
Chapter 5
Thermal Properties of Solids and the Size
Effect

One of the thrust areas of research in micro/nanoscale heat transfer is related to
properties and transport processes in solid materials and devices. In the early 1990s,
much researchwas conducted to identify the regimeswhen themicroscale effectmust
be considered in dealing with problems occurring at small length and/or timescales
[1, 2]. Significant progress has been made in the past decades on understanding the
fundamental thermal transport properties of solids and nanostructures. Cahill et al.
[3, 4] provided comprehensive surveys on the thermal phenomena and measurement
techniques associated with solid-state devices across the nano-, micro-, and macro-
length scales and in a large temperature range. The critical dimensions of integrated
circuits have continued to shrinkduring thepast fewdecades, and feature sizes smaller
than 10 nm have been reached in recent years. Overheating caused by thermal energy
generation is amajor source of device failure, and it often occurs in very small regions,
known as hot spots. A remarkable number of micro/nanostructured materials and
systems have temperature-dependent figures of merit. Therefore, understanding the
thermophysical properties, thermal transport physics, and thermal metrology from
the micrometer down to the nanometer length scales is critically important for the
future development of microelectronic devices and nanobiotechnology.

This chapter focuses on simple phonon theory and electronic theory of the spe-
cific heat, thermal conductivity, and thermoelectricity of metals and insulators. The
Boltzmann transport equation (BTE) has been used to facilitate the understanding of
microscopic behavior, together with the quantum statistics of phonons and electrons.
The quantum size effect on phonon specific heat is extensively covered. Examples
are given to analyze direct thermoelectric conversion for temperature measurement,
power generation, and refrigeration. Furthermore, a detailed treatment of classical
size effect on thermal conductivity is presented. Finally, the concepts of quantum
electrical conductance and thermal conductance are introduced.
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176 5 Thermal Properties of Solids and the Size Effect

5.1 Specific Heat of Solids

In this section, simple models of the specific heat of bulk solids are described con-
sidering the contribution of lattice vibrations as well as free electrons in metals. The
purpose is to understand macroscopic behavior from a microscopic point of view
and to prepare students for further study on the quantum size effect to be discussed
in subsequent sections.

5.1.1 Lattice Vibration in Solids: The Phonon Gas

The atoms in solids are close to each other, and interatomic forces keep them in
position. Atoms cannot move around except for vibrations near their equilibrium
positions. In crystalline solids, atoms are organized into periodic arrays, and each
identical structural unit is called a lattice. Lattice vibrations contribute to thermal
energy storage and heat conduction. Inmetals, electrons are responsible for electrical
transport and heat conduction but are less important for storing thermal energy except
at very low temperatures.

The simple oscillator model treats each atom as a harmonic oscillator, which
vibrates along all three axes as shown in Fig. 5.1. If the vibrational degrees of freedom
were completely excited, we would expect the high-temperature limit of the specific
heat of elementary (monatomic) solids to be

Fig. 5.1 The harmonic
oscillator model of an atom
in a solid
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c̄v = 3R̄ (5.1)

This is called the Dulong–Petit law, named after Pierre-Louis Dulong and
Alexis-Thérèse Petit in 1819. The Dulong–Petit law can be understood in terms
of the equipartition principle in classical statistics. However, it cannot predict
low-temperature behavior; even above room temperature, the model significantly
overpredicts the specific heats for diamond, graphite, and boron.

Einstein in 1907 proposed a simple harmonic oscillator model and its quantized
energy levels (i + 1

2 )hν, i = 1, 2,…, to obtain the specific heat as a function of
temperature. Here, the frequency ν is a characteristic vibration frequency of the solid
material. The procedure is similar to the analysis of vibration energies for diatomic
gas molecules, e.g., Eqs. (3.59)–(3.62). The resulting specific heat for a monatomic
solid is

c̄v(T ) = 3R̄
�2

E

T 2

e�E/T

(
e�E/T − 1

)2 (5.2)

where the factor 3 accounts for oscillation in all three directions and �E = hν/kB
is called the Einstein temperature [5, 6]. It can be shown that c̄v → 0 as T →
0 and c̄v → 3R̄ at T � �E. In the intermediate temperature range, however,
the Einstein specific heat is significantly lower than the experimental data. This
can be seen from Fig. 5.2, where the experimental results of the constant-pressure
specific heat are taken from Ashcroft and Mermin [6]. It should be noted that cp =
cv for a solid under the incompressible assumption. The reduced temperature is
the ratio of the temperature to the characteristic temperature (either the Einstein
temperature or Debye temperature depending on the model). The experimental data
were plotted using the Debye temperature given in Table 5.1. The reason that the
specific heat of diamond is far from 3R̄ near room temperature is because of its

Fig. 5.2 Comparison of
model predictions with
experimental data of the
specific heat for several
crystalline solids
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Table 5.1 The Debye temperature, melting temperature, and other properties for selected solids.
The data are mainly taken from Kittel [5] and Ashcroft and Mermin [6]. The reported densities are
for 22 °C except for Ar

Element or
compound

Symbol or
formula

M
(kg/kmol)

�D (K) Tmelt (K) na
(1028 m−3)

ρ (103

kg/m3)

Argon Ar 40 92 84 2.66 (4 K) 1.77 (4 K)

Mercury Hg 200.6 72 234 4.26 14.26

Sodium Na 23 158 371 2.65 1.013

Lithium Li 6.9 344 454 4.7 0.542

Lead Pb 207 105 601 3.3 11.34

Zinc Zn 65.4 327 692 6.55 7.13

Magnesium Mg 24.3 400 922 4.30 1.74

Aluminum Al 27 428 934 6.03 2.7

Calcium Ca 40 230 1113 2.30 1.53

Silver Ag 108 225 1235 5.85 10.5

Copper Cu 63.5 340 1358 8.45 8.93

Gold Au 197 165 1338 5.90 19.3

Iron Fe 56 470 1811 8.50 7.87

Silicon Si 28 645 1687 5.0 2.33

Diamond C 12 2000 3620 17.6 3.52

Potassium
bromide

KBr 119 177 1007 2.75

Sodium
chloride

NaCl 58.5 281 1074 2.17

Gallium
arsenide

GaAs 144.6 360 1511 5.32

Calcium
fluoride

CaF2 78 474 1696 3.18

very high characteristic temperature (or frequency of vibration) compared to other
materials as shown in Table 5.1.

In the Einstein model, each atom is treated as an independent oscillator and all
atoms are assumed to vibrate at the same frequency. In 1912,MaxBorn and Theodore
von Kármán first realized that the bonding in a solid prevents independent vibrations.
Therefore, a collection of vibrationsmust be considered under the force–spring inter-
actions of the nearby atoms. To avoid the complicated calculations, Peter Debye in
1912 simplified the model by assuming that the velocity of sound is the same in all
crystalline directions and for all frequencies. In addition, there is a high-frequency
cutoff, and no vibration can occur beyond this frequency. As to be seen from sub-
sequent sections, the Debye model is a great success and has prevailed even though
more advanced and realistic theories have been developed.
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5.1.2 The Debye Specific Heat Model

The Debye model for the specific heat of solids includes a large number of closely
spaced modes (or vibration frequencies) up to a certain upper bound νm, which is
determined by the total number of vibration modes 3N, where N is the number of
atoms. The high-frequency limit is indeed plausible because the shortest wavelength
of the lattice wave should be on the order of the interatomic distances, or the lattice
constants. Rather than treating each atom as an individual oscillator, the Debye
model assumes that vibrations are inside the whole crystal just like standing waves.
For elastic vibrations, there are longitudinal waves (e.g., soundwaves) and transverse
waves (with two polarizations) in a crystal. In analogy to electromagnetic waves and
photons, the quanta of lattice waves are called phonons. The energy of a phonon
is ε = hν, where ν is the vibration frequency. The momentum of a phonon is p =
hν/vp = h/λ, where ν is the frequency, λ is the wavelength, and vp = λν is the speed
of propagation (or phase speed) for the given phonon mode. It should be noticed that
the propagation speeds of longitudinal and transverse acoustic waves are different.
So far, we have related lattice vibrations to lattice waves and to the translational
movement of the phonon gas, which follows the Bose–Einstein statistics. However,
the total number of phonons is not conserved since it depends on temperature. Thus,
we do not need to apply the constraint given in Eq. (3.2) and can simply set α = 0
in Eq. (3.16). The result is

Ni

gi
= 1

eεi/kBT − 1
(5.3)

Suppose the energy levels are closely spaced; we can write Eq. (5.3) in terms
of a continuous function called the Bose–Einstein distribution function at a given
temperature T as

fBE(ν) = dN

dg
= 1

ehν/kBT − 1
(5.4)

The degeneracy for phonons is the number of quantum states per unit volume in
the phase space. For a given volume V and within a spherical shell in the momentum
space (from p to p + dp), we have from Eq. (3.87) that dg = 4πV p2dp/h3 =
4πV ν2dν/v3p. Hence,

dg

V
= g(ν)dν

V
= D(ν)dν = 4πν2

v3p
dν (5.5)

Here, we have introduced the density of states (DOS) of phonons, D(ν), which
is the number of quantum states per unit volume per unit frequency or energy (hν)
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interval. Equation (5.4) gives the mean occupation number, i.e., the average number
of bosons per quantum state at frequency ν. The phonon number density in terms of
the DOS can be expressed as

n =
∞∫

0

fBE(ν)D(ν)dν (5.6)

Because there exist one longitudinal and two transverse waves, the phonon DOS
in a large spherical shell of the momentum space can be written as

D(ν) = 4πν2

(
1

v3l
+ 2

v3t

)
= 12πν2

v3a
(5.7)

where vl is the speed of the longitudinal wave, vt is the speed of the transverse
wave, and va is a weighted average defined in the above equation. The total number
of quantum states must be equal to 3N, since each quantum state corresponds to a
harmonic oscillator. Using integration in place of summation, we have

3N

V
=

∞∫

0

D(ν)dν =
νm∫

0

12πν2

v3a
dν (5.8)

where νm is an upper limit of the frequency that can be obtained from Eq. (5.8) as

νm =
(
3na
4π

)1/3

va (5.9)

Here, na = N/V is the number density of atoms.
The Debye temperature is defined as

�D = hνm

kB
= h

kB

(
3na
4π

)1/3

va (5.10)

The Debye temperature and the number density for various solids are listed in
Table 5.1 together with some other properties. The listed values of the Debye tem-
perature were based on the experimentally measured specific heat at very low tem-
peratures, rather than that calculated from the speed of sound. The result of the
Debye specific heat theory agrees fairly well with the experimental data for several
crystalline solids in a large temperature range, as can be seen from Fig. 5.2. The
high-temperature limit of the specific heat is 6R̄ for GaAs and 9R̄ for CaF2, because
the number of atoms in a unit cell of the lattice is 2 and 3, respectively.
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Example 5.1 The average speed of the longitudinal waves is vl = 8970m/s and
that of the transverse waves is vt = 5400m/s in silicon. Find the average propa-
gation speed, the maximum frequency, the Debye temperature, and the minimum
wavelength λmin. How does λmin compare with the average distance between atoms?

Solution Since v3a = 3/(v−3
l + 2v−3

t ), we have va = 5972m/s. Given na =
5.0 × 1028 m−3, we obtain νm = 1.36 × 1013 Hz = 13.6THz from Eq. (5.9) and
�D = 655K from Eq. (5.10), which is a little bit higher than the experimental value
of 645 K listed in Table 5.1. The experimental value was obtained by fitting the
low-temperature specific heat with the Debye model. The minimum wavelength is
estimated by λmin = va/νm = 0.44 nm = 4.4 Å. The average spacing between atoms
can be estimated by L0 = n−1/3

a = 0.27 nmor 2.7 Å, suggesting that λmin ≈ 2L0.
The maximum wavelength of the lattice wave will be twice the extension of the
solid. For a cubic solid with each side L, we have λmax ≈ 2L . The lattice waves are
illustrated in Fig. 5.3 in a 1D case.

The distribution function for phonons can now be written as

f (ν) = 1

V

dN

dν
= D(ν) fBE(ν) = 12πν2

v3a (e
hν/kBT − 1)

= 9naν2

ν3
m(ehν/kBT − 1)

, ν ≤ νm

(5.11)

The vibration contribution to the internal energy can be written as

U −U0 =
∞∫

0

f (ν)hνdν (5.12a)

where U0 is the internal energy at 0 K when no vibration modes are excited. The
result after some manipulation becomes

Fig. 5.3 Illustration of the
minimum wavelength
λmin = 2L0 and the
maximum wavelength
λmax = 2L associated with
lattice vibrations in a solid
with a dimension L and with
a periodic array of atoms
(dots)
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U −U0 = 9NkBT

(
T

�D

)3
xD∫

0

x3

ex − 1
dx (5.12b)

where xD = �D/T . The molar specific heat is then

c̄v(T ) =
(

∂ ū

∂T

)

V

= 9R̄

(
T

�D

)3
xD∫

0

x4ex

(ex − 1)2
dx (5.13)

The specificheat predictedby theDebye theory agrees verywellwith experimental
data of many solids, as shown in Fig. 5.2. Notice that

∫ xD
0 x4ex (ex − 1)−2dx =

4
∫ xD
0 x3(ex − 1)−1dx −x4D/(exD − 1). When T � �D, xD → 0 and ex − 1 ≈ x .

Thus,
∫ xD
0 x3(ex − 1)−1dx → x3D/3, and the Debye specific heat approaches 3R̄ in

the high-temperature limit. The relative difference is about 5% at T = �D. Using
Eq. (B.9), it can be shown that at T � �D, Eq. (5.13) can be approximated by

c̄v(T ) = 12π4

5
R̄

(
T

�D

)3

∝ T 3 (5.14)

which is known as the T 3 law, and it agreeswith experiments formany solidmaterials
within a few percent for T/�D < 0.1 [7].

In essence, the Einstein specific heat theory assumed that all oscillations are at
the same frequency, and it implied that the DOS has a sharp peak at that frequency
and is zero at all other frequencies. On the other hand, the Debye theory is based on
a parabolic function, D(ν) ∝ ν2. More detailed studies have revealed that the actual
phonondensity of states is a complicated functionof the frequency [6, 8], as illustrated
in Fig. 5.4 for aluminum and copper according to neutron scattering measurements.
There are different phonon branches in a real crystal that affect the DOS in different
frequency regions. A detailed discussion will be deferred to Chap. 6 when we take

Fig. 5.4 Illustration of the
phonon density of states in
the Einstein model and the
Debye model as compared
with the actual behavior of
metals
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a deeper look into the crystalline structures and phonon dispersion relations. In
general, the Debye theory predicts correctly the low-temperature behavior when only
the low-frequency phonon modes are excited; this is probably the most significant
contribution of the Debye model. At higher temperatures, the Debye model can be
considered as a first-order approximation, as shown in Fig. 5.2.

5.1.3 Free-Electron Gas in Metals

The translational motion of free electrons within metals is largely responsible for
their electrical and thermal conductivities. Sometimes, the free electrons are called
electron gas, drawing an analogy between electrons andmonatomicmolecules. How-
ever, there are distinct differences between electrons in a solid and molecules in an
ideal gas. The number of free electrons is on the order of the number of atoms.
For Au, Cu, and Ag, we shall assume there is one (1) free electron per atom, but
there are three (3) electrons per atom for Al and four (4) electrons per atom for Pb
(see Table 5.2). Electrons obey the Fermi–Dirac distribution given in Eq. (3.24). A
continuous function called the Fermi function can be defined as

fFD(ε) = dN

dg
= 1

e(ε−μ)/kBT + 1
(5.15)

The Fermi function is plotted in Fig. 5.5a, where μF = μ at T = 0 K is called
the Fermi energy (or Fermi level). It will be shown later that μ changes little when
the temperature is not very high. At the absolute temperature of 0 K, fFD = 1
when ε < μF, and fFD = 0 when ε > μF. This suggests that each quantum state
whose energy is below the Fermi energy is occupied by one electron. All quantum
states whose energies exceed the Fermi energy are not occupied. As the temperature
increases, the function falls less sharply. Hence, the quantum states slightly below
the Fermi level are still filled, and those slightly above the Fermi level remain empty.
However, the quantum states are only partially filled around the Fermi level.

The degeneracy for electrons is further increased by 2, due to the existence of
positive and negative spins. In a volume V of a spherical shell in the momentum
space, we have dg = 8πV (me/h)3v2dv from Eq. (3.86) by considering the spin
degeneracy. Hence, the distribution function in terms of the electron speed is

f (v) = 1

V

dN

dv
= 8π

(me

h

)3 v2

e(ε−μ)/kBT + 1
(5.16)

Using f (v)dv = f (ε)dε and ε = mev2/2, we obtain the distribution function in
terms of the kinetic energy of electrons as

f (ε) = 1

V

dN

dε
= 4π

(
2me

h2

)3/2 √
ε

e(ε−μ)/kBT + 1
(5.17)
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Fig. 5.5 a The Fermi function and b the distribution function of free electrons in a metal

This equation is plotted in Fig. 5.5b. Note that f (ε) = fFD(ε)D(ε), where D(ε)

is the density of states for free electrons and is expressed as

D(ε) = 4π

(
2me

h2

)3/2√
ε (5.18)

Now, we are ready to evaluate the Fermi energy μF. At T → 0, the number
density of electrons becomes

ne = Ne

V
= lim

T→0

μ∫

0

4π

(
2me

h2

)3/2 √
ε

e(ε−μ)/kBT + 1
dε (5.19)

which gives

μF = h2

8me

(
3ne
π

)2/3

(5.20)

Typical values of μF range from 2 to 12 eV. Table 5.2 lists the Fermi energy,
the electron number density, the number of electrons per atom, and the electrical
resistivity of various metals. The temperature dependence of μ for electrons is given
by the Sommerfeld expansion [6]:

μ(T ) = μF

[

1 − 1

3

(
πkBT

2μF

)2

+ · · ·
]

(5.21a)

It can be seen that μ(T ) ≈ μF at moderate temperatures. Arnold Sommerfeld
(1868–1951) was a German physicist and one of the founders of quantummechanics.
As a professor at the University of Munich, he advised a large number of doctorate
students who became famous in their own right, including Peter Debye, Wolfgang
Pauli, and Werner Heisenberg, among others. Sommerfeld applied the FD statistics
to study free electrons in metals and resolved the difficulty in the classical theory for
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electron specific heat. The Sommerfeld expansion for the integration involving the
FD function is derived in Appendix B.8. As discussed in Chap. 3, electrons tend to fill
all the quantum states up to a certain energy level. In many texts, μ(T ) is called the
Fermi level or the Fermi energy, which is temperature dependent. As the temperature
increases, only those electrons near the Fermi level will be redistributed. By noticing
that the difference between μ(T ) and μF is small, we can use Eqs. (B.74) and (B.78)
to express the electron number density as follows:

ne =
∞∫

0

D(ε) fFD(ε, T )dε ≈
μF∫

0

D(ε)dε + (μ − μF)D(μF) + π2(kBT )2

6
D′(μF)

where the first term is the same as the right-hand side of Eq. (5.19). Since the number
density is independent of temperature, we must have

(μ − μF)D(μF) + π2(kBT )2

6
D′(μF) = 0 (5.21b)

which proves Eq. (5.21a) since D(ε)/D′(ε) = 2ε.

Example 5.2 Calculate μ at 300 and 10,000 K for copper using μF = 7 eV. Find
the maximum speed (Fermi velocity) and the average speed of electrons for copper
at 0 K. How will the Fermi velocity change if the temperature is changed to T =
300 K?

Solution Note that kB = 1.381 × 10−23/1.602 × 10−19 = 8.62 × 10−5 eV/K. Let
us calculate the relative changes of μ at a given temperature T. From Eq. (5.21a), we
have

μ(T ) − μF

μF
≈ −1

3

(
πkBT

2μF

)2

= −1.24 × 10−10T 2

which is about 0.0011% at 300 K and 1.2% at 10,000 K. The change in μ is indeed
very small. At T = 0, μF = 1

2mev2max = 1
2mev2F. Hence,

vmax = vF = √
2μF/me (5.22a)

ε̄ = 1

2
mev2 = U

N
=

μF∫

0

f (ε)εdε

/ μF∫

0

f (ε)dε = 3

5
μF (5.22b)

vrms =
√

2ε̄

me
=
√
6μF

5me
(5.22c)

Electrons are constantlymoving even at absolute zero temperature. For copper, we
get vF = 1.57 × 106 m/s and vrms = 1.22 × 106 m/s, which is about three-quarters
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of vF. The classical model based on the equipartition principle or the Maxwell–
Boltzmann distribution would give 3

2kBT = 1
2mev2 or vrms = √

3kBT/me = 0 at
absolute zero temperature. Because μ changes little from 0 to 300 K, the Fermi
velocity at 300 K is essentially the same as that obtained at 0 K.

Discussion: If we use the rms velocity to calculate the de Broglie wavelength
as in Example 3.2, we obtain λDB = 0.6 nm. If an electron is accelerated in vac-
uum to 50 keV, the velocity will be greater than one-third of that of light, and the
de Broglie wavelength will be extremely small (λDB ≈ 0.0066 nm). The resolu-
tions in conventional optical microscopy and photolithography are usually limited
by λ/2 (the diffraction limit), which is on the order of 200 nm for visible light.
Electron microscopy can have a much higher resolution (~0.1 nm), and e-beam
nanolithography allows the manufacturing of features just a few nanometers.

In order to find out the specific heat of electrons, we first calculate the internal
energy:

U = V

∞∫

0

ε fFD(ε)D(ε)dε (5.23a)

Because the distribution function does not vary significantly except near ε = μ,
the Sommerfeld expansion can be used to express the integration [see Eq. (B.78) in
Appendix B]. Hence,

U

V
≈

μF∫

0

εD(ε)dε + μF(μ − μF)D(μF) + (πkBT )2

6
[μFD

′(μF) + D(μF)]

One can see from Eq. (5.21b) that the two middle terms on the right side cancel
out. It should also be noted that D(μF) = 3ne/2μF. Therefore,

U ≈ 3

5
NμF

[

1 + 5π2

12

(
kBT

μF

)2

+ · · ·
]

(5.23b)

The specific heat of free electrons can then be obtained as

c̄v,e =
(

∂ ū

∂T

)

V

= π2kBT

2μF
R̄ (5.24)

which is much smaller than 3
2 R̄ as we would obtain if electrons were behaving as

an ideal monatomic molecular gas. Another way of obtaining Eq. (5.24) is to use
integration, which is left as an exercise (see Problem 5.6). Electronic contribution to
the specific heat of solids is negligible except at very low temperatures (a few kelvins
or less). The specific heat of metals at very low temperatures can thus be expressed
as
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cv(T ) = γ T + BT 3 (5.25)

where the linear term is the electronic contribution and the cubic term is the lattice
contribution for which B can be obtained from Eq. (5.14). The coefficient γ is known
as the Sommerfeld constant. The experimental values of γ generally agree with those
predicted by the free-electron model given in Eq. (5.25) for most alkali metals (e.g.,
Na, K) and noble metals (e.g., Cu, Ag, Au). For transition metals with magnetic
properties, such as Fe and Mn, the measured γ value can be an order of magnitude
greater than the predicted. On the other hand, for semimetals like Bi, the measured
γ value can be an order of magnitude smaller than the predicted. Further discussions
can be found from the text of Ashcroft and Mermin [6].

Example 5.3 Calculate and plot the specific heat of copper, and compare with the
data in Touloukian and Buyco [7]. Discuss the contribution of electrons and lattice
vibrations.

Solution From Table 5.1, the Debye temperature for Cu is �D = 340K. At T
< 30 K, we can apply the T 3 law given in Eq. (5.14) to find the coefficient B in
Eq. (5.25) to be 5.95 × 10−6 R̄ [K−3]. Using μF = 7 eV from Table 5.2, the Som-
merfeld coefficient can be calculated from Eq. (5.24) as γ = 6.08 × 10−5 R̄ [K−1].
Therefore, the two contributions will be equal at T = 3.2 K. The results are plotted in
Fig. 5.6a at temperatures below 10 K. At higher temperatures, as shown in Fig. 5.6b,
the electronic contribution is much smaller compared with the lattice specific heat:
about 0.3% at 100 K, 0.6% at 300 K, and 2% at 1000 K. The data show much
higher specific heat values than those predicted by the Debye model. The addition
of the electronic contributions cannot fully account for the difference. Noting that
R = R̄/M = 130.9 J/kgK at 1000 K, the specific heat calculated from the Debye
model of cv = 390.6 J/kgK is 99.5% of 3R given by the Dulong–Petit law. There are
several reasons that may be responsible for the deviation between the Debye model

Fig. 5.6 Electron and lattice contributions to the specific heat of Cu a at low temperatures and
b from 10 to 1000 K
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and measurements at high temperatures. The first is the anharmonic vibration that
was not considered in the simple models with harmonic vibrations. The contribu-
tion of anharmonic vibrations becomes more important at higher temperatures since
the amplitude of vibration increases with temperature. Secondly, thermal expansion
cannot be ignored at high temperatures. The variation of the distance between atoms
may change the potential function and thus increase the specific heat. Additionally,
when thermal expansion is not negligibly small, the specific heat at constant pressure
(that is measured) may be greater than that at constant volume (that is predicted).
Interested readers are referred to the literature for further discussions [9, 10].

5.2 Quantum Size Effect on Specific Heat

The above discussion assumes that the physical dimensions are much larger than
the lattice constant. In nanoscale devices and structures, such as 2D thin films or
superlattices, 1D nanowires or nanotubes, or 0D quantum dots or nanocrystals, sub-
stitution of summation by integration is no longer appropriate. Note that a 2D thin
film is confined in one dimension, a 1D wire is confined in two dimensions, and a 0D
quantum dot is confined in all three dimensions. In nanostructures, it is necessary to
consider quantization of the energy levels. The specific heat becomes a function of
the actual dimensions. Experimental demonstrations of quantum size effect on spe-
cific heat have been made on Pb particles [11], carbon nanotubes [12], and titanium
dioxide nanotubes [13], to name a few. To analyze the quantum size effect on the
lattice specific heat, we begin with a wavelike treatment of the vibrational modes in
this section.

5.2.1 Periodic Boundary Conditions

Consider a 1D chain of N + 1 atoms as sketched in Fig. 5.3, where the end nodes
are fixed in position. The solution should be a standing wave with the following
eigenfunctions:

sin
(πx

L

)
, sin

(
2πx

L

)
, sin

(
3πx

L

)
, . . . , sin

(
πx

L0

)
(5.26)

where L/L0 = N ,which is the total number of vibration modes within a length of L.
Another approach is based on the Born–von Kármán periodic boundary conditions
[6]. Instead of treating the solid as a bounded specimen whose atoms are fixed at
each boundary, the Born–von Kármán lattice model takes the medium as an infi-
nite extension with periodic boundary conditions. For a solid whose dimensions are
Lx , Ly, Lz in the Cartesian coordinates, the standing wave solutions are
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exp(ikx x), exp
(
iky y

)
, exp(ikzz) (5.27)

where k = (kx , ky, kz) is called the lattice wavevector with k2 = k2x + k2y + k2z . The
allowed discretized values are

kx = 0, ±2π

Lx
, ±4π

Lx
, ±6π

Lx
, . . . , ± (Nx − 1)π

Lx
, +Nxπ

Lx
(5.28a)

ky = 0, ±2π

Ly
, ±4π

Ly
, ±6π

Ly
, . . . , ± (Ny − 1)π

Ly
, +Nyπ

Ly
(5.28b)

kz = 0, ±2π

Lz
, ±4π

Lz
, ±6π

Lz
, . . . , ± (Nz − 1)π

Lz
, +Nzπ

Lz
(5.28c)

where the last term only has “+” term and should only be included if the number
of atoms along each direction Nx , Ny, or Nz is an even number. The central dis-
tance between adjacent atoms is Lx/Nx , Ly/Ny, or Lz/Nz in the given direction.
The individual components of the lattice wavevector may be negative or zero in this
case. In the 1D case, it can be seen that the total number of modes is the same as the
total number of atoms along the 1D chain. However, the infinite medium represen-
tation with periodic boundary conditions is advantageous not only in mathematical
derivations but also for the physical interpretation of lattice dynamics.

5.2.2 General Expressions of Lattice Specific Heat

The general expression of the lattice vibrational energy in a solid is given as

u(T ) = u0 +
∑

P

∑

K

�ω

(
1

e�ω/kBT − 1
+ 1

2

)
(5.29)

where u0 accounts for the static energy at absolute zero temperature, the first term in
the parenthesis is the Bose–Einstein distribution fBE(ω, T ) given in Eq. (5.4), and the
second term in the parenthesis corresponds to the zero-point energy that is associated
with the 1

2hν, due to quantum fluctuation or vacuum fluctuation, in the vibrational
energy levels. We use hν and �ω interchangeably whichever is more convenient.
The summation is over all phonon branches in terms of the wavevector index K and
the polarization index P. A phonon branch (sometimes also called a phonon mode)
describes the behavior of a type of phonons with a continuous frequency rather than
a discrete frequency. The concept of phonon branches will be presented in detail in
the subsequent chapter. The lattice specific heat can be expressed as [5]

cv(T ) =
∑

P

∑

K

�ω
∂ fBE(ω, T )

∂T
(5.30)
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Upon introducing the DOS, we can replace the summation over k-space with an
integration as follows:

cv(T ) =
∑

P

∞∫

0

�ω
∂ fBE
∂T

D(ω)dω

= kB
∑

P

∞∫

0

(
�ω

kBT

)2 e�ω/kBT

(e�ω/kBT − 1)2
D(ω)dω (5.31)

Since the DOS is expressed as the number of modes per unit volume, Eq. (5.31)
gives the specific heat per unit volume. Neutral scattering and Raman scattering
are common ways of determining the DOS from the relationship between ω and
the lattice wavevector k along selected crystal directions. The function ω = ω(k)

is called a dispersion relation. If discretized values are expressed using the Delta
functions in the expression of D(ω), Eq. (5.31) is equivalent to Eq. (5.30), and both
the equations can be considered as the general expressions of the specific heat due to
lattice vibrations. For a nanostructure with very few atoms in a particular direction,
Eq. (5.30) may be more convenient to use. On the other hand, in directions with a
large number of atoms, Eq. (5.31) would be the preferable choice.

5.2.3 Dimensionality

The method of periodic boundary conditions allows one to determine the density
of states for simple dispersion relations easily. Figure 5.7 shows the k-space, or the
reciprocal lattice space, in the 2D case. Each individual block of area 4π2/(Lx L y)

Fig. 5.7 Schematic of the
reciprocal lattice space, or
k-space
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yk

2 / xLπ
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represents a mode, and the number of modes up to a certain value of k is equal to
the total number of blocks inside the circle. One can also use this graph to visualize
the 3D case. Each box of volume 8π3/(Lx L yLz) represents a mode. The number of
modes for a given upper limit k is equal to the total number of boxes within a sphere
of radius k, hence,

N = 4πk3

3

Lx L yLz

8π3
= Vk3

6π2
(5.32)

When the dimensions are large enough, the DOS can be expressed as

D(ω) = 1

V

dN

dω
= k2

2π2

dk

dω
(5.33)

Assume the dispersion relation is linear, then

ω = vak (5.34)

where va is the average speed of the longitudinal and transverse waves as in Eq. (5.7).
We can rewrite Eq. (5.33) as

D(ω) = ω2

2π2v3a
(5.35)

This expression is equivalent toEq. (5.7) for a single polarization. Equations (5.32)
and (5.34) can be combined to obtain the high-frequency limit by setting N equal to
the number of atoms.The result is the sameasEq. (5.9).WhenEq. (5.35) is substituted
into Eq. (5.31), the Debye expression of the specific heat given in Eq. (5.13) is readily
obtained.

If the number of atoms is very small in a particular direction, there will only be
a few values for the particular wavevector component. The dimensionality will be
reduced, and the wavevector component can be assumed as zero in that direction. For
a 2D solid (such as a thin film or a quantum well), the DOS is defined as the number
of quantum states per unit area. By assuming a linear dispersion relation, we obtain

N = πk2

4π2/(Lx L y)
= Ak2

4π
(5.36)

and

D(ω) = 1

A

dN

dω
= k

2π

dk

dω
= ω

2πv2a
(5.37)

For a 1D solid (such as a nanowire or a nanotube), by noting that N =
2k
/

(2π/Lx ) = Lk/π , we find the DOS to be
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D(ω) = 1/(πva) (5.38)

which is independent of the frequency. It can be shown that, in the low-temperature
limit, the specific heat for a 2D solid is proportional to T 2 and that for a 1D solid
is proportional to T [14, 15]. Experimental evidence of the dimensionality change
has been known for a long time in graphite, which has a layered lattice structure
with a strong bonding between atoms within each layer and a weak interactive force
between layers. The specific heat of graphite is approximately proportional to T 2

at low temperatures [16]. On the other hand, the linear temperature dependence of
specific heat has been observed in carbon nanotubes [12].

It can be seen from Eq. (5.31) that when �ω � kBT, the integrand approaches
zero. Therefore, the contribution to the specific heat is negligibly small when the
phonon energy is much higher than kBT . The speed of lattice waves ranges from
1000 to 10,000 m/s, and the phonon wavelength corresponding to kBT is called
thermal phonon wavelength, which can be calculated from λth = vah/kBT . At room
temperature, λth is approximately 0.3 nm for va = 2000m/s and 1 nm for va =
6000m/s. At 10 K, λth ≈ 10 nm for va = 2000m/s, and λth ≈ 30 nm for va =
6000m/s. It is expected that the quantum size effect will become more significant at
low temperatures, because the thermal phonon wavelength may be greater than the
smallest physical length, such as the thickness of the film and the diameter of the
wire.

5.2.4 Thin Films and Nanowires

Thin films, or quantum wells, are important components for microelectronic and
photonic devices. We will use the following example to elucidate the effect of film
thickness and temperature on the specific heat of thin films.

Example 5.4 Evaluate the low-temperature behavior of the specific heat of a thin
film made of a monatomic solid. Assume that the film thickness is L , which has q
monatomic layers, i.e., L = qL0. The average acoustic speed va may be assumed to
be independent of temperature. Values of silicon given in Example 5.2 may be used
in the numerical evaluation.

Solution The molar specific heat can be expressed as

c̄v(T ) = 3V R̄

NkB

∑

kx ,ky ,kz

�ω
∂ fBE
∂T

(5.39)

where the number 3 accounts for the three phonon polarizations. Assume the dimen-
sion perpendicular to the film is the z-direction. The allowable modes in the z-
direction are given by kz = 0,±2π/L ,±4π/L , . . . In order for the total number of
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modes in the z-direction to be equal to q for all q values, we shall use the following
limits:

kz =
{
0,± 2π

L ,± 4π
L , . . . ± (q−1)π

L , for q = 1, 3, 5 . . .

0,± 2π
L , . . . ± (q−2)π

L ,+ qπ

L , for q = 2, 4, 6 . . .
(5.40)

Assume that the lattice is infinitely extended in the directions parallel to the film.
We can substitute the summation with integration in the parallel directions using
cylindrical coordinates. Therefore,

c̄v(T ) = 3V R̄

(2π)3NkB

∑

kz

⎛

⎝
βD∫

0

�ω
∂ fBE
∂T

2πβdβ

⎞

⎠�kz (5.41)

where β2 = k2x + k2y , �kz = 2π/L , and βD =
√
k2D − k2z . The cutoff value kD is

determined by setting the total number of modes equal to the number of atoms per
unit area. Equation (5.36) can be used to evaluate the number of modes for each kz
and then summed up over all kz values. Hence,

N

A
=
∑

kz

β2
D

4π
=
∑

kz

k2D − k2z
4π

(5.42a)

Note that N = AL/L3
0 = Aq/L2

0 and there are q terms in the summation
according to the kz values given in Eq. (5.40). We can solve Eq. (5.42a) to obtain

kD =
√√√√4π

L2
0

+
∑

kz

k2z
q

(5.42b)

In the limit of a single atomic layer, kD = 2
√

π/L0 ≈ 3.54L−1
0 ; when q → ∞,

kD ≈ 3.98L−1
0 , which is very close to the 3D value of kD = (6π2)1/3/L0 ≈ 3.90L−1

0 .
Note that the value of kD normalizes the specific heat so that cv approaches to the
high-temperature limit of 3R. At low temperatures, when the quantum size effect is
significant, a slight difference in kD does not alter the results much.

Using the linear dispersion relation, ω = vak = va
√

β2 + k2z , we see that 2βdβ =
kdk for fixed kz . Therefore, Eq. (5.41) can be recast to the following:

c̄v(T ) = 3R̄

2πN/A

(
kBT

�va

)2∑

kz

xD∫

xz

x3ex

(ex − 1)2
dx (5.43)

where x = �vak
kBT

, xD = �vakD
kBT

, and xz = �va|kz |
kBT

. The T 2 dependence at low tempera-
tures is evident when q = 1 or kz = 0 only. The modes associated with kz = 0 are
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Fig. 5.8 Quantum size
effect on the specific heat of
thin films, where the reduced
temperature is defined as
θ = T kBL0/hva
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parallel to the interface and are called planar modes.We have carried out a numerical
evaluation of Eqs. (5.42) and (5.43) for different values of N to see when the depar-
ture from bulk behavior will occur. The results are plotted in Fig. 5.8 as a function
of the reduced temperature, defined as θ = T kBL0/hva = L0/λth. It can be shown
that hva/kBL0 ≈ 1.61�D, where �D is the Debye temperature. When q and T are
sufficiently large, the result fromEq. (5.43) is the same as that predicted by theDebye
model for bulk materials. The departure occurs at low temperatures and especially
for small q values.

As mentioned earlier, due to the layerlike structure of graphite, its specific heat
exhibits 2D solid behavior at low temperatures [16]. The procedure used for this
example is essentially the same as that used by Prasher and Phelan [17], except that
we have considered the planar modes (kz = 0) in evaluating Eq. (5.43). The result is
an increase in the specific heat in the microscopic regime, as discussed in detail in
Ref. [15]. Hence, planar modes are critically important when the thickness is small,
especially at low temperatures.

A similar formulation can be derived for a nanowire with a square or rectangular
cross section [15, 16]. When axial modes are allowed for a wire parallel to the
z-axis, kx = ky = 0, the specific heat of this single mode dominates all other
modes at sufficiently low temperatures and varies linearly with the temperature T
[15]. Another way to show the linear temperature dependence is to combine the
DOS given in Eq. (5.38) with Eq. (5.31) as mentioned previously [14]. Note that
the discussion here assumes that the linear dispersion relation, Eq. (5.34), holds for
the average phonon speed with only three phonon modes. The actual phonon modes
and dispersion relations can be rather complicated, and rather sophisticated tools are
required to model the thermal properties of nanostructured materials. Several studies
have been conducted for silicon nanowires [18–20].
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5.2.5 Nanoparticles or Nanocrystals

For 3D confinement or 0D structures, consider cuboidal nanoparticles of dimensions
(Lx , Ly, Lz) with the number of atoms in each direction as (Nx , Ny, Nz). The molar
specific heat can be written as a summation using Eq. (5.30) as follows:

c̄v(θ) = 3R̄

Nx NyNz

∑

j,m,n

η2eη

(eη − 1)2
(5.44)

where

η = 1

θ

(
j2

N 2
x

+ m2

N 2
y

+ n2

N 2
z

)1/2

with θ = T kBL0

hva
(5.45)

Note that the summation indices are based on the wavevector values given in
Eq. (5.28). For nanoparticles, the aspect ratio and shape can affect the specific heat
characteristics. Therefore, T n (where 1 < n < 3) behavior may occur for cuboids
below the Debye temperature but not at very low temperatures [15].

When the temperature is very low, only the mode(s) with the lowest frequency can
be excited and a second quantum size effect will occur. Consider a cubic nanocrystal
with q atoms in each dimension. Among the q3 total modes, we are left with only
six axial modes, which are k = (±2π/L , 0, 0), (0,±2π/L , 0), and (0, 0,±2π/L).

These modes have the longest phonon wavelength. From Eq. (5.44), the specific heat
can be expressed as

cv(T → 0) = a

T 2
exp

(
− b

T

)
(5.46)

where a and b are positive constants. Because Eq. (5.46) converges to zero faster than
T 3, the second quantum size effect will reduce the specific heat at extremely low
temperatures [21, 22]. Experiments were made in the early 1970s on lead particles as
small as 2.2-nm diameter [11]. At temperatures below 15 K, the specific heat of these
particles is much greater than that for the bulk material. However, as the temperature
is reduced to about 2 K, the difference diminishes. Below 2 K, the specific heat of the
nanoparticles decreases much rapidly than that of the bulk. Note that Eq. (5.46) only
applies to the 3D confined case because for 1D or 2D confined cases, the wavevector
in the unconfined direction is not restricted.

For bulk solids, as discussed previously, the Born–von Kármán periodic bound-
ary condition is equivalent to the Dirichlet or Neumann boundary conditions [6].
However, for nanocrystals, the applied boundary conditions can affect the model
predictions significantly [15, 22]. Let us consider cuboidal nanoparticles. TheDirich-
let boundary condition fixes the value at the boundary and is called a clamped
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boundary condition. The eigenfunctions are given in Eq. (5.26), allowing only pos-
itive wavevectors. The specific heat may still be computed using Eq. (5.44), while
Eq. (5.45) is modified as

η = 1

2θ

(
j2

N2
x

+ m2

N2
y

+ n2

N2
z

)1/2

, j = 1, 2, . . . , Nx ; m = 1, 2, . . . , Ny; n = 1, 2, . . . , Nz

(5.47a)

For a cubic nanoparticle with Nx = Ny = Nz = q, the lowest phonon mode
corresponds to ( j,m, n) = (1, 1, 1) or kx = ky = kz = π/L . The result is a mini-
mum wavevector kmin = √

3π/L and ηmin = √
3/(2θq). For the periodic boundary

conditions as discussed before, kmin = 2π/L and ηmin = (θq)−1. While the mini-
mumwavevector is slightly smaller, the resulting ηmin for the lowest phonon mode is
greater with Dirichlet boundary conditions. Hence, the predicted specific heat using
the Dirichlet boundary conditions is always lower than that of the corresponding
bulk material which is independent of the boundary conditions. This is also true for
spherical particles using spherical Bessel functions [22].

On the other hand, when Neumann free-surface boundary conditions are applied,
the eigenfunctions are cosine functions and the indices in Eq. (5.47a) should be
modified to allow zero indices as long as at least one of them is nonzero, that is

j = 0, 1, . . . , (qx − 1); m = 0, 1, . . . , (qy − 1); n = 0, 1, . . . , (qz − 1) (5.47b)

where j,m, and n cannot be simultaneous zero. In this case, we see from Eq. (5.47a)
that kmin = π/L and ηmin = (2θq)−1. Therefore, the phonon frequency of the low-
est mode is half of that in the case of periodic boundary conditions. The reduction
of phonon frequency toward low temperatures is called phonon softening. Phonon
softening results in an enhancement of the specific heat of nanoparticles at low tem-
peratures until the temperature becomes sufficiently low when the second quantum
size effect described by Eq. (5.46) will dominate the specific heat behavior. The result
for cubic nanoparticles is in general consistent with that of spherical nanoparticles
based on the Neumann boundary conditions [15, 22].

5.2.6 Graphite, Graphene, and Carbon Nanotubes

Unlike diamond, which contains 3D tetrahedral structures, graphite crystallizes in
the hexagonal system with sheetlike structures. While diamond and graphite are
each a polymorph of the element carbon, they exhibit dramatically different prop-
erties due to their different crystalline structures. Diamond is hard, transparent, and
an electrical insulator. On the contrary, graphite is quite soft, opaque, and a good
electrical conductor. Graphene is a single atomic layer of carbon atoms packed into a
periodic benzene-ring structure. Carbon nanotubes may be considered as rolled from
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a graphene sheet into a hollow cylinder, with one or both of its ends capped with
half a fullerene molecule. The discovery of C60 and other fullerenes by Robert Curl,
Harold Kroto, and Richard Smalley was recognized through the 1996 Nobel Prize
in Chemistry conferred on them. The diameter of single-walled carbon nanotubes
(SWNTs) can be as small as 0.4 nm with a typical diameter 1–2 nm and as long as
100 μm or so. Multi-walled carbon nanotubes (MWNTs) and nanotube ropes can
have a diameter from 10 to 200 nm.

As mentioned earlier, graphite has a 2D structure and exhibits T 2 dependence
at low temperatures [16]. For an isolated graphene sheet, the in-plane or parallel
transverse acoustic phonon mode or branch has a velocity of vTA−p = 15, 000m/s
and the longitudinal acoustic phonon mode has a velocity of vLA = 24, 000m/s.
On the other hand, the out-of-plane or perpendicular transverse phonon branch is
described by a quadratic dispersion relation, ω ∝ k2, which is the dominant mode
for the specific heat at low temperatures. Considering the dimensionality and the
dispersion relation, the specific heat of a graphene sheet depends almost linearly on
T at lower temperatures (see Problem 5.11) and on T 2 as the temperature is raised
above 100 K or so.

The four acoustic phonon modes or branches are expected to be the dominant
contributions to the specific heat of isolated SWNTs at low temperatures. These
include two (degenerate) transverse modes, one longitudinal mode, and a twisting
mode or torsional mode associated with the rigid rotation around the nanotube axis.
The dispersion relation is linear for all fourmodes at low frequencies [23]. Therefore,
because of the 1D structure, the specific heat is expected to be linearly dependent
on temperature. As the temperature is raised, however, higher frequency modes are
excited and the 2D characteristics of carbon nanotubes come into play. Watt de Heer
has written an elegant article on this topic [24]. There are significant differences
between SWNTs, MWNTs, and nanotube ropes or bundles; the actual temperature
dependence can be more complicated and dependent on the diameter [12, 23–25].

In nanostructures, the electron DOS is also subject to quantization. The theory
for the electronic contribution to the specific heat is more complicated. The elec-
tron–electron and electron–phonon interactions as well as the distribution of energy
levels and the Fermi energy need to be considered in a detailed model [26, 27].
The electronic specific heat of small particles is still a linear function of tempera-
ture. Generally speaking, the electronic contribution to the specific heat is negligibly
small unless the temperature is below about 1 K. Therefore, we will not discuss the
electronic size effect on the specific heat any further.

5.3 Electrical and Thermal Conductivities of Solids

In this section, we use kinetic theory to study the electron and phonon transport
properties of metals and insulators in the bulk form. The coupling between electrical
current and heat flux due to electric field and temperature gradient will be studied
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in the next section, followed by a discussion of the size effect on the electrical and
thermal conductivities.

5.3.1 Electrical Conductivity

We start with the simple kinetic theory approach based on the Drude free-electron
model, also known as the Drude–Lorentz theory. As shown in Fig. 5.9, the electrical
resistance of a resistor is R = reL/Ac = L/(σ Ac), where re is the resistivity; its
inverse σ is the conductivity, L is the length, and Ac is the cross-sectional area.
Ohm’s law relates the voltage drop �V and the current I by �V = I R, which can
be rearranged as

I

Ac
= σ

�V

L
(5.48)

Notice that J = I/Ac is the current density (charge per unit cross-sectional area
per unit time), and E = �V/L is the electric field (note that the electric field is in
the direction of decreasing voltage). Rewriting it in the vector form, we have

J = σE (5.49)

The above equationmay be considered as themicroscopic Ohm’s law. An electron
of charge −e is accelerated in an electric field according to Newton’s law as

F = −eE = me
dv
dt

(5.50)

Due to collisions, electrons cannotmove completely freely. The velocity change of
an electron during a relaxation time τ (the average traveling time between collisions)
due to an external field is called the drift velocity ud. The probability that a traveling
particle will collide with another particle or a defect during an infinitesimal time dt
is given by dt/τ . The acceleration term in Eq. (5.50) can then be approximated by

Fig. 5.9 Illustration of
electrical conduction
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ud/τ . Alternatively, one can also consider a damping force that is proportional to
the drift velocity given as meγud, where the damping coefficient γ happens to be
the electron scattering rate 1/τ . At steady state, the damping force must balance the
external electrical force, i.e., −eE = meud/τ [28]. The current density is related to
the drift velocity by J = −eneud, hence,

J = nee2τ

me
E (5.51)

Comparing the above equation with Eq. (5.49), we obtain the Drude–Lorentz
expression:

σ = nee2

me
τ (5.52)

The preceding equation is often used to obtain the relaxation time τ from the
measured electrical conductivity σ . At moderate temperatures, it can be assumed
that the characteristic velocity of electrons is the Fermi velocity vF, and the mean
free path of electrons can be written as

�e = vFτ (5.53)

The electron scattering mechanisms are illustrated in Fig. 5.10. Electron–elec-
tron scattering is inelastic and usually negligible compared with electron–phonon
scattering, which is also inelastic. Because lattice vibrations are enhanced as tem-
perature increases, electron–phonon scattering is expected to be dominant at high
temperatures. Defect or impurity scattering, on the other hand, is important at low
temperatures. For bulk materials that are large enough, boundary scattering is negli-
gible. According to Matthiessen’s rule, the scattering rate of independent scattering
events can be added to yield the total scattering rate. For a bulk material, we have

1

τ
= 1

τe−e
+ 1

τe−ph
+ 1

τe−d
≈ 1

τe−ph
+ 1

τe−d
(5.54)

Fig. 5.10 Schematic of
various carrier scattering
mechanisms
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where the subscripts e–e, e–ph, and e–d are for electron–electron, electron–phonon,
and electron–defect scattering. It should be noted that the free-electron description
is often applied to model the electrical conductivity of (doped) semiconductors,
in which both electrons and holes (positive charges) can carry currents. For some
metals, as to be explained in Chap. 6, the charge carriers are actually holes rather
than electrons. Using Eq. (5.53), we can write Eq. (5.54) in terms of the mean free
path as follows:

1

�e
= 1

�e−ph
+ 1

�e−d
(5.55)

Different scattering mechanisms can be considered separately. Boundary scatter-
ing becomes important when the characteristic dimension Lc is comparable to the
mean free path of the bulk material �e. Here, Lc can be the thickness of a thin film
or the diameter of a thin wire. An effective mean free path can be defined for the
evaluation of the scattering rate and the conductivity:

1

�e,eff
= 1

�e
+ 1

�e−b
(5.56)

where the subscript e–b is for electron–boundary scattering. It can be seen that when
boundary scattering is important, the effective mean free path will be suppressed, or
the scattering rate will increase. The electrical conductivity will be reduced, and the
reduction is size dependent. This is similar to the molecular heat transfer discussed in
Chap. 4 when the Kn number, i.e., the ratio of the mean free path to the characteristic
length (�/Lc ), is comparable or greater than 1. Further discussion of the size effect
on the conductivities of solids will be given in Sect. 5.5.

The Bloch formula for electrical resistivity due to electron–phonon scattering
gives

re−ph = 4r0

(
T

�

)5
�/T∫

0

x5ex

(ex − 1)2
dx (5.57)

where r0 is a constant, and � is a characteristic temperature that is very close to the
Debye temperature [29]. The derivation of the above equation requires a careful treat-
ment of the electron–phonon interaction within the framework of the electron band
theory considering both the N process and the U process, which will be discussed
in Chap. 6. The Bloch formula predicts that the electrical resistivity approaches zero
as the temperature approaches absolute zero for a pure metal. When T � �, the
low-temperature approximation of the lattice resistivity can be written as

re−ph ≈ 498r0T
5/�5 (5.58)
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Because of impurities, electron–defect scattering gives a residual resistivity re−d

that is important at low temperatures, and its value is independent of tempera-
ture. Adding the scattering rates using Matthiessen’s rule, the electrical resistivity is
obtained as [29]

re = re−ph + re−d (5.59)

Figure 5.11 compares the model with the electrical resistivity data recommended
for high-purity bulk metals after annealing [30]. Taking the electrical resistivity of
gold as an example, it can be seen that phonon scattering dominates the electrical
resistivity at high temperatures and results in re−ph ≈ r0T/�, which is proportional
to T. It should be noted that �D listed in Table 5.1 can be used to approximate � in
most cases. The constant r0 can be determined using the resistivity values at 22 °C, or
295 K, given in Table 5.2. At very low temperatures, re ≈ re−d, which is independent
of temperature but depends strongly on the impurity concentration.

Example 5.5 Consider a large copper specimen of high purity with a very small
defect scattering rate of τ−1

e−d = 5 × 108 rad/s at the liquid helium temperature of
4.2 K. Find the electrical resistivity, the electron relaxation time,, and the mean free
path of this specimen at 1, 295, and 590 K.

Solution Wefirst useEq. (5.52) to evaluate the residual resistivity at 1Kby assuming
that the scattering rate is the same at 4.2 and 1 K. This yields an electrical resistivity
re ≈ re−d = me

nee2
1

τe−d
= 2.1×10−5 μ
 cm or conductivity σ = 4.76×1012 (
m)−1.

The electrical resistivity at 295 K is given in Table 5.2 to be re−ph ≈ re = 1.7μ
 cm.

Because the Debye temperature for Cu is 340 K, we can approximate the resistivity

Fig. 5.11 Comparison of the
measured electrical
resistivity data [30] of
99.999% pure copper, gold,
and silver with the model
considering electron–phonon
scattering and
electron–defect scattering
using Eq. (5.59)
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at 590 K to be twice that of the resistivity at 295 K, or 3.4μ
 cm. The relaxation
time is approximately 2× 10−9 s at 1 K, 2.47× 10−14 s at 295 K, and 1.24× 10−14 s
at 590 K since the number density is assumed to be temperature independent. Using
Eq. (5.53) and the Fermi velocity of vF = 1.57×106 m/s from Example 5.2, we have
the mean free path �e = 3.14, 38.8, and 19.4 nm at 1, 295, and 590 K, respectively.
The conductivity of a copper filmwith a thickness of less than 100 nmmay be affected
by boundary scattering. At low temperatures, however, boundary scattering may be
dominant for low-dimensional structures even at the micrometer length scale.

For metals, electrons are also responsible for thermal transport. Knowledge of the
electrical transport is critical to the understanding of thermal properties. The effect
of boundary scattering on transport properties is called the classical size effect [1,
2]. Quantum size effect can modify the DOS of electrons and hence the electrical
and thermal properties, as will be discussed in Sect. 5.6.

5.3.2 Thermal Conductivity of Metals

Inmetals, free electrons are themain thermal energy carriers.As discussed inChap. 4,
kinetic theory predicts that the thermal conductivity is

κ = 1

3
ρcv,evF�e (5.60)

where ρ = neme is the mass of electrons per unit volume and cv,e is the mass specific
heat of the electrons. Note that ρcv,e is the volumetric specific heat of electrons and

can be expressed as ρcv,e = neπ2k2BT
2μF

using the electron specific heat formula given in

Eq. (5.24). Substituting the expression for ρcv,e and vF�e = v2Fτ ≈ 2μFτ/me into
Eq. (5.60), we obtain the thermal conductivity of a given metal as follows:

κ = neπ2k2BT

3me
τ (5.61)

which is proportional to τT . TheWiedemann–Franz law can be obtained by compar-
ing this equationwith the expression for the electrical conductivity given inEq. (5.52),
viz.,

Lz ≡ κ

σT
= 1

3

(
πkB
e

)2

= 2.44 × 10−8 W
/K2 (5.62)

where Lz is called the Lorentz number. The measured Lz value for most conduc-
tors is between 2.2 and 2.7 × 10−8 W
/K2 at room temperature. The derivations
given above were based on the simple kinetic theory, which is consistent with the
solution of the BTE under the assumptions of local equilibrium and the relaxation
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time approximation. The actual scattering process may result in some differences
in the effectiveness of transferring momentum and energy during electron–phonon
scattering. More detailed theories and experiments have shown that the thermal con-
ductivity of metals is independent of temperature at moderate and high temperatures
[29]. The Wiedemann–Franz law is therefore valid near and above room temper-
ature for most metals. As the temperature is lowered, electron–phonon scattering
yields a thermal resistance (or 1/κ ) that is proportional to T 2, not T 4 as one would
obtain by combining Eqs. (5.57) and (5.62). Recall that in the intermediate region,
approximately between 10 and 100 K, the Wiedemann–Franz law is not valid. At
very low temperatures, defect scattering dominates and, because defect scattering
is elastic, the Wiedemann–Franz law is valid again so that κ ∝ T . Therefore, the
thermal conductivity at cryogenic temperatures can be expressed as

1

κ(T )
= A

T
+ BT 2 (5.63)

where A and B are positive constants. The first term on the right-hand side dominates
at very low temperatures, when the thermal conductivity is proportional to T. As
the temperature increases, the thermal conductivity reaches a peak and then falls
down proportional to T−2. As the temperature approaches the room temperature,
the thermal conductivity changes little with temperature until the melting point is
reached. Figure 5.12 plots themeasured thermal conductivity of copperwith different
impurity concentrations [31]. The highest purity annealed copper has a residual
resistivity of 5.79 × 10−12 
m. Oxygen-free high conductivity (OFHC) copper is
commonly used in absolute cryogenic radiometers to build the cavity receiver. Even
0.5% impurity concentration will make the conductivity to dramatically decrease at
lower temperatures. On the other hand, the thermal conductivity is less sensitive to
impurity at temperatures above 100K and changes little until themelting temperature

Fig. 5.12 Thermal
conductivity of copper with
different purity levels [31]
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of 1358 K. Beyond the melting temperature, the thermal conductivity values are for
liquid copper.

5.3.3 Derivation of Conductivities from the BTE

So far, we have used simple kinetic theory to discuss the electrical and thermal con-
ductivities of metals. It is hoped that these discussions have provided some insights
into basic phenomena. To understand the detailed mechanisms, we now present the
approaches based on the BTE under two assumptions: local equilibrium and relax-
ation time approximation. Recall from Chap. 4 that the distribution function can
be expressed in terms of f (r, v, t) or f (r,p, t), where p = mev for electrons. In
describing the phonon specific heat, we have extensively used the phononwavevector
k as well as the k-space. The advanced theory based on the electronic band struc-
ture, to be discussed in Chap. 6, is also based on the k-space. Using the magnitude
relations, p = h/λ and k = 2π/λ, we have k = p/�. Therefore, the distribution
function can bewritten in terms of k or f (r,k, t).The energy of an electron is related
to its wavevector by ε = �k·�k

2me
= �

2k2

2me
. Under the local-equilibrium condition, the

distribution function can be written in terms of temperature T (r, t) and energy ε

such that

f (r,k, t)dk = f1(ε, T )
dk
dε

dε = f1(ε, T )D(ε)dε (5.64)

where D(ε) = dk
/
dε is the DOS, and f1(ε, T ) is such that n(r, t) =

∞∫

0
f1(ε, T )D(ε)dε and ε̄(r, t) =

∞∫

0
ε f1(ε, T )D(ε)dε. For the equilibrium distribu-

tion of free electrons, f1(ε, T ) is nothing but the Fermi–Dirac function given in
Eq. (5.15). When the distribution function is isotropic in the k-space, the DOS is
given in Eq. (5.18) since dk = dkxdkydkz = 4πk2dk and dε = �

2kdk/me. As
discussed earlier, free electrons will occupy all the quantum states below the Fermi
level. The Fermi level corresponds to a maximum k in all directions in the k-space,
which is a spherical surface. All the electron quantum states are included in this
Fermi sphere. The argument is similar to the Debye model of phonons, where there
is an upper bound of the wavevector and the distribution is assumed to be isotropic.
We will see in Chap. 6 that the Fermi surface even for monatomic solids with the
simplest crystalline structures is not exactly spherical. This is because the electrons
in solids are not really independent particles. For simplicity, a spherical Fermi surface
is assumed in this section.

Suppose there is a constant electric fieldE alongwith a temperature gradient in the
z-direction. The function f1(ε, T ) is a nonequilibrium distribution that depends on
z. At steady state under the relaxation time approximation, we can rewrite Eq. (4.54)
as follows:
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f1(ε, T ) = f0(ε, T ) + τ(ε)

(
eE

me

∂ f1
∂ε

∂ε

∂vz
− vz

∂ f1
∂T

dT

dz

)
(5.65)

where f0(ε, T ) corresponds to the equilibrium distribution, which for electrons is the
Fermi–Dirac function fFD. The relaxation time is not taken as a constant; rather, it is
assumed to be dependent on the wavevector or the energy. Note that ∂ε

∂vz
= ∂ε

∂v
∂v
∂vz

=
mev

vz
v = mevz . As discussed in Chap. 4, under local equilibrium, we also assume

that

∂ f1
∂ε

≈ ∂ f0
∂ε

and
∂ f1
∂T

≈ ∂ f0
∂T

(5.66)

Note that this should be viewed as a simplified notation that is valid only when
the partial derivatives are substituted into the integration over the k-space. We will
consider the effect of applied field and temperature gradient separately. When there
is no temperature gradient, the current density can be written as

Je = −eJN = −e

∞∫

0

vz

(
fFD + τvzeE

∂ fFD
∂ε

)
D(ε)dε (5.67a)

The first term − ∫∞
0 evz fFD(ε, T )D(ε)dε is zero; and therefore,

Je = −e2E

∞∫

0

τ(ε)v2z
∂ fFD
∂ε

D(ε)dε (5.67b)

Because the integration is over the equilibrium distribution, it is one-third of the
integration if v2z is replaced by v2 = 2ε/me. The electrical conductivity can be
expressed as

σ = − 2e2

3me

∞∫

0

∂ fFD
∂ε

τ(ε)εD(ε)dε (5.68)

Note that ∂ fFD/∂ε ≈ −δ(ε − μ), where δ(ε − μ) is the Dirac delta function
with a sharp peak at ε = μ and essentially zero when ε �= μ. Furthermore,∫∞
∞ f (x)δ(x − a)dx = f (a). Consequently, the only active electrons are those
around the Fermi level. This small fraction of electrons, however, is responsible for
the conduction of electricity and heat in metals. We have by assuming μ(T ) ≈ μF

that

σ = 2e2

3me
τFμFD(μF) (5.69)
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which is the same as Eq. (5.52) since D(μF) = 3ne/(2μF) according to Eqs. (5.18)
and (5.20). The relaxation time is not the average of all electrons but the average of
only those electrons near the Fermi surface.

To evaluate the thermal conductivity, we set the applied field to be zero. Note that
for an open system of fixed volume, dU = δQ − μdN , i.e., the heat flux is equal
to the energy flux minus the product of the chemical potential and the particle flux.
Hence,

q ′′
z = JE − μJN =

∞∫

0

vz(ε − μ)

(
fFD(ε, T ) − τ(ε)vz

∂ fFD
∂T

dT

dz

)
D(ε)dε (5.70)

Note again that the integration of the equilibriumdistribution function inEq. (5.70)
is zero. Furthermore, the integration for v2z can be converted into the integration
for v2 = 2ε/(3me). After some manipulations, it can be shown that the thermal
conductivity is

κ = 2

3me

∞∫

0

τ(ε)(ε − μ)ε
∂ fFD
∂T

D(ε)dε (5.71a)

Using Eq. (B.82) from Appendix B.8, i.e., ∂ fFD
∂T = − ∂ fFD

∂ε

(
ε−μ

T

)
, we obtain after

applying Eq. (B.80) that

κ = − 2

3meT

∞∫

0

τ(ε)(ε − μ)2ε
∂ fFD
∂ε

D(ε)dε

= 2

3meT
τ(μF)μFD(μF)

π2(kBT )2

3
(5.71b)

This is essentially the same expression as in Eq. (5.61) for the electron thermal
conductivity obtained from simple kinetic theory. The discussion above based on
the Fermi–Dirac distribution not only confirms the simple kinetic theory but also
explains why vF should be used in Eqs. (5.53) and (5.60) rather than the rms velocity
of electrons. A familiarity with the BTE will help the study of the classical size
effect due to boundary scattering and thermoelectricity phenomena to be discussed
in subsequent sections.

The derivation above has confirmed the electrical conductivity and thermal con-
ductivity expressions. This also explains that the scattering rate corresponds to elec-
trons with energy equal to the Fermi energy. Therefore, theWiedemann–Franz law is
also confirmed since the scattering rates for the electron (momentum) transport and
that for energy transport cancel each other. Electron–phonon scattering must satisfy
the energy and momentum conservations. When the amount of energy change of



208 5 Thermal Properties of Solids and the Size Effect

electrons before and after collision is comparable with kBT, the scattering is inelas-
tic, and thus the two scattering processes can differ significantly. This happens at
intermediately lower temperatures since kBT is small. At very low temperatures,
since electron–defect scattering is elastic, the transport of electron momentum is as
effective as the transport of energy. As discussed earlier, the result in the intermedi-
ate low-temperature region for electron–phonon scattering is such that the electrical
resistivity follows T 5, while 1/κ follows T 2. In order for Eqs. (5.60) and (5.61) to be
valid, it is often thought as if the relaxation time for thermal conductivity is some-
what different from that for electrical conductivity. Actually, it is not because the
relaxation times are different; it is because the relaxation time approximation is not
valid. By using two relaxation times, one can simplify the scattering process. The
relaxation time for momentum transfer retains its meaning of the relaxation time, as
in Eq. (5.52) for the electrical conductivity. On the other hand, the relaxation time for
thermal transport given in Eq. (5.61) is sometimes called the energy relaxation time,
which is taken as a weighted average to approximate the difference in the scattering
effectiveness for energy exchange [6, 29].

5.3.4 Thermal Conductivity of Insulators

Heat conduction in electrical insulators is dominated by lattice waves or phonons.
This class ofmaterials includes diamond, quartz, sapphire, and silicon carbide, aswell
as semiconductor materials like silicon, germanium, and gallium arsenide. Kinetic
theory predicts the thermal conductivity of dielectricmaterials or electrical insulators
as follows:

κ = 1

3
ρcvva�ph (5.72)

where ρcv is the lattice volumetric specific heat, va is the average speed of corre-
sponding acoustic waves or phonons, and �ph is the phonon mean free path and is
related to the scattering rate by �ph = vaτ . When va is used, it is often assumed
that the dispersion relation is linear, i.e., vg = vp. For crystalline solids, the acoustic
speed is on the order of 5000 m/s and depends little on temperature; however, it may
depend on the polarization. The density decreases slightly as temperature increases
due to thermal expansion, but the change is negligibly small. The specific heat cv is
a function of temperature as predicted by the Debye theory, and it is nearly constant
at temperatures close to or higher than the Debye temperature. The mean free path
can be evaluated based on phonon–phonon scattering and phonon–defect scattering.

The BTE for phonons was first derived by Rudolf E. Peierls in 1929. In some
publications, it is referred to as the Boltzmann–Peierls or Peierls–Boltzmann equa-
tion. Here, we use a simplified model to derive Eq. (5.72) from the relaxation time
approximation of the BTE, based on the Debye theory. The assumption is that the
phonon velocity can be taken as a constant that is averaged over all three modes
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according to Eq. (5.7), as described by the DOS. For phonons, the distribution func-
tion can be conveniently converted into the frequency ν domain. Suppose there is a
temperature gradient in the z-direction; using the similar procedure as done in the
previous section, the thermal conductivity can be expressed as

κ =
˚

ν,φ,θ

vzhντvz
∂ fBE
∂T

D(ν)

4π
sin θdθdφdν (5.73)

where D(ν)/4π can be viewed as the density of states per unit solid angle. Noting
that vz = va cos θ and the distribution function is independent of the direction, we can
integrate Eq. (5.73) over all angles first to get

∫ 2π
0

∫ π

0 cos2 θ sin θdθdφ = 4π/3.With
the upper limit of frequency νm determined by Eq. (5.9), we can rewrite Eq. (5.73)
in the following:

κ = 1

3

νm∫

0

τv2ahν
∂ fBE
∂T

D(ν)dν (5.74)

The integration over the spherical coordinates offers a different way for deriving
the 1/3 term in the kinetic expression of thermal conductivity obtained earlier for a
molecular gas and an electron gas. In addition to the assumption that the acoustic
velocity is independent of the frequency, we further assume that the scattering rate is
independent of the frequency. Hence, both τ and va can be taken out of the integrand.
The remaining part is the specific heat per unit volume, defined in Eq. (5.31). It is
clear that Eq. (5.72) can be obtained based on the assumption that phonon speed,
relaxation time, and mean free path are independent of frequency.

Using Matthiessen’s rule, the phonon mean free path can be expressed as

1

�ph
= 1

�ph−ph
+ 1

�ph−d
(5.75)

where ph–ph and ph–d stand for phonon–phonon scattering and phonon–defect scat-
tering, respectively. The inverse of the mean free path can be added because they
are proportional to the number of collisions per unit time (or scattering rate). The
scattering rate due to phonon–phonon scattering is inversely proportional to temper-
ature at relatively high temperatures, i.e.,�ph−ph decreases as temperature increases.
This causes a reduction in thermal conductivity as temperature goes up. Thus, in
the high-temperature limit, the thermal conductivity can be modeled as inversely
proportional to temperature in a first-order approximation.

At low temperatures, defect scattering dominates and the scattering rate is more or
less constant. The thermal conductivity depends on the specific heat and should also
vary with T 3. The size of the sample affects the mean free path and hence the thermal
conductivity. Also, as the temperature is reduced, phonons with lower frequencies
play an important role in the thermal transport and storage. Thus, boundary scattering
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is expected to be more important at low temperatures. Similar to that for electron
scattering, the effective mean free path including boundary scattering can be defined
as

1

�ph,eff
= 1

�ph
+ 1

�ph−b
(5.76)

Figure 5.13 shows the thermal conductivity of silicon with different impurity
concentrations. For highly pure single-crystal silicon, the thermal conductivity is
comparable with a good electrical conductor such as aluminum. As the impurity con-
centration increases, the scattering rate increases and the mean free path decreases,
resulting in a reduction in the thermal conductivity. The contribution of free electrons
or holes to the thermal conductivity of semiconductors is insignificant as compared to
that of lattice vibration. Therefore, the temperature dependence of thermal conduc-
tivity for other crystalline insulators is similar to that of Si. At very low temperatures,
κ ∝ T 3 due to the temperature dependence of the specific heat; at high temperatures,
κ ∝ T−1 due to the increased phonon–phonon scattering rate. Diamond has the
highest thermal conductivity (as high as 2200 W/m K at room temperature) among
all bulk materials, due to its large sound velocity and mean free path.

Example 5.6 Estimate the mean free path and the phonon scattering rate of pure
silicon at 5, 10, 20, 100, 300, and 1000 K. Also, calculate the corresponding thermal
diffusivity α = κ/ρcp.
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Fig. 5.13 Data of thermal conductivity of silicon taken from Touloukian et al. [31]. The fitted
curve is for a highly pure silicon with a dopant concentration less than 1016 cm−3; triangles are
for a p-type single-crystal silicon with an oxygen concentration of 2 × 1017 cm−3; circles are for
a heavily doped n-type silicon with a phosphorus concentration of 2 × 1019 cm−3; and squares are
for a p-type polycrystalline silicon with a boron concentration of 3 × 1020 cm−3
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Solution The purpose of this example is to give some quantitative information about
themean free path and its temperature dependence. The calculation is straightforward
usingEq. (5.74) by assuming that the density and the phonon velocity are independent
of temperature. From Example 5.1, we have va ≈ 6000m/s, and the density is
2330 kg/m3 (from Table 5.1). The specific heat can be calculated from the Debye
model, and the thermal conductivity of intrinsic Si can be found from Fig. 5.13. The
computed results are tabulated in the following table.

Temperature
(K)

5 10 20 100 300 1000

Thermal
conductivity
κ (W/m K)

424 2110 4940 884 148 31.2

Specific heat
cp (J/kg K)

0.034 0.28 3.43 260 712 921

Mean free
path �(m)

2.7 × 10−3 1.6 × 10−3 3.1 × 10−4 7.3 × 10−7 4.5 × 10−8 7.3 × 10−9

Scattering
rate
1/τ (rad/s)

2.2 × 106 3.7 × 106 1.9 × 107 8.2 × 109 1.3 × 1011 8.3 × 1011

Thermal
diffusivity

α(m2/s)

5.4 3.3 0.62 1.5 × 10−3 8.9 × 10−5 1.5 × 10−6

The mean free path and thermal diffusivity increase dramatically as the temper-
ature is lowered. Because the crystal is highly pure, there is very little scattering
at low temperatures. The decrease in conductivity is caused by the reduction in the
specific heat. At high temperatures, the specific heat of Si does not change signif-
icantly. Hence, the decrease in thermal conductivity is due to the increase of the
phonon–phonon scattering rate. It should be mentioned that at very high temper-
atures, thermally activated free electrons and holes will also increase the impurity
scattering.

When the phonon mean free path is comparable with the smallest dimension so
that Kn ≡ �/Lc > 1, boundary scattering or the classical size effect should be
considered, as will be discussed in Sect. 5.5. When Kn � 1, ballistic or phonon–
boundary scattering becomes dominant comparedwith phonon–phonon andphonon–
defect scattering. As in the case of freemolecule flow, Fourier’s law is applicable only
in the diffusion limit. When ballistic scattering is significant, the temperature at the
boundary is discontinuous. The heat transfer process by phonons is more radiative
than conductive, as in the case of thermal radiation through a transparent medium.
Even at steady state, the 1D temperature distribution without heat generation is
nonlinear. We will study the equation of phonon radiative transfer (EPRT) in Chap. 7
along with other equations that should be used for small timescales or length scales,
where Fourier’s law of heat conduction breaks down. This is especially important
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at low temperatures, for small structures, and/or in rapid processes such as during a
short laser pulse.

So far, we have studied the basics of phonon contributions to the thermal conduc-
tivity under the relaxation time approximation for a gray medium, i.e., by assuming
that τ is independent of the vibration frequency. Furthermore, we have taken the
average acoustic velocity and assumed that it is also independent of the vibration
frequency. A further assumption is that the phonon dispersion relations are isotropic
and linear up to a maximum frequency. Real crystals behave very differently from
the simple pictures just presented. To understand this, we must study the phonon
dispersion relations for all phonon branches, with different polarizations and along
different crystal directions. While the study of crystalline structures and phonon dis-
persion relations will be deferred to Chap. 6, we can write the general expression
for thermal conductivity under the local-equilibrium condition in two forms. The
summation form reads as

κ(n̂) =
∑

P

∑

K

�ω(k)
∂ fBE
∂T

τ(k)v2g,n(k) (5.77)

where the summation is over the wavevector index K and the polarization index
P. Note that vg,n(k) is the phonon group velocity for the given polarization in the
direction n̂ along which the thermal conductivity is to be evaluated. The integration
form reads

κ(n̂) = kB
∑

P

∞∫

0

τ(ω)v2g,n(ω)

(
�ω

kBT

)2 e�ω/kBT

(e�ω/kBT − 1)2
D(ω)dω (5.78)

where D(ω) is the DOS for an individual polarization. If the DOS is properly handled
so that it contains information about a particular microstructure, Eq. (5.78) would be
identical to Eq. (5.77). Otherwise, Eq. (5.78) is the approximation of Eq. (5.77) for
large systems. For a large system with isotropic dispersion in the k-space, we have

D(ω) = 1

(2π)3

dk
dω

= 1

2π2

k2

dω/dk
= ω2

2π2v2pvg
(5.79)

where vp = ω/k and vg = dω/dk are the phase and group speeds for the corre-
sponding polarization and can be calculated if the dispersion relation ω = ω(k) is
known.

Therefore,

κ = kB
6π2

(
kBT

�

)3∑

P

xm∫

0

τ(x)
vg(x)

v2p(x)

x4ex

(ex − 1)2
dx (5.80)
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where the upper limit corresponds to the maximum frequency of each phonon polar-
ization or branch. Equation (5.79) helps us understand low-temperature behavior of
thermal conductivity of insulators.

For the same frequency,while the energy of a phonon is the same as that of a photon
hν, the acoustic wave has a much shorter wavelength than the electromagnetic wave
because of the small propagation speed va compared to the speed of light. Thus, the
momentum of a phonon is much greater than that of a photon of the same frequency.
As an example, our ears sense sound waves in the frequency range from 20 to
20,000 Hz. Assume va = 1000m/s; then, the wavelength range is 50 m to 5 cm. In
solids, however, the most important frequencies for thermal energy transfer are much
higher and temperature dependent. The smallest vibration wavelength is roughly
λmin = 2L0 ≈ 0.5 nm. With a typical velocity of va = 5000m/s in crystalline
solids, the highest frequency νm is on the order of 10 THz or 1013 Hz. Compared with
the electromagnetic wave spectrum, this frequency falls in the mid-infrared spectral
region. Therefore, electromagnetic radiation can interact with such phonons, and the
resulted absorption is called lattice absorption or phonon absorption. High-frequency
phonons are called optical phonons. On the other hand, the frequency of acoustic
phonons ranges from 0 to 10 THz. By setting kBT = hν, we find that the frequency
corresponding to the thermal energy of translational motion of a particle is on the
order of ν = kBT/h = 6 THz at 300 K (where kBT = 26meV). The thermal
phonon wavelength λth is therefore on the order of 1 nm with va ≈ 5000m/s.
On the other hand, low-frequency phonons are responsible for energy storage and
transfer in crystalline solids at cryogenic temperatures. The shift in the dominant
frequency for phonon transport resembles Wien’s displacement law for blackbody
radiation because phonons and photons are governed by the same statistics. The
phonon wave effect and quantum size effect are expected to become important when
the characteristic dimension is on the order of the thermal wavelength, as illustrated
earlier in the study of specific heat of solids.

For amorphous and disordered solids that are poor electric conductors, periodic
lattice structure does not exist and phonons if they exist cannot propagate very far.
Cahill et al. [32] extended the work of Albert Einstein in 1911 by assuming that
the mean free path for the ith phonon mode �i = τi vi is limited to half of the
phonon wavelength. That is to say that the relaxation time is half of the period,
τi = π/ω. Some earlier works used the lattice constant or the phonon wavelength as
the minimum mean free path [32–34]. By substituting τ = π/ω and vp = vg = vi
into Eq. (5.80), the minimum thermal conductivity can be expressed as

κmin = kB
6π

(
kBT

�

)2∑

i

xi∫

0

1

vi

x3ex

(ex − 1)2
dx (5.81a)

where xi = �i/T and �i can be calculated from (5.10) by substituting vi for va.
Using Eq. (5.10), Eq. (5.81) may be expressed as follows according to Ref. [32]:
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κmin = kB
(π

6
n2a
)1/3∑

i

vi

(
T

�i

)2
xi∫

0

x3ex

(ex − 1)2
dx (5.81b)

At room temperature, the thermal conductivity of most amorphous solids falls in
the range 0.2–5 W/m K [34]. Note that there are no fitting parameters in Eq. (5.81b)
as long as the number density of the atoms and the acoustic velocities for the trans-
verse and longitudinal phonons are given. Overall, Eq. (5.81b) agrees well with
the measured thermal conductivity for a large number of disordered solids, though
some materials exhibit even lower thermal conductivities than predicted κmin. While
Eq. (5.81a) or (5.81b) removes the relaxation time and mean free path, in disordered
materials when some of the vibration eigenstates are localized, definition of phonon
velocities and wavevectors is questionable.

Another approach was developed by Allen and Feldman [35] by extending the
Kubo–Greenwood formulation, which is a quantum mechanical theory for electron
transport based on the linear response theory, to the thermal conductivity of disor-
dered solids. The key is to relate the conductivity to the heat current operator matrix,
which under the harmonic assumption can be related to the mode diffusivity without
defining the group velocity or scattering rate. The obtained conductivity formula is
expected to be applicable to disordered media where the wavevectors of the carriers
can hardly be defined [35–38]. The temperature-dependent thermal conductivity is
thus expressed in terms of a summation [35]:

κ = 1

V

∑

i

C(ωi )Ddif(ωi ) (5.82a)

where C(ω) is the specific heat of the harmonic oscillator,

C(ω) = �ω
∂ fBE
∂T

= kBx2ex

(ex − 1)2
, with x = �ω

kBT
(5.82b)

and the mode diffusivity is expressed as

Ddif(ωi ) = πV 2

3�2ω2
i

∑

j( �=i)

∣∣Si j
∣∣2δ(ωi − ω j ) (5.82c)

The heat current operator is a measure of the coupling strength between vibration
mode i and j and can be calculated from harmonic lattice dynamic theory [35–37].
Some discussions on how to obtain semi-classical expressions of the diffusivity will
be given later.

In a follow-up study of amorphous silicon, Allen et al. [36] divided the heat
carriers in crystals (vibrons) into propagons that have a larger mean free path than
the lattice constant and are propagating modes, diffusons that are most popular and
largely responsible for heat transfer but are not propagating, and locons that are
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localized modes that do not contribute to heat transport. It should be noted that
when anharmonicity is considered, the locon’s contribution to heat transfer cannot
be neglected [39, 40].Based on atomistic simulation of amorphous silicon,Allen et al.
[36] assigned 4% of the modes to propagons with frequencies less than 3 THz. The
region between propagons and diffusons is called the Ioffe–Regel crossover where
the mean free path is about the same as the atomic distance. When the frequency is
further increased, the mean free path and wavevector cannot be rigorously defined.
Locons are at frequencies higher than 17 THz and comprise about 3% of the modes;
this was determined by finding the decay lengths, inverse participation ratios, and
coordination numbers of the participating atoms [36]. It was shown that propagons
dominate the thermal transport at low temperatures, while diffusons contribute to
about 2/3 of the thermal conductivity at ambient temperature. A recent theoretical
study [41] of amorphous silicon based on lattice and molecular dynamics showed
that the propagon–diffuson transition frequencies could be as high as 5–10 THz and
propagons might consist of 24% of all modes, suggesting that most heat is carried
by elastic waves in amorphous silicon at temperatures from 100 K to 500 K.

We may rewrite Eq. (5.82a) in an integral form using the density of states [38]:

κ =
∞∫

0

C(ω)Ddif(ω)D(ω)dω (5.83)

For propagons, by comparing Eq. (5.74) with (5.83), we see that Ddif = τv2a/3 =
�va/3 and the upper limit in Eq. (5.83) can be set as the high-frequency limit of
propagons. For diffusion, if the frequency-dependent mode diffusivity is obtained,
Eq. (5.83) can be applied to calculate the thermal conductivity. Allen et al. [36] found
a temperature independent Ddif(ω) ∼ ω−2 for amorphous silicon in the intermediate
temperature range and predicted a low-temperature plateau of thermal conductivity
between 10 and 30 K by combining the contributions of propagons and diffusons.
Assuming diffusons travel stepwise following a random walk with two steps per
period of oscillation, Agne et al. [38] obtained an expression of the mode diffusivity
as follows:

Ddif = ω

3π
n−2/3
a p (5.84)

where p is the probability of a successful jump that may be taken as 1 for diffu-
sons. Plugging Eq. (5.84) into Eq. (5.83) and setting the integration maximum ωm

according to Eq. (5.9), they obtained a minimum thermal conductivity expression,
which may be applicable near room temperatures. At lower temperatures, propagons
are responsible for the heat transfer, and the minimum thermal conductivity may be
predicted with Eq. (5.81b). It should be noted that the minimum thermal conductivity
using the combination of Eqs. (5.83) and (5.84) depends on the upper integration
limit that is a function of the sound velocity.
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Most polymers are disordered due to their complex morphologies and long chains
structures. Typically, they are also electrical insulators andhave relatively low thermal
conductivities [42]. Due to the advancement of flexible electronics, energy harvest-
ing, and biophysics, thermal transport in polymeric materials has received growing
attention lately [43–47]. At room temperature, the thermal conductivity of commonly
used amorphous polymers is mostly around 0.1–0.5 W/m K, though it can be as low
as 0.06W/mK or as high as 0.67W/mK [42–44]. Like inorganic amorphous materi-
als, as the temperature goes down from room temperature, the thermal conductivity
of amorphous polymers monotonically decreases with a plateau-like behavior. Choy
[42] used the BTE and the Debye DOS, Eq. (5.74), to describe the thermal transport
by assuming that themean free path� (or the scattering rate) has an inverse frequency
dependence (τ ∼ ω−1) at low frequencies, and � = �min = L0 when the frequency
exceeds a certain threshold value to describe the localized modes. Kommandur and
Yee [43] used the Allen–Feldman model, given in Eq. (5.83) with the Debye DOS,
and considered the mode diffusivity as frequency dependent according to

Ddif(ω) = 1

3
av2aω

−n (5.85)

where n is taken as an adjustable parameter approximately between 1 and 2. The
parameters a and n for propagons and diffusons, as well as the crossover frequency,
were taken as adjustable parameters to fit the thermal conductivity data, since the
contribution of locons is negligibly small. Both the BTE approach and the Allen–
Feldman model can fit the temperature dependency reasonably well [42, 43]. While
the starting points of the BTE and Kubo’s linear response theory are conceptually
different, it appears that the final model relations are well correlated though with
different interpretations of the physical significance of the parameters.

In general, the properties of polymeric materials depend on the morphology, crys-
tallinity, and chain orientation and alignment [45–47]. Polymers can have skeletal
structures, planar molecular structures, or 1D linear macromolecules; subsequently,
the specific heat may follow the general cubic, quadratic, and linear temperature
dependence [48]. Furthermore, there exist glass transitions and other phase transi-
tions that can give spikes in the specific heat of polymeric materials at the transition
temperatures [48]. Filling the polymer with highly conductive nanostructured mate-
rials can increase the thermal conductivity of the polymer composite significantly
(by more than an order or magnitude) to 10–20W/mK at room temperature [45–47].
Furthermore, aligned polymer chains and nanofibers are expected to have very high
thermal conductivities. Molecular dynamics modeling of single polyethylene chains
has shown a converging thermal conductivity up to 350 W/m K and a value over
100 W/m K for polyethylene nanofibers [45, 49].
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5.4 Thermoelectricity

Solid-state energy conversion devices are very important, and it is hoped that nan-
otechnology may offer solutions for improving the efficiency of these devices, such
as thermoelectric refrigerators and power generators. An understanding of thermo-
electricity is useful for further development of these solid-state energy conversion
devices. To illustrate the thermoelectric effect, assume an electric field E and a tem-
perature gradient ∇T exist along the z-direction of a conductor. The right-hand side
of Eqs. (5.69a) or (5.70) needs to be modified to consider the existence of both an
electric field and a temperature gradient. This can be done by applying Eqs. (5.65)
and (5.66). By dropping the integration for the equilibrium distribution and using
Appendix B.8, we can write the 3D vector forms of the current density and the heat
flux as

Je = L11

(
E + ∇μ

e

)
− L12∇T (5.86)

and

q′′ = L21

(
E + ∇μ

e

)
− L22∇T (5.87)

where

L11 = −e2�0 L12 = e

T
�1 L21 = T L12 = e�1, and L22 = − 1

T
�2 (5.88)

Here, the function �n is defined as

�n = 1

3

∞∫

0

(ε − μ)nτv2
∂ fFD
∂ε

D(ε)dε (5.89)

In writing this equation, we have used Eq. (B.81) and converted (dμ/dT )∇T =
∇μ in order to consider the spatial dependence of μ. The detailed derivation of the
preceding equations is left as an exercise (Problem 5.21). Let

E + ∇μ

e
= −∇� (5.90)

where � is called the electrochemical potential because it is the combination of the
electrostatic potential and the chemical potential. For metals at low or intermediate
temperatures, the variation in μ is relatively small, and the terms involving ∇μ in
Eqs. (5.86) and (5.87) can be dropped out. For semiconductors, changing the dopant
or impurity concentration as well as the temperature may cause a large gradient of
μ, and thus ∇μ cannot be neglected. When there is no temperature gradient, we can
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easily find the electrical conductivity of metals to be

σ = L11 (5.91)

The thermal conductivity is defined according to q′′ = −κ∇T when no electric
current flows. By setting Je = 0 and combining Eqs. (5.86) and (5.87), we find that
the thermal conductivity is related to the coefficients by

κ = L22 − L12L21/L11 (5.92)

For metals, the second term on the right-hand side is much smaller than the first
one, so that we can approximate κ ≈ L22, as already discussed in Eq. (5.71a).

5.4.1 The Seebeck Effect and Thermoelectric Power

If a temperature gradient exists, according to Eq. (5.86), there will be a current flow
even in the absence of an external field. In the case of open circuit when the current
flow is zero, there will be a voltage across the rod whose ends are held at different
temperatures. The Seebeck effect, as it was first noticed by T. J. Seebeck in 1821, can
be used to directly produce electric power from a temperature difference. The See-
beck coefficient, also called thermopower or thermoelectric power, is defined as the
induced thermoelectric voltage across a material of unit length per unit temperature
difference. Therefore,

�S = −∇�

∇T
= L12

L11
(5.93)

which has units V/K. To calculate L12 for a metal, we can use Eq. (B.79) to evaluate
�1 in Eq. (5.89). The simplest approach is to assume that τ does not change much
near the Fermi surface. The result gives (see Problem 5.22)

�S ≈ −π2kB
2e

kBT

μF
(5.94)

For metals, the Seebeck coefficient is negative, and its magnitude will increase
as temperature goes up. From Table 5.2, μF = 7 eV for copper. We have from
Eq. (5.94) that �S = −1.6μV/K at 300 K and −3.2μV/K at 600 K. However, the
experimental values are positive with 1.83μV/K at 300 K and 3.33μV/K at 600 K
[50, 51]. This sign error is due to the simplification used to evaluate �1, and it is an
indication that the nearly free-electron model may not capture all the fundamental
physics of metals. A proper quantum mechanical evaluation based on the actual
band structure is rather complicated but has been carried out in some studies [6, 52].
Higher values of the Seebeck coefficient can exist in some alloys and semiconductors.
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Generally speaking, the Seebeck coefficient is positive for p-type semiconductors
whose majority carriers are holes and negative for n-type semiconductors whose
majority carriers are electrons.

For awirewhose ends are at different temperaturesT 1 andT 2, as in the open circuit
shown in Fig. 5.14a, there will be a voltage difference between 1 and 2 according
to the relation V2 − V1 = − ∫ T2

T1
�S(T )dT . For n-type semiconductors, �S(T ) is

negative and electrons at the higher temperature end tend to diffuse toward the lower
temperature end. An electrostatic potential will be built up to balance the diffusion
process. Hence, the voltage is higher at the higher temperature end. Thermoelectric
voltage cannot be measured with the same type of wires because the electrostatic
potentials would cancel out each other. To measure the thermoelectric power, a
junction is formed with two types of wires having different Seebeck coefficients,
type I (+) and type II (−), as shown in Fig. 5.14b. The leads can be a third type of
wire or the same as one of the thermocouple wires. This is of course the familiar
thermocouple arrangement for temperature measurement. A reference temperature
(T 1) is needed because a thermocouple can only measure the temperature difference.
The voltage output can be expressed as

�V =
T2∫

T1

[
�S,I(T ) − �S,II(T )

]
dT = �I,II�T (5.95)

In thermocouple practice, the difference �I,II is called the Seebeck coefficient or
thermopower, and the potential difference�V is called the electromotive force (emf).
Because the Seebeck coefficient is zero when a material becomes superconducting
(σ → ∞ ), superconductors have been used to establish an absolute scale of thermo-
electric power [51]. In thermometry, a wire with a positive Seebeck coefficient and
another with a negative Seebeck coefficient are combined to form a thermocouple
junction. For example, a type-E thermocouple is made of a nickel–chromium alloy
(chromel) and a copper–nickel alloy (constantan); on the other hand, a type-J ther-
mocouple is made of copper and constantan. Historically, galvanometers were used

2T
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Type II ( )−

Leads1T VΔ

1T

2T 2V

1V

(a) (b)

+

−

Fig. 5.14 Illustration of the Seebeck effect. a Single wire with a temperature difference between
the two ends. b A thermocouple made of two different materials
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to accurately measure the electric current in a potentiometer. The DC voltage can
now be measured quickly and very accurately with a digital voltmeter/multimeter
(DVM). Detailed discussions about the fundamentals and practice of thermoelectric
thermometry based on metallic and alloy wires can be found from Bentley [50].

5.4.2 The Peltier Effect and the Thomson Effect

Equations (5.86) and (5.87) can be combined to eliminate the potential term so that

q′′ = L21

σ
Je − κ∇T (5.96)

This equation suggests that there will be a heat flux in a material due to an external
electric current, even without any temperature difference. This phenomenon, first
discovered by Jean Peltier in 1834, is called the Peltier effect, which can be used
for refrigeration (known as thermoelectric cooling) by passing through an electric
current through a material. The coefficient L21/σ is called the Peltier coefficient. It
can be seen from Eqs. (5.88), (5.91), and (5.93) that

� = L21/σ = T�S (5.97)

This quantitative relationship between the Seebeck coefficient and the Peltier
coefficient was revealed byWilliamThomson (LordKelvin) in the 1850s. Thomson’s
thermodynamic derivation led him to discover a third thermoelectric effect, known as
the Thomson effect, which states that heat can be released or absorbed when current
flows in a material with a temperature gradient. The energy received by a volume
element for prescribed Je and ∇T can be expressed as follows:

Je · (−∇�) − ∇ · q′′ = J 2
e

σ
+ ∇ · (κ∇T ) −

(
T
d�S

dT

)
Je · ∇T (5.98)

Notice that the common term �SJe · ∇T in both Je · (−∇�) and ∇ · q′′ cancels
out. In Eq. (5.98), the first term is the heat generated by the Joule heating, the second
term is the heat transferred into the control volume due to the temperature gradient,
and the third term is caused by the Thomson effect. The last term on the right-hand
side is nonzero when there is a current flow with a temperature gradient, unless the
Seebeck coefficient is independent of temperature. It should be noted that, like the
Seebeck effect and the Peltier effect, the Thomson effect is also a reversible process
per se. The Thomson coefficient K is defined as the rate of the absorbed heat divided
by the product of the current density and the temperature gradient. Thus,

K = T
d�S

dT
(5.99)
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Equation (5.98) has provided a way to determine d�S/dT, after σ and κ are
measured at different temperatures. This allows for the absolute thermopower to be
determined for certain materials at higher temperatures, since superconductivity can
only occur at very low temperatures. A systematic study has resulted in the deter-
mination of absolute thermoelectric power for lead and platinum, which can then
be used as reference materials to determine the absolute thermoelectric power for
other materials [51]. It should be noted that, before the discovery of high-temperature
superconductors, the highest temperature that a material could be made supercon-
ducting was 23 K in an alloy. Superconductivity at temperatures above 35 K was
discovered in a ceramic material in 1986 and, shortly afterward, superconductivity
above the boiling temperature of liquid nitrogen (78 K) was made possible.

Example 5.7 Consider a p-type semiconductor rod of diameter d = 1mmand length
L = 2mm. One end of the rod is in contact with a heat sink at TL = 300K, and the
other end is in contact with a heat source at TH = 350K. What is the open-circuit
voltage? If a current I = 0.8A is allowed to flow from the cold end to the hot end,
what is the heat transfer rate to the heat sink? Neglect the temperature dependence
of the thermal conductivity, the electrical resistivity, and the Seebeck coefficient by
using κ = 1.1W/mK, re = 19μ
m, and �S = 220μV/K, respectively.

Solution Assume there is no heat transfer via the side of the rod. For an open
circuit, the electric potential is higher at the cold end, and the voltage across the
rod is Vopen = �S(TH − TL) = 11mV. The rate of heat transfer to the heat sink by
conduction from the heat source is qC = (πd2/4)κ(T2 − T1)/L = 21.6mW.

When an electric current is running from the cold end to the hot end, the Joule
heating is generated uniformly inside the rod. The dissipated heat must reach both
ends equally by conduction. The additional heat transfer to the heat sink is qJ =
I 2R/2 = 15.5mW, where R = 48.4m
 is the resistance of the rod. On the other
hand, the Peltier effect results in cooling, or heat removal from the heat sink. From
Eq. (5.84), we have qP = −T1�S I = −52.8mW. The combination of the three
terms gives the heat transfer rate as q = qC + qJ + qP = −15.7mW. The negative
sign indicates that heat is removed from the heat sink.

This example demonstrates the Peltier effect for thermoelectric refrigeration. It
can be seen that a smaller thermal conductivitywill decrease the heat transfer between
the two ends: a smaller electrical resistivity will reduce the Joule heating,, and a
larger Seebeck or Peltier coefficient will enhance the heat removal. For most metals,
the thermal conductivity is too high, and the Seebeck coefficient is too small for
refrigeration application. Some insulators can have a large Seebeck coefficient but
their electrical resistivity is too high for them to be used in thermoelectric devices.

5.4.3 Thermoelectric Generation and Refrigeration

The study of thermoelectric generation and refrigeration has become an active
research area since the 1950s, alongwith the development of semiconductormaterials
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Fig. 5.15 Illustration of a
thermoelectric generator or
refrigerator
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or p-n junctions. Heavily doped semiconductors exhibit large Seebeck coefficients.
Alternative n-type or p-type semiconductors (or semimetals) are used as thermoelec-
tric materials or thermoelectric elements. These include antimony tellurium (SbTe),
bismuth tellurium (BiTe), and silicon germanium (SiGe) compounds. More recently,
nanostructured materials are investigated as candidates to increase the performance
of thermoelectric devices [53].

With the understanding of the Seebeck effect, the Peltier effect, and the Thomson
effect, we are ready to perform a thermodynamic analysis of thermoelectric gen-
erators or refrigerators as illustrated in Fig. 5.15. There are N pairs of junctions
that are connected electrically in series by metallic interconnects and thermally in
parallel between the two heat sinks. To simplify the analysis, contact resistances
are neglected, and it is assumed that all the thermoelectric elements have the same
length L and the same cross-sectional area Ac. Furthermore, heat transfer by other
modes is neglected except conduction by thermoelectric elements. Because contact
electrical resistance is neglected, heat generation by the Joule heating happens due
to resistance of the thermoelectric elements only. A load resistance RL is used to
evaluate the electric power output of the generator. A further assumption is that the
thermal and electrical conductivities, as well as the Seebeck coefficient, are indepen-
dent of temperature. This assumption is reasonable when the temperature difference
between the two heat reservoirs is very small.

Consider a thermoelectric generator. In this case, heat is taken from the high-
temperature reservoir TH at the rate qH, and some heat is released to the low-
temperature reservoir TL at the rate qL. The generated thermoelectric power
is

P = I�V = qH − qL (5.100)

The temperature distribution along the thermoelectric element is not linear, i.e., the
temperature gradient is not constant. The steady-state temperature distribution along
a single thermoelectric element can be solved by setting Eq. (5.98) to zero. Because
of the assumption of constant values of I, κ, σ, and�S, the Thomson coefficient also
becomes zero. Therefore, we obtain
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T (x) = J 2
e

2σκ
(L − x)x − x

L
(TH − TL) + TH (5.101)

The resulting heat transfer rates due to temperature gradient are

−κAc
dT

dx

∣∣∣
∣
x=0

= κAc
TH − TL

L
− I 2L

2σ Ac
(5.102a)

and

−κAc
dT

dx

∣∣∣∣
x=L

= κAc
TH − TL

L
+ I 2L

2σ Ac
(5.102b)

Clearly, half of the Joule heating goes to the heat source, and the other half goes
to the heat sink, as noticed in Example 5.7. Substituting Eq. (5.102) into Eq. (5.96)
and using the subscripts n and p for different thermoelectric elements, we have

qH = N I�npTH + N Acκnp
�T

L
− N

I 2L

2Acσnp
(5.103a)

qL = N I�npTL + N Acκnp
�T

L
+ N

I 2L

2Acσnp
(5.103b)

where �np = �S,p − �S,n , κnp = κn + κp, �T = TH − TL, and σnp =
(
1/σn + 1/σp

)−1
. The output power is therefore

P = I�V = qH − qL = N I�np�T − I 2R0 (5.104)

where R0 = NL/(Acσnp) is the resistance of all thermoelectric elements. The voltage
is solely caused by the Seebeck effect, i.e., �V = N�np�T . Assuming the load
resistance is RL, we have

I = �V

R0 + RL
= N�np�T

R0 + RL
(5.105)

Substituting Eq. (5.105) into Eq. (5.104), we see that the electric power is indeed
P = I 2RL. The thermal efficiency can be calculated as follows:

η = P

qH
=

RL
R0

�T
TH

1
Z∗TH

(
1 + RL

R0

)2 +
(
1 + RL

R0

)
− �T

2TH

(5.106)

where
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Z∗ = NL

Acκnp

�2
np

R0
= σnp�

2
np

κnp
(5.107)

is independent of the geometry [54]. When 1/Z∗TH � 1 and R0/RL � 1, we
have η → 1 − TL/TH, which is exactly the Carnot efficiency. Increasing Z∗ will
improve the efficiency. Hence, minimizing the thermal conduction, reducing the
electrical resistance, and increasing the Seebeck coefficient of the thermoelectric
elements are essential to improve the performance. A similar analysis can be done
for thermoelectric cooling, which is left as an exercise (see Problem 5.25). In general,
the figure of merit of thermoelectricity is defined as

Z = σ�2
S

κ
(5.108)

which has units of K−1 and can be nondimensionalized by multiplying the tem-
perature T. The resulting dimensionless parameter ZT (zee-tee) is often quoted as
the figure of merit for thermoelectric materials or devices. This applies to both
thermoelectric generation and refrigeration (see Problems 5.23 and 5.25).

Because of the compromise between a large electrical conductivity and a small
thermal conductivity, alongwith the requirement of a large Seebeck coefficient, it has
turned out that semiconductors are the best choice for thermoelectric applications.
After an extensive pursuit in the 1950s, materials with ZT values between 0.5 and
1 near room temperature have been developed using BixSb2-xTe3 and Bi2SeyTe3-y.
These materials are essentially doped V-VI semiconductors Sb2Te3 or Bi2Te3. In the
past 25 years, intensive theoretical and experimental research has been conducted to
increase the thermoelectric device performance by using nanostructured materials.
Mildred Dresselhaus and coworkers predicted that multiple quantum wells or super-
lattices may enhance ZT values due to quantum confinement as well as a reduction
in the phonon thermal conductivity; the idea has also been extended to PbTe/PbSe
superlattice nanowires [55]. Superlattices made of SiGe/Si and GaAs/AlAs have also
been considered. Since 2001, several groups have demonstrated ZT values exceeding
2 [53, 56]. Gang Chen’s group has performed extensive investigations on the phonon
and electron transport in nanostructuredmaterials related to low-dimensional thermo-
electricity, as discussed in a recent review [57]. The reduction in thermal conductivity
may come from a combination of a number of factors including the mean-free-path
reduction by boundary scattering, thermal resistance associated with acoustic mis-
match or phonon scattering at the interface of dissimilar materials, and/or quantum
confinement of the phonon DOS.

Before moving to the discussion of size effects on thermal conductivity, let
us give an overview of irreversible thermodynamics and a brief introduction to
nonequilibrium thermodynamics.
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5.4.4 Onsager’s Theorem and Irreversible Thermodynamics

The set of coupled equations given in Eqs. (5.86) and (5.87) is an example of
irreversible thermodynamics, pioneered by Lars Onsager in the 1930s, alterna-
tively known as the thermodynamics of irreversible processes or Onsager’s theo-
rem. Onsager described the phenomenological relations of interrelated or coupled
transport processes using the following equation [58]:

Ji =
∑

j

αi jF j (5.109)

where Ji is the flux of a physical quantity Xi with Ji = dXi/dt, αi j is called the
Onsager kinetic coefficient, and Fi is the ith generalized driving force or affinity. In
an equilibrium state, all Fi ’s are zero. Furthermore, the entropy of a system can be
expressed as [59]

ds =
∑

i

fidXi (5.110)

where fi is a property that is related to Fi such that Fi is proportional to the gradient
of fi . The entropy flux is thus

s′′ =
∑

i

fiJi (5.111)

If an infinitesimal control volume is chosen, the continuity equation can bewritten
as

∂Xi

∂t
+ ∇ · Ji = 0 (5.112)

The entropy balance becomes

∂s

∂t
= ṡgen − ∇ · s′′ (5.113)

where ∂s
∂t = ∑

i fi
∂Xi
∂t and ∇ · s′′ = ∑

i ∇ fi · Ji +∑
i fi∇ · Ji . Using the continuity

equation, we obtain the volumetric entropy generation rate:

ṡgen =
∑

i

∇ fi · Ji (5.114)

Furthermore, the Onsager reciprocity is expressed as follows [58, 59]:

αi j = α j i (5.115)
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Lars Onsager (1903–1976) received the Nobel Prize in Chemistry in 1968 “for
the discovery of the reciprocal relations bearing his name, which are fundamental for
the thermodynamics of irreversible processes.” The Onsager reciprocity was even
considered by some researchers as the fourth law of thermodynamics.

Example 5.8 Determine the Onsager kinetic coefficients and the volumetric entropy
generation rate for a conductor with constant current and temperature gradient.

Solution It should be noted that in thermoelectricity, J1 = Je, J2 = q′′, F1 =
−(1/T )∇�, and F2 = ∇(1/T ) = −(1/T 2)∇T . Thus, the Onsager relations are
expressed as

Je = α11
−∇�

T
− α12

∇T

T 2
(5.116)

q′′ = α21
−∇�

T
− α22

∇T

T 2
(5.117)

Comparing the above expressions with Eqs. (5.86) and (5.87), we find that

α11 = T L11 α12 = α21 = T 2L12 andα22 = T 2L22 (5.118)

The entropy generation rate can be calculated by using Eq. (5.99). Note that

ds = δQ − μdN

TV
= q′′ · ∇

(
1

T

)
+ Je ·

(
−∇�

T

)
(5.119)

In the steady state, the energy equation, Eq. (5.98), becomes

Je · (−∇�) − ∇ · q′′ = 0 (5.120)

Therefore, the volumetric entropy generation rates for 3D and 1D cases,
respectively, are

ṡgen = q′′ · ∇
(
1

T

)
+ 1

T
∇ · q′′ and ṡgen = q ′′

T 2

dT

dx
+ 1

T

dq ′′

dx
(5.121)

These results are consistent with the analysis in Chap. 2 (see Example 2.5 and
Problem 2.29). Furthermore, Eq. (5.121) suggests that the Thomson effect is a
reversible process that does not cause any entropy generation. The same can be
said for both the Seebeck effect and the Peltier effect, which are reversible ther-
moelectric effects. In addition to thermoelectricity, irreversible thermodynamics has
found applications inmulticomponent diffusion, nonisothermal diffusion (when both
a temperature gradient and a concentration gradient exist), and some magnetic pro-
cesses [59]. A further advancement in nonequilibrium thermodynamics was made by
Ilya Prigogine (1917–2003) who was awarded the Nobel Prize in Chemistry in 1977.
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Prigogine’s study extended irreversible thermodynamics to systems that are far from
equilibrium and are allowed to exchange energy, mass, and entropy with their sur-
roundings. Prigogine and colleagues demonstrated that ordered dissipative systems
can be formed from disordered systems, when the systems are far from equilibrium,
and dubbed this theory dissipative structure,which led to pioneering research in self-
organization or self-assembly. The formation of ordered structures from disordered
structures has diverse applications in chemical, biological, and social systems [60,
61]. It is beyond the scope of this book to go into the details of this theory.

5.5 Classical Size Effect on Conductivities

When the characteristic length, such as the thickness of a film, the diameter of a wire,
or the size of a grain (for polycrystalline solids), is comparable to the mechanistic
length, i.e., the mean free path, boundary or interface scattering becomes impor-
tant. Subsequently, the thermal conductivity (as well as other transport coefficients)
becomes size dependent and can also be anisotropic [62, 63]. Because the mean
free paths of electrons and phonons tend to increase as temperature goes down, size
effects are usually more important at low temperatures. The criteria are also different
for different materials due to the different carrier types and scattering mechanisms.
In the following section, we will study the effect of boundary scattering on electri-
cal and thermal conductivities based on simple geometric considerations as well as
derivations using the BTE.

5.5.1 Simple Geometric Considerations

The simple expression of thermal conductivity based on the kinetic theory is κ =
1
3 (ρcv)v�b for either electrons or phonons. Here, �b is called the bulk mean free
path, which is the mean free path when the material is infinitely extended. While
the specific heat and the velocity are also size dependent, especially for phonons,
let us focus on the size dependence of the mean free path. The main objective of
this section is to illustrate how boundary scattering affects the thermal conductivity
by reducing the mean free path. The argument is also applicable to the electrical
conductivity, since it is also proportional to the mean free path. Shown in Fig. 5.16
are two geometric configurations to be considered: (a) and (b) for a thin film and (c)
for a thin wire or rod.

In the ballistic transport limit when d � �b, we assume that the mean free path
in the film is the same as the thickness d, �f = d. Thus, the conductivity ratio can
be obtained as
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Fig. 5.16 Illustration of free-path reduction due to boundary scattering. a A thin film for paths
originated from the surface. b A thin film for paths originated from the center. c A thin wire for
paths originated from the center

κf

κb
= �f

�b
= 1

Kn
(5.122)

where Kn = �b/d is the Knudsen number for electrons or phonons, borrowed from
the definition used in rarefied gas dynamics. In the intermediate region, we can apply
Matthiessen’s rule as suggested in Eqs. (5.56) and (5.76) such that

1

�eff
= 1

�b
+ 1

�f
(5.123)

Accordingly,

κeff

κb
= �eff

�b
= 1

1 + Kn
(5.124)

The result calculated from Eq. (5.124) is plotted in Fig. 5.17 to illustrate the
size dependence of the effective thermal conductivity. It appears that this simple
formula overpredicts the reduction in thermal conductivity, as compared with the
more realistic models to be discussed next.

As early as 1901, J. J. Thomson first considered the size effect on the electrical
conductivity of thin films. His argument was extended by K. Fuchs in 1938 based on
the BTE. The geometric argument assumes that boundary scattering is diffuse and
inelastic, i.e., the electrons are fully accommodated after scattering by a boundary.
The concept of accommodation is the same as that used for ideal gas particles in
the free molecule flow regime discussed in Sect. 4.4. However, for simplicity, the
distribution of free paths is not taken into consideration. In other words, all paths are
assumed to be the same as the bulk mean free path. When d � �b, we may assume
that all energy carriers originate from the boundary. From Fig. 5.16a, we see that
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Fig. 5.17 Reduction in
thermal conductivity due to
boundary scattering. Note
that Eq. (5.128) was used
with different m values for
Kn < 1, and interpolation
was used for 1 < Kn < 5

�(θ) =
{
d/ cos θ, 0 < θ < θ0

�b, θ0 < θ < π/2
(5.125)

The free paths should be averaged over the hemisphere, and the weighted average
can be written and evaluated as follows:

�f

�b
=

∫ 2π
0

∫ π/2
0 �(θ) sin θdθdφ

∫ 2π
0

∫ π/2
0 �b sin θdθdφ

= ln(Kn) + 1

Kn
(5.126)

Applying Matthiessen’s rule again, we have

κeff

κb
= �eff

�b
=
(
1 + Kn

ln(Kn) + 1

)−1

(5.127)

This equation, however, cannot be applied for small values of Kn since ln(Kn)

becomes negative. Let us assume Eq. (5.127) is applicable for Kn > 5. When
Kn < 1, we may use

κeff

κb
= �eff

�b
=
(
1 + Kn

m

)−1

(5.128)

where m ≈ 3 for thin films [62, 63]. Equation (5.124) can be considered as a special
case of Eq. (5.128) with m = 1. The results based on Eqs. (5.127) and (5.128) are
plotted in Fig. 5.17 for comparison. The thermal conductivity in the intermediate
region for 1 < Kn < 5 is linearly interpolated based on the values at Kn = 1 and 5.
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Equations (5.126) and (5.127) do not consider the direction of transport and cannot
capture the anisotropic feature due to the size effect. Flik and Tien [63] employed a
weighted average of the free-path components in the parallel and normal directions
of thin films. Their work was extended to different geometries by Richardson and
Nori [64]. For the z-direction, the projected mean free path is �z = �(θ) cos θ ;
hence, the weighted average becomes

�z

�b,z
=

∫ 2π
0

∫ π/2
0 �(θ) cos θ sin θdθdφ

∫ 2π
0

∫ π/2
0 �b cos θ sin θdθdφ

= 2

Kn
− 1

Kn2
(5.129)

The use of Matthiessen’s rule allows us to obtain

κeff,z

κb
=
(
1 + Kn

2 − Kn−1

)−1

for Kn > 5 (5.130)

For Kn < 1, Eq. (5.128) should be used with m = 3, which can be obtained by
integrating over the film when Kn � 1 [63]. The result from Eq. (5.130) is also
shown in Fig. 5.17. For transport along the x-direction, one may assume that all the
electrons originate from the center of the film for simplicity. The component of the
free path is�x = �(θ) sin θ cosφ, where φ is the azimuthal angle. Due to symmetry,
the integration can be carried out in a single octant only. It can be seen fromFig. 5.16b
that �(θ) = d/(2 cos θ) for 0 ≤ θ < θ1, and �(θ) = �b for θ1 ≤ θ < π/2, where
θ1 = cos−1(d/2�b). Subsequently,

�x

�b,x
=

∫ π/2
0

∫ π/2
0 �(θ) sin2 θ cosφdθdφ

∫ π/2
0

∫ π/2
0 �b sin2 θ cosφdθdφ

(5.131)

After evaluation of the above integral, we obtain

κeff,x

κb
= 2

πKn
ln[2Kn(1 + sin θ1)] + 1 − 2θ1

π
− sin θ1

πKn
(5.132)

In the ballistic limit, i.e., Kn � 1, Eq. (5.132) reduces to κeff,x/κb ≈
(2/π) ln(4Kn)/Kn. If the free paths were to originate from the boundary, the result
could be obtained by replacing Kn with Kn/2 in Eq. (5.132). While it is perfectly
logical to assume that all the carriers originate from the surface for the z-component
in the ballistic limit. For thermal transport along a film with a temperature gradient
in the x-direction, carriers must originate from a cross section or y-z plane inside
the film. The transport process along the film is essentially diffusion-like with sig-
nificant boundary scattering contributions. Anisotropy may arise between κeff,x and
κeff,z due to boundary scattering. A simple argument is that paths with large polar
angles are more important for parallel conduction, whereas paths with smaller polar
angles are more important for normal conduction. Based on the geometry, it can
be seen that paths with smaller polar angles are more likely to be scattered by the
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boundary. Another reason that causes κeff,x to be greater than κeff,z is that scattering
tends to be more specular for larger incidence angles. Specular reflection or elastic
scattering does not reduce the conductivity because the incident particles only change
the direction without any exchange of energy with the surface. Crystal anisotropy
is another major reason for anisotropic conduction, sometimes the dominant reason,
as in high-temperature superconducting YBa2Cu3O7 films [63]. Grain boundaries
can strongly influence the thermal conductivity in polycrystalline films [62]. For
chemical–vapor-deposited polycrystalline diamond films, depending on the crystal
orientation, κx may be greater or smaller than κz [65].

For circular wires, considering the conduction along a thin wire as shown in
Fig. 5.16c, we have �z(θ) = �b cos θ for 0 < θ < θ2, and �z(θ) = d cot θ/2
for θ2 < θ < π/2, where θ2 = sin−1(d/2�b). Thus,

�w,z

�b,z
=

∫ 2π
0

∫ π/2
0 �z(θ) sin θdθdφ

∫ 2π
0

∫ π/2
0 �b cos θ sin θdθdφ

= 1

Kn
− 1

4Kn2
(5.133)

Applying Matthiessen’s rule yields

κeff,w

κb
= 4Kn − 1

4Kn2 + 4Kn − 1
(5.134)

which can be applied for Kn > 5 and approaches to Eq. (5.124) at large Kn. For
Kn < 1, studies have shown that Eq. (5.128) is a good approximation withm = 4/3
[66, 67]. The reduction in thermal conductivity for thin wires is also indicated in
Fig. 5.17, where values for 1 < Kn < 5 are again based on a simple interpola-
tion between the two expressions. Due to geometric confinement, the reduction in
the mean free path is more severe for thin wires than for thin films. The geometric
argument is easy to understand and may help gain a physical intuition of the size
effect due to boundary scattering. In consideration of the classical size effect, it is
assumed that Fourier’s law is still applicable with a modified thermal conductivity.
The size effect on the electron or phonon transport properties can also be formulated
using the BTE for thin films and wires, as presented in the following.

5.5.2 Conductivity Along a Thin Film Based on the BTE

In Sect. 5.3.3, we derived electrical and thermal conductivities based on the BTE
for bulk materials. The relaxation time approximation was adopted, and the distri-
bution function was assumed to be not too far away from equilibrium, i.e., under the
local-equilibrium conditions. To determine the size effect on the conductivities along
thin films, the same assumptions will be applied. Consider the geometry shown in
Fig. 5.16a, with a temperature gradient and an electric field in the x-direction only.
Because of the finite thickness in the z-direction, the distribution function should
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also be an explicit function of z, viz.,

f1(ε, T, z) ≈ f0(ε, T ) + τ(ε)

(
eE

me

∂ f0
∂ε

∂ε

∂vx
− vx

∂ f0
∂T

dT

dx
− vz

∂ f1
∂z

)
(5.135a)

Compared with Eq. (5.65), the last term was added because f1 depends also on
z. Here, the electric field and the temperature gradient are along the x-direction. In
Eq. (5.135a), we have already replaced ∂ f1/∂εwith ∂ f0/∂ε and ∂ f1/∂T with ∂ f0/∂T .

We can rearrange Eq. (5.135a) as follows:

−eE

me

∂ f0
∂ε

∂ε

∂vx
+ vx

∂ f0
∂T

dT

dx
+ vz

∂ f1
∂z

= − f1 − f0
τ(ε)

(5.135b)

which is nothing but the steady-state BTE under the relaxation time approximation.
The general solution can be expressed as

f1 = f0 + τvx

(
eE

∂ f0
∂ε

− ∂ f0
∂T

dT

dx

)[
1 − ψ(v) exp

(
− z

τvz

)]
, vz > 0 (5.136a)

and

f1 = f0 + τvx

(
eE

∂ f0
∂ε

− ∂ f0
∂T

dT

dx

)[
1 − ψ(v) exp

(
−d − z

τvz

)]
, vz < 0 (5.136b)

where ψ(v) is an arbitrary function that accounts for the accommodation and scat-
tering characteristics. If perfect accommodation is assumed with inelastic and dif-
fuse scattering, then ψ(v) = 1. Let us consider electrical conduction without any
temperature gradient. For diffuse scattering only with ψ(v) = 1, it can be shown
that

f1 = f0 + τvxeE
∂ f0
∂ε

[
1 − exp

(
− z

τvz

)]
, vz > 0 (5.137a)

and

f1 = f0 + τvxeE
∂ f0
∂ε

[
1 − exp

(
−d − z

τvz

)]
, vz < 0 (5.137b)

We must substitute the distribution function into Eq. (5.67a) and integrate over
(vx , vy, vz), or over (ν, θ, φ) or (ε, θ, φ), in spherical coordinates, to obtain Je(z) =
−eJN (z) along the film. Therefore,

Je(z) = −e2E

∞∫

0

τ
∂ fFD
∂ε

dε

2π∫

0

dφ

⎧
⎨

⎩

π/2∫

0

v2x
[
1 − exp

(
− z

τv cos θ

)]
v2sinθdθ
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+
π∫

π/2

v2x

[
1 − exp

(
− d − z

τv cos θ

)]
v2sinθdθ

⎫
⎪⎬

⎪⎭
(5.138)

Putting vx = v sin θ cosφ, the integration over φ can be carried out indepen-
dently. The average current flux Je,avg = (1/d)

∫ d
0 Je(z)dz can also be obtained. The

properties of the Fermi integral allow the integration over ε to be carried out and
expressed in terms of the properties at the Fermi surface, i.e., τ(μF) and vF. Notice
that �b = τ(μF)vF, and let Je,avg = σfE, where σf is the effective electrical con-
ductivity of the film. After normalization of the electrical current density based on
Eqs. (5.67a) and (5.68), we obtain the following relation:

σf

σb
= F(Kn) (5.139a)

where

F(Kn) = 3

4d

π/2∫

0

sin3 θ

d∫

0

[
1 − exp

(
− z

�b cos θ

)]
dzdθ

+ 3

4d

π∫

π/2

sin3 θ

d∫

0

[
1 − exp

(
− d − z

�b cos θ

)]
dzdθ

= 3

2d

π/2∫

0

sin3 θ

{
d − �b cos θ

[
1 − exp

(
− d

�b cos θ

)]}
dθ

= 1 − 3Kn

8
+ 3Kn

2

∞∫

1

(
1

t3
− 1

t5

)
exp

(
− t

Kn

)
dt (5.139b)

Note that the mth-order exponential integral is defined as Em(x) =∫∞
1 e−xt t−mdt or Em(x) = ∫ 1

0 ηm−2e−x/ηdη, which has the relation Em+1(x) =
m−1

[
e−x − xEm(x)

]
. Equation (5.139b) can also be expressed as

F(Kn) = 1 − 3Kn

8
+ 3Kn

2

[
E3

(
1

Kn

)
− E5

(
1

Kn

)]
(5.139c)

The asymptotic relations are

σf

σb
≈ 1 − 3Kn

8
for Kn � 1 (5.140a)

and
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σf

σb
≈ 3 ln(Kn)

4Kn
for Kn � 1 (5.140b)

which is close to Eq. (5.132) for Kn � 1. The derivation using the BTE presented
here inherently assumes that the electrons are originated from the film rather than
from the boundaries.

For thermal conductivity, we can substitute Eq. (5.136a, 5.136b) with ψ(v) = 1
into Eq. (5.70) and follow a similar procedure to obtain κf/κb = F(Kn), where
F(Kn) is given in Eq. (5.139b) or (5.139c). At very low temperatures or near room
temperature, the Wiedemann–Franz law is applicable, and the reduction in electrical
and thermal conductivities is essentially the same. In the intermediate region, one
could use different scattering rates or mean free paths for the bulk thermal and elec-
trical conductivities to determine the size effect individually based on Eq. (5.139a).
Another way to obtain κf/κb is to calculate the heat flux using Eq. (5.136a, 5.136b)
with a finite temperature gradient as done by Kumar and Vradis [68]. They obtained
complicated expressions and showed that the results are similar to σf/σb in a large
range.

According to the discussion of thermoelectricity in Sect. 5.4, we could in principle
quantify the size effect on other coefficients. If the same assumptions are used, to
the first-order approximation, L12 and L21 are subject to boundary scattering and
will also be reduced according to Eq. (5.139a). Because the thermoelectric power
is the ratio of the two coefficients, the Seebeck coefficient along the film should
be expected to remain the same regardless of boundary scattering. One should be
cautious about this conclusion because the assumption of a spherical Fermi surface
and the free-electron model are questionable when modeling thermoelectricity, as
mentioned previously.

The above discussion can be extended to scattering with a specular component.
Let parameter p, which is called specularity, represent the probability of scattering
being elastic and specular. For specular and elastic scattering, carriers will continue
to exchange energy and momentum inside the film after reflection by the boundary.
Therefore, these scattering events do not cause any reduction in the effective mean
free paths or conductivities along the film. If p is assumed to be independent of the
incident direction, the function ψ(v) in Eq. (5.136a, 5.136b) becomes

ψ(v) = 1 − p

1 − p exp(−d/τvz)
(5.141)

The function given in Eq. (5.139b)may bemodified after some tedious derivations
as follows:

F(Kn, p) = 1 − 3(1 − p)Kn

2

∞∫

1

(
1

t3
− 1

t5

)
1 − exp(−t/Kn)

1 − p exp(−t/Kn)
dt (5.142)
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Fig. 5.18 Size effect on
thermal conductivity along
the film of thickness d, as
predicted by the BTE with
different specularities.

The effects of p and Kn on the effective conductivity are shown in Fig. 5.18. The
trends with respect to Kn are very similar to those in Fig. 5.17 obtained from simple
geometric considerations. For electron transport, since the de Broglie wavelength of
electrons is less than 1 nm, boundary scattering can usually be considered diffuse,
i.e., p = 0. For phonons, the wavelength may vary from the atomistic scale up to
the size of the crystal. Therefore, the size effect needs to be considered for different
phonon frequencies. The parameter p can be estimated based on the rms surface
roughness σrms and the wavelength λ of the carrier by

p = exp

(
−16π2σ 2

rms cos
2 θi

λ2

)
(5.143)

where θi is the angle of incidence. This equation can be derived from the wave
scattering theory [69]. Generally speaking, p � 1whenλ ≤ σrms.Whenλ > 10σrms,
the specular reflection cannot be neglected. Furthermore, the specularity p increases
with the incidence angle. The actual scattering distribution often consists of a broad
specular lobe, and the nonspecular component is not perfectly diffuse. This is similar
to light scattering by rough surfaces for which an in-depth discussion will be given in
Chap. 9. Feng et al. [70] studied the effect of specularity and grain boundary scattering
on the thermal conductivity of thin metal films. Their model for the reduction of
thermal conductivity of copper and gold films agrees well with experimental values
over a large temperature range.

As can be seen from Figs. 5.17 and 5.18, when Kn = �b/d > 0.1, i.e., when
d < 10�b, the size effect may be significant, and boundary scattering dominates
when d < 0.1�b. Note that Examples 5.5 and 5.6 provide typical numerical values
of the bulk mean free paths of electrons in a noble metal and of phonons in silicon.
At room temperature, the electron mean free path of a metal is on the order of tens of
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nanometers, and thus one would expect some size effect when d is less than 300 nm.
For a highly pure metal at very low temperatures, however, the electron mean free
path could be on the order of millimeters. In this case, even when d of the film
is on the order of micrometers, boundary scattering would dominate the scattering
process. Note that the method presented in this section is only for heat conduction
along a film. For phonon conduction across a film, the BTE may be simplified using
the equation of phonon radiative transfer to be discussed in Chap. 7.

5.5.3 Conductivity Along a Thin Wire Based on the BTE

The above discussion can be extended to conduction along a thin wire. For wires
with circular cross sections, the effective conductivity can be expressed as [66, 67]

κw

κb
or

σw

σb
= 1 − 12

π

1∫

0

√
1 − ξ 2

∞∫

1

exp

(
− ξ t

Kn

)√
t2 − 1

t4
dt dξ (5.144)

In particular, the asymptotic approximations with ≈1% accuracy are

κw

κb
or

σw

σb
≈ 1 − 3

4
Kn + 3

8
Kn3 for Kn < 0.6 (5.145a)

and

κw

κb
or

σw

σb
≈ 1

Kn
− 3(ln Kn + 1)

8Kn2
− 2

15Kn3
for Kn > 1 (5.145b)

If the scattering is not completely diffuse, a specularity parameter p similar to that
for thin films can be introduced, and the expression becomes

κw

κb
or

σw

σb
= 1 − 12(1 − p)2

π

∞∑

m=1

mpm−1G(Kn,m) (5.146a)

where

G(Kn,m) =
1∫

0

√
1 − ξ 2

∞∫

1

exp

(
−mξ t

Kn

)√
t2 − 1

t4
dt dξ (5.146b)

Again, different mean free paths and Kn numbers should be used for thermal
and electrical conductivities in the region where the Wiedemann–Franz law is not
applicable.
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5.5.4 Size Effects on Crystalline Insulators

For crystalline solids, phonons are the principal heat carriers. Simple geometric
arguments can also be applied to give qualitative results of the size effect using the
phonon mean free path. The BTE or Boltzmann–Peierls equation can be used to
more rigorously predict the thermal conductivity of bulk solids as well as the size
effect on the thermal conductivity. The distribution function of phonons depends on
the frequency or the wavevector, which are related by the dispersion relation. The
group velocity can be calculated from the dispersion curve for a given phonon mode
or branch. In general, the scattering rate is frequency dependent. The Boltzmann–
Peierls equation at a given frequency under the relaxation time approximation for
steady-state 1D conduction can be expressed as follows:

vx
∂ fBE
∂T

dT

dx
+ vz

∂ f1
∂z

= − f1 − fBE
τ(ω)

(5.147)

where vx and vz are the components of the group velocity that depend on the
frequency. The solution is similar to Eq. (5.136a, 5.136b), especially for the z-
dependence. Following the discussions in Sect. 5.3.4 on phonon thermal conductivity,
in conjunction with the average heat flux along the film, we can rewrite Eq. (5.80)
as follows:

κf = k4BT
3

6π2�3

∑

P

xm∫

0

τ(x)vg(x)

v2p(x)

x4ex

(ex − 1)2
F(Knx , p)dx (5.148)

where x = �ω/kBT is a reduced frequency and the Knudsen number, Knx =
τ(x)vg(x)/d = �(x)/d, is thus a function of the frequency ω. In this equation, the
summation index P accounts for all phonon polarizations, the upper bound of the
integration is the cutoff frequency for each polarization, and the function F(ξ, p)
can be calculated from Eq. (5.142). If an average Kn that is independent of the
frequency can be used, combining Eqs. (5.148) with (5.80) gives κf/κb = F(Kn, p)
as expected. A similar equation can be developed for thin wires [67, 71].

For semiconductors, such as silicon, the phonon mean free path is on the order of
tens of nanometers at room temperature. Therefore, the size effect can be neglected
for a 1-μm-thick silicon film above room temperature. However, as temperature is
lowered, the size effect becomes more and more significant. Numerical calculations
dealing with the conductivity reduction are left as exercises. Kenneth Goodson’s
group has experimentally demonstrated the size effect on the thermal conductivity
of both intrinsic and doped silicon films with thicknesses from a few micrometers
down to 20 nm [72]. The thermal transport properties of silicon nanowires and other
semiconductor nanowires have been extensively studied both experimentally and
theoretically for thermoelectric applications [4, 53, 73–79].
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5.5.5 Mean-Free-Path Distribution

As previously discussed, the scattering rate and the mean free path both depend on
the frequency. If all modes are combined, the thermal conductivity can be expressed
as an integration with respect to frequency κ = ∫∞

0 κω(ω)dω. The integrand is the
distribution function of thermal conductivity in terms of frequency (i.e., a frequency
spectrum). To facilitate understanding and analysis of the experimental data, it has
been proposed to use the mean free path (MFP) as the independent variable such that
the bulk thermal conductivity can be expressed as follows [80, 81]:

κbulk =
∞∫

0

κ�(�)d� (5.149a)

where

κ�(�) = κω(ω)

(
d�

dω

)−1

= −
∑

P

∞∫

0

1

3
C(ω)v�

(
d�

dω

)−1

(5.149b)

Here, C(ω) is the volumetric specific heat as given in Eq. (5.82b). The group
velocity v and mean free path � for each phonon branch are also functions of fre-
quency. We can interpret Eq. (5.149b) as the thermal conductivity per unit MFP,
i.e., the thermal conductivity distribution function in terms of the mean free path. It
is simply referred to as the MFP distribution or MFP spectrum [81], unless noted
otherwise, � refers to the bulk mean free path.

With nanostructures, due to boundary scattering, the κ�(�) at a given bulk MFP
is reduced by a factor that depends on the Knudsen number. Therefore, we can write

κ�,nano(�) = κ�(�)Fnano(Kn, p) (5.150)

where Fnano is a structure-dependent function of Kn and the specularity p. It may
be thought as the ratio of the MFP in the nanostructure to that of the bulk, i.e.,
Fnano = �nano/�. The Knudsen number depends on the characteristic length and
varies with the bulk MFP. Thus, the thermal conductivity of the nanostructure can
be written as

κnano =
∞∫

0

κ�,nano(�)d� =
∞∫

0

κ�(�)Fnano(Kn, p)d� (5.151)

The cumulative distribution function (CDF) can also be defined for thermal
conductivity in terms of the mean free path as follows:
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K�(�) = 1

κnano

�∫

0

κ�(ξ)Fnano(Kn, p)dξ (5.152)

For bulk materials, simply set κnano = κ and Fnano = 1 in Eq. (5.152). This equation
is called the (normalized) thermal conductivity accumulation function.

Themean-free-path spectrum and the thermal conductivity accumulation function
have been experimentally and theoretically investigated for both bulk and nanostruc-
turedmaterials [78–82]. These studies have significantly improved our understanding
of heat conduction in bulk and nanostructured solid materials and devices. Further
discussion is postponed to Chap. 7.

5.6 Quantum Conductance and the Landauer Formalism

In the above discussion, the Fourier law was assumed to hold under the local-
equilibrium approximation, with reduced thermal conductivities to include the effect
of boundary scattering. Many works have employed ab initio techniques, lattice
dynamics, and equilibrium or nonequilibrium molecular dynamics to study ther-
mal transport at the nanoscale [4, 82–84]. In heterogeneous structures, such as
superlattices, when thermal transport across the multiple layers is considered, the
local-equilibrium assumption breaks down in the ballistic regime. Further discus-
sion of non-Fourier conduction, especially for transient processes, will be deferred
to Chap. 7. For superlattice nanowires, both lateral and longitudinal confinements
exist, so each element is like a quantum dot confined in all three dimensions. When
the quantum confinement becomes significant, the relaxation time approximation
used to solve the BTE is not applicable. Landauer’s formalism is presented here
for modeling certain nonequilibrium and ballistic transport phenomena. This section
also introduces the quantum size effect on electrical and thermal transport processes,
with an emphasis on the concept of quantum conductance and its implications.

Quantum size effect on the lattice specific heat was discussed in Sect. 5.2. Atten-
tion is now paid to the electrical conductance of metallic materials and thermal
conductance of dielectric materials. For bulk solids, the DOS for electrons D(ε)

is proportional to
√

ε, as given in Eq. (5.18) and illustrated in Fig. 5.5b. Note that
for phonons or photons, the energy ε = �ω is proportional to the frequency and
D(ω) is proportional to ω2 when the dispersion is linear; see Eq. (5.35) and Fig. 5.4.
For electrons or holes, ε = p2

2m∗ = �
2k2

2m∗ , where k is the wavevector and m∗ is the
effective mass. For the electron gas in a 2D solid, the density of states becomes
D(ε) = 2 × k

2π
dk
dε = m∗

π�2 , which can be derived using Eq. (5.37) considering the
spin degeneracy. In a quantum well of thickness L, the energy levels are quantized
in the normal or z-direction according to Eq. (3.80), i.e., n2h2

8m∗L2 , where n is a positive
integer. The combined energies can be expressed as
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εn(k) = n2�2

2m∗L
+ �

2(k2x + k2y)

2m∗ (5.153)

and the resulting DOS is given by

D(ε) = nm∗

π�2
, for εn ≤ ε < εn+1 and n = 1, 2, . . . (5.154)

which is a staircase function, as depicted in Fig. 5.19a, along with the bulk DOS. The
reason that the DOS for the nth subband is multiplied by n is because kz,n = nπ/L ,

where kmin = π/L . Before applying Eqs. (5.36) and (5.37), we must multiply the
total number of modes N by kz,n L/π . For 1D quantum wires confined in both y- and
z-directions (assuming a rectangular shape of Ly × Lz), the energy levels are given
by

εl,n = l2�2

2m∗Ly
+ n2�2

2m∗Lz
(5.155)

For each subband (l, n), the DOS becomes

D(ε) = nl

π�

√
2m∗

ε − εl,n
(5.156)

which has an inverse square-root dependence of energy and a singularity at εl,n , as
shown in Fig. 5.19b. For 3D confined quantum dots, the energy levels are completely
discrete; subsequently, the DOS becomes isolated delta functions (not shown in
Fig. 5.19).

The quantization of electron energy levels or phonon frequencies in small struc-
tures suggests that the resulting transport properties may also be quantized. For
example, the electrical conductance may depend on the applied current or force for
the nanocontact in a stepwise manner. The thermal conductance of insulators can
also be quantized due to limited available phonon modes in small structures and

Fig. 5.19 Electron density of states due to quantum confinement. a 2D quantum wells versus 3D
bulk solids. b 1D quantum wires.



5.6 Quantum Conductance and the Landauer Formalism 241

at low temperatures. In this section, we use conductance rather than conductivity
for reasons to be explained soon. Long before the quantization of conductance was
experimentally observed, physicists had formulated different theories to understand
the transport phenomena in the quantumor ballistic regimes. Landauer and collabora-
tors [85] have developed a formalism to treat electrical current flow as a transmission
probability when carriers are scattered coherently and the resulting ballistic trans-
port behaves quantum mechanically. Landauer’s formalism can easily be applied to
the 1D case for conductance through a narrow channel, as illustrated in Fig. 5.20a.
Suppose ballistic transmission exists in the channel connecting two reservoirs of
different electrochemical potentials; there will be a current flow from 1 to 2 and
reversely from 2 to 1. In the absence of losses by scattering and reflection, the net
current flow can be expressed as

Je = J1→2 − J2→1 = −evF(μ1 − μ2)D(ε) (5.157)

whereμ is the chemical potential. The derivation can be easily generalized to include
the electrostatic potential. Note that the DOS in the 1D case is D(ε) = (π�vF)−1

considering the electronic spin degeneracy. Because the voltage drop is V1 − V2 =
−(μ1 − μ2)/e, the electrical conductance for complete transmission becomes

ge0 = Je
V1 − V2

= e2

π�
or

2e2

h
(5.158)

which gives a universal constant with a value of 7.75×10−5 
−1 or a resistance value
of 12.91 k
. This is the quantum conductance for an ideal 1D conductor, in which
there is no resistance or voltage drop associated with the channel itself. Instead,
the voltage drop is associated with the perturbation at each end of the channel as
it interacts with the reservoir [85]. In the above derivation, we assumed that the
Fermi distribution function can be approximated as a step function (i.e., at absolute
zero temperature). By introducing a transmission coefficient ξ12 and using the actual

Fig. 5.20 Illustration of
quantum conductance.
a Electrical current flow
through a narrow metallic
channel due to different
electrochemical potentials.
b Heat transfer between two
heat reservoirs through a
narrow dielectric channel
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distribution function, one can modify Eq. (5.157) to the following [85, 86]:

Je =
∞∫

0

(−evF)ξ12(ε)[ fFD(ε, μ1) − fFD(ε, μ2)]D(ε)dε (5.159)

For small potential differences, using the following approximation,

fFD(ε, μ1) − fFD(ε, μ2)

μ2 − μ1
= −∂ fFD(ε, μ)

∂μ
= ∂ fFD(ε, μ)

∂ε

we obtain the expression of the electrical conductance:

ge = −2e2

h

∞∫

0

ξ12(ε)
∂ fFD
∂ε

dε (5.160)

which reduces to Eq. (5.158) at absolute zero temperature when ξ12(0) is taken to
be 1. The transmission coefficient or probability is given by a scattering matrix (the
S-matrix) based on a solution of Schrödinger’s equation. The solution is in the form
of eigenvalues called eigenchannels, each with a transmission coefficient τi between
0 and 1. Thus, the expression of conductance is reduced to

ge = 2e2

h

∑

i

τi (5.161)

Depending on how many propagation modes at the Fermi level are excited, the
conductance varies in a discontinuous manner. Conductance quantization has been
realized in metallic nanocontacts, nanowires, and carbon nanotubes [86–89], even at
room temperature, and has also been predicted by molecular dynamics simulations
[90, 91]. These discoveries are very important for the development of single-electron
transistors, nanoelectromechanical systems, nanotribology, and quantum computing.

The ballistic thermal transport process resembles electromagnetic radiation
between two blackbodies separated by a vacuum. For a 1D photon gas, the Ste-
fan–Boltzmann law reads q ′′ ∝ T 2 rather than q ′′ ∝ T 4. In a solid nanostructure
(channel) that links two heat reservoirs, as illustrated in Fig. 5.20b, the ballistic heat
conduction can be treated in a similar way so that

q1→2 = 1

2π

∑

P

ωD∫

ωP

ξP(ω)�ω fBE(ω, T1)dω (5.162a)

and
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q2→1 = 1

2π

∑

P

ωD∫

ωP

ξP(ω)�ω fBE(ω, T2)dω (5.162b)

where ξP(ω) is the transmission coefficient (or probability) of the polarization branch
P, which accounts for both scattering in the channel and reflection from the junctions.
Here, the upper bound ωD approaches infinity at very low temperatures, and the
lower bound is the cutoff frequency for the phonon mode P. This cutoff frequency is
determined by the width of the channel and the order of propagating phonon modes,
like in a waveguide. More specifically, if a rectangular cross section is considered
whose dimensions are Lx and Ly , the cutoff frequency for the (m,n) mode is given
by

kmn = ωmn

vs
=
√(

mπ

Lx

)2

+
(
nπ

Ly

)2

(5.163)

Apparently, a narrow channel enables a large cutoff wavenumber. Note that the
zeroth-order mode always exists because it has a zero cutoff frequency. If the inte-
gration in Eq. (5.162) is expressed in terms of the wavevector, there will be a group
velocity vg term. In writing Eq. (5.162), we have assumed vg = vp for a linear dis-
persion relation. The net heat transfer is calculated by q12 = q1→2 − q2→1, which is
commonly done in radiation heat transfer. Assuming that the temperature difference
is small, we obtain the thermal conductance as

gT = q12
T1 − T2

= 1

2π

∑

P

ωD∫

ωP

ξP(ω)�ω
∂ fBE(ω, T )

∂T
dω (5.164a)

or

gT = k2BT̄

h

∑

P

xD∫

xP

ξP(x)
x2ex

(ex − 1)2
dx (5.164b)

Note that T̄ represents the average temperature. At sufficiently low temperatures,
only the lowest phonon branches,whose cutoff frequency equals zero,may contribute
to the conductance. If the transmission coefficient is assumed to be unity, each of the
lowest phonon modes will contribute to the thermal conductance by

gT0 = πk2BT

6�
or

π2k2BT

3h
(5.165)

which has a value gT0/T = 0.947 pW/K2 and is another universal constant that
can be viewed as the Stefan–Boltzmann constant in 1D space for each mode. If the
above derivation is repeated to obtain electron thermal conductance, we will end
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up with 2gT0 due to the electronic spin degeneracy. Therefore, the Lorentz number
Lz = κ

σT = gT
geT

in the ballistic regime remains the same as given in Eq. (5.62) for the
diffusive regime [92]. Roukes and collaborators [93] have experimentally demon-
strated quantum thermal conductance using a 60-nm-thick silicon nitride membrane.
They reported a 16gT0 behavior at temperatures below 0.6 K since the structure was
suspended by four narrow bridges (channels). Each bridge or channel acts like a
wire with four phonon modes (two transversal, one longitudinal, and one torsional).
Murphy and Moore [74] used Landauer’s formalism to study phonon transport in
silicon nanowires considering temperature dependence and the effect of diffusive
and localized modes on the frequency-dependent transmission coefficient.

Carbon nanotubes (CNTs) have been known for a while, especially for its asso-
ciated large thermal conductivities [94–98]. Single-walled carbon nanotubes can be
made essentially free from defect scattering and boundary scattering due to atomistic
smoothness. Their diameters can be made as small as a few nanometers, while their
lengths can be several micrometers. Thermal conductivities of single-walled and
multi-walled nanotubes have been measured with suspended MEMS bridges and are
found to exceed that of diamond at room temperature [97]. The thermal conductivity
was calculated from the measured thermal conductance based on an effective cross-
sectional area. Above room temperature, phonon–phonon anharmonic interactions
may provide a means for diffusive conduction behavior. Nanotube bundles, on the
other hand, are subject to various scattering mechanisms and possess a lower thermal
conductivity; yet they may still behave like good thermal conductors (κ values from
50–300 W/m K). Furthermore, the contact may be attributed to the reduction in con-
ductance. Contact resistance due to interface scattering needs to be further addressed
in order to realize the potential of nanotubes for use in heat transfer enhancement
[99]. Mingo and Broido calculated the thermal conductance of carbon nanotubes
in the ballistic limit [100]; for semiconductor nanotubes at sufficiently low tem-
peratures, the thermal conductance becomes 4gT0T due to the four lowest phonon
modes regardless of the length and the cross-sectional area. In this regime, the ther-
mal conductivity of CNTs increases with length. As the temperature increases from
cryogenic temperatures, the thermal conductivity of CNTs first increases due to the
increased specific heat and reaches a peak around 300–400 K, and then decreases
due to phonon–phonon scattering. In the diffusion limit, the conductivity is indepen-
dent of the length and diminishes as temperature further increases. For nanotubes
whose band structures are metal-like, such as with (6,0) and (18,0) chiral numbers,
electron ballistic transport may be important; however, electron–phonon scattering
will dominate at sufficiently high temperatures.
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5.7 Summary

This chapter began with lattice vibrations (i.e., phonons) in solids and discussed the
dimensionality and the quantum size effect on the lattice specific heat. Free-electron
theory was applied, assuming a spherical Fermi surface, to predict the electronic spe-
cific heat, as well as electrical and thermal conductivities of solids. The Boltzmann
transport equation under the relaxation time approximation and the local-equilibrium
assumption was used to derive the electrical and thermal conductivities as well as the
thermoelectric coefficients within the framework of irreversible thermodynamics. A
brief discussion of the efficiency of thermoelectric power and refrigeration systems
was then provided. The classical size effect on electrical and thermal conductivities
was presented using both geometric arguments and the BTE, followed by a discus-
sion on the mean-free-path distribution and the thermal conductivity accumulation
function. Finally, the concept of conductance quantization for both electrical cur-
rent and heat flow was introduced using Landauer’s formalism. The properties were
discussed with examples of representative materials, such as noble metals, semicon-
ductors, quantum wells, superlattices, nanowires, and carbon nanotubes. In the next
chapter, the band theory for electrons and phonons will be introduced as an advanced
topic of the transport theory of solids.

Problems

5.1 Calculate the specific heat of lead, using both the Einstein model and the
Debye model, for temperatures equal to 2, 10, 20, 50, 100, 200, 300, 600, and
800 K. Use �D = 88 K and �E = 65 K since the specific heats calculated
with these values agree with the data well for the whole temperature range.
Compare your answerwith the values fromTouloukian andBuyco [7]. Explain
the low-temperature and high-temperature behavior.

5.2 In the first stage of designing a refrigeration system that will cool 1 kg of
Pb from 300 to 2 K. Assume the Debye model can be used to calculate the
temperature-dependent specific heat of lead (with �D = 88 K). Answer the
following questions:

(a) How much energy must be removed from Pb?
(b) How much entropy must be transferred out from Pb?
(c) Assuming that the environment is at 300 K, what is the least amount of

work necessary to perform this refrigeration task?
(d) Consider the refrigeration in three temperature ranges: (1) from 300 to

100 K; (2) from 100 to 20 K; and (3) from 20 to 2. What is the least
amount of work needed in each temperature range?
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5.3 Plot the Fermi function f FD versus ε for T = 0, 500, and 5000 K. Plot the
distribution function of free electrons in metal f (ε) as a function of ε. Discuss
the main features of these plots. [Use eV as the unit for energy.]

5.4 The Fermi energy (at 0 K) of copper is μF = 7.07 eV. What is μ(T ) of Cu
at 1000 and 10,000 K? Determine the maximum and root-mean-square free-
electron speeds in copper at 0 K. Plot the electron distribution functions in
terms of the speed and the kinetic energy for T = 0, 300, and 4000 K.

5.5 The Fermi energy of silver is μF = 5.51 eV. Calculate μ(T ) of Ag at T = 400
and 4000 K. What is the rms speed of electrons at 0 K? What is the Fermi
velocity? Plot the Fermi function at 0 and 4000 K in one graph and discuss
the differences.

5.6 For kBT � μF, the specific heat of free-electron gas inmetalmay be expressed
as c̄v,e = R̄

nekB

∫∞
0

∂ fFD
∂T D(ε)εdε. Evaluate this integration to obtain Eq. (5.24)

by referring Appendix B.8.
5.7 Calculate the Fermi energy of silver using the molecular weight and density.

Estimate the spacing between the adjacent atoms of Ag. Calculate and plot the
electron specific heat and the lattice specific heat of Ag at temperatures from
0 to 1000 K. Show in a separate graph the low-temperature behavior. How do
your calculated values agree with experimental data found in a heat transfer
text?

5.8 Calculate the Fermi energy μF for copper based on the molecular weight and
density. What is the rms speed of free electrons in Cu at 0 and 300 K? Find
the electronic specific heat and the lattice specific heat in J/kg K of Cu at 0.1,
1, 10, 30, and 500 K. When can you apply the T 3 law, and when can you use
the Delong–Petit law?

5.9 Calculate the electronic specific heat and the lattice specific heat of gold at
1, 10, 100, 300, and 1000 K. Sketch their temperature dependence. At what
temperature is the electronic and lattice contributions the same? How does
your calculated result compare with the value given in a heat transfer text?

5.10 TheMayer relation for the specific heat can bewritten as cp−cv = Tβ2
P

ρκT
,where

βP = 1
v

(
∂v
∂T

)
P
is the isobaric volume expansion coefficient, κT = − 1

v

(
∂v
∂P

)
T

is the isothermal compressibility, and ρ is the density. Noting that the sound

speed va is defined according to v2a =
(

∂P
∂ρ

)

s
= cp

cvρκT
, we can write cp−cv

cv
=

Tβ2
Pv

2
a

cp
. A simple estimate of the relative difference between the specific heats

is readily obtained by assuming that va is independent of temperature, cp on
the right-hand side is approximately 3R, and βP = 3α, where α is the linear
thermal expansion coefficient. For silicon, α ≈ 4.6× 10−6 K−1 at 1000 K and
va ≈ 5000m/s. For copper, α ≈ 2.2× 10−5 K−1 and va ≈ 2500m/s. Estimate
the relative difference between cp and cv at 1000 K for silicon and copper.

5.11 Graphene is a single sheet of carbon atoms arranged in hexagonal pattern. The
phonon mode with the lowest speed is the out-of-plane transverse acoustic
mode, when the atoms vibrate perpendicular to the plane. It has a dispersion
relation ω(k) = ak2, with a = 6 × 10−7 m2s. It is expected that this mode
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is the dominate mode for the lattice specific heat at low temperatures (below
100 K). Using the 2D solid model with the quadratic dispersion to show that
cv(T ) ∝ T at low temperatures, i.e., T � �D.

5.12 Evaluate the specific heat of a thin GaAs film of two different thicknesses:
L = 2 and 10 nm. Plot the calculated specific heat with and without planar
modes. Compare your results with that predicted by the Debye model for the
bulk GaAs at T � �D.

5.13 Develop a computer program to calculate the lattice specific heat of CdS or
ZnO2 cubic nanocrystals with different sizes: L = 2, 10, and 20 nm. Discuss
the low-temperature behavior in terms of Eqs. (5.43) and (5.44).

5.14 For a nanowire of diameter d = 5 nm, show that cv(T ) ∝ T at low tempera-
tures for a linear dispersion. If the length of the nanowire is L = 10d, what
is the lowest temperature asymptote of the specific heat due to the second
quantum size effect?

5.15 Calculate the electron scattering rate and themean free path of copper at 295K.
Use the linear relations for the electrical resistivity and theWiedemann–Franz
law to calculate the thermal conductivity at 200, 400, 600, and 800K. Compare
the calculated results with data from a heat transfer textbook.

5.16 Calculate the electron scattering rate 1/τ , the mean free path �, the electri-
cal conductivity σ , and the thermal conductivity κ of aluminum near room
temperature. If the temperature is increased by 5%, how will 1/τ , �, σ , and
κ change? Express the scattering rate in both rad/s and Hz. Discuss why one
should divide it by 2π to express 1/τ in Hz.

5.17 Sketch the thermal conductivity versus temperature from0 to 1000K for silver.
What is the dependence of κ onT, as the temperature approaches absolute zero?
How does the thermal conductivity change above 300 K?

5.18 Find the data for the electrical and thermal conductivities of a good conductor
in a large temperature range, and evaluate when the Wiedemann–Franz law is
valid. Show the low-temperature and high-temperature asymptotes for both σ

and κ .
5.19 In the text, we stated that ∂ fFD/∂ε is a Dirac delta function and used it to

obtain the electrical conductivity in Eq. (5.63). Prove that when kBT � μF,
the integral

∫∞
0 G(ε)

∂ fFD
∂ε

dε ≈ −G(μF), where G(x) is an analytical function
of x. Then, derive Eq. (5.49) from Eq. (5.63).

5.20 Sketch the thermal conductivity of germanium (relatively pure) as a function
of temperature [31]. Explain the trend of thermal conductivity at very low
temperatures and at above room temperature. Can you assume that the thermal
conductivity is independent of temperature near room temperature?

5.21 Derive Eqs. (5.74) through (5.80). Show that in Eq. (5.80), the second term is
much smaller than the first term for metals.

5.22 Prove Eq. (5.82a, 5.82b, 5.82c), and calculate the Seebeck coefficient for Ag at
300 and 600K. Themeasured Seebeck coefficient of Ag is 1.51μV/K at 300K
and 3.72 μV/K at 600 K. On the other hand, the Seebeck coefficient for Pt is
−5.28 μV/K at 300 K and −11.66 μV/K at 600 K. If an Ag-Pt thermocouple
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is formed with a junction temperature T2 = 600 K and a reference temperature
T1 = 300 K, find the output voltage (see Fig. 5.14b).

5.23 For given values of TL, TH, and Z∗, there exists an optimal ratio RL/R0 for
achieving the maximum efficiency of the thermoelectric generator given in
Eq. (5.94). Show that

ηmax = �T

TH

√
1 + Z∗TM − 1√

1 + Z∗TM + TL/TH
,

where TM = (TH + TL)/2. Calculate the maximum efficiency, normalized to
the Carnot efficiency, for TL = 300 K and TH = 800K as a function of the
dimensionless parameter Z∗TM. Plot it for Z∗TM from 0.3 to 3. Discuss the
significance of ZT in thermoelectric devices.

5.24 Consider a thermoelectric generator made of two semiconductors working
between TL = 300K and TH = 600K. The p-type material is made of
Bi0.5Sb1.5Te3, and the n-type material is made of Bi2Se0.75Te2.25, with the
following average properties: κp = 1.2W/mK, κn = 1.3W/mK, re,p =
15μ
m, re,n = 13μ
m, �p = 210μV/K, and �n = −190μV/K. Assume
that the length L = 0.8 cm and the cross section Ac = 0.3 cm2 for both materi-
als. A generator with a diameter of 10 cm contains 100 pairs (N = 100). Find
the power output at the maximum efficiency (see Problem 5.23).

5.25 Perform a thermodynamic analysis of the thermoelectric cooling using the
same configuration as in Fig. 5.15. By noting that no load resistance is needed
and the voltage supplied �V = N�np�T + I R0, show that the coefficient of
performance of a thermoelectric refrigeration is

COP = |qL|
P

= I�np AcσnpTL − I 2L/2 − A2
cσnpκnp�T/L

I�np Acσnp�T + I 2L
.

The maximum COP can be obtained by setting the derivative with respect to
I equal to zero. Show that

COPmax = TL
�T

√
1 + Z∗TM − TH/TL√

1 + Z∗TM + 1
,

where TM = (TH + TL)/2.
5.26 Estimate the thermal conductivity along a copper filmwith various thicknesses:

d = 400, 100, and 50 nm at 300 K. What if the temperature is reduced to 1 K?
5.27 Estimate the thermal conductivity along a copper wire with various diame-

ters: d = 400, 100, and 50 nm at 1 and 300 K, respectively. Compare simple
geometric averaging of free paths with the BTE. What are the electron de
Broglie wavelengths at these temperatures? If the surface roughness param-
eter σrms = 2 nm, will the scattering be mostly diffuse or specular at each
temperature?



Problems 249

5.28 At 5 K, calculate the thermal conductivity, perpendicular (κeff,z ) and parallel
(κeff,x ) to the plane, for a 200-nm-thick gold film. Calculate the effective
thermal conductivity κeff,w of a gold wire of 5-μm thickness. Hint: use the
bulk resistivity value from Fig. 5.11.

5.29 In Example 5.6, we have calculated the properties of a single-crystal silicon at
various temperatures. Use simple relations with p = 0 to estimate the thermal
conductivities of silicon from 5 to 1000 K along a 50-nm-thick thin film and a
100-nm-thick thin wire. Assume the surface roughness σrms = 2 nm. Will the
diffuse model be a good assumption? For the thin film, redo the calculation
using the specularity p estimated based on the thermal phonon wavelength λth.

5.30 The diameter of a carbon nanotube is determined by its chiral numbers (m, n)

according to d = 0.07834
√
m2 + mn + n2. What is the diameter of (10,10)

single-walled nanotubes? Assume that the wall thickness (unit atomic layer)
is 0.34 nm. What is the cross-sectional area? Calculate the phonon thermal
conductivity κ in the ballistic limit considering the four phonon modes at
100 K for (10,10) nanotubes with length L = 100 nm, 1 μm, and 10 μm. Will
the ballistic limit of thermal conduction hold at room temperature and above?
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