
Chapter 6
Electron and Phonon Transport

In the preceding chapter on solid properties, we relied on the Drude–Sommerfeld
model, which assumes that electrons are completely free and the Fermi surface is
spherical and isotropic in all directions of thewavevector.While the concepts of elec-
tronic band structures and phonon dispersion in real solids were often mentioned, we
have deliberately avoided any details. It is hoped that the free-electronmodelwill help
readers gain an intuitive picture of electrons without a deep knowledge of solid-state
physics. Note that the free-electron model described in Sect. 5.1.3 is applicable only
for metals, usually good conductors, and cannot be applied to semiconductors. The
Sommerfeld theory, albeit successful in quantitatively describing electronic trans-
port for certain metals, does not touch on the fundamental mechanisms of electron
scattering and the shape of the Fermi surface. The free-electron model also fails to
explain certain phenomena including thermoelectricity. The Hall effect and magne-
toresistance, to be discussed in the following section, provide further evidence of the
inadequacy of the free-electron model.

This chapter introduces electronic band theory after a brief discussion of elec-
tronic structures in atoms, binding in crystals, and crystal lattices. The phonon dis-
persion relations are presented subsequently and explained in terms of different
branches of acoustic and optical phonons. Subsequently, the electron and phonon
scattering mechanisms are outlined. The next section addresses electronic emis-
sion and tunneling phenomena, including photoelectric effect, thermionic emission,
field emission, as well as electron tunneling through a potential. A significant por-
tion of this chapter is then devoted to semiconductor materials and devices, with
an emphasis on optoelectronic applications such as solar cells, thermophotovoltaic
systems, light-emitting diodes (LEDs), and semiconductor lasers including quantum
well lasers.
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256 6 Electron and Phonon Transport

6.1 The Hall Effect

When a conductor carrying electric current is placed in amagnetic field perpendicular
to the current flow, there is a Lorentz force acting on the conductor according to
F = ∑

qud×B = lI×B, where q is the charge of each carrier, ud is the drift velocity
of the carrier, B is the magnetic induction, I is the current in the conductor, and l is
the length of the conductor. This principle was used in the electromagnetic motor
invented byMichael Faraday in 1821.Because electric current is always defined in the
direction of the applied electric field E = −∇V , the force acting on the conductor
is independent of the nature of the carriers (electrons or holes). Microscopically,
however, there is a subtle difference that can be distinguished by the experiment first
performed by Edwin Hall in 1878 when he was a graduate student at Johns Hopkins
University. As shown in Fig. 6.1, an electric current passes through a metal foil in
the x-direction, while the electrons are drifted opposite to the x-direction. When a
uniform magnetic field B is applied in the z-direction, the electrons are subjected to
a force toward the negative y-direction. Gradually, an electric field is built up across
the foil as manifested by a nonzero voltage VH, which is called the Hall voltage.
The electric potential in the y-direction eventually balances the magnetic force such
that the electrons drift in the x-direction only. This effect is called theHall effect. By
setting the y-component of the Lorentz force F = q(E+ud ×B) to zero, one obtains

VH = I B

nqd
(6.1)

where n is the number density of the carrier and d is the thickness of the conductor
[1, 2]. The Hall coefficient is defined as follows:

ηH = VHd

I B
= 1

nq
(6.2)

Fig. 6.1 Illustration of the
Hall effect experiment
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The Hall resistance can be defined as RH = VH/I = BηH/d, and its inverse is
called the Hall conductance. Similarly, the Hall resistivity is given by rH = BηH =
Ey/Jx , where Ey is the electric field in the y-direction and Jx is the current density.
For metals, q = −e and n = ne, the number density of free electrons, and one would
expect a negative Hall resistance.

Example 6.1 Find the Hall coefficient and the Hall voltage for a copper foil of 2 ×
2 cm2 area, with a thickness of 10 µm. Given the electrical current I = 0.5 A and the
magnetic induction B = 1.0 T (tesla) = 1.0 Wb/m2, what is the voltage drop along
the current flow direction?

Solution Based on the previous chapter, the number density of electrons in copper
is ne = 8.45× 1028 m−3. From Eq. (6.2), we obtain ηH = −7.4× 10−5 cm3/C, and
from Eq. (6.1) we find VH = −3.7 µV, which is a very small voltage but can be
measured accurately. Using the resistivity of copper re = 1.7 × 10−8 � m, we see
that V = 850 µV, which is much larger than the Hall voltage. The Hall coefficient is
much larger for semiconductors because of their usuallymuch lower carrier densities.

Before the discovery of the Hall effect, many people, including James Clerk
Maxwell, believed that the force acted only on the conductor but not on the current
carriers [3]. Measurement of the Hall coefficient allows the determination of the sign
of the charge carriers as well as the carrier concentration. This is important especially
for semiconductor materials. The Hall coefficient is positive for p-type semiconduc-
tors, but negative for n-type semiconductors. In reality, the Hall coefficient depends
also on the applied magnetic field although such a dependence cannot be predicted
by the Drude free-electron model. For some common metals like Al, Be, Cd, In,
W, and Zn, the Hall coefficient can even become positive. Therefore, the Hall effect
cannot be fully accounted by the free-electron model. It is necessary to understand
the electronic band structures.

Magnetoresistance is the change in resistance of a material under an applied mag-
netic field. The magnetoresistance may be transverse, when the applied magnetic
field is perpendicular to the current flow, and longitudinal, when the applied mag-
netic field is parallel to the current flow. In the free-electron theory, resistance is
expected to be independent of the strength of the applied transverse magnetic field.
In reality, most materials exhibit transverse magnetoresistance that depends on the
magnetic field strength. In the late 1980s, researchers observed a giant magnetore-
sistive (GMR) effect, also called giant magnetoresistance, with extremely thin films
of ferromagnetic and metallic layers. The GMR effect has been applied to read heads
for magnetic hard disk drives [4] and the discovery is recognized by the 2007 Nobel
Prize in Physics.

Klaus von Klitzing and coworkers in 1980 measured the Hall voltage of a 2D
electron gas using a metal-oxide-semiconductor field-effect transistor (MOSFET),
at very low temperatures (T ≈ 1.5 K) with a high magnetic field (B > 15 T), at the
Grenoble High Magnetic Field Laboratory in France [5]. They found that the Hall
conductance is quantized and increases with the applied magnetic field by steps in
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a staircase sequence. The Hall conductance is a multiple of a fundamental constant,
1/RK, where

RK = h/e2 = 25812.807449 ± 0.000086� (6.3)

is called the vonKlitzing constant. Note that e2/h is proportional to the fine-structure
constant, which is related to the strength of light–matter interaction in quantum elec-
trodynamics. For this work, von Klitzing was awarded the Nobel Prize in Physics
in 1985. The remarkable precision and gauge invariance of quantized conductance
allowed the definition of a resistance standard usedworldwide since 1990 [6]. As dis-
cussed in Chap. 5, quantized conductance has also been observed between nanocon-
tacts and nanostructures with an increment of 2/RK. The discovery of the fractional
quantum Hall effect in 1982, on the other hand, rendered three physicists (Robert
Laughlin, Horst Störmer, and Daniel Tsui) the 1998 Nobel Prize. This has led to a
breakthrough in our fundamental understanding of the physical world. For example,
in a 2D system, electrons may switch between Fermi–Dirac statistics and Bose–Ein-
stein statistics, continuously [7]. Strohm et al. [8] reported phonon Hall effect by
applying a magnetic field perpendicular to the heat flow in a paramagnetic dielec-
tric material at low temperatures. A transverse temperature difference was mea-
sured, which reverses sign when the magnetic field is inversed. Researchers have
also observed magnon Hall effect and photonic spin Hall effect.

6.2 General Classifications of Solids

There are several ways to classify solids. Based on their electrical conductivities,
solids may be classified as insulators, semiconductors, or conductors. They may
exist in different forms, such as amorphous or crystalline phases, depending on how
the atoms in the solids are arranged. A general introduction is given in this section
considering chemical bonds and electrical properties of solids. Let us first take a look
at the electron configuration in atoms because it is directly related to physical and
chemical properties.

6.2.1 Electrons in Atoms

The periodic table of elements is arranged sequentially according to atomic number,
which is determined by the number of protons inside the nucleus and equal to the
number of electrons orbiting the nucleus, since an atom itself is charge neutral.
The electrons occupy different quantum states, which are fully described by the
Schrödinger wave equation as discussed in Chap. 3. By solving the wave equation
in spherical coordinates [9, 10], the number of quantum states can be determined
and identified using indices n, l, and m. The first or principal quantum number n =
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1, 2, 3, 4, … corresponds to different shells, denoted as K, L, M, N, O,… In each
shell, there are n subshells defined by the orbital number l = 0, 1, 2, . . . , (n − 1).
The corresponding symbols are s, p, d, f, g, h, and so forth. For each l, the magnetic
quantum number m = 0, ±1, ±2, …, ±l, which gives a total of 2l + 1 orbits (or
orbitals since electrons do not follow an exact path that can be described by classical
mechanics) for each subshell. Hence, there are a total of n2 orbitals in the nth shell.
When spin degeneracy is considered, the total allowable quantum states are 2n2 in
the nth shell. In other words, there are 2, 8, 18, and 32 quantum states in the first
(K), second (L), third (M), and fourth (N) shells, respectively. On the other hand,
there are 2(2l + 1) quantum states in the lth (l < n) subshell. For example, the s, p, d,
or f subshell contains correspondingly 2, 6, 10, or 14 quantum states. According to
Pauli’s exclusion principle, each quantum state can have no more than one electron,
i.e., at most only two electrons (one with + 1

2 and the other with − 1
2 spin) can share

the same orbital.
According to the Aufbau principle, electrons will fill the lowest energy states first.

The electron configuration of an atom is expressed by the numbers in each subshell.
For example, we can write for aluminum and calcium, respectively,

13Al: 1s22s22p63s23p1 and 20Ca: 1s22s22p63s23p64s2

Note that the 4s orbitals are filled before the 3d orbitals because the associated
energy level of a 3d orbital is higher than that of a 4s orbital. However, the electron
configuration for 29Cu is

1s22s22p63s23p64s13d10 rather than 1s22s22p63s23p64s23d9

This is due to the fact that a half-filled or filled d-subshell is more stable than the
s shell of the next level [10]. Similarly, the outermost shells for chromium (24Cr) are
4s13d5 not 4s23d4, and those for gold (79Au) are 6s14f 145d10 not 6s24f 145d9. The
properties of an element depend largely on the filled state of the outermost orbitals.
Alkali metals, such as 3Li, 11Na, and 19K, have one electron in the outermost orbital
and can easily lose it, especially when interacting with halogens whose outermost
orbitals can be filled by adding only one electron each. The result is the formation
of chemically stable compounds such as NaCl and CsF. The outermost electrons
are called valence electrons. The 4s1 electron in copper is largely responsible for
its high electrical conductivity because it can leave the atom relatively easily. When
the outermost orbitals are completely filled, as in noble gases like He and Ne, the
atoms are very stable and reluctant to react with others. Noble gases are also called
inert gases since they are monatomic gases at ambient conditions. At the atmospheric
pressure, helium must be cooled to 4.2 K for it to condense into liquid. The general
sequence of electron configuration in order of increasing energy is schematically
given in the following:
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For convenience, each dashed line indicates the electron configuration of an inert
gas listed underneath that line. Each noble gas contains a completely filled p subshell
(with the exception of He which has a filled K shell) before the next s subshell. In
atomic physics, ionization energy is the energy required to separate an electron
from the atomic nucleus. The ionization energy varies periodically according to the
atomic number: Alkali metals have the lowest ionization energy because of the single
electron in the outermost s-orbitals. On the other hand, inert gases have the highest
ionization energy. Helium is the most stable element with an ionization energy of
24.6 eV. The ionization energy of lithium is only 5.4 eV. For a hydrogen atom, the
ionization energy is 13.6 eV as discussed in Chap. 3.

6.2.2 Insulators, Conductors, and Semiconductors

The picture of free-electron gas depicted in Chap. 5 is an oversimplified version in
which the electron energies are limited to a nearly continuous band from the zero
energy level up to the Fermi energy or Fermi level. Only those near the Fermi surface
contribute to electronic transport properties. Electrons in a single atom are in various
discrete energy levels, which arewell predicted by quantummechanics. In real solids,
atoms are arranged in close proximity; hence, electrons interact strongly with one
another as well as with the crystal lattices, resulting in complex wavefunctions as
manifested by their band structures. There exist a large number of allowable bands
that may be occupied by electrons. Between two consecutive allowable bands, there
exists a forbidden band that cannot be occupied by any electron. Electrons occupy
broad bands with allowable energy states up to the Fermi level. The distinction
between insulators and metals can be understood by looking at the electronic states
near the Fermi surface as illustrated in Fig. 6.2. A brief qualitative description is
given here, whereas more detailed theories are deferred to subsequent sections.

For insulators, the highest occupied band is completely filled as shown in Fig. 6.2a.
This is called a valence band due to the contribution of valence electrons. The next
higher band is a conduction band which is completely empty. There exists a large
energy gap between the valance band and the conduction band, usually between 5
and 15 eV. Examples are Eg ≈ 8 eV for fused silica (SiO2) and Eg ≈ 14 eV for
LiF. The Fermi level lies in the middle of the forbidden band. Because the valence
band is completely filled, electrons are not free to move around (i.e., change from
one quantum state to another) under the influence of an electric field. An electrical
insulator is also called a dielectric. Pure crystalline dielectrics are transparent to
visible light because their valence electrons cannot be excited unless the incoming
radiation frequency is high enough that the photon energy exceeds the bandgap
energy. Note that a photon energy of hν = 2 eV corresponds to a visible wavelength
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Fig. 6.2 Schematic of the energy band for different materials, where Eg is the bandgap energy and
EF is the Fermi energy. a An insulator has a completely filled valance band and a completely empty
conduction band, with a wide bandgap between the two. b Ametal has a partially filled conduction
band and the Fermi level lies in this band. c A semimetal, also called a metal, has a conduction band
that overlaps the filled valence band. dA semiconductor is like an insulator but with a much smaller
bandgap and may conduct electricity at elevated temperatures due to thermally excited electrons
and holes. Doping or impurities in a semiconductor can result in a large electrical conductance

λ = 620 nm, and that of 10 eV corresponds to λ = 124 nm, which lies in the deep
ultraviolet. On the other hand, lattice vibrations or phonons in dielectric materials
often yield absorption of radiation in the mid infrared.

Ametal has a partially filled conduction band, which is the highest occupied band,
as shown in Fig. 6.2b. The Fermi level lies inside this allowable band. For some met-
als like Bi and Sn, the conduction band overlaps the valence band as illustrated in
Fig. 6.2c. These metals are sometimes called semimetals since their electrical con-
ductivities are not as high as the alkali or noble metals. Because the energy states
within the conduction band are continuous, the uppermost electrons in the partially
filled conduction band or the top of the valence band can be excited to a higher unoc-
cupied energy level by an arbitrarily applied field. Over 80% of the elements in the
periodic table are metals (or semimetals). All group Ia (alkali, excluding hydrogen),
group IIa (alkaline earth), group IIIa (except boron), and transition (all b groups from
columns 3 to 12 of the periodic table) elements are metals. The interaction between
electromagnetic radiation and a material is much like applying an electric field to the
material, except that the frequency of the applied field is very high. Note that the fre-
quency of red light at λ = 632 nm is ν = c/λ = 475THz. Because of their relatively
free electrons, metals interact with electromagnetic radiation strongly. This is man-
ifested by the strong absorption by thin metallic films and the high reflection from
polished bulk metals. The strong interaction of metals with microwaves can easily
be demonstrated by placing a piece of aluminum foil in a microwave oven and then
observing the noises and sparkles as the oven is turned on. At shorter wavelengths in
the visible spectrum and in the ultraviolet, additional absorption mechanisms emerge
that may be better explained by the particle nature of light.
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Semiconductors have band structures similar to those of insulators, except that
the energy bandgap Eg is much narrower, i.e., on the order of 1 eV. For example,
diamond has a bandgap of 5.5 eV and is usually classified as an insulator, whereas
silicon has a bandgap of 1.1 eV at room temperature and is a semiconductor. Some
semiconductors can have a relatively large bandgap and hence are called wideband
semiconductors. Examples are the III–V semiconductor GaN (3.4 eV) and the II–VI
semiconductors CdS (2.4 eV) and ZnS (3.7 eV). Diamond may be considered as a
wideband semiconductor because of its crystal structure similar to those of Si andGe.
Pure or intrinsic semiconductors are insulators at low temperatures. At higher tem-
peratures, as illustrated in Fig. 6.2d, some electrons (dots) can be thermally excited
from the valence band to the conduction band, leaving holes (circles) in the valence
band. Subsequently, electrical current may flow through, although with a large resis-
tance as compared to metals. Bandgap absorption is essential for the interaction of
semiconductors with optical radiation. When the photon energy exceeds the energy
gap, strong absorption occurs. This is why a silicon wafer looks dark and is opaque
to visible light.

By doping the semiconductor with impurities, the charge distribution can be sig-
nificantly changed, while, at the same time, the bandgap and the Fermi level are
slightly modified. The semiconductor becomes extrinsic, meaning that the number
of electrons is no longer the same as that of holes. A group V element, such as
phosphorous with five valance electrons, may substitute a small fraction of silicon
atoms. The extra valence electrons can be thermally excited to the conduction band
via ionization of the impurities. The phosphorus atom is said to be a donor, and the
doped semiconductor becomes n-type since majority of its carriers are electrons. The
electron concentration can be significantly increased to enhance the electrical con-
ductivity. From the band structure point of view, the donated electrons form a filled
impurity band right below the conduction band. The difference in energy between
the conduction band and the impurity band is called ionization energy, which is
on the order of 0.05 eV. The ionization energy of a semiconductor has a different
meaning from the ionization energy required to separate an electron from the atomic
nucleus discussed earlier. Likewise, when impurities from a group III element such
as boron with three valance electrons are introduced, additional holes are created
such that the silicon semiconductor becomes a p-type semiconductor because of the
additional positive charge carriers. The boron atoms are called acceptors, which form
an empty impurity band right above the valence band [11]. The energy difference
between these two bands is also called the ionization energy. Doping can strongly
affect the infrared properties of semiconductors because of free-carrier absorption.
Furthermore, impurities and defects tend to increase phonon scattering and reduce
thermal conductivity since thermal transport in semiconductors is mainly by lattice
vibration.
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6.2.3 Atomic Binding in Solids

Two or more atoms can combine to form a molecule, mainly through the electrons in
the outermost orbitals (i.e., valence electrons), since the electrons in the inner shells
remain tightly bonded to their nuclei. The wavefunctions of the valance electrons are
significantly modified as compared with those of the individual atoms. There are five
major kinds of chemical bonds: the ionic, covalent, molecular, and hydrogen bonds
for insulators and the metallic bond for conductors. Solids with identical chemical
composition can have different stable forms or phases, which exhibit distinct differ-
ences in their appearances as well as electrical, mechanical, and thermal properties.
A notable example is carbon, which may exist in the form of diamond, graphite, car-
bon black (amorphous carbon), or the fullerene family. A crystal contains periodic
and densely packed atoms or lattices, whereas an amorphous solid does not have
well-organized lattice structures. The atoms in an amorphous solid are disordered
and irregular, like those in a liquid, except that they are firmly bonded together.
Therefore, a crystal is usually denser and harder than the amorphous phase of the
same composition. A crystal usually exhibits distinct facets along the crystalline
planes and has a sharp transition between solid and liquid at a fixed melting point.
An amorphous solid does not have clear facets when broken. When heated up, an
amorphous solid is first softened and then gradually it melts over a wide temperature
range. An example is quartz versus fused silica (glass), both made of SiO2. For a
given composition, the thermal conductivity is usually much higher in the crystal
form because of lattice vibrations.

Alkalimetals and alkaline earthmetals have one and twovalance electrons, respec-
tively, that are loosely bonded. A metal atom can lose its outermost electrons to
become a positive ion. On the other hand, the elements in groups VIIa and VIa tend
to gain additional electrons to fill the outermost orbitals and become negative ions.
The positive and negative ions attract each other by electrostatic force and form an
ionic bond, which is quite strong. Ionic crystals, such as NaCl, CsCl, KBr, CaF2,
and MgO, are hard and usually have high melting points (above 1000 K). They are
insulators because the ions cannot move around freely and are transparent in the
visible spectrum because of the large bandgap. Nevertheless, some of these crystals
are soluble and can be dissolved in water. The solution becomes conductive because
of the ions. The positive and negative ions form an electrical dipole and can absorb
infrared radiation through lattice vibrations. These solids belong to the group of
polar materials, in terms of polarizability. Note that the elements in groups Ib (noble
metals) and IIb (Zn, Cd, and Hg) resemble those in groups Ia and IIa because of the
outermost s-orbital electrons. The difference is that groups Ib and IIb also have filled
d-subshells. Therefore, II–VI semiconductors such as ZnSe and CdTe are largely
ionic bonded.

The main contribution to the binding energy is the electrostatic or Madelung
energy [2]. The long-range electrostatic force between two ions with charges q1
and q2 is proportional to q1q2/r2, where r is the separation distance measured from
the center of the ion cores. Depending on the sign of the charges, either attractive



264 6 Electron and Phonon Transport

or repulsive force may occur. The ions arrange themselves in a way that gives the
strongest attractive interaction, which is balanced by the short-range repulsive force
between atoms. The contribution of the Coulomb attraction to the total energy of
the system is roughly proportional to −1/r . As atoms are brought very close to
each other, the charge distributions or the electron orbitals begin to overlap with
each other. Pauli’s exclusion principle requires some of the electrons move to higher
quantum states, resulting in an increased total energy of the system. Associated with
the increased energy is a repulsive force between the atoms. The magnitude of this
repulsive force varies with 1/rm+1 (where m is between 6 and 10 for alkali halides
with NaCl structure), and thus is negligible at large distances but increases rapidly
when the distance is less than 0.5 nm [1]. The repulsive force contributes to the energy
of the system by 1/rm . There exists a minimum energy or equilibrium position of
the system when all the repulsive and attractive forces balance each other. Readers
are reminded about the similar discussion in Sect. 4.2.4 on the intermolecular force
and potential; see Eq. (4.51) and Fig. 4.8. Understanding the binding energy or the
interatomic potential is very important for atomic scale simulations, e.g., those using
molecular dynamics.

Covalent bonds are formed between nonmetallic elements when the electrons
in the outermost orbitals are shared by more than one atom. Covalent binding is
important for gaseous molecules like Cl2, N2, and CO2. When the atoms are brought
close enough, the electron orbitals overlap, allowing them to share one or more
electrons. Covalent interactions result in attractive forces, and the binding of atoms
is associated with a reduced total energy. Covalent crystals consist of an infinite
network of atoms joined together by covalent bonds. Examples are diamond, silicon,
SiC, and quartz (SiO2). The whole crystal is better viewed as a large molecule
or supermolecule. In diamond structure, each atom is bonded to four neighboring
atoms, which form a tetrahedron. In a SiC crystal, each silicon atom is bonded to
four carbon atoms and vice versa. In a SiO2 crystal, while each silicon atom is
bonded to four oxygen atoms at tetrahedral angles, each oxygen atom is bonded
only to two silicon atoms. Covalent solids are usually very hard with a high melting
point and thermal conductivity. The melting points of quartz and silicon are 1920 K
and 1690 K, respectively. Diamond has the highest melting point (3820 K) among
all known materials. At room temperature, the thermal conductivity of diamond
is 2300 W/m K, which is the highest of all known bulk materials. Pure diamond
and intrinsic silicon do not absorb radiation at frequencies lower than that of the
corresponding bandgap energy. Because of its wide bandgap, diamond is clear in the
visible region and transparent throughout the whole infrared and microwave regions.

Some solids have both ionic and covalent characteristics. Examples are the III–V
semiconductors such as GaN, GaAs, and InSb. II–VI materials such as ZnO and CdS
have a large proportion (30%) of covalent bond characteristics. Even SiC has some
ionic bond characteristics because of the dipoles formed due to different attractive
forces by different atoms. Therefore, SiC is also a polar material that can absorb and
emit infrared radiation through lattice vibrations.

Inert gases can be solidified at very low temperatures via molecular bonds. At
atmospheric pressure, argon becomes liquid at temperatures between 84 and 87 K.
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At temperatures below 84 K, it crystallizes into a dense solid, called a molecular
crystal. Van der Waals’ force caused by induced dipole moments between atoms
is responsible for the attraction and binding of atoms. The van der Waals weak
interaction gives a long-range potential that is proportional to−1/r6, as discussed in
Sect. 4.3.1. The repulsive potential for inert gas is proportional to 1/r12. Molecular
bonds are also important for many organic molecules.

Hydrogen has only one electron per atom and can form a covalent bond with
another to form H2 molecule. When interacting with other atoms, a hydrogen atom
may be attracted to form a hydrogen bond. The hydrogen bond and the resulting
electrostatic attraction are important for H2Omolecules, with many striking physical
properties in its vapor, water, and ice phases. Hydrogen bonds and molecular bonds
are essential to organic molecules and polymers.

Metallic bonds are responsible for the binding energy in metals. Pure metals can
form densely packed periodic lattices or crystals.Metals often exist in polycrystalline
form in which small grains of crystals are joined together randomly, or in alloy form
in which the atoms are arranged irregularly like an amorphous insulator. Unlike in
a covalent crystal where atoms share a few electrons, in a metallic crystal, some
valence electrons leave the ion cores completely and are shared by all the ions in
the crystal. This is consistent with the picture of free-electron gas and describes well
the behavior of alkali metals. Transition metals, including the noble metals, contain
electrons in the d subshell. The metallic bonds are supplemented by covalent and
molecular bonds. Due to the relatively free-electron gas, metals have high thermal
and electrical conductivities.Metallic crystals are alsomore flexible than nonmetallic
crystals, which are usually brittle. The melting points of metals vary significantly.
Examples areHg (234K),Ga (303K),Au (1338K), andW(3695K).Asmentioned in
previous chapters, the physical properties would change significantly as the structure
is reduced down to hundreds, tens, or even a few atomic layers in one, two, or three
dimensions. Examples are carbon nanotubes, silicon nanowires, ZnO nanobelts, and
CdSe-ZnS quantum dots. In order to further understand the properties of solids, let
us examine the crystal structures more closely in the following section.

6.3 Crystal Structures

Acrystal is constructed by the continuous repetition in space of an identical structural
unit. Geometrically speaking, a crystal is a 3D periodic array, or network, of lattices.
All lattice points are identical to one another. For a crystal made of only one type of
element, each lattice point may be treated as a single atom or ion. However, this is
not necessary as will be illustrated later. In general, each lattice point represents a set
of atoms, ions, or molecules, located in its neighborhood. This set of atoms, ions, or
molecules is called a basis. A unit cell of a crystal structure contains both the lattice
and the basis, and can be repeated by translations to cover the whole crystal.

It has long been hypothesized that crystalline materials must have some period-
icity in their microstructures. In 1913, W. L. Bragg and his father W. H. Bragg used
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x-rays to provide microscopic evidence of the existence of periodic lattice structures.
This was a giant step because the distances between atoms are on the order of 0.1 nm.
X-ray crystallography provided a powerful tool for the determination of the micro-
scopic structure of solids. The Braggs received the Nobel Prize in Physics in 1915,
when Lawrence Bragg was only 25 years old. It was not until 1983 that atomic
images were obtained in real space using a scanning tunneling microscope (STM) as
discussed in Chap. 1. The physical properties of crystalline solids are largely deter-
mined by the arrangement of atoms in a unit cell, in addition to the chemical bonds
between atoms. It is of great importance to know the structure of a crystal first in
order to understand its electrical, thermal, mechanical, and optical properties.

6.3.1 The Bravais Lattices

In three dimensions, crystal lattices can be grouped into 14 different types as required
by translational symmetry. These are called Bravais lattices, named after French
physicist Auguste Bravais (1811–1863), who showed that there are only 14 unique
Bravais lattices from the point of view of symmetry. Bravais lattices are then catego-
rized into seven crystal systems, resulting in seven types of conventional unit cells,
namely, cubic, tetragonal, orthorhombic, hexagonal, rhombohedral, monoclinic, and
triclinic, as illustrated in Fig. 6.3.

There are three cubic lattices: the simple cubic with lattice points only on its
apexes, the body-centered cubic (bcc) with one additional lattice at the center, and
the face-centered cubic (fcc) with one additional lattice at each face, as shown in
Figs. 6.3a1, a2, and a3. To illustrate the difference between bcc and fcc lattices
clearly, Fig. 6.4 displays the top views of these two structures with the same a, which
is called the lattice constant. Some practical exampleswill be given soon. If one looks
at Fig. 6.4b along the diagonals, the face-centered structure becomes body-centered.
However, the lattice constant would become a/

√
2 along the lateral directions but

remains a in the vertical direction. Such a structure is a special case of the tetragonal,
because one side is not the same as the other two. There are two tetragonal Bravais
lattices, the simple and the body-centered, because a face-centered tetragonal lattice
can simply be rotated by 45° to become a body-centered one. A tetragonal lattice
can be thought of as a cubic lattice stretched in one direction.

In the orthorhombic lattices shown in Fig. 6.3c, the three lattice constants, a,
b, and c, are not equal to each other. Besides the simple, body-centered, and face-
centered orthorhombic lattices, there exists a base-centered lattice structure, in which
two additional lattices are placed at the center of the top and bottom faces. An
orthorhombic lattice can be thought of as a corresponding tetragonal lattice stretched
along one side of its square. To produce the additional two, one can simply rotate
the tetragonal by 45° and then stretch it.

A hexagonal lattice contains equal triangular or honeycomb-layered structures
(see Fig. 6.3d). The next three types of Bravais lattices have inclined faces (see
Fig. 6.3e–g). The rhombohedral (or trigonal) has equal sides, whereas the triclinic
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Fig. 6.3 The seven crystal systems with a total of 14 Bravais lattices, where each point is called
a lattice point. The number in parentheses refers to the number of Bravais lattices in the crystal
system. a Three types of the cubic: simple cubic, body-centered cubic (bcc), and face-centered
cubic (fcc). b Tetragonal: either simple or body-centered as represented by the empty circle at
the center. c Orthorhombic: simple, body-centered, face-centered, or base-centered. d Hexagonal.
e Rhombohedral (also trigonal). f Monoclinic: simple or base-centered as represented by the empty
circles on the opposite faces. g Triclinic
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Fig. 6.4 Top views of a body-centered cubic and b face-centered cubic Bravais lattices. The two
different filling patterns (hatched and shaded) represent lattice points on alternative layers as in
Fig. 6.3a2, a3

has three different sides and angles. Both contain six parallelogram faces. The
monoclinic, on the other hand, has four rectangular faces and two parallelogram
faces.

Example 6.2 Copper is an fcc lattice. Estimate the lattice constant and the distance
between nearest copper atoms (or ion cores to be exact) from the density and the
molecular weight of copper.

Solution From Table 5.1, we have for Cu that ρ = 8930 kg/m3 and M =
63.5 kg/kmol. The number density of Cu atoms is n = ρNA/M = 8.47× 1028 m−3.
If the structure were simple cubic, we would easily find that a = n−1/3 = 0.228 nm,
which would also be the closest distance between atoms. For an fcc lattice, there are
eight corner points and six face points. If each lattice point is made of one atom, each
corner point contains one-octant of an atom and each face point contains half of an
atom inside the cube. Therefore, there are four atoms inside each fcc unit cell. The
number of unit cells per unit volume becomes n/4 and the calculated lattice constant
is a = 0.361 nm for Cu. The closest distance between atoms is a/

√
2 = 0.256 nm.

If we assume that all the atoms are rigid spheres that are closely packed (touching
one another), then we can calculate the packing density or the fraction of occupied
space. Assume that the diameter of an atom is d. For a simple cubic lattice, a = d
and there is only one atom per lattice. Hence, f = (1/6)πd3/a3 = 0.52. For an fcc
lattice, a = d

√
2 and f = 4(1/6)πd3/a3 = 0.74. What is the packing density for a

bcc lattice then?

Some solids with bcc or fcc lattices are listed in Table 6.1, along with others
that form a hexagonal close-packed (hcp) lattice. An hcp lattice can be considered
as two Bravais hexagonal lattices that are interlocked at c/2. Each lattice point is
surrounded by, at equal distances, 12 neighboring points: 3 above, 3 below, and 6
at the same height. Imagine that atoms are rigid spheres with a diameter d; it can



6.3 Crystal Structures 269

Table 6.1 Crystal structures and lattice constants of common elements [1, 2]. Room temperature
values unless otherwise indicated. Note that 1 Å = 0.1 nm

fcc bcc hcp

Element a (Å) Element a (Å) Element a (Å) c (Å)

Ar (4.2 K) 5.26 Ba 5.02 H (4 K) 3.75 6.12

Ag 4.09 Cr 2.88 Be 2.27 3.59

Al 4.05 Cs (78 K) 6.05 Cd 2.98 5.62

Au 4.08 Fe 2.87 Er 3.56 5.59

Ca 5.58 K (5 K) 5.23 Gd 3.64 5.78

Ce 5.16 Li (78 K) 3.49 Mg 3.21 5.21

Cu 3.61 Mo 3.15 Ti 2.95 4.69

Pb 4.95 Na (5 K) 4.23 Tl 3.46 5.53

Pd 3.89 Nb 3.30 Y 3.65 5.73

Pt 3.92 V 3.03 Zn 2.66 4.95

Yb 5.49 W 3.16 Zr 3.23 5.15

be shown that a = d and c = d
√
8/3 for an hcp lattice. Each sphere is in contact

with 12 others. It can be seen from Table 6.1 that these hcp crystals follow the ratio
c/a = √

8/3 ≈ 1.633 within ±16%.

6.3.2 Primitive Vectors and the Primitive Unit Cell

A set of primitive vectors can be defined for Bravais lattices a,b, and c so that the
vector between any two lattice points can be expressed by the lattice translation
vector (or operator)

R = ma + nb + lc (6.4)

where m, n, and l are integers. For a simple cubic lattice, we can simply assign
a = ax̂,b = aŷ, c = aẑ, as can be seen from Fig. 6.3a1. However, the assignment
of primitive vectors is not unique. The parallelepiped formed by the three vectors
is called a primitive unit cell, whose volume Vuc = a × b · c remains the same no
matter how the primitive vectors are chosen. Taking the bcc lattice as an example,
we may choose the primitive vectors as either

a = ax̂,b = aŷ, c = 0.5a(x̂ + ŷ + ẑ) (6.5a)

or

a = 0.5a(−x̂ + ŷ + ẑ),b = 0.5a(x̂ − ŷ + ẑ), c = 0.5a(x̂ + ŷ − ẑ) (6.5b)
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From Eq. (6.5b), we see that a+ b+ c points to the center point and a+ b = aẑ.
Either way, we end up with Vuc = 0.5a3, suggesting that the Bravais bcc lattice is
not a primitive cell. In fact, only the simple Bravais lattices are primitive unit cells.
Of course, there are other ways of choosing the primitive vectors. For a Bravais fcc
lattice, we can write

a = 0.5a(ŷ + ẑ),b = 0.5a(x̂ + ẑ), c = 0.5a(x̂ + ŷ) (6.6)

Each vector conveniently ends at the three face-centered points. The total vol-
ume of the primitive cell becomes Vuc = 0.25a3, as expected. Each lattice point is
associated with a basis of atoms whose locations relative to the lattice point can be
specified by r j = x ja + y jb + z jc with 0 ≤ x j , y j , z j ≤ 1 for the jth atom.

Another way of choosing a unit cell is to follow the two steps: (1) Draw lines
to connect a given lattice point to all nearby lattice points. (2) At the midpoint and
normal to these lines draw new lines or planes. The smallest volume enclosed in this
way is called theWigner–Seitz primitive cell, as illustrated in Fig. 6.5. The Wigner–
Seitz cell for a 2D lattice becomes a hexagon whose opposite sides are parallel,
and that for an fcc lattice is a rhombic dodecahedron. The longer diagonal of each
rhombic face is

√
2 times that of the shorter diagonal. There are six apexes where

four surfaces meet and eight apexes where three surfaces meet. The distance between
opposite axes joined by four faces is exactly the Bravais lattice constant a. The axes,
x, y, and z, pass through these six apexes as well as the center. Each Wigner–Seitz
cell contains only one lattice point, and it has been proven to be a primitive cell.

It is convenient to describe the orientation of the crystal plane by theMiller indices,
which are three integers h, k, and l, without common factors, and denoted by (hkl).
These numbers give a vector ha + kb + lc that is perpendicular to the plane. For
example, if a, b, and c are along the x-, y-, and z-axes, respectively, the six surfaces
of the cubic unit cell are represented by (001), (001̄), (010), (01̄0), (100), and (1̄00),

Fig. 6.5 The Wigner–Seitz cells: a For a 2D lattice as shown by the shaded region and b for an fcc
lattice as shown by the rhombic dodecahedron
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where negative sign is denoted by a bar on top of the number. Thewhole set of surfaces
can be denoted by {100} due to symmetry. Most commercial semiconductor wafers
are (100) oriented and some (111). The way to find the smallest h, k, l of any specified
crystal facet is first to extend the plane so that it intersects the axes formed by the
lattice vectors. Find the intercepts on each axis in terms of multiples of the unit cell
vector, e.g., (2, 4, −6); the numbers must be integers for any specified crystal plane.
Take the reciprocals of these numbers, which are ( 12 ,

1
4 ,− 1

6 ). Multiply them by the
least common multiple, which is 12 in this example. Then put into the Miller indices
(6, 3, 2̄). All parallel planes are characterized by the same set of Miller indices.

Example 6.3 Find all angles between the (100), (111), and (311) surfaces in a cubic
lattice.

Solution For two vectors a and b, a ·b = ab cosα = xaxb + ya yb + zazb. Thus, the

angle between (100) and (111) planes is α = cos−1
(
1/

√
3
)

= 54.7◦; that between

(100) and (311) planes is α = cos−1
(
3/

√
11

)
= 25.2◦; and that between (111) and

(311) planes is α = cos−1
(
3+1+1√
11×3

)
= 29.5◦.

6.3.3 Basis Made of Two or More Atoms

With respect to the primitive vector and basis, a bcc lattice can be thought of as
a simple cubic with a basis made of two atoms, one at (0, 0, 0) and the other at
a( 12 ,

1
2 ,

1
2 ). Each of the eight lattice points contains the same basis by translation,

according to Eq. (6.4), and the unit vectors along the three orthogonal sides of the
cubic. The simple cubic lattice having a basis of two atoms, however, breaks some of
the symmetry of the Bravais cubic lattice and is called a non-Bravais lattice. Lattices
with a basis consisting of more than one atom have important practical applications
as discussed in the following. The cesium chloride structure is made of two types
of elements, each forming a simple Bravais lattice, as shown in Fig. 6.6a. The two
Bravais lattices can be thought of as being placed in identical positions first, and then
one is moved by a

(
1
2 ,

1
2 ,

1
2

)
so that the point at the origin is translated to the center of

the other. It is not a body-centered cubic lattice. Rather, the crystal structure can be
viewed as a simple cubic with a base of two ions, Cs at (0, 0, 0) and Cl at a

(
1
2 ,

1
2 ,

1
2

)
.

The sodium chloride structure is more common. In this case, it can be considered as
two fcc lattices made of different ions. The two fcc lattices are then translated exactly
the same way as in the CsCl structure. The resulting structure is shown in Fig. 6.6b,
where each ion is surrounded by six ions of the other type. The lattice constants of
some common crystals are listed in Table 6.2. It can be seen that most ionic crystals
form NaCl or CsCl structures.

The crystal structures of diamond and zincblende semiconductors are also deriva-
tives of the cubic structure. The zincblende structure is formed from two fcc lattices
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a
a

a

CuO Chain

CuO2 Plane

CuO Chain

c b
a

Yttrium

Copper
Oxygen (not in basis)

Barium

(d) Unit cell of 
YBa2Cu3O7

Cu_1

Cu_2

Cu_3

Oxygen (in basis)

CuO2 Plane

Fig. 6.6 Crystalline structures. a Cesium chloride; b Sodium chloride. c Zincblende, which
becomes a diamond structure when the atoms in the empty circles are the same as the filled ones.
d YBa2Cu3O7 superconductor whose lattice constants are approximately a = 0.38, b = 0.39, and
c = 1.17 nm

with different types of atoms, displaced along the body diagonal by one-quarter the
length of the diagonal. Specifically, the basis is made of one atom at (0, 0, 0) and
the other atom at a

(
1
4 ,

1
4 ,

1
4

)
, as shown in Fig. 6.6c. A total of four atoms are moved

completely inside the cube, and each atom has a covalent bond with each of the four
adjacent atoms, which together form a tetrahedron. Examples of zincblende structure
are GaAs, SiC, and so forth. A diamond structure can be viewed as a special case
of a zincblende structure for which there is only one type of element, such as C, Si,
or Ge. The outermost subshell of Si is 3s23p2, and the s subshell is filled. By pro-
moting an s-electron to a p-orbital to form sp3 hybrid orbitals, four covalent bonds
can be formed. This is also true for C and Ge. In essence, the diamond lattice can
be thought of as an fcc lattice with a basis containing two identical atoms: one is on
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Table 6.2 Crystal properties of some compounds and semiconductors at room temperature [1, 2].
For semiconductors, the bandgap energy is indicated, and “i” in parentheses denotes an indirect
bandgap

Compound Semiconductors

Composition a (Å) Composition a (Å) Eg (eV)

Sodium chloride structure Diamond structure

LiF 4.02 C 3.57 5.47 (i)

LiCl 5.13 Si 5.43 1.11 (i)

NaBr 5.97 Ge 5.66 0.66 (i)

NaCl 5.64

KBr 6.60 Zincblende structure

KCl 6.29 BN 3.62 7.5 (i)

CsF 6.01 CdS 5.82 2.42

AgCl 5.55 CdSe 6.05 1.70

AgBr 5.77 CdTe 6.48 1.56

MgO 4.21 GaAs 5.65 1.42

MgS 5.20 GaN (w) 5.45 3.36

CaO 4.81 GaP 5.45 2.26 (i)

CaS 5.69 GaSb 6.43 0.72

CaSe 5.91 HgTe 6.04 <0

BaTe 6.99 InAs 5.87 0.36

InP 6.48 1.35

Cesium chloride structure InSb 4.35 0.17

CsCl 4.12 SiC 4.63 2.36

CsBr 4.29 ZnO 5.41 3.35

CsI 4.57 ZnS 5.67 3.68

TlBr 3.97 ZnSe 6.09 2.58

the corner and the other on the body diagonal at a distance of one-quarter diagonal.
Table 6.2 also presents commonly used diamond and zincblende semiconductors
with associated lattice constants and bandgap energies. Notice that GaN crystal is
wurtzite in its stable form with a hexagonal symmetry. This is also the case for AlN
and InN, which are not shown in the table. The III-nitride materials have a wide-
band, and thus are important for UV-blue-green LEDs and lasers. On the other hand,
ZnS, ZnO, CdS, and CdSe can also be wurtzite. HgTe is a semimetal with a nega-
tive bandgap and can be mixed with the wideband semiconductor CdTe to form the
ternary compound of Hg1−xCdxTe, which can be used as infrared detectors, namely,
mercury–cadmium–telluride (MCT) detectors.

Yttrium–barium–copper oxide (YBa2Cu3O7) is a high-temperature superconduc-
tor, which becomes superconducting at temperatures below 91 K [12]. It belongs
to the cuprate-perovskite family and is a ceramic material when one oxygen atom
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is removed from the unit cell to form YBa2Cu3O6 [13]. The crystal structure of
YBa2Cu3O7 is a simple orthorhombic lattice, whose basis contains 13 atoms, as
shown in Fig. 6.6d. The structure is very close to a tetragonal one since a ≈ b. The
properties of YBa2Cu3O7 are highly anisotropic in the c-axis direction. Supercon-
ductivity is found in the a–b plane, which is presumed due to the CuO2 planes above
and below the yttrium atom. Other examples of Bravais lattices include As, Sb, and
Bi with rhombohedral lattices; In and Sn with tetragonal lattices; and Ga, Cl, Br, and
S (rhombic) with orthorhombic lattices [1].

Graphite is a form of carbon made of layered structures as shown in Fig. 6.7.
When separated from others, each individual layer or sheet is called a graphene. In
the graphite structure, each carbon atom is covalently bonded to three others in the
plane and loosely bonded between planes. There are relatively free electrons, and
hence graphite is a conductor along the plane. The layer of graphite has honeycomb
shape, and at first sight, it may be difficult to link it with the arrays of triangles in the
hexagonal lattice. It becomes more obvious, however, if a basis is chosen to contain
two atoms so that a hexagon with all diagonals can be seen by the dashed lines in
Fig. 6.7a. In this way, graphite can be considered as a hexagonal Bravais lattice. The
primitive unit cell of graphite is a rhombic prism (with six surfaces) formed using
three layers, as illustrated by the dashed lines in Fig. 6.7b. Each unit cell contains a
total of four carbon atoms.

The structure of carbon nanotubes (CNTs) can be understood based on the
graphene structure and the chiral vector,

Ch = ma1 + na2 (6.7)

Fig. 6.7 Crystal structures of a graphene layer and b graphite. Carbon nanotubes can be viewed
as rolling a graphene sheet in a direction perpendicular to the chiral vector
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Different CNTs are based on rolling in the chiral vector so that the axis is per-
pendicular to the chiral vector and the magnitude of the chiral vector becomes the
perimeter of the tube. The diameter of the tube becomes

dt = Ch

π
= aC−C

π

√
3(m2 + mn + n2) (6.8)

where aC−C = 0.1421 nm is the nearest distance between the carbon atoms in
graphene [14]. Notice that the chiral vector has a magnitude a = aC−C

√
3 =

0.246 nm. In calculating the cross-sectional surface area of a single-walled
nanotube (SWNT), one could use a as the wall thickness and obtain

Ac = πdta = 3(aC−C)2
√

(m2 + mn + n2) (6.9)

Take the (20, 20) SWNT as an example, we have dt = 2.7 nm and Ac = 2.1 nm2.
Some researchers suggested using a layer thickness equal to the separation of graphite
as 0.335 nm, which gives Ac = πdt ∗ 0.335 = 2.9 nm2. Note that Ac = πD2/4 =
5.8 nm2.

6.4 Electronic Band Structures

The behavior of electrons in solid is complicated because the solution of wave func-
tions involves a rather complicated many-body problem. Electrons in solids can be
thought of as in a periodic potential due to the periodic arrays of atoms. Electronic
band structures are functions that describe the electron states in the energy versus
wavevector space. Let us first look at the reciprocal lattice in three dimensions.

6.4.1 Reciprocal Lattices and the First Brillouin Zone

The reciprocal lattice of a crystal structure is defined in the k-space (wavevector
space). Since a crystal is a periodic array of lattices in real space, the reciprocal
lattice can be obtained by performing a spatial Fourier transform of the crystal. For a
simple orthorhombic lattice with the primitive vectors a = ax̂,b = bŷ, and c = cẑ,
the reciprocal lattice can be defined by the three vectorsA = 2π

a x̂,B = 2π
b ŷ, andC =

2π
c ẑ,whichdefine another orthorhombic.Theproduct of the volumesof the unit lattice
and the reciprocal lattice is 8π3. Some of this aspect was discussed in Chap. 5. In
general, the reciprocal primitive vectors can be generated by

A = 2π
b × c

a · (b × c)
;B = 2π

c × a
a · (b × c)

;C = 2π
a × b

a · (b × c)
(6.10)
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Fig. 6.8 The first Brillouin
zone of a face-centered cubic
structure. The shape is a
truncated octahedron with
eight hexagons and six
squares. This is also the
Wigner–Seitz cell for a bcc
lattice, whose first Brillouin
zone has the same shape as
the Wigner–Seitz cell for an
fcc lattice shown in Fig. 6.5b

In solid-state physics, a Brillouin zone is defined as a Wigner–Seitz cell in the
reciprocal lattice and the smallest of which is called the first Brillouin zone. The
definition of the Brillouin zone gives a vivid geometric interpretation of the Bragg
diffraction condition and thus is of importance in the study of electron and phonon
states in crystals, as well as their interactions with electromagnetic waves. Figure 6.8
shows the first Brillouin zone of a face-centered cubic lattice. The directions kx , ky ,
and kz are called the [100], [010], and [001] directions, respectively. The center of
the Brillouin zone is called the 	-point, and the intersection of the three axes with
the zone edge is called the X-point. The body diagonal, or the [111] direction, meets
the zone edge at the L-point. Other points of interest such as K, W, and U at the zone
edges and 
,�, and�, located halfway between the zone center and an edge, can
also be defined.

6.4.2 Bloch’s Theorem

The total potential in a crystal includes the core–core, electron–electron, and elec-
tron–core Coulomb interactions. For solving electron wave functions subjected to
such a potential, onewould have to deal with amany-body problem, which turned out
to be very difficult in mathematics. However, this problem can be simplified using
the so-called nearly free-electron model, in which each electron moves in the aver-
age field created by the other electrons and ions. This is also called the one-electron
model. The Hamiltonian operator H for the one-electron model is given as

H = p2e
2me

+U (r) (6.11)
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where pe and me are the momentum and the mass of the electron, respectively, and
U (r) is a periodic potential function resulted from both the electron–electron and
electron–core interactions. The one-electron Schrödinger equation is (see Sect. 3.5.1)
given as follows:

[

− �
2

2me
∇2 +U (r)

]

ψ(r) = Eψ(r) (6.12)

whereE is the electron energy andψ(r) is the electronwave function. The periodicity
of the lattice structure yields the boundary condition,

U (r) = U (r + R) (6.13)

whereR is the vector between two lattice points, called the periodic potential, which
ensures thatU (r) can be expanded as a Fourier series in terms of the reciprocal lattice
vector G as follows:

U (r) =
∑

G

UGe
iG·r (6.14)

The reciprocal lattice vector can be expressed asG = l1A+ l2B+ l3C, where A,
B, and C are primitive vectors of the reciprocal lattic e as given in Eq. (6.10), and the
integers l1, l2, and l3 are indices. In Eq. (6.14), U ′

Gs are complex Fourier expansion
coefficients for a given set of l1, l2, and l3.

According to the Bloch theorem, the wave function of an electron in a periodic
potential must have the form:

ψ(r) = eik·ruk(r) (6.15)

where uk(r) is a periodic function with the periodicity of the lattice, similar to
Eq. (6.13), and thus ψ(r + R) = eik·Rψ(r). The wave function ψ(r) can also be
expressed as a Fourier series summed over all values of the permitted wavevector
such that

ψ(r) =
∑

k

Cke
ik·r (6.16)

The summation is over all wavevectors k’s. From Eq. (6.16), we have

∇2ψ(r) =
∑

k

Ck(ik)
2eik·r = −

∑

k

k2Cke
ik·r (6.17)

The combination of Eqs. (6.14) and (6.16) gives
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U (r)ψ(r) =
∑

k

∑

G

UGCke
i(k+G)·r (6.18)

Using Eqs. (6.16) through (6.18), we can rewrite the Schrödinger equation as
follows:

∑

k

�
2k2

2me
Cke

ik·r +
∑

k

∑

G

UGCke
i(k+G)·r =

∑

k

ECke
ik·r (6.19)

The coefficients of each Fourier component must be equal on both sides of the
equation. Thus,

(
�
2k2

2me
− E

)

Ck +
∑

G

UGCk−G = 0 (6.20)

whereCk−G is the coefficient for the term with k −G in the exponent, i.e., exp[i(k−
G) · r] in Eq. (6.16). Equation (6.20) is paramount in the electronic band theory
of crystals, and it is, therefore, called the central equation [2]. When U (r) ≡ 0,
Eq. (6.20) reduces to E0

k = �
2k2/(2me) by noting that �k = pe for free electrons,

as used in the Sommerfeld theory. Under the influence of a periodic potential, the
relationship becomes more complex because it is a set of linear equations for infinite
numbers of coefficients. Because the equation is homogeneous, the determinant of
the characteristic matrix must be zero. In some cases, the terms can be significantly
reduced to yield simple solutions with insightful physics.

Consider the 1D case when the Fourier components are relatively small compared
with the kinetic energy of electrons at the zone boundary. This is the weak-potential
assumption. At the first Brillouin zone boundaries, we have

k = G/2 = π/a (6.21)

Because there are only two values of k and G, Eq. (6.20) reduces to the following
two equations due to symmetry:

(E0
μ − E)Cμ +UC−μ = 0 (6.22a)

and

(E0
−μ − E)C−μ +UCμ = 0 (6.22b)

whereμ = 1
2G is introducedmerely for the convenience of notation. These equations

have solutions only when the determinant becomes zero, i.e.,

∣
∣
∣
∣
∣

E0
μ − E U
U E0−μ − E

∣
∣
∣
∣
∣
= 0 (6.23)
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Because E0
μ = E0−μ = �

2μ2/(2me), the two roots are then obtained as

E = E0
μ ±U = (�π/a)2

2me
±U (6.24)

The two solutions at the zone edge, i.e., k = π/a, are actually on two E(k) curves.
When k is near the zone edge, we can express the central equation, Eq. (6.20), as the
following two equations [1, 2]:

(E0
k − E)Ck +UCk−G = 0 (6.25a)

and

(E0
k−G − E)Ck−G +UCk = 0 (6.25b)

By setting its determinant to zero, we obtain

E(k) = 1
2 (E

0
k + E0

k−G) ± [
1
4 (E

0
k − E0

k−G)2 +U 2
]1/2

(6.26)

which gives two branches near the zone edge, as shown in Fig. 6.9. A bandgap of
2U is formed at the first Brillouin zone edge. The corresponding wave functions at
the zone edge are

ψ1,2(x) = 1√
2L

(
eiπx/a ± e−iπx/a

)
(6.27a)

where L is the length of the crystal. This forms two standing waves:

ψ1(x) = √
2/L cos(πx/a) and ψ2(x) = i

√
2/L sin(πx/a) (6.27b)

Fig. 6.9 Illustration of the
energy bands, where the
solid curves are calculated
from Eq. (6.26). The lower
and upper bands correspond
to the choice of the minus
and plus signs, respectively.
When k = G/2 = π/a, the
two bands are separated by a
gap of magnitude 2U . The
dashed line, on the other
hand, represents the
free-electron behavior
according to E ∝ k2
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Fig. 6.10 The upper part of the figure plots the probability density |ψ |2 in a 1D weak potential
at the edge of the first Brillouin zone; the lower part of the figure illustrates the actual potential
U(x) of electrons

As shown in Fig. 6.10, the lower energy state E0
μ − U corresponds to ψ1 with

a probability density |ψ1|2 peaked at core sites. The probability density function
describes electrons that are piled up close to the core site. The upper energy state
E0

μ +U corresponds to ψ2 with a probability density |ψ2|2 that distributes electrons
between the cores. The energy difference between these two states is the origin of
formation of the gap at the Brillouin zone edge. On the other hand, away from the
zone edge, the electron wave functions can be expressed as

ψ(x) ≈ L−1/2e±ikx (6.28)

which are propagatingwaves that characterize thewavelike behavior of free electrons
[2, 15].

When all the Brillouin zones and their associated Fourier components are
included, the result is a set of curves, as those shown in Fig. 6.11a. An easier way
to show this is to use the Kronig–Penney model, first formulated in 1931, in which
the potential is assumed to be a square-well array [2, 9]. The details are left as an
exercise (see Problem 6.12). The allowable bands are illustrated by the solid curves
in Fig. 6.11. If the electrons were completely free, then E(k) = E0

k = �
2k2/(2me)

would be a parabola, as illustrated by the dashed curve in Fig. 6.11a, without any
bandgap. It is useful to plot all the energy levels in the first Brillouin zone. This can
be done by folding the branches in Fig. 6.11a, which is known as the extended-zone
scheme, using the reciprocal lattice vector. The result is shown in Fig. 6.11b, which
is called the reduced-zone scheme for the representation of the electronic bands.
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Fig. 6.11 Representation of the electronic band structure. a The extended-zone scheme. b The
reduced-zone scheme

6.4.3 Band Structures of Metals and Semiconductors

The nearly free-electron model described in the previous section assumes a weak
potential and cannot predict the behavior of electrons in the inner orbitals or near the
nuclei. A simple way to calculate the electronic structure of inner electrons, such as
those in the d subshells, is the tight-binding method, which assumes that the potential
is so large that electrons can hardly move out of the ion core. Due to the complicated
3D structure and themultiple numbers of outermost electrons in each atom, the actual
electronic band structures are rather complicated. More advanced methods include
the augmented plane wave (APW) method, the Korringa–Kohn–Rostoker (KKR)
Green function method, and the pseudopotential method. More details can be found
from Ashcroft and Mermin [1], Kittel [2], and Omar [15], and references therein.

It can be shown that the number of orbitals in a band in the first Brillouin zone is the
same as the number of unit cells in the crystal, N. According to the Pauli exclusion
principle, the number of electrons that can occupy a band is 2N. For copper, the
outermost electron configuration is 4s13d10. The s- and d-subshell electrons result
in six bands (with some overlap), as can be seen from Fig. 6.12, along the direction
according to the first Brillouin zone depicted in Fig. 6.8 [16–18]. Thed bands are from
2 to 5.5 eV below the Fermi level and are completely filled. The s band, illustrated by
the thicker line segments, is interrupted by the d bands. The s band is only half filled
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Fig. 6.12 Calculated energy band structure of copper, adapted from Refs. [16–18] with permission

and half empty. For alkali metals, there is only one valence electron and the s band
is continuous. Electrons in the s band can be easily excited from below the Fermi
level to above the Fermi level within the same band. This explains why copper is a
conductor. When radiation is incident on a copper surface, because of the relatively
high frequency, free electrons have an inductive characteristic and tend to reflect the
radiation. The absorption of photons will cause the electrons in the s band to reach a
higher level within the same band. If the phonon energy exceeds 2 eV, transition from
the top d band to the s band right above the Fermi level is possible, as indicated by the
two arrows in Fig. 6.12. The interband transitions result in strong absorption as well
as a reduction in reflection of copper at wavelengths shorter than about 0.6 µm. Pure
copper has a red-brown color because it does not reflect blue and violet colors. Gold
has a similar interband transition that absorbs short-wavelength visible light. On the
other hand, for silver, the interband transition occurs at a much shorter wavelength.
Thus, silver can reflect light in the whole visible spectrum.

The Fermi surface is anisotropic and not spherical for real crystals. For alkali
metals with bcc lattices, such as Na and K, the Fermi surface is nearly spherical
lying inside the first Brillouin zone [1]. The Fermi surface of Al is close to the free-
electron surface for an fcc lattice with three conduction electrons per atom. For noble
metals, due to the effect of d bands, the Fermi surface is characterized by a sphere
that bulges out in the eight <111> directions.

The electronic band structures of Si and GaAs in the first Brillouin zone are shown
in Fig. 6.13, along reciprocal lattice directions [19–21]. Si and GaAs are chosen here
because these two types of semiconductors have distinct energy gap features that can
represent a wide range of semiconductor materials. Degeneracy causes additional
subbands within the conduction and valence bands. Intraband transitions refer to the
excitation or relaxation of electrons between subbands. For intrinsic semiconductors,
the Fermi level lies right in the middle between the bottom of the conduction band



6.4 Electronic Band Structures 283

L                 X     U,K                 

L3

L1

k

10

0

8

-2

-4

-6

6

4

2

15

X3
L1

L1

L3
15

15

15

11

X5

X5

X1

X3

Eg

GaAs

E
–
E F

(e
V
)

Eg

L X     U,K                 
k

E
–
E F

(e
V
)

2’
15

25’

L3’

L3

L1

X4

X1

2’

Si

15

25’

6

0

5

-1
-2
-3

4
3
2

1

-4
-5

L

L
L

L

L

L

L

L

L

L

L

L L L L

Fig. 6.13 Calculated energy band structure of silicon (left) and gallium arsenide (right), adapted
from Refs. [19–21] with permission

and the top of the valence band. The valence bands are formed by the bonded valence
electrons, and they are completely filled at low temperatures. The electrons in the
conduction band are dissociated from the atom and hence become free charges. The
bandgap energy, or energy gap, Eg is the difference between the energies at the top
of the valence band (EV) and the bottom of the conduction band (EC). The values of
Eg for some semiconductors are included in Table 6.2. For Si, as shown in Fig. 6.13a,
the bottom of the conduction band and the top of the valence band do not occur at
the same k. This type of semiconductor is called an indirect gap semiconductor. For
a direct gap semiconductor, such as GaAs, the bottom of the conduction band and
the top of the valence band occur at the same value of k at the 	-point, as shown in
Fig. 6.13b. The mechanism for electron transition between the valence band and the
conduction band in a direct gap semiconductor is different from that in an indirect
gap semiconductor. Additional discussion about radiation absorption processes will
be given in Chap. 8.

At absolute zero temperature, there are no electrons in the conduction band and
the valence band is completely filled. When the temperature increases or there exist
optical excitations, electrons in the valence band can transit to the conduction band,
leaving behind some vacancies in the valence band. The vacancies left in the valence
band are called holes, which carry opposite charge as electrons. Usually the electrons
are found almost exclusively in levels near the conduction band minima, while the
holes are found in the neighborhood of the valence band maxima. Therefore, the
energy versus wavevector relations for the carriers can generally be approximated
by quadratic forms in the neighborhood of such extrema, i.e.,

Ee(k) = EC + �
2k2

2m∗
e

and Eh(k) = EV − �
2k2

2m∗
h

(6.29)
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where subscript e and h are for electrons and holes, respectively, EC is the energy
at the bottom of the conduction band and EV is the energy at the top of the valence
band. In the 1D case, the effective mass m∗ for electrons and holes is defined as

1

m∗
e

= 1

�2

d2Ee

dk2
and

1

m∗
h

= − 1

�2

d2Eh

dk2
(6.30)

where the negative sign is assigned to make the effective mass of the hole positive
at the top of the valance band. Effective mass is defined based on the quantum
mechanical description of the group velocity and the acceleration of charge carriers,
respectively, as

vg = 1

�

∂E

∂k
and a = dvg

dt
= 1

�

∂2E

∂k2
dk

dt
= 1

�2

∂2E

∂k2
F (6.31)

where F = dpe
dt = �

dk
dt is the force exerted on the charge carrier due to an electric

field. In 3D case, the effective mass depends also on the direction and is a 3 × 3
tensor [15]. Note that the above definition of effective mass is for parabolic bands
only according to Eq. (6.29) and hence does not apply to 2D solids such as graphene,
to be discussed next.

6.4.4 Electronic Properties of Graphene

As a layered 2D material with carbon atoms arranged in a honeycomb lattice, as
shown in Fig. 6.7a, graphene has unique electronic, mechanical, thermal, and optical
properties. Due to its large carrier mobility and electrical conductivity, alongwith the
feasibility of controlling the carrier density by a gate voltage, graphene is a promising
material for the next generation of transistors and 2D flexible nanoelectronics [22,
23]. Graphene can be synthesized chemically (e.g., by chemical vapor deposition on a
metal surface) or isolated using mechanical or liquid-phase exfoliation from graphite
[24]. As discussed in Chap. 5, the thermal conductivity of graphene can be as high as
or even higher than that of diamond [25]. Graphene and related materials also hold
promise for energy conversion and storage [26]. In addition, graphene exhibits unique
optical and infrared properties [27] for optoelectronics and photonics applications
(to be discussed in Chap. 9). Knowledge of the electronic structure of carbon and
its related materials is critical for understanding the unique electronic and other
properties of graphene.

A carbon atom has six electrons configured as 6C: 1s22s22p2. There are four
electrons in the second shell, two in the s-orbital and two inp-orbitals.However, this is
merely the ground-state configurationwithout excitation. Note that the electron cloud
for the s-orbital is isotropic or spherical shaped. Each of the three p-orbitals shapes
like a dumbbell (or the number 8), identified as px , py, and pz with the direction along
the orbital axis. In methane (CH4), a carbon atom is bonded to four hydrogen atoms,
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forming a tetrahedral molecular geometry (referring to Fig. 3.9b). The hydrogen
atoms are at the vertices of the regular tetrahedron while the carbon atom is at
the centroid. All four bonds between the C and H are equally spaced with equal
strength measured by the bond energy. The underlying mechanism can be explained
by orbital hybridization, which may be explained in two steps. Firstly, one electron
is promoted from the 2s orbital to the 2p orbital due to excitation, such that each
of the orbital in the outmost shell of carbon

(
s, px , py, and pz

)
is occupied by one

electron; secondly, the four electron orbitals combine and rearrange themselves so
that each contains 25% of s, px , py, and pz components. The hybrid orbitals look
like asymmetric dumbbell, and each points out in one of the tetrahedral directions
to form a chemical bond with an H atom. This is called the sp3 hybridization and
each hybrid orbital possesses 25% s-orbital and 75% p-orbital characteristics. The
orbital hybridization theory was originally developed in 1931 by Linus Carl Pauling,
who received the Nobel Prize in Chemistry in 1954. The sp3 hybridization is also
responsible to the diamond (or crystalline silicon) structure where each carbon (or
silicon) atom is bonded to four other carbon (silicon) atoms.

In an ethylene (or ethene) molecule (C2H4), as shown in Fig. 6.14a, each carbon
atom is bonded to two hydrogen atoms and the carbon atoms form a double bond
with each other. In this case, the s-orbital electron is hybridized with the electrons
in the px and py orbital to form a sp2 hybridization (with 1/3 s-orbital component).
The hybrid electrons form a sigma (σ ) bond with each hydrogen (1s electron) as
well as between the carbon atoms. All six atoms lie in a plane and the angle between
H–C–H bonds is close to 120°. Nevertheless, for each carbon atom, there is one
lonely electron in the pz orbital whose axis is perpendicular to the plane. The two
lonely electrons form a pi (π ) bond to share the orbital. In essence, the double
bond between the carbon atoms contains a σ bond and a π bond with very different
characteristics. Note that σ bonds are the strongest type of covalence bond. In a σ

bond, the atomic orbitals overlap with each other in a head-on position, so that their
orbitals are symmetrical with respect to rotation about the bond axis. On the other
hand, in a π bond, the orbital axes are perpendicular to the bond axis between the
two atoms. In acetylene (or ethyne) molecule (C2H2), all four atoms are aligned in
the x-direction, as shown in Fig. 6.14b. The electrons in the s and px orbitals form sp
hybridization, which is responsible for the strong σ bond between C and H as well
as between C and C atoms. Furthermore, the electrons in the py (or pz) orbital of
each carbon atom form a π bond whose orbital axis is in the y (or z) direction. The
triple bond between the carbon atoms consists of one σ bond and a pair of π bonds;
the latter is much weaker than the former.

Fig. 6.14 The chemical
structure of a ethylene and
b acetylene
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The sp2 hybridization is also responsible to the carbon bonds in graphene, where
each carbon is bonded to three neighborhood carbon atoms via σ bonds. These
electrons are also calledσ electrons. The unhybridized electron in the pz orbital forms
a π bond with another carbon atom’s pz orbital. In a way, the carbon–carbon bonding
in graphene contains alternating single and double bonds, forming a conjugated
system like benzene. In contrary to benzene, the π electrons in graphene are shared
by the atoms and are highly mobile along the graphene sheet, like free electrons in
metal. What is more, there are some unique properties of graphene that can only be
explained quantum mechanically, with the help of the electron band structures.

Figure 6.15 shows the band structure of graphene calculated in the first Brillouin
zone based on the density-functional theory (DFT), when the Fermi energy is set to
zero [28, 29]. The bands below (or above) the Fermi level are completely filled (or
empty). The filled bands, called π or σ bands, are associated with electrons in the π

and σ bonds. The unfilled bands are associated with π* or σ * antibonding orbitals.
It can be seen that the σ and σ * bands are spaced far away from the Fermi level. The
transition from π → π∗ is responsible for nearly all electronic and optical properties
of graphene, except with high-energy excitations (> 5 eV) such as irradiation by
photons in the deep ultraviolet and x-ray regions [27]. The most striking feature of
2D graphene is the gapless feature of the bands at the K point (one of the six Dirac
points), as indicated by the dashed box. Furthermore, the π and π* bands are conical
as shown in Fig. 6.16. For 3D semiconductor materials, there is a bandgap between
the conduction band and the valence band and the band structures are parabolic in a
2D diagram or parabola in a 3D diagram.

Fig. 6.15 a First Brillouin zone of graphene; b band structure of a graphene sheet, where the
dashed curves are for π or π* bands, and solid curves are for σ or σ* bands. Adapted from [29]
with permission of American Physical Society
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Fig. 6.16 Band shape near the Dirac point with different Fermi levels: a EF = 0; b EF > 0;
c EF < 0

According to the tight-binding model with some approximation [22], the bands
can be described by

E = ±γ0

√

3 + 2 cos(Kya) + 4 cos(
√
3Kxa/2) cos(Kya/2) (6.32)

where E = 0 corresponds to the Dirac point, γ0 is a constant about 2.8 eV, and
a ≈ 0.246 nm is the magnitude of the chiral vector defined in Fig. 6.7a.

Equation (6.32) predicts conical band structures at the six Dirac points when the
energy is within about 1 eV from the apex. For example, at the K point, Kx =
2π/(

√
3a) and Ky = 2π/(3a). This can be schematically shown in Fig. 6.16 with

different Fermi levels. It can be seen that

E = ±vF�
√
k2x + k2y = ±vF�k (6.33)

Here, vF ≈ 1× 106 m/s is the Fermi velocity, and the wavevector k at the K point
is set to zero. In 1928, Paul Dirac derived a relativistic wave equation that modifies
the Schrödinger equation and can be applied to massless particles. According to
Eq. (3.122) as discussed in Sect. 3.7, E2 = m2c4 + p2c2 for a particle with mass
m and momentum p that travels at the speed c. Therefore, for a massless particle,
E is the product of the momentum and speed. Note that in Eq. (6.33), �k is the
momentum of the electron and vF is essentially a constant. Therefore, it can be said
that the electrons in pure graphene at low temperatures (EF = 0) are massless Dirac
fermions. Gating with a voltage across the graphene sheet allows the Fermi level to
be changed, as shown in Fig. 6.16b, c, similar to chemically doping with a small
amount of impurities. The cyclotron effective mass is given as [22, 30].

mc = �kF/vF = |EF|/v2F (6.34)
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which has been experimentally determined by measuring the cyclotron frequency
ωc = eB/mc by applying a magnetic field B. Note that Eq. (6.34) resembles Ein-
stein’s equation, E = mc2.Measurements under appliedmagnetic field have revealed
another exotic behavior in graphene: the anomalous (half-integer) quantum Hall
effect at room temperature [22, 30].

From the semi-classical Boltzmann theory, the electrical conductivity of 2D
graphene (unit: S or �−1) can be expressed in terms of the relaxation time (at the
Fermi level) [31]:

σ2D = e2v2F
2

D(EF)τ (6.35a)

where τ is the relaxation time and D is the density of states (DOS) per unit area. For
a relatively pure graphene sheet, the DOS can be approximated as

D(E) = 2|E |
π�2v2F

(6.35b)

Substituting Eq. (6.35b) into Eq. (6.35a), we obtain

σ2D = e2|EF|
π�2

τ (6.36)

Furthermore, the carrier concentration n (number per unit surface area) and the
wavevector at the Fermi level are related by kF = √

π |n| or |EF| = �vF
√

π |n|,
which can be used to estimate the carrier concentration. Equation (6.36) breaks down
EF → 0 or n → 0. Due to the gapless feature, there exists a universal minimum
conductivity theoretically given as [22]

σmin = 4e2

πh
≈ 4.932 × 10−5 S (6.37)

which has been experimentally observed with somewhat higher values due to
impurity, size, and other experimental factors [32].

Using the relation σ2D = e|n|μ, the electron (or hole) mobility in graphene can
be calculated from

μ = evF
�
√|n|π τ (6.38)

where the relaxation time τ is on the order of 10−14−10−12 s for impurity concentra-
tions in the range 1011−1012cm−2 [31].Note that the carrier concentration is different
from the impurity concentration and can be tuned either way by a gating voltage.
The carrier mobility μ in graphene typically ranges from 2,000 to 20, 000 cm2/V s
[32], but could be as high as 200, 000 cm2/V s in suspended graphene, even at room
temperature [33].
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The success in obtaining single or few layers of graphene and measuring their
exotic properties have spurred growing interest in a variety of other 2D or quasi-2D
materials, whose properties are dramatically distinctive from their 3D counterparts
[34–38]. Examples are hexagonal boron nitride (hBN), transition metal dichalco-
genides (TMD) such asMoS2 andWSe2, black phosphorus (or phosphorene), layered
Bi2Te3 and GeSe, etc. The intensive theoretical and experimental investigations of
these materials systems expand the current understanding of the electrical, mechan-
ical, optical, and thermal properties of existing materials and may provide pathways
for new technologies in novel electronic devices, energy systems, nanophotonics,
and biomedical applications [26, 34–39].

6.5 Phonon Dispersion and Scattering

In the above discussion of electronic band structures, it is assumed that the cores of
atoms are fixed. In a real crystal, however, the cores of atoms are vibrating about
their equilibrium positions and the vibration of atoms has an important influence on
energy storage and transport in crystals. Lattice vibration causes elastic waves to
propagate in crystalline solids. Phonons are the energy quanta of lattice waves. For
a given vibration frequency ω, the energy of a phonon �ω is the smallest discrete
value of energy. Thermal vibrations in crystals are thermally excited phonons, like
the thermally excited photons in a blackbody cavity.

6.5.1 The 1D Diatomic Chain

Phonon dispersion describes the relationship between the vibration frequency and
the phonon wavevector. A simple example is given first for a diatomic chain of linear
spring–mass arrays, as shown in Fig. 6.17. It is assumed that the spring constant
K is the same between the nearest-neighbor atoms. The spring is a conceptual rep-
resentation of the combined attractive and repulsive forces, which can be assumed
linear if the displacement is sufficiently small. Anharmonic vibrations may become

m1 m2

a

2n–1 2n+1 2n+22n

ξ2n ζ2n+1

x

K

Fig. 6.17 Achain of two atomswith differentmassesm1 andm2 linked by springs of the same spring
constant K, where ξ and ζ denote the displacements of individual atoms from their equilibrium
positions
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significant at high temperatures. Another assumption of the nearest-neighbor model
is that the forces on an atom come from the nearest neighbors only [40]. The equation
of motion of the atoms can be written as follows:

m1
d2ξ2n

dt2
= K (ζ2n+1 + ζ2n−1 − 2ξ2n) (6.39a)

and

m2
d2ζ2n+1

dt2
= K (ξ2n+2 + ξ2n − 2ζ2n+1) (6.39b)

where ξ2n is the displacement of the atom with mass m1 indexed by an even
number and ζ2n+1 is the displacement of the atom with mass m2 indexed by an
odd number [41, 42]. To solve these equations, we substitute the general solu-
tions ξ2n = A1 exp[i(nka − ωt)] and ζ2n+1 = A2 exp[i(n + 1/2)ka − iωt] into
Eq. (6.39a). After some manipulations, we can obtain

(2K − m1ω
2)A1 − 2K cos(ka/2)A2 = 0 (6.40a)

(2K − m2ω
2)A2 − 2K cos(ka/2)A1 = 0 (6.40b)

The determinant of Eq. (6.40a) must be zero, that is,

m1m2ω
4 − 2K (m1 + m2)ω

2 + 4K 2[1 − cos2(ka/2)] = 0 (6.41)

The two roots for ω2 can be expressed as

ω2
1,2 = K

(
1

m1
+ 1

m2

)

± K

[(
1

m1
+ 1

m2

)2

− 4 sin2(ka/2)

m1m2

]1/2

(6.42)

The resulting ω − k curves are the dispersion relations, as shown in Fig. 6.18.
Two branches are formed when m1 �= m2. The upper branch that corresponds to the
plus sign is called the optical phonon branch, or simply optical branch, because it
is important for infrared activities in ionic solids. The lower branch that corresponds
to the minus sign is called the acoustic branch. At very low frequencies, the atoms
in the unit cell move in phase with each other. Such a behavior is characteristic for
a sound wave.

It can be seen that the dispersion curves vary periodically with k. The results
outside the first Brillouin zone merely reproduce lattice dynamics that can be fully
described by the dispersion curves in the first Brillouin zone. Due to the periodicity
of the solution in terms of k, we may treat a value of k outside the first Brillouin zone
by subtracting an appropriate integer times the reciprocal lattice constant 2π/a to
give a value of k within the limits of the first Brillouin zone. Given that |k| ≤ π/a,
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Fig. 6.18 Phonon dispersion
of the linear diatomic chain,
calculated by the
nearest-neighbor model. The
first Brillouin zone is
between −π/a and π/a

k

ω

π/a 2π/a

Optical

Ac
ou
sti
c

0–π/a

the phonon wavelength is specified by

λ = 2π

k
, 2a ≤ λ < ∞ (6.43)

This makes perfect sense as the wavelength should not be smaller than the lat-
tice constants, as explained in previous chapter; see Fig. 5.3. For solids with small
dimensions, there is also a limit of the maximum wavelength 2L. For k << π/a,
the acoustic branch gives ω ∝ k, which is a linear dispersion relation. At k = π/a,
ω = √

2K/m1 and
√
2K/m2, and the two branches are separated whenm1 �= m2. In

this case, it should be noticed that the group velocity vg ≡ dω/dk = 0. Only standing
waves exist. If m1 = m2, then the upper and lower branches will be continuous at
k = π/a and the slope is not zero. However, the lattice constant needs to be modified
to a/2 in Fig. 6.17, and thus the range of the first Brillouin zone is between −2π/a
and 2π/a. If the upper branch is not folded at k = π/a, it will connect smoothly
with the lower branch and extend to 2π/a. Detailed discussion can be found from
Ref. [41].

6.5.2 Dispersion Relations for Real Crystals

The above discussion can be extended to 3D systems, inwhich lattice vibrations allow
both transverse and longitudinal modes. For the case of two atoms per primitive cell,
there are one longitudinal and two transverse branches for both acoustic and optical
vibration modes. The phonon dispersion relations for silicon and silicon carbide are
shown in Fig. 6.19 [43–46]. Experimental determination of the phonon dispersion
curves was made with neutron scattering [43, 44] for Si and Raman scattering for
SiC [46]. Because m1 = m2 for Si, the longitudinal optical (LO) and longitudinal
acoustic (LA) branches meet at the zone edge and thus the group velocity is not equal
to zero there. For SiC, on the other hand, the two roots in Eq. (6.42) are different
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Fig. 6.19 Optical and acoustical branches of phonon dispersion. a Si [101] direction. Adapted with
permission from Refs. [43–45]. b SiC. Adapted with permission from Ref. [46]

because m1 �= m2. There exists a frequency gap between the LO and LA branches
at the zone edge. The frequency gap is forbidden for propagating waves, i.e., no
phonons can propagate at frequencies within the gap, similar to the bandgap for
electrons. The group velocities of LO and LA phonon modes are zero at the zone
edge; this can be seen by the flat dispersion curves. One should not worry about the
negative or positive sign of the group velocity as it is merely a result of folding the
dispersion curves. The group velocity is always in the direction of energy transfer.
It should be mentioned that the speed of sound and the phonon propagation speed
refer to the group velocity, not to the phase velocity.

According to the wave–particle duality, a phonon with energy �ω should also
have an associated momentum, given by

p = �k (6.44)

where k is the wavevector of the phonon. There is a distinction between phonons
and photons. Phonons do not carry any physical momentum because the physical
momentum associated with lattice vibration is zero, except when all lattices are in
phase. On the other hand, when interacting with other elementary particles, such as
electrons or photons, the wavevector must follow the selection rule such that it looks
as if a phonon has a real momentum given by Eq. (6.44). This momentum is often
called the crystal momentum [1, 2].

The group velocity of phonons in the optical branches is usually small, and sub-
sequently optical phonons contribute little to the thermal conduction in solids. On
the other hand, optical phonons can interact or scatter with acoustic phonons, espe-
cially at elevated temperatures, to reduce the thermal conductivity [41]. Although
LA phonons have higher group velocities than TA phonons, one must also consider
the frequency distribution of phonons since phonons obey Bose–Einstein statistics;
see Eq. (5.77) and discussions in Chap. 5. At low temperatures, the TA phonon mode
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is the dominant contributor to both the thermal conductivity and the specific heat of
insulators and semiconductors. As the temperature goes up, LA phonons also play a
significant role. While optical phonons contribute little to the heat conduction, they
contribute about half of the heat capacity above room temperature. This is because
group velocity does not enter the equation for specific heat; refer to Eq. (5.30). In gen-
eral, if there are q atoms in the primitive cell or basis, there will be one longitudinal
and two transverse acoustic branches, and q−1 longitudinal and 2(q−1) transverse
optical branches. However, degeneracy of the transverse branches may occur due to
symmetry [40–42]. An example of complex materials is the family of zeolites, which
are hydrated aluminosilicate minerals that exhibit nanoporous crystalline structures.
Zeolites have important applications as filters, catalysts, solar collector, and adsorp-
tion refrigeration. Greenstein et al. [47] studied the thermal properties of MFI zeolite
films considering phonon dispersion. MFI is a special type of zeolite that has ordered
channel directions and an average pore size of 0.6 nm. The calculation of specific
heat and thermal conductivity involved summation over 864 polarizations (phonon
branches) over all wavevectors in the first Brillouin zone. The modeling results were
in reasonable agreement with experiments [47].

In recent years, lots of studies have been done on the phonon transport in graphene
and other 2D materials, as well as the interface between 2D materials and substrates
[25, 36, 48]. For example, recent measurement and simulation have shown that a
thermal conductivity in monolayer of hBN can be as high as 750 W/m K [37].

Recently, researchers have demonstrated experimentally very high thermal con-
ductivity (900–1300 W/m K) in boron arsenide (BAs) crystals at room temperature;
the result verified the previous predictions by first-principles simulations in 2013 and
2017; see Ref. [49, 50] and works cited therein. Cubic BAs has since replaced cubic
BN (around 740 W/m K) to become the bulk material with the second highest (next
to diamond) thermal conductivity at room temperature [49].

Another important aspect of phonon transport is scattering. The mean free path
of phonons is often small compared with the size of crystals. For nanostructures,
on the contrary, the mean free path can be larger than the characteristic length,
resulting in boundary scattering. Some qualitative discussions have been given in
the previous chapter. A summary of the characteristics of phonon and photon is
given in Table 6.3. In most situations, phonons are treated as particles, especially
in dealing with interactions among phonons themselves as well as with electrons,
photons, and defects. For long-wavelength phonons, lattice vibration can also be
described by a sound wave or an acoustic wave of three polarizations. To analyze the
acoustic wave behavior, the crystal is viewed as a continuous medium because the
individual vibration of atoms is not of interest. A brief discussion of the microscopic
conservation (or selection rules) during scattering events involving phonons and/or
electrons is presented next.
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Table 6.3 Comparison of the characteristics of phonon and photon

Phonon Photon

Bose–Einstein statistics Bose–Einstein statistics

Massless Massless

Energy: ε = hν Energy: ε = hν

Phase speed: vp = ω/k Phase speed: vp = λν

Mechanical vibration (existence in solids and
some liquids, such as liquid helium)

Electromagnetic waves (existence in any
medium as well as in vacuum)

Both transverse and longitudinal Transverse only

Crystal momentum: p = �k Physical momentum: p = �k

Frequency: less than ≈ 50 THz Frequency: no limit

Group velocity: <≈ 2 × 104 m/s Group velocity: order of 108 m/s

Mean free path: ≈ 10 to 100 nm (except at
very low temperatures and in nanotubes)

Mean free path: no limit (largely dependent
on the medium)

6.5.3 Scattering Mechanisms

Phonon scattering governs the thermal transport properties of dielectric and semi-
conductor materials. Proper modeling of phonon scattering is important for the appli-
cation of the Boltzmann transport equation (BTE) or Peierls–Boltzmann equation,
considering the frequency-dependent scattering rate. The anharmonic nature of the
interatomic potential offers a coupling mechanism for phonon–phonon interactions,
which was not included in the linear oscillator model. The phonon–phonon scatter-
ing is inelastic because the phonon frequency before the scattering event is different
from that after the event. The energy conservation requires the scattering to involve
at least three phonons. A three-phonon process is mostly common since the prob-
ability is usually much larger than the values for processes involving four or more
phonons. In a three-phonon process, either two phonons interact to form a third one
or one phonon breaks into two others. The phonon energy and crystal momentum
are conserved as given by [1, 2]

�ω1 + �ω2 = �ω3 or �ω1 = �ω2 + �ω3 (6.45)

�k1 + �k2 = �k3 or �k1 = �k2 + �k3 (6.46)

In Eqs. (6.45) and (6.46), the left-hand side terms are for phonon(s) before scat-
tering and the right-hand side terms are for phonon(s) after scattering. The pro-
cesses just described are called normal (or N) processes, in which the wavevectors
of phonons are inside the first Brillouin zone. Since both the energy and the momen-
tum are conserved, N-processes do not alter the direction of energy flow. Hence,
N-processes make no contribution to the thermal resistance and do not affect the
thermal conductivity.
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Scattering is also permitted when two phonons interact to form a third one, whose
wavevector is outside the Brillouin zone. This can be understood by the equivalence
of phonons with the same energy but with different wavevectors k′ and k that follow
the relationship:

k′ = k + G (6.47)

where G is a reciprocal lattice vector. The reverse process is also possible with the
assistance of G so that one phonon is annihilated to create two others. Themomentum
relations given in Eq. (6.46) need to be modified as follows after dropping � in all
terms:

k1 + k2 = k3 + G or k1 + G = k2 + k3 (6.48)

These equations, combined with the energy conservation described by Eq. (6.45),
describe the umklapp (or U) processes. The net momentum is not conserved in the
U-processes, which introduce thermal resistance and thus reduce the thermal con-
ductivity. Figure 6.20 schematically shows the relationship between the wavevectors
for an N-process and a U-process. An N-process can be viewed as the general case
of a U-process when G = 0.

Above room temperature, U-processes dominate and the thermal conductivity
decreases linearly as temperature increases. This is because the scattering rate γ =
1/τ between acoustic phonons due to U-processes can be described by [41]

γU = (
Aω + Bω2)T (6.49)

where A and B are positive constants. When the temperature is reduced, the U-
process becomes weaker because of the shift in phonon distribution function toward
longer wavelengths. Scattering of phonons by defects becomes important. As shown
in Fig. 5.13, as the temperature is decreased below room temperature, the thermal
conductivity increases to a maximum and then decreases due to the reduction in

Fig. 6.20 Schematic illustrations of phonon–phonon scattering processes: a the N-process and
b the U-process
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the specific heat. Four-phonon processes are also possible. Four-phonon scattering
includes the annihilation of two phonons to create two others, the annihilation of one
phonon to create three others, and the annihilation of three phonons to create another.
The calculation of the probability of scattering is more involved [41]. Ecsedy and
Klemens [51] estimated the scattering rate due to four-phonon processes to be

γFour ∝ ω2T 2 (6.50)

Their simplifiedmodel also suggests that the probability of four-phonon processes
in the temperature range from 300 to 1000 K is negligibly small compared with the
three-phononU-processes [41, 51]. Recent first-principles calculations by Feng et al.
[50] have shown that the four-phonon process cannot be neglected even for common
materials like silicon and diamond above room temperature. At 1000K, the inclusion
of four-phonon scattering could reduce the predicted κ by 30%, resulting in excellent
agreementwith the experimental value. Furthermore, the predicted κ value for single-
crystal BAs with and without considering four-phonon processes is 2200W/m K and
1400W/m K, respectively [50]. Later, the value around 1000W/m K was experi-
mentally demonstrated by several groups in 2018 [49]. According to the study by
Feng et al. [50], the four-phonon scattering rate should scale with

γFour ∝ ω4T 2 (6.51)

In addition to phonon–phonon interactions, phononsmay also interactwith defects
(such as impurities, vacancies, or dislocations) and boundaries. These scattering pro-
cesses can also influence the mean free path of phonons. Scattering of phonons by
defects is elastic since the phonon energy remains the same. At temperatures near
and above the Debye temperature, phonon–phonon interactions are dominant. As
the temperature drops, the dominant wavelengths of phonons become comparable
to the size of defects; therefore, scattering of phonons by defects becomes impor-
tant. The scattering rate for phonon-defect scattering is independent of temperature
but dependent on the phonon wavelength. This can be modeled using the Rayleigh
scattering theory for small particles such that the scattering rate due to defects is
inversely proportional to the fourth power of the phonon wavelength λ, viz.,

γph−d ∝ λ−4 or ω4 (6.52)

When the bulk mean free path is comparable or greater than the characteristic
dimension, such as the thickness of the film or the diameter of the wire, scattering
of phonons by boundaries becomes important. Boundary scattering is important for
nanostructure materials and at low temperatures when the phonon mean free path is
large, as extensively discussed in the previous chapter.

In metals and semiconductors, electronic transport becomes important. The scat-
tering of charge carriers controls the electric conduction in solids and dominates the
thermal conduction in metals. Carrier–carrier inelastic scattering is negligible except
for highly conductive materials, such as a high-temperature superconductor. Since
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lattice vibrations are enhanced with increasing temperature, electron–phonon scat-
tering usually dominates the scattering process at high temperatures, while at low
temperatures, lattice vibrations are weak and defect scattering becomes important.
The vibration of lattice ions causes deviations from the perfect periodic lattice and
distorts the carrier wave function. This is more easily visualized as the scattering
of electrons by phonons. Both the acoustic branch and the optical branch can scat-
ter electrons. Usually, the energy of acoustic phonons can be neglected compared
with the electron energy. Therefore, scattering by acoustic phonons is essentially
elastic. Scattering by optical phonons is inelastic because the exchange of energy
between the carriers and the phonons can be significant. This process facilitates the
energy transfer between electrons and phonons, which is associated with Joule heat-
ing. For materials with two different atoms per primitive cell, the asymmetric charge
distribution in the chemical bond forms a dipole. Scattering by optical phonons in
these materials is called polar scattering, which can effectively scatter electrons or
holes. The energy and momentum conservations for carrier–phonon scattering can
be written as

Ef = Ei ± �ωphonon (6.53a)

and

kf + G = ki ± kphonon (6.53b)

where subscripts i and f indicate the initial andfinal states of the carrier, theminus sign
corresponds to phonon emission, and the plus sign corresponds to phonon absorp-
tion. The momentum of an electron is similar to that of a phonon and is also referred
to as the crystal momentum. If G is set to zero, the process is an N-process; other-
wise, it is a U-process as in phonon–phonon scattering. In semiconductors at low
temperatures, only N-processes are energized. In metals and semiconductors, the
electron–phonon scattering rate typically ranges from 1012 to 1014 Hz at room tem-
perature. Near or above the Debye temperature, the specific heat is almost a constant
and the number of phonons increases linearly with temperature. Hence, the elec-
tron–phonon scattering rate is proportional to temperature in metals, resulting in
nearly temperature-independent thermal conductivity, while the electrical resistance
is proportional to temperature.

An electron or hole in a periodic lattice does not really collide with ions. The
transport of free carriers can be viewed as the propagation of a wave in a periodic
potential created by the ions. In addition to lattice vibrations, defects or impurities
may break the periodicity of the potential or alter its amplitude. Kinetic theory gives
the defect scattering rate as

γe−d = ndσdve (6.54)

where nd and σd are the defect number density and scattering cross section, respec-
tively, and vd is the average carrier velocity. The scattering cross-section is an effective
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area related to the scattering probability and not the actual geometric cross-sectional
area. For metals, the electron velocity is the Fermi velocity vF, which is on the order
of 106 m/s. For semiconductors, the random velocity of electrons or holes can be
calculated by

vth = (3kBT/m∗)1/2 (6.55)

which is called the thermal velocity and is on the order of 105 m/s at room
temperature.

In semiconductors, the interband transition requires the conservation of both
energy and momentum. This can occur by electronic transitions when interacting
with the incident radiation. For indirect gap semiconductors, however, the photon
itself cannot provide a large enough change in momentum. Therefore, a phonon is
either emitted or absorbed for momentum conservation. The energy and momentum
conservation equations are, respectively,

Ef − Ei = �ωphoton ± �ωphonon (6.56a)

and

kf − ki = kphoton ± kphonon (6.56b)

where the plus and minus signs correspond to phonon absorption and emission,
respectively. This kind of transition is called the indirect interband transition. For a
direct interband transition, there is no need to emit or absorb a phonon and, thus, the
last term in both Eqs. (6.56a) and (6.56b) should be dropped out. The interaction of
photons with solids will be left to Chap. 8 (Sect. 8.4) for a more detailed discussion
about the absorption and emission processes.

In addition to the absorption and the emission, photons may be scattered by
phonons, causing a nonlinear effect. There exists inelastic scattering when photons
are scattered by phonons, resulting in x-ray scattering, neutron scattering, Raman
scattering, and Brillouin scattering. In Raman scattering, the creation (emission) and
annihilation (absorption) of a phonon cause a shift in the frequency of the radia-
tion, namely, the Stokes and anti-Stokes shifts, as shown in Fig. 6.21. The energy
conservation equations are

�ωs = �ωi − �ωph, for a Stokes shift (6.57a)

and

�ωs = �ωi + �ωph, for an anti-Stokes shift (6.57b)

where subscripts i, s, and ph are for incident photon, scattered photon, and phonon,
respectively. Because the interaction involved two photons and one phonon, the
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Fig. 6.21 Illustration of Raman scattering and a the Stokes and b anti-Stokes processes

momentum of the phonon is restricted to small values. The Raman effect, or the
Raman scattering, was named after Indian physicist C. V. Raman (1888–1970), who
won the Nobel Prize in Physics in 1930 for the discovery. The intensity of the anti-
Stokes shift is usually much weaker than that of the Stokes shift. In certain cases,
however, the phonons generated by the Stokes process can subsequently participate
in the anti-Stokes process, causing a strong excitation to the anti-Stokes component.
It is interesting to note that the anti-Stokes component actually pumps energy out
from the material, resulting in a radiative cooling effect.

Note that the resulting photon can interact with the phonon again, creating a
cascade process that emits m phonons. The photon energy is reduced by m times
the energy per phonon. The probability decreases as the order increases. Raman
spectroscopy has become a major analytical instrument for the study of solids.
High-intensity lasers, high-resolution spectrometers, and sensitive detectors such as
photomultiplier tubes (PMTs) are often employed to measure narrow Raman lines.
The Raman intensity and intensity ratio depend upon temperature, as illustrated in
Fig. 6.22. The ratio of the Raman intensities can be expressed by

Fig. 6.22 Raman intensity for the Stokes and anti-Stokes scattering at two different temperatures
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Ianti-Stokes
IStokes

=
(

ωi − ωph

ωi + ωph

)2

exp

(

−�ωph

kBT

)

(6.58)

which can be used for surface temperature measurements in microelectronics and
microcantilever heaters [52, 53].

Example 6.4 Neutron scattering by phonons is important for measuring the dis-
persion relations. Express the energy conservation and the momentum conservation
during the neutron–phonon scattering in terms of the wavevector and the mass of the
neutron, and the wavevector and the frequency of the phonon. Assume the process
involves one phonon only.

Solution A neutron has a mass mne = 1.673 × 10−27 kg that is 1834 times that of
an electron. Based on the wave–particle duality, the kinetic energy of a neutron can
be expressed as Ene = p2

2mne
= �

2k2

2mne
; thus, the energy conservation becomes

�
2k2s

2mne
= �

2k2i
2mne

± �ωph (6.59)

where ki and ks are the magnitude of wavevector of the incident and scattered
neutrons. The wavevector selection rule gives

ks + G = ki ± kph (6.60)

These relations characterize the inelastic scattering of neutrons by phonons.
The plus and minus signs refer to the process that absorbs or releases phonons,
respectively.

6.5.4 Phononics and Coherent Phonons

Phonons are quantized lattice vibration waves. The wavelength of phonons that
are important for thermal transport falls in the region from 1 to 10 nm at room
temperature and can be longer at cryogenic temperatures. While phonons are typi-
cally treated as particles, their wave naturemay become important in 1D superlattices
and 2D or 3D periodic structures due to interference effects, especially at low tem-
peratures. These effects may enable tailoring the thermal transport properties of
semiconductors and insulators, resulting in phonon engineering that belongs to a
research branch called phononics. Phonon engineering may allow us to control heat
transfer in unprecedentedmanner, such as thermal diode, thermal transistors, thermal
memory, topological phonon hall effect, heat cloaking, thermal lens for heat focusing,
to name a few [54–56]. The development of graphene and 2D van der Waals mate-
rials increases the possibilities and broadens the applications of phonon engineering
[25, 57]. Furthermore, with femtosecond to picosecond excitations, phonons may
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exhibit coherent nature. Resonance lattice vibrations or coherent phonons have been
experimentally observed not only in bulk solids but also in superlattices [58–62].

In a solid crystal, valence electrons are confined and their properties aremanifested
by the band structure. The electron wave functions can be analyzed based on the
Bloch theory. Given the periodicity of typical solids from 0.1 to 1 nm, the crystalline
structure also affects the phonon dynamics, resulting in phonon dispersion. Since
phonons can extend to longer wavelengths than electrons do, periodic structures with
a period of 1–200 nm can affect the phonon band structure (dispersion relations),
forming phononic crystals that can modify the DOS and group velocity of phonons,
thereby reducing the thermal conductivity due to the coherence effect [54, 63]. One
of the promising applications is in thermoelectricity where the confinement reduced
the thermal conductivity dramatically with little effect on the Seebeck coefficient or
electrical conductivity. This is desired to improve the figure ofmerit of thermoelectric
devices as discussed in Chap. 5. It is worth mentioning here that photonic crystals
with a period from 100 nm to 10 µm can exhibit unique optical properties in the
visible and infrared regions, as to be discussed in Chap. 9.

Luckyanova et al. [64] demonstrated coherent phonon transport on thermal con-
ductivity using GaAs/AlAs superlattices fabricated by metal-organic chemical vapor
deposition. Each period contains 12 nmGaAs and 12 nmAlAs films, as confirmed by
transmission electronmicroscopic images. The cross-plane thermal conductivities of
five samples whose periods are 1, 3, 5, 7, and 9 were measured using a time-domain
thermoreflectance (TDTR) technique at temperatures from 30 to 300 K. For periodic
layers in the incoherent regime, interface scattering often dominates the thermal
resistance, which can be modeled as a combination of the internal and interface
resistances. The resulting cross-plane thermal resistance increases with the number
of layers, and subsequently the effective thermal conductivity of superlattices with
the same period is independent of the number of layers. When interface resistance
is small and the phonon mean free path in the bulk material is much longer than the
total thickness of the superlattice, the thermal resistance is dominated by boundary
resistance at the front and back of the superlattice. This situation resembles ballistic
phonon transport in a homogeneous film, when the thermal conductivity decreases
linearly as the thickness is reduced as already discussed in Chap. 5. Luckyanova
et al. [64] observed a linear dependence of the thermal conductivity at temperatures
below 150 K, and thereby demonstrated coherent phonon contributions to thermal
conductivity. As the temperature increases, due to phonon scattering at interfaces, the
linearity breaks down. The phonon mean free path (�) distribution for an infinitely
extended superlattice was evaluated using first-principles calculation. It was found
that phonons whose mean free path exceed 216 nm (the total thickness of the super-
lattices used in the experiments) contribute to the thermal conductivity about 87%
at 100 K and 71% even at 300 K. Due to the lack of internal scattering and interface
scattering, these low-frequency phonons can be described by the dispersion relations
based on the superlattice band structures. The results unambiguously demonstrate
coherent phonon transport in superlattices even at room temperature [64].

In the incoherence limit, the thermal conductivity of a superlattice decreases as
the interface density increases or period decreases in superlattices made of the same
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materials with similar interfaces. If the interfaces are made very smooth to avoid
scattering, when the period is smaller than the phonon coherence length (such that
coherent phonons can play a significant role), the thermal conductivity increases as
the period is reduced due to the modification of the phonon dispersion and DOS.
The combined effects give rise to a minimum when the thermal conductivity is plot-
ted against the period of the superlattice or the interface density. Such a minimum
thermal conductivity separates the particle regime and wave regime of heat conduc-
tion by phonons. The predicted minimum thermal conductivity was experimentally
demonstrated by Ravichandran et al. [65] using perovskite superlattices made of
either SrTiO3/CaTiO3 or SrTiO3/BaTiO3 at room temperature. They used molecular
epitaxy deposition to grow (001) oxides with atomically sharp interfaces. The layer
thickness varies from a single unit cell to 40 nm for SrTiO3/CaTiO3. For this kind of
superlattices with a 50:50 volume ratio between the two materials and a total thick-
ness of 200 nm, a minimum cross-plane thermal conductivity was observed when the
period is between 2 and 3 nm. The valley gets deeper when the temperature is lowered
from 307 to 142 K and then to 84 K, with a gradual shift toward large period as the
temperature is lowered [65]. The experimental results are consistent with theoretical
predictions of the crossover between the wave–particle behaviors and the value of
the minimum thermal conductivity. The fact that the thermal conductivity can be
manipulated by changing the superlattice period may have extensive applications in
thermoelectric devices.

Phononic nanomesh structure refers to periodically perforated thin membranes
or films, which form a 2D phononic crystal [54–57]. Significant reduction of the in-
plane thermal conductivity at room temperature has been observed in Si nanomeshes.
Yu et al. [66] fabricated nanomeshes on 22-nm-thick doped epitaxial Si film with a
period of a few tens of nanometers and positioned the nanomesh structure between
two suspended membranes (one for heating and one for sensing) to measure the
thermal conductance at steady state. They reported a nanomesh thermal conductiv-
ity near 1.9 W/m K at temperatures from 150 to 280 K, which then decreases to
approximately 1.4 W/m K at 100 K. Hopkins et al. [67] fabricated relatively large
nanomesh structures with 500-nm-thick single crystalline Si. The period was varied
from 500 to 800 nm while the diameter of the holes is 300 or 400 nm. The thermal
conductivity of suspended nanomesh structure was measured with a TDTR setup to
be as low as 6.8 W/m K, more than an order of magnitude lower than the value of
148 W/m K obtained for bulk Si. While low-frequency coherent or partially coher-
ent phonons with a longer mean free path may play a role in the thermal transport
of nanomeshes [68], later theoretical studies [69, 70] and recent experiments [71]
suggest that coherent phonons may not play a significant role due to the relatively
large surface roughness of microfabricated structures (1–3 nm) as compared with
the phonon wavelength at room temperature. Classical phonon scattering including
backscattering and native oxide layers may be largely responsible for the thermal
conductivity reduction at near room temperature [57, 70, 71].

Nevertheless, in the sub-kelvin temperature range where the dominant thermal
phonons are in the gigahertz frequency region, coherent phonon effects on ther-
mal conduction have been observed in suspended silicon-nitride nanomeshes with a
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period of 970 nm and 2425 nm, respectively [72]. At such low temperatures, the dom-
inant phonon wavelength is in the micrometer range, much larger than the surface
roughness. In this regime, a strong modification of the phonon band structure can
affect the thermal transport as demonstrated experimentally [72]. Maire et al. [73]
fabricated ordered and disordered 1D and 2D hole arrays with a nominal period of
300 nm on a 145 nm single crystalline Si layer. The Si nanobeam or membrane with
a nominal hole diameter of 150 nmwas patterned on a silicon-on-insulator wafer and
etched into suspended structures. The roughness of the surface was measured with
an atomic force microscope (AFM) to be 0.5 nm, while the roughness of the inner
surface of the hole was estimated to be 2.5 nm from scanning electron microscopic
images. Measurements with a micro-TDTR setup suggested that the thermal decay
rates for ordered and disordered samples remain the same at temperatures higher than
about 10 K. Below 10 K, especially at 4 K, disorder can significantly increase the
decay rate [73]. Coherent phonons with frequencies less than 200 GHz are expected
to play a significant role at 4 K, resulting in a decreased decay rate (or thermal con-
ductivity) in the ordered structure. Their results are consistent with coherent acoustic
phonon spectroscopy performed with femtosecond pump-probe thermoreflectance
experiments [74].

6.6 Atomistic Simulation of Lattice Thermal Properties

In Chap. 5, we extensively discussed the relaxation time approximation in modeling
thermal conductivity based on BTE, where the Debye model is often assumed in
predicting the phononDOS.While the results can predict the temperature dependence
of thermal conductivity as well as classical size effects, the accuracy is rather limited.
Furthermore, the parameters that enter the model are typically obtained by fitting the
measurement data. In Sect. 6.5.3, we gave a brief introduction of phonon dispersion
and scatteringmechanisms. In the last 20 years, especially since the publication of the
first edition of this book in 2007, more and more researchers have applied atomistic
simulations rooted in quantum mechanics to predict lattice thermal properties for
semiconductors, superlattices, and low-dimensional materials (including polymer
chains) [75–81]. Classical molecular dynamics (MD) simulations have also been
extensively used to predict the thermal conductivity of solid materials based on
empirical potentials (refer to Sect. 4.3) using either the linear response theory (i.e.,
the Green–Kubo relation) or the direct method (i.e., nonequilibrium approach) [82].
Phonon properties can be extracted by analyzing the wave-packet dynamics [82, 83].
Furthermore, the phonon scattering rate or lifetime can also be determined fromMD
simulations by analyzing the normal modes [83–85]. The interatomic potentials can
also be obtained from the first-principles calculations and used in MD simulations
[78, 80]. This section overviews the ab initio simulation methodology and how it can
be applied to obtain phonon properties and calculate lattice thermal conductivity.
The equilibrium and nonequilibrium MD methods will also be introduced.
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6.6.1 Interatomic Force Constants (IFCs)

Nowadays, most first-principles calculations for materials properties are based on
the density-functional theory (DFT) [86, 87], which has been referred to or cited by
over one hundred-thousand papers per year in the last decade according to Google
Scholar. While the term “first principles” can have different meanings in different
fields, it generally refers to a basic set of postulates or physical laws that do not rely
on any other assumptions or fitting parameters that are frequently used in empirical
modeling. Therefore, solving the Schrödinger equation to obtain the electronic struc-
ture of a crystal under suitable approximations without using parameters obtained
from fitting the experimental data is a first-principles approach. Some of the meth-
ods were mentioned in Sect. 6.4.3, but they are limited to a few atoms in the unit
cell. Rather than solving the many-body Schrödinger equation to obtain the wave
functions, DFT treats it as a vibrational problem to obtain the electron densities
by minimizing the energy functional using the method of Lagrange multipliers as
described in Appendix B.2. The details are rather complicated [86, 87]; thus, only a
conceptual description is given next.

The many-electron wave function can be expressed as a product of the single-
electron wavefunctions as

�(r1, r2, . . . rN ) = ψ1(r1)ψ2(r2) . . . ψN (rN ) (6.61)

where N is the number of electrons in the system. Each of the wave function satisfies
the Schrödinger equation:

[

− �
2

2me
∇2 + Vext(r) + �e(r)

]

ψi (r) = εiψi (r) (6.62)

where ψi and εi are, respectively, the wave function and orbital energy of the ith
electron, Vext is the potential due to all nuclei that is determined by the structure
and elemental composition of the system, and �e is the potential due to the exis-
tence of other electrons (the Coulomb potential). Most solution methods start with a
suitable potential Vext to obtain the wave function �(r1, r2, . . . rN ). From there, all
observables can be obtained, and among them, the electron density can be expressed
as

n(r) = N
∫

dr2

∫

dr3 . . .

∫

drN�∗� (6.63)

Hohenberg andKohn [86] proved that all ground-state properties can be expressed
as functionals of the electron density n(r) and the total energy is such a functional that
attains its minimum for the correct ground-state density. In essence, DFT is a varia-
tional approach in which the electron density is obtained first and then used to obtain
the many-electron wave function, along with the potential. All other observables can
be obtained consequently. Compared with traditional first-principles methods, the
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computational cost of DFT is relatively low. This advantage becomes more obvious
especially with more and more complex systems.

The local-density approximation (LDA) could be used for a slowly varying density
so that the ground-state energy can be obtained in terms of single-particle equations
for the interacting system [86]. The Kohn–Sham equations provide a means to obtain
the electron density by solving N noninteracting one-electron Schrödinger’s equa-
tions [86, 87]. Before 1990, DFT was not considered as an accurate method in band
structure computations [21]. Since then, some approximations have been greatly
refined to better model the exchange and correlation potentials [88]. The 1998 Nobel
Prize in Chemistry was bestowed on Walter Kohn for his establishment of DFT and
John A. Pople for his development of computational methods in quantum chemistry
including the implementation of DFT [89].More recently, DFT has beenwidely used
to predict the chemical, electronic, structural, lattice dynamics, and even magnetic
properties of materials from the atomic scale. A number of software packages are
available for solid-state simulations based on DFT [88, 90]. It should be noted that
the term ab initio (from the beginning) is often used with the same meaning as from
first principles, especially in computational chemistry based on quantummechanics.

DFT can be used to predict phonon properties by using the theory of lattice
dynamics [88]. The Born–Oppenheimer approximation assumes that the motion of
atomic nuclei can be treated separately from that of electrons. This is the so-called
adiabatic approximation, which allows us to decouple the vibrational degrees of
freedom from the electronic degrees of freedom [91]. A similar Hamiltonian for a
crystal can be written in terms of the interatomic force constants (IFCs) and then
used in lattice dynamics to obtain phonon properties.

The density-functional perturbation theory (DFPT) is a linear response theory
that aims at obtaining IFCs through a small perturbation of the system from its
equilibrium [91]. Suppose Ĥ is a Hamiltonian and write the Schrödinger equation
of the ith particle as follows:

Ĥψi = εiψi (6.64)

Then by applying a small perturbation (parameter ξ ), we can write the perturbed
Hamiltonian, wave function, and energy of the particle as [92]

Ĥ = Ĥ (0) + ξ Ĥ (1) + ξ 2 Ĥ (2) + · · · (6.65a)

ψi = ψ
(0)
i + ξψ

(1)
i + ξ 2ψ

(2)
i + · · · (6.65b)

and

εi = ε
(0)
i + ξε

(1)
i + ξ 2ε

(2)
i + · · · (6.65c)

By substituting Eq. (6.65a) into Eq. (6.64) and equalizing terms with the same
order on both sides, we obtain a series of equations based on the order of perturbation.
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The first equation is

Ĥ (0)ψ
(0)
i = ε

(0)
i ψ

(0)
i (6.66)

Apparently, this is for the unperturbed system or the system at equilibrium. The
first-order perturbation gives

Ĥ (0)ψ
(1)
i + Ĥ (1)ψ

(0)
i = ε

(0)
i ψ

(1)
i + ε

(1)
i ψ

(0)
i (6.67)

and the second-order perturbation gives

Ĥ (2)ψ
(0)
i + Ĥ (1)ψ

(1)
i + Ĥ (0)ψ

(2)
i = ε

(2)
i ψ

(0)
i + ε

(1)
i ψ

(1)
i + ε

(0)
i ψ

(2)
i (6.68)

The third-order and higher order perturbation relations can also be applied when
necessary. It should be noted that

ε
(n)
i = 1

n!
dnεi
dξ n

∣
∣
∣
∣
ξ=0

and ψ
(n)
i = 1

n!
dnψi

dξ n

∣
∣
∣
∣
ξ=0

(6.69)

The Hellmann and Feynman theorem gives ε
(1)
i in terms of ψ

(0)
i and Ĥ (1), which

are supposed to be known. The second-order energy derivative and higher order
derivatives can also be obtained [92]. The (2n + 1) theorem states that if one knows
the wave functions up to order of n, i.e., ψ(n)

i , one can deduce the energy derivative
up to the order (2n + 1), i.e., ε(2n+1)

i . The actual multivariable perturbation problem
is very complicated and readers are referred to [91, 92] and references therein.

Let us assume that, based on the elementary composition of the system, the unit
cell parameters and equilibrium atomic positions can be obtained from DFT. If the
atoms are allowed to have small displacement around their equilibrium position, then
the potential energy of the system U can be expressed as a Taylor expansion [80,
81]:

U = U0 +
∑

i

∑

α

�α
i ζα

i + 1

2!
∑

i, j

∑

α,β

�
αβ
i j ζα

i ζ
β
j + 1

3!
∑

i, j,k

∑

α,β,γ

�
αβγ
i jk ζα

i ζ
β
j ζ

γ
k + O(ζ 4)

(6.70)

Here, i, j, k . . . = 1, 2, . . . N are the atom indices, and α, β, γ . . . = 1, 2, or 3
are the coordinate indices (x, y, or z in the Cartesian coordinates system). The IFCs
are given as follows:

�α
i = ∂U

∂ζ α
i

= −Fα
i (6.71)

where Fα
i is the force component on the ith atom and it is zero at equilibrium. Thus,

the first summation on the right-hand side of Eq. (6.70) disappears. The second-order
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derivatives are called the harmonic force constants,

�
αβ

i j = ∂2U

∂ζ α
i ∂ζ

β

j

(6.72)

This will become clear in the next section. The third-order derivatives are known
as the cubic force constants, which are related to the anharmonic processes due to
three-phonon interactions:

�
αβγ

i jk = ∂3U

∂ζ α
i ∂ζ

β

j ∂ζ
γ

k

(6.73)

The next anharmonic constants are related to four-phonon processes [50]. Once
the IFCs are obtained using DFPT [78, 91, 92], lattice dynamics can be used to
obtain phonon dispersion relations, as well as the wavevectors and wave functions
of the normal modes (phonon modes) from harmonic lattice dynamics. The higher
order terms have little impact on the phonon dispersion, which determines the group
velocity and DOS of phonons. However, the anharmonic terms are related and can
be used to obtain phonon–phonon scattering rates, which are temperature dependent.
Besides DFPT, other methods, such as the real-space small displacement method and
frozen-phonon method, have also been used to extract the IFCs for various materials
[78, 93–96]. When the phonon properties are fully determined, the data can be com-
bined with the Peierls–Boltzmann equation. The solution allows the determination
of the thermal conductivity from first principles as discussed in the following two
sections [75, 76, 79].

6.6.2 Lattice Dynamics and Fermi’s Golden Rule

The phonon properties can be obtained once the IFCs are calculated. The harmonic
force constants allow the determination of phonon dispersion and normal modes
according to lattice dynamics theory. The anharmonic force constants can be used to
obtain the scattering rate for three-phonon or four-phonon interactions using Fermi’s
golden rule. This section provides a brief coverage of lattice dynamics and the golden
rule.

In a solid crystal, due to periodicity, the atom index is expressed in terms of double
indices, that is, i → lb, j → l ′b′, k → l ′′b′′, etc. Here, l is the index of the unit cell
and b is the index of the atom inside the unit cell l. Note that the lattice translation
vector of the lth unit cell can be represented by Rl according to Eq. (6.4), though l
means all three indices here. Another vector rb can be used to indicate the position
of the atom with respect to the lattice point. With these notations, the Hamiltonian
for the crystal with potential energy U becomes
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Ĥ ≈
∑

lb

p̂2lb
2mb

+ 1

2!
∑

lb,l ′b′

∑

α,β

�
αβ

lb,l ′b′ζ
α
lbζ

β

l ′b′ + 1

3!
∑

lb,l ′b′,l ′′b′′

∑

α,β,γ

�
αβγ

lb,l ′b′,l ′′b′′ζ
α
lbζ

β

l ′b′ζ
γ

l ′′b′′

(6.74)

Note that p̂lb is the momentum operator for the bth atom in the lth cell and mb

is the mass of the atom. The other parameters are defined in Eqs. (6.69–6.72). The
fourth-order term is not given for simplicity. The equation of motion of atom b in
unit cell l can be expressed as follows:

mb
∂2ζ α

lb

∂t2
= −

∑

l ′b′

∑

β

�
αβ

lb,l ′b′ζ
β

l ′b′ (6.75)

The dynamic equation may be solved using a Fourier transform and expressed in
terms of a series of Fourier components, each one is a plane wave with a wavevector
k and angular frequency ω,

ζ α
lb = 1√

mb

∑

k

ηα
b (k)ei(k·Rl−ωt) (6.76)

Note thatRl is the equilibriumposition vector of the lth unit cell and the coefficient
ηα
b (k) is independent of l. Substituting Eq. (6.76) into Eq. (6.75) gives

ω2ηα
b (k) =

∑

b′,β

Dαβ

bb′(k)η
β

b′(k) (6.77)

where the dynamic matrix is expressed as

Dαβ

bb′(k) = 1√
mbmb′

∑

l ′
�

αβ

0b,l ′b′eik·(R0−Rl′ ) (6.78)

In writing Eq. (6.78), the translational invariance has been used [40, 41]. For
periodic boundary conditions, the dynamic matrix is essentially a Fourier transform
of the harmonic force constant matrix. The determinant of the following matrix must
be zero, viz.,

∣
∣
∣D

αβ

bb′(k) − ω2δαβδbb′
∣
∣
∣ = 0 (6.79a)

which can be written in a matrix form,

det
[
D(k) − ω2I

] = 0 (6.79b)

This allows the determination of phonon dispersion curves for all polarizations
in the first Brillouin zone. The analysis of a 1D chain with two atoms was illustrated
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in Sect. 6.5.1. If a unit cell has one atom, there will be three polarizations for each
wavevector; if a unit cell has two atoms, there will be six polarizations (or branches),
and so forth. For 2D and 3D crystals, the dispersion curves are rather complicated
since they are different along different directions between the lattice points [45],
similar to the electron band structures. Note that Fig. 6.19a only plots Si dispersion
curves along the direction from the zone center	 to point X in the first Brillouin zone,
while Fig. 6.19b is for several SiC polytypes along the direction with a maximum
magnitude of wavevector at the zone edge.

Equation (6.77) may be written in terms of the eigenvectors eb,λ of the normal
modes, where λ specifies a (phonon) mode, in the following [41]:

ω2eα
b,λ(k) =

∑

b′,β

Dαβ

bb′(k)eβ

b′,λ(k) (6.80)

For a system with N atoms, there exists 3N discrete eigenvectors that are orthog-
onal and normalized. These normal modes or Bloch modes represent 3N har-
monic vibrational modes or phonons with specific wavevectors. The corresponding
wavevectors and frequencies (eigenvalues) can be obtained from the dynamicmatrix.
All vibrational motion can be expressed as a superposition of the normal modes. As
discussed previously, the phonon DOS, group velocity, and specific heat can be cal-
culated using the dispersion relations. While the harmonic vibrations are for low
temperatures, anharmonic vibrations do not affect the dispersion significantly unless
the temperature is very high (e.g., close to the melting temperature). Anharmonic
lattice dynamics can be used to predict the frequency shift, linewidth, and lifetime by
including anharmonic perturbation or using the self-consistent phonon formulation
[78, 97].

Fermi’s golden rule, or simply the golden rule, was derived from the time-
dependent perturbation theory in quantum physics to express the scattering rate or
decay rate. The general form of the Fermi golden rule can be applied to nuclear decay,
atomic electron transitions, interband and intraband transitions, electron scattering,
phonon scattering, etc. For a system that undergoes a transition from an initial state
described by the wavevector k to a final state denoted by k′, the golden rule can be
expressed as [42, 90]

γk→k′ =
∑

k′

2π

�
M2

kk′δ(Ek′ − Ek ∓ �ω) (6.81)

where γ is the transition rate (probability of transition per unit time) and its inverse
is called the lifetime or relaxation time, Mkk′ is the interaction matrix element for
transition from state k tok′, and the Dirac delta function signifies energy conserva-
tion. Note that momentum conservation is also necessary for the transition to occur
as discussed in Sect. 6.5.3. As an example, for electron–phonon interaction, ω is
the frequency of the emitted or absorbed phonon, referring to Eq. (6.45). The term
�ω can be dropped when electrons are scattered elastically such as in the case of
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electron-defect scattering. Note that Mkk′ can be expressed in terms of a suitable
Hamiltonian that represents the scattering potential (or strength) so that

Mkk′ = 1

V

∫

V

�∗
k′ Ĥscat�kdr (6.82)

The Fermi golden rule can be expressed in terms of phonon–phonon scatter-
ing involving three or four phonons [50, 90]. This is very important for modeling
anharmonic scattering considering three-phonon and four-phonon processes. In the
evaluation of the interaction matrix elements, the IFCs of the third order allow the
determination of the three-phonon processes (both N-process and U-process) and
fourth-order IFC allows the determination of four-phonon processes [50, 81]. For-
mulations for defect scattering and interfacial scattering can also be obtained based
on Fermi’s golden rule [78]. For heavily doped semiconductors, phonon–electron
scattering may also play a role in reducing the lattice thermal conductivity [81, 98].
The detailed formulations and computational methodology can be found from the
cited literature.

6.6.3 Evaluation of Thermal Conductivity

This section describes several methods used to calculate thermal conductivity of
insulators and semiconductors. These methods can be used for both bulk and nanos-
tructured materials if boundary scattering is included. They can also be used to study
thermal transport in inhomogeneous media and thermal transport across interfaces,
though the focus of this chapter is mostly on the intrinsic properties of solids.

If Fourier’s law of heat conduction is extended to include anisotropy, we can write

q ′′
β = −

∑

α

καβ

∂T

∂α
(6.83)

Here again, α or β specifies a coordinate axis. The Peierls–Boltzmann equation or
phonon BTE can be solved using relaxation time approximation for each mode. The
thermal conductivity can be obtained by comparing the BTE solution with Eq. (6.83)
[75, 78]:

καβ = καβ =
∑

P

∑

K

c(k)vα(k)vβ(k)τ (k) (6.84)

Here, c(k) = hω(k)∂ fBE/∂T , and vα and vβ are the α and β components of the
group velocity, respectively. These quantities can be obtained from the dispersion
relations. The scattering rate τ(k) for each mode λ (in terms of the wavevector
index K and polarization index P) is obtained from the golden rule as discussed
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previously. Equation (6.84) is written in a way that is consistent with Eq. (5.71) but
including anisotropy. The thermal conductivity tensor becomes a diagonal tensor
¯̄κ = diag(κxx , κyy, κzz) in the principal coordinates and becomes ¯̄κ = κI for an
isotropic medium. Since 2007, this method has been used to obtain the thermal
conductivity of numerous semiconductor materials and oxide [78–81].

In the past 20 years, molecular dynamics simulations have been extensively used
in modeling thermal transport and thermal properties of bulk and nanostructured
materials. A brief introduction was given in Sect. 4.5.1. Molecular dynamics is
advantageous for modeling crystals whose basis contains a large number of atoms,
unstructured and disordered materials (such as amorphous solids and liquid phase),
as well as soft matters (such as polymer and organic compounds) [76, 82–85, 99].
It is particularly suitable for modeling nanostructured materials such as nanotubes,
nanowires, and fullerenes and related materials. Classical MD simulations are based
on empirical or semi-empirical intermolecular or interatomic potentials. The number
of atoms that can be simulated is rather limited by the earlier computational capabili-
ties. The computational speed and capabilities have been significantly improved in the
last two decades. Nowadays, advanced large-scale molecular dynamics simulation
packages, e.g., LAMMPS [100], are accessible. Various functional forms obtained
by comparison with experiments and from ab initio methods are available to model
the interatomic potentials of different types of materials. The combination of these
functions and parameters is often called a force field in molecular modeling. Another
advantage of MD simulation of thermal transport is that it inherently includes anhar-
monicity and is particularly suitable at high temperatures. The wave characteristics
of lattice vibration (phonon) cannot be easily observed since MD is a time-domain
simulation. This problem has been addressed using various post-processing tech-
niques such as Fourier analysis of the time variation of the locations and velocities
of particles, wave-packet analysis, and mode decomposition [80, 82–84].

There are two MD simulation methods in studying thermal transport. One is
called the direct method or nonequilibrium molecular dynamics (NEMD) and the
other is often called the Green–Kubo method or equilibrium molecular dynamics
(EMD). NEMD is more intuitive since it is based on 1D Fourier’s law to determine
the thermal conductivity:

kx = − q ′′
x

∂T/∂x
(6.85)

In the direct simulation, either the temperatures at both ends of the structure (heat
baths) are preset or the heat flux is preset. The simulation is then run for a sufficient
duration of time using millions of time steps, each at subpicosecond timescale, to
determine the unknown heat flux or the temperature gradient, respectively [85].
Periodic boundary conditions may be used to model bulk solids. Equation (6.85) is
then used to calculate the thermal conductivity. In theMDsimulation, the temperature
is calculated according to [82]
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T = 1

3NkB

〈
N∑

i

mi v
2
i

〉

(6.86)

In the study where stress is considered, the pressure can be calculated by the virial
equation [83],

P = NkBT

V
+ 1

3V

〈
∑

i

∑

j>i

ri j · Fi j

〉

(6.87)

In general, the temperature distribution is not linear due to temperature jumps near
the two heat baths. However, the temperature profile can be approximated as linear
in the middle section. The size effect and length effect on thermal conductivity of
nanostructures can be easilymodeled [76]. NEMD can also be used to study interface
thermal resistance as well as non-Fourier heat conduction using the transient method
[85]. These topics will be further discussed in Chap. 7.

In EMD, the Green–Kubo linear response theory is used. Statistical fluctuations
always exist at temperatures exceeding absolute zero, causing random motion of
atoms. If the sampling time is sufficiently small, the summation of the magnitude (or
the square of the fluctuation term) depends on the temperature and the properties of
the system. EMD is based on the Green–Kubo fluctuation-dissipation theorem and
the thermal conductivity is computed from the fluctuating heat current as follows
[82–84]:

kαβ = 1

VkBT 2

∞∫

0

〈
Jα(t)Jβ(0)

〉
dt (6.88)

where V is the simulation volume, and Jα or Jβ is the heat current component in the
α or β direction, respectively, since the heat current is a vector. Note that α = β along
the principle thermal conductivity coordinates. The operator <> signifies ensemble
average. The fluctuating heat current vector can be expressed as follows:

J = d

dt

∑

i

εiri (6.89a)

where εi is the total energy of the ith particle that includes both kinetic and potential
energies. Note that the heat current defined here has a unit of heat flux multiplied by
volume or [W m]. If only pairwise potentials are considered, we have

J =
∑

i

Eivi + 1

2

∑

i, j

(
Fi j · vi

)
ri j (6.89b)
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Three-body interaction terms can also be introduced and may be necessary to
describe the force field, such as in the Stillinger–Weber potential commonly used in
modeling diamond structure semiconductors [82].

By analyzing the EMD simulation in the reciprocal lattice space or k-space (some-
times called phonon space) and using the theory of lattice dynamics, phonon relax-
ation time and mean free paths can be extracted [80, 83, 84]. The phonon DOS can
be obtained by a Fourier transform of the velocity autocorrelation function [80]. The
spectral partition ratio and spatial energy distribution can be obtained using the DOS
spectrum. These quantities are important to assess phonon confinement and localiza-
tion especially in determination of the minimum thermal conductivity. The ensemble
average of the heat current is called the heat current autocorrelation function, which
is key to perform phonon space analysis in the first Brillouin zone. The analysis can
provide information on the phonon spectral energy distribution and relaxation time.
Anharmonic effects can also be examined [84]. The uncertainties associated with
EMD calculations have also been systematically investigated [101].

First-principles calculations can be used to obtain harmonic and anharmonic force
field and then applied to calculate the thermal conductivity [102, 103]. Recently,
ab initio MD simulations have also been applied to model thermal conductivity
[104–106].

6.7 Electron Emission and Tunneling

In all the discussions given so far, electrons are confined to the solid. Emission or
discharge of electrons from a solid surface to vacuum or through a barrier (such as in
a metal–insulator–metal multilayer structure) is possible, under the influence of an
incident electromagnetic wave, an electric field, or a heating effect. Because of the
importance of electron emission and tunneling to fundamental physics and device
applications, the basic concepts are described in this section.

6.7.1 Photoelectric Effect

In 1887, Heinrich Hertz observed the photoelectric effect or photoemission. Shortly
afterward, the phenomenon was experimentally studied by several others, including
J. J. Thomson, who discovered electron as a subatomic particle. When radiation is
incident on a metal plate, the electrons in the metal can be excited by absorbing the
energy of the electromagnetic wave to escape the surface, as illustrated in Fig. 6.23a.
The actual apparatus used formeasuring the ejected photoelectronswas to use another
electrode and measure the current flow via a closed circuit. This is similar to the
arrangement shown in Fig. 6.23b for thermionic emission, but with photons incident
on the left plate without heating up any of the plates. If the frequency of the incident
radiation is not high enough, no electrical current can be measured no matter how



314 6 Electron and Phonon Transport

Fig. 6.23 Illustration of a the photoelectric effect and b the thermionic emission

intense the incident radiation is. Saying in otherwords, there appears to be a threshold
frequency for photoemission to occur in a givenmaterial. The photoelectric effectwas
explained in 1905 by Albert Einstein with the concept of light quanta, postulated by
Max Planck a few years earlier. Although Einstein also made seminal contributions
to the theory of relativity and Brownian motion, he was awarded the Nobel Prize in
Physics in 1921 mainly for his discovery of the law that governs the photoelectric
effect.

From the Fermi–Dirac distribution function of free-electron gas, we can see that
at low temperatures, electrons fill all energy levels up to the Fermi energy EF . Note
that we use E and EF as the relative electron energy and, thus, they can be either
positive or negative. Because of the binding of the electron with the rest of the solid,
an additional energy, called the work function ψ , must be provided to the electron
for it to escape from the solid. For Ag, Al, Au, Cu, Fe, Pb, and W, the work function
ranges from 4 to 5 eV, which corresponds to a wavelength in the ultraviolet region
from 250 to 300 nm. For Na, K, Cs, and Ca, the work function ranges from 2 to
3 eV, which falls in the visible spectrum. Because a photon can interact with only
one electron at a time, the photon energy hν must exceed the work function in order
for the incident radiation to eject electrons from the surface. If hν > ψ , the photon
energy may be absorbed by an electron right at the Fermi level. Subsequently, the
electron will have a kinetic energy of

1
2mev

2
e,max = hν − ψ (6.90)

after leaving the surface. If an electron is below the Fermi level, the kinetic energy
of the ejected electron will be smaller than that given by Eq. (6.90). Therefore,
Eq. (6.90) predicts the maximum kinetic energy of an electron for the prescribed
photon frequency. A direct method for the determination of the work function is to
measure the kinetic energy distribution of the photoelectrons, for a given frequency
of the incident radiation.

One of the applications of photoemission is tomeasure the electron binding energy
using the x-ray photoelectron spectroscopy (XPS), which is also called the electron
spectroscopy for chemical analysis (ESCA). The basic principle for XPS is
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Ebd = hν − 1
2mev

2
e − ψ (6.91)

where Ebd stands for the binding energy with respect to the Fermi energy. The
high-energy photons from an x-ray source (200–2000 eV) can interact with the
inner electrons and eject them out of the surface. The photoelectron intensity can
be plotted as a function of the electron kinetic energy using an electron energy
analyzer. The intensity peaks are associatedwith the binding energies of the particular
atomic structures. Comparing with the recorded photoelectron spectra, XPS allows
the determination of the chemical composition of the substance near the surface.
Swedish physicist Kai Siegbahn shared the Nobel Prize in Physics in 1981 for his
contribution leading to the practical application of XPS. Furthermore, ultraviolet
photoemission spectroscopy (UPS) with photon energies ranging from 5 to 100 eV,
often from a synchrotron radiation source, has been used to study the band structures
of crystalline solids [107].

6.7.2 Thermionic Emission

The charge emission from hot bodies was independently discovered by British sci-
entist Frederich Guthrie in 1873, with a heated iron ball, and Thomas Edison in
1880, while working on his incandescent bulbs. Thermionic emission was exten-
sively studied in the early 1900s by Robert Millikan, Nobel Laureate in Physics in
1923; Owen Richardson, Nobel Laureate in Physics in 1928; and Irving Langmuir,
Nobel Laureate in Chemistry in 1932, among others.

With the understanding of the work function as the threshold energy that an
electron must gain to escape the solid, it becomes straightforward to explain the
emission of electrons from a heated metal. We use metal here to illustrate thermionic
emission because good conductors can be better approximated by the Sommerfeld
theory. The distribution function of a free-electron gas has been extensively discussed
in Chap. 5 (Sect. 5.1.3). At absolute zero temperature, all states below the Fermi level
are filled by electrons and all states above the Fermi level are empty. Note that this
picture is consistent with the electronic band theory. At elevated temperatures, the
distribution function is modified as illustrated in Fig. 5.5. Some electrons will have
energies above EF (or μF as was used in Chap. 5). Because the distribution function
becomes zero only when E → ∞, a small fraction of electrons must occupy energy
levels exceeding EF + ψ . We wish to quantitatively evaluate the current density or
the charge flux from the hot plate to the cold plate, as illustrated in Fig. 6.23b. Let
the electron flow be along the x-direction.

From Eq. (5.16), the number of electrons per unit volume between v and v + dv
is

n(v)dvxdvydvz = 2
(me

h

)3 dvxdvydvz
e(E−EF)/kBT + 1

(6.92)



316 6 Electron and Phonon Transport

where E = 1
2me(v2x + v2y + v2z ) is the kinetic energy of an electron. The current

density in the x-direction is given by

Jx = (1 − r ′)
˚

(−e)vxn(v)dvxdvydvz (6.94)

where r ′ is the electron reflection coefficient or the fraction of electron reflected by
the receiver.

The integration is from −∞ to∞ in both the y- and z-directions. In order for an
electron to escape in the x-direction, the following criterion must be satisfied:

vx > vx,0 = √
2(EF + ψ)/me (6.95)

This equation suggests that the integration is carried out only in the tail of the
distribution function, where the x velocity is positive and the kinetic energy is suffi-
ciently large, i.e., E − EF > ψ , which is on the order of several electron volts. Note
that kBT = 0.086 eV at 1000 K and 0.026 eV at 300 K.Whenψ/kBT = 4, dropping
the unity term in the denominator of Eq. (6.92) causes less than 2% error. The error
becomes even smaller at a larger vx so that its impact on the integration is negligibly
small. For this reason, it appears safe to substitute the Fermi–Dirac distribution by
the Maxwell–Boltzmann distribution, viz.,

Jx = −2e(1 − r ′)
(me

h

)3
eEF/kBT

∞∫

vx,0

vx exp

(

− mev2x
2kBT

)

dvx

×
∞∫

−∞

∞∫

−∞
exp

(

− mev2y
2kBT

− mev2z
2kBT

)

dvydvz (6.95)

The result is the famous Richardson–Dushman equation for the current density
[1, 2]:

J = ARD(1 − r ′)T 2e−ψ/kBT (6.96)

where ARD = 4πmeek2B/h3 = 1.202 × 106 A/m2 K2 is called the Richardson
constant, and the direction of J is as shown in Fig. 6.23b. The heat transfer associated
with the electron flow can be evaluated by considering the kinetic energy associated
with each electron, 1

2mev2 ≈ 1
2mev2x , so that

q ′′
x = (1 − r ′)

˚
vx

(
1
2mev

2
x

)
f (v)dvxdvydvz = (ψ + EF + kBT )

Jx
e

(6.97)
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This equation suggests that the average energy of the “hot electron” is ψ + EF +
kBT , as expected. Vacuum tubes operate based on the principle of thermionic emis-
sion. Vacuum tubes had wide applications in the mid-twentieth century in radio,
TV, and computer systems, but have largely been replaced by transistors nowadays.
Thermionic generators produce electricity without any moving parts and belong
to the category of direct energy converters. Extensive discussion of the thermody-
namics and efficiency of thermionic converters can be found from Hatsopoulos and
Gyftopoulos [108].

In some applications, a voltage can be applied between the electrodes. Further-
more, a semiconductor can be used to form a Schottky barrier between a metal and
a semiconductor [11]. The applied voltage changes the potential distribution so that
it gradually decreases inside the barrier. Furthermore, the work function can be sig-
nificantly reduced. Assuming the transmission coefficient is unity, Eq. (6.96) can be
modified to the following for the net charge transfer:

Jnet = A∗T 2e−ψ∗/kBT (ee
V/kBT − 1) (6.98)

where A∗ should be calculated according to the effective mass, ψ∗ is the effective
work function, and
V is the applied voltage [11]. In derivingEq. (6.98),we assumed
that hot electrons from the cathode will go through the barrier through ballistic pro-
cesses. This means that the electron mean free path must be larger than the thickness
of the semiconductor film. Otherwise, the electron transport is governed by diffu-
sion because of collisions with phonons or impurities. When diffusion occurs, the
electron transport under the influence of a temperature difference is described by the
thermoelectric effect, based on irreversible thermodynamics, as discussed in Chap. 5.
When the barrier thickness is extremely small, another phenomenon called quantum
tunneling may occur such that an electron whose energy is lower than the potential
barrier has a chance to transmit through the barrier. Tunneling effect will be discussed
in the next subsection.Mahan and coworkers pointed out that, for the thermionic phe-
nomenon to be the dominant transport mechanism, the electron mean free path in
the barrier must be greater than the thickness of the barrier [109]. Furthermore, the
latter must exceed the characteristic length, below which tunneling becomes sig-
nificant. Thermionic emission in semiconductor heterogeneous structures has been
extensively studied in the last decades for both refrigeration and power genera-
tion [109–111]. The refrigeration process is a reversed thermionic power generation
process. In thermionic refrigeration, the cold cathode emits electrons to the room-
temperature anode as a result of the applied voltage. In order to achieve any cooling
effect, energy that is carried through by the electrical current must be greater than
that by heat conduction via lattice vibration from the hot electrode to the cold elec-
trode. The nonequilibrium electron and phonon transport phenomena have also been
investigated. In some cases, both thermionic and thermoelectric effects may show
up [111, 112]. In other cases, thermionic and tunneling effects can work together or
against each other [113, 114].
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6.7.3 Field Emission and Electron Tunneling

From the above discussion, we have noticed that thermionic emission may be
enhanced or even reversed (from a colder cathode to a hotter anode) by an applied
electric field. Some thermal excitation is necessary for part of the electrons to occupy
energy levels above the Fermi level by a finite amount, prescribed by the work func-
tion. This is commonly referred to as a potential barrier or a potential hill. An
electron must acquire sufficient energy for it to surmount the barrier. When the field
strength is very high, however, electrons at energy levels lower than the height of the
barrier can tunnel through the potential hill. The word tunneling gives a vivid (but
inaccurate) picture of the tunneling phenomenon as if a hole were drilled for the elec-
trons without sufficient energy to pass through a potential hill, without climbing to
its top first. This phenomenon of electron emission at high applied field is called field
emission, which can occur at very low temperatures. The applied electric field can
exceed several billion volts per meter. Because of the high field, field emission can
occur only in ultrahigh vacuum (UHV); otherwise, ionization of the gas molecules
would occur that can cause discharge glow. In essence, field emission is a form of
quantum tunneling, which cannot be understood within the framework of classical
mechanics. The electron motion is governed by Schrödinger’s wave equation, and
the transmission can be predicted by the probability of finding an electron on the
other side of the potential hill, as illustrated in Fig. 6.24.

In 1928, Fowler and Nordheim [115] provided the first quantum mechanical
derivation of the field emission current density J as follows:

J = C

(

V

L

)2

exp

(

− αψ3/2


V/L

)

(6.99)

This is called the Fowler–Nordheim equation, in which
V/L is the electric field,
C and α are two positive constants, and ψ is the work function defined previously.

Fig. 6.24 Illustration of
quantum tunneling through a
potential barrier by an
electron wave
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The WKB approximation is commonly used to find the transmission probability
τ

′
of tunneling. WKB (also KWB or BWK) stands for Wentzel, Kramers, and Bril-

louin, although a fourth person Jeffreys was also included in some literature—so, the
abbreviation appeared as JWKB. Themain assumption in theWKB approximation is
that the potentialU (x) is a slow function of x [116]. In the region where the electron
energy E is greater than U (x), the wave function is of the form

�(x, t) = A exp(− iωt) exp

[

± i

�

√
2me(E −U )

]

(6.100)

where A is the amplitude of the electron wave. In the region where E < U (x), the
wave function is of the form

�(x, t) = A exp(− iωt) exp

[

±1

�

√
2me(U − E)

]

(6.101)

The transmission probability or transmission coefficient can be approximated as

τ ′(E) = exp

⎡

⎣−2

�

δ∫

0

dx
√
2me(U − E)

⎤

⎦ (6.102)

where δ is the width of the potential at E [116].

Example 6.5 Consider a potential barrier in the region 0 ≤ x ≤ L whose potential
is the highest but linear decreases with x according to U (x) = ψ − x

L e
V and
δ(E) = ψ−E

e
V L . Find the transmission coefficient.

Solution For the triangular barrier shown in Fig. 6.24, we note that

δ∫

0

dx
√
U − E =

δ∫

0

dx
√

ψ − E − e
V x/L = (ψ − E)3/2

e
V/L

0∫

1

√
1 − udu = 2(ψ − E)3/2

3e
V/L

Substituting this equation into Eq. (6.102), we obtain

τ ′(E) = exp

[

−4(ψ − E)3/2

3�
V/L

√
2me

]

(6.103)

When E << ψ , we see that τ ′ ≈ exp
(
− αψ3/2


V/L

)
, where α = 4

√
2me

3� . At elevated

temperatures, however, we need to consider the energy distribution of electrons.
Esaki and coworkers demonstrated that the resonant tunneling of electron waves may
allow the transmission coefficient to approach unity in superlattice and double-barrier
structures [117]. Electron tunneling is similar to photon tunneling of electromagnetic
waves, to be discussed in Chap. 10.
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The tunneling current density can be calculated by

Jt =
Emax∫

Emin

eτ ′(E)n(E)dE (6.104)

where E is the kinetic energy in the x-direction, Emax corresponds to the energy at
the top of the potential barrier, Emin is a reference energy, and n(E)dE is the number
of available electrons, with energy between E and E + dE , per unit area per unit
time, given as

n(E) = mekBT

2π2�3
ln

[

1 + exp

(

− E − EF

kBT

)]

(6.105)

Some analytical expressions similar to Eq. (6.100) have been presented [118, 119]
to approximate the integration of Eq. (6.104).

The energy transfer during field emission or electron tunneling can also be eval-
uated [113, 120, 121]. A salient difference between thermionic emission and field
emission is that thermionic emission always gives out energy as the electrons are
emitted and transfer the energy to the other side of the barrier. This is because the
emitted electrons are in the high-energy tail of the distribution function, called hot
electrons, with a much higher effective temperature than the equilibrium cathode
temperature. On the other hand, field emission allows electrons with energies much
lower than that corresponding to the equilibrium temperature to escape the surface.
Since the replacement electrons have a higher average energy than the emitted elec-
trons, a heating effect occurs that increases the cathode temperature. Depending on
the geometry, temperature, transmission coefficient, and energy distribution, both
heating and cooling of the cathode are made possible by field emission. This is
known as the Nottingham effect originally published in 1941.

Some applications of quantum tunneling in semiconductors and superconductors
were discussed in Chap. 1. One of the applications of electron tunneling was the
invention of scanning tunneling microscope (STM). Xu et al. [120] developed a
model for the energy exchange by the tunneling electrons and made a comparison
with STMmeasurements. They considered the Nottingham effect on both electrodes,
as well as resistive heating. At short distances, thermionic emission, field emission,
and photon tunneling could occur simultaneously. Photon tunneling will be studied
in Chap. 10. Fisher andWalker [121] analyzed the energy transport in nanoscale field
emission processes by considering the geometry of the emission tip. Quantum size
effect may play a role in modifying some of the critical parameters. Field emission
by nanotubes has been proposed for nanoscale manufacturing and thermal writing
[122]. Wong et al. [123] performed a detailed thermal analysis during electron beam
heating and laser processing. Carbon nanotube field emission display (CNT-FED)
has been demonstrated. While CNT-FEDs resemble the cathode-ray tubes (CRTs) in
many ways, it can be made thin and flat with a much lower applied voltage [124].
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6.8 Electrical Transport in Semiconductor Devices

Semiconductors are the most important materials for microelectronics, MEMS, and
optoelectronics. Much of the discussions in Chap. 5 and the previous sections of
this chapter are applicable to semiconductors, especially for the energy storage and
transport by phonons. This section focuses on the basics of electrical transport and
properties for some common semiconductor devices used in optoelectronics.

6.8.1 Number Density, Mobility, and the Hall Effect

The calculation of the number density of electrons and holes at any given temperature
T is very important for the determination of the electrical, optical, and thermal prop-
erties of semiconductor materials and devices. The free-electron gas model can be
modified to describe the electron and hole distributions and the transport in semicon-
ductors. The Fermi–Dirac distribution function is applicable to electrons and holes
according to

fe(E) = 1

e(E−EF)/kBT + 1
and fh(E) = 1

e(EF−E)/kBT + 1
(6.106)

Note that fe(E) + fh(E) ≡ 1. The number density of electrons or holes is given
by

ne =
∞∫

EC

De(E)dE

e(E−EF)/kBT + 1
and nh =

EV∫

−∞

Dh(E)dE

e(EF−E)/kBT + 1
(6.107)

where De(E) and Dh(E) are the densities of states in the conduction and valence
bands, respectively. With the approximated quadratic forms of the conduction and
valence bands, Eq. (6.29), the densities of states can be written as

De(E) = MC
dk
dE

∣
∣
∣
∣
C

= MC

2π2

(
2m∗

e

�2

)3/2

(E − EC)1/2 (6.108)

and

Dh(E) = dk
dE

∣
∣
∣
∣
V

= 1

2π2

(
2m∗

h

�2

)3/2

(EV − E)1/2 (6.109)

where MC is the number of equivalent minima in the conduction band. Equa-
tions (6.108) and (6.109) are derived based on the parabolic shape near the bot-
tom of the conduction band for electrons or the top of the valance band for holes.
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The effective mass of electrons is a geometric average over the three major axes
because the effective mass of silicon depends on the crystal direction. The effec-
tive mass of holes is an average of heavy holes and light holes because there
exist different subbands [11]. At moderate temperatures, EC − EF >> kBT and
EF − EV >> kBT are satisfied; subsequently, fe and fh can be approximated with
the classical Maxwell–Boltzmann distribution:

fe(E) ≈ e(EF−E)/kBT and fh(E) ≈ e(E−EF)/kBT (6.110)

We can carry out the integrations in Eq. (6.107) and thus obtain

ne = NCe
−(EC−EF)/kBT (6.111)

and

nh = NVe
−(EF−EV)/kBT (6.112)

where

NC = 2MC

(
m∗

ekBT

2π�2

)3/2

and NV = 2

(
m∗

hkBT

2π�2

)3/2

(6.113)

are called the effective density of states in the conduction band and in the valance
band, respectively. The combination of Eqs. (6.111) and (6.112) gives, in terms of
Eg = EC − EV,

nenh = N 2
th = NCNVe

−Eg/kBT ∝ T 3e−Eg/kBT (6.114)

This expression does not involve the Fermi energy. Therefore, it holds for both
intrinsic and doped semiconductors. The number density N th can be viewed as ther-
mally excited electron–hole pairs per unit volume. It is also referred to as the number
density of intrinsic carriers because ne = nh = Nth, in an intrinsic semiconductor.
It can be seen that the number densities increase with temperature so that the elec-
trical conductivity of an intrinsic semiconductor increases with temperature. The
Fermi energy for an intrinsic semiconductor can be obtained by setting ne = nh in
Eqs. (6.111) and (6.112), yielding

EF = EC + EV

2
+ kBT

2
ln

(
NV

NC

)

≈ EC + EV

2
(6.115)

The Fermi energy for an intrinsic semiconductor is expected to lie in the middle of
the forbidden band or the bandgap. The requirement for the approximate distributions
given in Eq. (6.110) to hold with less than 2% error is Eg/kBT > 8, such that
exp

[−Eg/(2kBT )
]

< 0.02. For Eg > 0.8 eV, we have T < 1150 K. One should keep
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in mind that Eg reduces as temperature increases. For silicon, Eg ≈ 1.11 eV at 300K
and ≈ 0.91 eV at 900K.

When impurities of either donors or acceptors or both are involved, the calculation
of Fermi energy and number densities becomes more involved [11, 15]. Let ND

and NA stand, respectively, for the number densities (i.e., doping concentrations) of
donors (e.g., P and As) and acceptors (e.g., B and Ga). In brief, the energy level of
donors ED is usually lower but very close to EC. As a result, the Fermi energy EF

goes up but is always below ED. The difference EC − ED is called the ionization
energy of donors, which is required for the donors to become ionized. The ionization
of donors increases the number of free electrons, and the semiconductor is said to
be of n-type. For the semiconductor Si, the ionization energy for P is 45 meV and
that of As is 54 meV. Likewise, the energy level of acceptors EA is slightly above
EV, and EA − EV is called the ionization energy of acceptors. The ionization of
acceptors increases the number of holes, and the semiconductor is said to be of p-
type. For the semiconductor Si, the ionization energy for B is 45meV and that ofGa is
72meV. Note that there are 5.0×1022 cm−3 (atoms per cubic centimeters) for silicon.
For n-type silicon with an arsenic doping concentration of ND = 5.0 × 1016 cm−3,
the impurities occupy one atomic site per million. Because of the change in Fermi
energy, most of the impurities are ionized at room temperature when the doping
concentration is less than 5.0 × 1017 cm−3. For fully ionized impurities, the charge
neutrality requires that

ne + NA = nh + ND (6.116)

If the impurities are partially ionized, ND and NA in Eq. (6.116) should be replaced
by the ionized donor and acceptor concentrations, respectively.

Example 6.6 For boron-doped Si with NA = 2.0 × 1016 cm−3, find Nth, ne, and
nh at temperatures from 300 to 1000 K; compare your answers with the values
for intrinsic silicon. Assume m∗

e = 0.3me and m∗
h = 0.6me. Use MC = 6 and

Eg(T ) = 1.155 − 0.000473T 2/(T + 636) eV where T is in kelvin.

Solution This is a p-type semiconductor with ND = 0, and from Eq. (6.116), we
have nh = ne + NA. Substituting it into Eq. (6.114), we have n2e + NAne = N 2

th =
NCNVe−Eg/kBT . The solution gives

ne = 1

2

(√
N 2
A + 4N 2

th − NA

)

and nh = 1

2

(√
N 2
A + 4N 2

th + NA

)

(6.117)

The calculated values of NC = 2.47× 1019 cm−3 and NV = 1.17× 1019 cm−3 at
300 K are somewhat lower than the recommended values of NC = 2.86×1019 cm−3

and NV = 2.66×1019 cm−3 [11]. The results are plotted in Fig. 6.25 for comparison.
In the extrinsic region when T < 700K, themajority carriers are holes, and nh ≈ NA

depends little on temperature. In the intrinsic region when T > 800K, ne ≈ nh ≈
Nth, due to thermal excitation. It should be mentioned that at very low temperatures,
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Fig. 6.25 Calculated
number densities for
Example 6.6

i.e., T < 100K, ionization is not very effective and nh << NA. Therefore, the
low-temperature region is called freeze-out zone, which is not shown in the plot.

The Drude free-electron model predicts σ = τnee2/me, as given in Eq. (5.52),
which can be applied for both electrons and holes, using proper effective masses and
relaxation times. In semiconductor physics, the electron or hole mobility is defined
based on the effective mass:

μe = eτe
m∗

e

and μh = eτh
m∗

h

(6.118)

The physical significance is that mobility is the drift velocity per unit applied
field, i.e.,

ud,e = −μeE and ud,h = μhE (6.119)

The electrical conductivity of a semiconductor is thus

σ = eneμe + enhμh (6.120)

Depending on the impurity and temperature range, one term may be dominant,
or both the terms may be comparable. It is crucial to understand the scattering
mechanism in semiconductors. In metals, all the conducting electrons are near the
Fermi surface, and their average energy cannot be described by the classical statis-
tics because ε̄ = 1

2mev2e ≈ 3
5μF �= 3

2kBT (see Example 5.2). For semiconductors,
on the other hand, the Boltzmann distribution given in Eq. (6.110) suggests that
ε̄ = 1

2m
∗
ev

2
e ≈ 3

2kBT = 1
2m

∗
ev

2
th, and the classical statistics is applicable to a large

temperature range. Thermal velocity is the velocity of electrons or holes at the equi-
librium temperature and was given in Eq. (6.55). At sufficiently high temperatures
when phonon scattering dominates, the electron mean free path �e ∝ T−1. Based
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on the relation τe = �e/v̄e, we have

μph ∝ T−3/2 (6.121)

where μph is the contribution of carrier–phonon scattering. Equation (6.121)
describes intrinsic semiconductor without defects. The scattering by impurities
results in a mobility given by

μd ∝ T 3/2/Nd (6.122)

where Nd stands for the concentration of the ionized impurities. The combination
gives the mobility for either electron or hole as follows:

1

μ
= 1

μph
+ 1

μd
(6.123)

For intrinsic semiconductor, the electrical conductivity is very small and propor-
tional to exp

[−Eg/(2kBT )
]
so that the electrical conductivity increases with tem-

perature. For intermediately doped semiconductors, there exists a maximum value
of the mobility below room temperature due to the opposite temperature dependence
of μph and μd. At that temperature, the electrical conductivity is maximum. As the
temperature goes up beyond room temperature, the conductivity decreases due to the
increased phonon scattering. When the semiconductor reaches the intrinsic region,
the number density suddenly increases and the conductivity increases again with
temperature.

The Hall effect is very useful in measuring the mobility of semiconductors. In the
extrinsic region, the Hall effect allows measurement of the type and concentration of
the carriers. Themeasurements are usually carried out with the van der Pauwmethod,
which is a four-probe technique for determining the electrical resistance and the Hall
coefficient. The data of electrical resistivity and number density allow the extraction
of the mobility, based on the effective mass determined using cyclotron resonance
technique.

When both the carriers are significant to the transport properties, the situation is
rather interesting. Referring to Fig. 6.1, when current flows to the positive x-direction,
we have ve,x < 0 and vh,x > 0. The magnetic force drives both the electrons and
the holes toward the negative y-direction, such that ve,y < 0 and vh,y < 0 if Ey = 0.
At steady state, a finite Ey , known as the Hall field, may exist. Since there is no net
current flow in the y-direction, we must have

Jx = −eve,xne + evh,xnh (6.124)

Jy = −eve,yne + evh,ynh = 0 (6.125)
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In general, both ve,y and vh,y are not zero. The Lorentz force F = q(E+ud ×B)

in the y-direction is related to the drift velocities for electrons or holes by

−eEy + eve,x B = eve,y/μe (6.126)

and

eEy − evh,x B = evh,y/μh (6.127)

Rewrite Eqs. (6.126) and (6.127) as neμe(Ey −ve,x B) = −neve,y and nhμh(Ey −
vh,x B) = nhvh,y , respectively. Compared with Eq. (6.122), we notice that neμe(Ey −
ve,x B) + nhμh(Ey − vh,x B) = 0, or

Ey

B
= neμeve,x + nhμhvh,x

neμe + nhμh

Combining it with Eq. (6.121), we obtain the Hall coefficient as follows:

ηH = Ey

Jx B
= neμeve,x + nhμhvh,x

e(neμe + nhμh)(−neve,x + nhvh,x )
(6.128)

Substituting ve,x = −μeEx and vh,x = μhEx into the previous equation,we obtain

ηH = nhμ2
h − neμ2

e

e(nhμh + neμe)2
(6.129)

after canceling Ex . The Hall coefficient for semiconductors may be positive or neg-
ative, and becomes zero when nhμ2

h = neμ2
e . The drift velocities in the y-direction,

however, cannot be zero unless B = 0 or Jx = 0.

6.8.2 Generation and Recombination

The generation, recombination, and diffusion processes are directly related to the
charge transport in semiconductors and optoelectronic devices. This section takes
photoconductivity as an example to illustrate the generation and recombination
processes, followed by a brief discussion of luminescence.

Much has been said previously about absorption of light that causes a transition
in the electronic states in solids. The bandgap absorption of Si, Ge, and GaAs cor-
responds to the wavelengths in the visible and near-infrared spectral regions. The
excitation of electrons from the valence band to the conduction band by the absorp-
tion of radiation increases the conductivity of the semiconductor dramatically. This
is known as photoconductivity and can be used for sensitive radiation detectors. For
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some semiconductors, the bandgap is very narrow so that transitions can happen at
longer wavelengths. For example, the bandgap energy of Hg0.8Cd0.2Te is 0.1 eV at
77K (liquid nitrogen temperature), and thematerial can be used as infrared detectors,
which are commonly referred to as MCT detectors. At very low temperatures, impu-
rities cannot be ionized thermally even though the ionization energy is very small.
For boron-doped germanium, the acceptor ionization energy EA − EV ≈ 10meV
corresponds to a wavelength of about 120 µm [125]. Therefore, Ge:B can be used as
far-infrared radiation detectors. There are two groups of radiation detectors. The first
group is called thermal or bolometric detectors, which rely on the temperature change
of the detector as a result of the absorbed radiation. The temperature change can be
monitored by a temperature-dependent property, such as the electrical resistance.
An example is the superconductive bolometer, which relies on the drastic change in
resistance with temperature, near the superconducting-to-normal-state transition or
critical temperature Tc. The second group is called nonthermal, nonbolometric, or
nonequilibrium detectors. An example is the photoconductive detector in which the
conductivity changes as a result of the direct interaction of electrons with photons.

Before the radiation is incident on the photoconductive detector, the conductivity
can be expressed as σ0 = ene,0μe + enh,0μh at thermal equilibrium. Under the
influence of an incident radiation with photon energies greater than the bandgap,
additional electron–hole pairs are created so that the concentration is increased by

n for both types of carriers. The relative change in the electrical conductance
σ/σ0

can be expressed as


σ

σ0
= 
n(μe + μh)

ne,0μe + nh,0μh
(6.130)

Here, 
n is the net increase in carrier concentration as a result of both gener-
ation and recombination. The generation is associated with the absorbed radiation
and depends on the intensity of the incident light and the quantum efficiency, which
is wavelength dependent. The quantum efficiency is the percentage of the incom-
ing photons that generate an electron–hole pair. The recombination is a relaxation
process because the excess charges are not at thermal equilibrium. If the incident
radiation is blocked off, the semiconductor will quickly reach an equilibrium with
the conductivity σ0. The characteristic time of the recombination process is called
the recombination lifetime or recombination time τrc. While it is also related to elec-
tron scattering, lattice scattering, and/or defect scattering, the recombination time is
usually much longer than the relaxation time used in charge transport processes. The
net rate of change can be expressed as the rate of generation (creation) minus the
rate of recombination (annihilation), viz.,

dn

dt
= ṅg − n − n0

τrc
(6.131)

Under a steady-state incident radiation, we can set dn/dt = 0 so that 
n =
n − n0 = τrcṅg. Suppose that the incoming photon is of frequency ν in Hz with a
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spectral irradiance Iν in W/m2 Hz, and the detector has an effective area A, thickness
d, and absorptance αν . We obtain the rate of generation:

ṅg = αν Iν A

hνAd
= αν Iν

hνd
(6.132)

Substituting into Eq. (6.130), we obtain the sensitivity of a photoconductive
detector as follows:

1

Iν


σ

σ0
= αντrc(μe + μh)

hνd(ne,0μe + nh,0μh)
(6.133)

Increasing the recombination time τrc improves the sensitivity but decreases the
speed or response time of the detector. Photoconductivity requires that hν > Eg

for bandgap absorption to occur. However, the sensitivity decreases toward higher
frequencies, or shorter wavelengths, because there are fewer photons per unit radiant
power. Consequently, the sensitivity of a photoconductive detector increases with
wavelength first and then suddenly drops to zero close to the band edge. For thin
films, the absorptance depends on the film thickness when the photon penetration
depth is comparable to the thickness.

In photoconductivity, the recombination is not associated with the emission of
radiation, and therefore it is said to be nonradiative. The Auger effect and multi-
phonon emission are two common processes of nonradiative recombination. In the
Auger effect, the energy released by a recombining electron–hole pair is absorbed
by another electron in the conduction band, which subsequently relaxes to the equi-
librium condition by the emission of phonons. In a multiphonon emission process,
the recombination of an electron–hole pair is associated with the release of a cascade
of phonons, each having a much lower energy. More details on the recombination
process and how to calculate the associated lifetime can be found from the texts of
Sze [11].

Radiative recombination can also occur and is very important for light-emitting
applications, such as luminescence, which is essentially the inverse process of absorp-
tion. The excitation of electrons may be accomplished by passing through an elec-
trical current. An example is the semiconductor light-emitting diode, in which the
electronic transition from the conduction band to the valence band can result in
optical radiation. Photoluminescence is often referred to as fluorescence, when the
emission occurs at the same time as the absorption, or phosphorescence, when the
emission continues for a while after the excitation.

6.8.3 The p-n Junction

The p-n junction is familiar to every reader although many of us are unfamiliar with
the underlying physics. Let us first take a look at the charge transport by diffusion,
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which is a very important process in semiconductor applications. Diffusion takes
place when there is a spatial nonuniformity in the carrier concentration. The principle
is the same as the diffusion of ideal gas molecules described in Sect. 4.2.3. Using
Fick’s law, we can write the current densities resulting from the diffusion of electrons
and holes as follows:

Je = eDe
dne
dx

and Jh = −eDh
dnh
dx

(6.134)

where the diffusion coefficient for electrons and holes can be related to the mean
free path and the average velocity by De = 1

3�ev̄e and Dh = 1
3�hv̄h, according to

Eq. (4.42). Assuming v̄e ≈ v̄h ≈ vth, we have De = 1
3�evth = 1

3τev
2
th. Combined

with 1
2m

∗
ev

2
th = 3

2kBT , we obtain

De = τekBT

m∗
e

= μekBT

e
(6.135)

which is known as the Einstein relation. A similar equation holds also for the holes.
In transient heat conduction, the thermal diffusion length is usually calculated by
lth = √

αt , where α = κ/ρcp is the thermal diffusivity and t is a characteristic time.
The diffusion length for electrons is defined as ldif = √

Deτe, which is proportional to
τe and vth. The diffusion velocity is sometimes defined as vdif = ldif/τe = vth/

√
3. The

factor of
√
3 reduction arises because the diffusion velocity is the average thermal

velocity along one direction only. In semiconductors, charge transfer is a combined
effect of the carrier drift and diffusion. Electron diffusion is not important for metals
because of the large drift velocity given by the Fermi velocity, which changes little
with temperature at moderate temperatures.

Through oxidation, lithography, diffusion and ion implantation, and metalliza-
tion, semiconductor p-n junctions can be fabricated with microelectronics manufac-
turing technology [11]. A p-n junction consists of a p-type semiconductor, with a
high hole concentration, joined with an n-type semiconductor, with a high electron
concentration, as shown in Fig. 6.26.

If one compares Fig. 6.26a with Fig. 4.7b, the process looks similar to a binary
diffusion. Because of the concentration gradient, holeswill diffuse right and electrons
will diffuse left. Diffusion causes the region near the interface to be depleted, so that
there are fewer free holes on the left side and fewer free electrons on the right side of
the depletion region. Keep in mind that electrons and holes are charged particles. As
they leave the host material, ions of opposite charges are left behind. This results in
a charge accumulation, as shown in Fig. 6.26a, that leads to a built-in potential in the
depletion region that will inhibit further diffusion. As a consequence of this built-in
potential, the energy in the p-doped region is raised relative to that in the n-doped
region, as shown in Fig. 6.26b. The Fermi level is the same everywhere, and it is
closer to the conduction band for the n-type and the valence band for the p-type.

Example 6.7 Prove that the Fermi energy in a p-n junction is independent of x at
thermal equilibrium, as shown in Fig. 6.26b.
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Fig. 6.26 Schematic of a p-n junction at thermal equilibrium. a The device and carrier concentra-
tions, including the charge distribution in the depletion region. The width of the depletion region
is exaggerated for clarity. b The energy band diagram for the p − n junction near the depletion
region. The dash-dotted line is the Fermi level. The four processes are (1) electron drift, (2) electron
diffusion, (3) hole diffusion, and (4) hole drift

Solution Without any externally applied voltage, the current densities become

Je = Je,drif + Je,diff = −eneμe
dV0

dx
+ eDe

dne
dx

(6.136)

Jh = Jh,drif + Jh,diff = −enhμh
dV0

dx
− eDh

dnh
dx

(6.137)

where V0 is the built-in potential and the electric field is −dV0/dx . Because a high
potential V0 means a smaller electron kinetic energy, we have

dV0

dx
= −1

e

dEC

dx
= −1

e

dEV

dx
(6.138)

From Fig. 6.26, we see that the built-in electric field in the depletion region points
toward the negative x-direction and thus dV0/dx > 0; consequently, dEC/dx < 0
and dEV/dx < 0. Employing Eq. (6.110), we notice that

1

ne

dne
dx

= 1

kBT

(
dEF

dx
− dEC

dx

)

and
1

nh

dnh
dx

= 1

kBT

(
dEV

dx
− dEF

dx

)

(6.139)

Substituting Eqs. (6.135), (6.138), and (6.139) into Eq. (6.136) and setting Je = 0,
we end up with

dEF

dx
= 0 (6.140)
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This equation can also be derived using Eq. (6.137) in the p-region; hence, the Fermi
energy EF is independent of x at thermal equilibrium.

A popular application of p-n junction is as a diode rectifier, which allows current to
flow easilywith a forward bias but becomes highly resistivewhen the bias is reversed.
For the configuration shown in Fig. 6.26, a forward bias means that the electrical
field is in the positive x-direction, opposite to the built-in field. Qualitatively, this
can be understood as a forward bias removes the barrier for holes to diffuse right
and for electrons to diffuse left. On the other hand, a reverse bias creates an even
stronger barrier for these diffusion processes. Quantitatively, it can be shown that for
an externally applied voltage V (positive for forward bias and negative for reverse
bias), the current density can be expressed as

J = J0

[

exp

(
eV

kBT

)

− 1

]

(6.141)

where J0 is the saturation current density, which depends on the diffusion coefficient,
scattering time, number density, and other factors. Noting that

dJ

dV
= eJ0

kBT
exp

(
eV

kBT

)

(6.142)

The electrical conductance increases with V for forward bias, and decreases to
zero as V → −∞. It should be noted that in practice, the width of the depletion
region is often less than 0.5µm and the built-in potential may be around 1 V through
the depletion region. There is actually a very large built-in field.

Heterojunction is a junction of dissimilar semiconductors with different bandgap
energies. The energy band diagram can be very different from that shown in
Fig. 6.26b. The Fermi energies can be different on each side. Bipolar transistors
were invented in 1947 at Bell Labs. It is based on two p-n junctions arranged in a
p-n-p or n-p-n configuration. Field-effect transistors (FETs) work on a different prin-
ciple. Referring to Fig. 1.3 in Chap. 1, free electrons cannot move from the source to
the drain because of the lack of free carriers in the p-type wafer. If a negative voltage
is applied to the gate, electrons below the gate will be pushed even further, and there
is still little chance for the electron to flow from the source to the drain. However,
as soon as a positive voltage is applied to the gate, electrons will be attracted to the
region below it and form a path for electricity to flow from the source to the drain.
Furthermore, a transistor can amplify the signal since only a weak signal is nec-
essary to the gate. Metal-oxide-semiconductor field-effect transistors (MOSFETs)
have become themost important device in contemporary integrated circuits. Thermal
management is important for such devices because of the local heating or hot spots
where Fourier’s law often fails to predict the temperature history. More discussion
on nonequilibrium heat conduction will be given in Chap. 7. A brief discussion on
photovoltaic devices will be given next.
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6.8.4 Optoelectronic Applications

The photovoltaic effect is a direct energy conversion process in which electromag-
netic radiation, incident upon a p-n junction, generates electron–hole pairs. The
built-in electric field in the p-n junction tends to push the generated holes to the p-
region and the generated electrons to the n-region, resulting in a reverse photocurrent.
Solar cells and photovoltaic detectors have been developed and applied for over half
a century. Thermophotovoltaic (TPV) devices have also been considered as energy
conversion systems that allow recycling of the waste heat [126]. Figure 6.27 shows
a typical TPV cell and the associated electrical circuit. When the incident radiation
with a photon energy greater than the bandgap energy Eg of the cell material strikes
the p-n junction, an electron–hole pair is generated at the location as each photon is
absorbed. Carriers generated in the depletion region are swept by the built-in electric
field and then collected by the electrodes at the ends of the cell, resulting in a drift
current. For radiation absorbed near the depletion region, the minority carriers (elec-
trons in the p-region and holes in the n-region) tend to diffuse toward the depletion
region, yielding a diffusion current. If the load resistance RL is zero, i.e., in the case of
a short circuit, there is a photocurrent Isc flowing in the circuit due to the combination
of the diffusion and drift of charge carriers. The direction of this current is indicated

Fig. 6.27 Schematic of a
typical TPV cell [126]
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Fig. 6.28 Schematic of a the circuit diagram and b the I–V characteristics of a PV cell

on Fig. 6.28a. If the circuit is open, or the load resistance RL approaches infinite, a
positive open-circuit voltage is built up due to irradiation. This gives the maximum
voltage V = Vmax, when no current flows through the load, i.e., I = 0. When the
load has a finite resistance RL, a voltage V is developed, not only across the load but
also across the photovoltaic cell. This voltage reduces the built-in potential of the
cell as if a forward bias is applied to the p-n junction. Subsequently, the diffusion
of minority carriers produces a forward current, which is called the dark current in
photovoltaic devices. The current I flowing through the load resistor becomes

I = −Isc + I0

[

exp

(
eV

kBT

)

− 1

]

(6.143)

The first term on the right is the photocurrent, or the short-circuit current, which
depends on the incident photon flux, quantum efficiency, as well as the transport
properties. The second term on the right is the dark current Idark with I0 being the
saturation current, as previously given inEq. (6.141) based on the current density. The
dark current is zero, when V = 0, as shown in Fig. 6.28b. Consider the photovoltaic
cell, shown in Figs. 6.27 and 6.28a. If the total (net) irradiance q ′′

0 = 0, then without
bias voltage, I = Isc = 0, which is the condition of thermal equilibrium. When
q ′′
0 �= 0, which can be the situation where the photovoltaic cell is exposed to a high-
temperature emitter, the I–V curve is shifted down by Isc as shown in Fig. 6.28b. The
output power is determined by the product of |I V |, which can be optimized to yield
the maximum output at the optimal point. Basu et al. [126] provided an extensive
review of the operation principle and the state of the art in TPV technology, as well
as the potential application of microscale radiative heat transfer for performance
improvement. Near-field TPV will be further discussed in Chap. 10.

Light-emitting diodes (LEDs) are based on p-n junctions as well but with direct
gap semiconductors. At low forward bias voltages, the recombination processes are
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essentially nonradiative. At high forward bias voltages, however, radiative recombi-
nation results in the emission of photons; this phenomenon is called electrolumines-
cence. The emission is a spontaneous process and is therefore incoherent. Depending
on thematerials used and their bandgaps, LEDs can emit in the ultraviolet, visible, and
infrared regions. It should be noted that electroluminescence can also be employed
to create a refrigeration effect [127].

Semiconductor lasers are based on the stimulated emission process, as discussed
in Chap. 3, and have numerous important applications due to their small size, porta-
bility, and ease of operation. Semiconductor lasers have been used in laser printers,
optical fiber communication, CD reading/writing, and so forth. The key is to cre-
ate population inversion so that lasing can occur. Quantum well lasers, based on
quantum confinement, offer significant advantages over conventional semiconduc-
tor lasers, such as low threshold current, high output power, high speed, and so forth.
Further explanation of the optical and electronic characteristics of semiconductor
lasers can be found from the books of Sze [11] and Zory [128], for example.

6.9 Summary

This chapter began with an introduction to the atomic structures, chemical bonds,
and crystal lattices. Emphasis was placed on electronic band structures and phonon
dispersion relations, allowing one to gain a deeper knowledge of solid-state physics,
beyond the previous chapter. Electronic band structures of metal, semiconductor, and
2Dmaterials (especially graphene) are introduced. Phonon dispersion and scattering
mechanisms are presented, alongwith some coverage of coherent phonons. The basic
concepts of atomistic simulations based on first principles and molecular dynamics
methods are delineated with extensive references of recent literature. Photoelectric
effect, thermionic emission, and field emissionwere described in subsequent sections
to stress the interrelation between these phenomena. The basic electrical transport
processes in semiconductors, such as number density, mobility, electrical conductiv-
ity, charge diffusion, and photoconductivity, were explained. The p-n junction was
discussed along with applications, such as photovoltaic cells, thermophotovoltaics,
LEDs, luminescent refrigeration, and semiconductor lasers.

Problems

6.1. Consider a phosphorus-doped 250-µm-thick siliconwafer, with a doping con-
centration of 1017 cm−3. The applied current is 10 mA and the magnetic
induction is 0.5 T.

(a) Determine the Hall coefficient and the Hall voltage, assuming there is
only one type of carriers.
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(b) For a chip of area 1 × 1 cm2 and resistivity 0.075� cm, what is the
voltage drop along the direction of current flow?

6.2. Consider the Hall experiment arranged in Fig. 6.1, under steady-state oper-
ation and with uniform magnetic field. Assume a current is flowing in the
y-direction.

(a) Show that vx = −(eτ/me)Ex −ωcτvy and vy = −(eτ/me)Ey +ωcτvx ,
when the current is carried by electrons. Here, τ is the relaxation time,
vx and vy are the electron drift velocities in the x- and y-directions,
respectively, and ωc = eB/me is called the cyclotron frequency.

(b) Prove Eq. (6.1) by setting vy = 0.

6.3. Express the electron configurations for Ag and Au. Based on the orbital
occupation of outer electrons, discuss the similarities in their chemical and
electrical properties.

6.4. Express the electron configurations for Ca and Zn. Based on the orbital
occupation of outer electrons, discuss the similarities in their chemical and
electrical properties.

6.5. Give a general discussion of insulators, semiconductors, and metals. Explain
why glass (SiO2) is transparent, silicon wafers appear dark, and aluminum
foils look bright. What are the types of chemical bonds in SiO2, Si, and Al?

6.6. How many billiard balls can you pack in a basket with a volume of
0.25 m3? Assume that the balls are rigid spheres with a diameter d =
43 mm and mass m = 46 g. Arrange the spheres in a crystal lattice accord-
ing to the diamond, simple cubic, bcc, fcc, and hcp structures. What is
the total weight for each arrangement? [Hint: Show that for close-packed
spheres, the fraction of volume occupied by the spheres is

√
3π/16 ≈

0.340 (diamond), π/6 ≈ 0.524 (simple cubic),
√
3π/8 ≈ 0.680 (bcc), and√

2π/6 ≈ 0.740 (fcc or hexagonal close - packed).]
6.7. (a) Count the number of atoms inside a unit cell of YBa2Cu3O7 as shown in

Fig. 6.6d, and confirm that it is the same as that in the basis.
(b) Find the density of YBa2Cu3O7 crystal based on the dimensions of the

unit cell, noting that the molecular weight M = 88.9 (Y), 137.3 (Ba),
63.6 (Cu), and 16.0 (O) kg/kmol.

6.8 (a) Calculate the diameter and cross-sectional area for CNTs with chiral
indices (m, n) = (5, 5), (8, 8), (10, 10), (10, 20), and (20, 40).

(b) Take (40, 40) SWNTs of 10-µm length, with a thermal conductivity κ =
3200 W/m K at room temperature. Align sufficient nanotubes to make a
bundle with a diameter of 1 µm; how many CNTs are needed?

(c) Neglect the effect of interface and defects on the thermal conductivity.
What is the heat transfer rate if the temperatures at both ends are 320 and
300 K?

(d) Compare the heat transfer rate if the CNT is replaced by a Si nanowire
of 1-µm diameter and 10-µm length.
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Fig. 6.29 Schematic of
Bragg’s x-ray diffraction
experiment

Incidence, λ
α α

d

6.9. The interatomic potential for a KBr crystal can be expressed as φ(r) =
− αMe2

4πε0r
+ C

(
a
r

)m
, where αM is the Madelung constant, which is 1.748 for

crystals with NaCl structure, ε0 = 8.854 × 10−12 C2/J m is the electric per-
mittivity of vacuum, a = 6.60 × 10−10 m is the lattice constant, m = 8.85,
and C = 2.65 × 10−21 J for KBr. Note that r is in meter.

(a) Plot the attractive potential, the repulsive potential, and the combined
potential in eV as a function of r in Å.

(b) Find the equilibrium distance, which should be the nearest distance
between K+ and Br− ions.

(c) At the equilibrium distance, what are the attractive and repulsive forces
between each ion pair?

6.10. Bragg’s x-ray diffraction formula relates the angle α of diffraction maximum
and the x-raywavelength λ as follows: 2d sin α = nλ, where n is the refractive
index that can be taken as unity in the x-ray region, d is the spacing between
adjacent layers of atoms, and α is measured between the incidence and the
crystal plane, as shown in Fig. 6.29. This formula can be understood by the
constructive interference between the two layers.

(a) To measure a spacing d = 3.12 Å, what is the maximum wavelength λ

that can still be used to perform the experiment successfully?
(b) In an x-ray experiment, λ = 1.5 Å. Assume that the errors in λ and n are

negligible. How accurately must one determine α in order to measure
the spacing with an uncertainty of 0.01 Å?

6.11. Using Eq. (6.10) to show that the reciprocal lattice of a hexagon is also a
hexagon, as shown in Fig. 6.3d. Calculate the volumes of the direct and
reciprocal lattices in terms of a and c.

6.12. Use the Kronig–Penney model to solve the Schrödinger equation for an elec-
tron in a square-well array. Referring to Fig. 6.10, assume that the potential
function is U (x) = 0 at 0 ≤ x ≤ (a − b)/2 and (a + b)/2 ≤ x ≤ a, and
U (x) = U0 > 0 at (a − b)/2 ≤ x ≤ (a + b)/2. Note that x = 0 at the
core of atom location and the potential is periodic. Find the conditions for the
solutions to exist. For simplicity, you may now assume b → 0 and U0 → ∞
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to obtain the relation for E(k). Plot this function to illustrate the electronic
band structure.

6.13. Discuss the difference between interband transitions and transitions that occur
within a band for copper. Explain why copper appears reddish brown.

6.14. What is the difference between a direct-bandgap semiconductor and an indi-
rect bandgap semiconductor? Why are Si and GaAs wafers opaque to the
visible light?

6.15. Plot the band structure of graphene according to Eq. (6.32) and discuss the
main features.

6.16. Why we say electrons in pure graphene or graphene whose Fermi level is zero
are massless? How does the free-electron mass in graphene changes with bias
voltage?

6.17. Derive Eqs. (6.41) and (6.42) first. Then, plot the phonon dispersion curves
for a diatomic chain with mass ratio m1/m2 equal to 1, 2, 3, and 4. What
happens when m1/m2 = 1?

6.18. Approximate kmax = π/a, andfind the group velocities of LAandTAphonons
for Si and SiC at k = 0.3kmax, using Fig. 6.19. What is the phase speed at
k = 0.3kmax for LO phonon in SiC? [Hint: Convert the unit of ω from cm−1

to rad/s first.]
6.19. Perform a literature search to discuss phonon–phonon scattering mecha-

nism.Whenwill four-phonon scattering be important?When can four-phonon
scattering be neglected?

6.20. Prove Eqs. (6.96) and (6.97). Assume that ψ = 0.4 eV and EF = 3 eV,
estimate the error in Eq. (6.96) caused by approximating the Fermi–Dirac
distribution with the Maxwell–Boltzmann distribution in the numerical
evaluation.

6.21. Clearly explain the differences between thermionic emission and field
emission.

6.22. For a gallium-doped silicon with NA = 5 × 1016 cm−3, use the information
from Example 6.6 to calculate the number density of electrons and holes from
300 to 1000K.Assume the effect of impurity on themobility can be neglected,
so that μe = 1450 cm2/V s for electrons, and μh = 500 cm2/V s for holes
at 300 K. Determine the electrical resistivity of the doped silicon from 300 to
1000 K.

6.23. For a single-type doped silicon with μe = 1350 cm2/V s and μh =
450 cm2/V s at 400 K, the Hall coefficient is zero. Is this semiconductor n-
type or p-type?What is the impurity concentration? [Hint: Use the parameters
given in Example 6.6.]

6.24. For a single-type doped siliconwithμe = 1350 cm2/V s,μh = 450 cm2/V s,
and Nth = 2×1010 cm−3, calculate andplot theHall coefficient forp-typedop-
ing, with NA ranging from 0 to 2 × 1012 cm−3. Discuss, without calculation,
the trend with n-type doping.

6.25. For a phosphorus-doped silicon, ND = 2 × 1015 cm−3, μe = 1350 cm2/V s,
and μh = 450 cm2/V s at 300 K. Use the parameters from Example 6.6 as
needed.
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(a) Calculate the thermal velocity and the diffusion length for the electrons
and holes at room temperature.

(b) Find the electrical conductivity at room temperature.
(c) Plot the thermal velocity and wavelength as a function of temperature.

6.26. Plot the J–V curve of a p-n junction based on Eq. (6.141), using dimensionless
groups J/J0 and eV/kBT as the axes. Discuss the meaning of saturation
current (density).

6.27. Based on the I–V curve for a photovoltaic cell shown in Fig. 6.28b, explain
how to determine the open voltage. How to determine the optimal operating
point? The I–V curve with irradiation is shifted downward, what if the cell is
facing a heat sink at lower temperatures?
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