
Chapter 2
Overview of Macroscopic Thermal
Sciences

This chapter provides a concise description of the basic concepts and theories under-
lying classical thermodynamics and heat transfer. Different approaches exist in pre-
senting the subject of thermodynamics. Most engineering textbooks first introduce
temperature, then discuss energy, work, and heat, and define entropy afterward.
Callen developed an axiomatic structure using a simple set of abstract postulates
to combine the physical information that is included in the laws of thermodynamics
[1]. Continuing the effort pioneered by Keenan and Hatsopoulos [2], Gyftopoulos
and Beretta [3] developed a logical sequence to introduce the basic concepts with a
rigorous definition of each thermodynamic term. Their book has been a great inspi-
ration to the present author in comprehending and teaching thermodynamics. Here,
an overview of classical thermodynamics is provided that is somewhat beyond typi-
cal undergraduate textbooks [4, 5]. Details on the historic development of classical
thermodynamics can be found from Bejan [6] and Kestin [7], and references therein.
The basic phenomena and governing equations in energy, mass, and momentum
transfer will be presented subsequently in a self-consistent manner without invoking
microscopic theories.

2.1 Fundamentals of Thermodynamics

A system is a collection of constituents (whose amounts may be fixed or varied
within a specified range) in a defined space (e.g., a container whose volume may
be fixed or varied within a specified range), subject to other external forces (such as
gravitational and magnetic forces) and constraints. External forces are characterized
by parameters. An example is the volume of a container, which is a parameter
associated with the forces that confine the constituents within a specified space.
Everything that is not included in the system is called the environment or surroundings
of the system.
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Quantities that characterize the behavior of a system at any instant of time are
called properties of the system. Properties must be measurable, and their values
are independent of the measuring devices. Properties supplement constituents and
parameters to fully characterize a system. At any given time, the system is said to be
in a state, which is fully characterized by the type and amount of constituents, a set of
parameters associated with various types of external forces, and a set of properties.
Two states are identical if the amount of each type of constituents and values of all
the parameters and properties are the same. A system may experience a spontaneous
change of state, when the change of state does not involve any interaction between
the system and its environment. If the system changes its state through interactions
with other systems in the environment, it is said to experience an induced change
of state. If a system can experience only spontaneous changes of state, it is said to
be an isolated system, that is, the change of state of the system does not affect the
environment of the system. The study of the possible and allowed states of a system is
called kinematics, and the study of the time evolution of the state is called dynamics.

The relation that describes the change of state of a system as a function of time
is the equation of motion. In practice, the complete equations of motion are often
not known. Therefore, in thermodynamics, the description of the change of state
is usually given in terms of the end states (i.e., the initial and final states) and the
modes of interaction (for example, work and heat, which are discussed later). The
end states and the modes of interaction specify a process. A spontaneous change
of state is also called a spontaneous process. A process is reversible if there is at
least one way to restore both the system and its environment to their initial states.
Otherwise, the process is irreversible; i.e., it is not possible to restore both the system
and its environment to their initial states. A steady state is one that does not change
as a function of time despite interactions between the system and other systems in
the environment.

2.1.1 The First Law of Thermodynamics

Energy is a property of every system in any state. The first law of thermodynamics
states that energy can be transferred to or from a system but can be neither created
nor destroyed. The energy balance for a system can be expressed as

�E = E2 − E1 = Enet,in (2.1a)

where� denotes a finite change, subscripts 1 and 2 refer to the initial and final states,
respectively, and Enet,in = Ein − Eout is the net amount of energy transferred into the
system. For an infinitesimal change, the differential form of the energy balance is

dE = δEnet,in (2.1b)
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Here, d is used to signify a differential change of the property of a system, and δ

is used to specify a differentially small quantity that is not a property of any system.
Clearly, the energy of an isolated system is conserved. Energy is an additive property,
i.e., the energy of a composite system is the sum of the energies of all individual
subsystems. Examples are kinetic energy and potential energy, as defined in classical
mechanics, and internal energy, which will be discussed later. A similar expression
for mass balance can also be written.

The termmechanical effect is used for the kind of processes described in mechan-
ics, such as the change of the height of a weight in a gravitational field, the change of
the relative positions of two charged particles, the change of the velocity of a point
mass, the change of the length of a spring, or a combination of such changes. All
mechanical effects are equivalent in the sense that it is always possible to arrange
forces and processes that annul all the mechanical effects except one that we choose.
It is common to choose the rise and fall of a weight in a gravity field to represent this
kind of process.

A cyclic process (also called a cycle) is one with identical initial and final states.
A perpetual-motion machine of the first kind (PMM1) is any device (or system)
undergoing a cyclic process that produces no external effects but the rise or fall of
a weight in a gravity field. A PMM1 violates the first law of thermodynamics, and
hence, it is impossible to build a PMM1. Perpetual motion, however, may exist as
long as it produces zero net external effect. Examples of perpetual motion are a
lossless oscillating pendulum, an electric current through a superconducting coil,
and so forth.

2.1.2 Thermodynamic Equilibrium and the Second Law

An equilibrium state is a state that cannot change spontaneously with time. There are
different types of equilibrium: unstable, stable, and metastable. A stable-equilibrium
state is a state that cannot be altered to a different state without leaving any net effect
on the environment. In the following, a stable-equilibrium state is frequently referred
to as a state at thermodynamic equilibrium.

The stable-equilibrium-state principle, or state principle, can be phrased as fol-
lows: Among all states of a system with a given set of values of energy, parameters,
and constituents, there exists one and only one stable-equilibrium state. In other
words, in a stable-equilibrium state, all properties are uniquely determined by the
amount of energy, the value of each parameter, and the amount of each type of con-
stituents. This principle is an integral part of the second law of thermodynamics [2, 3,
7]. It is important for the thermodynamic definition of temperature and the derivation
of thermodynamic relations in stable-equilibrium states. Another aspect of the sec-
ond law of thermodynamics is the definition of an important property, called entropy,
as discussed next.

Entropy is an additive property of every system in any state. The second law of
thermodynamics asserts that, in an isolated system, entropy cannot be destroyed but
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can either be created (in an irreversible process) or remain the same (in a reversible
process). The entropy produced as time evolves during an irreversible process is
called the entropy generation (Sgen) due to irreversibility. Like energy, entropy can
be transferred from one system to another. One can write the entropy balance as
follows (keeping in mind that entropy generation must not be negative):

�S = S2 − S1 = Snet,in + Sgen , with Sgen ≥ 0 (2.2a)

or

dS = δSnet,in + δSgen , with δSgen ≥ 0 (2.2b)

Here again, δ is used to indicate an infinitesimal quantity that is not a property
of any system. For a system with fixed values of energy (E), parameters, and con-
stituents, the entropy of the system is the largest in the stable-equilibrium state.
This is the highest entropy principle. Applying this principle to an isolated system
for which the energy is conserved, the entropy of the system will increase until a
thermodynamic equilibrium is reached. Spontaneous changes of state are usually
irreversible and accompanied by entropy generation.

The second law of thermodynamics can be summarized with the following three
statements: (1) There exists a unique stable-equilibrium state for any system with
given values of energy, parameters, and constituents. (2) Entropy is an additive prop-
erty, and for an isolated system, the entropy change must be nonnegative. (3) Among
all states with the same values of energy, parameters, and constituents, the entropy
of the stable-equilibrium state is the maximum.

The energy of a system with volume (V ) as its only parameter (neglecting other
external forces) is called the internal energy (U). The state principle implies that there
are r + 2 (where r is the number of different constituents) independent variables that
fully characterize a stable-equilibrium state of such a system. Therefore, in a stable-
equilibrium state, all properties are functions of r + 2 independent variables. Since
entropy is a property of the system, we have

S = S(U, V, N1, N2, . . . , Nr ) (2.3)

where Ni is the number of particles of the ith species (or type of constituents). This
function is continuous and differentiable [1, 3], and furthermore, it is amonotonically
increasing function of energy for fixed values of V and N j ′s . Equation (2.3) can be
uniquely solved for U so that

U = U (S, V, N1, N2, . . . , Nr ) (2.4)

which is also continuous and admits partial derivatives of all orders. Each first-
order partial derivative of Eqs. (2.3) or (2.4) represents a property of the stable-
equilibrium state. For example, temperature and pressure are properties of a system
at thermodynamic equilibrium. The (absolute) temperature is defined by
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T =
(

∂U

∂S

)
V,N j ′s

(2.5a)

and the pressure is defined by

P = −
(

∂U

∂V

)
S,N j ′s

(2.5b)

The partial derivative with respect to the ith type of constituents defines its
chemical potential of that species,

μi =
(

∂U

∂Ni

)
S,V,N j ′s ( j �=i)

(2.5c)

Equation (2.3) or (2.4) is called the fundamental relation for states at thermody-
namic equilibrium. The differential form of Eq. (2.4) is the Gibbs relation:

dU = T dS − PdV +
r∑

i=1

μidNi (2.6)

where Eqs. (2.5a, 2.5b and 2.5c) have been used. The above equation may be
rearranged into the form

dS = 1

T
dU + P

T
dV −

r∑
i=1

μi

T
dNi (2.7)

Therefore,

1

T
=

(
∂S

∂U

)
V,N j ′s

,
P

T
=

(
∂S

∂V

)
U,N j ′s

, and
μi

T
= −

(
∂S

∂Ni

)
U,V,N j ′s ( j �=i)

(2.8)

An interaction between two systems that results in a transfer of energy without
net exchanges of entropy and constituents is called a work interaction. The amount
of energy transferred in such an interaction is called work (W ). An interaction that
has only mechanical effects is a work interaction, but a work interaction may involve
nonmechanical effects. A process that involves only work interaction is called an
adiabatic process. Another kind of a typical interaction is heat interaction, in which
both energy and entropy are transferred without net exchanges of constituents and
parameters between two systems. The amount of energy transferred in a heat interac-
tion is called heat (Q). Furthermore, the amount of entropy transferred (δS) is equal
to the amount of energy transferred (δQ) divided by the boundary temperature (Tb)
at which the heat interaction happens, i.e., δS = δQ/Tb. If a system cannot exchange
constituents with other systems, it is said to be a closed system; otherwise, it is an
open system.
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Reversible processes are considered as the limiting cases of real processes, which
are always accompanied by a certain amount of irreversibility. Such an ideal process is
called a quasi-equilibrium (or quasi-static) process, in which each stage can be made
as close to thermodynamic equilibrium as possible if themovement is frictionless and
very slow. In an ideal process, a finite amount of heat can be transferred reversibly
from one system to another at a constant temperature. In practice, heat transfer
can only happen when there is a temperature difference, and the process is always
irreversible.

A perpetual-motion machine of the second kind (PMM2) is a cyclic device that
interacts with a system at thermodynamic equilibrium and produces no external
effect other than the rise of a weight in a gravity field, without changing the value
of any parameter or the amount of any constituent of the system. Historically, there
exist different statements of the second law of thermodynamics: The Kelvin–Planck
statement of the second law is that it is impossible to build a PMM2. The Clausius
statement of the second law is that it is not possible to construct a cyclic machine
that will produce no effect other than the transfer of heat from a system at lower
temperature to a system at higher temperature. These statements can be proved
using the three statements of the second law of thermodynamics given earlier in this
chapter.

Example 2.1 Criteria for thermodynamic equilibrium. Consider a moveable piston
(adiabatic and impermeable to matter) that separates a cylinder into two compart-
ments (systems A and B), as shown in Fig. 2.1. We learned from mechanics that a
mechanical equilibrium requires a balance of forces on both sides of the piston, that is
to say, the pressure of systemAmust be the same as that of system B (i.e., PA = PB).
If the piston wall is made of materials that are diathermal (allowing heat transfer)
and permeable to all species, under what conditions will the composite system C
consisting of systems A and B be at stable equilibrium?

Solution Assume system C is isolated from other systems, and each of the
subsystems A and B is at a thermodynamic equilibrium state, whose prop-
erties are solely determined by its internal energy, volume, and amount of
constituents:UA, VA, N j ′s,A and UB, VB, N j ′s,B, respectively. There exist neigh-
boring states for both subsystems with small differences in U, V, and N j ′s , but the
values of the composite systemmust be conserved, i.e., dUA = −dUB, dVA = −dVB,

Fig. 2.1 Illustration of two
systems that may exchange
work, heat, and species

A B
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and dNi,A = −dNi,B (i = 1, 2, … r). The differential entropy of system C can be
expressed as

dSC = dSA + dSB

= 1

TA
dUA − PA

TA
dVA +

r∑
i=1

μi,A

TA
dNi,A + 1

TB
dUB − PB

TB
dVB

+
r∑

i=1

μi,B

TB
dNi,B

=
(

1

TA
− 1

TB

)
dUA −

(
PA
TA

− PB
TB

)
dVA +

r∑
i=1

(
μi,A

TA
− μi,B

TB

)
dNi,A (2.9)

If system C is in a stable-equilibrium state, its entropy is maximum and dSC = 0.
Since the values of dUA, dVA, and dNi,A are arbitrary, we must have

1

TA
= 1

TB
,
PA
TA

= PB
TB

and
μi,A

TA
= μi,B

TB
(i = 1, 2, . . . r)

or

TA = TB, PA = PB and μi,A = μi,B (i = 1, 2, . . . r) (2.10)

These conditions correspond to thermal equilibrium, mechanical equilibrium,
and chemical equilibrium, respectively. The combination forms the criteria for
thermodynamic equilibrium.

Discussion. In the case when the piston is diathermal but rigid and impermeable
to matter, the entropy change of system C must be nonnegative, that is,

dSC = dSA + dSB =
(

1

TA
− 1

TB

)
dUA ≥ 0 (2.11)

The above expression implies that dUA ≤ 0 for TA > TB, and dUA ≥ 0 for TA <

TB. Spontaneous heat transfer can occur only from regions of higher temperature to
regions of lower temperature. This essentially proves the Clausius statement of the
second law of thermodynamics.

The concept of thermal equilibrium provides the physical foundation for ther-
mometry, which is the science of temperature measurement. The temperature of a
system at a thermodynamic equilibrium state is measured through changes in resis-
tance, length, volume, or other physical parameters of the sensing element used in
the thermometer, which is brought to thermal equilibrium with the system. Based on
the inclusive statement of the second law of thermodynamics given previously, it can
be inferred that two systems are in thermal equilibrium with each other if they are
separately in thermal equilibrium with a third system. This is sometimes referred to
as the zeroth law of thermodynamics [6], especially in the thermometry literature.
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Table 2.1 Two-phase points
and the triple point of water

Temperature

(K) (°C)

Ice pointa 273.15 0

Triple pointb 273.16 0.01

Steam pointc 373.124 99.974

aSolid and liquid phases are in equilibrium at a pressure of 1 atm
(101.325 kPa)
bSolid, liquid, and vapor phases are in equilibrium
cLiquid and vapor phases are in equilibrium at 1 atm

The International Temperature Scale of 1990 (ITS-90)was adopted by the Interna-
tional Committee of Weights and Measures in 1989 [8]. The unit of thermodynamic
temperature is kelvin (K),which is defined as 1/273.16 of the thermodynamic temper-
ature of the triple point of water. The Celsius temperature is defined as the difference
in the thermodynamic temperature and 273.15 K (the ice point). A difference in
temperature may be expressed in either kelvins or degrees Celsius (°C). Although
earlier attempts were made to define a temperature scale consistent with the original
Celsius temperature scale (i.e., 0 °C for the ice point and 100 °C for the steam point),
a 0.026 °C departure arose from more accurate measurements of the steam point,
as shown in Table 2.1 [9]. The steam point is therefore no longer used as a defining
fixed point in the ITS-90. More accurate Steam Tables were developed in the 1990s.

The ITS-90 defines 17 fixed points, which are determined by primary thermom-
etry with standard uncertainties less than 0.002 K below 303 K and up to 0.05 K at
the freezing point of copper (≈1358 K). Cryogenic thermometry is essentially based
on ideal gas thermometers (up to about 20 K). Platinum resistance thermometers,
calibrated at specified sets of fixed points, are used to define the temperature scale
from the triple point of hydrogen (≈13.8 K) to the freezing point of silver (≈1235K).
Platinum resistance thermometers have been chosen because of their excellent repro-
ducibility, even though they are not primary thermometers. Radiation thermometers
based on Planck’s law of thermal radiation are used to define the temperature scale
above 1235 K.

It should be noted that the International System of Units (SI) is currently under
revision, and the SI units are being redefined based on the fundamental constants
without using any materials or prototypes, as documented in the 26th meeting of the
General Conference on Weights and Measures (CGPM) [10].

2.1.3 The Third Law of Thermodynamics

For each given set of values of constituents and parameters, there exists a unique
stable-equilibrium statewith zero absolute temperature (though not physically attain-
able). Furthermore, the entropy of any pure substance (in the form of a crystalline
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solid) vanishes at this state (zero absolute entropy). This is the third law of thermody-
namics, also called the Nernst theorem after Walther Nernst who received the Nobel
Prize in Chemistry in 1920. The energy is the lowest at this state, which is called
the ground-state energy (Eg > 0). The ground-state energy of a system consisting of
independent particles may be related to its mass (m) using the relativistic theory, i.e.,
Eg = mc2, where c is the speed of light. Although absolute energy and entropy can
be defined according to the third law of thermodynamics, in practice, reference states
are often chosen so that the relative values of energy and entropy can be tabulated
with respect to those of the reference states.

After reviewing the laws of thermodynamics, it is instructive to give a pictorial
presentation to illustrate some of the fundamental concepts in thermodynamics as
done by Gyftopoulos and Beretta [3]. For a system that contains a single type of
constituents (i.e., pure substance) with fixed values of parameters and amount of
constituents, the stable-equilibrium states can be represented as a convex E–S curve,
whose slope T = ∂E/∂S defines the temperature of each state on the curve, as
shown in Fig. 2.2. The stable-equilibrium-state curve intersects the vertical axis at
the ground state, whose energy is the ground-state energy (Eg) and whose abso-
lute entropy is zero. Furthermore, the temperature at the ground state is 0 K. This
provides a graphical illustration of the third lawof thermodynamics.Along the stable-
equilibrium-state curve, temperature increaseswith increasing energy or entropy. The
vertical axis above Eg represents zero-entropy states, which are not at stable equilib-
rium (except when E = Eg). These are states defined in mechanics, where entropy
is not a concern. A spontaneous change of state can be illustrated with this graph as a
horizontal line, e.g., from A1 to A10, where A10 corresponds to the stable-equilibrium
state that has the same values of energy, parameters, and constituents as those of A1.
No states exist below the stable-equilibrium-state curve because this would violate
the highest entropy principle. Each point in the shaded area may correspond to some

Fig. 2.2 The E–S graph for
a pure substance with fixed
values of parameters and
amount of constituents

S

E

A1
A10

A10'

Tg = 0 K

ET
S

Eg

Sg = 0
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states that are not at thermodynamic equilibrium, for which macroscopic properties
(such as temperature and pressure) may not be rigorously defined. A nonequilib-
rium state in general cannot be uniquely determined by the values of its energy (or
entropy) and parameters and the amount of constituents. The lowest energy princi-
ple is expressed as follows: Among all states with the same values of entropy and
parameters and the amount of constituents, there exists a stable-equilibrium state
whose energy is the lowest. Starting with any state that is not at stable equilibrium,
there exists a reversible adiabatic process, in which work can be done by the system
until it reaches a stable-equilibrium state. This process is illustrated in the E − S
graph by a vertical line from A1 to A10′ . The corresponding work, which is equal to
the energy difference between A1 and A10′ , is called the adiabatic availability [3]. It
defines the largest amount of work that can be extracted from a system without any
other net effect on the environment of the system.

2.2 Thermodynamic Functions and Properties

Several additional properties defined in this section are important in the study of
states at thermodynamic equilibrium. The functional relations are derived based on
the fundamental relation and are useful under specific circumstances. The phase
equilibrium is summarized with an emphasis on pure substances. The concepts of
specific heat and latent heat are then introduced. Combining the specific heat and
the equation of state, we can evaluate the internal energy and entropy for ideal gases
and incompressible solids and liquids.

2.2.1 Thermodynamic Relations

When dealing with substances within the container, the volume is a parameter that
characterizes external forces, i.e., the interaction between the system and the wall of
the container. If the constituents are confined within a surface, then the surface area
will be a parameter instead of the volume. Parameters associated with other external
forces (such as gravitational and magnetic forces) can also be included, if necessary.
For simplicity, we assume that volume is the only parameter of the systems under
investigation, unless otherwise specified.

Enthalpy is defined as H = U+PV , and thus we have dH = dU+PdV +V dP .
From Eq. (2.6), we obtain

dH = T dS + V dP +
r∑

i=1

μidNi (2.12a)
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The significance of Eq. (2.12a) is that enthalpy can be expressed as a function of
S, P, and N j ′s ,

H = H(S, P, N1, N2, . . . , Nr ) (2.12b)

Furthermore,

T =
(

∂H

∂S

)
P,N j ′s

, V =
(

∂H

∂P

)
S,N j ′s

, and μi =
(

∂H

∂Ni

)
S,P,N j ′s ( j �=i)

(2.12c)

Note that the subscripts in Eq. (2.12c) are different from those in Eqs. (2.5a, 2.5b
and 2.5c). Enthalpy H(S, P, N j ′s) is said to be a characteristic function, since it
allows us to find out all the information about a stable-equilibrium state. A large
number of characteristic functions may be defined. Depending on the particular situ-
ation and measurements available, it is advantageous to choose the most convenient
one. Two other characteristic functions are now introduced. The first one is called
Helmholtz free energy A(T, V, N j ′s), defined as A = U − T S. It follows that

dA = −SdT − PdV +
r∑

i=1

μidNi (2.13a)

and

S = −
(

∂A

∂T

)
V,N j ′s

, P = −
(

∂A

∂V

)
T,N j ′s

, and μi =
(

∂A

∂Ni

)
T,V,N j ′s ( j �=i)

(2.13b)

The second isGibbs free energy G(T, P, N j ′s):G = U+PV −T S = H−T S =
A + PV . It follows that

dG = −SdT + V dP +
r∑

i=1

μidNi (2.14a)

and

S = −
(

∂G

∂T

)
P,N j ′s

, V =
(

∂G

∂P

)
T,N j ′s

, and μi =
(

∂G

∂Ni

)
T,P,N j ′s ( j �=i)

(2.14b)

Characteristic functions supplement the fundamental relation and are very useful
in the evaluation of the properties of systems under thermodynamic equilibrium.

In a stable-equilibrium state, T, P, and μi (i = 1, 2, . . . r) must be uniform
everywhere in the system. If the system is divided into k equal-volume subsystems,
the energy, entropy, and the amount of each type of constituents of the system are
the sums of these quantities in all subsystems. If the energy and the amount of each
type of constituents in every subsystem are the same, then all subsystems are exactly
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identical to each other. If this is the case, the system is said to be in a homogeneous
state; otherwise, it is heterogeneous. Examples of homogeneous states are air (which
is a mixture of many different kinds of gases) and a well-mixed solution. Examples
of heterogeneous states are ice water and water–steam mixture in a boiler.

A system that experiences only homogeneous states is called a simple system. In
a simple system, T, P, andμ j ′s of each subsystem are the same as those of the system
itself and independent of k; hence, they are called intensive properties. Taking T as
an example, we have

T

(
U

k
,
V

k
,
N1

k
,
N2

k
, . . .

Nr

k

)
= T (U, V, N1, N2, . . . , Nr ) (2.15)

The left-hand side of Eq. (2.15) is the temperature of the subsystem, while
the right-hand side is the temperature of the whole system. Unlike temperature
and pressure, properties such as U, S, V, and N of each subsystem are inversely
proportional to k:

S

(
U

k
,
V

k
,
N1

k
,
N2

k
, . . . ,

Nr

k

)
= 1

k
S(U, V, N1, N2, . . . , Nr ) (2.16)

Properties whose values are proportional to the total amount of constituents are
called extensive properties. Therefore,U,V, S, andH are extensive properties. Notice
that k cannot be arbitrarily large because of the continuum requirement.

The ratio or derivative of two extensive properties is an intensive property, e.g., the
density (the ratio of mass to volume) is an intensive property and uniform in a sim-
ple system. Note that temperature, pressure, and chemical potentials are derivatives
of two extensive properties. The properties T, P, and μ j ′s distinguish themselves
from other intensive properties in that they are uniform in both homogeneous and
heterogeneous states, whereas others may or may not be uniform in a heterogeneous
state. A specific property is the ratio of an extensive property to the total amount
of constituents (expressed as mass, mole, or number). For example, the mass spe-
cific enthalpy is the enthalpy per kilogram of the substance. Specific properties are
intensive properties.

For simple systems, the Gibbs relation given in Eq. (2.6) can be integrated to
obtain

U = T S − PV +
r∑

i=1

μi Ni (2.17)

which is theEuler relation. BydifferentiatingEq. (2.17) and then subtractingEq. (2.6)
from it, we obtain the Gibbs–Duhem relation:

SdT − V dP +
r∑

i=1

Nidμi = 0 (2.18)
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The Euler relation for a system containing only one type of constituents (r = 1)
is

G = U + PV − T S = μN

or

μ(T, P) = G

N
= g(T, P) (2.19)

Hence, the chemical potential of a pure substance is nothing but the specific Gibbs
free energy. For a system containing two or more types of constituents, Eq. (2.14b)
relates the chemical potential to the partial derivative of the Gibbs free energy with
respect to Ni for fixed T and P, which is called the partial Gibbs free energy of the
ith type of constituents.

2.2.2 The Gibbs Phase Rule

In a heterogeneous state, we consider a subdivision of the system into subsystems,
each being a simple system. The collection of all subsystems that have the same
values of all intensive properties is called a phase. Solid, liquid, and gas (or vapor)
are the three distinct phases. The boundary between subsystems of different phases
is called an interface. Different phases may appear to be clearly separated or well
mixed. In space, liquid water droplets could be dispersed throughout water vapor,
whereas on the earth, the liquid would occupy the lower part of the container due to
gravity.

Assume that there are q coexisting phases, called a q-phase heterogeneous state.
We can write the Gibbs–Duhem relation for each phase, and thus reduce the inde-
pendent variables for T, P, μi (i = 1, 2, . . . r) by q. The number of independent
variables among T, P, μ′

i s is determined by the Gibbs phase rule:

φ = r + 2 − q (2.20)

For a pure substance, Eq. (2.20) implies that, for a single-phase state, there are
only two independent variables among the three intensive properties T, P, andμ. If T
and P are chosen as the independent variables, then all other intensive properties are
functions ofT andP, e.g., specific internal energyu = u(T, P), specific enthalpy h =
h(T, P), and specific entropy s = s(T, P). Extensive properties can be determined
from the specific properties if the total mass or volume is specified. For a two-
phase mixture, such as ice and water or water and steam, only one of T, P, and μ

is independent. If T is chosen as the variable, then P and μ can be expressed as
functions of T, i.e., P = P(T ) and μ = μ(T ). In order to completely describe the
state, however, we will also need to know the amount of constituents in each phase
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(which may be expressed by the total mass and a mass fraction x of one phase).
For example, the specific entropy of a mixture can be expressed as s = s(T, x)
or s = s(P, x). In a three-phase mixture, T, P, and μ are all fixed. For a pure
substance, the solid, liquid, and vapor phases can only coexist at fixed temperature
and pressure, which are called triple-point properties. Taking water as an example,
we have T t.p. = 0.01 °C and Pt.p. = 0.61 kPa. One needs to know the amount of
constituents in each phase to completely characterize the state. No more than three
phases can coexist for any pure substance. It should be noticed that a substance can
have different solid phases, e.g., diamond and graphite are allotropes of carbon but
with distinct differences in their physical and chemical properties; silicon dioxide
can exist in the forms of crystalline quartz or fused silica (glass).

Figure 2.3 shows regions of solid, liquid, and vapor in a P–T diagram. The S–L,
S–V, and L–V lines indicate the coexistence of solid–liquid, solid–vapor, and liquid–
vapor phases in thermodynamic equilibrium. The three lines merge to the triple point
where all three phases can coexist in thermodynamic equilibrium. There are two S–L
lines: the solid line represents a material that expands upon melting, and the dashed
line represents a material that contracts upon melting (such as water). There exists
a critical point or a critical state; the temperature and the pressure at the critical
state are called critical temperature (Tc) and critical pressure (Pc). The distinction
between liquid and vapor phases disappears beyond the critical point. This can be
seen clearer in the T–v diagram shown in Fig. 2.4. The S–L line in Fig. 2.3 becomes
an S–L region in Fig. 2.4; the L–V line becomes a dome, called the saturation dome.
Starting from a solid state, in a constant pressure (isobaric) heating process with
Pt.p. < P < Pc, the temperature increases until melting starts. As more energy is
added to the system, the fraction of solid decreases, whereas the fraction of liquid
increases, at a constant temperature. The amount of heat needed to completely melt
a unit mass of solid to liquid is called the specific latent heat of melting. Once all the
substance is in the liquid phase, the temperature rises again with increasing energy
until a saturated liquid state is reached. Hereafter, vaporization occurs at constant

Fig. 2.3 Schematic of a P–T
diagram for a pure substance
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Fig. 2.4 Schematic of a
T–v diagram for a material
that expands upon melting

S-
L

re
gi

on

Solid

Li
qu

id

L-V dome

Triple-point line

S-V region

Sublimation

Saturated 
Liquid

Saturated 
Vapor

Te
m

pe
ra

tu
re

, T

Specific volume, v

c c( , )T P

cP P

cP P

cP P

t.p.P P

temperature (saturation temperature) until it reaches the right side of the saturation
dome, which is a saturated vapor state. The amount of energy needed to vaporize a
unit mass of a substance is called the specific latent heat of vaporization. When the
pressure is higher than the critical pressure, however, no vaporization can happen.
The liquid and gas forms of aggregation differ in degree rather than in kind. At a
pressure lower than the triple-point pressure, the change from solid to vapor can
occur without passing through a liquid phase. Such a process is called sublimation.
An example is the sublimation of dry ice into cold CO2 gas at room temperature and
atmospheric pressure. It can be used to create some theatrical effects such as haze,
fog, or smoke.

2.2.3 Specific Heats

Specific heats are properties of a system (at stable equilibrium). The specific heat at
constant volume (cv) and the specific heat at constant pressure (cp) are defined as

cv =
(

∂u

∂T

)
V

= T

(
∂s

∂T

)
V

(2.21a)

and

cp =
(

∂h

∂T

)
P

= T

(
∂s

∂T

)
P

(2.21b)

where subscripts V and P signify fixed volume and fixed pressure, respectively. The
heat capacity is the product of the corresponding specific heat and the mass of the
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system. Note that only in a reversible process, the amount of heat transferred to a
system is δQ = T dS. The heat capacity at constant volume of a closed system can
be measured in terms of the total amount of energy supplied to it divided by its
temperature rise in a constant volume process. On the other hand, the heat capacity
at constant pressure of a closed system (such as in a piston–cylinder arrangement)
can be measured in terms of the amount of energy per unit mass supplied to the
system, excluding the volume work done by the system (δW = pdV ), divided by
the temperature rise in an isobaric process. For example, in a reversible isobaric
process, dU = δQ − pdV and dH = δQ. Therefore, cp = 1

m
dH
dT = 1

m
δQ
δT .

Specific heats are not defined for all equilibrium states. For example, enthalpy
of a two-phase mixture can vary at a constant pressure, such as in a vaporization
process, without any change in temperature. This means that the constant pressure
specific heat approaches infinity in these states. In fact, the discontinuity in cp(T )

suggests some kind of phase transformation.
A heat reservoir is an idealized system that experiences only reversible heat inter-

actions. For any finite amount of energy transfer, its temperature remains unchanged.
Therefore, the heat capacity of a reservoir is infinitely large. For a reservoir at
temperature TR, the change of the reservoir energy is proportional to its entropy
change:

ER,2 − ER,1 = TR(SR,2 − SR,1) (2.22a)

This suggests that a reservoir can be represented by a straight line in the E–S
graph. Furthermore, the amount of heat transferred to the reservoir from state 1 to
state 2 is given by

Q = ER,2 − ER,1 (2.22b)

For a pure substance in a single phase, temperature and pressure are independent,
and all other properties can be expressed as functions of T and P. The relation among
temperature, pressure, and specific volume is called the equation of state, which can
be expressed as

f (T, P, v) = 0 or v = v(T, P) (2.23)

This equation does not contain information about the internal energy or entropy.
However, we can use the function cp = cp(T, P), in addition to the equation of
state, to fully determine all intensive properties. For example, ds = (

∂s
∂T

)
P
dT +(

∂s
∂P

)
T
dP . Using

(
∂s
∂T

)
P

= cp(T,P)

T , from the definition of specific heat, and the
Maxwell relation

(
∂s
∂P

)
T

= −(
∂v
∂T

)
P
(see Problem 2.11), we obtain

ds = cp(T, P)

T
dT −

(
∂v

∂T

)
P

dP (2.24)

Furthermore,
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dh = cp(T, P)dT +
[
v(T, P) − T

(
∂v

∂T

)
P

]
dP (2.25)

Under certain circumstances, the equation of state is rather simple, and the specific
heats can be assumed as functions of the temperature only, i.e., independent of the
pressure. These ideal behaviors will be discussed in the next section.

Example 2.2 Specific heat and latent heat. A system consists of 10 kg of H2O in
a closed container that is maintained at a constant pressure of 100 kPa. Initially, the
system is at −40 °C (ice), and it is heated to 130 °C (vapor). How much energy
must be provided to the system? What is the entropy change of the system? The
specific heats of H2O in the solid, liquid, and vapor states are cp,s = 2 kJ/kg K,
cp,f = 4.2 kJ/kg K, and cp,g = 2 kJ/kg K, respectively. The specific latent heats of
melting and evaporation are hsf = 334 kJ/kg and hfg = 2257 kJ/kg.

Solution From the first law of the closed system in an isobaric process, �U =
Q − W . Since �P = 0, W = P�V . Hence, Q = �H = H2 − H1. Let T1 =
233.2 and T2 = 403.2 K be the initial and final temperatures, respectively, and
Tsat,m = 273.2 and Tsat = 373.2 K be the saturation temperatures. Based on the
definition of specific heats, we obtain

Q = H2 − H1 = m[cp,s(Tsat,m − T1) + hsf + cp,f(Tsat − Tsat,m) + hfg + cp,g(T2 − Tsat)]

which gives Q = 31.51 MJ. In the single-phase regions, the entropy difference can
be evaluated by integrating Eq. (2.21b) or (2.24) since P is fixed. During the phase
change, �S = �H/T since the temperature is a constant.

S2 − S1 = m

[
cp,s ln

(
Tsat,m
T1

)
+ hsf

Tsat,m
+ cp,f ln

(
Tsat
Tsat,m

)
+ hfg

Tsat
+ cp,g ln

(
T2
Tsat

)]

which gives �S = 90.6 kJ/K.

Discussion. From the Steam Table or software accompanied with common ther-
modynamics text [4, 5], we can find the specific properties of water as follows: h1 =
−411.7 kJ/kg; s1 = −1.532 kJ/kg K; h2 = 2737 kJ/kg; s2 = 7.517 kJ/kg K. There-
fore, Q = �H = m(h2 − h1) = 31.49 MJ; �S = m(s2 − s1) = 90.5 kJ/K. The
negligibly small difference is caused by the assumption of constant specific heat in
each phase.

2.3 Ideal Gas and Ideal Incompressible Models

The amount of constituents is commonly expressed in terms of the amount of matter
in mole. The mole is the amount of substance of a system that contains as many
elementary entities as there are atoms in 0.012 kg of carbon 12.Onemole of substance
contains 6.022 × 1023 molecules, atoms, or other particles. This value is called the
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Avogadro’s constant, i.e., NA = 6.022×1026 kmol−1. Quantities like molecules and
particles do not appear in the units. The mass of the system is m = n̄M , where n̄
is the amount of constituents (in kmol) and M is called the molecular weight. For
example, M = 18.012 kg/kmol for water.

2.3.1 The Ideal Gas

At relatively high temperature and sufficiently low pressure, most substances behave
as a single-phase fluid, in which the interactions between its molecules are generally
negligible. The equation of state can be expressed as

Pv̄ = R̄T or PV = n̄ R̄T (2.26a)

where v̄ = V/n̄ is the molar specific volume in m3/kmol, and R̄= 8314 J/kmol K
is the universal gas constant. Equation (2.26a) is called the ideal gas equation since
it can be considered as the definition of an ideal gas. Under standard conditions
(temperature of 25 °C and pressure of 1 atm), 1 kmol of an ideal gas occupies a
volume of 22.5 m3. Dry air can be treated as an ideal gas with an average molecular
weight of M = 29 kg/kmol. The ideal gas equation of state can be written in terms
of the mass quantities for a given substance, i.e.,

Pv = RT or PV = mRT (2.26b)

In the above equation, v = V/m is the specific volume, and R = R̄/M is called
the gas constant of the particular substance. The Boltzmann constant is defined as
kB = R̄/NA = 1.381×10−23 J/K. It can be considered as the universal gas constant in
terms of particles. Furthermore, if we denote the number density (number of particles
per unit volume) as n, then the ideal gas equation can be written as P = nkBT since
n = NA n̄/V .

For ideal gases, both cp and cv are independent of the pressure, as will be shown
from statistical thermodynamics in Chap. 3, but are generally dependent on temper-
ature. The specific internal energy and enthalpy are functions of temperature only,
therefore,

du = cv(T )dT and dh = cp(T )dT (2.27)

The specific heats cp and cv are related by the Mayer relation as

c̄p − c̄v = R̄ or cp − cv = R (2.28)

If cv(T ) = const., which is sometimes referred to as perfect gas behavior, then
Eq. (2.27) can be integrated to yield
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u2 − u1 = cv(T2 − T1) (2.29a)

and

h2 − h1 = cp(T2 − T1) (2.29b)

where subscripts 1 and 2 can be any two (thermodynamic equilibrium) states. The
specific entropy depends on both the temperature and the pressure, i.e.,

ds = cp
dT

T
− R

dP

P
(2.30a)

Integrating the above equation from state 1 to state 2 yields

s2 − s1 =
2∫

1

cp(T )

T
dT − R ln(P2/P1) (2.30b)

In an isentropic process (ds = 0) of a perfect gas, it can be shown that Pvγ =
const., where γ = cp/cv is the specific heat ratio. Note that Pv = const. in an
isothermal process.

Example 2.3 A cylinder contains 0.01 kmol of N2 gas (0.28 kg), which may be
modeled as an ideal diatomic gas with cv = 2.5R. A piston maintains the gas at
constant pressure, P0 = 100 kPa. The cylinder interacts with a cyclic machine,
which in turn interacts with a reservoir at TR = 1000 K. The cylinder, the reservoir,
and the machinery cannot interact with any other systems. The cyclic machine may
produce work W (which cannot be negative). A process brings the volume of the
cylinder from V 1 = 0.224 to V 2 = 0.448 m3.

(a) What is the least amount of energy that must be transferred out from the reser-
voir? In such a case, how much work does the cyclic machine produce? How
much entropy is generated in the process?

(b) Find the maximum work that the cyclic machine can produce.

Analysis. A schematic drawing is made first as shown in Fig. 2.5. From the
ideal gas equation, T1 = P1V1/n̄ R̄ = 269.4 K and T2 = 538.8 K. The initial and
final states of the cylinder are fully prescribed. The work done by the cylinder is
WB = ∫

PdV = P(V2 − V1) = 22.4 kJ, which is also fixed. By applying the first
law to the cylinder in an isobaric process, QB = m(h2 − h1) = mcp(T2 − T1) =
0.01 × 3.5 × P(V2 − V1) = 78.4 kJ. The work done by the cyclic machine is
W = QR − QB. Because QB is prescribed and W ≥ 0, the least amount of energy
that must be transferred from the reservoir is when W = 0 and QR = QB.
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Fig. 2.5 Schematic drawing for Example 2.3

Solution

(a) QR = QB = 78.4 kJ and W = 0. We can evaluate the entropy change of the
combined system by the following:

�S = m(s2 − s1) + �SCM + (−QR/TR)

= m[cp ln(T2/T1) − R ln(P2/P1)] + 0 − 78.4/1000

= (201.7 − 78.4) kJ/K = 123.3 J/K

Since the system does not have any interactions with any other systems, the
entropy change is caused solely by entropy generation.

(b) The maximum work that can be produced is through a reversible process (not a
Carnot cycle since the temperature of the cylinder is not constant). By setting
�S = m(s2 − s1)−QR/TR = 0, we find QR = TRmcp ln(T2/T1) = 201.7 kJ.
The maximum amount of work is therefore Wmax = QR − QB = 123.3 kJ.

2.3.2 Incompressible Solids and Liquids

The assumption for ideal incompressible behavior is v= const., which is the equation
of state for incompressible solids and liquids. It can be shown that in this case cp = cv
and, to a good approximation, the specific heat depends on temperature only. It is
common to use cp for the specific heat of solids and liquids. Using Eqs. (2.24) and
(2.25), we obtain the specific internal energy, enthalpy, and entropy for an ideal
incompressible solid or liquid as follows:

du = cp(T )dT (2.31)

ds = cp(T )
dT

T
(2.32)

and
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dh = cp(T )dT + vdP (2.33)

Notice that while the internal energy and the entropy are functions of temperature
only, the enthalpy depends on both temperature and pressure as can be seen from
Eq. (2.33). Sometimes only one of the terms on the right-hand side of Eq. (2.33)
needs to be considered if the other term is much smaller. For example, if the pressure
change is small, the second term can be dropped. Examples when the pressure effect
can be neglected are (1) a solid under the normal pressure range and (2) a liquid that
flows through a pipeline in a heat exchanger without significant pressure drop. An
example when the temperature effect is negligible is pumping water in a reversible
adiabatic process, where the enthalpy change between the outlet and inlet of the
pump is proportional to the pressure change.

Example 2.4 In a Rankine cycle, water at 15 °C, 100 kPa is compressed through a
pump to 10 MPa before entering the boiler. Model the water as an incompressible
liquid with a constant specific heat cp = 4.2 kJ/kg K. What is the least amount of
work required to pump 1 kg of water? What is the exit temperature of the water? If
the pump efficiency is 80%, what is the actual specific work and exit temperature of
the pump?

Solution Take v = 0.001 m3/kg as an approximation. The least amount of work is
needed in a reversible process. It has been shown that the reversible work done by
the system between bulk flow states is δw = −vdP . Hence, the work needed in a
reversible process is wrev = h2s − h1 = 0.001(10, 000 − 100) = 9.9 kJ/kg

Because it is an adiabatic and reversible process, it must be isentropic or s2s −
s1 = cp ln(T2s/T1) = 0. Hence, T2s = T1 = 15 ◦C. Actual work w = wrev/ηp =
12.38 kJ/kg. Since w = h2 − h1 = cp(T2 − T1) + v(P2 − P1),

T2 = T1 + h2 − h1
cp

− v

cp
(P2 − P1) = T1 + w − wrev

cp
= 15.59 ◦C

which is less than 1 K higher. The entropy generation is sgen = cp ln(T2/T1) =
8.6 J/K kg.

Discussion. We can use the Steam Table and notice that all states are compressed
liquid. The properties at state 1 can be evaluated at T1 = 15 °C and P1 = 100 kPa, at
state 2s (reversible) can be evaluated at P2s = 10MPa and s2s = s1, and at state 2 can
be evaluated at P2 = 10 MPa and h2 = h1 + w. Hence, wrev = 9.88 kJ/kg, T2s =
15.11 ◦C,w = 12.35 kJ/kg,T2 = 15.67 ◦C, and sgen = 8.2 J/K kg. The differences
are negligibly small compared with those obtained from the incompressible assump-
tion. Note that the temperature change in the pump is usually very small. On a T–s
diagram, it is difficult to distinguish states 1, 2s, and 2. In fact, state 2 crosses the satu-
rated liquid line to overlapwith a two-phase-mixture state at T2 and s2. This is because
T and s together cannot uniquely determine a stable-equilibrium state.
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2.4 Heat Transfer Basics

Classical thermodynamics focuses on the changes of mass, energy, and entropy of
a system between equilibrium states, and establishes the required balance equations
between end states during a given process. For example, we have learned that spon-
taneous transfer of energy can occur only from a higher temperature to a lower
temperature. In thermodynamics, heat interaction is defined as the transfer of energy
at the mutual (interface) temperature between two systems. Heat transfer is a subject
that extends the thermodynamic principles to detailed energy transport processes
that occur as a consequence of temperature differences. Heat transfer phenomena
are abundant in our everyday life and play an important role in many industrial, envi-
ronmental, and biological processes. Examples include energy conversion and stor-
age, electrical power generation, combustion processes, heat exchangers, building-
temperature regulation, thermal insulation, refrigeration, microelectronic cooling,
materials processing, manufacturing, global thermal budget, agriculture, food indus-
try, and biological systems. Based on the local-equilibrium assumption, heat transfer
analysis deals with the rate of heat transfer and/or the temperature distributions
(steady state or transient) for given geometries, materials, and initial and boundary
conditions. Thermal design, on the other hand, determines the necessary geometric
structure and materials for use to achieve optimum performance for a specific task,
such as a heat exchanger.

Heat conduction refers to the transfer of heat in a stationary (from themacroscopic
point of view) medium, which may be a solid, a liquid, or a gas. Energy can also
be transferred between objects by the emission and absorption of electromagnetic
waves without any intervening medium; this is called thermal radiation, such as
the radiation from the sun. When the transfer of heat involves fluid motion, we
call it convection heat transfer, or simply, convection. Examples of convection are
cooling with a fan, hot water flowing in a pipe, and cold air blowing outside the wall
of a building. The basic macroscopic formulations of conduction, convection, and
radiation heat transfer are summarized in this section. The microscopic mechanisms,
such as the effects of small dimension and short duration on the thermal transfer
processes, will be the subject of the remaining chapters.

2.4.1 Conduction

In a stationary medium, heat transfer occurs if the medium is not at thermal equi-
librium. The assumption of local equilibrium allows us to define the temperature at
each location. Fourier’s law states that the heat flux (or heat transfer rate per unit
area) q′′ is proportional to the temperature gradient ∇T , i.e.,

q′′ = −κ∇T (2.34)
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where κ is called thermal conductivity, which is a material property that may depend
on temperature. Notice that q′′ is a vector and its direction is always perpendicular
to the isotherms and opposite to the temperature gradient. In an anisotropic medium,
such as a thin film or a thin wire, the thermal conductivity depends on the direction
along which it is measured.

By doing a control volume analysis using energy balance, a differential equation
can be obtained for the transient temperature distribution T (t, r) in a homogeneous
isotropic medium; that is [11, 12]

∇ · (κ∇T ) + q̇ = ρcp
∂T

∂t
(2.35)

where ∇· is the divergence operator, q̇ is the volumetric thermal energy generation
rate, and ρcp can be considered as volumetric heat capacity. Equation (2.35) is
called the heat diffusion equation or heat equation. Note that the concept of thermal
energy generation is very different from the concept of entropy generation. Thermal
energy generation refers to the conversion of other types of energy (such as electrical,
chemical, or nuclear energies) to the internal energy of the system, while the total
energy is always conserved. Entropy need not be conserved, and entropy generation
refers to the creation of entropy by an irreversible process. If there is no thermal
energy generation and the thermal conductivity can be assumed to be independent
of temperature, Eq. (2.35) reduces to ∇2T = 0 at steady state, where ∇2T =
∂2T
∂x2 + ∂2T

∂y2 + ∂2T
∂z2 in the Cartesian coordinates. With the prescribed initial temperature

distribution and boundary conditions, the heat equation can be solved analytically
for simple cases and numerically for more complex geometries as well as initial and
boundary conditions. Typical boundary conditions include (a) constant temperature,
(b) constant heat flux, (c) convection, and (d) radiation.

Generally speaking, metals with high electric conductivities and some crystalline
solids have very high thermal conductivities ranging from 100 to 1000 W/m K;
alloys and metals with low electric conductivities have slightly lower thermal con-
ductivities ranging from 10 to 100 W/m K; water, soil, glass, and rock have thermal
conductivities from 0.5 to 5 W/m K; thermal insulation materials usually have a
thermal conductivity on the order of 0.1 W/m K; and gases have the lowest thermal
conductivity, e.g., the thermal conductivity of air at 300 K is 0.026 W/m K. Notice
that thermal conductivity generally depends on temperature. A comprehensive col-
lection of thermal-property data can be found from Touloukian and Ho [13]. At room
temperature, Diamond IIa has the highest thermal conductivity, κ = 2300 W/m K
among all natural materials. Researchers have shown that single-walled carbon nan-
otubes can have even higher thermal conductivity at room temperature.More detailed
discussion about the mechanisms of thermal conduction and thermal properties of
nanostructures will be provided in subsequent chapters.

Example 2.5 Consider the steady-state heat conduction through a solid rod, whose
sides are insulated, between a constant temperature source at T1 = 600 K and a
constant temperature sink at T2 = 300 K.Assume the thermal conductivity of the rod
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Fig. 2.6 Illustration of the
control volume for energy
and entropy balances in a
solid rod with heat
conduction

is independent of temperature, κ = 150 W/m K. The rod has a length L = 0.2 m and
cross-sectional area A = 0.001 m2. Show that the temperature distribution along the
rod is linear.What is the heat transfer rate?What is the volumetric entropy generation
rate? What is the total entropy generation rate?

Solution This is a 1D heat conduction problem with no thermal energy generation,
as shown in Fig. 2.6. Fourier’s law can be written as Q̇x = −κA(dT/dx). At steady
state, the heat transfer rate Q̇x is independent of x, since there is no thermal energy
generation. Because both κ and A are constant, dT/dx must not be a function of
x. Hence, the spatial temperature distribution is a straight line. From the boundary
conditions T (0) = T1 and T (L) = T2, we have T (x) = T1 + (T2 − T1)(x/L).
Furthermore, Q̇x = κA(T1 − T2)/L = 225 W. To evaluate the entropy generation
rate, we can apply Eq. (2.2b) to the control volume Adx to obtain ṡgen(x)Adx . The

net entropy transferred to the control volume is Ṡx − Ṡx+dx = −d
(

Q̇x

T

)
. The sum of

the entropy generation and entropy transferred is equal to the entropy change, which
is zero at steady state. Therefore, ṡgen(x) = q ′′

x
d(1/T )

dx = κ
T 2

(
dT
dx

)2
, where q ′′

x = Q̇x

A is
the heat flux. To calculate the total entropy generation rate, we can integrate ṡgen(x)
over the whole rod. Alternatively, we can perform an entropy balance for the rod as a
whole, which gives the rate of entropy generation for a heat transfer rate Q̇x from T1
to T2 as Ṡgen = Q̇x

(
1
T2

− 1
T1

)
= 0.375 W/K. This example shows that the entropy

generation occurs in a finite volume, while the entropy flows through the interface.
The amount of entropy flux increases with x as more and more entropy is generated
through the irreversible process. More discussion on the entropy generation in heat
transfer and fluid flow processes can be found in Bejan [14].

Contact resistance is important in microelectronics thermal management and
cryogenic heat transfer. A large thermal resistance may exist due to imperfect con-
tact, such as surface roughness. The result is a large temperature difference across
the interface. The value of contact resistance depends on the surface conditions,
adjacent materials, and contact pressure. As an example, assume a contact resistance
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between two stainless steel plates to be R′′
c = 0.001 m2 K/W and the thermal

conductivity of the stainless steel κ = 50 W/m K. If the thickness of each plate is
L = 5 mm and the area of the plate is A = 0.01 m2, the total thermal resistance is
then Rt = L/(κA) + R′′

c /A + L/(κA) = (0.01 + 0.1 + 0.01) K/W = 0.12 K/W,
which is mostly due to the contact resistance. Interfacial fluids and interstitial (filler)
materials can be applied to reduce the contact resistance in some cases. Even with a
perfect contact, thermal resistance exists between dissimilarmaterials due to acoustic
mismatch, which is especially important at low temperatures [15].

2.4.2 Convection

Convection heat transfer refers to the heat transfer from solid to fluid near the bound-
ary when the fluid is in bulk motion relative to the solid. The combination of the
bulk motion, known as advection, with the random motion of the fluid molecules
(i.e., diffusion) is the key for convection heat transfer. Examples are flows over an
object or inside a tube, a spray leaving a nozzle that is impinged on a microelectronic
component for cooling purposes, and boiling in a pan. The velocity and temperature
distributions for a fluid flowing over a heated flat plate are illustrated in Fig. 2.7.
A hydrodynamic boundary layer or velocity boundary layer (VBL) is formed near
the surface, and the fluid moves at the free-stream velocity outside the boundary
layer. Similarly, a thermal boundary layer (TBL) is developed near the surface of
the plate where a temperature gradient exists. When the flow speed is not very high
and the density of the fluid not too low, the average velocity of the fluid is zero,
and the fluid temperature equals the wall temperature in the vicinity of the wall, i.e.,
vx (y = 0) = 0 and T (y = 0) = Tw. ForNewtonian fluids, a linear relationship exists
between the stress components and the velocity gradients. Many common fluids like
air, water, and oil belong to this catalog. The shear stress in the fluid is

wT

T
v VBL

TBL

y

x

( )xv y

(0) 0xv w(0)T T

( )T y
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Fig. 2.7 Illustration of the velocity boundary layer and the thermal boundary layer
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τyx = −μ
∂vx
∂y

(2.36)

where μ is the viscosity. Throughout this book, we will use vx , vy, and vz (or
vi with i = 1, 2, and 3) for the velocity components in the x-, y-, and z-directions,
respectively. When Eq. (2.36) is evaluated at the boundary y = 0, it gives the force
per unit area exerted to the fluids by the wall and is used to calculate the friction
factor in fluid mechanics [16].

The heat flux between the solid and the fluid can be predicted by applying Fourier’s
law to the fluid at the boundary; thus,

q ′′
w = −κ

∂T

∂y

∣∣∣∣
y=0

(2.37)

where κ is the thermal conductivity of the fluid. Equation (2.37) shows that the
basic heat transfer mechanism for convection is the same as that for conduction,
i.e., both are caused by heat diffusion and governed by the same equation. Without
bulk motion, however, the temperature gradient at the boundary would be smaller.
Therefore, advection generally increases the heat transfer rate. Newton’s law of
cooling is a phenomenological equation for convection. It states that the convective
heat flux is proportional to the temperature difference, therefore,

q ′′
w = h(Tw − T∞) (2.38)

where h is called the convection heat transfer coefficient, or convection coefficient,
Tw is the surface temperature, and T∞ is the fluid temperature. From Eqs. (2.37) and
(2.38), we have

h = −κ

Tw − T∞
∂T

∂y

∣∣∣∣
y=0

(2.39)

Although h depends on the location, the average convection coefficient is often
used in heat transfer calculations. The convection coefficient depends on the fluid
thermal conductivity, velocity, and flow conditions (laminar versus turbulent flow,
internal versus external flow, and forced versus free convection). Convection can
also happen with phase change, such as boiling, which usually causes vigorous fluid
motion and enhanced heat transfer. Convection correlations are recommended in
most heat transfer textbooks to determine the convection coefficient. For laminar
flow over a flat plate of length L with a free-stream velocity v∞, the following
equation correlates the average Nusselt number to the Reynolds number at x = L and
the Prandtl number [11]:

NuL = h̄L L

κ
= 0.664Re1/2L Pr1/3, for Pr > 0.6 and ReL < 5 × 105 (2.40)
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The Reynolds number, defined as ReL = ρv∞L/μ, is key to the study of
hydrodynamics. The Prandtl number Pr = ν/α is the ratio of kinematic viscosity
ν = μ/ρ, which is also known as themomentum diffusivity, to the thermal diffusivity
α = κ/(ρcp) of the fluid. A detailed understanding of the fluid flow and convection
heat transfer requires the solution of the conservation equations, as summarized in
the following.

The differential form of the continuity equation or mass conservation is

Dρ

Dt
+ ρ∇ · v = 0 (2.41)

where D
Dt = (

∂
∂t + v · ∇)

is called the substantial derivative or material derivative.
Notice that for an incompressible fluid, the continuity equation reduces to ∇ · v = 0.

Using Stokes’ hypothesis that relates the second coefficient of viscosity to
the viscosity for Newtonian fluids, the Navier–Stokes equation that describes the
momentum conservation can be expressed as follows [16]:

Dv
Dt

= −∇P

ρ
+ a + ν∇2v + ν

3
∇(∇ · v) (2.42)

where a is the body force per unit mass exerted on the fluid, i.e., the acceleration
vector.

Energy equation for constant thermal conductivity without thermal energy
generation for a moving fluid can be expressed as

ρ
Du

Dt
= κ∇2T − P∇ · v + μ (2.43a)

where u is the specific internal energy (du = cvdT ) and the last term accounts for
the viscous dissipation, which is

 = 2

[(
∂vx
∂x

)2

+
(

∂vy
∂y

)2

+
(

∂vz
∂z

)2
]

+
(

∂vx
∂y

+ ∂vy
∂x

)2

+
(

∂vy
∂z

+ ∂vz
∂y

)2

+

+
(

∂vz
∂x

+ ∂vx
∂z

)2

− 2

3
(∇ · v)2 (2.43b)

in theCartesian coordinates. Equation (2.41) through (2.43a, 2.43b) is usually simpli-
fied for specific conditions and solved analytically or numerically using computation
fluid dynamics software. In Chap. 4, we will show that the conservation equations
can also be derived from the microscopic theories, which are also applicable for
rarefied flows and microfluidics.
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2.4.3 Radiation

Thermal radiation refers to the electromagnetic radiation in a broadwavelength range
fromapproximately 100 nm to 1000µm. It includes a portion of the ultraviolet region,
the entire visible (380–760 nm) region, and the infrared region. Monochromatic
radiation refers to radiation at a single wavelength (or a very narrow spectral band),
such as lasers and some atomic emission lines. Radiation emitted from a thermal
source, such as the sun, an oven, or a blackbody cavity, covers a broad spectral region
and can be considered as the spectral integration of monochromatic radiation. In
contrast to conduction or convection heat transfer, radiative energy propagates in the
formof electromagneticwaves that do not require an interveningmedium.Regardless
of its wavelength, an electromagnetic wave travels in vacuum at the speed of light,
c0 = 2.998 × 108 m/s. Radiation can also be viewed as a collection of particles,
called photons, whose energy is proportional to the frequency of radiation. Starting
with the definition of intensity and its linkage to the radiative energy flux, radiative
transfer between surfaces and in participating media will be briefly described later in
this section.More detailed treatment of themechanism of thermal radiation, radiative
properties, and radiative transfer at small length scales will be given in Chaps. 8, 9,
and 10.

The spectral intensity or radiance is defined as the radiative power receivedwithin
a solid angle, a unit projected area, and a unit wavelength interval; hence [11],

Iλ(λ, θ, φ) = dQ̇

dA cos θ d� dλ
(2.44)

where (θ, φ) is the direction of propagation, measured with respect to the surface
normal, dA cos θ is therefore the projected area, and d� is an element solid angle.
It is convenient to describe the relationship between intensity and radiative power
using the spherical coordinates, as shown in Fig. 2.8, where an element area dA
whose surface normal is in the z-direction is placed at the origin. Note that r =
(x2 + y2 + z2)1/2, θ = cos−1(z/r), φ = tan−1(y/x). The solid angle, defined as
d� = dAn/r2, can be expressed as d� = (rdθ)(r sin θdφ)/r2 = sin θdθdφ.

The spectral heat flux from an element surface dA to the upper hemisphere can
be obtained by integrating Eq. (2.44), i.e.,

q ′′
λ (λ) =

2π∫
0

π/2∫
0

Iλ(λ, θ, φ) cos θ sin θdθdφ (2.45)

The total heat flux is equal to the heat flux integrated over all wavelengths:

q ′′
rad =

∞∫
0

q ′′
λ (λ)dλ (2.46)
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Fig. 2.8 Illustration of the
solid angle in spherical
coordinates
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We can also define the total intensity as the integral of the spectral intensity over
all wavelengths, I (θ, φ) = ∫ ∞

0 I (λ, θ, φ)dλ. An equation similar to Eq. (2.45) holds
between the total heat flux and the total intensity. If the radiation is emitted from a
surface, the radiative heat flux q ′′

rad is termed as the (hemispherical) emissive power.
When the intensity is same in all directions, the surface is said to be diffuse, and
Eq. (2.45) can be integrated to obtain the relation, q ′′

λ = π Iλ(λ, θ, φ). Similarly, we
can obtain q ′′ = π I .

The maximum power that can be emitted by a thermal source at a given tempera-
ture is from a blackbody. A blackbody is an ideal surface which absorbs all incoming
radiation and gives out the maximum emissive power. Radiation inside an isothermal
enclosure behaves like a blackbody. In practice, a blackbody cavity is made with a
small aperture on an isothermal cavity. The emissive power of a blackbody is given
by the Stefan–Boltzmann law, also proportional to the absolute temperature to the
fourth power, viz.,

eb(T ) = π Ib(T ) = σSBT
4 (2.47)

where σSB = 5.67×10−8 W/m2 K4 is the Stefan–Boltzmann constant. A blackbody
is also a diffuse emitter, i.e., its intensity is independent of the direction. The spectral
distribution of blackbody emission is described by Planck’s law, which gives the
spectral intensity as a function of temperature and wavelength as follows:

Ib,λ(λ, T ) = eb,λ(λ, T )

π
= 2hc2

λ5(ehc/kBλT − 1)
(2.48)

where h = 6.626 × 10−34 J s is the Planck constant, c is the speed of light, and kB
is the Boltzmann constant. The derivation of Planck’s law will be given in Chap. 8.
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The ratio of the emissive power of a real material to that of the blackbody defines
the (total hemispherical) emissivity (or emittance), ε(T ) = e(T )/eb(T ). The spectral
directional emissivity is defined as the spectral intensity emitted by the surface to
Ib,λ, i.e.,

ε′
λ(λ, θ, φ, T ) = Iλ(λ, θ, φ, T )

eb,λ(λ, T )/π
(2.49)

Using e(T ) = ∫ ∞
0 dλ

[∫ 2π
0

∫ π/2
0 Iλ(λ, θ, φ, T ) cos θ sin θdθdφ

]
, we have

ε(T ) = π

σT 4

∞∫
0

eb,λ(λ, T )dλ

⎡
⎣

2π∫
0

π/2∫
0

ε′
λ(λ, θ, φ, T ) cos θ sin θdθdφ

⎤
⎦ (2.50)

This equation suggests that the relationship between the total hemispherical emis-
sivity and the spectral directional emissivity is rather complicated in general. For a
gray surface, the spectral emissivity is not a function of the wavelength. For a dif-
fuse surface, the intensity emitted by the surface is independent of the direction.
For a diffuse-gray surface, Eq. (2.49) reduces to a simple form ε = ε′

λ, because the
emissivity is independent of wavelength and the direction.

Real materials also reflect radiation in contrast to a blackbody. The reflection may
be specular for mirrorlike surfaces and more diffuse for rough surfaces. Some win-
dow material and thin films are semitransparent. Generally speaking, reflection and
transmission are highly dependent on the wavelength, angle of incidence, and polar-
ization status of the incoming electromagnetic wave. The absorptance, reflectance,
and transmittance of a material can be defined as the fraction of the absorbed,
reflected, and transmitted radiation. The (spectral) directional absorptance, direc-
tional–hemispherical reflectance, and directional–hemispherical transmittance are
related by

A′
λ + R′

λ + T ′
λ = 1 (2.51)

For an opaquematerial, the transmittance T ′
λ = 0. It is common to use absorptivity

α′
λ and reflectivity ρ ′

λ for opaquematerials with smooth surfaces. Note that α′
λ+ρ ′

λ =
1. However, the distinction between words ending with “-tivity” and “-tance” is not
always clear andboth endings are used interchangeably in the literature. The complete
nomenclature of radiative quantities and properties can be found from Siegel and
Howell [17]. Further discussion about the mechanisms and applications of radiation
heat transfer will be provided in Chap. 8.

Kirchhoff’s law states that the spectral directional emissivity is always the same
as the spectral directional absorptivity, i.e., ε′

λ = α′
λ. For diffuse-gray surfaces, it

can also be shown that ε = α, which may not be generally true for surfaces that are
not diffuse-gray, unless they are in thermal equilibrium with the surroundings.
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Example 2.6 Find the net radiative heat flux between two, large parallel surfaces.
Surface 1 at T1 = 600 ◦C has an emissivity ε1 = 0.8, and surface 2 at T2 = 27 ◦C
has an emissivity ε2 = 0.5.

Solution Assume that the medium in between is transparent, and both surfaces are
opaque and diffuse-gray. Note that radiation from one surface to another will be par-
tially absorbed and partially reflected back. Furthermore, the reflected radiation will
continue to experience the absorption/reflection processes between the two surfaces.
Surface 1 emits ε1σSBT 4

1 radiation toward surface 2. The fraction of this emitted
radiation that is absorbed by surface 2 can be calculated by tracing the rays between
the two surfaces, which is ε2 + (1− ε2)(1− ε1)ε2 + (1− ε2)

2(1− ε1)
2ε2 +· · · since

the reflectivity is one minus the emissivity. The radiative heat flux from surface 1 to
surface 2 is

q ′′
1→2 = ε1ε2σSBT 4

1

1 − (1 − ε1)(1 − ε2)
= σSBT 4

1

1/ε1 + 1/ε2 − 1
,

and that from surface 2 to surface 1 is

q ′′
2→1 = σSBT 4

2

1/ε1 + 1/ε2 − 1
.

Subsequently, the net radiative flux from surface 1 to surface 2 is

q ′′
12 = q ′′

1→2 − q ′′
2→1 = σSB(T 4

1 − T 4
2 )

1/ε1 + 1/ε2 − 1
(2.52)

Plugging in T1 = 873.2 K, T2 = 300.2 K, and other numerical values, we obtain
q ′′
12 = 14.4 kW/m2.

Gas emission, absorption, and scattering are important for atmospheric radiation
and combustion. When radiation travels through a cloud of gas, some of the energy
may be absorbed. The absorption of photons raises the energy levels of individ-
ual molecules. At sufficiently high temperatures, gas molecules may spontaneously
lower their energy levels and emit photons. These changes in energy levels are called
radiative transitions, which include bound–bound transitions (between nondisso-
ciated molecular states), bound–free transitions (between nondissociated and dis-
sociated states), and free–free transitions (between dissociated states). Bound–free
and free–free transitions usually occur at very high temperatures (greater than about
5000K) and emit in the ultraviolet and visible regions. Themost important transitions
for radiative heat transfer are bound–bound transitions between vibrational energy
levels coupled with rotational transitions. The photon energy (or frequency) must be
exactly the same as the difference between two energy levels in order for the photon
to be absorbed or emitted; therefore, the quantization of the energy levels results



66 2 Overview of Macroscopic Thermal Sciences

in discrete spectral lines for absorption and emission. The rotational lines superim-
posed on a vibrational line give a band of closely spaced spectral lines, called the
vibration–rotation spectrum. Additional discussion will be given in Chap. 3 about
quantized transitions in atoms and molecules.

Particles can also scatter electromagnetic waves or photons, causing a change in
the direction of propagation. In the early twentieth century, Gustav Mie developed
a solution of Maxwell’s equations for the scattering of electromagnetic waves by
spherical particles, known as the Mie scattering theory. This solution can be used to
predict the scattering phase function. In the case when the particle sizes are small
compared with the wavelength, the formulation reduces to the simple expression
obtained earlier by Lord Rayleigh. The phenomenon is called Rayleigh scattering,
in which the scattering efficiency is inversely proportional to the wavelength to the
fourth power. The wavelength-dependent characteristic of light scattering by small
particles helps explain why the sky is blue and why the sun appears red at sunset.
For spheres whose diameters are much greater than the wavelength, geometric optics
can be applied by treating the surface as specular or diffuse.

The spectral intensity in a participating medium, Iλ = Iλ(ξ,�, t), depends on
the location (the coordinate ξ ), its direction (the solid angle �), and time t. In a time
interval dt, the beam travels from ξ to ξ + dξ (dξ = cdt), and the intensity
is attenuated by absorption and out-scattering, but enhanced by emission and in-
scattering. The macroscopic description of the radiation intensity is known as the
equation of radiative transfer (ERT) [17].

1

c

∂ Iλ
∂t

+ ∂ Iλ
∂ξ

= aλ Ib,λ(T ) − (aλ + σλ)Iλ + σλ

4π

∫
4π

Iλ(ξ,�
′
, t)λ(�

′
,�) d�

′

(2.53)

where aλ and σλ are the absorption and scattering coefficients, respectively, and
λ(�

′
, �) is the scattering phase function λ = 1, which satisfies the equation:

1
4π

∫
4π λ(�

′
, �)d�

′ ≡ 1. For isotropic scattring, λ = 1. The right-hand side of
Eq. (2.53) is composed of three terms: the first accounts for the contribution of emis-
sion (which depends on the local gas temperature T ); the second is the attenuation by
absorption and out-scattering; and the third is the contribution of in-scattering from
all directions (solid angle 4π ) to the direction �.

Unless ultrafast laser pulses are involved, the transient term is negligible. The
ERT for the steady state can be simplified as

∂ Iλ(ζλ,�)

∂ζλ

+ Iλ(ζλ,�) = (1 − ηλ)Ib,λ + ηλ

4π

∫
4π

Iλ(ζλ,�
′
)λ(�

′
,�)d�

′
(2.54)

where ζλ = ∫ ξ

0 (aλ + σλ)dξ is the optical path length, and ηλ = σλ/(aλ + σλ) is
called the scattering albedo. This is an integrodifferential equation, and its right-hand
side is called the source function. The integration of the spectral intensity over all
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wavelengths and all directions gives the radiative heat flux. Unless the temperature
field is prescribed, Eq. (2.54) is coupled with the heat conduction equation in a
macroscopically stationary medium and the energy conservation equation in a fluid
with convection.

Analytical solutions of the ERT rarely exist for applications with multidimen-
sional and nonhomogeneous media. Approximate models have been developed to
deal with special types of problems, including Hottel’s zonal method, the differen-
tial and moment methods (often using the spherical harmonics approximation), and
the discrete ordinates method. The statistical model using the Monte Carlo method
is often used for complicated geometries and radiative properties [17]. Analytical
solutions can be obtained only for limited simple cases.

Example 2.7 A gray, isothermal gas at a temperature Tg = 3000 K occupies the
space between two, large parallel blackbody surfaces. Surface 1 is heated to a tem-
perature T1 = 1000 K, while surface 2 is maintained at a relatively low temperature
by water cooling. It is desired to know the amount of heat that must be removed from
surface 2. If the scattering is negligible, calculate the heat flux at surface 2 for aλL
= 0.01, 0.1, 1, and 10, where L is the distance between the two surfaces.

Solution For a gray medium without scattering, Eq. (2.53) becomes
dI (θ)

aλdξ
+I (θ) = Ib(Tg),where θ is the angle between ξ and x.With Ib(Tg) = σSBT 4

g /π

and I (0) = Ib(T1) = σSBT 4
1 /π , the ERT can be integrated from x = 0 to x = L .

The result is I (θ)|x=L = σSB
π

[
T 4
1 e

−aλL/ cos θ + T 4
g (1 − e−aλL/ cos θ )

]
. The radiative

flux at x = L can be obtained by integrating the intensity over the hemisphere, i.e.,

q ′′(aλL) =
2π∫
0

π/2∫
0

σSB

π

[
T 4
g − (T 4

g − T 4
1 )e−aλL/ cos θ

]
cos θ sin θdθdφ

= σSBT
4
g − 2σSB(T 4

g − T 4
1 )E3(aλL)

where E3(ζ ) = ∫ 1
0 e−ζ/μdμ is called the exponential integral function of the third

kind and can be numerically evaluated. The final results are tabulated as follows:

aλL 0.01 0.1 1 10

E3(aλL) 0.49 0.416 0.11 3.48 × 10−6

q ′′ (W/m2) 1.474 × 105 8.187 × 105 3.595 × 106 4.593 × 106

Discussion. In the optically thick limit (aλL � 1), q ′′ ≈ σSBT 4
g , and all radiation

leaving surface 1 will be absorbed by the gas before reaching surface 2. On the other
hand, the heat flux is much greater than σSBT 4

1 = 56.7 kW/m2 at aλL = 0.01. The
gas absorption can be neglected in the optically thin limit; however, its emission
contributes significantly to the radiative flux at surface 2. This is because the gas
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temperature is much higher than that of surface 1 and L/ cos θ can be much longer
than L for large θ values.

2.5 Summary

This chapter provided an overview of classical thermodynamics, derived following
logical steps and on a general basis, as well as the functional relations and ther-
modynamic properties of simple systems and ideal pure substances. The basic heat
transfer modes were elaborated in a coherent way built upon the foundations of
thermodynamics. Entropy generation is inevitably associated with any heat transfer
process. The connection between heat transfer and entropy generation, which has
been omitted by most heat transfer textbooks, was also discussed. The introduc-
tion of thermal radiation not only covered most of the undergraduate-level materials
but also linked to some basic graduate-level materials. This chapter should serve
as a bridge or a reference to the rest of the book, dealing with energy transfer pro-
cesses in micro/nanosystems and/or from a microscopic viewpoint of macroscopic
phenomena.

Problems

2.1. Give examples of steady state. Give examples of thermodynamic equilibrium
state. Give an example of spontaneous process. Is the growth of a plant a
spontaneous process? Give an example of adiabatic process.

2.2. What is work? Describe an experiment that can measure the amount of work.
What is heat? Describe an apparatus that can be used to measure heat. Are
work and heat properties of a system?

2.3. Expand Eqs. (2.1a, 2.1b) and (2.2a) in terms of the rate of energy and entropy
change of an open system,which is subjected towork output, heat interactions,
and multiple inlets and outlets of steady flow.

2.4. Discuss the remarks of Rudolf Clausius in 1867:

(a) The energy of the universe is constant.
(b) The entropy of the universe strives to attain a maximum value.

2.5. For a cyclic device experiencing heat interactions with reservoirs at
T1, T2, . . ., the Clausius inequality can be expressed as

∑
i

δQi

Ti
≤ 0 or∮

δQ
T ≤ 0, regardless of whether the device produces or consumes work. Note

that δQ is positive when heat is received by the device. Prove the Clausius
inequality by applying the second law to a closed system.

2.6. In the stable-equilibrium states, the energy and the entropy of a solid are
related by E = 3 × 105 exp

( S−S0
1000

)
, where E is in J, S is in J/K, and S0 is the
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entropy of the solid at a reference temperature of 300 K. Plot this relation in
an E–S graph. Find expressions for E and S in terms of its temperature T and
S0.

2.7. For an isolated system, give the mathematical expressions of the first and
second laws of thermodynamics. Give graphic illustrations using E–S graph.

2.8. Place two identical metal blocks A and B, initially at different temperatures,
in contact with each other but without interactions with any other systems.
Assume thermal equilibrium is reached quickly and let system C represents
the combined system of both A and B.

(a) Is the process reversible or not? Which system has experienced a spon-
taneous change of state? Which systems have experienced an induced
change of state?

(b) Assume that the specific heat of the metal is independent of temperature,
cp = 240 J/kgK, the initial temperatures are TA1 = 800K and TB1 = 200
K, and the mass of each block is 5 kg. What is the final temperature?
What is the total entropy generation in this process?

(c) Show the initial and final states of systems A, B, and C in a u–s dia-
gram, and indicate which state is not an equilibrium state. Determine the
adiabatic availability of system C in the initial state.

2.9. Two blocksmade of the samematerial with the samemass are allowed to inter-
act with each other but isolated from the surroundings. Initially, block A is at
800 K and block B at 200 K. Assuming that the specific heat is independent of
temperature, show that the final equilibrium temperature is 500 K. Determine
the maximum and minimum entropies that may be transferred from block A
to block B.

2.10. A cyclic machine receives 325 kJ heat from a 1000 K reservoir and rejects
125 kJ heat to a 400 K reservoir in a cycle that produces 200 kJ work. Is this
cycle reversible, irreversible, or impossible?

2.11. If z = z(x, y), then dz = f dx + gdy, where f (x, y) = ∂z/∂x, g(x, y) =
∂z/∂y. Therefore, ∂ f

∂y = ∂2z
∂y∂x = ∂2z

∂x∂y = ∂g
∂x . The second-order derivatives

of the fundamental equation and each of the characteristic function yield
a Maxwell relation. Maxwell’s relations are very useful for evaluating the
properties of a system in the stable-equilibrium states. For a closed system
without chemical reactions, we have dNi ≡ 0. Show that

(
∂T
∂V

)
S

= −(
∂P
∂S

)
V
,(

∂T
∂P

)
S

= (
∂V
∂S

)
P
,
(

∂S
∂V

)
T

= (
∂P
∂T

)
V
, and

(
∂S
∂P

)
T

= −(
∂V
∂T

)
P
.

2.12. The isobaric volume expansion coefficient is defined as βP = 1
v

(
∂v
∂T

)
P
, the

isothermal compressibility is κT = − 1
v

(
∂v
∂P

)
T
, and the speed of sound is

va =
√(

∂P
∂ρ

)
s
. For an ideal gas, show that βP = 1/T , κT = 1/P , and

va = √
γ RT .

2.13. For a system with single type of constituents, the fundamental relation
obtained by experiments gives S = α(NVU )1/3, where α is a positive con-
stant, andN,V, S, andU are the number ofmolecules, the volume, the entropy,
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and the internal energy of the system, respectively. Obtain expressions of the
temperature and the pressure in terms of N, V, U, and α. Show that S = 0 at
zero temperature for constant N and V.

2.14. For blackbody radiation in an evacuated enclosure of uniform wall temper-
ature T, the energy density can be expressed as uv = U

V = 4
cσSBT 4, where

U is the internal energy, V the volume, c the speed of light, and σSB the
Stefan–Boltzmann constant. Determine the entropy S(T, V ) and the pres-
sure P(T, V ), which is called the radiation pressure. Show that the radiation
pressure is a function of temperature only and negligibly small at moderate
temperatures. Hint: S = ∫ T

0
1
T

(
∂U
∂T

)
V
dT and P = T

(
∂S
∂V

)
T

− (
∂U
∂V

)
T
.

2.15. A cyclic machine can only interact with two reservoirs at temperatures TA =
298 K and TB = 77.3 K, respectively.

(a) If heat is extracted from reservoir A at a rate of Q̇ = 1000W, what is the
maximum rate of work that can be generated (Ẇmax)?

(b) If no work is produced, what is the rate of entropy generation (Ṡgen) of
the cyclic machine?

(c) Plot Ṡgen versus Ẇ (the power produced).

2.16. An engineer claimed that it requires much more work to remove 0.1 J of heat
from a cryogenic chamber at an absolute temperature of 0.1 K than to remove
270 J of heat from a refrigerator at 270 K. Assuming that the environment
is at 300 K, justify this claim by calculating the minimum work required for
each refrigeration task.

2.17. A solid block [m = 10 kg and cp = 0.5 kJ/kg K], initially at room temperature
(TA,1 = 300 K) is cooled with a large tank of liquid–gas mixture of nitrogen
at TB = 77.3 K and atmospheric pressure.

(a) After the block reaches the liquid nitrogen temperature, what is the total
entropy generation Sgen?

(b) Given the specific enthalpy of evaporation of nitrogen, hfg = 198.8 kJ/kg,
what must be its specific entropy of evaporation sfg in kJ/kg K, in order
for the nitrogen tank to be modeled as a reservoir? Does hfg = Tsat × sfg
always hold?

2.18. Two same-size solid blocks of the same material are isolated from other sys-
tems [specific heat cp = 2 kJ/kg K; mass m = 5 kg]. Initially, block A is at a
temperature TA1 = 300 K and block B at TB1 = 1000 K.

(a) If the two blocks are put together, what will be the equilibrium
temperature (T 2) and how much entropy will be generated (Sgen)?

(b) If the two blocks are connected with a cyclic machine, what is the
maximum work that can be obtained (Wmax)? What would be the final
temperature of the blocks (T 3) if the maximum work was obtained?

2.19. A rock [density ρ = 2800 kg/m3 and specific heat cp = 900 J/kg K] of 0.8 m3

is heated to 500 K using solar energy. A heat engine (cyclic machine) receives
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heat from the rock and rejects heat to the ambient at 290 K. The rock therefore
cools down.

(a) Find the maximum energy (heat) that the rock can give out.
(b) Find the maximum work that can be done by the heat engine, Wmax.
(c) (c) In an actual process, the final temperature of the rock is 330 K and the

work output from the engine is only half ofWmax. Determine the entropy
generation of the actual process.

2.20. Consider three identical solid blocks with a mass of 5 kg each, initially at
300, 600, and 900 K, respectively. The specific heat of the material is cp =
2000 J/kg K. A cyclic machine is available that can interact only with the
three blocks.

(a) What is the maximum work that can be produced? What are the final
temperatures of each block? Is the final state in equilibrium?

(b) If no work is produced, i.e., simply putting the three blocks together,
what will be the maximum entropy generation? What will be the final
temperature?

(c) If the three blocks are allowed to interact via cyclic machine but not with
any other systems in the environment, what is the highest temperature
that can be reached by one of the blocks?

(d) If the three blocks are allowed to interact via cyclic machine but not with
any other systems in the environment, what is the lowest temperature
that can be reached by one of the blocks?

2.21. Electrical power is used to raise the temperature of a 500 kg rock from 25 to
500 °C. The specific heat of the rock material is cp = 0.85 kJ/kg K.

(a) If the rock is heated directly through resistive (Joule) heating, how much
electrical energy is needed? Is this process reversible? If not, how much
entropy is generated in this process?

(b) By using cyclic devices that can interact with both the rock and the
environment at 25 °C, what is the minimum electrical energy required?

2.22. An insulated cylinder of 2 m3 is divided into two parts of equal volume by
an initially locked piston. Side A contains air at 300 K and 200 kPa; side B
contains air at 1500 K and 1 MPa. The piston is now unlocked so that it is
free to move and it conducts heat. An equilibrium state is reached between
the two sides after a while.

(a) Find the masses in both A and B.
(b) Find the final temperatures, pressures, and volumes for both A and B.
(c) Find the entropy generation in this process.

2.23. A piston–cylinder contains 0.56 kg of N2 gas, initially at 600 K. A cyclic
machine receives heat from the cylinder and releases heat to the environment
at 300 K. Assume that the specific heat of N2 is cp = 1.06 kJ/kg K, and the
pressure inside the cylinder is maintained at 100 kPa by the environment.
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What is the maximum work that can be produced by the machine? What is
the thermal efficiency (defined as the ratio of the work output to the heat
received)? The thermodynamic efficiency can be defined as the ratio of the
actual work produced to the maximum work. Plot the thermodynamic effi-
ciency as a function of the entropy generation. What is the maximum entropy
generation?

2.24. An airstream [cp = 1 kJ/kg K andM = 29.1 kg/kmol] flows through a power
plant. The stream enters a turbine at T 1 = 750 K and P1 = 6 MPa, and exits
at P2 = 1.2 MPa into a recovery unit, which can exchange heat with the
environment at 25 °C and 100 kPa. The stream then exits the recovery unit
to the environment. The turbine is thermally insulated and has an efficiency
ηt = 0.85.

(a) Find the power per unit mass flow rate produced by the turbine.
(b) Calculate the entropy generation rate in the turbine.
(c) Determine the largest power that can be produced by the recovery unit.

2.25. Water flows in a perfectly insulated, steady-state, horizontal duct of variable
cross-sectional area.Measurements were taken at two ports, and the data were
recorded in a notebook as follows. For port 1, speed ξ1 = 3 m/s, pressure
P1 = 50 kPa, and temperature T1 = 40 ◦C; for port 2, ξ2 = 5 m/s and
P2 = 45 kPa. Some information was accidentally left out by the student
taking the notes. Can you determine T2 and the direction of the flow based on
the available information? Hint: Model the water as an ideal incompressible
liquid with cp = 4.2 kJ/kg) and specific volume v = 10−3 m3/kg.

2.26. An insulated rigid vessel contains 0.4 kmol of oxygen at 200 kPa separated
by a membrane from 0.6 kmol of carbon dioxide at 400 kPa; both sides are
initially at 300 K. The membrane is suddenly broken and, after a while, the
mixture comes to a uniform state (equilibrium).

(a) Find the final temperature and pressure of the mixture.
(b) Determine the entropy generation due to irreversibility.

2.27. Pure N2 and air (21%O2 and 79%N2 by volume), both at 298 K and 120 kPa,
enter a chamber at a flow rate of 0.1 and 0.3 kmol/s, respectively. The newmix-
ture leaves the chamber at the same temperature and pressure as the incoming
streams.

(a) What are the mole fractions and the mass fractions of N2 and O2 at the
exit?

(b) Find the enthalpy change in the mixing process. Find the entropy
generation rate of the mixing process.

(c) Consider a process inwhich theflowdirections are reversed.The chamber
now contains necessary devices for the separation, and it may transfer
heat to the environment at 298 K. What is the minimum amount of work
per unit time needed to operate the separation devices?
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2.28. A Carnot engine receives energy from a reservoir at TH and rejects heat to the
environment at T 0 via a heat exchanger. The engine works reversibly between
TH and TL, where TL is the temperature of the higher temperature side of
the heat exchanger. The product of the area and the heat transfer coefficient
of the heat exchanger is α. Therefore, the heat that must be rejected to the
environment through the heat exchanger is Q̇L = α(TL−T0). Given TH = 800
K, T0 = 300 K, and α = 2300 W/K. Determine the value of TL so that the
heat engine will produce maximumwork, and calculate the power production
and the entropy generation in such a case.

2.29. To measure the thermal conductivity, a thin film electric heater is sandwiched
between two plates whose sides are well insulated. Each plate has an area of
0.1 m2 and a thickness of 0.05 m. The outside of the plates are exposed to air
at T∞ = 25 ◦C with a convection coefficient of h = 40 W/m2 K. The electric
power of the heat is 400 W and a thermocouple inserted between the two
plates measures a temperature of T1 = 175 ◦C at steady state. Determine the
thermal conductivity of the plate material. Find the total entropy generation
rate. Comment on the fraction of entropy generation due to conduction and
convection.

2.30. An electric current, I = 2 A, passes through a resistive wire of diameter D =
3 mm with a resistivity re = 1.5× 10−4 � m. The cable is placed in ambient
air at 27 ◦C with a convection coefficient h = 20 W/m2 K. Assume a steady
state has been reached and neglect radiation. Determine the radial temperature
distribution inside the wire. Determine the volumetric entropy generation rate
ṡgen as a function of radius. Determine the total entropy generation rate per
unit length of the cable. Hint: For steady-state conduction, ṡgen = 1

T ∇ · q′′ −
1
T 2 q′′ · ∇T . [Hint: Consider κ = 10 W/mK and κ = 1 W/m K.]

2.31. Find the thermal conductivity of intrinsic (undoped) silicon, heavily doped
silicon, quartz, glass, diamond, graphite, and carbon from 100 to 1000 K from
Touloukian and Ho [13]. Discuss the variations between different materials,
crystalline structures, and doping concentrations.

2.32. Find the thermal conductivity of copper from 1 to 1000 K from Touloukian
and Ho [13]. Discuss the general trend in terms of temperature dependence,
and comment on the effect of impurities.

2.33. For laminar flow over a flat plate, the velocity and thermal boundary
layer thicknesses can be calculated by δ(x) = 5x/

√
Rex and δt(x) =

5x Re−1/2
x Pr−1/3, respectively. Use room temperature data to calculate and

plot the boundary layer thicknesses for air, water, engine oil, and mercury for
different values ofU∞. Discuss the main features. Hint: Property data can be
found from Incropera and DeWitt [11].

2.34. Air at 14 °C and atmospheric pressure is in parallel flow over a flat plate of
2 × 2 m2. The air velocity is 3 m/s, and the surface is maintained at 140 °C.
Determine the average convection coefficient and the rate of heat transfer from
the plate to air. (For air at 350K, which is the average temperature between the
surface and fluid, κ = 0.03 W/m K, ν = 20.9×10−6 m2/s, and Pr = 0.7.)
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2.35. Plot the blackbody intensity (Planck’s law) as a function of wavelength for
several temperatures. Discuss the main features of this function. Show that
in the long-wavelength limit, the blackbody function can be approximated by
eb,λ(λ, T ) ≈ 2πckBT/λ4, which is the Rayleigh–Jeans formula.

2.36. Calculate the net radiative heat flux from the human body at a surface temper-
ature of Ts = 308 K, with an emissivity ε = 0.9, to the room walls at 298 K.
Assume air is at 298 K and has a natural convection coefficient of 5 W/m2

K. Neglect evaporation, calculate the natural convection heat flux from the
person to air. Comment on the significance of thermal radiation.

2.37. Combustion occurs in a spherical enclosure of diameter D = 50 cm with
a constant wall temperature of 600 K. The temperature of the combustion
gases may be approximated as uniform at 2300 K. The absorption coefficient
of the gas mixture is aλ = 0.01 cm−1, which is independent of wavelength.
Assuming that the wall is black and neglecting the scattering effect, determine
the net heat transfer rate between the gas and the inner wall of the sphere.
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