
Chapter 7
Nonequilibrium Energy Transfer
in Nanostructures

Fourier’s law and the associated heat diffusion equation comprise one of the most
celebrated models in mathematical physics. Joseph Fourier in 1824 wrote: Heat,
like gravity, penetrates every substance of the universe; its rays occupy all parts of
space. …The theory of heat will hereafter form one of the most important branches of
general physics. Soon afterward, heat transfer also became an important engineering
field, essential to the second industrial revolution and the development of modern
technologies.

Recall the discussion of heat interaction and heat transfer in Chap. 2. We have
treated heat conduction as a diffusion process based on the concept of local thermal
equilibrium. This allows us to define and determine the equilibrium temperature at
each location in a body instantaneously, under the continuum assumption described
in Chap. 1. The local-equilibrium condition breaks down at the microscale when
the characteristic length L is smaller than a mechanistic length scale, such as the
mean free path �. For conduction by molecules, consider a rarefied gas between
two parallel plates at different temperatures. If the mean free path is much greater
than the separation distance, i.e., the Knudsen number K n = �/L >> 1, the
gas is in the free molecule regime and its velocity distribution cannot be described
by Maxwell’s distribution function. Furthermore, the transport becomes ballistic
rather than diffusive. Nonequilibrium energy transfer refers to the situation when the
assumption of local equilibrium does not hold. This can occur in solid nanostructures
even at room temperature and in a steady state, or in bulk solids under the influence
of short pulse heating.

For heat conduction across a dielectric thin film, when the thickness is much
smaller than the phonon mean free path, which increases as the temperature goes
down, the condition of local equilibrium is not satisfied. Hence, the phonon statistics
at a given location cannot be described by the equilibrium distribution function
at any given temperature. Strictly speaking, temperature cannot be defined inside
the medium. However, an effective temperature is typically adopted, based on the
statistical average of the particle energies. In the case of heat transfer across a thin
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dielectric film or between two plates separated by a rarefied molecular gas, the
effective temperature distribution cannot be described by the heat diffusion theory
derived from Fourier’s law, using the concept of equilibrium temperature without
considering the temperature jumps at the boundaries. The concept of temperature
jumpwas introduced inChap. 4 (e.g., Fig. 4.12). Consider ametal or a superconductor
that is subjected to ultrafast pulsed laser heating, in which the pulse duration may
range from several femtoseconds to a few nanoseconds. The electrons gain energy
quickly to reach a state that is far from equilibrium with the crystal lattice or the
phonon system. The transport processes during and immediately after the laser pulse
become nonequilibrium both temporally and spatially. Conventional Fourier’s law
cannot be directly applied.

In Chap. 5, we have considered the size effect on thermal transport in solids. Two
approaches have been used under different situations. In the first situation, we apply
Matthiessen’s rule to account for the reduction in mean free path by assuming that
Fourier’s law is still applicable but with a size-dependent thermal conductivity. In
the second situation, where the transport is completely ballistic, we use the concept
of quantum conductance based on the Landauer formulation to solve the problem
in a straightforward manner. The definition of an effective thermal conductivity is
particularly useful for the study of transport processes along a thin film or a thin
wire, when the length in the direction of transport is much greater than the mean
free path. In this case, a local equilibrium can be established, and thus, the energy
transfer is well described by Fourier’s law, even though the thickness is less than the
mean free path. Here, the only microscale effect is the classical size effect, which
arises from boundary scattering of electrons in a metal or phonons in an insulator or a
semiconductor. For energy transport across a thin film or in a multilayer structure, on
the other hand, the local-equilibrium condition breaks down when the film thickness
is much smaller than the mean free path. Furthermore, thermal boundary resistance
(TBR)may become significant at the interfaces. Because of thewave-particle duality,
the electron wave or phonon wave effect may need to be considered in some cases.
For nonmetallic crystalline materials, the most commonly used method to study
thermal transport is based on the Boltzmann transport equation (BTE) of phonons.
Various assumptions and techniques have been developed to solve the phonon BTE.
In very small structures, such as nanotubes or nanowires, molecular dynamics (MD)
and other atomistic simulation methods may be more suitable.

This chapter begins with a description of the phenomenological theories in which
the energy transport processes are represented by a single differential equation or a
set of differential equations that can be solved with appropriate initial and bound-
ary conditions. These equations are often called non-Fourier heat equations, which
can be considered as extensions of the conventional heat diffusion equation based
on Fourier’s law. The limitations of the phenomenological theories are discussed.
While the BTE, Monte Carlo method, and MD simulations have been presented in
previous chapters, this chapter stresses the application in solid nanostructures, includ-
ing thermal boundary resistance (TBR) and multilayer structures. The equation of
phonon radiative transfer (EPRT) is introduced and used to delineate the diffusive
and ballistic heat conduction regimes in thin films. A heat conduction regime with
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respect to length and time scale is presented, followed by a summary of the contem-
porary methods for measuring thermal transport properties of solids, thin films, and
nanostructures.

7.1 Phenomenological Theories

A fundamental difficulty of Fourier’s heat conduction theory was thought to be that
a thermal disturbance in one location of the medium would cause a response at
any other location instantaneously, as required by the mathematical solution of the
diffusion equation. In theory, the speed of heat propagation appears to be unlimited;
this has been viewed by some as a direct violation of the principle of causality. Let
us begin with an example of 1D transient heating of a semi-infinite medium. Assume
that the medium is homogeneous, with constant thermal properties, and is initially
at a uniform temperature T (x, 0) = Ti. The thermal diffusivity of the medium is
α = κ/(ρcp), where κ, ρ, and cp are the thermal conductivity, density, and specific
heat of the material, respectively. The wall at x = 0 is heated with a constant heat
flux q ′′

0 at 0 < t ≤ tp, where tp is the width of the step heating, and insulated at
t > tp. The solution of the temperature distribution T (x, t) can be found from Refs.
[1, 2] as follows:

T (x, t) − Ti = 2q ′′
0

√
αt

κ
F(ξ) at 0 < t ≤ tp (7.1a)

T (x, t) − Ti = 2q ′′
0

√
αt

κ

[
F(ξ) − ηF

(
ξ

η

)]
at t > tp (7.1b)

where ξ = x/
√
4αt , η = √

1 − tp/t , and F(ξ) = π−1/2 exp(−ξ 2) − ξerfc(ξ) with
erfc being the complementary error function as given in Appendix B.1.2. While
F(10) = 2.1 × 10−44 and the right-hand sides of both Eqs. (7.1a) and (7.1b) are
essentially negligible when x > 3

√
αt , the paradox is that a nonzero response must

not occur faster than the speed of the thermal energy carriers, such as the Fermi
velocity in metals or the speed of sound in dielectrics. In reality, this rarely causes
any problem because a signal that is below the noise level cannot be detected by any
physical instrument, as will be discussed in the example next.

Example 7.1 A thick plate of fused silica SiO2, initially at room temperature, is
heated at one surface by a heat flux of 105 W/m2 for 5 s and then insulated. Treat the
heated surface to be at x = 0, and assume the other surface is at x → ∞. Plot the
temperature distributions at various times. Imagine a temperature sensor is placed
at certain locations with instantaneous response and zero additional heat capacity.
Estimate the time for the thermometer to sense the temperature rise as a function of
the location x. Assume that the thermophysical properties of the glass are constant,
κ = 1.4 W/mK, and α = 8.5 × 10−7 m2/s.
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Fig. 7.1 a The temperature distributions at various times. b The time required for a given location
to acquire a minimum temperature rise and the estimated thermal diffusion speed

Solution The temperature distribution is shown in Fig. 7.1a at t = 0.01, 0.1, 1, 5,
10, and 20 s. During the heating, the temperature monotonically increases with time
and the heat flux is always positive. After the heat input is stopped when t = 5 s, the
temperature near the surface decreases but is still the highest and the temperature
decreases toward increasing x. While the predicted temperature rises everywhere
instantaneously, the magnitude may be too small to be observed practically. We can
calculate the time 	t required for a minimum temperature rise 	Tmin, specified by
the thermometer sensitivity. Let us choose	Tmin = 10 mK and 0.1 K for illustration.
The average thermal diffusion speed can be estimated by vdif(x) = x/	t , for any
given location x. The results are shown in Fig. 7.1b. In reality, diffusion is often a slow
process near room temperature. For the example given here, vdif for	Tmin = 10 mK
is between 1 and 5 m/s, for 5 nm < x < 5μm, and goes down rapidly at x > 5
μm. At x = 10mm, vdif is only 2–3 mm/s. On the other hand, the speed of sound in
glass is on the order of 5 km/s, which is several orders of magnitude greater than the
average thermal diffusion speed.

Recall that the uncertainty principle in quantummechanics states that	E	t > �,
suggesting that we cannot measure time and energy simultaneously with unlimited
precision. Fromstatisticalmechanics, the distribution function allows a small fraction
of particles to have a very high speed or to travel a very large distance without
collision, although the probability may be extremely low. Based on the uncertainty
principle and statistical mechanics, it seems convincing that Fourier’s law, in its
applicable regime, does not violate the principle of causality. What is physically
problematic and practically impossible is to provide a temperature impulse to the
surface or at any given location instantaneously. We further conclude that the heat
diffusion equation does not produce an infinite speed of thermal energy propagation;
rather, it is often a very slow process. Microscopically, Fourier’s law fails when
a local equilibrium is not established, as explained earlier. At the same time, the
concept of an equilibrium temperature cannot be applied. It is critically important
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for the technological advancement to establish and apply thermal transport theories,
both microscopically and macroscopically, under nonequilibrium conditions.

Several phenomenological theories have been developed to describe transient heat
transfer processes in solids and micro/nanostructures. Applications of transient and
ultrafast heating include laser processing, nanothermal fabrication, and the measure-
ment of thermophysical properties. In the literature, there appears to be controver-
sial experimental evidence on the existence of certain phenomena predicted by the
hyperbolic heat conduction [3]. Furthermore, a large division exists as regards the for-
mulation and the interpretation of the theories of non-Fourier conduction. While the
intention is to provide a clear andobjective presentation, the discussionwill inevitably
reflect the author’s personal views and limitations at the time when the manuscript
was prepared. This section should help readers gain a general understanding of the
basic concepts and phenomena related to non-Fourier heat conduction. Although
relatively few papers out of a large number of publications are cited in the text and
the reference section, interested readers can easily trace the relevant literature from
the cited sources, especially Refs. [3–6].

7.1.1 Hyperbolic Heat Equation

Several earlier studies have pointed out that the instantaneous response may be an
indication of a nonphysical feature of the Fourier heat theory. Carlo Cattaneo in 1948
used kinetic theory of gas to derive a rate equation given by

q′′(r, t) + τq
∂q′′(r, t)

∂t
= −κ∇T (r, t) (7.2)

which is a modified Fourier equation called Cattaneo’s equation. The historical
contributions by James Clerk Maxwell in 1867 and Pierre Vernotte in 1958 have
been extensively reviewed by Joseph and Preziosi [4] and will not be repeated here.
In Eq. (7.2), τ q is a kind of relaxation time, originally thought to be the same as τ ,
i.e., the average time between collisions. The energy equation for heat conduction
involving an internal source or volumetric heat generation rate q̇(r, t) is

q̇(r, t) − ∇ · q′′(r, t) = ρcp
∂T (r, t)

∂t
(7.3)

The divergence of Eq. (7.2) and the time derivative of Eq. (7.3) give two new equa-
tions, which can be combined with Eq. (7.3) to eliminate the heat flux terms. The
resulting differential equation for constant properties can be written as

q̇

κ
+ τq

κ

∂q̇

∂t
+ ∇2T = 1

α

∂T

∂t
+ τq

α

∂2T

∂t2
(7.4)
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This is the hyperbolic heat equation, in contrast to the heat diffusion equation or
parabolic heat equation. Without heat generation, we can rewrite Eq. (7.4) as

∇2T = 1

α

∂T

∂t
+ 1

v2tw

∂2T

∂t2
(7.5)

which is a telegraph equation or a damped wave equation. The solution of the hyper-
bolic heat equation results in a propagating wave, the amplitude of which decays
exponentially as it travels. The speed of this temperature wave in the high-frequency
limit, or the short-time limit, is given by

vtw = √
α/τq (7.6)

The amplitude of the temperature wave decays according to exp(−t/τq) due to
the damping caused by the first-order time-derivative term (1/α)(∂T/∂t), which is
also called the diffusion term. For an insulator, from the simple kinetic theory we
have κ = 1

3 (ρcv)v2gτ . Noting that cv = cp for an incompressible solid and assuming
τq = τ , we get

vtw = vg
/√

3 (7.7)

Equation (7.7) relates the speed of the temperature wave to the speed of sound in
an insulator. The square root of three can be understood as due to the randomness
of thermal fluctuations in a 3D medium, just like the relation between the velocity
and its components, v2 = v2x + v2y + v2z , in kinetic theory. Earlier experiments at
cryogenic temperatures havedemonstrated a second soundpropagating at the velocity

v2nd = vg
/√

3 in liquid helium and some solids [4].

Equation (7.5) sets a limit on the heat propagation speed, which is manifested
by a sharp wavefront that travels at vtw inside the medium for a sudden tempera-
ture change at the boundary. As a wave equation, the solution of the temperature
has an amplitude and a phase. Theoretically, the temperature wave can be reflected
by another boundary and can interfere, constructively or destructively, with a for-
ward propagating wave. The interaction between the temperature waves may also
result in a resonance effect, a typical wave phenomenon. Numerous analytical and
numerical predictions have been made [6–10]. It should be noted that the terms heat
wave [4] and thermal wave [7] have also been frequently used in the literature to
describe the temperature wave behavior. The term “temperature wave” is used in this
chapter for the wavelike behavior associatedwith the hyperbolic-type heat equations,
because “heat wave” might be confused with the calamitous weather phenomenon
and “thermal wave”might be confused with the diffusion wave used in photoacoustic
techniques. Bennett and Patty [11] clarified: The term thermal wave interference is
used to mean the superposition of simple harmonic solutions of the thermal diffu-
sion equation. Although wavelike in nature there are important differences between
thermal waves arising from a differential equation that is of the first order in time
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Fig. 7.2 (Not to scale) Illustration of the solution of the hyperbolic heat equation at short timescales.
aA short pulse, tp << τ . bA long pulse, tp > τ . The solid curves are the solutions of the hyperbolic
heat equation (7.5), and the dash-dotted and dashed curves are the solutions of the heat diffusion
equation (7.1a, 7.1b)

and waves that are solution to a wave equation that is of the second order in time. In
the heat transfer literature, thermal wave often refers to periodic-heating techniques
used widely for thermophysical property measurements [12].

Let us consider an example of a semi-infinite solid under a constant heat flux at
the surface. Figure 7.2 illustrates the solutions for a small tp and a large tp, compared
with τ . Here again, we have assumed τq = τ . The propagation speed is equal to vtw,
and the pulse wavefront is given by x1 = vtwt1 and x2 = vtwt2. Hence, x1 < x2 < �,
where � = vgτ is the mean free path. In the case of a short pulse, the temperature
pulse propagates and its height decays by dissipating its energy to the medium as
it travels. The parabolic heat equation, on the other hand, predicts a continuous
temperature distribution without any wavefront (see Fig. 7.2).

As time passes on, the first-order time derivative, or the diffusion term, in Eq. (7.5)
dominates. If the relative change of ∂T/∂t or q′′ during one τq is large, then the wave
feature is important. This should happen immediately after a sudden thermal distur-
bance that results in a temporal nonequilibrium, as well as a spatial nonequilibrium
near the heat pulse or thewavefront. After a sufficiently long time, usually 5–10 times
τq, a local equilibrium will be reestablished, and the thermal field can be described
by the parabolic heat equation. At steady state, the hyperbolic and parabolic equa-
tions predict the same results. While Eq. (7.4) is mathematically more general than
the heat diffusion equation, it should not be taken as a correction, or a more realis-
tic theory than the Fourier conduction model, because Cattaneo’s equation has not
been justified on a fundamental basis, nor has it been validated by any plausible
experiments.

Many researchers have investigated the hyperbolic heat equation based on the
second law of thermodynamics [13–15]. It has been found that the hyperbolic heat
equation sometimes predicts a negative entropy generation and even allows energy
to be transferred from a lower temperature region to a higher temperature region.
The entropy generation rate for heat conduction without an internal source can be
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calculated by [15]

ṡgen = − 1

T 2
q′′ · ∇T = 1

κT 2
q′′ ·

(
q′′ + τq

∂q′′

∂t

)
(7.8a)

The above equation was obtained by setting the energy and entropy balances as
follows:

ρ
∂u

∂t
= −∇ · q′′ and ρ

∂s

∂t
= −∇ ·

(
q′′

T

)
+ ṡgen (7.8b)

Note that du = T ds. A negative entropy generation can easily be numerically
demonstrated from Eq. (7.5) during the temperature wave propagation. Here, a nega-
tive entropy generation does not constitute a violation of the second law of thermody-
namics because the concept of “temperature” in the hyperbolic heat equation cannot
be interpreted in the conventional sense, due to the lack of local thermal equilibrium.
Extended irreversible thermodynamics has been proposed by Jou et al. [16] by mod-
ifying the definition of entropy such that it is not a property of the system anymore
but also depends on the heat flux vector. The theory of extended irreversible thermo-
dynamics is self-consistent but has not been fully validated by experiments; hence,
it cannot be taken as a generalized thermodynamic theory. Similarly, the hyperbolic
heat equation should not be treated as a more general theory over Fourier’s heat
conduction theory [17].

Example 7.2 Derive the modified Fourier equation, or Cattaneo’s equation, based
on the BTE under the relaxation time approximation.

Solution Tavernier [18] first showed that Cattaneo’s equation could be derived for
phonons and electrons using the relaxation time approximation of the BTE. As done
in Sect. 4.3.2, where we have derived Fourier’s law based on the BTE, let us start by
assuming that the temperature gradient is in the x-direction only. The transient 1D
BTE under the relaxation time approximation can be written as follows:

∂ f

∂t
+ vx

∂ f

∂x
= f0 − f

τ
(7.9)

A further assumption is made such that ∂ f
∂x ≈ ∂ f0

∂x = ∂ f0
∂T

∂T
∂x , which is the condition

of local equilibrium. Substitute the local-equilibrium condition into Eq. (7.9) and
multiply each term by τεvx . We can then perform integration of each term over the
momentum space to obtain

∫


τεvx
∂ f

∂t
d +

∫


τεv2x
∂ f

∂x
d =

∫


εvx f0d −
∫


εvx f d (7.10a)

By treating the relaxation time as a constant, applying the local-equilibrium con-
dition to the second term, and noting that the first term on the right-hand side is zero,
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we have

τ
∂q ′′

x

∂t
+ κ

∂T

∂x
= −q ′′

x or q ′′
x + τ

∂q ′′
x

∂t
= −κ

∂T

∂x
(7.10b)

This equation canbegeneralized to the 3Dcase as given inEq. (7.2), after replacing
τ with τq.

The derivation given in this example, however, does not provide a microscopic
justification of the hyperbolic heat equation, because it is strictly valid only under
the local-equilibrium assumption with an averaged relaxation time. The local-
equilibrium assumption prohibits application of the derived equation to length scales
comparable to or smaller than the mean free path [19, 20]. Suppose a thermal distur-
bance occurs at a certain time and location; after a duration that is much longer than
the relaxation time, Fourier’s law and the parabolic heat equation are well justified
because both the spatial and temporal local-equilibrium conditions are met. On the
other hand, if we wish to use the modified Fourier equation to study the transient
behavior at a timescale less than τ , then the disturbance will propagate by a distance
shorter than the mean free path, as shown in Fig. 7.2. Therefore, the derivation based
on the BTE, under local-equilibrium and relaxation time approximations, is not a
microscopic proof of the hyperbolic heat equation, which is meaningful only in a
nonequilibrium situation. To this end, it appears that Maxwell in 1867 made the right
choice in dropping terms involving the relaxation time in the paper, by assessing that
the rate of conduction will rapidly establish itself [3, 4].

Rigorously speaking, the local-equilibrium condition can be expressed in terms
of integration, i.e.,

∣∣∣∣∣∣
∫


τv2x
∂

∂x
( f − f0)εd

∣∣∣∣∣∣ <<

∣∣∣∣κ ∂T

∂x

∣∣∣∣ (7.11)

In deriving Eq. (7.10b), we have loosely assumed
∫


τεvx
∂ f
∂t d =

∂
∂t

∫


τεvx f d = τ
∂q ′′

x
∂t . After a careful examination of the derivations, Zhang et al.

[17] noted that Eq. (7.10a) can be rearranged to obtain the following expression:

∫


τεvx

(
∂

∂t
+ vx

∂

∂x

)
( f − f0)d + κ

∂T

∂x
= −q ′′

x (7.12)

One may define a new local-equilibrium condition as follows:

∣∣∣∣∣∣
∫


τεvx
D

Dt
( f − f0)d

∣∣∣∣∣∣ <<

∣∣∣∣κ ∂T

∂x

∣∣∣∣ (7.13)
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where the operator D
Dt = ∂

∂t + vx
∂
∂x in the 1D case and can be generalized to 3D

cases. With the new local-equilibrium condition, Eq. (7.12) becomes Fourier’s law.
Therefore, we can derive Fourier’s law directly from the BTE even in the transient
situation [17].Based on the above discussion, Fourier’s law is not an approximation of
Cattaneo’s equation. Hence, one should not treat Cattaneo’s equation as a generalized
Fourier’s law. It may be more appropriate to name Eq. (7.2) and the like as modified
Fourier’s equations.

Without knowing the heat carrier types and statistics, it is impossible to com-
pare Eqs. (7.11) and (7.13). Both assumptions will break down when the smallest
geometric dimension is on the same order or smaller than the mean free path. The
basic assumption in the relaxation time approximation is that the distribution func-
tion is not too far from equilibrium. For a heat pulse with a duration less than τp, the
relaxation time approximation should generally be applied when the time duration
t > 3τp, regardless of whether we are dealing with a thin film or a semi-infinite
medium. Atomistic simulations, based on molecular dynamics and the lattice Boltz-
mann method, have provided further evidence that the hyperbolic heat equation is
not applicable at very short timescales or in the nonequilibrium regime, where the
applicability of the relaxation time approximation is also questionable [21, 22]. Nev-
ertheless, after some modifications, there exist a number of special cases when the
modified heat equation becomes physically plausible and practically applicable. The
modified equation does not produce sharpwavefronts like those illustrated in Fig. 7.2.

7.1.2 Dual-Phase-Lag Model

Chester [23] first related Cattaneo’s equation with a lagging behavior, specifically,
there exists a finite buildup time after a temperature gradient is imposed on the speci-
men for the onset of a heat flow, which does not start instantaneously but rather grows
gradually during the initial period on the order of the relaxation time τ . Conversely,
if the thermal gradient is suddenly removed, there will be a lag in the disappearance
of the heat current. Gurtin and Pipkin [24] introduced the memory effect to account
for the delay of the heat flux with respect to the temperature gradient. They expressed
the heat flux as an integration of the temperature gradient over time, in analogy with
the stress–strain relationship of viscoelastic materials with instantaneous elasticity.
The linearized constitutional equation reads

q′′(r, t) = −
t∫

−∞
K (t − t ′)∇T (r, t ′)dt ′ (7.14)

where K (ξ) is a kernel function. Equation (7.14) reduces to Fourier’s law when
K (ξ) = κδ(ξ) and to Cattaneo’s equation when K (ξ) = (κ/τq)e−ξ/τ . By assuming
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K (ξ) = κ0δ(ξ) + κ1

τq
e−ξ/τ (7.15)

Joseph and Preziosi [4] showed that the heat flux can be separated into two parts:

q′′(r, t) = −κ0∇T − κ1

τq

t∫
−∞

exp

(
− t − t ′

τq

)
∇T (r, t ′)dt ′ (7.16a)

Hence,

q′′ + τq
∂q′′

∂t
= −κ∇T − τqκ0

∂

∂t
∇T (7.16b)

where κ = κ0 + κ1 is the steady-state thermal conductivity, as can be seen from
Eq. (7.16a). Combinedwith Eq. (7.3), the heat equation becomes a partial differential
equation,

∇2T + τT
∂

∂t
∇2T = 1

α

∂T

∂t
+ τ q

α

∂2T

∂t2
(7.17)

where τT = τqκ0/κ is known as the retardation time. Unless τT = 0 or κ0 = 0,
Eq. (7.17) maintains the diffusive feature and produces an instantaneous response,
albeit small, throughout the medium for an arbitrary thermal disturbance.

In a series of papers published in the 1990s, Tzou extended the lagging concept
to a dual-phase-lag model, as described in his monograph first published in 1997 and
the second edition in 2015 [6]. The starting point of the dual-phase-lag model is the
constitutive relationship,

q′′(r, t + τq) = −κ∇T (r, t + τT) (7.18)

The introduction of a delay time τT inEq. (7.18) implies the existence of a lag in the
temperature gradient, with respect to the heat flux driven by an internal or external
heat source. The rationale of the phenomenological equation given in Eq. (7.18)
was that, in some cases, the heat flux might be viewed as the result of a preceding
temperature gradient; in other cases, the temperature gradient might be viewed as the
result of a preceding heat flux. The heat flux and the temperature gradient can switch
roles in the relationship between “cause” and “effect.” Moreover, both lags might
occur simultaneously in certain materials under dramatic thermal disturbances, such
as during short-pulse laser heating [6, 7]. These primitive arguments should not be
scrutinized rigorously; rather, they are merely thinking instruments to help us gain an
intuitive understanding of the heat flux and temperature gradient relationship. After
applying the Taylor expansion to both sides of Eq. (7.18) and using the first-order
approximation, one immediately obtains
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q′′ + τq
∂q′′

∂t
= −κ∇T − τTκ

∂

∂t
∇T (7.19)

which is mathematically identical to Eq. (7.16b), with the substitution of τqκ0 = τTκ .
Applying the first-order approximation of Eq. (7.18), onemay end upwith q′′+(τq−
τT)

∂q′′
∂t = −κ∇T , or q′′ = −κ∇T − (τT − τq)

∂
∂t ∇T , or even q′′ + (

τq − τT
3

)
∂q′′
∂t =

−κ∇T − 2τT
3 κ ∂

∂t ∇T . These equations are merely special cases of Eq. (7.19), after
regrouping τq and τT. The only requirement for Eq. (7.19) to make logical sense is
that both τq and τT are nonnegative. The reason that a lag in time has been called
a phase lag is perhaps because the temperature field can be viewed as a Fourier
transform: T (r, t) = ∫ ∞

−∞ T̃ (r, ω)e−iωtdω, where T̃ (r, ω) is the Fourier component
at frequency ω. The actual phase lag ωτT (or ωτq for heat flux) depends on the
frequency. Equation (7.19) is mathematically more general and has some advantages
over Cattaneo’s equation. From now on, Eq. (7.17) will be called the lagging heat
equation. It is straightforward to include the source terms in the lagging heat equation,
as well as to treat thermophysical properties as temperature dependent. The solution,
however, becomes more and more difficult as the complexity increases. Numerous
studies have appeared in the literature on analytical solutions and numerical methods
[4, 25–28].

It should be noted that in Eq. (7.15), κ0 and κ1 denote the effective and elastic
conductivities, respectively, and are supposed to be nonnegative [4]. Therefore, τT
must not be greater than τq. In fact, the ratio η = κ0/(κ0 + κ1) is a direct indication
of whether thermal behavior can be described by heat diffusion (when η = 1 and
κ1 = 0) or the hyperbolic heat equation (when η = 0 and κ0 = 0). In general,
0 ≤ η ≤ 1 and the thermal process lies somewhere between the two extremes
prescribed by Fourier’s law and Cattaneo’s equation. In other words, there will be
wavelike features in the solution,which is superimposedbyan instantaneous diffusive
response throughout the medium. The diffusive response here, as well as in Fourier’s
law, does not correspond to an infinite speed of propagation. Rather, it is well justified
by quantum statistics as explained previously.

The dual-phase-lagmodel relaxes the requirement of τT ≤ τq; but in themeantime,
it produces a negative thermal conductivity component, i.e., κ1 < 0 according to
Eq. (7.15). This drawback has long been overcome by Tzou [6], who proposed a new
memory function in accordance with Eq. (7.19) as follows:

q′′(r, t) = − κ

τq

t∫
−∞

exp

(
− t − t ′

τq

)[
∇T (r, t ′) + τT

∂

∂t ′ ∇T (r, t ′)
]
dt ′ (7.20)

Equation (7.20) suggests that the heat flux depends not only on the history of
the temperature gradient but also on the history of the time derivative of ∇T . When
τT = 0, Eq. (7.20) becomesCattaneo’s equation.When τT = τq, Eq. (7.20) reduces to
Fourier’s law.However, τT > τq is theoretically permitted becauseEq. (7.20) does not
presume that the thermal conductivity is composed of an effective conductivity and
an elastic conductivity. The inclusion of τT > τq makes Eq. (7.19) more general than
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Fig. 7.3 Illustration of heat
transfer in a solid–fluid heat
exchanger, where long solid
rods are immersed in a fluid
inside a sealed pipe, which is
insulated from the outside

the Eq. (7.16a) since this allows the lagging heat equation to describe the behavior
of parallel heat conduction that can occur in a number of engineering situations.

Sometimes a microscale phenomenon can be understood easily if a macroscale
analogy can be drawn. For this reason, let us consider the solid–fluid heat exchanger
shown in Fig. 7.3. Assume that a fluid is stationary inside a sealed pipe, filled with
long solid rods. The pipe is insulated from the outside. If the rods are sufficiently thin,
we may use the average temperature in a cross section and assume that heat transfer
takes place along the x-direction only. Let us denote the temperatures of the solid
rods and the fluid by Ts(x, t) and Tf(x, t), respectively, and take their properties
κs, Cs = (ρcp)s, κf, andCf = (ρcp)f to be constant. Note that Cs and Cf are the
volumetric heat capacities. Given the rod diameter d, the number of rods N, and the
inner diameter D of the pipe, the total surface area per unit length is P = Nπ D,
and the total cross-sectional areas of the rods and the fluid are Ac = Nπd2/4 and
Af = (π/4)(D2 − Nd2), respectively. Assume the average convection coefficient is
h. The energy balance equations can be obtained using the control volume analysis
as follows:

Cs
∂Ts

∂t
= κs

∂2Ts

∂x2
− G(Ts − Tf) (7.21a)

and

C ′
f
∂Tf

∂t
= G(Ts − Tf) (7.21b)

where G = h P/Ac and C ′
f = CfAf/Ac. In writing Eq. (7.21b), we have assumed

that κf << κs and dropped the term κf
∂2Tf
∂x2 . Equations (7.21a) and (7.21b) are cou-

pled equations that can be solved for the prescribed initial and boundary conditions.
These are completely macroscopic equations governed by Fourier’s law of heat con-
duction. Nevertheless, we can combine Eqs. (7.21a) and (7.21b) to eliminate Tf and,
consequently, obtain the following differential equation for Ts:



358 7 Nonequilibrium Energy Transfer in Nanostructures

∂2Ts

∂x2
+ τT

∂

∂t

(
∂2Ts

∂x2

)
= 1

α

∂Ts

∂t
+ τq

α

∂2Ts

∂t2
(7.22)

where α = κs
Cs+C ′

f
, τT = C ′

f
G , and τq = CsτT

Cs+C ′
f

< τT. The same equation can also
be obtained for the fluid temperature Tf. Here, τq does not have the meaning of
relaxation time. Equation (7.22) is completely physical but should not be viewed as
a wave equation; rather, it describes a parallel or coupled heat diffusion process. The
concept of dual phase lag can still be applied. It should be noted that, due to the
initial temperature difference between the rod and the fluid, a local equilibrium is
not established at any x inside the pipe, until after a sufficiently long time.

Although no fundamental physics can be gained from this example, it can help us
appreciate that the lagging heat equation may be useful for describing the behavior
in inhomogeneous media. Minkowycz et al. [29] studied the heat transfer in porous
media by considering the departure from local thermal equilibrium and obtained
higher order differential equations similar to Eq. (7.22). On the other hand, Kaminski
[30] made an experimental attempt to determine τq in the hyperbolic heat equation,
by measuring the time interval between when the heat source was turned on and
when a temperature signal was detected. The heat source and the thermometer used
were long needles, placed in parallel and separated by a gap of 5–20 mm. What the
experiment actually measured was the average thermal diffusion speed vdif if the
cylindrical geometry and the initial conditions were properly taken into considera-
tion in the analysis. The main problem with this frequently cited paper and similar
studies in the 1990s was that most researchers did not realize that the hyperbolic
heat equation is physically unjustified to be superior to the parabolic heat equation;
instead, some researchers took the parabolic equation as a special case of the more
general hyperbolic equation [3].While many researchers have expressed doubt about
the applicability of the hyperbolic heat equation, few have realized that an instanta-
neous response is merely a mathematical solution that does not affect the application
of the diffusion equation in macroscopic problems. Electron gas and phonon gas in
solids are quantum mechanical particles, which do not have memory of any kind.
Ideal molecular gases obey classical statistics and do not have memory either, unless
the deposited energy is too intense to cause ionization or reaction.

Does the temperature wave exist? What is a temperature wave anyway? In the
early 1940s, Russian theoretical physicist Lev Landau (1908–1968) used a two-fluid
model to study the behavior of quasiparticles in superfluid helium II and predicted
the existence of a second sound, propagating at a speed between vg/

√
3 and vg,

depending on the temperature. Note that the group velocity is the same as the phase
velocity for a linear dispersion. Above the λ-point, where superfluidity is lost, the
second sound should also disappear. Landau was awarded the Nobel Prize in Physics
in 1962 for his pioneering theories of condensed matter at low temperatures. He
authored with his students a famous book series in mechanics and physics. Landau’s
prediction was validated experimentally by Russian physicists in the 1940s. The
existence of a second sound in crystals was also postulatedwhen scattering by defects
becomes minimized. However, it was not until the mid-1960s that the second sound
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associated with heat pulse propagation was observed in solid helium (below 1 K) and
other crystals at low temperatures (below 20 K). The second sound can occur only
at very low temperatures when the mean free path of phonons in the U-processes, in
which the total momentum is not conserved, is longer than the specimen size; while
at the same time, the scattering rate of the N-processes, in which the total momentum
is conserved, is high enough to dominate other scattering processes. It should be
noted that while the N-processes have a much shorter mean free path than the size
of the specimen, scattering by N-processes does not dissipate heat (see Sect. 6.5.3).
Callaway [31] simplified the BTE for phonon systems by a two-relaxation-time
approximation, which should be applicable when t > τN:

∂ f

∂t
+ v · ∂ f

∂r
= f0 − f

τ
+ f1 − f

τN
(7.23)

where τ stands for the relaxation time for theU-processes, τN is the relaxation time for
the N-processes, and f0 and f1 are the associated equilibrium distribution functions.
Guyer and Krumhansl [32] solved the linearized BTE and derived the following
equation for the phonon effective temperature:

∇2T + 9τN
5

∂

∂t
∇2T = 3

τv2a

∂T

∂t
+ 3

v2a

∂2T

∂t2
(7.24)

where va is the average phonon speed. Assuming a linear dispersion, it can be evalu-
ated using Eq. (5.10). Substituting α = τv2a/3, τq = τ, and τT = 9τN/5, we see that
Eq. (7.24) is identical to Eq. (7.17). The condition t > τN can be satisfied even at
t < τ since τN << τ . The significance of Eq. (7.24) lies in that the temperature wave
or the second sound is not universal, but rather, requires strict conditions to be met
[32]. When the condition τN << τ is satisfied, we have τT << τq and the energy
transfer is dominated by wave propagation. At higher temperatures, the scattering
rate for the U-processes is usually very high, and the N-processes contribute little
to the heat conduction or thermal resistance, as discussed in Chap. 6. Therefore, the
reason why temperature waves have not been observed in insulators at room temper-
ature is not because of the small τ , in the range from 10−10 to 10−13 s, but because of
the lack of mechanisms required for a second sound to occur. No experiments have
ever shown a second sound in metals, as suggested by the hyperbolic heat equation.

Shiomi and Maruyama [33] performed molecular dynamics simulations of the
heat conduction through (5,5) single-walled carbon nanotubes, 25 nm in length,
for several femtoseconds. They found that the wavelike behavior could be fitted
by the lagging heat equation, but could not be described by the hyperbolic heat
equation due to local diffusion. The ballistic nature of heat propagation in nanotubes
has already been explained in Chap. 5. They suspected that optical phonons might
play a major role in the non-Fourier conduction process [33]. Tsai and MacDonald
[34] studied the strong anharmonic effects at high temperature and pressure using
molecular dynamics. Their work predicted a second sound response. The coupling of
elastic and thermal effects was thought to be important. Studies on thermomechanical
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effects such as thermal expansion, thermoelasticity, and shock waves can be found
from Tzou [6] and Wang and Xu [35, 36], and will not be discussed further.

Tang and Araki [26] clearly delineated four regimes in the lagging heat equation,
according to the ratio η = τT/τq. (1) When η = 0, it is a damped wave, i.e.,
hyperbolic heat conduction. (2) When 0 < η < 1, it is wavelike diffusion, for which
wave features can be clearly seen if η << 1. (3) When η = 1, it is pure diffusion
or diffusion, i.e., Fourier’s conduction. (4) When η > 1, it is called over-diffusion,
which makes the dimensionless temperature decay faster than pure diffusion would.
In the next section, we will discuss a microscopic theory on short-pulse laser heating
of metals, which falls in the regime of over-diffusion, or parallel conduction.

7.1.3 Two-Temperature Model

With a short laser pulse, 5 fs–500 ps, free electrons absorb radiation energy and the
absorbed energy excites the electrons to higher energy levels. The “hot electrons”
move around randomly and dissipate heat mainly through electron–phonon interac-
tions. In the 1970s,Anisimov et al. [37] proposed a two-temperature model, which is a
pair of coupled nonlinear equations governing the effective temperatures of electrons
and phonons. This model was experimentally confirmed in the 1980s by researchers
at the Massachusetts Institute of Technology [38, 39]. The two-temperature model
was introduced to the heat transfer community by Qiu and Tien [40, 41] in early
1990s. In a series of papers [40–42], Qiu and Tien analyzed the size effect due to
boundary scattering and performed experiments with thin metallic films. In the two-
temperature model, it is assumed that the electron and phonon systems are each at
their own local equilibrium, but not in mutual equilibrium. The electron temperature
could be much higher than the lattice (or phonon) temperature due to absorption of
pulse heating. Therefore,

Ce
∂Te

∂t
= ∇ · (κ∇Te) − G(Te − Ts) + q̇a (7.25a)

Cs
∂Ts

∂t
= G(Te − Ts) (7.25b)

Here, the subscript e and s are for the electron and phonon systems, respectively,
C is the volumetric heat capacity, G is the electron–phonon coupling constant, and q̇a

is the source term that represents the absorbed energy rate per unit volume during the
laser pulse and drops to zero after the pulse. Heat conduction by phonons is neglected,
and thus, the subscript e is dropped in the thermal conductivity κ . Note that q′′ =
−κ∇Te, according to Fourier’s law.We have already given amacroscopic example of
parallel heat transfer, as shown in Fig. 7.3, which should ease the understanding of the
phenomenological relations given in Eqs. (7.25a), (7.25b). Equations (7.25a), (7.25b)
originate from microscopic interactions between photons, electrons, and phonons.
In order to examine the parameters in Eqs. (7.25a), (7.25b) and their dependence
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on Te and Ts, let us assume that the lattice temperature is near or above the Debye
temperature for simplicity. In such a case, electron–electron scattering and electron–
defects scattering are insignificant compared with electron–phonon scattering. It is
expected that the electron relaxation time is inversely proportional to the lattice
temperature, i.e., τ ≈ τe−ph ∝ T −1

s . The meaning of the relaxation time is that the
electron system can be assumed to be at internal local equilibriumwhen t > τ , which
is the condition for Eqs. (7.25a), (7.25b) to be applicable. Boundary scattering may
play a role for very thin films or in polycrystalline materials. An effective mean free
path can be introduced to modify the scattering rate [40, 43, 44]. The volumetric
heat capacity for the lattice or phonons is Cs = ρcp is a weak function of the lattice
temperature; the volumetric heat capacity of electrons, from Eq. (5.25), becomes

Ce = neπ
2k2

B

2μF
Te = γ Te (7.26)

Recall that Ce is relatively small compared with Cs, even at several thousand
kelvins. From simple kinetic theory, the thermal conductivity is

κ = π2nek2
B

3me
τTe ≈ κeq

Ts
Te (7.27)

where κeq is the thermal conductivity when Te = Ts, which can be set at room
temperature value. The term Te in Eq. (7.27) comes from the heat capacity. The size
effect can be included using an effective relaxation time. Theoretically, the coupling
constant can be estimated by

G = π2menev2a
6τTs

or G = π4(nevakB)2

18κeq
(7.28)

which is independent of temperature, when boundary scattering is not important,
but proportional to the square of the speed of sound in the metal. With the speed of
sound in the low-frequency limit, the dispersion is linear; thus, we do not have to
worry about the difference between the phase velocity and the group velocity. From
Eq. (5.10), we have

va = kB�D

h

(
4π

3na

)1/3

(7.29)

When boundary scattering is included, G is expected to increase from the bulk
value and depend on the lattice temperature. Using the Debye temperature and for
na = ne, we have

G = π2

12 × 3
√
4

nek2
B�2

D

τTsμF
≈ 0.518

nek2
B�2

D

τTsμF
(7.30)
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Fig. 7.4 Illustration (not to
scale) of ultrafast
thermoreflectance
experiments and the
associated electron and
phonon temperatures near
the surface, during a short
pulse

Typical values ofG are on the order of 1016 W/Km3, e.g.,G ≈ 2.9×1016 W/Km3

for gold. The behavior of the electron and phonon temperatures near the surface is
shown in Fig. 7.4, for a short pulse. The electron temperature rises quickly during
the pulse and begins to decrease afterward; in the meantime, the lattice tempera-
ture gradually begins to increase until the electron and lattice systems reach a ther-
mal equilibrium. Both the temperatures will go down as heat is carried away from
the surface. Note that the electron temperature can rise very high due to its small
heat capacity, but the lattice or solid may be just slightly above room temperature.
If the temperatures of the electron and lattice were the same, Eqs. (7.25a), (7.25b)
would reduce to the simple Fourier heat conduction equation. This would lead to a
prediction of a much lower temperature rise, because the heat capacity of the lattice
is much greater than that of the electrons.

Given such a short timescale and the nonequilibrium nature between electrons
and phonons locally, no contact thermometer could possibly measure the effective
electron temperature. Experiments are usually performed by the femtosecond or
picosecond thermoreflectance technique, also known as the pump-and-probemethod,
shown in the inset of Fig. 7.4. The reflectance of the surface depends on the electron
temperature Te. The experimental setup is rather involved and the details will be
given in Sect. 7.4.3. The procedure is to send a pump pulse train that is synchronized
with a probe pulse train at a fixed delay time. The electron temperature change
near the surface is related to the reflectance as a function of the delay time. Electron–
phonon coupling, boundary scattering, and thermal boundary resistance can all affect
the thermoreflectance signal. Comparing with the model described in Eqs. (7.25a),
(7.25b), alongwith the dependence of the reflectance on the electron temperature, the
microscopic characteristics can be analyzed. Ultrafast thermoreflectance techniques
have become an important thermal metrology tool for the study of electron–phonon
interactions, TBR, and thermophysical properties [40–49]. Thermionic emission can
also occur from the surface, especiallywhen the electrons are excited to higher energy
states [50].
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Similar to what has been done for Eqs. (7.21a) and (7.21b), Eqs. (7.25a) and
(7.25b) can be combined to formulate partial differential equations for either the elec-
tron or phonon temperature. Neglecting the temperature dependence of the param-
eters, one obtains the following differential equations for the electron temperature
and the phonon temperature, respectively,

∇2Te + τT
∂

∂t
∇2Te + q̇a

κ
+ τT

κ

∂ q̇a

∂t
= 1

α

∂Te

∂t
+ τ q

α

∂2Te

∂t2
(7.31a)

∇2Ts + τT
∂

∂t
∇2Ts + q̇a

κ
= 1

α

∂Ts

∂t
+ τ q

α

∂2Ts

∂t2
(7.31b)

where α = κ
Ce+Cs

, τT = Cs
G , and τq = τTCe

Ce+Cs
≈ Ce

G << τT. These equations are
identical to the lagging heat equations and can be solved with appropriate boundary
conditions. The results again belong to the regime of over-diffusion, or parallel
conduction, without any wavelike features. Cooling caused by thermionic emission
is usually neglected, and the surface under illumination can be assumed adiabatic. A
1D approximation further simplifies the problem. The solution follows the general
trends depicted in Fig. 7.4. The situationwill be completely changed if a phase change
occurs or if the system is driven to exceed the linear harmonic behavior [6, 35].

The term τq is clearly not the same as the relaxation time τ due to collision. The
resulting solution is more diffusive than wavelike. In the literature, τq is commonly
referred to as the thermalization time. The physical meaning of τq is a thermal time
constant for the electron system to reach an equilibriumwith the phonon system. For
noble metals at room temperature, the relaxation time τ is on the order of 30–40 fs,
the thermalization time τq is 0.5–0.8 ps, and the retardation time τT is 60–90 ps.
In practice, we need to consider the temperature dependence of the parameters in
Eqs. (7.25a, 7.25b), as mentioned earlier. Some numerical solutions, considering
temperature dependence, and comparisons with experiments can be found from
Smith et al. [51] and Tzou and Chiu [27]. Given that the two-temperature model
cannot be applied to t < τ , due to the limitation of Fourier’s law, one may prefer
to use a pulse width tp between 100 and 200 fs and measure the response during
several picoseconds until the thermalization process is complete, i.e., the electron
and phonon temperatures become the same. This first-stage measurement allows the
determination of the coupling constant G. In the case of a thin film, the TBR sets a
barrier for heat conduction between the film and the substrate. The time constant of
the film can range from several tens to hundreds of picoseconds. Therefore, the TBR
between the film and the substrate can be determined by continuing the observation
of thermoreflectance signals for 1–2 ns after each pulse. Fitting the curves in the
second-stage measurement allows an estimate of the TBR. Of course, one could use
a longer pulse width tp to determine the TBR. Most advanced femtosecond research
laboratories are equipped with Ti:sapphire lasers whose pulse widths range from 50
to 500 fs. Femtosecond lasers with a pulse width of 25 fs have also been used in
some studies; see for example Li et al. [52]. For tp below 50 fs, Eq. (7.25a) is not
applicable during the heating, at least for noble metals. The relaxation time for Cr
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is about 3 fs, and Eqs. (7.25a, 7.25b) can be safely applied even with tp = 10 fs.
However, the processes below 20 fs may largely involve electron–electron inelastic
scattering, thermionic emission, ionization, phase transformation, chemical reaction,
and so forth. Other difficult issues associated with the reduced pulse width include
widened frequency spectrum, increased pulse intensity, decreased pulse energy, and
so forth. A simple hyperbolic formulation cannot properly address these issues. One
must investigate the physical and chemical processes occurring at this timescale in
order to develop a physically plausiblemodel, with orwithout the concept of effective
temperatures. Femtosecond laser interactionswith dielectricmaterials have also been
extensively studied (see Jiang and Tsai [53, 54] and references therein). Recently,
Ma [55] proposed a two-parameter heat conduction model for analyzing transient
heat conduction data for dielectric materials and for thermal interfaces based on both
frequency-domain and time-domain measurements. In the two-parameter model, a
nonequilibrium (effective) temperature is defined and used to obtain a nondiffusive
phenomenological equation. A thermal conductivity (that describes diffusive thermal
transport) and a ballistic heat transfer length (that is the product of a ballistic relax-
ation time and the speed of carriers) are taken as the fitting parameters [55]. It should
be noted that the formulation of the two-parameter model differs significantly from
the ballistic-diffusion heat conduction equations proposed by Chen [56] in 2001.

Let us reiterate some major points presented in this section: (a) Fourier’s law,
which is limited to local-equilibrium conditions, does not predict an infinite speed
of heat diffusion, nor does it violate the principle of causality [3]. An instantaneous
response at a finite distance is permitted by quantum statistics although the prob-
ability of such a response sharply approaches zero as the distance increases. An
instantaneous temperature change or heat flux at a precise location is not physically
possible. Only under the continuum assumption, we can use the concept of sudden
change of temperature at the boundary. (b) Heat diffusion is usually a very slow pro-
cess, compared with the speed of sound. The temperature wave, or the second sound,
has been observed only in helium and some very pure dielectric crystals, at low tem-
peratures, where the U-processes are ballistic and the N-processes have a very high
scattering rate. (c) Both Fourier’s law and Cattaneo’s equation can be derived from
the BTE under slightly different approximations [17]. Fourier’s law is not an approx-
imation of Cattaneo’s equation and, hence, Cattaneo’s equation is not more general
than Fourier’s law. Nevertheless, the introduction of an additional parameter (the
relaxation time) in Cattaneo’s equation may allow the hyperbolic heat equation to
better fit some experiments in inhomogeneous mediumwith coupled phenomena [4].
(c) All kinds of non-Fourier equations are based on some sort of effective tempera-
ture, which are not measurable using a contact thermometer. The principle of contact
thermometry is based on the assumption of thermodynamic equilibrium according
to the zeroth law of thermodynamics. The concept of coldness or hotness should be
abandoned in reference to nonequilibrium energy transport processes. Noncontact
thermometry, on the other hand, relies on certain physical responses to deduce the
equilibrium temperature or the effective temperature of the system being measured.
(d) The memory hypothesis and the lagging argument are phenomenological mod-
els that may be useful in the study of certain nonequilibrium or parallel conduction
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processes, but are not universally applicable. These and similar equations must be
derived and applied on a case-by-case basis. It is important to understand the micro-
scopic processes occurring at the appropriate length scales and timescales in order
to develop physically reliable models.

7.2 Heat Conduction Across Layered Structures

In Sect. 5.5.2, we have given a detailed discussion on the heat conduction along
a thin film using the BTE, under the local-equilibrium assumption. An effective
thermal conductivity can be used after taking proper account of boundary scattering.
The heat conduction problem can thus be well described by Fourier’s law using the
effective thermal conductivity. As mentioned earlier, for heat transfer across a film
or a superlattice, the condition of local equilibrium breaks down in the acoustically
thin limit. The local distribution function cannot be approximated by an equilibrium
distribution function at any temperature. Conventional Fourier’s law breaks down
because it relies on the definition of an equilibrium temperature and the existence of
local equilibrium. It is natural to ask the following two questions. (1) Is it possible
for us to define an effective temperature? (2) Can Fourier’s law still be useful in the
nonequilibrium regime, according to the effective temperature? This section presents
the equation of phonon radiative transfer (EPRT) and the solution of EPRT for thin
films under the relaxation time approximation. A resistance network representation
is used to illustrate how Fourier’s law of heat conduction may be applied inside
the medium, at least approximately, with temperature-jump boundary conditions.
Because of the importance of understanding the boundary conditions, this section
also discusses models of thermal boundary resistance (TBR) in layered structures.

7.2.1 Equation of Phonon Radiative Transfer (EPRT)

The phonon BTE under the relaxation time approximation, in a region with heat
generation, may be written as

∂ f

∂t
+ v · ∂ f

∂r
= f − f0

τ(ω, T )
+ S0 (7.32)

where the second term S0 on the right-hand side is a source term to model the
generation of phonons due to heat dissipation, such as electron–phonon scattering.
Phonon–phonon scattering is already included in the first term on the right-hand side.
The scattering rate may also include phonon-defect scattering. Many studies have
treated phonon transport in analogy to thermal radiative transfer [19, 20, 57–67].
In the following, a simplified case is used to illustrate how to model heat transfer
across a thin film as well as multilayer structures. Let us consider a film of thickness
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Fig. 7.5 Schematic of
phonon radiative transfer
inside a dielectric medium
between two walls
maintained at temperatures
T1 and T2. These walls are
like heat reservoirs, but their
surfaces are not necessarily
blackbodies

L between two boundaries without any internal source. The phonon BTE becomes

∂ f

∂t
+ vx

∂ f

∂x
= f0 − f

τ
(7.33)

Realizing the nonequilibrium distribution function may be anisotropic, let us
define

Iω(x,�, t) = 1

4π

∑
P

vg�ω f D(ω) (7.34)

where P is the index for phonon mode or polarization and D(ω) is the DOS. Equa-
tion (7.34) gives the phonon intensity, which is the energy transfer rate in the direction
� from a unit area, per unit frequency and per unit solid angle. The geometry of the
problem and illustration of the intensity is given in Fig. 7.5. As done before, let vg
and vp be the group velocity and phase velocity, respectively. Note that vx = vg cos θ ,
where θ is the polar angle. Substituting Eq. (7.34) into Eq. (7.33), we obtain

1

vg

∂ Iω
∂t

+ μ
∂ Iω
∂x

= I ∗
ω − Iω
vgτ

(7.35)

whereμ = cos θ and I ∗
ω(ω, T ) is the intensity for equilibriumdistribution that is inde-

pendent of the direction. Equation (7.35) is called the equation of phonon radiative
transfer (EPRT) [19, 61]. Comparing the EPRT with the ERT given in Eq. (2.53),
we see that the scattering terms are neglected in the EPRT, and the emission and
absorption are replaced by the phonon collision terms. The phonon mean free path
� = vgτ is also called the phonon penetration depth (see Example 4.2). The inverse
of the penetration depth (1/�) corresponds to the absorption coefficient in the ERT.
Conversion to the EPRT allows well-established theories and numerical techniques,
developed in radiative transfer, to be applied to solve Eq. (7.35) and to interpret the
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physical significance of the solutions [68, 69]. If τ does not depend on frequency,
we are dealing with a gray medium.

If the phononKnudsen number K n = �/L << 1, thenmost phononswill collide
with phonons or defects inside the medium. This regime is called the acoustically
thick limit, in analogy to the optically thick limit for photons. This is also known as the
macroscale regimeor the local-equilibrium situation.Unless at a very short timescale,
when a sudden local disturbance occurs,we expect that Fourier’s law is applicable and
the heat conduction is by diffusion. On the other hand, if K n = �/L >> 1, phonons
originated from one boundary will most likely reach the other boundary without
colliding with other phonons or defects inside the medium. This is the ballistic
regime, corresponding to free molecule flow for molecular gases. This regime is
called the acoustically thin limit, where the phonon distribution inside the medium
cannot be characterized by an equilibrium distribution function if the walls are at
different temperatures, even in the steady state. Because theBTE ismore fundamental
than Fourier’s law, it is applicable to both limiting cases as well as those between the
two limits. It would be very useful if a macroscopic model can also be developed to
bridge these two limits. Some basic formulations are given in the following.

Note that I ∗
ω is the equilibrium distribution function, which is independent of the

direction. Using Bose–Einstein statistics, we have

I ∗
ω(ω, T ) =

∑
P

vg�ω

e�ω/kBT − 1

k2

(2π)3

dk

dω
=

∑
P

�ω3

8π3v2p(e�ω/kBT − 1)
(7.36)

This equilibrium distribution is also the distribution function for blackbody radia-
tion with vp replaced by the speed of light. Integrating Eq. (7.36) over all frequencies
gives the total intensity for all three phonon modes:

I ∗(T ) =
∞∫
0

I ∗
ω(ω, T )dω = 3k4

BT 4

8π3�3v2a

∞∫
0

x3dx

ex − 1
= σ ′

SBT 4

π
(7.37)

where σ ′
SB = π2k4

B/(40�
3v2a ) is the phonon Stefan–Boltzmann constant, and va is the

average phase velocity of the two translational and one longitudinal phonon modes,
defined according to Eq. (5.7). Let us consider a solid at temperatures higher than
the Debye temperature. The integration can be carried out to an upper limit ωm with
xm = �ωm/(kBT ) << 1. From the discussion following Eq. (5.13), one can easily
show that

I ∗(T ) =
ωm∫
0

I ∗
ω(ω, T )dω = ω3

mkB
8π3v2p

T (7.38)

This integration is a good approximation, even at temperatures slightly lower
than the Debye temperature. When phonons are at equilibrium, the energy flux is
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π I ∗, which is obtained by integrating I ∗cosθ d� over the hemisphere. According to
Eq. (4.12), the energy density can be expressed as

u(T ) = 4π

vg
I ∗(T ) (7.39)

Note that the volumetric heat capacity C = du/dT when u is expressed in terms
of energy density. We therefore obtain the low-temperature relation of the specific
heat, i.e., the T 3 law, and the high-temperature relation of the specific heat, i.e., the
Dulong–Petit law, as already derived in Sect. 5.1.2. It is important to pay attention
to the meaning of C in the kinetic expression of thermal conductivity:

κ = 1

3
Cv2gτ (7.40)

At very low temperatures, when T << �D, C is the volumetric heat capacity of
all phononmodes combined because only low-frequencymodes or acoustic branches
contribute to the specific heat. However, at temperatures close to the Debye temper-
ature, phonons in the optical branches contribute little to the thermal conductivity,
as already discussed in Chap. 6. The relative contributions of LA and TA branches
are also temperature dependent. The Debye temperature for most materials, except
diamond, is not much higher than room temperature (see Table 5.1). Therefore, one
may treat the volumetric heat capacity C as a fraction of the volumetric specific heat
in dealing with Si, GaAs, Ge, ZnS, or GaN, near room temperature. Also, we must
use the appropriate upper limit in the integral in calculating the total energy transfer
when applying EPRT. The heat flux per unit frequency interval can thus be expressed
as

q ′′
ω =

∫
4π

Iωcosθd� = 2π

1∫
−1

Iωμdμ (7.41)

Energy balance at any given location requires that the incoming flux from all
directions be the same as the outgoing flux toward all directions, for both steady and
transient states, as illustrated in Fig. 7.5. This is the criterion for radiative equilibrium
[68, 69], which can be expressed as follows [19]:

4π

ωm∫
0

1

�ω

I ∗
ωdω = 2π

ωm∫
0

1∫
−1

1

�ω

Iωdμdω (7.42)

where �ω is the mean free path at ω, 4π on the left-hand side came from the inte-
gration over all solid angles in a sphere, and 2π on the right-hand side came from
integration over the azimuth angles. For a gray medium,�ω = vaτ is independent of
the frequency. Equation (7.42) gives a definition of an effective phonon temperature
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T ∗ based on the equilibrium distribution: I ∗
ω(T ∗, ω). An equivalent expression can

be obtained based on the energy density, viz.

u(T ∗) − u0 =
∑

P

∑
K

�ω f0(T
∗, ω,�) =

∑
P

∑
K

�ω f (ω,�) (7.43)

where u0 is a reference value. Note that the spectral component (integrand) on both
sides of Eq. (7.42) may not be equal at all frequencies. Even for a gray medium, in
general, one cannot deduce the following from Eq. (7.42):

I ∗
ω(T ∗, ω) = 1

2

1∫
−1

Iωdμ (7.44)

The physical significance of Eq. (7.44) is that the angular average of the intensity,
at a given location and time, can be described by an equilibrium intensity that satisfies
the equilibrium distribution function at a certain temperature. As a matter of fact,
Eq. (7.44) is equivalent to the local-equilibrium approximation [70]. It can be shown
that the local-equilibrium approximation is valid only in the acoustically thick limit
or the diffusive heat conduction regime.

Example 7.3 For a dielectric medium of thickness L = 0.01�, the mean free path
� is independent of wavelength. The boundary or wall temperatures are T1 = 50 K
at x = 0 and T2 = 100 K at x = L . Both the temperatures are much lower than the
Debye temperature. Assume that reflection at the boundaries is negligible, i.e., the
walls can be modeled as blackbodies. At steady state, express the heat flux through
the medium and find the effective photon temperature distribution T ∗(x).

Solution Because K n = �/L >> 1, the medium is said to be in the acoustically
thin limit, in which phonons travel from one wall to another ballistically with little
chance of being scattered by other phonons or defects inside themedium.The forward
intensity can be expressed as I +

ω = I ∗
ω(T1, ω) for μ > 0, and the backward intensity

I −
ω = I ∗

ω(T2, ω) for μ < 0. From Eq. (7.41), we have

q ′′
x =

∞∫
0

q ′′
ωdω = 2π

∞∫
0

1∫
0

(I +
ω − I −

ω ) μdμdω = σ ′
SB(T 4

1 − T 4
2 ) (7.45)

For heat conduction, the above equation is called the Casimir limit [71]. To
numerically evaluate this equation, we need data for va. From Eq. (7.42), we have

σ ′
SB(T ∗)4 = π

2

ωm∫
0

(I +
ω + I −

ω )dω = 1

2

(
σ ′
SBT 4

1 + σ ′
SBT 4

2

)
(7.46)
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We obtain T ∗ = 85.37 K, which is the effective temperature inside the medium
0 < x < L and is independent of x. Since T (0) = T1 and T (L) = T2 are the boundary
conditions, there is a temperature jump at each boundary similar to Fig. 4.12b in the
free molecule regime for gas conduction. If the walls are not black but diffuse-gray
with emissivities ε1 and ε2, similar to Eq. (2.52), the heat flux becomes

q ′′
x = σ ′

SBT 4
1 − σ ′

SBT 4
2

1/ε1 + 1/ε2 − 1
(7.47)

Comments: (1) Taking diamond with va = 12, 288 m/s as an example, we have
σ ′
SB = 50.63 W/m2 K4. The magnitude of the heat flux in the ballistic limit for

T1 = 50 K and T1 = 100 K is 4.75 GW/m2, which is quite high. Note that the mean
free path of diamond in this temperature region is around 1.3μm [19, 70]. Thus when
K n = 100, the thickness is only 13 nm. If an effective diffusive thermal conductivity
is used, κeff = 1.23 W/mK,which ismuch smaller than the bulk thermal conductivity
of diamond! In general, ballistic transport in nanostructures results in a restriction to
the heat flow as compared with diffuse transport with the same thermal conductivity.
(2) Figure 7.6 shows the phonon intensity spectra at T1, T2, and T ∗ for diamond,
calculated from Eq. (7.36) for the sum of the three phonon modes taking the average
velocity va in place of vp. We notice immediately that Eq. (7.44) cannot be satisfied
in the acoustically thin limit. Let us designate

Iavg(ω) = 1

2

1∫
−1

Iωdμ = 1

2
(I +

ω + I −
ω ) (7.48)

Fig. 7.6 Phonon intensity
spectra for equilibrium
distribution at the wall
temperatures T1 and T2, and
the effective temperature T ∗.
The intensity calculated
based on Eq. (7.48) is also
plotted for comparison. Note
that Iavg(ω) may be
considered as a
nonequilibrium distribution
in terms of the phonon
intensity
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which is also plotted in Fig. 7.6. It can be seen that I ∗
ω(ω) �= Iavg(ω) in general. It is

well known that a monochromatic temperature can be defined and is useful in radi-
ation thermometry (refer to Sect. 8.2 for further discussion). Bright and Zhang [70]
used the concept of monochromatic phonon temperature to study entropy generation
in a thin film from the diffusive regime to the ballistic regime.

7.2.2 Solution of the EPRT

The two-flux method is very helpful in developing a solution of the EPRT in planar
structures, as shown in Fig. 7.5. The equations for the forward and backward inten-
sities, denoted respectively by superscripts (+) and (−), can be separated. Assuming
the medium is gray, at steady state, we can rewrite the EPRT given in Eq. (7.35) as
follows [68, 69]:

μ
∂ I +

ω

∂x
= I ∗

ω − I +
ω

�
,when 0 < μ < 1 (7.49a)

μ
∂ I −

ω

∂x
= I ∗

ω − I −
ω

�
,when − 1 < μ < 0 (7.49b)

If we further assume that the walls are diffuse and gray, then the boundary
conditions become

T (0) = T1 and T (L) = T2 (7.50)

Thus,

I +
ω (0, μ) = ε1 I ∗

ω(T1) + (1 − ε1)I −
ω (0, μ) (7.51a)

I −
ω (L , μ) = ε2 I ∗

ω(T2) + (1 − ε2)I +
ω (L , μ) (7.51b)

The solutions of Eqs. (7.49a) and (7.49b) can be expressed as follows:

I +
ω (x, μ) = I +

ω (0, μ) exp

(
− x

�μ

)
+

x∫
0

I ∗
ω(ξ) exp

(
− x − ξ

�μ

)
dξ

�μ
forμ > 0

(7.52a)

and

I −
ω (x, μ) = I −

ω (L , μ) exp

(
L − x

�μ

)
−

L∫
x

I ∗
ω(ξ) exp

(
− x − ξ

�μ

)
dξ

�μ
forμ < 0

(7.52b)
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In Eq. (7.53), the first term represents intensity originated from the left surface,
after being attenuated, and the second term is the contribution of generation that is
subject to attenuation as well. Equation (7.54) is viewed reversely for intensity from
the right to the left. The spectral heat flux, defined in Eq. (7.41), can be obtained

q ′′
ω = 2π

1∫
0

[
I +
ω (0, μ) exp

(
− x

�μ

)
− I −

ω (L ,−μ) exp

(
− L − x

�μ

)]
μdμ

+ 2π

x∫
0

I ∗
ω(ξ)E2

(
x − ξ

�

)
dξ

�
− 2π

L∫
x

I ∗
ω(ξ)E2

(
ξ − x

�

)
dξ

�
(7.53)

where Em(x) = ∫ 1
0 ηm−2e−x/η dη is again the mth-order exponential integral. If the

surface is diffuse, then we have

q ′′
ω = 2π I +

ω (0)E3

( x

�

)
− 2π I −

ω (L)E3

(
L − x

�

)

+ 2π

x∫
0

I ∗
ω(ξ)E2

(
x − ξ

�

)
dξ

�
− 2π

L∫
x

I ∗
ω(ξ)E2

(
ξ − x

�

)
dξ

�
(7.54)

Energy balance requires that the derivative of the radiative heat flux be zero, viz.

dq ′′
x

dx
=

ωm∫
0

∂

∂x
q ′′

ω(x, ω)dω = 0 (7.55)

This equation is another form of radiative equilibrium since radiative equilibrium
means that the divergence of the radiative heat flux to be zero or ∇ · q′′ = 0.
Differentiating Eq. (7.54) yields

∂q ′′
ω

∂x
= −2π

�
I +
ω (0)E2

( x

�

)
− 2π

�
I −
ω (L)E2

(
L − x

�

)

− 2π

�

L∫
0

I ∗
ω(ξ)E1

( |x − ξ |
�

)
dξ

�
+ 4π

�
I ∗
ω(x) (7.56)

In radiative transfer, we call J1 = ∫
π I +

ω (0)dω and J2 = ∫
π I −

ω (L)dω the total
radiosities at surfaces 1 and 2, respectively, and eb(T ) = ∫

π I ∗
ωdω the total black-

body emissive power. Substituting Eq. (7.56) into Eq. (7.55), after performing the
integration, we obtain
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2eb(T (x)) = J1E2

( x

�

)
+ J2E2

(
L − x

�

)
+

L∫
0

eb(T (ξ))E1

( |x − ξ |
�

)
dξ

�
(7.57)

This is the radiative equilibrium condition and it is always valid if there is no
internal generation. Note that Eq. (7.56) becomes zero for all frequencies only in the
diffusive limit.

Example 7.4 Find the temperature distribution, heat flux, and thermal conductivity
for a gray medium with diffuse-gray surfaces in the acoustically thick limit, i.e.,
K n << 1; under two extreme conditions: (i) T1, T2 << �D and (ii) T1, T2 > �D.

Solution In the thick limit, the first two terms in Eq. (7.53) can be dropped as long
as x is not too close to either surface. Applying the first-order Taylor expansion
I ∗
ω(x) = I ∗

ω(ξ) + dI ∗
ω

dx (x − ξ) + . . . and letting z = x−ξ

�
in the third and fourth terms,

we obtain

q ′′
ω = −4π�

∂ I ∗
ω

∂x

∞∫
0

zE2(z)dz = −4π

3
�

∂ I ∗
ω

∂x
(7.58)

Since
∫ ∞
0 zE2(z)dz = 1/3. In fact, this equation applies to everywhere inside the

medium because the spectral heat flux is continuous in the acoustically thick limit.
Integrating Eq. (7.58) over the frequencies of interest, we see that under condition
(i):

q ′′
x = −16σ ′

SBT 3

3
�
dT

dx
,when T << �D (7.59)

This is nothing but a heat diffusion equation if we define the thermal conductivity
as

κ(T ) = 16

3
σ ′
SBT 3� (7.60)

Comparing Eq. (7.60) with Eq. (7.40), κ(T ) = 1
3Cvg�, we see that Cvg =

16σ ′
SBT 3 in this case and it is consistent with the T 3 law for the specific heat at

low temperatures. In the thick limit, the temperature distribution is continuous at the
wall, i.e., T (0+) = T (0) = T1 and T (L−) = T (L) = T2. Furthermore, the radiosity
at the wall becomes the blackbody emissive power, even though the surface is not
black. Hence, we can integrate Eq. (7.59):

L∫
0

q ′′
x dx = 4�

3
σ ′
SB

T2∫
T1

4T 3dT (7.61a)
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which gives

q ′′
x = 4

3
K n

(
σ ′
SBT 4

1 − σ ′
SBT 4

2

)
(7.61b)

as well as the temperature distribution:

T (x) =
[
T 4
1 − x

L

(
T 4
1 − T 4

2

)]1/4
(7.62)

This distribution is linear in terms of the fourth power of temperature [69, 70].
From the definition of thermal resistance q ′′

x = (T1 − T2)/R′
t , we have

R′′
t = 3(T1 + T2)(T 2

1 + T 3
2 )

4σ ′
SBK n

(7.63)

Under condition (ii), when the temperature is greater than the Debye temperature,
we have

q ′′
x = − ω3

mkB
6π2v2p

�
dT

dx
when T > �D (7.64)

Compared with Eq. (7.40), we obtain

Cvg = ω3
mkB

2π2v2p
(7.65)

This suggests that the specific heat is independent of temperature in the high-
temperature limit as expected. A properωm should be chosen so that only propagating
phonons or acoustic phonons are considered [61]. Assuming that the temperature
difference is small so that we can approximate the thermal conductivity as a constant,
we have

q ′′
x = 1

3
CvgK n(T1 − T2) (7.66)

The thermal resistance becomes R′′
t = 3/(CvgK n), which increases as L

increases. The temperature distribution is linear. One should realize that the scat-
tering rate increases with temperature and depends on the frequency, due to phonon–
phonon scattering. If we look at the radiative equilibrium condition again, by assum-
ing T1 > T2, we see that I +

ω > I ∗
ω > I −

ω . Therefore, local equilibrium is not a
stable-equilibrium state. In the thick limit, the difference between I +

ω and I −
ω is

caused by the spatial variation of I ∗
ω as can be clearly seen from Eqs. (7.52a) and

(7.52b). Hence, the local-equilibrium approximation given in Eq. (7.44) is valid.
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Comment. In the acoustically thin limit under the condition (ii) that T > �D, by
using the linear temperature relationship given in Eq. (7.38), we can modify Eq.
(7.45) to the following,

q ′′
x = 1

4
Cvg(T1 − T2) (7.67)

Here, we have used the definition of Eq. (7.65). The effective thermal conductivity
in the ballistic limit: κeff = 3κb/(4K n), where κb is the bulk or diffusive thermal
conductivity. It can be seen that in the ballistic regime, the thermal conductivity is
inversely proportional to K n.

Although no closed form exists for the solution of the ERT between the thick
and thin limits, a number of approximation techniques and numerical methods can
be used to provide satisfactory solutions, such as the discrete ordinates method (SN

approximation) and the spherical harmonics method (PN approximation) [69]. It
is important to see that, except in the thick limit, energy transfer occurs inside the
medium in twoways: one is through exchangewith thewalls, and the other is through
diffusion. For this reason, a ballistic-diffusion approximation has been developed
to solve the EPRT [56]. In general, the temperature distribution looks like that in
Fig. 4.12b if T2 is comparable to the Debye temperature. If T1 << �D, then the
temperature distribution can be plotted in terms of T 4 so that the distribution looks
more or less linear. There exists a temperature jump such that T (0+) �= T (0) and
T (L−) �= T (L), except in the thick limit. Understanding that the temperature is
only an effective temperature and given such a temperature distribution, one may
assume that there is a thermal resistance at each boundary and an internal thermal
resistance, which may be described by Fourier’s heat conduction [64]. For thermal
radiative transfer in the absence of heat conduction, there exists a radiation slip or
radiation jump at the boundary, unless the medium is optically thick. Without a
participating medium, photons do not scatter on itself to dissipate heat or transfer
heat by diffusion. This is a distinction between photons and phonons. Radiation
slip is manifested by a discontinuous change of the intensity at the boundary. The
temperature in the medium adjacent to the wall differs from the surface temperature.
Such a temperature jump does not exist in classical Fourier’s heat conduction theory;
however, both velocity slip and temperature jump have already been incorporated
in microfluidics research, as discussed in Chap. 4; see Eq. (4.99). The temperature-
jump concept was first applied in the study of heat conduction in rarefied gases over
100 years ago. A straightforward approach for phonon transport is to sum up the
thermal resistances in the acoustically thin and thick limits. The heat flux at very low
temperatures can be expressed as

q ′′
x = 4�

3L

σ ′
SB(T 4

1 − T 4
2 )

1 +
(

1
ε1

− 1
2 + 1

ε2
− 1

2

)
4K n
3

(7.68)
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Here, we separately write
(

1
ε1

− 1
2

)
and

(
1
ε2

− 1
2

)
to emphasize the thermal resis-

tance due to radiation slip at each boundary. In the thick limit, the temperature jump
approaches zero as K n → 0. Basically, Eq. (7.68) reduces to Eqs. (7.47) and (7.61b),
in the extreme cases. If the walls can be treated as blackbodies with ε1 = ε2 = 1,
and the temperature difference between T1 and T2 is small, we can approximate the
heat flux as follows:

q ′′
x = κb

L

	T

1 + 4K n/3
= κeff

	T

L
(7.69)

where 	T = T1 − T2 << T2 < T1, the bulk thermal conductivity κb(T ) =
16
3 σ ′

SBT 3�, and the effective conductivity of the film is

κeff = κb

1 + 4K n/3
(7.70)

At relatively high temperatures close to the Debye temperature, from Eqs. (7.66)
and (7.67), we can write

q ′′
x = κb

L

T1 − T2

1 +
(

1
ε1

+ 1
ε2

− 1
)
4K n
3

= κeff
T1 − T2

L
(7.71)

where κb(T ) = 1
3Cvg�. Equation (7.71) gives the same conductivity ratio κeff/κb as

in Eq. (7.70) for blackbody walls. These effective thermal conductivities are on the
same order of magnitude as we have derived in Sect. 5.5.5, based on simple geomet-
ric arguments and Matthiessen’s rule for the mean free path given in Eq. (5.128). In
previous chapters, however, we did not elaborate in detail on the nature of nonequi-
librium and the necessity of defining an effective temperature. It is interesting that
different schools of thought can result in rather consistent results. The heat diffusion
equation per se cannot tell us the cause of a temperature jump or how to evaluate
it. The phonon BTE enables us to explore the microscopic phenomena and helps to
evaluate the parameters and the properties. The microscopic understanding and the
macroscopic phenomenological equations can work together to provide an effective
thermal analysis tool.

The results presented previously are consistent with the detailed derivation of the
temperature jump or the radiation slip, originally formulated by Deissler [72], for
thermal radiation in gases not too far from the optically thick limit. Nevertheless,
the expressions given here can be approximately applied between the diffusion and
ballistic extremes [70]. It should be noted thatwhen the temperature jump is treated as
a thermal resistance at the boundary, Fourier’s law can be used for the heat conduction
inside the medium with bulk thermal conductivity. This is very different from heat
conduction along the film.

While the meaning of emissivity for optical radiation is very clear, a question still
remains as how to interpret the boundary conditions in the case of phonon conduction,
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Fig. 7.7 Temperature distribution in a multilayer structure, with thermal boundary resistance, and
the thermal resistance network representation. Here, R′′

i is the internal resistance in the ith layer
due to heat conduction, and R′′

i j is the thermal boundary resistance between the ith and jth media.
Two temperatures are needed to specify the effective temperature of different media at the interface

since it is not easy to perceive the concepts of phonon emission and emissivity. If a
multilayer structure is considered, we need to better understand the reflection and the
transmission of phonons at the interfaces between dissimilar materials. A three-layer
structure is shown in Fig. 7.7 to illustrate the temperature distribution in a multilayer
structure. Depending on the temperature range, we may express the internal thermal
resistance using Fourier’s law, i.e., R′′

i = Li/κi , where κi is the effective thermal
conductivity of the ith layer. For the thermal resistance at the interface inside the
layered structures, we could replace the emissivity with a transmissivity �i j such
that [64]

R′′
i j = 4�i

3κi

(
1

�i j
− 1

2

)
+ 4� j

3κ j

(
1

� j i
− 1

2

)
(7.72)

At the boundaries, we can still use R′′
H1 = 4�1

3κ1

(
1
ε1

− 1
2

)
and R′′

3L = 4�3
3κ3

(
1
ε3

− 1
2

)
.

The heat flux can be estimated by q ′′
x = (TH − TL)/R′′

tot, where R′′
tot is the sum

of all thermal resistances. The effective thermal conductivity of the whole layered
structure becomes κeff = L tot/R′′

tot. The details were presented by Chen and Zeng
[64], who further considered nondiffuse surfaces and defined equivalent equilibrium
temperatures. The assumption is that the deviation from the thick limit is not signif-
icant. If we are dealing with the ballistic regime, we might need to consider phonon
wave effects as well as the quantum size effect. Recently, Maldovan’s group has per-
formed comprehensive studies of phonon transport across superlattices considering
surface roughness and various length scales [73, 74]. The thermal resistance network
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method, however, cannot be easily extended tomultidimensional problems or to tran-
sient heating by a localized heat source. Statistical models (such as the Monte Carlo
method) or atomistic simulations (such as the atomistic Green’s function method or
molecular dynamics) are necessary. Therefore, the extension of Fourier’s law for 1D
nonequilibrium heat transfer should be considered only as a special case. It is intrigu-
ing to apply the same approach to electron systems for the study of both electrical
conductivity and thermal conductivity of metallic solids, as well as metal-dielectric
multilayer structures. Further discussion on the classical and advanced models of
thermal boundary resistance is given in the next section.

7.2.3 Thermal Boundary Resistance (TBR)

Thermal resistance at the interface between dissimilar materials is very important
for heat transfer in heterostructures. Let us first clarify the difference between ther-
mal contact resistance and thermal boundary resistance (TBR). The former refers to
the thermal resistance between two bodies, usually with very rough surfaces whose
root-mean-square roughness σrms is greater than 0.5 μm, brought or joined together
mechanically. For thermal contact resistance, readers are referred to a recent com-
prehensive review by Yovanovich [75]. Originally, TBR refers to the resistance at the
interface between two solids or between a liquid and a dielectric at low temperatures.
Evenwhen thematerials are in perfect contact with each other, reflections occurwhen
phonons travel toward the boundary, because of the difference in acoustic properties
of adjacent materials. In practice, the interface can be atomically smooth, or with a
roughness ranging from several tenths of a nanometer to several nanometers. The
thermal resistance between a solid material and liquid helium is called the Kapitza
resistance, first observed by the Russian physicist and 1978 Nobel Laureate Pyotr
Kapitza, in the 1940s. The existence of a thermal resistance gives rise to a temper-
ature discontinuity at the boundary and has been modeled, based on the acoustic
mismatch model (AMM). TBR exists between two dielectrics as well as between
a metal and a dielectric. In a thin-film structure, an interface is often accompanied
by the formation of an intermediate layer of mixed atoms. An extensive review of
earlier studies can be found in the work of Swartz and Pohl [59]. Stoner and Maris
[76] used a picosecond thermoreflectance technique to measure the TBR for several
metal-dielectric interfaces from 50 to 300 K and observed anomalously large con-
ductance that can be understood as due to the anharmonicity of the metal, resulting
in an inelastic channel that facilitated the thermal transport. Phelan and cowork-
ers [77–79] performed extensive research and provided literature survey of TBR of
high-temperature superconductors in both the normal and superconducting states,
for applications in superconducting electronics and radiation detectors.

Little [60] showed that the heat flux across the boundary of a perfectly joined inter-
face between two solids is proportional to the difference in the fourth power of tem-
perature on each side of the interface. This can be understood based on previous dis-
cussions of phonon radiative transfer and blackbody radiation. Consider longitudinal
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Fig. 7.8 Schematic of
phonon transport across an
interface between two
semi-infinite media, each at a
thermal equilibrium. Note
that arrows at the end denote
incidence from the left side,
while arrows in the middle
denote incidence from the
right side

phononmodes that follow the linear dispersion in aDebye crystal, and assume that the
interface is perfectly smooth. At any given frequency, the transmission coefficients
can be written as follows [60, 77]:

τ12 = τ21 = 4ρ1ρ2vl1vl2 cos θ1 cos θ2(
ρ1vl1 cos θ2 + ρ2vl2 cos θ1

)2 (7.73)

where subscripts 1 and 2 denote the media 1 and 2, respectively, ρ is the density, vl is
the propagation speed of longitudinal phonons, and θ is the polar angle, as illustrated
in Fig. 7.8. The scattering is assumed to be purely elastic since the phonon frequency
is conserved. An analog of Snell’s law can be written as follows:

1

vl1

sinθ1 = 1

vl2

sinθ2 (7.74)

Assume vl1 > vl2, for incidence from medium 2 to 1, there exists a critical angle
θc = sin−1(vl2/vl1), beyond which all phonons will be reflected. Due to the boundary
resistance, there will be a temperature difference across the interface. By assuming
that the phonons are at equilibrium on either side, the heat flux from medium 1 to 2
can be expressed as follows:

q ′′
1→2 = 1

4π

ωm∫
0

2π∫
0

π/2∫
0

�ωvl1 f1(ω, T1)τ12D(ω) cos θ1 sin θ1dθ1dφ1dω (7.75)

If the distribution function is isotropic over the hemisphere, we have

q ′′
1→2 = 1

4

�12

v2l1

ωm∫
0

�ωv3l1 f1(ω, T1)D(ω)dω (7.76)

where �12 can be viewed as the hemispherical transmissivity that is expressed as
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�12 = 1

π

2π∫
0

π/2∫
0

τ12 cos θ1 sin θ1dθ1dφ = 2

π/2∫
0

τ12 cos θ1 sin θ1dθ1 (7.77)

It should be noted that

�21 = 2

θc∫
0

τ21 cos θ2 sin θ2dθ2 = v 2
l2

v 2
l1

�12 (7.78)

One can prove Eq. (7.78) by noting that τ21 = τ12 and using Eq. (7.74) and its
derivative, i.e., v−1

l1 cosθ1dθ1 = v−1
l2 cosθ2dθ2. The difference between �21 and �12

can be explained as due to total internal reflection since for incidence from medium
2 to 1, portion of the photons will be totally reflected if the incidence angle exceeds
the critical angle. For the Debye density of states, we have

1

4π
νl�ω f (ω, T )D(ω)dω = �ω3

8π3v2l (e
�ω/kBT − 1)

(7.79)

Therefore, the net heat flux across the interface becomes

q ′′
x = q ′′

1→2 − q ′′
2→1 = 1

4

�12

v2l1

ωm∫
0

�ω
[
v3l1 f1(ω, T1) − v3l2 f2(ω, T1)

]
D(ω)dω (7.80a)

or

q ′′
x = �12

v2l1

k4
B

8π2�3

⎛
⎝T 4

1

xm,1∫
0

x3dx

ex − 1
− T 4

2

xm,2∫
0

x3dx

ex − 1

⎞
⎠ (7.80b)

In the low-temperature limit, we obtain

q ′′
x = �12

v2l1

π2k4
B

120�3

(
T 4
1 − T 4

2

)
(7.81)

After replacing v−2
l1 with

∑
j v−2

j1 = v−2
l1 + 2v−2

t1 , i.e., one longitudinal and two
transverse phonon modes, we obtain

q ′′
x = π2k4

B

120�3

(
T 4
1 − T 4

2

)
�12

∑
j

v−2
j1 (7.82)

The TBR can now be obtained as R′′
b = (T1 − T2)

/
q ′′

x . Furthermore, by assuming
that the temperature difference is small, we can approximate R′′

b by
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R′′
b = 30�

3T −3

π2k4
B�12

∑
j

v−2
j1

(7.83)

which is inversely proportional to T 3. Equations (7.82) and (7.83) are the results of
the AMM.

The characteristic wavelength is the most probable wavelength in the phonon
distribution function. It can be approximated by

λmp ≈ a
�D

T
(7.84)

where a is the lattice constant, on the order of 0.3–0.6 nm [77]. Only when
λmp >> σrms, we can assume that the scattering is completely specular. Even for
atomically smooth interfaces, the characteristic wavelength for phonons will be on
the same order of magnitude as the rms surface roughness, when the temperature
approaches the Debye temperature. The specularity parameter was introduced in
Chap. 5, Eq. (5.143) and repeated here for normal incidence:

p = exp

(
−16π2σ 2

rms

λ2

)
(7.85)

This equation has been wrongly expressed in some literature with π2 being mis-
taken as π3 due to a typo in an earlier work. In the high-temperature limit, TBR is
expected to be small, especially when compared with conduction in the solids. Other
considerations are (a) the interface may not be perfectly smooth, (b) there exists an
upper limit of the frequency or a lower limit of wavelength, and (c) phonons on either
side of the boundary may not be in a local-equilibrium state. These difficulties post
some real challenges in modeling TBR. Nevertheless, we shall present the diffuse
mismatch model (DMM) that was introduced by Swartz and Pohl [59]. In the DMM,
it is assumed that phonons will be scattered according to a probability, determined by
the properties of the twomedia but independent of where the phonons originate from.
For phonons coming from medium 1, the transmission and reflection probabilities
are related by �12 + R12 = 1. For phonons originating from medium 2, on the other
hand, �21 = R12 and R21 = �12. Hence, the reciprocity requires that

�12 + �21 = 1 (7.86)

We can rewrite Eq. (7.78), considering all three polarizations, as follows:

�12

∑
j

v−2
j1 = �21

∑
j

v−2
j2 (7.87)

The combination of Eqs. (7.86) and (7.87) gives
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�12 =
∑

j
v−2

j2

∑
j

v−2
j1 + ∑

j
v−2

j2

(7.88)

This is the DMM prediction of the “hemispherical” transmission coefficient. The
heat flux can be calculated according to

q ′′
x = k4

B

8π2�3

⎛
⎝T 4

1

xm,1∫
0

x3dx

ex − 1
− T 4

2

xm,2∫
0

x3dx

ex − 1

⎞
⎠�12

∑
j

v−2
j1 (7.89)

Equations (7.88) and (7.89) are the only equations needed to calculate TBR in
the DMM. In addition to the Debye temperatures and the speeds of longitudinal and
transverse waves, one would need to determine the upper limits of the integrals in
Eq. (7.89). Alternatively, Eq. (7.89) can be recast using the volumetric heat capacity
and the group velocity to obtain

q ′′
x = 1

4

(
Cv1vg1T1 − Cv1vg1T2

)
�12 (7.90)

One must be careful in applying the heat capacity in Eq. (7.80) since the heat
capacity in the expression of thermal conductivity is different from ρcp, unless at
very low temperatures. Both AMM and DMM assume that phonons on each side
of the interface are individually at equilibrium, and do not take into account the
nonequilibrium distribution of phonons near the interface. In multilayer thin films,
especially in quantumwells and superlattices, when the film thickness is comparable
with or smaller than the phonon mean free path, thermal transport inside the film
cannot be modeled as pure diffusion anymore. A detailed treatment of temperature-
jump conditions and boundary resistance in superlattices can be found from Refs.
[61–65]. Majumdar [80] proposed a modified AMM, by modeling interface rough-
ness, using a fractal structure and assuming that the reflection can be approximated
by geometric optics which is applicable when the phonon wavelength is smaller than
the autocorrelation length of the rough surface. TBR between highly dissimilar mate-
rials, metal–metal interface, and metal–dielectric interface has also been extensively
studied [47, 48, 81, 82].

7.2.4 Atomistic Green’s Function (AGF)

As mentioned previously, the Monte Carlo method has been used extensively for
solving the phonon transport equations [57, 58, 83–85]. The lattice Boltzmann
method has also been employed in a number of publications [22, 67, 86]. Equilib-
rium and nonequilibriummolecular dynamics approaches have also been extensively
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employed to study thermal transport in nanostructures and TBR [82]. The basics of
molecular dynamics simulation of solids have been discussed in Chap. 6 and can be
found from the literature [87–95]. Anothermethod called the nonequilibriumGreen’s
function (NEGF) method has been extensively used to model the electron transport
in semiconductor nanodevices [96] and has been introduced to study phonon trans-
port across various interfaces, which is called the atomistic Green’s function (AGF)
method [97–99]. The AGF method is briefly discussed in the following.

The NEGF is an atomic-level quantum mechanical model based on the density
matrix that can be obtained from the Hamiltonian matrix. As discussed in Sect. 5.6,
the electrical current can be expressed in terms of Landauer’s formalism, where
the transmission probability can be obtained from the Green’s function formulation
[96]. Ozpineci and Ciraci [100] developed the Green’s function method for ther-
mal conductance in a phononic system that consists of chain of atoms between two
reservoirs. Mingo and Yang [97] further developed the AGF approach and used it to
study phonon transmission through coated nanowires by neglecting inelastic scat-
tering. This method is further extended to study Si/Ge interfaces using an empirical
interatomic potential that includes the strain effect [98]. A plane-wave formulation
based on the wavevector space is developed to evaluate the harmonic matrix for a
unit cell in the x-y plane and multilayers in the z-direction across the interface (from
left to the right). Green’s function is used to represent the response of the dynamic
system to an infinitesimal perturbation and can be used to obtain the transmission
coefficient, which is a function of the frequency and parallel wavevector.

�(ω,k‖) = Trace[�LG�RG†] (7.91)

Here, k‖ is the wavevector parallel to the interface, the matrices �L and �R rep-
resent the phonon escape rate at the left and right contacts, G is a suitable Green’s
function matrix, and superscript “†” denotes conjugate transpose. The symbol � is
the transmission coefficients for all phonon modes or polarizations. The determina-
tion of these matrices requires knowledge of the harmonic matrix and interatomic
potentials, and is rather complicated [98, 99]. The heat flux can be obtained based
on Landauer’s formalism by integration over the frequency and wavevector space,
which can be performed through numerical discretization [98]. The thermal conduc-
tance can be obtained as the ratio of the heat flux to the temperature difference. Some
studies have separately obtained the polarization-dependent transmission coefficients
[101, 102].

While lattice dynamics has been applied to calculate the phonon transport across
interfaces [103, 104], it is difficult to implement for various geometric and bound-
ary conditions. Both the lattice dynamics and AGF methods treat phonons as waves
and study the coherent propagation, reflection, and transmission of lattice waves
through thin films, nanostructures, and interfaces. Similar to the lattice dynamics
method, the AGF method is based on the harmonic matrix of the system that can
be related to the derivatives of the total interatomic potential. In the AGF method,
only the equilibrium positions of the atoms and interatomic force constants (IFCs)
are needed. As discussed in Sect. 6.6, the IFCs can be obtained from first-principles
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calculations. Most AGF simulations have only dealt with harmonic vibrations, and
thus are applicable at temperatures much lower than the Debye temperatures of the
materials involved. Molecular dynamic simulations are inherently time domain. The
wave-packet method can be applied to molecular dynamics simulations to extract
the lattice vibration parameters, such as the mode-specific transmissivity. Due to
the fact that molecular dynamics can inherently include anharmonic scattering, it is
mostly suitable at high temperatures.On the other hand, standardmolecular dynamics
employs the Boltzmann distribution for phonons and therefore is not valid at tem-
peratures much lower than the Debye temperature. Therefore, the AGF method and
the MD method each has its own advantages depending on the temperature range
of interest. Recently, Sadasivam et al. [105] modeled thermal transport across metal
silicide and silicon interface using first-principles AGF, and included the anhar-
monic phonon scattering by modifying the conventional recursive Green’s function
approach. The AGF method has been used to model coherent phonon across Si/Ge
superlattices [106] as well as TBR across stacked graphene/hexagonal boron nitride
(hBN) heterostructures [107].

7.3 Heat Conduction Regimes

There has been a continuous effort to delineate the regimes of microscale heat con-
duction since 1992 as discussed in the previous chapters. Nonequilibrium phonon
transport in dimensions less than 100 nmhas become an important issue in silicon-on-
insulator transistors. Multiscale and multiphysics simulations have been developed
and applied to nanoelectronic devices [48, 66, 67, 82, 95, 108–110]. This section
presents a regime map for heat conduction in solids by electrons and phonons, as
schematically depicted in Fig. 7.9. Here, the timescale τc is known as effective col-
lision interaction time, since collision does not occur instantaneously but is through
intermolecular potential and force interactions. These forces become important only
when the particles become very close to each other. Of course, this is the classi-
cal picture of atomic or molecular interactions. Electrons and phonons are quantum
mechanical particles; thus, the interaction is via the wavefunctions predicted by
Schrödinger’s equations. For ultrafast pulse heating, the collision time can be the
time required for a photon and an electron to interact. Generally speaking, the relax-
ation time is much shorter than the relaxation time and neglected in the BTE. The
characteristic phonon or electron wavelength λ is assumed to be less than the mean
free path �.

Region 1 is the macroscale regime where Fourier’s law and the heat diffusion
equation can be applied, when the timescale is greater than τ and the length scale is
greater than about 10�. Region 2 is called themesoscale or quasi-equilibrium regime,
which is characterized by the classical size effect. This region is also known as the first
microscale. For heat transfer alongwith afilmor awire, local-equilibriumassumption
is appropriate and boundary scattering reduces the effective mean free path and
thermal conductivity. For heat transfer across a film or a multilayer, it is possible
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Fig. 7.9 Heat conduction regimes

to use Fourier’s law inside the medium by considering an effective temperature and
the temperature-jump boundary condition. It is difficult, if not impossible, to apply
Fourier’s law to complex geometries or local heating. The two-temperature model
for fast laser heating can be in either region 1 or 2, depending on how the length
scale is compared with the mean free path. Most of the research on microscale heat
transfer between 1990 and 2005 dealt with the microscale phenomena in region 2.

Region 3 is the regimeofwave behavior,which is described bySchrödinger’swave
equations and where quantum tunneling can occur. Quantum size effect becomes
significant on thermal conductivity and specific heat. Quantum conductance is a
special case of quantum tunneling, for which the ballistic processes are confined in
onedimension through a channel. For very thin layers,wave interference and coherent
phonon effects may become important. However, due to the interface roughness, the
coherencemaybedestroyed so that the energy raymethodor the particle approach can
still be applied at very small length scales.Wewill give a comprehensive treatment of
electromagneticwave interference and scattering phenomena in subsequent chapters.
The region on the upper left is said to be of no interest at short timescales because a
thermal disturbance cannot travel that far and affect the temperature field.

Region 4 is designed to represent the wavelike behavior, described by the Jef-
freys-type equation, Eq. (7.17). When we say Jeffreys-type equation, we mean that
both κ0 and κ1 in Eq. (7.16a) are positive. As discussed earlier, τN is the second relax-
ation time for phonon scattering that does not transfer or dissipate thermal energy,
as in the N processes. In this regime, the BTE based on the two-relaxation-time
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approximation may be applied [31, 32]. This regime includes the heat pulse prop-
agation and the second sound in dielectric crystals, at low temperatures. It suffices
to say that this region, while of great academic interest, has very limited applica-
tions. The pure hyperbolic heat equation, however, predicts a nonphysical wavefront
and cannot be applied without the additional diffusion term. Nevertheless, theoretical
studies of the hyperbolic heat equation have helped in better understanding heat trans-
fer behavior on short timescales and, subsequently, facilitated the development of
more realistic models. While the lagging heat equation can mathematically describe
both wavelike behavior and parallel heat conduction, it does not provide much new
physics. On the other hand, the memory concept may be related to the anharmonic
and nonlinear effects that are inherent to the solid and crystal structures. Study of the
thermomechanical and thermoelastic effects, and thermal transport in polymers and
inhomogeneous materials, such as biological materials, may require empirical and
semiempirical models. The lagging heat equation or similar differential equations
may be quite helpful in these applications.

Region 5 belongs to the nanoscale regime, where it is necessary to employ quan-
tum or sometimes classical molecular dynamics to study the underlying phenomena.
At the very fundamental level, DFT and DFPT are needed that can be coupled with
molecular dynamics or the first-principles-based BTE as discussed in the previ-
ous chapter. The dashed ellipse indicates the overlapping between different regions,
where molecular dynamics simulation may provide rich information as well as a
bridge between different timescales and length scales.

7.4 Thermal Metrology

Thermal metrology plays an important role not only in determining the unique prop-
erties but also in testing the theoretical predictions and helping to understand the fun-
damental mechanisms. Thermal metrology includes measurements of temperature
(thermometry), specific heat (calorimetry), and heat flux. Thermophysical properties,
such as thermal conductivity, thermal diffusivity, and specific heat, can be measured
with steady-state, periodically modulated, pulsed, and combined techniques [111–
115]. MEMS and NEMS have enabled the fabrication of miniaturized heaters and
sensors. Furthermore, optical techniques such as thermoreflectance, Raman spec-
troscopy, photothermal radiometry, fluorescence, and laser flash techniques have
been widely used in the measurement of temperature [116] and thermal properties
of nano/microstructured materials [117]. Scanning thermal microscopy and near-
field optical microscopy have further improved the spatial resolution [47, 118]. A
large number of publications can be found from the bibliography of the previous and
present chapters and references therein. A brief overview of selected measurement
techniques is given in the following.
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7.4.1 Microbridge and Suspended Microdevices

The four-point probingmicrobridge shown in Fig. 7.10 is commonly used formeasur-
ing thermal properties. The metal bridge can serve as either a heater or thermometer
or both. Platinum (Pt) is mostly used due to its relatively high resistivity, large tem-
perature coefficient of resistance (TCR), and chemical stability. Either steady-state,
transient, or periodic-heating methods can be used in the measurements; in some
cases, a combined heating method can be used alternatively or simultaneously. The
microbridge can be fabricated on a dielectric substrate, a thin insulating film on a
substrate, or a suspended membrane, allowing both in-plane and cross-plane thermal
transport properties to be measured. The thickness of the metal film is typically sev-
eral tens of nanometers and the width of the bridge can vary from tens of nanometers
to several micrometers. Depending on the applications, the bridge length can vary
from tens of micrometers to several millimeters. Extensive discussions on the use
of electrothermal techniques for measuring the thermal conductivity and thermal
diffusivity can be found from Refs. [47, 112, 119].

As an example, Fig. 7.10b and c display the SEM images of a microfabricated
bridge used as a thermometer [120]. The Pt filmwith a thickness of 35 nmwas etched

Fig. 7.10 A patterned
heater/thermometer
microbridge in a
four-terminal sensing
scheme. a Schematic of the
microbridge circuit; b a Pt
microbridge with a length of
29 μm connected to four
electrodes and c portion of
the microbridge whose width
is approximately 140 nm
[120]
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using focused ion beam (FIB) to awidth of 140 nmover 29μmlength. The bridgewas
fabricated over a SiO2 film on Si substrate for characterizing the heating effect from
an AFM cantilever as it approaches and scans the surface. The TCRwas calibrated to
be near 20% that of bulk Pt, which is approximately 0.0039 K−1. The resistivity was
about five times that of pure Pt, suggesting grain boundary and geometric boundary
scattering effects may play a role in the deposited Pt film and etched microbridge
[120]. It is necessary to calibrate the microfabricated thermometers and to determine
the TCR curve before performing actual measurements.

Since it often takes a long time to achieve steady states, traditionally, the hot wire
and hot strip methods have been developed to measure thermal properties using a
step function or a short impulse of electrical power. In the late 1980s, Cahill et al.
[121–123] developed the 3-omega or 3-ωmethod formeasuring thermal conductivity
of amorphous solids and thin films using a lock-in amplifier to generate a harmonic
oscillating current signal I ∼ cos(ωt) = cos(2π f t) and measure the voltage signal
oscillating at a frequency of 3ω. This method greatly reduces the effect of back-
ground effects such as thermal radiation and can be used for both cross-plane and
in-plane thermal conductivity. The basic principle is that when an alternating current
passes through the bridge as illustrated in Fig. 7.10a at a frequency ω, the voltage
Ṽω = Ĩω R also oscillates at a frequency of ω. Consequently, the electrical power
P̃2ω = Ĩω Ṽω is modulated at 2ω, which is dissipated as Joule heating to the bridge.
The resulting temperature oscillates around the mean temperature at a frequency of
2ω with a phase delay φ that depends on the properties and geometry of the system.
The mean temperature (operating temperature) of the bridge depends on the average
heating power. The resistance of the bridge is therefore modulated about its oper-
ating point at a frequency of 2ω. The lock-in amplifier collects the voltage signal
and performs a frequency analysis to extract the 3ω voltage signal Ṽ3ω = Ĩω R̃2ω.
Through careful models of the heat transfer processes and known parameters such as
the film thickness and specific heat capacity, the 3-ω method has become a power-
ful technique in measuring thermal conductivity, especially for semiconductors and
insulators [47]. Dames [124] gave an extensive review with background informa-
tion of the 3ω methods and its variations. Kommandur and Yee [125] fabricated a
microbridge on a suspended semiconducting polymer film and used the 3ω method
to measure the in-plane thermal conductivity and to characterize the anisotropy in
thermal transport properties.

Shi et al. [126] microfabricated suspended devices for measuring thermal and
electrical properties of nanostructures. Kim et al. [127] reported the first thermal con-
ductivity measurements of individual carbon nanotubes (CNTs) using a suspended
microdevice. Yu et al. [128] measured the thermal conductance and the Seebeck
coefficient of an individual single-wall CNT. The device includes two suspended
islands made of silicon nitride (SiNx) membrane and each island is supported by five
SiNx beams as shown in Fig. 7.11. A Pt thin film is coated on the membrane and
patterned in serpentine winding on each island. The four beams or leads form four
contact points that provide heating power and measure the temperature of the island
simultaneously. One of the islands is used as the heater (with its own thermometer)
and the other island serves as the heat sink. Nanotubes or nanowires with a length of
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Fig. 7.11 Schematic of the microfabricated suspended device that has two isolated membranes
with patterned Pt resistors supported by silicon nitride beams. Reprinted with permission from Yu
et al. [128]; copyright (2005) American Chemical Society

about 5–20 μm can be laid between the islands. Additional beams may be used to
measure the resistance of the suspended nanotubes, nanowires, and nanofilms [126–
130]. Both steady-state and transient measurements have been performed. Detailed
analysis of the thermal resistance and the effect of contact resistance need to be taken
into consideration; see a recent review by Weathers and Shi [130].

Fujii et al. [131] fabricated a suspendedT-shapenanosensor tomeasure the thermal
conductivity of individual CNTs of a few micrometers in length. The Pt strip of
a length of 5–6 μm, width on the order of 0.5 μm, and thickness a few tens of
nanometers, is suspended. The CNT is suspended from the middle of the Pt strip to a
heat sink. Under steady-state operation with DC current, the temperature difference
between the ends of the CNT and heat flow rate through the CNT can be determined
by analyzing the measurement results to determine its thermal conductivity.

Recently, Kim et al. [132] proposed to use four suspended parallel bridges made
of Pt strip on SiNx beams to measure the thermal and thermoelectric properties
of nanostructures. Though the analysis involves detailed heat transfer and thermal
resistances through the beams, the fabrication is much easier than the suspended
islands structures. Furthermore, individual beams can serve as a four-point probe and
heater. Contact resistance can also be compensated for through a careful analysis of
the thermal resistance network. The setup has been used to measure Si nanowires
from 100 to 500 K and BAs microrods from 250 to 350 K [132, 133]. Transient and
3ω sensing schemesmay also be employed tomeasure the thermal and thermoelectric
properties of nanowire structures.
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7.4.2 Scanning Probe Microscopic Techniques

As mentioned in Chap. 1, the family of scanning probe microscopy (SPM) has
been established as a powerful toolbox in nanotechnology from manipulating and
imaging single atoms to probing the topological, chemical, and thermal profiles
near the interfaces. Majumdar [134] reviewed the development and applications of
scanning thermal microscopy (SThM) for local temperature mapping with a few tens
of nanometer resolution by fabricating a thermocouple or resistance thermometer.
The method was developed byMajumdar et al. [135, 136] in the early 1990s to allow
surface temperaturemeasurements based on the previouswork at IBM[137].Another
method, also pioneered by Majumdar [138] used the thermal expansion principle
called the scanning Joule expansion microscopy, which has been further developed
to measure the temperature profile with 10 nm resolution for studying the size effect
of thermal conductivity [139] as well as imaging the thermal and thermoelectric
characteristics at graphene-metal contact [140]. The most frequently used SThM is
based on fabricating a thermocouple at the tip. Themethodhas been further developed
through the years not only for local temperature measurements but also for thermal
conductivity measurement and thermoelectric property characterization as reviewed
in Refs. [141, 142].

A representative high-quality SThM with a thermocouple at the tip is shown in
Fig. 7.12, which can be used in air [143]. The probe was made of silica with a
very low thermal conductivity, and the tip was made to be 12 μm long to minimize
the air gap effect. In addition to measuring the thermal profile for a heated sample,
the thermal conductivity profile can be obtained by heating the tip with a high-
frequency (>100 kHz) AC current such that a steady-state temperature is sensed by
the thermocouple whose time constant is greater than 1 ms [143].

The cantilever tip or cantilever can be optically or electrically heated with control-
lable temperature for thermal processing, nanofabrication, data writing and reading,
and for the study of thermal transport at nanoscales [144, 145]. Lee et al. [146,
147] performed a steady-state and frequency-dependent characterization of heated
AFM cantilevers over a range of pressures for thermal metrology applications. The
temperature distribution in heated Si cantilevers was obtained with micro-Raman
spectroscopy with a spatial resolution of 1 μm. Park et al. [148] analyzed the fre-
quency response of heated AFM cantilevers in the frequency range from 10 Hz to
1 MHz, and observed high-order harmonic responses, such as 3ω, 5ω, and 7ω, at
frequencies below 100 kHz and impedance effects at higher frequencies. Park et al.
[149] also investigated thermal behavior of heated cantilevers at cryogenic temper-
atures, down to 78 K. By measuring the thermal response at various frequencies,
this study extracted the specific heat near the cantilever tip and the thermal con-
ductivity along the heavily doped silicon legs, at temperatures ranging from 80 to
200 K. There appears to be a significant reduction in the thermal conductivity for the
free-standing silicon cantilever, with a thickness of 0.59 μm, at low temperatures.
The heat transfer between heated AFM microcantilever and substrate has also been
investigated [120]. As reviewed by King et al. [150], heated AFM cantilevers have
become a useful thermal analysis tool at the micro- and nanoscales.
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Fig. 7.12 Scanning thermal microscopy with a special resolution of about 50 nm for temperature
and thermal conductivity characteristics.: a Schematic of the experimental and the tip layout; b SEM
images of the probe tip and cantilever. Reprinted with permission from Kim et al. [143]; copyright
(2011) American Chemical Society

7.4.3 Noncontact Optical Techniques

Opticalmethods are noncontact and can have a large range of temporal resolutions for
measuring temperature and thermal properties such as thermal conductivity, diffu-
sivity, specific heat, thermal boundary resistance, and the electron–phonon coupling
constant [116, 117]. Femtosecond lasers have become much more affordable and
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accessible in recent years [49, 151–155]. For measurement of bulk and film prop-
erties, a temporal resolution of 10 ns–10 ms is usually sufficient. In order to probe
thermal boundary resistance between films or thermal properties of very thin films,
a resolution of 100 ps–10 ns is frequently used [156–158]. To measure the electron–
phonon coupling, ultrafast lasers are needed since picosecond resolution is required
[38–46, 159]. Another advantage of optical methods is that the beam spot size can
be made relatively small, down to a few micrometers using an objective lens. Sub-
micron resolution can be achieved with micro-Raman thermometry. Measurements
with 50–500 nm spatial resolution can be made possible using near-field optics or
fabricated nanostructures [118, 160–162].

Pump-and-probe methods are often employed in which the sample surface is
heated by a laser beam (or another optical source) and the thermal responses are
measured using one of the variety of probing techniques. Examples are the ther-
moreflectance method based on the temperature dependence of the reflectance of
the surface or film, micro-Raman thermometry based on the Raman shift due to
phonon scattering being temperature dependent, the radiometric method based on
the thermal emission signal according to the theory of blackbody radiation, and pho-
toacoustic and photodeflection techniques [112, 113, 117]. Measurements are often
accomplished either in the time domain, when the transient thermal response after
pulsed or step heating is observed, or in the frequency domain, when periodic heating
is used and the periodic response with a time delay is measured [47, 112, 117]. The
latter is also called the thermal wave method [11, 12].

Figure 7.13 illustrates a time-domain thermoreflectance (TDTR) setup [154] for
measuring the thermal conductivity of film or bulk materials as well as TBR. The
pump-probe scheme is shown in Fig. 7.13a. The transducer is usually a metal film.
The thermoreflectance coefficient is defined as follows

CTR = 1

R

∂ R

∂T
or

	R

R
= CTR	T (7.92)

The temperature and wavelength dependence of CTR of metal films have been
extensively characterized [163]. For Au, due to the interband transition near the
wavelength of λ = 500 nm, the absorptance and thermoreflectance coefficient is
relatively large. For Al, the absorptance is high near λ = 800 nm. The wavelength
of pulsed Ti-sapphire lasers ranges from 720 to 880 nm; thus, Al coating is typically
used [49, 159]. The pulse duration is typically 90–150 fs, though shorter pulses can
also be generated using a mode-locking technique. As shown in Fig. 7.13b, the laser
beam after the optical isolator is split into a pump beam (high power) and a probe
beam (low power) using a polarizing beamsplitter (PBS). The output of the laser is a
pulse train at a typical frequency of 80 MHz. An electro-optic modulator (EOM) is
used to reduce the modulation frequency to 1–10 MHz range for measuring thermal
properties or TBR. The probe beam goes through a delay stage in order to probe the
sample temperature after the pump pulse heating. Both beams are sent to the sample
through the objective lens.After averaging overmanypulses, the delay stage ismoved
to vary the delay time. It should be noted this method is different from the traditional
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Fig. 7.13 Schematic of a TDTR: a Illustration of the pump and probe beams on a sample; b the
optical layout. Reprinted with permission from Jiang et al. [154]; copyright (2018) AIP Publishing

transient response method. For example, in the conventional transient laser heating
and relaxation method, the temperature rise and fall after the laser pulse is monitored
continuously with a temporal resolution typically from 1 μm to 1 ms [112]. In a
TDTR measurement, the response at each delay step is recorded and then plotted
as a function of time. The delay step determines the temporal resolution which can
be varied from tens of femtoseconds to tens of picoseconds. Since the movement
of the delay stage can be precisely controlled with a micrometer resolution, the
smallest time delay that can be achieved is less than 10 fs. For example, if the
total travel length of the delay stage is 30 cm, the maximum delay time is 2 ns. In
some experimental setups, a forward advance is used for the pump beam rather than
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delaying the probe beam. The chopper may be used to vary the frequency of the
probe beam independently for dual-frequency measurement [154, 164]. A second
harmonic generator can be used to double the frequency of either the pump beam
or probe beam so that its wavelength is changed to the visible range [49]. TDTR
methods have been used to measure the thermal conductivity accumulation function
in terms of the mean free path [151, 152] as well as the thermal conductivity of
perforated membranes [165, 166]. Wagner et al. [166] also used a two-laser setup
with a micro-Raman thermometer at submicron resolution to obtain the steady-state
temperature profile during continuous laser heating.

By changing the beam size and modulation frequency, it is possible to determine
both in-plane and cross-plane thermal conductivity by fitting the model prediction
to the experimental data using the least-squares method. Another way to probe the
in-plane thermal transport is to use a lateral offset between the pump beam and the
probe beam.Wang et al. [167] used bothmethods to study the thermal conductivity of
layered borides. Tomeasure the properties of 2Dmaterials it is critically important to
reduce the metal layer thickness. Amagneto-optical thin film (on the order of 20 nm)
has been used as the transducer. Under a magnetic field due to the Kerr effect, the
polarization of the reflected beam is a function of temperature. The method based
on time-resolved magneto-optical Kerr effect (TR-MOKE) has been developed and
used to measure the anisotropic thermal conductivity of molybdenum disulfide [168]
and black phosphorus [153].

The femtosecond laser setup can be used for frequency-domain thermoreflectance
(FDTR) with few hardware modifications [169]. The signal reaching the detector,
or the reflection of the probing beam, is at the same frequency as the pump beam
with a phase delay [151]. The modulation frequency is determined by the EOM and
can be varied from 25 kHz to 20 MHz. By fixing the time delay and changing the
modulation frequency, one can obtain the frequency response. Theoretical models
are necessary to relate the frequency response to the properties being determined
[169]. FDTR can also be performed with two continuous-wave lasers [169–171].
Regner et al. [170] developed a two-laser FDTR setup to measure the phonon mean
free spectra for crystalline Si, doped Si, amorphous Si, and amorphous SiO2.

A modified setup is used to measure anisotropic thermal conductivity of thin
films, as shown in Fig. 7.14 [171]. Two continuous-wave green lasers at slightly
different wavelengths are used. The wavelengths of 488 nm and 532 nm match well
with the peaks of absorption and thermoreflectance coefficients of the gold film
(transducer), respectively [163]. An optical isolator (ISO) is used after each laser to
prevent the reflected beam from reentering the laser cavity. After a half-wave plate
(HWP), the pump beam is modulated by EOM at frequency f, which can be varied
in a large range from about 9 kHz to 200 GHz, though only the middle range is
useful for the data analysis and parameter reduction. A picomotor mirror, which
uses a piezoelectric actuator to fine tune the angular rotation, is used to offset the
probe beam position. After the beamsplitter (BS), both beams go through the PBS,
a quarter-wave plate (QWP), and the objective lens (OBJ) to focus on the sample
surface. Only reflected light at the probe beam frequency is allowed to enter the
photodetector (PD) thanks to a bandpass filter (BP). The detector receives a signal
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Fig. 7.14 Illustration of a frequency-domain thermoreflectancemeasurement system and scenarios.
a The optical layout of the two-laser FDTR setup; b scheme for measuring thermal conductivities
of the film, substrate, and TBR, G1 and G2, with concentrated beams; c scheme for measuring
anisotropic thermal conductivities, both in-plane k‖ and across-plane k⊥, of the film with an offset
beam spot. Reprinted with permission from Rodin and Yee [171]; copyright (2017) AIP Publishing

due to the temperature change of the sample at the same frequency f but with a phase
lag φ, which depends on the materials properties, lateral offset, and the modulation
frequency f. The phase lag can be measured with a lock-in amplifier using either
a heterodyne modulator [170] or a signal generator [171]. Through careful thermal
modeling and a least-squares fitting, the desired properties such as the TBR, in-plane
and cross-plane thermal conductivities of the film can be determined. The results for
crystalline and amorphous Al2O3 and SiO2, respectively, along with highly oriented
pyrolytic graphite have been reported [171].

The femtosecond transient thermal grating (TTG) method has also been used for
measuring the thermal conductivity accumulation functions of thinmembranes [172–
174]. A pulsed laser (wavelength 515 nm and pulse width 60 ps) is split into beams
using diffraction optics and then focused to the sample, causing sinusoidal interfer-
ence patterns on the sample, which can be a thin film or membrane. A continuous
laser is either reflected or transmitted through the sample, producing a diffraction
signal whose decay is related to the thermal diffusivity. Silicon membranes of thick-
nesses from 1500 nm down to 17.5 nm have been measured to demonstrate ballistic
thermal transport as well as to study the thermal conductivity accumulation function
[172, 173]. Transport along perforated silicon membrane has also been examined
[174].
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7.5 Summary

The present chapter, together with Chaps. 5 and 6, provides a comprehensive treat-
ment of thermal properties of and transport processes in micro/nanostructured solid
materials. This chapter focused on the transient and nonequilibrium heat conduc-
tion, when the local-equilibrium condition is not satisfied to justify the conventional
heat diffusion theory, based on Fourier’s law. Several modified phenomenological
theories were critically reviewed with an emphasis on their application regimes. The
phonon BTE was presented using the EPRT, and the solutions were discussed for
the nonequilibrium heat transfer across a thin film or a multilayer structure. The
basic models of TBR were outlined. A summary on the advanced atomistic scale
modeling is provided focusing on the atomistic Green’s function method. A heat
transfer regime was developed to assist readers in choosing an appropriate method-
ology for a given situation. Finally, some important thermal measurement techniques
are discussed with extensive references.

Problems

7.1. What are the characteristic lengths for heat conduction along a thin film?
Why is local equilibrium a good assumption in this case, even though the
film thickness is less than the mean free path of heat carriers? Why does the
thermal conductivity depend on the thickness of the film?

7.2. Why dowe say that Fourier’s law is a fundamental physical law, likeNewton’s
laws in mechanics, but Cattaneo’s equation is not? Comment on the paradox
of infinite speed of heat diffusion by considering the feasibility of exciting the
surface temperature or depositing a heat flux to the surface instantaneously.

7.3. Consider a 1D semi-infinite medium, initially at uniform temperature Ti ,
where the surface temperature is suddenly changed to a constant tempera-
ture, T (0, t) = Ts. The analytical solution of the heat diffusion equation

gives θ(x, t) = T (x,t)−Ti
Ts−Ti

= erfc
(

x
2
√

αt

)
. For silicon at various temperatures,

use the properties given in Example 5.6 to estimate how long it will take for a
given location to gain a temperature rise that is 10−12, or one part per trillion of
the maximum temperature difference. Estimate the average thermal diffusion
speed in terms of x and Ti. Hint: erfc(5.042) = 1.00 × 10−12.

7.4. Repeat Problem 7.3, using copper instead of silicon as the material, based
on the properties given in Example 5.5. Discuss why the average thermal
diffusion speed is different under different boundary conditions, i.e., constant
heat flux and constant temperature. From an engineering point of view, do
you think heat diffusion is a fast or slow process? Why?

7.5. (a) Derive Eq. (7.4), the hyperbolic heat equation from Cattaneo’s equation
(b) Derive Eq. (7.14), the lagging heat equation, based on the dual-phase-lag

model.
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7.6. Take GaAs as an example. How would you compare the speed of sound
with the average thermal diffusion speed, at different temperatures and length
scales? This problem requires some literature search on the properties.

7.7. Assume the hyperbolic heat equation would work for transient heat transfer in
glass (Pyrex), at room temperature. Given κ = 1.4 W/mK, ρ = 2500 kg/m3,
cp = 835 J/kgK, and va = 5640 m/s.

(a) At what speed would the temperature wave propagate?
(b) For an excimer laser with a pulse width tp = 10 ns, 0.1 ns after the pulse

starts, could the hyperbolic equation be approximated by the parabolic
equation?

(c) Suppose we have an instrument available to probe the timescale below
τq, will the hyperbolic heat equation be able to describe the observation?

7.8. DeriveEq. (7.13b) fromEq. (7.13a).Discuss the conditions for these equations
to be reduced to Fourier’s law or Cattaneo’s equation.

7.9. Show that Eq. (7.17) satisfies Eq. (7.16). Discuss the conditions for Eq. (7.17)
to represent Fourier’s law or Cattaneo’s equation.

7.10. Derive Eqs. (7.18a), (7.18b), and (7.18c).
7.11. Derive Eqs. (7.27a) and (7.27b). Calculate τ , τq, and τT of copper, for Te =

300, 1000, and 5000 K, assuming the lattice temperature Ts = 300 K.
7.12. Calculate the electron–phonon coupling constant G for aluminum, copper,

gold, and silver, near room temperature. Discuss the dependence of κ and G
upon the electron and lattice temperatures Te and Ts.

7.13. At Te = 1000, 3000, and 6000 K, estimate the energy transfer by thermionic
emission from the copper surface, assuming that the electrons obey the
equilibrium distribution function at Te.

7.14. Based on Example 7.3, evaluate the heat flux in a thin silicon film. How
thin must it be in order for it to be considered as in the radiative thin limit?
Calculate the medium temperature T. Plot the left-hand side and the right-
hand side of Eq. (7.43). Furthermore, assuming Eq. (7.43) to be true for each
frequency, find a frequency-dependent temperature T (ω) of the medium. At
what frequency does T (ω) = T ? Is there any physical significance of T (ω)?

7.15. Derive Eq. (7.53), using Eqs. (7.38), (7.49a), (7.49b), and (7.50).
7.16. In principle, one should be able to study nonequilibrium electrical and thermal

conduction in the direction perpendicular to the plane and use the BTE to
determine the effective conductivities. This could be a team project, for a few
students, to formulate the necessary equations. As an individual assignment,
describe how to set up the boundary conditions, as well as the steps you plan
to follow, without actually deriving the equations.

7.17. For a diamond type IIa film, vl = 17, 500 m/s, vt = 12, 800 m/s, and
κ = 3, 300 W/mK, near 300 K. Assume that the boundaries can be mod-
eled as blackbodies for phonons. For boundary temperatures T1 = 350 K and
T2 = 250 K, calculate and plot the heat flux q ′′

x and the effective thermal
conductivity κeff across the film of thickness L, varying from 0.05 to 50 μm.
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7.18. Calculate the TBR between high-temperature superconductor YBa2Cu3O7-δ

andMgOsubstrate, at an average temperature between 10 and90K, using both
theAMMand theDMMwithout considering the electronic effect. The follow-
ing parameters are given for YBa2Cu3O7-δ: vl = 4780 m/s, vt = 3010 m/s,
ρ = 6338 kg/m−3, and �D = 450 K; and for MgO: vl = 9710 m/s,
vt = 6050 m/s, ρ = 3576 kg/m−3, and �D = 950 K.

7.19. Evaluate the effective thermal conductivity near room temperature of a
GaAs/AlAs superlattice, with a total thickness of 800 nm, using the DMM to
compute the transmission coefficient. Assume the end surfaces are blackbod-
ies to phonons; consider that (a) each layer is 4 nm thick and (b) each layer is
40 nm thick. The following parameters are given, considering phonon disper-
sion on thermal conductivity, for GaAs: C = 880 kJ/m3 K, vg = 1024 m/s,
and � = 145 nm; and for AlAs: C = 880 kJ/m3 K, vg = 1246 m/s, and
� = 236 nm. How is the result compared with a single layer of either GaAs
or AlAs?

7.20. Evaluate the effective thermal conductivity near room temperature of a Si/Ge
superlattice, with a total thickness of 1000 nm, using theDMM to compute the
transmission coefficient. Assume the end surfaces are blackbodies to phonons;
consider that (a) each layer is 5 nm thick and (b) each layer is 50 nm thick. The
following parameters are given, considering phonon dispersion on thermal
conductivity, for Si: C = 930 kJ/m3 K, vg = 1804m/s, and � = 260 nm;
and for Ge: C = 870 kJ/m3 K, vg = 1042m/s, and � = 199 nm. How is the
result compared with a single layer of either Si or Ge?

7.21. Make a comparison of the different methods for measuring the thermal
conductivity of a thin film.

7.22. Suppose one wishes to measure the thermal conductivity of a graphene sheet
of 10 μm × 10 μm, what method(s) would you recommend?

7.23. Suppose one wishes to measure the thermal conductivity of a superlattice
Si/Ge nanowire of length 50 μm and diameter 3 nm, what method would you
suggest?

7.24. What is the mechanism of transient thermal grating? What properties can be
measured by the TTG method?
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