K relations can be applied to reflectance spectroscopy
to facilitate the determination of optical constants from the measured reflectivity
of a material. For radiation incident from a vacuum to a medium with a complex
refractive index (n + iκ) at normal incidence, the Fresnel reflection coefficient for
TE waves is

r(ω) = |r(ω)|eiφ(ω) = 1 − n(ω) − iκ(ω)

1 + n(ω) + iκ(ω)
(8.109)

where |r | is the amplitude and φ the phase shift upon reflection for the electric field.
The reflectivity expressed in terms of ω is

ρ ′
ω(ω) = rr∗ = |r |2 (8.110)

The amplitude and the phase are related, and it can be shown that

φ(ω) = −ω

π
℘

∞∫

0

ln ρ ′
ω(ζ )

ζ 2 − ω2
dζ (8.111)

The refractive index and the extinction coefficient can be calculated, respectively,
from

n(ω) = 1 − ρ ′
ω

1 + ρ ′
ω − 2 cosφ

√
ρ ′

ω

(8.112a)

and

κ(ω) = 2 sin φ
√

ρ ′
ω

1 + ρ ′
ω − 2 cosφ

√
ρ ′

ω

(8.112b)
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8.4.2 The Drude Model for Free Carriers

The Drude model describes the frequency-dependent conductivity of metals and can
be extended to free carriers in semiconductors. In the absence of an electromagnetic
field, free electrons move randomly. When an electromagnetic field is applied, free
electrons acquire a nonzero average velocity, giving rise to an electric current that
oscillates at the same frequency as the electromagnetic field. The collisions with the
stationary atoms result in a damping force on the free electrons, which is proportional
to their velocity. The equation of motion for a single free electron is then

meẍ = −meγ ẋ − eE (8.113)

where e is the absolute chargeof an electron,me is the electronmass, andγ denotes the
strength of the damping due to collision, i.e., the scattering rate or the inverse of the
relaxation time τ . Assume the electron motion under a harmonic field E = E0e−iωt

is of the form x = x0e−iωt so that ẍ = −iωẋ. We can rewrite Eq. (8.113) as

ẋ = e/me

iω − γ
E (8.114)

The electric current density is J = −neeẋ = σ̃ (ω)E; therefore, the complex
conductivity is

σ̃ (ω) = nee2/me

γ − iω
= σ0

1 − iω/γ
(8.115)

where σ0 = nee2τ/me is the dc conductivity, as discussed in Chap. 5. Equa-
tion (8.115) is called the Drude free-electron model, which describes the frequency-
dependent complex conductivity of a free-electron system, in terms of the dc con-
ductivity and the scattering rate, in a rather simple form. The electrical conductivity
approaches the dc conductivity at very low frequencies (or very long wavelengths).
The dielectric function is related to the conductivity by Eq. (8.28); thus,

ε(ω) = ε∞ − σ0γ

ε0(ω2 + iγω)
(8.116)

where ε∞, which is on the order of 1, is included to account for contributions, other
than the contribution of the free electrons, that are significant at high frequencies.
There exist several transitions at the ultraviolet and visible regions for metals, such
as interband transitions. Note that when ω → ∞, the real part of the dielectric
function of all materials should approach unity, as can be seen from Eq. (8.107a). In
the low-frequency limit when ω � γ , σ̃ (ω → 0) ≈ σ0 and ε′′ 
 ε′. Therefore,

n ≈ κ ≈
√

σ0

2ε0ω
(8.117)
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This is the Hagen–Ruben equation and is applicable at very long wavelengths [1].
Both the refractive index and the extinction coefficient will increase with the square
root of wavelength in vacuum. It is interesting to note that the radiation penetration
depth δλ = λ/(4πκ) will also increase with the square root of wavelength. As
an example, consider gold at λ = 4 μm with κ = 25. The penetration depth is
13 nm at this wavelength. If the wavelength is increased to 4 cm, which is well into
the microwave region, the penetration depth would increase to 1.3 μm. Generally
speaking, metals are highly reflecting in the infrared wavelength region.

The plasma frequency is defined according toω2
p = σ0γ

ε0
= nee2

meε0
. Using the plasma

frequency, we can write Eq. (8.116) in a more compact form as follows:

ε(ω) = ε∞ − ω2
p

ω(ω + iγ )
(8.118)

If ω 
 γ , the dielectric function can be approximated as

ε(ω) ≈ ε∞ − ω2
p

ω2

(
1 − i

γ

ω

)
, when ω 
 γ (8.119)

The plasma frequency falls in the ultraviolet region for most metals. For example,
the wavelength corresponding to the plasma frequency is approximately 80 nm for
aluminum and 200 nm for tungsten. When ω 
 ωp, as in the x-ray region, ε(ω) →
1 + iγω2

p/ω
3. Thus, metals become highly absorptive and not so reflective. Take

tungsten as an example. At λ = 1 nm, the optical constants are n ≈ 1 and κ =
4 × 10−4. The penetration depth is calculated to be δλ = 200 nm. Because the
refractive index is similar to that of air, the reflection is very weak and most of the
incident radiation is absorbed within a depth of 1 μm. Some metal foils become
semitransparent, for example, the radiation penetration depth in lithium is close to
100 μm at λ = 1 nm. The Center for X-Ray Optics at Lawrence Berkeley National
Laboratorymaintains awebsite onx-ray properties [51]. Ifω < ωp, the real part of the
dielectric function ε′ becomes negative, and the extinction coefficient is much greater
than the refractive index, i.e., κ 
 n. According to Eq. (8.84), this corresponds
to a high reflectivity. A vanishing real part of the refractive index corresponds to
a longitudinal collective oscillation of the electron gas, i.e., a plasma oscillation.
Plasma oscillations originate from a long-range correlation of electrons caused by
Coulomb forces.

Example 8.7 From Table 5.2, calculate the plasma frequency and the electron scat-
tering rate for aluminum. Then calculate its dielectric function and compare the
normal reflectivity with data.

Solution For aluminum near room temperature, ne = 18.1 × 1028 m−3 and σ0 =
1/re = 3.75 × 107 m/�. From Appendix A, e = 1.602 × 10−19 C, me = 9.109 ×
10−31 kg, and ε0 = 8.854 × 10−12 C2/Nm2. Hence, γ = nee2/meσ0 = 1.4 ×
1014 rad/s, or the scattering time τ = 7.2 × 10−14 s, and ωp = 2.4 × 1016 rad/s,
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Fig. 8.13 Optical constants
of aluminum, calculated
from the Drude model
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which corresponds to a wavelength of 79 nm. The exact parameters may differ
slightly in different references, and sometimes an effective mass is used which is
slightly larger than the electron rest mass. The predicted optical constants are plotted
in Fig. 8.13, assuming ε∞ = 1. It can be seen that as the wavelength exceeds 100μm,
the difference between n and κ diminishes. In the region 0.1 μm < λ < 200 μm,
n < κ so that the real part of the dielectric function ε′ = n2 − κ2 becomes negative.
A sharp transition occurs at the plasma frequency so that n → 1 and κ decreases
rapidly toward higher frequencies.

As shown in Fig. 8.14, the reflectivity calculated fromEq. (8.84) is compared with
the measured data for an aluminum film, which was prepared by ultrahigh vacuum
deposition and measured in high vacuum to avoid oxidation [15]. The results agree
very well at wavelengths greater than 2μm. For λ < 1 μm, the contribution from the
interband transition causes a reduction in the reflectivity. Note that the simple Drude
model did not include these effects and is applicable for long wavelengths only. The
established optical constants of metals are based on the measured reflectivity in a
broad spectral region by using the K-K relations described in Sect. 8.4.1. The results
for a large number of samples are tabulated in Handbook of the Optical Constants
of Solids, with pertinent references [15].

In some studies, the Drude model is modified by considering the temperature
and frequency dependence of the scattering rate and the effective mass. While the
Drude model predicts well the radiative properties at room temperature or above,
caution should be taken at extremely low temperatures. If the electron mean free
path becomes comparable to the distance over which the electric field varies, i.e.,
the field penetration depth, nonlocal effects become important and the Drude theory
breaks down. This can occur at cryogenic temperatures, and a more complex theory
called the anomalous skin effect theory must then be applied [52].
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Fig. 8.14 Normal spectral
reflectivity of aluminum
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8.4.3 The Lorentz Oscillator Model for Phonon Absorption

Vibrations of lattice ions and bound electrons contribute to the dielectric function
in a certain frequency region, often in the mid infrared. The refractive index can be
calculated using the Lorentz oscillator model, which assumes that a bound charge
e is accelerated by the local electric field E, which is assumed to be the same as
the applied field here. In contrast to free electrons, a bound charge experiences a
restoring force determined by a spring constant Kj. The oscillator is further assumed
to have a mass mj and a damping coefficient γ j , as shown in Fig. 8.15. The force
balance yields the equation of motion for the oscillator:

m j ẍ + m jγ j ẋ + K jx = eE (8.120)

The solution for a harmonic field E = E0e−iωt , valid at timescales greater than
the relaxation time, is given by

x = e/m j

ω2
j − iγ jω − ω2

E (8.121)

Fig. 8.15 The classical
oscillator model
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where ω j = (K j/m j )
1/2 is the resonance frequency of the jth oscillator. The motion

of the single oscillator causes a dipole moment ex. If the number density of the
jth oscillator is n j , the polarization vector, or the dipole moment per unit volume,
is P = ∑N

j=1 n j ex, where N is the total number of infrared active phonon modes
(oscillators). The constitutive relation gives the polarization as P = (ε − 1)ε0E. It
can be shown that

ε(ω) = ε∞ +
N∑

j=1

Sjω
2
j

ω2
j − iγ jω − ω2

(8.122)

where ε∞ is a high-frequency constant and Sj = ω 2
p j/ω

2
j = n j e2/(ε0m jω

2
j ) is called

the oscillator strength.
At very low frequencies, ε(0) = ε∞ + ∑N

j=1 Sj , which is called the dielectric
constant. The real and imaginary parts of the dielectric function (ε′, ε′′) and optical
constants (n, κ) for a simple oscillator are illustrated in Fig. 8.16, near the resonance
frequency for ε∞ = 1. It can be seen from Eq. (8.122) and Fig. 8.16 that, for
frequencies much lower or much higher than the resonance frequency ω j , ε′′ and
κ are negligible. Only within an interval of γ j around the resonance frequency is
the absorption appreciable. Within the absorption band, the real part of the refractive
index decreases with frequency; this phenomenon is called anomalous dispersion. It
follows that in an interval of width γ j around the resonance frequency, the Lorentz
oscillator is highly reflecting and absorbing, while for higher or lower frequencies, it
acts as a transparentmaterial. The real part of the dielectric function becomes negative
in a frequency region somewhat higher thanω j . Amore complicated treatment based
on quantum mechanics yields a four-parameter model [53]. The previous classical
oscillatormodel canbe considered as a good approximationwhen the relaxation times
of the longitudinal and transverse optical phonons are close to each other. In some

Fig. 8.16 The dielectric behavior predicted by the Lorentz oscillator model. a Real part and
imaginary part of the dielectric function. b Refractive index and extinction coefficient
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studies, frequency- and temperature-dependent scattering rate is also considered to
model the infrared spectra.

Due to the large number of parameters involved, it is much more difficult to
determine the Lorentz oscillator parameters than to determine the Drude parameters.
In practice, the oscillator parameters are often treated as adjustable parameters that are
obtained by fitting Eq. (8.122) to the measured reflectivity data. The Lorentz model
has been applied to a large number of dielectric materials by fitting the reflectance
spectra [15]. The author and collaborators have obtained the Lorentz parameters for
several perovskite crystals (LaAlO3, LaGaO3, and NdGaO3), thin polyimide films,
HfO2 and Ta2O5 films, as well as certain ceramic materials [54].

Example 8.8 The Lorentz model for SiC at room temperature for an ordinary ray is
given as follows:

ε(ω) = ε∞
[
1 + ω2

LO − ω2
TO

ω2
TO − iγω − ω2

]
(8.123)

where ωLO = 969 cm−1 and ωTO = 793 cm−1 are the frequencies corresponding to
the longitudinal and transverse optical phonons, respectively, γ = 4.76 cm−1, and
ε∞ = 6.7 [55]. What are the refractive indices at the high- and low-frequency limits?
Calculate the normal reflectivity and compare it with the experimental result.

Solution Comparing Eqs. (8.122) and (8.123), we see that the resonance fre-
quency corresponds to the TO phonon frequency, and the oscillation strength is
S1 = ε∞(ω2

LO/ω2
TO − 1) = 3.3. The high-frequency limit of the refractive index is

n ≈ √
ε∞ = 2.6, and the low-frequency limit is n = √

ε∞ + S1 = 3.16. Note that
transitions that occur in the visible and ultraviolet regions are not included so that
the high-frequency limit is approximately 1 μm. On the other hand, because there
are no other transitions at long wavelengths, the dielectric constant is approximately
the same for zero frequency. The normal reflectivity is calculated using Eq. (8.84)
and compared with the data, as shown in Fig. 8.17. The agreement is excellent since
the Lorentz parameters were fitted to the experimental data [55]. The phonon band
causes a large κ value and hence a high reflectivity (very low emissivity) between
ωTO = 793 cm−1 and ωLO = 969 cm−1. This band is called reststrahlen band. The
German word “reststrahlen” means “residual rays” and the reststrahlen effect indi-
cates the phenomenon of high reflectance in a dielectric material that is otherwise
transparent. At ω = 1000 cm−1, the reflectivity is nearly 0 such that the emissivity
is almost 1. This happens at the edge of the reststrahlen band, where the refractive
index increases close to 1 and the extinction coefficient decreases to a very small
value. This wavelength is called the Christiansen wavelength, and the associated
phenomenon is called the Christiansen effect [9].

The density-functional perturbation theory (DFPT) can be used to perform first-
principles calculations of the lattice dynamics. It can provide phonon dispersions
as well as the resonance frequencies of different phonon modes [56]. It should be
noted that some optical phonons are symmetric and they cannot be detected by
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Fig. 8.17 The calculated
and measured normal
reflectivity of SiC at room
temperature

infrared spectroscopy but can show up in Raman spectroscopy like the phonons
in Si and Diamond. Note that both the TO and LO vibrational frequencies can be
determined with the DFPT including those that are not infrared active but are Raman
active [56, 57]. However, the determination of the scattering rate from the first-
principles simulation ismore challenging.Bao et al. [58] obtained the phonon lifetime
and resonance frequencies using an analysis of the ab initio molecular dynamics
(MD) trajectories based on the normal modes and spectral density analysis methods,
allowing the calculation of the far-infrared dielectric function of GaAs. This method
may also be applied to multiple phonon oscillators.

8.4.4 Semiconductors

The absorption coefficient of lightly doped silicon is shown in Fig. 8.18 to illustrate
the contribution of different mechanisms [9, 59]. Let us look at the absorption of
silicon in the visible and the infrared first, as shown in Fig. 8.18a. At short wave-
lengths, photon energies are large enough to excite electrons from the valence band
to the conduction band. This interband transition causes the absorption coefficient
to rise quickly as the photon energy hν is increased above the indirect bandgap,
which is approximately Eg = 1.1 eV at room temperature and decreases somewhat
as temperature increases. As the wavelength further increases beyond the absorption
edge, the absorption coefficient is affected by the existence of impurities and defects,
absorption by free carriers (i.e., intraband or intersubband transitions by electrons and
holes), and absorption by lattice vibrations. While the lattice vibration affects certain
regions of the spectrum, the free-carrier contribution increases at longerwavelengths.
For intrinsic silicon at low temperatures, the free-carrier concentration is very low,
and thus silicon is transparent at wavelengths longer than the bandgap wavelength.
Lattice absorption occurs in the mid infrared and introduces some absorption for
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Fig. 8.18 The absorption coefficient and the refractive index of Si at room temperature. a Absorp-
tion coefficient in the visible and the infrared. b Absorption coefficient and refractive index from
the ultraviolet to the near infrared

6 μm < λ < 25 μm. Free-carrier absorption is important for doped silicon at longer
wavelengths. Note that even for intrinsic silicon at high temperatures, thermally
excited free carriers dominate the absorption at longer wavelengths; a 0.5-mm-thick
silicon wafer is essentially opaque above 1000 K. The free-carrier concentration
for intrinsic silicon is about 1010 cm−3 at 300 K and nearly 1018 cm−3 at 1000 K.
As shown in Fig. 8.18b, the absorption coefficient continues to increase at shorter
wavelengths, due to the interband transition associatedwith the direct bandgap,which
dominates the optical characteristics of silicon in the ultraviolet region.This transition
also affects the refractive index of silicon at longer wavelengths. Beyond 500 nm, the
refractive index of lightly doped Si decreases somewhat as the wavelength increases.

Modeling the interband transitions requires quantum theory. First-principles or
ab initio calculations have been performed to study the optical absorption spectrum
of semiconductors and insulators, considering electron–hole interactions [60, 61]. In
a direct-bandgap semiconductor, shown in Fig. 8.19a, the lowest point of the conduc-
tion band occurs at the same wavevector as the highest point of the valence band. An
electron can be excited from the top of the valence band to the bottom of the conduc-
tion band by absorbing a photon of energy that is at least equal to the bandgap energy.
When the valence band and the conduction band are parabola-like, the absorption
coefficient due to direct bandgap absorption can be expressed as

abg = A(�ω − Eg)
1/2 (8.124)

where A is a parameter that depends on the effective masses of the electrons and the
holes, and the refractive index of the material.

When a transition requires a change in both energy and momentum, as in the
case for an indirect bandgap semiconductor shown in Fig. 8.19b, a phonon is either
emitted (process 1) or absorbed (process 2) for momentum conservation because
the photon itself cannot provide a change in momentum. This kind of transition is
called indirect interband transition.With the involvement of phonons, the absorption
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Fig. 8.19 Interband transitions in semiconductors. a Direct transition without involving a phonon.
b Indirect transition involving the emission or absorption of a phonon

coefficient is given as

aa(ω) = A(�ω − Eg + �ωph)
2

exp(�ωph/kBT ) − 1
, �ω > Eg − �ωph (8.125)

and

ae(ω) = A(�ω − Eg − �ωph)
2

1 − exp(−�ωph/kBT )
, �ω > Eg + �ωph (8.126)

where aa and ae correspond to the absorption coefficients for transitions with phonon
absorption and emission, respectively, and their values are nonzero only when the
photon energy is greater than the bandgap energy subtracted (or added) by the
phonon energy. Theremay be several phononmodes that can cause indirect interband
transitions, and their effects on the absorption coefficient can be superimposed [59].

The Drude model can be applied to model the free-carrier contribution for both
intrinsic and doped silicon as given in the following [59, 62]:

ε(ω) = εbl − Nee2/ε0m∗
e

ω2 + iωγe
− Nhe2/ε0m∗

h

ω2 + iωγh
(8.127)

where the first term on the right εbl accounts for contributions by transitions across
the bandgap and lattice vibrations, the second term is the Drude term for transitions
in the conduction band (free electrons), and the last term is the Drude term for
transitions in the valence band (free holes). Here, Ne and Nh are the concentrations,
m∗

e and m∗
h the effective masses, and γe and γh the scattering rates of free electrons
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and holes, respectively. The effective masses of silicon are taken as m∗
e = 0.27m0

and m∗
h = 0.37m0, where m0 is the electron mass in vacuum.

The value of εbl is determined using the refractive index and the extinction coeffi-
cient of intrinsic silicon. The refractive index of silicon changes from3.6 atλ = 1 μm
to 3.42 at λ > 10 μm at room temperature and increases slightly at higher temper-
atures. Absorption by lattice vibrations occurs in silicon at wavelengths between 6
and 25μm. To account for the lattice absorption, the extinction coefficients are taken
from the tabulated values in Handbook of the Optical Constants of Solids [15]. At
elevated temperatures or for heavily doped silicon, the effect of absorption by lat-
tice vibrations is negligible compared to the absorption by free carriers. The carrier
concentration and the scattering rate depend on the temperature and dopant concen-
trations. For bulk silicon, the scattering is caused by the collision of electrons or
holes with the lattice (phonons) or ionized dopant sites (impurities or defects). The
total scattering rates can be calculated by

γe = γe−l + γe−d and γh = γh−l + γh−d (8.128)

where the subscripts l and d stand for lattice and defects, respectively. Generally
speaking, increasing the defect concentration or temperature gives rise to a larger
scattering rate. For intrinsic silicon, the concentration of the thermally excited free
electrons and holes is the same and can be found from the relation:

N 2
th = NCNV exp(−Eg/kBT ) (8.129)

where NC and NV are the effective densities of states in the conduction band and the
valence band, respectively, and for silicon, Eg = 1.17−0.000473T 2/(T +636) eV.

Note that NC = 2.86 × 1019 cm−3 and NV = 2.66 × 1019 cm−3 at 300 K; however,
both increase with temperature proportional to T 3/2.When the dopant concentrations
are not very high, the free-carrier concentrations can be obtained from

Ne = 1

2

[
ND − NA +

√
(ND − NA)2 + 4N 2

th

]
(8.130)

and Nh = N 2
th/Ne when the majority impurities are n-type. When the majority impu-

rities are p-type, the equations become Nh = 1
2

[
NA − ND +

√
(NA − ND)2 + 4N 2

th

]

and Ne = N 2
th/Nh. Equation (8.130) has been derived based on complete ionization,

which does not hold for heavily doped semiconductors or at very low temperatures.
Integration is needed to determine the concentration when complete ionization is not
expected, as described by Fu and Zhang [62].

The calculated optical constants n and κ of silicon, for wavelengths in the range
between 1 and 100 μm, are shown in Fig. 8.20 at 300 and 1000 K for n-type phos-
phorus donors. The refractive index changes little for lightly doped silicon, even at
high temperatures. The refractive index for heavily doped silicon first decreases and
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Fig. 8.20 Optical constants of n-type phosphorus-doped silicon, at 300 K and 1000 K, for different
dopant concentrations

then increases abruptly toward longer wavelengths. The carrier contribution to the
extinction coefficient at 300 K is very small for lightly doped silicon, and the lattice
contribution can be clearly seen between 6 and 25 μm. As the doping level exceeds
1017 cm−3, these phonon features are screened out. This is also true for lightly doped
silicon at 1000 K as the thermally excited carriers have a concentration of about
1018 cm−3. At 1000 K, κ is essentially the same for ND ≤ 1017 cm−3 and increases
with higher dopant concentrations. At 300 K, the calculated κ at λ > 1.12 μm
decreases with reducing dopant concentration until ND is less than 1010 cm−3, when
most carriers are from the thermal excitation rather than the doping. The lattice
absorption features become prominent when ND ≤ 1016 cm−3. For doping levels
under, 1018 cm−3, κ � n unless the wavelength is very long, and silicon behaves as
a dielectric. The significance is that the radiation penetration depth can be very large
in the mid infrared because of the small κ values. For heavily doped silicon, on the
other hand, the Drude model predicts that n ≈ κ in the long-wavelength limit, just
like in a metal. The accuracy of the simple Drude model is subjected to a number of
factors, such as the dependence of the effective mass on temperature, dopant con-
centration, and even frequency. The scattering rate may be frequency dependent as
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Fig. 8.21 a Real and b imaginary parts of the dielectric function for n-type silicon at 400 K for
different dopant concentrations

well. The band structure may be modified for heavily doped silicon. Nevertheless,
this model has captured the essential features of the dielectric function of silicon, for
wavelengths greater than 0.5 μm, at temperatures from 300 to 1200 K, and with a
doping level up to 1019 cm−3.

Basu et al. [63] performed a comprehensive study on the ionization models and
mobilitymodels of doped silicon. Itwas pointed out that the ionizationmodel adopted
in the previous study of Fu and Zhang [62] would underpredict the carrier con-
centrations for doping concentrations greater than 1017 cm−3. The model recom-
mended by Basu et al. [63] compares well with the mid-infrared transmittance and
reflectance spectra of both phosphorus (p-type) and boron (n-type)-doped silicon
films at room temperature. The model can be extended into the temperature range
from 250 to 400 K by modeling the temperature-dependent scattering rate using
γ (T )/γ0 = (300/T )1.5, where γ0 is the impurity scattering rate at room tempera-
ture calculated from the mobility model. Figure 8.21 plots the calculated dielectric
function of heavily doped silicon at 400 K for angular frequencies between 1013

and 1015 rad/s with different dopant concentrations. An important feature is that the
real part of the dielectric function ε′ becomes negative especially for high doping
concentrations. Such a metallic behavior due to free carriers can enable surface plas-
mon resonances and enhance near-field radiative heat transfer as will be discussed
in subsequent chapters.

8.4.5 Superconductors

A superconductor is amaterial that exhibits zero resistance and perfect diamagnetism
when it is maintained at temperatures below the critical temperature T c, under a
bias current less than the critical current and an applied magnetic field less than the
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critical magnetic field. The discovery of high-temperature superconductors in the late
1980s has generated tremendous excitement in the public because the achievement
of superconductivity above the boiling temperature of nitrogen (77 K at atmospheric
pressure) offers many technological promises. More and more materials have been
found to be superconducting at higher and higher temperatures. Extensive studies
have been devoted to the infrared properties of superconducting films for applications
such as radiation detectors, opticalmodulators, and other optoelectronic devices [64].
High-temperature superconducting (HTS) materials are made of ceramic structures,
such as YBa2Cu3O7-δ , where δ is between 0 and 1. The Y-Ba-Cu-O compound
behaves as an insulator when δ > 0.6 and as a conductor when δ < 0.2 at room
temperature.

In the normal state (T > Tc), the dielectric function ε(ω) can be modeled as a
sum of the free-electron contribution using the Drudemodel, an intraband absorption
that is important for the mid-infrared region by using the Lorentz term, and a high-
frequency constant [65]:

ε(ω) = ε∞ + εMid-IR + εDrude (8.131)

The expression of theDrude term is the same as inEq. (8.116) or (8.118).Although
phonon contributions can be neglected compared to the large electronic contributions,
a broadband mid-infrared electronic absorption often exists in the HTS materials,
which is typically modeled with a Lorentz oscillator that has a large width, or a
frequency-dependent scattering rate.

Many properties of superconductors can be explained in terms of a two-fluid
model that postulates that a fluid of normal electrons coexists with a superconducting
electron fluid. These two fluids coexist but do not interact. According to the BCS
theory [66], interaction between a pair of free electrons and a phonon (or other
thermally generated excitations) leads to the formation of an electron pair, called a
Cooper pair. The Cooper pairs cannot be scattered by any sources as they move in
the lattice structure. In the superconducting state, only a fraction of free electrons fs
is in the condensed phase (or superconducting state) and the remaining electrons are
in the normal state. The value of fs is temperature dependent and goes to zero at Tc.
The dielectric function in the superconducting state can be modeled by

ε(ω) = ε∞ + εMid-IR + (1 − fs)εDrude + fsεSup (8.132)

The Drude term remains due to the presence of normal electrons with a number
density of (1 − fs)ne. In Eq. (8.132), the dielectric function of the superconducting
electrons can be modeled as

εSup = −ω2
p

ω2
+ iπδ(ω)

ω2
p

ω
(8.133)

where δ(ω) is the Dirac delta function. The calculated results are usually fitted with
the experimental measurements by adjusting the plasma frequency, the scattering
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rate, and the fraction of superconducting electrons. Excellent agreement has been
observed between the predicted and experimental values of both the transmittance
and the reflectance of superconducting films, at temperatures ranging from 300 down
to 10 K [65].

8.4.6 Metamaterials with a Magnetic Response

The concept of negative refractive index (n < 0) was first postulated by Victor Vese-
lago in 1968 for a hypothetical material that has both negative permittivity and per-
meability in the same frequency region. In this case, the sign of n should be chosen
as negative in n = ±√

εμ. Many of the unique features associated with negative
index materials (NIMs) were summarized in Veselago’s original paper, such as neg-
ative phase velocity, reversed Doppler effect, and the prediction of a planar lens.
As illustrated in Fig. 8.22a, if n is negative, the phase speed will be negative and
light incident from a conventional positive index material (PIM) to a NIM will be
refracted to the same side as the incidence. This is called bending light in the wrong
way. Furthermore, if light can be bent differently, then a planar slab of a NIM can
focus light as shown in Fig. 8.22b. The lack of simultaneous occurrence of negative
ε and μ in natural materials hindered further study on NIMs for some 30 years. On
the basis of the theoretical work by John Pendry and coworkers in the late 1990s,
Shelby et al. [67] first demonstrated that a metamaterial exhibits negative refraction
at x-band microwave frequencies. In a NIM medium, the phase velocity of an elec-
tromagnetic wave is opposite to its energy flux. The electric field, the magnetic field,
and the wavevector form a left-handed triplet. For this reason, NIMs are also called
left-handed materials (LHMs). Because both ε and μ are simultaneously negative,
NIMs are also called double negative (DNG) materials.

Fig. 8.22 Unique features of a negative index material (NIM). a The refracted ray bends toward
the same side as the incidence. b A slab of NIM can focus light like a lens does. Arrows indicate
the wavevector directions. Note that the energy direction is the opposite of the wavevector direction
in a NIM
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Pendry [68] conceived that a NIM slab with ε = μ = −1 would perform the
dual function of correcting the phase of the propagating components and amplifying
the evanescent components, which only exist in the near field of the object. The
combined effects could make a perfect lens that eliminates the limitations on image
resolution imposed by diffraction for conventional lenses. Despite the doubt cast by
some researchers on the concept of a “perfect lens” and even on negative refrac-
tion, both the hypotheses of negative refraction and the ability to focus light by a
slab of NIM have been verified by analytical, numerical, and experimental methods.
Potential applications ofNIMs range fromnanolithography to novel Bragg reflectors,
phase-compensated cavity resonators, waveguides, and enhanced photon tunneling
for microscale energy conversion devices [69–71]. Ramakrishna [70] gave an exten-
sive bibliographic review on the theoretical and experimental investigations into
NIMs and relevant materials. There has been growing interest in the study of NIMs
because of the promising new applications as well as the intriguing new physics. The
search for new ways of constructing NIMs also calls for the development of new
materials and processing techniques.

The ideal case, where ε = μ = −1, cannot exist at more than a single frequency
because both ε and μ of a NIM must be inherently dependent on the frequency as
required by the causality. In addition, real materials possess losses, and hence both ε

and μ are complex. The negative index can be realized by considering the complex
plane, as illustrated in Fig. 8.23. Note that ε = rεeiφε and μ = rμeiφμ . Then, we have

n = rne
iφn = √

rεrμe
i(φε+φμ)/2 (8.134)

Therefore, if both ε′ and μ′ are negative, n will be negative, but κ will always
be positive. Note that a negative n can be obtained as long as φn > π/2. Generally
speaking, one would like to see all the phase angles be close to π so that the loss is
minimized. Note that the principal value of the phase is chosen to be from 0 to 2π in
the preceding discussion, rather than from−π to π . If the latter is chosen, one would
obtain a negative κ and a positive n for a NIM. Many metals and polar dielectrics
have a negative ε in the visible and the infrared. Furthermore, periodic structures
of thin metal wires or strips can dilute the average concentration of electrons and
shift the plasma frequency to the far-infrared or longer wavelengths. Negative-μ

Fig. 8.23 Illustration of a negative refractive index, using the complex planes
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materials rarely exist in nature, at the optical frequencies, but can be obtained using
metamaterials consisting of split-ring resonator structures at microwave frequencies.
These structures can be scaled down to achieve negativeμ toward higher frequencies.
The combination of repeated unit cells of interlocking copper strips and split-ring
resonators makes ametamaterial exhibit a negative ε andμ simultaneously. Based on
an effective-medium approach, the relative permittivity and permeability of a NIM
can be expressed as functions of the angular frequency ω as follows:

ε(ω) = 1 − ω2
p

ω2 + iγeω
(8.135)

and

μ(ω) = 1 − Fω2

ω2 − ω2
0 + iγmω

(8.136)

where ωp is the effective plasma frequency, ω0 is the effective resonance frequency,
γe and γm are the damping terms, and F is the fractional area of the unit cell occupied
by the split ring. FromEqs. (8.135) and (8.136), both negative ε andμ can be realized
in a frequency range between ω0 and ωp for adequately small γe and γm. Here, the
values ofω0,ωp, γe, γm, and F depend on the geometry of the unit cell that constructs
the metamaterial. These structures can be scaled down to achieve a negative index
at higher frequencies.

To illustrate the negative index behavior, Fig. 8.24 shows the calculated refrac-
tive index and the extinction coefficient of a hypothetical NIM using the following
parameters [72]: ω0 = 0.5ωp, F = 0.785, and γe = γm = γ = 0.0025ωp. Because
of the scaling capability of the metamaterial, the frequency is normalized to ωp. It
can be seen that in the frequency range from ω0 to ωp, where the real parts of ε and
μ are negative, n is negative and κ (for small values of γ ) is small at frequencies not

Fig. 8.24 Calculated
refractive index of a
hypothetical negative index
material (NIM)
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too close to ω0. Further discussions of metamaterials and their radiative properties
will be given in Chap. 9.

8.5 Experimental Techniques

Measurements of radiative properties (absorptance, emittance, reflectance, and trans-
mittance) of real materials are critical for understanding the physical behavior of
materials as well as for thermal analysis and design. The optical constants can be
derived from the measured radiative or optical properties. For an opaque object with
a smooth surface, measurement of the reflectivity in a broad spectral range can be
used through KK relation to determine the complex refractive index if the material
is nonmagnetic and isotropic. In the semitransparent region for a smooth slab (thick
film), the measured spectral transmittance and reflectance can be used to extract the
refractive index and absorption coefficient. For polar materials in the mid infrared
(such as SiO2 and Al2O3), the phonon oscillator parameters can be obtained by fit-
ting the measured reflectance spectrum. Bidirectional reflectance and transmittance
measurements are often used to study materials with surface roughness or inhomo-
geneity (such as porous materials or carbon nanotube arrays) due to surface and
volume scattering. On the other hand, integrating spheres allow the diffused light to
be collected and can be used to measure directional-hemispherical properties. The
methods for measuring radiative properties can be grouped generally into two cate-
gories: calorimetric measurements and radiometric measurements, discussed in the
following.

In a calorimetric technique, the thermal response of the specimen is used to deter-
mine the absorptance or emittance of the sample under investigation. Both the steady-
state temperature change and transient temperature history can be used to deduce
the radiative properties, though the calorimetric methods often use transient thermal
responses during the heating or cooling process. The calorimetric method is well
suited for measuring the total-hemispherical emittance of opaque materials [50, 73–
75]. The sample is suspended in a large vacuum closure whose walls may be cooled
with a cryogen such as liquid nitrogen. Due to the large wall area, the rate of net
radiative transfer from the surface can bewritten as qrad = εhtot AsσSB(T 4−T 4

w), where
εhtot, As, and T are the emittance, surface area, and temperature of the sample, and
Tw is the wall temperature. The methods have been used to measure εhtot of certain
metals up to about 1100 K [73, 74] as well as some solids and coatings down to
100 K [76]. In laser calorimetry [15, 77–79], the sample is heated up by a laser beam
and the sample temperature depends on the laser power and spectral absorptance.
Either the heating curve or cooling curve, after a shuttle is opened or closed, can be
used to determine the absorptance based on a suitable thermal model. This method
is particularly useful for measuring crystals with very low absorption coefficients
[78, 79].

Radiometric techniques are based on themeasurement of the radiant power reach-
ing the detector (or receiver) from the source (or emitter). A variety of radiometric
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techniques or opticalmethods exist formeasuring the spectral radiative properties.An
optical instrument or measurement system typically includes four parts: the source,
detector, optical components, and the sample. Sometimes the sample to be studied can
be the source (in emission measurements), detector (in absorption measurements),
or part of the components. In general, the source can be a lamp, laser, a blackbody
cavity, or a thermal emitter. The detector can be a thermopile or a bolometer that
measures the radiation based on a temperature rise or a semiconductor detector that is
based on photoconductive or photovoltaic principles as described in Chap. 6. Simple
optical components include lenses, mirrors, polarizers, filters and windows, beam-
splitters, prisms, gratings, and optical fibers. More complicated components, such
as an interferometer and a monochromator, to be discussed in subsequent sessions,
may combine several simple components.

Besides calorimetry and radiometry, polarimetry and ellipsometry are commonly
used to determine the optical constants, from which the radiative properties can be
calculated [15, 80]. Thesemethods are largely based on the phase and amplitude of the
electric field component, rather than the radiant power or intensity. Cezairliyan et al.
[81] used the division-of-amplitude photopolarimeter (DOAP), which can measure
the Stokes parameters, to determine the refractive index and extinction coefficient
at λ = 633 nm for cylindrical specimens heated by a pulsed laser. The normal
spectral emissivities of molybdenum and tungsten at temperatures between 2000 and
2800 K measured by the polarimetric technique agree well with those measured by
the spectral radiometric technique using high-speed pyrometers [81]. Spectroscopic
ellipsometers can nowadays perform measurements not only from the ultraviolet
to the near-infrared (wavelengths 150–2500 nm) region, but also from the mid- to
far-infrared region up to λ = 120 μm [82].

In the following, we give some general discussions about the sources and detec-
tors, the basics of dispersive instruments and the Fourier-transform spectrometer,
along with setups for measuring directional-hemispherical properties with inte-
grating spheres and for measuring spectral, directional emittance of materials at
elevated temperatures. Measurements of the bidirectional reflectance and transmit-
tance distribution functions will also be discussed, followed by a section on spectral
ellipsometry.

8.5.1 Sources

For thermal radiation, a blackbody is the ideal source since its spectral distribution is
well defined, as discussed previously. The radiation from the sun can be approximated
as a blackbody at a temperature of about 5800 K. However, sunlight varies with time
and atmospheric conditions. Therefore, it cannot be used as a source for quantitative
measurements. Because the surface area of the walls must be much greater than the
opening, blackbody cavities are bulky and must be carefully designed to maintain a
uniform inner wall temperature. This has been done successfully in national metrol-
ogy laboratories/institutes and used for measuring the Stefan–Boltzmann constant
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and the spectral distribution that has resulted in the discovery of Planck’s law [3, 16–
19]. For high-temperature emittance measurements, blackbody cavities can be used
as references. For measuring spectral transmittance and reflectance, since reference
methods are commonly used, there is no need to precisely know the radiant power
or intensity.

Lasers are quite commonly used in optical measurements since they provide well-
collimated and nearly monochromatic radiation at discrete wavelengths. Some gas
lasers have a very narrow spectral band due to atomic or molecular transitions, such
as He-Ne lasers in the visible (633 nm) and near-infrared (1154 nm) or CO2 lasers
at wavelengths near 10 μm, especially at 10.6 μm. An optical cavity is made of
a Fabry–Pérot resonator with two highly reflecting mirrors: one is opaque and the
other partially transparent. The beam is reflected back and forth between the mirrors
and makes multiple passes through the gain region (lasing medium) before it exits
through the partially transparent mirror. This way, the stimulated emission within the
gain region can be amplified. At present, semiconductor-based solid-state lasers are
very popular and inexpensive. An example is a laser diode with a p-n junction that is
similar to a light-emitting diode (LED). However, LEDs are based on spontaneous
emission and produce light in a relatively broad spectral band (30–60 nm width). On
the other hand, a diode laser is based on the stimulated emission of a p-i-n junction
in which the active region is the intrinsic region (i) sandwiched between the p-
and n-type direct bandgap semiconductors, such as GaAs, GaSb, InP, etc. Detailed
descriptions of the mechanisms, types, and performances of various laser systems
can be found elsewhere. While the laser is a powerful tool for optical measurements,
spectrometer systems can quickly produce continuous spectral measurements in a
broad wavelength band and thus are the most common instruments for measuring
spectral radiative properties.

Incandescent lamps give out light when the filament is heated to an elevated tem-
perature. Tungsten halogen lamps are perhaps the most popular and inexpensive
light source for UV, VIS, and NIR measurements. The tungsten filament is heated to
about 2800–3200 K in a mixture of inert gas and a halogen gas (such as bromine).
The halogen gas reacts with tungsten that is being evaporated from the filament at
high temperatures and redeposits the tungsten atoms back onto the filament; this
is called the halogen cycle. The bulb is made of fused silica (or quartz) that is an
amorphous SiO2, which has a low coefficient of thermal expansion, high strength,
and a high melting temperature. For a regular lamp without a halogen gas, the fil-
ament temperature cannot be very high and the tungsten is gradually evaporated
and deposited onto the glass wall. At a temperature around 3000 K, the blackbody
emission peak is near 1 μm. Since the emissivity of tungsten decreases with increas-
ing wavelength, the emission peak shifts toward a shorter wavelength. Typically, a
quartz tungsten-halogen lamp can be used from about 250 to 2500 nm wavelengths.
The signal becomes weaker at longer wavelengths due to the reduction of tungsten
emissivity. Furthermore, fused silica begins absorbing beyond 3 μm wavelength.

Globar made of SiC with the addition of rare earth oxides has been commonly
used for infrared spectroscopy at wavelengths from about 2 to 100 μm. The temper-
ature of the heating element is typically 1300–1650 K. The emissivity of the globar
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is from 0.82 to 0.94 at wavelengths from 0.65 to 15 μm [83]. The globar source can
be exposed to ambient conditions and lasts for a long time without turning it off,
especially with nitrogen purging. Nowadays, most commercial mid-infrared spec-
trometers use globar emitters with different shapes and somewhat different operating
temperatures.

A high voltage can ionize the gas molecules placed in between the cathode and
anode. The high-temperature plasma generated by the electric discharge gives out
arc light. This is the mechanism of lightning and has been used in arc welding.
Common gas discharge lamps include the mercury arc lamp, xenon arc lamp, xenon
flash lamp, and deuterium lamp. Although a high-voltage pulse (>20 kV) is needed
to initiate the discharging process, gas discharge lamps usually operate with a low
DC voltage (around 20 V) and a high current. Deuterium lamps emit unidirectional
ultraviolet radiation with high stability. The wavelengths can range from as short as
115 nm (10.8 eV) to about 400 nm. They are commonly used in UV spectroscopic
applications. The color temperature of a typical xenon lamp is around 6000 K and
the emitted radiation is from 185 to 2000 nm. Hence, the xenon lamp has a closer
match to the solar spectrum than other artificial sources. For this reason, xenon lamps
are often used in solar simulators, UV/VIS spectrophotometers, and microscopes.
Mercury arc lamps emit sharp peaks in the UV region with higher intensities than the
xenon lamps with the same power consumption. Since the peaks are centered around
254 nm, the effective color temperature may exceed 10000 K. Another application of
the mercury arc lamp is in the far infrared from 30 to 1000μm, where the intensity of
globar decreases more rapidly. In the far-infrared applications, the effective radiance
temperature of mercury arc lamps is about 5000 K [84].

Synchrotron radiation or a synchrotron light source uses a circular particle accel-
erator. When electrons are accelerated under the magnetic field in the storage ring
to a relativistic speed, electromagnetic radiation is emitted in the broad spectrum
from x-ray to microwave with high brightness, collimation, and stability. Both linear
and circular polarizations can be produced. Of course, synchrotron radiation is very
expensive and available only in limited facilities. Synchrotron radiation is mostly
used in x-ray studies since it is the brightest x-ray source and also in THz radiation
(0.1–10 THz) studies where there is a lack of intensive sources [85].

8.5.2 Detectors

Generally speaking, there are two types of radiation detectors: thermal detectors
and photon detectors. In a thermal detector, incident radiation causes a temperature
variation that can be measured by a transducer that converts it to an electrical signal.
In a photon detector or quantum detector, incident photons interact with the materials
such as a semiconductor diode and cause electronic transitions to generate electron–
hole pairs. Photodiodes can operate in either the photoconductive (PC) mode or the
photovoltaic (PV) mode. The former is based on the change in electric conductivity
and the latter is based on the voltage or current output, just like a solar cell, due
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Fig. 8.25 Illustration of a
bolometer coupled with a
heat sink and a simple
measurement system

to absorbed photons. Photon detectors are generally more sensitive and faster than
thermal detectors. On the other hand, thermal detectors typically have a broadband
response with good linearity.

A thermopile utilizes the thermoelectric effect and combines many thermocouple
junctions in a series: the hot junctions are coated black to receive radiation and
cold junctions are maintained at the heat sink temperature. Since their invention in
the early 1830s, thermopiles combined with a galvanometer had been successfully
used for measuring the solar spectrum and for studying blackbody radiation until the
bolometer was invented by S. P. Langley in 1880 [3]. Bolometers are based on the
temperature dependence of electrical resistance and can be orders of magnitudemore
sensitive than thermopiles. In the following, we will use a bolometer to illustrate the
figures of merit of a radiation detector, specifically a thermal detector.

As shown in Fig. 8.25, a lumped capacitance model is used in which the detector
is assumed to be at a uniform temperature with a heat capacitance C and is linked to
a heat sink at temperature Tsink with a thermal conductance G. For incidence with a
radiant power modulated at an angular frequency ω f , the transient heat conduction
equation may be written as [64, 86]

C
dθ

dt
+ Gθ = I 2R + αq[1 + cos(ω f t)] (8.137)

Here, θ = T − Tsink is the reduced temperature, R is the resistance of the detector
element which is a function of temperature, I is the bias current which is assumed to
be constant, and α is the absorptance of the detector (often coated with a wavelength-
independent absorbing layer). The solution of Eq. (8.137) can be expressed as

θ(t) = αq cos(ω f t − φ)

Geff

(
1 + ω2

f τ
2
)1/2 + θ0 (8.138)
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where φ = tan−1(ω f t) is the phase lag, Geff = G − I 2(dR/dT ) is the effective ther-
mal conductance, and τ = C/Geff is the time constant. The last term in Eq. (8.138)
can be expressed as θ0 = T0 − Tsink = (αq + I 2R0)/G, where T0 is the (average)
operating temperature and R0 is the resistance at T0. The resistance of the bolometer
may be expressed as R = R0 + (dR/dT )(T − T0). Note that the temperature coef-
ficient of resistance (TCR) is defined as β = (dR/dT )/R0. Usually the bias current
is sufficiently small such that Geff ≈ G. The time constant determines how high a
modulation frequency can be used. Thermal detectors typically have a time constant
in the range from milliseconds to seconds.

The responsivity S is the ratio of the output (voltage) signal to the incident power
(modulated portion only). For a bolometer based on Eq. (8.138), we see that

S = αβ I R0

Geff

(
1 + ω2

f τ
2
)1/2 (8.139)

HighTCR is critical for a high sensitivity. For this reason, superconductor bolome-
ters have been developed that use the sharp resistance transition just above the criti-
cal temperature [64]. Some solids like vanadium dioxide (VO2) experience a phase
change above room temperature, with a large negative TCR during the insulator
(semiconductor) to metal transition (around 340 K). This phenomenon has been
used to build uncooled microbolometer arrays for infrared imaging applications.

Another figure of merit is called the noise equivalent power (NEP), which is the
noise floor that limits the sensitivity since any signal below NEP cannot be distin-
guished from the noise. The NEP of a thermal detector depends on the background
fluctuation called background noise, phonon noise due to the random exchange of
thermal energy through the conductance G, Johnson noises of the detector resis-
tance and load resistance due to random charge fluctuations, and the 1/f noise that
is inversely proportional to frequency of the electronic signal [64, 86, 87]. By oper-
ating at cryogenic temperatures (e.g., using liquid helium), NEP can be reduced by
orders of magnitude. The detectivity D∗ is often used for comparing the sensitivity
of different detectors and is defined as

D∗ =
√

AB

N E P
(8.140)

Here, A is the detector area and B is the bandwidth in Hz. The units of D∗ are usually
expressed in terms of cm Hz1/2 W−1.

Another type of thermal detector that is commonly used in infrared spectrometers
is the pyroelectric detector, which is based upon the thermally induced polarization
change in pyroelectric materials. Commonly used pyroelectric materials are lithium
tantalate (LiTaO3), triglycine sulfate (TGS) or deuterated triglycine sulfate (DTGS),
and lead zirconate titanate (PZT), which also has a large piezoelectric effect. When
oscillating radiation is absorbed by a pyroelectric material, the temperature variation
will change the degree of polarization, resulting in an oscillating voltage signal on
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the load resistor. Room-temperature DTGS detectors have been adopted for many
Fourier-transform infrared spectrometers. While it has a relatively low D∗ compared
to photon detectors, as shown in Fig. 8.26, a DTGS detector has a nearly flat spectral
response and can be used in a large spectral range, extending to the far-infrared region
(wavelengths up to 1000 μm). In the far infrared, liquid-helium-cooled bolometers
are often used since the detectivity can be increased by orders of magnitude. Note
that photoconductive mercury–cadmium–telluride (HgCdTe orMCT) detectors with
various compositions and bandgaps are often used to achieve higher sensitivity in
the mid infrared. The detectivity of a narrower band (higher sensitivity) MCT-1 and
a wider band (lower sensitivity) MCT-2 is also shown in Fig. 8.26, along with a more
sensitive photovoltaic indium antimonite (InSb) detector that is useful up to 5.5 μm.
A photon detector based on a semiconductor diode has a cutoff frequency since the
incoming photon energy must exceed the bandgap of the semiconductor material.
Furthermore, as the frequency increases, a portion of the photon energy that exceeds
the bandgap is lost to heat. It should be noted that MCT PC detectors have been
reported with poor linearity and sometimes need to be calibrated and corrected [88].

In the visible and near-infrared region, photodiode detectors such as GaP (150–
550 nm), Si (190–1100 nm), Ge (800–1800 nm), and InGaAs (900–2600 nm) can be
used in their applicable spectral range with high linearity and detectivity. For mea-
surements with very low light signals, such as measuring scattered light or single
photon detection, photomultiplier tubes (PMTs) can be used from UV to NIR due
to their extremely high sensitivities. A photomultiplier tube is a quartz vacuum tube
where electrons are generated at the photocathode by photoemission as described in
Chap. 6. The emitted electrons undergo a set of electrodes (called dynodes) where
secondary emission occurs to release additional electrons. More and more electrons

Fig. 8.26 Detectivity (D*)
of several infrared detectors,
where the photovoltaic InSb
and photoconductive MCT
detectors are cooled by
liquid nitrogen and the
DTGS detector operates at
room temperature
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are generated and accelerated throughmultiple dynode stages with higher and higher
electrical potential. The electrical current emitted by the photocathode can be ampli-
fied by up to eight orders of magnitude by the time the electrons reach the anode
where they are collected [86, 87].

Though the original purpose of this invention was to develop better electronic
memory for information storage, the charge-coupled device (CCD) has become a
major technology in digital images and spectroscopic applications, such as digital
cameras and the Hubble space telescope. CCDs are silicon devices that contain
an array of metal-oxide-semiconductor capacitors. The charges (electrons or holes)
generated by incoming photons through photoelectric effect are first stored in the
potential well created by the gate electrodes and then shifted (transferred) to the next
capacitor by applying appropriate clock pulses to the gate electrodes. Using a pulse
train, the charges stored in each capacitor are eventually transferred to a terminal
row to be read out serially and matched up with the location to provide a map of
the incoming photon flux. This ingenious conception has led to development of the
digital camera technology and certain UV/VIS/NIR spectrometers. In recent years,
active pixel sensors based on complementary metal-oxide-semiconductor (CMOS)
have been developed as the alternative technology for imaging applications. In a
CMOS-based device, each photodetector (pixel) has its own amplifier so that the
generated photocurrent is read out simultaneously by an integrated circuit array. At
present, most of the commercial infrared focal plane arrays or IR cameras use CMOS
technology as the integrated read-out device.

While detectors can be calibrated to measure the actual radiant power as a power
meter, radiation detectors are often used for relative measurements according to the
ratio of the sample signal to a reference signal. In some applications, such as solar
irradiance measurements, radiation thermometry, absolute radiometry, and thermal
imaging where accurate radiant power measurements are required, calibrations of
the detector responsivity and optical throughput are necessary. Standard instruments
such as the electrically self-calibrated radiometers, absolute cryogenic radiometers,
and blackbody sources are often employed for these purposes [17, 18].

8.5.3 Dispersive Instruments

Before the laser was invented, most of the light sources were polychromatic. Inter-
ference filters, prisms, or gratings are typically used to obtain nearly monochromatic
radiation. Multilayered dielectric (and sometimes metallic) films can be coated on a
substrate to form interference filters that allow radiation from a narrow spectral band
to pass through. An example is the Fabry–Perot interferometry that has sharp trans-
mission peaks as to be further discussed in Chap. 9. A prism can effectively deflect
broadband light into different directions, achieving nearly monochromatic radiation
in selected directions. However, for spectroscopic applications, most contemporary
instruments use surface relief gratings whose surfaces are corrugated periodically.
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Polychromatic irradiation on a periodically corrugated surface is diffracted toward
different directions (i.e., spatially dispersed according to the wavelength) based on
the grating equation [38]:

sin θ
(m)
d = sin θi + mλ

�
(8.141)

where θ
(m)
d is the angle of diffraction that depends on the angle of incidence θi, wave-

length λ, grating period �, and diffraction order m (which is an integer). The zeroth
order (m = 0) corresponds to specular reflection that is in the same direction for
all wavelengths. When m is not equal to zero (positive or negative), the diffraction
angle is wavelength dependent and different monochromatic radiation can be spa-
tially dispersed upon reflection. Further discussion of grating theory will be given in
Chap. 9.

Figure 8.27 shows the configuration of a Czerny–Turner monochromator with a
rotating grating. The grating period must be greater than the maximum measurable
wavelength. For a grating spectrometer, depending on the wavelength range, there
may be tens to several thousands of grooves per millimeter. Some modern grating
monochromators employ a linear array of sensors (CCD) without moving parts. It
should be noted that suitable shortwave cutoff filters are needed to prevent unwanted
radiation with higher diffraction orders from reaching the detector. This is because
the diffraction angle depends on the product, mλ. Hence, radiation from shorter

Fig. 8.27 Illustration of a Czerny–Turner grating monochromator. The grating can be rotated to
vary the output wavelength
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Fig. 8.28 A setup for measuring directional-hemispherical radiative properties using a monochro-
mator and an integrating sphere [89, 90]

wavelengths and higher orders can have the same θd as for radiation from longer
wavelengths and lower orders. The spectral resolution is often determined by the
width of the exit slit. However, the ultimate resolving power (i.e., the ratio of the
wavelength divided by the spectral resolution δλ) is limited by m N , where N is the
total number of illuminated grooves [38]. A variety of commercial monochromators
and spectrophotometers are available to meet the specific requirements for spectral
range, sensitivity, and resolution.

Typically, grating spectrophotometers are used from the ultraviolet to the near
infrared. At wavelengths beyond 2500 nm, the Fourier-transform infrared spectrom-
eter has become the prevailing choice, as discussed in the subsequent section. A
custom-built setup formeasuring the directional-hemispherical reflectance and trans-
mittance is shown in Fig. 8.28. The system is composed of a halogen lamp, a grating
monochromator with a filter wheel, a chopper, and two lenses, which guide the
monochromatic radiation to a 200-mm-diameter integrating sphere [89–91]. The
inner wall of the integrating sphere is coated with a polytetrafluoroethylene (PTFE)
diffuse reflector. Incident radiation can be focused on a spot size of approximately
6 mm × 6 mm on the center of the sphere, where the sample is mounted on a rotary
holder through the top port. By rotating the sample holder, the beam can be directed
either onto the back port of the sphere (covered by a PTFE plate) to obtain the refer-
ence signal or onto the sample to obtain the sample signal. A baffle placed above the
detector located at the bottom port prevents the direct illumination of the detector by
the first reflection of the sample or reference. Two photon detectors can be mounted
at the bottom port of the sphere interchangeably: a Si photodiode for wavelengths
from 300 to 1050 nm and a Ge photodiode for wavelengths from 1000 to 1800 nm.
The detector signal is sent to a transimpedance pre-amplifier that has eight decades
of dynamic range with a linear response. Afterward, the voltage signal is collected
by a lock-in amplifier at the chopping frequency of 400 Hz. For an opaque sample,
the directional-hemispherical reflectance can be obtained from the ratio of the sam-
ple signal to the reference signal. Furthermore, the back-mount method can also be
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used for convenient measurement. In the back-mount configuration, the sample is
placed at the back port outside the sphere, interchangeably with the PTFE reference
[91]. A number of factors can affect the accuracy of the integrating sphere measure-
ments and, therefore, calibration and corrections are often necessary to reduce the
measurement uncertainty [92].

8.5.4 Fourier-Transform Infrared Spectrometer

Developed in the late 1960s, Fourier-transform infrared (FTIR) spectrometers have
become a versatile tool for infrared spectral characterization of materials, including
spectral transmittance, reflectance, absorptance, and emittance [93–97]. As schemat-
ically shown in Fig. 8.29, an FTIR system utilizes Michelson interferometer that
consists of a beamsplitter, a fixed mirror, and a moving mirror to produce inter-
ference effects. The strength of the output optical signal depends on the relative
position of the moving mirror. If the path lengths between the beamsplitter and the
two mirrors are the same, the situation is identified as zero path difference (ZPD),
and the power reaching the detector will be the largest since constructive interfer-
ences occur at all wavelengths. For monochromatic incident light, a periodic signal
will reach the detector as the moving mirror travels due to the alternating construc-
tive and destructive interferences. For polychromatic incident radiation, the detector
receives a time-varying signal called an interferogram, which is a Fourier transform
of the incident radiation weighted by the spectral efficiency of the optical system
and detector responsivity. In general, the interferogram appears somewhat like a sinc
function with a peak at the ZPD. Unlike dispersive spectrometers, the FTIR detector
receives a time-varying signal that carries information about the radiative power in

Fig. 8.29 Illustration of the Fourier-transform infrared spectrometer. Accessories can be introduced
in the sample compartment for reflectance measurements
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a broadband. Suppose the spectrum of the source is I (ν̄). After passing through the
Michelson interferometer, the spectral radiant power arriving at the detector is a
periodic function with a dc component:

1

2
[1 + cos(2πx ν̄)]ξ(ν̄)I (ν̄)

where ν̄ is the wavenumber, x is the path length difference, and ξ(ν̄) is the optical
efficiency. The one-half term is due to the interferometer since the other half of the
energy is reflected back to the source.

Since only themodulated part contributes to the interferogram, the detector output
signal for polychromatic incidence is given as follows:

V (x) = 1

2

∞∫

0

ξ(ν̄)S(ν̄)I (ν̄) cos(2πν̄x)dν̄ (8.142)

where S(ν̄) is the detector responsivity. The data acquisition system performs an
inverse fast Fourier transformwith a computer to generate a relative spectral response
function, typically called the single beam spectrum [93]:

I ∗(ν̄) =
∞∫

−∞
V (ν̄) cos(2πν̄x)dx (8.143)

If the velocity of the moving mirror is u, then x = 2ut . Hence, the detector
receives a time-varying signal. However, the frequency f = 2uν̄ typically falls in
the range from several hundred to several thousand Hz depending on the wavelength
of the incident radiation. This frequency can easily bemeasured by a thermal detector
[94].

As shown in Fig. 8.29, a He-Ne laser with a well-characterized wavelength is
used to precisely determine the location of the moving mirror with respect to the
fixed mirror (i.e., the path length difference). The laser beam goes through the same
interferometer to generate a sinusoidal wave that is detected by a photodiode detector.
This enables high wavenumber accuracy for the resulting spectrum.

Spectral transmittance can be measured by dividing the spectrum with the sample
by the reference spectrum when the sample is moved out of the optical paths as
shown in Fig. 8.29. Reflectance accessories can be used both for specular and diffuse
reflectance measurements [63, 91, 96]. Various other accessories can be used with
FTIR spectrometers including attenuated total reflectance (ATR) that is based on
evanescent waves [15, 93].

FTIR spectrometers have several advantages over dispersive spectrophotome-
ters, such as high throughput, high signal-to-noise ratio, high resolution, and short
measurement time. They are particularly suitable for measurements at wavelengths
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beyond 2 μm. While FTIR spectrometers have very high wavelength accuracy, cau-
tion must be taken with regard to its radiometric accuracy in order to quantitatively
measure the radiative properties [88, 94, 95].

Figure 8.30 shows the optical layout of a custom-built spectral emissometer that
allows the heated sample to be rotated to measure the directional emittance for each
polarization [97]. A blackbody calibration source is used as the reference and a flip
mirror allows the emission signal from either the sample surface or the blackbody to
be collected by the FTIR through its side port. The ellipsoidal reflector collects the
radiation through a half-cone angle of approximately 3° from the sample surface and
focuses it again onto the iris, which is used to limit the collecting area on the sample
and to adjust the amount of radiation reaching the spectrometer. The opening of the
iris can be matched to the FTIR system to achieve a spectral resolution of 1 cm−1.
For most measurements, however, a resolution of 4 cm−1 is usually sufficient. The
parabolic reflector converts the radiation to a nearly collimated beamwith a diameter
of about 25mmbefore sending it to the FTIR. A liquid-nitrogen-cooled InSb detector
can also be used, which has a higher detectivity but a narrow spectral range from 2.0
to 5.5 μm. An IR wire-grid polarizer is mounted next to the iris for measuring the
emittance with a chosen polarization.

The heater assembly is also shown on the right of Fig. 8.30. The sample was
compressed on a copper disk, which was nickel plated to prevent oxidation. The
nickel-plated copper disk maintained a uniform temperature underneath the sample.
The copper surface was also polished before nickel plating to reduce thermal contact
resistance. A coil heater was located at the back of the copper disk with an alumina
plate inserted in between for electrical insulation. A K-type thermocouple probe

Fig. 8.30 Schematic of optical layout for the spectral emissometer formeasuring angular-dependent
emittance for each polarization. The heated sample holder is mounted on a rotary stage as shown
on the right [97]



8.5 Experimental Techniques 485

with oxidation-resistive sheathing was embedded inside the copper disk for sample
temperature measurement. The thermocouple is also used with a PID temperature
controller to set and control the sample temperature. The heater assembly was placed
in refractory materials and mounted inside a metal box. The sample temperature can
reach 1000Kwith a power input around140W.The front cover of the heater assembly
was water-cooled with an aperture of 25 mm in diameter. The heater assembly was
mounted on a rotary stage to change the emission angle. The emissometer has been
used to measure a SiC substrate for calibration and the coherent emission from
an asymmetric Fabry–Perot planar multilayer structure as well as a metamaterial
structure by excitation of magnetic polaritons [97]. More discussions of multilayers
and magnetic polaritons will be given in the subsequent chapter.

8.5.5 BRDF and BTDF Measurements

To measure BRDF or BTDF, both (θi, φi) and (θr, φr) need to be changed while
the distance between the sample and the detector should be fixed [45]. For in-plane
measurements, the plane of incidence is the same as the plane of reflection so that
the azimuthal angles can be fixed [98]. Figure 8.31 shows a diagram of a laser
scatterometer. The laser beam is in a fixed position; rotating the detector allows
the change of the polar angle of incidence θi, while rotating the detector around
the sample using the goniometer allows the change of the reflection angle θr. In
the actual setup, the detector is allowed to move out of the horizontal plane so that

Fig. 8.31 Schematic of a laser scatterometer for BRDF/BTDF measurements [45]
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the azimuthal angle of reflection φr can also be changed. This facility is called the
three-axis automated scatterometer (TAAS) and was developed in the author’s lab
[45]. The three rotary stages are independently controlled by step motors with very
high angular precision (better than 0.01°). The incident laser beam is parallel to the
optical table and the sample is vertically mounted.

A fiber-coupled diode laser system serves as a collimated light source. A
thermoelectric-cooled temperature controller maintains the laser at a constant oper-
ation temperature to achieve superior power stability less than 0.2%. The lock-in
amplifier provides an alternating current (typically 400 Hz) to the laser controller
and measures the detector signal (after the pre-amplifier) at the same modulation
frequency to eliminate the effect of background radiation. The wavelength of the
laser can be chosen using different laser diodes. A linear polarizer is used to polarize
the incident light either parallel or perpendicular to the plane of incidence. Then, the
light is split into two paths by a beamsplitter. The majority is transmitted through
the beamsplitter to the sample and then reflected/scattered by the sample. The output
power is measured with a signal detector A, whose signal is sent to a pre-amplifier. A
smaller portion is reflected by the beamsplitter and measured by a reference detector
B, whose signal is also sent to the pre-amplifier. Si and Ge photodiode detectors
measure the radiant power in the wavelength range from 350 to 1100 nm and from
800 to 1800 nm, respectively. The transimpedance pre-amplifiers convert the cur-
rent signal from the detectors to a voltage output with resistance values switchable
from 10 to 109 � to achieve an eight-order dynamic range. A typical solid angle
of the signal detector (with respect to the center of the laser spot on the sample) is
��r = 1.84 × 10−4 sr, resulting in a half-cone angle of 0.45o [45]. The lock-in
amplifier and step motors are connected to a desktop with the LabView environment
for data acquisition and automatic rotary-stage control. It should be noted that the
BRDF within ± 2.5° of the retroreflection direction cannot be measured since the
sample detector would block the incident beam at this position. Laser diodes at 635,
891, 977, and 1550 nm have been employed in several investigations [45, 54, 99].

In the experiment, the detector output signal is proportional to the solid angle
��r. The denominator of Eq. (8.95) gives the incident radiant power reaching the
detector.Hence, theBRDForBTDFcanbeobtained from the followingmeasurement
equation [45, 98]:

fs = 1

Pi

Ps

cos θr��r
(8.144)

where fs refers to either BRDF or BTDF, Pi is the laser power incident on the sam-
ple, Ps is the scattered power reaching the signal detector, and ��r is the solid
angle of the detector area viewed from the beam centered on the sample. During
the measurements, the beamsplitter ratio is first calibrated. Detector A is rotated to
behind the sample while the sample is removed. The ratio of the signal from detector
B to that from detector A gives an instrument constant CI. In the measurements,
Ps/Pi = CIVA/VB, where VA and VB are the output voltages from the lock-in ampli-
fier for detectors A and B, respectively. As long as the responses are linear, there is
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no need to calibrate the detector responses. The use of the reference detector also
eliminates the effect of laser power instability during the measurements. The spec-
ular reflectance, Rsp, can also be measured by positioning the signal detector in the
specular direction with θr = θi using the equation Rsp = fr cos θr��r. The laser
beam diameter (FWHM) is 3–5 mm, which is much smaller than the detector aper-
ture whose diameter is 8 mm. This allows the specularly reflected power to be fully
captured by the signal detector. In the measurements, VA and VB are averaged over
many measurements at a given position to reduce the random error and the resulting
uncertainty is typically within 5%.

8.5.6 Ellipsometry

When linearly polarized light is incident on an isotropic surface with or without a
film, if the incident wave is either p- or s-polarized, the reflected wave is also linearly
polarized as shown in Fig. 8.7. The ratio of the Fresnel reflection coefficients can be
expressed as

R̃ = rp

rs
= tan(�)ei� (8.145)

where� and� are called the ellipsometric angles or parameters. Note that tan(�) is
the amplitude ratio and � is the phase difference between the two Fresnel reflection
coefficients. For an opaque and nonmagnetic medium, at given angle of incidence, R̃
is a function of the optical constants (n, κ). If both tan(�) and � can be measured,
then the optical constants can be obtained. If a thin dielectric film is coated on an
opaque substrate with known optical properties, then the refractive index and the
film thickness can be simultaneously determined [80, 96]. It is also possible to use
ellipsometry to study anisotropic crystals [82]. This is the principle of ellipsometry
and various methods can be used to measure the ellipsometric parameters under
oblique incidence [80, 82].

Figure 8.32 shows the rotating analyzer setup where a monochromatic
beam (either from a laser or spectrometer) is incident at θi, which is usually greater
than 60°. The incident wave on the sample is linearly polarized but with both s- and

Fig. 8.32 Schematic of a
rotary analyzer ellipsometer
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p-components. In this case, the reflected wave is, in general, elliptically polarized.
The analyzer is another linear polarizer that is rotated to give out a sinusoidal signal
to the detector. A quarter-wave compensator can sometimes be used. Furthermore,
the incident polarizer can also be rotated to change the incident wave polarization.
Through suitable data processing including regression analysis, the two ellipsometric
parameters can be determined at each wavelength. With the development of spec-
tral ellipsometers and the extension to the mid- to far-infrared regions, ellipsometry
has become a complementary and alternative technique for the study of radiative
properties of materials [82, 100].

8.6 Summary

In this chapter, we used the macroscopic Maxwell equations to derive the plane
wave equation and subsequently defined the optical properties for isotropicmaterials.
Planck’s law was derived based on statistical mechanics. After a brief discussion of
radiation thermometry, radiation pressure and photon entropy were then introduced.
The reflection and refraction of waves at a smooth interface were derived based on
the electromagnetic wave theory. This chapter also presented the dielectric functions
for metals, dielectrics, semiconductors, superconductors, as well as materials with a
magnetic response or metamaterials. The concept of NIM or DNGmaterials, as well
as their unique features, was also explained. The last section surveyed the experimen-
tal techniques typically used for measuring radiative properties from ultraviolet to
the far infrared. This chapter serves as the foundation of the subsequent chapters, in
which we will provide extensive discussions on the radiative properties of semitrans-
parent materials, windows, multilayers, periodic gratings, rough surfaces, as well as
evanescent waves, surface polaritons, photon tunneling, and near-field radiative heat
transfer.

Problems

8.1 Write the wave equation in the 1D scalar form as ∂2ψ

∂x2 = 1
c2

∂2ψ

∂t2 , where c is a
positive constant. Prove that any analytical function f can be its solution as
long asψ(x, t) = f (x ±ct). Plotψ as a function of x for two fixed times t1 and
t2. Show that the sign determines the direction (either forward or backward)
and c is the speed of propagation. Develop an animated computer program to
visualize wave propagation.

8.2 Consider an electromagnetic wave propagating in the positive z-direction, i.e.,
k = kẑ. Plot the vibration ellipse, and compare it with Fig. 8.2 for two cases:
(1) a = 3x̂ and b = x̂ + 2ŷ and (2) a = 3x̂ and b = −2x̂ + ŷ. Consider the
spatial dependence of the electric field at a given time, say ωt = 2πm, where
m is an integer. Discuss howEwill change with kz for the following two cases:
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(3) Re(E0) = 3x̂ and Im(E0) = 0 and (4) Re(E0) = 3x̂ and Im(E0) = −3ŷ.
The polarization is said to be right handed if the end of the electric field vector
forms a right-handed coil or screw in space at any given time. Otherwise, it is
said to be left handed. Discuss the handedness for all four cases.

8.3 Integrate Eq. (8.17) over a control volume to show that the energy transferred
through the boundary into the control volume is equal to the sum of the storage
energy change and energy dissipation.Write an integral equation usingGauss’s
theorem.

8.4 Derive the wave equation in Eq. (8.20) for a conductive medium; show
Eq. (8.9) is a solution if k is complex, as given in Eq. (8.21). Many books
use E = E0ei(ωt−k·r) instead of Eq. (8.9) as the solution; how would you mod-
ify Eqs. (8.21) and (8.22)? Show that the complex refractive index must be
defined as ñ = n − iκ , where κ ≥ 0.

8.5 Calculate the refractive index, the absorption coefficient, and the radiation
penetration depth for the following materials, based on the dielectric function
values at room temperature.

(a) Glass (SiO2): ε = 2.1 + i0 at 1 μm; ε = 1.8 + i0.004 at 5 μm.
(b) Germanium: ε = 21 + i0.14 at 1 μm; ε = 16 + i0.0003 at 20 μm.
(c) Gold: ε = −10 + i1.0 at 0.65 μm; ε = −160 + i2.1 at 2 μm.

8.6 Consider a metamaterial with μ = −1 + i0.01 and ε = −2 + i0.01; deter-
mine the refractive index and the extinction coefficient. Calculate the radiation
penetration depth. Do a quick Internet search on negative index materials, and
briefly describe what you have learned.

8.7 Find the magnetic fieldH for the wave given in Eq. (8.37). Show that the time-
averaged Poynting vector is parallel to the x-axis. That is, the z-component of
〈S〉 for such a wave vanishes. Briefly describe the features of an evanescent
wave.

8.8 Write Planck’s distribution in terms of wavenumber ν̄ = 1/λ, i.e., the emis-
sive power in terms of the wavenumber: eb,ν̄ (ν̄, T ). What is the most probable
wavenumber in cm−1? Compare your answer with the most probable wave-
length obtained fromWien’s displacement law in Eq. (8.45). Explain why the
constants do not agree with each other. Cosmic background radiation can be
treated as blackbody radiation at 2.7K;what is thewavenumber corresponding
to the maximum emissive power?

8.9 Based on the geometric parameters provided in Example 8.3 and neglecting the
atmospheric effect, calculate the total intensity of the solar radiation arriving
at earth’s surface. Calculate the spectral intensity for solar radiation at 628
nm wavelength. A child used a lens to focus solar radiation to a small spot
on a piece of paper and set fire this way. Does the beam focusing increase the
intensity of the radiation? The lens diameter is 5 cm, and the distance between
the lens and the paper is 2.5 cm. What are the focus size and the heat flux at
the focus? Neglect the loss through the lens.
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8.10 For a surface at T = 1800 K, with an emissivity of 0.6, what are the radiance
temperatures at λ = 0.65 μm and 1.5 μm? If a conical hole is formed with
a half-cone angle of 15°, what is the effective emittance and the radiance
temperature at λ = 0.65 μm?

8.11 Derive Planck’s law for a medium with a refractive index n �= 1 in terms of
the medium wavelength λm, eb,λm(λm, T ) from Eq. (8.43). Assume that n is
not a function of frequency (i.e., the medium is nondispersive) in the spectral
region of interest. How does it compare with Eq. (8.44)?

8.12 Express Eq. (8.53) in terms of wavelength, sλ(λ, T ). Find an expression of the
entropy intensity for blackbody radiation, Lλ(λ, T ), and show that Lλ(λ, T ) =

c
4π sλ(λ, T ).

8.13 Assume that all the blue light at λ in the range between 420 and 490 nm of
solar radiation is scattered by the atmosphere and uniformly distributed over a
solid angle of 4π sr.What are themonochromatic temperatures of the scattered
radiation at λ = 420 and 490 nm?

8.14 A diode-pumped solid-state laser emits continuous-wave (cw) green light at a
wavelength of 532 nmwith a beam diameter of 1.1mm. If the beam divergence
is 2×10−7 sr, what would be the spot size at a distance of 100m from the laser
(without scattering)? If the output optical power is 2mWand the spectral width
is δλ = 0.1 nm (assuming a square function), what is the average intensity
of the laser beam? Find the monochromatic radiation temperature of the laser
when it is linearly polarized. Suppose the laser hits a rough surface and is
scattered into the hemisphere isotropically. Find the radiation temperature of
the scattered radiation and the entropy generation caused by scattering.

8.15 In Example 8.5, the two plates are blackbodies. Assume that the plates are
diffuse-gray surfaces with emissivities ε′

1 and ε′
2. Calculate the entropy gen-

eration rate in each plate per unit area. How will you determine the opti-
mal efficiency for an energy conversion device installed at plate 2? For
T1 = 1500 K, T2 = 300 K, and ε′

2 = 1, plot the optimal efficiency versus ε′
1.

8.16 The concept of dilute blackbody radiation can be used as an alternativemethod
to calculate the entropy generation of a two-plate problem as in Problem 8.15.
Assume that the multiply reflected rays are at not in equilibrium with each
other. Rather, each ray retains its original entropy and can be treated as having
an effective temperature of T1 or T2 depending onwhich plate the ray is emitted
from. How would you evaluate the entropy transfer from plate 1 to 2 and the
entropy generation by each plate then?

8.17 Calculate the entropy generation rate per unit volume for Example 2.7. Further,
calculate the entropy generated at each surface, assuming that surface 2 is at
300 K.

8.18 The conversion efficiency of thermophotovoltaic devices is wavelength depen-
dent, and the optical constants are wavelength dependent as well. Perform a
literature search to find some recent publications in this area. Use the entropy
concept to determine the ultimate efficiency of a specific design. Based on your
analysis, propose a few suggestions for further improvement of the particular
design you have chosen.
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8.19 Derive the Fresnel reflection coefficient for a TM wave, following the
derivation given in the text for a TE wave.

8.20 Show that ρ ′
λ,s + α′

λ,s = 1, where ρ ′
λ,s is given in Eq. (8.73) and α′

λ,s is given
in Eq. (8.75). Discuss why the z-component of the time-averaged Poynting
vector must be continuous at the boundary but not the x-component.

8.21 For nonmagnetic lossy media with ε1 = ε′
1 + iε′′

1 and ε2 = ε′
2 + iε′′

2 , expand
Eq. (8.70b) and compare your results with Eq. (8.71).

8.22 For plane waves incident from air to a nonmagnetic material with ε = −2+ i0
(negative real), show that the reflectivity is always 1 regardless of the angle of
incidence and the polarization. What can you say about k2z and 〈S2z〉? Is the
wave in the medium a homogeneous wave or an evanescent wave?

8.23 The refractive index of glass is approximately 1.5 in the visible region. What
is the Brewster angle for glass when light is incident from air? Calculate
the reflectance and plot it against the incidence angle for p-polarization, s-
polarization, and random polarization. Redo the calculation for incidence from
glass to air, and plot the reflectance against the incidence angle. At what angle
does total internal reflection begin and what is this angle called?

8.24 Denote the incidence angle at which the ratio of the reflectance for TM and TE
waves is minimized as θM. For radiation incident from air to a medium with
n = 2 and κ = 1, determine θM and compare it with the principle angle θP, at
which the phase difference between the two reflection coefficients equals to
π/2. [Hint: Use graphs to prove the existence of θM and θP.]

8.25 For incidence from glass with n = 1.5 to air, calculate the Goos–Hänchen
phase shift δ for both TE and TM waves. Plot δ as a function of the incidence
angle θ1.

8.26 Show that the normal component of the time-averaged Poynting vector is
zero in both the incident and transmitting media when total internal reflection
occurs. Furthermore, derive Eq. (8.92).

8.27 Calculate the Goos–Hänchen lateral shift upon total internal reflection from a
dielectric with n = 2 to air. Plot the lateral shift for both TE and TM waves as
a function of θ1. Discuss the cause and the physical significance of the lateral
beam shift.

8.28 A perfect conductor can be understood based on theDrude free-electronmodel
by neglecting the collision term. The dielectric function becomes ε(ω) =
1− ω2

p/ω
2, where ωp is the plasma frequency. For radiation incident from air

to a perfect conductor, calculate the phase shift when ω = ωp/2 for TE and
TMwaves as a function of the incidence angle. Use Eq. (8.93) to calculate the
lateral beam shift for a TM wave and modify it for a TE wave. Do you expect
a sign difference between the TE and TM waves?

8.29 Calculate and plot the emissivity (averaged over the two polarizations) ver-
sus the zenith angle for the materials and wavelengths given in Problem 8.5.
Calculate and tabulate the normal and hemispherical emissivities for all cases.

8.30 Calculate the optical constants and the radiation penetration depth for either
gold or silver at room temperature, using the Drude model, and plot them as
functions ofwavelength. In addition, calculate the reflectivity andplot it against
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wavelength. Compare the results using the Hagen–Ruben equation. How will
the scattering rate and the plasma frequency change if the temperature is raised
to 600 K?

8.31 Calculate the normal emissivity of MgO from 2000 to 200 cm–1 (5 to 50 μm)
using the Lorentz model with two oscillators having the following parameters:
ε∞ = 3.01; ω1 = 401 cm−1, γ1 = 7.62 cm−1, and S1 = 6.6; ω2 = 640 cm−1,
γ2 = 102.4 cm−1, and S2 = 0.045. Can you develop a program to calculate
the hemispherical emissivity and plot it against the normal emissivity for a
comparison?

8.32 Find the Brewster angles for light incident from air to a NIMwith (a) ε2 = −2
and μ2 = −2, (b) ε2 = −1 and μ2 = −4, and (c) ε2 = −8 and μ2 = −0.5.

8.33 Use the online resources posted on the author’s webpage [54] to calculate
the absorption coefficient and normal reflectivity of intrinsic doped silicon for
0.5 μm < λ < 25 μm.

8.34 First reproduce Fig. 8.21 for the dielectric function at 400 K and then calculate
the dielectric function at 300 K for the same doping concentrations. Further-
more, calculate the real and imaginary parts of the refractive index of n-type
doped silicon with a dopant concentration of 1019 cm−1 and plot them versus
angular frequency.

8.35 Suppose aNIMcanbe described byEqs. (8.135) and (8.136)with the following
parameters:ωp = 4.0×1014 rad/s (i.e., λp = 4.71 μm),ω0 = 2.0×1014 rad/s
(i.e., λ0 = 9.42 μm), γ = 0, and F = 0.785. Assume a wave is propagating
in such a medium in the region of n < 0 with a wavevector k = kx x̂, where
kx = k = |n|ω/c0. Show that the group velocity is in the negative x-direction.
Also show that the Poynting vector is in the same direction as the group
velocity.

8.36 Suppose aNIMcanbe described byEqs. (8.135) and (8.136)with the following
parameters:ωp = 4.0×1014 rad/s (i.e., λp = 4.71 μm),ω0 = 2.0×1014 rad/s
(i.e., λ0 = 9.42 μm, and F = 0.5. Calculate and plot the refractive index and
the extinction coefficient in the spectral region from 2 to 15 μm, for γ = 0,
1012, and 1013 rad/s.

8.37 What is a detector? What is a bolometer? What is a radiometer? If you are
asked to buy a detector for infrared radiation measurement for the wavelength
range between 2 and 16μm, discuss how you would select a detector and why.
[Hint: Do some online search.]

8.38 A bolometer uses a thin YBCO film on a sapphire substrate whose area is
2 mm × 2 mm, operating at 90 K. The thickness of the sapphire plate is 25
μm. The thermal conductance between the detector element and a heat sink is
G = 8.4 × 10−5 W/K. The resistance R0(90 K) = 200 � and β = 1.5 K−1.
Assume the absorptance α = 0.7. Calculate the time constant for different
bias currents, I = 0.1, 0.2 and 0.3 mA. Calculate and plot the detector
responsivity as a function of modulation frequency ω f between 0.1 and 10 Hz
for each bias current value given above. Neglect the heat capacity of the YBCO
film. The density and specific heat of sapphire at the operating temperature
are ρ = 3970 kg/m3 and cp = 102 J/kgK.
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