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To my wife Lingyun



Preface

Right after the first edition was published in 2007, I was invited to give seminars at
a number of universities in several countries. At that time, many people considered
nanotechnology research to be new and emerging; however, quite a few also
wondered what it was about and questioned its real-world applications. Nowadays,
the benefits of nanotechnology have entered our daily lives; it is hard for a teenager
or a young adult to imagine living in an environment without modern mobile
devices, internet, big data, etc. Many universities have since used my book in
teaching graduate and undergraduate courses related to the micro/nanoscale thermal
transport. Remarkable progress has been made in the last decade on the simulations,
measurements, and applications of nanoscale thermal science and engineering. The
second edition is an update of the first edition, covering the recent advances in this
field. The structure and chapters are not changed, and the revision follows the same
philosophy: to put the readers first and to make it easy to understand. More
advanced topics are covered as overviews with pertinent references so that readers
can seek further details from the literature and other resources.

Over the past thirty years, there have been tremendous developments in micro-
electronics, microfabrication technology, MEMS and NEMS, quantum structures
(e.g., superlattices, nanowires, nanotubes, graphene and other two-dimensional
materials, and nanoparticles), optoelectronics and lasers including ultrafast lasers,
and molecular- to atomic-level imaging techniques (such as high-resolution electron
microscopy, scanning tunneling microscopy, atomic force microscopy, near-field
optical microscopy, and scanning thermal microscopy). The field is fast moving into
scaling up and systems engineering to explore the unlimited potential that
nanoscience and nanoengineering may offer to restructure the technologies in the
new millennia. When the characteristic length becomes comparable to the mecha-
nistic length scale, continuum assumptions that are often made in conventional
thermal analysis may break down. Similarly, when the characteristic time becomes
comparable to the mechanistic time scale, traditional equilibrium approaches may
not be appropriate. Understanding the energy transport mechanisms in small
dimensions and short timescale is crucial for the future advancement of nanotech-
nology. In recent years, a growing number of research publications have been in
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nano/microscale thermophysical engineering. Timely dissemination of the knowl-
edge gained from contemporary research to educate future scientists and engineers is
of emerging significance. For this reason, more and more universities are offering
courses in microscale/nanoscale thermal transport. A self-contained textbook suit-
able for engineering students is much needed. Many practicing engineers who have
graduated earlier wish to learn what is going on in this fascinating area, but are often
frustrated due to the lack of a solid background to comprehend the contemporary
literature. A book that does not require prior knowledge in statistical mechanics,
quantum mechanics, solid-state physics, and electrodynamics is extremely helpful.
Nevertheless, such a book should cover all these subjects in some depth without
significant prerequisites.

This book is written for engineering senior undergraduates and graduate students,
practicing engineers, and academic researchers who have not been extensively
exposed to nanoscale sciences but wish to gain a solid background in the thermal
phenomena occurring at small length scales and short timescales. The basic phi-
losophy behind this book is to logically integrate the traditional knowledge in
thermal engineering and physics with newly developed theories in an easy-to-
understand approach, with ample examples and homework problems. The materials
have been used in the graduate courses and undergraduate electives that I have
taught for a number of times at two universities since 1999. While this book can be
used as a text for a senior elective or an entry-level graduate course, it is not expected
that all the materials will be covered in a one-semester course. The instructors have
the freedom to select materials from the book according to students’ backgrounds
and interests. Some chapters and sections can also be used to integrate with tradi-
tional thermal science courses in order to update the current undergraduate and
graduate curricula with nanotechnology contents.

The content of this book includes microscopic descriptions and approaches, as
well as their applications in thermal science and engineering, with an emphasis on
energy transport in gases and solids by conduction (diffusion) and radiation (with or
without a medium), as well as convection in micro/nanofluidics. Following the
introduction of Chap. 1, an in-depth overview of the foundation of macroscopic
thermodynamics, heat transfer, and fluid mechanics is given in Chap. 2. Chapter 3
summarizes the well-established theories in statistical mechanics, including clas-
sical and quantum statistics. Thermal properties of ideal gases are described in the
content of statistical thermodynamics, followed by a concise presentation of
quantum mechanics. Chapter 4 focuses on microfluidics and introduces the
Boltzmann transport equations. The heat transfer and microflow regimes from
continuous flow to free molecule flow are described. In Chaps. 5–7, heat transfer in
solid nanostructures is discussed. Chapter 5 presents the classical and quantum size
effects on specific heat and thermal conductivity without involving detailed
solid-state physics, which are introduced in Chap. 6. This arrangement allows a
more intuitive learning experience. Chapter 7 focuses on transient as well as
nonequilibrium energy transport processes in nanostructures. The next three
chapters deal with thermal radiation at nanoscales. Chapter 8 provides the funda-
mental understanding of electromagnetic waves and the dielectric functions of
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various materials, including metamaterials with exotic properties. Theories of
blackbody radiation, radiation thermometry, and radiation entropy are present.
Radiative properties of bulk materials and their relationships are discussed.
Chapter 9 describes interference effects of thin films and multilayers, the band
structure of photonic crystals, diffraction from surface-relief gratings, scattering
from rough surfaces, as well as plasmonics and surface polaritons. Chapter 10
explores evanescent waves and the coupling phenomena in the near field for energy
transfer. Recent advances in nanophotonics and nanoscale radiative heat transfer are
also summarized. In the second edition, significant enhancements have been made
to heat conduction in solids and nanostructures as well as to nanoscale thermal
radiation and radiative properties. The dual nature of particles and waves is
emphasized throughout the book in explaining the energy carriers, such as mole-
cules in ideal gases, electrons in metals, phonons in dielectric crystalline materials,
and photons for radiative transfer. Examples in the text and end-of-chapter
homework problems should enhance the understanding of how to apply the for-
mulations and methodology to develop problem-solving skills. Selected homework
solutions will be posted on the author’s website (http://zhang-nano.gatech.edu/),
which also contains author’s contact information.

I am deeply in debt to Dr. Markus Flik, my doctoral father, who brought me to
the micro/nano world through the three intense and fruitful years at MIT. After
graduation, late Professor and Chancellor of Berkeley, Chang-Lin Tien, my aca-
demic grandfather, offered immense support and encouragement for me to write this
book. I am grateful to my master thesis advisors, Profs. Xin-Shi Ge and Yifang
Wang of the University of Science and Technology of China (Hefei), for giving me
early research training in thermal radiation. I wish to thank my postdoctoral mentors
Dr. Raju Datla and Prof. Dennis Drew (University of Maryland) for providing me a
valuable opportunity to do research at NIST, where I also benefited from working
with many outstanding researchers, including Drs. Leonard Hansson, Jack Hsia, Joe
Rice, Ben Tsai, and late Prof. Dave DeWitt (Purdue).

I am grateful to my colleagues and collaborators at both University of Florida
(UF) and Georgia Institute of Technology (GT). I have been fortunate to have very
supportive supervisors from Prof. William Tiederman (former Department Chair at
UF) to Profs. Ward Winer and William Wepfer (former School Chairs at GT), to
Prof. Samuel Graham (current School Chair at GT). I greatly enjoyed the collab-
oration with Prof. David Tanner (Physics, UF), as well as the valuable interactions
with Profs. C. K. Hsieh, Yogi Goswami, Sherif Sherif, Jacob Chung, James
Klausner, and David Hahn while at UF. I cherish the friendship and collaboration
with my colleagues Profs. Yogendra Joshi, G. P. “Bud” Peterson, Peter Hesketh,
William King (now at UIUC), Bara Cola, Peter Loutzenhiser, Devesh Ranjan, and
Shannon Yee at Georgia Tech.

I have also benefited greatly from the support, encouragement, and friendship of
a large number of peers and colleagues in the heat transfer and thermophysics
community; too many to list here. I wish to thank members of the ASME Heat
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Transfer Division’s K-9 Committee on Nanoscale Thermal Transport for inspiring
discussions and comments.

This book would not have been possible without my graduate students’ hard
work and dedication. Many of them have taken my classes and proofread different
versions of the manuscripts. Some materials in the last three chapters are generated
based on their thesis research. I would like to thank my former graduate students at
UF Ravi Kumar, Brian Johnson, Donghai Chen, David Pearson, Yihui Zhou,
Ferdinand Rosa, Yu-Jiun Shen, Jorge Garcia, and Linxia Gu for helping me
establish my early academic career. My first Ph.D. students graduated at GT,
Qunzhi Zhu (currently at Shanghai University of Electric Power) and Ceju Fu
(Peking University), made my transition from UF to GT smoother. They were
followed by many wonderful Ph.D. graduates: Hyunjin Lee (Kookmin University),
Yu-Bin Chen (National Tsing Hua University), Keunhan Park (University of Utah),
Bong Jae Lee (KAIST), Soumya Basu (PsiQuantum Ltd.), Xiaojia Wang
(University of Minnesota), Liping Wang (Arizona State University), Andrew
McNamara (AMD), Trevor Bright (Aerospace Corp.), Richard Z. Zhang
(University of North Texas), Jesse Watjen (Knolls Atomic Power Lab), Xianglei
Liu (Nanjing University of Aeronautics and Astronautics), Bo Zhao (post-doc
Stanford University), Peiyan Yang (Apple Inc.), and Eric Tervo (NREL director’s
post-doc fellow). I am glad to see that most of them have developed their own
independent research and academic careers and become excellent teachers. My
current Ph.D. students Dudong Feng, Chuyang Chen, Shin Young Jeong, and
Chiyu Yang have also provided great help during the revision. I am also thankful to
many visiting scholars, post-doc researchers, visiting students, master’s students,
and undergraduate students who have worked with me. Many graduate and
undergraduate students who have taken my classes also provided constructive
suggestions. I enjoyed working with all of them.

I wish to thank the Thermal Transport Program of NSF for the continuous
support of my research and educational endeavor since 1998 and the Program
Directors Drs. Ashley Emery, Richard Smith, Alfonso Ortega, Patrick Phelan,
Theodore Bergman, Sumanta Acharya, José Lage, and Ying Sun. The ongoing
grant number is CBET-1603761. I also gratefully appreciate the Physical Behavior
of Materials Program of DOE (Basic Energy Science) and the Program Manager
Dr. Refik Kortan for the confidence and support in the past decade. The ongoing
grant number is DE-SC0018369. I do take full responsibility for any inadvertent
errors or mistakes.

I must thank the Chief Editor of Springer Mechanical Engineering Series, Prof.
Francis Kulacki of the University of Minnesota for his encouragement, patience,
and valuable comments during the past two years. The Editor at Springer, Michael
Luby, and the editorial team are acknowledged for their hard work putting this book
to print.
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Finally, I thank my family for their understanding and support throughout the
writing journey. I can’t thank enough my parents and parents-in-law for their
unselfish love and support to me and my family. My children Emmy, Angie, and
Bryan, now grown-ups, have given me great happiness and made my life mean-
ingful. This book is dedicated to my wife Lingyun for the unconditional love and
meticulous care she has provided to me and to our children.

Marietta, GA, USA
January 2020

Zhuomin M. Zhang
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Chapter 1
Introduction

Improvement of performance and shrinkage of device sizes in microelectronics have
beenmajor driving forces for scientific and economic progress over the past 40 years.
Developments in semiconductor processing and surface sciences have allowed pre-
cise control over critical dimensions with desirable properties for solid-state devices.
In the past 30 years, there have been tremendous developments in micro- and nano-
electromechanical systems (MEMS and NEMS), microfluidics and nanofluidics,
quantum structures and devices, photonics and optoelectronics, nanomaterials for
molecular sensing and biomedical diagnosis, and scanning probe microscopy for
measurement and manipulation at the molecular and atomic levels.

Nanotechnology opens new frontiers in science and engineering, and has also
become an integral part of almost all natural science and engineering disciplines.
Back in 2007, about 10% of the faculty members at Georgia Tech were conducting
some research related to nanoscience and nanoengineering. The number of faculty
and research projects related to micro/nanoscales has grown significantly. The same
can be said for most major research universities in the United States and in many
other countries. Furthermore, the study of nanoscience and nanoengineering requires
and has resulted in close interactions across the boundaries of many traditional disci-
plines. Knowledge of physical behavior at themolecular and atomic levels has played
and will continue to play an important role in our understanding of the fundamental
processes occurring in the macro world. This will enable us to design and develop
novel devices and machines, ranging from a few nanometers all the way to the size
of automobiles and airplanes [1, 2]. Ten to fifteen years ago, many people either
had never heard about the word “nanotechnology” or had doubts about the useful-
ness in real world. Today, we depend on and enjoy nanotechnology in our daily life,
including cell phones, laptops, computers, internet, medicine and medical devices,
energy harvesting, transportation, lighting, batteries, smart clothes, and so on, you
name it. The advancement of nano/microscale science and engineering will continue
to restructure the technologies currently used in manufacturing, energy production
and utilization, communication, transportation, space exploration, and medicine.
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A key issue associated with miniaturization is the tremendous increase in the heat
dissipation per unit volume. Micro/nanostructures may enable engineered materials
with unique thermal properties to allow significant enhancement or reduction of the
heat flow rate. Therefore, knowledge of thermal transport from the micrometer scale
down to the nanometer scale and thermal properties ofmicro/nanostructures is of crit-
ical importance to future technological growth. Solutions tomore andmore problems
in small devices and systems require a solid understanding of the heat (or more gen-
erally, energy) transfer mechanisms in reduced dimensions and/or short time scales,
because classical equilibrium and continuum assumptions are not valid anymore.
Examples are the thermal analysis and design of micro/nanodevices, thermal man-
agement in flexible electronics, ultrafast laser interaction with materials, microma-
chined thermal sensors and actuators, thermoelectricity in nanostructures, photonic
crystals, microscale thermophotovoltaic devices, battery thermal management, and
so on [3, 4].

This book was motivated by the need to understand the thermal phenomena and
heat transfer processes inmicro/nanosystems and at very short time scales for solving
problems occurring in contemporary and future technologies. Since the first publi-
cation in 2007, many universities have offered micro/nanoscale heat transfer courses
and used it as either the textbook or major reference. Significant progress has been
made in the last decade and this second edition reflects a major update.

1.1 Limitations of the Macroscopic Formulation

As an ancient Chinese philosopher put it, suppose you take a foot-longwood stick and
cut off half of it each day; youwill never reach an end even after thousands of years, as
shown in Fig. 1.1. Modern science has taught us that, at some stage, one would reach
themolecular level and even the atomic level, belowwhich the physical and chemical
properties are completely different from those of the original material. The wooden
stick or slice would eventually become something else that is not distinguishable
from the other constituents in the atmosphere. Basically, properties of materials
at very small scales may be quite different from those of the corresponding bulk
materials. Note that 1 nm (nanometer) is one-billionth of a meter. The diameter of a
hydrogen atom H is on the order of 0.1 nm, and that of a hydrogen molecule H2 is
approximately 0.3 nm. Using the formula ln = 0.3048/2n−1 m, where n is number of
days, we find l30 = 5.7 × 10−10 m (or 0.57 nm) after just a month, which is already
near the diameter of a hydrogen atom (about 0.1 nm).

While atoms can still be divided with large and sophisticated facilities, our ability
to observe, manipulate, and utilize them is very limited. On the other hand, most
biological processes occur at the molecular level. Many novel physical phenomena
happen at the length scale of a few nanometers and can be integrated into large
systems. This is why a nanometer is a critical length scale for the realization of
practically important newmaterials, structures, and phenomena. For example, carbon
nanotubes with diameters ranging from 0.4 to 50 nm or so have dramatically different
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Fig. 1.1 The length of the
wood stick: l1 = 1 ft in day
1, l2 = 1/2 ft in day 2, and
ln = 1/2n−1 ft in day n
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properties. Some researchers have shown that these nanotubes hold promise as the
building block of nanoelectronics. Others have found that the thermal conductivity of
single-walled carbon nanotubes at room temperature could be an order of magnitude
higher than that of copper. Therefore, carbon nanotubes have been considered as a
candidate material for applications that require a high heat flux.

In conventional fluid mechanics and heat transfer, we treat the medium as a con-
tinuum, that is, indefinitely divisible without changing its physical nature. All the
intensive properties can be defined locally and continuously. For example, the local
density is defined as

ρ = lim
δV→0

δm

δV
(1.1)

where δm is the mass enclosed within a volume element δV . When the characteristic
dimension is comparable with or smaller than that of the mechanistic length—for
example, the molecularmean free path,which is the average distance that a molecule
travels between two collisions—the continuum assumption will break down. The
density defined in Eq. (1.1) will depend on the size of the volume, δV , and will
fluctuate with time even at macroscopic equilibrium. Noting that the mean free path
of air at standard atmospheric conditions is about 70 nm, the continuum assumption
is well justified for many engineering applications until the submicrometer regime or
the nanoscale is reached. Nevertheless, if the pressure is very low, as in an evacuated
chamber or at a high elevation, the mean free path can be very large; and thus, the
continuum assumption may break down even at relatively large length scales.

Within the macroscopic framework, we calculate the temperature distribution in
a fluid or solid by assuming that the medium under consideration is not only a con-
tinuum but also at thermodynamic equilibrium everywhere. The latter condition is
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called the local-equilibrium assumption, which is required because temperature can
be defined only for stable-equilibrium states. With extremely high temperature gra-
dients at sufficiently small length scales and/or during very short periods of time,
the assumption of local equilibrium may be inappropriate. An example is the inter-
action between short laser pulses and a material. Depending on the type of laser, the
pulse duration or width can vary from a few tens of nanoseconds down to several
femtoseconds (1 fs = 10−15 s). In the case of ultrafast laser interaction with metals,
free electrons in the metal could gain energy quickly to arrive at an excited state
corresponding to an effective temperature of several thousand kelvins, whereas the
crystalline lattices remain near room temperature. After an elapse of time represented
by the electron relaxation time, the excess energy of electrons will be transferred to
phonons,which are energy quanta of lattice vibration, thereby causing a heating effect
that raises the temperature or changes the phase of the material under irradiation.

Additionalmechanismsmay affect the behavior of a system as the physical dimen-
sions shrink or as the excitation and detection times are reduced. A scale-down of
the theories developed from macroscopic observations often proves to be unsuitable
for applications involving micro/nanoscale phenomena. Examples are reductions in
the conductivity of thin films or thin wires due to boundary scattering (size effect),
discontinuous velocity and temperature boundary conditions in microfluidics, wave
interferences in thin films, and tunneling of electrons and photons through narrow
gaps. In the quantum limit, the thermal conductance of a nanowire will reach a lim-
iting value that is independent of the material that the nanowire is made of. At the
nanoscale, the radiation heat transfer between two surfaces can exceed that calcu-
lated from the Stefan-Boltzmann law by several orders of magnitude. Another effect
of miniaturization is that surface forces (such as shear forces) will scale down with
L2, where L is the characteristic length, while volume forces (such as buoyancy) will
scale down with L3. This will make surface forces predominant over volume forces
at the microscale.

1.2 The Length Scales

It is instructive to compare the length scales of different phenomena and struc-
tures, especially against the wavelength of the electromagnetic spectrum. Figure 1.2
compares the wavelength ranges with some characteristic dimensions. One can see
that MEMS generally produce micromachining capabilities from several millimeters
down to a few micrometers. Currently, the smallest feature of integrated circuits is
well below 100 nm. The layer thickness of thin films ranges from a few nanometers
up to several micrometers. The wavelengths of the visible light are in the range from
approximately 380 to 760 nm. On the other hand, thermal radiation covers a part of
the ultraviolet, the entire visible and infrared, and a portion of the microwave region.
The thickness of human hair is between 50 and 100 μm, while the diameter of red
blood cells is about 6–8μm.A typical opticalmicroscope canmagnify 100 timeswith
a resolution of 200–300 nm, which is about half the wavelength and is limited due
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Fig. 1.2 Characteristic length scales as comparedwith the wavelength of electromagnetic spectrum

to the diffraction of light. Therefore, optical microscopy is commonly used to study
micrometer-sized objects. On the other hand, atoms andmolecules are on the order of
1 nm, which falls in the x-ray and electron-beamwavelength region. Therefore, x-ray
and electron microscopes are typically used for determining crystal structures and
defects, as well as for imaging nanostructures. The development of scanning probe
microscopes (SPMs) and near-field scanning optical microscopes (NSOMs) in the
1980s enabled unprecedented capabilities for the visualization and manipulation of
nanostructures, such as nanowires, nanotubes, nanocrystals, single molecules, indi-
vidual atoms, and so forth, as will be discussed in Sect. 1.3.4. Figure 1.2 also shows
that the mean free path of heat carriers (e.g., molecules in gases, electrons in metals,
and phonons or lattice vibration in dielectric solids) often falls in the micrometer to
nanometer scales, depending on the material, temperature, and type of carrier.

A brief historical retrospective is given next on the development of modern sci-
ence and technologies, with a focus on the recent technological advances leading to
nanotechnology. The role of thermal engineering in this technological advancement
process is outlined.
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1.3 From Ancient Philosophy to Contemporary
Technologies

Understanding the fundamentals of the composition of all things in the universe, their
movement in space and with time, and the interactions between one and another is a
human curiosity and the inner drive that makes us different from other living beings
on the earth. The ancient Chinese believed that everything was composed of the five
elements: metal, wood, water, fire, and earth (or soil) that generate and overcome one
another in certain order and time sequence. These simple beliefswere notmerely used
for fortune-telling but have helped the development of traditional Chinese medicine,
music, military strategy, astronomy, and calendar. In ancient Greece, the four ele-
ments (fire, earth, air, and water) were considered as the realm wherein all things
existed and whereof all things consisted. These classical element theories prevailed
in several other countries in somewhat different versions for over 2000 years, until
the establishment of modern atomic theory that began with JohnDalton’s experiment
on gases some 200 years ago. In 1811, Italian chemist Amedeo Avogadro introduced
the concept of themolecule, which consists of stable systems or bound state of atoms.
A molecule is the smallest particle that retains the chemical properties and composi-
tion of a pure substance. The first periodic table was developed by Russian chemist
Dmitri Mendeleev in 1869. Although the original meaning of atom in Greek is “indi-
visible,” subatomic particles have since been discovered. For example, electrons as
a subatomic particle were discovered in 1897 by J. J. Thomson, who won the 1906
Nobel Prize in Physics. An atom is known as the smallest unit of one of the 118
confirmed elements.

The first industrial revolution began in the late eighteenth century and boosted
the economy of western countries from manual labor to the machine age by the
introduction of machine tools and textile manufacturing. Following the invention of
the steam engine in the mid nineteenth century, the second industrial revolution had
an even bigger impact on human life through the development of steam-powered
ships and trains, along with the internal combustion engines, and the generation of
electrical power.Newtonianmechanics and classical thermodynamics have played an
indispensable role in the industrial revolutions. The development of machinery and
the understanding of the composition ofmatter have allowed unprecedented precision
of experimental investigation of physical phenomena, leading to the establishment
of modern physics in the early twentieth century.

The nature of light has longbeendebated. In the seventeenth century, IsaacNewton
formulated the corpuscular theory of light and observed with his prism experiment
that sunlight is composed of different colors. In the early nineteenth century, the
discovery of infrared and ultraviolet radiation and Young’s double-slit experiment
confirmed Huygens’ wave theory, which was overshadowed by Newton’s corpuscu-
lar theory for over 100 years. With the establishment of Maxwell’s equations that
fully describe the electromagnetic waves and Michelson’s interferometric experi-
ment, the wave theory of radiation had been largely accepted by the end of the
nineteenth century. While the wave theory was able to explain most of the observed
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phenomena, it could not explain thermal emission over a wide spectrum, nor was it
able to explain the photoelectric effect. Max Planck in 1900 used the hypothesis of
radiation quanta, or oscillators, to successfully derive the blackbody spectral distri-
bution function. It appears that the energy of light is not indefinitely divisible but
must exists in multiples of the smallest massless quanta that we now call photons.
In 1905, Albert Einstein explained the photoelectric effect based on the concept of
radiation quanta. To knock out an electron from the metal surface, the energy of each
incoming phonon (hν)must be sufficiently large because one electron can absorb only
one photon. This explained why photoemission could not occur at frequencies below
the threshold value, no matter how intense the incoming light might be. In 1924,
Louis de Broglie hypothesized that particles should also exhibit wavelike character-
istics. With the electron diffraction experiment, it was found that electrons indeed
can behave like waves with a wavelength inversely proportional to the momentum.
Electron microscopy was based on the principle of electron diffraction. The wave–
particle duality was essential to the establishment of quantummechanics in the early
twentieth century. Quantummechanics describes the phenomena occurring inminute
particles, structures, and their interaction with radiation, for which classical mechan-
ics and electrodynamics are not applicable. The fundamental scientific understanding
gained during the first half of the twentieth century has facilitated the development
of contemporary technologies that have transformed from the industrial economy to
the knowledge-based economy and from the machine age to the information age.
The major technological advancements in the last half of the century are highlighted
in the following sections.

1.3.1 Microelectronics and Information Technology

In his master’s thesis at MIT published in 1940, Claude Shannon (1916–2001) used
the Boolean algebra and showed how to use TRUE and FALSE to represent function
of switches in electronic circuits. Digital computers were invented during the 1940s
in several countries, including the IBM Mark I which is 2.4 m high and 16 m long.
In 1948, while working at Bell Labs, Shannon published an article, “AMathematical
Theory of Communication,” which marked the beginning of the modern communi-
cation and information technology [5]. In that paper, he laid out the basic principles
of underlying communication of information with two symbols, 1 and 0, and coined
the term “bit” for a binary digit. His theory made it possible for digital storage and
transmission of pictures, sounds, and so forth.

In December 1947, scientists at Bell Labs invented the semiconductor point-
contact transistor with germanium. The earlier computers and radios were based on
bulky vacuum tubes that generated a huge amount of heat. The invention of transistor
by William Shockley, John Bardeen, and Walter Brattain was recognized through
the Nobel Prize in Physics conferred on them in 1956. There had been intensive
research on semiconductor physics using the atomic theory and the mechanism of
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point contact for the fabrication of transistor to become possible. The invention of
transistors ushered the information age with a whole new industry.

In 1954, Gordon Teal at Texas Instruments built the first silicon transistor. The
native oxide of silicon appeared to be particularly suitable as the electric insulator.
In 1958, Jack Kilby (1923–2005) at Texas Instruments was able to cramp all the
discrete components onto a silicon base and later onto one piece of germanium. He
filed a patent application the next year on “Miniaturized Electronic Circuits,” where
he described how to make integrated circuits and connect the passive components
via gold wires. Working independently, Robert Noyce at Fairchild Electronics in
California found aluminum to adhere well to both silicon and silicon oxide and filed
a patent application in 1959 on “Semiconductor Device-and-Lead Structure.” Kilby
and Noyce are considered the co-inventors of integrated circuits. Noyce was one of
the founders of Intel and died in 1990. Kilby was awarded half of the Nobel Prize in
Physics in 2000 “for his part in the invention of the integrated circuit.” The other half
was shared by Zhores Alferov and Herbert Kroemer for developing semiconductor
heterogeneous structures used in optoelectronics, to be discussed in the next section.

In 1965, around 60 transistors could be packed on a single silicon chip. Seeing
the fast development and future potential of integrated circuits, Gordon Moore, a
co-founder of Intel, made a famous prediction that the number and complexity of
semiconductor deviceswould double every year [6]. This isMoore’s law,well-known
in the microelectronics industry [7]. In the mid-1970s, the number of transistors on a
chip increased from 60 to 5000. By 1985, the Intel 386 processor contained a quarter
million transistors on a chip. In 2001, the Pentium 4 processor reached 42 million
transistors. The number has now exceeded 1 billion per chip in 2006.When the device
density is plotted against time in a log scale, the growth almost follows a straight line,
suggesting that the packaging density has doubled approximately every 18 months
till recent years [7, 8]. Reducing the device size and increasing the packaging density
have several advantages. For example, the processor speed increases by reducing the
distance between transistors. Furthermore, new performance features can be added
into the chip to enhance the performance. The cost for the same performance also
reduces. Advanced supercomputer systems have played a critical role in enabling
modeling and understanding micro/nanoscale phenomena.

The process is first to grow high-quality silicon crystals and then dice and polish
into wafers. Devices are usually made on SiO2 layer that can be grown by heating the
wafer to sufficiently high temperatures in a furnace with controlled oxygen partial
pressure. Thewafers are then patterned using photolithographic techniques combined
with etching processes. Donors and acceptors are added to the wafer to form n- and p-
type regions by ion implantation and then annealed in a thermal environment. Metals
or heavily doped polycrystalline silicon are used as gates with proper coverage and
patterns through lithography. A schematic of metal-oxide-semiconductor field-effect
transistor (MOSFET) is shown in Fig. 1.3. Billions of transistors can be packed into
the size of a fingernail with several layers through very-large-scale integration (VLSI)
with the smallest features on the order of 5 nm. As mentioned earlier, managing heat
dissipation is a challenge especially as the device dimension continues to shrink.
Local heating or hot spots on the size of 10 nm could cause device failure if not
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Fig. 1.3 Schematic of a
metal-oxide-semiconductor
field-effect transistor
(MOSFET)

probably handled. The principles governing the heat transfer at the nanoscale are
very different from those at large scales. A fundamental understanding of the phonon
transport is required for device-level thermal analysis. Furthermore, understanding
heat transfer in microfluidics is necessary to enable reliable device cooling at the
micro- and nanoscales.

The progress in microelectronics is not possible without the advances in materials
such as crystal growth and thermal processing during semiconductor manufacturing,
as well as the deposition and photolithographic technologies. Rapid thermal pro-
cessing (RTP) is necessary during annealing and oxidation to prevent ions from deep
diffusion into the wafer. Thermal modeling of RTP must consider the combined
conduction, convection, and radiation modes. Lightpipe thermometer is commonly
used to monitor the temperature of the wafer. In an RTP furnace, the thermal radi-
ation emitted by the wafer is collected by the light pipe and then transmitted to the
radiometer for inferring the surface temperature [9]. In some cases, the wafer sur-
face is rough with anisotropic features. A better understanding of light scattering by
anisotropic rough surfaces is also necessary.

As the process node continues to shrink, high-intensity Ar or Xe arc lamps with
millisecond optical pulses are considered as a suitable annealing tool following
ion implantation in ultra-shallow junction fabrication. Because the optical energy
is absorbed within milliseconds, thermal diffusion cannot distribute heat uniformly
across the wafer surface. Therefore, temperature uniformity across the nanometer-
patterned wafer is expected to be a critical issue. To reduce the feature size fur-
ther, deep-UV lithography and x-ray lithography have also been developed. It is
inevitable that Moore’s law will reach its limit, when the critical dimensions would
be less than a few nanometers. Further reduction will be subjected to serious barriers
due to problems associated with gate dielectrics and fabrication difficulties. Beyond
Moore’s law, there are continuous challenges in improving the energy efficiency,
overall performance, stability, flexibility, and cost efficiency. Two-dimensional (2D)
and 3D very large-scale integration (VLSI) architectures using stacked or sequen-
tial integrated systems/circuits may offer future technological solutions. Molecular
nanoelectronics using self-assembly has been sought for as an alternative, along
with quantum computing. Therefore, nanoelectronics and quantum computing are
anticipated to brighten the electronics and computer future.
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1.3.2 Lasers, Optoelectronics, and Nanophotonics

It is hard to imagine what the current technology would look like without lasers.
Lasers of different types have tremendous applications in metrology, microelectron-
ics fabrication, manufacturing, medicine, and communication. Examples are laser
printers, laser bar code readers, laser Doppler velocimetry, laser machining, and
laser corneal surgery for vision correction. The concept of laser was demonstrated
in late 1950s independently in the United States and the Soviet Union during the
cold war. The Nobel Prize in Physics of 1964 recognized the fundamental contri-
butions in the field of quantum electronics by Charles Townes, Nicolay Basov, and
Aleksandr Prokhorov. The first working laser was Ruby laser built by Theodore
Maiman at Hughes Aircraft Company in 1960. The principle of laser dates back
to 1917, when Einstein elegantly depicted his conception of stimulated emission of
radiation by atoms. Unlike thermal emission and plasma emission, lasers are coher-
ent light sources and, with the assistance of optical cavity, lasers can emit nearly
monochromatic light and point to the same direction with little divergence. Lasers
enabled a branch of nonlinear optics, which is important to understand the funda-
mentals of light–matter interactions, communication, as well as optical computing.
In 1981, Nicolaas Bloembergen and Arthur Schawlow received the Nobel Prize in
Physics for their contributions in laser spectroscopy. There are a variety of nonlinear
spectroscopic techniques, including Raman spectroscopy, as reviewed by Fan and
Longtin [10]. Two-photon spectroscopy has become an important tool for molecular
detection [11]. Furthermore, two-photon 3D lithography has also been developed for
microfabrication [12, 13].

Gas lasers such as He–Ne (red) and Ar (green) have been extensively used for
precision alignment, dimension measurements, and laser Doppler velocimetry due
to their narrow linewidth. On the other hand, powerful Nd:YAG and CO2 lasers are
used in thermal manufacturing, where the heat transfer processes include radiation,
phase change, and conduction [14, 15]. Excimer lasers create nanosecond pulses
in ultraviolet and have been extensively used in materials processing, ablation, eye
surgery, dermatology, as well as photolithography in microelectronics and micro-
fabrication. High-energy nanosecond pulses can also be produced by Q-switching,
typically with a solid-state laser such as Nd:YAG laser at a wavelength near 1μm.On
the other hand, mode-locking technique allows pulse widths from picoseconds down
to a few femtoseconds. Pulse durations less than 10 fs have been achieved since 1985.
Ultrafast lasers have enabled the study of reaction dynamics and formed a branch in
chemistry called femtochemistry.Ahmed Zewail of Caltech received the 1999 Nobel
Prize in Chemistry for his pioneering research in this field. In 2005, John Hall and
Thoedor Hänsch received the Nobel Prize in Physics for developing laser-based pre-
cision spectroscopy, in particular, the frequency comb technique. Short-pulse lasers
can facilitate fabrication, the study of electron–phonon interaction in the nonequi-
librium process, measurement of thermal properties including interface resistance,
nondestructive evaluation of materials, and so forth [16–20].
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Room-temperature continuous-operation semiconductor lasers were realized in
May 1970 by Zhores Alferov and co-workers at the Ioffe Physical Institute in Rus-
sia, and independently byMorton Panish and IzuoHayashi at Bell Labs amonth later.
Alferov received the Nobel Prize in Physics in 2000, together with Herbert Kroe-
mer who conceived the idea of double-heterojunction laser in 1963 and was also
an earlier pioneer of molecular beam epitaxy (MBE). Invented in 1968 by Alfred
Cho and John Arthur at Bell Labs and developed in the 1970s, MBE is a high-
vacuum deposition technique that enables the growth of highly pure semiconductor
thin films with atomic precision. The name heterojunction refers to two layers of
semiconductor materials with different bandgaps, such as GaAs/AlxGa1-xAs pair. In
a double-heterojunction structure, a lower-bandgap layer is sandwiched between two
higher-bandgap layers [21].When the middle layer is made thin enough, on the order
of a few nanometers, the structure is called a quantum well because of the discrete
energy levels and enhanced density of states. Quantum well lasers can have better
performance with a smaller driving current. Multiple quantum wells (MQWs), also
called superlattices, that consist of periodic structures can also be used to further
improve the performance. In a laser setting, an optical cavity is needed to confine the
laser bandwidth as well as enhance the intensity at a desired wavelength with narrow
linewidth. Distributed Bragg reflectors (DBRs) are used on both ends of the quan-
tum well (active region). DBRs are the simplest photonic crystals made of periodic
dielectric layers of different refractive indices; each layer thickness is equal to a quar-
ter of the wavelength in that medium (λ/n). DBRs are dielectric mirrors with nearly
100% reflectance, except at the resonance wavelength λ, where light will eventually
escape from the cavity. Figure 1.4 illustrates a vertical cavity surface emitting laser
(VCSEL), where light is emitted through the substrate (bottom of the structure). The
energy transfer mechanisms through phonon waves and electron waves have been
extensively investigated [22]. Further improvement in the laser efficiency and control
of the wavelength has beenmade using quantumwires and quantum dots (QDs) [21].

Fig. 1.4 Schematic of a
VCSEL laser made of
heterogeneous quantum well
structure. The smaller layer
thickness can be 3 nm, and
there can be as many as
several hundred layers
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Semiconductor lasers are the most popular lasers (in quantity), and several
hundred-million units are sold each year. Their applications include CD/DVD read-
ing/writing, optical communication, laser pointers, laser printers, bar code readers,
and so forth. A simpler device is the light-emitting diode (LED), which emits inco-
herent light with a two-layer p-n junction without DBRs. LEDs have been used for
lighting, including traffic lights with improved efficiency and decorating lights. The
development of wide-bandgap materials, such as GaN and AlN epitaxially grown
through metal-organic chemical vapor deposition (MOCVD), allows the LED and
semiconductor laser wavelength to be pushed to the blue and ultraviolet. For their
invention of efficient blue LEDs, Isamu Akasaki, Hiroshi Amano, and Shuji Naka-
mura were recognized by the 2014 Nobel Prize in Physics. Organic light-emitting
diodes (OLEDs) based on electroluminescence are being developed as a promising
candidate for the next-generation computer and TV displays.

Alongside the development of light sources, there have been continuous devel-
opment and improvement in photodetectors, mainly in focal plane arrays, charge-
coupled devices (CCDs), quantum well detectors, readout electronics, data transfer
and processing, compact refrigeration and temperature control, and so forth. On the
other hand, optical fibers have become an essential and rapidly growing technol-
ogy in telecommunication and computer networks. The optical fiber technology for
communication was developed in the 1970s along with the development of semicon-
ductor lasers. In 1978, Nippon Telegraph and Telephone (NTT) demonstrated the
transmission of 32 Mbps (million-bits-per-second) through 53 km of graded-index
fiber at 1.3-μm wavelength. By 2001, 3 × 1011 m of fiber-optic wires have been
installed worldwide; this is a round-trip from the earth to the sun. In March 2006,
NECCorporation announced a 40-Gbps optical-fiber transmission system. The 2009
Nobel Prize in Physics was conferred to Charles K. Kao for his achievements con-
cerning the transmission of light in fibers for optical communications and to Willard
S. Boyle and George E. Smith for the invention of CCD sensor. Optical fibers have
also been widely applied as sensors for biochemical detection as well as tempera-
ture and pressure measurements. Fiber drawing process involves complicated heat
transfer and fluid dynamics at different length scales and temperatures [23–25].

Nanophotonics (or nano-optics) is an emerging frontier that integrates photonics
with physics, chemistry, biology, materials science, manufacturing, and nanotech-
nology. The foundation of nanophotonics is to study interactions between light and
matter, to explore the unique characteristics of nanostructures for utilizing light
energy, and to develop novel nanofabrication and sensing techniques. Recent studies
have focused on photonic crystals, nanocrystals, plasmonic waveguides, nanofabri-
cation and nanolithography, light interaction with organic materials, biophotonics,
biosensors, quantum electrodynamics, nanocavities, quantum dot and quantum wire
lasers, solar cells, and so forth. In the field of thermal radiation, new workshops have
been established [26–28] and new experimental discoveries have beenmade [29–31].
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1.3.3 Microfabrication and Nanofabrication

Richard Feynman, one of the best theoretical physicists of his time and a Nobel Lau-
reate in Physics, delivered a visionary speech at Caltech in December 1959, entitled
“There’s plenty of room at the bottom.” At that time, lasers had never existed and
integrated circuits had just been invented and were not practically useful, and a sin-
gle computer that is not as fast as a present-day handheld calculator would occupy a
whole classroom with enormous heat generation. Feynman envisioned the future of
controlling and manipulating things on very small scales, such as writing (with an
electron beam) the whole 24 volumes of Encyclopedia Britannica on the head of a
pin and rearranging atoms one at a time [32]. Many of the things Feynman predicted
were once considered scientific fictions or jokes but have been realized in practice by
now, especially since 1980s. In 1983, Feynman gave a second talk about the use of
swimming machine as a medical device: the surgeon that you could swallow, as well
as quantum computing [33]. In the 1990s,micromachining andMEMSemerged as an
active research area, with a great success by the commercialization of the microma-
chined accelerometers in the automobile airbag. Using the etching and lithographic
techniques, engineers were able to manufacture microscopic machines with moving
parts, as shown in Fig. 1.5, such as gears with a size less than the cross-section
of human hair. The technologies used in microfabrication have been extensively
discussed in the text of Madou [34]. These MEMS devices were later developed as
tools for biological andmedical diagnostics, such as the so-called lab-on-a-chip, with
pump, valve, and analysis sections on the 10–100 μm scale. In aerospace engineer-
ing, an application is to build micro air vehicles or microflyers, with sizes ranging
from a human hand down to a bumblebee, that could be used for surveillance and
reconnaissance under extreme conditions. Microchannels and microscale heat pipes
have also been developed and tested for electronic cooling applications. The study

Fig. 1.5 MEMS structures. a A dust mite on a microfabricated mirror assembly, where the gears
are smaller than the thickness of human hair. b Drive gear chain with linkages, where coagulated
red blood cells are on the upper left and the lower right and a grain of pollen is on the upper right.
Courtesy of Sandia National Laboratories, https://www.sandia.gov/mesa/mems/

https://www.sandia.gov/mesa/mems/
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of microfluidics has naturally become an active research area in mechanical engi-
neering. The development of SPM and MEMS technologies, together with materials
development through self-assembly and other technologies, lead to further devel-
opment of even smaller structures and the bottom-up approach of nanotechnology.
Laser-based manufacturing, focused ion beam (FIB), and electron-beam lithogra-
phy have also been developed to facilitate nanomanufacturing. In NEMS, quantum
behavior becomes important and quantum mechanics is inevitable in understanding
the behavior.

Robert Curl, Harold Kroto, and Richard Smalley were winners of the Nobel Prize
in Chemistry in 1996 for their discovery of fullerenes in 1985 at Rice University,
during a period Kroto visited fromUniversity of Sussex. The group used pulsed laser
irradiation to vaporize graphite and form carbon plasma in a pressurized helium gas
stream. The result as diagnosed by time-of-flight mass spectroscopy suggested that
self-assembled C60 molecules were formed and would be shaped like a soccer ball
with 60 vertices made of the 60 carbon atoms [35]. The results were confirmed later
to be C60 molecules indeed with a diameter on the order of 1 nm with wave–particle
duality. This type of carbon allotrope is called a buckminsterfullerene, or fullerene, or
buckyball, after the famous architect Buckminster Fuller (1895–1983) who designed
geodesic domes. In 1991, Sumio Iijima of NEC Corporation synthesized carbon
nanotubes (CNTs) using arc discharge. Soon his group and an IBM group were able
to produce single-walled carbon nanotubes (SWNTs) with a diameter on the order
of 1 nm. There have been intensive studies of CNTs for hydrogen storage, nan-
otransistors, field emission, light emission and absorption, quantum conductance,
nanocomposites, and high thermal conductivity. Figure 1.6a shows CNTs growth
at a room-temperature environment by chemical vapor deposition on a heated can-
tilever tip with a size around 5 μm [36]. Figure 1.6b shows the synthesized SWNTs
with encapsulated metallofullerenes of Gd:C82 (i.e., a gadolinium inside a fullerene
molecule). The high-resolution transmission electron microscope (TEM) image sug-
gests that the diameter of the SWNT is from 1.4 to 1.5 nm [37]. It should be noted
that electron microscopes, including SEM and TEM, have become a powerful tool
for imaging micro/nanoscale objects with a magnification up to 2 million. The first
electron microscope was built by Ernst Ruska andMax Knoll in Germany during the
early 1930s, andRuska shared theNobel Prize in Physics in 1986 for his contributions
to electron optics and microscopy.

Various nanostructured materials have been synthesized, such as silicon
nanowires, InAs/GaAs QDs, and Ag nanorods. Figure 1.6c shows some images for
nanohelices or nanosprings made of ZnO nanobelts or nanoribbons using a solid-
vapor process [38, 39]. These self-assembled structures under controlled conditions
could be fundamental to the study of electromagnetic coupled nanodevices for use
as sensors and actuators, as well as the growth dynamics at the nanoscale.

Since 2004, graphene and other two-dimensional (2D) sheet materials have
received great attention due to their amazing and unusual properties. The combi-
nation of these materials with micro/nanofabrication holds enormous potentials to
revolutionize currentmicroelectronic, optoelectronic, and photonic devices aswell as
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Fig. 1.6 Examples of nanostructures. a SEM image of CNTs grown on heated cantilever tip.
Reprinted with permission from Sunden et al. [36]; copyright (2006) American Institute of
Physics.b Buckyballs inside a SWNT (the lower is a TEM image in which the nanotube diameter
is 1.4–1.5 nm). Reprinted with permission from Hirahara et al. [37]; copyright (2000) American
Physical Society. c TEM images of ZnO nanobelts that are coiled into nanohelices or nanosprings.
Reprinted with permission from Gao et al. [38]; copyright (2005) AAAS (image courtesy of Prof. Z.
L. Wang, Georgia Tech)

energy harvesting systems [40–48]. For their groundbreaking experiments exfoliat-
ing graphene and charactering its properties, Andre Geim and Konstantin Novoselov
were awarded the 2010 Nobel Prize in Physics. As a layered 2D material with car-
bon atoms arranged in a honeycomb lattice, graphene has unique electronic, ther-
mal, mechanical, and optical properties. Unlike conventional metals, free electrons in
graphene are massless quasi-particles that exhibit a linear energy-momentum disper-
sion governed by the Dirac equation for 2D relativistic fermions. As such, graphene
offers certain exotic characteristics such as the extremely high mobility, large ther-
mal conductivity, a universal conductance in the optical frequency region, and unique
plasmonic characteristics with 2D graphene patches and ribbons [40–42]. Further-
more, the infrared conductance of graphene can be tuned by chemical doping or
voltage gating, leading to promising high-speed photodetectors, transistors, solar
cells, as well as optical modulators [43, 44]. More recently, a large number of 2D
materials have been synthesized chemically or isolated using mechanical or liquid-
phase exfoliation from their layered crystalline forms. These 2D materials and their
heterostructures have great potentials for photodetectors, nanophotonics, transparent
electrodes, and energy conversion and storage [45–48].

One of the successful technologies that operate in the regime of quantummechan-
ical domain is the giantmagnetoresistive (GMR) head and hard drive. TheGMRhead
is based on ferromagnetic layers separated by an extremely thin (about 1 nm) nonfer-
romagnetic spacer, such as Fe/Cr/Fe and Co/Cu/Co. MBE enabled the metallic film
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growth with required precision and quality. The electrical resistance of GMR mate-
rials depends strongly on the applied magnetic field, which affects the spin states
of electrons. IBM first introduced this technology in 1996, which was only about
10 years after the publication of the original research results [49, 50]. GMR mate-
rials have been extensively used in computer hard drive and read/write head. Albert
Fert andPeterGrünbergwon the 2007Nobel Prize in Physics for this discovery.Over-
heating due to friction with the disk surface can render the data unreadable for a short
period until the head temperature stabilizes; such an effect is called thermal asperity.
Yang et al. [51, 52] performed a detailed thermal characterization of Cu/CoFe super-
lattices for GMR head applications using MEMS-based thermal metrology tools.
Infrared near-field transducer is a key element for heat-assisted magnetic recording
(HAMR) to achieve a density of 1 TB/in2. Datta and Xu [53] designed different
nanostructures for near-field transducer to boost the coupling efficiency.

1.3.4 Probe and Manipulation of Small Structures

Tunneling by elementary particles is a quantummechanical phenomenon orwavelike
behavior. Quantum tunneling refers to the penetration of a particle through a potential
barrier whose height (potential energy that the particle would have at the top of the
barrier) is greater than the total energy of the particle. When the barrier width is thin
enough, quantum tunneling can occur and particles can transmit through the barrier,
as if a tunnel is dug through a mountain. An example is the tunneling of electrons
through an insulator between two metal strips. Trained in mechanical engineering,
Ivar Giaever performed the first tunneling experiment with superconductors in 1960
at the General Electric Research Laboratory and received the 1973 Nobel Prize in
Physics, together with Leo Esaki of IBM and Brian Josephson. Esaki made signif-
icant contributions in semiconductor tunneling, superlattices, and the development
of MBE technology. He invented a tunneling diode, called the Esaki diode, which is
capable of very fast operation in the microwave region. Josephson further developed
the tunneling theory and a device, called a Josephson junction, which is used in
the superconducting quantum interface devices (SQUIDs), for measuring extremely
small magnetic fields. SQUIDs are used in magnetic resonance imaging (MRI) for
medical diagnostics.

In 1981, Gerd Binnig and Heinrich Rohrer of IBM Zurich Research Laboratory
developed the first scanning tunneling microscope (STM) based on electron tunnel-
ing through vacuum [54]. This invention has enabled the detection and manipulation
of surface phenomena at the atomic level and, thus, has largely shaped the nanoscale
science and technology through further development of similar instrumentation [55].
Binnig and Rohrer shared the Nobel Prize in Physics in 1986, along with Ruska who
developed the first electron microscope as mentioned earlier. STM uses a sharp-
stylus-probe tip and piezoelectricity for motion control. When the tip is near 1 nm
from the surface, electron can tunnel through the tip to the conductive substrate.
The tunneling current is very sensitive to the gap. Therefore, by maintaining the tip
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in position and scanning the substrate in the x–y direction with a constant current
(or distance), the height variation can be obtained with extremely good resolution
(0.02 nm). Using STM, Binnig et al. [56] soon obtained the real-space reconstruc-
tion of the 7 × 7 unit cells of Si (111). In 1993, another group at IBM Almaden
Research Center was able to manipulate iron atoms to create a 48-atom quantum
corral on a copper substrate [57]. The images have appeared in the front cover of
many magazines, including Science and Physics Today. STM can also be used to
assemble organic molecules and to study DNA molecules [2].

In 1986, Gerd Binnig, Calvin Quate, and Christoph Gerber developed another
type of SPM, that is, the atomic force microscope (AFM) that can operate without a
vacuum environment and for electrical insulators [58]. AFM uses a tapered tip at the
end of a cantilever and an optical position sensor, as shown in Fig. 1.7. The position
sensor is very sensitive to the bending of the cantilever (with a 0.1-nm vertical
resolution). When the tip is brought close to the surface, there exist intermolecular
forces (repulsive or attractive) between the tip and the atoms on the underneath
surface. In the contact mode, the cantilever is maintained in position using the servo
signal from the position-sensing diode to adjust the height of the sample, while it
scans in the lateral direction. Surface topographic data can be obtained in an ambient
environment for nonconductive materials. Other SPMs have also been developed and
the family of SPMs is rather large nowadays. Wickramasinghe and co-workers first
investigated thermal probing by attaching a thermocouple to the cantilever tip [59–
61]. Later, Arun Majumdar’s group developed several types of scanning thermal
microscope (SThM) for nanoscale thermal imaging of heated samples, including
microelectronic devices and nanotubes [62]. Researchers have also modified SThM
for measuring and mapping thermoelectric power at nanoscales [63, 64].

Fig. 1.7 Schematic of an
atomic force microscope
(AFM)
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Because of its simplicity, AFM has become one of the most versatile tools in
nanoscale research, including friction measurements, nanoscale indentation, dip-pen
nanolithography, and so forth. Heated cantilever tips were proposed for nanoscale
indentation or writing on the polymethyl methacrylate (PMMA) surface, either using
a laser or by heating the cantilever legs [65, 66]. The method was further developed
to concentrate the heat dissipation to the tip by using heavily doped legs as electrical
leads, resulting inwriting (with a density near 500Gb/in2) and erasing (with a density
near 400 Gb/in2) capabilities. The temperature signal measured by the tip resistance
can also be used to read the stored data due to the difference in heat loss as the tip scans
the area [67, 68]. In an effort to improve the data-writing speed, IBM initiated the
“millipede” project in 2000 and succeeded inmaking 32× 32 heated-cantilever array
for which each cantilever was separately controlled [69, 70]. Obviously, heat transfer
and mechanical characteristics are at the center of these systems. The heated AFM
cantilever tips have been used as a local heating source for a number of applications,
including the above-mentioned CVD growth of CNTs locally and thermal dip-pen
nanolithography [71].

1.3.5 Energy Conversion and Storage

Nanostructures may have unique thermal properties that can be used to facilitate heat
transfer for heat removal and thermal management applications. An example was
mentioned earlier to utilize nanotubes with high thermal conductivity, although nan-
otube bundles often suffer from interface resistance and phonon scattering by defects
and boundaries. There have been a large number of studies on nanofluids, which are
liquids with suspensions of nanostructured solid materials, such as nanoparticles,
nanofibers, and nanotubes with diameters on the order of 1–100 nm [72]. Enhanced
thermal conductivity and increased heat flux have been demonstrated with a wide
range of applications from solar energy harvesting to medical applications, and from
electronic cooling to fuel cell thermal management [73–75].

Thermoelectricity utilizes the irreversible thermodynamics principle for thermal-
electrical conversion and can be used for cooling in microelectronics as well as
miniaturized power generation. A critical issue is to enhance the figure of merit of
performance, with a reduced thermal conductivity. Multilayer heterogeneous struc-
tures create heat barriers due to size effects and the boundary resistance. These
structures have been extensively studied in the literature and demonstrate enhanced
performances. Understanding the thermal and electrical properties of heterogeneous
structures is critically important for future design and advancement [76–78].

Nanostructures can also help increase the energy conversion efficiency and reduce
the cost of solar cells [79]. Furthermore, nanomaterials have been used to develop
novel photovoltaic devices. Figure 1.8 shows the device structure of a ZnO-nanowire
array for dye-sensitized solar cells [80]. This structure cangreatly enhance the absorp-
tion or quantum efficiency over nanoparticle-based films. Improvement of photon-to-
electron conversion efficiencymay be achieved using photonic crystals [81]. In recent
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Fig. 1.8 ZnO nanowires for dye-sensitized solar cells. Reprinted with permission from Law et al.
[80]; copyright (2005) Macmillan Publishers Ltd. The height of the wires is near 16 μm and their
diameters vary between 130 and 200 nm. a Schematic of the cell with light incident through the
bottom electrode. b SEM image of a cleaved nanowire array

years, solar cells based on organic–inorganic halide perovskites have emerged with
rapidly increased efficiency and various fabrication processes and structure designs
[82].

Fast-depleting reserves of conventional energy sources have resulted in an urgent
need for increasing energy conversion efficiencies and recycling of waste heat. One
of the potential candidates for fulfilling these requirements is thermophotovoltaic
devices, which generate electricity from either the complete combustion of different
fuels or the waste heat of other energy sources, thereby saving energy. The thermal
radiation from the emitter is incident on a photovoltaic cell, which generates elec-
trical currents. Applications of such devices range from hybrid electric vehicles to
power sources for microelectronic systems. At present, thermophotovoltaic systems
suffer from low conversion efficiency. Nanostructures have been extensively used to
engineer surfaces with designed absorption, reflection, and emission characteristics.
Moreover, at the nanoscale, the radiative energy transfer can be greatly enhanced
due to tunneling and enhanced local density of states. A viable solution to increase
the thermophotovoltaic efficiency is to apply microscale radiation principles in the
design of different components to utilize the characteristics of thermal radiation at
small distances and in microstructures [83].

Concentrated solar power (CSP) has regained the interest with significant gov-
ernmental investments in countries like the Spain, United States, Australia, China,
United Arab Emirates, India, and so on. Solar energy is reflected by a large array of
mirrors to a central receiver (power tower) to create a high-temperature source that can
be used to heat a working fluid and then used to generate electricity through a steam
turbine or a gas turbine power plant [84]. CSPmay be combined with thermal storage
system for operation during night or bad weathers; therefore, it can potentially offer
a high-efficiency and cost-effective renewable energy solution. Challenges remain
in the selected materials for energy storage, receiver efficiency, and system inte-
gration [85]. Various spectrally selective absorber/emitter that can operate at high



20 1 Introduction

temperatures are being developed using multilayers and nanostructures [86, 87].
Thermochemical cycle with redox reactions may be used as the high-temperature
storage to further boost the efficiency of CSP [88, 89]. Further research is needed to
understand thematerials properties, develop and identify suitable storage substances,
as well as develop high-temperature high-pressure power systems [84, 85].

Alternatives to traditional turbomachinery have also been developed to improve
the cost effectiveness [85]. One of such methods is called solar thermophotovoltaic
(STPV) systems [90, 91]. As illustrated in Fig. 1.9, an intermediate absorber/emitter
assembly converts the solar radiation to a relatively lower temperature and then emits
with a larger area to a PV cell, which then generates electricity. The prototype by
Lenert et al. [90] used an carbon nanotube array to fully absorb the solar irradiation
and a 1D Si/SiO2 photonic crystal as the selective emitter to match with the bandgap
of 0.55 eV (λ = 2.26μm). An efficiency of 3.2% was demonstrated and later an
efficiency of 6.8% has been achieved using an improved PC design with a bandpass

Fig. 1.9 Ananophotonic solar TPV: a Schematic of absorber/emitterwith the PVcell for harvesting
concentrated solar power; b Microscopic image of cross-section. Reprinted with permission from
Lenert et al. [90]; copyright (2014) Springer Nature
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filter [91]. These devices are scalable and significant improvement may be made in
order to approach the theoretical conversion efficiency limit of about 60%.

Hydrogen technologies are being considered and actively pursued as the energy
source of the future [92]. There are two ways in which hydrogen H2 may be used:
one is in a combustion heat engine where hydrogen reacts with oxygen intensively
while releasing heat; the other is in a fuel cell where electrochemical reaction occurs
quietly to generate electricity just like a battery. Because the only reaction product is
water, hydrogen-powered automobiles can bemade pollution free in principle. Grand
challenges exist in generation, storage, and transport of hydrogen. If all hydrogen
is obtained from fossil fuels, there will be no reduction in either the fossil fuel con-
sumption or the carbon dioxide emission, except that the emission is centralized
in the hydrogen production plant. Alternatively, hydrogen may be produced from
water with other energy sources, such as renewable energy sources. Nanomaterials
are being developed for several key issues related to hydrogen technologies, such as
hydrogen storage using nanoporous materials, effective hydrogen generation by har-
vesting solar energy with inexpensive photovoltaic materials, and fuel cells based on
nanostructure catalysts [93, 94]. Effective thermal management and cooling are also
very important to improve the performance and reliability of the fuel cell technology
[75, 95].

Lithium-ion batteries are commonly used in cell phones, laptops, and electric cars.
Moreover, competing technologies have been developed and commercialized. The
2019 Nobel Prize in Chemistry honors John B. Goodenough, M. Stanley Whitting-
ham, andAkiraYoshino for the pioneering research toward the development of Li-ion
batteries during 1970s and 1980s. Overheating or thermal runaway has been known
to cause device failure as well as fire disasters. Therefore, understanding the thermal
properties and thermal transport at themicroscale is critically important to improving
the performance and reliability [96, 97]. Nanobatteries and nanogenerators have also
been actively explored [98, 99].

1.3.6 Biomolecule Imaging and Molecular Electronics

Optical microscopy has played an instrumental role in medical diagnoses because
it allows us to see bacteria and blood cells. Optical wavelength is more desirable
than x-ray or electron beam because of the less invasiveness and the more conve-
nience. However, the resolution of a traditional microscope is on the order of half
the wavelength due to the diffraction limit. While the concept of near-field imaging
existed in the literature before 1930, it has been largely forgotten because of the
inability in building the structures and controlling their motion. With the microfabri-
cation andprecision-positioning capabilities, near-field scanningopticalmicroscopes
(NSOMs, also called SNOMs) were realized in the early 1980s by different groups
and extensively used for biomolecule imaging with a resolution of 20–50 nm [100].
The principle is to bring the light through an aperture of a tapered fiber of very
small diameter at the end or to bring the light through an aperture of very small
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diameter. The beam out from the fiber tip or aperture will diverge quickly if the
sample is placed in the far field, that is, away from the aperture. However, high
resolution can be achieved by placing the sample in close proximity to the aperture
within a distance much less than the wavelength, that is, in the near field, such that
the beam size is almost the same as the aperture. An apertureless metallic tip can
be integrated with an SPM to guide the electromagnetic wave via surface plasmon
resonance with a spatial resolution as high as 10 nm, for high-resolution imaging
and processing. There have since been extensive studies on near-field interactions
between electromagnetic waves and nanostructured materials, from semiconductor
QDs, metallic nanoaperture and nanohole arrays, to DNA and RNA structures. The
2014 Nobel Prize in Chemistry was awarded to Eric Betzig, Stefan W. Hell, and
William E. Moerner for the development of super-resolved fluorescence microscopy
for imaging individual molecules. The 2017 Nobel Prize in Chemistry recognized
the development of cryo-electron microscopy by Jacques Dubochet, Joachim Frank,
and Richard Henderson for probing biomolecules with high resolution.

Nanoparticles are among the earliest known nanostructures that have been used
for centuries in making stained glass with gold or other metallic nanoparticles as well
as photographic films with silver nanoparticles. A QD has a spherical core encap-
sulated in a shell made of another semiconductor material, such as a CdSe core in
a ZnS shell. The outer shell is only several monolayers thick, and the diameters of
QDs range from 2 to 10 nm. The material for the inner core has a smaller bandgap.
Quantum confinement in the core results in size-dependent fluorescent properties.
Compared with molecular dyes conventionally used for fluorescent labeling in cellu-
lar imaging, the emission from QD fluorophores is brighter with a narrower spectral
width. QDs also allow excitation at shorter wavelengths, making it easier to separate
the fluorescent signal from the scattered one, and are resistive to photobleaching
that causes dyes to lose fluorescence. Furthermore, the emission wavelength can be
selected by varying the core size of QDs to provide multicolor labeling. It was first
demonstrated in 1998 that QDs could be conjugated to biomolecules such as anti-
bodies, peptides, and DNAs, enabling surface passivation and water solubility. In
recent years, significant development has been made to employ QDs for in vivo and
in vitro imaging, labeling, and sensing [101, 102].

CMOS technology is a top-down semiconductor fabrication process, in which
patterns are created by first making a mask and then printing the desired features
onto the surface of the wafer via lithography. Integrated circuits have dominated the
technological and economic progress in the past 40 years, and complex and high-
density devices have been manufactured on silicon wafers. However, this technology
is coming to a limit, as the smallest feature size is less than a few nanometers or just
about ten unit cells. While opportunities still remain in semiconductor technology as
discussed previously [8], molecular electronics is considered as a promising alterna-
tive [103]. A 3D assembly with short interconnect distances would greatly increase
the information storage density and transfer speed with reduced power consump-
tion and amount of heat being dissipated. Self-assembly means naturally occurring
processes, from biological growth to the galaxy formation. In materials synthesis,
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self-assembly implies that the end products or structures are formed under favor-
able conditions and environments. An example is the growth of bulk crystals from
a seed. Fullerenes and nanotubes are formed by self-assembling, not by slicing a
graphite piece and then rolling and bending it to the shape of a tube or a shell. Self-
assembly is referred to as a bottom-up process, like constructing an airplane model
with LEGO pieces. Biological systems rely on self-assembly and self-replication to
develop. Since 2000, CNT-based transistors have been built by several groups and
found to be able to outperform Si-based ones. Transistors have also been created
using a single molecule of a transition-metal organic complex nanobridge between
two electrodes [104]. Because of the small dimensions, quantum mechanics should
govern the electrical and mechanical behaviors [105]. Figure 1.10 illustrates an engi-
neered DNA strand between metallic atoms, noting that the width of a DNA strand

Fig. 1.10 An engineered
DNA strand between metal
and atom contacts that could
function as a molecular
electronics device. Courtesy
of NASA Ames Center of
Nanotechnology
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is around 2 nm. Such a structure could function as a sensor and other electronic
components. Molecular electronics, while still at its infancy, is expected to revolu-
tionize electronics industry and to enable continuous technological progress through
the twenty-first century.

Nano/microscale research and discoveries have been instrumental to the devel-
opment of technologies used today in microelectronics, photonics, communica-
tion, manufacture, and biomedicine. However, systematic and large-scale govern-
ment investment toward nanoscience and engineering did not start until late 1990s,
when the InteragencyWorkingGroup onNanoscience, Engineering, and Technology
(IWGN) was formed under the National Science and Technology Council (NSTC).
The first report was released in fall 1999, entitled “Nanostructure Science and Tech-
nology,” followed by the report, “Nanotechnology Research Directions.” In July
2000, NSTC published the “National Technology Initiative (NNI).” A large num-
ber of nanotechnology centers and nanofabrication facilities have been established
since then; see www.nano.gov. In the United States, the government spending on
nanotechnology R&D exceeded $1 billion in 2005, as compared to $464 million
in 2001 and approximately $116 million in 1997. The total government investment
worldwide was over $4 billion in 2005, and Japan and European countries invested
similar amount of money as the United States did. Over 60 countries have launched
nanotechnology research programs. The NNI funding has totaled near $29 billion
from 2001 to 2020. Recognizing the increasing impact on engineering and science,
the American Society of Mechanical Engineers established the ASMENanotechnol-
ogy Institute in mid-2001 and sponsored a large number of international conferences
and workshops. Understanding the thermal transport and properties at the nanoscale
is extremely important asmentioned earlier. In 2008, Professor “Bob”D. Y. Tzou ini-
tiated the ASME International Conference of Microscale/Nanoscale Heat and Mass
Transfer (MNHMT) in Tainan, which was followed by five successive MNHMTs in
Shanghai, Atlanta, HongKong, Singapore, andDalian [106–110]. These conferences
have provided a highly interactive forum for researchers, educators, and practitioners
around the world to exchange and promote the knowledge and new advances on the
state-of-the-art research and development in this interdisciplinary field. The ASME
Heat Transfer Division established the committee on Nanoscale Thermal Transport
in 2012 and organizedmany focused research sessions at variousASMEconferences.

Engineers have the responsibility to transfer the basic science findings into tech-
nological advances, to design and develop better materials with desired functions, to
build systems that integrate from small to large scales, to perform realistic model-
ing and simulation that facilitate practical realization of improved performance and
continuously reduced cost, and to conduct quantitative measurements and tests that
determine the materials properties and system performance. Like any other technol-
ogy, nanotechnology may also have some adverse effects, such as toxic products
and biochemical hazards, which are harmful to human health and the environment.
There are also issues and debates concerning security, ethics, and religion. Govern-
mental and industrial standard organizations, as well as universities, have paid great
attention to the societal implications and education issues in recent years. Optimists
believe that we can continue to harness nanobiotechnology to improve the quality

http://www.nano.gov
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of human life and benefit social progress, while overcoming the adverse effects, like
we have done with electricity, chemical plants, and space technology.

1.4 Objectives and Organization of This Book

Scientists, engineers, entrepreneurs, and lawmakers must work together for the
research outcomes to be transferred into practical products that will advance the
technology and benefit the society. Nanotechnology is still in the early stage and
holds tremendous potentials; therefore, it is important to educate a large number of
engineers with a solid background in nanoscale analysis and design so that they will
become tomorrow’s leaders and inventors. There is a growing demand of educat-
ing mechanical engineering students at both the graduate and undergraduate levels
with a background in thermal transport at micro/nanoscales. Micro/nanoscale heat
transfer courses have been introduced in a number of universities; however, most of
these courses are limited at the graduate level. While an edited book on Microscale
Energy Transport has been available since 1998 [3], it is difficult to use as a text-
book due to the lack of examples, homework problems, and sufficient details on
each subject. Some universities have introduced nanotechnology-related courses to
the freshmen and sophomores, with no in-depth coverage on the fundamentals of
physics. A large number of institutions have introduced joint mechanical-electrical
engineering courses on MEMS/NEMS, with a focus on device-level manufacturing
and processing technology. To understand the thermal transport phenomena and ther-
mophysical properties at small length scales, learning the concepts and principles of
quantum mechanics, solid-state physics, and electrodynamics are inevitable while
being difficult for engineering students.

The aim of this book is to introduce the much needed physics knowledge without
overwhelming mathematical operators or notions that are unfamiliar to engineering
students. Therefore, this book can be used as the textbook not only in a graduate-
level course but also in an elective for senior engineering undergraduates. While the
book contains numerous equations, the math requirement mostly does not exceed
engineering calculus including series, differential and integral equations, and some
vector and matrix algebra. The reason to include such a large number of equations
is to provide necessary derivation steps, so that readers can follow and understand
clearly. This is particularly helpful for practicing engineers who do not have a large
number of references at hand. The emphasis of this book is placed on the fundamental
understanding of the phenomena and properties: that is, why do we need particular
equations and how can we apply them to solve thermal transport problems at the
prescribed length and time scales? Selected and refined examples are provided that
are both practical and illustrative. At the end of each of the remaining nine chapters,
a large number of exercises are given at various levels of complexity and difficulty.
Numerical methods are not presented in this book. Most of the problems can be
solved with a personal computer using a typical software program or spreadsheet.
Some open source codes are accessible and downloadable from the author’s website.



26 1 Introduction

For course instructors, the solutions of many homework problems can be obtained
from the author.

The field of micro/nanoscale heat transfer was cultivated and fostered by Pro-
fessor Chang-Lin Tien beginning in late 1980s, along with the rapid development
in microelectronics, MEMS, and nanotechnology. His long-lasting and legendary
contributions to the thermal science research have been summarized in a volume of
Annual Review of Heat Transfer [111]. As early as in the 1960s, Professor Tien inves-
tigated the fundamentals of the radiative properties of gas molecules, the size effect
on the thermal conductivity of thin films and wires, and radiation tunneling between
closely spaced surfaces. In 1971, he authored with John H. Lienhard a book, entitled
Statistical Thermodynamics,which provides inspiring discussions on early quantum
mechanics and models of thermal properties of gases, liquids, and crystalline solids.
While thermodynamics is a required course for mechanical engineering students, the
principles of thermodynamics cannot be understoodwithout a detailed background in
statistical thermodynamics. Statistical mechanics and kinetic theory are also critical
for understanding thermal properties and transport phenomena.

Chapter 2 provides an overview of equilibrium thermodynamics, heat transfer,
and fluid mechanics. Built up from the undergraduate mechanical engineering cur-
ricula, thematerials are introduced in a quite different sequence to emphasize thermal
equilibrium, the second law of thermodynamics, and thermodynamic relations. The
concept of entropy is rigorously defined and applied to analyze conduction and con-
vection heat transfer problems in this chapter. It should be noted that, in Chap. 8, an
extensive discussion is given on the entropy of radiation.

Chapter 3 introduces statistical mechanics and derives the classical (Maxwell-
Boltzmann) statistics and quantum (i.e., Bose–Einstein and Fermi-Dirac) statistics.
The first, second, and third laws of thermodynamics are presented with a micro-
scopic interpretation, leading to the discussion of Bose–Einstein condensate and
laser cooling of atoms. The classical statistics is extensively used to obtain the ideal
gas equation, the velocity distribution, and the specific heat. A concise presentation
of elementary quantum mechanics is then provided. This will help students gain a
deep understanding of the earlier parts of this chapter. For example, the quantization
of energy levels and the energy storage mechanisms by translation, rotation, and
vibration for modeling the specific heat of ideal polyatomic gases. The combined
knowledge of quantum mechanics and statistical thermodynamics is important for
subsequent studies. The concept of photon as an elementary particle and how it inter-
acts with an atom are discussed according to Einstein’s 1917 paper on the atomic
absorption and emissionmechanisms. Finally, the special theory of relativity is briefly
introduced to help understand the limitation of mass conservation and the generality
of the law of energy conservation.

Chapter 4 begins with a very basic kinetic theory of dilute gases and provides a
microscopic understanding of pressure and shear. With the help of mean free path
and average collision distance, the transport coefficients such as viscosity, thermal
conductivity, and mass diffusion coefficient are described. Following a discussion of
intermolecular forces, the detailed Boltzmann transport equation (BTE) is presented
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to fully describe hydrodynamic equations as well as Fourier’s law of heat conduc-
tion, under appropriate approximations. In the next section, the regimes of microflow
are described based on the Knudsen number, and the current methods to deal with
microfluidics are summarized. The heat transfer associated with slip flow and tem-
perature jump is presented in more detail with a simple planar geometry. Then, gas
conduction between two surfaces under free molecule flow is derived. These exam-
ples, while simple, capture some of the basics of microfluidics. No further discussion
is given on properties of liquids or multiphase fluids. It should be noted that several
books on microflow already exist in the literature.

The next three chapters provide a comprehensive treatment of nano/microscale
heat transfer in solids, with an emphasis on the physical phenomena as well as mate-
rial properties. The materials covered in Chap. 5 are based on simple free-electron
model, kinetic theory, and BTEwithout a detailed background of solid-state physics,
which is discussed afterward in Chap. 6. This not only helps students comprehend
the basic, underlying physical mechanisms but also allows the instructor to inte-
grate Chap. 5 into a graduate heat conduction course. For an undergraduate elective,
Chap. 6 can be considered as reading materials or references without spending too
much time going through the details in class. In Chap. 5, the theory of specific heat is
presented with a detailed treatment on the quantum size effect. Similarly, the theory
of thermal conductivity of metals and dielectric solids is introduced. Because of the
direct relation between electrical and thermal conductivities and the importance of
thermoelectric effects, irreversible thermodynamics and thermoelectricity are also
introduced. The classical size effect on thermal conductivity due to boundary scat-
tering is elaborated. Finally, the concept of quantum conductance (both electric and
thermal) is introduced.

Chapter 6 introduces the electronic band structures and phonon dispersion rela-
tions in solids. It helps understand semiconductor physics and some of the difficulties
of free-electron model for metals. Photoemission, thermionic emission, and elec-
tron tunneling phenomena are introduced. The electrical transport in semiconduc-
tors is described with applications in energy conversion and optoelectronic devices.
Chapter 7 focuses on nonequilibrium energy transport in nanostructures, including
non-Fourier equations for transient heat conduction. The equation of phonon radia-
tive transfer is presented and solved for thin-film and multilayer structures. The
phenomenon of thermal boundary resistance is studied microscopically. A regime
map is developed in terms of the length scale and the time scale from macroscale
to microscale to nanoscale heat conduction. Additional reading materials regarding
multiscale modeling, atomistic modeling, and thermal metrology are provided as
references.

The last three chapters give comprehensive discussion on nano/microscale radia-
tion with extensive background on the fundamentals of electromagnetic waves, the
optical and thermal radiative properties of materials and surfaces, and the recent
advancement in nanophotonics and nanoscale radiative transfer. Chapter 8 presents
the Maxwell equations of electromagnetic waves and the derivation of Planck’s law
and radiation entropy. The electric and magnetic properties of the newly developed
class of materials, that is, negative-refractive-index materials are also discussed.
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More extensive discussion of the radiative properties of thin films, gratings, and
rough surfaces is given in Chap. 9. The wave interference, partial coherence, and
diffraction phenomena are introduced with detailed formulations. Furthermore, var-
ious types of surface polaritons and localized excitations in nanostructures and 2D
materials are extensively discussed. The focus of Chap. 10 is on near-field thermal
radiation, with formulations of simple semi-infinite parallel plates to complicated
systems. In addition, Chap. 10 reviews contemporary numerical simulation meth-
ods for computing nanoscale thermal radiation and recent experimental techniques
for measuring nanoscale radiative transfer. These advancements will continue and
are expected to have a huge impact on the energy conversion devices, sensors, and
nanoscale photothermal manufacturing.

It is hoped that the present text can be used either as a whole in a one-semester
course, or in part for integration into an existing thermal science course for several
weeks on a particular topic. Examples are graduate-level thermodynamics (Chaps. 2
and 3), convection heat transfer (Chap. 4), conduction heat transfer (Chaps. 5–7), and
radiation heat transfer (Chaps. 8–10). Selected materials may also be used to intro-
duce nanoscale thermal sciences in undergraduate heat transfer and fluid mechanics
courses. Some universities offer a second course on thermodynamics at the under-
graduate level for which statistical thermodynamics and quantum theory can also be
introduced. This text can also be self-studied by researchers or practicing engineers,
graduated from a traditional engineering discipline. A large effort is given to balance
the depth with the breadth so that it is easy to understand and contains sufficient
coverage of both the fundamentals and advanced developments in the field. Read-
ers will gain the background necessary to understand the contemporary research in
nano/microscale thermal engineering and to solve a variety of practical problems
using the approaches presented in the text, along the codes accessible from author’s
website [112].
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Chapter 2
Overview of Macroscopic Thermal
Sciences

This chapter provides a concise description of the basic concepts and theories under-
lying classical thermodynamics and heat transfer. Different approaches exist in pre-
senting the subject of thermodynamics. Most engineering textbooks first introduce
temperature, then discuss energy, work, and heat, and define entropy afterward.
Callen developed an axiomatic structure using a simple set of abstract postulates
to combine the physical information that is included in the laws of thermodynamics
[1]. Continuing the effort pioneered by Keenan and Hatsopoulos [2], Gyftopoulos
and Beretta [3] developed a logical sequence to introduce the basic concepts with a
rigorous definition of each thermodynamic term. Their book has been a great inspi-
ration to the present author in comprehending and teaching thermodynamics. Here,
an overview of classical thermodynamics is provided that is somewhat beyond typi-
cal undergraduate textbooks [4, 5]. Details on the historic development of classical
thermodynamics can be found from Bejan [6] and Kestin [7], and references therein.
The basic phenomena and governing equations in energy, mass, and momentum
transfer will be presented subsequently in a self-consistent manner without invoking
microscopic theories.

2.1 Fundamentals of Thermodynamics

A system is a collection of constituents (whose amounts may be fixed or varied
within a specified range) in a defined space (e.g., a container whose volume may
be fixed or varied within a specified range), subject to other external forces (such as
gravitational and magnetic forces) and constraints. External forces are characterized
by parameters. An example is the volume of a container, which is a parameter
associated with the forces that confine the constituents within a specified space.
Everything that is not included in the system is called the environment or surroundings
of the system.
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Quantities that characterize the behavior of a system at any instant of time are
called properties of the system. Properties must be measurable, and their values
are independent of the measuring devices. Properties supplement constituents and
parameters to fully characterize a system. At any given time, the system is said to be
in a state, which is fully characterized by the type and amount of constituents, a set of
parameters associated with various types of external forces, and a set of properties.
Two states are identical if the amount of each type of constituents and values of all
the parameters and properties are the same. A system may experience a spontaneous
change of state, when the change of state does not involve any interaction between
the system and its environment. If the system changes its state through interactions
with other systems in the environment, it is said to experience an induced change
of state. If a system can experience only spontaneous changes of state, it is said to
be an isolated system, that is, the change of state of the system does not affect the
environment of the system. The study of the possible and allowed states of a system is
called kinematics, and the study of the time evolution of the state is called dynamics.

The relation that describes the change of state of a system as a function of time
is the equation of motion. In practice, the complete equations of motion are often
not known. Therefore, in thermodynamics, the description of the change of state
is usually given in terms of the end states (i.e., the initial and final states) and the
modes of interaction (for example, work and heat, which are discussed later). The
end states and the modes of interaction specify a process. A spontaneous change
of state is also called a spontaneous process. A process is reversible if there is at
least one way to restore both the system and its environment to their initial states.
Otherwise, the process is irreversible; i.e., it is not possible to restore both the system
and its environment to their initial states. A steady state is one that does not change
as a function of time despite interactions between the system and other systems in
the environment.

2.1.1 The First Law of Thermodynamics

Energy is a property of every system in any state. The first law of thermodynamics
states that energy can be transferred to or from a system but can be neither created
nor destroyed. The energy balance for a system can be expressed as

�E = E2 − E1 = Enet,in (2.1a)

where� denotes a finite change, subscripts 1 and 2 refer to the initial and final states,
respectively, and Enet,in = Ein − Eout is the net amount of energy transferred into the
system. For an infinitesimal change, the differential form of the energy balance is

dE = δEnet,in (2.1b)



2.1 Fundamentals of Thermodynamics 37

Here, d is used to signify a differential change of the property of a system, and δ

is used to specify a differentially small quantity that is not a property of any system.
Clearly, the energy of an isolated system is conserved. Energy is an additive property,
i.e., the energy of a composite system is the sum of the energies of all individual
subsystems. Examples are kinetic energy and potential energy, as defined in classical
mechanics, and internal energy, which will be discussed later. A similar expression
for mass balance can also be written.

The termmechanical effect is used for the kind of processes described in mechan-
ics, such as the change of the height of a weight in a gravitational field, the change of
the relative positions of two charged particles, the change of the velocity of a point
mass, the change of the length of a spring, or a combination of such changes. All
mechanical effects are equivalent in the sense that it is always possible to arrange
forces and processes that annul all the mechanical effects except one that we choose.
It is common to choose the rise and fall of a weight in a gravity field to represent this
kind of process.

A cyclic process (also called a cycle) is one with identical initial and final states.
A perpetual-motion machine of the first kind (PMM1) is any device (or system)
undergoing a cyclic process that produces no external effects but the rise or fall of
a weight in a gravity field. A PMM1 violates the first law of thermodynamics, and
hence, it is impossible to build a PMM1. Perpetual motion, however, may exist as
long as it produces zero net external effect. Examples of perpetual motion are a
lossless oscillating pendulum, an electric current through a superconducting coil,
and so forth.

2.1.2 Thermodynamic Equilibrium and the Second Law

An equilibrium state is a state that cannot change spontaneously with time. There are
different types of equilibrium: unstable, stable, and metastable. A stable-equilibrium
state is a state that cannot be altered to a different state without leaving any net effect
on the environment. In the following, a stable-equilibrium state is frequently referred
to as a state at thermodynamic equilibrium.

The stable-equilibrium-state principle, or state principle, can be phrased as fol-
lows: Among all states of a system with a given set of values of energy, parameters,
and constituents, there exists one and only one stable-equilibrium state. In other
words, in a stable-equilibrium state, all properties are uniquely determined by the
amount of energy, the value of each parameter, and the amount of each type of con-
stituents. This principle is an integral part of the second law of thermodynamics [2, 3,
7]. It is important for the thermodynamic definition of temperature and the derivation
of thermodynamic relations in stable-equilibrium states. Another aspect of the sec-
ond law of thermodynamics is the definition of an important property, called entropy,
as discussed next.

Entropy is an additive property of every system in any state. The second law of
thermodynamics asserts that, in an isolated system, entropy cannot be destroyed but
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can either be created (in an irreversible process) or remain the same (in a reversible
process). The entropy produced as time evolves during an irreversible process is
called the entropy generation (Sgen) due to irreversibility. Like energy, entropy can
be transferred from one system to another. One can write the entropy balance as
follows (keeping in mind that entropy generation must not be negative):

�S = S2 − S1 = Snet,in + Sgen , with Sgen ≥ 0 (2.2a)

or

dS = δSnet,in + δSgen , with δSgen ≥ 0 (2.2b)

Here again, δ is used to indicate an infinitesimal quantity that is not a property
of any system. For a system with fixed values of energy (E), parameters, and con-
stituents, the entropy of the system is the largest in the stable-equilibrium state.
This is the highest entropy principle. Applying this principle to an isolated system
for which the energy is conserved, the entropy of the system will increase until a
thermodynamic equilibrium is reached. Spontaneous changes of state are usually
irreversible and accompanied by entropy generation.

The second law of thermodynamics can be summarized with the following three
statements: (1) There exists a unique stable-equilibrium state for any system with
given values of energy, parameters, and constituents. (2) Entropy is an additive prop-
erty, and for an isolated system, the entropy change must be nonnegative. (3) Among
all states with the same values of energy, parameters, and constituents, the entropy
of the stable-equilibrium state is the maximum.

The energy of a system with volume (V ) as its only parameter (neglecting other
external forces) is called the internal energy (U). The state principle implies that there
are r + 2 (where r is the number of different constituents) independent variables that
fully characterize a stable-equilibrium state of such a system. Therefore, in a stable-
equilibrium state, all properties are functions of r + 2 independent variables. Since
entropy is a property of the system, we have

S = S(U, V, N1, N2, . . . , Nr ) (2.3)

where Ni is the number of particles of the ith species (or type of constituents). This
function is continuous and differentiable [1, 3], and furthermore, it is amonotonically
increasing function of energy for fixed values of V and N j ′s . Equation (2.3) can be
uniquely solved for U so that

U = U (S, V, N1, N2, . . . , Nr ) (2.4)

which is also continuous and admits partial derivatives of all orders. Each first-
order partial derivative of Eqs. (2.3) or (2.4) represents a property of the stable-
equilibrium state. For example, temperature and pressure are properties of a system
at thermodynamic equilibrium. The (absolute) temperature is defined by
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T =
(

∂U

∂S

)
V,N j ′s

(2.5a)

and the pressure is defined by

P = −
(

∂U

∂V

)
S,N j ′s

(2.5b)

The partial derivative with respect to the ith type of constituents defines its
chemical potential of that species,

μi =
(

∂U

∂Ni

)
S,V,N j ′s ( j �=i)

(2.5c)

Equation (2.3) or (2.4) is called the fundamental relation for states at thermody-
namic equilibrium. The differential form of Eq. (2.4) is the Gibbs relation:

dU = T dS − PdV +
r∑

i=1

μidNi (2.6)

where Eqs. (2.5a, 2.5b and 2.5c) have been used. The above equation may be
rearranged into the form

dS = 1

T
dU + P

T
dV −

r∑
i=1

μi

T
dNi (2.7)

Therefore,

1

T
=

(
∂S

∂U

)
V,N j ′s

,
P

T
=

(
∂S

∂V

)
U,N j ′s

, and
μi

T
= −

(
∂S

∂Ni

)
U,V,N j ′s ( j �=i)

(2.8)

An interaction between two systems that results in a transfer of energy without
net exchanges of entropy and constituents is called a work interaction. The amount
of energy transferred in such an interaction is called work (W ). An interaction that
has only mechanical effects is a work interaction, but a work interaction may involve
nonmechanical effects. A process that involves only work interaction is called an
adiabatic process. Another kind of a typical interaction is heat interaction, in which
both energy and entropy are transferred without net exchanges of constituents and
parameters between two systems. The amount of energy transferred in a heat interac-
tion is called heat (Q). Furthermore, the amount of entropy transferred (δS) is equal
to the amount of energy transferred (δQ) divided by the boundary temperature (Tb)
at which the heat interaction happens, i.e., δS = δQ/Tb. If a system cannot exchange
constituents with other systems, it is said to be a closed system; otherwise, it is an
open system.
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Reversible processes are considered as the limiting cases of real processes, which
are always accompanied by a certain amount of irreversibility. Such an ideal process is
called a quasi-equilibrium (or quasi-static) process, in which each stage can be made
as close to thermodynamic equilibrium as possible if themovement is frictionless and
very slow. In an ideal process, a finite amount of heat can be transferred reversibly
from one system to another at a constant temperature. In practice, heat transfer
can only happen when there is a temperature difference, and the process is always
irreversible.

A perpetual-motion machine of the second kind (PMM2) is a cyclic device that
interacts with a system at thermodynamic equilibrium and produces no external
effect other than the rise of a weight in a gravity field, without changing the value
of any parameter or the amount of any constituent of the system. Historically, there
exist different statements of the second law of thermodynamics: The Kelvin–Planck
statement of the second law is that it is impossible to build a PMM2. The Clausius
statement of the second law is that it is not possible to construct a cyclic machine
that will produce no effect other than the transfer of heat from a system at lower
temperature to a system at higher temperature. These statements can be proved
using the three statements of the second law of thermodynamics given earlier in this
chapter.

Example 2.1 Criteria for thermodynamic equilibrium. Consider a moveable piston
(adiabatic and impermeable to matter) that separates a cylinder into two compart-
ments (systems A and B), as shown in Fig. 2.1. We learned from mechanics that a
mechanical equilibrium requires a balance of forces on both sides of the piston, that is
to say, the pressure of systemAmust be the same as that of system B (i.e., PA = PB).
If the piston wall is made of materials that are diathermal (allowing heat transfer)
and permeable to all species, under what conditions will the composite system C
consisting of systems A and B be at stable equilibrium?

Solution Assume system C is isolated from other systems, and each of the
subsystems A and B is at a thermodynamic equilibrium state, whose prop-
erties are solely determined by its internal energy, volume, and amount of
constituents:UA, VA, N j ′s,A and UB, VB, N j ′s,B, respectively. There exist neigh-
boring states for both subsystems with small differences in U, V, and N j ′s , but the
values of the composite systemmust be conserved, i.e., dUA = −dUB, dVA = −dVB,

Fig. 2.1 Illustration of two
systems that may exchange
work, heat, and species

A B
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and dNi,A = −dNi,B (i = 1, 2, … r). The differential entropy of system C can be
expressed as

dSC = dSA + dSB

= 1

TA
dUA − PA

TA
dVA +

r∑
i=1

μi,A

TA
dNi,A + 1

TB
dUB − PB

TB
dVB

+
r∑

i=1

μi,B

TB
dNi,B

=
(

1

TA
− 1

TB

)
dUA −

(
PA
TA

− PB
TB

)
dVA +

r∑
i=1

(
μi,A

TA
− μi,B

TB

)
dNi,A (2.9)

If system C is in a stable-equilibrium state, its entropy is maximum and dSC = 0.
Since the values of dUA, dVA, and dNi,A are arbitrary, we must have

1

TA
= 1

TB
,
PA
TA

= PB
TB

and
μi,A

TA
= μi,B

TB
(i = 1, 2, . . . r)

or

TA = TB, PA = PB and μi,A = μi,B (i = 1, 2, . . . r) (2.10)

These conditions correspond to thermal equilibrium, mechanical equilibrium,
and chemical equilibrium, respectively. The combination forms the criteria for
thermodynamic equilibrium.

Discussion. In the case when the piston is diathermal but rigid and impermeable
to matter, the entropy change of system C must be nonnegative, that is,

dSC = dSA + dSB =
(

1

TA
− 1

TB

)
dUA ≥ 0 (2.11)

The above expression implies that dUA ≤ 0 for TA > TB, and dUA ≥ 0 for TA <

TB. Spontaneous heat transfer can occur only from regions of higher temperature to
regions of lower temperature. This essentially proves the Clausius statement of the
second law of thermodynamics.

The concept of thermal equilibrium provides the physical foundation for ther-
mometry, which is the science of temperature measurement. The temperature of a
system at a thermodynamic equilibrium state is measured through changes in resis-
tance, length, volume, or other physical parameters of the sensing element used in
the thermometer, which is brought to thermal equilibrium with the system. Based on
the inclusive statement of the second law of thermodynamics given previously, it can
be inferred that two systems are in thermal equilibrium with each other if they are
separately in thermal equilibrium with a third system. This is sometimes referred to
as the zeroth law of thermodynamics [6], especially in the thermometry literature.
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Table 2.1 Two-phase points
and the triple point of water

Temperature

(K) (°C)

Ice pointa 273.15 0

Triple pointb 273.16 0.01

Steam pointc 373.124 99.974

aSolid and liquid phases are in equilibrium at a pressure of 1 atm
(101.325 kPa)
bSolid, liquid, and vapor phases are in equilibrium
cLiquid and vapor phases are in equilibrium at 1 atm

The International Temperature Scale of 1990 (ITS-90)was adopted by the Interna-
tional Committee of Weights and Measures in 1989 [8]. The unit of thermodynamic
temperature is kelvin (K),which is defined as 1/273.16 of the thermodynamic temper-
ature of the triple point of water. The Celsius temperature is defined as the difference
in the thermodynamic temperature and 273.15 K (the ice point). A difference in
temperature may be expressed in either kelvins or degrees Celsius (°C). Although
earlier attempts were made to define a temperature scale consistent with the original
Celsius temperature scale (i.e., 0 °C for the ice point and 100 °C for the steam point),
a 0.026 °C departure arose from more accurate measurements of the steam point,
as shown in Table 2.1 [9]. The steam point is therefore no longer used as a defining
fixed point in the ITS-90. More accurate Steam Tables were developed in the 1990s.

The ITS-90 defines 17 fixed points, which are determined by primary thermom-
etry with standard uncertainties less than 0.002 K below 303 K and up to 0.05 K at
the freezing point of copper (≈1358 K). Cryogenic thermometry is essentially based
on ideal gas thermometers (up to about 20 K). Platinum resistance thermometers,
calibrated at specified sets of fixed points, are used to define the temperature scale
from the triple point of hydrogen (≈13.8 K) to the freezing point of silver (≈1235K).
Platinum resistance thermometers have been chosen because of their excellent repro-
ducibility, even though they are not primary thermometers. Radiation thermometers
based on Planck’s law of thermal radiation are used to define the temperature scale
above 1235 K.

It should be noted that the International System of Units (SI) is currently under
revision, and the SI units are being redefined based on the fundamental constants
without using any materials or prototypes, as documented in the 26th meeting of the
General Conference on Weights and Measures (CGPM) [10].

2.1.3 The Third Law of Thermodynamics

For each given set of values of constituents and parameters, there exists a unique
stable-equilibrium statewith zero absolute temperature (though not physically attain-
able). Furthermore, the entropy of any pure substance (in the form of a crystalline
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solid) vanishes at this state (zero absolute entropy). This is the third law of thermody-
namics, also called the Nernst theorem after Walther Nernst who received the Nobel
Prize in Chemistry in 1920. The energy is the lowest at this state, which is called
the ground-state energy (Eg > 0). The ground-state energy of a system consisting of
independent particles may be related to its mass (m) using the relativistic theory, i.e.,
Eg = mc2, where c is the speed of light. Although absolute energy and entropy can
be defined according to the third law of thermodynamics, in practice, reference states
are often chosen so that the relative values of energy and entropy can be tabulated
with respect to those of the reference states.

After reviewing the laws of thermodynamics, it is instructive to give a pictorial
presentation to illustrate some of the fundamental concepts in thermodynamics as
done by Gyftopoulos and Beretta [3]. For a system that contains a single type of
constituents (i.e., pure substance) with fixed values of parameters and amount of
constituents, the stable-equilibrium states can be represented as a convex E–S curve,
whose slope T = ∂E/∂S defines the temperature of each state on the curve, as
shown in Fig. 2.2. The stable-equilibrium-state curve intersects the vertical axis at
the ground state, whose energy is the ground-state energy (Eg) and whose abso-
lute entropy is zero. Furthermore, the temperature at the ground state is 0 K. This
provides a graphical illustration of the third lawof thermodynamics.Along the stable-
equilibrium-state curve, temperature increaseswith increasing energy or entropy. The
vertical axis above Eg represents zero-entropy states, which are not at stable equilib-
rium (except when E = Eg). These are states defined in mechanics, where entropy
is not a concern. A spontaneous change of state can be illustrated with this graph as a
horizontal line, e.g., from A1 to A10, where A10 corresponds to the stable-equilibrium
state that has the same values of energy, parameters, and constituents as those of A1.
No states exist below the stable-equilibrium-state curve because this would violate
the highest entropy principle. Each point in the shaded area may correspond to some

Fig. 2.2 The E–S graph for
a pure substance with fixed
values of parameters and
amount of constituents

S

E

A1
A10

A10'

Tg = 0 K

ET
S

Eg

Sg = 0
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states that are not at thermodynamic equilibrium, for which macroscopic properties
(such as temperature and pressure) may not be rigorously defined. A nonequilib-
rium state in general cannot be uniquely determined by the values of its energy (or
entropy) and parameters and the amount of constituents. The lowest energy princi-
ple is expressed as follows: Among all states with the same values of entropy and
parameters and the amount of constituents, there exists a stable-equilibrium state
whose energy is the lowest. Starting with any state that is not at stable equilibrium,
there exists a reversible adiabatic process, in which work can be done by the system
until it reaches a stable-equilibrium state. This process is illustrated in the E − S
graph by a vertical line from A1 to A10′ . The corresponding work, which is equal to
the energy difference between A1 and A10′ , is called the adiabatic availability [3]. It
defines the largest amount of work that can be extracted from a system without any
other net effect on the environment of the system.

2.2 Thermodynamic Functions and Properties

Several additional properties defined in this section are important in the study of
states at thermodynamic equilibrium. The functional relations are derived based on
the fundamental relation and are useful under specific circumstances. The phase
equilibrium is summarized with an emphasis on pure substances. The concepts of
specific heat and latent heat are then introduced. Combining the specific heat and
the equation of state, we can evaluate the internal energy and entropy for ideal gases
and incompressible solids and liquids.

2.2.1 Thermodynamic Relations

When dealing with substances within the container, the volume is a parameter that
characterizes external forces, i.e., the interaction between the system and the wall of
the container. If the constituents are confined within a surface, then the surface area
will be a parameter instead of the volume. Parameters associated with other external
forces (such as gravitational and magnetic forces) can also be included, if necessary.
For simplicity, we assume that volume is the only parameter of the systems under
investigation, unless otherwise specified.

Enthalpy is defined as H = U+PV , and thus we have dH = dU+PdV +V dP .
From Eq. (2.6), we obtain

dH = T dS + V dP +
r∑

i=1

μidNi (2.12a)
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The significance of Eq. (2.12a) is that enthalpy can be expressed as a function of
S, P, and N j ′s ,

H = H(S, P, N1, N2, . . . , Nr ) (2.12b)

Furthermore,

T =
(

∂H

∂S

)
P,N j ′s

, V =
(

∂H

∂P

)
S,N j ′s

, and μi =
(

∂H

∂Ni

)
S,P,N j ′s ( j �=i)

(2.12c)

Note that the subscripts in Eq. (2.12c) are different from those in Eqs. (2.5a, 2.5b
and 2.5c). Enthalpy H(S, P, N j ′s) is said to be a characteristic function, since it
allows us to find out all the information about a stable-equilibrium state. A large
number of characteristic functions may be defined. Depending on the particular situ-
ation and measurements available, it is advantageous to choose the most convenient
one. Two other characteristic functions are now introduced. The first one is called
Helmholtz free energy A(T, V, N j ′s), defined as A = U − T S. It follows that

dA = −SdT − PdV +
r∑

i=1

μidNi (2.13a)

and

S = −
(

∂A

∂T

)
V,N j ′s

, P = −
(

∂A

∂V

)
T,N j ′s

, and μi =
(

∂A

∂Ni

)
T,V,N j ′s ( j �=i)

(2.13b)

The second isGibbs free energy G(T, P, N j ′s):G = U+PV −T S = H−T S =
A + PV . It follows that

dG = −SdT + V dP +
r∑

i=1

μidNi (2.14a)

and

S = −
(

∂G

∂T

)
P,N j ′s

, V =
(

∂G

∂P

)
T,N j ′s

, and μi =
(

∂G

∂Ni

)
T,P,N j ′s ( j �=i)

(2.14b)

Characteristic functions supplement the fundamental relation and are very useful
in the evaluation of the properties of systems under thermodynamic equilibrium.

In a stable-equilibrium state, T, P, and μi (i = 1, 2, . . . r) must be uniform
everywhere in the system. If the system is divided into k equal-volume subsystems,
the energy, entropy, and the amount of each type of constituents of the system are
the sums of these quantities in all subsystems. If the energy and the amount of each
type of constituents in every subsystem are the same, then all subsystems are exactly
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identical to each other. If this is the case, the system is said to be in a homogeneous
state; otherwise, it is heterogeneous. Examples of homogeneous states are air (which
is a mixture of many different kinds of gases) and a well-mixed solution. Examples
of heterogeneous states are ice water and water–steam mixture in a boiler.

A system that experiences only homogeneous states is called a simple system. In
a simple system, T, P, andμ j ′s of each subsystem are the same as those of the system
itself and independent of k; hence, they are called intensive properties. Taking T as
an example, we have

T

(
U

k
,
V

k
,
N1

k
,
N2

k
, . . .

Nr

k

)
= T (U, V, N1, N2, . . . , Nr ) (2.15)

The left-hand side of Eq. (2.15) is the temperature of the subsystem, while
the right-hand side is the temperature of the whole system. Unlike temperature
and pressure, properties such as U, S, V, and N of each subsystem are inversely
proportional to k:

S

(
U

k
,
V

k
,
N1

k
,
N2

k
, . . . ,

Nr

k

)
= 1

k
S(U, V, N1, N2, . . . , Nr ) (2.16)

Properties whose values are proportional to the total amount of constituents are
called extensive properties. Therefore,U,V, S, andH are extensive properties. Notice
that k cannot be arbitrarily large because of the continuum requirement.

The ratio or derivative of two extensive properties is an intensive property, e.g., the
density (the ratio of mass to volume) is an intensive property and uniform in a sim-
ple system. Note that temperature, pressure, and chemical potentials are derivatives
of two extensive properties. The properties T, P, and μ j ′s distinguish themselves
from other intensive properties in that they are uniform in both homogeneous and
heterogeneous states, whereas others may or may not be uniform in a heterogeneous
state. A specific property is the ratio of an extensive property to the total amount
of constituents (expressed as mass, mole, or number). For example, the mass spe-
cific enthalpy is the enthalpy per kilogram of the substance. Specific properties are
intensive properties.

For simple systems, the Gibbs relation given in Eq. (2.6) can be integrated to
obtain

U = T S − PV +
r∑

i=1

μi Ni (2.17)

which is theEuler relation. BydifferentiatingEq. (2.17) and then subtractingEq. (2.6)
from it, we obtain the Gibbs–Duhem relation:

SdT − V dP +
r∑

i=1

Nidμi = 0 (2.18)
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The Euler relation for a system containing only one type of constituents (r = 1)
is

G = U + PV − T S = μN

or

μ(T, P) = G

N
= g(T, P) (2.19)

Hence, the chemical potential of a pure substance is nothing but the specific Gibbs
free energy. For a system containing two or more types of constituents, Eq. (2.14b)
relates the chemical potential to the partial derivative of the Gibbs free energy with
respect to Ni for fixed T and P, which is called the partial Gibbs free energy of the
ith type of constituents.

2.2.2 The Gibbs Phase Rule

In a heterogeneous state, we consider a subdivision of the system into subsystems,
each being a simple system. The collection of all subsystems that have the same
values of all intensive properties is called a phase. Solid, liquid, and gas (or vapor)
are the three distinct phases. The boundary between subsystems of different phases
is called an interface. Different phases may appear to be clearly separated or well
mixed. In space, liquid water droplets could be dispersed throughout water vapor,
whereas on the earth, the liquid would occupy the lower part of the container due to
gravity.

Assume that there are q coexisting phases, called a q-phase heterogeneous state.
We can write the Gibbs–Duhem relation for each phase, and thus reduce the inde-
pendent variables for T, P, μi (i = 1, 2, . . . r) by q. The number of independent
variables among T, P, μ′

i s is determined by the Gibbs phase rule:

φ = r + 2 − q (2.20)

For a pure substance, Eq. (2.20) implies that, for a single-phase state, there are
only two independent variables among the three intensive properties T, P, andμ. If T
and P are chosen as the independent variables, then all other intensive properties are
functions ofT andP, e.g., specific internal energyu = u(T, P), specific enthalpy h =
h(T, P), and specific entropy s = s(T, P). Extensive properties can be determined
from the specific properties if the total mass or volume is specified. For a two-
phase mixture, such as ice and water or water and steam, only one of T, P, and μ

is independent. If T is chosen as the variable, then P and μ can be expressed as
functions of T, i.e., P = P(T ) and μ = μ(T ). In order to completely describe the
state, however, we will also need to know the amount of constituents in each phase
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(which may be expressed by the total mass and a mass fraction x of one phase).
For example, the specific entropy of a mixture can be expressed as s = s(T, x)
or s = s(P, x). In a three-phase mixture, T, P, and μ are all fixed. For a pure
substance, the solid, liquid, and vapor phases can only coexist at fixed temperature
and pressure, which are called triple-point properties. Taking water as an example,
we have T t.p. = 0.01 °C and Pt.p. = 0.61 kPa. One needs to know the amount of
constituents in each phase to completely characterize the state. No more than three
phases can coexist for any pure substance. It should be noticed that a substance can
have different solid phases, e.g., diamond and graphite are allotropes of carbon but
with distinct differences in their physical and chemical properties; silicon dioxide
can exist in the forms of crystalline quartz or fused silica (glass).

Figure 2.3 shows regions of solid, liquid, and vapor in a P–T diagram. The S–L,
S–V, and L–V lines indicate the coexistence of solid–liquid, solid–vapor, and liquid–
vapor phases in thermodynamic equilibrium. The three lines merge to the triple point
where all three phases can coexist in thermodynamic equilibrium. There are two S–L
lines: the solid line represents a material that expands upon melting, and the dashed
line represents a material that contracts upon melting (such as water). There exists
a critical point or a critical state; the temperature and the pressure at the critical
state are called critical temperature (Tc) and critical pressure (Pc). The distinction
between liquid and vapor phases disappears beyond the critical point. This can be
seen clearer in the T–v diagram shown in Fig. 2.4. The S–L line in Fig. 2.3 becomes
an S–L region in Fig. 2.4; the L–V line becomes a dome, called the saturation dome.
Starting from a solid state, in a constant pressure (isobaric) heating process with
Pt.p. < P < Pc, the temperature increases until melting starts. As more energy is
added to the system, the fraction of solid decreases, whereas the fraction of liquid
increases, at a constant temperature. The amount of heat needed to completely melt
a unit mass of solid to liquid is called the specific latent heat of melting. Once all the
substance is in the liquid phase, the temperature rises again with increasing energy
until a saturated liquid state is reached. Hereafter, vaporization occurs at constant

Fig. 2.3 Schematic of a P–T
diagram for a pure substance
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Fig. 2.4 Schematic of a
T–v diagram for a material
that expands upon melting
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temperature (saturation temperature) until it reaches the right side of the saturation
dome, which is a saturated vapor state. The amount of energy needed to vaporize a
unit mass of a substance is called the specific latent heat of vaporization. When the
pressure is higher than the critical pressure, however, no vaporization can happen.
The liquid and gas forms of aggregation differ in degree rather than in kind. At a
pressure lower than the triple-point pressure, the change from solid to vapor can
occur without passing through a liquid phase. Such a process is called sublimation.
An example is the sublimation of dry ice into cold CO2 gas at room temperature and
atmospheric pressure. It can be used to create some theatrical effects such as haze,
fog, or smoke.

2.2.3 Specific Heats

Specific heats are properties of a system (at stable equilibrium). The specific heat at
constant volume (cv) and the specific heat at constant pressure (cp) are defined as

cv =
(

∂u

∂T

)
V

= T

(
∂s

∂T

)
V

(2.21a)

and

cp =
(

∂h

∂T

)
P

= T

(
∂s

∂T

)
P

(2.21b)

where subscripts V and P signify fixed volume and fixed pressure, respectively. The
heat capacity is the product of the corresponding specific heat and the mass of the
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system. Note that only in a reversible process, the amount of heat transferred to a
system is δQ = T dS. The heat capacity at constant volume of a closed system can
be measured in terms of the total amount of energy supplied to it divided by its
temperature rise in a constant volume process. On the other hand, the heat capacity
at constant pressure of a closed system (such as in a piston–cylinder arrangement)
can be measured in terms of the amount of energy per unit mass supplied to the
system, excluding the volume work done by the system (δW = pdV ), divided by
the temperature rise in an isobaric process. For example, in a reversible isobaric
process, dU = δQ − pdV and dH = δQ. Therefore, cp = 1

m
dH
dT = 1

m
δQ
δT .

Specific heats are not defined for all equilibrium states. For example, enthalpy
of a two-phase mixture can vary at a constant pressure, such as in a vaporization
process, without any change in temperature. This means that the constant pressure
specific heat approaches infinity in these states. In fact, the discontinuity in cp(T )

suggests some kind of phase transformation.
A heat reservoir is an idealized system that experiences only reversible heat inter-

actions. For any finite amount of energy transfer, its temperature remains unchanged.
Therefore, the heat capacity of a reservoir is infinitely large. For a reservoir at
temperature TR, the change of the reservoir energy is proportional to its entropy
change:

ER,2 − ER,1 = TR(SR,2 − SR,1) (2.22a)

This suggests that a reservoir can be represented by a straight line in the E–S
graph. Furthermore, the amount of heat transferred to the reservoir from state 1 to
state 2 is given by

Q = ER,2 − ER,1 (2.22b)

For a pure substance in a single phase, temperature and pressure are independent,
and all other properties can be expressed as functions of T and P. The relation among
temperature, pressure, and specific volume is called the equation of state, which can
be expressed as

f (T, P, v) = 0 or v = v(T, P) (2.23)

This equation does not contain information about the internal energy or entropy.
However, we can use the function cp = cp(T, P), in addition to the equation of
state, to fully determine all intensive properties. For example, ds = (

∂s
∂T

)
P
dT +(

∂s
∂P

)
T
dP . Using

(
∂s
∂T

)
P

= cp(T,P)

T , from the definition of specific heat, and the
Maxwell relation

(
∂s
∂P

)
T

= −(
∂v
∂T

)
P
(see Problem 2.11), we obtain

ds = cp(T, P)

T
dT −

(
∂v

∂T

)
P

dP (2.24)

Furthermore,
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dh = cp(T, P)dT +
[
v(T, P) − T

(
∂v

∂T

)
P

]
dP (2.25)

Under certain circumstances, the equation of state is rather simple, and the specific
heats can be assumed as functions of the temperature only, i.e., independent of the
pressure. These ideal behaviors will be discussed in the next section.

Example 2.2 Specific heat and latent heat. A system consists of 10 kg of H2O in
a closed container that is maintained at a constant pressure of 100 kPa. Initially, the
system is at −40 °C (ice), and it is heated to 130 °C (vapor). How much energy
must be provided to the system? What is the entropy change of the system? The
specific heats of H2O in the solid, liquid, and vapor states are cp,s = 2 kJ/kg K,
cp,f = 4.2 kJ/kg K, and cp,g = 2 kJ/kg K, respectively. The specific latent heats of
melting and evaporation are hsf = 334 kJ/kg and hfg = 2257 kJ/kg.

Solution From the first law of the closed system in an isobaric process, �U =
Q − W . Since �P = 0, W = P�V . Hence, Q = �H = H2 − H1. Let T1 =
233.2 and T2 = 403.2 K be the initial and final temperatures, respectively, and
Tsat,m = 273.2 and Tsat = 373.2 K be the saturation temperatures. Based on the
definition of specific heats, we obtain

Q = H2 − H1 = m[cp,s(Tsat,m − T1) + hsf + cp,f(Tsat − Tsat,m) + hfg + cp,g(T2 − Tsat)]

which gives Q = 31.51 MJ. In the single-phase regions, the entropy difference can
be evaluated by integrating Eq. (2.21b) or (2.24) since P is fixed. During the phase
change, �S = �H/T since the temperature is a constant.

S2 − S1 = m

[
cp,s ln

(
Tsat,m
T1

)
+ hsf

Tsat,m
+ cp,f ln

(
Tsat
Tsat,m

)
+ hfg

Tsat
+ cp,g ln

(
T2
Tsat

)]

which gives �S = 90.6 kJ/K.

Discussion. From the Steam Table or software accompanied with common ther-
modynamics text [4, 5], we can find the specific properties of water as follows: h1 =
−411.7 kJ/kg; s1 = −1.532 kJ/kg K; h2 = 2737 kJ/kg; s2 = 7.517 kJ/kg K. There-
fore, Q = �H = m(h2 − h1) = 31.49 MJ; �S = m(s2 − s1) = 90.5 kJ/K. The
negligibly small difference is caused by the assumption of constant specific heat in
each phase.

2.3 Ideal Gas and Ideal Incompressible Models

The amount of constituents is commonly expressed in terms of the amount of matter
in mole. The mole is the amount of substance of a system that contains as many
elementary entities as there are atoms in 0.012 kg of carbon 12.Onemole of substance
contains 6.022 × 1023 molecules, atoms, or other particles. This value is called the
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Avogadro’s constant, i.e., NA = 6.022×1026 kmol−1. Quantities like molecules and
particles do not appear in the units. The mass of the system is m = n̄M , where n̄
is the amount of constituents (in kmol) and M is called the molecular weight. For
example, M = 18.012 kg/kmol for water.

2.3.1 The Ideal Gas

At relatively high temperature and sufficiently low pressure, most substances behave
as a single-phase fluid, in which the interactions between its molecules are generally
negligible. The equation of state can be expressed as

Pv̄ = R̄T or PV = n̄ R̄T (2.26a)

where v̄ = V/n̄ is the molar specific volume in m3/kmol, and R̄= 8314 J/kmol K
is the universal gas constant. Equation (2.26a) is called the ideal gas equation since
it can be considered as the definition of an ideal gas. Under standard conditions
(temperature of 25 °C and pressure of 1 atm), 1 kmol of an ideal gas occupies a
volume of 22.5 m3. Dry air can be treated as an ideal gas with an average molecular
weight of M = 29 kg/kmol. The ideal gas equation of state can be written in terms
of the mass quantities for a given substance, i.e.,

Pv = RT or PV = mRT (2.26b)

In the above equation, v = V/m is the specific volume, and R = R̄/M is called
the gas constant of the particular substance. The Boltzmann constant is defined as
kB = R̄/NA = 1.381×10−23 J/K. It can be considered as the universal gas constant in
terms of particles. Furthermore, if we denote the number density (number of particles
per unit volume) as n, then the ideal gas equation can be written as P = nkBT since
n = NA n̄/V .

For ideal gases, both cp and cv are independent of the pressure, as will be shown
from statistical thermodynamics in Chap. 3, but are generally dependent on temper-
ature. The specific internal energy and enthalpy are functions of temperature only,
therefore,

du = cv(T )dT and dh = cp(T )dT (2.27)

The specific heats cp and cv are related by the Mayer relation as

c̄p − c̄v = R̄ or cp − cv = R (2.28)

If cv(T ) = const., which is sometimes referred to as perfect gas behavior, then
Eq. (2.27) can be integrated to yield
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u2 − u1 = cv(T2 − T1) (2.29a)

and

h2 − h1 = cp(T2 − T1) (2.29b)

where subscripts 1 and 2 can be any two (thermodynamic equilibrium) states. The
specific entropy depends on both the temperature and the pressure, i.e.,

ds = cp
dT

T
− R

dP

P
(2.30a)

Integrating the above equation from state 1 to state 2 yields

s2 − s1 =
2∫

1

cp(T )

T
dT − R ln(P2/P1) (2.30b)

In an isentropic process (ds = 0) of a perfect gas, it can be shown that Pvγ =
const., where γ = cp/cv is the specific heat ratio. Note that Pv = const. in an
isothermal process.

Example 2.3 A cylinder contains 0.01 kmol of N2 gas (0.28 kg), which may be
modeled as an ideal diatomic gas with cv = 2.5R. A piston maintains the gas at
constant pressure, P0 = 100 kPa. The cylinder interacts with a cyclic machine,
which in turn interacts with a reservoir at TR = 1000 K. The cylinder, the reservoir,
and the machinery cannot interact with any other systems. The cyclic machine may
produce work W (which cannot be negative). A process brings the volume of the
cylinder from V 1 = 0.224 to V 2 = 0.448 m3.

(a) What is the least amount of energy that must be transferred out from the reser-
voir? In such a case, how much work does the cyclic machine produce? How
much entropy is generated in the process?

(b) Find the maximum work that the cyclic machine can produce.

Analysis. A schematic drawing is made first as shown in Fig. 2.5. From the
ideal gas equation, T1 = P1V1/n̄ R̄ = 269.4 K and T2 = 538.8 K. The initial and
final states of the cylinder are fully prescribed. The work done by the cylinder is
WB = ∫

PdV = P(V2 − V1) = 22.4 kJ, which is also fixed. By applying the first
law to the cylinder in an isobaric process, QB = m(h2 − h1) = mcp(T2 − T1) =
0.01 × 3.5 × P(V2 − V1) = 78.4 kJ. The work done by the cyclic machine is
W = QR − QB. Because QB is prescribed and W ≥ 0, the least amount of energy
that must be transferred from the reservoir is when W = 0 and QR = QB.
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Fig. 2.5 Schematic drawing for Example 2.3

Solution

(a) QR = QB = 78.4 kJ and W = 0. We can evaluate the entropy change of the
combined system by the following:

�S = m(s2 − s1) + �SCM + (−QR/TR)

= m[cp ln(T2/T1) − R ln(P2/P1)] + 0 − 78.4/1000

= (201.7 − 78.4) kJ/K = 123.3 J/K

Since the system does not have any interactions with any other systems, the
entropy change is caused solely by entropy generation.

(b) The maximum work that can be produced is through a reversible process (not a
Carnot cycle since the temperature of the cylinder is not constant). By setting
�S = m(s2 − s1)−QR/TR = 0, we find QR = TRmcp ln(T2/T1) = 201.7 kJ.
The maximum amount of work is therefore Wmax = QR − QB = 123.3 kJ.

2.3.2 Incompressible Solids and Liquids

The assumption for ideal incompressible behavior is v= const., which is the equation
of state for incompressible solids and liquids. It can be shown that in this case cp = cv
and, to a good approximation, the specific heat depends on temperature only. It is
common to use cp for the specific heat of solids and liquids. Using Eqs. (2.24) and
(2.25), we obtain the specific internal energy, enthalpy, and entropy for an ideal
incompressible solid or liquid as follows:

du = cp(T )dT (2.31)

ds = cp(T )
dT

T
(2.32)

and
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dh = cp(T )dT + vdP (2.33)

Notice that while the internal energy and the entropy are functions of temperature
only, the enthalpy depends on both temperature and pressure as can be seen from
Eq. (2.33). Sometimes only one of the terms on the right-hand side of Eq. (2.33)
needs to be considered if the other term is much smaller. For example, if the pressure
change is small, the second term can be dropped. Examples when the pressure effect
can be neglected are (1) a solid under the normal pressure range and (2) a liquid that
flows through a pipeline in a heat exchanger without significant pressure drop. An
example when the temperature effect is negligible is pumping water in a reversible
adiabatic process, where the enthalpy change between the outlet and inlet of the
pump is proportional to the pressure change.

Example 2.4 In a Rankine cycle, water at 15 °C, 100 kPa is compressed through a
pump to 10 MPa before entering the boiler. Model the water as an incompressible
liquid with a constant specific heat cp = 4.2 kJ/kg K. What is the least amount of
work required to pump 1 kg of water? What is the exit temperature of the water? If
the pump efficiency is 80%, what is the actual specific work and exit temperature of
the pump?

Solution Take v = 0.001 m3/kg as an approximation. The least amount of work is
needed in a reversible process. It has been shown that the reversible work done by
the system between bulk flow states is δw = −vdP . Hence, the work needed in a
reversible process is wrev = h2s − h1 = 0.001(10, 000 − 100) = 9.9 kJ/kg

Because it is an adiabatic and reversible process, it must be isentropic or s2s −
s1 = cp ln(T2s/T1) = 0. Hence, T2s = T1 = 15 ◦C. Actual work w = wrev/ηp =
12.38 kJ/kg. Since w = h2 − h1 = cp(T2 − T1) + v(P2 − P1),

T2 = T1 + h2 − h1
cp

− v

cp
(P2 − P1) = T1 + w − wrev

cp
= 15.59 ◦C

which is less than 1 K higher. The entropy generation is sgen = cp ln(T2/T1) =
8.6 J/K kg.

Discussion. We can use the Steam Table and notice that all states are compressed
liquid. The properties at state 1 can be evaluated at T1 = 15 °C and P1 = 100 kPa, at
state 2s (reversible) can be evaluated at P2s = 10MPa and s2s = s1, and at state 2 can
be evaluated at P2 = 10 MPa and h2 = h1 + w. Hence, wrev = 9.88 kJ/kg, T2s =
15.11 ◦C,w = 12.35 kJ/kg,T2 = 15.67 ◦C, and sgen = 8.2 J/K kg. The differences
are negligibly small compared with those obtained from the incompressible assump-
tion. Note that the temperature change in the pump is usually very small. On a T–s
diagram, it is difficult to distinguish states 1, 2s, and 2. In fact, state 2 crosses the satu-
rated liquid line to overlapwith a two-phase-mixture state at T2 and s2. This is because
T and s together cannot uniquely determine a stable-equilibrium state.
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2.4 Heat Transfer Basics

Classical thermodynamics focuses on the changes of mass, energy, and entropy of
a system between equilibrium states, and establishes the required balance equations
between end states during a given process. For example, we have learned that spon-
taneous transfer of energy can occur only from a higher temperature to a lower
temperature. In thermodynamics, heat interaction is defined as the transfer of energy
at the mutual (interface) temperature between two systems. Heat transfer is a subject
that extends the thermodynamic principles to detailed energy transport processes
that occur as a consequence of temperature differences. Heat transfer phenomena
are abundant in our everyday life and play an important role in many industrial, envi-
ronmental, and biological processes. Examples include energy conversion and stor-
age, electrical power generation, combustion processes, heat exchangers, building-
temperature regulation, thermal insulation, refrigeration, microelectronic cooling,
materials processing, manufacturing, global thermal budget, agriculture, food indus-
try, and biological systems. Based on the local-equilibrium assumption, heat transfer
analysis deals with the rate of heat transfer and/or the temperature distributions
(steady state or transient) for given geometries, materials, and initial and boundary
conditions. Thermal design, on the other hand, determines the necessary geometric
structure and materials for use to achieve optimum performance for a specific task,
such as a heat exchanger.

Heat conduction refers to the transfer of heat in a stationary (from themacroscopic
point of view) medium, which may be a solid, a liquid, or a gas. Energy can also
be transferred between objects by the emission and absorption of electromagnetic
waves without any intervening medium; this is called thermal radiation, such as
the radiation from the sun. When the transfer of heat involves fluid motion, we
call it convection heat transfer, or simply, convection. Examples of convection are
cooling with a fan, hot water flowing in a pipe, and cold air blowing outside the wall
of a building. The basic macroscopic formulations of conduction, convection, and
radiation heat transfer are summarized in this section. The microscopic mechanisms,
such as the effects of small dimension and short duration on the thermal transfer
processes, will be the subject of the remaining chapters.

2.4.1 Conduction

In a stationary medium, heat transfer occurs if the medium is not at thermal equi-
librium. The assumption of local equilibrium allows us to define the temperature at
each location. Fourier’s law states that the heat flux (or heat transfer rate per unit
area) q′′ is proportional to the temperature gradient ∇T , i.e.,

q′′ = −κ∇T (2.34)
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where κ is called thermal conductivity, which is a material property that may depend
on temperature. Notice that q′′ is a vector and its direction is always perpendicular
to the isotherms and opposite to the temperature gradient. In an anisotropic medium,
such as a thin film or a thin wire, the thermal conductivity depends on the direction
along which it is measured.

By doing a control volume analysis using energy balance, a differential equation
can be obtained for the transient temperature distribution T (t, r) in a homogeneous
isotropic medium; that is [11, 12]

∇ · (κ∇T ) + q̇ = ρcp
∂T

∂t
(2.35)

where ∇· is the divergence operator, q̇ is the volumetric thermal energy generation
rate, and ρcp can be considered as volumetric heat capacity. Equation (2.35) is
called the heat diffusion equation or heat equation. Note that the concept of thermal
energy generation is very different from the concept of entropy generation. Thermal
energy generation refers to the conversion of other types of energy (such as electrical,
chemical, or nuclear energies) to the internal energy of the system, while the total
energy is always conserved. Entropy need not be conserved, and entropy generation
refers to the creation of entropy by an irreversible process. If there is no thermal
energy generation and the thermal conductivity can be assumed to be independent
of temperature, Eq. (2.35) reduces to ∇2T = 0 at steady state, where ∇2T =
∂2T
∂x2 + ∂2T

∂y2 + ∂2T
∂z2 in the Cartesian coordinates. With the prescribed initial temperature

distribution and boundary conditions, the heat equation can be solved analytically
for simple cases and numerically for more complex geometries as well as initial and
boundary conditions. Typical boundary conditions include (a) constant temperature,
(b) constant heat flux, (c) convection, and (d) radiation.

Generally speaking, metals with high electric conductivities and some crystalline
solids have very high thermal conductivities ranging from 100 to 1000 W/m K;
alloys and metals with low electric conductivities have slightly lower thermal con-
ductivities ranging from 10 to 100 W/m K; water, soil, glass, and rock have thermal
conductivities from 0.5 to 5 W/m K; thermal insulation materials usually have a
thermal conductivity on the order of 0.1 W/m K; and gases have the lowest thermal
conductivity, e.g., the thermal conductivity of air at 300 K is 0.026 W/m K. Notice
that thermal conductivity generally depends on temperature. A comprehensive col-
lection of thermal-property data can be found from Touloukian and Ho [13]. At room
temperature, Diamond IIa has the highest thermal conductivity, κ = 2300 W/m K
among all natural materials. Researchers have shown that single-walled carbon nan-
otubes can have even higher thermal conductivity at room temperature.More detailed
discussion about the mechanisms of thermal conduction and thermal properties of
nanostructures will be provided in subsequent chapters.

Example 2.5 Consider the steady-state heat conduction through a solid rod, whose
sides are insulated, between a constant temperature source at T1 = 600 K and a
constant temperature sink at T2 = 300 K.Assume the thermal conductivity of the rod
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Fig. 2.6 Illustration of the
control volume for energy
and entropy balances in a
solid rod with heat
conduction

is independent of temperature, κ = 150 W/m K. The rod has a length L = 0.2 m and
cross-sectional area A = 0.001 m2. Show that the temperature distribution along the
rod is linear.What is the heat transfer rate?What is the volumetric entropy generation
rate? What is the total entropy generation rate?

Solution This is a 1D heat conduction problem with no thermal energy generation,
as shown in Fig. 2.6. Fourier’s law can be written as Q̇x = −κA(dT/dx). At steady
state, the heat transfer rate Q̇x is independent of x, since there is no thermal energy
generation. Because both κ and A are constant, dT/dx must not be a function of
x. Hence, the spatial temperature distribution is a straight line. From the boundary
conditions T (0) = T1 and T (L) = T2, we have T (x) = T1 + (T2 − T1)(x/L).
Furthermore, Q̇x = κA(T1 − T2)/L = 225 W. To evaluate the entropy generation
rate, we can apply Eq. (2.2b) to the control volume Adx to obtain ṡgen(x)Adx . The

net entropy transferred to the control volume is Ṡx − Ṡx+dx = −d
(

Q̇x

T

)
. The sum of

the entropy generation and entropy transferred is equal to the entropy change, which
is zero at steady state. Therefore, ṡgen(x) = q ′′

x
d(1/T )

dx = κ
T 2

(
dT
dx

)2
, where q ′′

x = Q̇x

A is
the heat flux. To calculate the total entropy generation rate, we can integrate ṡgen(x)
over the whole rod. Alternatively, we can perform an entropy balance for the rod as a
whole, which gives the rate of entropy generation for a heat transfer rate Q̇x from T1
to T2 as Ṡgen = Q̇x

(
1
T2

− 1
T1

)
= 0.375 W/K. This example shows that the entropy

generation occurs in a finite volume, while the entropy flows through the interface.
The amount of entropy flux increases with x as more and more entropy is generated
through the irreversible process. More discussion on the entropy generation in heat
transfer and fluid flow processes can be found in Bejan [14].

Contact resistance is important in microelectronics thermal management and
cryogenic heat transfer. A large thermal resistance may exist due to imperfect con-
tact, such as surface roughness. The result is a large temperature difference across
the interface. The value of contact resistance depends on the surface conditions,
adjacent materials, and contact pressure. As an example, assume a contact resistance
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between two stainless steel plates to be R′′
c = 0.001 m2 K/W and the thermal

conductivity of the stainless steel κ = 50 W/m K. If the thickness of each plate is
L = 5 mm and the area of the plate is A = 0.01 m2, the total thermal resistance is
then Rt = L/(κA) + R′′

c /A + L/(κA) = (0.01 + 0.1 + 0.01) K/W = 0.12 K/W,
which is mostly due to the contact resistance. Interfacial fluids and interstitial (filler)
materials can be applied to reduce the contact resistance in some cases. Even with a
perfect contact, thermal resistance exists between dissimilarmaterials due to acoustic
mismatch, which is especially important at low temperatures [15].

2.4.2 Convection

Convection heat transfer refers to the heat transfer from solid to fluid near the bound-
ary when the fluid is in bulk motion relative to the solid. The combination of the
bulk motion, known as advection, with the random motion of the fluid molecules
(i.e., diffusion) is the key for convection heat transfer. Examples are flows over an
object or inside a tube, a spray leaving a nozzle that is impinged on a microelectronic
component for cooling purposes, and boiling in a pan. The velocity and temperature
distributions for a fluid flowing over a heated flat plate are illustrated in Fig. 2.7.
A hydrodynamic boundary layer or velocity boundary layer (VBL) is formed near
the surface, and the fluid moves at the free-stream velocity outside the boundary
layer. Similarly, a thermal boundary layer (TBL) is developed near the surface of
the plate where a temperature gradient exists. When the flow speed is not very high
and the density of the fluid not too low, the average velocity of the fluid is zero,
and the fluid temperature equals the wall temperature in the vicinity of the wall, i.e.,
vx (y = 0) = 0 and T (y = 0) = Tw. ForNewtonian fluids, a linear relationship exists
between the stress components and the velocity gradients. Many common fluids like
air, water, and oil belong to this catalog. The shear stress in the fluid is

wT
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TBL

y

x

( )xv y

(0) 0xv w(0)T T
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Fig. 2.7 Illustration of the velocity boundary layer and the thermal boundary layer
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τyx = −μ
∂vx
∂y

(2.36)

where μ is the viscosity. Throughout this book, we will use vx , vy, and vz (or
vi with i = 1, 2, and 3) for the velocity components in the x-, y-, and z-directions,
respectively. When Eq. (2.36) is evaluated at the boundary y = 0, it gives the force
per unit area exerted to the fluids by the wall and is used to calculate the friction
factor in fluid mechanics [16].

The heat flux between the solid and the fluid can be predicted by applying Fourier’s
law to the fluid at the boundary; thus,

q ′′
w = −κ

∂T

∂y

∣∣∣∣
y=0

(2.37)

where κ is the thermal conductivity of the fluid. Equation (2.37) shows that the
basic heat transfer mechanism for convection is the same as that for conduction,
i.e., both are caused by heat diffusion and governed by the same equation. Without
bulk motion, however, the temperature gradient at the boundary would be smaller.
Therefore, advection generally increases the heat transfer rate. Newton’s law of
cooling is a phenomenological equation for convection. It states that the convective
heat flux is proportional to the temperature difference, therefore,

q ′′
w = h(Tw − T∞) (2.38)

where h is called the convection heat transfer coefficient, or convection coefficient,
Tw is the surface temperature, and T∞ is the fluid temperature. From Eqs. (2.37) and
(2.38), we have

h = −κ

Tw − T∞
∂T

∂y

∣∣∣∣
y=0

(2.39)

Although h depends on the location, the average convection coefficient is often
used in heat transfer calculations. The convection coefficient depends on the fluid
thermal conductivity, velocity, and flow conditions (laminar versus turbulent flow,
internal versus external flow, and forced versus free convection). Convection can
also happen with phase change, such as boiling, which usually causes vigorous fluid
motion and enhanced heat transfer. Convection correlations are recommended in
most heat transfer textbooks to determine the convection coefficient. For laminar
flow over a flat plate of length L with a free-stream velocity v∞, the following
equation correlates the average Nusselt number to the Reynolds number at x = L and
the Prandtl number [11]:

NuL = h̄L L

κ
= 0.664Re1/2L Pr1/3, for Pr > 0.6 and ReL < 5 × 105 (2.40)
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The Reynolds number, defined as ReL = ρv∞L/μ, is key to the study of
hydrodynamics. The Prandtl number Pr = ν/α is the ratio of kinematic viscosity
ν = μ/ρ, which is also known as themomentum diffusivity, to the thermal diffusivity
α = κ/(ρcp) of the fluid. A detailed understanding of the fluid flow and convection
heat transfer requires the solution of the conservation equations, as summarized in
the following.

The differential form of the continuity equation or mass conservation is

Dρ

Dt
+ ρ∇ · v = 0 (2.41)

where D
Dt = (

∂
∂t + v · ∇)

is called the substantial derivative or material derivative.
Notice that for an incompressible fluid, the continuity equation reduces to ∇ · v = 0.

Using Stokes’ hypothesis that relates the second coefficient of viscosity to
the viscosity for Newtonian fluids, the Navier–Stokes equation that describes the
momentum conservation can be expressed as follows [16]:

Dv
Dt

= −∇P

ρ
+ a + ν∇2v + ν

3
∇(∇ · v) (2.42)

where a is the body force per unit mass exerted on the fluid, i.e., the acceleration
vector.

Energy equation for constant thermal conductivity without thermal energy
generation for a moving fluid can be expressed as

ρ
Du

Dt
= κ∇2T − P∇ · v + μ (2.43a)

where u is the specific internal energy (du = cvdT ) and the last term accounts for
the viscous dissipation, which is

 = 2

[(
∂vx
∂x

)2

+
(

∂vy
∂y

)2

+
(

∂vz
∂z

)2
]

+
(

∂vx
∂y

+ ∂vy
∂x

)2

+
(

∂vy
∂z

+ ∂vz
∂y

)2

+

+
(

∂vz
∂x

+ ∂vx
∂z

)2

− 2

3
(∇ · v)2 (2.43b)

in theCartesian coordinates. Equation (2.41) through (2.43a, 2.43b) is usually simpli-
fied for specific conditions and solved analytically or numerically using computation
fluid dynamics software. In Chap. 4, we will show that the conservation equations
can also be derived from the microscopic theories, which are also applicable for
rarefied flows and microfluidics.
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2.4.3 Radiation

Thermal radiation refers to the electromagnetic radiation in a broadwavelength range
fromapproximately 100 nm to 1000µm. It includes a portion of the ultraviolet region,
the entire visible (380–760 nm) region, and the infrared region. Monochromatic
radiation refers to radiation at a single wavelength (or a very narrow spectral band),
such as lasers and some atomic emission lines. Radiation emitted from a thermal
source, such as the sun, an oven, or a blackbody cavity, covers a broad spectral region
and can be considered as the spectral integration of monochromatic radiation. In
contrast to conduction or convection heat transfer, radiative energy propagates in the
formof electromagneticwaves that do not require an interveningmedium.Regardless
of its wavelength, an electromagnetic wave travels in vacuum at the speed of light,
c0 = 2.998 × 108 m/s. Radiation can also be viewed as a collection of particles,
called photons, whose energy is proportional to the frequency of radiation. Starting
with the definition of intensity and its linkage to the radiative energy flux, radiative
transfer between surfaces and in participating media will be briefly described later in
this section.More detailed treatment of themechanism of thermal radiation, radiative
properties, and radiative transfer at small length scales will be given in Chaps. 8, 9,
and 10.

The spectral intensity or radiance is defined as the radiative power receivedwithin
a solid angle, a unit projected area, and a unit wavelength interval; hence [11],

Iλ(λ, θ, φ) = dQ̇

dA cos θ d� dλ
(2.44)

where (θ, φ) is the direction of propagation, measured with respect to the surface
normal, dA cos θ is therefore the projected area, and d� is an element solid angle.
It is convenient to describe the relationship between intensity and radiative power
using the spherical coordinates, as shown in Fig. 2.8, where an element area dA
whose surface normal is in the z-direction is placed at the origin. Note that r =
(x2 + y2 + z2)1/2, θ = cos−1(z/r), φ = tan−1(y/x). The solid angle, defined as
d� = dAn/r2, can be expressed as d� = (rdθ)(r sin θdφ)/r2 = sin θdθdφ.

The spectral heat flux from an element surface dA to the upper hemisphere can
be obtained by integrating Eq. (2.44), i.e.,

q ′′
λ (λ) =

2π∫
0

π/2∫
0

Iλ(λ, θ, φ) cos θ sin θdθdφ (2.45)

The total heat flux is equal to the heat flux integrated over all wavelengths:

q ′′
rad =

∞∫
0

q ′′
λ (λ)dλ (2.46)
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Fig. 2.8 Illustration of the
solid angle in spherical
coordinates
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We can also define the total intensity as the integral of the spectral intensity over
all wavelengths, I (θ, φ) = ∫ ∞

0 I (λ, θ, φ)dλ. An equation similar to Eq. (2.45) holds
between the total heat flux and the total intensity. If the radiation is emitted from a
surface, the radiative heat flux q ′′

rad is termed as the (hemispherical) emissive power.
When the intensity is same in all directions, the surface is said to be diffuse, and
Eq. (2.45) can be integrated to obtain the relation, q ′′

λ = π Iλ(λ, θ, φ). Similarly, we
can obtain q ′′ = π I .

The maximum power that can be emitted by a thermal source at a given tempera-
ture is from a blackbody. A blackbody is an ideal surface which absorbs all incoming
radiation and gives out the maximum emissive power. Radiation inside an isothermal
enclosure behaves like a blackbody. In practice, a blackbody cavity is made with a
small aperture on an isothermal cavity. The emissive power of a blackbody is given
by the Stefan–Boltzmann law, also proportional to the absolute temperature to the
fourth power, viz.,

eb(T ) = π Ib(T ) = σSBT
4 (2.47)

where σSB = 5.67×10−8 W/m2 K4 is the Stefan–Boltzmann constant. A blackbody
is also a diffuse emitter, i.e., its intensity is independent of the direction. The spectral
distribution of blackbody emission is described by Planck’s law, which gives the
spectral intensity as a function of temperature and wavelength as follows:

Ib,λ(λ, T ) = eb,λ(λ, T )

π
= 2hc2

λ5(ehc/kBλT − 1)
(2.48)

where h = 6.626 × 10−34 J s is the Planck constant, c is the speed of light, and kB
is the Boltzmann constant. The derivation of Planck’s law will be given in Chap. 8.
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The ratio of the emissive power of a real material to that of the blackbody defines
the (total hemispherical) emissivity (or emittance), ε(T ) = e(T )/eb(T ). The spectral
directional emissivity is defined as the spectral intensity emitted by the surface to
Ib,λ, i.e.,

ε′
λ(λ, θ, φ, T ) = Iλ(λ, θ, φ, T )

eb,λ(λ, T )/π
(2.49)

Using e(T ) = ∫ ∞
0 dλ

[∫ 2π
0

∫ π/2
0 Iλ(λ, θ, φ, T ) cos θ sin θdθdφ

]
, we have

ε(T ) = π

σT 4

∞∫
0

eb,λ(λ, T )dλ

⎡
⎣

2π∫
0

π/2∫
0

ε′
λ(λ, θ, φ, T ) cos θ sin θdθdφ

⎤
⎦ (2.50)

This equation suggests that the relationship between the total hemispherical emis-
sivity and the spectral directional emissivity is rather complicated in general. For a
gray surface, the spectral emissivity is not a function of the wavelength. For a dif-
fuse surface, the intensity emitted by the surface is independent of the direction.
For a diffuse-gray surface, Eq. (2.49) reduces to a simple form ε = ε′

λ, because the
emissivity is independent of wavelength and the direction.

Real materials also reflect radiation in contrast to a blackbody. The reflection may
be specular for mirrorlike surfaces and more diffuse for rough surfaces. Some win-
dow material and thin films are semitransparent. Generally speaking, reflection and
transmission are highly dependent on the wavelength, angle of incidence, and polar-
ization status of the incoming electromagnetic wave. The absorptance, reflectance,
and transmittance of a material can be defined as the fraction of the absorbed,
reflected, and transmitted radiation. The (spectral) directional absorptance, direc-
tional–hemispherical reflectance, and directional–hemispherical transmittance are
related by

A′
λ + R′

λ + T ′
λ = 1 (2.51)

For an opaquematerial, the transmittance T ′
λ = 0. It is common to use absorptivity

α′
λ and reflectivity ρ ′

λ for opaquematerials with smooth surfaces. Note that α′
λ+ρ ′

λ =
1. However, the distinction between words ending with “-tivity” and “-tance” is not
always clear andboth endings are used interchangeably in the literature. The complete
nomenclature of radiative quantities and properties can be found from Siegel and
Howell [17]. Further discussion about the mechanisms and applications of radiation
heat transfer will be provided in Chap. 8.

Kirchhoff’s law states that the spectral directional emissivity is always the same
as the spectral directional absorptivity, i.e., ε′

λ = α′
λ. For diffuse-gray surfaces, it

can also be shown that ε = α, which may not be generally true for surfaces that are
not diffuse-gray, unless they are in thermal equilibrium with the surroundings.
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Example 2.6 Find the net radiative heat flux between two, large parallel surfaces.
Surface 1 at T1 = 600 ◦C has an emissivity ε1 = 0.8, and surface 2 at T2 = 27 ◦C
has an emissivity ε2 = 0.5.

Solution Assume that the medium in between is transparent, and both surfaces are
opaque and diffuse-gray. Note that radiation from one surface to another will be par-
tially absorbed and partially reflected back. Furthermore, the reflected radiation will
continue to experience the absorption/reflection processes between the two surfaces.
Surface 1 emits ε1σSBT 4

1 radiation toward surface 2. The fraction of this emitted
radiation that is absorbed by surface 2 can be calculated by tracing the rays between
the two surfaces, which is ε2 + (1− ε2)(1− ε1)ε2 + (1− ε2)

2(1− ε1)
2ε2 +· · · since

the reflectivity is one minus the emissivity. The radiative heat flux from surface 1 to
surface 2 is

q ′′
1→2 = ε1ε2σSBT 4

1

1 − (1 − ε1)(1 − ε2)
= σSBT 4

1

1/ε1 + 1/ε2 − 1
,

and that from surface 2 to surface 1 is

q ′′
2→1 = σSBT 4

2

1/ε1 + 1/ε2 − 1
.

Subsequently, the net radiative flux from surface 1 to surface 2 is

q ′′
12 = q ′′

1→2 − q ′′
2→1 = σSB(T 4

1 − T 4
2 )

1/ε1 + 1/ε2 − 1
(2.52)

Plugging in T1 = 873.2 K, T2 = 300.2 K, and other numerical values, we obtain
q ′′
12 = 14.4 kW/m2.

Gas emission, absorption, and scattering are important for atmospheric radiation
and combustion. When radiation travels through a cloud of gas, some of the energy
may be absorbed. The absorption of photons raises the energy levels of individ-
ual molecules. At sufficiently high temperatures, gas molecules may spontaneously
lower their energy levels and emit photons. These changes in energy levels are called
radiative transitions, which include bound–bound transitions (between nondisso-
ciated molecular states), bound–free transitions (between nondissociated and dis-
sociated states), and free–free transitions (between dissociated states). Bound–free
and free–free transitions usually occur at very high temperatures (greater than about
5000K) and emit in the ultraviolet and visible regions. Themost important transitions
for radiative heat transfer are bound–bound transitions between vibrational energy
levels coupled with rotational transitions. The photon energy (or frequency) must be
exactly the same as the difference between two energy levels in order for the photon
to be absorbed or emitted; therefore, the quantization of the energy levels results
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in discrete spectral lines for absorption and emission. The rotational lines superim-
posed on a vibrational line give a band of closely spaced spectral lines, called the
vibration–rotation spectrum. Additional discussion will be given in Chap. 3 about
quantized transitions in atoms and molecules.

Particles can also scatter electromagnetic waves or photons, causing a change in
the direction of propagation. In the early twentieth century, Gustav Mie developed
a solution of Maxwell’s equations for the scattering of electromagnetic waves by
spherical particles, known as the Mie scattering theory. This solution can be used to
predict the scattering phase function. In the case when the particle sizes are small
compared with the wavelength, the formulation reduces to the simple expression
obtained earlier by Lord Rayleigh. The phenomenon is called Rayleigh scattering,
in which the scattering efficiency is inversely proportional to the wavelength to the
fourth power. The wavelength-dependent characteristic of light scattering by small
particles helps explain why the sky is blue and why the sun appears red at sunset.
For spheres whose diameters are much greater than the wavelength, geometric optics
can be applied by treating the surface as specular or diffuse.

The spectral intensity in a participating medium, Iλ = Iλ(ξ,�, t), depends on
the location (the coordinate ξ ), its direction (the solid angle �), and time t. In a time
interval dt, the beam travels from ξ to ξ + dξ (dξ = cdt), and the intensity
is attenuated by absorption and out-scattering, but enhanced by emission and in-
scattering. The macroscopic description of the radiation intensity is known as the
equation of radiative transfer (ERT) [17].

1

c

∂ Iλ
∂t

+ ∂ Iλ
∂ξ

= aλ Ib,λ(T ) − (aλ + σλ)Iλ + σλ

4π

∫
4π

Iλ(ξ,�
′
, t)λ(�

′
,�) d�

′

(2.53)

where aλ and σλ are the absorption and scattering coefficients, respectively, and
λ(�

′
, �) is the scattering phase function λ = 1, which satisfies the equation:

1
4π

∫
4π λ(�

′
, �)d�

′ ≡ 1. For isotropic scattring, λ = 1. The right-hand side of
Eq. (2.53) is composed of three terms: the first accounts for the contribution of emis-
sion (which depends on the local gas temperature T ); the second is the attenuation by
absorption and out-scattering; and the third is the contribution of in-scattering from
all directions (solid angle 4π ) to the direction �.

Unless ultrafast laser pulses are involved, the transient term is negligible. The
ERT for the steady state can be simplified as

∂ Iλ(ζλ,�)

∂ζλ

+ Iλ(ζλ,�) = (1 − ηλ)Ib,λ + ηλ

4π

∫
4π

Iλ(ζλ,�
′
)λ(�

′
,�)d�

′
(2.54)

where ζλ = ∫ ξ

0 (aλ + σλ)dξ is the optical path length, and ηλ = σλ/(aλ + σλ) is
called the scattering albedo. This is an integrodifferential equation, and its right-hand
side is called the source function. The integration of the spectral intensity over all
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wavelengths and all directions gives the radiative heat flux. Unless the temperature
field is prescribed, Eq. (2.54) is coupled with the heat conduction equation in a
macroscopically stationary medium and the energy conservation equation in a fluid
with convection.

Analytical solutions of the ERT rarely exist for applications with multidimen-
sional and nonhomogeneous media. Approximate models have been developed to
deal with special types of problems, including Hottel’s zonal method, the differen-
tial and moment methods (often using the spherical harmonics approximation), and
the discrete ordinates method. The statistical model using the Monte Carlo method
is often used for complicated geometries and radiative properties [17]. Analytical
solutions can be obtained only for limited simple cases.

Example 2.7 A gray, isothermal gas at a temperature Tg = 3000 K occupies the
space between two, large parallel blackbody surfaces. Surface 1 is heated to a tem-
perature T1 = 1000 K, while surface 2 is maintained at a relatively low temperature
by water cooling. It is desired to know the amount of heat that must be removed from
surface 2. If the scattering is negligible, calculate the heat flux at surface 2 for aλL
= 0.01, 0.1, 1, and 10, where L is the distance between the two surfaces.

Solution For a gray medium without scattering, Eq. (2.53) becomes
dI (θ)

aλdξ
+I (θ) = Ib(Tg),where θ is the angle between ξ and x.With Ib(Tg) = σSBT 4

g /π

and I (0) = Ib(T1) = σSBT 4
1 /π , the ERT can be integrated from x = 0 to x = L .

The result is I (θ)|x=L = σSB
π

[
T 4
1 e

−aλL/ cos θ + T 4
g (1 − e−aλL/ cos θ )

]
. The radiative

flux at x = L can be obtained by integrating the intensity over the hemisphere, i.e.,

q ′′(aλL) =
2π∫
0

π/2∫
0

σSB

π

[
T 4
g − (T 4

g − T 4
1 )e−aλL/ cos θ

]
cos θ sin θdθdφ

= σSBT
4
g − 2σSB(T 4

g − T 4
1 )E3(aλL)

where E3(ζ ) = ∫ 1
0 e−ζ/μdμ is called the exponential integral function of the third

kind and can be numerically evaluated. The final results are tabulated as follows:

aλL 0.01 0.1 1 10

E3(aλL) 0.49 0.416 0.11 3.48 × 10−6

q ′′ (W/m2) 1.474 × 105 8.187 × 105 3.595 × 106 4.593 × 106

Discussion. In the optically thick limit (aλL � 1), q ′′ ≈ σSBT 4
g , and all radiation

leaving surface 1 will be absorbed by the gas before reaching surface 2. On the other
hand, the heat flux is much greater than σSBT 4

1 = 56.7 kW/m2 at aλL = 0.01. The
gas absorption can be neglected in the optically thin limit; however, its emission
contributes significantly to the radiative flux at surface 2. This is because the gas
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temperature is much higher than that of surface 1 and L/ cos θ can be much longer
than L for large θ values.

2.5 Summary

This chapter provided an overview of classical thermodynamics, derived following
logical steps and on a general basis, as well as the functional relations and ther-
modynamic properties of simple systems and ideal pure substances. The basic heat
transfer modes were elaborated in a coherent way built upon the foundations of
thermodynamics. Entropy generation is inevitably associated with any heat transfer
process. The connection between heat transfer and entropy generation, which has
been omitted by most heat transfer textbooks, was also discussed. The introduc-
tion of thermal radiation not only covered most of the undergraduate-level materials
but also linked to some basic graduate-level materials. This chapter should serve
as a bridge or a reference to the rest of the book, dealing with energy transfer pro-
cesses in micro/nanosystems and/or from a microscopic viewpoint of macroscopic
phenomena.

Problems

2.1. Give examples of steady state. Give examples of thermodynamic equilibrium
state. Give an example of spontaneous process. Is the growth of a plant a
spontaneous process? Give an example of adiabatic process.

2.2. What is work? Describe an experiment that can measure the amount of work.
What is heat? Describe an apparatus that can be used to measure heat. Are
work and heat properties of a system?

2.3. Expand Eqs. (2.1a, 2.1b) and (2.2a) in terms of the rate of energy and entropy
change of an open system,which is subjected towork output, heat interactions,
and multiple inlets and outlets of steady flow.

2.4. Discuss the remarks of Rudolf Clausius in 1867:

(a) The energy of the universe is constant.
(b) The entropy of the universe strives to attain a maximum value.

2.5. For a cyclic device experiencing heat interactions with reservoirs at
T1, T2, . . ., the Clausius inequality can be expressed as

∑
i

δQi

Ti
≤ 0 or∮

δQ
T ≤ 0, regardless of whether the device produces or consumes work. Note

that δQ is positive when heat is received by the device. Prove the Clausius
inequality by applying the second law to a closed system.

2.6. In the stable-equilibrium states, the energy and the entropy of a solid are
related by E = 3 × 105 exp

( S−S0
1000

)
, where E is in J, S is in J/K, and S0 is the



Problems 69

entropy of the solid at a reference temperature of 300 K. Plot this relation in
an E–S graph. Find expressions for E and S in terms of its temperature T and
S0.

2.7. For an isolated system, give the mathematical expressions of the first and
second laws of thermodynamics. Give graphic illustrations using E–S graph.

2.8. Place two identical metal blocks A and B, initially at different temperatures,
in contact with each other but without interactions with any other systems.
Assume thermal equilibrium is reached quickly and let system C represents
the combined system of both A and B.

(a) Is the process reversible or not? Which system has experienced a spon-
taneous change of state? Which systems have experienced an induced
change of state?

(b) Assume that the specific heat of the metal is independent of temperature,
cp = 240 J/kgK, the initial temperatures are TA1 = 800K and TB1 = 200
K, and the mass of each block is 5 kg. What is the final temperature?
What is the total entropy generation in this process?

(c) Show the initial and final states of systems A, B, and C in a u–s dia-
gram, and indicate which state is not an equilibrium state. Determine the
adiabatic availability of system C in the initial state.

2.9. Two blocksmade of the samematerial with the samemass are allowed to inter-
act with each other but isolated from the surroundings. Initially, block A is at
800 K and block B at 200 K. Assuming that the specific heat is independent of
temperature, show that the final equilibrium temperature is 500 K. Determine
the maximum and minimum entropies that may be transferred from block A
to block B.

2.10. A cyclic machine receives 325 kJ heat from a 1000 K reservoir and rejects
125 kJ heat to a 400 K reservoir in a cycle that produces 200 kJ work. Is this
cycle reversible, irreversible, or impossible?

2.11. If z = z(x, y), then dz = f dx + gdy, where f (x, y) = ∂z/∂x, g(x, y) =
∂z/∂y. Therefore, ∂ f

∂y = ∂2z
∂y∂x = ∂2z

∂x∂y = ∂g
∂x . The second-order derivatives

of the fundamental equation and each of the characteristic function yield
a Maxwell relation. Maxwell’s relations are very useful for evaluating the
properties of a system in the stable-equilibrium states. For a closed system
without chemical reactions, we have dNi ≡ 0. Show that

(
∂T
∂V

)
S

= −(
∂P
∂S

)
V
,(

∂T
∂P

)
S

= (
∂V
∂S

)
P
,
(

∂S
∂V

)
T

= (
∂P
∂T

)
V
, and

(
∂S
∂P

)
T

= −(
∂V
∂T

)
P
.

2.12. The isobaric volume expansion coefficient is defined as βP = 1
v

(
∂v
∂T

)
P
, the

isothermal compressibility is κT = − 1
v

(
∂v
∂P

)
T
, and the speed of sound is

va =
√(

∂P
∂ρ

)
s
. For an ideal gas, show that βP = 1/T , κT = 1/P , and

va = √
γ RT .

2.13. For a system with single type of constituents, the fundamental relation
obtained by experiments gives S = α(NVU )1/3, where α is a positive con-
stant, andN,V, S, andU are the number ofmolecules, the volume, the entropy,
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and the internal energy of the system, respectively. Obtain expressions of the
temperature and the pressure in terms of N, V, U, and α. Show that S = 0 at
zero temperature for constant N and V.

2.14. For blackbody radiation in an evacuated enclosure of uniform wall temper-
ature T, the energy density can be expressed as uv = U

V = 4
cσSBT 4, where

U is the internal energy, V the volume, c the speed of light, and σSB the
Stefan–Boltzmann constant. Determine the entropy S(T, V ) and the pres-
sure P(T, V ), which is called the radiation pressure. Show that the radiation
pressure is a function of temperature only and negligibly small at moderate
temperatures. Hint: S = ∫ T

0
1
T

(
∂U
∂T

)
V
dT and P = T

(
∂S
∂V

)
T

− (
∂U
∂V

)
T
.

2.15. A cyclic machine can only interact with two reservoirs at temperatures TA =
298 K and TB = 77.3 K, respectively.

(a) If heat is extracted from reservoir A at a rate of Q̇ = 1000W, what is the
maximum rate of work that can be generated (Ẇmax)?

(b) If no work is produced, what is the rate of entropy generation (Ṡgen) of
the cyclic machine?

(c) Plot Ṡgen versus Ẇ (the power produced).

2.16. An engineer claimed that it requires much more work to remove 0.1 J of heat
from a cryogenic chamber at an absolute temperature of 0.1 K than to remove
270 J of heat from a refrigerator at 270 K. Assuming that the environment
is at 300 K, justify this claim by calculating the minimum work required for
each refrigeration task.

2.17. A solid block [m = 10 kg and cp = 0.5 kJ/kg K], initially at room temperature
(TA,1 = 300 K) is cooled with a large tank of liquid–gas mixture of nitrogen
at TB = 77.3 K and atmospheric pressure.

(a) After the block reaches the liquid nitrogen temperature, what is the total
entropy generation Sgen?

(b) Given the specific enthalpy of evaporation of nitrogen, hfg = 198.8 kJ/kg,
what must be its specific entropy of evaporation sfg in kJ/kg K, in order
for the nitrogen tank to be modeled as a reservoir? Does hfg = Tsat × sfg
always hold?

2.18. Two same-size solid blocks of the same material are isolated from other sys-
tems [specific heat cp = 2 kJ/kg K; mass m = 5 kg]. Initially, block A is at a
temperature TA1 = 300 K and block B at TB1 = 1000 K.

(a) If the two blocks are put together, what will be the equilibrium
temperature (T 2) and how much entropy will be generated (Sgen)?

(b) If the two blocks are connected with a cyclic machine, what is the
maximum work that can be obtained (Wmax)? What would be the final
temperature of the blocks (T 3) if the maximum work was obtained?

2.19. A rock [density ρ = 2800 kg/m3 and specific heat cp = 900 J/kg K] of 0.8 m3

is heated to 500 K using solar energy. A heat engine (cyclic machine) receives
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heat from the rock and rejects heat to the ambient at 290 K. The rock therefore
cools down.

(a) Find the maximum energy (heat) that the rock can give out.
(b) Find the maximum work that can be done by the heat engine, Wmax.
(c) (c) In an actual process, the final temperature of the rock is 330 K and the

work output from the engine is only half ofWmax. Determine the entropy
generation of the actual process.

2.20. Consider three identical solid blocks with a mass of 5 kg each, initially at
300, 600, and 900 K, respectively. The specific heat of the material is cp =
2000 J/kg K. A cyclic machine is available that can interact only with the
three blocks.

(a) What is the maximum work that can be produced? What are the final
temperatures of each block? Is the final state in equilibrium?

(b) If no work is produced, i.e., simply putting the three blocks together,
what will be the maximum entropy generation? What will be the final
temperature?

(c) If the three blocks are allowed to interact via cyclic machine but not with
any other systems in the environment, what is the highest temperature
that can be reached by one of the blocks?

(d) If the three blocks are allowed to interact via cyclic machine but not with
any other systems in the environment, what is the lowest temperature
that can be reached by one of the blocks?

2.21. Electrical power is used to raise the temperature of a 500 kg rock from 25 to
500 °C. The specific heat of the rock material is cp = 0.85 kJ/kg K.

(a) If the rock is heated directly through resistive (Joule) heating, how much
electrical energy is needed? Is this process reversible? If not, how much
entropy is generated in this process?

(b) By using cyclic devices that can interact with both the rock and the
environment at 25 °C, what is the minimum electrical energy required?

2.22. An insulated cylinder of 2 m3 is divided into two parts of equal volume by
an initially locked piston. Side A contains air at 300 K and 200 kPa; side B
contains air at 1500 K and 1 MPa. The piston is now unlocked so that it is
free to move and it conducts heat. An equilibrium state is reached between
the two sides after a while.

(a) Find the masses in both A and B.
(b) Find the final temperatures, pressures, and volumes for both A and B.
(c) Find the entropy generation in this process.

2.23. A piston–cylinder contains 0.56 kg of N2 gas, initially at 600 K. A cyclic
machine receives heat from the cylinder and releases heat to the environment
at 300 K. Assume that the specific heat of N2 is cp = 1.06 kJ/kg K, and the
pressure inside the cylinder is maintained at 100 kPa by the environment.
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What is the maximum work that can be produced by the machine? What is
the thermal efficiency (defined as the ratio of the work output to the heat
received)? The thermodynamic efficiency can be defined as the ratio of the
actual work produced to the maximum work. Plot the thermodynamic effi-
ciency as a function of the entropy generation. What is the maximum entropy
generation?

2.24. An airstream [cp = 1 kJ/kg K andM = 29.1 kg/kmol] flows through a power
plant. The stream enters a turbine at T 1 = 750 K and P1 = 6 MPa, and exits
at P2 = 1.2 MPa into a recovery unit, which can exchange heat with the
environment at 25 °C and 100 kPa. The stream then exits the recovery unit
to the environment. The turbine is thermally insulated and has an efficiency
ηt = 0.85.

(a) Find the power per unit mass flow rate produced by the turbine.
(b) Calculate the entropy generation rate in the turbine.
(c) Determine the largest power that can be produced by the recovery unit.

2.25. Water flows in a perfectly insulated, steady-state, horizontal duct of variable
cross-sectional area.Measurements were taken at two ports, and the data were
recorded in a notebook as follows. For port 1, speed ξ1 = 3 m/s, pressure
P1 = 50 kPa, and temperature T1 = 40 ◦C; for port 2, ξ2 = 5 m/s and
P2 = 45 kPa. Some information was accidentally left out by the student
taking the notes. Can you determine T2 and the direction of the flow based on
the available information? Hint: Model the water as an ideal incompressible
liquid with cp = 4.2 kJ/kg) and specific volume v = 10−3 m3/kg.

2.26. An insulated rigid vessel contains 0.4 kmol of oxygen at 200 kPa separated
by a membrane from 0.6 kmol of carbon dioxide at 400 kPa; both sides are
initially at 300 K. The membrane is suddenly broken and, after a while, the
mixture comes to a uniform state (equilibrium).

(a) Find the final temperature and pressure of the mixture.
(b) Determine the entropy generation due to irreversibility.

2.27. Pure N2 and air (21%O2 and 79%N2 by volume), both at 298 K and 120 kPa,
enter a chamber at a flow rate of 0.1 and 0.3 kmol/s, respectively. The newmix-
ture leaves the chamber at the same temperature and pressure as the incoming
streams.

(a) What are the mole fractions and the mass fractions of N2 and O2 at the
exit?

(b) Find the enthalpy change in the mixing process. Find the entropy
generation rate of the mixing process.

(c) Consider a process inwhich theflowdirections are reversed.The chamber
now contains necessary devices for the separation, and it may transfer
heat to the environment at 298 K. What is the minimum amount of work
per unit time needed to operate the separation devices?
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2.28. A Carnot engine receives energy from a reservoir at TH and rejects heat to the
environment at T 0 via a heat exchanger. The engine works reversibly between
TH and TL, where TL is the temperature of the higher temperature side of
the heat exchanger. The product of the area and the heat transfer coefficient
of the heat exchanger is α. Therefore, the heat that must be rejected to the
environment through the heat exchanger is Q̇L = α(TL−T0). Given TH = 800
K, T0 = 300 K, and α = 2300 W/K. Determine the value of TL so that the
heat engine will produce maximumwork, and calculate the power production
and the entropy generation in such a case.

2.29. To measure the thermal conductivity, a thin film electric heater is sandwiched
between two plates whose sides are well insulated. Each plate has an area of
0.1 m2 and a thickness of 0.05 m. The outside of the plates are exposed to air
at T∞ = 25 ◦C with a convection coefficient of h = 40 W/m2 K. The electric
power of the heat is 400 W and a thermocouple inserted between the two
plates measures a temperature of T1 = 175 ◦C at steady state. Determine the
thermal conductivity of the plate material. Find the total entropy generation
rate. Comment on the fraction of entropy generation due to conduction and
convection.

2.30. An electric current, I = 2 A, passes through a resistive wire of diameter D =
3 mm with a resistivity re = 1.5× 10−4 � m. The cable is placed in ambient
air at 27 ◦C with a convection coefficient h = 20 W/m2 K. Assume a steady
state has been reached and neglect radiation. Determine the radial temperature
distribution inside the wire. Determine the volumetric entropy generation rate
ṡgen as a function of radius. Determine the total entropy generation rate per
unit length of the cable. Hint: For steady-state conduction, ṡgen = 1

T ∇ · q′′ −
1
T 2 q′′ · ∇T . [Hint: Consider κ = 10 W/mK and κ = 1 W/m K.]

2.31. Find the thermal conductivity of intrinsic (undoped) silicon, heavily doped
silicon, quartz, glass, diamond, graphite, and carbon from 100 to 1000 K from
Touloukian and Ho [13]. Discuss the variations between different materials,
crystalline structures, and doping concentrations.

2.32. Find the thermal conductivity of copper from 1 to 1000 K from Touloukian
and Ho [13]. Discuss the general trend in terms of temperature dependence,
and comment on the effect of impurities.

2.33. For laminar flow over a flat plate, the velocity and thermal boundary
layer thicknesses can be calculated by δ(x) = 5x/

√
Rex and δt(x) =

5x Re−1/2
x Pr−1/3, respectively. Use room temperature data to calculate and

plot the boundary layer thicknesses for air, water, engine oil, and mercury for
different values ofU∞. Discuss the main features. Hint: Property data can be
found from Incropera and DeWitt [11].

2.34. Air at 14 °C and atmospheric pressure is in parallel flow over a flat plate of
2 × 2 m2. The air velocity is 3 m/s, and the surface is maintained at 140 °C.
Determine the average convection coefficient and the rate of heat transfer from
the plate to air. (For air at 350K, which is the average temperature between the
surface and fluid, κ = 0.03 W/m K, ν = 20.9×10−6 m2/s, and Pr = 0.7.)
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2.35. Plot the blackbody intensity (Planck’s law) as a function of wavelength for
several temperatures. Discuss the main features of this function. Show that
in the long-wavelength limit, the blackbody function can be approximated by
eb,λ(λ, T ) ≈ 2πckBT/λ4, which is the Rayleigh–Jeans formula.

2.36. Calculate the net radiative heat flux from the human body at a surface temper-
ature of Ts = 308 K, with an emissivity ε = 0.9, to the room walls at 298 K.
Assume air is at 298 K and has a natural convection coefficient of 5 W/m2

K. Neglect evaporation, calculate the natural convection heat flux from the
person to air. Comment on the significance of thermal radiation.

2.37. Combustion occurs in a spherical enclosure of diameter D = 50 cm with
a constant wall temperature of 600 K. The temperature of the combustion
gases may be approximated as uniform at 2300 K. The absorption coefficient
of the gas mixture is aλ = 0.01 cm−1, which is independent of wavelength.
Assuming that the wall is black and neglecting the scattering effect, determine
the net heat transfer rate between the gas and the inner wall of the sphere.
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Chapter 3
Elements of Statistical Thermodynamics
and Quantum Theory

Classical statistical mechanics is based on the assumption that all matters are com-
posed of a myriad of small discrete particles, such as molecules and atoms, in any
given macroscopic volume [1–5]. There are about N = 2.5 × 1016 molecules per
cubicmillimeter of air at standard conditions (25 °C and 1 atm). These particles are in
continuous random motion, which generally obeys the laws of classical mechanics.
A complete microscopic description of a system requires the identification of the
position ri (t) and velocity vi (t) of each particle (here, subscript i indicates the ith
particle) at any time. For a simple system of N molecules in a box of volume V, one
can write Newton’s law of motion for each molecule as

∑

j

Fi j (ri , r j , t) = mi
dvi

dt
, i = 1, 2, . . . N (3.1)

where Fi j is the intermolecular force that the jth molecule exerts on the ith molecule,
and mi is the mass of the ith molecule. The initial position and velocity, as well as
the nature of collisions among particles and that between particles and the walls of
the box, must be specified in order to solve the N equations. Although this approach
is straightforward, there are two major barriers. First, the intermolecular forces or
potentials are often complicated and difficult to determine. Second, the solution of
Eq. (3.1) requires significant computer resources even for rather simple problems.
Statistical methods are often used instead to obtain microscopic descriptions that
are related to macroscopic behaviors. Statistical mechanics aims at finding the equi-
librium distribution of certain type of particles in the velocity space. It provides a
linkage betweenmacroscopic thermodynamic properties and themicroscopic behav-
ior and a means to evaluate some thermodynamic properties. Kinetic theory, on the
other hand, deals with nonequilibrium processes. It gives a microscopic description
of transport phenomena and helps predict some important transport properties, as
will be seen in Chap. 4.
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Along with the rapid development in computing speed and memory, molecular
dynamics (MD) simulation has become a powerful tool for the investigation of phe-
nomena occurring in nanostructures and/or at very short time scales. In the MD
method, the location and the velocity of every particle are calculated at each time
step by applying Eq. (3.1) with a suitable potential function [6, 7]. Thermodynamic
properties are then evaluated using statistical mechanics formulation. Further dis-
cussion about the application of the MD simulation to predict the thermal properties
of nanostructures will be given in Chap. 7.

This chapter starts with a statistical model of independent particles and a brief
introduction to the basic principles of quantum mechanics. The necessary mathe-
matical background is summarized in Appendix B. It is highly recommended that
one review the materials covered in the appendix before studying this chapter. The
three important distributions are derived based on the statistics for different types of
particles. The microscopic descriptions and results are then linked to macroscopic
quantities and the laws of thermodynamics. The application to ideal gases is presented
in this chapter, while the applications to blackbody radiation, lattice vibration, free
electrons in metals, and electrons and holes in semiconductors will be deferred to
later chapters.

3.1 Statistical Mechanics of Independent Particles

We say particles are independent when their energies are independent of each other
and the total energy is the sum of the energies of individual particles. Consider a
system that has N independent particles of the same type confined in a volume V.
The total internal energy of the system is U, which is the sum of the energies of all
particles. Particles may have different energies and can be grouped according to their
energies. It is of interest to know how many particles are there within certain energy
intervals. We can subdivide energy into a large number of discretized energy levels.
As illustrated in Fig. 3.1, there are Ni particles on the ith energy level, each with
energy exactly equal to εi .

From classical mechanics point of view, it appears that the increment between
adjacent energy levels can be indefinitely small. The particles are distinguishable,
and there is no limit on the number of particles on each energy level. Quantum
mechanics predicts that the energy levels are indeed discretized with finite incre-
ments between adjacent energy levels, and the particles are unidentifiable (indistin-
guishable) according to quantum statistics. Readers are referred to Appendix B.3 for
further discussion about the statistical distinguishability and the resulting different
permutation and combination theories. The conservation equations for the system
shown in Fig. 3.1 are

∞∑

i=0

Ni = N (3.2)
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Fig. 3.1 Illustration of a a simple system of independent particles and b energy levels

and

∞∑

i=0

εi Ni = U (3.3)

3.1.1 Macrostates Versus Microstates

The thermodynamic state may be viewed in terms of the gross behavior that ignores
any differences at the molecular or atomic level, or in terms of the individual par-
ticles. A macrostate is determined by the values of N0, N1, N2, . . . for a given vol-
ume (which somehow confines the quantized energy levels) though two different
macrostates can have the same energy. Each macrostate may be made up of a number
of microscopic arrangements; each microscopic arrangement is called a microstate.
In statistical mechanics, all microstates are assumed equally probable. There may
be a large number of microstates that correspond to the same macrostate. The num-
ber of microstates for each macrostate is termed the thermodynamic probability �

of that macrostate. Unlike the stochastic probability that lies between 0 and 1, the
thermodynamic probability � is usually a very large number. One of the principles
underlying statistical mechanics is that the stable-equilibrium state corresponds to
the most probable macrostate. Therefore, for given values of U, N, and V, the ther-
modynamic probability is the largest in the stable-equilibrium state. We will use the
following example to illustrate the concepts of microstate and macrostate.
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Example 3.1 There are four distinguishable particles in a confined space, and there
are two energy levels. How many macrostates are there? How many microstates are
there for the macrostate with two particles on each energy level?

Solution There are five macrostates in total with (N1, N2) =
(0, 4), (1, 3), (2, 2), (3, 1), and (4, 0), respectively. Because the particles are
distinguishable, the microstates will be different only if the particles from different
energy levels are interchanged. Using the combination theory, we can figure out
that �(N1, N2) = N !/(N1!N2!) = 4!/(2!2!) = 6. Hence, there are six microstates
for the macrostate with two particles on each energy level. It can be shown that this
is also the most probable macrostate.

3.1.2 Phase Space

The phase space is used to describe all possible values of position and momentum
variables that can be used to fully characterize the state of a mechanical system at any
given time. It is an important concept in classical and quantum statistics. The phase
space is a six-dimensional “space” formed by three coordinates for the position r
and three coordinates for the momentum p = mv or velocity v. Each point in the
phase space defines the exact location and momentum of an individual particle. If
both the space and the momentum are described with the Cartesian system, then a
volume element in the phase space is dxdydzdpxdpydpz . Figure 3.2 shows a phase
space projected to the x − px plane. The three coordinates (px , py, pz ) form a
momentum space. One may choose to use (vx , vy, vz ) to form a velocity space. If
the momentum space is described in spherical coordinates, the volume element is
dpxdpydpz = p2 sin θdpdθdφ. The volume contained in a spherical shell from p
to p + dp is 4πp2dp. Figure 3.3 illustrates the momentum space projected to the
px − py plane, with a spherical shell.

Fig. 3.2 Phase space
projected to the x − px
plane, where �x�px is an
area element

x

px

x px

x x+ x

px+ px

px
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Fig. 3.3 The px − py plane
of the momentum space,
showing a spherical shell

py

px

p

p+dpp

3.1.3 Quantum Mechanics Considerations

The principles of quantummechanics are important for the advancement of statistical
thermodynamics, especially when dealing with particles that cannot be treated with
classical statistics. An introduction to the basic principles of quantum mechanics is
given in this section and a more detailed introduction of the quantum theory is given
in Sect. 3.5. The origin of quantum theory can be traced back to about 100 years
ago when Planck first used a discrete set of energies to describe the electromag-
netic radiation, and thus obtained Planck’s distribution (details to be presented in
Sect. 8.2). For any given frequency of radiation ν, the smallest energy increment is
given by hν,where h = 6.626×10−34 J · s is called Planck’s constant. Radiation can
be alternatively viewed as electromagnetic waves or traveling energy quanta. The
corpuscular theory treats radiation as a collection of energy quanta, called photons.
The energy of a photon is given by

ε = hν (3.4)

From the wave theory, the speed of light c is related to the wavelength λ and the
frequency by

c = λν (3.5)

In amediumwith a refractive index of n, c = c0/n and λ = λ0/n,where subscript
0 is used to indicate quantities in vacuum with n = 1. The speed of light in vacuum is
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c0 = 299, 792, 458m/s, which is a defined quantity as given in Appendix A. Note
that the frequency of an electromagnetic wave does not change from one medium to
another.

Based on the relativistic theory, the rest energy E0 of a particle with mass m is

E0 = mc2 (3.6)

The momentum of the particle traveling with speed v is p = mv. Since the energy
of a photon is hν and its speed is c, the momentum of a (massless) photon is (see
Sect. 3.7)

p = hν

c
= h

λ
(3.7)

Another hypothesis of quantum theory is that the motion of matter may be wave-
like, with characteristic wavelength and frequency. Therefore, for a particle moving
with velocity v � c.

λDB = h

p
= h

mv
and νDB = mc2

h
(3.8)

which are called de Broglie wavelength and de Broglie frequency, respectively. In
1923, Louis de Broglie postulated that matter may also possess wave characteristics
and thereafter resolved the controversy as per the nature of radiation. Note that the
phase speed of the wave defined by Eq. (3.8) is c2/v, which is greater than the speed
of light. The discovery of electron diffraction confirmed de Broglie’s hypothesis.
For this prediction, de Broglie received the Nobel Prize in Physics in 1929. Seven
years later, the 1937 Nobel Prize in Physics was shared by Clinton J. Davisson and
George P. Thomson for their independent experiments that demonstrated diffraction
of electrons by crystals.

Example 3.2 Calculate the frequency inHz and photon energy in eVof an ultraviolet
(UV) laser beam at a wavelength of λ = 248 nm and a microwave at λ = 10 cm.

Calculate the de Broglie wavelength of a He atom at 200 °C, using the average speed
of 1717 m/s, and an electron traveling with a speed of 106 m/s.

Solution The equations are ν = c/λ and ε = hc/λ.Assume the refractive index is 1.
For the UV beam at λ = 248 nm, ν = 1.2×1015 Hz and ε = 8.01×10−19 J = 5 eV.

For λ = 10 cm, ν = 3× 109 Hz = 3GHz and ε = 2× 10−24 J = 1.24× 10−5 eV =
124meV. The mass of a He atom is m = M/NA = 6.64 × 10−27 kg. Hence,
λDB = h/mv = 5.8×10−11 m = 58 pm. From Appendix A, me = 9.11×10−31 kg,
therefore, λDB = 7.3 × 10−10 m = 0.73 nm, which is in the x-ray region.

The foundation of quantum mechanics is the Schrödinger equation, which is a
partial-differential equation of the time-space dependent complex probability density
function.More details can be found from the texts of Tien andLienhard [1], Carey [5],
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Fig. 3.4 The degeneracy of
the ith energy level

gi

i

and Griffiths [8]. The solutions of the Schrödinger equation support the dual nature
of wave and matter, and result in discrete quantized energy levels. Furthermore,
there are usually more than one distinguishable quantum states at each energy level,
i.e., the energy levels may be degenerate. The number of quantum states for a given
energy level is called the degeneracy, denoted by gi for the ith energy level, as shown
in Fig. 3.4.

Theuncertainty principle states that the position andmomentumof a givenparticle
cannot be measured simultaneously with arbitrary precision. The limit is given by

�x�px ≥ h/4π (3.9)

This result implies thatwe cannot locate the exact position of a particle in the phase
space; all we can say is that the particle is somewhere in a domain whose volume is
around h3. The uncertainty principle is one of the cornerstones of quantummechanics
and was formulated in 1927 by Werner Heisenberg, a Nobel laureate in Physics.

For certain particles, such as electrons, each quantum state cannot be occupied
by more than one particle. This is the Pauli exclusion principle, discovered by Nobel
laureate Wolfgang Pauli in 1925. The result, as we will see, is the Fermi-Dirac
statistics that can be used to describe the behavior of free electrons. The collection
of free electrons in metals is sometimes called the free electron gas, which exhibits
very different characteristics from ideal molecular gases.

3.1.4 Equilibrium Distributions for Different Statistics

The characteristics of various types of particles can be described by different statis-
tics. In this section, we will first introduce three statistics and then apply them to
obtain the distribution functions, i.e., the number of particles on each energy level.
Applications of the distribution functions to various particle systems will also be
explained.

• The Maxwell-Boltzmann (MB) statistics: Particles are distinguishable and there
is no limit for the number of particles on each energy level. From Eq. (B.22) in
AppendixB, the thermodynamic probability for the distribution shown inFig. 3.1b
is
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� = N !
N0!N1!N2! · · · = N !∏∞

i=0 Ni !
If degeneracy is included as shown in Fig. 3.4, then

�MB = N !
∞∏

i=0

gNi
i

Ni ! (3.10)

• The Bose-Einstein (BE) statistics: Particles are indistinguishable and there is no
limit for the number of particles in each quantum state; there are gi quantum
states on the ith energy level. From Eq. (B.23), the number of ways of placing Ni

indistinguishable objects to gi distinguishable boxes is
(gi +Ni −1)!
(gi −1)!Ni ! . Therefore, the

thermodynamic probability for BE statistics is

�BE =
∞∏

i=0

(gi + Ni − 1)!
(gi − 1)!Ni ! (3.11)

• The Fermi-Dirac (FD) statistics: Particles are indistinguishable and the energy
levels are degenerate. There are gi quantum states on the ith energy level, and each
quantum state can be occupied by no more than one particle. Using Eq. (B.21),
we obtain the thermodynamic probability for FD statistics as

�FD =
∞∏

i=0

gi !
(gi − Ni )!Ni ! (3.12)

The three statistics are very important for understanding themolecular, electronic,
crystalline, and radiative behaviors that are essential for energy transport processes
in both small and large scales. MB statistics can be considered as the limiting case
of BE or FD statistics. The thermodynamic relations and the velocity distribution
of ideal molecular gases can be understood from MB statistics. BE statistics is
important for the study of photons, phonons in solids, and atoms at low tempera-
tures. It is the basis of Planck’s law of blackbody radiation, the Debye theory for
the specific heat of solids, and the Bose-Einstein condensation, which is important
for superconductivity, superfluidity, and laser cooling of atoms. FD statistics can
be used to model the electron gas and the electron contribution to the specific heat
of solids. It is important for understanding the electronic and thermal properties
of metals and semiconductors.

Example 3.3 Four indistinguishable particles are to be placed in two energy levels,
each with a degeneracy of 3. Evaluate the thermodynamic probability of all arrange-
ments, considering BE and FD statistics separately. What are the most probable
arrangements?



3.1 Statistical Mechanics of Independent Particles 83

Fig. 3.5 Illustration of the
arrangement for four
particles on two energy
levels, each with a
degeneracy of 3.
a Bose-Einstein statistics.
b Fermi-Dirac statistics

(a) (b)

Solution There are two energy levels, g0 = g1 = 3 and the total number of particles
N = 4. The thermodynamic probability is � = �0 ×�1, which depends on N0 and
N1(N0 + N1 = 4). Figure 3.5 shows specific cases of the BE and FD distributions.

For BE statistics, we have

�BE = (N0 + g0 − 1)!
(g0 − 1)!N0! × (N1 + g1 − 1)!

(g1 − 1)!N1! = (N0 + 2)(N0 + 1)

2
× (6 − N0)(5 − N0)

2

For FD statistics, we must have Ni ≤ gi ; therefore, 1 ≤ N0 ≤ 3, and

�FD = g0!
(g0 − N0)!N0! × g1!

(g1 − N1)!N1! = 6

(3 − N0)!N0! × 6

(N0 − 1)!(4 − N0)!
The results are summarized in the following table. Clearly, the most probable

arrangement for both statistics in this case is N0 = N1 = 2.

N0 0 1 2 3 4

N1 4 3 2 1 0

�BE 15 30 36 30 15

�FD – 3 9 3 –

For a given simple thermodynamics system of volume V, internal energy U, and
total number of particles N, we wish to find the state (identified by the distribution
N0, N1, N2, . . . ) that maximizes� or ln�, under constrains given by Eqs. (3.2) and
(3.3), based on the method of Lagrange multipliers (Appendix B). For MB statistics
with degeneracy, from Eq. (3.10),

ln� = ln N ! +
∞∑

i=0

Ni ln gi −
∞∑

i=0

ln Ni !

For a large number of particles, the Stirling formula gives ln N ! ≈ N ln N − N
from Eq. (B.11). The above equation can be approximated as
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ln� = N ln N − N +
∞∑

i=0

Ni ln gi −
∞∑

i=0

(Ni ln Ni − Ni ) = N ln N − N +
∞∑

i=0

Ni (ln
gi

Ni
+ 1)

Notice that N and gi ′s are fixed and only Ni ′s are variables, therefore,

d(ln�) =
∞∑

i=0

∂(ln�)

∂ Ni
dNi =

∞∑

i=0

(
ln

gi

Ni
+ 1 − Ni

1

Ni

)
dNi =

∞∑

i=0

ln
gi

Ni
dNi = 0

(3.13)

From the constraint equations, Eqs. (3.2) and (3.3), we have

−α

∞∑

i=0

dNi = 0 (3.14a)

and

−β

∞∑

i=0

εidNi = 0 (3.14b)

where α and β are Lagrangian multipliers and εi ’s are treated as constants. Conven-
tionally, negative signs are chosen because α and β are generally nonnegative for
molecular gases. By adding Eqs. (3.14a) and (3.14b) to Eq. (3.13), we obtain

∞∑

i=0

(
ln

gi

Ni
− α − βεi

)
dNi = 0

Because dNi can be arbitrary, the above equation requires that ln(gi/Ni ) − α −
βεi = 0. Hence,

Ni = gi

eαeβεi
(3.15a)

or

Ni

N
= gie−αe−βεi

∑N
i=0 gie−αe−βεi

(3.15b)

This is the MB distribution. The physical meanings of α and β will be discussed
later. Using the same procedure described above, we can obtain the following for BE
statistics,

Ni = gi

eαeβεi − 1
(3.16)
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which is the BE distribution. For FD statistics, we can obtain the FD distribution as
follows

Ni = gi

eαeβεi + 1
(3.17)

The results for all the three statistics are summarized in Table 3.1. Note that Ni/gi

signifies howmany particles occupy a quantum state or the probability for a quantum
state to be occupied, which is called the mean occupation number.

Example 3.4 Derive the BE distribution step by step. Under which condition can it
be approximated by the MB distribution?

Solution Using the thermodynamic probability of BE statistics in Eq. (3.11), we
have

ln� =
∞∑

i=0

[ln(gi + Ni − 1)! − ln(gi − 1)! − ln Ni !]

≈
∞∑

i=0

[(gi + Ni − 1) ln(gi + Ni − 1) − (gi + Ni − 1) − (gi − 1) ln(gi − 1) + (gi − 1) − Ni ln Ni + Ni ]

=
∞∑

i=0

[(gi + Ni − 1) ln(gi + Ni − 1) − (gi − 1) ln(gi − 1) − Ni ln Ni ]

Hence,

∂ ln�

∂ Ni
= ln(gi + Ni − 1) + (gi + Ni − 1)

1

gi + Ni − 1
− ln Ni − Ni

1

Ni

= ln

(
gi + Ni − 1

Ni

)
≈ ln

(
gi

Ni
+ 1

)
, since Ni � 1

To maximize �, we set d(ln�) = ∑∞
i=0

∂(ln�)

∂ Ni
dNi ≈ ∑∞

i=0 ln
(

gi

Ni
+ 1

)
dNi = 0.

By adding Lagrangian multipliers, Eq. (3.14a), (3.14b), we get∑∞
i=0 [ln(gi/Ni + 1) − α − βεi ]dNi = 0. Hence, Ni = gi/(eαeβεi − 1), which is

the BE distribution given in Eq. (3.16) and Table 3.1.
Discussion. If exp(α + βεi ) � 1, both Eqs. (3.16) and (3.17) reduce to the MB

distribution, Eq. (3.15a), (3.15b). Under the limiting case of gi � Ni � 1, we have

(gi + Ni − 1)!
(gi − 1)! Ni ! =

Ni terms︷ ︸︸ ︷
(gi + Ni − 1) · · · (gi + 1)gi

Ni !
gi �Ni �1→ gNi

i

Ni !
and

gi !
(gi − Ni )! Ni ! =

Ni terms︷ ︸︸ ︷
gi (gi − 1) · · · (gi − Ni + 1)

Ni !
gi �Ni �1→ gNi

i

Ni !
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We see that the thermodynamic probability for both the BE and FD statistics
reduces to the MB statistics divided by N !, which is caused by the assumption of
indistinguishable particles. Therefore,

�MB,corrected =
∞∏

i=0

gNi
i

Ni !

is called the “corrected” MB statistics. For ideal molecular gases at reasonably high
temperatures, gi � Ni . For this reason, the MB distribution may be considered as
the limiting case of the BE or FD distribution; see Table 3.1.

3.2 Thermodynamic Relations

The thermodynamic properties and relations can be understood from themicroscopic
point of view. This includes the concept of heat and work, entropy, and the third law
of thermodynamics. The partition function is key to the evaluation of thermodynamic
properties.

3.2.1 Heat and Work

From Eq. (3.3), we have

dU =
∞∑

i=0

εi dNi +
∞∑

i=0

Ni dεi (3.18)

The first term on the right is due to a redistribution of particles among the energy
levels (which is related to a change in entropy), while the second is due to a shift in the
energy levels associated with, e.g., a volume change. Consider a reversible quasi-
equilibrium process for a closed system (such as a piston/cylinder arrangement);
the work is associated to the volume change that does not change the entropy of
the system, while heat transfer changes entropy of the system without affecting the
energy levels. Therefore,

δQ =
∞∑

i=0

εi dNi and δW = −
∞∑

i=0

Ni dεi (3.19)

In writing the above equation, δQ is positive for heat transferred to the system,
and δW is positive for work done by the system. They are related to macroscopic
quantities for simple system by δQ = T dS and δW = PdV . Hence, we obtain the
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expression of the first law for a closed system, dU = δQ − δW. If the system is an
open system, then

∑∞
i=0 εi dNi = dU + δW 
= δQ.

3.2.2 Entropy

The macroscopic property entropy is related to the thermodynamic probability by

S = kB ln� (3.20)

where kB is the Boltzmann constant. Consider two separate systems A and B, and
their combination as a system C. At a certain time, both A and B are individually
in thermodynamic equilibrium. Denote the states as A1 and B1, and the combined
system as state C1. The thermodynamic probability of system C at state C1 is related
to those of A1 and B1 by

�C
1 = �A

1 × �B
1

The entropy of C1 is then

SC
1 = kB ln�C

1 = kB ln(�
A
1 × �B

1 ) = kB ln�A
1 + kB ln�B

1
= SA

1 + SB
1

Therefore, this definition of entropy meets the additive requirement.
The largest entropy principle states that the entropy of an isolated system will

increase until it reaches a stable-equilibrium state (thermodynamic equilibrium),
i.e., �Sisolated ≥ 0. The microscopic understanding is that entropy is related to the
probability of occurrence of a certain macrostate. For a system with specified U,
N, and V, the macrostate that corresponds to the thermodynamic equilibrium is the
most probable state and, hence, its entropy is the largest. Any states, including those
that deviate very slightly from the stable-equilibrium state, will have a much smaller
thermodynamic probability. After the equilibrium state is reached, it is not possible
for any macrostate, whose thermodynamic probability is much less than that of the
equilibrium state, to occur within an observable amount of time.

3.2.3 The Lagrangian Multipliers

For all the three types of statistics, d(ln�) = α
∑∞

i=0 dNi + β
∑∞

i=0 εi dNi , where
the first term is the change in the total number of particles and the second can be
related to the net heat transfer for a closed system; therefore, d(ln�) = αdN +βδQ.

In a reversible process in which the total number of particles do not change (closed
system), dN = 0, d(ln�) = dS/kB, and δQ = T dS. Hence, we have for all the
three statistics
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β ≡ 1/kBT (3.21)

To evaluate α, we must allow the system to change its composition. In this case,

d(ln�) = α

∞∑

i=0

dNi + β

∞∑

i=0

εidNi = αdN + β(dU + PdV )

or

T dS = kBT αdN + dU + PdV

Substituting the above equation into the definition of the Helmholtz function, dA =
d(U − T S) = dU − T d S − SdT, we have

dA = −SdT − PdV − kBT αdN

Noting that the chemical potential μ = (
∂ A
∂ N

)
T,V

= −kBT α, we obtain

α = − μ

kBT
(3.22)

Here, μ is expressed in molecular quantity, and if μ is expressed in molar quantity
we have α = −μ/RT .

3.2.4 Entropy at Absolute Zero Temperature

The third law of thermodynamics states that the entropy of any pure substance van-
ishes at the ground state (with absolute zero temperature); see Sect. 2.1.3. For BE
statistics, we have

N = N0 + N1 + N2 + · · · = g0
eα+βε0 − 1

+ g1
eα+βε1 − 1

+ g2
eα+βε2 − 1

+ · · ·

At very low temperatures (T → 0), β = 1/kBT → ∞. Since ε0 < ε1 < ε2 <

· · · ,

Ni

N0
≈ gi

g0
e−β(εi −ε0) → 0 as T → 0 for i ≥ 1 (3.23)

Hence, N ≈ N0; that is, all particles will be at the lowest energy level (ground
state). If g0 = 1, as it is the case for a pure substance, then � = 1 and S =
kB ln� = 0 as T → 0; this is consistent with the third law of thermodynamics. The
occurrence for particles that obey BE statistics (bosons) to collapse to the ground
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state at sufficiently low temperatures is called the Bose-Einstein condensation. Such
a state of matter is called the Bose-Einstein condensate, in which quantum effects
dominate the macroscopic behavior.

Some important applications of the Bose-Einstein condensation are superfluidity
and superconductivity. Liquid helium (4He) becomes a superfluid with no viscosity
at temperatures below the λ-transition (T ≈ 2.17K). The specific heat of helium at
this temperature becomes infinitely large, suggesting that a phase transition occurs.
Bose-Einstein condensate of atoms has been observedwith laser cooling and trapping
techniques [9]. Photons from the laser collide with the atoms. The absorption can
be tuned using the Doppler shift so that only atoms traveling toward the laser can
absorb the photons, resulting in reduced momentums in these atoms. Furthermore,
the excited atoms will emit photons spontaneously in all directions. The net effect
is a decrease in the velocity of the atoms, resulting in a kinetic temperature down to
the nanokelvin range. From 1996 to 2003, the Nobel Prize in Physics was awarded
for works related to Bose-Einstein condensation for four times: 1996, 1997, 2001,
and 2003.

Although electrons are fermions (particles that obey FD statistics) that generally
do not condense at zero temperature, they can form pairs at sufficiently low tempera-
tures that behave like bosons. Below the critical temperature, pairs of electrons, called
the Cooper pairs can travel freely without any resistance. This is the phenomenon
called superconductivity, which was discovered at the beginning of the twentieth
century. A large number of elements and compounds can be made superconduct-
ing at very low temperatures. Furthermore, some oxides become superconducting
at temperatures above 90 K [10]. Superconductors have important applications in
magnetic resonance imaging, high-speed and low-noise electronic devices, infrared
sensors, and so forth. A similar phenomenon is the superfluidity in helium isotope
3He, which undergoes a phase transition at very low temperatures. The fermionic 3He
atoms pair up to form bosonic entities that experience Bose-Einstein condensation
at 3 mK.

For FD statistics, from Eqs. (3.17), (3.21), and (3.22), we have

Ni

gi
= 1

e(εi −μ)/kBT + 1
(3.24)

As T → 0, it is found that the occupation number Ni/gi = 1 for all energy levels
with εi < μ and Ni/gi = 0 for energy levels with εi > μ. That is, all quantum states
are filled or occupied for i = 0, 1, 2, . . . , j (with ε j < μ ), and all quantum states
are empty for i = j + 1, j + 2, . . . (with ε j+1 > μ ), as schematically shown in
Fig. 3.6. More discussions will be given in Chap. 5 on the behavior of free electrons.
For now, it is sufficient to say that the thermodynamic probability � = 1 for FD
statistics at absolute zero temperature. Therefore, the entropy S = 0 at T → 0 K for
both the BE and FD statistics. However, MB statistics does not satisfy the third law
and is not applicable to very low temperatures.
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Fig. 3.6 Schematic of the
Fermi-Dirac distribution at
0 K
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…
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3.2.5 Macroscopic Properties in Terms of the Partition
Function

The partition function is an important quantity in statistical thermodynamics. Unlike
the characteristics functions (such as the Helmholtz free energy and the Gibbs free
energy defined in Chap. 2) used in macroscopic thermodynamics, the physical mean-
ing of the partition function is not immediately clear. However, the introduction of the
partition function allows the calculation of macroscopic thermodynamic properties
from the microscopic representation. There are different types of partition functions.
For MB statistics, the partition function is defined as

Z = Neα =
∞∑

i=0

gie
−εi /kBT (3.25)

Therefore,

Ni = N

Z
gie

−εi /kBT (3.26)

Since
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[
∂(ln Z)

∂T

]

V,N

= 1

Z

(
∂ Z

∂T

)

V,N

=
∑∞

i=0 gie−εi /kB T
(

εi
kBT 2

)

∑∞
i=0 gie−εi /kBT

=
Ueα

kBT 2

Neα
= U

NkBT 2

we have

U = NkBT 2

[
∂(ln Z)

∂T

]

V,N

(3.27)

Using the corrected MB statistics by dividing Eq. (3.10) by N !, we can express the
entropy as

S = kB ln(�MB/N !) = kB

∞∑

i=0

Ni

(
1 + ln

gi

Ni

)

= kB

∞∑

i=0

Ni

(
1 + ln

Z

N
+ βεi

)
= NkB + NkB ln

Z

N
+ kBβU (3.28a)

Had we not divided �MB by N!, we would get S = NkB ln Z + kBβU, which differs
from Eq. (3.28a), (3.28b) by a constant. After substituting β and U into Eq. (3.28a),
(3.28b), we obtain

S = NkB

{
1 + ln

Z

N
+ T

[
∂(ln Z)

∂T

]

V,N

}
(3.28b)

The Helmholtz free energy is

A = U − T S = −NkBT

(
1 + ln

Z

N

)
(3.29)

The pressure is

P = −
(

∂ A

∂V

)

T,N

= NkBT

[
∂(ln Z)

∂V

]

T,N

(3.30)

The enthalpy H and the Gibbs free energy G can also be obtained. The partition
function is now related to the macroscopic thermodynamic properties of interest for
simple substances.
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3.3 Ideal Molecular Gases

An important application of statistical mechanics is to model and predict the thermal
properties of materials. In this section, the application of MB statistics to obtain the
equation of state and the velocity distributions for ideal molecular gases is presented.
The microscopic theories of the specific heat for ideal monatomic and polyatomic
gases are given subsequently.

3.3.1 Monatomic Ideal Gases

For a monatomic ideal gas at moderate temperatures, MB statistics can be applied,
and the translational energies are

ε = 1

2
m(v2x + v2y + v2z ) = 1

2
mv2 (3.31)

Consider a volume element in the phase space, dxdydzdpxdpydpz, where p =
mv is the momentum of a molecule. The accuracy of specifying the momentum and
the displacement is limited by �x�px ∼ h, given by the uncertainty principle. The
degeneracy, which is the number of quantum states (boxes of size h3) in a volume
element of the phase space, is given by

dg = dxdydzdpxdpydpz

h3
= m3

h3
dxdydzdvxdvydvz (3.32)

Many useful results were obtained before quantum mechanics by assuming that
h3 is some constant. A more rigorous proof of Eq. (3.32) will be given in Sect. 3.5.
When the space between energy levels are sufficiently close, the partition function
can be expressed in terms of an integral as Z t = ∫

e−ε/kBT dg or

Z t =
˚

dxdydz
˚

m3

h3
exp

[
− m

2kBT

(
v2x + v2y + v2z

)]
dvxdvydvz (3.33)

The space integration yields the volume V, and the velocity integration can be
individually performed, viz.

∞∫

−∞
exp

(
− mv2x
2kBT

)
dvx =

√
2πkBT

m
(3.34)

Hence,
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Z t = V

(
2πmkBT

h2

)3/2

(3.35)

Therefore,

eα = V

N

(
2πmkBT

h2

)3/2

(3.36)

which is indeed much greater than unity at normal temperatures for most substances,
suggesting that theMB statistics is applicable for idealmolecular gases. At extremely
low temperatures, intermolecular forces cannot be neglected and the molecules are
not independent anymore.

From Eq. (3.30), we have P = NkBT
[

∂(ln Z)

∂V

]

T,N
= NkBT/V ; thus,

PV = NkBT or P = nkBT (3.37)

where n = N/V is the number density. The Boltzmann constant is the ideal (uni-
versal) gas constant on the molecular basis, kB = R/NA. The internal energy, the
specific heats, and the absolute entropy can also be evaluated.

U = NkBT 2

[
∂(ln Z)

∂T

]

V,N

= 3

2
NkBT (3.38)

which is not a function of pressure. The molar specific internal energy is ū = 3
2 RT,

and the molar specific heats are

c̄v =
(

∂ ū

∂T

)

V

= 3

2
R (3.39)

and

c̄p =
(

∂ h̄

∂T

)

p

= 5

2
R (3.40)

The above equations show that the specific heats of monatomic gases are indepen-
dent of temperature, except at very high temperatures when electronic contributions
become important. The molar specific heats do not depend on the type of molecules,
but the same is not true for mass specific heats. Using Eq. (3.28a), the absolute
entropy can be expressed as

S = NkB

{
5

2
+ ln

[
V

N

(
2πmkBT

h2

)3/2
]}
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Therefore, the molar specific entropy is a function of T and P,

s̄(T, P) = R

{
5

2
+ ln

[
kBT

P

(
2πmkBT

h2

)3/2
]}

(3.41)

This is the Sackur-Tetrode equation.

3.3.2 Maxwell’s Velocity Distribution

Rewrite Ni = gie−αe−εi /kBT as dN = dge−αe−ε/kBT . In a volume V and from v to
v + dv (i.e., vx to vx + dvx , vy to vy + dvy, and vz to vz + dvz ), the number of
molecules dN per unit volume may be expressed as

dN

V
= m3

h3
dvxdvydvz

N

V

(
h2

2πmkBT

)3/2

exp

(
− m

2kBT
v2
)

(3.42)

or

f (v)dv = dN

V
= n

(
m

2πkBT

)3/2

exp

(
− mv2

2kBT

)
dv (3.43)

where f (v) is the Maxwell velocity distribution in a unit volume. Notice that

F(v) = f (v)
n

=
(

m

2πkBT

)3/2

exp

(
− mv2

2kBT

)
(3.44)

which is a Gaussian distribution. Notice that v2 = v · v = v2 = v2x + v2y + v2z . The
distribution of velocity component is also Gaussian, such that

F(v) = F(vx )F(vy)F(vz) (3.45)

Taking the x-component as an example, we can write

F(vx ) =
(

m

2πkBT

)1/2

exp

(
− mv2x
2kBT

)
(3.46)

The speed distributionmay be obtained from the following by integrating the velocity
distribution in a spherical shell (over the solid angle of 4π ).

F(v)dv =
¨

4π

F(v)dv =
¨

4π

(
m

2πkBT

)3/2

exp

(
− mv2

2kBT

)
v2 sin θdvdθdφ
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Fig. 3.7 Speed distribution
for helium gas at different
temperatures

Therefore,

F(v) = 4π

(
m

2πkBT

)3/2

v2 exp

(
− mv2

2kBT

)
(3.47)

Figure 3.7 plots the speed distribution of He gas at 0, 300, and 800 °C. When
evaluating kBT, we must convert T to absolute temperature. It can be seen that more
molecules will be at higher speeds as the temperature increases. It should be noted
that F(v = 0) = 0 but F(v) is maximum at v = 0. In the speed coordinate, an
interval between v and v + dv corresponds to a spherical shell in the velocity space.
Even though F(v) is maximum at v = 0, the probability of finding a molecule
per unit speed interval decreases to 0 as v → 0, which is caused by the associated
decrease in the volume of the spherical shell.

Example 3.5 Find the average speed and the root-mean-square speed for a He gas
at 200 °C at 100 kPa. What if the pressure is changed to 200 kPa? What are the most
probable velocity and the most probable speed?

Solution The average speed may be obtained from either the velocity distribution
or the speed distribution. That is

v̄ =
˚

vF(v) dv =
∞∫

0

vF(v)dv =
√
8kBT

πm
(3.48)

The average of v2 is (see Appendix B.5)

v2 =
˚

v2F(v) dv =
∞∫

0

v2F(v)dv = 3kBT

m
(3.49a)

Therefore the root-mean-square speed is
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vrms =
√

v2 =
√
3kBT

m
(3.49b)

Plugging in the numerical values, we have v̄ = 1582m/s and vrms = 1717m/s
for He gas at 200 °C. We also notice that the pressure has no effect on the speed
distribution, unless it is so high that intermolecular forces cannot be neglected.

The most probable velocity vmp = 0 because of the symmetry in the Gaussian
distribution. We can obtain the most probable speed by setting F ′(v) = 0, viz.

2v exp

(
− mv2

2kB T

)
− v2

(
mv

kB T

)
exp

(
− mv2

2kB T

)
= 0

The solution gives the most probable speed as vmp = √
2kBT/m. For He gas at

200 °C, it gives vmp = 1402m/s. Note that vmp : v̄ : vrms = √
2 : √

8/π : √
3 ≈

1.4 : 1.6 : 1.7.
Comment. An important consequence for Eqs. (3.49a), (3.49b) is that temperature

is related to the mean kinetic energy of the molecule such that

1

2
mv2x = 1

2
mv2y = 1

2
mv2z = 1

2
kBT (3.50)

Thus, the internal energy of a monatomic gas given in Eq. (3.38) is the sum of the
kinetic energy of all molecules.

3.3.3 Diatomic and Polyatomic Ideal Gases

Additional degrees of freedom or energy storage modes must be considered for
diatomic and polyatomic molecules, besides translation. The molecule may rotate
about its center of gravity, and atoms may vibrate with respect to each other. For a
molecule consisting of q atoms, each atommaymove in all three directions, and there
will be a total of 3q modes. Consider the translation of the molecule as a whole; there
are three translational degrees of freedom or modes: φt = 3. For diatomic molecules
or polyatomic molecules whose atoms are arranged in a line (such as CO2), as shown
in Fig. 3.8, there are two rotational degrees of freedom or modes: φr = 2. Therefore,
there are φv = 3q − 5 vibrational degrees of freedom or modes. For polyatomic
molecules whose atoms are not aligned (such as H2O and CH4, see Fig. 3.9), there
are three rotational degrees of freedom or φr = 3. The number of vibrational degrees
of freedom or modes are thus φv = 3q − 6.

The total energy of a molecule may be expressed as the sum of translational,
rotational, and vibrational energies: ε = εt+εr+εv.For simplicity,we have neglected
contributions from the electronic ground state and chemical dissociation, which can
be included as additional terms in evaluating the internal energy and the entropy [1].
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Fig. 3.8 a A diatomic molecule, showing two rotational and one vibrational degrees of freedom.
b CO2 molecule, where the atoms are aligned

Fig. 3.9 a H2O molecule,
for which the atoms are not
aligned. b The tetrahedral
methane (CH4) molecule O
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At high temperatures, the vibration mode can be coupled with the rotation mode.
Here, however, it is assumed that thesemodes are independent. The partition function
can be written as

Z = Z tZrZv =
(
∑

gte
−εt/kBT

)(
∑

gre
−εr/kBT

)(
∑

gve
−εv/kBT

)
(3.51)

For polyatomic atoms, Eqs. (3.31) through (3.36) hold for the translational modes.
Zr and Zv are internal contributions that do not depend on volume; therefore,
Eq. (3.37) also holds. Since the degrees of freedom are independent of each other,
Maxwell’s velocity and speed distributions discussed in Sect. 3.3.2 still hold for
polyatomic gases. The problem now is to determine the rotational and vibrational
energy levels and degeneracies.Generally speaking, there exists certain characteristic
temperature associated with each degree of freedom. The characteristic temperature
for translation is very low for molecular gases. On the other hand, the characteris-
tic temperature for rotation is slightly higher, and that for vibration is usually very
high, as can be seen from Table 3.2 for selected diatomic molecules. If the temper-
ature is much less than the characteristic temperature of a certain mode, then the
contribution of that mode to the energy storage is negligible. For the temperatures
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Table 3.2 Characteristic
temperatures of rotation and
vibration for some diatomic
molecules

Substance Symbol �r (K) �v (K)

Hydrogen H2 87.5 6320

Deuterium D2 43.8 4490

Hydrogen chloride HCl 15.2 4330

Nitrogen N2 2.86 3390

Carbon monoxide CO 2.78 3120

Nitric oxide NO 2.45 2745

Oxygen O2 2.08 2278

Chloride Cl2 0.35 814

Sodium vapor Na2 0.08 140

much greater than the characteristic temperature, however, there often exist some
asymptotic approximations.

Rotation. A quantum mechanical analysis of a rigid rod, to be derived in
Sect. 3.5.3, shows that the rotational energy levels are given by

εl

kBT
= l(l + 1)

�r

T
(3.52)

Here, �r is the characteristic temperature for rotation given by �r = h2/(8π2kB I ),
where I is the moment of inertia of the molecule about the center of mass. The larger
the value of I, the smaller the characteristic temperature will be. This is clearly shown
in Table 3.2. The degeneracy of rotational energy levels is

gl = 2l + 1

σ
(3.53)

where σ is a symmetry number that arises from molecular symmetry: σ = 1 if the
atoms are of different types (such as in a NO or CO molecule), and σ = 2 if the
atoms are the same (such as in a O2 or N2 molecule).

Zr =
∞∑

l=0

2l + 1

σ
exp

[
−l(l + 1)

�r

T

]
(3.54)

This series converges very fast for �r/T < 0.5, since

Zr = 1

σ

[
1 + 3 exp

(
−2�r

T

)
+ 5 exp

(
−6�r

T

)
+ 7 exp

(
−12�r

T

)
+ · · ·

]

For T/�r > 1, Eq. (3.54) may be expanded to give (see Problem 3.26)
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Zr = T

�rσ

[
1 + 1

3

(
�r

T

)
+ 1

15

(
�r

T

)2

+ 4

315

(
�r

T

)3

+ · · ·
]

(3.55)

At temperatures much higher than the characteristic temperature of rotation,
T/�r � 1, the above equation reduces to

Zr = T

σ�r
(3.56)

Under this limit, the contribution of the rotational energy to the internal energy
becomes

Ur ≈ NkBT (3.57)

The contribution to themolar specific heat by the two rotational degrees of freedom
is

c̄v,r = R (3.58)

Vibration. The vibration in a molecule can be treated as a harmonic oscillator.
For each vibration mode, the quantized energy levels are given in Sect. 3.5.5 as

εv,i = (i + 1
2 )hν, i = 0, 1, 2, . . . (3.59)

where ν is the natural frequency of vibration, and the ground-state energy is 1
2hν.

The vibrational energy levels are not degenerated; thus, gv,i = 1. Subsequently, we
can write

Zv =
∞∑

i=0

e−(i+1/2)hν/kBT = e−�v/2T
∞∑

i=0

e−i�v/T

where �v = hν/kB is a characteristic temperature for vibration and is listed in
Table 3.2 for several diatomic molecules. The vibrational partition function becomes

Zv = e−�v/2T

1 − e−�v/T
= e�v/2T

e�v/T − 1
(3.60)

Its contribution to the internal energy and the specific heat can be written as

Uv = NkB�v

(
1

2
+ 1

eΘv/T − 1

)
(3.61)

and
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c̄v,v = R
�2

v

T 2

e�v/T

(e�v/T − 1)2
(3.62)

At T � �v, the vibrational mode contributes to the internal energy but not to
the specific heat. At T > 1.5�v, Uv almost linearly depends on T and c̄v,v ≈ R. In
classical statistical mechanics, it is believed that each degree of freedom contributes
to the stored thermal energy with an amount of 1

2kBT and results in a specific heat of
1
2kB on the particle base. This is called the equipartition principle. The contribution
of each vibrational mode is R not R/2, due to the fact that each vibrational mode
includes a kinetic component and a potential component for energy storage. For this
reason, each vibrational mode is equivalent to two degrees of freedom in terms of
the energy storage when it is fully excited. It should be noted that the equipartition
principle is only applicable at sufficiently high temperatures. Because energy is
additive, we can write

c̄v = c̄v,t + c̄v,r + c̄v,v (3.63)

The result is schematically shown in Fig. 3.10. One can see that for a diatomic ideal
gas,

c̄v = 2.5R if �r � T � �v (3.64)

which happens to be near room temperature for many gases such as nitrogen and
carbon monoxide; see Table 3.2. Figure 3.11 plots the specific heat for several real
gases at sufficiently low pressure so that the ideal gas model is applicable. It should
be noted that, for hydrogen, nuclear spin is important and Eq. (3.54) needs to be
modified to account for the spin degeneracy [1, 2]. However, Eqs. (3.57) and (3.58)
predict the right trend and are applicable at temperatures much higher than �r. At
extremely high temperatures (say 3000 K), electronic contributions and the coupling
between rotation and vibration become important. Although Eq. (3.63) is the correct
expression for the specific heat at moderate temperatures, two additional partition

Fig. 3.10 Typical specific
heat curve of a diatomic
ideal gas

T

1

3

2

r v

vc R
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Fig. 3.11 Specific heat at
constant volume for several
ideal gases
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functions must be included to correctly evaluate the internal energy and the entropy
(see Problem 3.22). We limit the derivations to the specific heat, which is closely
relevant to heat transfer calculations.

The characteristic temperature for rotation is usually very small for polyatomic
molecules because of their largemoments of inertia. Therefore, the rotational degrees
of freedom can be assumed as fully excited in almost any practical situations. Each
rotational degree of freedom will contribute R/2 to the molar specific heat. For
molecules whose atoms are aligned (such as CO2), the rotational contribution to the
specific heat is R, and

c̄v = 5

2
R + R

3q−5∑

i=1

ζ 2
i e

ζi

(eζi − 1)2
, ζi = �v,i/T (3.65)

If T � �v,i , then c̄v → R(3q −2.5). For molecules whose atoms are not aligned
(such as H2O and CH4),

c̄v = 3R + R
3q−6∑

i=1

ζ 2
i e

ζi

(eζi − 1)2
(3.66)

In this case, c̄v → R(3q − 3) at T � �v,i . Again, electronic contribution may
be significant at very high temperatures. Table 3.3 lists the vibrational frequencies
for several commonly encountered gases. The unit of frequency is given in inverse
centimeter (cm−1), which is often used in spectroscopic analyses. Note that �v =
hν/kB = hcν̄/kB, where ν̄ is the wavenumber in cm−1 if we take c = 2.998 ×
1010 cm/s, giving �v (K) = 1.44 ν̄ (cm−1). One can use this table to estimate the
specific heat of these gases based on Eq. (3.65) or (3.66).
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Table 3.3 Vibrational modes of several gases, where the integer in the parentheses indicates the
number of degenerate modes

Type cm−1 cm−1 cm−1 cm−1 Total f v

CO2 667 (2) 1343 2349 – 4

H2O 1595 3657 3756 – 3

CH4 1306 (3) 1534 (2) 2916 3019 (3) 9

In reality, vibration-rotation interactions result inmultiple absorption lines around
each vibration mode, which can be observed through infrared absorption spec-
troscopy. Figure 3.12 shows the molecular absorption spectra of CO2 and H2O
measured with a Fourier-transform infrared spectrometer. The absorption spectra
were obtained by comparing the spectrum when the measurement chamber is open
with that when the chamber is purged with a nitrogen gas, which does not absorb
in the mid-infrared region. The concentrations of H2O and CO2 in the experiments
were not controlled since the purpose is to demonstrate the infrared absorption fre-
quencies only. While the resolution of 1 cm−1 is not high enough to resolve very fine
features, the absorption bands near 670 cm−1 due to degenerate bending modes and
near 2350 cm−1 due to asymmetric stretching mode in CO2 can be clearly seen. Note
that the symmetric vibration mode of CO2 at 1343 cm−1 is infrared inactive. Hence,
it does not show up in the absorption spectrum but can be observed with Raman spec-
troscopy. Furthermore, the vibration-rotation interactions cause multiple lines in the
water vapor absorption bands from 1300 to 2000 cm−1 and from 3500 to 4000 cm−1.

Example 3.6 How many rotational degrees of freedom are there in a silane (SiH4)
molecule? If a low-pressure silane gas is raised to a temperature high enough to
completely excite its rotational and vibrational modes, find its specific heats.

Fig. 3.12 Infrared absorption spectrum of ambient air obtained with a Fourier-transform infrared
spectrometer
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Solution For SiH4, there will be three translational degrees of freedom φt = 3, three
rotational degrees of freedom φr = 3, and φv = 3q − 6 = 9 vibrational degrees of
freedom. If all the modes are excited, the specific heat for constant volume will be
cv = 1.5R + 1.5R + 9R = 12R. Given that M = 32, we find cv = 3.12 kJ/kgK,

cp = 3.38 kJ/kgK, and γ = 13/12 = 1.083. The actual specific heats would be
much smaller at moderate temperatures.

3.4 Statistical Ensembles and Fluctuations

We have finished the discussion about statistical thermodynamics of independent
particles without mentioning ensembles. In a system of independent particles, there
is no energy associated with particle-particle interactions or the configuration of
the particles. For dependent particles or dense fluids, the previous analysis can be
extended by using statistical ensembles, which was pioneered by J. Willard Gibbs
(1839–1903) in the late nineteenth century in his 1902 book, Elementary Principles
of Statistical Mechanics. Statistical ensembles are a large set of macroscopically
similar systems. When the properties are averaged over a properly chosen ensemble,
the macroscopic properties can be considered as the same as the time-averaged
quantity of the same system.There are three basic types of ensembles:microcanonical
ensemble, canonical ensemble, and grand canonical ensemble [1, 5].

A microcanonical ensemble is composed of a large set of identical systems. Each
system in the ensemble is isolated from others by rigid, adiabatic, and impermeable
walls. The energy, volume, and number of particles in each system are constant.
The results obtained using the microcanonical ensemble for independent particles
are essentially the same as what we have obtained in previous sections. It is natural
to ask the question as to what extent the statistical mechanics theory presented in
previous sections will be valid for nanosystems. If the equilibrium properties are
defined based on a large set of microcananical ensembles and considered as the
time-averaging properties of the system, there will be sufficiently large number of
particles in the whole ensemble to guarantee the basic types of statistics, and the
thermodynamics relations derived in Sects. 3.1 and 3.2 are still applicable. On the
other hand, the difference between the energy levels due to quantization may be large
enough to invalidate the substitution of summation with integration. We will discuss
the energy level quantization further in Sect. 3.5. In deriving the properties of ideal
gases in Sect. 3.3, the consideration of the translational, rotational, and vibrational
degrees of freedom is on the basis of individualmolecules. Therefore, the conclusions
should be applicable to systems under thermodynamic equilibrium.

In a canonical ensemble, each system is separated from others by rigid and imper-
meable walls, which are diathermal. All systems have the same volume and number
of particles. However, the systems can exchange energy. At the equilibrium, the
temperature T will be the same for all systems. An important result of applying
the canonical ensemble is that the energy fluctuation (i.e., the standard deviation
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of energy of the system) is proportional to 1/
√

N , where N is the total number of
independent particles.

In a grand canonical ensemble, each system is separated from others by rigid,
diathermal, and permeable walls. While the volume is fixed and is the same for
each system, the number of particles as well as the energy of each system can vary.
The temperature and the chemical potential must be the same for all systems at
equilibrium. This allows the study of density fluctuations for each system. The result
for monatomic molecules yields that the density fluctuation is also proportional to
1/

√
N .

The canonical and grand canonical ensembles are essential for the study of com-
plex thermodynamic systems, such as mixture, chemical equilibrium, dense gases,
and liquids, which will not be further discussed in this text. Interested readers can
find more details from Refs. [1, 5]. A simple theory based on independent particles
of phonons and electrons will be discussed in Chap. 5. While the partition function
can also be used to study the thermodynamic relations of solids, the approach used
in solid state physics will be adopted in a detailed study of the properties of solids
presented in Chap. 6.

3.5 Basic Quantum Mechanics

So far we have largely avoided the derivations and equations involving quantum
mechanics, by using the conclusions from quantum theory on a need basis without
proof. In this section, we shall present the basics of quantum mechanics to enhance
the understanding of thematerials already presented and to provide some background
for future chapters.

In classical mechanics, the state of a system is completely described by giving
the position and the momentum of each particle in the system at any given time.
The equation of motion is given in Eq. (3.1), which is also the basis for molec-
ular dynamics. The position and the momentum of each particle are determined
using the initial values and precisely the forces exerted on it afterward. According
to the wave-particle duality, particles also have wave characteristics. The results are
described in quantum mechanics by the Schrödinger wave equation. The solution of
the Schrödinger equation is given in the form of a wavefunction, which describes the
probabilities of the possible outcome rather than the exact position andmomentum of
the particle. Another important aspect in quantum mechanics is the use of operators
in mathematical manipulations.

3.5.1 The Schrödinger Equation

Consider the following equation that describes a wave in the x direction (see
Appendices B.6 and B.7):
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�(x, t) = Ãei(2πx/λ−2πνt) (3.67)

where Ã = A′+iA′′ is a complex constant,λ is thewavelength, and ν is the frequency.
One can take the real part of �:

Re(�) = A′ cos(2πx/λ − 2πνt) − A′′ sin(2πx/λ − 2πνt)

which is a cosine function of x for any given t. The complex notation is convenient
for obtaining derivatives. If Eq. (3.67) is used to describe a moving particle, with a
mass m and a momentum p, it can be shown that

−i�
∂

∂x
� = h

λ
� = p� (3.68a)

− �
2

2m

∂2

∂x2
� = p2

2m
� = EK� (3.68b)

and

i�
∂

∂t
� = hν� = ε� (3.68c)

where � is the Planck constant divided by 2π, EK is the kinetic energy of the particle,
and ε is the total energy of the particle. In writing Eqs. (3.68a), (3.68b), (3.68c), we
have applied the concept of wave-particle duality to relate p = h/λ and ε = hν. If
the particle possesses only the kinetic and potential energies, we have

ε = EK + EP = p2

2m
+ �(r) (3.69a)

where �(r) = �(x, y, z) is the potential function that depends on the position of
the particle. Define the Hamiltonian operator in the three-dimensional (3D) case as

H
∧

= − �
2

2m
∇2 + �(r) (3.69b)

It can be seen that H
∧

� = ε�. Hence,

− �
2

2m
∇2� + �(r)� = i�

∂�

∂t
(3.70)

which is the time-dependent Schrödinger equation [8]. From ε� = i� ∂�
∂t , one can

obtain

�(r, t) = �0(r)e−iεt/� (3.71a)
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The general time dependence for different energy eigenvalues can be written as a
summation:

�(r, t) = A1�01(r)e−iε1t/� + A2�02(r)e−iε2t/� + · · · (3.71b)

Therefore, the key to solve the Schrödinger equation becomes how to obtain the
initial wavefunctions. For this reason, Eq. (3.70) can be rewritten as follows:

− �
2

2m
∇2� + �(r)� = ε� (3.72)

which is called the time-independent Schrödinger equation. The solution gives the
wavefunction �(r), which is often expressed in terms of a set of eigenfunctions,
�1, �2, �3, . . . , each with an eigenvalue energy, ε1, ε2, ε3, . . . , respectively. The
solution, or the wavefunction, must satisfy

∫

V

��∗ dV = 1 (3.73)

where the subscript * denotes the complex conjugate since the wavefunction is in
general complex, and the integration is over the whole volume. The physical signif-
icance is that the probability of finding the particle in the volume must be 1. The
wavefunction is also called a state function because it describes the quantum state
of the particle, and ��∗ is called the probability density function. The average or
expectation value of any physical quantity η is calculated by

〈η〉 =
∫

V

�∗η̂� dV (3.74)

where η̂ signifies an operator of η. For example, the average energy of the particle is

〈ε〉 =
∫

V

�∗ H
∧

� dV (3.75)

Several examples are discussed in the following sections to show how to obtain the
wavefunctions and the physical significance of the solutions.

3.5.2 A Particle in a Potential Well or a Box

The one-dimensional (1D) potential well is illustrated in Fig. 3.13a, where a particle
is confined within a physical space between 0 < x < L and the particle can move
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Fig. 3.13 Illustration of a a 1D potential well and b the eigenfunctions

parallel to the x axis only. This is equivalent of saying that the potential energy is
zero inside and infinite outside the potential well. Hence,

�(x) =
{
0, for 0 < x < L
∞, at x = 0 or x = L

(3.76)

The Schrödinger equation becomes

− �
2

2m
∇2� = ε� (3.77)

whose solutions are�(x) = A cos(kx)+ B sin(kx),where k = √
2mε/�2. Because

the particle is confined inside the well, the wavefunction must be zero outside the
potential well. Another requirement for the wavefunction is that it must be contin-
uous. Thus, we must have �(0) = �(L) = 0. This requires that A = 0 and, by
taking only the positive k values, we have

kL = nπ, n = 1, 2, 3 . . . (3.78)

Therefore, the eigenfunctions are�n(x) = Bn sin
(

nπx
L

)
,which can be normalized

by letting
∫ L
0 �n(x)�∗

n (x) dx = 1 to get

�n(x) =
√

2

L
sin
(nπx

L

)
(3.79)

The solution requires the particle to possess discretized energy values, i.e., its energy
cannot be increased continuously but with finite differences between neighboring
states. It can easily be seen that
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εn = h2n2

8mL2
(3.80)

The quantized energy eigenvalues are called energy levels for each quantum state,
and the index n is called a quantum number. The eigenfunctions are standing waves
as shown in Fig. 3.13b for the first four quantum states. For molecules, the differ-
ence between energy levels is very small and the energy distribution can often be
approximated as a continuous distribution. For electrons at very small distances,
L → 10 nm for example, quantization may be important. The effects of quantum
confinement take place when the quantumwell thickness becomes comparable to the
de Broglie wavelength of the particle, such as electrons or holes in a semiconductor.
Quantum wells can be formed by a sandwiched structure of heterogeneous layers,
such as AlGaAs/GaAs/AlGaAs. The bandgap of the two outer layers is larger than
that of the inner layer to form an effective potential well. These structures are used
for optoelectronic applications such as lasers and radiation detectors. The thickness
of the active region can be a few nanometers. In some cases, multiple quantum wells
are formed with periodic layered structures, called superlattices, which have unique
optical, electrical, and thermal properties.

Example 3.7 Derive the uncertainty principle. Suppose the wavefunction is given
by Eq. (3.79) for a particle with energy εn given in Eq. (3.80).

Solution To find the average position of the particle, we use 〈x〉 = ∫ L
0 �∗x�dx =

2
L

∫ L
0 x sin2

(
nπx

L

)
dx = L

2 .Thevariance of x,σ 2
x = 〈x−〈x〉〉2 = 〈x2〉−2〈x〉2+〈x〉2 =

〈x2〉 − 〈x〉2.
With 〈x2〉 = 2

L

∫ L
0 x2 sin2

(
nπx

L

)
dx = L2

3 − L2

2n2π2 ,we obtain the standard deviation

of x as σx = L
(
1
12 − 1

2n2π2

)1/2
. For the momentum, we use the operator p →

−i� ∂
∂x . Hence, 〈p〉 = ∫ L

0 �∗(−i� d�
dx

)
dx = −i� 2nπ

L2

∫ L
0 sin

(
nπx

L

)
cos

(
nπx

L

)
dx = 0

and 〈p2〉 = ∫ L
0 �∗(−�

2) d
2�
dx2 dx = (

nπ�

L

)2
. We have σp = nπ�

L and obtain the
following expression:

σxσp = �

2

(
π2n2

3
− 2

)1/2

(3.81)

Taking the smallest quantum number, n = 1, we get σxσp ≈ 0.5678� > �/2,
which is a proof of the uncertainty principle given in Eq. (3.9).

Next, consider a free particle in a 3D box, 0 < x < a, 0 < y < b, 0 < z < c.
It can be shown that the (normalized) eigenfunctions are

�x,y,z =
√

8

abc
sin
(nxπx

a

)
sin
(nyπy

b

)
sin
(nzπ z

c

)
(3.82)

with the energy eigenvalues:
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εx,y,z = h2

8m

(
n2

x

a2
+ n2

y

b2
+ n2

z

c2

)
(3.83)

where nx , ny, nz = 1, 2, 3, . . .When a = b = c = V 1/3,Eq. (3.83) can be simplified
as

εx,y,z = h2

8mV 2/3

(
n2

x + n2
y + n2

z

)
(3.84)

Let η = (n2
x + n2

y + n2
z )

1/2, then we can evaluate the number of quantum states
between η and η + dη, which is nothing but the degeneracy. For sufficiently large
V, the quantum states are so close to each other that the volume within the spherical
shell between η and η+dη is equal to the number of quantum states. Only one-octant
of the sphere is considered in Eq. (3.84) because nx > 0, ny > 0, nz > 0. The total
volume is therefore one-eighth of the spherical shell; hence,

dg = 1

8
4πη2dη = 2πV (2m)3/2

h3
ε1/2dε (3.85)

With ε = 1
2mv2 and dε = mvdv, we obtain

dg = m3V

h3
4πv2dv (3.86)

This equation is essentially the same as Eq. (3.32), with dxdydz = V and
dvxdvydvz = 4πdv. Equation (3.86) provides a rigid proof of Eq. (3.32), which is the
translational degeneracy. It should be noted that the classical statistical mechanics
results in the same expression for U and p, as well as the Maxwell velocity distribu-
tion for ideal gases. However, the constant h must be included to correctly express
S as in Eq. (3.41). Equation (3.86) will also be used in Chap. 5 to study the free
electron gas in metals. When using the momentum p = mv as the variable, we have

dg = V

h3
4πp2dp (3.87)

BecauseEq. (3.87) does not involvemass, it is also applicable to phonons and photons
as will be discussed in Chaps. 5 and 8.

3.5.3 A Rigid Rotor

The rigid rotor model can be used to study the rotational movement of diatomic
molecules as well as the electron around the orbit in a hydrogen atom. Consider two
particles separated by a fixed distance r0 = r1+r2 as shown in Fig. 3.14. The masses
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Fig. 3.14 Schematic of a
rotor consisting of two
particles

x

y

z

m1

m2

r1

r2

O

of the particles are m1 and m2, respectively. Since the center of mass is at the origin,
we have m1r1 = m2r2. The moment of inertia is

I = m1r
2
1 + m2r

2
2 = mrr

2
0 (3.88)

where mr = m1m2/(m1 + m2) is the reduced mass. We can study the rotational
movement of the particles by considering a particle with a mass of mr that rotates
around at a fixed distance r = r0 from the origin in the θ and φ directions. In the
spherical coordinates,

∇2 = 1

r2
∂

∂r

(
r2

∂

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

r2 sin2 θ

∂2

∂φ2
(3.89)

Because r ≡ r0, the derivative with respect to r vanishes. The potential energy
is zero for free rotation. By setting the mass to be mr and � = 0 in Eq. (3.72) and
noticing that mrr20 = I, we obtain

1

sin θ

∂

∂θ

(
sin θ

∂�

∂θ

)
+ 1

sin2 θ

∂2�

∂φ2
= −2Iε

�2
� (3.90)

This partial differential equation can be solved by separation of variables. We get
two ordinary differential equations by letting �(θ, φ) = P(θ)ψ(φ),

d2ψ

dφ2
= −m2ψ (3.91)

and
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1

sin θ

d

dθ

(
sin θ

dP

dθ

)
+
(
2Iε

�2
− m2

sin2 θ

)
P = 0 (3.92)

Here,m is a new eigenvalue, and the periodic boundary conditions shall be applied
to P and ψ, respectively. The solution of Eq. (3.91) is readily obtained as

ψ(φ) = Aeimφ (3.93)

with m = 0,±1,±2, . . . , to satisfy the periodic boundary conditions: ψ(φ) =
ψ(2π + φ). A transformation, cos θ = ξ, can be used so that Eq. (3.92) becomes

(1 − ξ 2)
d2P

dξ 2
− 2ξ

dP

dξ
+
(
2Iε

�2
− m2

1 − ξ 2

)
P = 0 (3.94)

Because θ is defined from 0 and π, we have −1 ≤ x ≤ 1. In order for Eq. (3.94)
to have solutions that are bounded at x = ±1, 2Iε

�2 = l(l + 1), where l is an integer
that is greater than or at least equal to the absolute value of m. Therefore, the energy
eigenvalues are

εl = �
2

2I
l(l + 1), l = |m|, |m| + 1, |m| + 2, etc. (3.95)

Equation (3.94) is called the associated Legendre differential equation. The
solutions are the associated Legendre polynomials given as

Pm
l (ξ) = (1 − ξ 2)m/2

l!2l

dm+l

dξm+l

(
ξ 2 − 1

)l
(3.96)

Finally, after normalization, the standing wavefunctions can be expressed as

�m
l (θ, φ) = 1√

2π

[
(2l + 1)(l − m)!

2(m + 1)!
]1/2

Pm
l (cos θ)eimφ (3.97)

It can be seen that Eq. (3.95) is identical to Eq. (3.52). The energy level is deter-
mined by the principal quantum number l. On the other hand, for each l, there
are 2l + 1 quantum states corresponding to each individual m, because m can take
0,±1,±2 up to ±l.Thismeans that the degeneracy gl = 2l+1.When the two atoms
are identical, such as in a nitrogen molecule, the atoms are indistinguishable when
they switch positions. The degeneracy is reduced by a symmetry number, as given
in the expression of Eq. (3.53). It should be noted that the nuclear spin degeneracy
is important for hydrogen (also see Problem 3.27).
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3.5.4 Atomic Emission and the Bohr Radius

A hydrogen atom is composed of a proton and an electron. Since the mass of the
proton is much greater than that of the electron, it can be modeled as the electron
moving around the nucleus. The mass of the electron is me = 9.11 × 10−31 kg,
and the position of the electron can be described in the spherical coordinates as
r = (r, θ, φ). The force exerted on the electron is Coulomb’s force, which gives a
potential field

�(r) = −C1

r
(3.98)

where C1 = e2/4πε0 = 2.307× 10−28 Nm2, with the electron charge e = 1.602×
10−19 C and the dielectric constant ε0 = 8.854 × 10−12 F/m. Let �(r, θ, φ) =
R(r)P(θ)ψ(φ). In doing the separation of variables, we notice that the potential �
is independent of θ and φ, and the total energy is equal to the sum of the rotational
energy and the energy associated with r. The dependence of rotational energy is
given in Eq. (3.45). Using Eqs. (3.72) and (3.89), we can write the equation for R(r)

as follows:

�

2mer2
d

dr

(
r2

dR

dr

)
+
(

C1

r
+ ε − l(l + 1)�2

2I

)
R = 0 (3.99)

which is the associated Laguerre equation, and its solutions are the associated
Laguerre polynomials. The solutions give the energy eigenvalues as [5, 8]

εn = − meC2
1

2�2n2
(3.100)

where the negative values are used for convenience to show that the energy increases
with the principal quantumnumber n. For n = 1,−meC2

1/2�
2 = −13.6 eV, as shown

in Fig. 3.15.Note that 1 eV = 1.602×10−19 J.When the electron is in a higher energy
state, it has a tendency of relaxing to a lower energy state by spontaneously emitting
a photon, with precisely the same energy as given by the energy difference between
the two energy levels:

hν = εi − ε j = meC2
1

2�2

(
1

n2
j

− 1

n2
i

)
(3.101)

The emission or absorption of photons by electrons is called electronic transitions.
When i = 3 and j = 1, we have hν = 12.1 eV, corresponding to the wavelength of
102.6 nm (ultraviolet), which is the second line in the Lyman series. When i = 3 and
j = 2, we have hν = 1.89 eV, corresponding to the wavelength of 656.4 nm (red),
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    (a)                                 (b) 

4n

3 1.5 eV

Ionization energy

102.6 nm

656.3 nm

hnucleus

3n

2n
1n 2 3.4 eV

1 13.6 eV

h

Fig. 3.15 a Electron orbits and b energy levels in a hydrogen atom. The ionization energy is the
energy required for an electron to escape the orbit

which is the first line in the Balmer series. A more detailed description of the atomic
emission lines can be found from Sonntag and van Wylen [2].

The next question is: What is the radius of a particular electron orbit? This is
an important question because it gives us a sense of how small an atom is. When a
particle is in an orbit, the classical force balance gives that

C1

r2
= me

(
v2

r

)
(3.102)

which is to say that EK = mev2/2 = C1/2r, and the sum of the kinetic and potential
energies is

ε = EK + EP = C1

2r
− C1

r
= −C1

2r
(3.103)

Equations (3.100) and (3.103) can be combined to give discrete values of the
radius of each orbit in the following:

rn = �
2

meC1

n2 = a0n2 (3.104)

where the electron is in the innermost orbit, with the radius given by a0 = ε0h2

πmee2
=

0.0529 nm, which is called the Bohr radius. Niels Bohr (1885–1962) was a Danish
physicist who received the Nobel Prize in Physics in 1922 for his contributions to
the understanding of the structure of atoms and quantum physics. Therefore, the
hydrogen atom in its ground state can be considered as having a diameter of approx-
imately 1 Å (Angstrom), or 0.1 nm. One should accept the quantum interpretation of
the electron radius as a characteristic length, not the exact distance that the electron
would rotate around the nucleus in the same manner a planet rotates around a star.
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Fig. 3.16 A linear spring m
F

x

3.5.5 A Harmonic Oscillator

The last example of quantum mechanics is the linear spring as shown in Fig. 3.16.
Consider a 1D oscillator with a mass m and the spring force F(x) = −K x . The
origin can be selected such that F(0) = 0. It can be shown that the potential is

�(x) = −
x∫

0

F(x)dx = 1

2
K x2 (3.105)

From classical mechanics, we can solve Newton’s equation mẍ + K x = 0 to
obtain the solution

x = A sin(ωt + φ0) (3.106)

where constant A is the amplitude, constant φ0 is the initial phase, and parameter
ω = √

K/m is the angular resonance frequency. It can be shown that the total
energy ε = EK + EP = K A2/2 is a constant and the maximum displacement is A.
The velocity is the largest at x = 0 and zero at x = ±A.

The Schrödinger wave equation can be written as

�
2

2m

d2�

dx2
+
(

ε − K x2

2

)
� = 0 (3.107)

with the boundary condition being �(x) = 0 at x → ±∞. The constants can
be grouped by using α = 2mε/�

2 and β = √
K m/�. Then Eq. (3.107) can be

transformed by using ξ = √
βx and �(x) = Q(ξ) exp(−ξ 2/2) to

d2Q

dξ 2
− 2ξ

dQ

dξ
+
(

α

β
− 1

)
Q = 0 (3.108)

This is the Hermite equation, and the solutions are Hermite polynomials given by

Hn(ξ) = (−1)neξ 2 dn

dξ n

(
e−ξ 2

)
(3.109)

when α and β must satisfy the eigenvalue equation:
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α

β
− 1 = 2n, n = 0, 1, 2, . . . (3.110)

The normalized wavefunctions can be written as

�n(x) =
(√

β/π

n!2n

)1/2

Hn(β
1/2x) exp

(
−βx2

2

)
(3.111)

The energy eigenvalues can be obtained from Eq. (3.110) as

εn = (n + 1
2 )�

√
K/m = (n + 1

2 )�ω (3.112)

The above equation was used to study the vibrational contributions in diatomic
molecules; see Eq. (3.59). The 1/2 term was not included in Planck’s original deriva-
tion of the blackbody radiation function. The significance lies in that if the ground-
state energy is zero, both its kinetic energy and potential energy must be zero, sug-
gesting that both the position and themomentummust be zero. This would violate the
uncertainty principle.Asmentioned earlier, in classicalmechanics, the particle is lim-
ited to the region −A < x < A, where A is the amplitude given in Eq. (3.106). This
is not the case in the quantum theory, as shown in Fig. 3.17, for the first few energy
levels and the associated wavefunctions. Notice that probability density function �2

is nonzero even though the absolute value of x exceeds
√
2ε/K .

The application of quantum theory allows us to predict the specific heat of ideal
gases. In deriving the equations shown in Sect. 3.3.3, we have largely neglected
nonlinear and anharmonic vibration, electronic contribution, and dissociation. These
factors may become important at very high temperatures. The degeneracy due to the
coupling of rotation and vibration can cause multiple absorption/emission lines in
the infrared in polyatomic molecular gases, as shown in Fig. 3.12.

     (a)                   (b)
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Fig. 3.17 a Wavefunctions and b probability density functions for vibration energy levels
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3.6 Emission and Absorption of Photons by Molecules
or Atoms

We have learned that the emission of photons is associated with transitions from a
higher energy level to a lower energy level that reduces the total energy of themolecu-
lar system. The reverse process is the absorption of photons that increases the energy
of the system through transitions from lower energy levels to higher energy levels. As
discussed earlier, an electronic transition requires a large amount of energy, and the
emitted or absorbed photons are at frequencies from deep ultraviolet (λ ≈ 100 nm) to
slightly beyond the red end of the visible region (λ ≈ 1μm).On the other hand, vibra-
tion or rotation-vibration modes lie in the mid-infrared (2.5 μm < λ < 25 μm), while
their overtones or higher-order harmonics lie in the near-infrared region (0.8 μm < λ

< 2.5 μm). Rotational modes alone may be active in the far-infrared and microwave
regions (λ > 25 μm). Transitions between different energy levels of the molecules
or atoms are called bound-bound transitions, because these energy states are called
bound states. Bound-bound transitions happen at discrete frequencies due to quanti-
zation of energy levels.Dissociation or ionization can also occur at high temperatures.
The difference between adjacent energy levels is very small because the electrons
can move freely (i.e., not bound to the atom or the molecule). Therefore, free-free or
bound-free transitions happen in a broadband of frequencies. In gases, these broader
transitions occur only at extremely high temperatures.

If amolecule at elevated energy stateswere placed in a surrounding at zero absolute
temperature (i.e., empty space), it would lower its energy states by emitting photons
in all directions until reaching its ground state. However, the emission processes
should occur spontaneously regardless of the surroundings. Suppose the molecule is
placed inside an isothermal enclosure, after a long time, the energy absorbed must
be equal to that emitted to establish a thermal equilibrium with its surroundings.
The thermal fluctuation of oscillators is responsible for the equilibrium distribution
of photons governed by Planck’s law developed in 1900. Albert Einstein examined
how matter and radiation can achieve thermal equilibrium in a fundamental way and
published a remarkable paper, “On the quantum theory of radiation” in 1917 [11].
The interaction of radiation with matter is essentially through emission or absorption
at the atomistic dimension, although solids or liquids can reflect radiation and small
particles can scatter radiation. Einstein noticed that spontaneous emission and pure
absorption (i.e., transition from a lower level to a higher level by absorbing the
energy from the incoming radiation) alone would not allow an equilibrium state of
an atom to be established with the radiation field. He then hypothesized the concept
of stimulated or induced emission, which became the underlying principle of lasers.
In a stimulated emission process, an incoming photon interacts with the atom: the
interaction results in a transition from a higher energy state to a lower energy state by
the emission of another photon of the same energy toward the same direction as the
incoming photon. In otherwords, the stimulated photon is a “clone” of the stimulating
photon with the same energy and momentum. Depending on the probability of each
event, the incoming photons could either be absorbed or stimulate another photon or
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pass by without any effect on the atom. Understanding the emission and absorption
processes is important not only for coherent emission but also for thermal radiation
[12]. While more detailed treatments will be given in later chapters, it is important
to gain a basic understanding of the quantum theory of radiative transitions and
microscopic description of the radiative properties.

Consider a canonical ensemble of single molecules or atoms, with two nondegen-
erate energy levels, ε1 and ε2 (ε1 < ε2 ), in thermal equilibrium with an enclosure
or cavity at temperature T. Suppose the total number of particles is N, and let N1

and N2 be the number of particles at the energy level corresponding to ε1 and ε2,
respectively. These particles do not interact with each other at all. The concept of
canonical ensemble can be understood as if each cavity has only one atom but there
are N single-atom cavities with one atom in each cavity. As shown in Fig. 3.18, there
are three possible interaction mechanisms: spontaneous emission, stimulated emis-
sion, and stimulated or induced absorption. Here, stimulated absorption refers to the
process that the energy of the photon is absorbed, and consequently, the transition
occurs from the lower energy level to the higher energy level. In a stimulated absorp-
tion process, the number of photons before the process is 1 and after the process is
1 − 1 = 0. In a stimulated emission process, the number of photons beforehand is
1 and afterward is 1 + 1 = 2. Therefore, stimulated emission is regarded also as
negative absorption. Each of the photons involved in this process will have an energy
equal to hν = ε2 − ε1 and a momentum hν/c.

Transition from the higher energy level to the lower energy level cannot take place
if the population of atoms on the higher energy level, N2 = 0, and vice versa. Einstein
further assumed that the probability of transition is proportional to the population
at the initial energy level, and spontaneous transition should be independent of the
radiation field. Hence, the rate of transition from ε2 to ε1 due to spontaneous emission
can be written as

(
dN1

dt

)

A

= −
(
dN2

dt

)

A

= AN2 (3.113)

where A is Einstein’s coefficient of spontaneous emission. On the other hand, the
transition rate due to stimulated emission should also be proportional to the energy
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Fig. 3.18 Illustration of the emission and absorption processes. a Spontaneous emission.
b Stimulated emission. c Stimulated absorption
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density of the radiation field u(ν, T ). Thus,

(
dN1

dt

)

B

= B N2u(ν, T ) (3.114)

Stimulated absorption will cause a transition rate that is proportional to N1 and
u(ν, T ):

(
dN1

dt

)

C

= −C N1u(ν, T ) (3.115)

In Eqs. (3.114) and (3.115), constants B and C are Einstein’s coefficients of
stimulated emission and absorption, respectively. The combination of these processes
must maintain a zero net change of the populations at equilibrium. Thus,

AN2 + B N2u(ν, T ) − C N1u(ν, T ) = 0 (3.116)

Atoms or molecules in a thermal equilibrium are described by the Maxwell-
Boltzmann statistics of molecular gases given by Eq. (3.26): N1/N2 = e(ε2−ε1)/kBT =
ehν/kBT . Therefore, Eq. (3.116) can be rewritten as

u(ν, T ) = A/B

(C/B)ehν/kBT − 1
(3.117)

Comparing this equation with Planck’s distribution, Eq. (8.41) in Chap. 8, we see
that B = C and A/B = 8πhν3/c3. The two-level system can easily be generalized
to arbitrary energy levels to describe the fundamental emission and absorption pro-
cesses. The emission and absorption processes not only exchange energy between
the field and the atom but also transfer momentum. How will an atom move inside
a cavity? The phenomenon of a molecule or atom in a radiation field is like the
Brownian motion, in which the radiation quanta exert forces on the molecule or the
atom as a result of momentum transfer during each emission or absorption process.
Consequently, the molecule or the atom will move randomly following Maxwell’s
velocity distribution at the same temperature as the radiation field. The equilibrium
radiation field, which obeys the quantum statistics (i.e., BE statistics) that was not
realized until 1924, and the motion of a molecular gas, which obeys classical statis-
tics, can be coupled to each other at mutual equilibrium. Einstein also asserted that
each spontaneously emitted photon must be directional, while the probability of
spontaneous emission should be the same in all directions. In fact, Einstein’s 1917
paper complemented Planck’s 1900 paper on radiation energy quanta and his own
1905 paper on photoelectric emission and, thus, provided a complete description of
the quantum nature of photons, although the name “photon” was not coined until
1928 [12].

At moderate temperatures, the population at higher energy states is too small for
stimulated emission to be of significance for optical and thermal radiation. Thus,
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the absorption comes solely from induced absorption. When stimulated emission
is important, the contributions of stimulated emission and stimulated absorption
cannot be separated by experiments. The effect is combined to give an effective
absorption coefficient by taking stimulated emission as negative absorption, whereas
the emission of radiation includes solely the spontaneous emission [12]. The effective
absorption coefficient is proportional to the population difference, N1 − N2. On
the other hand, if a population inversion can be created and maintained such that
N2 > N1, the material is called a gain medium or active medium. In an active
medium, stimulated emission dominates stimulated absorption so thatmore andmore
photons will be cloned and the radiation field be amplified coherently. The principle
of stimulated emission was applied in 1950s and early 1960s for the development of
maser, which stands formicrowave amplification by stimulated emission of radiation,
and laser, which stands for light amplification by stimulated emission of radiation
[13]. Lasers have become indispensable to modern technologies and daily life.

3.7 Energy, Mass, and Momentum in Terms of Relativity

Special theory of relativity or special relativity predicts that energy and mass can be
converted to each other. If we retain the definition of mass as in the classical theory,
only energy conservation is the fundamental law of physics. The mass does not have
to be conserved. On the other hand, for processes that do not involve changes below
the atomic level or inside the nuclei, the mass can indeed be considered as conserved.
According to the special relativity, the rest energy of a free particle is related to its
mass and the speed of light by

E0 = mc2 (3.118)

The rest energy is simply the energy when the particle is not moving relative to
the reference frame. Suppose the free particle is moving at a velocity v in a given
reference frame, then its momentum is given by [14]

p = mv√
1 − v2/c2

(3.119)

When v � c,Eq. (3.119) reduces to the classical limit p = mv. It can be seen that
for a particle with nonzero mass, its momentum would increase as v → c without
any bound. There is no way we could accelerate a particle to the speed of light. If
there is anything that travels with the speed of light, it has to be massless, i.e., m
= 0. An example of massless particles is the light quanta or photons. The kinetic
energy can be evaluated by integrating the work needed to accelerate a particle,
EK = ∫ x

0 Fdx = ∫ x
0

dp
dt dx = ∫ x

0
dp
dv

dv
dt dx = ∫ v

0
dp
dv vdv. Using Eq. (3.119), we find

that



3.7 Energy, Mass, and Momentum in Terms of Relativity 121

EK = mc2√
1 − v2/c2

− mc2 (3.120)

When v � c,wehave1/
√
1 − v2/c2 ≈ 1+v2/2c2 so that EK = mv2/2 = p2/2m

in the low-speed limit. In the relativistic limit, however, EK will be on the order of
mc2. Because energy is additive, the total energy of a moving free particle is

E = EK + E0 = mc2√
1 − v2/c2

(3.121)

Obviously, the energy of a particle would become infinite if its speed approaches
the speed of light, unless its mass goes to zero. It can be shown that E2 − E2

0 =
m2c4

1−v2/c2 −m2c4 = p2c2,where p is given in Eq. (3.119). This gives another expression
of energy in terms of the rest energy, themomentum, and the speed of light as follows:

E2 = m2c4 + p2c2 (3.122)

It should be noted that, in general, pc is not equal to the kinetic energy. For
v � c, the total energy is approximately the same as the rest energy. Comparing
Eqs. (3.119) and (3.121), we notice that E = pc(c/v). Therefore, when v → c, we
see that E → pc (which is unbounded unless m = 0). For a photon that travels at
the speed of light, in order for the above equations to be meaningful, we must set its
mass to zero. From Eq. (3.122), we have for photons that

p = E

c
= hν

c
(3.123)

which is the same as Eq. (3.7) in Sect. 3.1.3. By noting that λν = c, we obtain

λ = h

p
(3.124)

The kinetic energy of a photon is pc or hν since its rest energy is zero. One should
not attempt to calculate the kinetic energy of a photon by 1

2mc2, because photons are
not only massless but also relativistic particles, for which the energy and momentum
must be evaluated according to Eqs. (3.122) and (3.123), respectively.While photons
do not have mass, it has been observed that photons can be used to create particles
with nonzeromass or vice versa, as in creation or annihilation reactions. High energy
physics has proved that mass is not always conserved. It is commonly said that mass
and energy can be interconverted. For example, in a nuclear reaction, a small amount
of mass can be converted into a large amount of energy. In these statements, the
term energy is used in the classical sense (such as kinetic energy and the emission
of high-energy photons). When the rest energy E0 is included, the total energy is
always conserved.
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3.8 Summary

This chapter started with very basic independent particle systems to derive the three
major statistics, namely, the Maxwell-Boltzmann, Bose-Einstein, and Fermi-Dirac
statistics. The classical and quantum statistics were then applied to thermodynamic
systems, providing microscopic interpretations of the first, second, and third laws
of thermodynamics, as well as Bose-Einstein condensate. The velocity distribution
and specific heat of ideal gases were explained based on the semi-classical statistics,
followed by a brief description of quantummechanics to understand the quantization
of translational, rotational, and vibrational modes. The fundamental emission and
absorption processes of molecules or atoms were discussed along with the concept
of stimulated emission. Finally, matter-energy conversion was described within the
framework of special relativity. While most of the explanations in this chapter are
semi-classical and somehow oversimplified, it should provide a solid background
to those who do not have a comprehensive knowledge and background in statistical
mechanics and quantum physics. The materials will be frequently referenced in the
rest of the book.

Problems

3.1 For a rectangular prism whose three sides are x, y, and z. If x + y + z = 9,
find the values of x, y, and z so that the volume of the prism is maximum.

3.2 Make a simple computer program to evaluate the relative error of Stirling’s
formula: ln x ! ≈ x ln x − x for x = 10, 100, and 1000.

3.3 For each of the following cases, determine the number of ways to place 25
books on 5 shelves (distinguishable by their levels). The order of books within
an individual shelf is not considered.

(a) The books are distinguishable, and there is no limit on how many books
can be put on each shelf.

(b) Same as (a), except that all the books are the same (indistinguishable).
(c) The books are distinguishable, and there are 5 books on each shelf.
(d) The books are distinguishable, and there are 3 books on the 1st shelf, 4

on the 2nd, 5 on the 3rd, 6 on the 4th, and 7 on the 5th.

3.4 For each of the following cases, determine the number of ways to put 4 books
on 10 shelves (distinguishable by their levels). Disregard their order on each
shelf.

(a) The books are distinguishable, and there is no limit on how many books
you can place on each shelf.

(b) Same as (a), but there is a maximum of 1 book on any shelf.
(c) Same as (a), except that the books are identical (indistinguishable).
(d) Same as (b), except that the books are identical.
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3.5 A box contains 5 red balls and 3 black balls. Two balls are picked up randomly.
Determine the following:

(a) What’s the probability that the second ball is red?
(b) What’s the probability that both are red?
(c) If the first one is black, what is the probability that the second is red?

3.6 Suppose you toss two dice, what’s the probability of getting a total number (a)
equal to 5 and (b) greater than 5?

3.7 Draw 5 cards from a deck of 52 cards.

(a) What is the probability of getting a royal flush?
(b) What is the probability of getting a full house? [A royal flush is a hand

with A, K, Q, J, and 10 of the same suit. A full house is a hand with three
of one kind and two of another (a pair).]

3.8 For a Gaussian distribution function, f (x) = ae−(x−μ)2 , where a and μ are
positive constants.

(a) Find the normalized distribution function F(x).
(b) Show that the mean value x̄ = μ.

(c) Determine the variance uvar and the standard deviation σ.

3.9 The speed distribution function for N particles in a fixed volume is given by
f (V ) = AV (B−V )

B3 ,where V (> 0) is the particle speed, and A and B are positive
constants. Determine:

(a) The probability density function F(V ).
(b) The number of particles N in the volume.
(c) The minimum speed Vmin and maximum speed Vmax.
(d) The most probable speed where the probability density function is the

largest.
(e) The average speed V and the root-mean-square average speed Vrms =√

V 2.

3.10 Six bosons are to be placed in two energy levels, each with a degeneracy of
two. Evaluate the thermodynamic probability of all arrangements. What is the
most probable arrangement?

3.11 Four fermions are to be placed in two energy levels, each with a degeneracy
of four. Evaluate the thermodynamic probability of each arrangement. What
is the most probable arrangement?

3.12 Derive the Fermi-Dirac distribution step by step. Clearly state all assumptions.
Under which condition, can it be approximated by the Maxwell-Boltzmann
distribution?

3.13 What is the Boltzmann constant and how is it related to the universal gas
constant? Show that the ideal gas equation can be written as P = nkBT . What
is the number density of air at standard conditions (1 atm and 25 °C)?
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3.14 Howmany molecules are there per unit volume (number density) for the nitro-
gen gas at 200 K and 20 kPa? How would you estimate the molecular spacing
(average distance between two adjacent molecules)?

3.15 Use Eq. (3.28a), (3.28b) and 1
T = (

∂S
∂U

)
V,N

to show that β = 1
kBT .

3.16 Show that β = 1/kBT and α = −μ/kBT for all the three statistics. [Hint:
Follow the lecture note with a few more steps.]

3.17 Consider 10 indistinguishable particles in a fixed volume that obey the Bose-
Einstein statistics. There are three energy levelswith ε0 = 0.5 eu, ε1 = 1.5 eu,
and ε2 = 2.5 eu, where “eu” refers to certain energy unit. The degeneracies
are g0 = 1, g1 = 3, and g2 = 5, respectively.

(a) If the degeneracy were not considered, in how many possible ways could
you arrange the particles on the three energy levels?

(b) Youmay notice that different arrangementsmay result in the same energy.
For example, both the arrangement with N1 = 9, N2 = 0, N3 = 1 and
the arrangement with N1 = 8, N2 = 2, N3 = 0 yield an internal energy
U = 7 eu. How many arrangements are there with U = 9 eu? Calculate
the thermodynamic probability for all macrostates with U = 9 eu.

(c) The ground state refers to the state corresponding to the lowest possible
energy of the system. Determine the ground-state energy and entropy.
What is the temperature of this system at the ground state?

(d) How many microstates are there for the macrostate with U = 25 eu?

3.18 Consider a system of a single type of constituents, with N particles (distin-
guishable from the statistical point of view) and only two energy levels ε0 = 0
and ε1 = ε (nondegenerate).

(a) What is the total number of microstates in terms of N. How many
microstates are there for the macrostate that has energy U = (N − 1)ε?
Show that the energy of the most probable macrostate is Nε/2.

(b) What are the entropies of the states withU = 0 andU = (N −1)ε. Sketch
S as a function of U. Comment on the negative temperature, 1/T =
(∂S/∂U )V,N < 0. Is it possible to have a system with a negative absolute
temperature?

3.19 A system consists of six indistinguishable particles that obey Bose-Einstein
statistics with two energy levels. The associated energies are ε0 = 0 and ε1= ε,
and the associated degeneracies are g0 = 1 and g1 = 3. Answer the following
questions:

(a) How many possible macrostates are there? How many microstates
corresponding to themacrostate with three particles on each energy level?

(b) What is the most probable macrostate, and what are its corresponding
energy U and thermodynamic probability �?

(c) Show that at 0 K, both the energy and the entropy of this system are
zero. Also, show that for this system the entropy increases as the energy
increases.
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3.20 From the Sackur-Tetrode equation, show that s2 − s1 = cp ln(T2/T1) −
R ln(P2/P1).

3.21 Write U, p, A, and S in terms of the partition function Z. Express H and G in
terms of the partition function Z. For an ideal monatomic gas, express H and
G in terms of T and P.

3.22 For an ideal diatomic gas, the partition function can be written as Z =
Z tZrZvZeZD, where Ze = ge0 is the degeneracy of the ground electronic
level, and ZD = exp(−D0/kBT ) is the chemical partition function that is
associated with the reaction of formation. Here, ge0 and D0 can be regarded
as constants for a given material. Contributions to the partition function beside
the translation are due to internal energy storage and thus are called the inter-
nal contribution, Z int = ZrZvZeZD. Find the expressions of U, P, A, S, H,
and G in terms of N, T, and P (or V ) with appropriate constants, assuming that
�r � T ∼ �v.

3.23 For an ideal molecular gas, derive the distribution function f (ε) in terms of
the kinetic energy ε = mv2/2.

3.24 Prove Eqs. (3.48), (3.49a), (3.49b) and (3.50).
3.25 Evaluate and plot the Maxwell speed distribution for Ar gas at 100, 300, and

900 K. Tabulate the average speed, the most probable speed, and the rms speed
at these temperatures.

3.26 A special form of the Euler-Maclaurin summation formula is

∞∑

j=a

f ( j) =
∞∫

a

f (x)dx + 1

2
f (a) − 1

12
f ′(a) + 1

720
f (3)(a) − 1

30, 240
f (5)(a) + · · ·

Consider the rotational partition function, Zr =∑∞
l=0 (2 j + 1) exp[− j ( j + 1)�r/T ], and show that Zr ≈

T
�r

[
1 + 1

3
�r
T + 1

15

(
�r
T

)2 + · · ·
]
, which is Eq. (3.55) for σ = 1.

3.27 Because of the nuclear spin degeneracy, hydrogen H2 gas is consistent of two
different types: ortho-hydrogen and para-hydrogen. The rotational partition
functions can be written, respectively, as

Zr,ortho = 3
∑

l=1,3,5...

(2l + 1) exp

[
−l(l + 1)

�r

T

]

and

Zr,para =
∑

l=0,2,4...

(2l + 1) exp

[
−l(l + 1)

�r

T

]

so that Zr,H2 = 3
∑

l=1,3,5... (2l + 1) exp
[−l(l + 1)�r

T

] +∑
l=0,2,4... (2l + 1) exp

[−l(l + 1)�r
T

]
. Evaluate the temperature-dependent

specific heat of each of the two types of hydrogen, which can be separated and
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stay separated for a long time before the equilibrium distribution is restored.
Calculate the specific heat of hydrogen in the equilibrium distribution as a
function of temperature. The ratio Zr,ortho/Zr,para is the same as the equilibrium
ratio of the two types and varies from 0 at very low temperatures to 3 near
room temperature.

3.28 Calculate the specific heat and the specific heat ratio γ = cp/cv for nitrogen
N2 at 30, 70, 300, and 1500 K. Assume the pressure is sufficiently low for it
to be an ideal gas.

3.29 Calculate the specific heat and the specific heat ratio γ = cp/cv for oxygen
O2 at 50, 100, 300, and 2000 K. Assume the pressure is sufficiently low for it
to be an ideal gas.

3.30 Estimate the mole and mass specific heats of CO gas at 100, 300, and 3000 K.
Show in a specific heat versus temperature graph the contributions from
different modes.

3.31 (a) Howmany rotational degrees of freedom are there in a CO2 molecule and
in a H2O molecule?

(b) If the temperature of a low-pressure CO2 gas is raised high enough to
completely excite its rotational and vibrational modes, what will be its
specific heats cv and cp? Express answers in both kJ/kg K and kJ/kmol K.

3.32 Compute and plot the temperature-dependent specific heat for the following
ideal gases and compare your results with tabulated data or graphs: (a) CO2,
(b) H2O, and (c) CH4.

3.33 Write down a few sentences to discuss each of the following topics: (a) the sig-
nificance of partition functions, (b) the different types of statistical ensembles,
and (c) statistical fluctuations.

3.34 We have discussed the translational degeneracy dg in a 3D space with a vol-
ume V, as given in Eq. (3.85). Consider the situation when the particle is
confined in a 2D square potential well. Find the proper wavefunctions and the
energy eigenvalues. Assuming the area A is very large, find the translational
degeneracy dg in terms of A, m, ε, and dε.

3.35 Estimate the speed an electron needs in order to escape from the ground state
of a hydrogen atom. What is the de Broglie wavelength of the electron at
the initial speed? If a photon is used to knock out the electron in the ground
state, what would be the wavelength of the photon? Why is it inappropriate to
consider the electron movement in an atom analog with the movement of the
Mars in the solar system?

3.36 For the harmonic oscillator problem discussed in Sect. 3.5.5. Show that
Eq. (3.111) is a solution for Eq. (3.107) for n = 0, 1, and 2. Plot
�2

0 , �
2
1 , and �2

2 and discuss the differences between classical mechanics
and quantum mechanics.
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Chapter 4
Kinetic Theory and Micro/Nanofluidics

Statistical mechanics involves determination of the most probable state and equi-
librium distributions, as well as evaluation of the thermodynamic properties in the
equilibrium states. Kinetic theory deals with the local average of particle properties
and can be applied to nonequilibrium conditions to derive transport equations [1–
8]. Kinetic theory, statistical mechanics, and molecular dynamics are based on the
same hypotheses; they are closely related and overlap each other in some aspects.
Knowledge of kinetic theory is important to understanding gas dynamics, as well as
electronic and thermal transport phenomena in solid materials.

In this chapter, we first introduce the simple kinetic theory of ideal gases based
on the mean-free-path approximation. While it can help us to obtain the microscopic
formulation of some familiar transport equations and properties, the simple kinetic
theory is limited to local equilibrium and works well only for time durations much
longer than the mechanistic timescale, called the relaxation time. The advanced
kinetic theory is based on the Boltzmann transport equation (BTE), which will also
be presented in this chapter [7, 8]. The BTE is an integro-differential equation of
the distribution function in terms of space, velocity, and time. It takes into account
changes in the distribution function caused by external forces and collisions between
particles. Many macroscopic phenomenological equations, such as Fourier’s law of
heat conduction, the Navier–Stokes equation for viscous flow, and the equation of
radiative transfer for photons and phonons, can be derived from the BTE, under the
assumption of local equilibrium. Finally, in the last section of this chapter, we present
the application of kinetic theory to the flow of dilute gases in micro/nanostructures
and the associated heat transfer. The application of kinetic theory to heat conduction
in metals and dielectrics will be discussed in forthcoming chapters.
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4.1 Kinetic Description of Dilute Gases

In this section, we will introduce the simple kinetic theory of ideal molecular
gases. The purpose is to provide a step-by-step learning experience leading to more
advanced topics. There are several hypotheses and assumptions in kinetic theory of
molecules.

• Molecular hypothesis: Matter is composed of small discrete particles (molecules
or atoms); any macroscopic volume contains a large number of particles. At 25
°C and 1 atm, 1-µm3 space of an ideal gas contains 27-million molecules.

• Statistic hypothesis: Time average is often used since anymacroscopic observation
takes much longer than the characteristic timescale of molecular motion (such as
the average time lapse between two subsequent collisions of a given molecule).

• Kinetic hypothesis: Particles obey the laws of classical mechanics.
• Molecular chaos: The velocity and position of a particle are uncorrelated. The

velocities of any two particles are not correlated.
• Ideal gas assumptions:Molecules are rigid spheres resembling billiard balls. Each

molecule has a diameter d and a mass m. All collisions are elastic and conserve
both energy andmomentum.Molecules arewidely separated in space (i.e., a dilute
gas). Intermolecular forces are negligible except during molecular collisions. The
duration of collision is negligible compared with the time between collisions. No
collision can occur with more than two particles.

The general molecular distribution function is f (r, v, t), which is a function
of space, velocity, and time. The distribution function gives the particle (number)
density in the phase space at any time. Therefore, the number of particles in a volume
element of the phase space is

dN = f (r, v, t)dxdydzdvxdvydvz = f (r, v, t)dV d� (4.1)

wherewehave used� for the velocity space (d� = dvxdvydvz). IntegratingEq. (4.1)
over the velocity space gives the number of particles per unit volume, or the number
density, as

n(r, t) = dN

dV
=
∫

�

f (r, v, t)d� (4.2)

Note that the density is ρ(r, t) = m · n(r, t), where m is the mass of a particle.
The total number of particles inside the volume V as a function of time is then

N (t) =
¨

V,�

f (r, v, t)dV d� (4.3)

In a thermodynamic equilibrium state,



4.1 Kinetic Description of Dilute Gases 131

f (r, v, t) = f (v) (4.4)

which is independent of space and time. Any intensive property will be the same
everywhere.

4.1.1 Local Average and Flux

Let ψ = ψ(r, v, t) be any additive property of a single molecule, such as kinetic
energy and momentum. Note that ψ may be a scalar or a vector. The local average
or simply the average of the property ψ is defined as

ψ̄ =
∫
�

f ψd�∫
�

f d�
= 1

n

∫

�

f ψd� (4.5)

which is a function of r and t. The ensemble average is the average over the phase
space:

〈ψ〉 = 1

N

¨

V,�

f ψdV d� (4.6)

For a uniform gas, the local average and the ensemble average are the same.
The transfer of ψ across an area element dA per unit time per unit area is called

the flux of ψ . As shown in Fig. 4.1, particles having velocities between v and v+ dv
that will pass through the area dA in the time interval dt must be contained in the
inclined cylinder, whose volume is dV = vdt cos θ dA = v · n dAdt . It is assumed
that dt is sufficiently small such that particle–particle collisions can be neglected.
The number of particles with velocities between v and v + dv within the inclined

Fig. 4.1 Illustration of the
flux of particles and
quantities through a surface
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cylinder can be calculated by

f (r, v, t)dV d� = f (r, v, t) v · n dAdtd� (4.7)

The flux of the property ψ is then

flux of ψ within d� = ψ f (r, v, t) v · n d� dA dt

dA dt

Integrating over all velocities yields the total flux of ψ :

Jψ =
∫

�

ψ fv · n d� (4.8)

Equation (4.8) gives the net flux since it is evaluated for all � , or over a solid
angle of 4π in the spherical coordinates. Very often the integration is performed over
the hemisphere with v · n = cos θ > 0 for positive flux or v · n = cos θ < 0 for
negative flux. When ψ = 1, Eq. (4.8) gives the particle flux:

JN =
∫

�

fv · n d� (4.9)

In an equilibrium state, this integration can be evaluated using the spherical coor-
dinates. Noting that v · n = v cos θ and f = f (v), which is independent of the
direction (isotropic), we can obtain the particle flux in the positive z-direction by
integrating over the hemisphere in the velocity space,

JN =
∞∫

v=0

2π∫

φ=0

π/2∫

θ=0

f (v)v3 cos θ sin θ dθdφdv = π

∞∫

0

f (v)v3dv (4.10)

In writing Eq. (4.10), we have kept the vector variable in f (v) to signify that it is a
velocity distribution. One should bear in mind that the last expression is based on the
fact that f (v) is not a function of θ and φ. For an ideal molecular gas, f (v) is given
by the Maxwell velocity distribution, i.e., Eq. (3.43) in Chap. 3. If the integration in
Eq. (4.10) is performed over the whole sphere with θ from 0 to π , we would obtain
the net flux of particles, which is zero in the equilibrium case. The average speed can
be evaluated using Eq. (4.5); hence,

v̄ = 1

n

∫

�

f (v)v d� = 1

n

˚

v,φ,θ

f (v)v3 sin θ dθdφdv = 4π

n

∞∫

0

f (v)v3dv (4.11)
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Here, we have assumed an isotropic distribution function to obtain the last expres-
sion. The above equation is evaluated over the solid angle of 4π to obtain the average
of all velocities. Comparing Eqs. (4.10) and (4.11), we can see that

JN = nv̄

4
(4.12a)

For an ideal gas, since f (v) is given by theMaxwell velocity distribution, Eq. (3.44),
we obtain

JN = nv̄

4
= n

√
kBT

2πm
(4.12b)

Because each particle has the same mass, the mass flux is given by

Jm = m
∫

�

fv · n d� = ρv̄

4
(4.13)

Substituting ψ = mv2/2 into Eq. (4.8), one obtains the kinetic energy flux JKE.
In an equilibrium state with an isotropic distribution, the kinetic energy flux in the
positive z-direction is JKE = πm

2

∫∞
0 f (v)v5dv, whereas the net kinetic energy flux is

zero. Note that Eq. (4.8) is a general equation that is also applicable to nonequilibrium
and anisotropic distributions.

When ψ = mv, the momentum flux is a vector, which is often handled by con-
sidering individual components. Note that the rate of transfer of momentum across a
unit area is equal to the force that the area must exert upon the gas to sustain the equi-
librium. Furthermore, the surface may be projected to three orientations, yielding a
nine-component tensor in the momentum flux:

Pi j =
∫

�

(mvj ) fvi d� , where i, j = 1, 2, 3 (4.14a)

Here, (v1, v2, v3) and (vx , vy, vz) are used interchangeably. Let P = ρv2i , which
is always positive, and τi j = ρv j vi for i �= j . We can rewrite the above equation as

Pi j = nmv jvi = ρv j vi = Pδi j + τi j (4.14b)

where δi j is the Kronecker delta, which is equal to 1 when i = j and 0 when i �= j .
It can be seen that P is the normal stress or static pressure and τi j (i �= j) is the
shear stress, which is zero in a uniform stationary gas (without bulk motion). Notice
that the velocity distribution in the vicinity of the wall is the same as that away from
the wall because of the reflection by the wall. The pressure is now related to the
momentum flux, i.e., 3P = ρ(v2x + v2y + v2z ) = ρv2, or
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P

ρ
= 1

3
v2 (4.15)

which is Boyle’s law. Compared with the ideal gas equation, the right-hand side must
be related to temperature. In kinetic theory, temperature is associated to the mean
translational kinetic energy of the molecule according to

3

2
kBT = 1

2
mv2 = 1

2
mv2x + 1

2
mv2y + 1

2
mv2z (4.16)

We have derived the above equations from statistical mechanics in Chap. 3. The
temperature defined based on the kinetic energy of the particles is sometimes referred
to as the kinetic temperature. Combining Eqs. (4.15) and (4.16), we get the ideal gas
equation, P = nkBT , as expected. From the above discussion, one can see clearly
how the macroscopic properties such as pressure and temperature are related to the
particle distribution function. For ideal gases at equilibrium, we have derived the
Maxwell velocity and speed distributions in Chap. 3.

Example 4.1 Show that P = ρv2n, where vn is the velocity component normal to the
wall, and P = ρv2/3 for equilibrium distribution.

Solution Consider the horizontal plane shown in Fig. 4.1 as the wall, where at
the bottom is a gas in equilibrium. Multiplying Eq. (4.7) by mv gives the momen-
tum of the particles with velocities between v and v + dv, impinging on the wall:
mv f (v)v · n dAdtd� , which of course is equal to the impulse on the wall: dFdt .
The normal component vn = v · n = v cos θ contributes to an impulse on the wall:
mv2n f (v)dAdtd� , that is always positive regardless of the sign of vn . However,
the contributions of all parallel components cancel out due to isotropy. The pres-
sure can be evaluated by integrating over all velocities, P = ∫

�
mv2n f (v)d� =

mnv2n = ρv2n. We have used the definition of local average given by Eq. (4.5). If
the distribution is isotropic, then P = m

∫∞
0

∫ 2π
0

∫ π

0 f (v)v4 cos2 θ sin θ dθdφdv =
4πm
3

∫∞
0 f (v)v4 dv. Compared with v2 = 1

n

∫∞
0

∫ 2π
0

∫ π

0 f (v)v4 sin θ dθdφdv =
4π
n

∫∞
0 f (v)v4dv, we obtain P = 1

3mnv2 = 1
3ρv

2. The distribution function is uni-
form inside the container; hence, the wall may be a physical wall or merely an
imaginary one since pressure exists everywhere in the fluid.

4.1.2 The Mean Free Path

The mean free path, defined as the average distance the particle travels between
two subsequent collisions, is a very important concept. It is often used to determine
whether a given phenomenon belongs to the macroscale (continuum) regime or oth-
erwise falls in themicroscale regimewhen the governing equations derived under the
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Fig. 4.2 Schematic used for
a simple derivation of the
mean free path

d2d •

• •

•
•

•

vdt

assumption of local equilibrium break down. One of the applications is in microflu-
idics, to be discussed later in this chapter, and another is in the electrical and heat
conduction in solids, which will be studied in Chap. 6.

Consider the case shown in Fig. 4.2: a particle of diameter d moving at an average
velocity v̄ (assuming all other particles are at rest). During a time interval dt, the
volume swept by the particle within d from the centerline is dV = (πd2)v̄dt . The
ndV particles, whose centers are inside this volume element, will collide with the
moving particle. Therefore, the frequency of collisions or number of collisions per
unit time is n(πd2)v̄. The time between two subsequent collisions, τ , is the inverse
of the frequency of collision. The mean free path 
 is the average distance that a
particle travels between two subsequent collisions and is equal to the ratio of the
average velocity to the frequency of collision. Therefore,


 = v̄τ ≈ (nπd2)−1 (4.17)

and depends only on the particle size and the number density. The average time
between two subsequent collisions τ is termed the relaxation time,, and the average
frequency of collision τ−1 is the scattering rate or collision rate. The scattering rate
is the average number of collisions an individual particle experiences per unit time.

For electrons whose diameters are negligible compared with that of the other
particles that scatter them, the mean free path is


electron(or
photon) = 1

nAc
(4.18)

where Ac is the scattering cross-sectional area and n is the number density of the
scatter, such as phonons or defects. Equation (4.18) also applies to the case of photons
that can be scattered by particles, such as molecules in the atmosphere. The photon
mean free path is also called the radiation penetration depth, as will be discussed in
Chap. 8.

When the relative movement of particles is considered based on the Maxwell
velocity distribution, Eq. (4.17) is modified slightly for an ideal gas as follows:
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Table 4.1 Molecular
diameter for selected
molecules [1]

Gas type Molecular weight,M
(kg/kmol)

Diameter, d (10−10 m,
or Å)

H2 2 2.74

He 4 2.19

O2 32 3.64

N2 28 3.78

Air 29 3.72

CH4 16 4.14

NH3 17 4.43

H2O 18 4.58

CO2 44 4.64


 ≈ 1√
2πnd2

= kBT√
2π Pd2

(4.19)

The scattering rate, or the collision frequency, is

τ−1 = v̄/
 (4.20)

Notice that the relaxation time τ is an important characteristic time. It tells how
quickly the systemwill restore to equilibrium (at least locally), if disturbed. Table 4.1
lists the diameters for some typical molecules.

Example 4.2 Calculate the mean free path for air at 25 °C and 1 atm. How does it
compare with the average spacing between molecules? Find the relaxation time and
the number of collisions a molecule experiences per second. What is the speed of
sound in air? Explain why we can smell odor far away from its source quickly.

Solution n = P/(kBT ) = 1.0133×105/1.381×10−23/298.15 = 2.46×1025 m−3.

The average spacing between molecules can be calculated from L0 = n−1/3 =
3.4 nm. The mean free path calculated from Eq. (4.19) is 
 = (

√
2πnd2)−1 =

66 nm (d = 0.37 from Table 4.1), which is about 20 times longer than the molecular
spacing. The speed of sound can be calculated from va = √

γ RT = 345 m/s using
γ = cp/cv = 1.4 and R = kB/m. The average speed is v̄ = √

8kBT/πm = 466 m/s.
Therefore, the relaxation time is τ = 
/v̄ = 0.14 ns. On the average, each molecule
experiences τ−1 or more than 7 billion collisions per second. Although the mean
free path is very small, molecules may travel for a long (absolute) distance because
of the high average speed. It does not take many molecules for the nose to detect an
odor. The odor source usually contains numerous individual molecules.

Let p(ξ) be the probability that a molecule travels at least ξ between collisions.
The probability for the particle to collide within an element distance dξ is dξ/
.
Thus, the probability for a free path greater than ξ + dξ is less than p(ξ) by the
probability of collision between ξ and ξ + dξ . We can write the probability for a
molecule to travel at least ξ + dξ as
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Fig. 4.3 Free-path
distribution functions

ξ

p(< ξ )

ΛF (ξ )

1

0
ln2Λ

p(ξ + dξ) = p(ξ)

(
1 − dξ




)
(4.21)

Therefore, dp(ξ)

p(ξ)
= − dξ



. Since p(0) = 1, integrating from 0 to ξ yields

p(ξ) = e−ξ/
 (4.22)

The probability density function (PDF) for the free path is given by

F(ξ) = −dp(ξ)

dξ
= 1



e−ξ/
 (4.23)

One can verify that
∫∞
0 F(ξ)dξ = 1 and ξ̄ = ∫∞

0 F(ξ)ξdξ = 
. Therefore,
Eq. (4.23) is indeed the free-path PDF. The probability for molecules to have a free
path less than ξ is given as

p(< ξ) = 1 − p(ξ) =
ξ∫

0

F(ξ)dξ = 1 − e−ξ/
 (4.24)

Figure 4.3 shows the free-path distribution functions. Equation (4.24) is an expo-
nentially decaying function. In dealing with radiation or photons, the mean free path
is called the radiation penetration depth. Radiation will decay exponentially with
as the distance increases in an absorbing medium. The fraction of photons that will
transmit through a distance equal to the penetration depth is e−1 ≈ 37%.
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4.2 Transport Equations and Properties of Ideal Gases

Consider a molecular gas at steady state but not at equilibrium, with a 1D gradient
of some macroscopic properties. Under the assumption of local equilibrium,

f (r, v, t) = f (ξ, v) (4.25)

where ξ is the coordinate along which the gradient occurs. The average collision
distance 
a is defined as the separation of the planes at which particles, on the
average, across a plane located at ξ0 will experience the next collision, as shown in
Fig. 4.4a. It may be assumed that particles that will cross the plane before the next
collision are located in a hemisphere of radius equal to the mean free path 
. The
problem is how to obtain the average projected length (
 cos θ ) in the ξ -coordinate,
as shown in Fig. 4.4b. A simple calculation yields


a =
∫ 2π
φ=0

∫ π/2
θ=0 
 cos θdA cos θ sin θdθdφ∫ 2π

φ=0

∫ π/2
θ=0 dA cos θ sin θdθdφ

= 2π(
/3)dA

πdA
= 2

3

 (4.26)

Note that the projected area dA cos θ is used to account for the particle flux. One
can consider the free-path distribution and integrate over all free paths. The resulting

a/
 is the same [4].

4.2.1 Shear Force and Viscosity

Consider a gas flowing in the x-direction with a velocity gradient in the y-direction,
as shown in Fig. 4.5. Here, vB is the average or bulk velocity, which has a nonzero
component only in the x-direction. The velocity due to random motion is sometimes

ξ0

ξ

Λ

ξ0

ξ

(a) (b)

aΛ
aΛaΛ

Fig. 4.4 Illustration of the concepts of a average planes of collision and b average collision distance

a, with respect to the mean free path
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Fig. 4.5 Schematic of a
fluid moving with a bulk
velocity vB(y) that varies in
the y-direction
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called thermal velocity, which follows certain equilibrium distribution with an aver-
age equal to zero. The fact that the equilibrium distribution is followed everywhere is
based on the assumption of local equilibrium. Molecular random motion will cause
an exchange of momentum between the upper layer and the lower layer. The net
effect is a tendency to accelerate the flow in the upper layer and decelerate the flow
in the lower layer. In other words, the flow below the y = y0 plane will exert a shear
force to the flow above the y = y0 plane and vice versa. The average momentum
of the particles is a function of y only, i.e., px (y) = mvB(y). The momentum flux
across the y = y0 plane can be evaluated using the concept of mean planes above
and below y = y0. It may be assumed that all the molecules going upward across
the y = y0 plane are from the y = y0 − 
a plane. Therefore, the momentum flux in
the positive y-direction is

J+
p = nv̄

4
m

(
vB0 − 
a

dvB
dy

∣∣∣∣
y0

)
(4.27a)

where nv̄/4 is the molecular flux, with v̄ as the average speed without considering
bulk motion, and vB0 = vB(y0). Similarly, the momentum flux downward is

J−
p = nv̄

4
m

(
vB0 + 
a

dvB
dy

∣∣∣∣
y0

)
(4.27b)

The net momentum flux, which is equal to the shear force Pyx = τyx = J+
p − J−

p ,
is therefore

τyx = −1

3
ρv̄


dvB
dy

∣∣∣∣
y0

(4.28)

Comparing Eq. (4.28) with Newton’s law of shear stress in Eq. (2.36), τyx =
−μ dvB

dy

∣∣∣
y0
, dynamic viscosity is obtained from the simple kinetic theory as
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μ = 1

3
ρv̄
 (4.29)

The above equation provides an order-of-magnitude estimate. While the density
is proportional to pressure, the mean free path is inversely proportional to the number
density, or density. The average velocity is a function of temperature only. Therefore,
the viscosity depends only on temperature and the type of molecules, but not on
pressure. The result from more detailed calculations and experiments suggests that
Eq. (4.29) be multiplied by 3/2 to give

μ = 1

2
ρv̄
 = mv̄

2
√
2πd2

= 1

πd2

√
mkBT

π
(4.30)

Equation (4.30) is recommended for use in the exercises to estimate the viscosity.
It should be noted that the above discussion is based on the simple ideal gas model
that each molecule is a rigid (or hard) sphere and all collisions are elastic. Additional
modifications have been made to correctly account for the temperature dependence.
These models will not be discussed here, and interested readers can find them in the
literature [1–8].

4.2.2 Heat Diffusion

Heat conduction is due to the temperature gradient inside the medium. In an ideal
molecular gas, the random motion of molecules transports thermal energy from
place to place. Sometimes, we call the particles that are responsible for thermal
energy transport heat carriers. Similar to the argument for momentum transfer, it is
straightforward to illustrate heat diffusion in a 1D temperature gradient system at
steady state and under local equilibrium, using Fig. 4.6. The net energy flux across
the x = x0 plane is given by

Fig. 4.6 One-dimensional
heat diffusion

x
0x

T

0T

0 ax + Λ0 ax − Λ
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JE = J+
E − J−

E = nv̄

4
[ε̄(x0 − 
a) − ε̄(x0 + 
a)] = −1

3
nv̄


dε̄

dx

∣∣∣∣
x0

(4.31)

where ε̄ is the average thermal energy per molecule and, hence, is a function of tem-
perature. Based on the definition of specific heat, n dε̄

dx

∣∣
x0

= n dε̄
dT

dT
dx

∣∣
x0

= nmcv
dT
dx

∣∣
x0
.

The heat flux is related to the temperature gradient as

q ′′
x = JE = −1

3
ρcvv̄


dT

dx

∣∣∣∣
x0

(4.32)

which is (1D) Fourier’s law with the thermal conductivity given as

κ = 1

3
ρcv
v̄ (4.33)

Because cv and v̄ are functions of temperature only and
 is inversely proportional
to ρ, the thermal conductivity of a given ideal gas is a function of temperature and
independent of pressure.

Comparing Eq. (4.30) with Eq. (4.33), we have κ = 0.667μcv. The calculated
results are consistently lower than the tabulated values for real gases. The reason is the
assumption that the average collision distance is the same for both momentum trans-
port and energy transfer. Generally speaking, molecules with a larger speed travel
farther than those with a smaller speed. Once the molecules pass the mean plane,
they will persist a little while before collision. The persistence effect is larger for
energy transfer because the translational kinetic energy of a molecule is proportional
to the square of the speed, while that of momentum is proportional to the velocity
components. In gases, the average collision distance is greater for energy transfer
and depends on the type of gas. Extensive studies of the similarity between μ and κ

have resulted in a more accurate expression for calculating the thermal conductivity
of ideal gases than the one given in Eq. (4.33). Eucken’s formula relates the Prandtl
number Pr ≡ ν

α
= cpμ

κ
to the specific heat ratio as follows [7]:

Pr = 4γ

9γ − 5
(4.34)

Based on Eucken’s formula, the following equation is recommended to replace
Eq. (4.33) in predicting the thermal conductivity of ideal gases:

κ = 9γ − 5

4
cvμ (4.35)

where μ can be calculated from Eq. (4.30). For a monatomic gas, γ = 5/3 and

κ = 2.5μcv = 1.25ρcv
v̄ (4.36a)
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For a diatomic gas at intermediate temperatures when the translational and rota-
tional modes are fully excited but no vibrational modes have been excited, we have
γ = 1.4 and

κ = 1.9μcv = 0.95ρcv
v̄ (4.36b)

The results calculated from Eq. (4.35) agree reasonably well with the tabulated
thermal conductivity values of typical gases. Additional corrections are required
when the temperature deviates significantly from the room temperature. More com-
plicated formulations are needed to better account for the temperature dependence
[5–8].

Example 4.3 Calculate the viscosity and the thermal conductivity of air at 300 K
and 100 kPa. How will your answers change if the temperature is increased to 306 K
and the pressure is decreased to 50 kPa?

Solution From Eq. (4.30), we have μ = 1
πd2

√
mkBT

π
=

1
π(3.72×10−10)2

(
29

6.022×1026 · 1.381×10−23×300
π

)1/2 = 1.83× 10−5 N · s/m2. It is within 1%

of the measured value. From Eq. (4.36b) and cv = R/(γ − 1) = 716.6 J/kgK,
κ = 1.9μcv = 0.025 W/mK. This is within 5% of the measured value. Notice that
μ and κ depend on temperature only. If the change in specific heat is neglected,
then κ ∝ μ ∝ √

T . When the temperature is increased by 2%, both κ and μ will
increase by 1%.

4.2.3 Mass Diffusion

Consider a small duct linking two gas tanks containing different types of ideal gases
at the same temperature and pressure, as shown in Fig. 4.7a. The total number density
of the mixture in the system is conserved such that n = nA + nB, as illustrated in
Fig. 4.7b. Therefore,

dnA
dx

= −dnB
dx

(4.37)

Fick’s law states that

JN ,A = −DAB
dnA
dx

(4.38a)

or

Jm,A = −DAB
dρA

dx
(4.38b)
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Gas A
nA = n
nB = 0

Gas B
nA = 0
nB = n

x

x

(a)

(b)

A Bn n n+ =

BA ( )( ) n xn x

AN

BN

Fig. 4.7 Schematic of binary diffusion between ideal gases: a Two reservoirs of different types
of gas molecules connected through a duct. b Concentration distributions in terms of the number
densities

where DAB in m2/s is called the binary diffusion coefficient or diffusion coefficient
between A and B. Notice that the molecular transfer rate ṄA = JN ,AAc, where Ac is
the cross-sectional area, and the mass transfer rate ṁA = Jm,AAc. Similarly, we can
write Fick’s law for type B molecules as

JN ,B = −DBA
dnB
dx

(4.39a)

or

Jm,B = −DBA
dρB

dx
(4.39b)

Because the flux of type B molecules must balance that of type A molecules to
maintain a uniform pressure, we have

JN ,A = −JN ,B (4.40)

Equations (4.37) through (4.40) imply that DBA = DAB.
Using the microscopic descriptions of mass diffusion, one can write the positive

and negative flux at a certain location x0 using the average distance concept discussed
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earlier. Hence,

JN ,A = v̄

4

[
nA(x0) − 
a

dnA
dx

∣∣∣∣
x0

]
− v̄

4

[
nA(x0) + 
a

dnA
dx

∣∣∣∣
x0

]

The result is

JN ,A = 1

3

v̄

dnA
dx

∣∣∣∣
x0

(4.41)

Comparing Eq. (4.41) with Eq. (4.38a), we have

DAB = 1

3

v̄ (4.42)

In the case of similar molecules (such as isotopes), DAA’ = 2
3

1
nπd2

√
kBT
πm , which

is often called the self-diffusion coefficient. The calculation for the mean free path
and the average velocity for a mixture of dissimilar molecules is certainly more
involved. However, a simple expression can be obtained using the central distance
d̄ = (dA + dB)/2 and the reduced mass m̄ = mAmB/(mA + mB); that is

DAB = 3

8

1

nd̄2

√
kBT

2πm̄
(4.43)

Equation (4.43) is recommended for calculation of the binary diffusion coefficient.
Recall that the Schmidt number is the ratio of the momentum diffusivity to the mass
diffusivity, i.e.,

Sc ≡ ν

DAB
(4.44)

The Lewis number is defined as the ratio of the mass diffusivity to the thermal
diffusivity as follows:

Le ≡ DAB

α
= Pr

Sc
(4.45)

Heat and mass transfer analogy provides a convenient way to calculate convective
mass transfer in a boundary layer. The mass transfer rate is related to the convective
mass transfer coefficient hm by

ṁB = hm As(ρB,s − ρB,∞) (4.46)

where As is the surface area, ρB is the density of species B, and subscripts s and ∞
signify that the quantity is at the surface and in the free stream, respectively. Heat
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and mass transfer analogy gives

hm = h

ρcp
Le−2/3 (4.47)

Equations (4.46) and (4.47) are very useful for calculating the heat transfer during
evaporation demonstrated in the following example.

Example 4.4 Dry air at 30 °C flows at a speed of 2 m/s over a flat plate, with an area
of 3× 3 m2, which is maintained at 24 °C. A thin layer of water is formed on the top
surface where convection occurs. Determine the heat transfer rate from the plate to
the air. For water at 24 °C, the saturation pressure Psat = 3 kPa and the latent heat
of evaporation hfg = 2445 kJ/kg.

Solution Neglect the temperature gradient inside the water layer and radiative heat
transfer. We first evaluate air properties at 300 K and 100 kPa, as in Examples 4.2
and 4.3. The results are ρ = P/RT = 1.163 kg/m3, μ = 1.83 × 10−5 N s/m2,
cp = 1003 J/kgK, Pr = 0.737, and κ = 0.025 W/mK. Hence, ReL = 3.8 × 105.
From Eq. (2.40), h̄ = 0.664 κ

L Re
1/2
L Pr1/3 = 3.08 W/m2 · K and Q̇conv = hAs(Ts −

T∞) = −166.2 W. The negative sign indicates that the convection heat transfer is
from the air to the surface.

To calculate the mass transfer rate, we assume that ρB,∞ = 0 (dry air) and ρB,s =
PsatMH2O/(R̄Ts) = 3000×18/(8314×297) = 0.022 kg/m3 (saturatedwater vapor).
Using Eq. (4.43) with T = 300 K, we can estimate the binary diffusion coefficient
between air and water to be DAB = 1.7 × 10−5 m2/s, which is about two-thirds
of the measured value: DAB = 2.56 × 10−5 m2/s. Considering the simplifications
made in deriving the diffusion coefficient, the agreement is reasonable. Using the
measured DAB, we find Le = DAB/α = 1.2 and hm = 0.00234 m/s from Eq. (4.47).
The mass transfer rate ṁB = hm AsρB,s = 0.46 g/s, and the heat transfer rate by
evaporation is Q̇evap = ṁBhfg = 1124.7 W. The total heat transfer rate is the sum
of evaporation and convection, i.e., Q̇evap + Q̇conv = 1124.7 − 166.2 = 958.5 W.

This example suggests that evaporative cooling is an important mechanism of heat
transfer at wetted surfaces.

4.3 Intermolecular Forces

Although the mean-free-path method is simple and can predict the temperature and
pressure dependence of the transport coefficient correctly, the rigid-elastic-sphere
model does not represent the actual collision process. Collision between molecules
does not necessarily occur by contact, as in the casewith billiard balls. It is a forcefield
described by the intermolecular potential that governs the collision process between
molecules, since the force is the gradient of the potential function. It should be
noted that electromagnetic forces are responsible for all intermolecular interactions.
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Intermolecular forces are also responsible for the deviation from ideal gas model as
well as the existence of different phases (solid, liquid, or gas) of a substance.

Molecules are held together by chemical bonds. The forces between atoms within
a molecule are called intramolecular forces. Typical examples are ionic bonds and
covalence bonds. In an ionic compound (such as CsI or MgO), valence electrons
are transferred from the metal to the nonmetal. The positively charged ion (cation)
and negative charged ion (anion) attract each other by electrostatic forces. Covalence
bonds are usually formed between nonmetals where the valence electrons are shared
between the atoms, such as N2, Cl2, SiC, etc. When the electronegativity of the two
atoms is different, a covalent bond is said to be a polar covalence bond since there
is a dipole moment pointing from the partial positive side to the partial negative
side. In polar molecules, such as SiC or SiO2, the electrons are neither completely
transferred from one atom to another nor evenly shared as in homonuclear diatomic
molecules, such as N2 or Cl2. Note that CH4, CO2, and C2H4 are nonpolar molecules
due to structural symmetry. It should be mentioned that while all ionic compounds
are inherently polar, they are not usually referred to as polar molecules.

Repulsive forces also exist between atoms and molecules when the separation
distance becomes very small, on the order of 0.1 nm, due to the overlap of electronic
orbits (or electron clouds) when the atoms get very close to each other. While the
internuclear forces can be predicted by the quantum mechanical theory, it is difficult
to find an explicit expression [9]. Generally speaking, the repulsive forces are short-
ranged and increases sharply as the two atoms or molecules approach each other to
a distance below 0.5 nm. The repulsive potentials are typically modeled empirically.
A common form is the power-law potential, given as

φ(r) = (σ/r)n (4.48)

where σ is a constant, r is the center-to-center distance between the atoms or
molecules, and n is an integer that is typically from 9 and 16. Note that Eq. (4.48)
becomes the hard sphere potential when n → ∞, since the potential is infinite for
r < σ and zero for r > σ . This describes the rigid sphere assumption in which the
force is zero until the two atoms or molecules having a diameter σ touch each other.
Exponential potentials with the form φ(r) = ae−r/σ0 , where a and σ0 are constants,
have also been used to model the repulsive force [9]. Note that Eq. (4.48) can be used
to model both intramolecular and intermolecular repulsive forces.

4.3.1 Intermolecular Attractive Forces

Attractive forces between molecules usually are weaker and have a longer range
than those between atoms inside the molecule. They can be grouped into ion–dipole
forces, hydrogen bonds, and van der Waals forces that may be subdivided into three
categories. The details are given in the following.
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The ion–dipole force is an electrostatic attraction between a charged ion and a
dipole. A cation attracts the partially negative end of a polar molecule, while an
anion attracts the partially positive end of a polar molecule. Ion–dipole intermolec-
ular forces are important in many solids, liquids, and solutions, especially for ionic
compounds in polar liquids. According to Coulomb’s law, the force and potential
between two charges scale with 1/r2 and 1/r , respectively. For a charge and a fixed
dipole, the attractive force scales with 1/r3, while the potential scales with 1/r2.
Furthermore, for a charge and a freely rotating dipole, the force scales with 1/r5,
while the potential scales with 1/r4 [9].

The hydrogen bondmay be considered as a special type of dipole–dipole attractive
force that isweaker than the ion–dipole force but stronger than ordinary dipole–dipole
forces. Hydrogen bonding occurs when two conditions are met: (1) the hydrogen
atom is bonded to a highly electronegative atom (such as O, N, and F); (2); there
exists another electronegative atom with a lone pair of electrons in the vicinity of
the hydrogen atom. In essence, the hydrogen atom in a hydrogen bond is shared
by two electronegative atoms. Hydrogen bonds may occur within a molecule (in
some organic compounds) or between molecules. In a water molecule, however, the
intramolecular bonds between hydrogen and oxygen atoms are covalence bonding
with an interatomic distance of about 0.1 nm. In the liquidwater, the distance between
O andH atoms in adjacentmolecules is approximately 0.176 nm,which is a hydrogen
bond [9]. Hydrogen bonding is also responsible for the hydrophobic effect. There
is no simple equation for the interaction potential for hydrogen bonding, typically,
the potential scales with 1/r2 as for charge-fixed dipole interaction. The strength of
most hydrogen bonds, measured by the bonding energy, is more than an order of
magnitude than a typical van der Waals bond.

In 1873, Dutch theoretical physicist Johannes D. van der Waals studied real gas
behavior and attributed the non-ideality to intermolecular interactions. Furthermore,
he developed an equation of state named after him, i.e., the van der Waals equation,
which applies to both gases and liquid. This work won him the Nobel Prize in
Physics in 1910. Generally speaking, van der Waals forces are weak attractive forces
betweenmolecules, and the origin can be categorized into three groups: dipole–dipole
interactions, dipole–induced dipole interactions, and dispersion forces.

The attractive force between permanent dipoles is due to the Keesom interaction,
named afterWillemH. Keesom, who developed the first mathematical description of
dipole–dipole interactions in 1921. He received a doctoral degree from theUniversity
of Amsterdam under van der Waals and worked with Kamerlingh Onnes at the
University of Leiden, where he made important contributions to cryogenics and
helium liquefaction in the early twentieth century. Keesom’s results of dipole–dipole
interactions show that the intermolecular potential varies with the inverse sixth power
of the distance between themolecules. Examples of Keesom interactions are twoHCl
molecules, two CO molecules, or an HCl and a CO molecule.

When an ionic molecule or polar molecule is placed near a nonpolar molecule, the
molecule with a permanent dipole can induce a dipole in the neighboring molecule to
cause mutual attraction. The polarizability of atoms and molecules that arises from
such electronic displacements is known as the electronic polarizability. This type
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of force is called the Debye force, named after the Dutch-American physicist and
physical chemist Peter J. W. Debye (a Nobel laureate in Chemistry in 1936). The
Debye interaction or the induction interaction also gives an attractive potential that
scales with the inverse sixth power of the distance [9].

There exists another type of attractive force between all atoms andmolecules, even
totally neutral ones such as nitrogen (N2), methane (CH4), and helium (He). These
forces are called the London dispersion forces or dispersion forces, which are long-
range forces and can have an effect up to 10 nm. They are always present regardless
of the type of molecules and play an important role in many phenomena not only
between atoms and molecules but also between surfaces and small particles. The
physical origin lies in the random fluctuation of electron density or electron clouds
that give rise to temporal dipoles or instantaneous dipoles. These fluctuating dipoles
can induce other dipoles in the neighborhood. The London dispersion force is named
after the German-American physicist Fritz London, who used a quantummechanical
theory, called the second-order perturbation theory, to provide the first explanation of
the forces between noble gas atoms in 1930. London derived the interaction potential
between two dissimilar atoms as

φdisp(r) ∝ I1 I2
I1 + I2

α1α2

r6
(4.49)

where I1 and I2 are the first ionization potentials of the two atoms, respectively,
and α1 and α2 are the electronic polarizabilities of the respective atoms. Depending
on the polarizability, dispersion forces can be as large as or even greater than the
dipole–dipole force. It is worth emphasizing that the potential of all three types of
interactions that contribute to the total van der Waals interaction vary with 1/r6.

4.3.2 Total Intermolecular Pair Potentials

As discussed previously, the van der Waals forces due to dipole–dipole, dipole–
induced dipole, and fluctuating dipole–induced dipole interactions between two
molecules generally vary with 1/r7 for sufficiently large r, where r is the center-
to-center distance between the two molecules. The combination of the attractive and
repulsive potentials described previously leads to different semi-empirical functions
for the total intermolecular pair potential. There exist a large number of intermolecu-
lar potentials with varying complexity for atomistic simulations [10]. One of themost
common pair potentials is the Lennard-Jones <6, 12> potential, which was first pro-
posed in 1924 byBritishmathematician and physical chemist JohnE. Lennard-Jones.
The Lennard-Jones potential can be expressed in the following:

φi j (ri j ) = −4ε0

[(
r0
ri j

)6
−
(
r0
ri j

)12]
(4.50)
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Fig. 4.8 Illustration of the
intermolecular potential φ(r)
as a function of the distance
r between two molecules.
The subscripts i and j used in
Eqs. (4.50) and (4.51) are
dropped for simplicity
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where φi j is the intermolecular potential, ri j is the center-to-center distance between
the ith and jth particles, ε0 is a constant, and r0 is a characteristic length. Notice that
the potential has a minimum φi j = −ε0 at ri j ≈ 1.12r0, where the attractive and
repulsive forces balance each other. For typical gas molecules, r0 ranges from 0.25
to 0.4 nm. The potential function is illustrated in Fig. 4.8. The force between the
molecules is the negative gradient of the potential, i.e.,

Fi j = −∇φi j = 24ε0
r0

[
2

(
r0
ri j

)13
−
(
r0
ri j

)7] ri j
ri j

(4.51)

The combination of Eq. (4.51) with Eq. (3.1) allows a computer simulation of
the trajectory of each molecule when the initial position and velocity are prescribed.
Althoughmolecular dynamics is a powerful tool for dense phases and for the study of
phase change problems, it is not very effective in dealing with dilute gases. The direct
simulationMonteCarlo (DSMC)method is an alternative to the deterministicmethod
and has been used extensively in gas dynamics. Additional discussions about these
numerical techniques will be given in Sect. 4.4 on microfluidics. In the next section,
a more sophisticated kinetic theory based on the Boltzmann transport equation will
be presented.

4.4 The Boltzmann Transport Equation

In addition to the rigid sphere assumption, the simple kinetic theory is based on local
equilibrium and cannot be used to study nonequilibrium processes that happen at a
timescale much less than the relaxation time or at a length scale less than the mean
free path. The Boltzmann transport equation (BTE) is the basis of classical transport
theories of molecular and atomic systems. It is not limited to local equilibrium and
can be applied to small length scales and small timescales. The equation formulated
by Ludwig Boltzmann in his original investigation of the dynamics of gases over
130 years ago has been extended to the study of electron and phonon transport
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in solids, as well as radiative transfer in gases. Macroscopic conservation and rate
equations can be derived from the BTE under appropriate assumptions. A brief
introduction of the BTE is given in this section.More detailed coverage of the history,
formulation, and solution techniques of the BTE can be found from Chapman and
Cowling [6], Tien and Lienhard [7], and Cercignani [8].

Suppose at time t, a particle at the spatial location r moves with a velocity v. At
t + dt , without collision, the particle will move to r+ dr = r+ vdt and its velocity
becomes v + dv = v + adt . Here, a = F/m is the acceleration in a body force
field. Therefore, in the absence of collision, the probability of finding a particle in
the phase space does not change with time. Therefore,

f (r + vdt, v + adt, t + dt) − f (r, v, t)
dt

= ∂ f

∂t
+ v · ∂ f

∂r
+ a · ∂ f

∂v
= 0 (4.52)

where ∂ f
∂r = ∇ f =

(
∂ f
∂x

∂ f
∂y

∂ f
∂z

)⎛⎝ x̂
ŷ
ẑ

⎞
⎠ is the gradient, and ∂ f

∂v = ∇v f =

(
∂ f
∂vx

∂ f
∂vy

∂ f
∂vz

)⎛⎝ x̂
ŷ
ẑ

⎞
⎠ can be considered as the gradient defined in the velocity space.

Equation (4.52) is the Liouville equation in classical mechanics. In the absence of
both body force and collision, the substantial derivative of the distribution function
is

D f

Dt
≡ ∂ f

∂t
+ v · ∂ f

∂r
= 0 (4.53)

Generally speaking, particles in random motion collide with each other at very
high frequencies unless the density is extremely low. A major advance in the kinetic
theory of gases is the introduction of the collision term proposed by Boltzmann in
the 1870s. The BTE can be written as

∂ f

∂t
+ v · ∂ f

∂r
+ a · ∂ f

∂v
=
[
∂ f

∂t

]
coll

(4.54)

where the collision term can be separated into a source term and a sink term such
that
[
∂ f

∂t

]
coll

= �+ − �− =
∑
v′

[
W (v, v′) f (r, v′, t) − W (v′, v) f (r, v, t)

]
(4.55)

Here, W (v, v′) is called the scattering probability, which can be understood as the
fraction of particles with a velocity v′ that will change their velocity to v per unit
time due to collision. The function W depends on the nature of the scatters and is
usually a complicated nonlinear function of the velocities.
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The BTE is a nonlinear integro-differential equation that cannot be solved exactly.
Approximations are usually used to facilitate the solution for given applications.
The relaxation time approximation provides an easier way to solve the BTE under
conditions not too far away from the equilibrium. It gives a linear collision term:

[
∂ f

∂t

]
coll

= f0 − f

τ(v)
(4.56)

where f0 is the equilibrium distribution and the relaxation time τ is often treated
as independent of the velocity. The solution of Eq. (4.56) gives f (t) − f0 =
[ f (t1) − f0] exp[−(t − t1)/τ ] for t ≥ t1, where t1 is the initial time when the
system deviates somewhat from the equilibrium. This suggests that an equilibrium
will be reached at a timescale �t = t − t1 on the order of τ . Furthermore, it is
collision that restores a system from a nonequilibrium state to an equilibrium state.
David Enskog proposed a successive approximation method to include higher-order
scattering terms by introducing a small perturbation to the equilibrium distribution.
This is the well-known Chapman–Enskog method [6–8].

4.4.1 Hydrodynamic Equations

The continuity, momentum, and energy equations can be derived from the BTE.
Multiplying the BTE by a molecular quantity ψ and integrating it over all velocities,
we have
∫

�

ψ
∂ f

∂t
d� +

∫

�

ψv · ∂ f

∂r
d� +

∫

�

ψa · ∂ f

∂v
d� =

∫

�

ψ(�+ − �−)d� (4.57)

Using the definition of local average ψ̄ = 1
n

∫
�

f ψ d� from Eq. (4.5), the first
term in the above equation becomes

∫

�

ψ
∂ f

∂t
d� = ∂

∂t

∫

�

ψ f d� −
∫

�

f
∂ψ

∂t
d� = ∂(nψ̄)

∂t
− n

∂ψ

∂t
(4.58a)

Note that ∇ · (ψv) = v · ∇ψ + ψ∇ · v = v · ∇ψ since the velocity components
are independent variables in the phase space. For the second term, we have

∫

�

ψv · ∇ f d� = ∇ ·
∫

�

ψv f d� −
∫

�

f ∇ · (ψv)d� = ∇ · (nψv) − nv · ∇ψ

(4.58b)

The third term is
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∫

�

ψa · ∂ f

∂v
d� = a ·

⎡
⎣ (ψ f )|vx ,vy ,vz=∞

vx ,vy ,vz=−∞ −
∫

�

f
∂ψ

∂v
d�

⎤
⎦ = −na · ∂ψ

∂v
(4.58c)

Substituting Eq. (4.58) into Eq. (4.57), we obtain

∂

∂t
(nψ̄) + ∇ · (nψv) − n

(
∂ψ

∂t
+ v · ∇ψ + a · ∂ψ

∂v

)
= �+ − �− (4.59)

where the right-hand side contains a source term and a sink term. When ψ is pro-
portional to the velocity to the jth power (j = 0, 1, 2), or the jth moment, the source
and sink terms in Eq. (4.59) cancel out when reaction is not considered, and the gas
particles can be treated as rigid spheres.

We can substitute ψ = m, the zeroth moment, into Eq. (4.59) to get the mass
balance as

∂ρ

∂t
+ ∇ · (ρvB) = 0 or

Dρ

Dt
+ ρ∇ · vB = 0 (4.60)

where vB = v̄ is the bulk velocity. This is exactly the same as Eq. (2.41). One can
extend the above derivation to a system of multiple gas species involving chemical
reaction. For the ith species, it can be shown that

Dρi

Dt
+ ρi∇ · vi,B = �i,net (4.61)

where �i,net represents the net rate of creation due to reaction.
To derive the momentum equation, substitute the first moment ψ = mv into

Eq. (4.59). The first term becomes ∂(ρvB)/∂t . The second term is more complicated.
We can separate the velocity as v = vB + vR, where vR is due to the random motion
and is called thermal velocity, whose average is zero. Therefore, vv = vBvB + vRvR,
where vRvR is a dyadic whose array is a second-order tensor. In fact, ρvRvR is
nothing but the stress tensor given in Eq. (4.14). Because ψ = mv and the velocity
is an independent variable, both ∂ψ/∂t and ∇ψ vanish. The last term is simply ρa.
The combination of all the terms gives

ρ
∂vB
∂t

+ vB
∂ρ

∂t
+ vB∇ · (ρvB) + ρ(vB · ∇)vB + ∇ · {Pi j}− ρa = 0

Applying the mass balance equation, we can simplify the momentum equation as

DvB
Dt

= − 1

ρ
∇ · {Pi j}+ a (4.62)

The stress tensor can be obtained fromEq. (4.14).WhenStokes’ hypothesis is used
to simplify the constitutive relations between the stresses and the velocity gradients
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of a viscous fluid, we have

Pi j =
{
P − 2μ∂vi

∂xi
+ 2

3μ∇ · vB, i = j

−μ
(

∂vi
∂x j

+ ∂v j
∂xi

)
, i �= j

(4.63)

where xi = x, y, z (for i = 1, 2, 3), and vi (i = 1, 2, 3) is the velocity component of
the bulk velocity vB. Substituting Eq. (4.63) into Eq. (4.62), one obtains exactly the
same result as Eq. (2.42). The derivation is left as an exercise (see Problem 4.12).

Next, we derive the energy equation for viscous flow of a monatomic gas, using
the second moment. ψ = ε = 1

2mv2R because only the random motion contributes
to the internal energy. The first term in Eq. (4.59) becomes ∂(ρu)

/
∂t , where u is

the mass specific internal energy. The second term ∇ · (nψv) = 1
2∇ · (ρvBv2R) +

1
2∇ · (ρvRv2R) =∇ · (ρuvB) + ∇ · JE , where JE = n

∫
�

fvRεd� is the energy

flux vector to be discussed further in Sect. 4.3.2. Notice that ∂( 12mv2R)/∂t = 0 and

nv · ∇( 12mv2R) = ρv · [vR · ∇(v − vB)] = −ρv · (vR · ∇vB) = {Pi j} : ∇vB, which
can be considered as the product of themomentumflux and the bulk velocity gradient.
This tensor product can be calculated according to

{
Pi j
} : ∇vB =∑

i

∑
j
Pi j

∂vi
∂x j

. For

the force term, we have na∂( 12mv2R)/∂v = ρa · vR = 0. The energy conservation
equation can be expressed as

∂

∂t
(ρu) + ∇ · (ρuvB) + ∇ · JE + {Pi j} : ∇vB = 0

After it is simplified using the continuity equation, we have

ρ
Du

Dt
= −∇ · JE − {Pi j} : ∇vB (4.64)

The left-hand side consists of the transient term and the advection term. Among
the two terms on the right-hand side, the first one corresponds to the energy transfer
by heat diffusion, and the second one includes the pressure effect as well as the
viscous dissipation. It can be shown that Eq. (4.64) is the same as Eq. (2.43) (see
Problem 4.13). In a stationary medium with vB = 0, Eq. (4.64) reduces to the heat
diffusion equation, κ∇2T = ρcv

∂T
∂t (see Problem 4.14). In the earlier derivations, the

velocity v is taken as an independent variable in the distribution function. Another
wayof deriving themacroscopic conservation equations is to take the randomvelocity
vR as the independent variable and modify the distribution function to a new one,
f (r, vR, t); see Ref. [6] for example.
In deriving the macroscopic conservation equations, it is assumed that f (r, v, t)

obeys certain equilibrium distribution at any given location. This is the local-
equilibrium assumption, which is only valid when themean free path is much smaller
than the characteristic length. For systems with dimensions comparable to or smaller
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than the mean free path, the local-equilibrium assumption breaks down, as will be
discussed in Sect. 4.4 and forthcoming chapters.

4.4.2 Fourier’s Law and Thermal Conductivity

The transport equations and coefficients can be obtained based on the BTE. Here,
as an example, the 1D Fourier’s law will be derived. When the characteristic time tc
is much greater than the relaxation time and the length scale is much greater than
the mean free path, we may write the BTE under the relaxation time approximation
using Eqs. (4.54) and (4.56) as

∂ f

∂t
+ v · ∂ f

∂r
= f0 − f

τ(v)
(4.65)

Assume that the temperature gradient is in the x-direction and the medium is
stationary. If the medium moves with a bulk velocity, we can set the coordinate to
move at the bulk velocity so that the local average velocity is zero. The distribution
function will vary with x only, and at steady state, we have vx

∂ f
∂x = f0− f

τ
. We further

assume that f is not very far away from equilibrium so that ∂ f
∂x ≈ ∂ f0

∂x , which is the
condition of local equilibrium. Therefore,

f ≈ f0 − τvx
∂ f0
∂T

dT

dx
(4.66)

The heat flux in the x-direction is

JE,x = q ′′
x =
∫

�

f εvxd� =
∫

�

(
f0 − τvx

∂ f0
∂T

dT

dx

)
εvxd� (4.67a)

Let us use Maxwell’s velocity distribution Eq. (3.43) as an example to explain the
distribution function and equilibrium distribution. The distribution function f can
be viewed as a function of vx , vy, and vz for a given T and other parameters when
integrating over the velocity space. On the other hand, it can be viewed as a function
of T by fixing vx , vy, vz , and all other parameters. This allows us to obtain ∂ f0/∂T ,
which, in turn, can be viewed as a function of vx , vy, and vz in order to carry out the
integration. Note that

∫
�

f0εvxd� = 0 because f0 is the equilibrium distribution.
More discussion will be given in Chap. 7. It should also be noted that the integration
over v2x is the same as the integration over v2y or v

2
z . Hence, the integration over v2x

equals one-third of the integration over v2. After some manipulations, we can write

q ′′
x = −κ

dT

dx
(4.67b)
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which is Fourier’s law with the thermal conductivity expressed as

κ = 1

3

∫

�

∂ f0
∂T

τv2εd� (4.68a)

The above integral is often converted to integration over the energy, which gives

κ = 1

3

∞∫

0

∂ f0
∂T

τv2εD(ε)dε (4.68b)

where D(ε) is the density of states, which can be considered as the volume in the
velocity space per unit energy interval. If we take both the relaxation time τ and
the velocity v as their average values that can be moved out of the integral, we have
κ ≈ 1

3τ v̄
2ρcv ≈ 1

3
v̄ρcv, which is identical to Eq. (4.33). If we assume only τ is
independent of frequency, we can use Maxwell’s velocity distribution Eq. (3.43) to
evaluate κ = τ

3

∫
�

∂ f0
∂T v

2εd� for a monatomic gas
(
ε = 1

2mv2
)
(see Problem 4.15).

The result κ = 1.31
v̄ρcv is in good agreement with Eq. (4.36a), considering the
assumption of a constant relaxation time.

Under local-equilibrium assumption and by applying the relaxation time approx-
imation, we can write the 3D Fourier’s law as

q′′ = JE =
∫

�

fvεd� = −κ∇T (4.69)

where κ is already given in Eq. (4.68a) and v is the thermal velocity. Eq. (4.69) proves
that the first term on the right-hand side of Eq. (4.64) is indeed associated with heat
diffusion.

4.5 Micro/Nanofluidics and Heat Transfer

A large number of microdevices involving fluid flow in microstructures have been
designed and built since the late 1980s. Examples are microsensors, actuators,
valves, heat pipes, and microducts used in heat engines and heat exchangers [11–
13]. Micro/nanofluidics research is an active area with applications in biomedical
diagnosis (lab-on-a-chip) and drug delivery, MEMS/NEMS sensors and actuators,
micropumps for ink-jet printing, and microchannel heat sinks for electronic cool-
ing. Many researchers are also studying fluid flow inside nanostructures, such as
nanotubes, and developing unique devices, such as nanojets.

Under the continuum assumption, matter is continuous and indefinitely divisible.
Properties are defined as the average over elements much larger than the microscopic
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structure of the fluid but much smaller than the macroscopic device scale. For flow
inside micro/nanostructures, the mean free path of the fluid molecules may be com-
parable to or smaller than the characteristic dimensions. The continuum assumption
is often not valid since the interaction between the molecules and the solid surfaces
becomes important. In his seminal paper in 1946, H.-S. Tsien drew the attention of
aerodynamicists to the study of noncontinuous fluid mechanics, for applications in
high-altitude flights and vacuum systems, which subsequently formed the field of
rarefied gas dynamics [14]. In the same paper, he delineated the realms from con-
ventional gas dynamics (i.e., continuum regime): slip flow, “blank” (which was later
called transition flow), and free molecule flow based on the ratio of the mean free
path to the characteristic length, i.e., the Knudsen number as will be discussed in the
next section.

Some of the earlier studies are still valid and can help understand fluid flow in
microstructures [15, 16]. On the other hand, there are several aspects that are unique
to microfluidics, making it distinctly different from the rarefied fluid dynamics. In
microstructures, surface-to-volume ratio is much greater than that in macrostruc-
tures, and hence, surface forces become dominant over body forces. One of the
direct impacts is a significant pressure drop and a greater mass flow rate than that
predicted with the continuum theory [12, 13]. Because of the large pressure drop,
the velocity is usually not very high. The Reynolds number is significantly smaller
due to the small dimensions and relatively low velocity. The axial heat conduction,
which is negligible for macroflow, may become important for micro/nanoflow. Due
to the large pressure drop, compressibility is another issue that needs to be consid-
ered even though the speed is much less than the speed of sound. A change in the
density further complicates the pressure distribution, making it nonlinear along the
streamline. Liquid is also used in many applications such as microchannel cooling.
Furthermore, the phase change by evaporation and condensation is another important
aspect in a number of microdevices, such as micro-heat pipes.

Although measurements in micro/nanoflow are challenging, a large number of
miniaturized flow and temperature sensors have been developed and integrated into
themicrodevices to performmeasurements with a high spatial resolution. Submicron
polysilicon hot-wire anemometers, hot-film shear-stress sensors, piezoresistive and
diaphragm-type pressure sensors, and submicron thermocouples are some examples
[12]. For flow visualization, both X-ray and caged-dye techniques have been used to
image the flow field.Micro-particle image velocimetry (PIV) is a powerful technique
for flow visualization and sometimes for thermal measurements. In micro-PIV, small
particles imbedded into the fluid scatter pulsed laser light. A microscopic system
allows the illumination and collection of the scattered light into a CCD camera. The
flow is illuminated at two times, and the velocity vectors are determined based on
the displacement of particles. The temperature field can be determined based on the
Brownian motion, i.e., random fluctuation of the particles [16].

The next section focuses on gas flow, which can be categorized into different
regimes based on the range of the Knudsen number. Examples of slip flow and
free molecule conduction are provided to illustrate the effect of rarefaction. More
detailed research on microfluidics and microflow devices can be found from the
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monographs [16, 17]. Reviews of recent studies on the heat transfer inmicrostructures
involving liquids, evaporation, and condensation can be found from Peterson et al.
[18], Garimella and Sobhan [19], and Poulikakos et al. [20].

4.5.1 The Knudsen Number and Flow Regimes

The continuummodel is no longer validwhenone of the geometric dimensions, called
the characteristic dimension L , is comparable to the mechanistic length, such as the
mean free path 
. This can happen when the gas is at very low pressure (rarefied) or
when the characteristic dimension is extremely small: from a few micrometers down
to several nanometers in micro- and nano-channels. As a result, boundary scattering
becomes significant, and the gas molecules have a large chance to collide with the
wall as compared to the collision between molecules.

The ratio of the mean free path to the characteristic length defines an important
dimensionless parameter, called the Knudsen number:

Kn ≡ 


L
(4.70)

The Reynolds number for flow over an object with a characteristic length of L
is ReL = ρv∞L/μ. The Mach number is the ratio of the free steam velocity v∞ to
the speed of sound such that Ma = v∞/va, where va = √

γ RT . From Eq. (4.30),
μ = ρ


√
2RT/π . Based on the characteristic length of L, Eq. (4.70) can be written

as

Kn =
√

πγ

2

Ma

ReL
(4.71a)

Within the boundary layer, however, the characteristic length should be the bound-
ary layer thickness δx at location x along the flow direction. Consider a parallel flow
over a flat plate in the case of laminar flow, δx ∼ x/Re1/2x . Hence, it can be shown
that in the boundary layer,

Knx = 


δx
∼ Ma√

Rex
(4.71b)

When internal flow is considered, v∞ should be replaced by the bulk velocity vm.
The characteristic length can be taken as the diameter of the pipe or the width of a
microchannel.

The physics of fluid flow depends much on the magnitude of Kn. The local Kn
determines the degree of rarefaction and the degree of deviation from the contin-
uum assumption. The regimes are divided based on Kn in Table 4.2. The regime
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Table 4.2 Flow regimes based on the Knudsen number [13]

Regime Method of calculation Kn range

Continuum Navier–Stokes and energy equations with
no-slip/no-jump boundary conditions

Kn ≤ 0.001

Slip flow Navier–Stokes and energy equations with slip/jump
boundary conditions, DSMC

0.001 < Kn ≤ 0.1

Transition BTE, DSMC 0.1 < Kn ≤ 10

Free molecule BTE, DSMC Kn > 10

boundaries are instructive rather than exact because they depend on more param-
eters of the fluid conditions. A small Kn generally corresponds to a continuum
flow (Kn < 0.001). In this regime, the Navier–Stokes equations are applicable, the
velocity of the fluid at the boundary is the same as that of the wall, and the tem-
perature of the fluid adjacent to the wall is the same as the surface temperature.
Care must be taken in regard to the compressibility. Conventionally, the flow can be
assumed incompressible if Ma < 0.3. However, in some microdevices where pres-
sure changes drastically, density change can be significant and thus compressibility
must be taken into consideration.

When Kn is increased from about 0.001 to 0.1, noncontinuum (slip) boundary
conditions must be applied. Slip flow refers to the situation when the velocity of
the fluid at the wall is not the same as the wall velocity, as shown in Fig. 4.9 for
fully developed internal flow. In the heat transfer problem, the temperature of the
fluid adjacent to the wall is different from that of the wall, as shown in the right of
Fig. 4.9. This is called temperature jump. In the slip/jump regime, the Navier–Stokes
equations can still be used for the flow with modified boundary conditions, as will
be discussed in the next section.

If Kn > 10, the flow is called a free molecule flow that is dominated by ballistic
scattering between themolecules and the surfaces. The continuumassumption breaks
down completely. No local velocity or temperature of the gas can be defined for the

Fig. 4.9 Illustration of a the velocity profile and b the temperature profile for internal flow, in the
three regimes: 1: continuum, 2: velocity slip and temperature jump, and 3: free molecule
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fluid. The “slip” velocity is the same as the velocity of the mainstream, i.e., the fluid
velocity will be the same regardless of the distance from the wall, as shown clearly
in Fig. 4.9. The same is true for the fluid temperature: no gradient exists near the wall
even though there is heat transfer between the wall and the gas. Molecular-based
models, such as the BTE or the DSMC, are the best to solve problems in this regime,
as well as in the transition regime between the slip flow and the free molecule flow
[21].

In the continuum regime, numerical solution techniques include finite element
method, finite difference method, boundary element method, and so forth. In recent
years, flexible mesh schemes, such as the unstructured grids or mesh-free technique,
have become popular. Commercial computational fluid dynamics (CFD) software is
often available and can be applied to complex geometries. For numerical solutions of
the Boltzmann equations and modeling fluid flow at the molecular level, both deter-
ministic and stochastic methods have been developed. The challenge lies in how to
handle the collision terms. Relaxation time approximation and higher order approx-
imations with nonlinear terms have been applied. Lattice Boltzmann (LB) method
based on mesoscopic kinetic equations has emerged as a promising numerical tech-
nique for simulating single-phase andmultiphase flows involving complex interfacial
dynamics and geometries [22]. In the LB method, each grid is a volume element that
consists of a collection of particles described by the Boltzmann distribution function.
The fluid particles collide with each other as they move under the applied force at
each discrete time step. By developing simplified version of the kinetic equation, the
LB method avoids solving the full BTE and thus reduces computational time and
memory. Direct simulation of the molecular movements can be carried out in two
ways, as discussed in the following.

Molecular dynamics (MD) considers the position and the velocity of each par-
ticle at any time by using a deterministic approach. The molecules are assumed to
obey Newton’s laws of motion in Eq. (3.1), and their interactions are governed by
the intermolecular potentials. An example is the Lennard-Jones < 6, 12 > potential
given in Eq. (4.51) that is commonly used directly or with some modifications. In
the MD simulation, the first step is called initialization, which randomly assigns N
molecules in a region of space and sets their velocities according to some equilibrium
distribution. After the initial statistical assignment, all the rest steps are determinis-
tic. The time evolution of the position and the velocity of each particle can be found
by numerically integrating Newton’s equations of motion using small time steps.
Periodic boundary conditions are often used to simulate the inlet and the outlet of
the flow. Statistical averaging, called ensemble averaging, is used to calculate the
internal energy, effective temperature, pressure, and other properties at a given time.
The internal energy is the sum of the total kinetic and potential energies. The tem-
perature is based on the average kinetic energy (for monatomic gases). The pressure
is calculated using the virial theorem [20]. Usually, the simulation time step is on the
order of femtoseconds, and it requires thousands of time steps to simulate a process
for a few picoseconds in real time. The required computational time is proportional
to the square of the number of particles N in the simulation. Therefore, the MD
method provides complete information about the trajectories of all particles at a
great computational expense. This method is best suited for dense gases and liquids
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where molecular interactions are less frequent. TheMDmethod is particularly useful
at the nanoscale as the number of particles becomes reasonably small and the total
time steps are manageable. It can also be used to simulate boiling and vaporization,
as well as the ablation process. Note that the MD method is often the only method
available for the study of some nanoscale phenomena because no experiments could
be conducted at that time.

Considering the inefficiency inmodeling dilute gases using theMDmethod, G. A.
Bird [21] in the 1960s established a statistical technique tomodel rarefiedgasflowand
transport processes. Thismethod is called the direct simulationMonteCarlo (DSMC)
method that has matured as a powerful simulation tool, especially for transition flow
and free molecule flow. Some have combined it with continuum models to form a
hybrid method for multiscale simulation [17]. The principle of the DSMCmethod is
the same as that of the MD method; however, intermolecular interactions are dealt
with entirely on a probabilistic basis rather than the deterministic basis. In the DSMC
method, the space is divided into cells, each with a large number of molecules that
mimic but do not follow exactly themotion of real molecules. Themotion of particles
and collisions between them are simulated via a probabilistic process using a time
step smaller than the relaxation time. The interaction between the molecules and the
boundary is also simulated according to certain statistical models. Since only a small
portion of particles are actually simulated at each time step to represent the actual
molecules, the computational time is proportional to N rather than N2 as in the MD
method. This greatly reduces the required computational resources. Note that the
DSMC method is not so efficient for a low Kn flow, where the continuum theory or
a direct solution of the BTE is more effective.

4.5.2 Velocity Slip and Temperature Jump

The interaction between the gas molecules and the wall plays a critical role when
the gas becomes rarefied. However, a fundamental understanding of such interaction
is often not available. When a molecule impinges on the wall, it will be reflected
(or reemitted) after collision with the molecules near the surface of the wall (if
adsorption is neglected). If the reflection is specular, the tangential momentum (or
velocity) will remain the same, whereas the normal momentum will be reversed. If
all the molecules are specularly reflected, there will not be any shear force or friction
between the gas and the wall. However, this is not the case for most engineering
applications. Another extreme is the diffuse reflection case, in which the molecule
will acquire mutual equilibrium with the wall and be reemitted randomly into the
hemisphere. For a stream of molecules, the effect is such that the reflected molecules
will follow theMaxwell velocity distribution at the wall temperature. Themomentum
accommodation coefficients can be defined as [2, 3]

αv = pi − pr
pi − pw

)
‖
, for tangential components (4.72a)
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and

αv′ = pi − pr
pi − pw

)
⊥
, for normal components (4.72b)

where p = mv is the momentum, the subscripts i and r represent the incident and the
reflected, and the subscript w refers to the Maxwell velocity distribution correspond-
ing to the surface temperature Tw. Clearly, αv = αv′ = 0 for specular reflection, and
αv = αv′ = 1 for diffuse reflection. Similarly, the thermal accommodation coefficient
can be defined based on the ratio of energy differences as

αT = εi − εr

εi − εw
(4.73a)

where ε is the average energy of a molecule and εw is the energy when the molecules
are in thermal equilibrium with the wall. For diffuse reflection, the molecule is
completely accommodated by the wall such that εr = εw and αT = 1. On the
other hand, if the reflection is specular, the molecule is not accommodated at all
and the reflected energy will be the same as the incident energy so that αT = 0.
Formonatomicmolecules, thermal accommodation coefficient involves translational
kinetic energy only, and the kinetic energy is proportional to the absolute temperature.
Hence, we can write the thermal accommodation coefficient in terms of temperatures
as

αT = Ti − Tr
Ti − Tw

(4.73b)

For polyatomic molecules, it is reasonable to think that the accommodation coef-
ficients for translational, rotational, and vibrational degrees of freedom may be dif-
ferent. However, due to the lack of information on the nature of interaction between
the gas molecules and the wall, usually no distinction is made between the accom-
modation coefficients for different degrees of freedom. In addition, Eq. (4.73b) is
often extended to polyatomic molecules with the assumption that the temperature
difference is sufficiently small for the specific heat to be independent of temperature.
The thermal accommodation coefficient depends on the nature of the molecules, the
molecular structure of the solidwall, the surface roughness and cleanness, the temper-
ature, and the degree of rarefaction. Saxena and Joshi [23] provide a comprehensive
review and data compilation of earlier works. The values of αT for air–aluminum
and air–steel systems range from 0.87 to 0.97. However, αT can be less than 0.02
between pure He gas and clean metallic surfaces. Earlier measurements showed that
for most engineering surfaces, αv ranges from 0.87 to 1 for air. Arkilic et al. [24]
measured tangential momentum accommodation coefficients for N2, Ar, and CO2 in
silicon microchannels and found that αv is between 0.75 and 0.85. This is possibly
due to the relatively smooth crystalline silicon surfaces. Generally speaking, αv′ is
not very important and can be assumed the same as αv.
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Slip flow is an important regime for microchannel flows and MEMS devices. The
velocity slip and temperature-jump boundary conditions are presented in this section,
together with some analytical solutions for simple cases. If the wall is not moving,
the slip boundary condition based on the geometry shown in Fig. 4.9 reads

vx (yb) = −2 − αv

αv



(
∂vx
∂y

)
yb

+ 3

√
R

8πT



(
∂T

∂x

)
yb

(4.74)

All the derivatives and the fluid properties are evaluated at y = yb. The first
term on the right is proportional to the velocity gradient perpendicular to the flow
direction, and the second term is known as thermal creep due to the temperature
gradient along the flow direction. It should be noted that the net mass transfer (creep)
is from cold region to hot region. It can be shown that the first term goes with Kn
and the second term goes with the square of Kn. Higher order terms can be included
by expressing them as Kn raised to higher powers and higher order derivatives [16].
The temperature-jump boundary condition reads

T (yb) − Tw = −2 − αT

αT

2γ

γ + 1




Pr

(
∂T

∂y

)
yb

+ v 2
x (yb)

4R
(4.75)

Equation (4.75) suggests that the temperature of the fluid at the wall will not be
the same as the wall temperature, as shown in Fig. 4.9. The second term on the right
is due to viscous dissipation caused by the slip velocity and is usually negligibly
small.

Let us consider the fluid flow through a channel between two fixed parallel plates,
i.e., the Poiseuille flow, as shown in Fig. 4.10. It is assumed that W ≥ 2H and the
edge effect can be neglected. When Kn = 
/2H is less than 0.1 or so, slip flow
with temperature-jump boundaries can be applied together with the Navier–Stokes
equation and the energy equation to obtain the velocity and temperature distributions.
For simplicity, assume the fluid is incompressible and fully developed with constant
properties. The momentum equation can be written as

d2vx
dη2

= H 2

μ

dP

dx
(4.76)

wq W
2H

y
x

xv

′′

Fig. 4.10 Micro/nanoscale Poiseuille flow with heat transfer
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where η = y/H. The symmetry requires dvx
dη

)
η=0

= 0. The slip condition given

by Eq. (4.74) can be simplified by neglecting thermal creep and higher order terms,
giving

vx (η = 1) = −2βv
dvx
dη

)
η=1

(4.77)

where

βv = 2 − αv

αv
Kn (4.78)

The solution gives the fully developed velocity distribution as

vx (η)

vm
= 3

2

1 + 4βv − η2

1 + 6βv
(4.79)

where vm is the bulk or mean velocity, which can be expressed as

vm =
1∫

0

vx (η)dη =(1 + 6βv)
H 2

3μ

(
−dP

dx

)
(4.80)

Define the velocity slip ratio ζ = vx (η=1)
vm

= 6βv

1+6βv
, which is the ratio of the velocity

of the fluid at the wall to the bulk velocity. The velocity distribution can be rewritten
as

vx (η)

vm
= 3 − ζ

2
− 3(1 − ζ )

2
η2 (4.81)

The energy equation is simplified based on Eq. (2.43) without dissipation as
follows:

ρcpvx
∂T

∂x
= κ

(
∂2T

∂x2
+ ∂2T

∂y2

)
(4.82)

Let us consider the case with a uniform wall heat flux q ′′
w at both plates. For ther-

mally full development, ∂T/∂x must not depend on x and y; hence, the term ∂2T/∂x2

can be dropped out. Applying the energy balance for an elementary controlled vol-
ume inside the fluids, we can rewrite Eq. (4.82) after some tedious derivations as
follows:

∂2�

∂η2
= vx

vm
(4.83)
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where �(η) = κ
H

T−Tw
q ′′
w

is a dimensionless temperature. Integrating Eq. (4.83) yields

�(η) = 3 − ζ

4
η2 − 1 − ζ

8
η4 + C1η + C2 (4.84)

The symmetry at η = 0 requires that�′(η = 0) = 0.When the second term on the
right of Eq. (4.75) due to viscous dissipation is neglected, the nondimensionalized
boundary condition becomes

�(η = 1) = −2βT
∂�

∂η

)
η=1

(4.85)

where

βT = 2 − αT

αT

2γ

γ + 1

Kn

Pr
(4.86)

Applying the boundary conditions, we obtain C1 = 0 and C2 = (ζ −5)/8−2βT .
From Eq. (4.85) and Fig. 4.10, the heat flux from the surface to the fluid can be
expressed as

q ′′
w = κ

∂T

∂y

)
y=H

= κ
Tw − T (y = H)

2βT H
(4.87)

Here, 2βT H is called the temperature-jump distance, which can be thought as an
effective length for heat conduction between the wall and the fluid. With the assump-
tion of constant properties, the dimensionless bulk temperature can be calculated
by

�m =
1∫

0

vx (η)

vm
�(η)dη (4.88)

The Nusselt number is defined based on the hydraulic diameter Dh = 4H for
parallel plates; therefore,

Nu = hDh

κ
= q ′′

w

Tw − Tm

4H

κ
= − 4

�m
(4.89)

Substituting the integration of Eq. (4.88), one obtains after some manipulations
[25]

Nu = 140

17 − 6ζ + (2/3)ζ 2 + 70βT
(4.90)
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The above equation approaches to Nu = 140/17whenboth ζ andβT becomeneg-
ligibly small, i.e., in the continuum limit. Furthermore, the Nusselt number decreases
monotonically as βT increases. Note that βT will be increased if the mean free path
increases or if αT decreases. On the other hand, the Nusselt number increases slightly
as ζ increases, e.g., with a smaller αv. In any case, both ζ and βT should be much
smaller than unity for the slip–jump conditions to hold. If one of the plates is insu-
lated, while the other plate is maintained at a uniform heat flux q ′′

w, the velocity
distribution is the same. The Nusselt number can be calculated from Inman [25] as

Nu = 140

26 − 3ζ + (1/3)ζ 2 + 70βT
,with one insulated wall (4.91)

Because there is no heat transfer, temperature jump does not occur at the insulated
surface. For a circular tube of inner diameter D, Sparrow and Lin [26] derived the
Nusselt number for constant heat flux, which can be expressed as

NuD = q ′′
w

Tw − Tm

D

κ
= 48

11 − 6ζ + ζ 2 + 48βT
(4.92)

where ζ = 8βv/(1+ 8βv). The expressions for βv and βT are the same as in the case
with parallel plates, i.e., Equations (4.78) and (4.86), except that Kn = 
/D for a
circular tube.

Figure 4.11 illustrates the variation of Nusselt number as the Knudsen num-
ber changes, for air at near room temperature with a uniform heat flux, assum-
ing different accommodation coefficients. Note that Kn = 
/2H for Poiseuille

Fig. 4.11 Calculated
Nusselt number as a function
of the Knudsen number for
air (γ = 1.4 and Pr = 0.7)
with different
accommodation coefficients
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flow, and Kn = 
/D for a circular tube. The change in the Knudsen number
can be considered as the combined effect of the pressure and the channel dimen-
sion. It should be noted that the slip–jump conditions impose an upper limit on the
velocity or the temperature gradient near the boundary. In the continuum limit, the
shear stress and the Nusselt number are infinite at the entrance and decrease with x
until the flow is fully developed. Assume that the velocity and the temperature are
uniform at the entrance. From Eqs. (4.77) and (4.85), we obtain correspondingly

τs = −μ ∂vx
∂y

)
y=H

≤ μvm
2Hβv

= τs,max and Nu ≤ 2/βT = Numax, which are the

values at the entrance. For a circular tube, it can be shown that Numax = β −1
T at the

entrance (see Problem 4.22).
Yu and Ameel [27] presented analytical solutions for a rectangular channel with

constant wall heat flux on all surfaces using an integral transform method. Hadji-
constantinou and Simek [28] provided an extensive review of the literature dealing
with slip channel flow with constant wall temperature. Most of the works did not
consider the effect of axial conduction. This assumption is good only for large val-
ues of the Peclet number, defined as the product of the Reynolds number and the
Prandtl number (Pe = RePr ). As the channel dimensions become very small, Re
will decrease but Kn will increase. It is possible for Kn to be large enough for
slip and jump to occur at a relatively small Re. Axial conduction enhances the heat
transfer between the fluid and the wall, and thus increases Nu especially when Kn
is small. In the no-slip case when Kn = 0, it is well known that Nu = 7.54 for
parallel plates and Nu = 3.66 for circular tube without axial conduction (Pe → ∞).
In the extreme when Pe → 0, Nu becomes 8.12 (7.7% increase) and 4.18 (14.2%
increase), respectively. These values are much closer to the case of constant heat flux,
i.e., Nu = 8.23 for parallel plates and 4.36 for circular tubes as shown in Fig. 4.11.
When both αv and αT are unity, it can be shown that the Nusselt number is reduced
to about 50% of the value when Kn is varied from 0 to about 0.16, similar to the
constant heat flux case. The Nusselt number goes down significantly with decreasing
αT and goes up somewhat with decreasing αv. The lack of sufficient knowledge of
the actual behavior of fluids near the wall makes it difficult to precisely determine
the accommodation coefficients. Many of the surfaces used in earlier systems are
quite different from those used in MEMS and NEMS, where highly pure crystalline
dielectric surfaces are commonly used.

4.5.3 Gas Conduction—From the Continuum to the Free
Molecule Regime

Free molecule flow is important for flight at high altitudes and often associated
with chemical reactions and shock waves. The heat transfer aspects of high-speed
flow can be found from Rohsenow and Choi [4] or Eckert and Drake [15]. In this
section, we use a simple case to illustrate the heat transfer regimes for gas conduction.
Consider the conduction by gas between two large plates at temperatures T1 and T2,
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(a) (b)
L0

x

1T

2T

L0
x

1T

2T

Diffusion

Free molecule

Jump

Fig. 4.12 Heat conduction between two large parallel surfaces filled with an ideal gas. a Schematic
of the gas molecules. b Illustration of the temperature distributions

respectively. The plates are separated at a distance L, and the space in between is
filled with an ideal gas, as shown in Fig. 4.12. Neglect radiative and convective heat
transfer (bulk motion). The heat conduction of a gas is dominated by diffusion, when
Kn = 
/L � 1, where 
 is obtained at some effective mean temperature between
T1 and T2. In this case, the heat flux can be calculated by applying Fourier’s law,

q ′′
DF = κ

T1 − T2
L

(4.93)

where κ can be evaluated using Eq. (4.35) at an effective mean temperature defined
as

Tm,DF =
(
2

3

T 3/2
1 − T 3/2

2

T1 − T2

)2
(4.94)

The above equation takes into consideration the fact that κ ∝ √
T , with the

assumption that the specific heat is a constant at temperatures between T1 and T2. As
long as the density is sufficiently low for the ideal gas model to be valid, the thermal
conductivity does not depend on the pressure. The temperature distribution can be
obtained by integrating q ′′ = −κ(T ) dTdx to obtain

T (x) =
[
T 3/2
1 − (T 3/2

1 − T 3/2
2 )

x

L

]2/3
(4.95)

which deviates somewhat from a linear relationship. When Kn = 
/L � 1, how-
ever, the chance for molecules to collide with the wall is much larger than that for
them to collide with each other. The actual distance a molecule can travel will be
less than the mean free path due to collision with the boundary. In the extreme case,
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one can completely neglect the collisions between molecules and analyze the heat
transfer by the molecules, bouncing back and forth between the two plates. The
molecules can be sorted into a forward flux and a backward flux, each at a certain
equilibrium temperature, determined by the thermal accommodation coefficients.
Assume that the thermal accommodation coefficients aT are the same at both walls.
The flux temperatures are

T1′ = T1 + (1 − αT )T2
2 − αT

and T2′ = T2 + (1 − αT )T1
2 − αT

(4.96)

The effective mean temperature of the gas in the free molecule regime is defined
as

Tm,FM = 4T1′T2′(√
T1′ + √

T2′
)2 (4.97)

The net heat flux between the two plates can be expressed as [2]

q ′′
FM = T1 − T2

(2−αT )
√

8πRTm,FM

αT (γ+1)cv P

(4.98)

In the free molecule regime, the heat flux is proportional to the pressure P but
independent of L for the given boundary temperatures. This is because the heat
transfer rate is proportional to the number density of particles. For intermediate
values of Kn, the two equations derived under the extreme cases can be combined
by adding the thermal resistances such that

q ′′ = κ(T1 − T2)

L
(
1 + Kn 2−αT

αT

9γ−5
γ+1

√
Tm,FM

Tm,DF

) (4.99)

In writing the above equation, we have applied Eq. (4.35) with μ =
2
P/

√
2πRTm,DF fromEq. (4.30). Themean free path
 used in κ andKn should be

evaluated at Tm,DF. When the temperature difference between the surfaces is smaller
than the absolute temperature of the cooler surface, Tm,DF ≈ Tm,FM ≈ (T1 + T2)/2.
The physical interpretation of Eq. (4.99) is a temperature jump near the surfaces,
due to ballistic interaction of the particles with each surface, and a diffusive mid-
dle layer, due to particle–particle collisions. For this reason, Eq. (4.99) is called
the temperature-jump approximation, which approaches the diffusion limit when
Kn << 1 and the free molecule limit when Kn >> 1. In the transition region,
when 
 is on the same order as L, Eq. (4.99) may be explained by the reduction
in the mean free path due to boundary scattering that yields a decrease in the ther-
mal conductivity κ from the bulk or diffusion value. This approach will be further
explored in the study of the size effect on the thermal conductivity of thin solid films
in the next chapter.
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Example 4.5 Calculate the heat flux per 1 K temperature difference near room
temperature between two large parallel plates filled with air, assuming αT = 0.9.
Plot the results as a function of distance L and pressure P. How will you determine
the effective thermal conductivity?

Solution Let T1 = 300.5 K and T2 = 299.5 K. The effective temperatures calcu-
lated from Eqs. (4.94) and (4.97) are very close to the arithmetic mean temperature
of 300 K. Note that γ = 1.4 for air at room temperature. Because κ is independent
of pressure, we have κ = 0.025 W/mK from Example 4.3. The mean free path
obtained from Eq. (4.19) is 
/
0 = P0/P , where 
0 = 66.5 nm at 300 K and the
atmospheric pressure P0 = 1 atm. The effective thermal conductivity can be defined

as κeff = q ′′L
T1−T2

; hence, Eq. (4.99) reduces to κeff = κ
(
1 + Kn 2−αT

αT

9γ−5
γ+1

)−1 =
κ
(
1 + 3.87
0P0

LP

)−1
. It can be seen that κeff depends on the product LP (which is

proportional to Kn−1). However, the same cannot be said for the heat flux. The cal-
culated results are shown in Fig. 4.13 for the effective thermal conductivity and heat
flux as a function of the separation distance. In the diffusion limit, κeff is independent
of the distance and the pressure, whereas q ′′ increases as L is reduced (proportional
to 1/L). At 1 atm, microscale heat transfer becomes important when L < 1.5µm (or
Kn > 0.03), as κeff starts to drop, and the dependence of q ′′ on 1/L becomes non-
linear. In the free molecule limit, κeff decreases linearly with both L and P (i.e., the
Kn), whereas q ′′ is independent of L but depends linearly on P. Note that there exists
an upper limit of q ′′ for any given pressure. These trends are clearly demonstrated
in Fig. 4.13.

The heat transfer calculation mentioned above is important to cryogenic and low-
pressure applications. In recent years, atomic forcemicroscopyhas becomeaversatile
tool for probing andmanipulating, lithography, thermalmanufacturing, andmeasure-
ments at the nanoscales. The heat transfer between the tip and the surface at several

Fig. 4.13 Distance dependence of a the effective thermal conductivity and b the heat flux, at
different pressures
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nanometers may be governed by free molecule flow even at ambient conditions (see
Problem 4.27). Radiation heat transfer may increase tremendously when the spacing
is less than the characteristic wavelength, which is about 10 µm at 300 K. Hence,
radiative heat transfer may be a dominating effect. More details on the nanoscale
radiative heat transfer will be given in Chap. 10.

4.6 Summary

The simple kinetic theory was introduced based on the ideal gas model, providing
a microscopic description of the transport coefficients, such as viscosity, thermal
conductivity, and mass diffusion coefficient. This allows one to gain an intuitive
understanding of the macroscopic phenomenological or semi-empirical equations,
which are important for heat conduction and convection. The complete Boltzmann
transport equation (BTE) was then presented from the microscopic point of view. It
was shown that the classical transport equations, such as Fourier’s law and Navier–
Stokes equations can be derived from the BTE under appropriate assumptions. Sim-
ilar derivations also apply to electron and phonon systems, which will be studied
in Chap. 5. The effect of the Knudsen number on the microchannel flow with ideal
gases was discussed. The equations for slip flow were solved for simple geome-
tries to provide modified convection heat transfer correlations. Finally, ballistic heat
conduction in free molecule flow was described, and a simplified equation was pre-
sented that links the continuum region to freemolecule flow in the case of conduction
between solid walls filled with an ideal gas. The pressure and distance effects on the
thermal conductivity and heat flux were clearly demonstrated. The principles dis-
cussed in this chapter not only have applications to microfluidics and convection heat
transfer but also are important to the subsequent chapters on heat transfer in solid
micro/nanostructures.

Problems

4.1. (a) Determine the mean free path 
, average molecular spacing L0, and the
frequency of collision τ−1 for air at sea level (15 °C and 1 atm).

(b) Determine the root-mean-square free path.
(c) What is the probability of finding a free path greater than 4
?
(d) Calculate 
, L0, and τ−1 for air at 200 miles above sea level withM =

17.3, P/P0 = 5.9 × 10−11, and ρ/ρ0 = 10−11, where the subscript 0
signifies properties at sea level. Note: The average size of air molecules
may be taken as 3.0 × 10−10 m at this altitude.

(e) What is the kinetic temperature at this altitude? Explain the reason why
M changes with the altitude.
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4.2. Use the mean-free-path distribution to answer the following questions:

(a) What is the root-mean-square free path in terms of the mean free path
.
(b) What is the most probable free path?
(c) What is the probability of finding a free path greater than 
?

4.3. Air is pumped to a pressure P = 10 Pa at 25 °C. Calculate the following
quantities: the average distance between adjacentmolecules L0, themolecular
mean free path 
, the number of collisions that a molecule experiences every
second, the molecule flux JN on any surface, the most probable speed of
the molecules, the most probable velocity of the molecules, and the average
kinetic energy of each molecule.

4.4. Hydrogen gas is cooled to 100 K, while the pressure is reduced to 0.1 Pa.
Determine the mean free path
 and the average frequency of collision. What
are the rms speed and the average kinetic energy of a molecule? What is the
momentum flux of the gas on the container? What are the most probable free
path, the most probable speed, and the most probable velocity?

4.5. What is the dependence of μ and κ on pressure and temperature? How does
DAB depend on pressure? For water vapor and air, DAB = 2.56× 10−5 m2/s
at 298 K and 100 kPa. Plot DAB as a function of temperature at P = 10, 20,
50, and 100 kPa.

4.6. Calculate μ, cv, κ , and Pr for oxygen and nitrogen at 100, 300, and 1000 K,
and 1 atm. Compare your calculated results with the values tabulated in most
heat transfer textbooks to estimate the relative differences.

4.7. A chamber containing O2 at 100 K and 10–3 atm is placed in the outer space.
The oxygen leaks to the outer space through a small hole, 1 µm diameter, in
the chamber wall. What is the mass flow rate?

(a) Estimate the number of molecules that escape from the container per unit
time.

(b) What is the mass flux?
(c) Evaluate the flux of kinetic energy, JKE using Eq. (4.8). How is your

answer compared with JN × mv2/2? Why are the results different?
(d) If the diameter of the hole is increased to 1 cm, is the basis of your

calculation still valid?

4.8. A tube connects a CH4 line to the air. Assuming both ends of the tube are at
1 atm and 25 °C, calculate the binary diffusion coefficient between CH4 and
air. Find the mass flow rate of CH4 to the air and that of air to the CH4 line,
given the tube has an inner diameter of 5 mm and a length of 7 m. Sketch the
concentration distributions in the tube line.

4.9. A tube connects an O2 container to a N2 container. Assume that the temper-
ature is 200 °C and the pressure is 2 atm inside the containers and the tube.
Calculate the mass exchange rates of O2 and N2 from one container to the
other, assuming that the tube has an inner diameter of 5 mm and a length of
3 m.
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4.10. Dry air at 34 °C flows over a flat plate of length L = 0.1 m with a velocity of
15 m/s. The width of the plate is 1 m. The surface of the plate is covered with
a thin soaked fabric, and electric power is applied to the plate to maintain its
surface temperature at 20 °C.

(a) Assuming that the bottom of the plate is insulated, determine the required
electric power.

(b) After a long period of operation, the fabric is completely dry. Neglect the
changes in the convection coefficient and the electric power. What will
be the steady-state surface temperature?

(c) Is it a good assumption to neglect the radiative heat transfer?

4.11. Use r0 = 2.869× 10−10 m and ε0/kB = 10.22 K for He to calculate and plot
the Lennard-Jones potential. Set one molecule at a fixed (pinned) position on
the x-axis, say at x = 5 nm. The other molecule starts at the origin with an
initial velocity v0 = v0(x̂ cosβ+ŷ sin β), where β is a small angle between v0
and the x-axis. Develop a computer program to calculate the trajectory of the
moving particle in the x-y plane, for various v0 and β, based on (a) the rigid-
elastic-sphere assumption and (b) the intermolecular force field. Comment on
the differences between the results obtained from the two models.

4.12. Using Eq. (4.63), show that Eq. (4.62) is identical to Eq. (2.42).

Hint: ∇ · {Pi j} =
(

∂Pxx
∂x + ∂Pyx

∂y + ∂Pzx
∂z

)
x̂ +

(
∂Pxy
∂x + ∂Pyy

∂y + ∂Pzy
∂z

)
ŷ +(

∂Pxz
∂x + ∂Pyz

∂y + ∂Pzz
∂z

)
ẑ .

4.13. Derive the viscous dissipation term in Eq. (2.43) based on Eq. (4.64).
4.14. From Eq. (4.64), derive the heat diffusion equation: κ∇2T = ρcv

∂T
∂t .

4.15. Assuming τ is independent of the frequency, use the Maxwell velocity dis-
tribution, Eq. (3.43), to evaluate κ = τ

3

∫
�

v2ε ∂ f0
∂T d� for a monatomic gas,

where ε = 1
2mv2.

4.16. Consider an isothermal gas flow in the x-direction with a bulk velocity dis-
tribution vB(y) = vx (y) as shown in Fig. 4.5. The velocity distribution is not
very far from the equilibrium so that f = f0 − τvy

∂ f0
∂vB

dvB
dy . Find an expression

of the dynamic viscosity μ. Hint: τyx = ∫
�

(mvx )vy f d� according to Eq.

(4.13); the answer is 1
4d2

(mkBT
π

)1/2
.

4.17. What is the continuum assumption, and when does the continuum assump-
tion break down? Define the Knudsen number, and what is its physical sig-
nificance? What are the unique issues related to microfluidics? What are the
applications of microfluidics?

4.18. What happens at the boundary layer for a fluid moving over a large plate
during slip flow? Describe both the velocity distribution and the temperature
distribution near thewall.Write the slip-flowboundary conditions, anddiscuss
the significance of each term.

4.19. Integrate Eq. (4.88) to find the dimensionless bulk temperature �m; and then
use the definition of Nusselt number to prove Eq. (4.90).
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4.20. Find the temperature distribution for slip flow between two parallel plates
when the bottom plate is insulated and the top plate is heated at a uniform
heat flux. Continue on to verify Eq. (4.91).

4.21. Find the velocity and temperature distributions for slip flow through a circular
tube with a uniform wall heat flux. Continue on to verify Eq. (4.92).

4.22. For slip flow with temperature jump in a circular tube, show that there exists
a maximum Nusselt number at the entrance, given by Numax = 1/βT .

4.23. For Poiseuille flow with velocity slip, calculate the friction coefficient Cf =
τs/(ρv2m/2) at the entrance and for fully developed gas flow.

4.24. For fully developed gas flow in a circular tube, develop an expression for the
ratio of the required pump powers with slip and without slip.

4.25. A heat sink contains 100microchannels, each 1mm longwith a 1µm×30µm
cross section. Cold air at 22 °C flows in at 2 atm with a velocity of 4 m/s. The
sides of the channel arewell insulated, and a constant wall flux q ′′

w = 40 W/m2

is removed by the flow. Neglecting the entry region, what will be the exit
temperature of the air?What will be the wall temperature at the exit? (Assume
that αv = αT = 0.8.)

4.26. For the same fluid, entrance conditions, and wall heat flux as in Problem 4.25,
estimate the convection coefficient for fully developed flow in a circular tube
as a function of the tube diameter. Take D = 300 nm, 3 µm, and 300 µm.

4.27. Model the cantilever tip of an atomic force microscope (AFM) as a flat disk,
with a diameter of 100 nm, that is above a flat surface at 300 K. If the tip is
heated to 400 K, calculate the heat flux from the tip to the surface when the
distance varies from 10 to 1 nm, assuming that the tip and the sample surface
are surrounded by dry air at ambient pressure. How will your calculation
change if the pressure is reduced to 1 torr? [1 torr = 1 mmHg = 133.3 Pa.]

4.28. Team Project 1: Derive the Nusselt number for constant wall temperature for
a laminar slip flow either in a circular tube or between two parallel plates.

4.29. Team Project 2: Develop a computer program to evaluate the Nusselt number
in the entry region for uniform wall heat flux in a circular flow.

4.30. Team Project 3: Perform a simulation using the DSMC method for gas con-
duction between two plates, with different Knudsen numbers. Compare your
results with Eq. (4.99).
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Chapter 5
Thermal Properties of Solids and the Size
Effect

One of the thrust areas of research in micro/nanoscale heat transfer is related to
properties and transport processes in solid materials and devices. In the early 1990s,
much researchwas conducted to identify the regimeswhen themicroscale effectmust
be considered in dealing with problems occurring at small length and/or timescales
[1, 2]. Significant progress has been made in the past decades on understanding the
fundamental thermal transport properties of solids and nanostructures. Cahill et al.
[3, 4] provided comprehensive surveys on the thermal phenomena and measurement
techniques associated with solid-state devices across the nano-, micro-, and macro-
length scales and in a large temperature range. The critical dimensions of integrated
circuits have continued to shrinkduring thepast fewdecades, and feature sizes smaller
than 10 nm have been reached in recent years. Overheating caused by thermal energy
generation is amajor source of device failure, and it often occurs in very small regions,
known as hot spots. A remarkable number of micro/nanostructured materials and
systems have temperature-dependent figures of merit. Therefore, understanding the
thermophysical properties, thermal transport physics, and thermal metrology from
the micrometer down to the nanometer length scales is critically important for the
future development of microelectronic devices and nanobiotechnology.

This chapter focuses on simple phonon theory and electronic theory of the spe-
cific heat, thermal conductivity, and thermoelectricity of metals and insulators. The
Boltzmann transport equation (BTE) has been used to facilitate the understanding of
microscopic behavior, together with the quantum statistics of phonons and electrons.
The quantum size effect on phonon specific heat is extensively covered. Examples
are given to analyze direct thermoelectric conversion for temperature measurement,
power generation, and refrigeration. Furthermore, a detailed treatment of classical
size effect on thermal conductivity is presented. Finally, the concepts of quantum
electrical conductance and thermal conductance are introduced.
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5.1 Specific Heat of Solids

In this section, simple models of the specific heat of bulk solids are described con-
sidering the contribution of lattice vibrations as well as free electrons in metals. The
purpose is to understand macroscopic behavior from a microscopic point of view
and to prepare students for further study on the quantum size effect to be discussed
in subsequent sections.

5.1.1 Lattice Vibration in Solids: The Phonon Gas

The atoms in solids are close to each other, and interatomic forces keep them in
position. Atoms cannot move around except for vibrations near their equilibrium
positions. In crystalline solids, atoms are organized into periodic arrays, and each
identical structural unit is called a lattice. Lattice vibrations contribute to thermal
energy storage and heat conduction. Inmetals, electrons are responsible for electrical
transport and heat conduction but are less important for storing thermal energy except
at very low temperatures.

The simple oscillator model treats each atom as a harmonic oscillator, which
vibrates along all three axes as shown in Fig. 5.1. If the vibrational degrees of freedom
were completely excited, we would expect the high-temperature limit of the specific
heat of elementary (monatomic) solids to be

Fig. 5.1 The harmonic
oscillator model of an atom
in a solid
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c̄v = 3R̄ (5.1)

This is called the Dulong–Petit law, named after Pierre-Louis Dulong and
Alexis-Thérèse Petit in 1819. The Dulong–Petit law can be understood in terms
of the equipartition principle in classical statistics. However, it cannot predict
low-temperature behavior; even above room temperature, the model significantly
overpredicts the specific heats for diamond, graphite, and boron.

Einstein in 1907 proposed a simple harmonic oscillator model and its quantized
energy levels (i + 1

2 )hν, i = 1, 2,…, to obtain the specific heat as a function of
temperature. Here, the frequency ν is a characteristic vibration frequency of the solid
material. The procedure is similar to the analysis of vibration energies for diatomic
gas molecules, e.g., Eqs. (3.59)–(3.62). The resulting specific heat for a monatomic
solid is

c̄v(T ) = 3R̄
�2

E

T 2

e�E/T

(
e�E/T − 1

)2 (5.2)

where the factor 3 accounts for oscillation in all three directions and �E = hν/kB
is called the Einstein temperature [5, 6]. It can be shown that c̄v → 0 as T →
0 and c̄v → 3R̄ at T � �E. In the intermediate temperature range, however,
the Einstein specific heat is significantly lower than the experimental data. This
can be seen from Fig. 5.2, where the experimental results of the constant-pressure
specific heat are taken from Ashcroft and Mermin [6]. It should be noted that cp =
cv for a solid under the incompressible assumption. The reduced temperature is
the ratio of the temperature to the characteristic temperature (either the Einstein
temperature or Debye temperature depending on the model). The experimental data
were plotted using the Debye temperature given in Table 5.1. The reason that the
specific heat of diamond is far from 3R̄ near room temperature is because of its

Fig. 5.2 Comparison of
model predictions with
experimental data of the
specific heat for several
crystalline solids
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Table 5.1 The Debye temperature, melting temperature, and other properties for selected solids.
The data are mainly taken from Kittel [5] and Ashcroft and Mermin [6]. The reported densities are
for 22 °C except for Ar

Element or
compound

Symbol or
formula

M
(kg/kmol)

�D (K) Tmelt (K) na
(1028 m−3)

ρ (103

kg/m3)

Argon Ar 40 92 84 2.66 (4 K) 1.77 (4 K)

Mercury Hg 200.6 72 234 4.26 14.26

Sodium Na 23 158 371 2.65 1.013

Lithium Li 6.9 344 454 4.7 0.542

Lead Pb 207 105 601 3.3 11.34

Zinc Zn 65.4 327 692 6.55 7.13

Magnesium Mg 24.3 400 922 4.30 1.74

Aluminum Al 27 428 934 6.03 2.7

Calcium Ca 40 230 1113 2.30 1.53

Silver Ag 108 225 1235 5.85 10.5

Copper Cu 63.5 340 1358 8.45 8.93

Gold Au 197 165 1338 5.90 19.3

Iron Fe 56 470 1811 8.50 7.87

Silicon Si 28 645 1687 5.0 2.33

Diamond C 12 2000 3620 17.6 3.52

Potassium
bromide

KBr 119 177 1007 2.75

Sodium
chloride

NaCl 58.5 281 1074 2.17

Gallium
arsenide

GaAs 144.6 360 1511 5.32

Calcium
fluoride

CaF2 78 474 1696 3.18

very high characteristic temperature (or frequency of vibration) compared to other
materials as shown in Table 5.1.

In the Einstein model, each atom is treated as an independent oscillator and all
atoms are assumed to vibrate at the same frequency. In 1912,MaxBorn and Theodore
von Kármán first realized that the bonding in a solid prevents independent vibrations.
Therefore, a collection of vibrationsmust be considered under the force–spring inter-
actions of the nearby atoms. To avoid the complicated calculations, Peter Debye in
1912 simplified the model by assuming that the velocity of sound is the same in all
crystalline directions and for all frequencies. In addition, there is a high-frequency
cutoff, and no vibration can occur beyond this frequency. As to be seen from sub-
sequent sections, the Debye model is a great success and has prevailed even though
more advanced and realistic theories have been developed.
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5.1.2 The Debye Specific Heat Model

The Debye model for the specific heat of solids includes a large number of closely
spaced modes (or vibration frequencies) up to a certain upper bound νm, which is
determined by the total number of vibration modes 3N, where N is the number of
atoms. The high-frequency limit is indeed plausible because the shortest wavelength
of the lattice wave should be on the order of the interatomic distances, or the lattice
constants. Rather than treating each atom as an individual oscillator, the Debye
model assumes that vibrations are inside the whole crystal just like standing waves.
For elastic vibrations, there are longitudinal waves (e.g., soundwaves) and transverse
waves (with two polarizations) in a crystal. In analogy to electromagnetic waves and
photons, the quanta of lattice waves are called phonons. The energy of a phonon
is ε = hν, where ν is the vibration frequency. The momentum of a phonon is p =
hν/vp = h/λ, where ν is the frequency, λ is the wavelength, and vp = λν is the speed
of propagation (or phase speed) for the given phonon mode. It should be noticed that
the propagation speeds of longitudinal and transverse acoustic waves are different.
So far, we have related lattice vibrations to lattice waves and to the translational
movement of the phonon gas, which follows the Bose–Einstein statistics. However,
the total number of phonons is not conserved since it depends on temperature. Thus,
we do not need to apply the constraint given in Eq. (3.2) and can simply set α = 0
in Eq. (3.16). The result is

Ni

gi
= 1

eεi/kBT − 1
(5.3)

Suppose the energy levels are closely spaced; we can write Eq. (5.3) in terms
of a continuous function called the Bose–Einstein distribution function at a given
temperature T as

fBE(ν) = dN

dg
= 1

ehν/kBT − 1
(5.4)

The degeneracy for phonons is the number of quantum states per unit volume in
the phase space. For a given volume V and within a spherical shell in the momentum
space (from p to p + dp), we have from Eq. (3.87) that dg = 4πV p2dp/h3 =
4πV ν2dν/v3p. Hence,

dg

V
= g(ν)dν

V
= D(ν)dν = 4πν2

v3p
dν (5.5)

Here, we have introduced the density of states (DOS) of phonons, D(ν), which
is the number of quantum states per unit volume per unit frequency or energy (hν)
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interval. Equation (5.4) gives the mean occupation number, i.e., the average number
of bosons per quantum state at frequency ν. The phonon number density in terms of
the DOS can be expressed as

n =
∞∫

0

fBE(ν)D(ν)dν (5.6)

Because there exist one longitudinal and two transverse waves, the phonon DOS
in a large spherical shell of the momentum space can be written as

D(ν) = 4πν2

(
1

v3l
+ 2

v3t

)
= 12πν2

v3a
(5.7)

where vl is the speed of the longitudinal wave, vt is the speed of the transverse
wave, and va is a weighted average defined in the above equation. The total number
of quantum states must be equal to 3N, since each quantum state corresponds to a
harmonic oscillator. Using integration in place of summation, we have

3N

V
=

∞∫

0

D(ν)dν =
νm∫

0

12πν2

v3a
dν (5.8)

where νm is an upper limit of the frequency that can be obtained from Eq. (5.8) as

νm =
(
3na
4π

)1/3

va (5.9)

Here, na = N/V is the number density of atoms.
The Debye temperature is defined as

�D = hνm

kB
= h

kB

(
3na
4π

)1/3

va (5.10)

The Debye temperature and the number density for various solids are listed in
Table 5.1 together with some other properties. The listed values of the Debye tem-
perature were based on the experimentally measured specific heat at very low tem-
peratures, rather than that calculated from the speed of sound. The result of the
Debye specific heat theory agrees fairly well with the experimental data for several
crystalline solids in a large temperature range, as can be seen from Fig. 5.2. The
high-temperature limit of the specific heat is 6R̄ for GaAs and 9R̄ for CaF2, because
the number of atoms in a unit cell of the lattice is 2 and 3, respectively.
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Example 5.1 The average speed of the longitudinal waves is vl = 8970m/s and
that of the transverse waves is vt = 5400m/s in silicon. Find the average propa-
gation speed, the maximum frequency, the Debye temperature, and the minimum
wavelength λmin. How does λmin compare with the average distance between atoms?

Solution Since v3a = 3/(v−3
l + 2v−3

t ), we have va = 5972m/s. Given na =
5.0 × 1028 m−3, we obtain νm = 1.36 × 1013 Hz = 13.6THz from Eq. (5.9) and
�D = 655K from Eq. (5.10), which is a little bit higher than the experimental value
of 645 K listed in Table 5.1. The experimental value was obtained by fitting the
low-temperature specific heat with the Debye model. The minimum wavelength is
estimated by λmin = va/νm = 0.44 nm = 4.4 Å. The average spacing between atoms
can be estimated by L0 = n−1/3

a = 0.27 nmor 2.7 Å, suggesting that λmin ≈ 2L0.
The maximum wavelength of the lattice wave will be twice the extension of the
solid. For a cubic solid with each side L, we have λmax ≈ 2L . The lattice waves are
illustrated in Fig. 5.3 in a 1D case.

The distribution function for phonons can now be written as

f (ν) = 1

V

dN

dν
= D(ν) fBE(ν) = 12πν2

v3a (e
hν/kBT − 1)

= 9naν2

ν3
m(ehν/kBT − 1)

, ν ≤ νm

(5.11)

The vibration contribution to the internal energy can be written as

U −U0 =
∞∫

0

f (ν)hνdν (5.12a)

where U0 is the internal energy at 0 K when no vibration modes are excited. The
result after some manipulation becomes

Fig. 5.3 Illustration of the
minimum wavelength
λmin = 2L0 and the
maximum wavelength
λmax = 2L associated with
lattice vibrations in a solid
with a dimension L and with
a periodic array of atoms
(dots)
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U −U0 = 9NkBT

(
T

�D

)3
xD∫

0

x3

ex − 1
dx (5.12b)

where xD = �D/T . The molar specific heat is then

c̄v(T ) =
(

∂ ū

∂T

)

V

= 9R̄

(
T

�D

)3
xD∫

0

x4ex

(ex − 1)2
dx (5.13)

The specificheat predictedby theDebye theory agrees verywellwith experimental
data of many solids, as shown in Fig. 5.2. Notice that

∫ xD
0 x4ex (ex − 1)−2dx =

4
∫ xD
0 x3(ex − 1)−1dx −x4D/(exD − 1). When T � �D, xD → 0 and ex − 1 ≈ x .

Thus,
∫ xD
0 x3(ex − 1)−1dx → x3D/3, and the Debye specific heat approaches 3R̄ in

the high-temperature limit. The relative difference is about 5% at T = �D. Using
Eq. (B.9), it can be shown that at T � �D, Eq. (5.13) can be approximated by

c̄v(T ) = 12π4

5
R̄

(
T

�D

)3

∝ T 3 (5.14)

which is known as the T 3 law, and it agreeswith experiments formany solidmaterials
within a few percent for T/�D < 0.1 [7].

In essence, the Einstein specific heat theory assumed that all oscillations are at
the same frequency, and it implied that the DOS has a sharp peak at that frequency
and is zero at all other frequencies. On the other hand, the Debye theory is based on
a parabolic function, D(ν) ∝ ν2. More detailed studies have revealed that the actual
phonondensity of states is a complicated functionof the frequency [6, 8], as illustrated
in Fig. 5.4 for aluminum and copper according to neutron scattering measurements.
There are different phonon branches in a real crystal that affect the DOS in different
frequency regions. A detailed discussion will be deferred to Chap. 6 when we take

Fig. 5.4 Illustration of the
phonon density of states in
the Einstein model and the
Debye model as compared
with the actual behavior of
metals
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a deeper look into the crystalline structures and phonon dispersion relations. In
general, the Debye theory predicts correctly the low-temperature behavior when only
the low-frequency phonon modes are excited; this is probably the most significant
contribution of the Debye model. At higher temperatures, the Debye model can be
considered as a first-order approximation, as shown in Fig. 5.2.

5.1.3 Free-Electron Gas in Metals

The translational motion of free electrons within metals is largely responsible for
their electrical and thermal conductivities. Sometimes, the free electrons are called
electron gas, drawing an analogy between electrons andmonatomicmolecules. How-
ever, there are distinct differences between electrons in a solid and molecules in an
ideal gas. The number of free electrons is on the order of the number of atoms.
For Au, Cu, and Ag, we shall assume there is one (1) free electron per atom, but
there are three (3) electrons per atom for Al and four (4) electrons per atom for Pb
(see Table 5.2). Electrons obey the Fermi–Dirac distribution given in Eq. (3.24). A
continuous function called the Fermi function can be defined as

fFD(ε) = dN

dg
= 1

e(ε−μ)/kBT + 1
(5.15)

The Fermi function is plotted in Fig. 5.5a, where μF = μ at T = 0 K is called
the Fermi energy (or Fermi level). It will be shown later that μ changes little when
the temperature is not very high. At the absolute temperature of 0 K, fFD = 1
when ε < μF, and fFD = 0 when ε > μF. This suggests that each quantum state
whose energy is below the Fermi energy is occupied by one electron. All quantum
states whose energies exceed the Fermi energy are not occupied. As the temperature
increases, the function falls less sharply. Hence, the quantum states slightly below
the Fermi level are still filled, and those slightly above the Fermi level remain empty.
However, the quantum states are only partially filled around the Fermi level.

The degeneracy for electrons is further increased by 2, due to the existence of
positive and negative spins. In a volume V of a spherical shell in the momentum
space, we have dg = 8πV (me/h)3v2dv from Eq. (3.86) by considering the spin
degeneracy. Hence, the distribution function in terms of the electron speed is

f (v) = 1

V

dN

dv
= 8π

(me

h

)3 v2

e(ε−μ)/kBT + 1
(5.16)

Using f (v)dv = f (ε)dε and ε = mev2/2, we obtain the distribution function in
terms of the kinetic energy of electrons as

f (ε) = 1

V

dN

dε
= 4π

(
2me

h2

)3/2 √
ε

e(ε−μ)/kBT + 1
(5.17)
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Fig. 5.5 a The Fermi function and b the distribution function of free electrons in a metal

This equation is plotted in Fig. 5.5b. Note that f (ε) = fFD(ε)D(ε), where D(ε)

is the density of states for free electrons and is expressed as

D(ε) = 4π

(
2me

h2

)3/2√
ε (5.18)

Now, we are ready to evaluate the Fermi energy μF. At T → 0, the number
density of electrons becomes

ne = Ne

V
= lim

T→0

μ∫

0

4π

(
2me

h2

)3/2 √
ε

e(ε−μ)/kBT + 1
dε (5.19)

which gives

μF = h2

8me

(
3ne
π

)2/3

(5.20)

Typical values of μF range from 2 to 12 eV. Table 5.2 lists the Fermi energy,
the electron number density, the number of electrons per atom, and the electrical
resistivity of various metals. The temperature dependence of μ for electrons is given
by the Sommerfeld expansion [6]:

μ(T ) = μF

[

1 − 1

3

(
πkBT

2μF

)2

+ · · ·
]

(5.21a)

It can be seen that μ(T ) ≈ μF at moderate temperatures. Arnold Sommerfeld
(1868–1951) was a German physicist and one of the founders of quantummechanics.
As a professor at the University of Munich, he advised a large number of doctorate
students who became famous in their own right, including Peter Debye, Wolfgang
Pauli, and Werner Heisenberg, among others. Sommerfeld applied the FD statistics
to study free electrons in metals and resolved the difficulty in the classical theory for
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electron specific heat. The Sommerfeld expansion for the integration involving the
FD function is derived in Appendix B.8. As discussed in Chap. 3, electrons tend to fill
all the quantum states up to a certain energy level. In many texts, μ(T ) is called the
Fermi level or the Fermi energy, which is temperature dependent. As the temperature
increases, only those electrons near the Fermi level will be redistributed. By noticing
that the difference between μ(T ) and μF is small, we can use Eqs. (B.74) and (B.78)
to express the electron number density as follows:

ne =
∞∫

0

D(ε) fFD(ε, T )dε ≈
μF∫

0

D(ε)dε + (μ − μF)D(μF) + π2(kBT )2

6
D′(μF)

where the first term is the same as the right-hand side of Eq. (5.19). Since the number
density is independent of temperature, we must have

(μ − μF)D(μF) + π2(kBT )2

6
D′(μF) = 0 (5.21b)

which proves Eq. (5.21a) since D(ε)/D′(ε) = 2ε.

Example 5.2 Calculate μ at 300 and 10,000 K for copper using μF = 7 eV. Find
the maximum speed (Fermi velocity) and the average speed of electrons for copper
at 0 K. How will the Fermi velocity change if the temperature is changed to T =
300 K?

Solution Note that kB = 1.381 × 10−23/1.602 × 10−19 = 8.62 × 10−5 eV/K. Let
us calculate the relative changes of μ at a given temperature T. From Eq. (5.21a), we
have

μ(T ) − μF

μF
≈ −1

3

(
πkBT

2μF

)2

= −1.24 × 10−10T 2

which is about 0.0011% at 300 K and 1.2% at 10,000 K. The change in μ is indeed
very small. At T = 0, μF = 1

2mev2max = 1
2mev2F. Hence,

vmax = vF = √
2μF/me (5.22a)

ε̄ = 1

2
mev2 = U

N
=

μF∫

0

f (ε)εdε

/ μF∫

0

f (ε)dε = 3

5
μF (5.22b)

vrms =
√

2ε̄

me
=
√
6μF

5me
(5.22c)

Electrons are constantlymoving even at absolute zero temperature. For copper, we
get vF = 1.57 × 106 m/s and vrms = 1.22 × 106 m/s, which is about three-quarters
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of vF. The classical model based on the equipartition principle or the Maxwell–
Boltzmann distribution would give 3

2kBT = 1
2mev2 or vrms = √

3kBT/me = 0 at
absolute zero temperature. Because μ changes little from 0 to 300 K, the Fermi
velocity at 300 K is essentially the same as that obtained at 0 K.

Discussion: If we use the rms velocity to calculate the de Broglie wavelength
as in Example 3.2, we obtain λDB = 0.6 nm. If an electron is accelerated in vac-
uum to 50 keV, the velocity will be greater than one-third of that of light, and the
de Broglie wavelength will be extremely small (λDB ≈ 0.0066 nm). The resolu-
tions in conventional optical microscopy and photolithography are usually limited
by λ/2 (the diffraction limit), which is on the order of 200 nm for visible light.
Electron microscopy can have a much higher resolution (~0.1 nm), and e-beam
nanolithography allows the manufacturing of features just a few nanometers.

In order to find out the specific heat of electrons, we first calculate the internal
energy:

U = V

∞∫

0

ε fFD(ε)D(ε)dε (5.23a)

Because the distribution function does not vary significantly except near ε = μ,
the Sommerfeld expansion can be used to express the integration [see Eq. (B.78) in
Appendix B]. Hence,

U

V
≈

μF∫

0

εD(ε)dε + μF(μ − μF)D(μF) + (πkBT )2

6
[μFD

′(μF) + D(μF)]

One can see from Eq. (5.21b) that the two middle terms on the right side cancel
out. It should also be noted that D(μF) = 3ne/2μF. Therefore,

U ≈ 3

5
NμF

[

1 + 5π2

12

(
kBT

μF

)2

+ · · ·
]

(5.23b)

The specific heat of free electrons can then be obtained as

c̄v,e =
(

∂ ū

∂T

)

V

= π2kBT

2μF
R̄ (5.24)

which is much smaller than 3
2 R̄ as we would obtain if electrons were behaving as

an ideal monatomic molecular gas. Another way of obtaining Eq. (5.24) is to use
integration, which is left as an exercise (see Problem 5.6). Electronic contribution to
the specific heat of solids is negligible except at very low temperatures (a few kelvins
or less). The specific heat of metals at very low temperatures can thus be expressed
as
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cv(T ) = γ T + BT 3 (5.25)

where the linear term is the electronic contribution and the cubic term is the lattice
contribution for which B can be obtained from Eq. (5.14). The coefficient γ is known
as the Sommerfeld constant. The experimental values of γ generally agree with those
predicted by the free-electron model given in Eq. (5.25) for most alkali metals (e.g.,
Na, K) and noble metals (e.g., Cu, Ag, Au). For transition metals with magnetic
properties, such as Fe and Mn, the measured γ value can be an order of magnitude
greater than the predicted. On the other hand, for semimetals like Bi, the measured
γ value can be an order of magnitude smaller than the predicted. Further discussions
can be found from the text of Ashcroft and Mermin [6].

Example 5.3 Calculate and plot the specific heat of copper, and compare with the
data in Touloukian and Buyco [7]. Discuss the contribution of electrons and lattice
vibrations.

Solution From Table 5.1, the Debye temperature for Cu is �D = 340K. At T
< 30 K, we can apply the T 3 law given in Eq. (5.14) to find the coefficient B in
Eq. (5.25) to be 5.95 × 10−6 R̄ [K−3]. Using μF = 7 eV from Table 5.2, the Som-
merfeld coefficient can be calculated from Eq. (5.24) as γ = 6.08 × 10−5 R̄ [K−1].
Therefore, the two contributions will be equal at T = 3.2 K. The results are plotted in
Fig. 5.6a at temperatures below 10 K. At higher temperatures, as shown in Fig. 5.6b,
the electronic contribution is much smaller compared with the lattice specific heat:
about 0.3% at 100 K, 0.6% at 300 K, and 2% at 1000 K. The data show much
higher specific heat values than those predicted by the Debye model. The addition
of the electronic contributions cannot fully account for the difference. Noting that
R = R̄/M = 130.9 J/kgK at 1000 K, the specific heat calculated from the Debye
model of cv = 390.6 J/kgK is 99.5% of 3R given by the Dulong–Petit law. There are
several reasons that may be responsible for the deviation between the Debye model

Fig. 5.6 Electron and lattice contributions to the specific heat of Cu a at low temperatures and
b from 10 to 1000 K
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and measurements at high temperatures. The first is the anharmonic vibration that
was not considered in the simple models with harmonic vibrations. The contribu-
tion of anharmonic vibrations becomes more important at higher temperatures since
the amplitude of vibration increases with temperature. Secondly, thermal expansion
cannot be ignored at high temperatures. The variation of the distance between atoms
may change the potential function and thus increase the specific heat. Additionally,
when thermal expansion is not negligibly small, the specific heat at constant pressure
(that is measured) may be greater than that at constant volume (that is predicted).
Interested readers are referred to the literature for further discussions [9, 10].

5.2 Quantum Size Effect on Specific Heat

The above discussion assumes that the physical dimensions are much larger than
the lattice constant. In nanoscale devices and structures, such as 2D thin films or
superlattices, 1D nanowires or nanotubes, or 0D quantum dots or nanocrystals, sub-
stitution of summation by integration is no longer appropriate. Note that a 2D thin
film is confined in one dimension, a 1D wire is confined in two dimensions, and a 0D
quantum dot is confined in all three dimensions. In nanostructures, it is necessary to
consider quantization of the energy levels. The specific heat becomes a function of
the actual dimensions. Experimental demonstrations of quantum size effect on spe-
cific heat have been made on Pb particles [11], carbon nanotubes [12], and titanium
dioxide nanotubes [13], to name a few. To analyze the quantum size effect on the
lattice specific heat, we begin with a wavelike treatment of the vibrational modes in
this section.

5.2.1 Periodic Boundary Conditions

Consider a 1D chain of N + 1 atoms as sketched in Fig. 5.3, where the end nodes
are fixed in position. The solution should be a standing wave with the following
eigenfunctions:

sin
(πx

L

)
, sin

(
2πx

L

)
, sin

(
3πx

L

)
, . . . , sin

(
πx

L0

)
(5.26)

where L/L0 = N ,which is the total number of vibration modes within a length of L.
Another approach is based on the Born–von Kármán periodic boundary conditions
[6]. Instead of treating the solid as a bounded specimen whose atoms are fixed at
each boundary, the Born–von Kármán lattice model takes the medium as an infi-
nite extension with periodic boundary conditions. For a solid whose dimensions are
Lx , Ly, Lz in the Cartesian coordinates, the standing wave solutions are
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exp(ikx x), exp
(
iky y

)
, exp(ikzz) (5.27)

where k = (kx , ky, kz) is called the lattice wavevector with k2 = k2x + k2y + k2z . The
allowed discretized values are

kx = 0, ±2π

Lx
, ±4π

Lx
, ±6π

Lx
, . . . , ± (Nx − 1)π

Lx
, +Nxπ

Lx
(5.28a)

ky = 0, ±2π

Ly
, ±4π

Ly
, ±6π

Ly
, . . . , ± (Ny − 1)π

Ly
, +Nyπ

Ly
(5.28b)

kz = 0, ±2π

Lz
, ±4π

Lz
, ±6π

Lz
, . . . , ± (Nz − 1)π

Lz
, +Nzπ

Lz
(5.28c)

where the last term only has “+” term and should only be included if the number
of atoms along each direction Nx , Ny, or Nz is an even number. The central dis-
tance between adjacent atoms is Lx/Nx , Ly/Ny, or Lz/Nz in the given direction.
The individual components of the lattice wavevector may be negative or zero in this
case. In the 1D case, it can be seen that the total number of modes is the same as the
total number of atoms along the 1D chain. However, the infinite medium represen-
tation with periodic boundary conditions is advantageous not only in mathematical
derivations but also for the physical interpretation of lattice dynamics.

5.2.2 General Expressions of Lattice Specific Heat

The general expression of the lattice vibrational energy in a solid is given as

u(T ) = u0 +
∑

P

∑

K

�ω

(
1

e�ω/kBT − 1
+ 1

2

)
(5.29)

where u0 accounts for the static energy at absolute zero temperature, the first term in
the parenthesis is the Bose–Einstein distribution fBE(ω, T ) given in Eq. (5.4), and the
second term in the parenthesis corresponds to the zero-point energy that is associated
with the 1

2hν, due to quantum fluctuation or vacuum fluctuation, in the vibrational
energy levels. We use hν and �ω interchangeably whichever is more convenient.
The summation is over all phonon branches in terms of the wavevector index K and
the polarization index P. A phonon branch (sometimes also called a phonon mode)
describes the behavior of a type of phonons with a continuous frequency rather than
a discrete frequency. The concept of phonon branches will be presented in detail in
the subsequent chapter. The lattice specific heat can be expressed as [5]

cv(T ) =
∑

P

∑

K

�ω
∂ fBE(ω, T )

∂T
(5.30)
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Upon introducing the DOS, we can replace the summation over k-space with an
integration as follows:

cv(T ) =
∑

P

∞∫

0

�ω
∂ fBE
∂T

D(ω)dω

= kB
∑

P

∞∫

0

(
�ω

kBT

)2 e�ω/kBT

(e�ω/kBT − 1)2
D(ω)dω (5.31)

Since the DOS is expressed as the number of modes per unit volume, Eq. (5.31)
gives the specific heat per unit volume. Neutral scattering and Raman scattering
are common ways of determining the DOS from the relationship between ω and
the lattice wavevector k along selected crystal directions. The function ω = ω(k)

is called a dispersion relation. If discretized values are expressed using the Delta
functions in the expression of D(ω), Eq. (5.31) is equivalent to Eq. (5.30), and both
the equations can be considered as the general expressions of the specific heat due to
lattice vibrations. For a nanostructure with very few atoms in a particular direction,
Eq. (5.30) may be more convenient to use. On the other hand, in directions with a
large number of atoms, Eq. (5.31) would be the preferable choice.

5.2.3 Dimensionality

The method of periodic boundary conditions allows one to determine the density
of states for simple dispersion relations easily. Figure 5.7 shows the k-space, or the
reciprocal lattice space, in the 2D case. Each individual block of area 4π2/(Lx L y)

Fig. 5.7 Schematic of the
reciprocal lattice space, or
k-space

xk

yk

2 / xLπ

2

yL
π
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represents a mode, and the number of modes up to a certain value of k is equal to
the total number of blocks inside the circle. One can also use this graph to visualize
the 3D case. Each box of volume 8π3/(Lx L yLz) represents a mode. The number of
modes for a given upper limit k is equal to the total number of boxes within a sphere
of radius k, hence,

N = 4πk3

3

Lx L yLz

8π3
= Vk3

6π2
(5.32)

When the dimensions are large enough, the DOS can be expressed as

D(ω) = 1

V

dN

dω
= k2

2π2

dk

dω
(5.33)

Assume the dispersion relation is linear, then

ω = vak (5.34)

where va is the average speed of the longitudinal and transverse waves as in Eq. (5.7).
We can rewrite Eq. (5.33) as

D(ω) = ω2

2π2v3a
(5.35)

This expression is equivalent toEq. (5.7) for a single polarization. Equations (5.32)
and (5.34) can be combined to obtain the high-frequency limit by setting N equal to
the number of atoms.The result is the sameasEq. (5.9).WhenEq. (5.35) is substituted
into Eq. (5.31), the Debye expression of the specific heat given in Eq. (5.13) is readily
obtained.

If the number of atoms is very small in a particular direction, there will only be
a few values for the particular wavevector component. The dimensionality will be
reduced, and the wavevector component can be assumed as zero in that direction. For
a 2D solid (such as a thin film or a quantum well), the DOS is defined as the number
of quantum states per unit area. By assuming a linear dispersion relation, we obtain

N = πk2

4π2/(Lx L y)
= Ak2

4π
(5.36)

and

D(ω) = 1

A

dN

dω
= k

2π

dk

dω
= ω

2πv2a
(5.37)

For a 1D solid (such as a nanowire or a nanotube), by noting that N =
2k
/

(2π/Lx ) = Lk/π , we find the DOS to be
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D(ω) = 1/(πva) (5.38)

which is independent of the frequency. It can be shown that, in the low-temperature
limit, the specific heat for a 2D solid is proportional to T 2 and that for a 1D solid
is proportional to T [14, 15]. Experimental evidence of the dimensionality change
has been known for a long time in graphite, which has a layered lattice structure
with a strong bonding between atoms within each layer and a weak interactive force
between layers. The specific heat of graphite is approximately proportional to T 2

at low temperatures [16]. On the other hand, the linear temperature dependence of
specific heat has been observed in carbon nanotubes [12].

It can be seen from Eq. (5.31) that when �ω � kBT, the integrand approaches
zero. Therefore, the contribution to the specific heat is negligibly small when the
phonon energy is much higher than kBT . The speed of lattice waves ranges from
1000 to 10,000 m/s, and the phonon wavelength corresponding to kBT is called
thermal phonon wavelength, which can be calculated from λth = vah/kBT . At room
temperature, λth is approximately 0.3 nm for va = 2000m/s and 1 nm for va =
6000m/s. At 10 K, λth ≈ 10 nm for va = 2000m/s, and λth ≈ 30 nm for va =
6000m/s. It is expected that the quantum size effect will become more significant at
low temperatures, because the thermal phonon wavelength may be greater than the
smallest physical length, such as the thickness of the film and the diameter of the
wire.

5.2.4 Thin Films and Nanowires

Thin films, or quantum wells, are important components for microelectronic and
photonic devices. We will use the following example to elucidate the effect of film
thickness and temperature on the specific heat of thin films.

Example 5.4 Evaluate the low-temperature behavior of the specific heat of a thin
film made of a monatomic solid. Assume that the film thickness is L , which has q
monatomic layers, i.e., L = qL0. The average acoustic speed va may be assumed to
be independent of temperature. Values of silicon given in Example 5.2 may be used
in the numerical evaluation.

Solution The molar specific heat can be expressed as

c̄v(T ) = 3V R̄

NkB

∑

kx ,ky ,kz

�ω
∂ fBE
∂T

(5.39)

where the number 3 accounts for the three phonon polarizations. Assume the dimen-
sion perpendicular to the film is the z-direction. The allowable modes in the z-
direction are given by kz = 0,±2π/L ,±4π/L , . . . In order for the total number of
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modes in the z-direction to be equal to q for all q values, we shall use the following
limits:

kz =
{
0,± 2π

L ,± 4π
L , . . . ± (q−1)π

L , for q = 1, 3, 5 . . .

0,± 2π
L , . . . ± (q−2)π

L ,+ qπ

L , for q = 2, 4, 6 . . .
(5.40)

Assume that the lattice is infinitely extended in the directions parallel to the film.
We can substitute the summation with integration in the parallel directions using
cylindrical coordinates. Therefore,

c̄v(T ) = 3V R̄

(2π)3NkB

∑

kz

⎛

⎝
βD∫

0

�ω
∂ fBE
∂T

2πβdβ

⎞

⎠�kz (5.41)

where β2 = k2x + k2y , �kz = 2π/L , and βD =
√
k2D − k2z . The cutoff value kD is

determined by setting the total number of modes equal to the number of atoms per
unit area. Equation (5.36) can be used to evaluate the number of modes for each kz
and then summed up over all kz values. Hence,

N

A
=
∑

kz

β2
D

4π
=
∑

kz

k2D − k2z
4π

(5.42a)

Note that N = AL/L3
0 = Aq/L2

0 and there are q terms in the summation
according to the kz values given in Eq. (5.40). We can solve Eq. (5.42a) to obtain

kD =
√√√√4π

L2
0

+
∑

kz

k2z
q

(5.42b)

In the limit of a single atomic layer, kD = 2
√

π/L0 ≈ 3.54L−1
0 ; when q → ∞,

kD ≈ 3.98L−1
0 , which is very close to the 3D value of kD = (6π2)1/3/L0 ≈ 3.90L−1

0 .
Note that the value of kD normalizes the specific heat so that cv approaches to the
high-temperature limit of 3R. At low temperatures, when the quantum size effect is
significant, a slight difference in kD does not alter the results much.

Using the linear dispersion relation, ω = vak = va
√

β2 + k2z , we see that 2βdβ =
kdk for fixed kz . Therefore, Eq. (5.41) can be recast to the following:

c̄v(T ) = 3R̄

2πN/A

(
kBT

�va

)2∑

kz

xD∫

xz

x3ex

(ex − 1)2
dx (5.43)

where x = �vak
kBT

, xD = �vakD
kBT

, and xz = �va|kz |
kBT

. The T 2 dependence at low tempera-
tures is evident when q = 1 or kz = 0 only. The modes associated with kz = 0 are
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Fig. 5.8 Quantum size
effect on the specific heat of
thin films, where the reduced
temperature is defined as
θ = T kBL0/hva
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parallel to the interface and are called planar modes.We have carried out a numerical
evaluation of Eqs. (5.42) and (5.43) for different values of N to see when the depar-
ture from bulk behavior will occur. The results are plotted in Fig. 5.8 as a function
of the reduced temperature, defined as θ = T kBL0/hva = L0/λth. It can be shown
that hva/kBL0 ≈ 1.61�D, where �D is the Debye temperature. When q and T are
sufficiently large, the result fromEq. (5.43) is the same as that predicted by theDebye
model for bulk materials. The departure occurs at low temperatures and especially
for small q values.

As mentioned earlier, due to the layerlike structure of graphite, its specific heat
exhibits 2D solid behavior at low temperatures [16]. The procedure used for this
example is essentially the same as that used by Prasher and Phelan [17], except that
we have considered the planar modes (kz = 0) in evaluating Eq. (5.43). The result is
an increase in the specific heat in the microscopic regime, as discussed in detail in
Ref. [15]. Hence, planar modes are critically important when the thickness is small,
especially at low temperatures.

A similar formulation can be derived for a nanowire with a square or rectangular
cross section [15, 16]. When axial modes are allowed for a wire parallel to the
z-axis, kx = ky = 0, the specific heat of this single mode dominates all other
modes at sufficiently low temperatures and varies linearly with the temperature T
[15]. Another way to show the linear temperature dependence is to combine the
DOS given in Eq. (5.38) with Eq. (5.31) as mentioned previously [14]. Note that
the discussion here assumes that the linear dispersion relation, Eq. (5.34), holds for
the average phonon speed with only three phonon modes. The actual phonon modes
and dispersion relations can be rather complicated, and rather sophisticated tools are
required to model the thermal properties of nanostructured materials. Several studies
have been conducted for silicon nanowires [18–20].



196 5 Thermal Properties of Solids and the Size Effect

5.2.5 Nanoparticles or Nanocrystals

For 3D confinement or 0D structures, consider cuboidal nanoparticles of dimensions
(Lx , Ly, Lz) with the number of atoms in each direction as (Nx , Ny, Nz). The molar
specific heat can be written as a summation using Eq. (5.30) as follows:

c̄v(θ) = 3R̄

Nx NyNz

∑

j,m,n

η2eη

(eη − 1)2
(5.44)

where

η = 1

θ

(
j2

N 2
x

+ m2

N 2
y

+ n2

N 2
z

)1/2

with θ = T kBL0

hva
(5.45)

Note that the summation indices are based on the wavevector values given in
Eq. (5.28). For nanoparticles, the aspect ratio and shape can affect the specific heat
characteristics. Therefore, T n (where 1 < n < 3) behavior may occur for cuboids
below the Debye temperature but not at very low temperatures [15].

When the temperature is very low, only the mode(s) with the lowest frequency can
be excited and a second quantum size effect will occur. Consider a cubic nanocrystal
with q atoms in each dimension. Among the q3 total modes, we are left with only
six axial modes, which are k = (±2π/L , 0, 0), (0,±2π/L , 0), and (0, 0,±2π/L).

These modes have the longest phonon wavelength. From Eq. (5.44), the specific heat
can be expressed as

cv(T → 0) = a

T 2
exp

(
− b

T

)
(5.46)

where a and b are positive constants. Because Eq. (5.46) converges to zero faster than
T 3, the second quantum size effect will reduce the specific heat at extremely low
temperatures [21, 22]. Experiments were made in the early 1970s on lead particles as
small as 2.2-nm diameter [11]. At temperatures below 15 K, the specific heat of these
particles is much greater than that for the bulk material. However, as the temperature
is reduced to about 2 K, the difference diminishes. Below 2 K, the specific heat of the
nanoparticles decreases much rapidly than that of the bulk. Note that Eq. (5.46) only
applies to the 3D confined case because for 1D or 2D confined cases, the wavevector
in the unconfined direction is not restricted.

For bulk solids, as discussed previously, the Born–von Kármán periodic bound-
ary condition is equivalent to the Dirichlet or Neumann boundary conditions [6].
However, for nanocrystals, the applied boundary conditions can affect the model
predictions significantly [15, 22]. Let us consider cuboidal nanoparticles. TheDirich-
let boundary condition fixes the value at the boundary and is called a clamped
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boundary condition. The eigenfunctions are given in Eq. (5.26), allowing only pos-
itive wavevectors. The specific heat may still be computed using Eq. (5.44), while
Eq. (5.45) is modified as

η = 1

2θ

(
j2

N2
x

+ m2

N2
y

+ n2

N2
z

)1/2

, j = 1, 2, . . . , Nx ; m = 1, 2, . . . , Ny; n = 1, 2, . . . , Nz

(5.47a)

For a cubic nanoparticle with Nx = Ny = Nz = q, the lowest phonon mode
corresponds to ( j,m, n) = (1, 1, 1) or kx = ky = kz = π/L . The result is a mini-
mum wavevector kmin = √

3π/L and ηmin = √
3/(2θq). For the periodic boundary

conditions as discussed before, kmin = 2π/L and ηmin = (θq)−1. While the mini-
mumwavevector is slightly smaller, the resulting ηmin for the lowest phonon mode is
greater with Dirichlet boundary conditions. Hence, the predicted specific heat using
the Dirichlet boundary conditions is always lower than that of the corresponding
bulk material which is independent of the boundary conditions. This is also true for
spherical particles using spherical Bessel functions [22].

On the other hand, when Neumann free-surface boundary conditions are applied,
the eigenfunctions are cosine functions and the indices in Eq. (5.47a) should be
modified to allow zero indices as long as at least one of them is nonzero, that is

j = 0, 1, . . . , (qx − 1); m = 0, 1, . . . , (qy − 1); n = 0, 1, . . . , (qz − 1) (5.47b)

where j,m, and n cannot be simultaneous zero. In this case, we see from Eq. (5.47a)
that kmin = π/L and ηmin = (2θq)−1. Therefore, the phonon frequency of the low-
est mode is half of that in the case of periodic boundary conditions. The reduction
of phonon frequency toward low temperatures is called phonon softening. Phonon
softening results in an enhancement of the specific heat of nanoparticles at low tem-
peratures until the temperature becomes sufficiently low when the second quantum
size effect described by Eq. (5.46) will dominate the specific heat behavior. The result
for cubic nanoparticles is in general consistent with that of spherical nanoparticles
based on the Neumann boundary conditions [15, 22].

5.2.6 Graphite, Graphene, and Carbon Nanotubes

Unlike diamond, which contains 3D tetrahedral structures, graphite crystallizes in
the hexagonal system with sheetlike structures. While diamond and graphite are
each a polymorph of the element carbon, they exhibit dramatically different prop-
erties due to their different crystalline structures. Diamond is hard, transparent, and
an electrical insulator. On the contrary, graphite is quite soft, opaque, and a good
electrical conductor. Graphene is a single atomic layer of carbon atoms packed into a
periodic benzene-ring structure. Carbon nanotubes may be considered as rolled from
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a graphene sheet into a hollow cylinder, with one or both of its ends capped with
half a fullerene molecule. The discovery of C60 and other fullerenes by Robert Curl,
Harold Kroto, and Richard Smalley was recognized through the 1996 Nobel Prize
in Chemistry conferred on them. The diameter of single-walled carbon nanotubes
(SWNTs) can be as small as 0.4 nm with a typical diameter 1–2 nm and as long as
100 μm or so. Multi-walled carbon nanotubes (MWNTs) and nanotube ropes can
have a diameter from 10 to 200 nm.

As mentioned earlier, graphite has a 2D structure and exhibits T 2 dependence
at low temperatures [16]. For an isolated graphene sheet, the in-plane or parallel
transverse acoustic phonon mode or branch has a velocity of vTA−p = 15, 000m/s
and the longitudinal acoustic phonon mode has a velocity of vLA = 24, 000m/s.
On the other hand, the out-of-plane or perpendicular transverse phonon branch is
described by a quadratic dispersion relation, ω ∝ k2, which is the dominant mode
for the specific heat at low temperatures. Considering the dimensionality and the
dispersion relation, the specific heat of a graphene sheet depends almost linearly on
T at lower temperatures (see Problem 5.11) and on T 2 as the temperature is raised
above 100 K or so.

The four acoustic phonon modes or branches are expected to be the dominant
contributions to the specific heat of isolated SWNTs at low temperatures. These
include two (degenerate) transverse modes, one longitudinal mode, and a twisting
mode or torsional mode associated with the rigid rotation around the nanotube axis.
The dispersion relation is linear for all fourmodes at low frequencies [23]. Therefore,
because of the 1D structure, the specific heat is expected to be linearly dependent
on temperature. As the temperature is raised, however, higher frequency modes are
excited and the 2D characteristics of carbon nanotubes come into play. Watt de Heer
has written an elegant article on this topic [24]. There are significant differences
between SWNTs, MWNTs, and nanotube ropes or bundles; the actual temperature
dependence can be more complicated and dependent on the diameter [12, 23–25].

In nanostructures, the electron DOS is also subject to quantization. The theory
for the electronic contribution to the specific heat is more complicated. The elec-
tron–electron and electron–phonon interactions as well as the distribution of energy
levels and the Fermi energy need to be considered in a detailed model [26, 27].
The electronic specific heat of small particles is still a linear function of tempera-
ture. Generally speaking, the electronic contribution to the specific heat is negligibly
small unless the temperature is below about 1 K. Therefore, we will not discuss the
electronic size effect on the specific heat any further.

5.3 Electrical and Thermal Conductivities of Solids

In this section, we use kinetic theory to study the electron and phonon transport
properties of metals and insulators in the bulk form. The coupling between electrical
current and heat flux due to electric field and temperature gradient will be studied
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in the next section, followed by a discussion of the size effect on the electrical and
thermal conductivities.

5.3.1 Electrical Conductivity

We start with the simple kinetic theory approach based on the Drude free-electron
model, also known as the Drude–Lorentz theory. As shown in Fig. 5.9, the electrical
resistance of a resistor is R = reL/Ac = L/(σ Ac), where re is the resistivity; its
inverse σ is the conductivity, L is the length, and Ac is the cross-sectional area.
Ohm’s law relates the voltage drop �V and the current I by �V = I R, which can
be rearranged as

I

Ac
= σ

�V

L
(5.48)

Notice that J = I/Ac is the current density (charge per unit cross-sectional area
per unit time), and E = �V/L is the electric field (note that the electric field is in
the direction of decreasing voltage). Rewriting it in the vector form, we have

J = σE (5.49)

The above equationmay be considered as themicroscopic Ohm’s law. An electron
of charge −e is accelerated in an electric field according to Newton’s law as

F = −eE = me
dv
dt

(5.50)

Due to collisions, electrons cannotmove completely freely. The velocity change of
an electron during a relaxation time τ (the average traveling time between collisions)
due to an external field is called the drift velocity ud. The probability that a traveling
particle will collide with another particle or a defect during an infinitesimal time dt
is given by dt/τ . The acceleration term in Eq. (5.50) can then be approximated by

Fig. 5.9 Illustration of
electrical conduction
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ud/τ . Alternatively, one can also consider a damping force that is proportional to
the drift velocity given as meγud, where the damping coefficient γ happens to be
the electron scattering rate 1/τ . At steady state, the damping force must balance the
external electrical force, i.e., −eE = meud/τ [28]. The current density is related to
the drift velocity by J = −eneud, hence,

J = nee2τ

me
E (5.51)

Comparing the above equation with Eq. (5.49), we obtain the Drude–Lorentz
expression:

σ = nee2

me
τ (5.52)

The preceding equation is often used to obtain the relaxation time τ from the
measured electrical conductivity σ . At moderate temperatures, it can be assumed
that the characteristic velocity of electrons is the Fermi velocity vF, and the mean
free path of electrons can be written as

�e = vFτ (5.53)

The electron scattering mechanisms are illustrated in Fig. 5.10. Electron–elec-
tron scattering is inelastic and usually negligible compared with electron–phonon
scattering, which is also inelastic. Because lattice vibrations are enhanced as tem-
perature increases, electron–phonon scattering is expected to be dominant at high
temperatures. Defect or impurity scattering, on the other hand, is important at low
temperatures. For bulk materials that are large enough, boundary scattering is negli-
gible. According to Matthiessen’s rule, the scattering rate of independent scattering
events can be added to yield the total scattering rate. For a bulk material, we have

1

τ
= 1

τe−e
+ 1

τe−ph
+ 1

τe−d
≈ 1

τe−ph
+ 1

τe−d
(5.54)

Fig. 5.10 Schematic of
various carrier scattering
mechanisms
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where the subscripts e–e, e–ph, and e–d are for electron–electron, electron–phonon,
and electron–defect scattering. It should be noted that the free-electron description
is often applied to model the electrical conductivity of (doped) semiconductors,
in which both electrons and holes (positive charges) can carry currents. For some
metals, as to be explained in Chap. 6, the charge carriers are actually holes rather
than electrons. Using Eq. (5.53), we can write Eq. (5.54) in terms of the mean free
path as follows:

1

�e
= 1

�e−ph
+ 1

�e−d
(5.55)

Different scattering mechanisms can be considered separately. Boundary scatter-
ing becomes important when the characteristic dimension Lc is comparable to the
mean free path of the bulk material �e. Here, Lc can be the thickness of a thin film
or the diameter of a thin wire. An effective mean free path can be defined for the
evaluation of the scattering rate and the conductivity:

1

�e,eff
= 1

�e
+ 1

�e−b
(5.56)

where the subscript e–b is for electron–boundary scattering. It can be seen that when
boundary scattering is important, the effective mean free path will be suppressed, or
the scattering rate will increase. The electrical conductivity will be reduced, and the
reduction is size dependent. This is similar to the molecular heat transfer discussed in
Chap. 4 when the Kn number, i.e., the ratio of the mean free path to the characteristic
length (�/Lc ), is comparable or greater than 1. Further discussion of the size effect
on the conductivities of solids will be given in Sect. 5.5.

The Bloch formula for electrical resistivity due to electron–phonon scattering
gives

re−ph = 4r0

(
T

�

)5
�/T∫

0

x5ex

(ex − 1)2
dx (5.57)

where r0 is a constant, and � is a characteristic temperature that is very close to the
Debye temperature [29]. The derivation of the above equation requires a careful treat-
ment of the electron–phonon interaction within the framework of the electron band
theory considering both the N process and the U process, which will be discussed
in Chap. 6. The Bloch formula predicts that the electrical resistivity approaches zero
as the temperature approaches absolute zero for a pure metal. When T � �, the
low-temperature approximation of the lattice resistivity can be written as

re−ph ≈ 498r0T
5/�5 (5.58)
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Because of impurities, electron–defect scattering gives a residual resistivity re−d

that is important at low temperatures, and its value is independent of tempera-
ture. Adding the scattering rates using Matthiessen’s rule, the electrical resistivity is
obtained as [29]

re = re−ph + re−d (5.59)

Figure 5.11 compares the model with the electrical resistivity data recommended
for high-purity bulk metals after annealing [30]. Taking the electrical resistivity of
gold as an example, it can be seen that phonon scattering dominates the electrical
resistivity at high temperatures and results in re−ph ≈ r0T/�, which is proportional
to T. It should be noted that �D listed in Table 5.1 can be used to approximate � in
most cases. The constant r0 can be determined using the resistivity values at 22 °C, or
295 K, given in Table 5.2. At very low temperatures, re ≈ re−d, which is independent
of temperature but depends strongly on the impurity concentration.

Example 5.5 Consider a large copper specimen of high purity with a very small
defect scattering rate of τ−1

e−d = 5 × 108 rad/s at the liquid helium temperature of
4.2 K. Find the electrical resistivity, the electron relaxation time,, and the mean free
path of this specimen at 1, 295, and 590 K.

Solution Wefirst useEq. (5.52) to evaluate the residual resistivity at 1Kby assuming
that the scattering rate is the same at 4.2 and 1 K. This yields an electrical resistivity
re ≈ re−d = me

nee2
1

τe−d
= 2.1×10−5 μ
 cm or conductivity σ = 4.76×1012 (
m)−1.

The electrical resistivity at 295 K is given in Table 5.2 to be re−ph ≈ re = 1.7μ
 cm.

Because the Debye temperature for Cu is 340 K, we can approximate the resistivity

Fig. 5.11 Comparison of the
measured electrical
resistivity data [30] of
99.999% pure copper, gold,
and silver with the model
considering electron–phonon
scattering and
electron–defect scattering
using Eq. (5.59)
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at 590 K to be twice that of the resistivity at 295 K, or 3.4μ
 cm. The relaxation
time is approximately 2× 10−9 s at 1 K, 2.47× 10−14 s at 295 K, and 1.24× 10−14 s
at 590 K since the number density is assumed to be temperature independent. Using
Eq. (5.53) and the Fermi velocity of vF = 1.57×106 m/s from Example 5.2, we have
the mean free path �e = 3.14, 38.8, and 19.4 nm at 1, 295, and 590 K, respectively.
The conductivity of a copper filmwith a thickness of less than 100 nmmay be affected
by boundary scattering. At low temperatures, however, boundary scattering may be
dominant for low-dimensional structures even at the micrometer length scale.

For metals, electrons are also responsible for thermal transport. Knowledge of the
electrical transport is critical to the understanding of thermal properties. The effect
of boundary scattering on transport properties is called the classical size effect [1,
2]. Quantum size effect can modify the DOS of electrons and hence the electrical
and thermal properties, as will be discussed in Sect. 5.6.

5.3.2 Thermal Conductivity of Metals

Inmetals, free electrons are themain thermal energy carriers.As discussed inChap. 4,
kinetic theory predicts that the thermal conductivity is

κ = 1

3
ρcv,evF�e (5.60)

where ρ = neme is the mass of electrons per unit volume and cv,e is the mass specific
heat of the electrons. Note that ρcv,e is the volumetric specific heat of electrons and

can be expressed as ρcv,e = neπ2k2BT
2μF

using the electron specific heat formula given in

Eq. (5.24). Substituting the expression for ρcv,e and vF�e = v2Fτ ≈ 2μFτ/me into
Eq. (5.60), we obtain the thermal conductivity of a given metal as follows:

κ = neπ2k2BT

3me
τ (5.61)

which is proportional to τT . TheWiedemann–Franz law can be obtained by compar-
ing this equationwith the expression for the electrical conductivity given inEq. (5.52),
viz.,

Lz ≡ κ

σT
= 1

3

(
πkB
e

)2

= 2.44 × 10−8 W
/K2 (5.62)

where Lz is called the Lorentz number. The measured Lz value for most conduc-
tors is between 2.2 and 2.7 × 10−8 W
/K2 at room temperature. The derivations
given above were based on the simple kinetic theory, which is consistent with the
solution of the BTE under the assumptions of local equilibrium and the relaxation
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time approximation. The actual scattering process may result in some differences
in the effectiveness of transferring momentum and energy during electron–phonon
scattering. More detailed theories and experiments have shown that the thermal con-
ductivity of metals is independent of temperature at moderate and high temperatures
[29]. The Wiedemann–Franz law is therefore valid near and above room temper-
ature for most metals. As the temperature is lowered, electron–phonon scattering
yields a thermal resistance (or 1/κ ) that is proportional to T 2, not T 4 as one would
obtain by combining Eqs. (5.57) and (5.62). Recall that in the intermediate region,
approximately between 10 and 100 K, the Wiedemann–Franz law is not valid. At
very low temperatures, defect scattering dominates and, because defect scattering
is elastic, the Wiedemann–Franz law is valid again so that κ ∝ T . Therefore, the
thermal conductivity at cryogenic temperatures can be expressed as

1

κ(T )
= A

T
+ BT 2 (5.63)

where A and B are positive constants. The first term on the right-hand side dominates
at very low temperatures, when the thermal conductivity is proportional to T. As
the temperature increases, the thermal conductivity reaches a peak and then falls
down proportional to T−2. As the temperature approaches the room temperature,
the thermal conductivity changes little with temperature until the melting point is
reached. Figure 5.12 plots themeasured thermal conductivity of copperwith different
impurity concentrations [31]. The highest purity annealed copper has a residual
resistivity of 5.79 × 10−12 
m. Oxygen-free high conductivity (OFHC) copper is
commonly used in absolute cryogenic radiometers to build the cavity receiver. Even
0.5% impurity concentration will make the conductivity to dramatically decrease at
lower temperatures. On the other hand, the thermal conductivity is less sensitive to
impurity at temperatures above 100K and changes little until themelting temperature

Fig. 5.12 Thermal
conductivity of copper with
different purity levels [31]
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of 1358 K. Beyond the melting temperature, the thermal conductivity values are for
liquid copper.

5.3.3 Derivation of Conductivities from the BTE

So far, we have used simple kinetic theory to discuss the electrical and thermal con-
ductivities of metals. It is hoped that these discussions have provided some insights
into basic phenomena. To understand the detailed mechanisms, we now present the
approaches based on the BTE under two assumptions: local equilibrium and relax-
ation time approximation. Recall from Chap. 4 that the distribution function can
be expressed in terms of f (r, v, t) or f (r,p, t), where p = mev for electrons. In
describing the phonon specific heat, we have extensively used the phononwavevector
k as well as the k-space. The advanced theory based on the electronic band struc-
ture, to be discussed in Chap. 6, is also based on the k-space. Using the magnitude
relations, p = h/λ and k = 2π/λ, we have k = p/�. Therefore, the distribution
function can bewritten in terms of k or f (r,k, t).The energy of an electron is related
to its wavevector by ε = �k·�k

2me
= �

2k2

2me
. Under the local-equilibrium condition, the

distribution function can be written in terms of temperature T (r, t) and energy ε

such that

f (r,k, t)dk = f1(ε, T )
dk
dε

dε = f1(ε, T )D(ε)dε (5.64)

where D(ε) = dk
/
dε is the DOS, and f1(ε, T ) is such that n(r, t) =

∞∫

0
f1(ε, T )D(ε)dε and ε̄(r, t) =

∞∫

0
ε f1(ε, T )D(ε)dε. For the equilibrium distribu-

tion of free electrons, f1(ε, T ) is nothing but the Fermi–Dirac function given in
Eq. (5.15). When the distribution function is isotropic in the k-space, the DOS is
given in Eq. (5.18) since dk = dkxdkydkz = 4πk2dk and dε = �

2kdk/me. As
discussed earlier, free electrons will occupy all the quantum states below the Fermi
level. The Fermi level corresponds to a maximum k in all directions in the k-space,
which is a spherical surface. All the electron quantum states are included in this
Fermi sphere. The argument is similar to the Debye model of phonons, where there
is an upper bound of the wavevector and the distribution is assumed to be isotropic.
We will see in Chap. 6 that the Fermi surface even for monatomic solids with the
simplest crystalline structures is not exactly spherical. This is because the electrons
in solids are not really independent particles. For simplicity, a spherical Fermi surface
is assumed in this section.

Suppose there is a constant electric fieldE alongwith a temperature gradient in the
z-direction. The function f1(ε, T ) is a nonequilibrium distribution that depends on
z. At steady state under the relaxation time approximation, we can rewrite Eq. (4.54)
as follows:
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f1(ε, T ) = f0(ε, T ) + τ(ε)

(
eE

me

∂ f1
∂ε

∂ε

∂vz
− vz

∂ f1
∂T

dT

dz

)
(5.65)

where f0(ε, T ) corresponds to the equilibrium distribution, which for electrons is the
Fermi–Dirac function fFD. The relaxation time is not taken as a constant; rather, it is
assumed to be dependent on the wavevector or the energy. Note that ∂ε

∂vz
= ∂ε

∂v
∂v
∂vz

=
mev

vz
v = mevz . As discussed in Chap. 4, under local equilibrium, we also assume

that

∂ f1
∂ε

≈ ∂ f0
∂ε

and
∂ f1
∂T

≈ ∂ f0
∂T

(5.66)

Note that this should be viewed as a simplified notation that is valid only when
the partial derivatives are substituted into the integration over the k-space. We will
consider the effect of applied field and temperature gradient separately. When there
is no temperature gradient, the current density can be written as

Je = −eJN = −e

∞∫

0

vz

(
fFD + τvzeE

∂ fFD
∂ε

)
D(ε)dε (5.67a)

The first term − ∫∞
0 evz fFD(ε, T )D(ε)dε is zero; and therefore,

Je = −e2E

∞∫

0

τ(ε)v2z
∂ fFD
∂ε

D(ε)dε (5.67b)

Because the integration is over the equilibrium distribution, it is one-third of the
integration if v2z is replaced by v2 = 2ε/me. The electrical conductivity can be
expressed as

σ = − 2e2

3me

∞∫

0

∂ fFD
∂ε

τ(ε)εD(ε)dε (5.68)

Note that ∂ fFD/∂ε ≈ −δ(ε − μ), where δ(ε − μ) is the Dirac delta function
with a sharp peak at ε = μ and essentially zero when ε �= μ. Furthermore,∫∞
∞ f (x)δ(x − a)dx = f (a). Consequently, the only active electrons are those
around the Fermi level. This small fraction of electrons, however, is responsible for
the conduction of electricity and heat in metals. We have by assuming μ(T ) ≈ μF

that

σ = 2e2

3me
τFμFD(μF) (5.69)
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which is the same as Eq. (5.52) since D(μF) = 3ne/(2μF) according to Eqs. (5.18)
and (5.20). The relaxation time is not the average of all electrons but the average of
only those electrons near the Fermi surface.

To evaluate the thermal conductivity, we set the applied field to be zero. Note that
for an open system of fixed volume, dU = δQ − μdN , i.e., the heat flux is equal
to the energy flux minus the product of the chemical potential and the particle flux.
Hence,

q ′′
z = JE − μJN =

∞∫

0

vz(ε − μ)

(
fFD(ε, T ) − τ(ε)vz

∂ fFD
∂T

dT

dz

)
D(ε)dε (5.70)

Note again that the integration of the equilibriumdistribution function inEq. (5.70)
is zero. Furthermore, the integration for v2z can be converted into the integration
for v2 = 2ε/(3me). After some manipulations, it can be shown that the thermal
conductivity is

κ = 2

3me

∞∫

0

τ(ε)(ε − μ)ε
∂ fFD
∂T

D(ε)dε (5.71a)

Using Eq. (B.82) from Appendix B.8, i.e., ∂ fFD
∂T = − ∂ fFD

∂ε

(
ε−μ

T

)
, we obtain after

applying Eq. (B.80) that

κ = − 2

3meT

∞∫

0

τ(ε)(ε − μ)2ε
∂ fFD
∂ε

D(ε)dε

= 2

3meT
τ(μF)μFD(μF)

π2(kBT )2

3
(5.71b)

This is essentially the same expression as in Eq. (5.61) for the electron thermal
conductivity obtained from simple kinetic theory. The discussion above based on
the Fermi–Dirac distribution not only confirms the simple kinetic theory but also
explains why vF should be used in Eqs. (5.53) and (5.60) rather than the rms velocity
of electrons. A familiarity with the BTE will help the study of the classical size
effect due to boundary scattering and thermoelectricity phenomena to be discussed
in subsequent sections.

The derivation above has confirmed the electrical conductivity and thermal con-
ductivity expressions. This also explains that the scattering rate corresponds to elec-
trons with energy equal to the Fermi energy. Therefore, theWiedemann–Franz law is
also confirmed since the scattering rates for the electron (momentum) transport and
that for energy transport cancel each other. Electron–phonon scattering must satisfy
the energy and momentum conservations. When the amount of energy change of
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electrons before and after collision is comparable with kBT, the scattering is inelas-
tic, and thus the two scattering processes can differ significantly. This happens at
intermediately lower temperatures since kBT is small. At very low temperatures,
since electron–defect scattering is elastic, the transport of electron momentum is as
effective as the transport of energy. As discussed earlier, the result in the intermedi-
ate low-temperature region for electron–phonon scattering is such that the electrical
resistivity follows T 5, while 1/κ follows T 2. In order for Eqs. (5.60) and (5.61) to be
valid, it is often thought as if the relaxation time for thermal conductivity is some-
what different from that for electrical conductivity. Actually, it is not because the
relaxation times are different; it is because the relaxation time approximation is not
valid. By using two relaxation times, one can simplify the scattering process. The
relaxation time for momentum transfer retains its meaning of the relaxation time, as
in Eq. (5.52) for the electrical conductivity. On the other hand, the relaxation time for
thermal transport given in Eq. (5.61) is sometimes called the energy relaxation time,
which is taken as a weighted average to approximate the difference in the scattering
effectiveness for energy exchange [6, 29].

5.3.4 Thermal Conductivity of Insulators

Heat conduction in electrical insulators is dominated by lattice waves or phonons.
This class ofmaterials includes diamond, quartz, sapphire, and silicon carbide, aswell
as semiconductor materials like silicon, germanium, and gallium arsenide. Kinetic
theory predicts the thermal conductivity of dielectricmaterials or electrical insulators
as follows:

κ = 1

3
ρcvva�ph (5.72)

where ρcv is the lattice volumetric specific heat, va is the average speed of corre-
sponding acoustic waves or phonons, and �ph is the phonon mean free path and is
related to the scattering rate by �ph = vaτ . When va is used, it is often assumed
that the dispersion relation is linear, i.e., vg = vp. For crystalline solids, the acoustic
speed is on the order of 5000 m/s and depends little on temperature; however, it may
depend on the polarization. The density decreases slightly as temperature increases
due to thermal expansion, but the change is negligibly small. The specific heat cv is
a function of temperature as predicted by the Debye theory, and it is nearly constant
at temperatures close to or higher than the Debye temperature. The mean free path
can be evaluated based on phonon–phonon scattering and phonon–defect scattering.

The BTE for phonons was first derived by Rudolf E. Peierls in 1929. In some
publications, it is referred to as the Boltzmann–Peierls or Peierls–Boltzmann equa-
tion. Here, we use a simplified model to derive Eq. (5.72) from the relaxation time
approximation of the BTE, based on the Debye theory. The assumption is that the
phonon velocity can be taken as a constant that is averaged over all three modes
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according to Eq. (5.7), as described by the DOS. For phonons, the distribution func-
tion can be conveniently converted into the frequency ν domain. Suppose there is a
temperature gradient in the z-direction; using the similar procedure as done in the
previous section, the thermal conductivity can be expressed as

κ =
˚

ν,φ,θ

vzhντvz
∂ fBE
∂T

D(ν)

4π
sin θdθdφdν (5.73)

where D(ν)/4π can be viewed as the density of states per unit solid angle. Noting
that vz = va cos θ and the distribution function is independent of the direction, we can
integrate Eq. (5.73) over all angles first to get

∫ 2π
0

∫ π

0 cos2 θ sin θdθdφ = 4π/3.With
the upper limit of frequency νm determined by Eq. (5.9), we can rewrite Eq. (5.73)
in the following:

κ = 1

3

νm∫

0

τv2ahν
∂ fBE
∂T

D(ν)dν (5.74)

The integration over the spherical coordinates offers a different way for deriving
the 1/3 term in the kinetic expression of thermal conductivity obtained earlier for a
molecular gas and an electron gas. In addition to the assumption that the acoustic
velocity is independent of the frequency, we further assume that the scattering rate is
independent of the frequency. Hence, both τ and va can be taken out of the integrand.
The remaining part is the specific heat per unit volume, defined in Eq. (5.31). It is
clear that Eq. (5.72) can be obtained based on the assumption that phonon speed,
relaxation time, and mean free path are independent of frequency.

Using Matthiessen’s rule, the phonon mean free path can be expressed as

1

�ph
= 1

�ph−ph
+ 1

�ph−d
(5.75)

where ph–ph and ph–d stand for phonon–phonon scattering and phonon–defect scat-
tering, respectively. The inverse of the mean free path can be added because they
are proportional to the number of collisions per unit time (or scattering rate). The
scattering rate due to phonon–phonon scattering is inversely proportional to temper-
ature at relatively high temperatures, i.e.,�ph−ph decreases as temperature increases.
This causes a reduction in thermal conductivity as temperature goes up. Thus, in
the high-temperature limit, the thermal conductivity can be modeled as inversely
proportional to temperature in a first-order approximation.

At low temperatures, defect scattering dominates and the scattering rate is more or
less constant. The thermal conductivity depends on the specific heat and should also
vary with T 3. The size of the sample affects the mean free path and hence the thermal
conductivity. Also, as the temperature is reduced, phonons with lower frequencies
play an important role in the thermal transport and storage. Thus, boundary scattering
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is expected to be more important at low temperatures. Similar to that for electron
scattering, the effective mean free path including boundary scattering can be defined
as

1

�ph,eff
= 1

�ph
+ 1

�ph−b
(5.76)

Figure 5.13 shows the thermal conductivity of silicon with different impurity
concentrations. For highly pure single-crystal silicon, the thermal conductivity is
comparable with a good electrical conductor such as aluminum. As the impurity con-
centration increases, the scattering rate increases and the mean free path decreases,
resulting in a reduction in the thermal conductivity. The contribution of free electrons
or holes to the thermal conductivity of semiconductors is insignificant as compared to
that of lattice vibration. Therefore, the temperature dependence of thermal conduc-
tivity for other crystalline insulators is similar to that of Si. At very low temperatures,
κ ∝ T 3 due to the temperature dependence of the specific heat; at high temperatures,
κ ∝ T−1 due to the increased phonon–phonon scattering rate. Diamond has the
highest thermal conductivity (as high as 2200 W/m K at room temperature) among
all bulk materials, due to its large sound velocity and mean free path.

Example 5.6 Estimate the mean free path and the phonon scattering rate of pure
silicon at 5, 10, 20, 100, 300, and 1000 K. Also, calculate the corresponding thermal
diffusivity α = κ/ρcp.
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Fig. 5.13 Data of thermal conductivity of silicon taken from Touloukian et al. [31]. The fitted
curve is for a highly pure silicon with a dopant concentration less than 1016 cm−3; triangles are
for a p-type single-crystal silicon with an oxygen concentration of 2 × 1017 cm−3; circles are for
a heavily doped n-type silicon with a phosphorus concentration of 2 × 1019 cm−3; and squares are
for a p-type polycrystalline silicon with a boron concentration of 3 × 1020 cm−3
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Solution The purpose of this example is to give some quantitative information about
themean free path and its temperature dependence. The calculation is straightforward
usingEq. (5.74) by assuming that the density and the phonon velocity are independent
of temperature. From Example 5.1, we have va ≈ 6000m/s, and the density is
2330 kg/m3 (from Table 5.1). The specific heat can be calculated from the Debye
model, and the thermal conductivity of intrinsic Si can be found from Fig. 5.13. The
computed results are tabulated in the following table.

Temperature
(K)

5 10 20 100 300 1000

Thermal
conductivity
κ (W/m K)

424 2110 4940 884 148 31.2

Specific heat
cp (J/kg K)

0.034 0.28 3.43 260 712 921

Mean free
path �(m)

2.7 × 10−3 1.6 × 10−3 3.1 × 10−4 7.3 × 10−7 4.5 × 10−8 7.3 × 10−9

Scattering
rate
1/τ (rad/s)

2.2 × 106 3.7 × 106 1.9 × 107 8.2 × 109 1.3 × 1011 8.3 × 1011

Thermal
diffusivity

α(m2/s)

5.4 3.3 0.62 1.5 × 10−3 8.9 × 10−5 1.5 × 10−6

The mean free path and thermal diffusivity increase dramatically as the temper-
ature is lowered. Because the crystal is highly pure, there is very little scattering
at low temperatures. The decrease in conductivity is caused by the reduction in the
specific heat. At high temperatures, the specific heat of Si does not change signif-
icantly. Hence, the decrease in thermal conductivity is due to the increase of the
phonon–phonon scattering rate. It should be mentioned that at very high temper-
atures, thermally activated free electrons and holes will also increase the impurity
scattering.

When the phonon mean free path is comparable with the smallest dimension so
that Kn ≡ �/Lc > 1, boundary scattering or the classical size effect should be
considered, as will be discussed in Sect. 5.5. When Kn � 1, ballistic or phonon–
boundary scattering becomes dominant comparedwith phonon–phonon andphonon–
defect scattering. As in the case of freemolecule flow, Fourier’s law is applicable only
in the diffusion limit. When ballistic scattering is significant, the temperature at the
boundary is discontinuous. The heat transfer process by phonons is more radiative
than conductive, as in the case of thermal radiation through a transparent medium.
Even at steady state, the 1D temperature distribution without heat generation is
nonlinear. We will study the equation of phonon radiative transfer (EPRT) in Chap. 7
along with other equations that should be used for small timescales or length scales,
where Fourier’s law of heat conduction breaks down. This is especially important
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at low temperatures, for small structures, and/or in rapid processes such as during a
short laser pulse.

So far, we have studied the basics of phonon contributions to the thermal conduc-
tivity under the relaxation time approximation for a gray medium, i.e., by assuming
that τ is independent of the vibration frequency. Furthermore, we have taken the
average acoustic velocity and assumed that it is also independent of the vibration
frequency. A further assumption is that the phonon dispersion relations are isotropic
and linear up to a maximum frequency. Real crystals behave very differently from
the simple pictures just presented. To understand this, we must study the phonon
dispersion relations for all phonon branches, with different polarizations and along
different crystal directions. While the study of crystalline structures and phonon dis-
persion relations will be deferred to Chap. 6, we can write the general expression
for thermal conductivity under the local-equilibrium condition in two forms. The
summation form reads as

κ(n̂) =
∑

P

∑

K

�ω(k)
∂ fBE
∂T

τ(k)v2g,n(k) (5.77)

where the summation is over the wavevector index K and the polarization index
P. Note that vg,n(k) is the phonon group velocity for the given polarization in the
direction n̂ along which the thermal conductivity is to be evaluated. The integration
form reads

κ(n̂) = kB
∑

P

∞∫

0

τ(ω)v2g,n(ω)

(
�ω

kBT

)2 e�ω/kBT

(e�ω/kBT − 1)2
D(ω)dω (5.78)

where D(ω) is the DOS for an individual polarization. If the DOS is properly handled
so that it contains information about a particular microstructure, Eq. (5.78) would be
identical to Eq. (5.77). Otherwise, Eq. (5.78) is the approximation of Eq. (5.77) for
large systems. For a large system with isotropic dispersion in the k-space, we have

D(ω) = 1

(2π)3

dk
dω

= 1

2π2

k2

dω/dk
= ω2

2π2v2pvg
(5.79)

where vp = ω/k and vg = dω/dk are the phase and group speeds for the corre-
sponding polarization and can be calculated if the dispersion relation ω = ω(k) is
known.

Therefore,

κ = kB
6π2

(
kBT

�

)3∑

P

xm∫

0

τ(x)
vg(x)

v2p(x)

x4ex

(ex − 1)2
dx (5.80)
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where the upper limit corresponds to the maximum frequency of each phonon polar-
ization or branch. Equation (5.79) helps us understand low-temperature behavior of
thermal conductivity of insulators.

For the same frequency,while the energy of a phonon is the same as that of a photon
hν, the acoustic wave has a much shorter wavelength than the electromagnetic wave
because of the small propagation speed va compared to the speed of light. Thus, the
momentum of a phonon is much greater than that of a photon of the same frequency.
As an example, our ears sense sound waves in the frequency range from 20 to
20,000 Hz. Assume va = 1000m/s; then, the wavelength range is 50 m to 5 cm. In
solids, however, the most important frequencies for thermal energy transfer are much
higher and temperature dependent. The smallest vibration wavelength is roughly
λmin = 2L0 ≈ 0.5 nm. With a typical velocity of va = 5000m/s in crystalline
solids, the highest frequency νm is on the order of 10 THz or 1013 Hz. Compared with
the electromagnetic wave spectrum, this frequency falls in the mid-infrared spectral
region. Therefore, electromagnetic radiation can interact with such phonons, and the
resulted absorption is called lattice absorption or phonon absorption. High-frequency
phonons are called optical phonons. On the other hand, the frequency of acoustic
phonons ranges from 0 to 10 THz. By setting kBT = hν, we find that the frequency
corresponding to the thermal energy of translational motion of a particle is on the
order of ν = kBT/h = 6 THz at 300 K (where kBT = 26meV). The thermal
phonon wavelength λth is therefore on the order of 1 nm with va ≈ 5000m/s.
On the other hand, low-frequency phonons are responsible for energy storage and
transfer in crystalline solids at cryogenic temperatures. The shift in the dominant
frequency for phonon transport resembles Wien’s displacement law for blackbody
radiation because phonons and photons are governed by the same statistics. The
phonon wave effect and quantum size effect are expected to become important when
the characteristic dimension is on the order of the thermal wavelength, as illustrated
earlier in the study of specific heat of solids.

For amorphous and disordered solids that are poor electric conductors, periodic
lattice structure does not exist and phonons if they exist cannot propagate very far.
Cahill et al. [32] extended the work of Albert Einstein in 1911 by assuming that
the mean free path for the ith phonon mode �i = τi vi is limited to half of the
phonon wavelength. That is to say that the relaxation time is half of the period,
τi = π/ω. Some earlier works used the lattice constant or the phonon wavelength as
the minimum mean free path [32–34]. By substituting τ = π/ω and vp = vg = vi
into Eq. (5.80), the minimum thermal conductivity can be expressed as

κmin = kB
6π

(
kBT

�

)2∑

i

xi∫

0

1

vi

x3ex

(ex − 1)2
dx (5.81a)

where xi = �i/T and �i can be calculated from (5.10) by substituting vi for va.
Using Eq. (5.10), Eq. (5.81) may be expressed as follows according to Ref. [32]:



214 5 Thermal Properties of Solids and the Size Effect

κmin = kB
(π

6
n2a
)1/3∑

i

vi

(
T

�i

)2
xi∫

0

x3ex

(ex − 1)2
dx (5.81b)

At room temperature, the thermal conductivity of most amorphous solids falls in
the range 0.2–5 W/m K [34]. Note that there are no fitting parameters in Eq. (5.81b)
as long as the number density of the atoms and the acoustic velocities for the trans-
verse and longitudinal phonons are given. Overall, Eq. (5.81b) agrees well with
the measured thermal conductivity for a large number of disordered solids, though
some materials exhibit even lower thermal conductivities than predicted κmin. While
Eq. (5.81a) or (5.81b) removes the relaxation time and mean free path, in disordered
materials when some of the vibration eigenstates are localized, definition of phonon
velocities and wavevectors is questionable.

Another approach was developed by Allen and Feldman [35] by extending the
Kubo–Greenwood formulation, which is a quantum mechanical theory for electron
transport based on the linear response theory, to the thermal conductivity of disor-
dered solids. The key is to relate the conductivity to the heat current operator matrix,
which under the harmonic assumption can be related to the mode diffusivity without
defining the group velocity or scattering rate. The obtained conductivity formula is
expected to be applicable to disordered media where the wavevectors of the carriers
can hardly be defined [35–38]. The temperature-dependent thermal conductivity is
thus expressed in terms of a summation [35]:

κ = 1

V

∑

i

C(ωi )Ddif(ωi ) (5.82a)

where C(ω) is the specific heat of the harmonic oscillator,

C(ω) = �ω
∂ fBE
∂T

= kBx2ex

(ex − 1)2
, with x = �ω

kBT
(5.82b)

and the mode diffusivity is expressed as

Ddif(ωi ) = πV 2

3�2ω2
i

∑

j( �=i)

∣∣Si j
∣∣2δ(ωi − ω j ) (5.82c)

The heat current operator is a measure of the coupling strength between vibration
mode i and j and can be calculated from harmonic lattice dynamic theory [35–37].
Some discussions on how to obtain semi-classical expressions of the diffusivity will
be given later.

In a follow-up study of amorphous silicon, Allen et al. [36] divided the heat
carriers in crystals (vibrons) into propagons that have a larger mean free path than
the lattice constant and are propagating modes, diffusons that are most popular and
largely responsible for heat transfer but are not propagating, and locons that are
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localized modes that do not contribute to heat transport. It should be noted that
when anharmonicity is considered, the locon’s contribution to heat transfer cannot
be neglected [39, 40].Based on atomistic simulation of amorphous silicon,Allen et al.
[36] assigned 4% of the modes to propagons with frequencies less than 3 THz. The
region between propagons and diffusons is called the Ioffe–Regel crossover where
the mean free path is about the same as the atomic distance. When the frequency is
further increased, the mean free path and wavevector cannot be rigorously defined.
Locons are at frequencies higher than 17 THz and comprise about 3% of the modes;
this was determined by finding the decay lengths, inverse participation ratios, and
coordination numbers of the participating atoms [36]. It was shown that propagons
dominate the thermal transport at low temperatures, while diffusons contribute to
about 2/3 of the thermal conductivity at ambient temperature. A recent theoretical
study [41] of amorphous silicon based on lattice and molecular dynamics showed
that the propagon–diffuson transition frequencies could be as high as 5–10 THz and
propagons might consist of 24% of all modes, suggesting that most heat is carried
by elastic waves in amorphous silicon at temperatures from 100 K to 500 K.

We may rewrite Eq. (5.82a) in an integral form using the density of states [38]:

κ =
∞∫

0

C(ω)Ddif(ω)D(ω)dω (5.83)

For propagons, by comparing Eq. (5.74) with (5.83), we see that Ddif = τv2a/3 =
�va/3 and the upper limit in Eq. (5.83) can be set as the high-frequency limit of
propagons. For diffusion, if the frequency-dependent mode diffusivity is obtained,
Eq. (5.83) can be applied to calculate the thermal conductivity. Allen et al. [36] found
a temperature independent Ddif(ω) ∼ ω−2 for amorphous silicon in the intermediate
temperature range and predicted a low-temperature plateau of thermal conductivity
between 10 and 30 K by combining the contributions of propagons and diffusons.
Assuming diffusons travel stepwise following a random walk with two steps per
period of oscillation, Agne et al. [38] obtained an expression of the mode diffusivity
as follows:

Ddif = ω

3π
n−2/3
a p (5.84)

where p is the probability of a successful jump that may be taken as 1 for diffu-
sons. Plugging Eq. (5.84) into Eq. (5.83) and setting the integration maximum ωm

according to Eq. (5.9), they obtained a minimum thermal conductivity expression,
which may be applicable near room temperatures. At lower temperatures, propagons
are responsible for the heat transfer, and the minimum thermal conductivity may be
predicted with Eq. (5.81b). It should be noted that the minimum thermal conductivity
using the combination of Eqs. (5.83) and (5.84) depends on the upper integration
limit that is a function of the sound velocity.
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Most polymers are disordered due to their complex morphologies and long chains
structures. Typically, they are also electrical insulators andhave relatively low thermal
conductivities [42]. Due to the advancement of flexible electronics, energy harvest-
ing, and biophysics, thermal transport in polymeric materials has received growing
attention lately [43–47]. At room temperature, the thermal conductivity of commonly
used amorphous polymers is mostly around 0.1–0.5 W/m K, though it can be as low
as 0.06W/mK or as high as 0.67W/mK [42–44]. Like inorganic amorphous materi-
als, as the temperature goes down from room temperature, the thermal conductivity
of amorphous polymers monotonically decreases with a plateau-like behavior. Choy
[42] used the BTE and the Debye DOS, Eq. (5.74), to describe the thermal transport
by assuming that themean free path� (or the scattering rate) has an inverse frequency
dependence (τ ∼ ω−1) at low frequencies, and � = �min = L0 when the frequency
exceeds a certain threshold value to describe the localized modes. Kommandur and
Yee [43] used the Allen–Feldman model, given in Eq. (5.83) with the Debye DOS,
and considered the mode diffusivity as frequency dependent according to

Ddif(ω) = 1

3
av2aω

−n (5.85)

where n is taken as an adjustable parameter approximately between 1 and 2. The
parameters a and n for propagons and diffusons, as well as the crossover frequency,
were taken as adjustable parameters to fit the thermal conductivity data, since the
contribution of locons is negligibly small. Both the BTE approach and the Allen–
Feldman model can fit the temperature dependency reasonably well [42, 43]. While
the starting points of the BTE and Kubo’s linear response theory are conceptually
different, it appears that the final model relations are well correlated though with
different interpretations of the physical significance of the parameters.

In general, the properties of polymeric materials depend on the morphology, crys-
tallinity, and chain orientation and alignment [45–47]. Polymers can have skeletal
structures, planar molecular structures, or 1D linear macromolecules; subsequently,
the specific heat may follow the general cubic, quadratic, and linear temperature
dependence [48]. Furthermore, there exist glass transitions and other phase transi-
tions that can give spikes in the specific heat of polymeric materials at the transition
temperatures [48]. Filling the polymer with highly conductive nanostructured mate-
rials can increase the thermal conductivity of the polymer composite significantly
(by more than an order or magnitude) to 10–20W/mK at room temperature [45–47].
Furthermore, aligned polymer chains and nanofibers are expected to have very high
thermal conductivities. Molecular dynamics modeling of single polyethylene chains
has shown a converging thermal conductivity up to 350 W/m K and a value over
100 W/m K for polyethylene nanofibers [45, 49].
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5.4 Thermoelectricity

Solid-state energy conversion devices are very important, and it is hoped that nan-
otechnology may offer solutions for improving the efficiency of these devices, such
as thermoelectric refrigerators and power generators. An understanding of thermo-
electricity is useful for further development of these solid-state energy conversion
devices. To illustrate the thermoelectric effect, assume an electric field E and a tem-
perature gradient ∇T exist along the z-direction of a conductor. The right-hand side
of Eqs. (5.69a) or (5.70) needs to be modified to consider the existence of both an
electric field and a temperature gradient. This can be done by applying Eqs. (5.65)
and (5.66). By dropping the integration for the equilibrium distribution and using
Appendix B.8, we can write the 3D vector forms of the current density and the heat
flux as

Je = L11

(
E + ∇μ

e

)
− L12∇T (5.86)

and

q′′ = L21

(
E + ∇μ

e

)
− L22∇T (5.87)

where

L11 = −e2�0 L12 = e

T
�1 L21 = T L12 = e�1, and L22 = − 1

T
�2 (5.88)

Here, the function �n is defined as

�n = 1

3

∞∫

0

(ε − μ)nτv2
∂ fFD
∂ε

D(ε)dε (5.89)

In writing this equation, we have used Eq. (B.81) and converted (dμ/dT )∇T =
∇μ in order to consider the spatial dependence of μ. The detailed derivation of the
preceding equations is left as an exercise (Problem 5.21). Let

E + ∇μ

e
= −∇� (5.90)

where � is called the electrochemical potential because it is the combination of the
electrostatic potential and the chemical potential. For metals at low or intermediate
temperatures, the variation in μ is relatively small, and the terms involving ∇μ in
Eqs. (5.86) and (5.87) can be dropped out. For semiconductors, changing the dopant
or impurity concentration as well as the temperature may cause a large gradient of
μ, and thus ∇μ cannot be neglected. When there is no temperature gradient, we can



218 5 Thermal Properties of Solids and the Size Effect

easily find the electrical conductivity of metals to be

σ = L11 (5.91)

The thermal conductivity is defined according to q′′ = −κ∇T when no electric
current flows. By setting Je = 0 and combining Eqs. (5.86) and (5.87), we find that
the thermal conductivity is related to the coefficients by

κ = L22 − L12L21/L11 (5.92)

For metals, the second term on the right-hand side is much smaller than the first
one, so that we can approximate κ ≈ L22, as already discussed in Eq. (5.71a).

5.4.1 The Seebeck Effect and Thermoelectric Power

If a temperature gradient exists, according to Eq. (5.86), there will be a current flow
even in the absence of an external field. In the case of open circuit when the current
flow is zero, there will be a voltage across the rod whose ends are held at different
temperatures. The Seebeck effect, as it was first noticed by T. J. Seebeck in 1821, can
be used to directly produce electric power from a temperature difference. The See-
beck coefficient, also called thermopower or thermoelectric power, is defined as the
induced thermoelectric voltage across a material of unit length per unit temperature
difference. Therefore,

�S = −∇�

∇T
= L12

L11
(5.93)

which has units V/K. To calculate L12 for a metal, we can use Eq. (B.79) to evaluate
�1 in Eq. (5.89). The simplest approach is to assume that τ does not change much
near the Fermi surface. The result gives (see Problem 5.22)

�S ≈ −π2kB
2e

kBT

μF
(5.94)

For metals, the Seebeck coefficient is negative, and its magnitude will increase
as temperature goes up. From Table 5.2, μF = 7 eV for copper. We have from
Eq. (5.94) that �S = −1.6μV/K at 300 K and −3.2μV/K at 600 K. However, the
experimental values are positive with 1.83μV/K at 300 K and 3.33μV/K at 600 K
[50, 51]. This sign error is due to the simplification used to evaluate �1, and it is an
indication that the nearly free-electron model may not capture all the fundamental
physics of metals. A proper quantum mechanical evaluation based on the actual
band structure is rather complicated but has been carried out in some studies [6, 52].
Higher values of the Seebeck coefficient can exist in some alloys and semiconductors.
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Generally speaking, the Seebeck coefficient is positive for p-type semiconductors
whose majority carriers are holes and negative for n-type semiconductors whose
majority carriers are electrons.

For awirewhose ends are at different temperaturesT 1 andT 2, as in the open circuit
shown in Fig. 5.14a, there will be a voltage difference between 1 and 2 according
to the relation V2 − V1 = − ∫ T2

T1
�S(T )dT . For n-type semiconductors, �S(T ) is

negative and electrons at the higher temperature end tend to diffuse toward the lower
temperature end. An electrostatic potential will be built up to balance the diffusion
process. Hence, the voltage is higher at the higher temperature end. Thermoelectric
voltage cannot be measured with the same type of wires because the electrostatic
potentials would cancel out each other. To measure the thermoelectric power, a
junction is formed with two types of wires having different Seebeck coefficients,
type I (+) and type II (−), as shown in Fig. 5.14b. The leads can be a third type of
wire or the same as one of the thermocouple wires. This is of course the familiar
thermocouple arrangement for temperature measurement. A reference temperature
(T 1) is needed because a thermocouple can only measure the temperature difference.
The voltage output can be expressed as

�V =
T2∫

T1

[
�S,I(T ) − �S,II(T )

]
dT = �I,II�T (5.95)

In thermocouple practice, the difference �I,II is called the Seebeck coefficient or
thermopower, and the potential difference�V is called the electromotive force (emf).
Because the Seebeck coefficient is zero when a material becomes superconducting
(σ → ∞ ), superconductors have been used to establish an absolute scale of thermo-
electric power [51]. In thermometry, a wire with a positive Seebeck coefficient and
another with a negative Seebeck coefficient are combined to form a thermocouple
junction. For example, a type-E thermocouple is made of a nickel–chromium alloy
(chromel) and a copper–nickel alloy (constantan); on the other hand, a type-J ther-
mocouple is made of copper and constantan. Historically, galvanometers were used

2T

Type I (+)

Type II ( )−

Leads1T VΔ

1T

2T 2V

1V

(a) (b)

+

−

Fig. 5.14 Illustration of the Seebeck effect. a Single wire with a temperature difference between
the two ends. b A thermocouple made of two different materials
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to accurately measure the electric current in a potentiometer. The DC voltage can
now be measured quickly and very accurately with a digital voltmeter/multimeter
(DVM). Detailed discussions about the fundamentals and practice of thermoelectric
thermometry based on metallic and alloy wires can be found from Bentley [50].

5.4.2 The Peltier Effect and the Thomson Effect

Equations (5.86) and (5.87) can be combined to eliminate the potential term so that

q′′ = L21

σ
Je − κ∇T (5.96)

This equation suggests that there will be a heat flux in a material due to an external
electric current, even without any temperature difference. This phenomenon, first
discovered by Jean Peltier in 1834, is called the Peltier effect, which can be used
for refrigeration (known as thermoelectric cooling) by passing through an electric
current through a material. The coefficient L21/σ is called the Peltier coefficient. It
can be seen from Eqs. (5.88), (5.91), and (5.93) that

� = L21/σ = T�S (5.97)

This quantitative relationship between the Seebeck coefficient and the Peltier
coefficient was revealed byWilliamThomson (LordKelvin) in the 1850s. Thomson’s
thermodynamic derivation led him to discover a third thermoelectric effect, known as
the Thomson effect, which states that heat can be released or absorbed when current
flows in a material with a temperature gradient. The energy received by a volume
element for prescribed Je and ∇T can be expressed as follows:

Je · (−∇�) − ∇ · q′′ = J 2
e

σ
+ ∇ · (κ∇T ) −

(
T
d�S

dT

)
Je · ∇T (5.98)

Notice that the common term �SJe · ∇T in both Je · (−∇�) and ∇ · q′′ cancels
out. In Eq. (5.98), the first term is the heat generated by the Joule heating, the second
term is the heat transferred into the control volume due to the temperature gradient,
and the third term is caused by the Thomson effect. The last term on the right-hand
side is nonzero when there is a current flow with a temperature gradient, unless the
Seebeck coefficient is independent of temperature. It should be noted that, like the
Seebeck effect and the Peltier effect, the Thomson effect is also a reversible process
per se. The Thomson coefficient K is defined as the rate of the absorbed heat divided
by the product of the current density and the temperature gradient. Thus,

K = T
d�S

dT
(5.99)
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Equation (5.98) has provided a way to determine d�S/dT, after σ and κ are
measured at different temperatures. This allows for the absolute thermopower to be
determined for certain materials at higher temperatures, since superconductivity can
only occur at very low temperatures. A systematic study has resulted in the deter-
mination of absolute thermoelectric power for lead and platinum, which can then
be used as reference materials to determine the absolute thermoelectric power for
other materials [51]. It should be noted that, before the discovery of high-temperature
superconductors, the highest temperature that a material could be made supercon-
ducting was 23 K in an alloy. Superconductivity at temperatures above 35 K was
discovered in a ceramic material in 1986 and, shortly afterward, superconductivity
above the boiling temperature of liquid nitrogen (78 K) was made possible.

Example 5.7 Consider a p-type semiconductor rod of diameter d = 1mmand length
L = 2mm. One end of the rod is in contact with a heat sink at TL = 300K, and the
other end is in contact with a heat source at TH = 350K. What is the open-circuit
voltage? If a current I = 0.8A is allowed to flow from the cold end to the hot end,
what is the heat transfer rate to the heat sink? Neglect the temperature dependence
of the thermal conductivity, the electrical resistivity, and the Seebeck coefficient by
using κ = 1.1W/mK, re = 19μ
m, and �S = 220μV/K, respectively.

Solution Assume there is no heat transfer via the side of the rod. For an open
circuit, the electric potential is higher at the cold end, and the voltage across the
rod is Vopen = �S(TH − TL) = 11mV. The rate of heat transfer to the heat sink by
conduction from the heat source is qC = (πd2/4)κ(T2 − T1)/L = 21.6mW.

When an electric current is running from the cold end to the hot end, the Joule
heating is generated uniformly inside the rod. The dissipated heat must reach both
ends equally by conduction. The additional heat transfer to the heat sink is qJ =
I 2R/2 = 15.5mW, where R = 48.4m
 is the resistance of the rod. On the other
hand, the Peltier effect results in cooling, or heat removal from the heat sink. From
Eq. (5.84), we have qP = −T1�S I = −52.8mW. The combination of the three
terms gives the heat transfer rate as q = qC + qJ + qP = −15.7mW. The negative
sign indicates that heat is removed from the heat sink.

This example demonstrates the Peltier effect for thermoelectric refrigeration. It
can be seen that a smaller thermal conductivitywill decrease the heat transfer between
the two ends: a smaller electrical resistivity will reduce the Joule heating,, and a
larger Seebeck or Peltier coefficient will enhance the heat removal. For most metals,
the thermal conductivity is too high, and the Seebeck coefficient is too small for
refrigeration application. Some insulators can have a large Seebeck coefficient but
their electrical resistivity is too high for them to be used in thermoelectric devices.

5.4.3 Thermoelectric Generation and Refrigeration

The study of thermoelectric generation and refrigeration has become an active
research area since the 1950s, alongwith the development of semiconductormaterials
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Fig. 5.15 Illustration of a
thermoelectric generator or
refrigerator
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or p-n junctions. Heavily doped semiconductors exhibit large Seebeck coefficients.
Alternative n-type or p-type semiconductors (or semimetals) are used as thermoelec-
tric materials or thermoelectric elements. These include antimony tellurium (SbTe),
bismuth tellurium (BiTe), and silicon germanium (SiGe) compounds. More recently,
nanostructured materials are investigated as candidates to increase the performance
of thermoelectric devices [53].

With the understanding of the Seebeck effect, the Peltier effect, and the Thomson
effect, we are ready to perform a thermodynamic analysis of thermoelectric gen-
erators or refrigerators as illustrated in Fig. 5.15. There are N pairs of junctions
that are connected electrically in series by metallic interconnects and thermally in
parallel between the two heat sinks. To simplify the analysis, contact resistances
are neglected, and it is assumed that all the thermoelectric elements have the same
length L and the same cross-sectional area Ac. Furthermore, heat transfer by other
modes is neglected except conduction by thermoelectric elements. Because contact
electrical resistance is neglected, heat generation by the Joule heating happens due
to resistance of the thermoelectric elements only. A load resistance RL is used to
evaluate the electric power output of the generator. A further assumption is that the
thermal and electrical conductivities, as well as the Seebeck coefficient, are indepen-
dent of temperature. This assumption is reasonable when the temperature difference
between the two heat reservoirs is very small.

Consider a thermoelectric generator. In this case, heat is taken from the high-
temperature reservoir TH at the rate qH, and some heat is released to the low-
temperature reservoir TL at the rate qL. The generated thermoelectric power
is

P = I�V = qH − qL (5.100)

The temperature distribution along the thermoelectric element is not linear, i.e., the
temperature gradient is not constant. The steady-state temperature distribution along
a single thermoelectric element can be solved by setting Eq. (5.98) to zero. Because
of the assumption of constant values of I, κ, σ, and�S, the Thomson coefficient also
becomes zero. Therefore, we obtain
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T (x) = J 2
e

2σκ
(L − x)x − x

L
(TH − TL) + TH (5.101)

The resulting heat transfer rates due to temperature gradient are

−κAc
dT

dx

∣∣∣
∣
x=0

= κAc
TH − TL

L
− I 2L

2σ Ac
(5.102a)

and

−κAc
dT

dx

∣∣∣∣
x=L

= κAc
TH − TL

L
+ I 2L

2σ Ac
(5.102b)

Clearly, half of the Joule heating goes to the heat source, and the other half goes
to the heat sink, as noticed in Example 5.7. Substituting Eq. (5.102) into Eq. (5.96)
and using the subscripts n and p for different thermoelectric elements, we have

qH = N I�npTH + N Acκnp
�T

L
− N

I 2L

2Acσnp
(5.103a)

qL = N I�npTL + N Acκnp
�T

L
+ N

I 2L

2Acσnp
(5.103b)

where �np = �S,p − �S,n , κnp = κn + κp, �T = TH − TL, and σnp =
(
1/σn + 1/σp

)−1
. The output power is therefore

P = I�V = qH − qL = N I�np�T − I 2R0 (5.104)

where R0 = NL/(Acσnp) is the resistance of all thermoelectric elements. The voltage
is solely caused by the Seebeck effect, i.e., �V = N�np�T . Assuming the load
resistance is RL, we have

I = �V

R0 + RL
= N�np�T

R0 + RL
(5.105)

Substituting Eq. (5.105) into Eq. (5.104), we see that the electric power is indeed
P = I 2RL. The thermal efficiency can be calculated as follows:

η = P

qH
=

RL
R0

�T
TH

1
Z∗TH

(
1 + RL

R0

)2 +
(
1 + RL

R0

)
− �T

2TH

(5.106)

where
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Z∗ = NL

Acκnp

�2
np

R0
= σnp�

2
np

κnp
(5.107)

is independent of the geometry [54]. When 1/Z∗TH � 1 and R0/RL � 1, we
have η → 1 − TL/TH, which is exactly the Carnot efficiency. Increasing Z∗ will
improve the efficiency. Hence, minimizing the thermal conduction, reducing the
electrical resistance, and increasing the Seebeck coefficient of the thermoelectric
elements are essential to improve the performance. A similar analysis can be done
for thermoelectric cooling, which is left as an exercise (see Problem 5.25). In general,
the figure of merit of thermoelectricity is defined as

Z = σ�2
S

κ
(5.108)

which has units of K−1 and can be nondimensionalized by multiplying the tem-
perature T. The resulting dimensionless parameter ZT (zee-tee) is often quoted as
the figure of merit for thermoelectric materials or devices. This applies to both
thermoelectric generation and refrigeration (see Problems 5.23 and 5.25).

Because of the compromise between a large electrical conductivity and a small
thermal conductivity, alongwith the requirement of a large Seebeck coefficient, it has
turned out that semiconductors are the best choice for thermoelectric applications.
After an extensive pursuit in the 1950s, materials with ZT values between 0.5 and
1 near room temperature have been developed using BixSb2-xTe3 and Bi2SeyTe3-y.
These materials are essentially doped V-VI semiconductors Sb2Te3 or Bi2Te3. In the
past 25 years, intensive theoretical and experimental research has been conducted to
increase the thermoelectric device performance by using nanostructured materials.
Mildred Dresselhaus and coworkers predicted that multiple quantum wells or super-
lattices may enhance ZT values due to quantum confinement as well as a reduction
in the phonon thermal conductivity; the idea has also been extended to PbTe/PbSe
superlattice nanowires [55]. Superlattices made of SiGe/Si and GaAs/AlAs have also
been considered. Since 2001, several groups have demonstrated ZT values exceeding
2 [53, 56]. Gang Chen’s group has performed extensive investigations on the phonon
and electron transport in nanostructuredmaterials related to low-dimensional thermo-
electricity, as discussed in a recent review [57]. The reduction in thermal conductivity
may come from a combination of a number of factors including the mean-free-path
reduction by boundary scattering, thermal resistance associated with acoustic mis-
match or phonon scattering at the interface of dissimilar materials, and/or quantum
confinement of the phonon DOS.

Before moving to the discussion of size effects on thermal conductivity, let
us give an overview of irreversible thermodynamics and a brief introduction to
nonequilibrium thermodynamics.
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5.4.4 Onsager’s Theorem and Irreversible Thermodynamics

The set of coupled equations given in Eqs. (5.86) and (5.87) is an example of
irreversible thermodynamics, pioneered by Lars Onsager in the 1930s, alterna-
tively known as the thermodynamics of irreversible processes or Onsager’s theo-
rem. Onsager described the phenomenological relations of interrelated or coupled
transport processes using the following equation [58]:

Ji =
∑

j

αi jF j (5.109)

where Ji is the flux of a physical quantity Xi with Ji = dXi/dt, αi j is called the
Onsager kinetic coefficient, and Fi is the ith generalized driving force or affinity. In
an equilibrium state, all Fi ’s are zero. Furthermore, the entropy of a system can be
expressed as [59]

ds =
∑

i

fidXi (5.110)

where fi is a property that is related to Fi such that Fi is proportional to the gradient
of fi . The entropy flux is thus

s′′ =
∑

i

fiJi (5.111)

If an infinitesimal control volume is chosen, the continuity equation can bewritten
as

∂Xi

∂t
+ ∇ · Ji = 0 (5.112)

The entropy balance becomes

∂s

∂t
= ṡgen − ∇ · s′′ (5.113)

where ∂s
∂t = ∑

i fi
∂Xi
∂t and ∇ · s′′ = ∑

i ∇ fi · Ji +∑
i fi∇ · Ji . Using the continuity

equation, we obtain the volumetric entropy generation rate:

ṡgen =
∑

i

∇ fi · Ji (5.114)

Furthermore, the Onsager reciprocity is expressed as follows [58, 59]:

αi j = α j i (5.115)
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Lars Onsager (1903–1976) received the Nobel Prize in Chemistry in 1968 “for
the discovery of the reciprocal relations bearing his name, which are fundamental for
the thermodynamics of irreversible processes.” The Onsager reciprocity was even
considered by some researchers as the fourth law of thermodynamics.

Example 5.8 Determine the Onsager kinetic coefficients and the volumetric entropy
generation rate for a conductor with constant current and temperature gradient.

Solution It should be noted that in thermoelectricity, J1 = Je, J2 = q′′, F1 =
−(1/T )∇�, and F2 = ∇(1/T ) = −(1/T 2)∇T . Thus, the Onsager relations are
expressed as

Je = α11
−∇�

T
− α12

∇T

T 2
(5.116)

q′′ = α21
−∇�

T
− α22

∇T

T 2
(5.117)

Comparing the above expressions with Eqs. (5.86) and (5.87), we find that

α11 = T L11 α12 = α21 = T 2L12 andα22 = T 2L22 (5.118)

The entropy generation rate can be calculated by using Eq. (5.99). Note that

ds = δQ − μdN

TV
= q′′ · ∇

(
1

T

)
+ Je ·

(
−∇�

T

)
(5.119)

In the steady state, the energy equation, Eq. (5.98), becomes

Je · (−∇�) − ∇ · q′′ = 0 (5.120)

Therefore, the volumetric entropy generation rates for 3D and 1D cases,
respectively, are

ṡgen = q′′ · ∇
(
1

T

)
+ 1

T
∇ · q′′ and ṡgen = q ′′

T 2

dT

dx
+ 1

T

dq ′′

dx
(5.121)

These results are consistent with the analysis in Chap. 2 (see Example 2.5 and
Problem 2.29). Furthermore, Eq. (5.121) suggests that the Thomson effect is a
reversible process that does not cause any entropy generation. The same can be
said for both the Seebeck effect and the Peltier effect, which are reversible ther-
moelectric effects. In addition to thermoelectricity, irreversible thermodynamics has
found applications inmulticomponent diffusion, nonisothermal diffusion (when both
a temperature gradient and a concentration gradient exist), and some magnetic pro-
cesses [59]. A further advancement in nonequilibrium thermodynamics was made by
Ilya Prigogine (1917–2003) who was awarded the Nobel Prize in Chemistry in 1977.
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Prigogine’s study extended irreversible thermodynamics to systems that are far from
equilibrium and are allowed to exchange energy, mass, and entropy with their sur-
roundings. Prigogine and colleagues demonstrated that ordered dissipative systems
can be formed from disordered systems, when the systems are far from equilibrium,
and dubbed this theory dissipative structure,which led to pioneering research in self-
organization or self-assembly. The formation of ordered structures from disordered
structures has diverse applications in chemical, biological, and social systems [60,
61]. It is beyond the scope of this book to go into the details of this theory.

5.5 Classical Size Effect on Conductivities

When the characteristic length, such as the thickness of a film, the diameter of a wire,
or the size of a grain (for polycrystalline solids), is comparable to the mechanistic
length, i.e., the mean free path, boundary or interface scattering becomes impor-
tant. Subsequently, the thermal conductivity (as well as other transport coefficients)
becomes size dependent and can also be anisotropic [62, 63]. Because the mean
free paths of electrons and phonons tend to increase as temperature goes down, size
effects are usually more important at low temperatures. The criteria are also different
for different materials due to the different carrier types and scattering mechanisms.
In the following section, we will study the effect of boundary scattering on electri-
cal and thermal conductivities based on simple geometric considerations as well as
derivations using the BTE.

5.5.1 Simple Geometric Considerations

The simple expression of thermal conductivity based on the kinetic theory is κ =
1
3 (ρcv)v�b for either electrons or phonons. Here, �b is called the bulk mean free
path, which is the mean free path when the material is infinitely extended. While
the specific heat and the velocity are also size dependent, especially for phonons,
let us focus on the size dependence of the mean free path. The main objective of
this section is to illustrate how boundary scattering affects the thermal conductivity
by reducing the mean free path. The argument is also applicable to the electrical
conductivity, since it is also proportional to the mean free path. Shown in Fig. 5.16
are two geometric configurations to be considered: (a) and (b) for a thin film and (c)
for a thin wire or rod.

In the ballistic transport limit when d � �b, we assume that the mean free path
in the film is the same as the thickness d, �f = d. Thus, the conductivity ratio can
be obtained as
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Fig. 5.16 Illustration of free-path reduction due to boundary scattering. a A thin film for paths
originated from the surface. b A thin film for paths originated from the center. c A thin wire for
paths originated from the center

κf

κb
= �f

�b
= 1

Kn
(5.122)

where Kn = �b/d is the Knudsen number for electrons or phonons, borrowed from
the definition used in rarefied gas dynamics. In the intermediate region, we can apply
Matthiessen’s rule as suggested in Eqs. (5.56) and (5.76) such that

1

�eff
= 1

�b
+ 1

�f
(5.123)

Accordingly,

κeff

κb
= �eff

�b
= 1

1 + Kn
(5.124)

The result calculated from Eq. (5.124) is plotted in Fig. 5.17 to illustrate the
size dependence of the effective thermal conductivity. It appears that this simple
formula overpredicts the reduction in thermal conductivity, as compared with the
more realistic models to be discussed next.

As early as 1901, J. J. Thomson first considered the size effect on the electrical
conductivity of thin films. His argument was extended by K. Fuchs in 1938 based on
the BTE. The geometric argument assumes that boundary scattering is diffuse and
inelastic, i.e., the electrons are fully accommodated after scattering by a boundary.
The concept of accommodation is the same as that used for ideal gas particles in
the free molecule flow regime discussed in Sect. 4.4. However, for simplicity, the
distribution of free paths is not taken into consideration. In other words, all paths are
assumed to be the same as the bulk mean free path. When d � �b, we may assume
that all energy carriers originate from the boundary. From Fig. 5.16a, we see that
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Fig. 5.17 Reduction in
thermal conductivity due to
boundary scattering. Note
that Eq. (5.128) was used
with different m values for
Kn < 1, and interpolation
was used for 1 < Kn < 5

�(θ) =
{
d/ cos θ, 0 < θ < θ0

�b, θ0 < θ < π/2
(5.125)

The free paths should be averaged over the hemisphere, and the weighted average
can be written and evaluated as follows:

�f

�b
=

∫ 2π
0

∫ π/2
0 �(θ) sin θdθdφ

∫ 2π
0

∫ π/2
0 �b sin θdθdφ

= ln(Kn) + 1

Kn
(5.126)

Applying Matthiessen’s rule again, we have

κeff

κb
= �eff

�b
=
(
1 + Kn

ln(Kn) + 1

)−1

(5.127)

This equation, however, cannot be applied for small values of Kn since ln(Kn)

becomes negative. Let us assume Eq. (5.127) is applicable for Kn > 5. When
Kn < 1, we may use

κeff

κb
= �eff

�b
=
(
1 + Kn

m

)−1

(5.128)

where m ≈ 3 for thin films [62, 63]. Equation (5.124) can be considered as a special
case of Eq. (5.128) with m = 1. The results based on Eqs. (5.127) and (5.128) are
plotted in Fig. 5.17 for comparison. The thermal conductivity in the intermediate
region for 1 < Kn < 5 is linearly interpolated based on the values at Kn = 1 and 5.
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Equations (5.126) and (5.127) do not consider the direction of transport and cannot
capture the anisotropic feature due to the size effect. Flik and Tien [63] employed a
weighted average of the free-path components in the parallel and normal directions
of thin films. Their work was extended to different geometries by Richardson and
Nori [64]. For the z-direction, the projected mean free path is �z = �(θ) cos θ ;
hence, the weighted average becomes

�z

�b,z
=

∫ 2π
0

∫ π/2
0 �(θ) cos θ sin θdθdφ

∫ 2π
0

∫ π/2
0 �b cos θ sin θdθdφ

= 2

Kn
− 1

Kn2
(5.129)

The use of Matthiessen’s rule allows us to obtain

κeff,z

κb
=
(
1 + Kn

2 − Kn−1

)−1

for Kn > 5 (5.130)

For Kn < 1, Eq. (5.128) should be used with m = 3, which can be obtained by
integrating over the film when Kn � 1 [63]. The result from Eq. (5.130) is also
shown in Fig. 5.17. For transport along the x-direction, one may assume that all the
electrons originate from the center of the film for simplicity. The component of the
free path is�x = �(θ) sin θ cosφ, where φ is the azimuthal angle. Due to symmetry,
the integration can be carried out in a single octant only. It can be seen fromFig. 5.16b
that �(θ) = d/(2 cos θ) for 0 ≤ θ < θ1, and �(θ) = �b for θ1 ≤ θ < π/2, where
θ1 = cos−1(d/2�b). Subsequently,

�x

�b,x
=

∫ π/2
0

∫ π/2
0 �(θ) sin2 θ cosφdθdφ

∫ π/2
0

∫ π/2
0 �b sin2 θ cosφdθdφ

(5.131)

After evaluation of the above integral, we obtain

κeff,x

κb
= 2

πKn
ln[2Kn(1 + sin θ1)] + 1 − 2θ1

π
− sin θ1

πKn
(5.132)

In the ballistic limit, i.e., Kn � 1, Eq. (5.132) reduces to κeff,x/κb ≈
(2/π) ln(4Kn)/Kn. If the free paths were to originate from the boundary, the result
could be obtained by replacing Kn with Kn/2 in Eq. (5.132). While it is perfectly
logical to assume that all the carriers originate from the surface for the z-component
in the ballistic limit. For thermal transport along a film with a temperature gradient
in the x-direction, carriers must originate from a cross section or y-z plane inside
the film. The transport process along the film is essentially diffusion-like with sig-
nificant boundary scattering contributions. Anisotropy may arise between κeff,x and
κeff,z due to boundary scattering. A simple argument is that paths with large polar
angles are more important for parallel conduction, whereas paths with smaller polar
angles are more important for normal conduction. Based on the geometry, it can
be seen that paths with smaller polar angles are more likely to be scattered by the
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boundary. Another reason that causes κeff,x to be greater than κeff,z is that scattering
tends to be more specular for larger incidence angles. Specular reflection or elastic
scattering does not reduce the conductivity because the incident particles only change
the direction without any exchange of energy with the surface. Crystal anisotropy
is another major reason for anisotropic conduction, sometimes the dominant reason,
as in high-temperature superconducting YBa2Cu3O7 films [63]. Grain boundaries
can strongly influence the thermal conductivity in polycrystalline films [62]. For
chemical–vapor-deposited polycrystalline diamond films, depending on the crystal
orientation, κx may be greater or smaller than κz [65].

For circular wires, considering the conduction along a thin wire as shown in
Fig. 5.16c, we have �z(θ) = �b cos θ for 0 < θ < θ2, and �z(θ) = d cot θ/2
for θ2 < θ < π/2, where θ2 = sin−1(d/2�b). Thus,

�w,z

�b,z
=

∫ 2π
0

∫ π/2
0 �z(θ) sin θdθdφ

∫ 2π
0

∫ π/2
0 �b cos θ sin θdθdφ

= 1

Kn
− 1

4Kn2
(5.133)

Applying Matthiessen’s rule yields

κeff,w

κb
= 4Kn − 1

4Kn2 + 4Kn − 1
(5.134)

which can be applied for Kn > 5 and approaches to Eq. (5.124) at large Kn. For
Kn < 1, studies have shown that Eq. (5.128) is a good approximation withm = 4/3
[66, 67]. The reduction in thermal conductivity for thin wires is also indicated in
Fig. 5.17, where values for 1 < Kn < 5 are again based on a simple interpola-
tion between the two expressions. Due to geometric confinement, the reduction in
the mean free path is more severe for thin wires than for thin films. The geometric
argument is easy to understand and may help gain a physical intuition of the size
effect due to boundary scattering. In consideration of the classical size effect, it is
assumed that Fourier’s law is still applicable with a modified thermal conductivity.
The size effect on the electron or phonon transport properties can also be formulated
using the BTE for thin films and wires, as presented in the following.

5.5.2 Conductivity Along a Thin Film Based on the BTE

In Sect. 5.3.3, we derived electrical and thermal conductivities based on the BTE
for bulk materials. The relaxation time approximation was adopted, and the distri-
bution function was assumed to be not too far away from equilibrium, i.e., under the
local-equilibrium conditions. To determine the size effect on the conductivities along
thin films, the same assumptions will be applied. Consider the geometry shown in
Fig. 5.16a, with a temperature gradient and an electric field in the x-direction only.
Because of the finite thickness in the z-direction, the distribution function should
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also be an explicit function of z, viz.,

f1(ε, T, z) ≈ f0(ε, T ) + τ(ε)

(
eE

me

∂ f0
∂ε

∂ε

∂vx
− vx

∂ f0
∂T

dT

dx
− vz

∂ f1
∂z

)
(5.135a)

Compared with Eq. (5.65), the last term was added because f1 depends also on
z. Here, the electric field and the temperature gradient are along the x-direction. In
Eq. (5.135a), we have already replaced ∂ f1/∂εwith ∂ f0/∂ε and ∂ f1/∂T with ∂ f0/∂T .

We can rearrange Eq. (5.135a) as follows:

−eE

me

∂ f0
∂ε

∂ε

∂vx
+ vx

∂ f0
∂T

dT

dx
+ vz

∂ f1
∂z

= − f1 − f0
τ(ε)

(5.135b)

which is nothing but the steady-state BTE under the relaxation time approximation.
The general solution can be expressed as

f1 = f0 + τvx

(
eE

∂ f0
∂ε

− ∂ f0
∂T

dT

dx

)[
1 − ψ(v) exp

(
− z

τvz

)]
, vz > 0 (5.136a)

and

f1 = f0 + τvx

(
eE

∂ f0
∂ε

− ∂ f0
∂T

dT

dx

)[
1 − ψ(v) exp

(
−d − z

τvz

)]
, vz < 0 (5.136b)

where ψ(v) is an arbitrary function that accounts for the accommodation and scat-
tering characteristics. If perfect accommodation is assumed with inelastic and dif-
fuse scattering, then ψ(v) = 1. Let us consider electrical conduction without any
temperature gradient. For diffuse scattering only with ψ(v) = 1, it can be shown
that

f1 = f0 + τvxeE
∂ f0
∂ε

[
1 − exp

(
− z

τvz

)]
, vz > 0 (5.137a)

and

f1 = f0 + τvxeE
∂ f0
∂ε

[
1 − exp

(
−d − z

τvz

)]
, vz < 0 (5.137b)

We must substitute the distribution function into Eq. (5.67a) and integrate over
(vx , vy, vz), or over (ν, θ, φ) or (ε, θ, φ), in spherical coordinates, to obtain Je(z) =
−eJN (z) along the film. Therefore,

Je(z) = −e2E

∞∫

0

τ
∂ fFD
∂ε

dε

2π∫

0

dφ

⎧
⎨

⎩

π/2∫

0

v2x
[
1 − exp

(
− z

τv cos θ

)]
v2sinθdθ
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+
π∫

π/2

v2x

[
1 − exp

(
− d − z

τv cos θ

)]
v2sinθdθ

⎫
⎪⎬

⎪⎭
(5.138)

Putting vx = v sin θ cosφ, the integration over φ can be carried out indepen-
dently. The average current flux Je,avg = (1/d)

∫ d
0 Je(z)dz can also be obtained. The

properties of the Fermi integral allow the integration over ε to be carried out and
expressed in terms of the properties at the Fermi surface, i.e., τ(μF) and vF. Notice
that �b = τ(μF)vF, and let Je,avg = σfE, where σf is the effective electrical con-
ductivity of the film. After normalization of the electrical current density based on
Eqs. (5.67a) and (5.68), we obtain the following relation:

σf

σb
= F(Kn) (5.139a)

where

F(Kn) = 3

4d

π/2∫

0

sin3 θ

d∫

0

[
1 − exp

(
− z

�b cos θ

)]
dzdθ

+ 3

4d

π∫

π/2

sin3 θ

d∫

0

[
1 − exp

(
− d − z

�b cos θ

)]
dzdθ

= 3

2d

π/2∫

0

sin3 θ

{
d − �b cos θ

[
1 − exp

(
− d

�b cos θ

)]}
dθ

= 1 − 3Kn

8
+ 3Kn

2

∞∫

1

(
1

t3
− 1

t5

)
exp

(
− t

Kn

)
dt (5.139b)

Note that the mth-order exponential integral is defined as Em(x) =∫∞
1 e−xt t−mdt or Em(x) = ∫ 1

0 ηm−2e−x/ηdη, which has the relation Em+1(x) =
m−1

[
e−x − xEm(x)

]
. Equation (5.139b) can also be expressed as

F(Kn) = 1 − 3Kn

8
+ 3Kn

2

[
E3

(
1

Kn

)
− E5

(
1

Kn

)]
(5.139c)

The asymptotic relations are

σf

σb
≈ 1 − 3Kn

8
for Kn � 1 (5.140a)

and
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σf

σb
≈ 3 ln(Kn)

4Kn
for Kn � 1 (5.140b)

which is close to Eq. (5.132) for Kn � 1. The derivation using the BTE presented
here inherently assumes that the electrons are originated from the film rather than
from the boundaries.

For thermal conductivity, we can substitute Eq. (5.136a, 5.136b) with ψ(v) = 1
into Eq. (5.70) and follow a similar procedure to obtain κf/κb = F(Kn), where
F(Kn) is given in Eq. (5.139b) or (5.139c). At very low temperatures or near room
temperature, the Wiedemann–Franz law is applicable, and the reduction in electrical
and thermal conductivities is essentially the same. In the intermediate region, one
could use different scattering rates or mean free paths for the bulk thermal and elec-
trical conductivities to determine the size effect individually based on Eq. (5.139a).
Another way to obtain κf/κb is to calculate the heat flux using Eq. (5.136a, 5.136b)
with a finite temperature gradient as done by Kumar and Vradis [68]. They obtained
complicated expressions and showed that the results are similar to σf/σb in a large
range.

According to the discussion of thermoelectricity in Sect. 5.4, we could in principle
quantify the size effect on other coefficients. If the same assumptions are used, to
the first-order approximation, L12 and L21 are subject to boundary scattering and
will also be reduced according to Eq. (5.139a). Because the thermoelectric power
is the ratio of the two coefficients, the Seebeck coefficient along the film should
be expected to remain the same regardless of boundary scattering. One should be
cautious about this conclusion because the assumption of a spherical Fermi surface
and the free-electron model are questionable when modeling thermoelectricity, as
mentioned previously.

The above discussion can be extended to scattering with a specular component.
Let parameter p, which is called specularity, represent the probability of scattering
being elastic and specular. For specular and elastic scattering, carriers will continue
to exchange energy and momentum inside the film after reflection by the boundary.
Therefore, these scattering events do not cause any reduction in the effective mean
free paths or conductivities along the film. If p is assumed to be independent of the
incident direction, the function ψ(v) in Eq. (5.136a, 5.136b) becomes

ψ(v) = 1 − p

1 − p exp(−d/τvz)
(5.141)

The function given in Eq. (5.139b)may bemodified after some tedious derivations
as follows:

F(Kn, p) = 1 − 3(1 − p)Kn

2

∞∫

1

(
1

t3
− 1

t5

)
1 − exp(−t/Kn)

1 − p exp(−t/Kn)
dt (5.142)
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Fig. 5.18 Size effect on
thermal conductivity along
the film of thickness d, as
predicted by the BTE with
different specularities.

The effects of p and Kn on the effective conductivity are shown in Fig. 5.18. The
trends with respect to Kn are very similar to those in Fig. 5.17 obtained from simple
geometric considerations. For electron transport, since the de Broglie wavelength of
electrons is less than 1 nm, boundary scattering can usually be considered diffuse,
i.e., p = 0. For phonons, the wavelength may vary from the atomistic scale up to
the size of the crystal. Therefore, the size effect needs to be considered for different
phonon frequencies. The parameter p can be estimated based on the rms surface
roughness σrms and the wavelength λ of the carrier by

p = exp

(
−16π2σ 2

rms cos
2 θi

λ2

)
(5.143)

where θi is the angle of incidence. This equation can be derived from the wave
scattering theory [69]. Generally speaking, p � 1whenλ ≤ σrms.Whenλ > 10σrms,
the specular reflection cannot be neglected. Furthermore, the specularity p increases
with the incidence angle. The actual scattering distribution often consists of a broad
specular lobe, and the nonspecular component is not perfectly diffuse. This is similar
to light scattering by rough surfaces for which an in-depth discussion will be given in
Chap. 9. Feng et al. [70] studied the effect of specularity and grain boundary scattering
on the thermal conductivity of thin metal films. Their model for the reduction of
thermal conductivity of copper and gold films agrees well with experimental values
over a large temperature range.

As can be seen from Figs. 5.17 and 5.18, when Kn = �b/d > 0.1, i.e., when
d < 10�b, the size effect may be significant, and boundary scattering dominates
when d < 0.1�b. Note that Examples 5.5 and 5.6 provide typical numerical values
of the bulk mean free paths of electrons in a noble metal and of phonons in silicon.
At room temperature, the electron mean free path of a metal is on the order of tens of
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nanometers, and thus one would expect some size effect when d is less than 300 nm.
For a highly pure metal at very low temperatures, however, the electron mean free
path could be on the order of millimeters. In this case, even when d of the film
is on the order of micrometers, boundary scattering would dominate the scattering
process. Note that the method presented in this section is only for heat conduction
along a film. For phonon conduction across a film, the BTE may be simplified using
the equation of phonon radiative transfer to be discussed in Chap. 7.

5.5.3 Conductivity Along a Thin Wire Based on the BTE

The above discussion can be extended to conduction along a thin wire. For wires
with circular cross sections, the effective conductivity can be expressed as [66, 67]

κw

κb
or

σw

σb
= 1 − 12

π

1∫

0

√
1 − ξ 2

∞∫

1

exp

(
− ξ t

Kn

)√
t2 − 1

t4
dt dξ (5.144)

In particular, the asymptotic approximations with ≈1% accuracy are

κw

κb
or

σw

σb
≈ 1 − 3

4
Kn + 3

8
Kn3 for Kn < 0.6 (5.145a)

and

κw

κb
or

σw

σb
≈ 1

Kn
− 3(ln Kn + 1)

8Kn2
− 2

15Kn3
for Kn > 1 (5.145b)

If the scattering is not completely diffuse, a specularity parameter p similar to that
for thin films can be introduced, and the expression becomes

κw

κb
or

σw

σb
= 1 − 12(1 − p)2

π

∞∑

m=1

mpm−1G(Kn,m) (5.146a)

where

G(Kn,m) =
1∫

0

√
1 − ξ 2

∞∫

1

exp

(
−mξ t

Kn

)√
t2 − 1

t4
dt dξ (5.146b)

Again, different mean free paths and Kn numbers should be used for thermal
and electrical conductivities in the region where the Wiedemann–Franz law is not
applicable.
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5.5.4 Size Effects on Crystalline Insulators

For crystalline solids, phonons are the principal heat carriers. Simple geometric
arguments can also be applied to give qualitative results of the size effect using the
phonon mean free path. The BTE or Boltzmann–Peierls equation can be used to
more rigorously predict the thermal conductivity of bulk solids as well as the size
effect on the thermal conductivity. The distribution function of phonons depends on
the frequency or the wavevector, which are related by the dispersion relation. The
group velocity can be calculated from the dispersion curve for a given phonon mode
or branch. In general, the scattering rate is frequency dependent. The Boltzmann–
Peierls equation at a given frequency under the relaxation time approximation for
steady-state 1D conduction can be expressed as follows:

vx
∂ fBE
∂T

dT

dx
+ vz

∂ f1
∂z

= − f1 − fBE
τ(ω)

(5.147)

where vx and vz are the components of the group velocity that depend on the
frequency. The solution is similar to Eq. (5.136a, 5.136b), especially for the z-
dependence. Following the discussions in Sect. 5.3.4 on phonon thermal conductivity,
in conjunction with the average heat flux along the film, we can rewrite Eq. (5.80)
as follows:

κf = k4BT
3

6π2�3

∑

P

xm∫

0

τ(x)vg(x)

v2p(x)

x4ex

(ex − 1)2
F(Knx , p)dx (5.148)

where x = �ω/kBT is a reduced frequency and the Knudsen number, Knx =
τ(x)vg(x)/d = �(x)/d, is thus a function of the frequency ω. In this equation, the
summation index P accounts for all phonon polarizations, the upper bound of the
integration is the cutoff frequency for each polarization, and the function F(ξ, p)
can be calculated from Eq. (5.142). If an average Kn that is independent of the
frequency can be used, combining Eqs. (5.148) with (5.80) gives κf/κb = F(Kn, p)
as expected. A similar equation can be developed for thin wires [67, 71].

For semiconductors, such as silicon, the phonon mean free path is on the order of
tens of nanometers at room temperature. Therefore, the size effect can be neglected
for a 1-μm-thick silicon film above room temperature. However, as temperature is
lowered, the size effect becomes more and more significant. Numerical calculations
dealing with the conductivity reduction are left as exercises. Kenneth Goodson’s
group has experimentally demonstrated the size effect on the thermal conductivity
of both intrinsic and doped silicon films with thicknesses from a few micrometers
down to 20 nm [72]. The thermal transport properties of silicon nanowires and other
semiconductor nanowires have been extensively studied both experimentally and
theoretically for thermoelectric applications [4, 53, 73–79].
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5.5.5 Mean-Free-Path Distribution

As previously discussed, the scattering rate and the mean free path both depend on
the frequency. If all modes are combined, the thermal conductivity can be expressed
as an integration with respect to frequency κ = ∫∞

0 κω(ω)dω. The integrand is the
distribution function of thermal conductivity in terms of frequency (i.e., a frequency
spectrum). To facilitate understanding and analysis of the experimental data, it has
been proposed to use the mean free path (MFP) as the independent variable such that
the bulk thermal conductivity can be expressed as follows [80, 81]:

κbulk =
∞∫

0

κ�(�)d� (5.149a)

where

κ�(�) = κω(ω)

(
d�

dω

)−1

= −
∑

P

∞∫

0

1

3
C(ω)v�

(
d�

dω

)−1

(5.149b)

Here, C(ω) is the volumetric specific heat as given in Eq. (5.82b). The group
velocity v and mean free path � for each phonon branch are also functions of fre-
quency. We can interpret Eq. (5.149b) as the thermal conductivity per unit MFP,
i.e., the thermal conductivity distribution function in terms of the mean free path. It
is simply referred to as the MFP distribution or MFP spectrum [81], unless noted
otherwise, � refers to the bulk mean free path.

With nanostructures, due to boundary scattering, the κ�(�) at a given bulk MFP
is reduced by a factor that depends on the Knudsen number. Therefore, we can write

κ�,nano(�) = κ�(�)Fnano(Kn, p) (5.150)

where Fnano is a structure-dependent function of Kn and the specularity p. It may
be thought as the ratio of the MFP in the nanostructure to that of the bulk, i.e.,
Fnano = �nano/�. The Knudsen number depends on the characteristic length and
varies with the bulk MFP. Thus, the thermal conductivity of the nanostructure can
be written as

κnano =
∞∫

0

κ�,nano(�)d� =
∞∫

0

κ�(�)Fnano(Kn, p)d� (5.151)

The cumulative distribution function (CDF) can also be defined for thermal
conductivity in terms of the mean free path as follows:
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K�(�) = 1

κnano

�∫

0

κ�(ξ)Fnano(Kn, p)dξ (5.152)

For bulk materials, simply set κnano = κ and Fnano = 1 in Eq. (5.152). This equation
is called the (normalized) thermal conductivity accumulation function.

Themean-free-path spectrum and the thermal conductivity accumulation function
have been experimentally and theoretically investigated for both bulk and nanostruc-
turedmaterials [78–82]. These studies have significantly improved our understanding
of heat conduction in bulk and nanostructured solid materials and devices. Further
discussion is postponed to Chap. 7.

5.6 Quantum Conductance and the Landauer Formalism

In the above discussion, the Fourier law was assumed to hold under the local-
equilibrium approximation, with reduced thermal conductivities to include the effect
of boundary scattering. Many works have employed ab initio techniques, lattice
dynamics, and equilibrium or nonequilibrium molecular dynamics to study ther-
mal transport at the nanoscale [4, 82–84]. In heterogeneous structures, such as
superlattices, when thermal transport across the multiple layers is considered, the
local-equilibrium assumption breaks down in the ballistic regime. Further discus-
sion of non-Fourier conduction, especially for transient processes, will be deferred
to Chap. 7. For superlattice nanowires, both lateral and longitudinal confinements
exist, so each element is like a quantum dot confined in all three dimensions. When
the quantum confinement becomes significant, the relaxation time approximation
used to solve the BTE is not applicable. Landauer’s formalism is presented here
for modeling certain nonequilibrium and ballistic transport phenomena. This section
also introduces the quantum size effect on electrical and thermal transport processes,
with an emphasis on the concept of quantum conductance and its implications.

Quantum size effect on the lattice specific heat was discussed in Sect. 5.2. Atten-
tion is now paid to the electrical conductance of metallic materials and thermal
conductance of dielectric materials. For bulk solids, the DOS for electrons D(ε)

is proportional to
√

ε, as given in Eq. (5.18) and illustrated in Fig. 5.5b. Note that
for phonons or photons, the energy ε = �ω is proportional to the frequency and
D(ω) is proportional to ω2 when the dispersion is linear; see Eq. (5.35) and Fig. 5.4.
For electrons or holes, ε = p2

2m∗ = �
2k2

2m∗ , where k is the wavevector and m∗ is the
effective mass. For the electron gas in a 2D solid, the density of states becomes
D(ε) = 2 × k

2π
dk
dε = m∗

π�2 , which can be derived using Eq. (5.37) considering the
spin degeneracy. In a quantum well of thickness L, the energy levels are quantized
in the normal or z-direction according to Eq. (3.80), i.e., n2h2

8m∗L2 , where n is a positive
integer. The combined energies can be expressed as
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εn(k) = n2�2

2m∗L
+ �

2(k2x + k2y)

2m∗ (5.153)

and the resulting DOS is given by

D(ε) = nm∗

π�2
, for εn ≤ ε < εn+1 and n = 1, 2, . . . (5.154)

which is a staircase function, as depicted in Fig. 5.19a, along with the bulk DOS. The
reason that the DOS for the nth subband is multiplied by n is because kz,n = nπ/L ,

where kmin = π/L . Before applying Eqs. (5.36) and (5.37), we must multiply the
total number of modes N by kz,n L/π . For 1D quantum wires confined in both y- and
z-directions (assuming a rectangular shape of Ly × Lz), the energy levels are given
by

εl,n = l2�2

2m∗Ly
+ n2�2

2m∗Lz
(5.155)

For each subband (l, n), the DOS becomes

D(ε) = nl

π�

√
2m∗

ε − εl,n
(5.156)

which has an inverse square-root dependence of energy and a singularity at εl,n , as
shown in Fig. 5.19b. For 3D confined quantum dots, the energy levels are completely
discrete; subsequently, the DOS becomes isolated delta functions (not shown in
Fig. 5.19).

The quantization of electron energy levels or phonon frequencies in small struc-
tures suggests that the resulting transport properties may also be quantized. For
example, the electrical conductance may depend on the applied current or force for
the nanocontact in a stepwise manner. The thermal conductance of insulators can
also be quantized due to limited available phonon modes in small structures and

Fig. 5.19 Electron density of states due to quantum confinement. a 2D quantum wells versus 3D
bulk solids. b 1D quantum wires.
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at low temperatures. In this section, we use conductance rather than conductivity
for reasons to be explained soon. Long before the quantization of conductance was
experimentally observed, physicists had formulated different theories to understand
the transport phenomena in the quantumor ballistic regimes. Landauer and collabora-
tors [85] have developed a formalism to treat electrical current flow as a transmission
probability when carriers are scattered coherently and the resulting ballistic trans-
port behaves quantum mechanically. Landauer’s formalism can easily be applied to
the 1D case for conductance through a narrow channel, as illustrated in Fig. 5.20a.
Suppose ballistic transmission exists in the channel connecting two reservoirs of
different electrochemical potentials; there will be a current flow from 1 to 2 and
reversely from 2 to 1. In the absence of losses by scattering and reflection, the net
current flow can be expressed as

Je = J1→2 − J2→1 = −evF(μ1 − μ2)D(ε) (5.157)

whereμ is the chemical potential. The derivation can be easily generalized to include
the electrostatic potential. Note that the DOS in the 1D case is D(ε) = (π�vF)−1

considering the electronic spin degeneracy. Because the voltage drop is V1 − V2 =
−(μ1 − μ2)/e, the electrical conductance for complete transmission becomes

ge0 = Je
V1 − V2

= e2

π�
or

2e2

h
(5.158)

which gives a universal constant with a value of 7.75×10−5 
−1 or a resistance value
of 12.91 k
. This is the quantum conductance for an ideal 1D conductor, in which
there is no resistance or voltage drop associated with the channel itself. Instead,
the voltage drop is associated with the perturbation at each end of the channel as
it interacts with the reservoir [85]. In the above derivation, we assumed that the
Fermi distribution function can be approximated as a step function (i.e., at absolute
zero temperature). By introducing a transmission coefficient ξ12 and using the actual

Fig. 5.20 Illustration of
quantum conductance.
a Electrical current flow
through a narrow metallic
channel due to different
electrochemical potentials.
b Heat transfer between two
heat reservoirs through a
narrow dielectric channel
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distribution function, one can modify Eq. (5.157) to the following [85, 86]:

Je =
∞∫

0

(−evF)ξ12(ε)[ fFD(ε, μ1) − fFD(ε, μ2)]D(ε)dε (5.159)

For small potential differences, using the following approximation,

fFD(ε, μ1) − fFD(ε, μ2)

μ2 − μ1
= −∂ fFD(ε, μ)

∂μ
= ∂ fFD(ε, μ)

∂ε

we obtain the expression of the electrical conductance:

ge = −2e2

h

∞∫

0

ξ12(ε)
∂ fFD
∂ε

dε (5.160)

which reduces to Eq. (5.158) at absolute zero temperature when ξ12(0) is taken to
be 1. The transmission coefficient or probability is given by a scattering matrix (the
S-matrix) based on a solution of Schrödinger’s equation. The solution is in the form
of eigenvalues called eigenchannels, each with a transmission coefficient τi between
0 and 1. Thus, the expression of conductance is reduced to

ge = 2e2

h

∑

i

τi (5.161)

Depending on how many propagation modes at the Fermi level are excited, the
conductance varies in a discontinuous manner. Conductance quantization has been
realized in metallic nanocontacts, nanowires, and carbon nanotubes [86–89], even at
room temperature, and has also been predicted by molecular dynamics simulations
[90, 91]. These discoveries are very important for the development of single-electron
transistors, nanoelectromechanical systems, nanotribology, and quantum computing.

The ballistic thermal transport process resembles electromagnetic radiation
between two blackbodies separated by a vacuum. For a 1D photon gas, the Ste-
fan–Boltzmann law reads q ′′ ∝ T 2 rather than q ′′ ∝ T 4. In a solid nanostructure
(channel) that links two heat reservoirs, as illustrated in Fig. 5.20b, the ballistic heat
conduction can be treated in a similar way so that

q1→2 = 1

2π

∑

P

ωD∫

ωP

ξP(ω)�ω fBE(ω, T1)dω (5.162a)

and
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q2→1 = 1

2π

∑

P

ωD∫

ωP

ξP(ω)�ω fBE(ω, T2)dω (5.162b)

where ξP(ω) is the transmission coefficient (or probability) of the polarization branch
P, which accounts for both scattering in the channel and reflection from the junctions.
Here, the upper bound ωD approaches infinity at very low temperatures, and the
lower bound is the cutoff frequency for the phonon mode P. This cutoff frequency is
determined by the width of the channel and the order of propagating phonon modes,
like in a waveguide. More specifically, if a rectangular cross section is considered
whose dimensions are Lx and Ly , the cutoff frequency for the (m,n) mode is given
by

kmn = ωmn

vs
=
√(

mπ

Lx

)2

+
(
nπ

Ly

)2

(5.163)

Apparently, a narrow channel enables a large cutoff wavenumber. Note that the
zeroth-order mode always exists because it has a zero cutoff frequency. If the inte-
gration in Eq. (5.162) is expressed in terms of the wavevector, there will be a group
velocity vg term. In writing Eq. (5.162), we have assumed vg = vp for a linear dis-
persion relation. The net heat transfer is calculated by q12 = q1→2 − q2→1, which is
commonly done in radiation heat transfer. Assuming that the temperature difference
is small, we obtain the thermal conductance as

gT = q12
T1 − T2

= 1

2π

∑

P

ωD∫

ωP

ξP(ω)�ω
∂ fBE(ω, T )

∂T
dω (5.164a)

or

gT = k2BT̄

h

∑

P

xD∫

xP

ξP(x)
x2ex

(ex − 1)2
dx (5.164b)

Note that T̄ represents the average temperature. At sufficiently low temperatures,
only the lowest phonon branches,whose cutoff frequency equals zero,may contribute
to the conductance. If the transmission coefficient is assumed to be unity, each of the
lowest phonon modes will contribute to the thermal conductance by

gT0 = πk2BT

6�
or

π2k2BT

3h
(5.165)

which has a value gT0/T = 0.947 pW/K2 and is another universal constant that
can be viewed as the Stefan–Boltzmann constant in 1D space for each mode. If the
above derivation is repeated to obtain electron thermal conductance, we will end
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up with 2gT0 due to the electronic spin degeneracy. Therefore, the Lorentz number
Lz = κ

σT = gT
geT

in the ballistic regime remains the same as given in Eq. (5.62) for the
diffusive regime [92]. Roukes and collaborators [93] have experimentally demon-
strated quantum thermal conductance using a 60-nm-thick silicon nitride membrane.
They reported a 16gT0 behavior at temperatures below 0.6 K since the structure was
suspended by four narrow bridges (channels). Each bridge or channel acts like a
wire with four phonon modes (two transversal, one longitudinal, and one torsional).
Murphy and Moore [74] used Landauer’s formalism to study phonon transport in
silicon nanowires considering temperature dependence and the effect of diffusive
and localized modes on the frequency-dependent transmission coefficient.

Carbon nanotubes (CNTs) have been known for a while, especially for its asso-
ciated large thermal conductivities [94–98]. Single-walled carbon nanotubes can be
made essentially free from defect scattering and boundary scattering due to atomistic
smoothness. Their diameters can be made as small as a few nanometers, while their
lengths can be several micrometers. Thermal conductivities of single-walled and
multi-walled nanotubes have been measured with suspended MEMS bridges and are
found to exceed that of diamond at room temperature [97]. The thermal conductivity
was calculated from the measured thermal conductance based on an effective cross-
sectional area. Above room temperature, phonon–phonon anharmonic interactions
may provide a means for diffusive conduction behavior. Nanotube bundles, on the
other hand, are subject to various scattering mechanisms and possess a lower thermal
conductivity; yet they may still behave like good thermal conductors (κ values from
50–300 W/m K). Furthermore, the contact may be attributed to the reduction in con-
ductance. Contact resistance due to interface scattering needs to be further addressed
in order to realize the potential of nanotubes for use in heat transfer enhancement
[99]. Mingo and Broido calculated the thermal conductance of carbon nanotubes
in the ballistic limit [100]; for semiconductor nanotubes at sufficiently low tem-
peratures, the thermal conductance becomes 4gT0T due to the four lowest phonon
modes regardless of the length and the cross-sectional area. In this regime, the ther-
mal conductivity of CNTs increases with length. As the temperature increases from
cryogenic temperatures, the thermal conductivity of CNTs first increases due to the
increased specific heat and reaches a peak around 300–400 K, and then decreases
due to phonon–phonon scattering. In the diffusion limit, the conductivity is indepen-
dent of the length and diminishes as temperature further increases. For nanotubes
whose band structures are metal-like, such as with (6,0) and (18,0) chiral numbers,
electron ballistic transport may be important; however, electron–phonon scattering
will dominate at sufficiently high temperatures.
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5.7 Summary

This chapter began with lattice vibrations (i.e., phonons) in solids and discussed the
dimensionality and the quantum size effect on the lattice specific heat. Free-electron
theory was applied, assuming a spherical Fermi surface, to predict the electronic spe-
cific heat, as well as electrical and thermal conductivities of solids. The Boltzmann
transport equation under the relaxation time approximation and the local-equilibrium
assumption was used to derive the electrical and thermal conductivities as well as the
thermoelectric coefficients within the framework of irreversible thermodynamics. A
brief discussion of the efficiency of thermoelectric power and refrigeration systems
was then provided. The classical size effect on electrical and thermal conductivities
was presented using both geometric arguments and the BTE, followed by a discus-
sion on the mean-free-path distribution and the thermal conductivity accumulation
function. Finally, the concept of conductance quantization for both electrical cur-
rent and heat flow was introduced using Landauer’s formalism. The properties were
discussed with examples of representative materials, such as noble metals, semicon-
ductors, quantum wells, superlattices, nanowires, and carbon nanotubes. In the next
chapter, the band theory for electrons and phonons will be introduced as an advanced
topic of the transport theory of solids.

Problems

5.1 Calculate the specific heat of lead, using both the Einstein model and the
Debye model, for temperatures equal to 2, 10, 20, 50, 100, 200, 300, 600, and
800 K. Use �D = 88 K and �E = 65 K since the specific heats calculated
with these values agree with the data well for the whole temperature range.
Compare your answerwith the values fromTouloukian andBuyco [7]. Explain
the low-temperature and high-temperature behavior.

5.2 In the first stage of designing a refrigeration system that will cool 1 kg of
Pb from 300 to 2 K. Assume the Debye model can be used to calculate the
temperature-dependent specific heat of lead (with �D = 88 K). Answer the
following questions:

(a) How much energy must be removed from Pb?
(b) How much entropy must be transferred out from Pb?
(c) Assuming that the environment is at 300 K, what is the least amount of

work necessary to perform this refrigeration task?
(d) Consider the refrigeration in three temperature ranges: (1) from 300 to

100 K; (2) from 100 to 20 K; and (3) from 20 to 2. What is the least
amount of work needed in each temperature range?
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5.3 Plot the Fermi function f FD versus ε for T = 0, 500, and 5000 K. Plot the
distribution function of free electrons in metal f (ε) as a function of ε. Discuss
the main features of these plots. [Use eV as the unit for energy.]

5.4 The Fermi energy (at 0 K) of copper is μF = 7.07 eV. What is μ(T ) of Cu
at 1000 and 10,000 K? Determine the maximum and root-mean-square free-
electron speeds in copper at 0 K. Plot the electron distribution functions in
terms of the speed and the kinetic energy for T = 0, 300, and 4000 K.

5.5 The Fermi energy of silver is μF = 5.51 eV. Calculate μ(T ) of Ag at T = 400
and 4000 K. What is the rms speed of electrons at 0 K? What is the Fermi
velocity? Plot the Fermi function at 0 and 4000 K in one graph and discuss
the differences.

5.6 For kBT � μF, the specific heat of free-electron gas inmetalmay be expressed
as c̄v,e = R̄

nekB

∫∞
0

∂ fFD
∂T D(ε)εdε. Evaluate this integration to obtain Eq. (5.24)

by referring Appendix B.8.
5.7 Calculate the Fermi energy of silver using the molecular weight and density.

Estimate the spacing between the adjacent atoms of Ag. Calculate and plot the
electron specific heat and the lattice specific heat of Ag at temperatures from
0 to 1000 K. Show in a separate graph the low-temperature behavior. How do
your calculated values agree with experimental data found in a heat transfer
text?

5.8 Calculate the Fermi energy μF for copper based on the molecular weight and
density. What is the rms speed of free electrons in Cu at 0 and 300 K? Find
the electronic specific heat and the lattice specific heat in J/kg K of Cu at 0.1,
1, 10, 30, and 500 K. When can you apply the T 3 law, and when can you use
the Delong–Petit law?

5.9 Calculate the electronic specific heat and the lattice specific heat of gold at
1, 10, 100, 300, and 1000 K. Sketch their temperature dependence. At what
temperature is the electronic and lattice contributions the same? How does
your calculated result compare with the value given in a heat transfer text?

5.10 TheMayer relation for the specific heat can bewritten as cp−cv = Tβ2
P

ρκT
,where

βP = 1
v

(
∂v
∂T

)
P
is the isobaric volume expansion coefficient, κT = − 1

v

(
∂v
∂P

)
T

is the isothermal compressibility, and ρ is the density. Noting that the sound

speed va is defined according to v2a =
(

∂P
∂ρ

)

s
= cp

cvρκT
, we can write cp−cv

cv
=

Tβ2
Pv

2
a

cp
. A simple estimate of the relative difference between the specific heats

is readily obtained by assuming that va is independent of temperature, cp on
the right-hand side is approximately 3R, and βP = 3α, where α is the linear
thermal expansion coefficient. For silicon, α ≈ 4.6× 10−6 K−1 at 1000 K and
va ≈ 5000m/s. For copper, α ≈ 2.2× 10−5 K−1 and va ≈ 2500m/s. Estimate
the relative difference between cp and cv at 1000 K for silicon and copper.

5.11 Graphene is a single sheet of carbon atoms arranged in hexagonal pattern. The
phonon mode with the lowest speed is the out-of-plane transverse acoustic
mode, when the atoms vibrate perpendicular to the plane. It has a dispersion
relation ω(k) = ak2, with a = 6 × 10−7 m2s. It is expected that this mode
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is the dominate mode for the lattice specific heat at low temperatures (below
100 K). Using the 2D solid model with the quadratic dispersion to show that
cv(T ) ∝ T at low temperatures, i.e., T � �D.

5.12 Evaluate the specific heat of a thin GaAs film of two different thicknesses:
L = 2 and 10 nm. Plot the calculated specific heat with and without planar
modes. Compare your results with that predicted by the Debye model for the
bulk GaAs at T � �D.

5.13 Develop a computer program to calculate the lattice specific heat of CdS or
ZnO2 cubic nanocrystals with different sizes: L = 2, 10, and 20 nm. Discuss
the low-temperature behavior in terms of Eqs. (5.43) and (5.44).

5.14 For a nanowire of diameter d = 5 nm, show that cv(T ) ∝ T at low tempera-
tures for a linear dispersion. If the length of the nanowire is L = 10d, what
is the lowest temperature asymptote of the specific heat due to the second
quantum size effect?

5.15 Calculate the electron scattering rate and themean free path of copper at 295K.
Use the linear relations for the electrical resistivity and theWiedemann–Franz
law to calculate the thermal conductivity at 200, 400, 600, and 800K. Compare
the calculated results with data from a heat transfer textbook.

5.16 Calculate the electron scattering rate 1/τ , the mean free path �, the electri-
cal conductivity σ , and the thermal conductivity κ of aluminum near room
temperature. If the temperature is increased by 5%, how will 1/τ , �, σ , and
κ change? Express the scattering rate in both rad/s and Hz. Discuss why one
should divide it by 2π to express 1/τ in Hz.

5.17 Sketch the thermal conductivity versus temperature from0 to 1000K for silver.
What is the dependence of κ onT, as the temperature approaches absolute zero?
How does the thermal conductivity change above 300 K?

5.18 Find the data for the electrical and thermal conductivities of a good conductor
in a large temperature range, and evaluate when the Wiedemann–Franz law is
valid. Show the low-temperature and high-temperature asymptotes for both σ

and κ .
5.19 In the text, we stated that ∂ fFD/∂ε is a Dirac delta function and used it to

obtain the electrical conductivity in Eq. (5.63). Prove that when kBT � μF,
the integral

∫∞
0 G(ε)

∂ fFD
∂ε

dε ≈ −G(μF), where G(x) is an analytical function
of x. Then, derive Eq. (5.49) from Eq. (5.63).

5.20 Sketch the thermal conductivity of germanium (relatively pure) as a function
of temperature [31]. Explain the trend of thermal conductivity at very low
temperatures and at above room temperature. Can you assume that the thermal
conductivity is independent of temperature near room temperature?

5.21 Derive Eqs. (5.74) through (5.80). Show that in Eq. (5.80), the second term is
much smaller than the first term for metals.

5.22 Prove Eq. (5.82a, 5.82b, 5.82c), and calculate the Seebeck coefficient for Ag at
300 and 600K. Themeasured Seebeck coefficient of Ag is 1.51μV/K at 300K
and 3.72 μV/K at 600 K. On the other hand, the Seebeck coefficient for Pt is
−5.28 μV/K at 300 K and −11.66 μV/K at 600 K. If an Ag-Pt thermocouple
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is formed with a junction temperature T2 = 600 K and a reference temperature
T1 = 300 K, find the output voltage (see Fig. 5.14b).

5.23 For given values of TL, TH, and Z∗, there exists an optimal ratio RL/R0 for
achieving the maximum efficiency of the thermoelectric generator given in
Eq. (5.94). Show that

ηmax = �T

TH

√
1 + Z∗TM − 1√

1 + Z∗TM + TL/TH
,

where TM = (TH + TL)/2. Calculate the maximum efficiency, normalized to
the Carnot efficiency, for TL = 300 K and TH = 800K as a function of the
dimensionless parameter Z∗TM. Plot it for Z∗TM from 0.3 to 3. Discuss the
significance of ZT in thermoelectric devices.

5.24 Consider a thermoelectric generator made of two semiconductors working
between TL = 300K and TH = 600K. The p-type material is made of
Bi0.5Sb1.5Te3, and the n-type material is made of Bi2Se0.75Te2.25, with the
following average properties: κp = 1.2W/mK, κn = 1.3W/mK, re,p =
15μ
m, re,n = 13μ
m, �p = 210μV/K, and �n = −190μV/K. Assume
that the length L = 0.8 cm and the cross section Ac = 0.3 cm2 for both materi-
als. A generator with a diameter of 10 cm contains 100 pairs (N = 100). Find
the power output at the maximum efficiency (see Problem 5.23).

5.25 Perform a thermodynamic analysis of the thermoelectric cooling using the
same configuration as in Fig. 5.15. By noting that no load resistance is needed
and the voltage supplied �V = N�np�T + I R0, show that the coefficient of
performance of a thermoelectric refrigeration is

COP = |qL|
P

= I�np AcσnpTL − I 2L/2 − A2
cσnpκnp�T/L

I�np Acσnp�T + I 2L
.

The maximum COP can be obtained by setting the derivative with respect to
I equal to zero. Show that

COPmax = TL
�T

√
1 + Z∗TM − TH/TL√

1 + Z∗TM + 1
,

where TM = (TH + TL)/2.
5.26 Estimate the thermal conductivity along a copper filmwith various thicknesses:

d = 400, 100, and 50 nm at 300 K. What if the temperature is reduced to 1 K?
5.27 Estimate the thermal conductivity along a copper wire with various diame-

ters: d = 400, 100, and 50 nm at 1 and 300 K, respectively. Compare simple
geometric averaging of free paths with the BTE. What are the electron de
Broglie wavelengths at these temperatures? If the surface roughness param-
eter σrms = 2 nm, will the scattering be mostly diffuse or specular at each
temperature?
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5.28 At 5 K, calculate the thermal conductivity, perpendicular (κeff,z ) and parallel
(κeff,x ) to the plane, for a 200-nm-thick gold film. Calculate the effective
thermal conductivity κeff,w of a gold wire of 5-μm thickness. Hint: use the
bulk resistivity value from Fig. 5.11.

5.29 In Example 5.6, we have calculated the properties of a single-crystal silicon at
various temperatures. Use simple relations with p = 0 to estimate the thermal
conductivities of silicon from 5 to 1000 K along a 50-nm-thick thin film and a
100-nm-thick thin wire. Assume the surface roughness σrms = 2 nm. Will the
diffuse model be a good assumption? For the thin film, redo the calculation
using the specularity p estimated based on the thermal phonon wavelength λth.

5.30 The diameter of a carbon nanotube is determined by its chiral numbers (m, n)

according to d = 0.07834
√
m2 + mn + n2. What is the diameter of (10,10)

single-walled nanotubes? Assume that the wall thickness (unit atomic layer)
is 0.34 nm. What is the cross-sectional area? Calculate the phonon thermal
conductivity κ in the ballistic limit considering the four phonon modes at
100 K for (10,10) nanotubes with length L = 100 nm, 1 μm, and 10 μm. Will
the ballistic limit of thermal conduction hold at room temperature and above?
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Chapter 6
Electron and Phonon Transport

In the preceding chapter on solid properties, we relied on the Drude–Sommerfeld
model, which assumes that electrons are completely free and the Fermi surface is
spherical and isotropic in all directions of thewavevector.While the concepts of elec-
tronic band structures and phonon dispersion in real solids were often mentioned, we
have deliberately avoided any details. It is hoped that the free-electronmodelwill help
readers gain an intuitive picture of electrons without a deep knowledge of solid-state
physics. Note that the free-electron model described in Sect. 5.1.3 is applicable only
for metals, usually good conductors, and cannot be applied to semiconductors. The
Sommerfeld theory, albeit successful in quantitatively describing electronic trans-
port for certain metals, does not touch on the fundamental mechanisms of electron
scattering and the shape of the Fermi surface. The free-electron model also fails to
explain certain phenomena including thermoelectricity. The Hall effect and magne-
toresistance, to be discussed in the following section, provide further evidence of the
inadequacy of the free-electron model.

This chapter introduces electronic band theory after a brief discussion of elec-
tronic structures in atoms, binding in crystals, and crystal lattices. The phonon dis-
persion relations are presented subsequently and explained in terms of different
branches of acoustic and optical phonons. Subsequently, the electron and phonon
scattering mechanisms are outlined. The next section addresses electronic emis-
sion and tunneling phenomena, including photoelectric effect, thermionic emission,
field emission, as well as electron tunneling through a potential. A significant por-
tion of this chapter is then devoted to semiconductor materials and devices, with
an emphasis on optoelectronic applications such as solar cells, thermophotovoltaic
systems, light-emitting diodes (LEDs), and semiconductor lasers including quantum
well lasers.
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6.1 The Hall Effect

When a conductor carrying electric current is placed in amagnetic field perpendicular
to the current flow, there is a Lorentz force acting on the conductor according to
F = ∑

qud×B = lI×B, where q is the charge of each carrier, ud is the drift velocity
of the carrier, B is the magnetic induction, I is the current in the conductor, and l is
the length of the conductor. This principle was used in the electromagnetic motor
invented byMichael Faraday in 1821.Because electric current is always defined in the
direction of the applied electric field E = −∇V , the force acting on the conductor
is independent of the nature of the carriers (electrons or holes). Microscopically,
however, there is a subtle difference that can be distinguished by the experiment first
performed by Edwin Hall in 1878 when he was a graduate student at Johns Hopkins
University. As shown in Fig. 6.1, an electric current passes through a metal foil in
the x-direction, while the electrons are drifted opposite to the x-direction. When a
uniform magnetic field B is applied in the z-direction, the electrons are subjected to
a force toward the negative y-direction. Gradually, an electric field is built up across
the foil as manifested by a nonzero voltage VH, which is called the Hall voltage.
The electric potential in the y-direction eventually balances the magnetic force such
that the electrons drift in the x-direction only. This effect is called theHall effect. By
setting the y-component of the Lorentz force F = q(E+ud ×B) to zero, one obtains

VH = I B

nqd
(6.1)

where n is the number density of the carrier and d is the thickness of the conductor
[1, 2]. The Hall coefficient is defined as follows:

ηH = VHd

I B
= 1

nq
(6.2)

Fig. 6.1 Illustration of the
Hall effect experiment
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The Hall resistance can be defined as RH = VH/I = BηH/d, and its inverse is
called the Hall conductance. Similarly, the Hall resistivity is given by rH = BηH =
Ey/Jx , where Ey is the electric field in the y-direction and Jx is the current density.
For metals, q = −e and n = ne, the number density of free electrons, and one would
expect a negative Hall resistance.

Example 6.1 Find the Hall coefficient and the Hall voltage for a copper foil of 2 ×
2 cm2 area, with a thickness of 10 µm. Given the electrical current I = 0.5 A and the
magnetic induction B = 1.0 T (tesla) = 1.0 Wb/m2, what is the voltage drop along
the current flow direction?

Solution Based on the previous chapter, the number density of electrons in copper
is ne = 8.45× 1028 m−3. From Eq. (6.2), we obtain ηH = −7.4× 10−5 cm3/C, and
from Eq. (6.1) we find VH = −3.7 µV, which is a very small voltage but can be
measured accurately. Using the resistivity of copper re = 1.7 × 10−8 � m, we see
that V = 850 µV, which is much larger than the Hall voltage. The Hall coefficient is
much larger for semiconductors because of their usuallymuch lower carrier densities.

Before the discovery of the Hall effect, many people, including James Clerk
Maxwell, believed that the force acted only on the conductor but not on the current
carriers [3]. Measurement of the Hall coefficient allows the determination of the sign
of the charge carriers as well as the carrier concentration. This is important especially
for semiconductor materials. The Hall coefficient is positive for p-type semiconduc-
tors, but negative for n-type semiconductors. In reality, the Hall coefficient depends
also on the applied magnetic field although such a dependence cannot be predicted
by the Drude free-electron model. For some common metals like Al, Be, Cd, In,
W, and Zn, the Hall coefficient can even become positive. Therefore, the Hall effect
cannot be fully accounted by the free-electron model. It is necessary to understand
the electronic band structures.

Magnetoresistance is the change in resistance of a material under an applied mag-
netic field. The magnetoresistance may be transverse, when the applied magnetic
field is perpendicular to the current flow, and longitudinal, when the applied mag-
netic field is parallel to the current flow. In the free-electron theory, resistance is
expected to be independent of the strength of the applied transverse magnetic field.
In reality, most materials exhibit transverse magnetoresistance that depends on the
magnetic field strength. In the late 1980s, researchers observed a giant magnetore-
sistive (GMR) effect, also called giant magnetoresistance, with extremely thin films
of ferromagnetic and metallic layers. The GMR effect has been applied to read heads
for magnetic hard disk drives [4] and the discovery is recognized by the 2007 Nobel
Prize in Physics.

Klaus von Klitzing and coworkers in 1980 measured the Hall voltage of a 2D
electron gas using a metal-oxide-semiconductor field-effect transistor (MOSFET),
at very low temperatures (T ≈ 1.5 K) with a high magnetic field (B > 15 T), at the
Grenoble High Magnetic Field Laboratory in France [5]. They found that the Hall
conductance is quantized and increases with the applied magnetic field by steps in
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a staircase sequence. The Hall conductance is a multiple of a fundamental constant,
1/RK, where

RK = h/e2 = 25812.807449 ± 0.000086� (6.3)

is called the vonKlitzing constant. Note that e2/h is proportional to the fine-structure
constant, which is related to the strength of light–matter interaction in quantum elec-
trodynamics. For this work, von Klitzing was awarded the Nobel Prize in Physics
in 1985. The remarkable precision and gauge invariance of quantized conductance
allowed the definition of a resistance standard usedworldwide since 1990 [6]. As dis-
cussed in Chap. 5, quantized conductance has also been observed between nanocon-
tacts and nanostructures with an increment of 2/RK. The discovery of the fractional
quantum Hall effect in 1982, on the other hand, rendered three physicists (Robert
Laughlin, Horst Störmer, and Daniel Tsui) the 1998 Nobel Prize. This has led to a
breakthrough in our fundamental understanding of the physical world. For example,
in a 2D system, electrons may switch between Fermi–Dirac statistics and Bose–Ein-
stein statistics, continuously [7]. Strohm et al. [8] reported phonon Hall effect by
applying a magnetic field perpendicular to the heat flow in a paramagnetic dielec-
tric material at low temperatures. A transverse temperature difference was mea-
sured, which reverses sign when the magnetic field is inversed. Researchers have
also observed magnon Hall effect and photonic spin Hall effect.

6.2 General Classifications of Solids

There are several ways to classify solids. Based on their electrical conductivities,
solids may be classified as insulators, semiconductors, or conductors. They may
exist in different forms, such as amorphous or crystalline phases, depending on how
the atoms in the solids are arranged. A general introduction is given in this section
considering chemical bonds and electrical properties of solids. Let us first take a look
at the electron configuration in atoms because it is directly related to physical and
chemical properties.

6.2.1 Electrons in Atoms

The periodic table of elements is arranged sequentially according to atomic number,
which is determined by the number of protons inside the nucleus and equal to the
number of electrons orbiting the nucleus, since an atom itself is charge neutral.
The electrons occupy different quantum states, which are fully described by the
Schrödinger wave equation as discussed in Chap. 3. By solving the wave equation
in spherical coordinates [9, 10], the number of quantum states can be determined
and identified using indices n, l, and m. The first or principal quantum number n =
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1, 2, 3, 4, … corresponds to different shells, denoted as K, L, M, N, O,… In each
shell, there are n subshells defined by the orbital number l = 0, 1, 2, . . . , (n − 1).
The corresponding symbols are s, p, d, f, g, h, and so forth. For each l, the magnetic
quantum number m = 0, ±1, ±2, …, ±l, which gives a total of 2l + 1 orbits (or
orbitals since electrons do not follow an exact path that can be described by classical
mechanics) for each subshell. Hence, there are a total of n2 orbitals in the nth shell.
When spin degeneracy is considered, the total allowable quantum states are 2n2 in
the nth shell. In other words, there are 2, 8, 18, and 32 quantum states in the first
(K), second (L), third (M), and fourth (N) shells, respectively. On the other hand,
there are 2(2l + 1) quantum states in the lth (l < n) subshell. For example, the s, p, d,
or f subshell contains correspondingly 2, 6, 10, or 14 quantum states. According to
Pauli’s exclusion principle, each quantum state can have no more than one electron,
i.e., at most only two electrons (one with + 1

2 and the other with − 1
2 spin) can share

the same orbital.
According to the Aufbau principle, electrons will fill the lowest energy states first.

The electron configuration of an atom is expressed by the numbers in each subshell.
For example, we can write for aluminum and calcium, respectively,

13Al: 1s22s22p63s23p1 and 20Ca: 1s22s22p63s23p64s2

Note that the 4s orbitals are filled before the 3d orbitals because the associated
energy level of a 3d orbital is higher than that of a 4s orbital. However, the electron
configuration for 29Cu is

1s22s22p63s23p64s13d10 rather than 1s22s22p63s23p64s23d9

This is due to the fact that a half-filled or filled d-subshell is more stable than the
s shell of the next level [10]. Similarly, the outermost shells for chromium (24Cr) are
4s13d5 not 4s23d4, and those for gold (79Au) are 6s14f 145d10 not 6s24f 145d9. The
properties of an element depend largely on the filled state of the outermost orbitals.
Alkali metals, such as 3Li, 11Na, and 19K, have one electron in the outermost orbital
and can easily lose it, especially when interacting with halogens whose outermost
orbitals can be filled by adding only one electron each. The result is the formation
of chemically stable compounds such as NaCl and CsF. The outermost electrons
are called valence electrons. The 4s1 electron in copper is largely responsible for
its high electrical conductivity because it can leave the atom relatively easily. When
the outermost orbitals are completely filled, as in noble gases like He and Ne, the
atoms are very stable and reluctant to react with others. Noble gases are also called
inert gases since they are monatomic gases at ambient conditions. At the atmospheric
pressure, helium must be cooled to 4.2 K for it to condense into liquid. The general
sequence of electron configuration in order of increasing energy is schematically
given in the following:
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For convenience, each dashed line indicates the electron configuration of an inert
gas listed underneath that line. Each noble gas contains a completely filled p subshell
(with the exception of He which has a filled K shell) before the next s subshell. In
atomic physics, ionization energy is the energy required to separate an electron
from the atomic nucleus. The ionization energy varies periodically according to the
atomic number: Alkali metals have the lowest ionization energy because of the single
electron in the outermost s-orbitals. On the other hand, inert gases have the highest
ionization energy. Helium is the most stable element with an ionization energy of
24.6 eV. The ionization energy of lithium is only 5.4 eV. For a hydrogen atom, the
ionization energy is 13.6 eV as discussed in Chap. 3.

6.2.2 Insulators, Conductors, and Semiconductors

The picture of free-electron gas depicted in Chap. 5 is an oversimplified version in
which the electron energies are limited to a nearly continuous band from the zero
energy level up to the Fermi energy or Fermi level. Only those near the Fermi surface
contribute to electronic transport properties. Electrons in a single atom are in various
discrete energy levels, which arewell predicted by quantummechanics. In real solids,
atoms are arranged in close proximity; hence, electrons interact strongly with one
another as well as with the crystal lattices, resulting in complex wavefunctions as
manifested by their band structures. There exist a large number of allowable bands
that may be occupied by electrons. Between two consecutive allowable bands, there
exists a forbidden band that cannot be occupied by any electron. Electrons occupy
broad bands with allowable energy states up to the Fermi level. The distinction
between insulators and metals can be understood by looking at the electronic states
near the Fermi surface as illustrated in Fig. 6.2. A brief qualitative description is
given here, whereas more detailed theories are deferred to subsequent sections.

For insulators, the highest occupied band is completely filled as shown in Fig. 6.2a.
This is called a valence band due to the contribution of valence electrons. The next
higher band is a conduction band which is completely empty. There exists a large
energy gap between the valance band and the conduction band, usually between 5
and 15 eV. Examples are Eg ≈ 8 eV for fused silica (SiO2) and Eg ≈ 14 eV for
LiF. The Fermi level lies in the middle of the forbidden band. Because the valence
band is completely filled, electrons are not free to move around (i.e., change from
one quantum state to another) under the influence of an electric field. An electrical
insulator is also called a dielectric. Pure crystalline dielectrics are transparent to
visible light because their valence electrons cannot be excited unless the incoming
radiation frequency is high enough that the photon energy exceeds the bandgap
energy. Note that a photon energy of hν = 2 eV corresponds to a visible wavelength
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Fig. 6.2 Schematic of the energy band for different materials, where Eg is the bandgap energy and
EF is the Fermi energy. a An insulator has a completely filled valance band and a completely empty
conduction band, with a wide bandgap between the two. b Ametal has a partially filled conduction
band and the Fermi level lies in this band. c A semimetal, also called a metal, has a conduction band
that overlaps the filled valence band. dA semiconductor is like an insulator but with a much smaller
bandgap and may conduct electricity at elevated temperatures due to thermally excited electrons
and holes. Doping or impurities in a semiconductor can result in a large electrical conductance

λ = 620 nm, and that of 10 eV corresponds to λ = 124 nm, which lies in the deep
ultraviolet. On the other hand, lattice vibrations or phonons in dielectric materials
often yield absorption of radiation in the mid infrared.

Ametal has a partially filled conduction band, which is the highest occupied band,
as shown in Fig. 6.2b. The Fermi level lies inside this allowable band. For some met-
als like Bi and Sn, the conduction band overlaps the valence band as illustrated in
Fig. 6.2c. These metals are sometimes called semimetals since their electrical con-
ductivities are not as high as the alkali or noble metals. Because the energy states
within the conduction band are continuous, the uppermost electrons in the partially
filled conduction band or the top of the valence band can be excited to a higher unoc-
cupied energy level by an arbitrarily applied field. Over 80% of the elements in the
periodic table are metals (or semimetals). All group Ia (alkali, excluding hydrogen),
group IIa (alkaline earth), group IIIa (except boron), and transition (all b groups from
columns 3 to 12 of the periodic table) elements are metals. The interaction between
electromagnetic radiation and a material is much like applying an electric field to the
material, except that the frequency of the applied field is very high. Note that the fre-
quency of red light at λ = 632 nm is ν = c/λ = 475THz. Because of their relatively
free electrons, metals interact with electromagnetic radiation strongly. This is man-
ifested by the strong absorption by thin metallic films and the high reflection from
polished bulk metals. The strong interaction of metals with microwaves can easily
be demonstrated by placing a piece of aluminum foil in a microwave oven and then
observing the noises and sparkles as the oven is turned on. At shorter wavelengths in
the visible spectrum and in the ultraviolet, additional absorption mechanisms emerge
that may be better explained by the particle nature of light.
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Semiconductors have band structures similar to those of insulators, except that
the energy bandgap Eg is much narrower, i.e., on the order of 1 eV. For example,
diamond has a bandgap of 5.5 eV and is usually classified as an insulator, whereas
silicon has a bandgap of 1.1 eV at room temperature and is a semiconductor. Some
semiconductors can have a relatively large bandgap and hence are called wideband
semiconductors. Examples are the III–V semiconductor GaN (3.4 eV) and the II–VI
semiconductors CdS (2.4 eV) and ZnS (3.7 eV). Diamond may be considered as a
wideband semiconductor because of its crystal structure similar to those of Si andGe.
Pure or intrinsic semiconductors are insulators at low temperatures. At higher tem-
peratures, as illustrated in Fig. 6.2d, some electrons (dots) can be thermally excited
from the valence band to the conduction band, leaving holes (circles) in the valence
band. Subsequently, electrical current may flow through, although with a large resis-
tance as compared to metals. Bandgap absorption is essential for the interaction of
semiconductors with optical radiation. When the photon energy exceeds the energy
gap, strong absorption occurs. This is why a silicon wafer looks dark and is opaque
to visible light.

By doping the semiconductor with impurities, the charge distribution can be sig-
nificantly changed, while, at the same time, the bandgap and the Fermi level are
slightly modified. The semiconductor becomes extrinsic, meaning that the number
of electrons is no longer the same as that of holes. A group V element, such as
phosphorous with five valance electrons, may substitute a small fraction of silicon
atoms. The extra valence electrons can be thermally excited to the conduction band
via ionization of the impurities. The phosphorus atom is said to be a donor, and the
doped semiconductor becomes n-type since majority of its carriers are electrons. The
electron concentration can be significantly increased to enhance the electrical con-
ductivity. From the band structure point of view, the donated electrons form a filled
impurity band right below the conduction band. The difference in energy between
the conduction band and the impurity band is called ionization energy, which is
on the order of 0.05 eV. The ionization energy of a semiconductor has a different
meaning from the ionization energy required to separate an electron from the atomic
nucleus discussed earlier. Likewise, when impurities from a group III element such
as boron with three valance electrons are introduced, additional holes are created
such that the silicon semiconductor becomes a p-type semiconductor because of the
additional positive charge carriers. The boron atoms are called acceptors, which form
an empty impurity band right above the valence band [11]. The energy difference
between these two bands is also called the ionization energy. Doping can strongly
affect the infrared properties of semiconductors because of free-carrier absorption.
Furthermore, impurities and defects tend to increase phonon scattering and reduce
thermal conductivity since thermal transport in semiconductors is mainly by lattice
vibration.
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6.2.3 Atomic Binding in Solids

Two or more atoms can combine to form a molecule, mainly through the electrons in
the outermost orbitals (i.e., valence electrons), since the electrons in the inner shells
remain tightly bonded to their nuclei. The wavefunctions of the valance electrons are
significantly modified as compared with those of the individual atoms. There are five
major kinds of chemical bonds: the ionic, covalent, molecular, and hydrogen bonds
for insulators and the metallic bond for conductors. Solids with identical chemical
composition can have different stable forms or phases, which exhibit distinct differ-
ences in their appearances as well as electrical, mechanical, and thermal properties.
A notable example is carbon, which may exist in the form of diamond, graphite, car-
bon black (amorphous carbon), or the fullerene family. A crystal contains periodic
and densely packed atoms or lattices, whereas an amorphous solid does not have
well-organized lattice structures. The atoms in an amorphous solid are disordered
and irregular, like those in a liquid, except that they are firmly bonded together.
Therefore, a crystal is usually denser and harder than the amorphous phase of the
same composition. A crystal usually exhibits distinct facets along the crystalline
planes and has a sharp transition between solid and liquid at a fixed melting point.
An amorphous solid does not have clear facets when broken. When heated up, an
amorphous solid is first softened and then gradually it melts over a wide temperature
range. An example is quartz versus fused silica (glass), both made of SiO2. For a
given composition, the thermal conductivity is usually much higher in the crystal
form because of lattice vibrations.

Alkalimetals and alkaline earthmetals have one and twovalance electrons, respec-
tively, that are loosely bonded. A metal atom can lose its outermost electrons to
become a positive ion. On the other hand, the elements in groups VIIa and VIa tend
to gain additional electrons to fill the outermost orbitals and become negative ions.
The positive and negative ions attract each other by electrostatic force and form an
ionic bond, which is quite strong. Ionic crystals, such as NaCl, CsCl, KBr, CaF2,
and MgO, are hard and usually have high melting points (above 1000 K). They are
insulators because the ions cannot move around freely and are transparent in the
visible spectrum because of the large bandgap. Nevertheless, some of these crystals
are soluble and can be dissolved in water. The solution becomes conductive because
of the ions. The positive and negative ions form an electrical dipole and can absorb
infrared radiation through lattice vibrations. These solids belong to the group of
polar materials, in terms of polarizability. Note that the elements in groups Ib (noble
metals) and IIb (Zn, Cd, and Hg) resemble those in groups Ia and IIa because of the
outermost s-orbital electrons. The difference is that groups Ib and IIb also have filled
d-subshells. Therefore, II–VI semiconductors such as ZnSe and CdTe are largely
ionic bonded.

The main contribution to the binding energy is the electrostatic or Madelung
energy [2]. The long-range electrostatic force between two ions with charges q1
and q2 is proportional to q1q2/r2, where r is the separation distance measured from
the center of the ion cores. Depending on the sign of the charges, either attractive
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or repulsive force may occur. The ions arrange themselves in a way that gives the
strongest attractive interaction, which is balanced by the short-range repulsive force
between atoms. The contribution of the Coulomb attraction to the total energy of
the system is roughly proportional to −1/r . As atoms are brought very close to
each other, the charge distributions or the electron orbitals begin to overlap with
each other. Pauli’s exclusion principle requires some of the electrons move to higher
quantum states, resulting in an increased total energy of the system. Associated with
the increased energy is a repulsive force between the atoms. The magnitude of this
repulsive force varies with 1/rm+1 (where m is between 6 and 10 for alkali halides
with NaCl structure), and thus is negligible at large distances but increases rapidly
when the distance is less than 0.5 nm [1]. The repulsive force contributes to the energy
of the system by 1/rm . There exists a minimum energy or equilibrium position of
the system when all the repulsive and attractive forces balance each other. Readers
are reminded about the similar discussion in Sect. 4.2.4 on the intermolecular force
and potential; see Eq. (4.51) and Fig. 4.8. Understanding the binding energy or the
interatomic potential is very important for atomic scale simulations, e.g., those using
molecular dynamics.

Covalent bonds are formed between nonmetallic elements when the electrons
in the outermost orbitals are shared by more than one atom. Covalent binding is
important for gaseous molecules like Cl2, N2, and CO2. When the atoms are brought
close enough, the electron orbitals overlap, allowing them to share one or more
electrons. Covalent interactions result in attractive forces, and the binding of atoms
is associated with a reduced total energy. Covalent crystals consist of an infinite
network of atoms joined together by covalent bonds. Examples are diamond, silicon,
SiC, and quartz (SiO2). The whole crystal is better viewed as a large molecule
or supermolecule. In diamond structure, each atom is bonded to four neighboring
atoms, which form a tetrahedron. In a SiC crystal, each silicon atom is bonded to
four carbon atoms and vice versa. In a SiO2 crystal, while each silicon atom is
bonded to four oxygen atoms at tetrahedral angles, each oxygen atom is bonded
only to two silicon atoms. Covalent solids are usually very hard with a high melting
point and thermal conductivity. The melting points of quartz and silicon are 1920 K
and 1690 K, respectively. Diamond has the highest melting point (3820 K) among
all known materials. At room temperature, the thermal conductivity of diamond
is 2300 W/m K, which is the highest of all known bulk materials. Pure diamond
and intrinsic silicon do not absorb radiation at frequencies lower than that of the
corresponding bandgap energy. Because of its wide bandgap, diamond is clear in the
visible region and transparent throughout the whole infrared and microwave regions.

Some solids have both ionic and covalent characteristics. Examples are the III–V
semiconductors such as GaN, GaAs, and InSb. II–VI materials such as ZnO and CdS
have a large proportion (30%) of covalent bond characteristics. Even SiC has some
ionic bond characteristics because of the dipoles formed due to different attractive
forces by different atoms. Therefore, SiC is also a polar material that can absorb and
emit infrared radiation through lattice vibrations.

Inert gases can be solidified at very low temperatures via molecular bonds. At
atmospheric pressure, argon becomes liquid at temperatures between 84 and 87 K.
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At temperatures below 84 K, it crystallizes into a dense solid, called a molecular
crystal. Van der Waals’ force caused by induced dipole moments between atoms
is responsible for the attraction and binding of atoms. The van der Waals weak
interaction gives a long-range potential that is proportional to−1/r6, as discussed in
Sect. 4.3.1. The repulsive potential for inert gas is proportional to 1/r12. Molecular
bonds are also important for many organic molecules.

Hydrogen has only one electron per atom and can form a covalent bond with
another to form H2 molecule. When interacting with other atoms, a hydrogen atom
may be attracted to form a hydrogen bond. The hydrogen bond and the resulting
electrostatic attraction are important for H2Omolecules, with many striking physical
properties in its vapor, water, and ice phases. Hydrogen bonds and molecular bonds
are essential to organic molecules and polymers.

Metallic bonds are responsible for the binding energy in metals. Pure metals can
form densely packed periodic lattices or crystals.Metals often exist in polycrystalline
form in which small grains of crystals are joined together randomly, or in alloy form
in which the atoms are arranged irregularly like an amorphous insulator. Unlike in
a covalent crystal where atoms share a few electrons, in a metallic crystal, some
valence electrons leave the ion cores completely and are shared by all the ions in
the crystal. This is consistent with the picture of free-electron gas and describes well
the behavior of alkali metals. Transition metals, including the noble metals, contain
electrons in the d subshell. The metallic bonds are supplemented by covalent and
molecular bonds. Due to the relatively free-electron gas, metals have high thermal
and electrical conductivities.Metallic crystals are alsomore flexible than nonmetallic
crystals, which are usually brittle. The melting points of metals vary significantly.
Examples areHg (234K),Ga (303K),Au (1338K), andW(3695K).Asmentioned in
previous chapters, the physical properties would change significantly as the structure
is reduced down to hundreds, tens, or even a few atomic layers in one, two, or three
dimensions. Examples are carbon nanotubes, silicon nanowires, ZnO nanobelts, and
CdSe-ZnS quantum dots. In order to further understand the properties of solids, let
us examine the crystal structures more closely in the following section.

6.3 Crystal Structures

Acrystal is constructed by the continuous repetition in space of an identical structural
unit. Geometrically speaking, a crystal is a 3D periodic array, or network, of lattices.
All lattice points are identical to one another. For a crystal made of only one type of
element, each lattice point may be treated as a single atom or ion. However, this is
not necessary as will be illustrated later. In general, each lattice point represents a set
of atoms, ions, or molecules, located in its neighborhood. This set of atoms, ions, or
molecules is called a basis. A unit cell of a crystal structure contains both the lattice
and the basis, and can be repeated by translations to cover the whole crystal.

It has long been hypothesized that crystalline materials must have some period-
icity in their microstructures. In 1913, W. L. Bragg and his father W. H. Bragg used
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x-rays to provide microscopic evidence of the existence of periodic lattice structures.
This was a giant step because the distances between atoms are on the order of 0.1 nm.
X-ray crystallography provided a powerful tool for the determination of the micro-
scopic structure of solids. The Braggs received the Nobel Prize in Physics in 1915,
when Lawrence Bragg was only 25 years old. It was not until 1983 that atomic
images were obtained in real space using a scanning tunneling microscope (STM) as
discussed in Chap. 1. The physical properties of crystalline solids are largely deter-
mined by the arrangement of atoms in a unit cell, in addition to the chemical bonds
between atoms. It is of great importance to know the structure of a crystal first in
order to understand its electrical, thermal, mechanical, and optical properties.

6.3.1 The Bravais Lattices

In three dimensions, crystal lattices can be grouped into 14 different types as required
by translational symmetry. These are called Bravais lattices, named after French
physicist Auguste Bravais (1811–1863), who showed that there are only 14 unique
Bravais lattices from the point of view of symmetry. Bravais lattices are then catego-
rized into seven crystal systems, resulting in seven types of conventional unit cells,
namely, cubic, tetragonal, orthorhombic, hexagonal, rhombohedral, monoclinic, and
triclinic, as illustrated in Fig. 6.3.

There are three cubic lattices: the simple cubic with lattice points only on its
apexes, the body-centered cubic (bcc) with one additional lattice at the center, and
the face-centered cubic (fcc) with one additional lattice at each face, as shown in
Figs. 6.3a1, a2, and a3. To illustrate the difference between bcc and fcc lattices
clearly, Fig. 6.4 displays the top views of these two structures with the same a, which
is called the lattice constant. Some practical exampleswill be given soon. If one looks
at Fig. 6.4b along the diagonals, the face-centered structure becomes body-centered.
However, the lattice constant would become a/

√
2 along the lateral directions but

remains a in the vertical direction. Such a structure is a special case of the tetragonal,
because one side is not the same as the other two. There are two tetragonal Bravais
lattices, the simple and the body-centered, because a face-centered tetragonal lattice
can simply be rotated by 45° to become a body-centered one. A tetragonal lattice
can be thought of as a cubic lattice stretched in one direction.

In the orthorhombic lattices shown in Fig. 6.3c, the three lattice constants, a,
b, and c, are not equal to each other. Besides the simple, body-centered, and face-
centered orthorhombic lattices, there exists a base-centered lattice structure, in which
two additional lattices are placed at the center of the top and bottom faces. An
orthorhombic lattice can be thought of as a corresponding tetragonal lattice stretched
along one side of its square. To produce the additional two, one can simply rotate
the tetragonal by 45° and then stretch it.

A hexagonal lattice contains equal triangular or honeycomb-layered structures
(see Fig. 6.3d). The next three types of Bravais lattices have inclined faces (see
Fig. 6.3e–g). The rhombohedral (or trigonal) has equal sides, whereas the triclinic
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Fig. 6.3 The seven crystal systems with a total of 14 Bravais lattices, where each point is called
a lattice point. The number in parentheses refers to the number of Bravais lattices in the crystal
system. a Three types of the cubic: simple cubic, body-centered cubic (bcc), and face-centered
cubic (fcc). b Tetragonal: either simple or body-centered as represented by the empty circle at
the center. c Orthorhombic: simple, body-centered, face-centered, or base-centered. d Hexagonal.
e Rhombohedral (also trigonal). f Monoclinic: simple or base-centered as represented by the empty
circles on the opposite faces. g Triclinic
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Fig. 6.4 Top views of a body-centered cubic and b face-centered cubic Bravais lattices. The two
different filling patterns (hatched and shaded) represent lattice points on alternative layers as in
Fig. 6.3a2, a3

has three different sides and angles. Both contain six parallelogram faces. The
monoclinic, on the other hand, has four rectangular faces and two parallelogram
faces.

Example 6.2 Copper is an fcc lattice. Estimate the lattice constant and the distance
between nearest copper atoms (or ion cores to be exact) from the density and the
molecular weight of copper.

Solution From Table 5.1, we have for Cu that ρ = 8930 kg/m3 and M =
63.5 kg/kmol. The number density of Cu atoms is n = ρNA/M = 8.47× 1028 m−3.
If the structure were simple cubic, we would easily find that a = n−1/3 = 0.228 nm,
which would also be the closest distance between atoms. For an fcc lattice, there are
eight corner points and six face points. If each lattice point is made of one atom, each
corner point contains one-octant of an atom and each face point contains half of an
atom inside the cube. Therefore, there are four atoms inside each fcc unit cell. The
number of unit cells per unit volume becomes n/4 and the calculated lattice constant
is a = 0.361 nm for Cu. The closest distance between atoms is a/

√
2 = 0.256 nm.

If we assume that all the atoms are rigid spheres that are closely packed (touching
one another), then we can calculate the packing density or the fraction of occupied
space. Assume that the diameter of an atom is d. For a simple cubic lattice, a = d
and there is only one atom per lattice. Hence, f = (1/6)πd3/a3 = 0.52. For an fcc
lattice, a = d

√
2 and f = 4(1/6)πd3/a3 = 0.74. What is the packing density for a

bcc lattice then?

Some solids with bcc or fcc lattices are listed in Table 6.1, along with others
that form a hexagonal close-packed (hcp) lattice. An hcp lattice can be considered
as two Bravais hexagonal lattices that are interlocked at c/2. Each lattice point is
surrounded by, at equal distances, 12 neighboring points: 3 above, 3 below, and 6
at the same height. Imagine that atoms are rigid spheres with a diameter d; it can
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Table 6.1 Crystal structures and lattice constants of common elements [1, 2]. Room temperature
values unless otherwise indicated. Note that 1 Å = 0.1 nm

fcc bcc hcp

Element a (Å) Element a (Å) Element a (Å) c (Å)

Ar (4.2 K) 5.26 Ba 5.02 H (4 K) 3.75 6.12

Ag 4.09 Cr 2.88 Be 2.27 3.59

Al 4.05 Cs (78 K) 6.05 Cd 2.98 5.62

Au 4.08 Fe 2.87 Er 3.56 5.59

Ca 5.58 K (5 K) 5.23 Gd 3.64 5.78

Ce 5.16 Li (78 K) 3.49 Mg 3.21 5.21

Cu 3.61 Mo 3.15 Ti 2.95 4.69

Pb 4.95 Na (5 K) 4.23 Tl 3.46 5.53

Pd 3.89 Nb 3.30 Y 3.65 5.73

Pt 3.92 V 3.03 Zn 2.66 4.95

Yb 5.49 W 3.16 Zr 3.23 5.15

be shown that a = d and c = d
√
8/3 for an hcp lattice. Each sphere is in contact

with 12 others. It can be seen from Table 6.1 that these hcp crystals follow the ratio
c/a = √

8/3 ≈ 1.633 within ±16%.

6.3.2 Primitive Vectors and the Primitive Unit Cell

A set of primitive vectors can be defined for Bravais lattices a,b, and c so that the
vector between any two lattice points can be expressed by the lattice translation
vector (or operator)

R = ma + nb + lc (6.4)

where m, n, and l are integers. For a simple cubic lattice, we can simply assign
a = ax̂,b = aŷ, c = aẑ, as can be seen from Fig. 6.3a1. However, the assignment
of primitive vectors is not unique. The parallelepiped formed by the three vectors
is called a primitive unit cell, whose volume Vuc = a × b · c remains the same no
matter how the primitive vectors are chosen. Taking the bcc lattice as an example,
we may choose the primitive vectors as either

a = ax̂,b = aŷ, c = 0.5a(x̂ + ŷ + ẑ) (6.5a)

or

a = 0.5a(−x̂ + ŷ + ẑ),b = 0.5a(x̂ − ŷ + ẑ), c = 0.5a(x̂ + ŷ − ẑ) (6.5b)
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From Eq. (6.5b), we see that a+ b+ c points to the center point and a+ b = aẑ.
Either way, we end up with Vuc = 0.5a3, suggesting that the Bravais bcc lattice is
not a primitive cell. In fact, only the simple Bravais lattices are primitive unit cells.
Of course, there are other ways of choosing the primitive vectors. For a Bravais fcc
lattice, we can write

a = 0.5a(ŷ + ẑ),b = 0.5a(x̂ + ẑ), c = 0.5a(x̂ + ŷ) (6.6)

Each vector conveniently ends at the three face-centered points. The total vol-
ume of the primitive cell becomes Vuc = 0.25a3, as expected. Each lattice point is
associated with a basis of atoms whose locations relative to the lattice point can be
specified by r j = x ja + y jb + z jc with 0 ≤ x j , y j , z j ≤ 1 for the jth atom.

Another way of choosing a unit cell is to follow the two steps: (1) Draw lines
to connect a given lattice point to all nearby lattice points. (2) At the midpoint and
normal to these lines draw new lines or planes. The smallest volume enclosed in this
way is called theWigner–Seitz primitive cell, as illustrated in Fig. 6.5. The Wigner–
Seitz cell for a 2D lattice becomes a hexagon whose opposite sides are parallel,
and that for an fcc lattice is a rhombic dodecahedron. The longer diagonal of each
rhombic face is

√
2 times that of the shorter diagonal. There are six apexes where

four surfaces meet and eight apexes where three surfaces meet. The distance between
opposite axes joined by four faces is exactly the Bravais lattice constant a. The axes,
x, y, and z, pass through these six apexes as well as the center. Each Wigner–Seitz
cell contains only one lattice point, and it has been proven to be a primitive cell.

It is convenient to describe the orientation of the crystal plane by theMiller indices,
which are three integers h, k, and l, without common factors, and denoted by (hkl).
These numbers give a vector ha + kb + lc that is perpendicular to the plane. For
example, if a, b, and c are along the x-, y-, and z-axes, respectively, the six surfaces
of the cubic unit cell are represented by (001), (001̄), (010), (01̄0), (100), and (1̄00),

Fig. 6.5 The Wigner–Seitz cells: a For a 2D lattice as shown by the shaded region and b for an fcc
lattice as shown by the rhombic dodecahedron
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where negative sign is denoted by a bar on top of the number. Thewhole set of surfaces
can be denoted by {100} due to symmetry. Most commercial semiconductor wafers
are (100) oriented and some (111). The way to find the smallest h, k, l of any specified
crystal facet is first to extend the plane so that it intersects the axes formed by the
lattice vectors. Find the intercepts on each axis in terms of multiples of the unit cell
vector, e.g., (2, 4, −6); the numbers must be integers for any specified crystal plane.
Take the reciprocals of these numbers, which are ( 12 ,

1
4 ,− 1

6 ). Multiply them by the
least common multiple, which is 12 in this example. Then put into the Miller indices
(6, 3, 2̄). All parallel planes are characterized by the same set of Miller indices.

Example 6.3 Find all angles between the (100), (111), and (311) surfaces in a cubic
lattice.

Solution For two vectors a and b, a ·b = ab cosα = xaxb + ya yb + zazb. Thus, the

angle between (100) and (111) planes is α = cos−1
(
1/

√
3
)

= 54.7◦; that between

(100) and (311) planes is α = cos−1
(
3/

√
11

)
= 25.2◦; and that between (111) and

(311) planes is α = cos−1
(
3+1+1√
11×3

)
= 29.5◦.

6.3.3 Basis Made of Two or More Atoms

With respect to the primitive vector and basis, a bcc lattice can be thought of as
a simple cubic with a basis made of two atoms, one at (0, 0, 0) and the other at
a( 12 ,

1
2 ,

1
2 ). Each of the eight lattice points contains the same basis by translation,

according to Eq. (6.4), and the unit vectors along the three orthogonal sides of the
cubic. The simple cubic lattice having a basis of two atoms, however, breaks some of
the symmetry of the Bravais cubic lattice and is called a non-Bravais lattice. Lattices
with a basis consisting of more than one atom have important practical applications
as discussed in the following. The cesium chloride structure is made of two types
of elements, each forming a simple Bravais lattice, as shown in Fig. 6.6a. The two
Bravais lattices can be thought of as being placed in identical positions first, and then
one is moved by a

(
1
2 ,

1
2 ,

1
2

)
so that the point at the origin is translated to the center of

the other. It is not a body-centered cubic lattice. Rather, the crystal structure can be
viewed as a simple cubic with a base of two ions, Cs at (0, 0, 0) and Cl at a

(
1
2 ,

1
2 ,

1
2

)
.

The sodium chloride structure is more common. In this case, it can be considered as
two fcc lattices made of different ions. The two fcc lattices are then translated exactly
the same way as in the CsCl structure. The resulting structure is shown in Fig. 6.6b,
where each ion is surrounded by six ions of the other type. The lattice constants of
some common crystals are listed in Table 6.2. It can be seen that most ionic crystals
form NaCl or CsCl structures.

The crystal structures of diamond and zincblende semiconductors are also deriva-
tives of the cubic structure. The zincblende structure is formed from two fcc lattices
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Fig. 6.6 Crystalline structures. a Cesium chloride; b Sodium chloride. c Zincblende, which
becomes a diamond structure when the atoms in the empty circles are the same as the filled ones.
d YBa2Cu3O7 superconductor whose lattice constants are approximately a = 0.38, b = 0.39, and
c = 1.17 nm

with different types of atoms, displaced along the body diagonal by one-quarter the
length of the diagonal. Specifically, the basis is made of one atom at (0, 0, 0) and
the other atom at a

(
1
4 ,

1
4 ,

1
4

)
, as shown in Fig. 6.6c. A total of four atoms are moved

completely inside the cube, and each atom has a covalent bond with each of the four
adjacent atoms, which together form a tetrahedron. Examples of zincblende structure
are GaAs, SiC, and so forth. A diamond structure can be viewed as a special case
of a zincblende structure for which there is only one type of element, such as C, Si,
or Ge. The outermost subshell of Si is 3s23p2, and the s subshell is filled. By pro-
moting an s-electron to a p-orbital to form sp3 hybrid orbitals, four covalent bonds
can be formed. This is also true for C and Ge. In essence, the diamond lattice can
be thought of as an fcc lattice with a basis containing two identical atoms: one is on
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Table 6.2 Crystal properties of some compounds and semiconductors at room temperature [1, 2].
For semiconductors, the bandgap energy is indicated, and “i” in parentheses denotes an indirect
bandgap

Compound Semiconductors

Composition a (Å) Composition a (Å) Eg (eV)

Sodium chloride structure Diamond structure

LiF 4.02 C 3.57 5.47 (i)

LiCl 5.13 Si 5.43 1.11 (i)

NaBr 5.97 Ge 5.66 0.66 (i)

NaCl 5.64

KBr 6.60 Zincblende structure

KCl 6.29 BN 3.62 7.5 (i)

CsF 6.01 CdS 5.82 2.42

AgCl 5.55 CdSe 6.05 1.70

AgBr 5.77 CdTe 6.48 1.56

MgO 4.21 GaAs 5.65 1.42

MgS 5.20 GaN (w) 5.45 3.36

CaO 4.81 GaP 5.45 2.26 (i)

CaS 5.69 GaSb 6.43 0.72

CaSe 5.91 HgTe 6.04 <0

BaTe 6.99 InAs 5.87 0.36

InP 6.48 1.35

Cesium chloride structure InSb 4.35 0.17

CsCl 4.12 SiC 4.63 2.36

CsBr 4.29 ZnO 5.41 3.35

CsI 4.57 ZnS 5.67 3.68

TlBr 3.97 ZnSe 6.09 2.58

the corner and the other on the body diagonal at a distance of one-quarter diagonal.
Table 6.2 also presents commonly used diamond and zincblende semiconductors
with associated lattice constants and bandgap energies. Notice that GaN crystal is
wurtzite in its stable form with a hexagonal symmetry. This is also the case for AlN
and InN, which are not shown in the table. The III-nitride materials have a wide-
band, and thus are important for UV-blue-green LEDs and lasers. On the other hand,
ZnS, ZnO, CdS, and CdSe can also be wurtzite. HgTe is a semimetal with a nega-
tive bandgap and can be mixed with the wideband semiconductor CdTe to form the
ternary compound of Hg1−xCdxTe, which can be used as infrared detectors, namely,
mercury–cadmium–telluride (MCT) detectors.

Yttrium–barium–copper oxide (YBa2Cu3O7) is a high-temperature superconduc-
tor, which becomes superconducting at temperatures below 91 K [12]. It belongs
to the cuprate-perovskite family and is a ceramic material when one oxygen atom
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is removed from the unit cell to form YBa2Cu3O6 [13]. The crystal structure of
YBa2Cu3O7 is a simple orthorhombic lattice, whose basis contains 13 atoms, as
shown in Fig. 6.6d. The structure is very close to a tetragonal one since a ≈ b. The
properties of YBa2Cu3O7 are highly anisotropic in the c-axis direction. Supercon-
ductivity is found in the a–b plane, which is presumed due to the CuO2 planes above
and below the yttrium atom. Other examples of Bravais lattices include As, Sb, and
Bi with rhombohedral lattices; In and Sn with tetragonal lattices; and Ga, Cl, Br, and
S (rhombic) with orthorhombic lattices [1].

Graphite is a form of carbon made of layered structures as shown in Fig. 6.7.
When separated from others, each individual layer or sheet is called a graphene. In
the graphite structure, each carbon atom is covalently bonded to three others in the
plane and loosely bonded between planes. There are relatively free electrons, and
hence graphite is a conductor along the plane. The layer of graphite has honeycomb
shape, and at first sight, it may be difficult to link it with the arrays of triangles in the
hexagonal lattice. It becomes more obvious, however, if a basis is chosen to contain
two atoms so that a hexagon with all diagonals can be seen by the dashed lines in
Fig. 6.7a. In this way, graphite can be considered as a hexagonal Bravais lattice. The
primitive unit cell of graphite is a rhombic prism (with six surfaces) formed using
three layers, as illustrated by the dashed lines in Fig. 6.7b. Each unit cell contains a
total of four carbon atoms.

The structure of carbon nanotubes (CNTs) can be understood based on the
graphene structure and the chiral vector,

Ch = ma1 + na2 (6.7)

Fig. 6.7 Crystal structures of a graphene layer and b graphite. Carbon nanotubes can be viewed
as rolling a graphene sheet in a direction perpendicular to the chiral vector
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Different CNTs are based on rolling in the chiral vector so that the axis is per-
pendicular to the chiral vector and the magnitude of the chiral vector becomes the
perimeter of the tube. The diameter of the tube becomes

dt = Ch

π
= aC−C

π

√
3(m2 + mn + n2) (6.8)

where aC−C = 0.1421 nm is the nearest distance between the carbon atoms in
graphene [14]. Notice that the chiral vector has a magnitude a = aC−C

√
3 =

0.246 nm. In calculating the cross-sectional surface area of a single-walled
nanotube (SWNT), one could use a as the wall thickness and obtain

Ac = πdta = 3(aC−C)2
√

(m2 + mn + n2) (6.9)

Take the (20, 20) SWNT as an example, we have dt = 2.7 nm and Ac = 2.1 nm2.
Some researchers suggested using a layer thickness equal to the separation of graphite
as 0.335 nm, which gives Ac = πdt ∗ 0.335 = 2.9 nm2. Note that Ac = πD2/4 =
5.8 nm2.

6.4 Electronic Band Structures

The behavior of electrons in solid is complicated because the solution of wave func-
tions involves a rather complicated many-body problem. Electrons in solids can be
thought of as in a periodic potential due to the periodic arrays of atoms. Electronic
band structures are functions that describe the electron states in the energy versus
wavevector space. Let us first look at the reciprocal lattice in three dimensions.

6.4.1 Reciprocal Lattices and the First Brillouin Zone

The reciprocal lattice of a crystal structure is defined in the k-space (wavevector
space). Since a crystal is a periodic array of lattices in real space, the reciprocal
lattice can be obtained by performing a spatial Fourier transform of the crystal. For a
simple orthorhombic lattice with the primitive vectors a = ax̂,b = bŷ, and c = cẑ,
the reciprocal lattice can be defined by the three vectorsA = 2π

a x̂,B = 2π
b ŷ, andC =

2π
c ẑ,whichdefine another orthorhombic.Theproduct of the volumesof the unit lattice
and the reciprocal lattice is 8π3. Some of this aspect was discussed in Chap. 5. In
general, the reciprocal primitive vectors can be generated by

A = 2π
b × c

a · (b × c)
;B = 2π

c × a
a · (b × c)

;C = 2π
a × b

a · (b × c)
(6.10)
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Fig. 6.8 The first Brillouin
zone of a face-centered cubic
structure. The shape is a
truncated octahedron with
eight hexagons and six
squares. This is also the
Wigner–Seitz cell for a bcc
lattice, whose first Brillouin
zone has the same shape as
the Wigner–Seitz cell for an
fcc lattice shown in Fig. 6.5b

In solid-state physics, a Brillouin zone is defined as a Wigner–Seitz cell in the
reciprocal lattice and the smallest of which is called the first Brillouin zone. The
definition of the Brillouin zone gives a vivid geometric interpretation of the Bragg
diffraction condition and thus is of importance in the study of electron and phonon
states in crystals, as well as their interactions with electromagnetic waves. Figure 6.8
shows the first Brillouin zone of a face-centered cubic lattice. The directions kx , ky ,
and kz are called the [100], [010], and [001] directions, respectively. The center of
the Brillouin zone is called the 	-point, and the intersection of the three axes with
the zone edge is called the X-point. The body diagonal, or the [111] direction, meets
the zone edge at the L-point. Other points of interest such as K, W, and U at the zone
edges and 
,�, and�, located halfway between the zone center and an edge, can
also be defined.

6.4.2 Bloch’s Theorem

The total potential in a crystal includes the core–core, electron–electron, and elec-
tron–core Coulomb interactions. For solving electron wave functions subjected to
such a potential, onewould have to deal with amany-body problem, which turned out
to be very difficult in mathematics. However, this problem can be simplified using
the so-called nearly free-electron model, in which each electron moves in the aver-
age field created by the other electrons and ions. This is also called the one-electron
model. The Hamiltonian operator H for the one-electron model is given as

H = p2e
2me

+U (r) (6.11)
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where pe and me are the momentum and the mass of the electron, respectively, and
U (r) is a periodic potential function resulted from both the electron–electron and
electron–core interactions. The one-electron Schrödinger equation is (see Sect. 3.5.1)
given as follows:

[

− �
2

2me
∇2 +U (r)

]

ψ(r) = Eψ(r) (6.12)

whereE is the electron energy andψ(r) is the electronwave function. The periodicity
of the lattice structure yields the boundary condition,

U (r) = U (r + R) (6.13)

whereR is the vector between two lattice points, called the periodic potential, which
ensures thatU (r) can be expanded as a Fourier series in terms of the reciprocal lattice
vector G as follows:

U (r) =
∑

G

UGe
iG·r (6.14)

The reciprocal lattice vector can be expressed asG = l1A+ l2B+ l3C, where A,
B, and C are primitive vectors of the reciprocal lattic e as given in Eq. (6.10), and the
integers l1, l2, and l3 are indices. In Eq. (6.14), U ′

Gs are complex Fourier expansion
coefficients for a given set of l1, l2, and l3.

According to the Bloch theorem, the wave function of an electron in a periodic
potential must have the form:

ψ(r) = eik·ruk(r) (6.15)

where uk(r) is a periodic function with the periodicity of the lattice, similar to
Eq. (6.13), and thus ψ(r + R) = eik·Rψ(r). The wave function ψ(r) can also be
expressed as a Fourier series summed over all values of the permitted wavevector
such that

ψ(r) =
∑

k

Cke
ik·r (6.16)

The summation is over all wavevectors k’s. From Eq. (6.16), we have

∇2ψ(r) =
∑

k

Ck(ik)
2eik·r = −

∑

k

k2Cke
ik·r (6.17)

The combination of Eqs. (6.14) and (6.16) gives
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U (r)ψ(r) =
∑

k

∑

G

UGCke
i(k+G)·r (6.18)

Using Eqs. (6.16) through (6.18), we can rewrite the Schrödinger equation as
follows:

∑

k

�
2k2

2me
Cke

ik·r +
∑

k

∑

G

UGCke
i(k+G)·r =

∑

k

ECke
ik·r (6.19)

The coefficients of each Fourier component must be equal on both sides of the
equation. Thus,

(
�
2k2

2me
− E

)

Ck +
∑

G

UGCk−G = 0 (6.20)

whereCk−G is the coefficient for the term with k −G in the exponent, i.e., exp[i(k−
G) · r] in Eq. (6.16). Equation (6.20) is paramount in the electronic band theory
of crystals, and it is, therefore, called the central equation [2]. When U (r) ≡ 0,
Eq. (6.20) reduces to E0

k = �
2k2/(2me) by noting that �k = pe for free electrons,

as used in the Sommerfeld theory. Under the influence of a periodic potential, the
relationship becomes more complex because it is a set of linear equations for infinite
numbers of coefficients. Because the equation is homogeneous, the determinant of
the characteristic matrix must be zero. In some cases, the terms can be significantly
reduced to yield simple solutions with insightful physics.

Consider the 1D case when the Fourier components are relatively small compared
with the kinetic energy of electrons at the zone boundary. This is the weak-potential
assumption. At the first Brillouin zone boundaries, we have

k = G/2 = π/a (6.21)

Because there are only two values of k and G, Eq. (6.20) reduces to the following
two equations due to symmetry:

(E0
μ − E)Cμ +UC−μ = 0 (6.22a)

and

(E0
−μ − E)C−μ +UCμ = 0 (6.22b)

whereμ = 1
2G is introducedmerely for the convenience of notation. These equations

have solutions only when the determinant becomes zero, i.e.,

∣
∣
∣
∣
∣

E0
μ − E U
U E0−μ − E

∣
∣
∣
∣
∣
= 0 (6.23)
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Because E0
μ = E0−μ = �

2μ2/(2me), the two roots are then obtained as

E = E0
μ ±U = (�π/a)2

2me
±U (6.24)

The two solutions at the zone edge, i.e., k = π/a, are actually on two E(k) curves.
When k is near the zone edge, we can express the central equation, Eq. (6.20), as the
following two equations [1, 2]:

(E0
k − E)Ck +UCk−G = 0 (6.25a)

and

(E0
k−G − E)Ck−G +UCk = 0 (6.25b)

By setting its determinant to zero, we obtain

E(k) = 1
2 (E

0
k + E0

k−G) ± [
1
4 (E

0
k − E0

k−G)2 +U 2
]1/2

(6.26)

which gives two branches near the zone edge, as shown in Fig. 6.9. A bandgap of
2U is formed at the first Brillouin zone edge. The corresponding wave functions at
the zone edge are

ψ1,2(x) = 1√
2L

(
eiπx/a ± e−iπx/a

)
(6.27a)

where L is the length of the crystal. This forms two standing waves:

ψ1(x) = √
2/L cos(πx/a) and ψ2(x) = i

√
2/L sin(πx/a) (6.27b)

Fig. 6.9 Illustration of the
energy bands, where the
solid curves are calculated
from Eq. (6.26). The lower
and upper bands correspond
to the choice of the minus
and plus signs, respectively.
When k = G/2 = π/a, the
two bands are separated by a
gap of magnitude 2U . The
dashed line, on the other
hand, represents the
free-electron behavior
according to E ∝ k2
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Fig. 6.10 The upper part of the figure plots the probability density |ψ |2 in a 1D weak potential
at the edge of the first Brillouin zone; the lower part of the figure illustrates the actual potential
U(x) of electrons

As shown in Fig. 6.10, the lower energy state E0
μ − U corresponds to ψ1 with

a probability density |ψ1|2 peaked at core sites. The probability density function
describes electrons that are piled up close to the core site. The upper energy state
E0

μ +U corresponds to ψ2 with a probability density |ψ2|2 that distributes electrons
between the cores. The energy difference between these two states is the origin of
formation of the gap at the Brillouin zone edge. On the other hand, away from the
zone edge, the electron wave functions can be expressed as

ψ(x) ≈ L−1/2e±ikx (6.28)

which are propagatingwaves that characterize thewavelike behavior of free electrons
[2, 15].

When all the Brillouin zones and their associated Fourier components are
included, the result is a set of curves, as those shown in Fig. 6.11a. An easier way
to show this is to use the Kronig–Penney model, first formulated in 1931, in which
the potential is assumed to be a square-well array [2, 9]. The details are left as an
exercise (see Problem 6.12). The allowable bands are illustrated by the solid curves
in Fig. 6.11. If the electrons were completely free, then E(k) = E0

k = �
2k2/(2me)

would be a parabola, as illustrated by the dashed curve in Fig. 6.11a, without any
bandgap. It is useful to plot all the energy levels in the first Brillouin zone. This can
be done by folding the branches in Fig. 6.11a, which is known as the extended-zone
scheme, using the reciprocal lattice vector. The result is shown in Fig. 6.11b, which
is called the reduced-zone scheme for the representation of the electronic bands.
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Fig. 6.11 Representation of the electronic band structure. a The extended-zone scheme. b The
reduced-zone scheme

6.4.3 Band Structures of Metals and Semiconductors

The nearly free-electron model described in the previous section assumes a weak
potential and cannot predict the behavior of electrons in the inner orbitals or near the
nuclei. A simple way to calculate the electronic structure of inner electrons, such as
those in the d subshells, is the tight-binding method, which assumes that the potential
is so large that electrons can hardly move out of the ion core. Due to the complicated
3D structure and themultiple numbers of outermost electrons in each atom, the actual
electronic band structures are rather complicated. More advanced methods include
the augmented plane wave (APW) method, the Korringa–Kohn–Rostoker (KKR)
Green function method, and the pseudopotential method. More details can be found
from Ashcroft and Mermin [1], Kittel [2], and Omar [15], and references therein.

It can be shown that the number of orbitals in a band in the first Brillouin zone is the
same as the number of unit cells in the crystal, N. According to the Pauli exclusion
principle, the number of electrons that can occupy a band is 2N. For copper, the
outermost electron configuration is 4s13d10. The s- and d-subshell electrons result
in six bands (with some overlap), as can be seen from Fig. 6.12, along the direction
according to the first Brillouin zone depicted in Fig. 6.8 [16–18]. Thed bands are from
2 to 5.5 eV below the Fermi level and are completely filled. The s band, illustrated by
the thicker line segments, is interrupted by the d bands. The s band is only half filled
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Fig. 6.12 Calculated energy band structure of copper, adapted from Refs. [16–18] with permission

and half empty. For alkali metals, there is only one valence electron and the s band
is continuous. Electrons in the s band can be easily excited from below the Fermi
level to above the Fermi level within the same band. This explains why copper is a
conductor. When radiation is incident on a copper surface, because of the relatively
high frequency, free electrons have an inductive characteristic and tend to reflect the
radiation. The absorption of photons will cause the electrons in the s band to reach a
higher level within the same band. If the phonon energy exceeds 2 eV, transition from
the top d band to the s band right above the Fermi level is possible, as indicated by the
two arrows in Fig. 6.12. The interband transitions result in strong absorption as well
as a reduction in reflection of copper at wavelengths shorter than about 0.6 µm. Pure
copper has a red-brown color because it does not reflect blue and violet colors. Gold
has a similar interband transition that absorbs short-wavelength visible light. On the
other hand, for silver, the interband transition occurs at a much shorter wavelength.
Thus, silver can reflect light in the whole visible spectrum.

The Fermi surface is anisotropic and not spherical for real crystals. For alkali
metals with bcc lattices, such as Na and K, the Fermi surface is nearly spherical
lying inside the first Brillouin zone [1]. The Fermi surface of Al is close to the free-
electron surface for an fcc lattice with three conduction electrons per atom. For noble
metals, due to the effect of d bands, the Fermi surface is characterized by a sphere
that bulges out in the eight <111> directions.

The electronic band structures of Si and GaAs in the first Brillouin zone are shown
in Fig. 6.13, along reciprocal lattice directions [19–21]. Si and GaAs are chosen here
because these two types of semiconductors have distinct energy gap features that can
represent a wide range of semiconductor materials. Degeneracy causes additional
subbands within the conduction and valence bands. Intraband transitions refer to the
excitation or relaxation of electrons between subbands. For intrinsic semiconductors,
the Fermi level lies right in the middle between the bottom of the conduction band
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Fig. 6.13 Calculated energy band structure of silicon (left) and gallium arsenide (right), adapted
from Refs. [19–21] with permission

and the top of the valence band. The valence bands are formed by the bonded valence
electrons, and they are completely filled at low temperatures. The electrons in the
conduction band are dissociated from the atom and hence become free charges. The
bandgap energy, or energy gap, Eg is the difference between the energies at the top
of the valence band (EV) and the bottom of the conduction band (EC). The values of
Eg for some semiconductors are included in Table 6.2. For Si, as shown in Fig. 6.13a,
the bottom of the conduction band and the top of the valence band do not occur at
the same k. This type of semiconductor is called an indirect gap semiconductor. For
a direct gap semiconductor, such as GaAs, the bottom of the conduction band and
the top of the valence band occur at the same value of k at the 	-point, as shown in
Fig. 6.13b. The mechanism for electron transition between the valence band and the
conduction band in a direct gap semiconductor is different from that in an indirect
gap semiconductor. Additional discussion about radiation absorption processes will
be given in Chap. 8.

At absolute zero temperature, there are no electrons in the conduction band and
the valence band is completely filled. When the temperature increases or there exist
optical excitations, electrons in the valence band can transit to the conduction band,
leaving behind some vacancies in the valence band. The vacancies left in the valence
band are called holes, which carry opposite charge as electrons. Usually the electrons
are found almost exclusively in levels near the conduction band minima, while the
holes are found in the neighborhood of the valence band maxima. Therefore, the
energy versus wavevector relations for the carriers can generally be approximated
by quadratic forms in the neighborhood of such extrema, i.e.,

Ee(k) = EC + �
2k2

2m∗
e

and Eh(k) = EV − �
2k2

2m∗
h

(6.29)
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where subscript e and h are for electrons and holes, respectively, EC is the energy
at the bottom of the conduction band and EV is the energy at the top of the valence
band. In the 1D case, the effective mass m∗ for electrons and holes is defined as

1

m∗
e

= 1

�2

d2Ee

dk2
and

1

m∗
h

= − 1

�2

d2Eh

dk2
(6.30)

where the negative sign is assigned to make the effective mass of the hole positive
at the top of the valance band. Effective mass is defined based on the quantum
mechanical description of the group velocity and the acceleration of charge carriers,
respectively, as

vg = 1

�

∂E

∂k
and a = dvg

dt
= 1

�

∂2E

∂k2
dk

dt
= 1

�2

∂2E

∂k2
F (6.31)

where F = dpe
dt = �

dk
dt is the force exerted on the charge carrier due to an electric

field. In 3D case, the effective mass depends also on the direction and is a 3 × 3
tensor [15]. Note that the above definition of effective mass is for parabolic bands
only according to Eq. (6.29) and hence does not apply to 2D solids such as graphene,
to be discussed next.

6.4.4 Electronic Properties of Graphene

As a layered 2D material with carbon atoms arranged in a honeycomb lattice, as
shown in Fig. 6.7a, graphene has unique electronic, mechanical, thermal, and optical
properties. Due to its large carrier mobility and electrical conductivity, alongwith the
feasibility of controlling the carrier density by a gate voltage, graphene is a promising
material for the next generation of transistors and 2D flexible nanoelectronics [22,
23]. Graphene can be synthesized chemically (e.g., by chemical vapor deposition on a
metal surface) or isolated using mechanical or liquid-phase exfoliation from graphite
[24]. As discussed in Chap. 5, the thermal conductivity of graphene can be as high as
or even higher than that of diamond [25]. Graphene and related materials also hold
promise for energy conversion and storage [26]. In addition, graphene exhibits unique
optical and infrared properties [27] for optoelectronics and photonics applications
(to be discussed in Chap. 9). Knowledge of the electronic structure of carbon and
its related materials is critical for understanding the unique electronic and other
properties of graphene.

A carbon atom has six electrons configured as 6C: 1s22s22p2. There are four
electrons in the second shell, two in the s-orbital and two inp-orbitals.However, this is
merely the ground-state configurationwithout excitation. Note that the electron cloud
for the s-orbital is isotropic or spherical shaped. Each of the three p-orbitals shapes
like a dumbbell (or the number 8), identified as px , py, and pz with the direction along
the orbital axis. In methane (CH4), a carbon atom is bonded to four hydrogen atoms,
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forming a tetrahedral molecular geometry (referring to Fig. 3.9b). The hydrogen
atoms are at the vertices of the regular tetrahedron while the carbon atom is at
the centroid. All four bonds between the C and H are equally spaced with equal
strength measured by the bond energy. The underlying mechanism can be explained
by orbital hybridization, which may be explained in two steps. Firstly, one electron
is promoted from the 2s orbital to the 2p orbital due to excitation, such that each
of the orbital in the outmost shell of carbon

(
s, px , py, and pz

)
is occupied by one

electron; secondly, the four electron orbitals combine and rearrange themselves so
that each contains 25% of s, px , py, and pz components. The hybrid orbitals look
like asymmetric dumbbell, and each points out in one of the tetrahedral directions
to form a chemical bond with an H atom. This is called the sp3 hybridization and
each hybrid orbital possesses 25% s-orbital and 75% p-orbital characteristics. The
orbital hybridization theory was originally developed in 1931 by Linus Carl Pauling,
who received the Nobel Prize in Chemistry in 1954. The sp3 hybridization is also
responsible to the diamond (or crystalline silicon) structure where each carbon (or
silicon) atom is bonded to four other carbon (silicon) atoms.

In an ethylene (or ethene) molecule (C2H4), as shown in Fig. 6.14a, each carbon
atom is bonded to two hydrogen atoms and the carbon atoms form a double bond
with each other. In this case, the s-orbital electron is hybridized with the electrons
in the px and py orbital to form a sp2 hybridization (with 1/3 s-orbital component).
The hybrid electrons form a sigma (σ ) bond with each hydrogen (1s electron) as
well as between the carbon atoms. All six atoms lie in a plane and the angle between
H–C–H bonds is close to 120°. Nevertheless, for each carbon atom, there is one
lonely electron in the pz orbital whose axis is perpendicular to the plane. The two
lonely electrons form a pi (π ) bond to share the orbital. In essence, the double
bond between the carbon atoms contains a σ bond and a π bond with very different
characteristics. Note that σ bonds are the strongest type of covalence bond. In a σ

bond, the atomic orbitals overlap with each other in a head-on position, so that their
orbitals are symmetrical with respect to rotation about the bond axis. On the other
hand, in a π bond, the orbital axes are perpendicular to the bond axis between the
two atoms. In acetylene (or ethyne) molecule (C2H2), all four atoms are aligned in
the x-direction, as shown in Fig. 6.14b. The electrons in the s and px orbitals form sp
hybridization, which is responsible for the strong σ bond between C and H as well
as between C and C atoms. Furthermore, the electrons in the py (or pz) orbital of
each carbon atom form a π bond whose orbital axis is in the y (or z) direction. The
triple bond between the carbon atoms consists of one σ bond and a pair of π bonds;
the latter is much weaker than the former.

Fig. 6.14 The chemical
structure of a ethylene and
b acetylene



286 6 Electron and Phonon Transport

The sp2 hybridization is also responsible to the carbon bonds in graphene, where
each carbon is bonded to three neighborhood carbon atoms via σ bonds. These
electrons are also calledσ electrons. The unhybridized electron in the pz orbital forms
a π bond with another carbon atom’s pz orbital. In a way, the carbon–carbon bonding
in graphene contains alternating single and double bonds, forming a conjugated
system like benzene. In contrary to benzene, the π electrons in graphene are shared
by the atoms and are highly mobile along the graphene sheet, like free electrons in
metal. What is more, there are some unique properties of graphene that can only be
explained quantum mechanically, with the help of the electron band structures.

Figure 6.15 shows the band structure of graphene calculated in the first Brillouin
zone based on the density-functional theory (DFT), when the Fermi energy is set to
zero [28, 29]. The bands below (or above) the Fermi level are completely filled (or
empty). The filled bands, called π or σ bands, are associated with electrons in the π

and σ bonds. The unfilled bands are associated with π* or σ * antibonding orbitals.
It can be seen that the σ and σ * bands are spaced far away from the Fermi level. The
transition from π → π∗ is responsible for nearly all electronic and optical properties
of graphene, except with high-energy excitations (> 5 eV) such as irradiation by
photons in the deep ultraviolet and x-ray regions [27]. The most striking feature of
2D graphene is the gapless feature of the bands at the K point (one of the six Dirac
points), as indicated by the dashed box. Furthermore, the π and π* bands are conical
as shown in Fig. 6.16. For 3D semiconductor materials, there is a bandgap between
the conduction band and the valence band and the band structures are parabolic in a
2D diagram or parabola in a 3D diagram.

Fig. 6.15 a First Brillouin zone of graphene; b band structure of a graphene sheet, where the
dashed curves are for π or π* bands, and solid curves are for σ or σ* bands. Adapted from [29]
with permission of American Physical Society
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Fig. 6.16 Band shape near the Dirac point with different Fermi levels: a EF = 0; b EF > 0;
c EF < 0

According to the tight-binding model with some approximation [22], the bands
can be described by

E = ±γ0

√

3 + 2 cos(Kya) + 4 cos(
√
3Kxa/2) cos(Kya/2) (6.32)

where E = 0 corresponds to the Dirac point, γ0 is a constant about 2.8 eV, and
a ≈ 0.246 nm is the magnitude of the chiral vector defined in Fig. 6.7a.

Equation (6.32) predicts conical band structures at the six Dirac points when the
energy is within about 1 eV from the apex. For example, at the K point, Kx =
2π/(

√
3a) and Ky = 2π/(3a). This can be schematically shown in Fig. 6.16 with

different Fermi levels. It can be seen that

E = ±vF�
√
k2x + k2y = ±vF�k (6.33)

Here, vF ≈ 1× 106 m/s is the Fermi velocity, and the wavevector k at the K point
is set to zero. In 1928, Paul Dirac derived a relativistic wave equation that modifies
the Schrödinger equation and can be applied to massless particles. According to
Eq. (3.122) as discussed in Sect. 3.7, E2 = m2c4 + p2c2 for a particle with mass
m and momentum p that travels at the speed c. Therefore, for a massless particle,
E is the product of the momentum and speed. Note that in Eq. (6.33), �k is the
momentum of the electron and vF is essentially a constant. Therefore, it can be said
that the electrons in pure graphene at low temperatures (EF = 0) are massless Dirac
fermions. Gating with a voltage across the graphene sheet allows the Fermi level to
be changed, as shown in Fig. 6.16b, c, similar to chemically doping with a small
amount of impurities. The cyclotron effective mass is given as [22, 30].

mc = �kF/vF = |EF|/v2F (6.34)
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which has been experimentally determined by measuring the cyclotron frequency
ωc = eB/mc by applying a magnetic field B. Note that Eq. (6.34) resembles Ein-
stein’s equation, E = mc2.Measurements under appliedmagnetic field have revealed
another exotic behavior in graphene: the anomalous (half-integer) quantum Hall
effect at room temperature [22, 30].

From the semi-classical Boltzmann theory, the electrical conductivity of 2D
graphene (unit: S or �−1) can be expressed in terms of the relaxation time (at the
Fermi level) [31]:

σ2D = e2v2F
2

D(EF)τ (6.35a)

where τ is the relaxation time and D is the density of states (DOS) per unit area. For
a relatively pure graphene sheet, the DOS can be approximated as

D(E) = 2|E |
π�2v2F

(6.35b)

Substituting Eq. (6.35b) into Eq. (6.35a), we obtain

σ2D = e2|EF|
π�2

τ (6.36)

Furthermore, the carrier concentration n (number per unit surface area) and the
wavevector at the Fermi level are related by kF = √

π |n| or |EF| = �vF
√

π |n|,
which can be used to estimate the carrier concentration. Equation (6.36) breaks down
EF → 0 or n → 0. Due to the gapless feature, there exists a universal minimum
conductivity theoretically given as [22]

σmin = 4e2

πh
≈ 4.932 × 10−5 S (6.37)

which has been experimentally observed with somewhat higher values due to
impurity, size, and other experimental factors [32].

Using the relation σ2D = e|n|μ, the electron (or hole) mobility in graphene can
be calculated from

μ = evF
�
√|n|π τ (6.38)

where the relaxation time τ is on the order of 10−14−10−12 s for impurity concentra-
tions in the range 1011−1012cm−2 [31].Note that the carrier concentration is different
from the impurity concentration and can be tuned either way by a gating voltage.
The carrier mobility μ in graphene typically ranges from 2,000 to 20, 000 cm2/V s
[32], but could be as high as 200, 000 cm2/V s in suspended graphene, even at room
temperature [33].
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The success in obtaining single or few layers of graphene and measuring their
exotic properties have spurred growing interest in a variety of other 2D or quasi-2D
materials, whose properties are dramatically distinctive from their 3D counterparts
[34–38]. Examples are hexagonal boron nitride (hBN), transition metal dichalco-
genides (TMD) such asMoS2 andWSe2, black phosphorus (or phosphorene), layered
Bi2Te3 and GeSe, etc. The intensive theoretical and experimental investigations of
these materials systems expand the current understanding of the electrical, mechan-
ical, optical, and thermal properties of existing materials and may provide pathways
for new technologies in novel electronic devices, energy systems, nanophotonics,
and biomedical applications [26, 34–39].

6.5 Phonon Dispersion and Scattering

In the above discussion of electronic band structures, it is assumed that the cores of
atoms are fixed. In a real crystal, however, the cores of atoms are vibrating about
their equilibrium positions and the vibration of atoms has an important influence on
energy storage and transport in crystals. Lattice vibration causes elastic waves to
propagate in crystalline solids. Phonons are the energy quanta of lattice waves. For
a given vibration frequency ω, the energy of a phonon �ω is the smallest discrete
value of energy. Thermal vibrations in crystals are thermally excited phonons, like
the thermally excited photons in a blackbody cavity.

6.5.1 The 1D Diatomic Chain

Phonon dispersion describes the relationship between the vibration frequency and
the phonon wavevector. A simple example is given first for a diatomic chain of linear
spring–mass arrays, as shown in Fig. 6.17. It is assumed that the spring constant
K is the same between the nearest-neighbor atoms. The spring is a conceptual rep-
resentation of the combined attractive and repulsive forces, which can be assumed
linear if the displacement is sufficiently small. Anharmonic vibrations may become

m1 m2

a

2n–1 2n+1 2n+22n

ξ2n ζ2n+1

x

K

Fig. 6.17 Achain of two atomswith differentmassesm1 andm2 linked by springs of the same spring
constant K, where ξ and ζ denote the displacements of individual atoms from their equilibrium
positions
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significant at high temperatures. Another assumption of the nearest-neighbor model
is that the forces on an atom come from the nearest neighbors only [40]. The equation
of motion of the atoms can be written as follows:

m1
d2ξ2n

dt2
= K (ζ2n+1 + ζ2n−1 − 2ξ2n) (6.39a)

and

m2
d2ζ2n+1

dt2
= K (ξ2n+2 + ξ2n − 2ζ2n+1) (6.39b)

where ξ2n is the displacement of the atom with mass m1 indexed by an even
number and ζ2n+1 is the displacement of the atom with mass m2 indexed by an
odd number [41, 42]. To solve these equations, we substitute the general solu-
tions ξ2n = A1 exp[i(nka − ωt)] and ζ2n+1 = A2 exp[i(n + 1/2)ka − iωt] into
Eq. (6.39a). After some manipulations, we can obtain

(2K − m1ω
2)A1 − 2K cos(ka/2)A2 = 0 (6.40a)

(2K − m2ω
2)A2 − 2K cos(ka/2)A1 = 0 (6.40b)

The determinant of Eq. (6.40a) must be zero, that is,

m1m2ω
4 − 2K (m1 + m2)ω

2 + 4K 2[1 − cos2(ka/2)] = 0 (6.41)

The two roots for ω2 can be expressed as

ω2
1,2 = K

(
1

m1
+ 1

m2

)

± K

[(
1

m1
+ 1

m2

)2

− 4 sin2(ka/2)

m1m2

]1/2

(6.42)

The resulting ω − k curves are the dispersion relations, as shown in Fig. 6.18.
Two branches are formed when m1 �= m2. The upper branch that corresponds to the
plus sign is called the optical phonon branch, or simply optical branch, because it
is important for infrared activities in ionic solids. The lower branch that corresponds
to the minus sign is called the acoustic branch. At very low frequencies, the atoms
in the unit cell move in phase with each other. Such a behavior is characteristic for
a sound wave.

It can be seen that the dispersion curves vary periodically with k. The results
outside the first Brillouin zone merely reproduce lattice dynamics that can be fully
described by the dispersion curves in the first Brillouin zone. Due to the periodicity
of the solution in terms of k, we may treat a value of k outside the first Brillouin zone
by subtracting an appropriate integer times the reciprocal lattice constant 2π/a to
give a value of k within the limits of the first Brillouin zone. Given that |k| ≤ π/a,
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Fig. 6.18 Phonon dispersion
of the linear diatomic chain,
calculated by the
nearest-neighbor model. The
first Brillouin zone is
between −π/a and π/a

k

ω

π/a 2π/a

Optical

Ac
ou
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c

0–π/a

the phonon wavelength is specified by

λ = 2π

k
, 2a ≤ λ < ∞ (6.43)

This makes perfect sense as the wavelength should not be smaller than the lat-
tice constants, as explained in previous chapter; see Fig. 5.3. For solids with small
dimensions, there is also a limit of the maximum wavelength 2L. For k << π/a,
the acoustic branch gives ω ∝ k, which is a linear dispersion relation. At k = π/a,
ω = √

2K/m1 and
√
2K/m2, and the two branches are separated whenm1 �= m2. In

this case, it should be noticed that the group velocity vg ≡ dω/dk = 0. Only standing
waves exist. If m1 = m2, then the upper and lower branches will be continuous at
k = π/a and the slope is not zero. However, the lattice constant needs to be modified
to a/2 in Fig. 6.17, and thus the range of the first Brillouin zone is between −2π/a
and 2π/a. If the upper branch is not folded at k = π/a, it will connect smoothly
with the lower branch and extend to 2π/a. Detailed discussion can be found from
Ref. [41].

6.5.2 Dispersion Relations for Real Crystals

The above discussion can be extended to 3D systems, inwhich lattice vibrations allow
both transverse and longitudinal modes. For the case of two atoms per primitive cell,
there are one longitudinal and two transverse branches for both acoustic and optical
vibration modes. The phonon dispersion relations for silicon and silicon carbide are
shown in Fig. 6.19 [43–46]. Experimental determination of the phonon dispersion
curves was made with neutron scattering [43, 44] for Si and Raman scattering for
SiC [46]. Because m1 = m2 for Si, the longitudinal optical (LO) and longitudinal
acoustic (LA) branches meet at the zone edge and thus the group velocity is not equal
to zero there. For SiC, on the other hand, the two roots in Eq. (6.42) are different
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Fig. 6.19 Optical and acoustical branches of phonon dispersion. a Si [101] direction. Adapted with
permission from Refs. [43–45]. b SiC. Adapted with permission from Ref. [46]

because m1 �= m2. There exists a frequency gap between the LO and LA branches
at the zone edge. The frequency gap is forbidden for propagating waves, i.e., no
phonons can propagate at frequencies within the gap, similar to the bandgap for
electrons. The group velocities of LO and LA phonon modes are zero at the zone
edge; this can be seen by the flat dispersion curves. One should not worry about the
negative or positive sign of the group velocity as it is merely a result of folding the
dispersion curves. The group velocity is always in the direction of energy transfer.
It should be mentioned that the speed of sound and the phonon propagation speed
refer to the group velocity, not to the phase velocity.

According to the wave–particle duality, a phonon with energy �ω should also
have an associated momentum, given by

p = �k (6.44)

where k is the wavevector of the phonon. There is a distinction between phonons
and photons. Phonons do not carry any physical momentum because the physical
momentum associated with lattice vibration is zero, except when all lattices are in
phase. On the other hand, when interacting with other elementary particles, such as
electrons or photons, the wavevector must follow the selection rule such that it looks
as if a phonon has a real momentum given by Eq. (6.44). This momentum is often
called the crystal momentum [1, 2].

The group velocity of phonons in the optical branches is usually small, and sub-
sequently optical phonons contribute little to the thermal conduction in solids. On
the other hand, optical phonons can interact or scatter with acoustic phonons, espe-
cially at elevated temperatures, to reduce the thermal conductivity [41]. Although
LA phonons have higher group velocities than TA phonons, one must also consider
the frequency distribution of phonons since phonons obey Bose–Einstein statistics;
see Eq. (5.77) and discussions in Chap. 5. At low temperatures, the TA phonon mode
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is the dominant contributor to both the thermal conductivity and the specific heat of
insulators and semiconductors. As the temperature goes up, LA phonons also play a
significant role. While optical phonons contribute little to the heat conduction, they
contribute about half of the heat capacity above room temperature. This is because
group velocity does not enter the equation for specific heat; refer to Eq. (5.30). In gen-
eral, if there are q atoms in the primitive cell or basis, there will be one longitudinal
and two transverse acoustic branches, and q−1 longitudinal and 2(q−1) transverse
optical branches. However, degeneracy of the transverse branches may occur due to
symmetry [40–42]. An example of complex materials is the family of zeolites, which
are hydrated aluminosilicate minerals that exhibit nanoporous crystalline structures.
Zeolites have important applications as filters, catalysts, solar collector, and adsorp-
tion refrigeration. Greenstein et al. [47] studied the thermal properties of MFI zeolite
films considering phonon dispersion. MFI is a special type of zeolite that has ordered
channel directions and an average pore size of 0.6 nm. The calculation of specific
heat and thermal conductivity involved summation over 864 polarizations (phonon
branches) over all wavevectors in the first Brillouin zone. The modeling results were
in reasonable agreement with experiments [47].

In recent years, lots of studies have been done on the phonon transport in graphene
and other 2D materials, as well as the interface between 2D materials and substrates
[25, 36, 48]. For example, recent measurement and simulation have shown that a
thermal conductivity in monolayer of hBN can be as high as 750 W/m K [37].

Recently, researchers have demonstrated experimentally very high thermal con-
ductivity (900–1300 W/m K) in boron arsenide (BAs) crystals at room temperature;
the result verified the previous predictions by first-principles simulations in 2013 and
2017; see Ref. [49, 50] and works cited therein. Cubic BAs has since replaced cubic
BN (around 740 W/m K) to become the bulk material with the second highest (next
to diamond) thermal conductivity at room temperature [49].

Another important aspect of phonon transport is scattering. The mean free path
of phonons is often small compared with the size of crystals. For nanostructures,
on the contrary, the mean free path can be larger than the characteristic length,
resulting in boundary scattering. Some qualitative discussions have been given in
the previous chapter. A summary of the characteristics of phonon and photon is
given in Table 6.3. In most situations, phonons are treated as particles, especially
in dealing with interactions among phonons themselves as well as with electrons,
photons, and defects. For long-wavelength phonons, lattice vibration can also be
described by a sound wave or an acoustic wave of three polarizations. To analyze the
acoustic wave behavior, the crystal is viewed as a continuous medium because the
individual vibration of atoms is not of interest. A brief discussion of the microscopic
conservation (or selection rules) during scattering events involving phonons and/or
electrons is presented next.
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Table 6.3 Comparison of the characteristics of phonon and photon

Phonon Photon

Bose–Einstein statistics Bose–Einstein statistics

Massless Massless

Energy: ε = hν Energy: ε = hν

Phase speed: vp = ω/k Phase speed: vp = λν

Mechanical vibration (existence in solids and
some liquids, such as liquid helium)

Electromagnetic waves (existence in any
medium as well as in vacuum)

Both transverse and longitudinal Transverse only

Crystal momentum: p = �k Physical momentum: p = �k

Frequency: less than ≈ 50 THz Frequency: no limit

Group velocity: <≈ 2 × 104 m/s Group velocity: order of 108 m/s

Mean free path: ≈ 10 to 100 nm (except at
very low temperatures and in nanotubes)

Mean free path: no limit (largely dependent
on the medium)

6.5.3 Scattering Mechanisms

Phonon scattering governs the thermal transport properties of dielectric and semi-
conductor materials. Proper modeling of phonon scattering is important for the appli-
cation of the Boltzmann transport equation (BTE) or Peierls–Boltzmann equation,
considering the frequency-dependent scattering rate. The anharmonic nature of the
interatomic potential offers a coupling mechanism for phonon–phonon interactions,
which was not included in the linear oscillator model. The phonon–phonon scatter-
ing is inelastic because the phonon frequency before the scattering event is different
from that after the event. The energy conservation requires the scattering to involve
at least three phonons. A three-phonon process is mostly common since the prob-
ability is usually much larger than the values for processes involving four or more
phonons. In a three-phonon process, either two phonons interact to form a third one
or one phonon breaks into two others. The phonon energy and crystal momentum
are conserved as given by [1, 2]

�ω1 + �ω2 = �ω3 or �ω1 = �ω2 + �ω3 (6.45)

�k1 + �k2 = �k3 or �k1 = �k2 + �k3 (6.46)

In Eqs. (6.45) and (6.46), the left-hand side terms are for phonon(s) before scat-
tering and the right-hand side terms are for phonon(s) after scattering. The pro-
cesses just described are called normal (or N) processes, in which the wavevectors
of phonons are inside the first Brillouin zone. Since both the energy and the momen-
tum are conserved, N-processes do not alter the direction of energy flow. Hence,
N-processes make no contribution to the thermal resistance and do not affect the
thermal conductivity.
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Scattering is also permitted when two phonons interact to form a third one, whose
wavevector is outside the Brillouin zone. This can be understood by the equivalence
of phonons with the same energy but with different wavevectors k′ and k that follow
the relationship:

k′ = k + G (6.47)

where G is a reciprocal lattice vector. The reverse process is also possible with the
assistance of G so that one phonon is annihilated to create two others. Themomentum
relations given in Eq. (6.46) need to be modified as follows after dropping � in all
terms:

k1 + k2 = k3 + G or k1 + G = k2 + k3 (6.48)

These equations, combined with the energy conservation described by Eq. (6.45),
describe the umklapp (or U) processes. The net momentum is not conserved in the
U-processes, which introduce thermal resistance and thus reduce the thermal con-
ductivity. Figure 6.20 schematically shows the relationship between the wavevectors
for an N-process and a U-process. An N-process can be viewed as the general case
of a U-process when G = 0.

Above room temperature, U-processes dominate and the thermal conductivity
decreases linearly as temperature increases. This is because the scattering rate γ =
1/τ between acoustic phonons due to U-processes can be described by [41]

γU = (
Aω + Bω2)T (6.49)

where A and B are positive constants. When the temperature is reduced, the U-
process becomes weaker because of the shift in phonon distribution function toward
longer wavelengths. Scattering of phonons by defects becomes important. As shown
in Fig. 5.13, as the temperature is decreased below room temperature, the thermal
conductivity increases to a maximum and then decreases due to the reduction in

Fig. 6.20 Schematic illustrations of phonon–phonon scattering processes: a the N-process and
b the U-process
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the specific heat. Four-phonon processes are also possible. Four-phonon scattering
includes the annihilation of two phonons to create two others, the annihilation of one
phonon to create three others, and the annihilation of three phonons to create another.
The calculation of the probability of scattering is more involved [41]. Ecsedy and
Klemens [51] estimated the scattering rate due to four-phonon processes to be

γFour ∝ ω2T 2 (6.50)

Their simplifiedmodel also suggests that the probability of four-phonon processes
in the temperature range from 300 to 1000 K is negligibly small compared with the
three-phononU-processes [41, 51]. Recent first-principles calculations by Feng et al.
[50] have shown that the four-phonon process cannot be neglected even for common
materials like silicon and diamond above room temperature. At 1000K, the inclusion
of four-phonon scattering could reduce the predicted κ by 30%, resulting in excellent
agreementwith the experimental value. Furthermore, the predicted κ value for single-
crystal BAs with and without considering four-phonon processes is 2200W/m K and
1400W/m K, respectively [50]. Later, the value around 1000W/m K was experi-
mentally demonstrated by several groups in 2018 [49]. According to the study by
Feng et al. [50], the four-phonon scattering rate should scale with

γFour ∝ ω4T 2 (6.51)

In addition to phonon–phonon interactions, phononsmay also interactwith defects
(such as impurities, vacancies, or dislocations) and boundaries. These scattering pro-
cesses can also influence the mean free path of phonons. Scattering of phonons by
defects is elastic since the phonon energy remains the same. At temperatures near
and above the Debye temperature, phonon–phonon interactions are dominant. As
the temperature drops, the dominant wavelengths of phonons become comparable
to the size of defects; therefore, scattering of phonons by defects becomes impor-
tant. The scattering rate for phonon-defect scattering is independent of temperature
but dependent on the phonon wavelength. This can be modeled using the Rayleigh
scattering theory for small particles such that the scattering rate due to defects is
inversely proportional to the fourth power of the phonon wavelength λ, viz.,

γph−d ∝ λ−4 or ω4 (6.52)

When the bulk mean free path is comparable or greater than the characteristic
dimension, such as the thickness of the film or the diameter of the wire, scattering
of phonons by boundaries becomes important. Boundary scattering is important for
nanostructure materials and at low temperatures when the phonon mean free path is
large, as extensively discussed in the previous chapter.

In metals and semiconductors, electronic transport becomes important. The scat-
tering of charge carriers controls the electric conduction in solids and dominates the
thermal conduction in metals. Carrier–carrier inelastic scattering is negligible except
for highly conductive materials, such as a high-temperature superconductor. Since
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lattice vibrations are enhanced with increasing temperature, electron–phonon scat-
tering usually dominates the scattering process at high temperatures, while at low
temperatures, lattice vibrations are weak and defect scattering becomes important.
The vibration of lattice ions causes deviations from the perfect periodic lattice and
distorts the carrier wave function. This is more easily visualized as the scattering
of electrons by phonons. Both the acoustic branch and the optical branch can scat-
ter electrons. Usually, the energy of acoustic phonons can be neglected compared
with the electron energy. Therefore, scattering by acoustic phonons is essentially
elastic. Scattering by optical phonons is inelastic because the exchange of energy
between the carriers and the phonons can be significant. This process facilitates the
energy transfer between electrons and phonons, which is associated with Joule heat-
ing. For materials with two different atoms per primitive cell, the asymmetric charge
distribution in the chemical bond forms a dipole. Scattering by optical phonons in
these materials is called polar scattering, which can effectively scatter electrons or
holes. The energy and momentum conservations for carrier–phonon scattering can
be written as

Ef = Ei ± �ωphonon (6.53a)

and

kf + G = ki ± kphonon (6.53b)

where subscripts i and f indicate the initial andfinal states of the carrier, theminus sign
corresponds to phonon emission, and the plus sign corresponds to phonon absorp-
tion. The momentum of an electron is similar to that of a phonon and is also referred
to as the crystal momentum. If G is set to zero, the process is an N-process; other-
wise, it is a U-process as in phonon–phonon scattering. In semiconductors at low
temperatures, only N-processes are energized. In metals and semiconductors, the
electron–phonon scattering rate typically ranges from 1012 to 1014 Hz at room tem-
perature. Near or above the Debye temperature, the specific heat is almost a constant
and the number of phonons increases linearly with temperature. Hence, the elec-
tron–phonon scattering rate is proportional to temperature in metals, resulting in
nearly temperature-independent thermal conductivity, while the electrical resistance
is proportional to temperature.

An electron or hole in a periodic lattice does not really collide with ions. The
transport of free carriers can be viewed as the propagation of a wave in a periodic
potential created by the ions. In addition to lattice vibrations, defects or impurities
may break the periodicity of the potential or alter its amplitude. Kinetic theory gives
the defect scattering rate as

γe−d = ndσdve (6.54)

where nd and σd are the defect number density and scattering cross section, respec-
tively, and vd is the average carrier velocity. The scattering cross-section is an effective
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area related to the scattering probability and not the actual geometric cross-sectional
area. For metals, the electron velocity is the Fermi velocity vF, which is on the order
of 106 m/s. For semiconductors, the random velocity of electrons or holes can be
calculated by

vth = (3kBT/m∗)1/2 (6.55)

which is called the thermal velocity and is on the order of 105 m/s at room
temperature.

In semiconductors, the interband transition requires the conservation of both
energy and momentum. This can occur by electronic transitions when interacting
with the incident radiation. For indirect gap semiconductors, however, the photon
itself cannot provide a large enough change in momentum. Therefore, a phonon is
either emitted or absorbed for momentum conservation. The energy and momentum
conservation equations are, respectively,

Ef − Ei = �ωphoton ± �ωphonon (6.56a)

and

kf − ki = kphoton ± kphonon (6.56b)

where the plus and minus signs correspond to phonon absorption and emission,
respectively. This kind of transition is called the indirect interband transition. For a
direct interband transition, there is no need to emit or absorb a phonon and, thus, the
last term in both Eqs. (6.56a) and (6.56b) should be dropped out. The interaction of
photons with solids will be left to Chap. 8 (Sect. 8.4) for a more detailed discussion
about the absorption and emission processes.

In addition to the absorption and the emission, photons may be scattered by
phonons, causing a nonlinear effect. There exists inelastic scattering when photons
are scattered by phonons, resulting in x-ray scattering, neutron scattering, Raman
scattering, and Brillouin scattering. In Raman scattering, the creation (emission) and
annihilation (absorption) of a phonon cause a shift in the frequency of the radia-
tion, namely, the Stokes and anti-Stokes shifts, as shown in Fig. 6.21. The energy
conservation equations are

�ωs = �ωi − �ωph, for a Stokes shift (6.57a)

and

�ωs = �ωi + �ωph, for an anti-Stokes shift (6.57b)

where subscripts i, s, and ph are for incident photon, scattered photon, and phonon,
respectively. Because the interaction involved two photons and one phonon, the
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Fig. 6.21 Illustration of Raman scattering and a the Stokes and b anti-Stokes processes

momentum of the phonon is restricted to small values. The Raman effect, or the
Raman scattering, was named after Indian physicist C. V. Raman (1888–1970), who
won the Nobel Prize in Physics in 1930 for the discovery. The intensity of the anti-
Stokes shift is usually much weaker than that of the Stokes shift. In certain cases,
however, the phonons generated by the Stokes process can subsequently participate
in the anti-Stokes process, causing a strong excitation to the anti-Stokes component.
It is interesting to note that the anti-Stokes component actually pumps energy out
from the material, resulting in a radiative cooling effect.

Note that the resulting photon can interact with the phonon again, creating a
cascade process that emits m phonons. The photon energy is reduced by m times
the energy per phonon. The probability decreases as the order increases. Raman
spectroscopy has become a major analytical instrument for the study of solids.
High-intensity lasers, high-resolution spectrometers, and sensitive detectors such as
photomultiplier tubes (PMTs) are often employed to measure narrow Raman lines.
The Raman intensity and intensity ratio depend upon temperature, as illustrated in
Fig. 6.22. The ratio of the Raman intensities can be expressed by

Fig. 6.22 Raman intensity for the Stokes and anti-Stokes scattering at two different temperatures
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Ianti-Stokes
IStokes

=
(

ωi − ωph

ωi + ωph

)2

exp

(

−�ωph

kBT

)

(6.58)

which can be used for surface temperature measurements in microelectronics and
microcantilever heaters [52, 53].

Example 6.4 Neutron scattering by phonons is important for measuring the dis-
persion relations. Express the energy conservation and the momentum conservation
during the neutron–phonon scattering in terms of the wavevector and the mass of the
neutron, and the wavevector and the frequency of the phonon. Assume the process
involves one phonon only.

Solution A neutron has a mass mne = 1.673 × 10−27 kg that is 1834 times that of
an electron. Based on the wave–particle duality, the kinetic energy of a neutron can
be expressed as Ene = p2

2mne
= �

2k2

2mne
; thus, the energy conservation becomes

�
2k2s

2mne
= �

2k2i
2mne

± �ωph (6.59)

where ki and ks are the magnitude of wavevector of the incident and scattered
neutrons. The wavevector selection rule gives

ks + G = ki ± kph (6.60)

These relations characterize the inelastic scattering of neutrons by phonons.
The plus and minus signs refer to the process that absorbs or releases phonons,
respectively.

6.5.4 Phononics and Coherent Phonons

Phonons are quantized lattice vibration waves. The wavelength of phonons that
are important for thermal transport falls in the region from 1 to 10 nm at room
temperature and can be longer at cryogenic temperatures. While phonons are typi-
cally treated as particles, their wave naturemay become important in 1D superlattices
and 2D or 3D periodic structures due to interference effects, especially at low tem-
peratures. These effects may enable tailoring the thermal transport properties of
semiconductors and insulators, resulting in phonon engineering that belongs to a
research branch called phononics. Phonon engineering may allow us to control heat
transfer in unprecedentedmanner, such as thermal diode, thermal transistors, thermal
memory, topological phonon hall effect, heat cloaking, thermal lens for heat focusing,
to name a few [54–56]. The development of graphene and 2D van der Waals mate-
rials increases the possibilities and broadens the applications of phonon engineering
[25, 57]. Furthermore, with femtosecond to picosecond excitations, phonons may
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exhibit coherent nature. Resonance lattice vibrations or coherent phonons have been
experimentally observed not only in bulk solids but also in superlattices [58–62].

In a solid crystal, valence electrons are confined and their properties aremanifested
by the band structure. The electron wave functions can be analyzed based on the
Bloch theory. Given the periodicity of typical solids from 0.1 to 1 nm, the crystalline
structure also affects the phonon dynamics, resulting in phonon dispersion. Since
phonons can extend to longer wavelengths than electrons do, periodic structures with
a period of 1–200 nm can affect the phonon band structure (dispersion relations),
forming phononic crystals that can modify the DOS and group velocity of phonons,
thereby reducing the thermal conductivity due to the coherence effect [54, 63]. One
of the promising applications is in thermoelectricity where the confinement reduced
the thermal conductivity dramatically with little effect on the Seebeck coefficient or
electrical conductivity. This is desired to improve the figure ofmerit of thermoelectric
devices as discussed in Chap. 5. It is worth mentioning here that photonic crystals
with a period from 100 nm to 10 µm can exhibit unique optical properties in the
visible and infrared regions, as to be discussed in Chap. 9.

Luckyanova et al. [64] demonstrated coherent phonon transport on thermal con-
ductivity using GaAs/AlAs superlattices fabricated by metal-organic chemical vapor
deposition. Each period contains 12 nmGaAs and 12 nmAlAs films, as confirmed by
transmission electronmicroscopic images. The cross-plane thermal conductivities of
five samples whose periods are 1, 3, 5, 7, and 9 were measured using a time-domain
thermoreflectance (TDTR) technique at temperatures from 30 to 300 K. For periodic
layers in the incoherent regime, interface scattering often dominates the thermal
resistance, which can be modeled as a combination of the internal and interface
resistances. The resulting cross-plane thermal resistance increases with the number
of layers, and subsequently the effective thermal conductivity of superlattices with
the same period is independent of the number of layers. When interface resistance
is small and the phonon mean free path in the bulk material is much longer than the
total thickness of the superlattice, the thermal resistance is dominated by boundary
resistance at the front and back of the superlattice. This situation resembles ballistic
phonon transport in a homogeneous film, when the thermal conductivity decreases
linearly as the thickness is reduced as already discussed in Chap. 5. Luckyanova
et al. [64] observed a linear dependence of the thermal conductivity at temperatures
below 150 K, and thereby demonstrated coherent phonon contributions to thermal
conductivity. As the temperature increases, due to phonon scattering at interfaces, the
linearity breaks down. The phonon mean free path (�) distribution for an infinitely
extended superlattice was evaluated using first-principles calculation. It was found
that phonons whose mean free path exceed 216 nm (the total thickness of the super-
lattices used in the experiments) contribute to the thermal conductivity about 87%
at 100 K and 71% even at 300 K. Due to the lack of internal scattering and interface
scattering, these low-frequency phonons can be described by the dispersion relations
based on the superlattice band structures. The results unambiguously demonstrate
coherent phonon transport in superlattices even at room temperature [64].

In the incoherence limit, the thermal conductivity of a superlattice decreases as
the interface density increases or period decreases in superlattices made of the same
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materials with similar interfaces. If the interfaces are made very smooth to avoid
scattering, when the period is smaller than the phonon coherence length (such that
coherent phonons can play a significant role), the thermal conductivity increases as
the period is reduced due to the modification of the phonon dispersion and DOS.
The combined effects give rise to a minimum when the thermal conductivity is plot-
ted against the period of the superlattice or the interface density. Such a minimum
thermal conductivity separates the particle regime and wave regime of heat conduc-
tion by phonons. The predicted minimum thermal conductivity was experimentally
demonstrated by Ravichandran et al. [65] using perovskite superlattices made of
either SrTiO3/CaTiO3 or SrTiO3/BaTiO3 at room temperature. They used molecular
epitaxy deposition to grow (001) oxides with atomically sharp interfaces. The layer
thickness varies from a single unit cell to 40 nm for SrTiO3/CaTiO3. For this kind of
superlattices with a 50:50 volume ratio between the two materials and a total thick-
ness of 200 nm, a minimum cross-plane thermal conductivity was observed when the
period is between 2 and 3 nm. The valley gets deeper when the temperature is lowered
from 307 to 142 K and then to 84 K, with a gradual shift toward large period as the
temperature is lowered [65]. The experimental results are consistent with theoretical
predictions of the crossover between the wave–particle behaviors and the value of
the minimum thermal conductivity. The fact that the thermal conductivity can be
manipulated by changing the superlattice period may have extensive applications in
thermoelectric devices.

Phononic nanomesh structure refers to periodically perforated thin membranes
or films, which form a 2D phononic crystal [54–57]. Significant reduction of the in-
plane thermal conductivity at room temperature has been observed in Si nanomeshes.
Yu et al. [66] fabricated nanomeshes on 22-nm-thick doped epitaxial Si film with a
period of a few tens of nanometers and positioned the nanomesh structure between
two suspended membranes (one for heating and one for sensing) to measure the
thermal conductance at steady state. They reported a nanomesh thermal conductiv-
ity near 1.9 W/m K at temperatures from 150 to 280 K, which then decreases to
approximately 1.4 W/m K at 100 K. Hopkins et al. [67] fabricated relatively large
nanomesh structures with 500-nm-thick single crystalline Si. The period was varied
from 500 to 800 nm while the diameter of the holes is 300 or 400 nm. The thermal
conductivity of suspended nanomesh structure was measured with a TDTR setup to
be as low as 6.8 W/m K, more than an order of magnitude lower than the value of
148 W/m K obtained for bulk Si. While low-frequency coherent or partially coher-
ent phonons with a longer mean free path may play a role in the thermal transport
of nanomeshes [68], later theoretical studies [69, 70] and recent experiments [71]
suggest that coherent phonons may not play a significant role due to the relatively
large surface roughness of microfabricated structures (1–3 nm) as compared with
the phonon wavelength at room temperature. Classical phonon scattering including
backscattering and native oxide layers may be largely responsible for the thermal
conductivity reduction at near room temperature [57, 70, 71].

Nevertheless, in the sub-kelvin temperature range where the dominant thermal
phonons are in the gigahertz frequency region, coherent phonon effects on ther-
mal conduction have been observed in suspended silicon-nitride nanomeshes with a
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period of 970 nm and 2425 nm, respectively [72]. At such low temperatures, the dom-
inant phonon wavelength is in the micrometer range, much larger than the surface
roughness. In this regime, a strong modification of the phonon band structure can
affect the thermal transport as demonstrated experimentally [72]. Maire et al. [73]
fabricated ordered and disordered 1D and 2D hole arrays with a nominal period of
300 nm on a 145 nm single crystalline Si layer. The Si nanobeam or membrane with
a nominal hole diameter of 150 nmwas patterned on a silicon-on-insulator wafer and
etched into suspended structures. The roughness of the surface was measured with
an atomic force microscope (AFM) to be 0.5 nm, while the roughness of the inner
surface of the hole was estimated to be 2.5 nm from scanning electron microscopic
images. Measurements with a micro-TDTR setup suggested that the thermal decay
rates for ordered and disordered samples remain the same at temperatures higher than
about 10 K. Below 10 K, especially at 4 K, disorder can significantly increase the
decay rate [73]. Coherent phonons with frequencies less than 200 GHz are expected
to play a significant role at 4 K, resulting in a decreased decay rate (or thermal con-
ductivity) in the ordered structure. Their results are consistent with coherent acoustic
phonon spectroscopy performed with femtosecond pump-probe thermoreflectance
experiments [74].

6.6 Atomistic Simulation of Lattice Thermal Properties

In Chap. 5, we extensively discussed the relaxation time approximation in modeling
thermal conductivity based on BTE, where the Debye model is often assumed in
predicting the phononDOS.While the results can predict the temperature dependence
of thermal conductivity as well as classical size effects, the accuracy is rather limited.
Furthermore, the parameters that enter the model are typically obtained by fitting the
measurement data. In Sect. 6.5.3, we gave a brief introduction of phonon dispersion
and scatteringmechanisms. In the last 20 years, especially since the publication of the
first edition of this book in 2007, more and more researchers have applied atomistic
simulations rooted in quantum mechanics to predict lattice thermal properties for
semiconductors, superlattices, and low-dimensional materials (including polymer
chains) [75–81]. Classical molecular dynamics (MD) simulations have also been
extensively used to predict the thermal conductivity of solid materials based on
empirical potentials (refer to Sect. 4.3) using either the linear response theory (i.e.,
the Green–Kubo relation) or the direct method (i.e., nonequilibrium approach) [82].
Phonon properties can be extracted by analyzing the wave-packet dynamics [82, 83].
Furthermore, the phonon scattering rate or lifetime can also be determined fromMD
simulations by analyzing the normal modes [83–85]. The interatomic potentials can
also be obtained from the first-principles calculations and used in MD simulations
[78, 80]. This section overviews the ab initio simulation methodology and how it can
be applied to obtain phonon properties and calculate lattice thermal conductivity.
The equilibrium and nonequilibrium MD methods will also be introduced.
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6.6.1 Interatomic Force Constants (IFCs)

Nowadays, most first-principles calculations for materials properties are based on
the density-functional theory (DFT) [86, 87], which has been referred to or cited by
over one hundred-thousand papers per year in the last decade according to Google
Scholar. While the term “first principles” can have different meanings in different
fields, it generally refers to a basic set of postulates or physical laws that do not rely
on any other assumptions or fitting parameters that are frequently used in empirical
modeling. Therefore, solving the Schrödinger equation to obtain the electronic struc-
ture of a crystal under suitable approximations without using parameters obtained
from fitting the experimental data is a first-principles approach. Some of the meth-
ods were mentioned in Sect. 6.4.3, but they are limited to a few atoms in the unit
cell. Rather than solving the many-body Schrödinger equation to obtain the wave
functions, DFT treats it as a vibrational problem to obtain the electron densities
by minimizing the energy functional using the method of Lagrange multipliers as
described in Appendix B.2. The details are rather complicated [86, 87]; thus, only a
conceptual description is given next.

The many-electron wave function can be expressed as a product of the single-
electron wavefunctions as

�(r1, r2, . . . rN ) = ψ1(r1)ψ2(r2) . . . ψN (rN ) (6.61)

where N is the number of electrons in the system. Each of the wave function satisfies
the Schrödinger equation:

[

− �
2

2me
∇2 + Vext(r) + �e(r)

]

ψi (r) = εiψi (r) (6.62)

where ψi and εi are, respectively, the wave function and orbital energy of the ith
electron, Vext is the potential due to all nuclei that is determined by the structure
and elemental composition of the system, and �e is the potential due to the exis-
tence of other electrons (the Coulomb potential). Most solution methods start with a
suitable potential Vext to obtain the wave function �(r1, r2, . . . rN ). From there, all
observables can be obtained, and among them, the electron density can be expressed
as

n(r) = N
∫

dr2

∫

dr3 . . .

∫

drN�∗� (6.63)

Hohenberg andKohn [86] proved that all ground-state properties can be expressed
as functionals of the electron density n(r) and the total energy is such a functional that
attains its minimum for the correct ground-state density. In essence, DFT is a varia-
tional approach in which the electron density is obtained first and then used to obtain
the many-electron wave function, along with the potential. All other observables can
be obtained consequently. Compared with traditional first-principles methods, the
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computational cost of DFT is relatively low. This advantage becomes more obvious
especially with more and more complex systems.

The local-density approximation (LDA) could be used for a slowly varying density
so that the ground-state energy can be obtained in terms of single-particle equations
for the interacting system [86]. The Kohn–Sham equations provide a means to obtain
the electron density by solving N noninteracting one-electron Schrödinger’s equa-
tions [86, 87]. Before 1990, DFT was not considered as an accurate method in band
structure computations [21]. Since then, some approximations have been greatly
refined to better model the exchange and correlation potentials [88]. The 1998 Nobel
Prize in Chemistry was bestowed on Walter Kohn for his establishment of DFT and
John A. Pople for his development of computational methods in quantum chemistry
including the implementation of DFT [89].More recently, DFT has beenwidely used
to predict the chemical, electronic, structural, lattice dynamics, and even magnetic
properties of materials from the atomic scale. A number of software packages are
available for solid-state simulations based on DFT [88, 90]. It should be noted that
the term ab initio (from the beginning) is often used with the same meaning as from
first principles, especially in computational chemistry based on quantummechanics.

DFT can be used to predict phonon properties by using the theory of lattice
dynamics [88]. The Born–Oppenheimer approximation assumes that the motion of
atomic nuclei can be treated separately from that of electrons. This is the so-called
adiabatic approximation, which allows us to decouple the vibrational degrees of
freedom from the electronic degrees of freedom [91]. A similar Hamiltonian for a
crystal can be written in terms of the interatomic force constants (IFCs) and then
used in lattice dynamics to obtain phonon properties.

The density-functional perturbation theory (DFPT) is a linear response theory
that aims at obtaining IFCs through a small perturbation of the system from its
equilibrium [91]. Suppose Ĥ is a Hamiltonian and write the Schrödinger equation
of the ith particle as follows:

Ĥψi = εiψi (6.64)

Then by applying a small perturbation (parameter ξ ), we can write the perturbed
Hamiltonian, wave function, and energy of the particle as [92]

Ĥ = Ĥ (0) + ξ Ĥ (1) + ξ 2 Ĥ (2) + · · · (6.65a)

ψi = ψ
(0)
i + ξψ

(1)
i + ξ 2ψ

(2)
i + · · · (6.65b)

and

εi = ε
(0)
i + ξε

(1)
i + ξ 2ε

(2)
i + · · · (6.65c)

By substituting Eq. (6.65a) into Eq. (6.64) and equalizing terms with the same
order on both sides, we obtain a series of equations based on the order of perturbation.
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The first equation is

Ĥ (0)ψ
(0)
i = ε

(0)
i ψ

(0)
i (6.66)

Apparently, this is for the unperturbed system or the system at equilibrium. The
first-order perturbation gives

Ĥ (0)ψ
(1)
i + Ĥ (1)ψ

(0)
i = ε

(0)
i ψ

(1)
i + ε

(1)
i ψ

(0)
i (6.67)

and the second-order perturbation gives

Ĥ (2)ψ
(0)
i + Ĥ (1)ψ

(1)
i + Ĥ (0)ψ

(2)
i = ε

(2)
i ψ

(0)
i + ε

(1)
i ψ

(1)
i + ε

(0)
i ψ

(2)
i (6.68)

The third-order and higher order perturbation relations can also be applied when
necessary. It should be noted that

ε
(n)
i = 1

n!
dnεi
dξ n

∣
∣
∣
∣
ξ=0

and ψ
(n)
i = 1

n!
dnψi

dξ n

∣
∣
∣
∣
ξ=0

(6.69)

The Hellmann and Feynman theorem gives ε
(1)
i in terms of ψ

(0)
i and Ĥ (1), which

are supposed to be known. The second-order energy derivative and higher order
derivatives can also be obtained [92]. The (2n + 1) theorem states that if one knows
the wave functions up to order of n, i.e., ψ(n)

i , one can deduce the energy derivative
up to the order (2n + 1), i.e., ε(2n+1)

i . The actual multivariable perturbation problem
is very complicated and readers are referred to [91, 92] and references therein.

Let us assume that, based on the elementary composition of the system, the unit
cell parameters and equilibrium atomic positions can be obtained from DFT. If the
atoms are allowed to have small displacement around their equilibrium position, then
the potential energy of the system U can be expressed as a Taylor expansion [80,
81]:

U = U0 +
∑

i

∑

α

�α
i ζα

i + 1

2!
∑

i, j

∑

α,β

�
αβ
i j ζα

i ζ
β
j + 1

3!
∑

i, j,k

∑

α,β,γ

�
αβγ
i jk ζα

i ζ
β
j ζ

γ
k + O(ζ 4)

(6.70)

Here, i, j, k . . . = 1, 2, . . . N are the atom indices, and α, β, γ . . . = 1, 2, or 3
are the coordinate indices (x, y, or z in the Cartesian coordinates system). The IFCs
are given as follows:

�α
i = ∂U

∂ζ α
i

= −Fα
i (6.71)

where Fα
i is the force component on the ith atom and it is zero at equilibrium. Thus,

the first summation on the right-hand side of Eq. (6.70) disappears. The second-order
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derivatives are called the harmonic force constants,

�
αβ

i j = ∂2U

∂ζ α
i ∂ζ

β

j

(6.72)

This will become clear in the next section. The third-order derivatives are known
as the cubic force constants, which are related to the anharmonic processes due to
three-phonon interactions:

�
αβγ

i jk = ∂3U

∂ζ α
i ∂ζ

β

j ∂ζ
γ

k

(6.73)

The next anharmonic constants are related to four-phonon processes [50]. Once
the IFCs are obtained using DFPT [78, 91, 92], lattice dynamics can be used to
obtain phonon dispersion relations, as well as the wavevectors and wave functions
of the normal modes (phonon modes) from harmonic lattice dynamics. The higher
order terms have little impact on the phonon dispersion, which determines the group
velocity and DOS of phonons. However, the anharmonic terms are related and can
be used to obtain phonon–phonon scattering rates, which are temperature dependent.
Besides DFPT, other methods, such as the real-space small displacement method and
frozen-phonon method, have also been used to extract the IFCs for various materials
[78, 93–96]. When the phonon properties are fully determined, the data can be com-
bined with the Peierls–Boltzmann equation. The solution allows the determination
of the thermal conductivity from first principles as discussed in the following two
sections [75, 76, 79].

6.6.2 Lattice Dynamics and Fermi’s Golden Rule

The phonon properties can be obtained once the IFCs are calculated. The harmonic
force constants allow the determination of phonon dispersion and normal modes
according to lattice dynamics theory. The anharmonic force constants can be used to
obtain the scattering rate for three-phonon or four-phonon interactions using Fermi’s
golden rule. This section provides a brief coverage of lattice dynamics and the golden
rule.

In a solid crystal, due to periodicity, the atom index is expressed in terms of double
indices, that is, i → lb, j → l ′b′, k → l ′′b′′, etc. Here, l is the index of the unit cell
and b is the index of the atom inside the unit cell l. Note that the lattice translation
vector of the lth unit cell can be represented by Rl according to Eq. (6.4), though l
means all three indices here. Another vector rb can be used to indicate the position
of the atom with respect to the lattice point. With these notations, the Hamiltonian
for the crystal with potential energy U becomes
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Ĥ ≈
∑

lb

p̂2lb
2mb

+ 1

2!
∑

lb,l ′b′

∑

α,β

�
αβ

lb,l ′b′ζ
α
lbζ

β

l ′b′ + 1

3!
∑

lb,l ′b′,l ′′b′′

∑

α,β,γ

�
αβγ

lb,l ′b′,l ′′b′′ζ
α
lbζ

β

l ′b′ζ
γ

l ′′b′′

(6.74)

Note that p̂lb is the momentum operator for the bth atom in the lth cell and mb

is the mass of the atom. The other parameters are defined in Eqs. (6.69–6.72). The
fourth-order term is not given for simplicity. The equation of motion of atom b in
unit cell l can be expressed as follows:

mb
∂2ζ α

lb

∂t2
= −

∑

l ′b′

∑

β

�
αβ

lb,l ′b′ζ
β

l ′b′ (6.75)

The dynamic equation may be solved using a Fourier transform and expressed in
terms of a series of Fourier components, each one is a plane wave with a wavevector
k and angular frequency ω,

ζ α
lb = 1√

mb

∑

k

ηα
b (k)ei(k·Rl−ωt) (6.76)

Note thatRl is the equilibriumposition vector of the lth unit cell and the coefficient
ηα
b (k) is independent of l. Substituting Eq. (6.76) into Eq. (6.75) gives

ω2ηα
b (k) =

∑

b′,β

Dαβ

bb′(k)η
β

b′(k) (6.77)

where the dynamic matrix is expressed as

Dαβ

bb′(k) = 1√
mbmb′

∑

l ′
�

αβ

0b,l ′b′eik·(R0−Rl′ ) (6.78)

In writing Eq. (6.78), the translational invariance has been used [40, 41]. For
periodic boundary conditions, the dynamic matrix is essentially a Fourier transform
of the harmonic force constant matrix. The determinant of the following matrix must
be zero, viz.,

∣
∣
∣D

αβ

bb′(k) − ω2δαβδbb′
∣
∣
∣ = 0 (6.79a)

which can be written in a matrix form,

det
[
D(k) − ω2I

] = 0 (6.79b)

This allows the determination of phonon dispersion curves for all polarizations
in the first Brillouin zone. The analysis of a 1D chain with two atoms was illustrated
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in Sect. 6.5.1. If a unit cell has one atom, there will be three polarizations for each
wavevector; if a unit cell has two atoms, there will be six polarizations (or branches),
and so forth. For 2D and 3D crystals, the dispersion curves are rather complicated
since they are different along different directions between the lattice points [45],
similar to the electron band structures. Note that Fig. 6.19a only plots Si dispersion
curves along the direction from the zone center	 to point X in the first Brillouin zone,
while Fig. 6.19b is for several SiC polytypes along the direction with a maximum
magnitude of wavevector at the zone edge.

Equation (6.77) may be written in terms of the eigenvectors eb,λ of the normal
modes, where λ specifies a (phonon) mode, in the following [41]:

ω2eα
b,λ(k) =

∑

b′,β

Dαβ

bb′(k)eβ

b′,λ(k) (6.80)

For a system with N atoms, there exists 3N discrete eigenvectors that are orthog-
onal and normalized. These normal modes or Bloch modes represent 3N har-
monic vibrational modes or phonons with specific wavevectors. The corresponding
wavevectors and frequencies (eigenvalues) can be obtained from the dynamicmatrix.
All vibrational motion can be expressed as a superposition of the normal modes. As
discussed previously, the phonon DOS, group velocity, and specific heat can be cal-
culated using the dispersion relations. While the harmonic vibrations are for low
temperatures, anharmonic vibrations do not affect the dispersion significantly unless
the temperature is very high (e.g., close to the melting temperature). Anharmonic
lattice dynamics can be used to predict the frequency shift, linewidth, and lifetime by
including anharmonic perturbation or using the self-consistent phonon formulation
[78, 97].

Fermi’s golden rule, or simply the golden rule, was derived from the time-
dependent perturbation theory in quantum physics to express the scattering rate or
decay rate. The general form of the Fermi golden rule can be applied to nuclear decay,
atomic electron transitions, interband and intraband transitions, electron scattering,
phonon scattering, etc. For a system that undergoes a transition from an initial state
described by the wavevector k to a final state denoted by k′, the golden rule can be
expressed as [42, 90]

γk→k′ =
∑

k′

2π

�
M2

kk′δ(Ek′ − Ek ∓ �ω) (6.81)

where γ is the transition rate (probability of transition per unit time) and its inverse
is called the lifetime or relaxation time, Mkk′ is the interaction matrix element for
transition from state k tok′, and the Dirac delta function signifies energy conserva-
tion. Note that momentum conservation is also necessary for the transition to occur
as discussed in Sect. 6.5.3. As an example, for electron–phonon interaction, ω is
the frequency of the emitted or absorbed phonon, referring to Eq. (6.45). The term
�ω can be dropped when electrons are scattered elastically such as in the case of
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electron-defect scattering. Note that Mkk′ can be expressed in terms of a suitable
Hamiltonian that represents the scattering potential (or strength) so that

Mkk′ = 1

V

∫

V

�∗
k′ Ĥscat�kdr (6.82)

The Fermi golden rule can be expressed in terms of phonon–phonon scatter-
ing involving three or four phonons [50, 90]. This is very important for modeling
anharmonic scattering considering three-phonon and four-phonon processes. In the
evaluation of the interaction matrix elements, the IFCs of the third order allow the
determination of the three-phonon processes (both N-process and U-process) and
fourth-order IFC allows the determination of four-phonon processes [50, 81]. For-
mulations for defect scattering and interfacial scattering can also be obtained based
on Fermi’s golden rule [78]. For heavily doped semiconductors, phonon–electron
scattering may also play a role in reducing the lattice thermal conductivity [81, 98].
The detailed formulations and computational methodology can be found from the
cited literature.

6.6.3 Evaluation of Thermal Conductivity

This section describes several methods used to calculate thermal conductivity of
insulators and semiconductors. These methods can be used for both bulk and nanos-
tructured materials if boundary scattering is included. They can also be used to study
thermal transport in inhomogeneous media and thermal transport across interfaces,
though the focus of this chapter is mostly on the intrinsic properties of solids.

If Fourier’s law of heat conduction is extended to include anisotropy, we can write

q ′′
β = −

∑

α

καβ

∂T

∂α
(6.83)

Here again, α or β specifies a coordinate axis. The Peierls–Boltzmann equation or
phonon BTE can be solved using relaxation time approximation for each mode. The
thermal conductivity can be obtained by comparing the BTE solution with Eq. (6.83)
[75, 78]:

καβ = καβ =
∑

P

∑

K

c(k)vα(k)vβ(k)τ (k) (6.84)

Here, c(k) = hω(k)∂ fBE/∂T , and vα and vβ are the α and β components of the
group velocity, respectively. These quantities can be obtained from the dispersion
relations. The scattering rate τ(k) for each mode λ (in terms of the wavevector
index K and polarization index P) is obtained from the golden rule as discussed
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previously. Equation (6.84) is written in a way that is consistent with Eq. (5.71) but
including anisotropy. The thermal conductivity tensor becomes a diagonal tensor
¯̄κ = diag(κxx , κyy, κzz) in the principal coordinates and becomes ¯̄κ = κI for an
isotropic medium. Since 2007, this method has been used to obtain the thermal
conductivity of numerous semiconductor materials and oxide [78–81].

In the past 20 years, molecular dynamics simulations have been extensively used
in modeling thermal transport and thermal properties of bulk and nanostructured
materials. A brief introduction was given in Sect. 4.5.1. Molecular dynamics is
advantageous for modeling crystals whose basis contains a large number of atoms,
unstructured and disordered materials (such as amorphous solids and liquid phase),
as well as soft matters (such as polymer and organic compounds) [76, 82–85, 99].
It is particularly suitable for modeling nanostructured materials such as nanotubes,
nanowires, and fullerenes and related materials. Classical MD simulations are based
on empirical or semi-empirical intermolecular or interatomic potentials. The number
of atoms that can be simulated is rather limited by the earlier computational capabili-
ties. The computational speed and capabilities have been significantly improved in the
last two decades. Nowadays, advanced large-scale molecular dynamics simulation
packages, e.g., LAMMPS [100], are accessible. Various functional forms obtained
by comparison with experiments and from ab initio methods are available to model
the interatomic potentials of different types of materials. The combination of these
functions and parameters is often called a force field in molecular modeling. Another
advantage of MD simulation of thermal transport is that it inherently includes anhar-
monicity and is particularly suitable at high temperatures. The wave characteristics
of lattice vibration (phonon) cannot be easily observed since MD is a time-domain
simulation. This problem has been addressed using various post-processing tech-
niques such as Fourier analysis of the time variation of the locations and velocities
of particles, wave-packet analysis, and mode decomposition [80, 82–84].

There are two MD simulation methods in studying thermal transport. One is
called the direct method or nonequilibrium molecular dynamics (NEMD) and the
other is often called the Green–Kubo method or equilibrium molecular dynamics
(EMD). NEMD is more intuitive since it is based on 1D Fourier’s law to determine
the thermal conductivity:

kx = − q ′′
x

∂T/∂x
(6.85)

In the direct simulation, either the temperatures at both ends of the structure (heat
baths) are preset or the heat flux is preset. The simulation is then run for a sufficient
duration of time using millions of time steps, each at subpicosecond timescale, to
determine the unknown heat flux or the temperature gradient, respectively [85].
Periodic boundary conditions may be used to model bulk solids. Equation (6.85) is
then used to calculate the thermal conductivity. In theMDsimulation, the temperature
is calculated according to [82]
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T = 1

3NkB

〈
N∑

i

mi v
2
i

〉

(6.86)

In the study where stress is considered, the pressure can be calculated by the virial
equation [83],

P = NkBT

V
+ 1

3V

〈
∑

i

∑

j>i

ri j · Fi j

〉

(6.87)

In general, the temperature distribution is not linear due to temperature jumps near
the two heat baths. However, the temperature profile can be approximated as linear
in the middle section. The size effect and length effect on thermal conductivity of
nanostructures can be easilymodeled [76]. NEMD can also be used to study interface
thermal resistance as well as non-Fourier heat conduction using the transient method
[85]. These topics will be further discussed in Chap. 7.

In EMD, the Green–Kubo linear response theory is used. Statistical fluctuations
always exist at temperatures exceeding absolute zero, causing random motion of
atoms. If the sampling time is sufficiently small, the summation of the magnitude (or
the square of the fluctuation term) depends on the temperature and the properties of
the system. EMD is based on the Green–Kubo fluctuation-dissipation theorem and
the thermal conductivity is computed from the fluctuating heat current as follows
[82–84]:

kαβ = 1

VkBT 2

∞∫

0

〈
Jα(t)Jβ(0)

〉
dt (6.88)

where V is the simulation volume, and Jα or Jβ is the heat current component in the
α or β direction, respectively, since the heat current is a vector. Note that α = β along
the principle thermal conductivity coordinates. The operator <> signifies ensemble
average. The fluctuating heat current vector can be expressed as follows:

J = d

dt

∑

i

εiri (6.89a)

where εi is the total energy of the ith particle that includes both kinetic and potential
energies. Note that the heat current defined here has a unit of heat flux multiplied by
volume or [W m]. If only pairwise potentials are considered, we have

J =
∑

i

Eivi + 1

2

∑

i, j

(
Fi j · vi

)
ri j (6.89b)
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Three-body interaction terms can also be introduced and may be necessary to
describe the force field, such as in the Stillinger–Weber potential commonly used in
modeling diamond structure semiconductors [82].

By analyzing the EMD simulation in the reciprocal lattice space or k-space (some-
times called phonon space) and using the theory of lattice dynamics, phonon relax-
ation time and mean free paths can be extracted [80, 83, 84]. The phonon DOS can
be obtained by a Fourier transform of the velocity autocorrelation function [80]. The
spectral partition ratio and spatial energy distribution can be obtained using the DOS
spectrum. These quantities are important to assess phonon confinement and localiza-
tion especially in determination of the minimum thermal conductivity. The ensemble
average of the heat current is called the heat current autocorrelation function, which
is key to perform phonon space analysis in the first Brillouin zone. The analysis can
provide information on the phonon spectral energy distribution and relaxation time.
Anharmonic effects can also be examined [84]. The uncertainties associated with
EMD calculations have also been systematically investigated [101].

First-principles calculations can be used to obtain harmonic and anharmonic force
field and then applied to calculate the thermal conductivity [102, 103]. Recently,
ab initio MD simulations have also been applied to model thermal conductivity
[104–106].

6.7 Electron Emission and Tunneling

In all the discussions given so far, electrons are confined to the solid. Emission or
discharge of electrons from a solid surface to vacuum or through a barrier (such as in
a metal–insulator–metal multilayer structure) is possible, under the influence of an
incident electromagnetic wave, an electric field, or a heating effect. Because of the
importance of electron emission and tunneling to fundamental physics and device
applications, the basic concepts are described in this section.

6.7.1 Photoelectric Effect

In 1887, Heinrich Hertz observed the photoelectric effect or photoemission. Shortly
afterward, the phenomenon was experimentally studied by several others, including
J. J. Thomson, who discovered electron as a subatomic particle. When radiation is
incident on a metal plate, the electrons in the metal can be excited by absorbing the
energy of the electromagnetic wave to escape the surface, as illustrated in Fig. 6.23a.
The actual apparatus used formeasuring the ejected photoelectronswas to use another
electrode and measure the current flow via a closed circuit. This is similar to the
arrangement shown in Fig. 6.23b for thermionic emission, but with photons incident
on the left plate without heating up any of the plates. If the frequency of the incident
radiation is not high enough, no electrical current can be measured no matter how
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Fig. 6.23 Illustration of a the photoelectric effect and b the thermionic emission

intense the incident radiation is. Saying in otherwords, there appears to be a threshold
frequency for photoemission to occur in a givenmaterial. The photoelectric effectwas
explained in 1905 by Albert Einstein with the concept of light quanta, postulated by
Max Planck a few years earlier. Although Einstein also made seminal contributions
to the theory of relativity and Brownian motion, he was awarded the Nobel Prize in
Physics in 1921 mainly for his discovery of the law that governs the photoelectric
effect.

From the Fermi–Dirac distribution function of free-electron gas, we can see that
at low temperatures, electrons fill all energy levels up to the Fermi energy EF . Note
that we use E and EF as the relative electron energy and, thus, they can be either
positive or negative. Because of the binding of the electron with the rest of the solid,
an additional energy, called the work function ψ , must be provided to the electron
for it to escape from the solid. For Ag, Al, Au, Cu, Fe, Pb, and W, the work function
ranges from 4 to 5 eV, which corresponds to a wavelength in the ultraviolet region
from 250 to 300 nm. For Na, K, Cs, and Ca, the work function ranges from 2 to
3 eV, which falls in the visible spectrum. Because a photon can interact with only
one electron at a time, the photon energy hν must exceed the work function in order
for the incident radiation to eject electrons from the surface. If hν > ψ , the photon
energy may be absorbed by an electron right at the Fermi level. Subsequently, the
electron will have a kinetic energy of

1
2mev

2
e,max = hν − ψ (6.90)

after leaving the surface. If an electron is below the Fermi level, the kinetic energy
of the ejected electron will be smaller than that given by Eq. (6.90). Therefore,
Eq. (6.90) predicts the maximum kinetic energy of an electron for the prescribed
photon frequency. A direct method for the determination of the work function is to
measure the kinetic energy distribution of the photoelectrons, for a given frequency
of the incident radiation.

One of the applications of photoemission is tomeasure the electron binding energy
using the x-ray photoelectron spectroscopy (XPS), which is also called the electron
spectroscopy for chemical analysis (ESCA). The basic principle for XPS is
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Ebd = hν − 1
2mev

2
e − ψ (6.91)

where Ebd stands for the binding energy with respect to the Fermi energy. The
high-energy photons from an x-ray source (200–2000 eV) can interact with the
inner electrons and eject them out of the surface. The photoelectron intensity can
be plotted as a function of the electron kinetic energy using an electron energy
analyzer. The intensity peaks are associatedwith the binding energies of the particular
atomic structures. Comparing with the recorded photoelectron spectra, XPS allows
the determination of the chemical composition of the substance near the surface.
Swedish physicist Kai Siegbahn shared the Nobel Prize in Physics in 1981 for his
contribution leading to the practical application of XPS. Furthermore, ultraviolet
photoemission spectroscopy (UPS) with photon energies ranging from 5 to 100 eV,
often from a synchrotron radiation source, has been used to study the band structures
of crystalline solids [107].

6.7.2 Thermionic Emission

The charge emission from hot bodies was independently discovered by British sci-
entist Frederich Guthrie in 1873, with a heated iron ball, and Thomas Edison in
1880, while working on his incandescent bulbs. Thermionic emission was exten-
sively studied in the early 1900s by Robert Millikan, Nobel Laureate in Physics in
1923; Owen Richardson, Nobel Laureate in Physics in 1928; and Irving Langmuir,
Nobel Laureate in Chemistry in 1932, among others.

With the understanding of the work function as the threshold energy that an
electron must gain to escape the solid, it becomes straightforward to explain the
emission of electrons from a heated metal. We use metal here to illustrate thermionic
emission because good conductors can be better approximated by the Sommerfeld
theory. The distribution function of a free-electron gas has been extensively discussed
in Chap. 5 (Sect. 5.1.3). At absolute zero temperature, all states below the Fermi level
are filled by electrons and all states above the Fermi level are empty. Note that this
picture is consistent with the electronic band theory. At elevated temperatures, the
distribution function is modified as illustrated in Fig. 5.5. Some electrons will have
energies above EF (or μF as was used in Chap. 5). Because the distribution function
becomes zero only when E → ∞, a small fraction of electrons must occupy energy
levels exceeding EF + ψ . We wish to quantitatively evaluate the current density or
the charge flux from the hot plate to the cold plate, as illustrated in Fig. 6.23b. Let
the electron flow be along the x-direction.

From Eq. (5.16), the number of electrons per unit volume between v and v + dv
is

n(v)dvxdvydvz = 2
(me

h

)3 dvxdvydvz
e(E−EF)/kBT + 1

(6.92)
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where E = 1
2me(v2x + v2y + v2z ) is the kinetic energy of an electron. The current

density in the x-direction is given by

Jx = (1 − r ′)
˚

(−e)vxn(v)dvxdvydvz (6.94)

where r ′ is the electron reflection coefficient or the fraction of electron reflected by
the receiver.

The integration is from −∞ to∞ in both the y- and z-directions. In order for an
electron to escape in the x-direction, the following criterion must be satisfied:

vx > vx,0 = √
2(EF + ψ)/me (6.95)

This equation suggests that the integration is carried out only in the tail of the
distribution function, where the x velocity is positive and the kinetic energy is suffi-
ciently large, i.e., E − EF > ψ , which is on the order of several electron volts. Note
that kBT = 0.086 eV at 1000 K and 0.026 eV at 300 K.Whenψ/kBT = 4, dropping
the unity term in the denominator of Eq. (6.92) causes less than 2% error. The error
becomes even smaller at a larger vx so that its impact on the integration is negligibly
small. For this reason, it appears safe to substitute the Fermi–Dirac distribution by
the Maxwell–Boltzmann distribution, viz.,

Jx = −2e(1 − r ′)
(me

h

)3
eEF/kBT

∞∫

vx,0

vx exp

(

− mev2x
2kBT

)

dvx

×
∞∫

−∞

∞∫

−∞
exp

(

− mev2y
2kBT

− mev2z
2kBT

)

dvydvz (6.95)

The result is the famous Richardson–Dushman equation for the current density
[1, 2]:

J = ARD(1 − r ′)T 2e−ψ/kBT (6.96)

where ARD = 4πmeek2B/h3 = 1.202 × 106 A/m2 K2 is called the Richardson
constant, and the direction of J is as shown in Fig. 6.23b. The heat transfer associated
with the electron flow can be evaluated by considering the kinetic energy associated
with each electron, 1

2mev2 ≈ 1
2mev2x , so that

q ′′
x = (1 − r ′)

˚
vx

(
1
2mev

2
x

)
f (v)dvxdvydvz = (ψ + EF + kBT )

Jx
e

(6.97)
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This equation suggests that the average energy of the “hot electron” is ψ + EF +
kBT , as expected. Vacuum tubes operate based on the principle of thermionic emis-
sion. Vacuum tubes had wide applications in the mid-twentieth century in radio,
TV, and computer systems, but have largely been replaced by transistors nowadays.
Thermionic generators produce electricity without any moving parts and belong
to the category of direct energy converters. Extensive discussion of the thermody-
namics and efficiency of thermionic converters can be found from Hatsopoulos and
Gyftopoulos [108].

In some applications, a voltage can be applied between the electrodes. Further-
more, a semiconductor can be used to form a Schottky barrier between a metal and
a semiconductor [11]. The applied voltage changes the potential distribution so that
it gradually decreases inside the barrier. Furthermore, the work function can be sig-
nificantly reduced. Assuming the transmission coefficient is unity, Eq. (6.96) can be
modified to the following for the net charge transfer:

Jnet = A∗T 2e−ψ∗/kBT (ee
V/kBT − 1) (6.98)

where A∗ should be calculated according to the effective mass, ψ∗ is the effective
work function, and
V is the applied voltage [11]. In derivingEq. (6.98),we assumed
that hot electrons from the cathode will go through the barrier through ballistic pro-
cesses. This means that the electron mean free path must be larger than the thickness
of the semiconductor film. Otherwise, the electron transport is governed by diffu-
sion because of collisions with phonons or impurities. When diffusion occurs, the
electron transport under the influence of a temperature difference is described by the
thermoelectric effect, based on irreversible thermodynamics, as discussed in Chap. 5.
When the barrier thickness is extremely small, another phenomenon called quantum
tunneling may occur such that an electron whose energy is lower than the potential
barrier has a chance to transmit through the barrier. Tunneling effect will be discussed
in the next subsection.Mahan and coworkers pointed out that, for the thermionic phe-
nomenon to be the dominant transport mechanism, the electron mean free path in
the barrier must be greater than the thickness of the barrier [109]. Furthermore, the
latter must exceed the characteristic length, below which tunneling becomes sig-
nificant. Thermionic emission in semiconductor heterogeneous structures has been
extensively studied in the last decades for both refrigeration and power genera-
tion [109–111]. The refrigeration process is a reversed thermionic power generation
process. In thermionic refrigeration, the cold cathode emits electrons to the room-
temperature anode as a result of the applied voltage. In order to achieve any cooling
effect, energy that is carried through by the electrical current must be greater than
that by heat conduction via lattice vibration from the hot electrode to the cold elec-
trode. The nonequilibrium electron and phonon transport phenomena have also been
investigated. In some cases, both thermionic and thermoelectric effects may show
up [111, 112]. In other cases, thermionic and tunneling effects can work together or
against each other [113, 114].
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6.7.3 Field Emission and Electron Tunneling

From the above discussion, we have noticed that thermionic emission may be
enhanced or even reversed (from a colder cathode to a hotter anode) by an applied
electric field. Some thermal excitation is necessary for part of the electrons to occupy
energy levels above the Fermi level by a finite amount, prescribed by the work func-
tion. This is commonly referred to as a potential barrier or a potential hill. An
electron must acquire sufficient energy for it to surmount the barrier. When the field
strength is very high, however, electrons at energy levels lower than the height of the
barrier can tunnel through the potential hill. The word tunneling gives a vivid (but
inaccurate) picture of the tunneling phenomenon as if a hole were drilled for the elec-
trons without sufficient energy to pass through a potential hill, without climbing to
its top first. This phenomenon of electron emission at high applied field is called field
emission, which can occur at very low temperatures. The applied electric field can
exceed several billion volts per meter. Because of the high field, field emission can
occur only in ultrahigh vacuum (UHV); otherwise, ionization of the gas molecules
would occur that can cause discharge glow. In essence, field emission is a form of
quantum tunneling, which cannot be understood within the framework of classical
mechanics. The electron motion is governed by Schrödinger’s wave equation, and
the transmission can be predicted by the probability of finding an electron on the
other side of the potential hill, as illustrated in Fig. 6.24.

In 1928, Fowler and Nordheim [115] provided the first quantum mechanical
derivation of the field emission current density J as follows:

J = C

(

V

L

)2

exp

(

− αψ3/2


V/L

)

(6.99)

This is called the Fowler–Nordheim equation, in which
V/L is the electric field,
C and α are two positive constants, and ψ is the work function defined previously.

Fig. 6.24 Illustration of
quantum tunneling through a
potential barrier by an
electron wave
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The WKB approximation is commonly used to find the transmission probability
τ

′
of tunneling. WKB (also KWB or BWK) stands for Wentzel, Kramers, and Bril-

louin, although a fourth person Jeffreys was also included in some literature—so, the
abbreviation appeared as JWKB. Themain assumption in theWKB approximation is
that the potentialU (x) is a slow function of x [116]. In the region where the electron
energy E is greater than U (x), the wave function is of the form

�(x, t) = A exp(− iωt) exp

[

± i

�

√
2me(E −U )

]

(6.100)

where A is the amplitude of the electron wave. In the region where E < U (x), the
wave function is of the form

�(x, t) = A exp(− iωt) exp

[

±1

�

√
2me(U − E)

]

(6.101)

The transmission probability or transmission coefficient can be approximated as

τ ′(E) = exp

⎡

⎣−2

�

δ∫

0

dx
√
2me(U − E)

⎤

⎦ (6.102)

where δ is the width of the potential at E [116].

Example 6.5 Consider a potential barrier in the region 0 ≤ x ≤ L whose potential
is the highest but linear decreases with x according to U (x) = ψ − x

L e
V and
δ(E) = ψ−E

e
V L . Find the transmission coefficient.

Solution For the triangular barrier shown in Fig. 6.24, we note that

δ∫

0

dx
√
U − E =

δ∫

0

dx
√

ψ − E − e
V x/L = (ψ − E)3/2

e
V/L

0∫

1

√
1 − udu = 2(ψ − E)3/2

3e
V/L

Substituting this equation into Eq. (6.102), we obtain

τ ′(E) = exp

[

−4(ψ − E)3/2

3�
V/L

√
2me

]

(6.103)

When E << ψ , we see that τ ′ ≈ exp
(
− αψ3/2


V/L

)
, where α = 4

√
2me

3� . At elevated

temperatures, however, we need to consider the energy distribution of electrons.
Esaki and coworkers demonstrated that the resonant tunneling of electron waves may
allow the transmission coefficient to approach unity in superlattice and double-barrier
structures [117]. Electron tunneling is similar to photon tunneling of electromagnetic
waves, to be discussed in Chap. 10.
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The tunneling current density can be calculated by

Jt =
Emax∫

Emin

eτ ′(E)n(E)dE (6.104)

where E is the kinetic energy in the x-direction, Emax corresponds to the energy at
the top of the potential barrier, Emin is a reference energy, and n(E)dE is the number
of available electrons, with energy between E and E + dE , per unit area per unit
time, given as

n(E) = mekBT

2π2�3
ln

[

1 + exp

(

− E − EF

kBT

)]

(6.105)

Some analytical expressions similar to Eq. (6.100) have been presented [118, 119]
to approximate the integration of Eq. (6.104).

The energy transfer during field emission or electron tunneling can also be eval-
uated [113, 120, 121]. A salient difference between thermionic emission and field
emission is that thermionic emission always gives out energy as the electrons are
emitted and transfer the energy to the other side of the barrier. This is because the
emitted electrons are in the high-energy tail of the distribution function, called hot
electrons, with a much higher effective temperature than the equilibrium cathode
temperature. On the other hand, field emission allows electrons with energies much
lower than that corresponding to the equilibrium temperature to escape the surface.
Since the replacement electrons have a higher average energy than the emitted elec-
trons, a heating effect occurs that increases the cathode temperature. Depending on
the geometry, temperature, transmission coefficient, and energy distribution, both
heating and cooling of the cathode are made possible by field emission. This is
known as the Nottingham effect originally published in 1941.

Some applications of quantum tunneling in semiconductors and superconductors
were discussed in Chap. 1. One of the applications of electron tunneling was the
invention of scanning tunneling microscope (STM). Xu et al. [120] developed a
model for the energy exchange by the tunneling electrons and made a comparison
with STMmeasurements. They considered the Nottingham effect on both electrodes,
as well as resistive heating. At short distances, thermionic emission, field emission,
and photon tunneling could occur simultaneously. Photon tunneling will be studied
in Chap. 10. Fisher andWalker [121] analyzed the energy transport in nanoscale field
emission processes by considering the geometry of the emission tip. Quantum size
effect may play a role in modifying some of the critical parameters. Field emission
by nanotubes has been proposed for nanoscale manufacturing and thermal writing
[122]. Wong et al. [123] performed a detailed thermal analysis during electron beam
heating and laser processing. Carbon nanotube field emission display (CNT-FED)
has been demonstrated. While CNT-FEDs resemble the cathode-ray tubes (CRTs) in
many ways, it can be made thin and flat with a much lower applied voltage [124].
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6.8 Electrical Transport in Semiconductor Devices

Semiconductors are the most important materials for microelectronics, MEMS, and
optoelectronics. Much of the discussions in Chap. 5 and the previous sections of
this chapter are applicable to semiconductors, especially for the energy storage and
transport by phonons. This section focuses on the basics of electrical transport and
properties for some common semiconductor devices used in optoelectronics.

6.8.1 Number Density, Mobility, and the Hall Effect

The calculation of the number density of electrons and holes at any given temperature
T is very important for the determination of the electrical, optical, and thermal prop-
erties of semiconductor materials and devices. The free-electron gas model can be
modified to describe the electron and hole distributions and the transport in semicon-
ductors. The Fermi–Dirac distribution function is applicable to electrons and holes
according to

fe(E) = 1

e(E−EF)/kBT + 1
and fh(E) = 1

e(EF−E)/kBT + 1
(6.106)

Note that fe(E) + fh(E) ≡ 1. The number density of electrons or holes is given
by

ne =
∞∫

EC

De(E)dE

e(E−EF)/kBT + 1
and nh =

EV∫

−∞

Dh(E)dE

e(EF−E)/kBT + 1
(6.107)

where De(E) and Dh(E) are the densities of states in the conduction and valence
bands, respectively. With the approximated quadratic forms of the conduction and
valence bands, Eq. (6.29), the densities of states can be written as

De(E) = MC
dk
dE

∣
∣
∣
∣
C

= MC

2π2

(
2m∗

e

�2

)3/2

(E − EC)1/2 (6.108)

and

Dh(E) = dk
dE

∣
∣
∣
∣
V

= 1

2π2

(
2m∗

h

�2

)3/2

(EV − E)1/2 (6.109)

where MC is the number of equivalent minima in the conduction band. Equa-
tions (6.108) and (6.109) are derived based on the parabolic shape near the bot-
tom of the conduction band for electrons or the top of the valance band for holes.
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The effective mass of electrons is a geometric average over the three major axes
because the effective mass of silicon depends on the crystal direction. The effec-
tive mass of holes is an average of heavy holes and light holes because there
exist different subbands [11]. At moderate temperatures, EC − EF >> kBT and
EF − EV >> kBT are satisfied; subsequently, fe and fh can be approximated with
the classical Maxwell–Boltzmann distribution:

fe(E) ≈ e(EF−E)/kBT and fh(E) ≈ e(E−EF)/kBT (6.110)

We can carry out the integrations in Eq. (6.107) and thus obtain

ne = NCe
−(EC−EF)/kBT (6.111)

and

nh = NVe
−(EF−EV)/kBT (6.112)

where

NC = 2MC

(
m∗

ekBT

2π�2

)3/2

and NV = 2

(
m∗

hkBT

2π�2

)3/2

(6.113)

are called the effective density of states in the conduction band and in the valance
band, respectively. The combination of Eqs. (6.111) and (6.112) gives, in terms of
Eg = EC − EV,

nenh = N 2
th = NCNVe

−Eg/kBT ∝ T 3e−Eg/kBT (6.114)

This expression does not involve the Fermi energy. Therefore, it holds for both
intrinsic and doped semiconductors. The number density N th can be viewed as ther-
mally excited electron–hole pairs per unit volume. It is also referred to as the number
density of intrinsic carriers because ne = nh = Nth, in an intrinsic semiconductor.
It can be seen that the number densities increase with temperature so that the elec-
trical conductivity of an intrinsic semiconductor increases with temperature. The
Fermi energy for an intrinsic semiconductor can be obtained by setting ne = nh in
Eqs. (6.111) and (6.112), yielding

EF = EC + EV

2
+ kBT

2
ln

(
NV

NC

)

≈ EC + EV

2
(6.115)

The Fermi energy for an intrinsic semiconductor is expected to lie in the middle of
the forbidden band or the bandgap. The requirement for the approximate distributions
given in Eq. (6.110) to hold with less than 2% error is Eg/kBT > 8, such that
exp

[−Eg/(2kBT )
]

< 0.02. For Eg > 0.8 eV, we have T < 1150 K. One should keep
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in mind that Eg reduces as temperature increases. For silicon, Eg ≈ 1.11 eV at 300K
and ≈ 0.91 eV at 900K.

When impurities of either donors or acceptors or both are involved, the calculation
of Fermi energy and number densities becomes more involved [11, 15]. Let ND

and NA stand, respectively, for the number densities (i.e., doping concentrations) of
donors (e.g., P and As) and acceptors (e.g., B and Ga). In brief, the energy level of
donors ED is usually lower but very close to EC. As a result, the Fermi energy EF

goes up but is always below ED. The difference EC − ED is called the ionization
energy of donors, which is required for the donors to become ionized. The ionization
of donors increases the number of free electrons, and the semiconductor is said to
be of n-type. For the semiconductor Si, the ionization energy for P is 45 meV and
that of As is 54 meV. Likewise, the energy level of acceptors EA is slightly above
EV, and EA − EV is called the ionization energy of acceptors. The ionization of
acceptors increases the number of holes, and the semiconductor is said to be of p-
type. For the semiconductor Si, the ionization energy for B is 45meV and that ofGa is
72meV. Note that there are 5.0×1022 cm−3 (atoms per cubic centimeters) for silicon.
For n-type silicon with an arsenic doping concentration of ND = 5.0 × 1016 cm−3,
the impurities occupy one atomic site per million. Because of the change in Fermi
energy, most of the impurities are ionized at room temperature when the doping
concentration is less than 5.0 × 1017 cm−3. For fully ionized impurities, the charge
neutrality requires that

ne + NA = nh + ND (6.116)

If the impurities are partially ionized, ND and NA in Eq. (6.116) should be replaced
by the ionized donor and acceptor concentrations, respectively.

Example 6.6 For boron-doped Si with NA = 2.0 × 1016 cm−3, find Nth, ne, and
nh at temperatures from 300 to 1000 K; compare your answers with the values
for intrinsic silicon. Assume m∗

e = 0.3me and m∗
h = 0.6me. Use MC = 6 and

Eg(T ) = 1.155 − 0.000473T 2/(T + 636) eV where T is in kelvin.

Solution This is a p-type semiconductor with ND = 0, and from Eq. (6.116), we
have nh = ne + NA. Substituting it into Eq. (6.114), we have n2e + NAne = N 2

th =
NCNVe−Eg/kBT . The solution gives

ne = 1

2

(√
N 2
A + 4N 2

th − NA

)

and nh = 1

2

(√
N 2
A + 4N 2

th + NA

)

(6.117)

The calculated values of NC = 2.47× 1019 cm−3 and NV = 1.17× 1019 cm−3 at
300 K are somewhat lower than the recommended values of NC = 2.86×1019 cm−3

and NV = 2.66×1019 cm−3 [11]. The results are plotted in Fig. 6.25 for comparison.
In the extrinsic region when T < 700K, themajority carriers are holes, and nh ≈ NA

depends little on temperature. In the intrinsic region when T > 800K, ne ≈ nh ≈
Nth, due to thermal excitation. It should be mentioned that at very low temperatures,
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Fig. 6.25 Calculated
number densities for
Example 6.6

i.e., T < 100K, ionization is not very effective and nh << NA. Therefore, the
low-temperature region is called freeze-out zone, which is not shown in the plot.

The Drude free-electron model predicts σ = τnee2/me, as given in Eq. (5.52),
which can be applied for both electrons and holes, using proper effective masses and
relaxation times. In semiconductor physics, the electron or hole mobility is defined
based on the effective mass:

μe = eτe
m∗

e

and μh = eτh
m∗

h

(6.118)

The physical significance is that mobility is the drift velocity per unit applied
field, i.e.,

ud,e = −μeE and ud,h = μhE (6.119)

The electrical conductivity of a semiconductor is thus

σ = eneμe + enhμh (6.120)

Depending on the impurity and temperature range, one term may be dominant,
or both the terms may be comparable. It is crucial to understand the scattering
mechanism in semiconductors. In metals, all the conducting electrons are near the
Fermi surface, and their average energy cannot be described by the classical statis-
tics because ε̄ = 1

2mev2e ≈ 3
5μF �= 3

2kBT (see Example 5.2). For semiconductors,
on the other hand, the Boltzmann distribution given in Eq. (6.110) suggests that
ε̄ = 1

2m
∗
ev

2
e ≈ 3

2kBT = 1
2m

∗
ev

2
th, and the classical statistics is applicable to a large

temperature range. Thermal velocity is the velocity of electrons or holes at the equi-
librium temperature and was given in Eq. (6.55). At sufficiently high temperatures
when phonon scattering dominates, the electron mean free path �e ∝ T−1. Based



6.8 Electrical Transport in Semiconductor Devices 325

on the relation τe = �e/v̄e, we have

μph ∝ T−3/2 (6.121)

where μph is the contribution of carrier–phonon scattering. Equation (6.121)
describes intrinsic semiconductor without defects. The scattering by impurities
results in a mobility given by

μd ∝ T 3/2/Nd (6.122)

where Nd stands for the concentration of the ionized impurities. The combination
gives the mobility for either electron or hole as follows:

1

μ
= 1

μph
+ 1

μd
(6.123)

For intrinsic semiconductor, the electrical conductivity is very small and propor-
tional to exp

[−Eg/(2kBT )
]
so that the electrical conductivity increases with tem-

perature. For intermediately doped semiconductors, there exists a maximum value
of the mobility below room temperature due to the opposite temperature dependence
of μph and μd. At that temperature, the electrical conductivity is maximum. As the
temperature goes up beyond room temperature, the conductivity decreases due to the
increased phonon scattering. When the semiconductor reaches the intrinsic region,
the number density suddenly increases and the conductivity increases again with
temperature.

The Hall effect is very useful in measuring the mobility of semiconductors. In the
extrinsic region, the Hall effect allows measurement of the type and concentration of
the carriers. Themeasurements are usually carried out with the van der Pauwmethod,
which is a four-probe technique for determining the electrical resistance and the Hall
coefficient. The data of electrical resistivity and number density allow the extraction
of the mobility, based on the effective mass determined using cyclotron resonance
technique.

When both the carriers are significant to the transport properties, the situation is
rather interesting. Referring to Fig. 6.1, when current flows to the positive x-direction,
we have ve,x < 0 and vh,x > 0. The magnetic force drives both the electrons and
the holes toward the negative y-direction, such that ve,y < 0 and vh,y < 0 if Ey = 0.
At steady state, a finite Ey , known as the Hall field, may exist. Since there is no net
current flow in the y-direction, we must have

Jx = −eve,xne + evh,xnh (6.124)

Jy = −eve,yne + evh,ynh = 0 (6.125)
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In general, both ve,y and vh,y are not zero. The Lorentz force F = q(E+ud ×B)

in the y-direction is related to the drift velocities for electrons or holes by

−eEy + eve,x B = eve,y/μe (6.126)

and

eEy − evh,x B = evh,y/μh (6.127)

Rewrite Eqs. (6.126) and (6.127) as neμe(Ey −ve,x B) = −neve,y and nhμh(Ey −
vh,x B) = nhvh,y , respectively. Compared with Eq. (6.122), we notice that neμe(Ey −
ve,x B) + nhμh(Ey − vh,x B) = 0, or

Ey

B
= neμeve,x + nhμhvh,x

neμe + nhμh

Combining it with Eq. (6.121), we obtain the Hall coefficient as follows:

ηH = Ey

Jx B
= neμeve,x + nhμhvh,x

e(neμe + nhμh)(−neve,x + nhvh,x )
(6.128)

Substituting ve,x = −μeEx and vh,x = μhEx into the previous equation,we obtain

ηH = nhμ2
h − neμ2

e

e(nhμh + neμe)2
(6.129)

after canceling Ex . The Hall coefficient for semiconductors may be positive or neg-
ative, and becomes zero when nhμ2

h = neμ2
e . The drift velocities in the y-direction,

however, cannot be zero unless B = 0 or Jx = 0.

6.8.2 Generation and Recombination

The generation, recombination, and diffusion processes are directly related to the
charge transport in semiconductors and optoelectronic devices. This section takes
photoconductivity as an example to illustrate the generation and recombination
processes, followed by a brief discussion of luminescence.

Much has been said previously about absorption of light that causes a transition
in the electronic states in solids. The bandgap absorption of Si, Ge, and GaAs cor-
responds to the wavelengths in the visible and near-infrared spectral regions. The
excitation of electrons from the valence band to the conduction band by the absorp-
tion of radiation increases the conductivity of the semiconductor dramatically. This
is known as photoconductivity and can be used for sensitive radiation detectors. For
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some semiconductors, the bandgap is very narrow so that transitions can happen at
longer wavelengths. For example, the bandgap energy of Hg0.8Cd0.2Te is 0.1 eV at
77K (liquid nitrogen temperature), and thematerial can be used as infrared detectors,
which are commonly referred to as MCT detectors. At very low temperatures, impu-
rities cannot be ionized thermally even though the ionization energy is very small.
For boron-doped germanium, the acceptor ionization energy EA − EV ≈ 10meV
corresponds to a wavelength of about 120 µm [125]. Therefore, Ge:B can be used as
far-infrared radiation detectors. There are two groups of radiation detectors. The first
group is called thermal or bolometric detectors, which rely on the temperature change
of the detector as a result of the absorbed radiation. The temperature change can be
monitored by a temperature-dependent property, such as the electrical resistance.
An example is the superconductive bolometer, which relies on the drastic change in
resistance with temperature, near the superconducting-to-normal-state transition or
critical temperature Tc. The second group is called nonthermal, nonbolometric, or
nonequilibrium detectors. An example is the photoconductive detector in which the
conductivity changes as a result of the direct interaction of electrons with photons.

Before the radiation is incident on the photoconductive detector, the conductivity
can be expressed as σ0 = ene,0μe + enh,0μh at thermal equilibrium. Under the
influence of an incident radiation with photon energies greater than the bandgap,
additional electron–hole pairs are created so that the concentration is increased by

n for both types of carriers. The relative change in the electrical conductance
σ/σ0

can be expressed as


σ

σ0
= 
n(μe + μh)

ne,0μe + nh,0μh
(6.130)

Here, 
n is the net increase in carrier concentration as a result of both gener-
ation and recombination. The generation is associated with the absorbed radiation
and depends on the intensity of the incident light and the quantum efficiency, which
is wavelength dependent. The quantum efficiency is the percentage of the incom-
ing photons that generate an electron–hole pair. The recombination is a relaxation
process because the excess charges are not at thermal equilibrium. If the incident
radiation is blocked off, the semiconductor will quickly reach an equilibrium with
the conductivity σ0. The characteristic time of the recombination process is called
the recombination lifetime or recombination time τrc. While it is also related to elec-
tron scattering, lattice scattering, and/or defect scattering, the recombination time is
usually much longer than the relaxation time used in charge transport processes. The
net rate of change can be expressed as the rate of generation (creation) minus the
rate of recombination (annihilation), viz.,

dn

dt
= ṅg − n − n0

τrc
(6.131)

Under a steady-state incident radiation, we can set dn/dt = 0 so that 
n =
n − n0 = τrcṅg. Suppose that the incoming photon is of frequency ν in Hz with a
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spectral irradiance Iν in W/m2 Hz, and the detector has an effective area A, thickness
d, and absorptance αν . We obtain the rate of generation:

ṅg = αν Iν A

hνAd
= αν Iν

hνd
(6.132)

Substituting into Eq. (6.130), we obtain the sensitivity of a photoconductive
detector as follows:

1

Iν


σ

σ0
= αντrc(μe + μh)

hνd(ne,0μe + nh,0μh)
(6.133)

Increasing the recombination time τrc improves the sensitivity but decreases the
speed or response time of the detector. Photoconductivity requires that hν > Eg

for bandgap absorption to occur. However, the sensitivity decreases toward higher
frequencies, or shorter wavelengths, because there are fewer photons per unit radiant
power. Consequently, the sensitivity of a photoconductive detector increases with
wavelength first and then suddenly drops to zero close to the band edge. For thin
films, the absorptance depends on the film thickness when the photon penetration
depth is comparable to the thickness.

In photoconductivity, the recombination is not associated with the emission of
radiation, and therefore it is said to be nonradiative. The Auger effect and multi-
phonon emission are two common processes of nonradiative recombination. In the
Auger effect, the energy released by a recombining electron–hole pair is absorbed
by another electron in the conduction band, which subsequently relaxes to the equi-
librium condition by the emission of phonons. In a multiphonon emission process,
the recombination of an electron–hole pair is associated with the release of a cascade
of phonons, each having a much lower energy. More details on the recombination
process and how to calculate the associated lifetime can be found from the texts of
Sze [11].

Radiative recombination can also occur and is very important for light-emitting
applications, such as luminescence, which is essentially the inverse process of absorp-
tion. The excitation of electrons may be accomplished by passing through an elec-
trical current. An example is the semiconductor light-emitting diode, in which the
electronic transition from the conduction band to the valence band can result in
optical radiation. Photoluminescence is often referred to as fluorescence, when the
emission occurs at the same time as the absorption, or phosphorescence, when the
emission continues for a while after the excitation.

6.8.3 The p-n Junction

The p-n junction is familiar to every reader although many of us are unfamiliar with
the underlying physics. Let us first take a look at the charge transport by diffusion,
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which is a very important process in semiconductor applications. Diffusion takes
place when there is a spatial nonuniformity in the carrier concentration. The principle
is the same as the diffusion of ideal gas molecules described in Sect. 4.2.3. Using
Fick’s law, we can write the current densities resulting from the diffusion of electrons
and holes as follows:

Je = eDe
dne
dx

and Jh = −eDh
dnh
dx

(6.134)

where the diffusion coefficient for electrons and holes can be related to the mean
free path and the average velocity by De = 1

3�ev̄e and Dh = 1
3�hv̄h, according to

Eq. (4.42). Assuming v̄e ≈ v̄h ≈ vth, we have De = 1
3�evth = 1

3τev
2
th. Combined

with 1
2m

∗
ev

2
th = 3

2kBT , we obtain

De = τekBT

m∗
e

= μekBT

e
(6.135)

which is known as the Einstein relation. A similar equation holds also for the holes.
In transient heat conduction, the thermal diffusion length is usually calculated by
lth = √

αt , where α = κ/ρcp is the thermal diffusivity and t is a characteristic time.
The diffusion length for electrons is defined as ldif = √

Deτe, which is proportional to
τe and vth. The diffusion velocity is sometimes defined as vdif = ldif/τe = vth/

√
3. The

factor of
√
3 reduction arises because the diffusion velocity is the average thermal

velocity along one direction only. In semiconductors, charge transfer is a combined
effect of the carrier drift and diffusion. Electron diffusion is not important for metals
because of the large drift velocity given by the Fermi velocity, which changes little
with temperature at moderate temperatures.

Through oxidation, lithography, diffusion and ion implantation, and metalliza-
tion, semiconductor p-n junctions can be fabricated with microelectronics manufac-
turing technology [11]. A p-n junction consists of a p-type semiconductor, with a
high hole concentration, joined with an n-type semiconductor, with a high electron
concentration, as shown in Fig. 6.26.

If one compares Fig. 6.26a with Fig. 4.7b, the process looks similar to a binary
diffusion. Because of the concentration gradient, holeswill diffuse right and electrons
will diffuse left. Diffusion causes the region near the interface to be depleted, so that
there are fewer free holes on the left side and fewer free electrons on the right side of
the depletion region. Keep in mind that electrons and holes are charged particles. As
they leave the host material, ions of opposite charges are left behind. This results in
a charge accumulation, as shown in Fig. 6.26a, that leads to a built-in potential in the
depletion region that will inhibit further diffusion. As a consequence of this built-in
potential, the energy in the p-doped region is raised relative to that in the n-doped
region, as shown in Fig. 6.26b. The Fermi level is the same everywhere, and it is
closer to the conduction band for the n-type and the valence band for the p-type.

Example 6.7 Prove that the Fermi energy in a p-n junction is independent of x at
thermal equilibrium, as shown in Fig. 6.26b.
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Fig. 6.26 Schematic of a p-n junction at thermal equilibrium. a The device and carrier concentra-
tions, including the charge distribution in the depletion region. The width of the depletion region
is exaggerated for clarity. b The energy band diagram for the p − n junction near the depletion
region. The dash-dotted line is the Fermi level. The four processes are (1) electron drift, (2) electron
diffusion, (3) hole diffusion, and (4) hole drift

Solution Without any externally applied voltage, the current densities become

Je = Je,drif + Je,diff = −eneμe
dV0

dx
+ eDe

dne
dx

(6.136)

Jh = Jh,drif + Jh,diff = −enhμh
dV0

dx
− eDh

dnh
dx

(6.137)

where V0 is the built-in potential and the electric field is −dV0/dx . Because a high
potential V0 means a smaller electron kinetic energy, we have

dV0

dx
= −1

e

dEC

dx
= −1

e

dEV

dx
(6.138)

From Fig. 6.26, we see that the built-in electric field in the depletion region points
toward the negative x-direction and thus dV0/dx > 0; consequently, dEC/dx < 0
and dEV/dx < 0. Employing Eq. (6.110), we notice that

1

ne

dne
dx

= 1

kBT

(
dEF

dx
− dEC

dx

)

and
1

nh

dnh
dx

= 1

kBT

(
dEV

dx
− dEF

dx

)

(6.139)

Substituting Eqs. (6.135), (6.138), and (6.139) into Eq. (6.136) and setting Je = 0,
we end up with

dEF

dx
= 0 (6.140)



6.8 Electrical Transport in Semiconductor Devices 331

This equation can also be derived using Eq. (6.137) in the p-region; hence, the Fermi
energy EF is independent of x at thermal equilibrium.

A popular application of p-n junction is as a diode rectifier, which allows current to
flow easilywith a forward bias but becomes highly resistivewhen the bias is reversed.
For the configuration shown in Fig. 6.26, a forward bias means that the electrical
field is in the positive x-direction, opposite to the built-in field. Qualitatively, this
can be understood as a forward bias removes the barrier for holes to diffuse right
and for electrons to diffuse left. On the other hand, a reverse bias creates an even
stronger barrier for these diffusion processes. Quantitatively, it can be shown that for
an externally applied voltage V (positive for forward bias and negative for reverse
bias), the current density can be expressed as

J = J0

[

exp

(
eV

kBT

)

− 1

]

(6.141)

where J0 is the saturation current density, which depends on the diffusion coefficient,
scattering time, number density, and other factors. Noting that

dJ

dV
= eJ0

kBT
exp

(
eV

kBT

)

(6.142)

The electrical conductance increases with V for forward bias, and decreases to
zero as V → −∞. It should be noted that in practice, the width of the depletion
region is often less than 0.5µm and the built-in potential may be around 1 V through
the depletion region. There is actually a very large built-in field.

Heterojunction is a junction of dissimilar semiconductors with different bandgap
energies. The energy band diagram can be very different from that shown in
Fig. 6.26b. The Fermi energies can be different on each side. Bipolar transistors
were invented in 1947 at Bell Labs. It is based on two p-n junctions arranged in a
p-n-p or n-p-n configuration. Field-effect transistors (FETs) work on a different prin-
ciple. Referring to Fig. 1.3 in Chap. 1, free electrons cannot move from the source to
the drain because of the lack of free carriers in the p-type wafer. If a negative voltage
is applied to the gate, electrons below the gate will be pushed even further, and there
is still little chance for the electron to flow from the source to the drain. However,
as soon as a positive voltage is applied to the gate, electrons will be attracted to the
region below it and form a path for electricity to flow from the source to the drain.
Furthermore, a transistor can amplify the signal since only a weak signal is nec-
essary to the gate. Metal-oxide-semiconductor field-effect transistors (MOSFETs)
have become themost important device in contemporary integrated circuits. Thermal
management is important for such devices because of the local heating or hot spots
where Fourier’s law often fails to predict the temperature history. More discussion
on nonequilibrium heat conduction will be given in Chap. 7. A brief discussion on
photovoltaic devices will be given next.
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6.8.4 Optoelectronic Applications

The photovoltaic effect is a direct energy conversion process in which electromag-
netic radiation, incident upon a p-n junction, generates electron–hole pairs. The
built-in electric field in the p-n junction tends to push the generated holes to the p-
region and the generated electrons to the n-region, resulting in a reverse photocurrent.
Solar cells and photovoltaic detectors have been developed and applied for over half
a century. Thermophotovoltaic (TPV) devices have also been considered as energy
conversion systems that allow recycling of the waste heat [126]. Figure 6.27 shows
a typical TPV cell and the associated electrical circuit. When the incident radiation
with a photon energy greater than the bandgap energy Eg of the cell material strikes
the p-n junction, an electron–hole pair is generated at the location as each photon is
absorbed. Carriers generated in the depletion region are swept by the built-in electric
field and then collected by the electrodes at the ends of the cell, resulting in a drift
current. For radiation absorbed near the depletion region, the minority carriers (elec-
trons in the p-region and holes in the n-region) tend to diffuse toward the depletion
region, yielding a diffusion current. If the load resistance RL is zero, i.e., in the case of
a short circuit, there is a photocurrent Isc flowing in the circuit due to the combination
of the diffusion and drift of charge carriers. The direction of this current is indicated

Fig. 6.27 Schematic of a
typical TPV cell [126]
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Fig. 6.28 Schematic of a the circuit diagram and b the I–V characteristics of a PV cell

on Fig. 6.28a. If the circuit is open, or the load resistance RL approaches infinite, a
positive open-circuit voltage is built up due to irradiation. This gives the maximum
voltage V = Vmax, when no current flows through the load, i.e., I = 0. When the
load has a finite resistance RL, a voltage V is developed, not only across the load but
also across the photovoltaic cell. This voltage reduces the built-in potential of the
cell as if a forward bias is applied to the p-n junction. Subsequently, the diffusion
of minority carriers produces a forward current, which is called the dark current in
photovoltaic devices. The current I flowing through the load resistor becomes

I = −Isc + I0

[

exp

(
eV

kBT

)

− 1

]

(6.143)

The first term on the right is the photocurrent, or the short-circuit current, which
depends on the incident photon flux, quantum efficiency, as well as the transport
properties. The second term on the right is the dark current Idark with I0 being the
saturation current, as previously given inEq. (6.141) based on the current density. The
dark current is zero, when V = 0, as shown in Fig. 6.28b. Consider the photovoltaic
cell, shown in Figs. 6.27 and 6.28a. If the total (net) irradiance q ′′

0 = 0, then without
bias voltage, I = Isc = 0, which is the condition of thermal equilibrium. When
q ′′
0 �= 0, which can be the situation where the photovoltaic cell is exposed to a high-
temperature emitter, the I–V curve is shifted down by Isc as shown in Fig. 6.28b. The
output power is determined by the product of |I V |, which can be optimized to yield
the maximum output at the optimal point. Basu et al. [126] provided an extensive
review of the operation principle and the state of the art in TPV technology, as well
as the potential application of microscale radiative heat transfer for performance
improvement. Near-field TPV will be further discussed in Chap. 10.

Light-emitting diodes (LEDs) are based on p-n junctions as well but with direct
gap semiconductors. At low forward bias voltages, the recombination processes are
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essentially nonradiative. At high forward bias voltages, however, radiative recombi-
nation results in the emission of photons; this phenomenon is called electrolumines-
cence. The emission is a spontaneous process and is therefore incoherent. Depending
on thematerials used and their bandgaps, LEDs can emit in the ultraviolet, visible, and
infrared regions. It should be noted that electroluminescence can also be employed
to create a refrigeration effect [127].

Semiconductor lasers are based on the stimulated emission process, as discussed
in Chap. 3, and have numerous important applications due to their small size, porta-
bility, and ease of operation. Semiconductor lasers have been used in laser printers,
optical fiber communication, CD reading/writing, and so forth. The key is to cre-
ate population inversion so that lasing can occur. Quantum well lasers, based on
quantum confinement, offer significant advantages over conventional semiconduc-
tor lasers, such as low threshold current, high output power, high speed, and so forth.
Further explanation of the optical and electronic characteristics of semiconductor
lasers can be found from the books of Sze [11] and Zory [128], for example.

6.9 Summary

This chapter began with an introduction to the atomic structures, chemical bonds,
and crystal lattices. Emphasis was placed on electronic band structures and phonon
dispersion relations, allowing one to gain a deeper knowledge of solid-state physics,
beyond the previous chapter. Electronic band structures of metal, semiconductor, and
2Dmaterials (especially graphene) are introduced. Phonon dispersion and scattering
mechanisms are presented, alongwith some coverage of coherent phonons. The basic
concepts of atomistic simulations based on first principles and molecular dynamics
methods are delineated with extensive references of recent literature. Photoelectric
effect, thermionic emission, and field emissionwere described in subsequent sections
to stress the interrelation between these phenomena. The basic electrical transport
processes in semiconductors, such as number density, mobility, electrical conductiv-
ity, charge diffusion, and photoconductivity, were explained. The p-n junction was
discussed along with applications, such as photovoltaic cells, thermophotovoltaics,
LEDs, luminescent refrigeration, and semiconductor lasers.

Problems

6.1. Consider a phosphorus-doped 250-µm-thick siliconwafer, with a doping con-
centration of 1017 cm−3. The applied current is 10 mA and the magnetic
induction is 0.5 T.

(a) Determine the Hall coefficient and the Hall voltage, assuming there is
only one type of carriers.
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(b) For a chip of area 1 × 1 cm2 and resistivity 0.075� cm, what is the
voltage drop along the direction of current flow?

6.2. Consider the Hall experiment arranged in Fig. 6.1, under steady-state oper-
ation and with uniform magnetic field. Assume a current is flowing in the
y-direction.

(a) Show that vx = −(eτ/me)Ex −ωcτvy and vy = −(eτ/me)Ey +ωcτvx ,
when the current is carried by electrons. Here, τ is the relaxation time,
vx and vy are the electron drift velocities in the x- and y-directions,
respectively, and ωc = eB/me is called the cyclotron frequency.

(b) Prove Eq. (6.1) by setting vy = 0.

6.3. Express the electron configurations for Ag and Au. Based on the orbital
occupation of outer electrons, discuss the similarities in their chemical and
electrical properties.

6.4. Express the electron configurations for Ca and Zn. Based on the orbital
occupation of outer electrons, discuss the similarities in their chemical and
electrical properties.

6.5. Give a general discussion of insulators, semiconductors, and metals. Explain
why glass (SiO2) is transparent, silicon wafers appear dark, and aluminum
foils look bright. What are the types of chemical bonds in SiO2, Si, and Al?

6.6. How many billiard balls can you pack in a basket with a volume of
0.25 m3? Assume that the balls are rigid spheres with a diameter d =
43 mm and mass m = 46 g. Arrange the spheres in a crystal lattice accord-
ing to the diamond, simple cubic, bcc, fcc, and hcp structures. What is
the total weight for each arrangement? [Hint: Show that for close-packed
spheres, the fraction of volume occupied by the spheres is

√
3π/16 ≈

0.340 (diamond), π/6 ≈ 0.524 (simple cubic),
√
3π/8 ≈ 0.680 (bcc), and√

2π/6 ≈ 0.740 (fcc or hexagonal close - packed).]
6.7. (a) Count the number of atoms inside a unit cell of YBa2Cu3O7 as shown in

Fig. 6.6d, and confirm that it is the same as that in the basis.
(b) Find the density of YBa2Cu3O7 crystal based on the dimensions of the

unit cell, noting that the molecular weight M = 88.9 (Y), 137.3 (Ba),
63.6 (Cu), and 16.0 (O) kg/kmol.

6.8 (a) Calculate the diameter and cross-sectional area for CNTs with chiral
indices (m, n) = (5, 5), (8, 8), (10, 10), (10, 20), and (20, 40).

(b) Take (40, 40) SWNTs of 10-µm length, with a thermal conductivity κ =
3200 W/m K at room temperature. Align sufficient nanotubes to make a
bundle with a diameter of 1 µm; how many CNTs are needed?

(c) Neglect the effect of interface and defects on the thermal conductivity.
What is the heat transfer rate if the temperatures at both ends are 320 and
300 K?

(d) Compare the heat transfer rate if the CNT is replaced by a Si nanowire
of 1-µm diameter and 10-µm length.
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Fig. 6.29 Schematic of
Bragg’s x-ray diffraction
experiment

Incidence, λ
α α

d

6.9. The interatomic potential for a KBr crystal can be expressed as φ(r) =
− αMe2

4πε0r
+ C

(
a
r

)m
, where αM is the Madelung constant, which is 1.748 for

crystals with NaCl structure, ε0 = 8.854 × 10−12 C2/J m is the electric per-
mittivity of vacuum, a = 6.60 × 10−10 m is the lattice constant, m = 8.85,
and C = 2.65 × 10−21 J for KBr. Note that r is in meter.

(a) Plot the attractive potential, the repulsive potential, and the combined
potential in eV as a function of r in Å.

(b) Find the equilibrium distance, which should be the nearest distance
between K+ and Br− ions.

(c) At the equilibrium distance, what are the attractive and repulsive forces
between each ion pair?

6.10. Bragg’s x-ray diffraction formula relates the angle α of diffraction maximum
and the x-raywavelength λ as follows: 2d sin α = nλ, where n is the refractive
index that can be taken as unity in the x-ray region, d is the spacing between
adjacent layers of atoms, and α is measured between the incidence and the
crystal plane, as shown in Fig. 6.29. This formula can be understood by the
constructive interference between the two layers.

(a) To measure a spacing d = 3.12 Å, what is the maximum wavelength λ

that can still be used to perform the experiment successfully?
(b) In an x-ray experiment, λ = 1.5 Å. Assume that the errors in λ and n are

negligible. How accurately must one determine α in order to measure
the spacing with an uncertainty of 0.01 Å?

6.11. Using Eq. (6.10) to show that the reciprocal lattice of a hexagon is also a
hexagon, as shown in Fig. 6.3d. Calculate the volumes of the direct and
reciprocal lattices in terms of a and c.

6.12. Use the Kronig–Penney model to solve the Schrödinger equation for an elec-
tron in a square-well array. Referring to Fig. 6.10, assume that the potential
function is U (x) = 0 at 0 ≤ x ≤ (a − b)/2 and (a + b)/2 ≤ x ≤ a, and
U (x) = U0 > 0 at (a − b)/2 ≤ x ≤ (a + b)/2. Note that x = 0 at the
core of atom location and the potential is periodic. Find the conditions for the
solutions to exist. For simplicity, you may now assume b → 0 and U0 → ∞
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to obtain the relation for E(k). Plot this function to illustrate the electronic
band structure.

6.13. Discuss the difference between interband transitions and transitions that occur
within a band for copper. Explain why copper appears reddish brown.

6.14. What is the difference between a direct-bandgap semiconductor and an indi-
rect bandgap semiconductor? Why are Si and GaAs wafers opaque to the
visible light?

6.15. Plot the band structure of graphene according to Eq. (6.32) and discuss the
main features.

6.16. Why we say electrons in pure graphene or graphene whose Fermi level is zero
are massless? How does the free-electron mass in graphene changes with bias
voltage?

6.17. Derive Eqs. (6.41) and (6.42) first. Then, plot the phonon dispersion curves
for a diatomic chain with mass ratio m1/m2 equal to 1, 2, 3, and 4. What
happens when m1/m2 = 1?

6.18. Approximate kmax = π/a, andfind the group velocities of LAandTAphonons
for Si and SiC at k = 0.3kmax, using Fig. 6.19. What is the phase speed at
k = 0.3kmax for LO phonon in SiC? [Hint: Convert the unit of ω from cm−1

to rad/s first.]
6.19. Perform a literature search to discuss phonon–phonon scattering mecha-

nism.Whenwill four-phonon scattering be important?When can four-phonon
scattering be neglected?

6.20. Prove Eqs. (6.96) and (6.97). Assume that ψ = 0.4 eV and EF = 3 eV,
estimate the error in Eq. (6.96) caused by approximating the Fermi–Dirac
distribution with the Maxwell–Boltzmann distribution in the numerical
evaluation.

6.21. Clearly explain the differences between thermionic emission and field
emission.

6.22. For a gallium-doped silicon with NA = 5 × 1016 cm−3, use the information
from Example 6.6 to calculate the number density of electrons and holes from
300 to 1000K.Assume the effect of impurity on themobility can be neglected,
so that μe = 1450 cm2/V s for electrons, and μh = 500 cm2/V s for holes
at 300 K. Determine the electrical resistivity of the doped silicon from 300 to
1000 K.

6.23. For a single-type doped silicon with μe = 1350 cm2/V s and μh =
450 cm2/V s at 400 K, the Hall coefficient is zero. Is this semiconductor n-
type or p-type?What is the impurity concentration? [Hint: Use the parameters
given in Example 6.6.]

6.24. For a single-type doped siliconwithμe = 1350 cm2/V s,μh = 450 cm2/V s,
and Nth = 2×1010 cm−3, calculate andplot theHall coefficient forp-typedop-
ing, with NA ranging from 0 to 2 × 1012 cm−3. Discuss, without calculation,
the trend with n-type doping.

6.25. For a phosphorus-doped silicon, ND = 2 × 1015 cm−3, μe = 1350 cm2/V s,
and μh = 450 cm2/V s at 300 K. Use the parameters from Example 6.6 as
needed.
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(a) Calculate the thermal velocity and the diffusion length for the electrons
and holes at room temperature.

(b) Find the electrical conductivity at room temperature.
(c) Plot the thermal velocity and wavelength as a function of temperature.

6.26. Plot the J–V curve of a p-n junction based on Eq. (6.141), using dimensionless
groups J/J0 and eV/kBT as the axes. Discuss the meaning of saturation
current (density).

6.27. Based on the I–V curve for a photovoltaic cell shown in Fig. 6.28b, explain
how to determine the open voltage. How to determine the optimal operating
point? The I–V curve with irradiation is shifted downward, what if the cell is
facing a heat sink at lower temperatures?
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Chapter 7
Nonequilibrium Energy Transfer
in Nanostructures

Fourier’s law and the associated heat diffusion equation comprise one of the most
celebrated models in mathematical physics. Joseph Fourier in 1824 wrote: Heat,
like gravity, penetrates every substance of the universe; its rays occupy all parts of
space. …The theory of heat will hereafter form one of the most important branches of
general physics. Soon afterward, heat transfer also became an important engineering
field, essential to the second industrial revolution and the development of modern
technologies.

Recall the discussion of heat interaction and heat transfer in Chap. 2. We have
treated heat conduction as a diffusion process based on the concept of local thermal
equilibrium. This allows us to define and determine the equilibrium temperature at
each location in a body instantaneously, under the continuum assumption described
in Chap. 1. The local-equilibrium condition breaks down at the microscale when
the characteristic length L is smaller than a mechanistic length scale, such as the
mean free path �. For conduction by molecules, consider a rarefied gas between
two parallel plates at different temperatures. If the mean free path is much greater
than the separation distance, i.e., the Knudsen number K n = �/L >> 1, the
gas is in the free molecule regime and its velocity distribution cannot be described
by Maxwell’s distribution function. Furthermore, the transport becomes ballistic
rather than diffusive. Nonequilibrium energy transfer refers to the situation when the
assumption of local equilibrium does not hold. This can occur in solid nanostructures
even at room temperature and in a steady state, or in bulk solids under the influence
of short pulse heating.

For heat conduction across a dielectric thin film, when the thickness is much
smaller than the phonon mean free path, which increases as the temperature goes
down, the condition of local equilibrium is not satisfied. Hence, the phonon statistics
at a given location cannot be described by the equilibrium distribution function
at any given temperature. Strictly speaking, temperature cannot be defined inside
the medium. However, an effective temperature is typically adopted, based on the
statistical average of the particle energies. In the case of heat transfer across a thin
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dielectric film or between two plates separated by a rarefied molecular gas, the
effective temperature distribution cannot be described by the heat diffusion theory
derived from Fourier’s law, using the concept of equilibrium temperature without
considering the temperature jumps at the boundaries. The concept of temperature
jumpwas introduced inChap. 4 (e.g., Fig. 4.12). Consider ametal or a superconductor
that is subjected to ultrafast pulsed laser heating, in which the pulse duration may
range from several femtoseconds to a few nanoseconds. The electrons gain energy
quickly to reach a state that is far from equilibrium with the crystal lattice or the
phonon system. The transport processes during and immediately after the laser pulse
become nonequilibrium both temporally and spatially. Conventional Fourier’s law
cannot be directly applied.

In Chap. 5, we have considered the size effect on thermal transport in solids. Two
approaches have been used under different situations. In the first situation, we apply
Matthiessen’s rule to account for the reduction in mean free path by assuming that
Fourier’s law is still applicable but with a size-dependent thermal conductivity. In
the second situation, where the transport is completely ballistic, we use the concept
of quantum conductance based on the Landauer formulation to solve the problem
in a straightforward manner. The definition of an effective thermal conductivity is
particularly useful for the study of transport processes along a thin film or a thin
wire, when the length in the direction of transport is much greater than the mean
free path. In this case, a local equilibrium can be established, and thus, the energy
transfer is well described by Fourier’s law, even though the thickness is less than the
mean free path. Here, the only microscale effect is the classical size effect, which
arises from boundary scattering of electrons in a metal or phonons in an insulator or a
semiconductor. For energy transport across a thin film or in a multilayer structure, on
the other hand, the local-equilibrium condition breaks down when the film thickness
is much smaller than the mean free path. Furthermore, thermal boundary resistance
(TBR)may become significant at the interfaces. Because of thewave-particle duality,
the electron wave or phonon wave effect may need to be considered in some cases.
For nonmetallic crystalline materials, the most commonly used method to study
thermal transport is based on the Boltzmann transport equation (BTE) of phonons.
Various assumptions and techniques have been developed to solve the phonon BTE.
In very small structures, such as nanotubes or nanowires, molecular dynamics (MD)
and other atomistic simulation methods may be more suitable.

This chapter begins with a description of the phenomenological theories in which
the energy transport processes are represented by a single differential equation or a
set of differential equations that can be solved with appropriate initial and bound-
ary conditions. These equations are often called non-Fourier heat equations, which
can be considered as extensions of the conventional heat diffusion equation based
on Fourier’s law. The limitations of the phenomenological theories are discussed.
While the BTE, Monte Carlo method, and MD simulations have been presented in
previous chapters, this chapter stresses the application in solid nanostructures, includ-
ing thermal boundary resistance (TBR) and multilayer structures. The equation of
phonon radiative transfer (EPRT) is introduced and used to delineate the diffusive
and ballistic heat conduction regimes in thin films. A heat conduction regime with
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respect to length and time scale is presented, followed by a summary of the contem-
porary methods for measuring thermal transport properties of solids, thin films, and
nanostructures.

7.1 Phenomenological Theories

A fundamental difficulty of Fourier’s heat conduction theory was thought to be that
a thermal disturbance in one location of the medium would cause a response at
any other location instantaneously, as required by the mathematical solution of the
diffusion equation. In theory, the speed of heat propagation appears to be unlimited;
this has been viewed by some as a direct violation of the principle of causality. Let
us begin with an example of 1D transient heating of a semi-infinite medium. Assume
that the medium is homogeneous, with constant thermal properties, and is initially
at a uniform temperature T (x, 0) = Ti. The thermal diffusivity of the medium is
α = κ/(ρcp), where κ, ρ, and cp are the thermal conductivity, density, and specific
heat of the material, respectively. The wall at x = 0 is heated with a constant heat
flux q ′′

0 at 0 < t ≤ tp, where tp is the width of the step heating, and insulated at
t > tp. The solution of the temperature distribution T (x, t) can be found from Refs.
[1, 2] as follows:

T (x, t) − Ti = 2q ′′
0

√
αt

κ
F(ξ) at 0 < t ≤ tp (7.1a)

T (x, t) − Ti = 2q ′′
0

√
αt

κ

[
F(ξ) − ηF

(
ξ

η

)]
at t > tp (7.1b)

where ξ = x/
√
4αt , η = √

1 − tp/t , and F(ξ) = π−1/2 exp(−ξ 2) − ξerfc(ξ) with
erfc being the complementary error function as given in Appendix B.1.2. While
F(10) = 2.1 × 10−44 and the right-hand sides of both Eqs. (7.1a) and (7.1b) are
essentially negligible when x > 3

√
αt , the paradox is that a nonzero response must

not occur faster than the speed of the thermal energy carriers, such as the Fermi
velocity in metals or the speed of sound in dielectrics. In reality, this rarely causes
any problem because a signal that is below the noise level cannot be detected by any
physical instrument, as will be discussed in the example next.

Example 7.1 A thick plate of fused silica SiO2, initially at room temperature, is
heated at one surface by a heat flux of 105 W/m2 for 5 s and then insulated. Treat the
heated surface to be at x = 0, and assume the other surface is at x → ∞. Plot the
temperature distributions at various times. Imagine a temperature sensor is placed
at certain locations with instantaneous response and zero additional heat capacity.
Estimate the time for the thermometer to sense the temperature rise as a function of
the location x. Assume that the thermophysical properties of the glass are constant,
κ = 1.4 W/mK, and α = 8.5 × 10−7 m2/s.
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Fig. 7.1 a The temperature distributions at various times. b The time required for a given location
to acquire a minimum temperature rise and the estimated thermal diffusion speed

Solution The temperature distribution is shown in Fig. 7.1a at t = 0.01, 0.1, 1, 5,
10, and 20 s. During the heating, the temperature monotonically increases with time
and the heat flux is always positive. After the heat input is stopped when t = 5 s, the
temperature near the surface decreases but is still the highest and the temperature
decreases toward increasing x. While the predicted temperature rises everywhere
instantaneously, the magnitude may be too small to be observed practically. We can
calculate the time 	t required for a minimum temperature rise 	Tmin, specified by
the thermometer sensitivity. Let us choose	Tmin = 10 mK and 0.1 K for illustration.
The average thermal diffusion speed can be estimated by vdif(x) = x/	t , for any
given location x. The results are shown in Fig. 7.1b. In reality, diffusion is often a slow
process near room temperature. For the example given here, vdif for	Tmin = 10 mK
is between 1 and 5 m/s, for 5 nm < x < 5μm, and goes down rapidly at x > 5
μm. At x = 10mm, vdif is only 2–3 mm/s. On the other hand, the speed of sound in
glass is on the order of 5 km/s, which is several orders of magnitude greater than the
average thermal diffusion speed.

Recall that the uncertainty principle in quantummechanics states that	E	t > �,
suggesting that we cannot measure time and energy simultaneously with unlimited
precision. Fromstatisticalmechanics, the distribution function allows a small fraction
of particles to have a very high speed or to travel a very large distance without
collision, although the probability may be extremely low. Based on the uncertainty
principle and statistical mechanics, it seems convincing that Fourier’s law, in its
applicable regime, does not violate the principle of causality. What is physically
problematic and practically impossible is to provide a temperature impulse to the
surface or at any given location instantaneously. We further conclude that the heat
diffusion equation does not produce an infinite speed of thermal energy propagation;
rather, it is often a very slow process. Microscopically, Fourier’s law fails when
a local equilibrium is not established, as explained earlier. At the same time, the
concept of an equilibrium temperature cannot be applied. It is critically important
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for the technological advancement to establish and apply thermal transport theories,
both microscopically and macroscopically, under nonequilibrium conditions.

Several phenomenological theories have been developed to describe transient heat
transfer processes in solids and micro/nanostructures. Applications of transient and
ultrafast heating include laser processing, nanothermal fabrication, and the measure-
ment of thermophysical properties. In the literature, there appears to be controver-
sial experimental evidence on the existence of certain phenomena predicted by the
hyperbolic heat conduction [3]. Furthermore, a large division exists as regards the for-
mulation and the interpretation of the theories of non-Fourier conduction. While the
intention is to provide a clear andobjective presentation, the discussionwill inevitably
reflect the author’s personal views and limitations at the time when the manuscript
was prepared. This section should help readers gain a general understanding of the
basic concepts and phenomena related to non-Fourier heat conduction. Although
relatively few papers out of a large number of publications are cited in the text and
the reference section, interested readers can easily trace the relevant literature from
the cited sources, especially Refs. [3–6].

7.1.1 Hyperbolic Heat Equation

Several earlier studies have pointed out that the instantaneous response may be an
indication of a nonphysical feature of the Fourier heat theory. Carlo Cattaneo in 1948
used kinetic theory of gas to derive a rate equation given by

q′′(r, t) + τq
∂q′′(r, t)

∂t
= −κ∇T (r, t) (7.2)

which is a modified Fourier equation called Cattaneo’s equation. The historical
contributions by James Clerk Maxwell in 1867 and Pierre Vernotte in 1958 have
been extensively reviewed by Joseph and Preziosi [4] and will not be repeated here.
In Eq. (7.2), τ q is a kind of relaxation time, originally thought to be the same as τ ,
i.e., the average time between collisions. The energy equation for heat conduction
involving an internal source or volumetric heat generation rate q̇(r, t) is

q̇(r, t) − ∇ · q′′(r, t) = ρcp
∂T (r, t)

∂t
(7.3)

The divergence of Eq. (7.2) and the time derivative of Eq. (7.3) give two new equa-
tions, which can be combined with Eq. (7.3) to eliminate the heat flux terms. The
resulting differential equation for constant properties can be written as

q̇

κ
+ τq

κ

∂q̇

∂t
+ ∇2T = 1

α

∂T

∂t
+ τq

α

∂2T

∂t2
(7.4)
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This is the hyperbolic heat equation, in contrast to the heat diffusion equation or
parabolic heat equation. Without heat generation, we can rewrite Eq. (7.4) as

∇2T = 1

α

∂T

∂t
+ 1

v2tw

∂2T

∂t2
(7.5)

which is a telegraph equation or a damped wave equation. The solution of the hyper-
bolic heat equation results in a propagating wave, the amplitude of which decays
exponentially as it travels. The speed of this temperature wave in the high-frequency
limit, or the short-time limit, is given by

vtw = √
α/τq (7.6)

The amplitude of the temperature wave decays according to exp(−t/τq) due to
the damping caused by the first-order time-derivative term (1/α)(∂T/∂t), which is
also called the diffusion term. For an insulator, from the simple kinetic theory we
have κ = 1

3 (ρcv)v2gτ . Noting that cv = cp for an incompressible solid and assuming
τq = τ , we get

vtw = vg
/√

3 (7.7)

Equation (7.7) relates the speed of the temperature wave to the speed of sound in
an insulator. The square root of three can be understood as due to the randomness
of thermal fluctuations in a 3D medium, just like the relation between the velocity
and its components, v2 = v2x + v2y + v2z , in kinetic theory. Earlier experiments at
cryogenic temperatures havedemonstrated a second soundpropagating at the velocity

v2nd = vg
/√

3 in liquid helium and some solids [4].

Equation (7.5) sets a limit on the heat propagation speed, which is manifested
by a sharp wavefront that travels at vtw inside the medium for a sudden tempera-
ture change at the boundary. As a wave equation, the solution of the temperature
has an amplitude and a phase. Theoretically, the temperature wave can be reflected
by another boundary and can interfere, constructively or destructively, with a for-
ward propagating wave. The interaction between the temperature waves may also
result in a resonance effect, a typical wave phenomenon. Numerous analytical and
numerical predictions have been made [6–10]. It should be noted that the terms heat
wave [4] and thermal wave [7] have also been frequently used in the literature to
describe the temperature wave behavior. The term “temperature wave” is used in this
chapter for the wavelike behavior associatedwith the hyperbolic-type heat equations,
because “heat wave” might be confused with the calamitous weather phenomenon
and “thermal wave”might be confused with the diffusion wave used in photoacoustic
techniques. Bennett and Patty [11] clarified: The term thermal wave interference is
used to mean the superposition of simple harmonic solutions of the thermal diffu-
sion equation. Although wavelike in nature there are important differences between
thermal waves arising from a differential equation that is of the first order in time
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Fig. 7.2 (Not to scale) Illustration of the solution of the hyperbolic heat equation at short timescales.
aA short pulse, tp << τ . bA long pulse, tp > τ . The solid curves are the solutions of the hyperbolic
heat equation (7.5), and the dash-dotted and dashed curves are the solutions of the heat diffusion
equation (7.1a, 7.1b)

and waves that are solution to a wave equation that is of the second order in time. In
the heat transfer literature, thermal wave often refers to periodic-heating techniques
used widely for thermophysical property measurements [12].

Let us consider an example of a semi-infinite solid under a constant heat flux at
the surface. Figure 7.2 illustrates the solutions for a small tp and a large tp, compared
with τ . Here again, we have assumed τq = τ . The propagation speed is equal to vtw,
and the pulse wavefront is given by x1 = vtwt1 and x2 = vtwt2. Hence, x1 < x2 < �,
where � = vgτ is the mean free path. In the case of a short pulse, the temperature
pulse propagates and its height decays by dissipating its energy to the medium as
it travels. The parabolic heat equation, on the other hand, predicts a continuous
temperature distribution without any wavefront (see Fig. 7.2).

As time passes on, the first-order time derivative, or the diffusion term, in Eq. (7.5)
dominates. If the relative change of ∂T/∂t or q′′ during one τq is large, then the wave
feature is important. This should happen immediately after a sudden thermal distur-
bance that results in a temporal nonequilibrium, as well as a spatial nonequilibrium
near the heat pulse or thewavefront. After a sufficiently long time, usually 5–10 times
τq, a local equilibrium will be reestablished, and the thermal field can be described
by the parabolic heat equation. At steady state, the hyperbolic and parabolic equa-
tions predict the same results. While Eq. (7.4) is mathematically more general than
the heat diffusion equation, it should not be taken as a correction, or a more realis-
tic theory than the Fourier conduction model, because Cattaneo’s equation has not
been justified on a fundamental basis, nor has it been validated by any plausible
experiments.

Many researchers have investigated the hyperbolic heat equation based on the
second law of thermodynamics [13–15]. It has been found that the hyperbolic heat
equation sometimes predicts a negative entropy generation and even allows energy
to be transferred from a lower temperature region to a higher temperature region.
The entropy generation rate for heat conduction without an internal source can be
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calculated by [15]

ṡgen = − 1

T 2
q′′ · ∇T = 1

κT 2
q′′ ·

(
q′′ + τq

∂q′′

∂t

)
(7.8a)

The above equation was obtained by setting the energy and entropy balances as
follows:

ρ
∂u

∂t
= −∇ · q′′ and ρ

∂s

∂t
= −∇ ·

(
q′′

T

)
+ ṡgen (7.8b)

Note that du = T ds. A negative entropy generation can easily be numerically
demonstrated from Eq. (7.5) during the temperature wave propagation. Here, a nega-
tive entropy generation does not constitute a violation of the second law of thermody-
namics because the concept of “temperature” in the hyperbolic heat equation cannot
be interpreted in the conventional sense, due to the lack of local thermal equilibrium.
Extended irreversible thermodynamics has been proposed by Jou et al. [16] by mod-
ifying the definition of entropy such that it is not a property of the system anymore
but also depends on the heat flux vector. The theory of extended irreversible thermo-
dynamics is self-consistent but has not been fully validated by experiments; hence,
it cannot be taken as a generalized thermodynamic theory. Similarly, the hyperbolic
heat equation should not be treated as a more general theory over Fourier’s heat
conduction theory [17].

Example 7.2 Derive the modified Fourier equation, or Cattaneo’s equation, based
on the BTE under the relaxation time approximation.

Solution Tavernier [18] first showed that Cattaneo’s equation could be derived for
phonons and electrons using the relaxation time approximation of the BTE. As done
in Sect. 4.3.2, where we have derived Fourier’s law based on the BTE, let us start by
assuming that the temperature gradient is in the x-direction only. The transient 1D
BTE under the relaxation time approximation can be written as follows:

∂ f

∂t
+ vx

∂ f

∂x
= f0 − f

τ
(7.9)

A further assumption is made such that ∂ f
∂x ≈ ∂ f0

∂x = ∂ f0
∂T

∂T
∂x , which is the condition

of local equilibrium. Substitute the local-equilibrium condition into Eq. (7.9) and
multiply each term by τεvx . We can then perform integration of each term over the
momentum space to obtain

∫


τεvx
∂ f

∂t
d +

∫


τεv2x
∂ f

∂x
d =

∫


εvx f0d −
∫


εvx f d (7.10a)

By treating the relaxation time as a constant, applying the local-equilibrium con-
dition to the second term, and noting that the first term on the right-hand side is zero,
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we have

τ
∂q ′′

x

∂t
+ κ

∂T

∂x
= −q ′′

x or q ′′
x + τ

∂q ′′
x

∂t
= −κ

∂T

∂x
(7.10b)

This equation canbegeneralized to the 3Dcase as given inEq. (7.2), after replacing
τ with τq.

The derivation given in this example, however, does not provide a microscopic
justification of the hyperbolic heat equation, because it is strictly valid only under
the local-equilibrium assumption with an averaged relaxation time. The local-
equilibrium assumption prohibits application of the derived equation to length scales
comparable to or smaller than the mean free path [19, 20]. Suppose a thermal distur-
bance occurs at a certain time and location; after a duration that is much longer than
the relaxation time, Fourier’s law and the parabolic heat equation are well justified
because both the spatial and temporal local-equilibrium conditions are met. On the
other hand, if we wish to use the modified Fourier equation to study the transient
behavior at a timescale less than τ , then the disturbance will propagate by a distance
shorter than the mean free path, as shown in Fig. 7.2. Therefore, the derivation based
on the BTE, under local-equilibrium and relaxation time approximations, is not a
microscopic proof of the hyperbolic heat equation, which is meaningful only in a
nonequilibrium situation. To this end, it appears that Maxwell in 1867 made the right
choice in dropping terms involving the relaxation time in the paper, by assessing that
the rate of conduction will rapidly establish itself [3, 4].

Rigorously speaking, the local-equilibrium condition can be expressed in terms
of integration, i.e.,

∣∣∣∣∣∣
∫


τv2x
∂

∂x
( f − f0)εd

∣∣∣∣∣∣ <<

∣∣∣∣κ ∂T

∂x

∣∣∣∣ (7.11)

In deriving Eq. (7.10b), we have loosely assumed
∫


τεvx
∂ f
∂t d =

∂
∂t

∫


τεvx f d = τ
∂q ′′

x
∂t . After a careful examination of the derivations, Zhang et al.

[17] noted that Eq. (7.10a) can be rearranged to obtain the following expression:

∫


τεvx

(
∂

∂t
+ vx

∂

∂x

)
( f − f0)d + κ

∂T

∂x
= −q ′′

x (7.12)

One may define a new local-equilibrium condition as follows:

∣∣∣∣∣∣
∫


τεvx
D

Dt
( f − f0)d

∣∣∣∣∣∣ <<

∣∣∣∣κ ∂T

∂x

∣∣∣∣ (7.13)
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where the operator D
Dt = ∂

∂t + vx
∂
∂x in the 1D case and can be generalized to 3D

cases. With the new local-equilibrium condition, Eq. (7.12) becomes Fourier’s law.
Therefore, we can derive Fourier’s law directly from the BTE even in the transient
situation [17].Based on the above discussion, Fourier’s law is not an approximation of
Cattaneo’s equation. Hence, one should not treat Cattaneo’s equation as a generalized
Fourier’s law. It may be more appropriate to name Eq. (7.2) and the like as modified
Fourier’s equations.

Without knowing the heat carrier types and statistics, it is impossible to com-
pare Eqs. (7.11) and (7.13). Both assumptions will break down when the smallest
geometric dimension is on the same order or smaller than the mean free path. The
basic assumption in the relaxation time approximation is that the distribution func-
tion is not too far from equilibrium. For a heat pulse with a duration less than τp, the
relaxation time approximation should generally be applied when the time duration
t > 3τp, regardless of whether we are dealing with a thin film or a semi-infinite
medium. Atomistic simulations, based on molecular dynamics and the lattice Boltz-
mann method, have provided further evidence that the hyperbolic heat equation is
not applicable at very short timescales or in the nonequilibrium regime, where the
applicability of the relaxation time approximation is also questionable [21, 22]. Nev-
ertheless, after some modifications, there exist a number of special cases when the
modified heat equation becomes physically plausible and practically applicable. The
modified equation does not produce sharpwavefronts like those illustrated in Fig. 7.2.

7.1.2 Dual-Phase-Lag Model

Chester [23] first related Cattaneo’s equation with a lagging behavior, specifically,
there exists a finite buildup time after a temperature gradient is imposed on the speci-
men for the onset of a heat flow, which does not start instantaneously but rather grows
gradually during the initial period on the order of the relaxation time τ . Conversely,
if the thermal gradient is suddenly removed, there will be a lag in the disappearance
of the heat current. Gurtin and Pipkin [24] introduced the memory effect to account
for the delay of the heat flux with respect to the temperature gradient. They expressed
the heat flux as an integration of the temperature gradient over time, in analogy with
the stress–strain relationship of viscoelastic materials with instantaneous elasticity.
The linearized constitutional equation reads

q′′(r, t) = −
t∫

−∞
K (t − t ′)∇T (r, t ′)dt ′ (7.14)

where K (ξ) is a kernel function. Equation (7.14) reduces to Fourier’s law when
K (ξ) = κδ(ξ) and to Cattaneo’s equation when K (ξ) = (κ/τq)e−ξ/τ . By assuming



7.1 Phenomenological Theories 355

K (ξ) = κ0δ(ξ) + κ1

τq
e−ξ/τ (7.15)

Joseph and Preziosi [4] showed that the heat flux can be separated into two parts:

q′′(r, t) = −κ0∇T − κ1

τq

t∫
−∞

exp

(
− t − t ′

τq

)
∇T (r, t ′)dt ′ (7.16a)

Hence,

q′′ + τq
∂q′′

∂t
= −κ∇T − τqκ0

∂

∂t
∇T (7.16b)

where κ = κ0 + κ1 is the steady-state thermal conductivity, as can be seen from
Eq. (7.16a). Combinedwith Eq. (7.3), the heat equation becomes a partial differential
equation,

∇2T + τT
∂

∂t
∇2T = 1

α

∂T

∂t
+ τ q

α

∂2T

∂t2
(7.17)

where τT = τqκ0/κ is known as the retardation time. Unless τT = 0 or κ0 = 0,
Eq. (7.17) maintains the diffusive feature and produces an instantaneous response,
albeit small, throughout the medium for an arbitrary thermal disturbance.

In a series of papers published in the 1990s, Tzou extended the lagging concept
to a dual-phase-lag model, as described in his monograph first published in 1997 and
the second edition in 2015 [6]. The starting point of the dual-phase-lag model is the
constitutive relationship,

q′′(r, t + τq) = −κ∇T (r, t + τT) (7.18)

The introduction of a delay time τT inEq. (7.18) implies the existence of a lag in the
temperature gradient, with respect to the heat flux driven by an internal or external
heat source. The rationale of the phenomenological equation given in Eq. (7.18)
was that, in some cases, the heat flux might be viewed as the result of a preceding
temperature gradient; in other cases, the temperature gradient might be viewed as the
result of a preceding heat flux. The heat flux and the temperature gradient can switch
roles in the relationship between “cause” and “effect.” Moreover, both lags might
occur simultaneously in certain materials under dramatic thermal disturbances, such
as during short-pulse laser heating [6, 7]. These primitive arguments should not be
scrutinized rigorously; rather, they are merely thinking instruments to help us gain an
intuitive understanding of the heat flux and temperature gradient relationship. After
applying the Taylor expansion to both sides of Eq. (7.18) and using the first-order
approximation, one immediately obtains
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q′′ + τq
∂q′′

∂t
= −κ∇T − τTκ

∂

∂t
∇T (7.19)

which is mathematically identical to Eq. (7.16b), with the substitution of τqκ0 = τTκ .
Applying the first-order approximation of Eq. (7.18), onemay end upwith q′′+(τq−
τT)

∂q′′
∂t = −κ∇T , or q′′ = −κ∇T − (τT − τq)

∂
∂t ∇T , or even q′′ + (

τq − τT
3

)
∂q′′
∂t =

−κ∇T − 2τT
3 κ ∂

∂t ∇T . These equations are merely special cases of Eq. (7.19), after
regrouping τq and τT. The only requirement for Eq. (7.19) to make logical sense is
that both τq and τT are nonnegative. The reason that a lag in time has been called
a phase lag is perhaps because the temperature field can be viewed as a Fourier
transform: T (r, t) = ∫ ∞

−∞ T̃ (r, ω)e−iωtdω, where T̃ (r, ω) is the Fourier component
at frequency ω. The actual phase lag ωτT (or ωτq for heat flux) depends on the
frequency. Equation (7.19) is mathematically more general and has some advantages
over Cattaneo’s equation. From now on, Eq. (7.17) will be called the lagging heat
equation. It is straightforward to include the source terms in the lagging heat equation,
as well as to treat thermophysical properties as temperature dependent. The solution,
however, becomes more and more difficult as the complexity increases. Numerous
studies have appeared in the literature on analytical solutions and numerical methods
[4, 25–28].

It should be noted that in Eq. (7.15), κ0 and κ1 denote the effective and elastic
conductivities, respectively, and are supposed to be nonnegative [4]. Therefore, τT
must not be greater than τq. In fact, the ratio η = κ0/(κ0 + κ1) is a direct indication
of whether thermal behavior can be described by heat diffusion (when η = 1 and
κ1 = 0) or the hyperbolic heat equation (when η = 0 and κ0 = 0). In general,
0 ≤ η ≤ 1 and the thermal process lies somewhere between the two extremes
prescribed by Fourier’s law and Cattaneo’s equation. In other words, there will be
wavelike features in the solution,which is superimposedbyan instantaneous diffusive
response throughout the medium. The diffusive response here, as well as in Fourier’s
law, does not correspond to an infinite speed of propagation. Rather, it is well justified
by quantum statistics as explained previously.

The dual-phase-lagmodel relaxes the requirement of τT ≤ τq; but in themeantime,
it produces a negative thermal conductivity component, i.e., κ1 < 0 according to
Eq. (7.15). This drawback has long been overcome by Tzou [6], who proposed a new
memory function in accordance with Eq. (7.19) as follows:

q′′(r, t) = − κ

τq

t∫
−∞

exp

(
− t − t ′

τq

)[
∇T (r, t ′) + τT

∂

∂t ′ ∇T (r, t ′)
]
dt ′ (7.20)

Equation (7.20) suggests that the heat flux depends not only on the history of
the temperature gradient but also on the history of the time derivative of ∇T . When
τT = 0, Eq. (7.20) becomesCattaneo’s equation.When τT = τq, Eq. (7.20) reduces to
Fourier’s law.However, τT > τq is theoretically permitted becauseEq. (7.20) does not
presume that the thermal conductivity is composed of an effective conductivity and
an elastic conductivity. The inclusion of τT > τq makes Eq. (7.19) more general than
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Fig. 7.3 Illustration of heat
transfer in a solid–fluid heat
exchanger, where long solid
rods are immersed in a fluid
inside a sealed pipe, which is
insulated from the outside

the Eq. (7.16a) since this allows the lagging heat equation to describe the behavior
of parallel heat conduction that can occur in a number of engineering situations.

Sometimes a microscale phenomenon can be understood easily if a macroscale
analogy can be drawn. For this reason, let us consider the solid–fluid heat exchanger
shown in Fig. 7.3. Assume that a fluid is stationary inside a sealed pipe, filled with
long solid rods. The pipe is insulated from the outside. If the rods are sufficiently thin,
we may use the average temperature in a cross section and assume that heat transfer
takes place along the x-direction only. Let us denote the temperatures of the solid
rods and the fluid by Ts(x, t) and Tf(x, t), respectively, and take their properties
κs, Cs = (ρcp)s, κf, andCf = (ρcp)f to be constant. Note that Cs and Cf are the
volumetric heat capacities. Given the rod diameter d, the number of rods N, and the
inner diameter D of the pipe, the total surface area per unit length is P = Nπ D,
and the total cross-sectional areas of the rods and the fluid are Ac = Nπd2/4 and
Af = (π/4)(D2 − Nd2), respectively. Assume the average convection coefficient is
h. The energy balance equations can be obtained using the control volume analysis
as follows:

Cs
∂Ts

∂t
= κs

∂2Ts

∂x2
− G(Ts − Tf) (7.21a)

and

C ′
f
∂Tf

∂t
= G(Ts − Tf) (7.21b)

where G = h P/Ac and C ′
f = CfAf/Ac. In writing Eq. (7.21b), we have assumed

that κf << κs and dropped the term κf
∂2Tf
∂x2 . Equations (7.21a) and (7.21b) are cou-

pled equations that can be solved for the prescribed initial and boundary conditions.
These are completely macroscopic equations governed by Fourier’s law of heat con-
duction. Nevertheless, we can combine Eqs. (7.21a) and (7.21b) to eliminate Tf and,
consequently, obtain the following differential equation for Ts:
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∂2Ts

∂x2
+ τT

∂

∂t

(
∂2Ts

∂x2

)
= 1

α

∂Ts

∂t
+ τq

α

∂2Ts

∂t2
(7.22)

where α = κs
Cs+C ′

f
, τT = C ′

f
G , and τq = CsτT

Cs+C ′
f

< τT. The same equation can also
be obtained for the fluid temperature Tf. Here, τq does not have the meaning of
relaxation time. Equation (7.22) is completely physical but should not be viewed as
a wave equation; rather, it describes a parallel or coupled heat diffusion process. The
concept of dual phase lag can still be applied. It should be noted that, due to the
initial temperature difference between the rod and the fluid, a local equilibrium is
not established at any x inside the pipe, until after a sufficiently long time.

Although no fundamental physics can be gained from this example, it can help us
appreciate that the lagging heat equation may be useful for describing the behavior
in inhomogeneous media. Minkowycz et al. [29] studied the heat transfer in porous
media by considering the departure from local thermal equilibrium and obtained
higher order differential equations similar to Eq. (7.22). On the other hand, Kaminski
[30] made an experimental attempt to determine τq in the hyperbolic heat equation,
by measuring the time interval between when the heat source was turned on and
when a temperature signal was detected. The heat source and the thermometer used
were long needles, placed in parallel and separated by a gap of 5–20 mm. What the
experiment actually measured was the average thermal diffusion speed vdif if the
cylindrical geometry and the initial conditions were properly taken into considera-
tion in the analysis. The main problem with this frequently cited paper and similar
studies in the 1990s was that most researchers did not realize that the hyperbolic
heat equation is physically unjustified to be superior to the parabolic heat equation;
instead, some researchers took the parabolic equation as a special case of the more
general hyperbolic equation [3].While many researchers have expressed doubt about
the applicability of the hyperbolic heat equation, few have realized that an instanta-
neous response is merely a mathematical solution that does not affect the application
of the diffusion equation in macroscopic problems. Electron gas and phonon gas in
solids are quantum mechanical particles, which do not have memory of any kind.
Ideal molecular gases obey classical statistics and do not have memory either, unless
the deposited energy is too intense to cause ionization or reaction.

Does the temperature wave exist? What is a temperature wave anyway? In the
early 1940s, Russian theoretical physicist Lev Landau (1908–1968) used a two-fluid
model to study the behavior of quasiparticles in superfluid helium II and predicted
the existence of a second sound, propagating at a speed between vg/

√
3 and vg,

depending on the temperature. Note that the group velocity is the same as the phase
velocity for a linear dispersion. Above the λ-point, where superfluidity is lost, the
second sound should also disappear. Landau was awarded the Nobel Prize in Physics
in 1962 for his pioneering theories of condensed matter at low temperatures. He
authored with his students a famous book series in mechanics and physics. Landau’s
prediction was validated experimentally by Russian physicists in the 1940s. The
existence of a second sound in crystals was also postulatedwhen scattering by defects
becomes minimized. However, it was not until the mid-1960s that the second sound
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associated with heat pulse propagation was observed in solid helium (below 1 K) and
other crystals at low temperatures (below 20 K). The second sound can occur only
at very low temperatures when the mean free path of phonons in the U-processes, in
which the total momentum is not conserved, is longer than the specimen size; while
at the same time, the scattering rate of the N-processes, in which the total momentum
is conserved, is high enough to dominate other scattering processes. It should be
noted that while the N-processes have a much shorter mean free path than the size
of the specimen, scattering by N-processes does not dissipate heat (see Sect. 6.5.3).
Callaway [31] simplified the BTE for phonon systems by a two-relaxation-time
approximation, which should be applicable when t > τN:

∂ f

∂t
+ v · ∂ f

∂r
= f0 − f

τ
+ f1 − f

τN
(7.23)

where τ stands for the relaxation time for theU-processes, τN is the relaxation time for
the N-processes, and f0 and f1 are the associated equilibrium distribution functions.
Guyer and Krumhansl [32] solved the linearized BTE and derived the following
equation for the phonon effective temperature:

∇2T + 9τN
5

∂

∂t
∇2T = 3

τv2a

∂T

∂t
+ 3

v2a

∂2T

∂t2
(7.24)

where va is the average phonon speed. Assuming a linear dispersion, it can be evalu-
ated using Eq. (5.10). Substituting α = τv2a/3, τq = τ, and τT = 9τN/5, we see that
Eq. (7.24) is identical to Eq. (7.17). The condition t > τN can be satisfied even at
t < τ since τN << τ . The significance of Eq. (7.24) lies in that the temperature wave
or the second sound is not universal, but rather, requires strict conditions to be met
[32]. When the condition τN << τ is satisfied, we have τT << τq and the energy
transfer is dominated by wave propagation. At higher temperatures, the scattering
rate for the U-processes is usually very high, and the N-processes contribute little
to the heat conduction or thermal resistance, as discussed in Chap. 6. Therefore, the
reason why temperature waves have not been observed in insulators at room temper-
ature is not because of the small τ , in the range from 10−10 to 10−13 s, but because of
the lack of mechanisms required for a second sound to occur. No experiments have
ever shown a second sound in metals, as suggested by the hyperbolic heat equation.

Shiomi and Maruyama [33] performed molecular dynamics simulations of the
heat conduction through (5,5) single-walled carbon nanotubes, 25 nm in length,
for several femtoseconds. They found that the wavelike behavior could be fitted
by the lagging heat equation, but could not be described by the hyperbolic heat
equation due to local diffusion. The ballistic nature of heat propagation in nanotubes
has already been explained in Chap. 5. They suspected that optical phonons might
play a major role in the non-Fourier conduction process [33]. Tsai and MacDonald
[34] studied the strong anharmonic effects at high temperature and pressure using
molecular dynamics. Their work predicted a second sound response. The coupling of
elastic and thermal effects was thought to be important. Studies on thermomechanical
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effects such as thermal expansion, thermoelasticity, and shock waves can be found
from Tzou [6] and Wang and Xu [35, 36], and will not be discussed further.

Tang and Araki [26] clearly delineated four regimes in the lagging heat equation,
according to the ratio η = τT/τq. (1) When η = 0, it is a damped wave, i.e.,
hyperbolic heat conduction. (2) When 0 < η < 1, it is wavelike diffusion, for which
wave features can be clearly seen if η << 1. (3) When η = 1, it is pure diffusion
or diffusion, i.e., Fourier’s conduction. (4) When η > 1, it is called over-diffusion,
which makes the dimensionless temperature decay faster than pure diffusion would.
In the next section, we will discuss a microscopic theory on short-pulse laser heating
of metals, which falls in the regime of over-diffusion, or parallel conduction.

7.1.3 Two-Temperature Model

With a short laser pulse, 5 fs–500 ps, free electrons absorb radiation energy and the
absorbed energy excites the electrons to higher energy levels. The “hot electrons”
move around randomly and dissipate heat mainly through electron–phonon interac-
tions. In the 1970s,Anisimov et al. [37] proposed a two-temperature model, which is a
pair of coupled nonlinear equations governing the effective temperatures of electrons
and phonons. This model was experimentally confirmed in the 1980s by researchers
at the Massachusetts Institute of Technology [38, 39]. The two-temperature model
was introduced to the heat transfer community by Qiu and Tien [40, 41] in early
1990s. In a series of papers [40–42], Qiu and Tien analyzed the size effect due to
boundary scattering and performed experiments with thin metallic films. In the two-
temperature model, it is assumed that the electron and phonon systems are each at
their own local equilibrium, but not in mutual equilibrium. The electron temperature
could be much higher than the lattice (or phonon) temperature due to absorption of
pulse heating. Therefore,

Ce
∂Te

∂t
= ∇ · (κ∇Te) − G(Te − Ts) + q̇a (7.25a)

Cs
∂Ts

∂t
= G(Te − Ts) (7.25b)

Here, the subscript e and s are for the electron and phonon systems, respectively,
C is the volumetric heat capacity, G is the electron–phonon coupling constant, and q̇a

is the source term that represents the absorbed energy rate per unit volume during the
laser pulse and drops to zero after the pulse. Heat conduction by phonons is neglected,
and thus, the subscript e is dropped in the thermal conductivity κ . Note that q′′ =
−κ∇Te, according to Fourier’s law.We have already given amacroscopic example of
parallel heat transfer, as shown in Fig. 7.3, which should ease the understanding of the
phenomenological relations given in Eqs. (7.25a), (7.25b). Equations (7.25a), (7.25b)
originate from microscopic interactions between photons, electrons, and phonons.
In order to examine the parameters in Eqs. (7.25a), (7.25b) and their dependence
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on Te and Ts, let us assume that the lattice temperature is near or above the Debye
temperature for simplicity. In such a case, electron–electron scattering and electron–
defects scattering are insignificant compared with electron–phonon scattering. It is
expected that the electron relaxation time is inversely proportional to the lattice
temperature, i.e., τ ≈ τe−ph ∝ T −1

s . The meaning of the relaxation time is that the
electron system can be assumed to be at internal local equilibriumwhen t > τ , which
is the condition for Eqs. (7.25a), (7.25b) to be applicable. Boundary scattering may
play a role for very thin films or in polycrystalline materials. An effective mean free
path can be introduced to modify the scattering rate [40, 43, 44]. The volumetric
heat capacity for the lattice or phonons is Cs = ρcp is a weak function of the lattice
temperature; the volumetric heat capacity of electrons, from Eq. (5.25), becomes

Ce = neπ
2k2

B

2μF
Te = γ Te (7.26)

Recall that Ce is relatively small compared with Cs, even at several thousand
kelvins. From simple kinetic theory, the thermal conductivity is

κ = π2nek2
B

3me
τTe ≈ κeq

Ts
Te (7.27)

where κeq is the thermal conductivity when Te = Ts, which can be set at room
temperature value. The term Te in Eq. (7.27) comes from the heat capacity. The size
effect can be included using an effective relaxation time. Theoretically, the coupling
constant can be estimated by

G = π2menev2a
6τTs

or G = π4(nevakB)2

18κeq
(7.28)

which is independent of temperature, when boundary scattering is not important,
but proportional to the square of the speed of sound in the metal. With the speed of
sound in the low-frequency limit, the dispersion is linear; thus, we do not have to
worry about the difference between the phase velocity and the group velocity. From
Eq. (5.10), we have

va = kB�D

h

(
4π

3na

)1/3

(7.29)

When boundary scattering is included, G is expected to increase from the bulk
value and depend on the lattice temperature. Using the Debye temperature and for
na = ne, we have

G = π2

12 × 3
√
4

nek2
B�2

D

τTsμF
≈ 0.518

nek2
B�2

D

τTsμF
(7.30)



362 7 Nonequilibrium Energy Transfer in Nanostructures

Fig. 7.4 Illustration (not to
scale) of ultrafast
thermoreflectance
experiments and the
associated electron and
phonon temperatures near
the surface, during a short
pulse

Typical values ofG are on the order of 1016 W/Km3, e.g.,G ≈ 2.9×1016 W/Km3

for gold. The behavior of the electron and phonon temperatures near the surface is
shown in Fig. 7.4, for a short pulse. The electron temperature rises quickly during
the pulse and begins to decrease afterward; in the meantime, the lattice tempera-
ture gradually begins to increase until the electron and lattice systems reach a ther-
mal equilibrium. Both the temperatures will go down as heat is carried away from
the surface. Note that the electron temperature can rise very high due to its small
heat capacity, but the lattice or solid may be just slightly above room temperature.
If the temperatures of the electron and lattice were the same, Eqs. (7.25a), (7.25b)
would reduce to the simple Fourier heat conduction equation. This would lead to a
prediction of a much lower temperature rise, because the heat capacity of the lattice
is much greater than that of the electrons.

Given such a short timescale and the nonequilibrium nature between electrons
and phonons locally, no contact thermometer could possibly measure the effective
electron temperature. Experiments are usually performed by the femtosecond or
picosecond thermoreflectance technique, also known as the pump-and-probemethod,
shown in the inset of Fig. 7.4. The reflectance of the surface depends on the electron
temperature Te. The experimental setup is rather involved and the details will be
given in Sect. 7.4.3. The procedure is to send a pump pulse train that is synchronized
with a probe pulse train at a fixed delay time. The electron temperature change
near the surface is related to the reflectance as a function of the delay time. Electron–
phonon coupling, boundary scattering, and thermal boundary resistance can all affect
the thermoreflectance signal. Comparing with the model described in Eqs. (7.25a),
(7.25b), alongwith the dependence of the reflectance on the electron temperature, the
microscopic characteristics can be analyzed. Ultrafast thermoreflectance techniques
have become an important thermal metrology tool for the study of electron–phonon
interactions, TBR, and thermophysical properties [40–49]. Thermionic emission can
also occur from the surface, especiallywhen the electrons are excited to higher energy
states [50].
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Similar to what has been done for Eqs. (7.21a) and (7.21b), Eqs. (7.25a) and
(7.25b) can be combined to formulate partial differential equations for either the elec-
tron or phonon temperature. Neglecting the temperature dependence of the param-
eters, one obtains the following differential equations for the electron temperature
and the phonon temperature, respectively,

∇2Te + τT
∂

∂t
∇2Te + q̇a

κ
+ τT

κ

∂ q̇a

∂t
= 1

α

∂Te

∂t
+ τ q

α

∂2Te

∂t2
(7.31a)

∇2Ts + τT
∂

∂t
∇2Ts + q̇a

κ
= 1

α

∂Ts

∂t
+ τ q

α

∂2Ts

∂t2
(7.31b)

where α = κ
Ce+Cs

, τT = Cs
G , and τq = τTCe

Ce+Cs
≈ Ce

G << τT. These equations are
identical to the lagging heat equations and can be solved with appropriate boundary
conditions. The results again belong to the regime of over-diffusion, or parallel
conduction, without any wavelike features. Cooling caused by thermionic emission
is usually neglected, and the surface under illumination can be assumed adiabatic. A
1D approximation further simplifies the problem. The solution follows the general
trends depicted in Fig. 7.4. The situationwill be completely changed if a phase change
occurs or if the system is driven to exceed the linear harmonic behavior [6, 35].

The term τq is clearly not the same as the relaxation time τ due to collision. The
resulting solution is more diffusive than wavelike. In the literature, τq is commonly
referred to as the thermalization time. The physical meaning of τq is a thermal time
constant for the electron system to reach an equilibriumwith the phonon system. For
noble metals at room temperature, the relaxation time τ is on the order of 30–40 fs,
the thermalization time τq is 0.5–0.8 ps, and the retardation time τT is 60–90 ps.
In practice, we need to consider the temperature dependence of the parameters in
Eqs. (7.25a, 7.25b), as mentioned earlier. Some numerical solutions, considering
temperature dependence, and comparisons with experiments can be found from
Smith et al. [51] and Tzou and Chiu [27]. Given that the two-temperature model
cannot be applied to t < τ , due to the limitation of Fourier’s law, one may prefer
to use a pulse width tp between 100 and 200 fs and measure the response during
several picoseconds until the thermalization process is complete, i.e., the electron
and phonon temperatures become the same. This first-stage measurement allows the
determination of the coupling constant G. In the case of a thin film, the TBR sets a
barrier for heat conduction between the film and the substrate. The time constant of
the film can range from several tens to hundreds of picoseconds. Therefore, the TBR
between the film and the substrate can be determined by continuing the observation
of thermoreflectance signals for 1–2 ns after each pulse. Fitting the curves in the
second-stage measurement allows an estimate of the TBR. Of course, one could use
a longer pulse width tp to determine the TBR. Most advanced femtosecond research
laboratories are equipped with Ti:sapphire lasers whose pulse widths range from 50
to 500 fs. Femtosecond lasers with a pulse width of 25 fs have also been used in
some studies; see for example Li et al. [52]. For tp below 50 fs, Eq. (7.25a) is not
applicable during the heating, at least for noble metals. The relaxation time for Cr
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is about 3 fs, and Eqs. (7.25a, 7.25b) can be safely applied even with tp = 10 fs.
However, the processes below 20 fs may largely involve electron–electron inelastic
scattering, thermionic emission, ionization, phase transformation, chemical reaction,
and so forth. Other difficult issues associated with the reduced pulse width include
widened frequency spectrum, increased pulse intensity, decreased pulse energy, and
so forth. A simple hyperbolic formulation cannot properly address these issues. One
must investigate the physical and chemical processes occurring at this timescale in
order to develop a physically plausiblemodel, with orwithout the concept of effective
temperatures. Femtosecond laser interactionswith dielectricmaterials have also been
extensively studied (see Jiang and Tsai [53, 54] and references therein). Recently,
Ma [55] proposed a two-parameter heat conduction model for analyzing transient
heat conduction data for dielectric materials and for thermal interfaces based on both
frequency-domain and time-domain measurements. In the two-parameter model, a
nonequilibrium (effective) temperature is defined and used to obtain a nondiffusive
phenomenological equation. A thermal conductivity (that describes diffusive thermal
transport) and a ballistic heat transfer length (that is the product of a ballistic relax-
ation time and the speed of carriers) are taken as the fitting parameters [55]. It should
be noted that the formulation of the two-parameter model differs significantly from
the ballistic-diffusion heat conduction equations proposed by Chen [56] in 2001.

Let us reiterate some major points presented in this section: (a) Fourier’s law,
which is limited to local-equilibrium conditions, does not predict an infinite speed
of heat diffusion, nor does it violate the principle of causality [3]. An instantaneous
response at a finite distance is permitted by quantum statistics although the prob-
ability of such a response sharply approaches zero as the distance increases. An
instantaneous temperature change or heat flux at a precise location is not physically
possible. Only under the continuum assumption, we can use the concept of sudden
change of temperature at the boundary. (b) Heat diffusion is usually a very slow pro-
cess, compared with the speed of sound. The temperature wave, or the second sound,
has been observed only in helium and some very pure dielectric crystals, at low tem-
peratures, where the U-processes are ballistic and the N-processes have a very high
scattering rate. (c) Both Fourier’s law and Cattaneo’s equation can be derived from
the BTE under slightly different approximations [17]. Fourier’s law is not an approx-
imation of Cattaneo’s equation and, hence, Cattaneo’s equation is not more general
than Fourier’s law. Nevertheless, the introduction of an additional parameter (the
relaxation time) in Cattaneo’s equation may allow the hyperbolic heat equation to
better fit some experiments in inhomogeneous mediumwith coupled phenomena [4].
(c) All kinds of non-Fourier equations are based on some sort of effective tempera-
ture, which are not measurable using a contact thermometer. The principle of contact
thermometry is based on the assumption of thermodynamic equilibrium according
to the zeroth law of thermodynamics. The concept of coldness or hotness should be
abandoned in reference to nonequilibrium energy transport processes. Noncontact
thermometry, on the other hand, relies on certain physical responses to deduce the
equilibrium temperature or the effective temperature of the system being measured.
(d) The memory hypothesis and the lagging argument are phenomenological mod-
els that may be useful in the study of certain nonequilibrium or parallel conduction
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processes, but are not universally applicable. These and similar equations must be
derived and applied on a case-by-case basis. It is important to understand the micro-
scopic processes occurring at the appropriate length scales and timescales in order
to develop physically reliable models.

7.2 Heat Conduction Across Layered Structures

In Sect. 5.5.2, we have given a detailed discussion on the heat conduction along
a thin film using the BTE, under the local-equilibrium assumption. An effective
thermal conductivity can be used after taking proper account of boundary scattering.
The heat conduction problem can thus be well described by Fourier’s law using the
effective thermal conductivity. As mentioned earlier, for heat transfer across a film
or a superlattice, the condition of local equilibrium breaks down in the acoustically
thin limit. The local distribution function cannot be approximated by an equilibrium
distribution function at any temperature. Conventional Fourier’s law breaks down
because it relies on the definition of an equilibrium temperature and the existence of
local equilibrium. It is natural to ask the following two questions. (1) Is it possible
for us to define an effective temperature? (2) Can Fourier’s law still be useful in the
nonequilibrium regime, according to the effective temperature? This section presents
the equation of phonon radiative transfer (EPRT) and the solution of EPRT for thin
films under the relaxation time approximation. A resistance network representation
is used to illustrate how Fourier’s law of heat conduction may be applied inside
the medium, at least approximately, with temperature-jump boundary conditions.
Because of the importance of understanding the boundary conditions, this section
also discusses models of thermal boundary resistance (TBR) in layered structures.

7.2.1 Equation of Phonon Radiative Transfer (EPRT)

The phonon BTE under the relaxation time approximation, in a region with heat
generation, may be written as

∂ f

∂t
+ v · ∂ f

∂r
= f − f0

τ(ω, T )
+ S0 (7.32)

where the second term S0 on the right-hand side is a source term to model the
generation of phonons due to heat dissipation, such as electron–phonon scattering.
Phonon–phonon scattering is already included in the first term on the right-hand side.
The scattering rate may also include phonon-defect scattering. Many studies have
treated phonon transport in analogy to thermal radiative transfer [19, 20, 57–67].
In the following, a simplified case is used to illustrate how to model heat transfer
across a thin film as well as multilayer structures. Let us consider a film of thickness
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Fig. 7.5 Schematic of
phonon radiative transfer
inside a dielectric medium
between two walls
maintained at temperatures
T1 and T2. These walls are
like heat reservoirs, but their
surfaces are not necessarily
blackbodies

L between two boundaries without any internal source. The phonon BTE becomes

∂ f

∂t
+ vx

∂ f

∂x
= f0 − f

τ
(7.33)

Realizing the nonequilibrium distribution function may be anisotropic, let us
define

Iω(x,�, t) = 1

4π

∑
P

vg�ω f D(ω) (7.34)

where P is the index for phonon mode or polarization and D(ω) is the DOS. Equa-
tion (7.34) gives the phonon intensity, which is the energy transfer rate in the direction
� from a unit area, per unit frequency and per unit solid angle. The geometry of the
problem and illustration of the intensity is given in Fig. 7.5. As done before, let vg
and vp be the group velocity and phase velocity, respectively. Note that vx = vg cos θ ,
where θ is the polar angle. Substituting Eq. (7.34) into Eq. (7.33), we obtain

1

vg

∂ Iω
∂t

+ μ
∂ Iω
∂x

= I ∗
ω − Iω
vgτ

(7.35)

whereμ = cos θ and I ∗
ω(ω, T ) is the intensity for equilibriumdistribution that is inde-

pendent of the direction. Equation (7.35) is called the equation of phonon radiative
transfer (EPRT) [19, 61]. Comparing the EPRT with the ERT given in Eq. (2.53),
we see that the scattering terms are neglected in the EPRT, and the emission and
absorption are replaced by the phonon collision terms. The phonon mean free path
� = vgτ is also called the phonon penetration depth (see Example 4.2). The inverse
of the penetration depth (1/�) corresponds to the absorption coefficient in the ERT.
Conversion to the EPRT allows well-established theories and numerical techniques,
developed in radiative transfer, to be applied to solve Eq. (7.35) and to interpret the



7.2 Heat Conduction Across Layered Structures 367

physical significance of the solutions [68, 69]. If τ does not depend on frequency,
we are dealing with a gray medium.

If the phononKnudsen number K n = �/L << 1, thenmost phononswill collide
with phonons or defects inside the medium. This regime is called the acoustically
thick limit, in analogy to the optically thick limit for photons. This is also known as the
macroscale regimeor the local-equilibrium situation.Unless at a very short timescale,
when a sudden local disturbance occurs,we expect that Fourier’s law is applicable and
the heat conduction is by diffusion. On the other hand, if K n = �/L >> 1, phonons
originated from one boundary will most likely reach the other boundary without
colliding with other phonons or defects inside the medium. This is the ballistic
regime, corresponding to free molecule flow for molecular gases. This regime is
called the acoustically thin limit, where the phonon distribution inside the medium
cannot be characterized by an equilibrium distribution function if the walls are at
different temperatures, even in the steady state. Because theBTE ismore fundamental
than Fourier’s law, it is applicable to both limiting cases as well as those between the
two limits. It would be very useful if a macroscopic model can also be developed to
bridge these two limits. Some basic formulations are given in the following.

Note that I ∗
ω is the equilibrium distribution function, which is independent of the

direction. Using Bose–Einstein statistics, we have

I ∗
ω(ω, T ) =

∑
P

vg�ω

e�ω/kBT − 1

k2

(2π)3

dk

dω
=

∑
P

�ω3

8π3v2p(e�ω/kBT − 1)
(7.36)

This equilibrium distribution is also the distribution function for blackbody radia-
tion with vp replaced by the speed of light. Integrating Eq. (7.36) over all frequencies
gives the total intensity for all three phonon modes:

I ∗(T ) =
∞∫
0

I ∗
ω(ω, T )dω = 3k4

BT 4

8π3�3v2a

∞∫
0

x3dx

ex − 1
= σ ′

SBT 4

π
(7.37)

where σ ′
SB = π2k4

B/(40�
3v2a ) is the phonon Stefan–Boltzmann constant, and va is the

average phase velocity of the two translational and one longitudinal phonon modes,
defined according to Eq. (5.7). Let us consider a solid at temperatures higher than
the Debye temperature. The integration can be carried out to an upper limit ωm with
xm = �ωm/(kBT ) << 1. From the discussion following Eq. (5.13), one can easily
show that

I ∗(T ) =
ωm∫
0

I ∗
ω(ω, T )dω = ω3

mkB
8π3v2p

T (7.38)

This integration is a good approximation, even at temperatures slightly lower
than the Debye temperature. When phonons are at equilibrium, the energy flux is
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π I ∗, which is obtained by integrating I ∗cosθ d� over the hemisphere. According to
Eq. (4.12), the energy density can be expressed as

u(T ) = 4π

vg
I ∗(T ) (7.39)

Note that the volumetric heat capacity C = du/dT when u is expressed in terms
of energy density. We therefore obtain the low-temperature relation of the specific
heat, i.e., the T 3 law, and the high-temperature relation of the specific heat, i.e., the
Dulong–Petit law, as already derived in Sect. 5.1.2. It is important to pay attention
to the meaning of C in the kinetic expression of thermal conductivity:

κ = 1

3
Cv2gτ (7.40)

At very low temperatures, when T << �D, C is the volumetric heat capacity of
all phononmodes combined because only low-frequencymodes or acoustic branches
contribute to the specific heat. However, at temperatures close to the Debye temper-
ature, phonons in the optical branches contribute little to the thermal conductivity,
as already discussed in Chap. 6. The relative contributions of LA and TA branches
are also temperature dependent. The Debye temperature for most materials, except
diamond, is not much higher than room temperature (see Table 5.1). Therefore, one
may treat the volumetric heat capacity C as a fraction of the volumetric specific heat
in dealing with Si, GaAs, Ge, ZnS, or GaN, near room temperature. Also, we must
use the appropriate upper limit in the integral in calculating the total energy transfer
when applying EPRT. The heat flux per unit frequency interval can thus be expressed
as

q ′′
ω =

∫
4π

Iωcosθd� = 2π

1∫
−1

Iωμdμ (7.41)

Energy balance at any given location requires that the incoming flux from all
directions be the same as the outgoing flux toward all directions, for both steady and
transient states, as illustrated in Fig. 7.5. This is the criterion for radiative equilibrium
[68, 69], which can be expressed as follows [19]:

4π

ωm∫
0

1

�ω

I ∗
ωdω = 2π

ωm∫
0

1∫
−1

1

�ω

Iωdμdω (7.42)

where �ω is the mean free path at ω, 4π on the left-hand side came from the inte-
gration over all solid angles in a sphere, and 2π on the right-hand side came from
integration over the azimuth angles. For a gray medium,�ω = vaτ is independent of
the frequency. Equation (7.42) gives a definition of an effective phonon temperature



7.2 Heat Conduction Across Layered Structures 369

T ∗ based on the equilibrium distribution: I ∗
ω(T ∗, ω). An equivalent expression can

be obtained based on the energy density, viz.

u(T ∗) − u0 =
∑

P

∑
K

�ω f0(T
∗, ω,�) =

∑
P

∑
K

�ω f (ω,�) (7.43)

where u0 is a reference value. Note that the spectral component (integrand) on both
sides of Eq. (7.42) may not be equal at all frequencies. Even for a gray medium, in
general, one cannot deduce the following from Eq. (7.42):

I ∗
ω(T ∗, ω) = 1

2

1∫
−1

Iωdμ (7.44)

The physical significance of Eq. (7.44) is that the angular average of the intensity,
at a given location and time, can be described by an equilibrium intensity that satisfies
the equilibrium distribution function at a certain temperature. As a matter of fact,
Eq. (7.44) is equivalent to the local-equilibrium approximation [70]. It can be shown
that the local-equilibrium approximation is valid only in the acoustically thick limit
or the diffusive heat conduction regime.

Example 7.3 For a dielectric medium of thickness L = 0.01�, the mean free path
� is independent of wavelength. The boundary or wall temperatures are T1 = 50 K
at x = 0 and T2 = 100 K at x = L . Both the temperatures are much lower than the
Debye temperature. Assume that reflection at the boundaries is negligible, i.e., the
walls can be modeled as blackbodies. At steady state, express the heat flux through
the medium and find the effective photon temperature distribution T ∗(x).

Solution Because K n = �/L >> 1, the medium is said to be in the acoustically
thin limit, in which phonons travel from one wall to another ballistically with little
chance of being scattered by other phonons or defects inside themedium.The forward
intensity can be expressed as I +

ω = I ∗
ω(T1, ω) for μ > 0, and the backward intensity

I −
ω = I ∗

ω(T2, ω) for μ < 0. From Eq. (7.41), we have

q ′′
x =

∞∫
0

q ′′
ωdω = 2π

∞∫
0

1∫
0

(I +
ω − I −

ω ) μdμdω = σ ′
SB(T 4

1 − T 4
2 ) (7.45)

For heat conduction, the above equation is called the Casimir limit [71]. To
numerically evaluate this equation, we need data for va. From Eq. (7.42), we have

σ ′
SB(T ∗)4 = π

2

ωm∫
0

(I +
ω + I −

ω )dω = 1

2

(
σ ′
SBT 4

1 + σ ′
SBT 4

2

)
(7.46)
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We obtain T ∗ = 85.37 K, which is the effective temperature inside the medium
0 < x < L and is independent of x. Since T (0) = T1 and T (L) = T2 are the boundary
conditions, there is a temperature jump at each boundary similar to Fig. 4.12b in the
free molecule regime for gas conduction. If the walls are not black but diffuse-gray
with emissivities ε1 and ε2, similar to Eq. (2.52), the heat flux becomes

q ′′
x = σ ′

SBT 4
1 − σ ′

SBT 4
2

1/ε1 + 1/ε2 − 1
(7.47)

Comments: (1) Taking diamond with va = 12, 288 m/s as an example, we have
σ ′
SB = 50.63 W/m2 K4. The magnitude of the heat flux in the ballistic limit for

T1 = 50 K and T1 = 100 K is 4.75 GW/m2, which is quite high. Note that the mean
free path of diamond in this temperature region is around 1.3μm [19, 70]. Thus when
K n = 100, the thickness is only 13 nm. If an effective diffusive thermal conductivity
is used, κeff = 1.23 W/mK,which ismuch smaller than the bulk thermal conductivity
of diamond! In general, ballistic transport in nanostructures results in a restriction to
the heat flow as compared with diffuse transport with the same thermal conductivity.
(2) Figure 7.6 shows the phonon intensity spectra at T1, T2, and T ∗ for diamond,
calculated from Eq. (7.36) for the sum of the three phonon modes taking the average
velocity va in place of vp. We notice immediately that Eq. (7.44) cannot be satisfied
in the acoustically thin limit. Let us designate

Iavg(ω) = 1

2

1∫
−1

Iωdμ = 1

2
(I +

ω + I −
ω ) (7.48)

Fig. 7.6 Phonon intensity
spectra for equilibrium
distribution at the wall
temperatures T1 and T2, and
the effective temperature T ∗.
The intensity calculated
based on Eq. (7.48) is also
plotted for comparison. Note
that Iavg(ω) may be
considered as a
nonequilibrium distribution
in terms of the phonon
intensity



7.2 Heat Conduction Across Layered Structures 371

which is also plotted in Fig. 7.6. It can be seen that I ∗
ω(ω) �= Iavg(ω) in general. It is

well known that a monochromatic temperature can be defined and is useful in radi-
ation thermometry (refer to Sect. 8.2 for further discussion). Bright and Zhang [70]
used the concept of monochromatic phonon temperature to study entropy generation
in a thin film from the diffusive regime to the ballistic regime.

7.2.2 Solution of the EPRT

The two-flux method is very helpful in developing a solution of the EPRT in planar
structures, as shown in Fig. 7.5. The equations for the forward and backward inten-
sities, denoted respectively by superscripts (+) and (−), can be separated. Assuming
the medium is gray, at steady state, we can rewrite the EPRT given in Eq. (7.35) as
follows [68, 69]:

μ
∂ I +

ω

∂x
= I ∗

ω − I +
ω

�
,when 0 < μ < 1 (7.49a)

μ
∂ I −

ω

∂x
= I ∗

ω − I −
ω

�
,when − 1 < μ < 0 (7.49b)

If we further assume that the walls are diffuse and gray, then the boundary
conditions become

T (0) = T1 and T (L) = T2 (7.50)

Thus,

I +
ω (0, μ) = ε1 I ∗

ω(T1) + (1 − ε1)I −
ω (0, μ) (7.51a)

I −
ω (L , μ) = ε2 I ∗

ω(T2) + (1 − ε2)I +
ω (L , μ) (7.51b)

The solutions of Eqs. (7.49a) and (7.49b) can be expressed as follows:

I +
ω (x, μ) = I +

ω (0, μ) exp

(
− x

�μ

)
+

x∫
0

I ∗
ω(ξ) exp

(
− x − ξ

�μ

)
dξ

�μ
forμ > 0

(7.52a)

and

I −
ω (x, μ) = I −

ω (L , μ) exp

(
L − x

�μ

)
−

L∫
x

I ∗
ω(ξ) exp

(
− x − ξ

�μ

)
dξ

�μ
forμ < 0

(7.52b)
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In Eq. (7.53), the first term represents intensity originated from the left surface,
after being attenuated, and the second term is the contribution of generation that is
subject to attenuation as well. Equation (7.54) is viewed reversely for intensity from
the right to the left. The spectral heat flux, defined in Eq. (7.41), can be obtained

q ′′
ω = 2π

1∫
0

[
I +
ω (0, μ) exp

(
− x

�μ

)
− I −

ω (L ,−μ) exp

(
− L − x

�μ

)]
μdμ

+ 2π

x∫
0

I ∗
ω(ξ)E2

(
x − ξ

�

)
dξ

�
− 2π

L∫
x

I ∗
ω(ξ)E2

(
ξ − x

�

)
dξ

�
(7.53)

where Em(x) = ∫ 1
0 ηm−2e−x/η dη is again the mth-order exponential integral. If the

surface is diffuse, then we have

q ′′
ω = 2π I +

ω (0)E3

( x

�

)
− 2π I −

ω (L)E3

(
L − x

�

)

+ 2π

x∫
0

I ∗
ω(ξ)E2

(
x − ξ

�

)
dξ

�
− 2π

L∫
x

I ∗
ω(ξ)E2

(
ξ − x

�

)
dξ

�
(7.54)

Energy balance requires that the derivative of the radiative heat flux be zero, viz.

dq ′′
x

dx
=

ωm∫
0

∂

∂x
q ′′

ω(x, ω)dω = 0 (7.55)

This equation is another form of radiative equilibrium since radiative equilibrium
means that the divergence of the radiative heat flux to be zero or ∇ · q′′ = 0.
Differentiating Eq. (7.54) yields

∂q ′′
ω

∂x
= −2π

�
I +
ω (0)E2

( x

�

)
− 2π

�
I −
ω (L)E2

(
L − x

�

)

− 2π

�

L∫
0

I ∗
ω(ξ)E1

( |x − ξ |
�

)
dξ

�
+ 4π

�
I ∗
ω(x) (7.56)

In radiative transfer, we call J1 = ∫
π I +

ω (0)dω and J2 = ∫
π I −

ω (L)dω the total
radiosities at surfaces 1 and 2, respectively, and eb(T ) = ∫

π I ∗
ωdω the total black-

body emissive power. Substituting Eq. (7.56) into Eq. (7.55), after performing the
integration, we obtain
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2eb(T (x)) = J1E2

( x

�

)
+ J2E2

(
L − x

�

)
+

L∫
0

eb(T (ξ))E1

( |x − ξ |
�

)
dξ

�
(7.57)

This is the radiative equilibrium condition and it is always valid if there is no
internal generation. Note that Eq. (7.56) becomes zero for all frequencies only in the
diffusive limit.

Example 7.4 Find the temperature distribution, heat flux, and thermal conductivity
for a gray medium with diffuse-gray surfaces in the acoustically thick limit, i.e.,
K n << 1; under two extreme conditions: (i) T1, T2 << �D and (ii) T1, T2 > �D.

Solution In the thick limit, the first two terms in Eq. (7.53) can be dropped as long
as x is not too close to either surface. Applying the first-order Taylor expansion
I ∗
ω(x) = I ∗

ω(ξ) + dI ∗
ω

dx (x − ξ) + . . . and letting z = x−ξ

�
in the third and fourth terms,

we obtain

q ′′
ω = −4π�

∂ I ∗
ω

∂x

∞∫
0

zE2(z)dz = −4π

3
�

∂ I ∗
ω

∂x
(7.58)

Since
∫ ∞
0 zE2(z)dz = 1/3. In fact, this equation applies to everywhere inside the

medium because the spectral heat flux is continuous in the acoustically thick limit.
Integrating Eq. (7.58) over the frequencies of interest, we see that under condition
(i):

q ′′
x = −16σ ′

SBT 3

3
�
dT

dx
,when T << �D (7.59)

This is nothing but a heat diffusion equation if we define the thermal conductivity
as

κ(T ) = 16

3
σ ′
SBT 3� (7.60)

Comparing Eq. (7.60) with Eq. (7.40), κ(T ) = 1
3Cvg�, we see that Cvg =

16σ ′
SBT 3 in this case and it is consistent with the T 3 law for the specific heat at

low temperatures. In the thick limit, the temperature distribution is continuous at the
wall, i.e., T (0+) = T (0) = T1 and T (L−) = T (L) = T2. Furthermore, the radiosity
at the wall becomes the blackbody emissive power, even though the surface is not
black. Hence, we can integrate Eq. (7.59):

L∫
0

q ′′
x dx = 4�

3
σ ′
SB

T2∫
T1

4T 3dT (7.61a)
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which gives

q ′′
x = 4

3
K n

(
σ ′
SBT 4

1 − σ ′
SBT 4

2

)
(7.61b)

as well as the temperature distribution:

T (x) =
[
T 4
1 − x

L

(
T 4
1 − T 4

2

)]1/4
(7.62)

This distribution is linear in terms of the fourth power of temperature [69, 70].
From the definition of thermal resistance q ′′

x = (T1 − T2)/R′
t , we have

R′′
t = 3(T1 + T2)(T 2

1 + T 3
2 )

4σ ′
SBK n

(7.63)

Under condition (ii), when the temperature is greater than the Debye temperature,
we have

q ′′
x = − ω3

mkB
6π2v2p

�
dT

dx
when T > �D (7.64)

Compared with Eq. (7.40), we obtain

Cvg = ω3
mkB

2π2v2p
(7.65)

This suggests that the specific heat is independent of temperature in the high-
temperature limit as expected. A properωm should be chosen so that only propagating
phonons or acoustic phonons are considered [61]. Assuming that the temperature
difference is small so that we can approximate the thermal conductivity as a constant,
we have

q ′′
x = 1

3
CvgK n(T1 − T2) (7.66)

The thermal resistance becomes R′′
t = 3/(CvgK n), which increases as L

increases. The temperature distribution is linear. One should realize that the scat-
tering rate increases with temperature and depends on the frequency, due to phonon–
phonon scattering. If we look at the radiative equilibrium condition again, by assum-
ing T1 > T2, we see that I +

ω > I ∗
ω > I −

ω . Therefore, local equilibrium is not a
stable-equilibrium state. In the thick limit, the difference between I +

ω and I −
ω is

caused by the spatial variation of I ∗
ω as can be clearly seen from Eqs. (7.52a) and

(7.52b). Hence, the local-equilibrium approximation given in Eq. (7.44) is valid.



7.2 Heat Conduction Across Layered Structures 375

Comment. In the acoustically thin limit under the condition (ii) that T > �D, by
using the linear temperature relationship given in Eq. (7.38), we can modify Eq.
(7.45) to the following,

q ′′
x = 1

4
Cvg(T1 − T2) (7.67)

Here, we have used the definition of Eq. (7.65). The effective thermal conductivity
in the ballistic limit: κeff = 3κb/(4K n), where κb is the bulk or diffusive thermal
conductivity. It can be seen that in the ballistic regime, the thermal conductivity is
inversely proportional to K n.

Although no closed form exists for the solution of the ERT between the thick
and thin limits, a number of approximation techniques and numerical methods can
be used to provide satisfactory solutions, such as the discrete ordinates method (SN

approximation) and the spherical harmonics method (PN approximation) [69]. It
is important to see that, except in the thick limit, energy transfer occurs inside the
medium in twoways: one is through exchangewith thewalls, and the other is through
diffusion. For this reason, a ballistic-diffusion approximation has been developed
to solve the EPRT [56]. In general, the temperature distribution looks like that in
Fig. 4.12b if T2 is comparable to the Debye temperature. If T1 << �D, then the
temperature distribution can be plotted in terms of T 4 so that the distribution looks
more or less linear. There exists a temperature jump such that T (0+) �= T (0) and
T (L−) �= T (L), except in the thick limit. Understanding that the temperature is
only an effective temperature and given such a temperature distribution, one may
assume that there is a thermal resistance at each boundary and an internal thermal
resistance, which may be described by Fourier’s heat conduction [64]. For thermal
radiative transfer in the absence of heat conduction, there exists a radiation slip or
radiation jump at the boundary, unless the medium is optically thick. Without a
participating medium, photons do not scatter on itself to dissipate heat or transfer
heat by diffusion. This is a distinction between photons and phonons. Radiation
slip is manifested by a discontinuous change of the intensity at the boundary. The
temperature in the medium adjacent to the wall differs from the surface temperature.
Such a temperature jump does not exist in classical Fourier’s heat conduction theory;
however, both velocity slip and temperature jump have already been incorporated
in microfluidics research, as discussed in Chap. 4; see Eq. (4.99). The temperature-
jump concept was first applied in the study of heat conduction in rarefied gases over
100 years ago. A straightforward approach for phonon transport is to sum up the
thermal resistances in the acoustically thin and thick limits. The heat flux at very low
temperatures can be expressed as

q ′′
x = 4�

3L

σ ′
SB(T 4

1 − T 4
2 )

1 +
(

1
ε1

− 1
2 + 1

ε2
− 1

2

)
4K n
3

(7.68)
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Here, we separately write
(

1
ε1

− 1
2

)
and

(
1
ε2

− 1
2

)
to emphasize the thermal resis-

tance due to radiation slip at each boundary. In the thick limit, the temperature jump
approaches zero as K n → 0. Basically, Eq. (7.68) reduces to Eqs. (7.47) and (7.61b),
in the extreme cases. If the walls can be treated as blackbodies with ε1 = ε2 = 1,
and the temperature difference between T1 and T2 is small, we can approximate the
heat flux as follows:

q ′′
x = κb

L

	T

1 + 4K n/3
= κeff

	T

L
(7.69)

where 	T = T1 − T2 << T2 < T1, the bulk thermal conductivity κb(T ) =
16
3 σ ′

SBT 3�, and the effective conductivity of the film is

κeff = κb

1 + 4K n/3
(7.70)

At relatively high temperatures close to the Debye temperature, from Eqs. (7.66)
and (7.67), we can write

q ′′
x = κb

L

T1 − T2

1 +
(

1
ε1

+ 1
ε2

− 1
)
4K n
3

= κeff
T1 − T2

L
(7.71)

where κb(T ) = 1
3Cvg�. Equation (7.71) gives the same conductivity ratio κeff/κb as

in Eq. (7.70) for blackbody walls. These effective thermal conductivities are on the
same order of magnitude as we have derived in Sect. 5.5.5, based on simple geomet-
ric arguments and Matthiessen’s rule for the mean free path given in Eq. (5.128). In
previous chapters, however, we did not elaborate in detail on the nature of nonequi-
librium and the necessity of defining an effective temperature. It is interesting that
different schools of thought can result in rather consistent results. The heat diffusion
equation per se cannot tell us the cause of a temperature jump or how to evaluate
it. The phonon BTE enables us to explore the microscopic phenomena and helps to
evaluate the parameters and the properties. The microscopic understanding and the
macroscopic phenomenological equations can work together to provide an effective
thermal analysis tool.

The results presented previously are consistent with the detailed derivation of the
temperature jump or the radiation slip, originally formulated by Deissler [72], for
thermal radiation in gases not too far from the optically thick limit. Nevertheless,
the expressions given here can be approximately applied between the diffusion and
ballistic extremes [70]. It should be noted thatwhen the temperature jump is treated as
a thermal resistance at the boundary, Fourier’s law can be used for the heat conduction
inside the medium with bulk thermal conductivity. This is very different from heat
conduction along the film.

While the meaning of emissivity for optical radiation is very clear, a question still
remains as how to interpret the boundary conditions in the case of phonon conduction,
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Fig. 7.7 Temperature distribution in a multilayer structure, with thermal boundary resistance, and
the thermal resistance network representation. Here, R′′

i is the internal resistance in the ith layer
due to heat conduction, and R′′

i j is the thermal boundary resistance between the ith and jth media.
Two temperatures are needed to specify the effective temperature of different media at the interface

since it is not easy to perceive the concepts of phonon emission and emissivity. If a
multilayer structure is considered, we need to better understand the reflection and the
transmission of phonons at the interfaces between dissimilar materials. A three-layer
structure is shown in Fig. 7.7 to illustrate the temperature distribution in a multilayer
structure. Depending on the temperature range, we may express the internal thermal
resistance using Fourier’s law, i.e., R′′

i = Li/κi , where κi is the effective thermal
conductivity of the ith layer. For the thermal resistance at the interface inside the
layered structures, we could replace the emissivity with a transmissivity �i j such
that [64]

R′′
i j = 4�i

3κi

(
1

�i j
− 1

2

)
+ 4� j

3κ j

(
1

� j i
− 1

2

)
(7.72)

At the boundaries, we can still use R′′
H1 = 4�1

3κ1

(
1
ε1

− 1
2

)
and R′′

3L = 4�3
3κ3

(
1
ε3

− 1
2

)
.

The heat flux can be estimated by q ′′
x = (TH − TL)/R′′

tot, where R′′
tot is the sum

of all thermal resistances. The effective thermal conductivity of the whole layered
structure becomes κeff = L tot/R′′

tot. The details were presented by Chen and Zeng
[64], who further considered nondiffuse surfaces and defined equivalent equilibrium
temperatures. The assumption is that the deviation from the thick limit is not signif-
icant. If we are dealing with the ballistic regime, we might need to consider phonon
wave effects as well as the quantum size effect. Recently, Maldovan’s group has per-
formed comprehensive studies of phonon transport across superlattices considering
surface roughness and various length scales [73, 74]. The thermal resistance network
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method, however, cannot be easily extended tomultidimensional problems or to tran-
sient heating by a localized heat source. Statistical models (such as the Monte Carlo
method) or atomistic simulations (such as the atomistic Green’s function method or
molecular dynamics) are necessary. Therefore, the extension of Fourier’s law for 1D
nonequilibrium heat transfer should be considered only as a special case. It is intrigu-
ing to apply the same approach to electron systems for the study of both electrical
conductivity and thermal conductivity of metallic solids, as well as metal-dielectric
multilayer structures. Further discussion on the classical and advanced models of
thermal boundary resistance is given in the next section.

7.2.3 Thermal Boundary Resistance (TBR)

Thermal resistance at the interface between dissimilar materials is very important
for heat transfer in heterostructures. Let us first clarify the difference between ther-
mal contact resistance and thermal boundary resistance (TBR). The former refers to
the thermal resistance between two bodies, usually with very rough surfaces whose
root-mean-square roughness σrms is greater than 0.5 μm, brought or joined together
mechanically. For thermal contact resistance, readers are referred to a recent com-
prehensive review by Yovanovich [75]. Originally, TBR refers to the resistance at the
interface between two solids or between a liquid and a dielectric at low temperatures.
Evenwhen thematerials are in perfect contact with each other, reflections occurwhen
phonons travel toward the boundary, because of the difference in acoustic properties
of adjacent materials. In practice, the interface can be atomically smooth, or with a
roughness ranging from several tenths of a nanometer to several nanometers. The
thermal resistance between a solid material and liquid helium is called the Kapitza
resistance, first observed by the Russian physicist and 1978 Nobel Laureate Pyotr
Kapitza, in the 1940s. The existence of a thermal resistance gives rise to a temper-
ature discontinuity at the boundary and has been modeled, based on the acoustic
mismatch model (AMM). TBR exists between two dielectrics as well as between
a metal and a dielectric. In a thin-film structure, an interface is often accompanied
by the formation of an intermediate layer of mixed atoms. An extensive review of
earlier studies can be found in the work of Swartz and Pohl [59]. Stoner and Maris
[76] used a picosecond thermoreflectance technique to measure the TBR for several
metal-dielectric interfaces from 50 to 300 K and observed anomalously large con-
ductance that can be understood as due to the anharmonicity of the metal, resulting
in an inelastic channel that facilitated the thermal transport. Phelan and cowork-
ers [77–79] performed extensive research and provided literature survey of TBR of
high-temperature superconductors in both the normal and superconducting states,
for applications in superconducting electronics and radiation detectors.

Little [60] showed that the heat flux across the boundary of a perfectly joined inter-
face between two solids is proportional to the difference in the fourth power of tem-
perature on each side of the interface. This can be understood based on previous dis-
cussions of phonon radiative transfer and blackbody radiation. Consider longitudinal
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Fig. 7.8 Schematic of
phonon transport across an
interface between two
semi-infinite media, each at a
thermal equilibrium. Note
that arrows at the end denote
incidence from the left side,
while arrows in the middle
denote incidence from the
right side

phononmodes that follow the linear dispersion in aDebye crystal, and assume that the
interface is perfectly smooth. At any given frequency, the transmission coefficients
can be written as follows [60, 77]:

τ12 = τ21 = 4ρ1ρ2vl1vl2 cos θ1 cos θ2(
ρ1vl1 cos θ2 + ρ2vl2 cos θ1

)2 (7.73)

where subscripts 1 and 2 denote the media 1 and 2, respectively, ρ is the density, vl is
the propagation speed of longitudinal phonons, and θ is the polar angle, as illustrated
in Fig. 7.8. The scattering is assumed to be purely elastic since the phonon frequency
is conserved. An analog of Snell’s law can be written as follows:

1

vl1

sinθ1 = 1

vl2

sinθ2 (7.74)

Assume vl1 > vl2, for incidence from medium 2 to 1, there exists a critical angle
θc = sin−1(vl2/vl1), beyond which all phonons will be reflected. Due to the boundary
resistance, there will be a temperature difference across the interface. By assuming
that the phonons are at equilibrium on either side, the heat flux from medium 1 to 2
can be expressed as follows:

q ′′
1→2 = 1

4π

ωm∫
0

2π∫
0

π/2∫
0

�ωvl1 f1(ω, T1)τ12D(ω) cos θ1 sin θ1dθ1dφ1dω (7.75)

If the distribution function is isotropic over the hemisphere, we have

q ′′
1→2 = 1

4

�12

v2l1

ωm∫
0

�ωv3l1 f1(ω, T1)D(ω)dω (7.76)

where �12 can be viewed as the hemispherical transmissivity that is expressed as
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�12 = 1

π

2π∫
0

π/2∫
0

τ12 cos θ1 sin θ1dθ1dφ = 2

π/2∫
0

τ12 cos θ1 sin θ1dθ1 (7.77)

It should be noted that

�21 = 2

θc∫
0

τ21 cos θ2 sin θ2dθ2 = v 2
l2

v 2
l1

�12 (7.78)

One can prove Eq. (7.78) by noting that τ21 = τ12 and using Eq. (7.74) and its
derivative, i.e., v−1

l1 cosθ1dθ1 = v−1
l2 cosθ2dθ2. The difference between �21 and �12

can be explained as due to total internal reflection since for incidence from medium
2 to 1, portion of the photons will be totally reflected if the incidence angle exceeds
the critical angle. For the Debye density of states, we have

1

4π
νl�ω f (ω, T )D(ω)dω = �ω3

8π3v2l (e
�ω/kBT − 1)

(7.79)

Therefore, the net heat flux across the interface becomes

q ′′
x = q ′′

1→2 − q ′′
2→1 = 1

4

�12

v2l1

ωm∫
0

�ω
[
v3l1 f1(ω, T1) − v3l2 f2(ω, T1)

]
D(ω)dω (7.80a)

or

q ′′
x = �12

v2l1

k4
B

8π2�3

⎛
⎝T 4

1

xm,1∫
0

x3dx

ex − 1
− T 4

2

xm,2∫
0

x3dx

ex − 1

⎞
⎠ (7.80b)

In the low-temperature limit, we obtain

q ′′
x = �12

v2l1

π2k4
B

120�3

(
T 4
1 − T 4

2

)
(7.81)

After replacing v−2
l1 with

∑
j v−2

j1 = v−2
l1 + 2v−2

t1 , i.e., one longitudinal and two
transverse phonon modes, we obtain

q ′′
x = π2k4

B

120�3

(
T 4
1 − T 4

2

)
�12

∑
j

v−2
j1 (7.82)

The TBR can now be obtained as R′′
b = (T1 − T2)

/
q ′′

x . Furthermore, by assuming
that the temperature difference is small, we can approximate R′′

b by
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R′′
b = 30�

3T −3

π2k4
B�12

∑
j

v−2
j1

(7.83)

which is inversely proportional to T 3. Equations (7.82) and (7.83) are the results of
the AMM.

The characteristic wavelength is the most probable wavelength in the phonon
distribution function. It can be approximated by

λmp ≈ a
�D

T
(7.84)

where a is the lattice constant, on the order of 0.3–0.6 nm [77]. Only when
λmp >> σrms, we can assume that the scattering is completely specular. Even for
atomically smooth interfaces, the characteristic wavelength for phonons will be on
the same order of magnitude as the rms surface roughness, when the temperature
approaches the Debye temperature. The specularity parameter was introduced in
Chap. 5, Eq. (5.143) and repeated here for normal incidence:

p = exp

(
−16π2σ 2

rms

λ2

)
(7.85)

This equation has been wrongly expressed in some literature with π2 being mis-
taken as π3 due to a typo in an earlier work. In the high-temperature limit, TBR is
expected to be small, especially when compared with conduction in the solids. Other
considerations are (a) the interface may not be perfectly smooth, (b) there exists an
upper limit of the frequency or a lower limit of wavelength, and (c) phonons on either
side of the boundary may not be in a local-equilibrium state. These difficulties post
some real challenges in modeling TBR. Nevertheless, we shall present the diffuse
mismatch model (DMM) that was introduced by Swartz and Pohl [59]. In the DMM,
it is assumed that phonons will be scattered according to a probability, determined by
the properties of the twomedia but independent of where the phonons originate from.
For phonons coming from medium 1, the transmission and reflection probabilities
are related by �12 + R12 = 1. For phonons originating from medium 2, on the other
hand, �21 = R12 and R21 = �12. Hence, the reciprocity requires that

�12 + �21 = 1 (7.86)

We can rewrite Eq. (7.78), considering all three polarizations, as follows:

�12

∑
j

v−2
j1 = �21

∑
j

v−2
j2 (7.87)

The combination of Eqs. (7.86) and (7.87) gives
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�12 =
∑

j
v−2

j2

∑
j

v−2
j1 + ∑

j
v−2

j2

(7.88)

This is the DMM prediction of the “hemispherical” transmission coefficient. The
heat flux can be calculated according to

q ′′
x = k4

B

8π2�3

⎛
⎝T 4

1

xm,1∫
0

x3dx

ex − 1
− T 4

2

xm,2∫
0

x3dx

ex − 1

⎞
⎠�12

∑
j

v−2
j1 (7.89)

Equations (7.88) and (7.89) are the only equations needed to calculate TBR in
the DMM. In addition to the Debye temperatures and the speeds of longitudinal and
transverse waves, one would need to determine the upper limits of the integrals in
Eq. (7.89). Alternatively, Eq. (7.89) can be recast using the volumetric heat capacity
and the group velocity to obtain

q ′′
x = 1

4

(
Cv1vg1T1 − Cv1vg1T2

)
�12 (7.90)

One must be careful in applying the heat capacity in Eq. (7.80) since the heat
capacity in the expression of thermal conductivity is different from ρcp, unless at
very low temperatures. Both AMM and DMM assume that phonons on each side
of the interface are individually at equilibrium, and do not take into account the
nonequilibrium distribution of phonons near the interface. In multilayer thin films,
especially in quantumwells and superlattices, when the film thickness is comparable
with or smaller than the phonon mean free path, thermal transport inside the film
cannot be modeled as pure diffusion anymore. A detailed treatment of temperature-
jump conditions and boundary resistance in superlattices can be found from Refs.
[61–65]. Majumdar [80] proposed a modified AMM, by modeling interface rough-
ness, using a fractal structure and assuming that the reflection can be approximated
by geometric optics which is applicable when the phonon wavelength is smaller than
the autocorrelation length of the rough surface. TBR between highly dissimilar mate-
rials, metal–metal interface, and metal–dielectric interface has also been extensively
studied [47, 48, 81, 82].

7.2.4 Atomistic Green’s Function (AGF)

As mentioned previously, the Monte Carlo method has been used extensively for
solving the phonon transport equations [57, 58, 83–85]. The lattice Boltzmann
method has also been employed in a number of publications [22, 67, 86]. Equilib-
rium and nonequilibriummolecular dynamics approaches have also been extensively
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employed to study thermal transport in nanostructures and TBR [82]. The basics of
molecular dynamics simulation of solids have been discussed in Chap. 6 and can be
found from the literature [87–95]. Anothermethod called the nonequilibriumGreen’s
function (NEGF) method has been extensively used to model the electron transport
in semiconductor nanodevices [96] and has been introduced to study phonon trans-
port across various interfaces, which is called the atomistic Green’s function (AGF)
method [97–99]. The AGF method is briefly discussed in the following.

The NEGF is an atomic-level quantum mechanical model based on the density
matrix that can be obtained from the Hamiltonian matrix. As discussed in Sect. 5.6,
the electrical current can be expressed in terms of Landauer’s formalism, where
the transmission probability can be obtained from the Green’s function formulation
[96]. Ozpineci and Ciraci [100] developed the Green’s function method for ther-
mal conductance in a phononic system that consists of chain of atoms between two
reservoirs. Mingo and Yang [97] further developed the AGF approach and used it to
study phonon transmission through coated nanowires by neglecting inelastic scat-
tering. This method is further extended to study Si/Ge interfaces using an empirical
interatomic potential that includes the strain effect [98]. A plane-wave formulation
based on the wavevector space is developed to evaluate the harmonic matrix for a
unit cell in the x-y plane and multilayers in the z-direction across the interface (from
left to the right). Green’s function is used to represent the response of the dynamic
system to an infinitesimal perturbation and can be used to obtain the transmission
coefficient, which is a function of the frequency and parallel wavevector.

�(ω,k‖) = Trace[�LG�RG†] (7.91)

Here, k‖ is the wavevector parallel to the interface, the matrices �L and �R rep-
resent the phonon escape rate at the left and right contacts, G is a suitable Green’s
function matrix, and superscript “†” denotes conjugate transpose. The symbol � is
the transmission coefficients for all phonon modes or polarizations. The determina-
tion of these matrices requires knowledge of the harmonic matrix and interatomic
potentials, and is rather complicated [98, 99]. The heat flux can be obtained based
on Landauer’s formalism by integration over the frequency and wavevector space,
which can be performed through numerical discretization [98]. The thermal conduc-
tance can be obtained as the ratio of the heat flux to the temperature difference. Some
studies have separately obtained the polarization-dependent transmission coefficients
[101, 102].

While lattice dynamics has been applied to calculate the phonon transport across
interfaces [103, 104], it is difficult to implement for various geometric and bound-
ary conditions. Both the lattice dynamics and AGF methods treat phonons as waves
and study the coherent propagation, reflection, and transmission of lattice waves
through thin films, nanostructures, and interfaces. Similar to the lattice dynamics
method, the AGF method is based on the harmonic matrix of the system that can
be related to the derivatives of the total interatomic potential. In the AGF method,
only the equilibrium positions of the atoms and interatomic force constants (IFCs)
are needed. As discussed in Sect. 6.6, the IFCs can be obtained from first-principles
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calculations. Most AGF simulations have only dealt with harmonic vibrations, and
thus are applicable at temperatures much lower than the Debye temperatures of the
materials involved. Molecular dynamic simulations are inherently time domain. The
wave-packet method can be applied to molecular dynamics simulations to extract
the lattice vibration parameters, such as the mode-specific transmissivity. Due to
the fact that molecular dynamics can inherently include anharmonic scattering, it is
mostly suitable at high temperatures.On the other hand, standardmolecular dynamics
employs the Boltzmann distribution for phonons and therefore is not valid at tem-
peratures much lower than the Debye temperature. Therefore, the AGF method and
the MD method each has its own advantages depending on the temperature range
of interest. Recently, Sadasivam et al. [105] modeled thermal transport across metal
silicide and silicon interface using first-principles AGF, and included the anhar-
monic phonon scattering by modifying the conventional recursive Green’s function
approach. The AGF method has been used to model coherent phonon across Si/Ge
superlattices [106] as well as TBR across stacked graphene/hexagonal boron nitride
(hBN) heterostructures [107].

7.3 Heat Conduction Regimes

There has been a continuous effort to delineate the regimes of microscale heat con-
duction since 1992 as discussed in the previous chapters. Nonequilibrium phonon
transport in dimensions less than 100 nmhas become an important issue in silicon-on-
insulator transistors. Multiscale and multiphysics simulations have been developed
and applied to nanoelectronic devices [48, 66, 67, 82, 95, 108–110]. This section
presents a regime map for heat conduction in solids by electrons and phonons, as
schematically depicted in Fig. 7.9. Here, the timescale τc is known as effective col-
lision interaction time, since collision does not occur instantaneously but is through
intermolecular potential and force interactions. These forces become important only
when the particles become very close to each other. Of course, this is the classi-
cal picture of atomic or molecular interactions. Electrons and phonons are quantum
mechanical particles; thus, the interaction is via the wavefunctions predicted by
Schrödinger’s equations. For ultrafast pulse heating, the collision time can be the
time required for a photon and an electron to interact. Generally speaking, the relax-
ation time is much shorter than the relaxation time and neglected in the BTE. The
characteristic phonon or electron wavelength λ is assumed to be less than the mean
free path �.

Region 1 is the macroscale regime where Fourier’s law and the heat diffusion
equation can be applied, when the timescale is greater than τ and the length scale is
greater than about 10�. Region 2 is called themesoscale or quasi-equilibrium regime,
which is characterized by the classical size effect. This region is also known as the first
microscale. For heat transfer alongwith afilmor awire, local-equilibriumassumption
is appropriate and boundary scattering reduces the effective mean free path and
thermal conductivity. For heat transfer across a film or a multilayer, it is possible
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Fig. 7.9 Heat conduction regimes

to use Fourier’s law inside the medium by considering an effective temperature and
the temperature-jump boundary condition. It is difficult, if not impossible, to apply
Fourier’s law to complex geometries or local heating. The two-temperature model
for fast laser heating can be in either region 1 or 2, depending on how the length
scale is compared with the mean free path. Most of the research on microscale heat
transfer between 1990 and 2005 dealt with the microscale phenomena in region 2.

Region 3 is the regimeofwave behavior,which is described bySchrödinger’swave
equations and where quantum tunneling can occur. Quantum size effect becomes
significant on thermal conductivity and specific heat. Quantum conductance is a
special case of quantum tunneling, for which the ballistic processes are confined in
onedimension through a channel. For very thin layers,wave interference and coherent
phonon effects may become important. However, due to the interface roughness, the
coherencemaybedestroyed so that the energy raymethodor the particle approach can
still be applied at very small length scales.Wewill give a comprehensive treatment of
electromagneticwave interference and scattering phenomena in subsequent chapters.
The region on the upper left is said to be of no interest at short timescales because a
thermal disturbance cannot travel that far and affect the temperature field.

Region 4 is designed to represent the wavelike behavior, described by the Jef-
freys-type equation, Eq. (7.17). When we say Jeffreys-type equation, we mean that
both κ0 and κ1 in Eq. (7.16a) are positive. As discussed earlier, τN is the second relax-
ation time for phonon scattering that does not transfer or dissipate thermal energy,
as in the N processes. In this regime, the BTE based on the two-relaxation-time
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approximation may be applied [31, 32]. This regime includes the heat pulse prop-
agation and the second sound in dielectric crystals, at low temperatures. It suffices
to say that this region, while of great academic interest, has very limited applica-
tions. The pure hyperbolic heat equation, however, predicts a nonphysical wavefront
and cannot be applied without the additional diffusion term. Nevertheless, theoretical
studies of the hyperbolic heat equation have helped in better understanding heat trans-
fer behavior on short timescales and, subsequently, facilitated the development of
more realistic models. While the lagging heat equation can mathematically describe
both wavelike behavior and parallel heat conduction, it does not provide much new
physics. On the other hand, the memory concept may be related to the anharmonic
and nonlinear effects that are inherent to the solid and crystal structures. Study of the
thermomechanical and thermoelastic effects, and thermal transport in polymers and
inhomogeneous materials, such as biological materials, may require empirical and
semiempirical models. The lagging heat equation or similar differential equations
may be quite helpful in these applications.

Region 5 belongs to the nanoscale regime, where it is necessary to employ quan-
tum or sometimes classical molecular dynamics to study the underlying phenomena.
At the very fundamental level, DFT and DFPT are needed that can be coupled with
molecular dynamics or the first-principles-based BTE as discussed in the previ-
ous chapter. The dashed ellipse indicates the overlapping between different regions,
where molecular dynamics simulation may provide rich information as well as a
bridge between different timescales and length scales.

7.4 Thermal Metrology

Thermal metrology plays an important role not only in determining the unique prop-
erties but also in testing the theoretical predictions and helping to understand the fun-
damental mechanisms. Thermal metrology includes measurements of temperature
(thermometry), specific heat (calorimetry), and heat flux. Thermophysical properties,
such as thermal conductivity, thermal diffusivity, and specific heat, can be measured
with steady-state, periodically modulated, pulsed, and combined techniques [111–
115]. MEMS and NEMS have enabled the fabrication of miniaturized heaters and
sensors. Furthermore, optical techniques such as thermoreflectance, Raman spec-
troscopy, photothermal radiometry, fluorescence, and laser flash techniques have
been widely used in the measurement of temperature [116] and thermal properties
of nano/microstructured materials [117]. Scanning thermal microscopy and near-
field optical microscopy have further improved the spatial resolution [47, 118]. A
large number of publications can be found from the bibliography of the previous and
present chapters and references therein. A brief overview of selected measurement
techniques is given in the following.
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7.4.1 Microbridge and Suspended Microdevices

The four-point probingmicrobridge shown in Fig. 7.10 is commonly used formeasur-
ing thermal properties. The metal bridge can serve as either a heater or thermometer
or both. Platinum (Pt) is mostly used due to its relatively high resistivity, large tem-
perature coefficient of resistance (TCR), and chemical stability. Either steady-state,
transient, or periodic-heating methods can be used in the measurements; in some
cases, a combined heating method can be used alternatively or simultaneously. The
microbridge can be fabricated on a dielectric substrate, a thin insulating film on a
substrate, or a suspended membrane, allowing both in-plane and cross-plane thermal
transport properties to be measured. The thickness of the metal film is typically sev-
eral tens of nanometers and the width of the bridge can vary from tens of nanometers
to several micrometers. Depending on the applications, the bridge length can vary
from tens of micrometers to several millimeters. Extensive discussions on the use
of electrothermal techniques for measuring the thermal conductivity and thermal
diffusivity can be found from Refs. [47, 112, 119].

As an example, Fig. 7.10b and c display the SEM images of a microfabricated
bridge used as a thermometer [120]. The Pt filmwith a thickness of 35 nmwas etched

Fig. 7.10 A patterned
heater/thermometer
microbridge in a
four-terminal sensing
scheme. a Schematic of the
microbridge circuit; b a Pt
microbridge with a length of
29 μm connected to four
electrodes and c portion of
the microbridge whose width
is approximately 140 nm
[120]
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using focused ion beam (FIB) to awidth of 140 nmover 29μmlength. The bridgewas
fabricated over a SiO2 film on Si substrate for characterizing the heating effect from
an AFM cantilever as it approaches and scans the surface. The TCRwas calibrated to
be near 20% that of bulk Pt, which is approximately 0.0039 K−1. The resistivity was
about five times that of pure Pt, suggesting grain boundary and geometric boundary
scattering effects may play a role in the deposited Pt film and etched microbridge
[120]. It is necessary to calibrate the microfabricated thermometers and to determine
the TCR curve before performing actual measurements.

Since it often takes a long time to achieve steady states, traditionally, the hot wire
and hot strip methods have been developed to measure thermal properties using a
step function or a short impulse of electrical power. In the late 1980s, Cahill et al.
[121–123] developed the 3-omega or 3-ωmethod formeasuring thermal conductivity
of amorphous solids and thin films using a lock-in amplifier to generate a harmonic
oscillating current signal I ∼ cos(ωt) = cos(2π f t) and measure the voltage signal
oscillating at a frequency of 3ω. This method greatly reduces the effect of back-
ground effects such as thermal radiation and can be used for both cross-plane and
in-plane thermal conductivity. The basic principle is that when an alternating current
passes through the bridge as illustrated in Fig. 7.10a at a frequency ω, the voltage
Ṽω = Ĩω R also oscillates at a frequency of ω. Consequently, the electrical power
P̃2ω = Ĩω Ṽω is modulated at 2ω, which is dissipated as Joule heating to the bridge.
The resulting temperature oscillates around the mean temperature at a frequency of
2ω with a phase delay φ that depends on the properties and geometry of the system.
The mean temperature (operating temperature) of the bridge depends on the average
heating power. The resistance of the bridge is therefore modulated about its oper-
ating point at a frequency of 2ω. The lock-in amplifier collects the voltage signal
and performs a frequency analysis to extract the 3ω voltage signal Ṽ3ω = Ĩω R̃2ω.
Through careful models of the heat transfer processes and known parameters such as
the film thickness and specific heat capacity, the 3-ω method has become a power-
ful technique in measuring thermal conductivity, especially for semiconductors and
insulators [47]. Dames [124] gave an extensive review with background informa-
tion of the 3ω methods and its variations. Kommandur and Yee [125] fabricated a
microbridge on a suspended semiconducting polymer film and used the 3ω method
to measure the in-plane thermal conductivity and to characterize the anisotropy in
thermal transport properties.

Shi et al. [126] microfabricated suspended devices for measuring thermal and
electrical properties of nanostructures. Kim et al. [127] reported the first thermal con-
ductivity measurements of individual carbon nanotubes (CNTs) using a suspended
microdevice. Yu et al. [128] measured the thermal conductance and the Seebeck
coefficient of an individual single-wall CNT. The device includes two suspended
islands made of silicon nitride (SiNx) membrane and each island is supported by five
SiNx beams as shown in Fig. 7.11. A Pt thin film is coated on the membrane and
patterned in serpentine winding on each island. The four beams or leads form four
contact points that provide heating power and measure the temperature of the island
simultaneously. One of the islands is used as the heater (with its own thermometer)
and the other island serves as the heat sink. Nanotubes or nanowires with a length of
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Fig. 7.11 Schematic of the microfabricated suspended device that has two isolated membranes
with patterned Pt resistors supported by silicon nitride beams. Reprinted with permission from Yu
et al. [128]; copyright (2005) American Chemical Society

about 5–20 μm can be laid between the islands. Additional beams may be used to
measure the resistance of the suspended nanotubes, nanowires, and nanofilms [126–
130]. Both steady-state and transient measurements have been performed. Detailed
analysis of the thermal resistance and the effect of contact resistance need to be taken
into consideration; see a recent review by Weathers and Shi [130].

Fujii et al. [131] fabricated a suspendedT-shapenanosensor tomeasure the thermal
conductivity of individual CNTs of a few micrometers in length. The Pt strip of
a length of 5–6 μm, width on the order of 0.5 μm, and thickness a few tens of
nanometers, is suspended. The CNT is suspended from the middle of the Pt strip to a
heat sink. Under steady-state operation with DC current, the temperature difference
between the ends of the CNT and heat flow rate through the CNT can be determined
by analyzing the measurement results to determine its thermal conductivity.

Recently, Kim et al. [132] proposed to use four suspended parallel bridges made
of Pt strip on SiNx beams to measure the thermal and thermoelectric properties
of nanostructures. Though the analysis involves detailed heat transfer and thermal
resistances through the beams, the fabrication is much easier than the suspended
islands structures. Furthermore, individual beams can serve as a four-point probe and
heater. Contact resistance can also be compensated for through a careful analysis of
the thermal resistance network. The setup has been used to measure Si nanowires
from 100 to 500 K and BAs microrods from 250 to 350 K [132, 133]. Transient and
3ω sensing schemesmay also be employed tomeasure the thermal and thermoelectric
properties of nanowire structures.
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7.4.2 Scanning Probe Microscopic Techniques

As mentioned in Chap. 1, the family of scanning probe microscopy (SPM) has
been established as a powerful toolbox in nanotechnology from manipulating and
imaging single atoms to probing the topological, chemical, and thermal profiles
near the interfaces. Majumdar [134] reviewed the development and applications of
scanning thermal microscopy (SThM) for local temperature mapping with a few tens
of nanometer resolution by fabricating a thermocouple or resistance thermometer.
The method was developed byMajumdar et al. [135, 136] in the early 1990s to allow
surface temperaturemeasurements based on the previouswork at IBM[137].Another
method, also pioneered by Majumdar [138] used the thermal expansion principle
called the scanning Joule expansion microscopy, which has been further developed
to measure the temperature profile with 10 nm resolution for studying the size effect
of thermal conductivity [139] as well as imaging the thermal and thermoelectric
characteristics at graphene-metal contact [140]. The most frequently used SThM is
based on fabricating a thermocouple at the tip. Themethodhas been further developed
through the years not only for local temperature measurements but also for thermal
conductivity measurement and thermoelectric property characterization as reviewed
in Refs. [141, 142].

A representative high-quality SThM with a thermocouple at the tip is shown in
Fig. 7.12, which can be used in air [143]. The probe was made of silica with a
very low thermal conductivity, and the tip was made to be 12 μm long to minimize
the air gap effect. In addition to measuring the thermal profile for a heated sample,
the thermal conductivity profile can be obtained by heating the tip with a high-
frequency (>100 kHz) AC current such that a steady-state temperature is sensed by
the thermocouple whose time constant is greater than 1 ms [143].

The cantilever tip or cantilever can be optically or electrically heated with control-
lable temperature for thermal processing, nanofabrication, data writing and reading,
and for the study of thermal transport at nanoscales [144, 145]. Lee et al. [146,
147] performed a steady-state and frequency-dependent characterization of heated
AFM cantilevers over a range of pressures for thermal metrology applications. The
temperature distribution in heated Si cantilevers was obtained with micro-Raman
spectroscopy with a spatial resolution of 1 μm. Park et al. [148] analyzed the fre-
quency response of heated AFM cantilevers in the frequency range from 10 Hz to
1 MHz, and observed high-order harmonic responses, such as 3ω, 5ω, and 7ω, at
frequencies below 100 kHz and impedance effects at higher frequencies. Park et al.
[149] also investigated thermal behavior of heated cantilevers at cryogenic temper-
atures, down to 78 K. By measuring the thermal response at various frequencies,
this study extracted the specific heat near the cantilever tip and the thermal con-
ductivity along the heavily doped silicon legs, at temperatures ranging from 80 to
200 K. There appears to be a significant reduction in the thermal conductivity for the
free-standing silicon cantilever, with a thickness of 0.59 μm, at low temperatures.
The heat transfer between heated AFM microcantilever and substrate has also been
investigated [120]. As reviewed by King et al. [150], heated AFM cantilevers have
become a useful thermal analysis tool at the micro- and nanoscales.
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Fig. 7.12 Scanning thermal microscopy with a special resolution of about 50 nm for temperature
and thermal conductivity characteristics.: a Schematic of the experimental and the tip layout; b SEM
images of the probe tip and cantilever. Reprinted with permission from Kim et al. [143]; copyright
(2011) American Chemical Society

7.4.3 Noncontact Optical Techniques

Opticalmethods are noncontact and can have a large range of temporal resolutions for
measuring temperature and thermal properties such as thermal conductivity, diffu-
sivity, specific heat, thermal boundary resistance, and the electron–phonon coupling
constant [116, 117]. Femtosecond lasers have become much more affordable and
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accessible in recent years [49, 151–155]. For measurement of bulk and film prop-
erties, a temporal resolution of 10 ns–10 ms is usually sufficient. In order to probe
thermal boundary resistance between films or thermal properties of very thin films,
a resolution of 100 ps–10 ns is frequently used [156–158]. To measure the electron–
phonon coupling, ultrafast lasers are needed since picosecond resolution is required
[38–46, 159]. Another advantage of optical methods is that the beam spot size can
be made relatively small, down to a few micrometers using an objective lens. Sub-
micron resolution can be achieved with micro-Raman thermometry. Measurements
with 50–500 nm spatial resolution can be made possible using near-field optics or
fabricated nanostructures [118, 160–162].

Pump-and-probe methods are often employed in which the sample surface is
heated by a laser beam (or another optical source) and the thermal responses are
measured using one of the variety of probing techniques. Examples are the ther-
moreflectance method based on the temperature dependence of the reflectance of
the surface or film, micro-Raman thermometry based on the Raman shift due to
phonon scattering being temperature dependent, the radiometric method based on
the thermal emission signal according to the theory of blackbody radiation, and pho-
toacoustic and photodeflection techniques [112, 113, 117]. Measurements are often
accomplished either in the time domain, when the transient thermal response after
pulsed or step heating is observed, or in the frequency domain, when periodic heating
is used and the periodic response with a time delay is measured [47, 112, 117]. The
latter is also called the thermal wave method [11, 12].

Figure 7.13 illustrates a time-domain thermoreflectance (TDTR) setup [154] for
measuring the thermal conductivity of film or bulk materials as well as TBR. The
pump-probe scheme is shown in Fig. 7.13a. The transducer is usually a metal film.
The thermoreflectance coefficient is defined as follows

CTR = 1

R

∂ R

∂T
or

	R

R
= CTR	T (7.92)

The temperature and wavelength dependence of CTR of metal films have been
extensively characterized [163]. For Au, due to the interband transition near the
wavelength of λ = 500 nm, the absorptance and thermoreflectance coefficient is
relatively large. For Al, the absorptance is high near λ = 800 nm. The wavelength
of pulsed Ti-sapphire lasers ranges from 720 to 880 nm; thus, Al coating is typically
used [49, 159]. The pulse duration is typically 90–150 fs, though shorter pulses can
also be generated using a mode-locking technique. As shown in Fig. 7.13b, the laser
beam after the optical isolator is split into a pump beam (high power) and a probe
beam (low power) using a polarizing beamsplitter (PBS). The output of the laser is a
pulse train at a typical frequency of 80 MHz. An electro-optic modulator (EOM) is
used to reduce the modulation frequency to 1–10 MHz range for measuring thermal
properties or TBR. The probe beam goes through a delay stage in order to probe the
sample temperature after the pump pulse heating. Both beams are sent to the sample
through the objective lens.After averaging overmanypulses, the delay stage ismoved
to vary the delay time. It should be noted this method is different from the traditional
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Fig. 7.13 Schematic of a TDTR: a Illustration of the pump and probe beams on a sample; b the
optical layout. Reprinted with permission from Jiang et al. [154]; copyright (2018) AIP Publishing

transient response method. For example, in the conventional transient laser heating
and relaxation method, the temperature rise and fall after the laser pulse is monitored
continuously with a temporal resolution typically from 1 μm to 1 ms [112]. In a
TDTR measurement, the response at each delay step is recorded and then plotted
as a function of time. The delay step determines the temporal resolution which can
be varied from tens of femtoseconds to tens of picoseconds. Since the movement
of the delay stage can be precisely controlled with a micrometer resolution, the
smallest time delay that can be achieved is less than 10 fs. For example, if the
total travel length of the delay stage is 30 cm, the maximum delay time is 2 ns. In
some experimental setups, a forward advance is used for the pump beam rather than
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delaying the probe beam. The chopper may be used to vary the frequency of the
probe beam independently for dual-frequency measurement [154, 164]. A second
harmonic generator can be used to double the frequency of either the pump beam
or probe beam so that its wavelength is changed to the visible range [49]. TDTR
methods have been used to measure the thermal conductivity accumulation function
in terms of the mean free path [151, 152] as well as the thermal conductivity of
perforated membranes [165, 166]. Wagner et al. [166] also used a two-laser setup
with a micro-Raman thermometer at submicron resolution to obtain the steady-state
temperature profile during continuous laser heating.

By changing the beam size and modulation frequency, it is possible to determine
both in-plane and cross-plane thermal conductivity by fitting the model prediction
to the experimental data using the least-squares method. Another way to probe the
in-plane thermal transport is to use a lateral offset between the pump beam and the
probe beam.Wang et al. [167] used bothmethods to study the thermal conductivity of
layered borides. Tomeasure the properties of 2Dmaterials it is critically important to
reduce the metal layer thickness. Amagneto-optical thin film (on the order of 20 nm)
has been used as the transducer. Under a magnetic field due to the Kerr effect, the
polarization of the reflected beam is a function of temperature. The method based
on time-resolved magneto-optical Kerr effect (TR-MOKE) has been developed and
used to measure the anisotropic thermal conductivity of molybdenum disulfide [168]
and black phosphorus [153].

The femtosecond laser setup can be used for frequency-domain thermoreflectance
(FDTR) with few hardware modifications [169]. The signal reaching the detector,
or the reflection of the probing beam, is at the same frequency as the pump beam
with a phase delay [151]. The modulation frequency is determined by the EOM and
can be varied from 25 kHz to 20 MHz. By fixing the time delay and changing the
modulation frequency, one can obtain the frequency response. Theoretical models
are necessary to relate the frequency response to the properties being determined
[169]. FDTR can also be performed with two continuous-wave lasers [169–171].
Regner et al. [170] developed a two-laser FDTR setup to measure the phonon mean
free spectra for crystalline Si, doped Si, amorphous Si, and amorphous SiO2.

A modified setup is used to measure anisotropic thermal conductivity of thin
films, as shown in Fig. 7.14 [171]. Two continuous-wave green lasers at slightly
different wavelengths are used. The wavelengths of 488 nm and 532 nm match well
with the peaks of absorption and thermoreflectance coefficients of the gold film
(transducer), respectively [163]. An optical isolator (ISO) is used after each laser to
prevent the reflected beam from reentering the laser cavity. After a half-wave plate
(HWP), the pump beam is modulated by EOM at frequency f, which can be varied
in a large range from about 9 kHz to 200 GHz, though only the middle range is
useful for the data analysis and parameter reduction. A picomotor mirror, which
uses a piezoelectric actuator to fine tune the angular rotation, is used to offset the
probe beam position. After the beamsplitter (BS), both beams go through the PBS,
a quarter-wave plate (QWP), and the objective lens (OBJ) to focus on the sample
surface. Only reflected light at the probe beam frequency is allowed to enter the
photodetector (PD) thanks to a bandpass filter (BP). The detector receives a signal
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Fig. 7.14 Illustration of a frequency-domain thermoreflectancemeasurement system and scenarios.
a The optical layout of the two-laser FDTR setup; b scheme for measuring thermal conductivities
of the film, substrate, and TBR, G1 and G2, with concentrated beams; c scheme for measuring
anisotropic thermal conductivities, both in-plane k‖ and across-plane k⊥, of the film with an offset
beam spot. Reprinted with permission from Rodin and Yee [171]; copyright (2017) AIP Publishing

due to the temperature change of the sample at the same frequency f but with a phase
lag φ, which depends on the materials properties, lateral offset, and the modulation
frequency f. The phase lag can be measured with a lock-in amplifier using either
a heterodyne modulator [170] or a signal generator [171]. Through careful thermal
modeling and a least-squares fitting, the desired properties such as the TBR, in-plane
and cross-plane thermal conductivities of the film can be determined. The results for
crystalline and amorphous Al2O3 and SiO2, respectively, along with highly oriented
pyrolytic graphite have been reported [171].

The femtosecond transient thermal grating (TTG) method has also been used for
measuring the thermal conductivity accumulation functions of thinmembranes [172–
174]. A pulsed laser (wavelength 515 nm and pulse width 60 ps) is split into beams
using diffraction optics and then focused to the sample, causing sinusoidal interfer-
ence patterns on the sample, which can be a thin film or membrane. A continuous
laser is either reflected or transmitted through the sample, producing a diffraction
signal whose decay is related to the thermal diffusivity. Silicon membranes of thick-
nesses from 1500 nm down to 17.5 nm have been measured to demonstrate ballistic
thermal transport as well as to study the thermal conductivity accumulation function
[172, 173]. Transport along perforated silicon membrane has also been examined
[174].
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7.5 Summary

The present chapter, together with Chaps. 5 and 6, provides a comprehensive treat-
ment of thermal properties of and transport processes in micro/nanostructured solid
materials. This chapter focused on the transient and nonequilibrium heat conduc-
tion, when the local-equilibrium condition is not satisfied to justify the conventional
heat diffusion theory, based on Fourier’s law. Several modified phenomenological
theories were critically reviewed with an emphasis on their application regimes. The
phonon BTE was presented using the EPRT, and the solutions were discussed for
the nonequilibrium heat transfer across a thin film or a multilayer structure. The
basic models of TBR were outlined. A summary on the advanced atomistic scale
modeling is provided focusing on the atomistic Green’s function method. A heat
transfer regime was developed to assist readers in choosing an appropriate method-
ology for a given situation. Finally, some important thermal measurement techniques
are discussed with extensive references.

Problems

7.1. What are the characteristic lengths for heat conduction along a thin film?
Why is local equilibrium a good assumption in this case, even though the
film thickness is less than the mean free path of heat carriers? Why does the
thermal conductivity depend on the thickness of the film?

7.2. Why dowe say that Fourier’s law is a fundamental physical law, likeNewton’s
laws in mechanics, but Cattaneo’s equation is not? Comment on the paradox
of infinite speed of heat diffusion by considering the feasibility of exciting the
surface temperature or depositing a heat flux to the surface instantaneously.

7.3. Consider a 1D semi-infinite medium, initially at uniform temperature Ti ,
where the surface temperature is suddenly changed to a constant tempera-
ture, T (0, t) = Ts. The analytical solution of the heat diffusion equation

gives θ(x, t) = T (x,t)−Ti
Ts−Ti

= erfc
(

x
2
√

αt

)
. For silicon at various temperatures,

use the properties given in Example 5.6 to estimate how long it will take for a
given location to gain a temperature rise that is 10−12, or one part per trillion of
the maximum temperature difference. Estimate the average thermal diffusion
speed in terms of x and Ti. Hint: erfc(5.042) = 1.00 × 10−12.

7.4. Repeat Problem 7.3, using copper instead of silicon as the material, based
on the properties given in Example 5.5. Discuss why the average thermal
diffusion speed is different under different boundary conditions, i.e., constant
heat flux and constant temperature. From an engineering point of view, do
you think heat diffusion is a fast or slow process? Why?

7.5. (a) Derive Eq. (7.4), the hyperbolic heat equation from Cattaneo’s equation
(b) Derive Eq. (7.14), the lagging heat equation, based on the dual-phase-lag

model.
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7.6. Take GaAs as an example. How would you compare the speed of sound
with the average thermal diffusion speed, at different temperatures and length
scales? This problem requires some literature search on the properties.

7.7. Assume the hyperbolic heat equation would work for transient heat transfer in
glass (Pyrex), at room temperature. Given κ = 1.4 W/mK, ρ = 2500 kg/m3,
cp = 835 J/kgK, and va = 5640 m/s.

(a) At what speed would the temperature wave propagate?
(b) For an excimer laser with a pulse width tp = 10 ns, 0.1 ns after the pulse

starts, could the hyperbolic equation be approximated by the parabolic
equation?

(c) Suppose we have an instrument available to probe the timescale below
τq, will the hyperbolic heat equation be able to describe the observation?

7.8. DeriveEq. (7.13b) fromEq. (7.13a).Discuss the conditions for these equations
to be reduced to Fourier’s law or Cattaneo’s equation.

7.9. Show that Eq. (7.17) satisfies Eq. (7.16). Discuss the conditions for Eq. (7.17)
to represent Fourier’s law or Cattaneo’s equation.

7.10. Derive Eqs. (7.18a), (7.18b), and (7.18c).
7.11. Derive Eqs. (7.27a) and (7.27b). Calculate τ , τq, and τT of copper, for Te =

300, 1000, and 5000 K, assuming the lattice temperature Ts = 300 K.
7.12. Calculate the electron–phonon coupling constant G for aluminum, copper,

gold, and silver, near room temperature. Discuss the dependence of κ and G
upon the electron and lattice temperatures Te and Ts.

7.13. At Te = 1000, 3000, and 6000 K, estimate the energy transfer by thermionic
emission from the copper surface, assuming that the electrons obey the
equilibrium distribution function at Te.

7.14. Based on Example 7.3, evaluate the heat flux in a thin silicon film. How
thin must it be in order for it to be considered as in the radiative thin limit?
Calculate the medium temperature T. Plot the left-hand side and the right-
hand side of Eq. (7.43). Furthermore, assuming Eq. (7.43) to be true for each
frequency, find a frequency-dependent temperature T (ω) of the medium. At
what frequency does T (ω) = T ? Is there any physical significance of T (ω)?

7.15. Derive Eq. (7.53), using Eqs. (7.38), (7.49a), (7.49b), and (7.50).
7.16. In principle, one should be able to study nonequilibrium electrical and thermal

conduction in the direction perpendicular to the plane and use the BTE to
determine the effective conductivities. This could be a team project, for a few
students, to formulate the necessary equations. As an individual assignment,
describe how to set up the boundary conditions, as well as the steps you plan
to follow, without actually deriving the equations.

7.17. For a diamond type IIa film, vl = 17, 500 m/s, vt = 12, 800 m/s, and
κ = 3, 300 W/mK, near 300 K. Assume that the boundaries can be mod-
eled as blackbodies for phonons. For boundary temperatures T1 = 350 K and
T2 = 250 K, calculate and plot the heat flux q ′′

x and the effective thermal
conductivity κeff across the film of thickness L, varying from 0.05 to 50 μm.
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7.18. Calculate the TBR between high-temperature superconductor YBa2Cu3O7-δ

andMgOsubstrate, at an average temperature between 10 and90K, using both
theAMMand theDMMwithout considering the electronic effect. The follow-
ing parameters are given for YBa2Cu3O7-δ: vl = 4780 m/s, vt = 3010 m/s,
ρ = 6338 kg/m−3, and �D = 450 K; and for MgO: vl = 9710 m/s,
vt = 6050 m/s, ρ = 3576 kg/m−3, and �D = 950 K.

7.19. Evaluate the effective thermal conductivity near room temperature of a
GaAs/AlAs superlattice, with a total thickness of 800 nm, using the DMM to
compute the transmission coefficient. Assume the end surfaces are blackbod-
ies to phonons; consider that (a) each layer is 4 nm thick and (b) each layer is
40 nm thick. The following parameters are given, considering phonon disper-
sion on thermal conductivity, for GaAs: C = 880 kJ/m3 K, vg = 1024 m/s,
and � = 145 nm; and for AlAs: C = 880 kJ/m3 K, vg = 1246 m/s, and
� = 236 nm. How is the result compared with a single layer of either GaAs
or AlAs?

7.20. Evaluate the effective thermal conductivity near room temperature of a Si/Ge
superlattice, with a total thickness of 1000 nm, using theDMM to compute the
transmission coefficient. Assume the end surfaces are blackbodies to phonons;
consider that (a) each layer is 5 nm thick and (b) each layer is 50 nm thick. The
following parameters are given, considering phonon dispersion on thermal
conductivity, for Si: C = 930 kJ/m3 K, vg = 1804m/s, and � = 260 nm;
and for Ge: C = 870 kJ/m3 K, vg = 1042m/s, and � = 199 nm. How is the
result compared with a single layer of either Si or Ge?

7.21. Make a comparison of the different methods for measuring the thermal
conductivity of a thin film.

7.22. Suppose one wishes to measure the thermal conductivity of a graphene sheet
of 10 μm × 10 μm, what method(s) would you recommend?

7.23. Suppose one wishes to measure the thermal conductivity of a superlattice
Si/Ge nanowire of length 50 μm and diameter 3 nm, what method would you
suggest?

7.24. What is the mechanism of transient thermal grating? What properties can be
measured by the TTG method?
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Chapter 8
Fundamentals of Thermal Radiation

Radiation is one of the fundamental modes of heat transfer. However, the concepts of
thermal radiation are much more complicated and, hence, very difficult to perceive.
Themain features of radiation that are distinct from conduction and convection are as
follows: (a) radiation can transfer energy with and without an intervening medium;
(b) the radiant heat flux is not proportional to the temperature gradient; (c) radiation
emission is wavelength dependent, and the radiative properties of materials depend
on the wavelength and the temperature; (d) the radiant energy exchange and the
radiative properties depend on the direction and orientation [1, 2].

The dual theory explains the nature of radiation as either electromagnetic waves
or a collection of particles, called photons. Although radiation can travel in vacuum,
it originates from matter. All forms of matter emit radiation through complicated
mechanisms (e.g., molecular vibration in gases, and electron and lattice vibrations in
solids). Inmost solids and some liquids, radiation emitted from the interior is strongly
absorbed by adjoining molecules. Therefore, radiation from or to these materials is
often treated as surface phenomena, while radiation in gases and some semitrans-
parent solids or liquids has to be treated as volumetric phenomena. Nevertheless,
one must treat solids or liquids volumetrically as a medium to understand the mech-
anisms of reflection and emission, to predict the radiative properties of thin films
and small particles, and to calculate radiation heat transfer between objects placed
in close vicinity. Thermal radiation refers to a type of radiation where the emission
is directly related to the temperature of the body (or surface).

There are numerous engineering applications where radiation heat transfer is
important, such as solar energy, combustion, furnaces, high-temperature materials
processing and manufacturing, and insulation in space and cryogenic systems. Even
at room temperature, radiative heat transfer may be of the same order of magnitude
as convective heat transfer. The study of thermal radiation went along with the study
of light phenomena and led to some major breakthroughs in modern physics. It is
instructive to give a brief survey of major historical developments related to thermal
radiation.
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Quantitative understanding of light phenomena began in the seventeenth century
with the discoveries of Snell’s law of refraction, Fermat’s least-time principle of light
path, Huygens’ principle of constructing the wavefront from secondary waves, and
Newton’s prism that helped him prove white light consists of many different types
of rays. In the dawn of the nineteenth century, Sir Frederick Herschel (1738–1822),
a German-born English astronomer, discovered infrared radiation [3]. His original
objective was to find a suitable color for a glass filter, which could transmit the
most of light but the least amount of heat, for use in solar observations. By moving
a thermometer along the spectrum of solar radiation that passed through a prism,
Herschel accidently found that the temperature of the thermometer would rise even
though it was placed beyond the red end of the visible light. He published several
papers in Philosophical Transactions of the Royal Society of London in 1800 and
called the unknown radiation invisible light or heat-making rays.Young’s double-slit
experiment in 1801 demonstrated the interference phenomenon and the wave nature
of light. It was followed by extensive studies on polarization and reflection led by
French physicist Augustin-Jean Fresnel (1788–1827) who contributed significantly
to the establishment of the wave theory of light. In 1803, radiation beyond the violet
end of the visible spectrum via chemical effects was also discovered. The ultraviolet,
visible, and infrared spectra were thus associated with chemical, luminous, and heat-
ing effects, respectively. Yet, the common nature of the different types of radiation
was not known until the late nineteenth century.

One of the obstacles of accurately measuring infrared radiation (or heat radiation,
as it was called in those days) was the lack of sensitive detectors. In the earlier years,
measurements were performed usingmercury-in-glass thermometers with blackened
bulbs. In 1829, Italian physicists Leopoldo Nobili (1784–1835) andMacedonioMel-
loni (1798–1854) invented the thermopile made by connecting a number of thermo-
couples in series that ismuchmore sensitive and faster than the thermometer.Melloni
used the device to study the infrared radiation from hot objects and the sun. Gustav
Kirchhoff (1824–1887), a German physicist, contributed greatly to the fundamental
understanding of spectroscopy and thermal emission by heated objects. In 1862, he
coined the term “black body” radiation and established Kirchhoff’s law, which states
that the emissivity of a surface equals its absorptivity at thermal equilibrium.

Many famous physicists and mathematicians have contributed to electromag-
netism. The complete equations of electromagnetic waves were established in 1873
by Scottish physicist James Clerk Maxwell (1831–1879), and later confirmed exper-
imentally by German physicist Heinrich Hertz (1857–1894) through the discovery of
radiowaves due to electrical vibrations. Before the existence of electronswas proved,
Dutch physicist Hendrik Lorentz (1853–1928) proposed that light waves were due
to oscillations of electric charges in the atom. His electron theory could explain the
phenomenon discovered by his mentee Pieter Zeeman (1865–1943) that the lines in
the spectrum can split into several lines under a strong magnetic field (known as the
Zeeman effect). They shared theNobel Prize in Physics in 1902 for their research into
the influence of magnetism upon radiation phenomena. The electromagnetic wave
theory has played a central role in radio, radar, television, microwave technology,
telecommunication, thermal radiation, and physical optics. Albert Einstein arrived
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at the famous formula E = mc2 in 1905, after connecting the relativity principle with
the Maxwell equations.

In 1881, Samuel Langley (1834–1906), the American astronomer, physicist, and
aeronautics pioneer, invented a highly sensitive device called a bolometer for detect-
ing thermal radiation. The bolometer used two platinum strips, connected in aWheat-
stone bridge circuit with a sensitive galvanometer, to read the imbalance of the bridge
caused by the exposure of one of the strips to radiation. Langley was the first to make
an accurate map of the solar spectrum up to a wavelength of 2.8 μm. The Stefan–
Boltzmann law of blackbody radiation is buit upon the empirical relation obtained by
Slovenian physicist Joseph Stefan (1835–1893) in 1879, through careful experimen-
tal observation. The theoretical proof was provided by Austrian physicist Ludwig
Boltzmann (1844–1906) in 1884, based on the thermodynamic relations of a Carnot
cycle with radiation as a working fluid using the concept of radiation pressure. In
the late nineteenth century, German physicist Wilhelm Wien (1864–1928) derived
the displacement law in 1893 by considering a piston moving within a mirrored
empty cylinder filled with thermal radiation. Wien also derived a spectral distri-
bution of blackbody radiation, called Wien’s formula, which is applicable to the
short-wavelength region of the blackbody spectrum but deviates from experiments
toward long wavelengths. Wien received the Nobel Prize in 1911 “for his discoveries
regarding the laws governing the radiation of heat.” In 1900, Lord Rayleigh (1842–
1919), British physicist andNobel Laureate in Physics in 1904, used the equipartition
theorem to show that the blackbody emission should be directly proportional to tem-
perature but inversely proportional to the fourth power of wavelength. Sir James
Jeans (1877–1946), a British physicist, astronomer, and mathematician, derived a
more complete expression in 1905. The Rayleigh–Jeans formula agreed with experi-
ments at sufficiently high temperatures and long wavelengths, whereWien’s formula
failed, but disagreed with experiments at short wavelengths. It is noteworthy that
Rayleigh has made great contributions to light scattering and wave phenomena, such
as the discovery of Rayleigh scattering by small objects that explains why the sky is
blue and the sunset glows red and orange. Rayleigh also predicted the existence of
surface waves, sometimes called Rayleigh waves, which propagate along the inter-
face between two different media. The amplitude of the wave, however, diminishes
in each media as the distance from the interface increases.

In an effort to obtain a better agreement with measurements at long wavelengths,
German physicist Max Planck (1858–1947) in 1900 used the maximum entropy
principle, based on Boltzmann’s entropy expression, to derive an equation, known
as Planck’s law, which agrees with experiments in the whole spectral region. Planck
obtainedhis expression independently ofRayleigh’swork,while the complete deriva-
tion of Rayleigh–Jeans formula was obtained several years later. In his book The The-
ory of Heat Radiation, Planck [4] showed that his formula would reduce to Wien’s
formula at small λT and Rayleigh–Jeans formula at large λT . In his derivation,
Planck used a bold assumption that is controversial to classical electrodynamics. His
hypothesis was that the energy of linear oscillators is not infinitely divisible but must
assume discrete values that are multiples of hν, where h is a universal constant and
ν is the frequency of the oscillator. This concept would have been easily accepted
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for a system consisting of particles, like atoms or gas molecules, but not for oscilla-
tors that radiate electromagnetic energy. Planck’s work opened the door to quantum
mechanics. The idea of quantization of radiation was further developed by Einstein,
who applied it to explain the photoelectric effect in 1905. Planck was awarded the
Nobel Prize in Physics in 1918 for the discovery of energy quanta. In 1924, Indian
mathematical physicist Satyendra Nath Bose (1894–1974) modified the Boltzmann
statistics of ideal molecular gases, by introducing the concept of different quantum
states at each energy level (degeneracy) using the phase space while treating the
light quanta as indistinguishable. Subsequently, Bose was able to statistically derive
Planck’s distribution function without using the semi-classical oscillator concept.
With the help of Einstein, Bose’s work was published in Zeitschrift für Physik in
1924. Einstein further extended Bose’s theory to atoms and predicted the existence
of a phenomenon, known as Bose–Einstein condensate, as discussed in Chap. 3. It
is clear that the journey of questing for the truth in understanding thermal radiation
has led to important discoveries in modern physics.

This chapter contains an introduction to the electromagnetic wave theory, black-
body radiation, plane wave reflection, and refraction at the boundary between two
semi-infinite media, evanescent waves and total internal reflection, and various mod-
els used to study the optical properties of different materials. A brief description of
the typical experimental methods used to measure the spectral radiative properties
is also presented. The materials covered in the following sections are intended to
provide a sound background for more in-depth studies on the applications of thermal
radiation to micro/nanosystems in subsequent chapters.

8.1 Electromagnetic Waves

In this section, we will study macroscopic Maxwell’s equations and electromagnetic
(EM) waves in isotropic media from dielectric to dissipative (lossy) to magnetic
media. The concepts of polarization, absorption, and evanescentwaves are introduced
using complexwavevectors. Poynting’s theoremdescribes the energy balance for EM
waves including transfer, storage, and dissipation. The complex dielectric function
is defined from which the complex refractive index for nonmagnetic materials can
be calculated.

8.1.1 Maxwell’s Equations

The propagation of electromagnetic waves in any media is governed by a set of
equations, first stated together by Maxwell. The macroscopic Maxwell equations
can be written in the differential forms as follows [5–9]:
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∇ × E = −∂B
∂t

(8.1)

∇ × H = J + ∂D
∂t

(8.2)

∇ · D = ρe (8.3)

∇ · B = 0 (8.4)

Here, E is the electric field, H is the magnetic field, J is the electric current density
(or charge flux according to the definition in Chap. 4),D is the electric displacement,
B is the magnetic flux density (also called magnetic induction), and ρe is the charge
density. In the SI units, E is in V/m,H in C/m s, J in A/m2, D in C/m2, B in Wb/m2,
and ρe in C/m3. Note that 1 T (T) = 1 Wb/m2 and 1 Wb (Wb) = 1 V s. The charge
conservation or continuity equation, ∇ · J+∂ρe/∂t = 0, is implicitly included in the
Maxwell equations, because it can be obtained by taking the divergence of Eq. (8.2)
and then applying Eq. (8.3). The constitutive relations for a linear isotropic medium
are

D = εmE (8.5)

B = μmH (8.6)

where εm is the electric permittivity in F/m and μm the magnetic permeability of
the medium in N/A2. Note that the farad (F) is the SI unit of capacitance: 1 F =
1 C/V. The permittivity and permeability values of free space (vacuum) are ε0 =
8.854×10−12 F/m andμ0 = 4π ×10−7 N/A2, respectively. For anisotropic media,
μm and εm are dyadic tensors. The microscopic form of Ohm’s law gives

J = σE (8.7)

where σ is the electric conductivity in A/V m.
A brief discussion on the physical interpretation of Maxwell’s equations is given

next. Equation (8.1) is an expression of Faraday’s law of induction, which states
that a time-varying magnetic field produces an electric field in a coil. In other words,
through any closed electric field line, there is a time-varying magnetic field. Combin-
ing Eq. (8.1) with Green’s theorem, Eq. (B.71), we see that the integral of the electric
field around a closed loop is equal to the negative of the integral of the time derivative
of the magnetic induction, over the area enclosed by the loop. Equation (8.2) is the
general Ampere’s law, which includes Maxwell’s displacement current (∂D/∂t). It
states that through any closed magnetic field line, there is an electric current den-
sity J or a displacement current or both. Conversely, circulating magnetic fields are
produced by passing an electrical current through a conductor or changing electric
fields or both. Equation (8.3) is Gauss’s law, which implies that the electric field
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diverges from electric charges. Using Gauss’s theorem, Eq. (B.70), it can be seen
fromEq. (8.3) that the integral of the electric field over a closed surface is proportional
to the electric charges enclosed by that surface. If there are no electric charges inside
a closed surface, there is no net electric field penetrating the surface. Equation (8.4)
is an analogy to Gauss’s law for the magnetic field. However, isolated magnetic poles
(i.e., magnetic monopoles) have not been observed, so the integration of a magnetic
field over any closed surface is zero.

The interpretations given in the preceding paragraph are straightforward since
all variables and coefficients are considered as real quantities. However, Maxwell’s
equations are most useful when all quantities are expressed in complex variables.
The material properties, such as εm and μm, are generally complex and frequency
dependent. To facilitate understanding, we will start with simple cases first and then
generalize the theory for more realistic problems.

8.1.2 The Wave Equation

Sometimes called free charge density, ρe in Eq. (8.3) should be treated as excess
charges or net charges per unit volume. Because the number of electrons equals
the number of protons in the nuclei, in most media, we can assume ρe = 0. For a
nonconductive material, σ = 0. We further assume that εm and μm are both real and
independent of position, time, and the field strength. This is true for a nondissipative
(lossless), homogeneous, and linear material. If μm = μ0, the material is said to be
nonmagnetic. Therefore, a nonconductive and nonmagnetic material is a dielectric
for which only εm is needed to characterize its electromagnetic behavior. Materials
with both εm andμm being real butμm �= μ0 are sometimes called general dielectrics
or dielectric-magnetic media. Substituting the constitutive relations into Maxwell’s
equations and then combining Eqs. (8.1) and (8.2), we obtain

∇2E = μmεm
∂2E
∂t2

(8.8)

where the vector identity given in Eq. (B.64), ∇ × (∇ × E) = ∇(∇ · E) − ∇2E =
−∇2E, has been employed. Equation (8.8) is the wave equation, which can also be
written in terms of the magnetic field. The wave equation has infinite number of
solutions (see Problem 8.1). The solution of Eq. (8.8) for a monochromatic plane
wave can be written as

E = E0e
−i(ωt−k·r) (8.9)

where E0 is the amplitude vector, ω is the angular frequency, r = x x̂ + yŷ + zẑ is
the position vector, and k = kx x̂+ ky ŷ+ kz ẑ is the wavevector, which points toward
the direction of propagation. In order for Eq. (8.9) to be a solution of Eq. (8.8), the
magnitude of k must be k = ω

√
μmεm. The complex form of the electric field is
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used in Eq. (8.9) to facilitate mathematical manipulation. The actual electric field
may be expressed as the real part of Eq. (8.9), viz.,

Re(E) = Re(E0) cosφ + Im(E0) sin φ (8.10)

where Re or Im stands for taking the real part or the imaginary part, and φ = ωt −k ·r
is the phase. Equation (8.9) is a time-harmonic solution at a fixed frequency. Because
any time-space-dependent function can be expressed as a Fourier series of many
frequency components, we can integrate Eq. (8.9) over all frequencies to obtain the
total electric field at any time and position. Therefore, understanding the nature of
Eq. (8.9) is very important to the study of electromagnetic wave phenomena.

When Eq. (8.9) is substituted into Maxwell’s equations, a time derivative ∂/∂t
can be replaced by a multiplication of −iω and the operator ∇ can be replaced by
ik. Hence, the first two Maxwell equations can be written as

k × E = ωμmH (8.11a)

and

k × H = −ωεmE (8.11b)

The two equations suggest that E, H, and k are orthogonal and form a right-handed
triplet, when both εm and μm are positive. On the surface normal to the wavevector
k, the electric or magnetic field is a function of time only, because k ·r = const. This
surface is called a wavefront. In the k-direction, the wavefront travels at the speed
given by

c = ω

k
= 1√

μmεm
(8.12)

which is called phase speed and it is the smallest speed at which the wavefront
propagates. The phase velocity is the phase speed times the unit wavevector [8].

Figure 8.1 illustrates a plane wave, propagating in the positive x-direction, whose
electric field is parallel to the y-direction andmagnetic field parallel to the z-direction.

Fig. 8.1 Illustration of a
linearly polarized
electromagnetic wave
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E
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y

z

Wavelength, λm

k
Speed of propagation, cz
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In such cases, k = kx and k · r = kx . The wavefront is perpendicular to the x-
direction. It can be seen clearly that the wavevector is related to the wavelength λm

in the medium by k = 2π/λm.
In free space, the speedof an electromagneticwave is given by c0 = 1/

√
μ0ε0. The

speed of light in a vacuum was instated as an exact number, c0 = 299, 792, 458 m/s,
by the General Conference on Weights and Measures (abbreviated as CGPM for
Conférence Générale des Poids etMesures) in 1983. The SI base unit meter has since
been defined as the distance that light travels in a vacuum during a time interval of
1/299, 792, 458 s. The reference on constant, units, and uncertainty can be found
from the web page of the National Institute of Standards and Technology (NIST) for
detailed discussions about the fundamental physical constants and the base SI units
[10]. For most calculations, it suffices to use c0 = 2.998 × 108 m/s. The refractive

index of a medium is given as n =
√

μmεm
μ0ε0

= c0
c . Therefore, c = c0/n and λm = λ/n,

where λ is the wavelength in vacuum. For nonmagnetic materials μm/μ0 = 1; thus,
n = √

εm/ε0.
Notice that n of a medium is a function of frequency (or wavelength) and is, in

general, temperature dependent. For polychromatic light, the phase speed usually
depends on wavelength because n = n(λ) in a dispersive medium. In a vacuum, the
energy propagation velocity is the same as the phase velocity. For polychromatic
waves in a dispersive medium, the group velocity vg determines the direction and
speed of energy flow and is defined as

vg = ∇kω = dω

dk
= ∂ω

∂kx
x̂ + ∂ω

∂ky
ŷ + ∂ω

∂kz
ẑ (8.13)

which is the gradient of ω in the k-space. In a homogeneous and isotropic medium,
vg = c0

(
n + ω dn

dω

)−1
and the direction of the group velocity will be the same as

that of the wavevector k. In a nondispersive medium, where n is not a function of
frequency, it is clear that vg = c = c0/n. A group front can also be defined based
on the constant-amplitude surface of the wave group. In general, it is not parallel to
the wavefront, when light is refracted from a nondispersive medium to a dispersive
medium; furthermore, the energy flow direction is not necessarily perpendicular to
the group front [11]. Notice that the wave equation is also applicable to other types
of waves such as acoustic waves, which are matter waves with a longitudinal and
two transverse modes, as mentioned in Chap. 5.

8.1.3 Polarization

A simple transverse wave will oscillate perpendicular to the wavevector. Because
electromagnetic waves have two field vectors that can change their directions dur-
ing propagation, the polarization behavior may be complicated. It is important to
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understand the nature of polarization in order to fully characterize an electromag-
netic wave. There are two equivalent ways to interpret a complex vector A. The first
method considers it as a vector whose components are complex, i.e.,

A = Ax x̂ + Ay ŷ + Az ẑ (8.14a)

where Ax , Ay, and Az are complex numbers:

Ax = A′
x + iA′′

x , Ay = A′
y + iA′′

y, and Az = A′
z + iA′′

z (8.14b)

The second method decomposes it into two real vectors such that

A = A′ + iA′′ (8.15a)

where A′ and A′′ are the real and imaginary parts of the complex vector, given by

A′ = A′
x x̂ + A′

y ŷ + A′
z ẑ and A′′ = A′′

x x̂ + A′′
y ŷ + A′′

z ẑ (8.15b)

In either case, a complex vector has six real scalar terms.
For the time being, let us assume all the material properties to have real values and

k to be a real vector. BothE andH are complex, according to Eq. (8.9). To ensure that
k · E = 0 at any time and location, both Re(E0) and Im(E0) must be perpendicular
to k. The same is true for the magnetic vector. Because H can be obtained from
Eq. (8.11a), the state of polarization can be based on how the electric field varies in
time and along the k-direction in space. In order to study the time dependence of the
electric field, rewrite Eq. (8.10) as

Re(E) = a cos(ωt) + b sin(ωt) (8.16)

wherea = Re(E0eik·r) andb = Im(E0eik·r) are both real vectors and perpendicular to
k. In general, the electric field will vary with time in an ellipse, called the vibration
ellipse, as shown in Fig. 8.2. If a and b are parallel or, equivalently, Re(E0) and

Fig. 8.2 Illustration of
polarization by the vibration
ellipse, for a plane wave
propagating in the positive
z-direction (out of the paper).
The electric field vector is
plotted at an increment of
ω�t = π/12 a−a

b

x

−b

y
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Im(E0) are parallel to each other, then the electric field will not change its directions.
The wave is said to be linearly polarized, and either a or b specifies the direction of
polarization. An example of a linearly polarized wave is the wave shown in Fig. 8.1.
When a⊥b and |a| = |b|, the vibration ellipse is a circle and the wave is said to be
circularly polarized. In general, a monochromatic wave described by Eq. (8.10) is
elliptically polarized. For circularly or elliptically polarized light, if a × b is in the
same direction as k, the vibration ellipse will rotate counterclockwise (left handed)
when viewed toward the light source, and if a × b is opposite to the direction of
propagation, the vibration ellipse will rotate clockwise (right handed). Similarly,
one can consider the polarization of the electric field at a fixed time and observe the
vibration ellipse along the direction of propagation as an exercise (see Problem 8.2).

Because of the random nature of thermal radiation, the Fourier component does
not varywith time exactly following e−iωt butwith somefluctuations in the amplitude.
The polarization may become completely random, which is said to be unpolarized,
randomly polarized, or completely uncorrelated. In any case, the electric field can
be decomposed into the two orthogonal directions on the vibration ellipse. This is
particularly useful for calculating energy transfer. The polarization status can be fully
described by the four Stokes parameters and the response of an optical element can be
modeled using the Mueller matrix formulation [6, 7]. For coherent monochromatic
light, however, the Jones vector and Jones matrix formulation can provide additional
phase information since it is based on the transformation of the electric field rather
than the amplitude [12].

8.1.4 Energy Flux and Density

The energy conservation for an electromagnetic field can be obtained fromMaxwell’s
equations, according to English physicist John Poynting (1852–1914). To derive
Poynting’s theorem, one can dot multiply Eqs. (8.1) and (8.2) by –H and E, respec-
tively, and then add up each side. Using the vector identity in Eq. (B.63), we get
∇ · (E × H) = (∇ × E) · H − (∇ × H) · E. After some simplifications, we obtain

−∇ · (E × H) = ∂

∂t

(
1

2
εmE · E+1

2
μmH · H

)
+ E · J (8.17)

The left-hand term represents the energy flow into a differential control volume,
the first term on the right is the rate of change of the stored energy (associated with
the electric and magnetic fields), and the last term is the dissipated electromagnetic
work or Joule heating. The Poynting vector is defined as

S = E × H (8.18a)

The Poynting vector is essentially the energy flux, which gives both the direction and
the rate of energy flow per unit projected surface area. Equations (8.17) and (8.18a)
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can be easily extended to the complex field notation. Although it is easy to write the
Poynting vector (which is always real) as S = Re(E) ×Re(H), it is not very helpful
because one would have to evaluate the real parts of E and H individually. Besides,
the frequency of oscillation is usually too high to be measured. For harmonic fields,
the time-averaged Poynting vector can be expressed as

〈S〉 = 1

2
Re(E × H∗) (8.18b)

where * signifies the complex conjugate. Similarly, the time-averaged energy density
for time-harmonic fields becomes [5]

〈u〉 = 1

4
εmE · E∗+1

4
μmH · H∗ (8.19)

For an absorbing or dissipative medium, different approaches exist regarding the
definition and determination of the electromagnetic energy density especially when
magnetic materials are involved [13, 14].

Example 8.1 Prove that Eq. (8.18b) is the time-averaged Poynting vector for time-
harmonic fields.

Solution LetE = E(r)e−iωt andH = H(r)e−iωt , whereE(r) and H(r) are complex
vectors. Integrating the Poynting vector over a period T, we have

〈S〉 = 1

T

∫

T

Re(E) × Re(H)dt

= 1

4T

∫

T

[
E(r)e−iωt + E∗(r)eiωt

] × [
H(r)e−iωt + H∗(r)eiωt

]
dt

= 1

4

(
E × H∗ + E∗ × H

) = 1

2
Re

(
E × H∗)

8.1.5 Dielectric Function

The conductivity is large at low frequencies formetals, due to free electrons. Even for
good conductors, however, the electrons are not completely free but will be scattered
by defects and phonons. At high frequencies, the current density J and the electric
fieldE are not in phase anymore, suggesting that the conductivity should be a complex
number. For insulators such as crystalline or amorphous dielectrics, electromagnetic
waves can interact with bound electrons or lattice vibrations to transfer energy to
the medium. At optical frequencies, the distinction between a conductor and an
insulator becomes ambiguous unless the optical response over a wide frequency
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region is considered. It is well known that a good conductor is highly reflective
in a broad spectral region from the near infrared all the way to radio frequencies.
Nevertheless, a dielectric material can also be highly reflective in certain frequency
bands, especially in the mid-infrared region. At certain frequencies or in a narrow
frequency band, the dielectric function ε′ + iε′′ may appear to be very similar for a
metal and a dielectric material.

Let us consider a nonmagnetic material whose conductivity is σ . The wave
equation for σ �= 0 and μm = μ0 has the following form:

∇2E = μ0σ
∂E
∂t

+ μ0εm
∂2E
∂t2

(8.20)

Suppose Eq. (8.9) is a solution of this equation. We can substitute ∂E/∂t = −iωE,
∂2E/∂t2 = −ω2E, and ∇2E = −k2E into Eq. (8.20) to obtain

k2 = iωμ0σ + ω2μ0εm (8.21)

Therefore, the wavevector becomes complex: k = k′ + ik′′, where k′ = k ′
x x̂+ k ′

y ŷ+
k ′

z ẑ and k
′′ = k ′′

x x̂+ k ′′
y ŷ+ k ′′

z ẑ are real vectors. Note that Eq. (8.21) tells us the value
of k2 = k · k = k2

x + k2
y + k2

z , where each wavevector component may be complex,
but does not specify the individual components. The complex dielectric function is
defined as

ε = ε′ + iε′′ = εm

ε0
+ i

σ

ωε0
(8.22)

For a nonmagnetic material, the complex refractive index ñ = n + iκ is related
to the complex dielectric function by ε = (n + iκ)2. The imaginary part κ of the
complex refractive index is called the extinction coefficient. By definition, we have

ε′ = n2 − κ2 and ε′′ = 2nκ (8.23)

The refractive index n and the extinction coefficient κ are also called optical con-
stants, although none of them are constant over a large wavelength region for real
materials [15]. The dielectric function is also called relative permittivity, with respect
to the permittivity of vacuum ε0. One can consider the σ/ω term in Eq. (8.22) as the
imaginary part of the permittivity. Some texts used ε = ε′ − iε′′ for the dielectric
function and ñ = n − iκ for the complex refractive index. In doing so, Eq. (8.9) must
be revised to E = E0ei(ωt−k·r). In either convention, ε′′ and σ must be nonnegative
for a passive medium. Equation (8.21) can be rewritten as

k = ñω/c0 (8.24)

For simplicity, we will remove the tilde and simply use n for the complex refractive
index, where it can be clearly understood from the context.



8.1 Electromagnetic Waves 419

By substituting ik for∇ and−iω for ∂/∂t ,we can rewriteMaxwell’s curl equations
as

k × E = ωμ0H (8.25)

and

k × H = −ωε0εE (8.26)

Similar to the definition of the complex dielectric function, one may choose to
define a complex conductivity that satisfies Ohm’s law at high frequencies, J = σ̃E,
where

σ̃ = σ ′ + iσ ′′ = σ − iωεm (8.27)

Note that we have assumed that σ is the real part of σ̃ . Therefore,

σ ′′ = −ωε0ε
′ and ε′′ = σ ′/ωε0 (8.28)

Equation (8.26) can be recast in terms of the complex conductivity as

k × H = −iσ̃E (8.29)

In the subsequent discussion, we will omit the tilde above σ , when the context
is sufficiently clear. The complex conductivity and the complex dielectric function
are related to each other. For a linear, isotropic, and homogeneous nonmagnetic
material, only two frequency-dependent functions are needed to fully characterize
the electromagnetic response. The function pairs often found in the literature are
(n, κ),

(
σ ′, ε′), (ε′, ε′′), and (σ ′, σ ′′). The principle of causality, which states that

the effect cannot precede the cause, or no output before an input, imposes additional
restrictions on the frequency dependence of the optical properties so that the real
and imaginary parts are not completely independent, but related, to each other. In
general, the relative permeability, which is complex and frequency dependent, can
be expressed as

μ = μ′ + iμ′′ = μm/μ0 (8.30)

The complex refractive index for magnetic materials should be defined as follows:

n = √
εμ (8.31)

The amplitude of the complex wavevector is k = nω/c0, same as Eq. (8.24). One
can verify that Eq. (8.9) is a solution of the wave equation. The relative permittivity
ε and permeability μ will be used to formulate the general equations, later in this
chapter. In most sections of this chapter, we deal with nonmagnetic materials, such
as metals, dielectrics, and semiconductors. However, we will devote the discussion
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of the optical properties of magnetic materials to Sect. 8.4.6, because of the emerging
interest in metamaterials, which are synthesized materials with magnetic responses
at microwave and higher frequencies (see Problem 8.6, for example).

8.1.6 Propagating and Evanescent Waves

In an absorbing nonmagnetic medium, the electric and magnetic fields will attenuate
exponentially. As an example, consider a wave that propagates in the positive x-
direction, with its electric field polarized in the y-direction. Then,

E = ŷE0e
−i(ωt−k ′x)e−k ′′x (8.32)

where k ′ = ωn/c0 and k ′′ = ωκ/c0 are the real and imaginary parts of thewavevector,
respectively, that is, k = (k ′ + ik ′′)x̂. Equation (8.32) suggests that the amplitude
of the electric field will decay exponentially according to e−(2πκ/λ)x . The magnetic
field can be obtained from Eq. (8.25) as

H = ẑ
n + iκ

μ0c0
E0e

−i(ωt−k ′x)e−k ′′x (8.33)

By substituting Eqs. (8.32) and (8.33) into Eq. (8.18a), we obtain the time-
averaged energy flux in the x-direction as

〈S〉 = n

2μ0c0
E2
0e

−2k ′′x = n

2μ0c0
E2
0e

−aλx (8.34)

where aλ = 4πκ/λ is called the absorption coefficient. The inverse of a is called the
radiation penetration depth (or photon mean free path) given by

δλ = 1

aλ

= λ

4πκ
(8.35)

It is the distance through which the radiation power is attenuated by a factor of e−1

(≈37%). (See Problem 8.6 for some typical values of the penetration depth in various
materials at different wavelengths and temperatures.)

When k is complex, the plane normal to k′ is the constant-phase plane and the
plane normal to k′′ is the constant-amplitude plane because

E = E0e
−i(ωt−k′ ·r)e−k′′ ·r (8.36)

Whenk′×k′′ = 0, thewave is said to be homogeneous; otherwise, the constant-phase
planes will not be parallel to the constant-amplitude planes, and the wave is said to
be inhomogeneous. A typical homogeneous wave is given in Eq. (8.32). Now let us
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Fig. 8.3 Schematic of an
evanescent wave near the z =
0 surface
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use an example to illustrate an inhomogeneous wave. Consider a wave, defined in
the z ≥ 0 half plane filled with vacuum, with a wavevector k = 2ω/c0x̂+ i

√
3ω/c0ẑ.

The electric field is linearly polarized in the y-direction; thus, E = ŷE0e−i(ωt−k·r).
It can be shown that k · k = k2 = ω2/c20; hence, k is indeed a valid wavevector
in vacuum. The electric field can be written as

E = ŷE0e
−i(ωt−kx x)e−ηz (8.37)

Here, kx = 2k = 4π/λ, and η = Im(kz) = 2
√
3π/λ. Clearly, thewave has a constant

phase for any constant-x plane and a constant amplitude for any constant-z plane.
Furthermore, the amplitude decays exponentially toward the positive z-direction and
becomes negligible, when z > λ, as shown schematically in Fig. 8.3. Such a wave is
called an evanescent wave, which exists in waveguides and is important for near-field
optics and nanoscale radiation heat transfer. It can be shown that the time-averaged
Poynting vector is parallel to the x-direction so that no energy is transported toward
the z-direction (see Problem 8.7).

8.2 Blackbody Radiation: The Photon Gas

This section deals with Planck’s law of blackbody radiation, which is the foundation
of far-field radiation heat transfer analysis. After the discussion of radiation ther-
mometry and radiance temperature, we will study radiation (or photon) entropy and
pressure. Photon entropy and exergy may be important for analyzing and design-
ing advanced energy harvesting systems from solar radiation to near-field thermal
radiative devices. The limitation of Planck’s law is also addressed.

8.2.1 Planck’s Law

Consider an enclosure of volume V, whose walls are at a uniform temperature T, as
shown in Fig. 8.4a. The enclosure may contain amedium (such as amolecular gas) or
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Fig. 8.4 An isothermal enclosure (blackbody cavity): a without an opening and b with a small
opening on the wall that has little effect on the equilibrium distribution

may be evacuated (vacuum). Inside the enclosure, there exist electromagnetic fields,
which may be viewed either as many transverse waves at different frequencies or as a
large number of quanta with different energies. The particle theory treats radiation as
a collection of photons. The energy and the momentum of each photon are related to
the frequency and the speed of light, by ε = hν and p = hν/c, respectively. We are
interested in finding the equilibrium distribution of photons with respect to photon
energy or frequency or momentum. Photons obey Bose–Einstein statistics, without
requiring the total number be conserved. The number of photons dN in a frequency
interval from ν to ν + dν per unit volume is equal to the mean occupation number
multiplied by the number of quantum states (degeneracy):

dN = fBE(ν)dg = dg

ehν/kBT − 1
(8.38)

The quantum states in the phase space, consisting of a volume V and a spherical shell
in the momentum space (from p to p + dp), are given by dg = 2V (4πp2dp)/h3,
where the factor 2 accounts for the two polarization states of electromagnetic waves.
Thus, we can write the density of states (DOS), which is the number of quantum
states per unit volume per unit frequency interval, as

D(ν) = 1

V

dg

dν
= 8πν2

c3
(8.39)

Notice that c is the speed of light in the medium and it is assumed that the refractive
index of the medium is real and independent of the frequency. Because the Bose–
Einstein distribution function gives the mean occupation number of each quantum
state, the number of photons per unit volume per unit frequency interval is

f (ν) = 1

V

dN

dν
= fBE(ν)D(ν) = 8πν2

c3(ehν/kBT − 1)
(8.40)
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Integrating the above equation over all frequencies yields the total number of pho-
tons at a given temperature per unit volume. Clearly, the number of photons is not
conserved in a blackbody cavity with a fixed volume V.

Since the energy of a photon is hν, the spectral energy density (energy per unit
volume per unit frequency interval) at a fixed temperature T can be written as

uν(ν) = hν f (ν) = 8πhν3

c3(ehν/kBT − 1)
(8.41)

For an area element inside the enclosure, the radiant energy flux is related to the
energy density and the speed of light by

q ′′
rad,ν = uνc

4
(8.42)

If a blackbody is placed inside the enclosure, it will absorb all incoming radiant
energy that reaches its surface; at thermal equilibrium, it must emit the same amount
of energy.After substitutingEq. (8.41) intoEq. (8.42),weobtain the spectral emissive
power of a blackbody as a function of frequency and temperature as

eb,ν(ν, T ) = 2πhν3

c2(ehν/kBT − 1)
(8.43)

Note that the spectral emissive power is the power emitted per unit area per frequency
or wavelength interval. To express the spectral emissive power in terms of the wave-
length (in vacuum), we can substitute c = c0/n, ν = c0/λ, dν = −c0dλ/λ2, and
eb,νdν = −eb,λdλ into Eq. (8.43). Therefore,

eb,λ(λ, T ) = 2πhc20n2

λ5(ehc/kBλT − 1)
= C1n2

λ5(eC2/λT − 1)
(8.44)

where C1 = 3.742 × 108 W m−2 μm4 and C2 = 1.439 × 104 μm K [10] are
called the first and second radiation constants. Equations (8.43) and (8.44) are called
Planck’s law or Planck’s distribution (of blackbody radiation) in terms of the fre-
quency and wavelength, respectively. It should be noted that the blackbody intensity
is Ib,λ(λ, T ) = eb,λ(λ, T )/π , as in Eq. (2.48), and isotropic inside the whole cavity
regardless of the radiative properties of the wall. Furthermore, when there is a small
opening, the emitted radiation is diffuse and obeys the blackbody distribution, as
shown in Fig. 8.4b. The requirement is that the opening should be sufficiently small
compared with the size of the enclosure, but large enough compared to the wave-
lengths of interest. The concept of blackbody cavity was made clear by Wien in his
1911 Nobel lecture, as seen from the excerpt below:

… there must exist, in a cavity surrounded by bodies of equal temperature, a radiation energy
that is independent of the nature of the bodies. If in the walls surrounding this cavity a small
aperture is made through which radiation issues, we obtain a radiation which is independent
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of the nature of the emitting body, and is wholly determined by the temperature. The same
radiation would also be emitted by a body which does not reflect any rays and which is
therefore designated as completely black, and this radiation is called the radiation of a black
body or blackbody radiation.

It should be noted that if the refractive index is a weak function of wavelength and
absorptionby themedium is negligible, c3 inEqs. (8.40) and (8.41) should be replaced
by c2vg where vg is the group velocity defined in Eq. (8.13). The group velocity vg
should also be used in Eq. (8.42) to replace c. Nevertheless, the expressions of the
emissive power given in Eqs. (8.43) and (8.44) remain the same. In the following,
n = 1 or vacuum is assumed for Planck’s distribution unless otherwise indicated.

Equation (8.43) or (8.44) can be integrated over the whole spectrum to obtain
the Stefan–Boltzmann law: eb = σSBT 4. In Fig. 8.5, eb,λ/σSBT 5 is plotted as
a function of λT so that the area under Planck’s distribution (solid curve) is∫ ∞
0

eb,λ(λ,T )

σSBT 5 d(λT ) = 1
σSBT 4

∫ ∞
0 eb,λ(λ, T )dλ = 1. The Planck’s distribution has a

peak and approaches zero at extremely short and long wavelengths. If C2/λT  1,
the right-hand side of Eq. (8.44) can be approximated by C1λ

−5e−C2/λT . This is
called Wien’s formula, which gives good approximation, even beyond the max-
imum emissive power, as can be seen from Fig. 8.5. At very long wavelengths,
Wien’s formula underpredicts the emissive power and asymptotically approaches
to C1λ

−5, suggesting that the emissive power is independent of temperature. Note
that the right-hand side of Eq. (8.44) approaches C1T/(C2λ

4) if C2/λT � 1, since
ex −1 ≈ x for x � 1. This is called the Rayleigh–Jeans formula, which is applicable
at very long wavelengths, as shown in Fig. 8.5. The significance of the Rayleigh–
Jeans formula is that it correctly predicts the temperature dependence of the black-
body spectrum, at very long wavelengths, where Wien’s formula fails. The failure
of the Rayleigh–Jeans formula at short wavelengths is called the ultraviolet catas-
trophe. The significance of Planck’s formula is more than a unified mathematical
formulation. It was derived based on the hypothesis of energy quanta that do not
exist in classical Newtonian mechanics or Maxwell’s electrodynamics. It should be

Fig. 8.5 Planck’s law for
blackbody emissive power
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noted that the preceding derivation is based on statistical thermodynamics, presented
in Chap. 3, rather than on Planck’s original semi-classical oscillator model [4].

Example 8.2 Find the wavelength λmp at which Planck’s distribution reaches a
maximum. What is the ratio of the energy emitted at λ < λmp to that at λ > λmp?

Solution By setting the derivative of Eq. (8.44) equal to zero, i.e., deb,λ/dλ = 0, we
have

hc

kBλT
+ 5 exp

(
− hc

kBλT

)
− 5 = 0

This equation can be solved by iteration or numerically to yield

λmp [μm] = 2898μmK

T [K]
(8.45)

This is Wein’s displacement law. The location of λmp is also marked on Fig. 8.5.
To find out the ratio of the energy emitted at λ < λmp to that at λ > λmp, we can

numerically evaluate
∫ λmp

0 eb,λ(λ, T )dλ/
∫ ∞
λmp

eb,λ(λ, T )dλ. The numerical result is
approximately 1:3 and independent of temperature.

Example 8.3 Assuming the sun to be a blackbody at 5800 K, calculate the emissive
power at the following wavelength intervals: λ < 0.3 μm, 0.3 μm < λ < 0.4 μm,
0.4 μm < λ < 0.7 μm, 0.7 μm < λ < 3 μm, and λ > 3 μm. Neglect the absorption
by the atmosphere. What is the radiant power arriving at the earth’s surface from the
sun?

Solution The total emissive power is σSBT 4
sun = 5.67×10−8×58004 ≈ 64 MW/m2.

We can obtain the emissive power in each spectral region by integrating Eq. (8.44),
as listed in the following table:

λ (μm) <0.3 0.3–0.4 0.4–0.7 0.7–3 >3 Total

λ2T (μmK) 1740 2320 4060 17400 ∞ _

F0→λ2 0.03 0.12 0.49 0.98 1 _

Fλ1→λ2 0.03 0.09 0.37 0.49 0.02 1

�Eb
(
MW/m2

)
1.9 5.8 23.7 31.4 1.3 64.1

Note that Fλ1→λ2 represents the fraction of radiation falling betweenλ1 andλ2. The
total power emitted by the sun equals the emissive power multiplied by the surface
area of the sun. The fraction of the power that reaches the earth equals the solid angle
of the earth divided by 4π . Note that the radius of the sun rsun = 6.955× 108 m, the
radius of the earth rearth = 6.378 × 106 m, and the earth–sun distance Rearth−sun =
1.496 × 1011 m. Therefore, the total power that will reach the earth’s surface, if the
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Table 8.1 Spectral regions expressed in different units

Wavelength
λ (μm)

Wavenumber
ν̄ (cm–1)

Frequency
ν (THz)

Angular frequency
ω (1014 rad/s)

Photon energy
E (eV)

UV 0.01–0.38 (10 – 0.26) × 105 30,000–790 1900–50 120–3.3

VIS 0.38–0.76 (2.6 – 1.3) × 104 790–400 50–25 3.3–1.6

NIR 0.76–2.5 (1.3 – 0.4) × 104 400–120 25–7.5 1.6–0.5

MIR 2.5–25 4000–400 120–12 7.5–0.75 0.5–0.05

FIR 25–1000 400–10 12–0.3 0.75–0.019 0.05–0.0012

MW 103–105 10–0.1 0.3–0.003 (19–0.19) × 10–3 (12–0.12) × 10–4

absorption by the atmosphere is neglected, is

Q̇ = 4πr2sun · σSBT 4
sun · πr2earth

4π R2
earth−sun

≈ 1.8 × 1017 W

The average irradiation on the earth is: G = Q̇/πr2earth ≈ 1377 W/m2. This
value is very close to the total solar irradiance (TSI), measured outside the earth’s
atmosphere.

Because of the broad spectral region of electromagnetic waves, alternative units
are often used, such as wavelength λ (in vacuum), wavenumber ν̄ = 1/λ, frequency
ν = c0/λ, angular frequency ω = 2πν, and photon energy E = hν. Generally
speaking, optical radiation covers the spectral region including ultraviolet (UV),
visible (VIS), near infrared (NIR), mid infrared (MIR), and far infrared (FIR).
Table 8.1 outlines the subdivisions of the spectral region in different units from
ultraviolet (UV) to microwave (MW). Note that ν̄ [cm−1] = 10, 000/λ [μm] and
E [eV] = 1.24/λ [μm]. Thermal radiation covers part of the UV from λ = 0.1 μm
through some of the MW region.

8.2.2 Radiation Thermometry

The developments of the absolute temperature scale and radiation thermometry are
among the most important applications of blackbody radiation [16]. The Stefan–
Boltzmann law eb = σSBT 4 defines an absolute thermodynamic temperature, which
is consistent with the one defined by the ideal gas law and the Carnot cycle. While
radiation thermometry can serve as a primary standard, most practical radiation
thermometers are not absolute instruments because of other considerations such as
fast response, easy operation, and lowcost.High-temperature furnaces are commonly
used as calibration standards. The cavity is a hollow cylinder, made of graphite for
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example, with a conical ending and a small aperture. The most accurate calibration
source is the fixed-point heat pipe blackbody, for which a puremetal ismelted outside
the graphite cylinder to maintain a constant temperature in a two-phase state. The
freezing temperatures are then used to define the temperature scales (1234.93 K for
Ag, 1337.33 for Au, and 1357.77 K for Cu).

To measure the absolute temperature of a thermally radiative body, two
blackbody cavities at different temperatures would be needed: one serves as
the emitter (blackbody source) and the other as the receiver (radiometer).
Quinn and Martin [17] used a blackbody source and a cryogenic radiometer
to directly determine the thermodynamic temperatures and measure the Stefan–
Boltzmann constant. The experimentally obtained Stefan–Boltzmann constant was
(5.66967 ± 0.00076) × 10−8 Wm−2K−4. The difference is 0.13% of the theoretical
value (5.67040 ± 0.00004) × 10−8 Wm−2K−4, based on Planck’s constant, Boltz-
mann’s constant, and the speed of light. Since the early 1990s, NIST has developed
a high-accuracy cryogenic radiometer (HACR) facility to serve as the primary stan-
dard for optical radiation measurements. A schematic of the original HACR receiver
is shown in Fig. 8.6. The receiver is mounted at the bottom of a liquid helium cryo-
stat in an evacuated chamber, and the optical access is through a Brewster window
below the cavity. TheHACR facility has gone through somemajor upgrades in recent
years. The receiver cavity is made of copper with a high thermal conductivity and
low specific heat at cryogenic temperatures. The inner wall of the cavity is coated
with a specular black paint to absorb the incident radiation with an effective absorp-
tance greater than 99.998%. The electrical-substitution technique links the radiant
power to the electric power to achieve an overall uncertainty within 0.02% for optical
power measurements. Detailed descriptions can be found from Pearson and Zhang
[18] and references therein. The cosmic radiation background (in the far-infrared
and microwave region), measured with cryogenic bolometers, can be fitted to the
blackbody distribution at 2.7 K; this is the temperature of the universe at the present
time. The discovery of cosmic radiation background in 1964 and the subsequent
measurements and theoretical studies have been recognized by the Nobel Prizes in
Physics to Arno Penzias and Robert Wilson in 1978 and to John Mather and George
Smoot in 2006.

Most radiation thermometers are based on spectral measurements rather than on
themeasurement of the total irradiance from the target.When a radiation thermometer
is used to measure the temperature of a real surface, the unknown emittance of
the surface and the influence of the surrounding radiation are the major issues that
affect the measurement. Various methods have been developed to deal with these
problems, including the creation of a blackbody cavity on the surface, the two-color
method, and the use of a controlled reference source. The development of optical
fibers has allowed radiometric temperature measurements for surface locations that
are otherwise inaccessible by imaging radiometers. The detailed theory and practice
of radiation thermometry can be found from the two book volumes compiled by
Zhang et al. [19]. A brief discussion of the basic operational principles of spectral
radiation thermometry is given in the following.
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Fig. 8.6 Schematic of the
receiver cavity of an absolute
cryogenic radiometer, where
GRT stands for germanium
resistance thermometer, from
Pearson and Zhang [18]

The measurement equation of a spectral radiation thermometer can be approxi-
mated as follows:

Vd = CI Iex,λ(λ) (8.46)

where V d is the detector output signal and CI is an instrument constant that is inde-
pendent of the target material and temperature. The term Iex,λ(λ) is called the exitent
spectral radiance, which includes the radiation emitted by the target and the sur-
roundings, as well as that reflected by the target. The radiance temperature Tλ (also
called the brightness temperature) is defined according to

Ib,λ(λ, Tλ) = Iex,λ(λ) (8.47)
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where Ib,λ(λ, Tλ) is the blackbody intensity at the wavelength λ and temperature
Tλ. If the surrounding emission and absorption can be neglected, the exitent spectral
radiance is due only to the emission; therefore,

Iex,λ(λ) = Ie,λ(λ, T ) = ε′
λ Ib,λ(λ, T ) (8.48)

where ε′
λ is the directional-spectral emittance, and Ie,λ(λ, T ) is the intensity emitted

by the target. By combining Eqs. (8.47) and (8.48) and applyingWien’s formula, the
surface temperature is related to the radiance temperature by

1

T
= 1

Tλ

+ λ

C2
ln ε′

λ (8.49)

The uncertainty in the measured temperature due to an uncertainty in the emittance
is

δT

T
= −λT

C2

δε′
λ

ε′
λ

(8.50)

The impact of emittance on the temperature measurement decreases as λ decreases.
Equation (8.50) suggests that it may be advantageous to choose a wavelength that is
somewhat shorter than the wavelength at which Ib,λ(λ, T ) is a maximum as given
byWien’s displacement law. If the surrounding radiation is not negligible, Iex,λ(λ) is
the sum of the emitted and reflected spectral radiances. In practice, when choosing
the operating wavelength, one should also consider the material’s properties and the
effect of surrounding radiation, as well as the detector availability and sensitivity.
Hence, the choice of a radiation thermometer requires a detailed analysis of different
effects in the actual measurements.

Example 8.4 Rapid thermal processing is a semiconductor single-wafer manufac-
turing technique. A lightpipe radiation thermometer, operated at λ = 0.95 μm, is
used to measure the temperature of the wafer. The emittance or emissivity of a plain
silicon wafer is approximately 0.7 at this wavelength. Neglect the reflected radiation
from the wafer. If the wafer is at a temperature of 1200 K, what is the radiance
temperature? If the temperature needs to be determined within an uncertainty of 1 K,
how much tolerance in the emittance error is acceptable?

Solution From Eq. (8.49), Tλ ≈ 1167K, which differs from the actual temperature
by approximately 33K.One can also solve Eqs. (8.47) and (8.48), using Planck’s law,
and the result is essentially the same. Based on Eq. (8.50), to obtain a temperature
within 1 K, the emittance must be determined within an uncertainty of δε′

λ = 0.0074.
Zhou et al. [20] developed amodel to predict the effective emittance of silicon wafers
in rapid thermal processing furnaces and showed that, by using a reflective cavity,
the temperature measurement uncertainty can be significantly reduced.
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8.2.3 Radiation Pressure and Photon Entropy

Like other particles, photon gas also has the property of entropy and can be related to
other properties in equilibrium states. Express the energy density in an enclosure of
volumeV, at thermodynamic equilibrium,with a temperatureT as u = U

V = 4
c σSBT 4.

It can be seen that the specific heat at constant volume is cv = (
∂u
∂T

)
V

= 16
c σSBT 3.

The radiation entropy or photon entropy can therefore be obtained as

S =
T∫

0

V cv

dT

T
= 16

3c
V σSBT 3 (8.51a)

or

s = 16

3c
σSBT 3 (8.51b)

Note that T = (
∂U
∂S

)
V
is satisfied. The Helmholtz free energy A = U − T S =

− 4
3c V σSBT 4. Thus, the radiation pressure is

P = −
(

∂ A

∂V

)

T

= 4

3c
σSBT 4 (8.52)

The force from radiation pressure, albeit small, has some important applications in
trapping and manipulating atomic to molecular particles. This technique is called
optical traps or optical tweezers; see Lang and Block [21] for a bibliographical
review. Arthur Ashkin shared the Nobel Prize in Physics in 2018 “for the optical
tweezers and their application to biological systems.” Another way to view radiation
pressure is that photons or electromagnetic waves carry both energy and momentum.
The interaction of electromagnetic waves or photons with matter therefore involves
a change of momentum, resulting in a pressure on the object. Radiation pressure
was first predicted by J. C. Maxwell in 1873 and experimentally demonstrated by
Russian physicist P. Lebedev in 1900 andAmerican physicists E. F. Nichols and G. F.
Hull in 1901. Solar radiation pressure plays a role in the formation of a comet’s dust
tail. Radiation pressure is also important in cosmology concerning the formation and
evaluation of the stars and galaxies.

If each photon mode (frequency) is individually considered, the spectral entropy
density for unpolarized radiation can be expressed as follows [4]:

sν(ν, T ) = 8πkBν2

c3

[
x

ex − 1
+ ln

(
ex

ex − 1

)]
(8.53)

where x = hν
kBT . Note that

1
T =

(
∂sv

∂uv

)
ν

= kB
hν

ln
(
1 + 8πhν3

c3uv

)
, which is consistent with

Eq. (8.41). Similar to the energy flux (emissive power) and intensity, the radiation
entropy flux canbeobtainedbymultiplying a factor c/4 toEqs. (8.51b) and (8.53), and
the radiation entropy intensity can be obtained by dividing the flux by π , because of



8.2 Blackbody Radiation: The Photon Gas 431

the isotropic nature of blackbody radiation. Clearly, electromagnetic radiation carries
both energy and entropy.

Example 8.5 Consider the radiation heat transfer between two parallel plates at
T 1 and T 2, respectively. Assume each plate has an area of A and both plates are
blackbodies. The separation distance is much smaller than

√
A but much greater

than the wavelength of thermal radiation.

(a) How much entropy is generated at each plate? Evaluate the ratio of entropy
generation assuming that T1 = 2T2.

(b) If a thermophotovoltaic receiver is mounted on the lower temperature side to
convert thermal radiative energy to electricity (work), what is its maximum
achievable efficiency?

Solution

(a) The net energy flow from plate 1 to 2 is Q̇12 = AσSB(T 4
1 − T 4

2 ). The
entropy of plate 1 will decrease at the rate of dS1/dt = −Q̇12/T1, and the
entropy of plate 2 will increase at the rate of dS2/dt = Q̇12/T2. On the
other hand, the net entropy flow from plate 1 to 2 can be calculated as Ṡ12 =
4
3 AσSB

(
T 3
1 − T 3

2

)
. Therefore, Ṡgen,1 = − Q̇12

T1
+Ṡ12 = AσSB

(
1
3T 3

1 − 4
3T 3

2 + T 4
2

T1

)
,

Ṡgen,2 = AσSB

(
1
3T 3

2 − 4
3T 3

1 + T 4
1

T2

)
. The combined total entropy generation is

equal to Q̇12

(
1
T2

− 1
T1

)
, as expected. It can be shown that the entropy generation

at each plate is always greater than zero if T1 �= T2, or equal to zero if T1 = T2.
When T1 = 2T2, the entropy generation by plate 1 is about one-quarter and that
by plate 2 is about three-quarters of the total entropy generated.

(b) The available energy or exergy of thermal radiation is defined as the maximum
work that can be produced by a system with respect to a large reservoir. In the
present example, we may assume that the reservoir is at the same temperature
as T2. Suppose an amount of heat is taken from the high-temperature plate. We
would like to find out the maximum work that can possibly be produced. Let us
consider a reversible heat engine at T2. The radiative energy leaving surface 1
can still be described by Q̇1 = AσSB(T 4

1 − T 4
2 ), and the entropy leaving surface

1 is Ṡ1 = 4
3 AσSB

(
T 3
1 − T 3

2

)
. Therefore, the entropy generation in plate 1 cannot

be eliminated. In other words, it is impossible to achieve the Carnot efficiency of
ηCarnot = 1−T2/T1. Themaximumwork can be obtainedwhen the irreversibility
at the lower temperature plate is negligible and the heat engine is also reversible.
It can easily be shown that the maximum work Ẇmax = Q̇1 − T2 Ṡ1, and the
optimal efficiency is given by

ηopt = Ẇmax

Q̇1
= 1 − 4(1 + y + y2)

3(1 + y)(1 + y2)
(8.54a)

where y = T1/T2 ≥ 0. When y = 2, we obtain an optimal efficiency
ηopt = 37.8%, which is less than the Carnot efficiency of 50%, because of
the unrecoverable irreversibility at plate 1.
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Consider a black receiver on the earth’s surface that converts solar radiation to
electricity. Since the incoming radiation is from a narrow solid angle, the emitted
radiation can be assumed to be in equilibriumwith the surroundings at T0. Therefore,
the received radiant power and entropy flux is Q̇1 = φ AσSBT 4

s and Ṡ1 = 4
3φ AσSBT 3

s ,
where Ts is the temperature of the sun andφ is a fraction accounting for the view angle
and atmospheric transmittance (neglecting the scattering effect). Assuming a power
Ẇ is developed, the heat transferred to the surroundings is Q̇0 = Q̇1 − Ẇ and the
entropy transferred to the surroundings is Q̇0/T0. In a reversible energy conversion
device, the entropy generation must be zero and the maximum efficiency is obtained
as

ηopt = Ẇmax

Q̇1
= 1 − 4

3

T0

Ts
(8.54b)

Different formulas on the optimal efficiency exist for solar energy conversion
devices due to the differentmodel assumptions used. For example, we can set T1 = Ts

and T2 = T0 in Eq. (8.54a) and change the denominator Q̇1 to the absorbed solar
radiation Q̇1,s = AσSBT 4

1 . Then one would obtain Petela’s formula [22]:

ηopt = Ẇmax

Q̇1,s
= 1 − 4

3

T0

Ts
+ 1

3

(
T0

Ts

)4

(8.54c)

Since T0/Ts is about one-twentieth, the difference between Eqs. (8.54b) and
(8.54c) is practically negligible. A comprehensive discussion on energy conversion
efficiency can be found from the review of Landsberg and Tonge [23]. This topic
is of contemporary interest especially when dealing with near-field radiative energy
conversion devices [24].

The next question one may ask is whether temperature can be defined for laser
radiation. The answer is yes, and the temperature for high-intensity lasers can be very
high. An intuitive guess is to define the temperature, based on the intensity Iν of the
laser or the monochromatic radiation, by setting Iν = Ib,ν(ν, Tν). The definitions of
entropy and thermodynamic temperature for optical radiation are very important for
analyzing optical energy conversion systems, such as solar cells, thermophotovoltaic
generators, luminescence devices, and laser cooling apparatus [25, 26]. Assume that
the monochromatic radiation is from a thermodynamic equilibrium state, such as
a resonance cavity that allows only a single mode to exist. The spectral entropy
intensity of unpolarized radiation can be written as follows [4, 25]:

Lν = 2kBν2

c2

[(
1 + c2 Iν

2hν3

)
ln

(
1 + c2 Iν

2hν3

)
− c2 Iν

2hν3
ln

(
c2 Iν
2hν3

)]
(8.55)

Thermodynamically, the monochromatic radiation temperature can be defined as
1

Tν (ν)
=

(
∂Lν

∂ Iν

)
ν
and given as
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1

Tν(ν)
=

(
∂Lν

∂ Iν

)

ν

= kB
hν

ln

(
1 + 2hν3

c2 Iv

)
(8.56)

This is indeed Planck’s distribution of intensity at the same temperature. The
expressions can be modified for polarized radiation. When the energy intensity is
very high, Eq. (8.56) approaches Tν(ν) = c2 Iv

2kBν2 , which is in the Rayleigh–Jeans limit.
The radiation temperature will be proportional to the intensity of the monochromatic
radiation and can exceed 1010 K, with a 1–mWHe-Ne laser at 632.8 nm wavelength
[26]. Therefore, for lasers with a moderate intensity, Tν tends to be so high that the
entropy is nearly zero; hence, the laser power can be considered as “work.” If a
collimated beam is randomly scattered by a rough surface, the scattered radiation
will have a much lower intensity because of the increase in the solid angle. The
process is accompanied with an entropy increase and is thus irreversible. It is not
possible to increase the intensity of the scattered light, back to its original intensity,
without leaving any net effect on the environment. On the other hand, if a nearly
collimated light is split into two beams with a beamsplitter, the transmitted and
reflected beams can interfere with each other to reconstruct the original beam. This
process is reversible because the twobeams are correlated. The correlated beamshave
lower entropy than those with the same intensity at thermodynamic equilibrium. The
concept of temperature is applicable only if the maximum entropy state has been
reached [25]. While the definition of the monochromatic radiation temperature is
similar to that of the radiance temperature, the physical significance is somewhat
different. In the definition of radiance temperature, the concepts of entropy and
thermodynamic equilibrium do not enter into consideration.

Consider a gray-diffuse body, for which the emissive power is proportional to the
blackbody emissive power, at any frequency and angle of emission. The monochro-
matic temperature calculated from Eq. (8.56), however, is frequency dependent. This
is because the emitted radiation, as a whole, cannot be considered as a blackbody
at any temperature. Thermal radiation of this type has been called dilute blackbody
radiation [23]. This simple example shows that photons at any given frequency can
be considered as in a thermodynamic equilibrium but not necessarily in equilibrium
with photons at other frequencies. When radiation has two linear polarizations with
different intensities, the monochromatic temperatures will be different, even for the
two polarizations. In general, it is a function of frequency, direction, and polarization.
The requirement is that each subsystem be in a thermodynamic equilibrium, even
though it is not in equilibrium with other subsystems at the same spatial location.
Photons at different frequencies, with different polarization states, or propagating in
different directions, can coexist in their own equilibrium states without any interac-
tion with each other. The concept may be called partial equilibrium, as in the case
when the two parts of a cylinder were separated by a moveable adiabatic wall. The
mechanical equilibrium would be established to maintain the same pressure on each
side, but the temperatures may be different from each other because thermal equi-
librium is reached only inside each portion but not between them. Another example
is in ultrafast laser heating of metals, as discussed in Chap. 7, where the electron
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and phonon systems can be treated as being in separate equilibrium states but not in
equilibrium with each other.

The concept of entropy intensity has recently been applied by Caldas and Semiao
[27] to study the entropy generation in an absorbing, emitting, and scatteringmedium,
based on the equation of radiative transfer (ERT) introduced in Sect. 2.4.3. The key is
that the change in entropy in an elemental path length equals the change in intensity
divided by the radiance temperature. The entropy change at steady state can be
obtained from Eq. (2.53) in Chap. 2 as follows:

dLλ

dξ
= aλ Ib,λ

Tλ(Iλ)
− (aλ + σλ)Iλ

Tλ(Iλ)
+ σλ

4π

∫

4π

Iλ(�′)
Tλ(Iλ)

�(�′,�)d�′ (8.57)

Like Iλ, the entropy intensity Lλ is a function of wavelength, location, and direc-
tion. Note that Ib,λ = Ib,λ(λ, Tg), where T g is the local temperature. Usually, Tλ(Iλ)
depends not only on the wavelength but also on the direction for a given location.
The term Iλ/Tλ(Iλ), however, is not the same as Lλ. Integrating Eq. (8.57) over the
solid angle of 4π and over all wavelengths yields the entropy change in the volume
element due to the intensity field variation. Furthermore, the entropy change in the
control volume is equal to the total energy absorbed divided by Tg . The energy rate
received per unit volume can be expressed as

q̇ =
∞∫

0

∫

4π

aλ

(
Iλ − Ib,λ

)
d�dλ (8.58)

The above equation works even with scattering since the integration of in-
scattering and out-scattering cancels out. The rate of entropy change of the medium
due to the net absorption by the matter is simply q̇/Tg , which may be either positive
or negative. The sum of the entropy change due to the field and that due to the matter
is the total entropy change that is attributed to entropy generation by irreversibility.
Therefore, we can express the volumetric entropy generation rate in terms of the
absorption, emission, and scattering as follows [27]:

ṡgen = ṡabs + emi + ṡsca (8.59)

The entropy generation due to combined absorption and emission is

ṡabs - emi =
∞∫

0

∫

4π

aλ

(
Iλ − Ib,λ

)[ 1

Tg
− 1

Tλ(Iλ)

]
d�dλ (8.60a)

The entropy generation due to scattering is
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ṡsca =
∞∫

0

∫

4π

⎡
⎣

∫

4π

Iλ(�′)
4πTλ(Iλ)

�(�′,�)d�′ − Iλ(�)

⎤
⎦σλd�dλ (8.60b)

Note that Eq. (8.60a) should be treated as the combined absorption and emission
effect since entropy generation due to absorption and emission processes cannot be
separated. Furthermore, the entropy generation due to either absorption–emission
or scattering is always greater than or equal to zero. When a surface is involved in
radiative heat transfer, the entropy generation rate per unit area can be expressed as

s ′′
gen =

∞∫

0

2π∫

0

π/2∫

0

[
Iin,λ − Iout,λ

Tw
− (L in,λ − Lout,λ)

]
cos θ sin θdθdφdλ (8.61)

where Tw is the wall temperature, and subscripts “in” and “out” signify the energy
or entropy intensity to and from the surface, respectively. If the surface is not a
blackbody, the outgoing intensity includes both the emitted and reflected intensities.
An alternative approach is to integrate the intensity over the whole sphere with a solid
angle of 4π . In Eq. (8.61), the entropy intensity is related to the energy intensity by
Eq. (8.55), which is recast in terms of wavelength as follows:

Lλ(λ, Iλ) = 2kBc

λ4

[(
1 + λ5 Iλ

2hc2

)
ln

(
1 + λ5 Iλ

2hc2

)
− λ5 Iλ

2hc2
ln

(
λ5 Iλ
2hc2

)]
(8.62)

The use of Eq. (8.62) may be disputed when multiple reflections occur. The inten-
sity of the emitted radiation is less than that of the blackbody and is reduced by each
reflection. The question still remains as to whether the blackbody intensity should
be used to calculate the entropy or the actual intensity after each reflection or the
combined intensity at any given location. An example is a system of two large par-
allel plates, separated by vacuum. One of the plates is at a temperature T 1 and is
diffuse-gray with an emittance of 0.5. The other plate is insulated and is a perfect
reflector (i.e., no emission). It is clear that a thermal equilibrium will be established
in the cavity after a long time. Again, the separation distance is much larger than the
thermal radiation wavelengths. The radiation leaving surface 1 includes the emitted
rays, as well as the first-order and higher order reflected rays. An attempt to define
the entropy of the emitted ray and each reflected ray will result in a total entropy
intensity greater than the entropy intensity calculated based on the blackbody inten-
sity Ib,λ(λ, T1). Therefore, to apply the previous analysis in a consistent way and to
obtain meaningful results, we must make the following hypotheses:

• The intensity at any given location is additive regardless of where it originates
from, as long as it fallswithin the same solid angle andwavelength intervals.While
this sounds obvious, it is untrue when interference effects become important. The
resulting intensity is called the combined intensity.
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• The monochromatic radiation temperature Tλ, defined in Eq. (8.56), is a func-
tion of the combined intensity and is, in general, dependent on the direction
and wavelength. The effect of polarization is neglected to simplify the problem.
Equation (8.56) must not be applied to each of the reflected or scattered rays.
The physical significance is that all the photons, with the same wavevector and
frequency, can be considered as a subsystem that is at thermodynamic equilibrium
with the temperature Tλ[Iλ(λ, θ, φ)].

• The entropy intensity is defined based on the combined intensity, according to
Eq. (8.62). While entropy must be additive, the entropy of all individual rays
must be calculated based on the monochromatic temperature of the combined
intensity. Because the number of photons, intensity, and entropy are additive, the
fraction of the entropy of each ray is the same as the ratio of the intensity of that
ray to the combined intensity.

With the theories presented in this section, one should be able to perform a sec-
ond law thermodynamic analysis for a given system, involving radiative transfer
of energy. Zhang and Basu [28] investigated entropy flow and generation consid-
ering incoherent multiple reflections. Different approximations exist in analyzing
the entropy of radiation. For example, the method of dilute blackbody radiation
uses a dilution factor and defines an effective temperature for each wavelength [23].
When the process is very complicated, such an effective temperature cannot be eas-
ily defined and this definition cannot be applied to multiple reflections. Entropy
generation is usually accompanied by the generation of heat, such as heating by
friction, electrical resistor, chemical reaction, or the absorption of solar radiation.
On the other hand, it appears that entropy generation can occur in radiation without
the generation of heat, such as by scattering. The definition of inelastic scattering is
based on the conservation of energy (wavelength) and momentum, which does not
impose any constraints on the reversibility. Further research is much needed in order
to better understand the nature of entropy of radiation and determine the ultimate
efficiency of photovoltaic cells and other radiative processes, including laser cooling
and trapping.Another area of possible application of radiation entropy is in nanoscale
heat conduction using EPRT, as discussed in Chap. 7. The entropy concept may be
extended to the phonon system by defining radiation entropy and entropy intensity of
phonons. Bright and Zhang [29] extended the concept of radiation entropy in a par-
ticipating medium to phonon radiation, providing a method to evaluate local entropy
generation. The conventional formula for entropy generation in heat diffusion can
be derived under the local-equilibrium assumption. Furthermore, the entropy gener-
ation mechanism during phonon transport is elucidated as due to the “absorption” of
high-frequency phonons and “emission” of lower frequency phonons, arising from
the actual phonon scattering processes [29]. There is a need to further develop photon
entropy analysis for near-field thermal radiation considering both interferences and
photon tunneling [24].
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8.2.4 Limitations of Planck’s Law

The concept that a blackbody absorbs all radiant energy that is incident upon it is
purely from the geometric-optics point of view, in which light travels in a straight
line and cannot interact with an object that does not intercept the light ray. Another
example of the geometric-optics viewpoint is that the transmittance of an iris (open
aperture) should be 1, meaning that all radiation incident on the opening will go
through but no radiation outside the opening can go through.However, for an aperture
whose diameter is comparable to the wavelength of the incident radiation, diffraction
may become important. As a result, the transmittance could exceed 1 in some cases.
Due to the diffraction effect, a particle that is sufficiently small compared to the
wavelength will interact with the radiation field, according to the scattering and
absorption cross sections, which can be greater than the projected surface area. In
some cases, it is possible for the object to absorb more energy than the product of the
radiant flux and the projection area. The absorptance can be greater than 1 and thus
exceeds the limit set by a blackbody. When such an object is placed in an isothermal
enclosure, the emitted energy will be greater than that from a blackbody having the
same dimensions. This anomaly has been discussed in detail by Bohren and Huffman
[9].

The energy density near the surface within a distance less than the wavelength can
be much greater than that given by Eq. (8.41) and increases as the distance is further
reduced. When two objects are placed at a distance much smaller than the charac-
teristic wavelength of thermal radiation, i.e., in the near field, photon tunneling can
occur and cause significant enhancement of the energy transfer. In recent years, there
have been numerous studies of light transmission through small apertures, radiation
heat transfer at nanometer distances, and light emission from nanostructures [30–
33]. Recent studies have also demonstrated that radiation heat transfer can be greatly
enhanced for micro/nanostructures even when they are separated by distances longer
than the characteristic wavelength [34]. This is still an open field with many new
developments and applications. We will study these phenomena and the underlying
physics in the following two chapters.

8.3 Radiative Properties of Semi-infinite Media

The reflection and refraction (transmission) of a semi-infinite isotropic medium are
studied based on Maxwell’s equations using suitable boundary conditions at the
interface between the incident and transmitting media. Only plane waves with differ-
ent polarizations are considered. Total internal reflection and the associated Goos–
Hänchen phase shift are also introduced. For real materials or interfaces, the bidi-
rectional reflectance distribution function (BRDF) is often needed to fully describe
the radiative properties. The emittance can be calculated based on the reflectance by
introducing Kirchhoff’s law.
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8.3.1 Reflection and Refraction of a Plane Wave

Consider radiation incident fromonemedium to another at the interface or the bound-
ary. The boundary that separates the media is assumed to be a smooth plane and
extends to infinity. Each medium is homogeneous and isotropic such that there is no
scattering within the medium. Therefore, the electric response can be characterized
by the relative permittivity or dielectric function ε, and the magnetic response can be
characterized by the relative permeability μ. For nonmagnetic materials, the refrac-
tive index is related to the dielectric function by n = √

ε. Keep in mind that these
quantities are, in general, complex and frequency dependent. The real and imaginary
parts of the refractive index are often called the optical constants. In this section, we
present the general formulation for both magnetic and nonmagnetic materials. For
certain crystalline and amorphous solids, like quartz and glass, the refractive index is
real in a wide spectral region and is the only parameter needed to fully characterize
the optical response of the material. In such a case, the expression can be largely
simplified and the results can be easily comprehended. The reduced results will also
be presented because of their importance to numerous engineering problems.

The incident radiation is a monochromatic plane wave with an angular frequency
ω. As shown in Fig. 8.7, the wavevector of the incident wave is k+

1 = (k1x , 0, k1z),
and the surface normal defines the plane of incidence, which is the x-z-plane. The
wavevectors of the reflected and transmitted waves must lie in the same plane. The
angle of incidence θ1 is the angle between the incidentwavevector and the z-direction,
i.e., sin θ1 = k1x/k1 and cos θ1 = k1z/k1, where k2

1 = k2
1x + k2

1z = μ1ε1ω
2/c20. It

is common to study the reflection and the refraction for linearly polarized waves,
with either the electric or magnetic field being parallel to the y-axis, because other
polarizations can be decomposed into the two polarization components.

When the electric field is in the y-direction, as shown in Fig. 8.7a, the wave is
called a transverse-electric (TE) wave or is said to be perpendicularly (s) polarized.
The incident electric field can be expressed as follows by omitting the time-harmonic
term of e−iωt hereafter:

Fig. 8.7 Illustration of
reflection and transmission at
an interface: a TE wave or
s-polarization. b TM wave or
p-polarization
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Ei = ŷEie
ik1z z+ik1x x (8.63)

The boundary conditions state that the tangential components of both E and
H must be continuous at the interface. This implies that the x-component of the
wavevector must be the same for the incident, reflected, and transmitted waves, i.e.,
k1x = k2x = kx . Because the angle of reflection must be the same as the angle of
incidence (specular reflection), we have k−

1 = (kx , 0,−k1z). For the transmitted or
refracted wave, we have k2 = (kx , 0, k2z) and

sin θ2 = kx

k2
= n1 sin θ1

n2
(8.64)

which is called Snell’s law. It can be easily visualized by observing the bended image
of a chopstick in a bowl of water. Note that k2

2z = k2
2 − k2

x = μ2ε2ω
2/c20 − k2

x =
k2
2 cos

2 θ2. Generally speaking, the wavevector components and the refractive indices
may be complex. Complex angles can be defined so that Eq. (8.64) is always valid.
Near the interface, the nonzero components of the electric and magnetic fields are

Ey =
{

(Eieik1z z + Ere−ik1z z)eikx x , for z < 0
Eteik2z zeikx x , for z > 0

(8.65)

Hx =
{

− k1z

ωμ0μ1
(Eieik1z z − Ere−ik1z z)eikx x , for z < 0

− k2z

ωμ0μ2
Eteik2z zeikx x , for z > 0

(8.66)

and

Hz =
{

kx
ωμ0μ1

(Eieik1z z + Ere−ik1z z)eikx x , for z < 0
kx

ωμ0μ2
Eteik2z zeikx x , for z > 0

(8.67)

where Ei, Er, and Et are, respectively, the amplitudes of the incident, reflected,
and transmitted electric fields at the interface. It is further assumed that kx is real
so that the amplitude of the field is independent of x. The Fresnel reflection and
transmission coefficients for a TE wave are defined as r12,s = Er

/
Ei and t12,s =

Et
/

Ei, respectively. Boundary conditions require that Ey and Hx be continuous at z
= 0. FromEqs. (8.65) and (8.66), we obtain 1+r12,s = t12,s and (k1z/μ1)(1−r12,s) =
(k2z/μ2)t12,s ; thus,

r12,s = Er

Ei
= k1z/μ1 − k2z/μ2

k1z/μ1 + k2z/μ2
(8.68a)

and

t12,s = Et

Ei
= 2k1z/μ1

k1z/μ1 + k2z/μ2
(8.68b)

which are generally applicable, as long as eachmedium is homogeneous and isotropic
[8]. For nonmagnetic materials, the previous equations can be written as follows:
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r12,s = n1 cos θ1 − n2 cos θ2

n1 cos θ1 + n2 cos θ2
(8.69a)

and

t12,s = 2n1 cos θ1

n1 cos θ1 + n2 cos θ2
(8.69b)

The spectral reflectivity, or simply reflectivity, ρ ′
λ is given by the ratio of the

reflected energy flux to the incident energy flux, and the absorptivity α′
λ is the ratio

of the transmitted energy flux to the incident energy flux, since all the photons
transmitted through the interface will be absorbed inside the second medium. Terms
ending with “-ivity” are typically used for a perfect interface and those with “-tance”
are for general surfaces including smooth and rough surfaces, thin films, as well as
layered structures. The energy flux is related to the time-averaged Poynting vector,
defined in Eq. (8.18b). From Eqs. (8.65) to (8.67), the x- and z-components of the
Poynting vector at the interface (z → 0) in medium 1 are

〈S1x 〉 = 1

2
Re

[
k∗

x

ωμ0μ
∗
1

(Ei + Er)(E∗
i + E∗

r )

]
(8.70a)

and

〈S1z〉 = 1

2
Re

[
k∗
1z

ωμ0μ
∗
1

(Ei + Er)(E∗
i − E∗

r )

]
(8.70b)

It can be seen that, in general, the reflectedwave and the incident wave are coupled
and the energy flow cannot be separated into a reflected flux and an incident flux.
Under the assumption that medium 1 is lossless (nonabsorbing or nondissipative)
and k2

x < k2
1 , we can write

〈S1z〉 = 〈Siz〉 − 〈Srz〉 (8.71)

where

〈Siz〉 = k1z

2ωμ0μ1

|Ei|2 and 〈Srz〉 = k1z

2ωμ0μ1

|Er|2 (8.72)

If medium 1 is lossy, there will be additional terms associated with EiE∗
r and

E∗
i Er. In this case, the power flow normal to the interface cannot be separated as

forward and backward terms, because of the cross-coupling terms. Therefore, the
lossless condition in medium 1 is required in order to properly define the energy or
power reflectivity [35]. This is usually not a problem when radiation is incident from
air or a dielectric prism onto a medium. The spectral reflectivity can then be obtained
based on the z-components of the reflected and incident Poynting vectors as

ρ ′
λ,s(θ1) = |Er|2

/ |Ei|2 = ∣∣r12,s
∣∣2 (8.73)



8.3 Radiative Properties of Semi-infinite Media 441

The Poynting vector at the interface in medium 2 can be written as

〈St〉 = 1

2ωμ0
Re

(
k∗

x x̂ + k ∗
2z ẑ

μ∗
2

)
|Et|2 (8.74)

which is not parallel to Re(k2) unless Im(μ2) = 0. Recall that the plane of constant
phase is perpendicular to Re(k2). If medium 2 is dissipative, Im(k2) is parallel to
the z-axis and the amplitude will vary along the z-direction. The wave becomes
inhomogeneous inmedium 2, except when kx = 0 (normal incidence). The definition
of the transmitted energy flux at the interface is based on the projected Poynting
vector in the z-direction. Hence, the absorptivity is the ratio of the z-components of
the transmitted and incident Poynting vectors, viz.,

α′
λ,s(θ1) = Re(k2z/μ2)

Re(k1z/μ1)

∣∣t12,s
∣∣2 (8.75)

Note that Re(k2z/μ2) = Re(k ∗
2z/μ

∗
2), and Re(k1z/μ1) = k1z/μ1 since medium 1

is lossless. It can be shown that ρ ′
λ,s + α′

λ,s = 1, as required by energy conservation:
〈S1z〉 = 〈S2z〉 at z = 0. For nonmagnetic and nondissipative materials, we have

α′
λ,s(θ1) = n2 cos θ2

n1 cos θ1

∣∣t12,s
∣∣2 (8.76)

The reflection and transmission coefficients for the transverse magnetic (TM)
wave or parallel (p) polarization are defined as the ratios of the magnetic fields:
r12,p = Hr

/
Hi and t12,p = Ht

/
Hi, respectively [7]. Hence,

r12,p = Hr

Hi
= k1z/ε1 − k2z/ε2

k1z/ε1 + k2z/ε2
(8.77a)

t12,p = Ht

Hi
= 2k1z/ε1

k1z/ε1 + k2z/ε2
(8.77b)

In the case of nonmagnetic materials, we obtain

r12,p = n2 cos θ1 − n1 cos θ2

n2 cos θ1 + n1 cos θ2
(8.78a)

and

t12,p = 2n2 cos θ1

n2 cos θ1 + n1 cos θ2
(8.78b)

At normal incidence, the reflection coefficients calculated based on Eqs. (8.69a)
and (8.78a) are related by

r12,s = n1 − n2

n1 + n2
= −r12,p (8.79)
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When both n1 and n2 are real, for n1 < n2, the electric fieldwill experience a phase
reversal (phase shift ofπ ) upon reflection but themagnetic field will not. On the other
hand, for n1 > n2, it is themagnetic field that will experience a phase reversal. In fact,
based on Maxwell’s equations, the electric and magnetic quantities obey a duality
when ρe = 0. They can be interchanged with the following substitutions: E → H
and H → −E. Note that ε and μ, as well as the polarization states s and p, should
also be interchanged. The Poynting vector for a TM wave is 〈S〉 = 1

2ωε0
Re

( k
ε

)∣∣Hy

∣∣2,
which is not parallel to Re(k) when Im(ε2) �= 0. Upon refraction into an absorbing
medium, the waves become inhomogeneous and the Poynting vectors for different
polarizations may split into different directions [36]. Nevertheless, the constant-
amplitude plane is always perpendicular to the z-direction because the amplitude
cannot change along the x-y-plane. The reflectivity for p-polarization is

ρ ′
λ,p(θ1) = ∣∣r12,p

∣∣2 (8.80)

Hence, the absorptivity becomes

α′
λ,p(θ1) = Re(k2z/ε2)

Re(k1z/ε1)

∣∣t12,p

∣∣2 (8.81)

For nonmagnetic and nonabsorbing materials, we have

α′
λ,p(θ1) = n1 cos θ2

n2 cos θ1

∣∣t12,p

∣∣2 (8.82)

If the incident wave is unpolarized or circularly polarized, the reflectivity can be
obtained by averaging the values for p- and s-polarized waves, i.e.,

ρ ′
λ = ρ ′

λ,p + ρ ′
λ,s

2
(8.83)

The reflectivity for radiation incident from air (n1 ≈ 1) to a dielectric medium
(n2 = 2) and that from the dielectric to air are shown in Fig. 8.8 for each polarization
as well as for the unpolarized incident radiation. When n1 > n2, the reflectivity will
reach 1 at θ1 = θc = sin−1(n2/n1). This angle is called the critical angle, and total
internal reflection occurs at angles of incidence greater than the critical angle. This is
the principle commonly used in optical fibers and waveguides, since light is trapped
inside the high-indexmaterial and propagates along themedium. It can be seen that in
total internal reflection, kx > k2 and k2z becomes purely imaginary. The amplitude
of the wave exponentially attenuates in the positive z-direction. This is similar to
Eq. (8.37) and makes it an evanescent wave, as shown in Fig. 8.3. The time-averaged
Poynting vector is zero in the z-direction. Hence, no energy is transmitted through
the boundary.

For the TE wave, the reflectivity increases monotonically with the angle of inci-
dence and reaches 1 at the grazing angle (90°) or at the critical angle when n1 > n2.
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Fig. 8.8 Reflectivity versus the angle of incidence between air and a dielectric: a Incident from air
to a medium; b Incident from a medium to air

The reflectivity for the TM wave, on the other hand, goes through a minimum that
is equal to zero. The angle at which ρ ′

λ,p = 0 is called the Brewster angle, given by
θB = tan−1(n2/n1) for nonmagnetic materials. For p-polarization, all the incident
energy will be transmitted into medium 2, without reflection at the Brewster angle.
This phenomenon has been used to build polarizers and transmission windows in
absolute cryogenic radiometers. The physical mechanism of reflection can also be
understood as re-emission by the induced electric dipoles in the medium, based on
the Ewald–Oseen extinction theorem. At the Brewster angle, the electric dipoles
induced in the material align in the direction of the reflected wave, and the refracted
wave is perpendicular to the reflected wave (i.e., θ1 + θ2 = 90◦). The reflective
power goes to zero because an electric dipole cannot radiate along its own axis.
The situation is changed when magnetic materials are involved, such as a negative
index material. The fields radiated by both the induced electric dipoles and magnetic
dipoles are responsible for the reflection. The Brewster angle can occur for either
polarization when the radiated fields cancel each other. A detailed discussion can be
found from the publication of Fu et al. [37]. In an absorbing medium, there is a drop
in reflectivity for p-polarization, but the minimum is not zero. Furthermore, there
exists a principal angle at which the phase difference between the two reflection
coefficients equals 90° and the ratio of the reflectivity for the TM and TE waves is
near the reflectivity minimum [8]; see Problem 8.24.

The reflectivity for radiation incident from air (n1 ≈ 1) or a vacuum, at normal
incidence, becomes

ρ ′
λ,n = (n2 − 1)2 + κ2

2

(n2 + 1)2 + κ2
2

(8.84)

for any polarization. It can be seen that the normal reflectivity will be close to 1, when
either n2 � 1 or n2  1. The reflectivity is large for most metals in the infrared,
because both n2 and κ2 are large. The reflectivity of a conventional superconductor
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approaches 1 when the frequency is lower than that of the superconducting energy
gap, since n2 → 0 in this case. On the other hand, ρ ′

λ,n → 0 when n2 ≈ 1 and
κ2 � 1. This can occur in a dielectric material at certain mid-infrared wavelengths
and also for most metals in the x-ray region.

8.3.2 Total Internal Reflection and the Goos–Hänchen Shift

Total internal reflection (TIR) occurs when light comes from an optically denser
material to another material at incidence angles greater than the critical angle deter-
mined by Snell’s law. As discussed in the preceding section, the amplitude of the
reflection coefficient becomes unity at incidence angles greater than the critical angle.
Although no energy is transferred from medium 1 to medium 2, there exists an elec-
tromagnetic field in the second medium near the surface. This electromagnetic field
can store as well as exchange energy with medium 1 at any instant of time.

While evanescent waves do not carry energy into the second medium, there is a
shift in the phase of the reflected wave upon TIR. Consider a plane wave of angular
frequency ω incident from a semi-infinite medium 1 to medium 2, as shown in
Fig. 8.9a. The wavevector k+

1 = kx x̂+ k1z ẑ, k−
1 = kx x̂− k1z ẑ, and k2 = kx x̂+ k2z ẑ,

since the parallel wavevector component kx must be the same as required by the
phase-matching boundary condition. The magnitudes of the wavevectors are

k2
1 = k2

x + k2
1z = ε1μ1ω

2/c2 (8.85a)

and

k2
2 = k2

x + k2
2z = ε2μ2ω

2/c2 (8.85b)

where ε and μ are the relative (ratio to those of a vacuum) permittivity and per-
meability, respectively, and c is the speed of light in a vacuum (omitting the sub-
script 0). Assume that the incident wave is p polarized or a TM wave, so that
the only nonzero component of the magnetic field is in the y-direction. The mag-
netic field of the incident wave may be expressed as Hi = (0, Hy, 0), where

Fig. 8.9 Illustration of total
internal reflection.
a Schematic of the incident,
reflected, and transmitted
waves at the interface
between two semi-infinite
media. b The magnetic field
distribution for a TM wave
when total internal reflection
occurs
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Hy(x, y, z, t) = Hieik1z z+ik1x x−iωt
. For simplicity, let us omit exp( − iωt) from now

on. Recall that the Fresnel coefficients for a TM wave are defined as the ratios of the
reflected or transmitted magnetic field to the incident magnetic field. For example,
the Fresnel reflection coefficient is

rp = Hr

Hi
= k1z/ε1 − k2z/ε2

k1z/ε1 + k2z/ε2
(8.86)

The field in medium 1 is composed of the incident and reflected fields, and that
in medium 2 is the transmitted field. Therefore,

Hy

Hi
=

{
(eik1z z + rpe−ik1z z)eikx x , for z ≤ 0

(1 + rp)eik2z zeikx x , for z > 0
(8.87)

The electric fields can be obtained by applying the Maxwell equations. Hence,
we can write the electric and magnetic fields in both media as follows:

Ex

Hi

=
{

k1z

ωε1ε0
(eik1z z − rpe−ik1z z)eikx x , for z ≤ 0

k2z

ωε2ε0
(1 + rp)eik2z zeikx x , for z > 0

(8.88)

and

Ez

Hi

=
{

− kx
ωε1ε0

(eik1z z + rpe−ik1z z)eikx x , for z ≤ 0

− kx
ωε2ε0

(1 + rp)eik2z zeikx x , for z > 0
(8.89)

Assume that ε’s and μ’s are real and furthermore, ε1μ1 > ε2μ2 > 0. From
Eq. (8.85b), we have k2

2z = ε2μ2ω
2/c2 − k2

x . When
√

ε2μ2 < kx c/ω <
√

ε1μ1, the
incidence angle θ1 is defined but the refraction angle is not, because k2z becomes
imaginary. One can write k2z = iη2, where η2 = √

k2
x − ε2μ2ω2/c2 is a real positive

number. In this case,
∣∣rp

∣∣ = 1 and

rp = eiδ = e−i2α (8.90)

where tan α = (η2/ε2)/(k1z/ε1). Following Haus [38], the magnetic field at x = 0
in medium 1 can be written as

Hy = 2Hie
−iα cos(k1z z + α), z ≤ 0 (8.91a)

Similarly, Hy in medium 2 becomes

Hy = 2Hie
−iα cos(α)e−η2z, z > 0 (8.91b)

The magnetic field at x = 0 is plotted in Fig. 8.9b with respect to kzz, at the instant
of time when the phase of Hie−iα−iωt becomes zero. From this figure, one can see
that the field decays exponentially in medium 2. As a result, there is a phase shift
in medium 1 upon TIR so that the maximum amplitude is shifted from the interface
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to kzz = −α. The phase angle of the reflection coefficient δ = −2α is called the
Goos–Hänchen phase shift, which depends on the incidence angle θ1 or kx . The
difference in δ for TE and TM waves in a dielectric prism was used to construct a
polarizer called Fresnel’s rhomb, which can change a linearly polarized wave into a
circularly polarized wave, or vice versa [7].

Example 8.6 Calculate the time-averaged Poynting vector near the interface in the
case of total internal reflection.

Solution Based on Example 8.1, it can be seen that the Poynting vector S = Re(E)×
Re(H) is, in general, a function of time. The time-dependent terms that oscillate with
2ω, however, become zero after integration. The time-averaged Poynting vector is
〈S〉 = 1

2Re(E × H∗). For z > 0, 〈Sz〉 = 1
2Re(Ex H∗

y ) = 0 because k2z is purely
imaginary. It can also be shown that 〈Sz〉 = 0 for z ≤ 0 (see Problem 8.26).
Furthermore,

〈Sx 〉 = − 1
2Re(Ez H∗

y ) =
{

kx
ωε1ε0

|Hi |2
[
1 + cos(2k1z z + 2α)

]
, z ≤ 0

kx
ωε2ε0

|Hi |2[1 + cos(2α)]e−2η2z, z > 0
(8.92)

Note that 〈Sx 〉 does not have to be continuous across the interface. Depending on
whether ε is positive or negative, the sign of 〈Sx 〉 may be parallel or antiparallel to
kx . It should also be noted that 〈Sx 〉 is a sinusoidal function of z in medium 1 and
decays exponentially in medium 2 as z approaches infinity.

Newton conjectured that, when a light beam is reflected at the boundary upon TIR,
the light corpuscles would penetrate some distance into the optically rarer medium
and then reenter the optically denser medium. In addition, he suspected that the path
of the beamwould be a parabolawith its vertex in the rarermediumand, consequently,
the actual reflected beam would be shifted laterally with respect to the geometric-
optics prediction. From the Poynting vector formulation given in Eq. (8.92), the
energy must penetrate into the second medium to maintain the energy flow parallel
to the interface and reenter the first medium so that no net energy is transferred across
the interface. The actual beams have a finite extension so that the reflected beam in
the far field can be separated from the incident beam since the Poynting vector is
parallel to the wavevector. The effect of the parallel energy flow indeed causes the
reflected beam to shift forward from that expected by the geometric-optics analysis.
F. Goos and H. Hänchen were the first to observe the lateral beam shift through a
cleverly devised experiment in 1947. A schematic of this experiment is shown in
Fig. 8.10, in which a glass plate was used so that the incident light was multiply
reflected by the top and bottom surfaces. In the middle of one or both of the surfaces,
a silver strip was deposited. This way, the beam reflected by the silver film (solid line)
would essentially follow geometric optics and that by total internal reflection would
experience a lateral shift. Although the lateral shift is on the order of the wavelength,
a large number of reflections (over 100 times) allowed the shift to be observed by a
photographic plate. Lotsch [39] published a series of papers on the comprehensive
study of the Goos–Hänchen effect. Puri and Birman [40] provided an elegant review
of earlier works, including several methods for analyzing the Goos–Hänchen effect.
A quantitative study of the Goos–Hänchen effect is presented next.
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Fig. 8.10 Illustration of the Goos–Hänchen experiment: a side view, b top view

One way to model the lateral shift is to use a beam of finite width rather than an
unbounded plane wave. Another method that is mathematically simpler considers
the phase change of an incoming wave packet, which is composed of two plane
waves with a slightly different kx . Upon TIR, the phase shift δ = −2α for a given
polarization is a function of kx . The difference in the phase shift will cause the
reflected beam to exhibit a lateral shift along the interface (x-direction) given as

D = − dδ

dkx
= ε1

ε2

2kx

η2k1z

k2
1z + η2

2

k2
1z + (η2ε1/ε2)

2 , for p polarization (8.93)

where we have used α = tan−1(η2ε1/k1zε2). In formulating the above equation, kx

is always taken as positive. Equation (8.92) clearly suggests that 〈Sx 〉 and kx have the
same sign when the permittivity is positive and different signs when the permittivity
is negative [41]. When ε1 and ε2 have different signs, the lateral shift D will be
negative, which implies that the lateral shift is opposite to 〈S〉x of the incident beam.
For a TE wave, one can simply replace ε’s by μ’s in Eqs. (8.93). For two dielectrics,
we have μ1 = μ2 = 1, ε1 = n2

1, and ε2 = n2
2, where n1 and n2 are the refractive

indices of medium 1 and 2, respectively. Consequently, Eq. (8.93) reduces to the
following:

Ds = 2 tan θ1

η2
for a TE wave (8.94a)

and

Dp = 2 tan θ1

η2
(
n2
1 sin

2 θ1/n2
2 − cos2 θ1

) for a TM wave (8.94b)

At grazing incidence, k1z → 0, however, the shift in the direction parallel to
the beam is D cos θ1 = (2/η2)(ε2/ε1) sin θ1, which approaches a finite value and
does not diverge. At the critical angle, θ1 = θc = sin−1(n1/n1), η2 = δ = 0,
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and D approaches infinity. This difficulty can be removed by using the Gaussian
beam incidence [42]. Quantummechanics has also been applied to predict the lateral
beam shift [39]. The Goos–Hänchen effect also has its analogy in acoustics and is
of contemporary interest in dealing with negative index materials, waveguides, and
photon tunneling [41, 43, 44].

8.3.3 Bidirectional Reflectance Distribution Function

Real surfaces contain roughness or texture that depends on the processing method.
A surface appears to be smooth if the wavelength is much greater than the surface
roughness height. A highly polished surface can have a roughness height on the order
of nanometers. Some surfaces that appear “rough” to human eyes may appear to be
quite “smooth” for far-infrared radiation. The root-mean-square (rms) roughness
is a commonly used parameter to describe surface roughness. The power spectral
density providesmore general information on the vertical and spatial extent of surface
irregularities. Zhang et al. [31] gave a detailed discussion on the roughness parameters
as well as the instruments used for surface characterization.

The reflection of radiation by rough surfaces is more complicated. For randomly
rough surfaces, there often exist a peak around the direction of specular reflection, an
off-specular lobe, and a diffuse component.When the surface contains periodic struc-
tures, such as patterned or microfabricated surfaces, diffraction effects may become
important and several peaks may appear. The bidirectional reflectance distribution
function (BRDF), which is a function of the angles of incidence and reflection, fully
describes the reflection characteristics from a rough surface at a given wavelength.
As illustrated in Fig. 8.11, the BRDF is defined as the reflected radiance (intensity)
divided by the incident irradiance (flux) at the surface [45]

fr(λ, θi , φi, θr , φr) = dIr
Ii cos θid�i

[sr−1] (8.95)

Fig. 8.11 Geometry of the
incident and reflected beams
in defining the BRDF
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where (θi , φi ) and (θr , φr) denote the directions of incident and reflected beams,
respectively, I i is the incident irradiance (radiant power per unit area), and dI r is the
reflected radiance (intensity).

The directional-hemispherical reflectance can be obtained by integrating the
BRDF over the hemisphere:

ρ ′
λ =

∫

2π

fr cos θr d�r (8.96)

An important principle of the BRDF is reciprocity, which specifies symmetry
of the BRDF, with regard to reflection and incidence angles. In other words, the
reflectance for energy incident from (θi, φi) and reflected to (θr, φr) is equal to that
for energy incident from (θr, φr) and reflected to (θi, φi). Therefore,

fr(λ, θi , φi , θr, φr ) = fr(λ, θr, φr, θi , φi ) (8.97)

The BRDF reciprocity is an extension of the Helmholtz reciprocity principle [46].
While the reciprocity principle holds for most passive medium and surfaces, it does
not hold in some nonlinear or magnetic media.

For a diffuse or Lambertian surface, the BRDF is independent of (θr, φr) and is
related to the directional-hemispherical reflectance as fr,dif = ρ ′

λ/π . On the other
hand, the BRDF for an ideal specular, or mirror-like, reflector can be represented as

fr,spe = ρ ′
λ

cos θi
δθ (θr − θi )δφ(φr − φi − π) (8.98)

where theDirac delta function δ(x) is zero everywhere, except at x = 0. Furthermore,
the delta functions are normalized such that

∫

2π

δθ (θr − θi)δφ(φr − φi − π)d�r = 1 (8.99)

In general, the BRDF of a real surface should fall between the two extreme cases.
It should be noted that for a perfectly smooth surface, the reflectivity calculated
from the Fresnel coefficient, discussed in Sect. 8.3.1, can also be understood as the
directional-hemispherical reflectance. Further discussions on BRDF models based
on geometric optics and physical optics, as well as rigorous solutions of theMaxwell
equations, will be given in Chap. 9, where we will also study the effect of surface
microstructures on the BRDF and how to characterize a rough surface.
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8.3.4 Emittance (Emissivity) and Kirchhoff’s Law

Realmaterials have finite thicknesses. The assumption of semi-infinity or opaqueness
requires that the thickness be much greater than the radiation penetration depth. This
is usually not a problem for a metal in the visible or infrared spectral regions. When
this is not the case, we are dealing with a transparent or semitransparent material,
like a glass window. The radiative properties of semitransparent layers and thin films
will be studied in the next chapter. Laser beams or light from a spectrophotometer
do not extend to infinity and are not perfectly collimated. Nevertheless, as long as
the diameter of the beam spot is much greater than the wavelength and the beam
divergence is not very large, the directional, spectral reflectivity and absorptivity,
calculated from the previous section, are applicable to most situations and can be
integrated to obtain the properties for finite conic angles or hemispherical properties.
For real materials, we use reflectance and absorptance that depend on the nature of
surfaces and coatings.

For real surfaces, the ratio of the emissive power of the surface to that of a black-
body at the same temperature defines the hemispherical emittance (or emissivity) εhλ.
The directional emittance (or emissivity) ε′

λ is defined based on the intensity ratio.
The total emittance can be evaluated by integrating the spectral emittance over all
wavelengths weighted by the blackbody distribution function. A concise discussion
of radiative properties can be found from a popular heat transfer textbook [47] and
more complete definitions and relations can be found from Howell et al. [1] and
Modest [2].

To establish the relationship between the radiative properties, consider an opaque
surface at a temperatureTs inside a vacuumenclosurewhosewalls are at a temperature
Tw, as shown in Fig. 8.12.Whether the surface is inside the enclosure or not, we must
have

α′
λ(θ, φ) + ρ ′

λ(θ, φ) = 1 (8.100a)

Fig. 8.12 Schematic of a
blackbody enclosure for
consideration of
a hemispherical properties
and b directional properties.
Note that the outgoing
radiation has two arrows, one
represents emission and the
other reflection
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Because the incoming radiation will either be absorbed or reflected as long as
the surface is opaque, the sum of the directional absorptance and the directional-
hemispherical reflectance must be unity. Furthermore, the sum of the hemispherical
absorptance and the hemispherical–hemispherical reflectance must also be unity:

αh
λ + ρh

λ = 1 and αh
tot + ρh

tot = 1 (8.100b)

where the subscript “tot” signifies a total property.
Consider the enclosure at thermal equilibrium where no internal sources or sinks

exist in the surface element. The temperatures of the surface element and the wall
must be the same. Furthermore, as shown earlier with the blackbody cavity concept,
the intensity and emissive power inside the enclosure are independent on the location
and direction. Based on Fig. 8.12a for the hemispherical properties, we see that the
combination of the emitted and reflected power per unit area must be the same as
that of the incident. Energy balance requires that

eb,λ(λ, Tw) = εhλeb,λ(λ, Ts) + ρh
λeb,λ(λ, Tw) (8.101a)

and

σSBT 4
w = εhtotσSBT 4

s + ρh
totσSBT 4

w (8.101b)

By setting Ts = Tw and combining with Eq. (8.100b), we have

εhλ = αh
λ and εhtot = αh

tot (8.102)

The equality between emittance and absorptance is called Kirchhoff’s law. Note
that in the literature, both emissivity and absorptivity are commonly used regardless
of the nature of the surfaces. The hemispherical properties depend on the directional
and spectral behavior of the surface. Furthermore, the hemispherical absorptance
depends on the condition of the incident intensity distribution. Hence, the two equal-
ities given in Eq. (8.102) do not hold in general. Special situations exist under ideal
assumptions, for example, if a surface is diffuse, εhλ = αh

λ always holds. Furthermore,
if a surface is diffuse-gray, both the equalities in Eq. (8.102) hold without requiring
thermal equilibrium [47]. Real surfaces rarely meet these requirements, however.

Equation (8.102) can also be understood by considering the energy balance of
the surface, that is, the absorbed radiant power must equal the emitted so that the
emittance must be equal to the absorptance. This argument is justifiable for the
hemispherical properties. When dealing with directional properties, as can be seen
from Fig. 8.12b, the emitted and the reflected components toward the same direction
θ should add up to give the blackbody intensity. Under thermal equilibrium, we can
obtain the following expression [46]:

ε′
λ(λ, θ, φ) +

∫

2π

fr(λ, θ ′, φ′, θ, φ) cos θ ′d�′ = 1 (8.103a)
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Here, the integration is over the incident hemisphere. The second term in
Eq. (8.103a) is the hemispherical-directional reflectance [1, 2]. When BRDF reci-
procity holds, it is the same as the directional-hemispherical reflectance ρ ′

λ. For a
specular surface, Eq. (8.103a) can be written as

ε′
λ(λ, θ, φ) + ρ ′

λ(λ, θ ′, φ′) = 1 (8.103b)

where (θ ′, φ′) and (θ, φ) are a pair of specular incidence and reflection angles, i.e.,
θ ′ = θ and φ′ = φ + 180◦. Zhu and Fan [48] showed that Eq. (8.103b) holds even in
nonreciprocal systems such as magneto-optical materials. When BRDF reciprocity
holds, the conventionalKirchhoff’s law ε′

λ = α′
λ for the spectral directional properties

can be derived. Therefore, the spectral, directional emittance can be expressed in
terms of the spectral, directional-hemispherical reflectance as follows:

ε′
λ = 1 − ρ ′

λ (8.104)

When a material is not at thermal equilibrium with its surroundings, its emit-
tance is defined based solely on spontaneous emission and is an intrinsic property
of the material that does not depend on the surroundings. On the other hand, the
absorptance is defined based on the net absorbed energy by treating stimulated or
induced emission as negative absorption. Under appropriate conditions, Kirchhoff’s
law according to the equality given in Eq. (8.104) is valid for individual polarization
with or without thermal equilibrium. The assumptions are: (a) the material under
consideration is reciprocal and at local thermal equilibrium, though not necessarily
at equilibrium with the surroundings; (b) the external field is not strong enough to
alter the material’s intrinsic properties or cause a nonlinear effect. We can then com-
pute the directional emittance for an opaque surface or semi-infinite media, from the
directional-hemispherical reflectance for incidence from air or a vacuum.

The emittance is typically calculated by averaging over the two polarizations. The
hemispherical emittance can then be obtained by integrating the directional emittance
so that

εhλ = 1

π

2π∫

0

π/2∫

0

ε′
λ cos θ sin θdθdφ (8.105)

It can be seen from Fig. 8.8a that, when averaged over the two polarizations,
the reflectivity changes little until the Brewster angle and then increases to 1 when
the incidence angle approaches 90°. The hemispherical emittance for a nonmetal-
lic surface is about 10% smaller than the normal emittance. On the other hand, the
hemispherical emittance for metallic surfaces is about 20% greater than the normal
emittance. Diffuse emission is a good first-order approximation, even though the
surface is smooth and the reflection is specular. Thus, the hemispherical emittance
may be approximated by the normal emittance. In most studies, the emittance is
calculated from the indirect method, based on the reflectivity and Kirchhoff’s law
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given in Eq. (8.104). Direct calculations can be accomplished by considering the
emission, along with the absorption and transmission, inside the material. Accord-
ing to the fluctuation-dissipation theorem (FDT), thermal emission arises from the
induced field that originated from the random charge fluctuation. Wang et al. [49]
used the FDT to directly calculate the emittance of a layered structure and demon-
strated the equivalence between the direct method and the indirect method based on
Eq. (8.104). The fluctuational electrodynamics is essential for the study of near-field
radiation and will be carefully discussed in Chap. 10.

The total-hemispherical emittance can be evaluated using Planck’s distribution.
Therefore,

εhtot =
∫ ∞
0 εhλ(λ)eb,λ(λ, T )dλ∫ ∞

0 eb,λ(λ, T )dλ
=

∫ ∞
0 εhλ(λ)eb,λ(λ, T )dλ

σSBT 4
(8.106)

The total emittance depends on the surface temperature and the spectral variation
of the optical constants. Pure metals usually have a very low emittance, and the
emittance can increase due to surface oxidation. Spectrally selective materials that
appear to be reflective to visible light may exhibit a large total emittance, greater
than 0.9 near ambient temperature; examples are snow and white paint. An earlier
compilation of the radiative properties of many engineeringmaterials can be found in
Touloukian and DeWitt [50]. The use of surface microstructures to modify emission
characteristics will be discussed in the next chapter.

8.4 Dielectric Function Models

Unlike in dilute gases where the molecules are far apart, in solids, the closely packed
atoms form band structures. Absorption in solids usually happens in a much broader
frequency region or band. Free electrons in metals can interact with the incoming
electromagnetic waves or photons, and cause broadband absorption from the visi-
ble (or even ultraviolet) all the way to the microwave and longer wavelengths. For
semiconductors especially with high impurity (doping) concentrations or at elevated
temperatures, both the free electrons and holes contribute to the absorption process.
The absorption of a photon makes the electron or the hole transit to a higher energy
state within the same band. Therefore, free-carrier absorption is caused by intraband
transitions. In order to conserve momentum, the carriers must also collide with ion-
ized impurities, phonons, other carriers, grain boundaries, interfaces, and so forth.
The collisions act as a damping force on the motion of carriers. The Drude model
describes the oscillatory movement of an electron, driven by a harmonic field, which
is subjected to a damping force. The model is simple in form and predicts the dielec-
tric function of some metals fairly well in a broad spectral region, especially in the
mid and far infrared.
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Absorption by lattice vibrations or bound electrons, which is important for insu-
lators and lightly doped semiconductors, is due to the existence of electric dipoles
formed by the lattice. The strongest absorption is achievedwhen the frequency equals
the vibrational mode of the dipole, i.e., the resonance frequency, which is usually in
the mid- to far-infrared region of the spectrum. The contribution of bound electrons
is often modeled by the Lorentz model.

Interband transition is the fundamental absorption process in semiconductors. An
electron can be excited from the valence band to the conduction band by absorbing a
photon, whose energy is greater than the energy gap Eg. Because the absorption by
electrons is usually weak in semiconductors, a strong absorption edge is formed near
the bandgap. In this transition process, both the energy and the momentum must be
conserved.

This section discusses the formulation for different contributions to the dielectric
function. It should be noted that the real and imaginary parts of the dielectric func-
tion are interrelated according to the causality, which is discussed first. Because all
naturally occurring and most of the synthesized materials are nonmagnetic at high
frequencies, only nonmagnetic materials are considered so that μ = 1 and n = √

ε

in the following, except in Sect. 8.4.6.

8.4.1 Kramers–Kronig Dispersion Relations

The real and imaginary parts of an analytic function are related by the Hilbert trans-
form relations. Hendrik Kramers and Ralph Kronig were the first to show that the
real and imaginary parts of the dielectric function are interrelated. These relations
are called the Kramers–Kronig dispersion relations or K-K relations. The K-K rela-
tions can be interpreted as the causality in the frequency domain and are very useful
in obtaining optical constants from limited measurements. The principle of causal-
ity states that the effect cannot precede the cause, or no output before input. Some
important relations are given here, and a detailed derivation and proofs can be found
from Jackson [5], Born and Wolf [8], and Bohren and Huffman [9].

The real part ε′ and the imaginary part ε′′ of a dielectric function are related by

ε′(ω) − 1 = 2

π
℘

∞∫

0

ζε′′(ζ )

ζ 2 − ω2
dζ (8.107a)

and

ε′′(ω) − σ0

ε0ω
= −2ω

π
℘

∞∫

0

ε′(ζ ) − 1

ζ 2 − ω2
dζ (8.107b)

where σ0 is the dc conductivity,℘ denotes the Cauchy principal value of the integral,
and ζ is a dummy frequency variable. These relations can be written in terms of n
and κ as
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n(ω) − 1 = 2

π
℘

∞∫

0

ζκ(ζ )

ζ 2 − ω2
dζ (8.108a)

κ(ω) = −2ω

π
℘

∞∫

0

n(ζ ) − 1

ζ 2 − ω2
dζ (8.108b)

Equations (8.107a), (8.107b) and (8.108a), (8.108b) are the K-K relations, which
relate the real part of a causal function to an integral of its imaginary part over all
frequencies, and vice versa. A number of sum rules can be derived based on the
K-K relations and are useful in obtaining or validating the dielectric function of a
given material [15]. The K-K relations can be applied to reflectance spectroscopy
to facilitate the determination of optical constants from the measured reflectivity
of a material. For radiation incident from a vacuum to a medium with a complex
refractive index (n + iκ) at normal incidence, the Fresnel reflection coefficient for
TE waves is

r(ω) = |r(ω)|eiφ(ω) = 1 − n(ω) − iκ(ω)

1 + n(ω) + iκ(ω)
(8.109)

where |r | is the amplitude and φ the phase shift upon reflection for the electric field.
The reflectivity expressed in terms of ω is

ρ ′
ω(ω) = rr∗ = |r |2 (8.110)

The amplitude and the phase are related, and it can be shown that

φ(ω) = −ω

π
℘

∞∫

0

ln ρ ′
ω(ζ )

ζ 2 − ω2
dζ (8.111)

The refractive index and the extinction coefficient can be calculated, respectively,
from

n(ω) = 1 − ρ ′
ω

1 + ρ ′
ω − 2 cosφ

√
ρ ′

ω

(8.112a)

and

κ(ω) = 2 sin φ
√

ρ ′
ω

1 + ρ ′
ω − 2 cosφ

√
ρ ′

ω

(8.112b)
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8.4.2 The Drude Model for Free Carriers

The Drude model describes the frequency-dependent conductivity of metals and can
be extended to free carriers in semiconductors. In the absence of an electromagnetic
field, free electrons move randomly. When an electromagnetic field is applied, free
electrons acquire a nonzero average velocity, giving rise to an electric current that
oscillates at the same frequency as the electromagnetic field. The collisions with the
stationary atoms result in a damping force on the free electrons, which is proportional
to their velocity. The equation of motion for a single free electron is then

meẍ = −meγ ẋ − eE (8.113)

where e is the absolute chargeof an electron,me is the electronmass, andγ denotes the
strength of the damping due to collision, i.e., the scattering rate or the inverse of the
relaxation time τ . Assume the electron motion under a harmonic field E = E0e−iωt

is of the form x = x0e−iωt so that ẍ = −iωẋ. We can rewrite Eq. (8.113) as

ẋ = e/me

iω − γ
E (8.114)

The electric current density is J = −neeẋ = σ̃ (ω)E; therefore, the complex
conductivity is

σ̃ (ω) = nee2/me

γ − iω
= σ0

1 − iω/γ
(8.115)

where σ0 = nee2τ/me is the dc conductivity, as discussed in Chap. 5. Equa-
tion (8.115) is called the Drude free-electron model, which describes the frequency-
dependent complex conductivity of a free-electron system, in terms of the dc con-
ductivity and the scattering rate, in a rather simple form. The electrical conductivity
approaches the dc conductivity at very low frequencies (or very long wavelengths).
The dielectric function is related to the conductivity by Eq. (8.28); thus,

ε(ω) = ε∞ − σ0γ

ε0(ω2 + iγω)
(8.116)

where ε∞, which is on the order of 1, is included to account for contributions, other
than the contribution of the free electrons, that are significant at high frequencies.
There exist several transitions at the ultraviolet and visible regions for metals, such
as interband transitions. Note that when ω → ∞, the real part of the dielectric
function of all materials should approach unity, as can be seen from Eq. (8.107a). In
the low-frequency limit when ω � γ , σ̃ (ω → 0) ≈ σ0 and ε′′  ε′. Therefore,

n ≈ κ ≈
√

σ0

2ε0ω
(8.117)
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This is the Hagen–Ruben equation and is applicable at very long wavelengths [1].
Both the refractive index and the extinction coefficient will increase with the square
root of wavelength in vacuum. It is interesting to note that the radiation penetration
depth δλ = λ/(4πκ) will also increase with the square root of wavelength. As
an example, consider gold at λ = 4 μm with κ = 25. The penetration depth is
13 nm at this wavelength. If the wavelength is increased to 4 cm, which is well into
the microwave region, the penetration depth would increase to 1.3 μm. Generally
speaking, metals are highly reflecting in the infrared wavelength region.

The plasma frequency is defined according toω2
p = σ0γ

ε0
= nee2

meε0
. Using the plasma

frequency, we can write Eq. (8.116) in a more compact form as follows:

ε(ω) = ε∞ − ω2
p

ω(ω + iγ )
(8.118)

If ω  γ , the dielectric function can be approximated as

ε(ω) ≈ ε∞ − ω2
p

ω2

(
1 − i

γ

ω

)
, when ω  γ (8.119)

The plasma frequency falls in the ultraviolet region for most metals. For example,
the wavelength corresponding to the plasma frequency is approximately 80 nm for
aluminum and 200 nm for tungsten. When ω  ωp, as in the x-ray region, ε(ω) →
1 + iγω2

p/ω
3. Thus, metals become highly absorptive and not so reflective. Take

tungsten as an example. At λ = 1 nm, the optical constants are n ≈ 1 and κ =
4 × 10−4. The penetration depth is calculated to be δλ = 200 nm. Because the
refractive index is similar to that of air, the reflection is very weak and most of the
incident radiation is absorbed within a depth of 1 μm. Some metal foils become
semitransparent, for example, the radiation penetration depth in lithium is close to
100 μm at λ = 1 nm. The Center for X-Ray Optics at Lawrence Berkeley National
Laboratorymaintains awebsite onx-ray properties [51]. Ifω < ωp, the real part of the
dielectric function ε′ becomes negative, and the extinction coefficient is much greater
than the refractive index, i.e., κ  n. According to Eq. (8.84), this corresponds
to a high reflectivity. A vanishing real part of the refractive index corresponds to
a longitudinal collective oscillation of the electron gas, i.e., a plasma oscillation.
Plasma oscillations originate from a long-range correlation of electrons caused by
Coulomb forces.

Example 8.7 From Table 5.2, calculate the plasma frequency and the electron scat-
tering rate for aluminum. Then calculate its dielectric function and compare the
normal reflectivity with data.

Solution For aluminum near room temperature, ne = 18.1 × 1028 m−3 and σ0 =
1/re = 3.75 × 107 m/�. From Appendix A, e = 1.602 × 10−19 C, me = 9.109 ×
10−31 kg, and ε0 = 8.854 × 10−12 C2/Nm2. Hence, γ = nee2/meσ0 = 1.4 ×
1014 rad/s, or the scattering time τ = 7.2 × 10−14 s, and ωp = 2.4 × 1016 rad/s,
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Fig. 8.13 Optical constants
of aluminum, calculated
from the Drude model
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which corresponds to a wavelength of 79 nm. The exact parameters may differ
slightly in different references, and sometimes an effective mass is used which is
slightly larger than the electron rest mass. The predicted optical constants are plotted
in Fig. 8.13, assuming ε∞ = 1. It can be seen that as the wavelength exceeds 100μm,
the difference between n and κ diminishes. In the region 0.1 μm < λ < 200 μm,
n < κ so that the real part of the dielectric function ε′ = n2 − κ2 becomes negative.
A sharp transition occurs at the plasma frequency so that n → 1 and κ decreases
rapidly toward higher frequencies.

As shown in Fig. 8.14, the reflectivity calculated fromEq. (8.84) is compared with
the measured data for an aluminum film, which was prepared by ultrahigh vacuum
deposition and measured in high vacuum to avoid oxidation [15]. The results agree
very well at wavelengths greater than 2μm. For λ < 1 μm, the contribution from the
interband transition causes a reduction in the reflectivity. Note that the simple Drude
model did not include these effects and is applicable for long wavelengths only. The
established optical constants of metals are based on the measured reflectivity in a
broad spectral region by using the K-K relations described in Sect. 8.4.1. The results
for a large number of samples are tabulated in Handbook of the Optical Constants
of Solids, with pertinent references [15].

In some studies, the Drude model is modified by considering the temperature
and frequency dependence of the scattering rate and the effective mass. While the
Drude model predicts well the radiative properties at room temperature or above,
caution should be taken at extremely low temperatures. If the electron mean free
path becomes comparable to the distance over which the electric field varies, i.e.,
the field penetration depth, nonlocal effects become important and the Drude theory
breaks down. This can occur at cryogenic temperatures, and a more complex theory
called the anomalous skin effect theory must then be applied [52].
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Fig. 8.14 Normal spectral
reflectivity of aluminum
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8.4.3 The Lorentz Oscillator Model for Phonon Absorption

Vibrations of lattice ions and bound electrons contribute to the dielectric function
in a certain frequency region, often in the mid infrared. The refractive index can be
calculated using the Lorentz oscillator model, which assumes that a bound charge
e is accelerated by the local electric field E, which is assumed to be the same as
the applied field here. In contrast to free electrons, a bound charge experiences a
restoring force determined by a spring constant Kj. The oscillator is further assumed
to have a mass mj and a damping coefficient γ j , as shown in Fig. 8.15. The force
balance yields the equation of motion for the oscillator:

m j ẍ + m jγ j ẋ + K jx = eE (8.120)

The solution for a harmonic field E = E0e−iωt , valid at timescales greater than
the relaxation time, is given by

x = e/m j

ω2
j − iγ jω − ω2

E (8.121)

Fig. 8.15 The classical
oscillator model
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where ω j = (K j/m j )
1/2 is the resonance frequency of the jth oscillator. The motion

of the single oscillator causes a dipole moment ex. If the number density of the
jth oscillator is n j , the polarization vector, or the dipole moment per unit volume,
is P = ∑N

j=1 n j ex, where N is the total number of infrared active phonon modes
(oscillators). The constitutive relation gives the polarization as P = (ε − 1)ε0E. It
can be shown that

ε(ω) = ε∞ +
N∑

j=1

Sjω
2
j

ω2
j − iγ jω − ω2

(8.122)

where ε∞ is a high-frequency constant and Sj = ω 2
p j/ω

2
j = n j e2/(ε0m jω

2
j ) is called

the oscillator strength.
At very low frequencies, ε(0) = ε∞ + ∑N

j=1 Sj , which is called the dielectric
constant. The real and imaginary parts of the dielectric function (ε′, ε′′) and optical
constants (n, κ) for a simple oscillator are illustrated in Fig. 8.16, near the resonance
frequency for ε∞ = 1. It can be seen from Eq. (8.122) and Fig. 8.16 that, for
frequencies much lower or much higher than the resonance frequency ω j , ε′′ and
κ are negligible. Only within an interval of γ j around the resonance frequency is
the absorption appreciable. Within the absorption band, the real part of the refractive
index decreases with frequency; this phenomenon is called anomalous dispersion. It
follows that in an interval of width γ j around the resonance frequency, the Lorentz
oscillator is highly reflecting and absorbing, while for higher or lower frequencies, it
acts as a transparentmaterial. The real part of the dielectric function becomes negative
in a frequency region somewhat higher thanω j . Amore complicated treatment based
on quantum mechanics yields a four-parameter model [53]. The previous classical
oscillatormodel canbe considered as a good approximationwhen the relaxation times
of the longitudinal and transverse optical phonons are close to each other. In some

Fig. 8.16 The dielectric behavior predicted by the Lorentz oscillator model. a Real part and
imaginary part of the dielectric function. b Refractive index and extinction coefficient
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studies, frequency- and temperature-dependent scattering rate is also considered to
model the infrared spectra.

Due to the large number of parameters involved, it is much more difficult to
determine the Lorentz oscillator parameters than to determine the Drude parameters.
In practice, the oscillator parameters are often treated as adjustable parameters that are
obtained by fitting Eq. (8.122) to the measured reflectivity data. The Lorentz model
has been applied to a large number of dielectric materials by fitting the reflectance
spectra [15]. The author and collaborators have obtained the Lorentz parameters for
several perovskite crystals (LaAlO3, LaGaO3, and NdGaO3), thin polyimide films,
HfO2 and Ta2O5 films, as well as certain ceramic materials [54].

Example 8.8 The Lorentz model for SiC at room temperature for an ordinary ray is
given as follows:

ε(ω) = ε∞
[
1 + ω2

LO − ω2
TO

ω2
TO − iγω − ω2

]
(8.123)

where ωLO = 969 cm−1 and ωTO = 793 cm−1 are the frequencies corresponding to
the longitudinal and transverse optical phonons, respectively, γ = 4.76 cm−1, and
ε∞ = 6.7 [55]. What are the refractive indices at the high- and low-frequency limits?
Calculate the normal reflectivity and compare it with the experimental result.

Solution Comparing Eqs. (8.122) and (8.123), we see that the resonance fre-
quency corresponds to the TO phonon frequency, and the oscillation strength is
S1 = ε∞(ω2

LO/ω2
TO − 1) = 3.3. The high-frequency limit of the refractive index is

n ≈ √
ε∞ = 2.6, and the low-frequency limit is n = √

ε∞ + S1 = 3.16. Note that
transitions that occur in the visible and ultraviolet regions are not included so that
the high-frequency limit is approximately 1 μm. On the other hand, because there
are no other transitions at long wavelengths, the dielectric constant is approximately
the same for zero frequency. The normal reflectivity is calculated using Eq. (8.84)
and compared with the data, as shown in Fig. 8.17. The agreement is excellent since
the Lorentz parameters were fitted to the experimental data [55]. The phonon band
causes a large κ value and hence a high reflectivity (very low emissivity) between
ωTO = 793 cm−1 and ωLO = 969 cm−1. This band is called reststrahlen band. The
German word “reststrahlen” means “residual rays” and the reststrahlen effect indi-
cates the phenomenon of high reflectance in a dielectric material that is otherwise
transparent. At ω = 1000 cm−1, the reflectivity is nearly 0 such that the emissivity
is almost 1. This happens at the edge of the reststrahlen band, where the refractive
index increases close to 1 and the extinction coefficient decreases to a very small
value. This wavelength is called the Christiansen wavelength, and the associated
phenomenon is called the Christiansen effect [9].

The density-functional perturbation theory (DFPT) can be used to perform first-
principles calculations of the lattice dynamics. It can provide phonon dispersions
as well as the resonance frequencies of different phonon modes [56]. It should be
noted that some optical phonons are symmetric and they cannot be detected by
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Fig. 8.17 The calculated
and measured normal
reflectivity of SiC at room
temperature

infrared spectroscopy but can show up in Raman spectroscopy like the phonons
in Si and Diamond. Note that both the TO and LO vibrational frequencies can be
determined with the DFPT including those that are not infrared active but are Raman
active [56, 57]. However, the determination of the scattering rate from the first-
principles simulation ismore challenging.Bao et al. [58] obtained the phonon lifetime
and resonance frequencies using an analysis of the ab initio molecular dynamics
(MD) trajectories based on the normal modes and spectral density analysis methods,
allowing the calculation of the far-infrared dielectric function of GaAs. This method
may also be applied to multiple phonon oscillators.

8.4.4 Semiconductors

The absorption coefficient of lightly doped silicon is shown in Fig. 8.18 to illustrate
the contribution of different mechanisms [9, 59]. Let us look at the absorption of
silicon in the visible and the infrared first, as shown in Fig. 8.18a. At short wave-
lengths, photon energies are large enough to excite electrons from the valence band
to the conduction band. This interband transition causes the absorption coefficient
to rise quickly as the photon energy hν is increased above the indirect bandgap,
which is approximately Eg = 1.1 eV at room temperature and decreases somewhat
as temperature increases. As the wavelength further increases beyond the absorption
edge, the absorption coefficient is affected by the existence of impurities and defects,
absorption by free carriers (i.e., intraband or intersubband transitions by electrons and
holes), and absorption by lattice vibrations. While the lattice vibration affects certain
regions of the spectrum, the free-carrier contribution increases at longerwavelengths.
For intrinsic silicon at low temperatures, the free-carrier concentration is very low,
and thus silicon is transparent at wavelengths longer than the bandgap wavelength.
Lattice absorption occurs in the mid infrared and introduces some absorption for
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Fig. 8.18 The absorption coefficient and the refractive index of Si at room temperature. a Absorp-
tion coefficient in the visible and the infrared. b Absorption coefficient and refractive index from
the ultraviolet to the near infrared

6 μm < λ < 25 μm. Free-carrier absorption is important for doped silicon at longer
wavelengths. Note that even for intrinsic silicon at high temperatures, thermally
excited free carriers dominate the absorption at longer wavelengths; a 0.5-mm-thick
silicon wafer is essentially opaque above 1000 K. The free-carrier concentration
for intrinsic silicon is about 1010 cm−3 at 300 K and nearly 1018 cm−3 at 1000 K.
As shown in Fig. 8.18b, the absorption coefficient continues to increase at shorter
wavelengths, due to the interband transition associatedwith the direct bandgap,which
dominates the optical characteristics of silicon in the ultraviolet region.This transition
also affects the refractive index of silicon at longer wavelengths. Beyond 500 nm, the
refractive index of lightly doped Si decreases somewhat as the wavelength increases.

Modeling the interband transitions requires quantum theory. First-principles or
ab initio calculations have been performed to study the optical absorption spectrum
of semiconductors and insulators, considering electron–hole interactions [60, 61]. In
a direct-bandgap semiconductor, shown in Fig. 8.19a, the lowest point of the conduc-
tion band occurs at the same wavevector as the highest point of the valence band. An
electron can be excited from the top of the valence band to the bottom of the conduc-
tion band by absorbing a photon of energy that is at least equal to the bandgap energy.
When the valence band and the conduction band are parabola-like, the absorption
coefficient due to direct bandgap absorption can be expressed as

abg = A(�ω − Eg)
1/2 (8.124)

where A is a parameter that depends on the effective masses of the electrons and the
holes, and the refractive index of the material.

When a transition requires a change in both energy and momentum, as in the
case for an indirect bandgap semiconductor shown in Fig. 8.19b, a phonon is either
emitted (process 1) or absorbed (process 2) for momentum conservation because
the photon itself cannot provide a change in momentum. This kind of transition is
called indirect interband transition.With the involvement of phonons, the absorption
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Fig. 8.19 Interband transitions in semiconductors. a Direct transition without involving a phonon.
b Indirect transition involving the emission or absorption of a phonon

coefficient is given as

aa(ω) = A(�ω − Eg + �ωph)
2

exp(�ωph/kBT ) − 1
, �ω > Eg − �ωph (8.125)

and

ae(ω) = A(�ω − Eg − �ωph)
2

1 − exp(−�ωph/kBT )
, �ω > Eg + �ωph (8.126)

where aa and ae correspond to the absorption coefficients for transitions with phonon
absorption and emission, respectively, and their values are nonzero only when the
photon energy is greater than the bandgap energy subtracted (or added) by the
phonon energy. Theremay be several phononmodes that can cause indirect interband
transitions, and their effects on the absorption coefficient can be superimposed [59].

The Drude model can be applied to model the free-carrier contribution for both
intrinsic and doped silicon as given in the following [59, 62]:

ε(ω) = εbl − Nee2/ε0m∗
e

ω2 + iωγe
− Nhe2/ε0m∗

h

ω2 + iωγh
(8.127)

where the first term on the right εbl accounts for contributions by transitions across
the bandgap and lattice vibrations, the second term is the Drude term for transitions
in the conduction band (free electrons), and the last term is the Drude term for
transitions in the valence band (free holes). Here, Ne and Nh are the concentrations,
m∗

e and m∗
h the effective masses, and γe and γh the scattering rates of free electrons
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and holes, respectively. The effective masses of silicon are taken as m∗
e = 0.27m0

and m∗
h = 0.37m0, where m0 is the electron mass in vacuum.

The value of εbl is determined using the refractive index and the extinction coeffi-
cient of intrinsic silicon. The refractive index of silicon changes from3.6 atλ = 1 μm
to 3.42 at λ > 10 μm at room temperature and increases slightly at higher temper-
atures. Absorption by lattice vibrations occurs in silicon at wavelengths between 6
and 25μm. To account for the lattice absorption, the extinction coefficients are taken
from the tabulated values in Handbook of the Optical Constants of Solids [15]. At
elevated temperatures or for heavily doped silicon, the effect of absorption by lat-
tice vibrations is negligible compared to the absorption by free carriers. The carrier
concentration and the scattering rate depend on the temperature and dopant concen-
trations. For bulk silicon, the scattering is caused by the collision of electrons or
holes with the lattice (phonons) or ionized dopant sites (impurities or defects). The
total scattering rates can be calculated by

γe = γe−l + γe−d and γh = γh−l + γh−d (8.128)

where the subscripts l and d stand for lattice and defects, respectively. Generally
speaking, increasing the defect concentration or temperature gives rise to a larger
scattering rate. For intrinsic silicon, the concentration of the thermally excited free
electrons and holes is the same and can be found from the relation:

N 2
th = NCNV exp(−Eg/kBT ) (8.129)

where NC and NV are the effective densities of states in the conduction band and the
valence band, respectively, and for silicon, Eg = 1.17−0.000473T 2/(T +636) eV.

Note that NC = 2.86 × 1019 cm−3 and NV = 2.66 × 1019 cm−3 at 300 K; however,
both increase with temperature proportional to T 3/2.When the dopant concentrations
are not very high, the free-carrier concentrations can be obtained from

Ne = 1

2

[
ND − NA +

√
(ND − NA)2 + 4N 2

th

]
(8.130)

and Nh = N 2
th/Ne when the majority impurities are n-type. When the majority impu-

rities are p-type, the equations become Nh = 1
2

[
NA − ND +

√
(NA − ND)2 + 4N 2

th

]

and Ne = N 2
th/Nh. Equation (8.130) has been derived based on complete ionization,

which does not hold for heavily doped semiconductors or at very low temperatures.
Integration is needed to determine the concentration when complete ionization is not
expected, as described by Fu and Zhang [62].

The calculated optical constants n and κ of silicon, for wavelengths in the range
between 1 and 100 μm, are shown in Fig. 8.20 at 300 and 1000 K for n-type phos-
phorus donors. The refractive index changes little for lightly doped silicon, even at
high temperatures. The refractive index for heavily doped silicon first decreases and
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Fig. 8.20 Optical constants of n-type phosphorus-doped silicon, at 300 K and 1000 K, for different
dopant concentrations

then increases abruptly toward longer wavelengths. The carrier contribution to the
extinction coefficient at 300 K is very small for lightly doped silicon, and the lattice
contribution can be clearly seen between 6 and 25 μm. As the doping level exceeds
1017 cm−3, these phonon features are screened out. This is also true for lightly doped
silicon at 1000 K as the thermally excited carriers have a concentration of about
1018 cm−3. At 1000 K, κ is essentially the same for ND ≤ 1017 cm−3 and increases
with higher dopant concentrations. At 300 K, the calculated κ at λ > 1.12 μm
decreases with reducing dopant concentration until ND is less than 1010 cm−3, when
most carriers are from the thermal excitation rather than the doping. The lattice
absorption features become prominent when ND ≤ 1016 cm−3. For doping levels
under, 1018 cm−3, κ � n unless the wavelength is very long, and silicon behaves as
a dielectric. The significance is that the radiation penetration depth can be very large
in the mid infrared because of the small κ values. For heavily doped silicon, on the
other hand, the Drude model predicts that n ≈ κ in the long-wavelength limit, just
like in a metal. The accuracy of the simple Drude model is subjected to a number of
factors, such as the dependence of the effective mass on temperature, dopant con-
centration, and even frequency. The scattering rate may be frequency dependent as
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Fig. 8.21 a Real and b imaginary parts of the dielectric function for n-type silicon at 400 K for
different dopant concentrations

well. The band structure may be modified for heavily doped silicon. Nevertheless,
this model has captured the essential features of the dielectric function of silicon, for
wavelengths greater than 0.5 μm, at temperatures from 300 to 1200 K, and with a
doping level up to 1019 cm−3.

Basu et al. [63] performed a comprehensive study on the ionization models and
mobilitymodels of doped silicon. Itwas pointed out that the ionizationmodel adopted
in the previous study of Fu and Zhang [62] would underpredict the carrier con-
centrations for doping concentrations greater than 1017 cm−3. The model recom-
mended by Basu et al. [63] compares well with the mid-infrared transmittance and
reflectance spectra of both phosphorus (p-type) and boron (n-type)-doped silicon
films at room temperature. The model can be extended into the temperature range
from 250 to 400 K by modeling the temperature-dependent scattering rate using
γ (T )/γ0 = (300/T )1.5, where γ0 is the impurity scattering rate at room tempera-
ture calculated from the mobility model. Figure 8.21 plots the calculated dielectric
function of heavily doped silicon at 400 K for angular frequencies between 1013

and 1015 rad/s with different dopant concentrations. An important feature is that the
real part of the dielectric function ε′ becomes negative especially for high doping
concentrations. Such a metallic behavior due to free carriers can enable surface plas-
mon resonances and enhance near-field radiative heat transfer as will be discussed
in subsequent chapters.

8.4.5 Superconductors

A superconductor is amaterial that exhibits zero resistance and perfect diamagnetism
when it is maintained at temperatures below the critical temperature T c, under a
bias current less than the critical current and an applied magnetic field less than the
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critical magnetic field. The discovery of high-temperature superconductors in the late
1980s has generated tremendous excitement in the public because the achievement
of superconductivity above the boiling temperature of nitrogen (77 K at atmospheric
pressure) offers many technological promises. More and more materials have been
found to be superconducting at higher and higher temperatures. Extensive studies
have been devoted to the infrared properties of superconducting films for applications
such as radiation detectors, opticalmodulators, and other optoelectronic devices [64].
High-temperature superconducting (HTS) materials are made of ceramic structures,
such as YBa2Cu3O7-δ , where δ is between 0 and 1. The Y-Ba-Cu-O compound
behaves as an insulator when δ > 0.6 and as a conductor when δ < 0.2 at room
temperature.

In the normal state (T > Tc), the dielectric function ε(ω) can be modeled as a
sum of the free-electron contribution using the Drudemodel, an intraband absorption
that is important for the mid-infrared region by using the Lorentz term, and a high-
frequency constant [65]:

ε(ω) = ε∞ + εMid-IR + εDrude (8.131)

The expression of theDrude term is the same as inEq. (8.116) or (8.118).Although
phonon contributions can be neglected compared to the large electronic contributions,
a broadband mid-infrared electronic absorption often exists in the HTS materials,
which is typically modeled with a Lorentz oscillator that has a large width, or a
frequency-dependent scattering rate.

Many properties of superconductors can be explained in terms of a two-fluid
model that postulates that a fluid of normal electrons coexists with a superconducting
electron fluid. These two fluids coexist but do not interact. According to the BCS
theory [66], interaction between a pair of free electrons and a phonon (or other
thermally generated excitations) leads to the formation of an electron pair, called a
Cooper pair. The Cooper pairs cannot be scattered by any sources as they move in
the lattice structure. In the superconducting state, only a fraction of free electrons fs
is in the condensed phase (or superconducting state) and the remaining electrons are
in the normal state. The value of fs is temperature dependent and goes to zero at Tc.
The dielectric function in the superconducting state can be modeled by

ε(ω) = ε∞ + εMid-IR + (1 − fs)εDrude + fsεSup (8.132)

The Drude term remains due to the presence of normal electrons with a number
density of (1 − fs)ne. In Eq. (8.132), the dielectric function of the superconducting
electrons can be modeled as

εSup = −ω2
p

ω2
+ iπδ(ω)

ω2
p

ω
(8.133)

where δ(ω) is the Dirac delta function. The calculated results are usually fitted with
the experimental measurements by adjusting the plasma frequency, the scattering
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rate, and the fraction of superconducting electrons. Excellent agreement has been
observed between the predicted and experimental values of both the transmittance
and the reflectance of superconducting films, at temperatures ranging from 300 down
to 10 K [65].

8.4.6 Metamaterials with a Magnetic Response

The concept of negative refractive index (n < 0) was first postulated by Victor Vese-
lago in 1968 for a hypothetical material that has both negative permittivity and per-
meability in the same frequency region. In this case, the sign of n should be chosen
as negative in n = ±√

εμ. Many of the unique features associated with negative
index materials (NIMs) were summarized in Veselago’s original paper, such as neg-
ative phase velocity, reversed Doppler effect, and the prediction of a planar lens.
As illustrated in Fig. 8.22a, if n is negative, the phase speed will be negative and
light incident from a conventional positive index material (PIM) to a NIM will be
refracted to the same side as the incidence. This is called bending light in the wrong
way. Furthermore, if light can be bent differently, then a planar slab of a NIM can
focus light as shown in Fig. 8.22b. The lack of simultaneous occurrence of negative
ε and μ in natural materials hindered further study on NIMs for some 30 years. On
the basis of the theoretical work by John Pendry and coworkers in the late 1990s,
Shelby et al. [67] first demonstrated that a metamaterial exhibits negative refraction
at x-band microwave frequencies. In a NIM medium, the phase velocity of an elec-
tromagnetic wave is opposite to its energy flux. The electric field, the magnetic field,
and the wavevector form a left-handed triplet. For this reason, NIMs are also called
left-handed materials (LHMs). Because both ε and μ are simultaneously negative,
NIMs are also called double negative (DNG) materials.

Fig. 8.22 Unique features of a negative index material (NIM). a The refracted ray bends toward
the same side as the incidence. b A slab of NIM can focus light like a lens does. Arrows indicate
the wavevector directions. Note that the energy direction is the opposite of the wavevector direction
in a NIM
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Pendry [68] conceived that a NIM slab with ε = μ = −1 would perform the
dual function of correcting the phase of the propagating components and amplifying
the evanescent components, which only exist in the near field of the object. The
combined effects could make a perfect lens that eliminates the limitations on image
resolution imposed by diffraction for conventional lenses. Despite the doubt cast by
some researchers on the concept of a “perfect lens” and even on negative refrac-
tion, both the hypotheses of negative refraction and the ability to focus light by a
slab of NIM have been verified by analytical, numerical, and experimental methods.
Potential applications ofNIMs range fromnanolithography to novel Bragg reflectors,
phase-compensated cavity resonators, waveguides, and enhanced photon tunneling
for microscale energy conversion devices [69–71]. Ramakrishna [70] gave an exten-
sive bibliographic review on the theoretical and experimental investigations into
NIMs and relevant materials. There has been growing interest in the study of NIMs
because of the promising new applications as well as the intriguing new physics. The
search for new ways of constructing NIMs also calls for the development of new
materials and processing techniques.

The ideal case, where ε = μ = −1, cannot exist at more than a single frequency
because both ε and μ of a NIM must be inherently dependent on the frequency as
required by the causality. In addition, real materials possess losses, and hence both ε

and μ are complex. The negative index can be realized by considering the complex
plane, as illustrated in Fig. 8.23. Note that ε = rεeiφε and μ = rμeiφμ . Then, we have

n = rne
iφn = √

rεrμe
i(φε+φμ)/2 (8.134)

Therefore, if both ε′ and μ′ are negative, n will be negative, but κ will always
be positive. Note that a negative n can be obtained as long as φn > π/2. Generally
speaking, one would like to see all the phase angles be close to π so that the loss is
minimized. Note that the principal value of the phase is chosen to be from 0 to 2π in
the preceding discussion, rather than from−π to π . If the latter is chosen, one would
obtain a negative κ and a positive n for a NIM. Many metals and polar dielectrics
have a negative ε in the visible and the infrared. Furthermore, periodic structures
of thin metal wires or strips can dilute the average concentration of electrons and
shift the plasma frequency to the far-infrared or longer wavelengths. Negative-μ

Fig. 8.23 Illustration of a negative refractive index, using the complex planes
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materials rarely exist in nature, at the optical frequencies, but can be obtained using
metamaterials consisting of split-ring resonator structures at microwave frequencies.
These structures can be scaled down to achieve negativeμ toward higher frequencies.
The combination of repeated unit cells of interlocking copper strips and split-ring
resonators makes ametamaterial exhibit a negative ε andμ simultaneously. Based on
an effective-medium approach, the relative permittivity and permeability of a NIM
can be expressed as functions of the angular frequency ω as follows:

ε(ω) = 1 − ω2
p

ω2 + iγeω
(8.135)

and

μ(ω) = 1 − Fω2

ω2 − ω2
0 + iγmω

(8.136)

where ωp is the effective plasma frequency, ω0 is the effective resonance frequency,
γe and γm are the damping terms, and F is the fractional area of the unit cell occupied
by the split ring. FromEqs. (8.135) and (8.136), both negative ε andμ can be realized
in a frequency range between ω0 and ωp for adequately small γe and γm. Here, the
values ofω0,ωp, γe, γm, and F depend on the geometry of the unit cell that constructs
the metamaterial. These structures can be scaled down to achieve a negative index
at higher frequencies.

To illustrate the negative index behavior, Fig. 8.24 shows the calculated refrac-
tive index and the extinction coefficient of a hypothetical NIM using the following
parameters [72]: ω0 = 0.5ωp, F = 0.785, and γe = γm = γ = 0.0025ωp. Because
of the scaling capability of the metamaterial, the frequency is normalized to ωp. It
can be seen that in the frequency range from ω0 to ωp, where the real parts of ε and
μ are negative, n is negative and κ (for small values of γ ) is small at frequencies not

Fig. 8.24 Calculated
refractive index of a
hypothetical negative index
material (NIM)
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too close to ω0. Further discussions of metamaterials and their radiative properties
will be given in Chap. 9.

8.5 Experimental Techniques

Measurements of radiative properties (absorptance, emittance, reflectance, and trans-
mittance) of real materials are critical for understanding the physical behavior of
materials as well as for thermal analysis and design. The optical constants can be
derived from the measured radiative or optical properties. For an opaque object with
a smooth surface, measurement of the reflectivity in a broad spectral range can be
used through KK relation to determine the complex refractive index if the material
is nonmagnetic and isotropic. In the semitransparent region for a smooth slab (thick
film), the measured spectral transmittance and reflectance can be used to extract the
refractive index and absorption coefficient. For polar materials in the mid infrared
(such as SiO2 and Al2O3), the phonon oscillator parameters can be obtained by fit-
ting the measured reflectance spectrum. Bidirectional reflectance and transmittance
measurements are often used to study materials with surface roughness or inhomo-
geneity (such as porous materials or carbon nanotube arrays) due to surface and
volume scattering. On the other hand, integrating spheres allow the diffused light to
be collected and can be used to measure directional-hemispherical properties. The
methods for measuring radiative properties can be grouped generally into two cate-
gories: calorimetric measurements and radiometric measurements, discussed in the
following.

In a calorimetric technique, the thermal response of the specimen is used to deter-
mine the absorptance or emittance of the sample under investigation. Both the steady-
state temperature change and transient temperature history can be used to deduce
the radiative properties, though the calorimetric methods often use transient thermal
responses during the heating or cooling process. The calorimetric method is well
suited for measuring the total-hemispherical emittance of opaque materials [50, 73–
75]. The sample is suspended in a large vacuum closure whose walls may be cooled
with a cryogen such as liquid nitrogen. Due to the large wall area, the rate of net
radiative transfer from the surface can bewritten as qrad = εhtot AsσSB(T 4−T 4

w), where
εhtot, As, and T are the emittance, surface area, and temperature of the sample, and
Tw is the wall temperature. The methods have been used to measure εhtot of certain
metals up to about 1100 K [73, 74] as well as some solids and coatings down to
100 K [76]. In laser calorimetry [15, 77–79], the sample is heated up by a laser beam
and the sample temperature depends on the laser power and spectral absorptance.
Either the heating curve or cooling curve, after a shuttle is opened or closed, can be
used to determine the absorptance based on a suitable thermal model. This method
is particularly useful for measuring crystals with very low absorption coefficients
[78, 79].

Radiometric techniques are based on themeasurement of the radiant power reach-
ing the detector (or receiver) from the source (or emitter). A variety of radiometric
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techniques or opticalmethods exist formeasuring the spectral radiative properties.An
optical instrument or measurement system typically includes four parts: the source,
detector, optical components, and the sample. Sometimes the sample to be studied can
be the source (in emission measurements), detector (in absorption measurements),
or part of the components. In general, the source can be a lamp, laser, a blackbody
cavity, or a thermal emitter. The detector can be a thermopile or a bolometer that
measures the radiation based on a temperature rise or a semiconductor detector that is
based on photoconductive or photovoltaic principles as described in Chap. 6. Simple
optical components include lenses, mirrors, polarizers, filters and windows, beam-
splitters, prisms, gratings, and optical fibers. More complicated components, such
as an interferometer and a monochromator, to be discussed in subsequent sessions,
may combine several simple components.

Besides calorimetry and radiometry, polarimetry and ellipsometry are commonly
used to determine the optical constants, from which the radiative properties can be
calculated [15, 80]. Thesemethods are largely based on the phase and amplitude of the
electric field component, rather than the radiant power or intensity. Cezairliyan et al.
[81] used the division-of-amplitude photopolarimeter (DOAP), which can measure
the Stokes parameters, to determine the refractive index and extinction coefficient
at λ = 633 nm for cylindrical specimens heated by a pulsed laser. The normal
spectral emissivities of molybdenum and tungsten at temperatures between 2000 and
2800 K measured by the polarimetric technique agree well with those measured by
the spectral radiometric technique using high-speed pyrometers [81]. Spectroscopic
ellipsometers can nowadays perform measurements not only from the ultraviolet
to the near-infrared (wavelengths 150–2500 nm) region, but also from the mid- to
far-infrared region up to λ = 120 μm [82].

In the following, we give some general discussions about the sources and detec-
tors, the basics of dispersive instruments and the Fourier-transform spectrometer,
along with setups for measuring directional-hemispherical properties with inte-
grating spheres and for measuring spectral, directional emittance of materials at
elevated temperatures. Measurements of the bidirectional reflectance and transmit-
tance distribution functions will also be discussed, followed by a section on spectral
ellipsometry.

8.5.1 Sources

For thermal radiation, a blackbody is the ideal source since its spectral distribution is
well defined, as discussed previously. The radiation from the sun can be approximated
as a blackbody at a temperature of about 5800 K. However, sunlight varies with time
and atmospheric conditions. Therefore, it cannot be used as a source for quantitative
measurements. Because the surface area of the walls must be much greater than the
opening, blackbody cavities are bulky and must be carefully designed to maintain a
uniform inner wall temperature. This has been done successfully in national metrol-
ogy laboratories/institutes and used for measuring the Stefan–Boltzmann constant
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and the spectral distribution that has resulted in the discovery of Planck’s law [3, 16–
19]. For high-temperature emittance measurements, blackbody cavities can be used
as references. For measuring spectral transmittance and reflectance, since reference
methods are commonly used, there is no need to precisely know the radiant power
or intensity.

Lasers are quite commonly used in optical measurements since they provide well-
collimated and nearly monochromatic radiation at discrete wavelengths. Some gas
lasers have a very narrow spectral band due to atomic or molecular transitions, such
as He-Ne lasers in the visible (633 nm) and near-infrared (1154 nm) or CO2 lasers
at wavelengths near 10 μm, especially at 10.6 μm. An optical cavity is made of
a Fabry–Pérot resonator with two highly reflecting mirrors: one is opaque and the
other partially transparent. The beam is reflected back and forth between the mirrors
and makes multiple passes through the gain region (lasing medium) before it exits
through the partially transparent mirror. This way, the stimulated emission within the
gain region can be amplified. At present, semiconductor-based solid-state lasers are
very popular and inexpensive. An example is a laser diode with a p-n junction that is
similar to a light-emitting diode (LED). However, LEDs are based on spontaneous
emission and produce light in a relatively broad spectral band (30–60 nm width). On
the other hand, a diode laser is based on the stimulated emission of a p-i-n junction
in which the active region is the intrinsic region (i) sandwiched between the p-
and n-type direct bandgap semiconductors, such as GaAs, GaSb, InP, etc. Detailed
descriptions of the mechanisms, types, and performances of various laser systems
can be found elsewhere. While the laser is a powerful tool for optical measurements,
spectrometer systems can quickly produce continuous spectral measurements in a
broad wavelength band and thus are the most common instruments for measuring
spectral radiative properties.

Incandescent lamps give out light when the filament is heated to an elevated tem-
perature. Tungsten halogen lamps are perhaps the most popular and inexpensive
light source for UV, VIS, and NIR measurements. The tungsten filament is heated to
about 2800–3200 K in a mixture of inert gas and a halogen gas (such as bromine).
The halogen gas reacts with tungsten that is being evaporated from the filament at
high temperatures and redeposits the tungsten atoms back onto the filament; this
is called the halogen cycle. The bulb is made of fused silica (or quartz) that is an
amorphous SiO2, which has a low coefficient of thermal expansion, high strength,
and a high melting temperature. For a regular lamp without a halogen gas, the fil-
ament temperature cannot be very high and the tungsten is gradually evaporated
and deposited onto the glass wall. At a temperature around 3000 K, the blackbody
emission peak is near 1 μm. Since the emissivity of tungsten decreases with increas-
ing wavelength, the emission peak shifts toward a shorter wavelength. Typically, a
quartz tungsten-halogen lamp can be used from about 250 to 2500 nm wavelengths.
The signal becomes weaker at longer wavelengths due to the reduction of tungsten
emissivity. Furthermore, fused silica begins absorbing beyond 3 μm wavelength.

Globar made of SiC with the addition of rare earth oxides has been commonly
used for infrared spectroscopy at wavelengths from about 2 to 100 μm. The temper-
ature of the heating element is typically 1300–1650 K. The emissivity of the globar
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is from 0.82 to 0.94 at wavelengths from 0.65 to 15 μm [83]. The globar source can
be exposed to ambient conditions and lasts for a long time without turning it off,
especially with nitrogen purging. Nowadays, most commercial mid-infrared spec-
trometers use globar emitters with different shapes and somewhat different operating
temperatures.

A high voltage can ionize the gas molecules placed in between the cathode and
anode. The high-temperature plasma generated by the electric discharge gives out
arc light. This is the mechanism of lightning and has been used in arc welding.
Common gas discharge lamps include the mercury arc lamp, xenon arc lamp, xenon
flash lamp, and deuterium lamp. Although a high-voltage pulse (>20 kV) is needed
to initiate the discharging process, gas discharge lamps usually operate with a low
DC voltage (around 20 V) and a high current. Deuterium lamps emit unidirectional
ultraviolet radiation with high stability. The wavelengths can range from as short as
115 nm (10.8 eV) to about 400 nm. They are commonly used in UV spectroscopic
applications. The color temperature of a typical xenon lamp is around 6000 K and
the emitted radiation is from 185 to 2000 nm. Hence, the xenon lamp has a closer
match to the solar spectrum than other artificial sources. For this reason, xenon lamps
are often used in solar simulators, UV/VIS spectrophotometers, and microscopes.
Mercury arc lamps emit sharp peaks in the UV region with higher intensities than the
xenon lamps with the same power consumption. Since the peaks are centered around
254 nm, the effective color temperature may exceed 10000 K. Another application of
the mercury arc lamp is in the far infrared from 30 to 1000μm, where the intensity of
globar decreases more rapidly. In the far-infrared applications, the effective radiance
temperature of mercury arc lamps is about 5000 K [84].

Synchrotron radiation or a synchrotron light source uses a circular particle accel-
erator. When electrons are accelerated under the magnetic field in the storage ring
to a relativistic speed, electromagnetic radiation is emitted in the broad spectrum
from x-ray to microwave with high brightness, collimation, and stability. Both linear
and circular polarizations can be produced. Of course, synchrotron radiation is very
expensive and available only in limited facilities. Synchrotron radiation is mostly
used in x-ray studies since it is the brightest x-ray source and also in THz radiation
(0.1–10 THz) studies where there is a lack of intensive sources [85].

8.5.2 Detectors

Generally speaking, there are two types of radiation detectors: thermal detectors
and photon detectors. In a thermal detector, incident radiation causes a temperature
variation that can be measured by a transducer that converts it to an electrical signal.
In a photon detector or quantum detector, incident photons interact with the materials
such as a semiconductor diode and cause electronic transitions to generate electron–
hole pairs. Photodiodes can operate in either the photoconductive (PC) mode or the
photovoltaic (PV) mode. The former is based on the change in electric conductivity
and the latter is based on the voltage or current output, just like a solar cell, due
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Fig. 8.25 Illustration of a
bolometer coupled with a
heat sink and a simple
measurement system

to absorbed photons. Photon detectors are generally more sensitive and faster than
thermal detectors. On the other hand, thermal detectors typically have a broadband
response with good linearity.

A thermopile utilizes the thermoelectric effect and combines many thermocouple
junctions in a series: the hot junctions are coated black to receive radiation and
cold junctions are maintained at the heat sink temperature. Since their invention in
the early 1830s, thermopiles combined with a galvanometer had been successfully
used for measuring the solar spectrum and for studying blackbody radiation until the
bolometer was invented by S. P. Langley in 1880 [3]. Bolometers are based on the
temperature dependence of electrical resistance and can be orders of magnitudemore
sensitive than thermopiles. In the following, we will use a bolometer to illustrate the
figures of merit of a radiation detector, specifically a thermal detector.

As shown in Fig. 8.25, a lumped capacitance model is used in which the detector
is assumed to be at a uniform temperature with a heat capacitance C and is linked to
a heat sink at temperature Tsink with a thermal conductance G. For incidence with a
radiant power modulated at an angular frequency ω f , the transient heat conduction
equation may be written as [64, 86]

C
dθ

dt
+ Gθ = I 2R + αq[1 + cos(ω f t)] (8.137)

Here, θ = T − Tsink is the reduced temperature, R is the resistance of the detector
element which is a function of temperature, I is the bias current which is assumed to
be constant, and α is the absorptance of the detector (often coated with a wavelength-
independent absorbing layer). The solution of Eq. (8.137) can be expressed as

θ(t) = αq cos(ω f t − φ)

Geff

(
1 + ω2

f τ
2
)1/2 + θ0 (8.138)
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where φ = tan−1(ω f t) is the phase lag, Geff = G − I 2(dR/dT ) is the effective ther-
mal conductance, and τ = C/Geff is the time constant. The last term in Eq. (8.138)
can be expressed as θ0 = T0 − Tsink = (αq + I 2R0)/G, where T0 is the (average)
operating temperature and R0 is the resistance at T0. The resistance of the bolometer
may be expressed as R = R0 + (dR/dT )(T − T0). Note that the temperature coef-
ficient of resistance (TCR) is defined as β = (dR/dT )/R0. Usually the bias current
is sufficiently small such that Geff ≈ G. The time constant determines how high a
modulation frequency can be used. Thermal detectors typically have a time constant
in the range from milliseconds to seconds.

The responsivity S is the ratio of the output (voltage) signal to the incident power
(modulated portion only). For a bolometer based on Eq. (8.138), we see that

S = αβ I R0

Geff

(
1 + ω2

f τ
2
)1/2 (8.139)

HighTCR is critical for a high sensitivity. For this reason, superconductor bolome-
ters have been developed that use the sharp resistance transition just above the criti-
cal temperature [64]. Some solids like vanadium dioxide (VO2) experience a phase
change above room temperature, with a large negative TCR during the insulator
(semiconductor) to metal transition (around 340 K). This phenomenon has been
used to build uncooled microbolometer arrays for infrared imaging applications.

Another figure of merit is called the noise equivalent power (NEP), which is the
noise floor that limits the sensitivity since any signal below NEP cannot be distin-
guished from the noise. The NEP of a thermal detector depends on the background
fluctuation called background noise, phonon noise due to the random exchange of
thermal energy through the conductance G, Johnson noises of the detector resis-
tance and load resistance due to random charge fluctuations, and the 1/f noise that
is inversely proportional to frequency of the electronic signal [64, 86, 87]. By oper-
ating at cryogenic temperatures (e.g., using liquid helium), NEP can be reduced by
orders of magnitude. The detectivity D∗ is often used for comparing the sensitivity
of different detectors and is defined as

D∗ =
√

AB

N E P
(8.140)

Here, A is the detector area and B is the bandwidth in Hz. The units of D∗ are usually
expressed in terms of cm Hz1/2 W−1.

Another type of thermal detector that is commonly used in infrared spectrometers
is the pyroelectric detector, which is based upon the thermally induced polarization
change in pyroelectric materials. Commonly used pyroelectric materials are lithium
tantalate (LiTaO3), triglycine sulfate (TGS) or deuterated triglycine sulfate (DTGS),
and lead zirconate titanate (PZT), which also has a large piezoelectric effect. When
oscillating radiation is absorbed by a pyroelectric material, the temperature variation
will change the degree of polarization, resulting in an oscillating voltage signal on
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the load resistor. Room-temperature DTGS detectors have been adopted for many
Fourier-transform infrared spectrometers. While it has a relatively low D∗ compared
to photon detectors, as shown in Fig. 8.26, a DTGS detector has a nearly flat spectral
response and can be used in a large spectral range, extending to the far-infrared region
(wavelengths up to 1000 μm). In the far infrared, liquid-helium-cooled bolometers
are often used since the detectivity can be increased by orders of magnitude. Note
that photoconductive mercury–cadmium–telluride (HgCdTe orMCT) detectors with
various compositions and bandgaps are often used to achieve higher sensitivity in
the mid infrared. The detectivity of a narrower band (higher sensitivity) MCT-1 and
a wider band (lower sensitivity) MCT-2 is also shown in Fig. 8.26, along with a more
sensitive photovoltaic indium antimonite (InSb) detector that is useful up to 5.5 μm.
A photon detector based on a semiconductor diode has a cutoff frequency since the
incoming photon energy must exceed the bandgap of the semiconductor material.
Furthermore, as the frequency increases, a portion of the photon energy that exceeds
the bandgap is lost to heat. It should be noted that MCT PC detectors have been
reported with poor linearity and sometimes need to be calibrated and corrected [88].

In the visible and near-infrared region, photodiode detectors such as GaP (150–
550 nm), Si (190–1100 nm), Ge (800–1800 nm), and InGaAs (900–2600 nm) can be
used in their applicable spectral range with high linearity and detectivity. For mea-
surements with very low light signals, such as measuring scattered light or single
photon detection, photomultiplier tubes (PMTs) can be used from UV to NIR due
to their extremely high sensitivities. A photomultiplier tube is a quartz vacuum tube
where electrons are generated at the photocathode by photoemission as described in
Chap. 6. The emitted electrons undergo a set of electrodes (called dynodes) where
secondary emission occurs to release additional electrons. More and more electrons

Fig. 8.26 Detectivity (D*)
of several infrared detectors,
where the photovoltaic InSb
and photoconductive MCT
detectors are cooled by
liquid nitrogen and the
DTGS detector operates at
room temperature
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are generated and accelerated throughmultiple dynode stages with higher and higher
electrical potential. The electrical current emitted by the photocathode can be ampli-
fied by up to eight orders of magnitude by the time the electrons reach the anode
where they are collected [86, 87].

Though the original purpose of this invention was to develop better electronic
memory for information storage, the charge-coupled device (CCD) has become a
major technology in digital images and spectroscopic applications, such as digital
cameras and the Hubble space telescope. CCDs are silicon devices that contain
an array of metal-oxide-semiconductor capacitors. The charges (electrons or holes)
generated by incoming photons through photoelectric effect are first stored in the
potential well created by the gate electrodes and then shifted (transferred) to the next
capacitor by applying appropriate clock pulses to the gate electrodes. Using a pulse
train, the charges stored in each capacitor are eventually transferred to a terminal
row to be read out serially and matched up with the location to provide a map of
the incoming photon flux. This ingenious conception has led to development of the
digital camera technology and certain UV/VIS/NIR spectrometers. In recent years,
active pixel sensors based on complementary metal-oxide-semiconductor (CMOS)
have been developed as the alternative technology for imaging applications. In a
CMOS-based device, each photodetector (pixel) has its own amplifier so that the
generated photocurrent is read out simultaneously by an integrated circuit array. At
present, most of the commercial infrared focal plane arrays or IR cameras use CMOS
technology as the integrated read-out device.

While detectors can be calibrated to measure the actual radiant power as a power
meter, radiation detectors are often used for relative measurements according to the
ratio of the sample signal to a reference signal. In some applications, such as solar
irradiance measurements, radiation thermometry, absolute radiometry, and thermal
imaging where accurate radiant power measurements are required, calibrations of
the detector responsivity and optical throughput are necessary. Standard instruments
such as the electrically self-calibrated radiometers, absolute cryogenic radiometers,
and blackbody sources are often employed for these purposes [17, 18].

8.5.3 Dispersive Instruments

Before the laser was invented, most of the light sources were polychromatic. Inter-
ference filters, prisms, or gratings are typically used to obtain nearly monochromatic
radiation. Multilayered dielectric (and sometimes metallic) films can be coated on a
substrate to form interference filters that allow radiation from a narrow spectral band
to pass through. An example is the Fabry–Perot interferometry that has sharp trans-
mission peaks as to be further discussed in Chap. 9. A prism can effectively deflect
broadband light into different directions, achieving nearly monochromatic radiation
in selected directions. However, for spectroscopic applications, most contemporary
instruments use surface relief gratings whose surfaces are corrugated periodically.
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Polychromatic irradiation on a periodically corrugated surface is diffracted toward
different directions (i.e., spatially dispersed according to the wavelength) based on
the grating equation [38]:

sin θ
(m)
d = sin θi + mλ

�
(8.141)

where θ
(m)
d is the angle of diffraction that depends on the angle of incidence θi, wave-

length λ, grating period �, and diffraction order m (which is an integer). The zeroth
order (m = 0) corresponds to specular reflection that is in the same direction for
all wavelengths. When m is not equal to zero (positive or negative), the diffraction
angle is wavelength dependent and different monochromatic radiation can be spa-
tially dispersed upon reflection. Further discussion of grating theory will be given in
Chap. 9.

Figure 8.27 shows the configuration of a Czerny–Turner monochromator with a
rotating grating. The grating period must be greater than the maximum measurable
wavelength. For a grating spectrometer, depending on the wavelength range, there
may be tens to several thousands of grooves per millimeter. Some modern grating
monochromators employ a linear array of sensors (CCD) without moving parts. It
should be noted that suitable shortwave cutoff filters are needed to prevent unwanted
radiation with higher diffraction orders from reaching the detector. This is because
the diffraction angle depends on the product, mλ. Hence, radiation from shorter

Fig. 8.27 Illustration of a Czerny–Turner grating monochromator. The grating can be rotated to
vary the output wavelength
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Fig. 8.28 A setup for measuring directional-hemispherical radiative properties using a monochro-
mator and an integrating sphere [89, 90]

wavelengths and higher orders can have the same θd as for radiation from longer
wavelengths and lower orders. The spectral resolution is often determined by the
width of the exit slit. However, the ultimate resolving power (i.e., the ratio of the
wavelength divided by the spectral resolution δλ) is limited by m N , where N is the
total number of illuminated grooves [38]. A variety of commercial monochromators
and spectrophotometers are available to meet the specific requirements for spectral
range, sensitivity, and resolution.

Typically, grating spectrophotometers are used from the ultraviolet to the near
infrared. At wavelengths beyond 2500 nm, the Fourier-transform infrared spectrom-
eter has become the prevailing choice, as discussed in the subsequent section. A
custom-built setup formeasuring the directional-hemispherical reflectance and trans-
mittance is shown in Fig. 8.28. The system is composed of a halogen lamp, a grating
monochromator with a filter wheel, a chopper, and two lenses, which guide the
monochromatic radiation to a 200-mm-diameter integrating sphere [89–91]. The
inner wall of the integrating sphere is coated with a polytetrafluoroethylene (PTFE)
diffuse reflector. Incident radiation can be focused on a spot size of approximately
6 mm × 6 mm on the center of the sphere, where the sample is mounted on a rotary
holder through the top port. By rotating the sample holder, the beam can be directed
either onto the back port of the sphere (covered by a PTFE plate) to obtain the refer-
ence signal or onto the sample to obtain the sample signal. A baffle placed above the
detector located at the bottom port prevents the direct illumination of the detector by
the first reflection of the sample or reference. Two photon detectors can be mounted
at the bottom port of the sphere interchangeably: a Si photodiode for wavelengths
from 300 to 1050 nm and a Ge photodiode for wavelengths from 1000 to 1800 nm.
The detector signal is sent to a transimpedance pre-amplifier that has eight decades
of dynamic range with a linear response. Afterward, the voltage signal is collected
by a lock-in amplifier at the chopping frequency of 400 Hz. For an opaque sample,
the directional-hemispherical reflectance can be obtained from the ratio of the sam-
ple signal to the reference signal. Furthermore, the back-mount method can also be
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used for convenient measurement. In the back-mount configuration, the sample is
placed at the back port outside the sphere, interchangeably with the PTFE reference
[91]. A number of factors can affect the accuracy of the integrating sphere measure-
ments and, therefore, calibration and corrections are often necessary to reduce the
measurement uncertainty [92].

8.5.4 Fourier-Transform Infrared Spectrometer

Developed in the late 1960s, Fourier-transform infrared (FTIR) spectrometers have
become a versatile tool for infrared spectral characterization of materials, including
spectral transmittance, reflectance, absorptance, and emittance [93–97]. As schemat-
ically shown in Fig. 8.29, an FTIR system utilizes Michelson interferometer that
consists of a beamsplitter, a fixed mirror, and a moving mirror to produce inter-
ference effects. The strength of the output optical signal depends on the relative
position of the moving mirror. If the path lengths between the beamsplitter and the
two mirrors are the same, the situation is identified as zero path difference (ZPD),
and the power reaching the detector will be the largest since constructive interfer-
ences occur at all wavelengths. For monochromatic incident light, a periodic signal
will reach the detector as the moving mirror travels due to the alternating construc-
tive and destructive interferences. For polychromatic incident radiation, the detector
receives a time-varying signal called an interferogram, which is a Fourier transform
of the incident radiation weighted by the spectral efficiency of the optical system
and detector responsivity. In general, the interferogram appears somewhat like a sinc
function with a peak at the ZPD. Unlike dispersive spectrometers, the FTIR detector
receives a time-varying signal that carries information about the radiative power in

Fig. 8.29 Illustration of the Fourier-transform infrared spectrometer. Accessories can be introduced
in the sample compartment for reflectance measurements
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a broadband. Suppose the spectrum of the source is I (ν̄). After passing through the
Michelson interferometer, the spectral radiant power arriving at the detector is a
periodic function with a dc component:

1

2
[1 + cos(2πx ν̄)]ξ(ν̄)I (ν̄)

where ν̄ is the wavenumber, x is the path length difference, and ξ(ν̄) is the optical
efficiency. The one-half term is due to the interferometer since the other half of the
energy is reflected back to the source.

Since only themodulated part contributes to the interferogram, the detector output
signal for polychromatic incidence is given as follows:

V (x) = 1

2

∞∫

0

ξ(ν̄)S(ν̄)I (ν̄) cos(2πν̄x)dν̄ (8.142)

where S(ν̄) is the detector responsivity. The data acquisition system performs an
inverse fast Fourier transformwith a computer to generate a relative spectral response
function, typically called the single beam spectrum [93]:

I ∗(ν̄) =
∞∫

−∞
V (ν̄) cos(2πν̄x)dx (8.143)

If the velocity of the moving mirror is u, then x = 2ut . Hence, the detector
receives a time-varying signal. However, the frequency f = 2uν̄ typically falls in
the range from several hundred to several thousand Hz depending on the wavelength
of the incident radiation. This frequency can easily bemeasured by a thermal detector
[94].

As shown in Fig. 8.29, a He-Ne laser with a well-characterized wavelength is
used to precisely determine the location of the moving mirror with respect to the
fixed mirror (i.e., the path length difference). The laser beam goes through the same
interferometer to generate a sinusoidal wave that is detected by a photodiode detector.
This enables high wavenumber accuracy for the resulting spectrum.

Spectral transmittance can be measured by dividing the spectrum with the sample
by the reference spectrum when the sample is moved out of the optical paths as
shown in Fig. 8.29. Reflectance accessories can be used both for specular and diffuse
reflectance measurements [63, 91, 96]. Various other accessories can be used with
FTIR spectrometers including attenuated total reflectance (ATR) that is based on
evanescent waves [15, 93].

FTIR spectrometers have several advantages over dispersive spectrophotome-
ters, such as high throughput, high signal-to-noise ratio, high resolution, and short
measurement time. They are particularly suitable for measurements at wavelengths
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beyond 2 μm. While FTIR spectrometers have very high wavelength accuracy, cau-
tion must be taken with regard to its radiometric accuracy in order to quantitatively
measure the radiative properties [88, 94, 95].

Figure 8.30 shows the optical layout of a custom-built spectral emissometer that
allows the heated sample to be rotated to measure the directional emittance for each
polarization [97]. A blackbody calibration source is used as the reference and a flip
mirror allows the emission signal from either the sample surface or the blackbody to
be collected by the FTIR through its side port. The ellipsoidal reflector collects the
radiation through a half-cone angle of approximately 3° from the sample surface and
focuses it again onto the iris, which is used to limit the collecting area on the sample
and to adjust the amount of radiation reaching the spectrometer. The opening of the
iris can be matched to the FTIR system to achieve a spectral resolution of 1 cm−1.
For most measurements, however, a resolution of 4 cm−1 is usually sufficient. The
parabolic reflector converts the radiation to a nearly collimated beamwith a diameter
of about 25mmbefore sending it to the FTIR. A liquid-nitrogen-cooled InSb detector
can also be used, which has a higher detectivity but a narrow spectral range from 2.0
to 5.5 μm. An IR wire-grid polarizer is mounted next to the iris for measuring the
emittance with a chosen polarization.

The heater assembly is also shown on the right of Fig. 8.30. The sample was
compressed on a copper disk, which was nickel plated to prevent oxidation. The
nickel-plated copper disk maintained a uniform temperature underneath the sample.
The copper surface was also polished before nickel plating to reduce thermal contact
resistance. A coil heater was located at the back of the copper disk with an alumina
plate inserted in between for electrical insulation. A K-type thermocouple probe

Fig. 8.30 Schematic of optical layout for the spectral emissometer formeasuring angular-dependent
emittance for each polarization. The heated sample holder is mounted on a rotary stage as shown
on the right [97]



8.5 Experimental Techniques 485

with oxidation-resistive sheathing was embedded inside the copper disk for sample
temperature measurement. The thermocouple is also used with a PID temperature
controller to set and control the sample temperature. The heater assembly was placed
in refractory materials and mounted inside a metal box. The sample temperature can
reach 1000Kwith a power input around140W.The front cover of the heater assembly
was water-cooled with an aperture of 25 mm in diameter. The heater assembly was
mounted on a rotary stage to change the emission angle. The emissometer has been
used to measure a SiC substrate for calibration and the coherent emission from
an asymmetric Fabry–Perot planar multilayer structure as well as a metamaterial
structure by excitation of magnetic polaritons [97]. More discussions of multilayers
and magnetic polaritons will be given in the subsequent chapter.

8.5.5 BRDF and BTDF Measurements

To measure BRDF or BTDF, both (θi, φi) and (θr, φr) need to be changed while
the distance between the sample and the detector should be fixed [45]. For in-plane
measurements, the plane of incidence is the same as the plane of reflection so that
the azimuthal angles can be fixed [98]. Figure 8.31 shows a diagram of a laser
scatterometer. The laser beam is in a fixed position; rotating the detector allows
the change of the polar angle of incidence θi, while rotating the detector around
the sample using the goniometer allows the change of the reflection angle θr. In
the actual setup, the detector is allowed to move out of the horizontal plane so that

Fig. 8.31 Schematic of a laser scatterometer for BRDF/BTDF measurements [45]
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the azimuthal angle of reflection φr can also be changed. This facility is called the
three-axis automated scatterometer (TAAS) and was developed in the author’s lab
[45]. The three rotary stages are independently controlled by step motors with very
high angular precision (better than 0.01°). The incident laser beam is parallel to the
optical table and the sample is vertically mounted.

A fiber-coupled diode laser system serves as a collimated light source. A
thermoelectric-cooled temperature controller maintains the laser at a constant oper-
ation temperature to achieve superior power stability less than 0.2%. The lock-in
amplifier provides an alternating current (typically 400 Hz) to the laser controller
and measures the detector signal (after the pre-amplifier) at the same modulation
frequency to eliminate the effect of background radiation. The wavelength of the
laser can be chosen using different laser diodes. A linear polarizer is used to polarize
the incident light either parallel or perpendicular to the plane of incidence. Then, the
light is split into two paths by a beamsplitter. The majority is transmitted through
the beamsplitter to the sample and then reflected/scattered by the sample. The output
power is measured with a signal detector A, whose signal is sent to a pre-amplifier. A
smaller portion is reflected by the beamsplitter and measured by a reference detector
B, whose signal is also sent to the pre-amplifier. Si and Ge photodiode detectors
measure the radiant power in the wavelength range from 350 to 1100 nm and from
800 to 1800 nm, respectively. The transimpedance pre-amplifiers convert the cur-
rent signal from the detectors to a voltage output with resistance values switchable
from 10 to 109 � to achieve an eight-order dynamic range. A typical solid angle
of the signal detector (with respect to the center of the laser spot on the sample) is
��r = 1.84 × 10−4 sr, resulting in a half-cone angle of 0.45o [45]. The lock-in
amplifier and step motors are connected to a desktop with the LabView environment
for data acquisition and automatic rotary-stage control. It should be noted that the
BRDF within ± 2.5° of the retroreflection direction cannot be measured since the
sample detector would block the incident beam at this position. Laser diodes at 635,
891, 977, and 1550 nm have been employed in several investigations [45, 54, 99].

In the experiment, the detector output signal is proportional to the solid angle
��r. The denominator of Eq. (8.95) gives the incident radiant power reaching the
detector.Hence, theBRDForBTDFcanbeobtained from the followingmeasurement
equation [45, 98]:

fs = 1

Pi

Ps

cos θr��r
(8.144)

where fs refers to either BRDF or BTDF, Pi is the laser power incident on the sam-
ple, Ps is the scattered power reaching the signal detector, and ��r is the solid
angle of the detector area viewed from the beam centered on the sample. During
the measurements, the beamsplitter ratio is first calibrated. Detector A is rotated to
behind the sample while the sample is removed. The ratio of the signal from detector
B to that from detector A gives an instrument constant CI. In the measurements,
Ps/Pi = CIVA/VB, where VA and VB are the output voltages from the lock-in ampli-
fier for detectors A and B, respectively. As long as the responses are linear, there is
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no need to calibrate the detector responses. The use of the reference detector also
eliminates the effect of laser power instability during the measurements. The spec-
ular reflectance, Rsp, can also be measured by positioning the signal detector in the
specular direction with θr = θi using the equation Rsp = fr cos θr��r. The laser
beam diameter (FWHM) is 3–5 mm, which is much smaller than the detector aper-
ture whose diameter is 8 mm. This allows the specularly reflected power to be fully
captured by the signal detector. In the measurements, VA and VB are averaged over
many measurements at a given position to reduce the random error and the resulting
uncertainty is typically within 5%.

8.5.6 Ellipsometry

When linearly polarized light is incident on an isotropic surface with or without a
film, if the incident wave is either p- or s-polarized, the reflected wave is also linearly
polarized as shown in Fig. 8.7. The ratio of the Fresnel reflection coefficients can be
expressed as

R̃ = rp

rs
= tan(�)ei� (8.145)

where� and� are called the ellipsometric angles or parameters. Note that tan(�) is
the amplitude ratio and � is the phase difference between the two Fresnel reflection
coefficients. For an opaque and nonmagnetic medium, at given angle of incidence, R̃
is a function of the optical constants (n, κ). If both tan(�) and � can be measured,
then the optical constants can be obtained. If a thin dielectric film is coated on an
opaque substrate with known optical properties, then the refractive index and the
film thickness can be simultaneously determined [80, 96]. It is also possible to use
ellipsometry to study anisotropic crystals [82]. This is the principle of ellipsometry
and various methods can be used to measure the ellipsometric parameters under
oblique incidence [80, 82].

Figure 8.32 shows the rotating analyzer setup where a monochromatic
beam (either from a laser or spectrometer) is incident at θi, which is usually greater
than 60°. The incident wave on the sample is linearly polarized but with both s- and

Fig. 8.32 Schematic of a
rotary analyzer ellipsometer
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p-components. In this case, the reflected wave is, in general, elliptically polarized.
The analyzer is another linear polarizer that is rotated to give out a sinusoidal signal
to the detector. A quarter-wave compensator can sometimes be used. Furthermore,
the incident polarizer can also be rotated to change the incident wave polarization.
Through suitable data processing including regression analysis, the two ellipsometric
parameters can be determined at each wavelength. With the development of spec-
tral ellipsometers and the extension to the mid- to far-infrared regions, ellipsometry
has become a complementary and alternative technique for the study of radiative
properties of materials [82, 100].

8.6 Summary

In this chapter, we used the macroscopic Maxwell equations to derive the plane
wave equation and subsequently defined the optical properties for isotropicmaterials.
Planck’s law was derived based on statistical mechanics. After a brief discussion of
radiation thermometry, radiation pressure and photon entropy were then introduced.
The reflection and refraction of waves at a smooth interface were derived based on
the electromagnetic wave theory. This chapter also presented the dielectric functions
for metals, dielectrics, semiconductors, superconductors, as well as materials with a
magnetic response or metamaterials. The concept of NIM or DNGmaterials, as well
as their unique features, was also explained. The last section surveyed the experimen-
tal techniques typically used for measuring radiative properties from ultraviolet to
the far infrared. This chapter serves as the foundation of the subsequent chapters, in
which we will provide extensive discussions on the radiative properties of semitrans-
parent materials, windows, multilayers, periodic gratings, rough surfaces, as well as
evanescent waves, surface polaritons, photon tunneling, and near-field radiative heat
transfer.

Problems

8.1 Write the wave equation in the 1D scalar form as ∂2ψ

∂x2 = 1
c2

∂2ψ

∂t2 , where c is a
positive constant. Prove that any analytical function f can be its solution as
long asψ(x, t) = f (x ±ct). Plotψ as a function of x for two fixed times t1 and
t2. Show that the sign determines the direction (either forward or backward)
and c is the speed of propagation. Develop an animated computer program to
visualize wave propagation.

8.2 Consider an electromagnetic wave propagating in the positive z-direction, i.e.,
k = kẑ. Plot the vibration ellipse, and compare it with Fig. 8.2 for two cases:
(1) a = 3x̂ and b = x̂ + 2ŷ and (2) a = 3x̂ and b = −2x̂ + ŷ. Consider the
spatial dependence of the electric field at a given time, say ωt = 2πm, where
m is an integer. Discuss howEwill change with kz for the following two cases:
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(3) Re(E0) = 3x̂ and Im(E0) = 0 and (4) Re(E0) = 3x̂ and Im(E0) = −3ŷ.
The polarization is said to be right handed if the end of the electric field vector
forms a right-handed coil or screw in space at any given time. Otherwise, it is
said to be left handed. Discuss the handedness for all four cases.

8.3 Integrate Eq. (8.17) over a control volume to show that the energy transferred
through the boundary into the control volume is equal to the sum of the storage
energy change and energy dissipation.Write an integral equation usingGauss’s
theorem.

8.4 Derive the wave equation in Eq. (8.20) for a conductive medium; show
Eq. (8.9) is a solution if k is complex, as given in Eq. (8.21). Many books
use E = E0ei(ωt−k·r) instead of Eq. (8.9) as the solution; how would you mod-
ify Eqs. (8.21) and (8.22)? Show that the complex refractive index must be
defined as ñ = n − iκ , where κ ≥ 0.

8.5 Calculate the refractive index, the absorption coefficient, and the radiation
penetration depth for the following materials, based on the dielectric function
values at room temperature.

(a) Glass (SiO2): ε = 2.1 + i0 at 1 μm; ε = 1.8 + i0.004 at 5 μm.
(b) Germanium: ε = 21 + i0.14 at 1 μm; ε = 16 + i0.0003 at 20 μm.
(c) Gold: ε = −10 + i1.0 at 0.65 μm; ε = −160 + i2.1 at 2 μm.

8.6 Consider a metamaterial with μ = −1 + i0.01 and ε = −2 + i0.01; deter-
mine the refractive index and the extinction coefficient. Calculate the radiation
penetration depth. Do a quick Internet search on negative index materials, and
briefly describe what you have learned.

8.7 Find the magnetic fieldH for the wave given in Eq. (8.37). Show that the time-
averaged Poynting vector is parallel to the x-axis. That is, the z-component of
〈S〉 for such a wave vanishes. Briefly describe the features of an evanescent
wave.

8.8 Write Planck’s distribution in terms of wavenumber ν̄ = 1/λ, i.e., the emis-
sive power in terms of the wavenumber: eb,ν̄ (ν̄, T ). What is the most probable
wavenumber in cm−1? Compare your answer with the most probable wave-
length obtained fromWien’s displacement law in Eq. (8.45). Explain why the
constants do not agree with each other. Cosmic background radiation can be
treated as blackbody radiation at 2.7K;what is thewavenumber corresponding
to the maximum emissive power?

8.9 Based on the geometric parameters provided in Example 8.3 and neglecting the
atmospheric effect, calculate the total intensity of the solar radiation arriving
at earth’s surface. Calculate the spectral intensity for solar radiation at 628
nm wavelength. A child used a lens to focus solar radiation to a small spot
on a piece of paper and set fire this way. Does the beam focusing increase the
intensity of the radiation? The lens diameter is 5 cm, and the distance between
the lens and the paper is 2.5 cm. What are the focus size and the heat flux at
the focus? Neglect the loss through the lens.
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8.10 For a surface at T = 1800 K, with an emissivity of 0.6, what are the radiance
temperatures at λ = 0.65 μm and 1.5 μm? If a conical hole is formed with
a half-cone angle of 15°, what is the effective emittance and the radiance
temperature at λ = 0.65 μm?

8.11 Derive Planck’s law for a medium with a refractive index n �= 1 in terms of
the medium wavelength λm, eb,λm(λm, T ) from Eq. (8.43). Assume that n is
not a function of frequency (i.e., the medium is nondispersive) in the spectral
region of interest. How does it compare with Eq. (8.44)?

8.12 Express Eq. (8.53) in terms of wavelength, sλ(λ, T ). Find an expression of the
entropy intensity for blackbody radiation, Lλ(λ, T ), and show that Lλ(λ, T ) =

c
4π sλ(λ, T ).

8.13 Assume that all the blue light at λ in the range between 420 and 490 nm of
solar radiation is scattered by the atmosphere and uniformly distributed over a
solid angle of 4π sr.What are themonochromatic temperatures of the scattered
radiation at λ = 420 and 490 nm?

8.14 A diode-pumped solid-state laser emits continuous-wave (cw) green light at a
wavelength of 532 nmwith a beam diameter of 1.1mm. If the beam divergence
is 2×10−7 sr, what would be the spot size at a distance of 100m from the laser
(without scattering)? If the output optical power is 2mWand the spectral width
is δλ = 0.1 nm (assuming a square function), what is the average intensity
of the laser beam? Find the monochromatic radiation temperature of the laser
when it is linearly polarized. Suppose the laser hits a rough surface and is
scattered into the hemisphere isotropically. Find the radiation temperature of
the scattered radiation and the entropy generation caused by scattering.

8.15 In Example 8.5, the two plates are blackbodies. Assume that the plates are
diffuse-gray surfaces with emissivities ε′

1 and ε′
2. Calculate the entropy gen-

eration rate in each plate per unit area. How will you determine the opti-
mal efficiency for an energy conversion device installed at plate 2? For
T1 = 1500 K, T2 = 300 K, and ε′

2 = 1, plot the optimal efficiency versus ε′
1.

8.16 The concept of dilute blackbody radiation can be used as an alternativemethod
to calculate the entropy generation of a two-plate problem as in Problem 8.15.
Assume that the multiply reflected rays are at not in equilibrium with each
other. Rather, each ray retains its original entropy and can be treated as having
an effective temperature of T1 or T2 depending onwhich plate the ray is emitted
from. How would you evaluate the entropy transfer from plate 1 to 2 and the
entropy generation by each plate then?

8.17 Calculate the entropy generation rate per unit volume for Example 2.7. Further,
calculate the entropy generated at each surface, assuming that surface 2 is at
300 K.

8.18 The conversion efficiency of thermophotovoltaic devices is wavelength depen-
dent, and the optical constants are wavelength dependent as well. Perform a
literature search to find some recent publications in this area. Use the entropy
concept to determine the ultimate efficiency of a specific design. Based on your
analysis, propose a few suggestions for further improvement of the particular
design you have chosen.
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8.19 Derive the Fresnel reflection coefficient for a TM wave, following the
derivation given in the text for a TE wave.

8.20 Show that ρ ′
λ,s + α′

λ,s = 1, where ρ ′
λ,s is given in Eq. (8.73) and α′

λ,s is given
in Eq. (8.75). Discuss why the z-component of the time-averaged Poynting
vector must be continuous at the boundary but not the x-component.

8.21 For nonmagnetic lossy media with ε1 = ε′
1 + iε′′

1 and ε2 = ε′
2 + iε′′

2 , expand
Eq. (8.70b) and compare your results with Eq. (8.71).

8.22 For plane waves incident from air to a nonmagnetic material with ε = −2+ i0
(negative real), show that the reflectivity is always 1 regardless of the angle of
incidence and the polarization. What can you say about k2z and 〈S2z〉? Is the
wave in the medium a homogeneous wave or an evanescent wave?

8.23 The refractive index of glass is approximately 1.5 in the visible region. What
is the Brewster angle for glass when light is incident from air? Calculate
the reflectance and plot it against the incidence angle for p-polarization, s-
polarization, and random polarization. Redo the calculation for incidence from
glass to air, and plot the reflectance against the incidence angle. At what angle
does total internal reflection begin and what is this angle called?

8.24 Denote the incidence angle at which the ratio of the reflectance for TM and TE
waves is minimized as θM. For radiation incident from air to a medium with
n = 2 and κ = 1, determine θM and compare it with the principle angle θP, at
which the phase difference between the two reflection coefficients equals to
π/2. [Hint: Use graphs to prove the existence of θM and θP.]

8.25 For incidence from glass with n = 1.5 to air, calculate the Goos–Hänchen
phase shift δ for both TE and TM waves. Plot δ as a function of the incidence
angle θ1.

8.26 Show that the normal component of the time-averaged Poynting vector is
zero in both the incident and transmitting media when total internal reflection
occurs. Furthermore, derive Eq. (8.92).

8.27 Calculate the Goos–Hänchen lateral shift upon total internal reflection from a
dielectric with n = 2 to air. Plot the lateral shift for both TE and TM waves as
a function of θ1. Discuss the cause and the physical significance of the lateral
beam shift.

8.28 A perfect conductor can be understood based on theDrude free-electronmodel
by neglecting the collision term. The dielectric function becomes ε(ω) =
1− ω2

p/ω
2, where ωp is the plasma frequency. For radiation incident from air

to a perfect conductor, calculate the phase shift when ω = ωp/2 for TE and
TMwaves as a function of the incidence angle. Use Eq. (8.93) to calculate the
lateral beam shift for a TM wave and modify it for a TE wave. Do you expect
a sign difference between the TE and TM waves?

8.29 Calculate and plot the emissivity (averaged over the two polarizations) ver-
sus the zenith angle for the materials and wavelengths given in Problem 8.5.
Calculate and tabulate the normal and hemispherical emissivities for all cases.

8.30 Calculate the optical constants and the radiation penetration depth for either
gold or silver at room temperature, using the Drude model, and plot them as
functions ofwavelength. In addition, calculate the reflectivity andplot it against
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wavelength. Compare the results using the Hagen–Ruben equation. How will
the scattering rate and the plasma frequency change if the temperature is raised
to 600 K?

8.31 Calculate the normal emissivity of MgO from 2000 to 200 cm–1 (5 to 50 μm)
using the Lorentz model with two oscillators having the following parameters:
ε∞ = 3.01; ω1 = 401 cm−1, γ1 = 7.62 cm−1, and S1 = 6.6; ω2 = 640 cm−1,
γ2 = 102.4 cm−1, and S2 = 0.045. Can you develop a program to calculate
the hemispherical emissivity and plot it against the normal emissivity for a
comparison?

8.32 Find the Brewster angles for light incident from air to a NIMwith (a) ε2 = −2
and μ2 = −2, (b) ε2 = −1 and μ2 = −4, and (c) ε2 = −8 and μ2 = −0.5.

8.33 Use the online resources posted on the author’s webpage [54] to calculate
the absorption coefficient and normal reflectivity of intrinsic doped silicon for
0.5 μm < λ < 25 μm.

8.34 First reproduce Fig. 8.21 for the dielectric function at 400 K and then calculate
the dielectric function at 300 K for the same doping concentrations. Further-
more, calculate the real and imaginary parts of the refractive index of n-type
doped silicon with a dopant concentration of 1019 cm−1 and plot them versus
angular frequency.

8.35 Suppose aNIMcanbe described byEqs. (8.135) and (8.136)with the following
parameters:ωp = 4.0×1014 rad/s (i.e., λp = 4.71 μm),ω0 = 2.0×1014 rad/s
(i.e., λ0 = 9.42 μm), γ = 0, and F = 0.785. Assume a wave is propagating
in such a medium in the region of n < 0 with a wavevector k = kx x̂, where
kx = k = |n|ω/c0. Show that the group velocity is in the negative x-direction.
Also show that the Poynting vector is in the same direction as the group
velocity.

8.36 Suppose aNIMcanbe described byEqs. (8.135) and (8.136)with the following
parameters:ωp = 4.0×1014 rad/s (i.e., λp = 4.71 μm),ω0 = 2.0×1014 rad/s
(i.e., λ0 = 9.42 μm, and F = 0.5. Calculate and plot the refractive index and
the extinction coefficient in the spectral region from 2 to 15 μm, for γ = 0,
1012, and 1013 rad/s.

8.37 What is a detector? What is a bolometer? What is a radiometer? If you are
asked to buy a detector for infrared radiation measurement for the wavelength
range between 2 and 16μm, discuss how you would select a detector and why.
[Hint: Do some online search.]

8.38 A bolometer uses a thin YBCO film on a sapphire substrate whose area is
2 mm × 2 mm, operating at 90 K. The thickness of the sapphire plate is 25
μm. The thermal conductance between the detector element and a heat sink is
G = 8.4 × 10−5 W/K. The resistance R0(90 K) = 200 � and β = 1.5 K−1.
Assume the absorptance α = 0.7. Calculate the time constant for different
bias currents, I = 0.1, 0.2 and 0.3 mA. Calculate and plot the detector
responsivity as a function of modulation frequency ω f between 0.1 and 10 Hz
for each bias current value given above. Neglect the heat capacity of the YBCO
film. The density and specific heat of sapphire at the operating temperature
are ρ = 3970 kg/m3 and cp = 102 J/kgK.
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Chapter 9
Radiative Properties of Nanomaterials

Optical and thermal radiative properties are fundamental physical properties that
describe the interaction between electromagnetic waves and matter from deep ultra-
violet to far-infrared spectral regions. A large number of studies have been devoted
to the measurement, analysis, modeling, and simulation of optical and radiative
characteristics of materials in solid, liquid, gas, and plasma phases. The radiative
properties of nanostructured materials are critical to the functionality and the perfor-
mance of many devices, such as semiconductor lasers, radiation detectors, tunable
optical filters, waveguides, solar cells, and selective emitters and absorbers. The use
of microstructures not only modifies the optical properties for optoelectronic appli-
cations and processing control but also facilitates some important energy conversion
devices, such as solar cells and thermophotovoltaic applications.

This chapter will start with the radiative properties of a single layer with or with-
out considering the wave interference effect. Partial coherence and the effect of
surface scattering will be considered next. The approach will then be generalized
to multilayered structures using the 1D matrix formulation. Furthermore, periodic
structures such as photonic crystals and gratings will be studied based on the Bloch
wave equation. Subsequently, the effective medium formulations will be briefly dis-
cussed. Finally, the effect of surface roughness and microstructures on the radiative
properties will be presented.

9.1 Radiative Properties of a Single Layer

Crystalline films, from a few nanometers to several micrometers thick, have been
deposited (by physical vapor deposition, chemical vapor deposition, sputtering, laser
ablation, molecular beam epitaxy, rapid thermal processing, and other techniques)
onto suitable substrates. These layered structures play important roles in contempo-
rary technologies, such as integrated circuits, semiconductor lasers, quantum well
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detectors, superconductor/semiconductor hybrid devices, optical filters, and spec-
trally selective coatings for solar thermal applications. Radiative energy transport in
thin films differs significantly from that at bulk solid surfaces and through thick win-
dows because ofmultiple reflections and interference effects. The radiative properties
of a lamina with smooth and parallel surfaces will be discussed first, with emphasis
on different formulations for various applications. At the end of this section, the
effect of surface scattering will be considered in the regime where the roughness is
much smaller than the wavelength.

9.1.1 The Ray-Tracing Method for a Thick Layer

A“thick” layer or slab refers to the casewhere interference betweenmultiply reflected
waves can be neglected. In other words, the waves are incoherent. On the contrary,
a “thin” film refers to the case where all multiply reflected waves are coherent and
interfere with each other. The condition for being thick has often been commonly
interpreted as that the layer thickness d is much greater than the wavelength. A more
rigorous criterion is that the thickness is much greater than the coherence length,
which can be much greater than the wavelength. The coherence length depends on
the spectral width of the source and the spectral resolution of the spectrophotometer,
such as a gratingmonochromator or a Fourier transfer spectrometer. In addition, beam
divergence, surface roughness, and nonparallelism of the surfaces further reduce the
degree of coherence. Generally speaking, when the thickness is comparable to the
wavelength, wave interference becomes important. However, this does not guarantee
complete coherence because of the nature of the source and imperfect surfaces. Let
us first consider the radiative properties of a layer or a slab, in the incoherent limit,
because of its simplicity.

Either the ray-tracing method or the net radiation method can be applied to find
out the transmittance and the reflectance of a thick layer [1]. Consider a slab of
thickness d, placed in air or vacuum, as shown in Fig. 9.1. The refractive index and
the extinction coefficient of the material are n2 and κ2, respectively. As mentioned
earlier, it is generally required that the thickness bemuch greater than the wavelength
so that the interference effect can be neglected. Because the intensity will attenuate
exponentially inside an absorbingmedium, the penetration depth δλ = λ/4πκ should
be greater than the layer thickness in order to have appreciable transmission. For this
reason, the extinction coefficient is usually much smaller than the refractive index,
i.e., κ � n. Therefore, we can limit our consideration to dielectric materials with a
small loss, such as a glass window or a silicon wafer in the semitransparent region.
For a given surface reflectivity ρ ′

λ and an internal transmissivity τ ′
λ , ray-tracing yields

the directional-hemispherical spectral reflectance as

R′
λ = ρ ′

λ + ρ ′
λ(1 − ρ ′

λ)
2τ ′2

λ + ρ ′3
λ (1 − ρ ′

λ)
2τ ′4

λ + ρ ′5
λ (1 − ρ ′

λ)
2τ ′6

λ + · · ·
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Fig. 9.1 Transmittance and reflectance of a lamina as a result of multiple reflections

= ρ ′
λ + ρ ′

λ(1 − ρ ′
λ)

2τ ′2
λ

1 − ρ ′2
λ τ ′2

λ

= ρ ′
λ

[
1 + (1 − ρ ′

λ)
2τ ′2

λ

1 − ρ ′2
λ τ ′2

λ

]
(9.1)

because the second term and beyond form a geometric series. Similarly, the
directional-hemispherical spectral transmittance can be expressed as

T ′
λ = (1 − ρ ′

λ)
2τ ′

λ

1 − ρ ′2
λ τ ′2

λ

(9.2)

Hence, the directional-spectral absorptance of the lamina at the given direction
and wavelength is

A′
λ = 1 − T ′

λ − R′
λ = (1 − ρ ′

λ)(1 − τ ′
λ)

1 − ρ ′
λτ

′
λ

(9.3)

The reflectivity ρ ′
λ can be calculated from Eqs. (8.73) and (8.80), for each polar-

ization, as a function of the angle of incidence θ1 and the refractive index. For
unpolarized incident radiation, R′

λ, T
′
λ, and A′

λ should be averaged over the two lin-
ear polarizations. The influence of κ2 on ρ ′

λ is often negligibly small. On the other
hand, κ2 affects the absorption through the internal transmissivity τ ′

λ, defined as

τ ′
λ = exp

(
− 4πκ2d

λ cos θ2

)
(9.4)
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Fig. 9.2 Normal
transmittance of several
dielectric materials with 0.5
mm thickness at room
temperature

where λ is the wavelength in air or vacuum, θ2 is the refraction angle inside the
slab, and d/ cos θ2 can be considered as the actual path length of the ray inside the
layer. From Snell’s law, we have cos θ2 =

√
1 − (1/n2)2 sin2 θ1. Here again, the

effect of κ2 is neglected. Figure 9.2 shows the transmittance at normal incidence for
several semitransparent materials with a thickness d = 0.5 mm, calculated using the
tabulated optical constants from Palik [2]. It can be seen that silicon dioxide (SiO2)
is transparent in the visible region but opaque to infrared radiation beyond 5 μm
wavelength. Here, the SiO2 spectrum is for hydroxyl free fused silica, since common
SiO2 glass has a strong absorption band near 3 μm due to hydroxyl (OH) groups.
Intrinsic silicon (Si) is opaque for visible light but has a transmittance of about 53%
in the far-infrared region.

When there is no absorption, the reflectance and the transmittance are independent
of the layer thickness d, and for normal incidence, the following simplified equation
can be used:

T ′
λ = 2n2

n22 + 1
(9.5)

For a fused silica (SiO2) window in the visible range, with a refractive index around
1.5, the transmittance is 0.923. For a diamond with a refractive index of about 2.4,
the transmittance is 0.71 in the transparent region regardless of the thickness.

As discussed in Chap. 8, lattice vibrations in polar materials tend to give mid-
infrared absorption bands. At high frequencies or short wavelengths, the fundamen-
tal bandgap absorption becomes important. The region in between is the transparent
region, whose cutoff wavelengths depend on the material. Table 9.1 lists the trans-
parent region and the range of the refractive index for a number of crystalline insula-
tors or intrinsic (lightly doped) semiconductors, mostly taken from Ref. [2]. In this
spectral region, the refractive index decreases slightly as the wavelength increases
(normal dispersion). The simple Cauchy’s equation [3] and the Sellmeier equation
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Table 9.1 Refractive index and transparent region for some typical materials near room
temperature. The bandgap energy is also listed

Materials Symbol Bandgap (eV) Refractive
index rangea

Shortwave
cutoffb (μm)

Longwave
cutoffb (μm)

Diamond C 5.5 2.37–2.74 0.25 –

Silicon Si 1.11 3.42–3.52 1.2 –

Germanium Ge 0.66 4.0–4.1 2.0 20

Silicon
carbide

SiC 3.05 2.45–2.75 0.45 5.0

Boron nitride BN 7.5 1.8–2.1 0.2 5.0

Aluminum
nitride

AlN 6.0 1.9–2.1 0.3 7.0

Gallium
arsenide

GaAs 1.43 3.2–3.5 0.9 17

Gallium
antimonite

GaSb 0.68 3.7–3.8 2.0 28

Zinc selenide ZnSe 2.6 2.1–2.4 0.6 19

Cadmium
telluride

CdTe 1.56 2.6–2.9 0.9 27

Calcium
fluoride

CaF2 12 1.3–1.8 0.15 9.0

Cesium iodide CsI 5.4 1.6–2.2 0.25 50

Potassium
bromide

KBr 7.6 1.3–1.8 0.22 28

Fused silica SiO2 9.0 1.4–1.8 0.15 3.6

Magnesium
oxide

MgO 7.8 1.5–1.8 0.25 7.0

Hafnium
dioxide

HfO2 5.6 1.8–2.1 0.3 7.0

Rutile TiO2 3.05 2.5–3.0 0.5 5.0

Zirconia ZrO2 6.00 2.0–2.3 0.36 5.0

Sapphire Al2O3 9.5 1.6–1.9 0.15 6.0

Tantalum
oxide

Ta2O5 4.0 1.8–2.2 0.5 5.0

Silicon nitride Si3N4 5.3 1.8–2.2 0.3 5.0

Strontium
titanate

SrTiO3 3.25 1.9–2.2 0.4 7.0

Water
(liquid)c

H2O 1.32–1.35 0.3 1.2

aHigher refractive index corresponds to the shorter wavelength end and vice versa. Some are
anisotropic and some may have different crystalline structures. Numerical values may vary from
sample to sample due to different crystalline structures, impurities, and defects
bThe exact values depend on the thickness and may depend on the preparation methods, defects,
impurities, etc
cWater is listed for the sake of comparison
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[4] are often used to describe the wavelength-dependent refractive index, though
other major complicated dispersion relations have also been introduced [5].

For diamond and Si, multiphonon absorption becomes important in the mid-IR
region, as shown in Fig. 9.2. Similarly, multiphonon absorption becomes impor-
tant for Ge from 20 to 40 μm. So the longwave cutoff is listed as 20 μm. In
some applications, antireflection coatings are often used to reduce reflectance and
enhance transmittance, which will be discussed later for multilayer structures. The
list comprises selected elemental semiconductors, group IV compound semiconduc-
tors, III–V semiconductors, II–VI semiconductors, a perovskite, as well as some
dielectric materials such as oxides, halides, and nitride. Liquid water is also included
for reference purpose. Note that the refractive index of ice is close to that of liquid
water.

9.1.2 Thin Films

Thin film coatings are of practical importance to the design of spectrally selective
surfaces for solar energy utilization and space applications, optical filters, and antire-
flection coatings. When the wavelength of radiation is comparable to the coherence
length, which depends not only on the properties of the film but also on the char-
acteristics of the source and the detector, wave interference becomes important. To
consider the interference effect, the amplitude and the phase of the electric field (or
the magnetic field) must be traced during multiple reflections. The method is usually
referred to as thin-film optics, as illustrated in Fig. 9.3 for a thin film of thickness
d between two semi-infinite media [6, 7]. There are several practical configurations

Fig. 9.3 Illustration of interference between multiple reflections
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based on the structure shown in this figure. (a) The first is for a free-standing film
in air. (b) The second is for radiation incident from air (medium 1) on a thin film
(medium 2) coated onto a semi-infinite substrate (medium 3). (c) In the third config-
uration, media 1 and 3 are dielectrics but medium 2 is a vacuum. This configuration
is important for photon tunneling experiments to be discussed in Chap. 10.

Let us first consider the lossless case, where the refractive indices are all real, and
so are the angles of incidence and refraction. It will be seen later that the equations
can easily be extended to absorbing media using complex variables. A plane wave
with either p or s polarization is incident from medium 1. Note that t jk and r jk ,
where j, k = 1, 2, or 3, are, respectively, the transmission and reflection coefficients
between the media j and k for the given polarization. While the multiply reflected
waves are illustrated with a spatial displacement, interference occurs at the same
time and location between multiply reflected beams. For this reason, upon traversing
the film, the wave acquires a phase shift ψ given by

ψ = 2πd

λ

√
n22 − n21 sin

2 θ1 (9.6)

Note again that λ is the wavelength in vacuum. This is to say that ψ =
2π(n2/λ)d cos θ2. The reason that cos θ2 is in the numerator, instead of in the denom-
inator, is because the phase for the same location x is considered when z is changed
from 0 to d. The phase of the electric field is given by k · r, and thus, the phase
difference is ψ = k2d cos θ2, where k2 = 2πn2/λ. Another way to understand the
phase shift is to consider the plane of constant phase, as illustrated in Fig. 9.3 with
the line OA. The first reflected wave is the wave from A to C that acquires a phase
difference of (k1 sin θ1)(2d tan θ2) = (k2 sin θ2)(2d tan θ2) because kx = k j sin θ j is
the same in all media. The second reflected wave goes through the film twice (from
O to B and then from B to C) and gains a phase difference of 2k2d/ cos θ2. It can
easily be shown that the phase shift between the first and the second reflected waves

is 2k2d
(

1
cos θ2

− sin2 θ2
cos θ2

)
= 2ψ . More detailed discussion can be found from Brewster

[8]. After the superposition, the field reflection and transmission coefficients of the
film can be expressed as

r = r12 + t12t21r23e2iψ

1 − r21r23e2iψ
(9.7)

and

t = t12t23eiψ

1 − r21r23e2iψ
(9.8)

which are known as Airy’s formulae [6, 7] . It should be noted that these coefficients
are defined based on the electric fields for s polarization and the magnetic fields for
p-polarization, respectively. The energy reflectance can be calculated by
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R′
λ = rr∗ =

∣∣∣∣r12 + t12t21r23e2iψ

1 − r21r23e2iψ

∣∣∣∣
2

(9.9)

For the incident radiation with random polarization, Eq. (9.9) should be aver-
aged over the two linear polarizations by evaluating Fresnel’s coefficients for each
polarization separately.

It should be noted that Eqs. (9.6)–(9.9) are not limited to lossless situations as
long as the absorption in medium 1 is negligible [9]. When n2 and n3 are complex,
the phase shift given in Eq. (9.6) becomes complex. Note that the reflection and
transmission coefficients in Eqs. (9.7) and (9.8) are always complex.Waves inside an
absorbing medium are typically inhomogeneous because the constant-phase planes
are defined by the real part of the wavevector and the constant-amplitude planes are
parallel to the interfaces. To determine the direction of energy flow, one needs to
carefully evaluate the Poynting vector in medium 3. The expression of the energy
transmittance is similar to those for the absorptivity in Eqs. (8.75) and (8.81). If
medium 3 is also lossless as for medium 1, we can write the transmittance in terms
of the transmission coefficient as in the following:

T ′
λ,s = n3 cos θ3

n1 cos θ1
t t∗, for s polarization (9.10a)

and

T ′
λ,p = n1 cos θ3

n3 cos θ1
t t∗, for p polarization (9.10b)

which are the exact expressions of transmittance of given polarization for an absorb-
ing film (medium 2). For a free-standing film in air, since n1 = n3 = 1, the trans-
mittance can be approximated by the following equation when the film is slightly
absorbing (i.e., κ2 � n2):

T ′
λ = (1 − ρ ′

λ)
2τ ′

λ

1 + ρ ′2
λ τ ′2

λ − 2ρ ′
λτ

′
λ cos(2ψ)

(9.11)

Here, ψ and ρ ′
λ are calculated by neglecting κ2, and τ ′

λ is from Eq. (9.4). Note
that ρ ′

λ depends on the polarization so does T
′
λ. The transmittance will oscillate even

though the optical constants are unchanged. A change in wavelength, thickness, or
refractive index can cause the transmittance to oscillate. The transmittance spectrum
has peaks at ψ = mπ and valleys at ψ = (m + 1

2 )π , where m is a nonnegative
integer. Figure 9.4 shows the calculated normal transmittance for d = 10 μm and
n2 = n + iκ , with n = 2 and κ = 0, 0.005, and 0.05. The subscript 2 is dropped
for convenience. The results are plotted in terms of wavenumber between 750 and
1500 cm−1. The free spectral range is the frequency interval between two peaks. It
is convenient to use the wavenumber instead of frequency. For normal incidence, the
free spectral range in terms of wavenumber is given by
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Fig. 9.4 Calculated
transmittance of a thin film
of 10 μm thickness with n =
2 and various κ values


ν̄ = 1

2nd
(9.12)

where d is in cm and 
ν̄ is in cm−1. When plotted in terms of wavelength, the free
spectral range becomes


λ = 
ν̄

ν̄2
= λ2

2nd
(9.12a)

which increases with wavelength for constant n and d. In the absence of absorption,
themaximum transmittance is unity. The inclusion of a very small nonzero extinction
coefficient κ can cause the transmittance to be reduced from the lossless situation,
especially at shorter wavelengths. When κ = 0.05, the internal transmissivity τ ′

λ

is a strong function of wavelength and the transmittance is significantly reduced.
Furthermore, the fringe contrast is also reduced due to absorption. The fringe contrast
� is defined, based on the maximum transmittance Tmax and minimum transmittance
Tmin, as

� = Tmax − Tmin

Tmax + Tmin
(9.13)

For broadband or polychromatic radiation, the total transmittance is defined as
the fraction of the energy transmitted. Suppose the spectral intensity is Iλ, then the
total transmittance is

T ′
tot =

∞∫
0

Iλ(λ)T ′
λ(λ)dλ

/ ∞∫
0

Iλ(λ)dλ (9.14)
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In some practice, one needs to integrate the transmittance over a narrow band. An
example is the radiation coming through a filter or a spectrometer with a finite reso-
lution. The intensity is nearly constant within the small bandwidth; the transmittance
can be averaged over a spectral width 
λ around λ for each wavelength, viz.,

T ′
λ(λ) = 1


λ

λ+
λ/2∫
λ−
λ/2

T ′
λ(λ)dλ (9.15)

It can be shown that integrating the coherence formula in Eq. (9.11) over a free
spectral range 
λ = 
ν̄/ν̄2 gives the same result as the incoherence formula in
Eq. (9.2). However, the fringe-averaged transmittance is not equal to the arithmetic
average of the transmittance maximum and minimum. When d is much greater than
the wavelength by a factor of, say, 1000, the free spectral range 
λ will become so
small that most spectrophotometers do not have the sufficient resolution to discern
the fringes. Furthermore, a slight variation in the film thickness or the wedge effect
will cause the phases of multiple reflections to be canceled out. The measured trans-
mittance will follow Eq. (9.2) without the high-frequency oscillation. That is why
Eq. (9.2) has practical importance even though it can be obtained from Eq. (9.11)
by spectral averaging. The spectral-averaging method is useful to obtain radiative
properties in the partial coherence regime, to be discussed in Sect. 9.1.3.

It should be emphasized that for metallic films, when the extinction coefficient is
not much smaller than the refractive index, Eq. (9.11) breaks down and the transmit-
tance of a thin filmmust be calculated according to Eqs. (9.10a) and (9.10b). Consider
a 100 nm gold film with n2 = 0.916 + i1.84 at the wavelength λ = 0.5μm. The
penetration depth is δλ = λ/(4πκ) = 21.6 nm.At normal incidence, ρ ′

λ = 0.481 and
τ ′
λ = 0.0098, and both Eqs. (9.2) and (9.11) reduce to T ′

λ ≈ (1 − ρ ′
λ)

2τ ′
λ = 0.0026.

This result, however, is incorrect because neither equation is applicable for large
extinction coefficients. Using Eqs. (9.10a) and (9.10b) and the complex Fresnel
coefficients defined in Chap. 8, we have reevaluated the normal transmittance of the
gold film to be T ′

λ ≈ 0.013 in this case (see Problem 9.5 and Zhang [9] for more
discussion).

Example 9.1 Calculate the reflectance in terms of film thickness d for a dielectric
film onto a silicon substrate with a refractive index of n3 = 3.44 near λ = 2.5μm.

Assume radiation is incident at normal incidence from air. Consider two different
coatings: n2 = 1.83 (SiO) and n2 = 4.07 (Ge).

Solution Equation (9.9) can be recast as R′
λ =

∣∣∣ r12+r23ei2ψ2
1+r12r23ei2ψ2

∣∣∣2, where for normal

incidence, r12 = (n1 − n2)
/

(n1 + n2) and r23 = (n2 − n3)
/

(n2 + n3). While the
Fresnel coefficients are for s polarization, a minus sign for both r12 and r23 for p-
polarization will not change the value of R′

λ. The results are plotted in terms of the
dimensionless parameter ξ = n2d/λ in Fig. 9.5. The reflectance oscillates with a
period 
d = λ/(2n2). When n2d = λ/2, 3λ/2, 5λ/2, and so on, the reflectance
is reduced to that of silicon without coating: R′

λ = (n1 − n3)2
/

(n1 + n3)2. When
n2 > n3 or n2 < n1, the reflectance is always greater than that without coating and
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Fig. 9.5 Reflectance for a
silicon monoxide (SiO) or
germanium (Ge) film onto a
silicon (Si) substrate at
λ = 2.5μm

reaches a maximum at n2d = λ/4, 3λ/4, 5λ/4, and so on. When n1 < n2 < n3,
the reflectance is always smaller than that without coating and reaches a min-
imum at n2d = λ/4, 3λ/4, 5λ/4, and so on. The values are determined by
R′

λ = [
(n1n3 − n22)

/
(n1n3 + n22)

]2
. Note that the reflectance minimum becomes

zero when n2 = √
n1n3 = 1.855. Since the refractive index of SiO is close to this

value, a nearly zero reflectance can be obtained. This is called the antireflection
effect and has numerous applications in many optical systems including eye glasses.
In addition, quarter-wave antireflection coatings can be used to improve the energy
conversion efficiency for solar energy applications.

9.1.3 Partial Coherence

It should be noted that no source is perfectly coherent—even laser or atomic emission
has a nonzero line width. Likewise, no source is completely incoherent—even the
most chaotic blackbody radiation has a small coherence length.The coherence length
is related to the distance that light travels within a coherence time. The concept of
coherence is related to the situation where the wave nature will be preserved. When
fluctuations manifest, interference effects disappear, when the time is longer than the
coherence time or when waves travel a distance longer than the coherence length [7].
Although complete incoherence and coherence formulae can be applied to a variety
of practical problems, there are situations that do not fall in either regime.An example
is the measured transmittance spectra of a slab with a spectrometer, such as a grating
spectrophotometer or the Fourier-transform infrared (FTIR) spectrometer based on
the Michelson interferometer as discussed in the previous chapter. Due to the finite
instrument resolution and imperfections of the sample surfaces (not perfectly parallel
or smooth), the fringe contrast defined in Eq. (9.13) for transmittance is always less
than that predicted by the coherence formula. A similar definition also applies to the
reflectance spectrum.
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Partial coherence theory was developed before the first laser was invented in
1960s and has gone through significant advancements along with the developments
of lasers and quantum optics, including the application to radiometry [10]. A brief
introduction is given here with an emphasis on the radiative properties of thin films.
The electric field can be expressed in either frequency domain as E(ν) or time
domain as E(t), which are related by Fourier transforms. The mutual coherence
function of any two waves is defined as

〈
E j (t)E

∗
k (t)

〉 = 4

∞∫
0

G jk (ν)dν (9.16)

where the angular bracket < > symbolizes the time-averaging operation according to

〈
E j (t)E

∗
k (t)

〉 = lim
τ→∞

1

2τ

τ∫
−τ

E j (t)E
∗
k (t)dt (9.17)

and G jk(ν) is the mutual spectral density given by

G jk = lim
τ→∞

1

2τ
E j (ν)E∗

k (ν) (9.18a)

where the “long bar” denotes ensemble averaging. The spectral density of a wave is
defined by

G(ν) = lim
τ→∞

1

2τ
E(ν)E∗(ν) (9.18b)

and the optical intensity, which is proportional to the radiant energy flux in a given
medium, is

I = 〈E(t)E∗(t)
〉 = 4

∞∫
0

G(ν)dν (9.19)

The complex degree of coherence is defined as

γ jk =
〈
E j (t)E

∗
k (t)

〉
√〈

E j (t)E
∗
j (t)
〉〈
Ek (t)E

∗
k (t)

〉 (9.20)

Note that
∣∣γ jk

∣∣ ≤ 1. If there are only two waves, each with an optical intensity of
I1 and I2, the combined optical intensity of the two waves is given as follows:

Ic = I1 + I2 +√I1 I2(γ12 + γ ∗
12) (9.21)
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Let us use Young’s double-slit experiment as an example, where light from a
pinhole goes through two slits. Interference patterns will be projected on a screen.
When the slits are of very small width and the source is nearly monochromatic, a sine
wave pattern will be observed with alternate bright and dark fringes. This is because
γ12 = exp(iδ),where δ is the phase difference between the two beams and varieswith
the position on the screen. The outcome is completely coherent because |γ12| = 1.On
the other hand, when the source is polychromatic, the pattern will be the brightest
at the center because constructive interference occurs for all wavelengths only at
the center. The interference fringes will fade away from the center and eventually
disappear because of the lack of coherence. In this case, |γ12| is position dependent.
Partial coherence can also occur as the width of the slit is enlarged. If the slit width is
comparable to or larger than the wavelengths, the screen will be evenly illuminated.
This corresponds to a complete incoherence with |γ12| = 0 and Ic = I1 + I2.

Chen and Tien employed the partial coherence theory to calculate the radiative
properties of a layer, by taking the forward propagating field in the film as composed
of two components: the first transmitted wave and all the rest that are caused by
multiple reflections [11]. Alternatively, the degree of coherence may be defined
between any two multiply reflected waves, and the radiative properties in the partial
coherence regime can be expressed in an infinite summation. Several factors affect
the degree of coherence, such as the beam divergence, the thickness variation, or the
finite spectralwidth of the instrument. The combined effect is thatmultiple reflections
become less and less coherent, because the phase of the wave increases by 2ψ each
time when it undergoes a round trip inside the film (see Fig. 9.3). Recently, Fu
et al. [12] obtained analytic formulae for the reflectance and the transmittance of a
thin film using direct spectral integration. The integral averaging of transmittance,
calculated from wave optics over a finite frequency interval, yields the same result as
the partial coherence formulation does. The spectral averaging of the transmittance
can be evaluated by

T̄ (ν) = 1

δν

ν+δν/2∫
ν−δν/2

T (ζ ) dζ (9.22)

where ζ is a dummy variable and the frequency interval used for the averaging δν

is called the coherence spectral width [13]. The directional-hemispherical spectral
transmittance is simply expressed as T (ν) in Eq. (9.22) without any subscript or
superscript for clarity. The frequency ν is most conveniently expressed in cm−1 or
in terms of wavenumber as done before. It should be emphasized that the spectrally
averagedproperty is still a spectral property rather than a total property. It is inherently
assumed that δν is a small bandwidth within which the source spectral intensity
is independent of frequency. Furthermore, δν is related not only to the effective
bandwidth, the resolution, and the sampling interval of the spectrometer but also to
the conditions of the specimen. Figure 9.6 illustrates the effect of spectral averaging
on the transmittance spectrum for a film with n = 2 and κ = 0, with various δν



510 9 Radiative Properties of Nanomaterials

Fig. 9.6 The effect of
coherence spectral width on
the spectrally averaged
transmittance

values, at normal incidence. Both the frequency ν and the coherence spectral width δν

are normalized by the free spectral range
ν so that the curves are independent of the
film thickness and the frequency unit used. As δν/
ν increases from 0 (the coherent
limit), the fringe contrast decreases until δν/
ν = 1 when all the fringes disappear.
When δν/
ν > 1, however, the fringes reappear but the peaks and the valleys invert
from the original. The inversion is largest when δν/
ν = 1.5. When δν/
ν 

1, the fringe contrast becomes negligible, and the transmittance approximates the
incoherent limit when geometric optics is applicable.

Although δν = 0 and δν → ∞ correspond to the coherent and incoherent limits,
respectively, the magnitude of δν is not directly related to the degree of coherence
in the partial coherence regime. For example, δν/
ν = 1.5 is more coherent than
δν/
ν = 1 (when all fringes disappear). The degrees of coherence are difficult to
calculate even for smooth films and not applicable to films with rough surfaces. Lee
et al. [13] introduced a coherence function:

φ = T̄ (νmax) − T̄ (νmin)

Tcoh(νmax) − Tcoh(νmin)
(9.23)

where Tcoh is the transmittance calculated from the coherence formulation without
scattering loss based on thin-film optics, T̄ is the spectral averaging of transmittance
calculated from Eq. (9.22) to include partial coherence, and νmax and νmin are the
frequencies corresponding to transmittance maximum and minimum, respectively,
in the coherent limit [13]. In essence, the denominator equals the difference between
transmittance extrema in the coherent limit, and the numerator equals the difference
in transmittance extrema, when partial coherence is considered.

The coherence function is plotted in Fig. 9.7 as a function of a dimensionless
parameter δν/
ν for dielectric thin films. The film thickness is implicitly included
in the parameters and does not affect the shape of the curves. The coherence function
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Fig. 9.7 Coherence function
versus the ratio of the
coherence spectral width to
the free spectral range for
different refractive indices

varies within (–1, 1), and its magnitude quantifies the reduction in the fringe contrast
from 1 in the coherent limit to 0 in the incoherent limit. The locations where φ =
0 correspond to δν = m
ν (m = 1, 2, 3…), when all fringes disappear in the
transmittance spectra. When φ < 0, the peaks and the valleys are inverted in the
transmittance spectrum, resulting in fringe flipping. When n ≤ 2, it can be seen
from Fig. 9.7 that the coherence function is approximated by the sinc function:
sinc(x) = sin(x)/x . As refractive index increases, however, the coherence function
becomes flatter and deviates from the sinc function. The coherence function serves
the same role as the degree of coherence that helps determine which approach (i.e.,
wave optics, partial coherence formulation, or geometric optics) is most suitable for
modeling the radiative properties for a particular case. In addition, Eq. (9.23) can
also be applied to rough surfaces, as will be discussed in the next section.

Fig. 9.8 Normal transmittance of a 35-μm-thick Si wafer in two narrow spectral regions near the
wavelengths of a 10 μm (1000 cm−1) and b 2.5 μm (4000 cm−1), respectively [13]
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Figure 9.8 shows the measured and predicted transmittance for a double-side pol-
ished silicon wafer in two narrow spectral regions as functions of the wavenum-
ber. The transmittance spectra in the coherent and incoherent limits are shown
for comparison. Because the refractive index of silicon changes less than 1%
(n = 3.432±0.011), the free spectral range in wavenumber is
ν̄ ≈ 41.3 cm−1, and
the transmittance predicted by the incoherence formula is approximately 0.537. It
can be seen that the transmittance is less coherent toward short wavelengths (increas-
ing wavenumber). Therefore, a wavenumber-dependent coherence spectral width
was used to fit the data obtained from the FTIR spectrometer [13]. The coher-
ence spectral width δν̄ varies from 10.4 cm−1 at ν̄ = 1000 cm−1 to 28.7 cm−1

at ν̄ = 4000 cm−1. The coherence function φ calculated from Eq. (9.23) changes
from 0.84 at ν̄ = 1000 cm−1 to 0.33 at ν̄ = 4000 cm−1. The coherence spectral
width is much greater than the instrument resolution of 1 cm−1, suggesting that the
surfaces of the wafer may be slightly nonparallel. The measured transmittance is also
sensitive to the mechanical stress on the wafer.

9.1.4 Effect of Surface Scattering

In order to model the losses in the reflectance and transmittance due to scatter-
ing at the surfaces, shown in Fig. 9.9, the Fresnel coefficients can be modified by
the scattering factors that depend on the rms roughness. Notice that the reflectance
and transmittance obtained this way are not directional-hemispherical properties.
Because only the reflection and transmission near the specular directions are con-
sidered, we will use specular reflectance R′

λ,sp and specular transmittance T ′
λ,sp.

The derivation of the scattering factor is based on the assumptions that the surface
height follows the Gaussian distribution and the autocovariance function of surface
roughness is also Gaussian. When both the rms roughness and the autocorrelation
length are much less than the wavelength of the incident radiation, the scalar scat-
tering theory may be applied to determine the reflection coefficients, considering

Fig. 9.9 Geometry of a thin
film with rough surfaces, in
the model of the specular
transmittance and
reflectance, when κ2 � n2
and σrms � λ
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scattering losses [14]. The modified Fresnel coefficients between the media j and
k ( j = 1, 2, or 3; k = j ± 1) are given in the following:

r ′
jk = r jk Sr, jk (9.24a)

and

t ′jk = t jk St, jk (9.24b)

where the prime refers to the modified Fresnel coefficients for a given polarization,
and the scattering factors are defined as follows, based on real refractive indices only:

Sr, jk = exp

[
−1

2

(
4πσrmsn j cos θ j

λ

)2
]

(9.25a)

and

St, jk = exp

[
−1

2

(
2πσrms(n j cos θ j − nk cos θk)

λ

)2
]

(9.25b)

where σrms is the rms roughness of the interface [14]. It should be noted that some
relations of the Fresnel coefficients, such as r jk = −rk j and 1 + r jk = t jk , do not
hold after the modifications, because of scattering losses. The reflectance and the
transmittance should be obtained from Eqs. (9.9), (9.10a), and (9.10b). Furthermore,
the energy losses due to surface roughness increase toward shorter wavelengths,
because of the σrms/λ term in the scattering factors; this yields a reduction in the
fringe contrasts and a decrease in the overall transmittance. Even for a nonabsorbing
film, the sum of the specular transmittance and reflectance is not equal to 1, because
of scattering losses.

Example 9.2 Calculate the normal transmittance of a 10 μm film with a refractive
index n = 2.4, when there is no absorption, in the spectral range from 1000 to
3000 cm−1. Both surfaces are rough with a roughness σrms of 0.10 μm. How does
the σrms value affect the transmittance?

Solution We can use Eqs. (9.10a) and (9.10b) to calculate the transmittance but with
the reflection and transmission coefficients modified by Eqs. (9.24a) and (9.24b).
The results are plotted in Fig. 9.10, for σrms = 0.05, 0.10, and 0.20 μm, to examine
the effect of roughness on the specular transmittance. It can be seen that surface
roughness reduces both the peak transmittance and the fringe contrast. Furthermore,
the reduction is more prominent toward shorter wavelengths.

An optically smooth surface has an rms roughness on the order of 10 nm. Some
highly polished semiconductor wafers or thin films, grown by molecular beam epi-
taxy, can have an rms roughness less than 1 nm. On the other hand, chemical vapor
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Fig. 9.10 Transmittance of
a dielectric thin film with
surface roughness on both
sides

deposited (CVD) diamond films and the backside of silicon wafers can have a rough-
ness ranging from 100 nm to 1 μm. The fringe contrast in the measured spectrum
is often less than that predicted by wave optics after the modification of the Fres-
nel coefficient, due to the lack of parallelism between the two surfaces. In other
words, when the effect of partial coherence is significant, the scalar scattering theory
alone cannot accurately predict the transmittance of thin films. Lee et al. [13] used the
fringe-averagingmethod together with the scalar scattering theory to obtain excellent
agreement of the specular transmittance for rough surfaces with FTIRmeasurements
for a CVD diamond film and several silicon wafers. On the other hand, the scalar
scattering theory cannot be applied when either the autocorrelation length or the rms
roughness is comparable with the wavelength.

9.2 Multilayer Structures

For multiple parallel plates that are thick layers, without considering interference,
the net radiation method or ray-tracing method can be applied along with recursion
technique to obtain the transmittance and reflectance [1]. Since many applications
involve a thin film on a substrate or multilayer thin films, expressions of the radiative
properties of multilayer structures involving interference are analyzed in this section
beginning with few layers of thin films. The transfer matrix method for thin-film
multilayer structures will then be described, and its application to films on a thick
substrate will also be discussed.



9.2 Multilayer Structures 515

9.2.1 Thin Films with Two or Three Layers

Examples of two-layer thin films include a metallic coating on a thin dielectric sub-
strate, especially in the long-wavelength region, where interference in the substrate
cannot be ignored. The film can also be modeled as a sheet resistance for metallic
films in the far-infrared andmicrowave regions. Nevertheless, thin-film optics is gen-
erally applicable to any spectral region and for different materials. The expressions
of the reflectance and the transmittance of a thin film-substrate composite in vacuum
are

R′
λ,F =

∣∣∣∣ra + tatbrS0ei2ψS

1 − rbrS0ei2ψS

∣∣∣∣
2

(9.26)

R′
λ,S =

∣∣∣∣r0S + t0StS0rbei2ψS

1 − rbrS0ei2ψS

∣∣∣∣
2

(9.27)

and

T ′
λ =

∣∣∣∣ tatS0eiψS

1 − rbrS0ei2ψS

∣∣∣∣
2

(9.28)

where the subscripts F and S indicate whether the incoming radiation is incident
on the film or substrate, since the direction of incidence makes a difference for
the reflectance, ψs is the complex phase shift inside the substrate, ta and ra are the
transmission and reflection coefficients for incidence from vacuum to the film, when
the substrate is assumed semi-infinite, tb and rb are the transmission and reflection
coefficients for incidence from the substrate to the film, and subscripts S0 and 0S
refer to the Fresnel coefficients at the substrate-vacuum interface. The reflection
and transmission coefficients ra, rb, ta, and tb are generally complex and should be
calculated from Eqs. (9.7) and (9.8) using the phase shift of the film. The absorptance
also depends on which side the radiation is incident from. When there is another
coating at the backside of the substrate, one can replace the Fresnel coefficients with
the transmission and reflection coefficients of the film.

Example 9.3 A Fabry–Perot interferometer can be built with two mirrors made by
coating highly reflecting materials (e.g., ultrathin metallic films) on both sides of
a dielectric thin film, as illustrated on the left of Fig. 9.11. Derive a formula for
the transmittance, and show that resonance in transmittance can be obtained within
narrow spectral bands.

Solution In 1899, Charles Fabry and Alfred Perot constructed a device based on
interference effect and published a series of papers on the possible applications in
metrology and spectroscopy. This is the Fabry–Perot interferometer, also known as an
optical cavity resonator or etalon. Like theMichelson interferometer, the Fabry–Perot
interferometer is an important device used in spectroscopy, laser applications, and
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Fig. 9.11 a Schematic of a Fabry–Perot interferometer; b the calculated transmittance for different
R values

wavelength and frequency standards [14]. By considering the transmission and reflec-
tion coefficients t1, t2, r1, and r2, at each boundary of the dielectric film, the overall
transmittance coefficient of the Fabry–Perot interferometer, shown in Fig. 9.11, can
be expressed as follows:

tFP = t1t2eiψ

1 − r1r2ei2ψ
(9.29)

where ψ = 2πn2ν̄d2 cos θ2 is the phase shift according to Eq. (9.6). Here, ν̄ = 1/λ
is the wavenumber in cm−1. The energy transmittance can be written as follows:

T ′
λ,FP = tFPt

∗
FP = T1T2(

1 − √
R1R2

)2 + 4
√
R1R2 sin2 ψt

(9.30)

where ψt = ψ + arg(r1)/2 + arg(r2)/2 is the total phase shift that includes contri-
butions by the interfaces, T1 = t1t∗1 and T2 = t2t∗2 are not exactly the transmittances
through the coating, and R1 = r1r∗

1 and R2 = r2r∗
2 are indeed the reflectances for

incidence from the dielectric to the left and right boundaries, respectively. When the
loss can be neglected and the structure is symmetric, then ψt = ψ , R1 = R2 = R,

and T1T2 = (1 − R)2. In such case, Eq. (9.30) can be simplified as

T ′
λ,FP = (1 − R)2

(1 − R)2 + 4R sin2 ψ
(9.31)
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The results for different R values are shown on the right of Fig. 9.11. Clearly, a
large R yields sharp transmission peaks at ψ = mπ . Suppose the refractive index of
the dielectric is kept constant and the change of the phase shift corresponds to the
frequency variation, the free spectral range is the interval between two resonance
peaks, given by 
ν̄ = 1/(2n2d2 cos θ2), similar to that of Eq. (9.12). The full-
width-at-half-maximum (FWHM), δν̄, measures how sharp the peak is. The ratio
Q = 
ν̄/δν̄ is called thefinesseof the interferometer,which determines the resolving
power. The finesse is known as the Q-factor of the resonator. For a lossless Fabry–
Perot cavity, it can be shown that

Q = 
ν̄

δν̄
= π

√
R

1 − R
(9.32)

which is 313, when R = 0.99. Kumar et al. [15] constructed a Fabry–Perot res-
onator, based on high-critical-temperature superconducting films on Si substrates,
and demonstrated sharp transmission peaks in the far-infrared at cryogenic tem-
peratures, when YBa2Cu3O7-δ becomes superconducting. Wang et al. [16] demon-
strated asymmetric Fabry–Perot structures for coherent thermal emission at elevated
temperatures.

9.2.2 The Matrix Formulation

A multilayer structure containing N layers is shown in Fig. 9.12. In this section,
the 1D matrix formulation or transfer matrix method is presented in such a way

Fig. 9.12 Schematic
illustration of an N-layer
structure, where the first and
last layers are semi-infinite,
and each layer is assumed to
be homogeneous and
isotropic
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that magnetic materials can also be included. Each layer is assumed to be isotropic
and homogeneous, and it can be fully described by a relative permittivity εl and a
relative permeabilityμl (l = 1, 2,…,N). For a monochromatic plane wave originated
from layer 1, which is assumed to be lossless, the phase-matching condition requires
that klx ≡ kx = ωn1 sin θ1/c0. Consider a linearly polarized electromagnetic wave,
whose plane of incidence is perpendicular to the y-axis. For s polarization or TE
wave, where the electric field is parallel to the y-axis, the electric field in the lth layer
can be written as El(z)ei(kx x−ωt), where

E1(z) = A1e
ik1z z + B1e

−ik1z z

and

El(z) = Ale
iklz(z−zl−1) + Ble

−iklz(z−zl−1), l = 2, 3, . . . , N (9.33)

Here, Al and Bl are the amplitudes of the forward and backward waves at the
interface, respectively, zl = zl−1 + dl (l = 2, 3, . . . , N − 1), and dl is the layer
thickness. The magnetic field can be obtained from the electric field usingMaxwell’s
equations. The expression of the wave component klz is calculated from k2x + k2lz =
εlμlω

2/c20. The only condition imposed is that the imaginary part of klz must not
be less than zero. This will ensure that the wave will decay toward positive z. After
applying boundary conditions at the interface, we can see that the field amplitudes
of adjacent layers are related by [17]

(
Al

Bl

)
= PlD−1

l Dl+1

(
Al+1

Bl+1

)
, l = 1, 2, . . . , N − 1 (9.34)

In Eq. (9.34), Pl is the propagation matrix given by

Pl = I =
(
1 0
0 1

)
, l = 1

and

Pl =
(
e−iklzdl 0

0 eiklzdl

)
, l = 2, 3, . . . , N − 1 (9.35)

Dl is called the dynamical matrix, and D−1
l is its inverse. For s polarization, Dl is

given in terms of klz and μl as follows:

Dl =
(

1 1
klz/μl −klz/μl

)
, l = 1, 2, . . . , N (9.36)

By successively applying Eq. (9.35) to all layers, we have
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(
A1

B1

)
= M

(
AN

BN

)
(9.37)

where

M =
(
M11 M12

M21 M22

)
=

N−1∏
l=1

PlD−1
l Dl+1 (9.38)

The electric field transmission and reflection coefficients are obtained by setting
BN = 0, because the last layer is semi-infinite, and thus there is no backward wave.
Simple algebraic manipulations give the expressions of the coefficients as

t = AN/A1 = 1/M11 (9.39)

and

r = B1/A1 = M21/M11 (9.40)

Furthermore, the energy reflectance and transmittance are given as follows:

R′
λ = rr∗ =

∣∣∣∣M21

M11

∣∣∣∣
2

(9.41)

T ′
λ = Re

(
k∗
Nz/μ

∗
N

)
Re
(
k∗
1z/μ

∗
1

) t t∗ = Re(kNz/μN )

Re(k1z/μ1)

∣∣∣∣ 1

M11

∣∣∣∣
2

(9.42)

For p-polarization or TM wave, the magnetic field is parallel to the y-axis. Equa-
tion (9.33) can be written in terms of the magnetic field. The above procedure can
then be applied to derive the transmission and reflection coefficients based on the
magnetic fields. Then, the dynamic matrix Dl given in Eq. (9.36) must be replaced
by

Dl =
(

1 1
klz/εl −klz/εl

)
, l = 1, 2, . . . , N (9.43)

The expression for the reflectance is the same as Eq. (9.41) and that for
transmittance for p-polarization becomes

T ′
λ = Re(kNz/εN )

Re(k1z/ε1)
t t∗ = Re(kNz/εN )

Re(k1z/ε1)

∣∣∣∣ 1

M11

∣∣∣∣
2

(9.44)

The assumption that the first medium is lossless is necessary because the
reflectance is ill-defined if the first medium is lossy or dissipative, because of the
coupling between the reflected and incident waves [6]. Nevertheless, Eqs. (9.41),
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(9.42), and (9.44) are applicable even when the last medium is lossy. Comparing
Eq. (9.42) with Eq. (9.44), and Eq. (9.36) with Eq. (9.43), we immediately notice the
duality of the electric andmagnetic fields, since the only difference is the interchange
of ε andμ in these equations. Further applications of the matrix formulation will be
discussed in subsequent sections as well as in the next chapter.

9.2.3 Thin Films on a Thick Substrate

Radiative properties of thin coatings on a substrate are important for a large number
of applications, such as a thermal oxide on a Si substrate, antireflection coatings on
the lens of glasses, interference filters, metallic coatings, and superconducting films.
In these cases, the coating thicknesses are on the order of nanometers and must be
considered as thin films. On the other hand, the substrate is usually thick enough to be
considered as incoherent, while being semitransparent for energy transfer considera-
tion. Furthermore, the substrate is either lossless or slightly absorbing (κs � ns), as
discussed earlier. Figure 9.13 shows the geometry of an incoherent substrate of thick-
ness ds bounded by multilayer thin films on both sides. The refraction angle θs in the
substrate can be calculated from the incidence angle θ1 by neglecting absorption of
the substrate. In Fig. 9.13, ρa or ρb refer to the reflectance of the first multilayer struc-
ture for rays originated from air or the substrate, and τa and τb are the corresponding
transmittance. Furthermore, ρs and τs represent the reflectance and the transmittance
for rays originated from the substrate at the second multilayer structure. Since the
coupling between the incident and reflected waves in the substrate is negligible, the
transmittance is the same whether the ray is originated from air or the substrate, i.e.,
τb = τa.

In order to calculate these parameters, the transfer matrix method, discussed in
the previous section, can be separately applied to the multilayer structures for a given

Fig. 9.13 Radiative
properties of multilayer thin
films on an incoherent, thick
substrate
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incident direction. The internal transmittance of the substrate is τ = exp
(
− 4πκsds

λ cos θs

)
,

where λ is the wavelength in vacuum. The reflectance and the transmittance of the
multilayer structure can be calculated using the ray-tracing method and expressed as
follows:

R′
λ = ρa + ρsτ

2
a τ 2

1 − ρsρbτ 2
(9.45)

T ′
λ = τaτsτ

1 − ρsρbτ 2
(9.46)

Radiative properties of arbitrary numbers of thick and thin layers have been
derived theoretically [18]. For each thin-film stack, the field reflection and trans-
mission coefficients are obtained first, using the matrix formulation described previ-
ously. The power transmittance and reflectance at the interfaces of each thick layer
can then be obtained. Using the net radiation method, the energy transmittance and
reflectance can be evaluated. Spectral averaging is another and perhaps more pow-
erful technique of obtaining the transmittance and reflectance for systems involving
thick and thin layers.

The absorptance of the composite layers can be calculated by subtracting the
reflectance and the transmittance from unity. The Poynting vector can be evaluated
as a function of z to obtain the radiant energy flux S(z) = 1

2Re(E×H∗). The fraction
of energy absorbed between z1 and z2 is given by

αz1−z2 = S(z1) − S(z2)

Siz
(9.46)

where Siz is the incident radiant energy flux in the z-direction. From Sect. 8.1.4, one
can obtain the local energy density. The energy dissipated per unit volume is given
by −∇ · S.

9.2.4 Waveguides and Optical Fibers

Optical fibers and waveguides are essential for optical communication and optoelec-
tronics. There are numerous other applications such as noncontact radiation ther-
mometry, near-field microscopy, and decoration lightings. According to a report
in 2000, the total length of optical fiber wires that had been installed worldwide
exceeded 3.0 × 1011 m, which equals the distance of a round trip from the earth
to the sun. Optical fibers usually operate based on the principle of total internal
reflection, as shown in Fig. 9.14. The fiber core is usually surrounded by a cladding
material with a lower refractive index.

The numerical aperture NA is defined according to the half angle θh of the accep-
tance cone, within which total internal reflection occurs. It can be seen from Fig. 9.14
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Fig. 9.14 Schematic of a
planar dielectric waveguide
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N A = sin θh = n1 cos θc =
√
n21 − n22 (9.47)

For example, if n1 = 1.53 and n2 = 1.46, the critical angle θc = 72.6◦, the max-
imum cone angle θh = 27◦, and NA = 0.46. There are different types of waveguides,
such as graded-index waveguides and metallic waveguides, in addition to the simple
dielectric type. The cross-section may be circular, annular, rectangular, or elliptical.
In some cases, the diameter of the fiber is much greater than the wavelength and
the electromagnetic waves inside the fiber are incoherent. These devices are some-
times called lightpipes, which are used for relatively short distances. Optical fibers in
communication technology use very thin wires and transmit light with well-defined
modes. In the following, the configuration of a 1D dielectric slab between two media
is discussed to illustrate the basics of an optical waveguide. More detailed treatments
can be found from Haus [19] and Kong [20]. The present author was fortunate to
learn optoelectronics and the electromagnetic wave theory through graduate courses
taught by these professors.

Consider the planar structure shown in Fig. 9.14 that is infinitely extended in
the y-direction. When the variation of d along the x-direction is negligibly small
compared to the wavelength, the electromagnetic waves inside the waveguide are
coherent. A standing wave pattern must be formed in the z-direction. This requires
the phase shift in the z-direction for the round trip including two reflections at the
boundary to be a multiple of 2π , viz,

2k1zd + 2δ = 2mπ, m = 0, 1, 2, . . . (9.48)

where k1z = (ω/c)n1 cos θ1, and the phase shift upon total internal reflection is

δ = −2α = −2 tan−1

(
g

√
sin2 θ1 − sin2 θc

cos θ1

)
(9.49)

where g = 1 for TE waves and g = n21/n
2
2 for TM waves; see Sect. 8.3.2.

The solutions of Eq. (9.48) give discrete values of θ1 or kx = (ω/c0)n1 sin θ1,
at which waves can propagate through the fiber for a prescribed frequency. These
are called guided modes of the optical fiber, and Eq. (9.48) may be regarded as
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the mode equation. The orders of mode are identified as TE0,TE1, . . . ,TEm or
TM0,TM1, . . . , TMm for a 1D waveguide. For a 2D waveguide, the subscripts con-
sist of two indices “ml” for each mode. As θ1 decreases from π/2 to θc, k1z increases
and higher order modes can be excited. Onemight wonder why θ1 = π/2 or kx1 = k1
is not a guided mode. In this case, the beam would go through the core, the cladding,
and air in a straight line. Any bending in the waveguide would result in some loss
of energy transfer. On the other hand, the guided modes are much less affected by
the bending. This is why an optical fiber can transfer signals to a very long distance
while being flexible.

To illustrate the solution in terms of k1zd, let us rearrange Eq. (9.49) as follows:

tan

(
k1zd

2
− mπ

2

)
= tan α = g

η2

k1z
= g

√
(k1d)2 − (k2d)2

(k1zd)2
− 1 (9.50)

The functions on the left and right sides of Eq. (9.50) can be plotted in the same graph
against k1zd, as shown in Fig. 9.15, for two values ofωd, assumingω2d2 > ω1d1. The
solid lines are for the left side, which is independent of polarization. The dash-dotted
curves are for TE waves, and the dotted curves are for TM waves. The intersections
within the circles identify the guidedmodes. It is noted that fewermodes are permitted
with a smallerωd or d/λ. Forω1d1, the possiblemodes are TE0,TE1,TM0, and TM1

only. A fiber that supports only a single mode for a given frequency is called a
single-mode fiber; otherwise, it is called a multimode fiber.

Example 9.4 Determine the range of d/λ so that only the TE0 and TM0 waves
are guided in the planar waveguide with n1 = 1.55 and n2 = 1.42. Moreover, if
d/λ = 1000, how many TE and TM modes may be guided?

Fig. 9.15 Solutions of the
mode equation, when
ω2d2 > ω1d1. The circles
indicate the intersections
between the curves described
by the left and right sides of
Eq. (9.50)
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Solution Because d/λ must be small enough so that the left-hand side of Eq. (9.50)
becomes zero at k1zd = π , we have (k1d)2 − (k2d)2 = π2 or 4π2(n21 −n22)(d/λ)2 =
π2. Finally, we find d/λ < 0.5

(
n21 − n22

)−1/2 = 1.3. Moreover, from Fig. 9.15, we
can estimate the highest order modeM, using k1zd = Mπ and cos θ1 = cos θc when
d 
 λ. Hence, 2π(d/λ) cos θc = Mπ or M = 2(d/λ) cos θc = 801.8. There will
be 802 TE modes and 802 TM modes including the zeroth-order modes.

Next, we will study the fields in a planar waveguide. Assume that the waveguide
contains a core which is medium 1 for 0 ≤ z ≤ d surrounded by medium 2 that
extends to both +∞ and −∞. Let us take a TE wave and write in the more general
terms ε1, μ1, ε2, and μ2. The electric field is nonzero only in the y-direction, and
the y-component of the electric field is given by

Ey =
⎧⎨
⎩

Ceη2zeikx x , z < 0(
Aeik1z z + Be−ik1z z

)
eikx x , 0 ≤ z ≤ d

De−η2(z−d)eikx x , z > d
(9.51)

where the time-harmonic term exp(−iωt) is again omitted for simplicity. Note that
η2 = Im(kz2) such that the field decays in medium 2 away from the interfaces
with medium 1. The magnetic fields can be obtained as Hx = − 1

iωμ1μ0

∂Ey

∂z and

Hz = 1
iωμ1μ0

∂Ey

∂x . There are four boundary conditions for the tangential components
to be continuous at z = 0 and z = d. We end up with a set of homogeneous
linear equations of the coefficients A, B,C, and D. The solution exists only when
the determinant of the characteristic 4×4 matrix becomes zero and can be expressed
in a combined equation as follows:

tan(k1zd)

(
k21z
ε21

− η2
2

ε22

)
= 2

(
k1zη2
ε1ε2

)
(9.52)

This is an equivalent expression of the mode equation. An easier way to solve
Eq. (9.51) is by considering the condition of total internal reflection at the boundaries,
i.e.,

A = Beiδ and B = Aei(2k1zd+δ) (9.53)

The combination gives ei(2k1zd+2δ) = 1, which is nothing but Eq. (9.48). After
substituting A = Be−i2α into Eq. (9.51), the boundary conditions require that

Ey =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2e−iαBcos
(
k1zd
2 − mπ

2

)
eη2zeikx x , z < 0

2e−iαBcos
(
k1z z − k1zd

2 − mπ
2

)
(k1z z − α)eikx x , 0 ≤ z ≤ d

2e−iαBcos
(
k1zd
2 + mπ

2

)
e−η2(z−d)eikx x , z > d

(9.54)
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Fig. 9.16 Electric field distribution Ey(z) in planar waveguides for a dielectric cladding and b con-
ductive cladding. For the conducting cladding, σ → ∞ and the lowest order TE mode is the first
order

Figure 9.16a shows the electric field distribution for TE0,TE1, and TE2. The
decaying fields inside the cladding are clearly demonstrated. For a cladding with the
conductivity σ → ∞, the waves will be perfectly reflected at the interface without
any phase shift and the electric fieldmust vanish in the cladding. Only the oddm’s are
guided modes. The first guided mode is TE1, and the guided mode TEq corresponds
to q = (m + 1)/2, with m = 1, 3, 5, . . . The electric fields for the conducting
waveguide modes TE1,TE2, and TE3 are shown in Fig. 9.16b, for comparison with
those for the first three modes in the dielectric waveguide. The difference lies in
that no fields can penetrate into the conducting waveguide, whereas the fields can
penetrate into the dielectric cladding.

Example 9.5 Determine the energy flux, the phase velocity, and the group velocity
of the electromagnetic waves in a planar dielectric waveguide.

Solution Obviously, there is no net energy flow in the z-direction, and 〈S〉x =
1
2Re
(
EyH∗

z − EzH∗
y

)
. The second term on the right becomes zero for a TE wave;

thus, 〈S〉x = kx
2ωμ0

EyE∗
y .Integration of 〈S〉x from z = −∞ to +∞ gives the power

transmitted per unit length in the y-direction. Note that a small portion of the energy
is transmitted through the cladding. The phase velocity along the x-direction is vp =
ω/kx = c0/(n1 sin θ1). The group velocity for a given mode is given by vg =
(dkx/dω)−1, which requires the solution of Eq. (9.52) accounting for the frequency-
dependent refractive index.

Losses cannot be avoided in practical systems. If the conductivity does not
approach infinite, there will be losses of absorption in the conductive cladding. The
dielectric cladding may have a small extinction coefficient that results in attenuation
as waves propagating through the fiber. Furthermore, if there are absorbing parti-
cles or another high-index medium outside the cladding dielectric, wave coupling or
leakage can occur that results in absorption or attenuation.

In Sect. 9.2.1, we introduced the concept of Fabry–Perot resonant cavities. Two-
and three-dimensional optical cavities and microwave cavities support resonance
modes, which are standing waves inside the cavity. These devices are important
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for photonics and optoelectronics. Microcavities have also been used to modify the
surface radiative properties. The quality factor, or the Q-factor, of a resonator is
defined as the ratio of energy storage to the energy dissipation. High Q-factors can
be achieved with the microfabricated optical cavities for quantum electrodynamics
(QED), enhancement and suppression of spontaneous emission, and biological and
chemical sensing [21]. A special microcavity is made of spheres or disks, where the
resonance is built up around a circumference in the form of a polygon. Total internal
reflection traps the light inside themicrosphere or the disk.At a particularwavelength,
when resonance occurs, light undergoes multiple reflections, and a strong electric
fieldwhich is confinednear the perimeter can be built. This is the so-calledwhispering
gallery mode (WGM), named after the whispering gallery at St. Paul’s Cathedral in
London. A whispering gallery is a circular gallery under a dome where whispers
can be heard from the opposite side of the building. Optical fibers or waveguides
are commonly used to couple the photon energy to or from the microcavities via
evanescent waves. Ultrahigh Q-factors can be achieved with WGMs. The energy
coupling mechanisms have recently been studied by Guo and Quan using a finite-
element method [22].

A recent development in fiber optics is the use of photonic crystals (PCs) to
confine the light into a fiber, whose cladding region is made of PCs, rather than a
solid low-index material. Note that further discussions on photonic crystals will be
given in Sect. 9.3.1. The fiber core may be either solid or hollow, and the PCs in
the cladding region may contain air-filled holes in silica. For this reason, these fibers
are called photonic crystal fibers (PCFs) and some are called holey fibers [23] . In
the stop band, waves cannot propagate inside the PC and thus effectively confine the
propagating wave to the core region, where the modes can be guided, without using
total internal reflection. One of the advantages of PCFs over conventional optical
fibers is the spectral broadening that enables high-intensity pulses to be transmitted
with less distortion or loss of the spectral information; this has important applications
such as optical coherence spectroscopy and tomography. Another advantage is that
the use of large guiding areas can provide low-loss high-power delivery for imaging,
lithography, and astronomy. Other potential applications range from birefringence
and nonlinear optics to atomic particle guidance [23].

9.3 Photonic Crystals and Periodic Gratings

The unique features of periodic microstructures (i.e., photonic crystals or gratings)
can be utilized to engineer the radiative properties for specific applications [23–26].
After introducing photonic crystals, the one-dimensional photonic crystal is used as
an example to illustrate the photonic bandgaps and dispersion. The general grating
equation is then describedwith an introduction of the rigorous coupled-wave analysis
(RCWA) numerical technique. The effective medium theory for periodic structures
will also be introduced.
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9.3.1 Photonic Crystals

A photonic crystal (PC) is a periodic array of unit cells (i.e., photonic lattices in
analogy to those in real crystals), which replicate infinitely into one, two, or three
dimensions. Figure 9.17a illustrates a 1D PC by placing alternating Journal of Heat
Transfer and Journal of Thermophysics and Heat Transfer issues in author’s book-
shelf. To have a PC with a period of the order of infrared wavelengths, say 3 μm,
the thickness needs to be reduced by a factor of 6000. Figure 9.17b is a photo of a
stack of chopsticks in three dimensions. Structures of 3D tungsten PCs have been
fabricated with a rod width of 1.2 μm and rod-to-rod spacing of 4.2 μm, for tuning
the infrared thermal emission properties [27].

From the analogy of the electron movement in crystals, electromagnetic wave
propagation in a PC should also satisfy the Bloch condition, discussed in Chap. 6.
Similarly, due to the periodicity, a PC exhibits band structures consisting of pass and
stop bands when the frequency is plotted against the wavevector. In the pass band,
for instance, waves can propagate inside a PC. Whereas in the stop band, no energy-
carrier waves can exist inside a PC, and only oscillating but evanescently decaying

Fig. 9.17 Illustration of
a 1D and b 3D photonic
crystal (PC) structures
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fields possibly exist. The existence of stop bands enables a PC to be used in many
optoelectronic devices from waveguides to band-pass filters [7, 8, 28]. Most of the
1D PCs are made with alternating layers of two lossless dielectrics; nevertheless,
metallodielectric PCs have also been extensively investigated especially in recent
years. In some cases, the dimension may be smaller than 100 nm for tuning the
visible properties.

While 3D PCs with complicated structures have been fabricated and used in a
number of applications, the fundamental physics can be illustrated using 1D PCs
and can easily be generalized for 2D or 3D structures. The 1D PC, illustrated in
Fig. 9.18, is a periodic multilayer structure, where � = da + db is the period of the
PC or photonic lattice constant. The unit cell is composed of alternating dielectrics
with different refractive indices na and nb. It is assumed that all layers are infinitely
extended in the x-y plane, and the PC is in the positive-z half space starting withm =
0 at z = 0. From the analogy between wave propagation in a periodic media and the
motion of electrons in crystalline materials, the electric field vector in the 1D PC,
for a monochromatic electromagnetic wave of angular frequency ω, should satisfy
the Bloch condition given by

E(x, y, z, t) = u(z)eiKzei(kx x+ky y−ωt) (9.55)

where u(z + �) = u(z) is a periodic function of z with a period equal to the
lattice constant of the photonic crystal, kx and ky are the parallel components of the
wavevectors that must be the same in all layers as required by the phase-matching
condition, andK represents the Blochwavevector that is a scalar in the 1D case. Here,

Fig. 9.18 Amplitudes of the forward and backward waves in a semi-infinite 1D PC, in the right
half space. The unit cell of the 1D PC is made of two dielectric layers: type a and type b, and has a
period � = da + db
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K is a characteristic parameter of the PC that is the same for all layers. Thewavevector
components in the z-direction are kaz and kbz in media a and b, respectively, and are
determined by the relations k2x + k2y + k 2

za = k2a = n2aω
2/c20 and k2x + k2y + k2zb =

k2b = n2bω
2/c20. From the Bloch condition, the electric field in the 1D PC satisfies the

following equation:

E(x, y, z + �, t) = E(x, y, z, t)eiK� (9.56)

The magnetic field is related to the electric field byMaxwell’s equations and must
also follow the Bloch condition. Therefore, the fields inside the PC are not periodic
functions.

Because of the axial symmetry, the coordinate can always be rotated around the
z-axis to make ky = 0. For s polarization, the electric field is parallel to the y-direction
and can be expressed as

Ey(x, z) = [Ame
ikza(z−m�) + Bme

−ikza(z−m�)
]
eikx x (9.57a)

for m� ≤ z ≤ (m� + da) and

Ey(x, z) = [Cme
ikzb(z−m�−da) + Dme

−ikzb(z−m�−da)
]
eikx x (9.57b)

for (m� + da) ≤ z ≤ (m+1)�. InEqs. (9.57a) and (9.57b), the time-dependent term
exp(−iωt) is omitted for simplicity, m is an integer, Am and Cm are the amplitudes
of forward waves, and Bm and Dm are the amplitudes of backward waves at the
interfaces, as shown in Fig. 9.18 [17]. The amplitudes at the other side of boundary
are given by the coefficients: A′

m = eikzada Am , B ′
m = e−ikzadaBm , C ′

m = eikzbdbCm , and
D′

m = e−ikzbdbDm . Boundary conditions require that the tangential components of
the electric field Ey and magnetic field Hx to be continuous at each interface. From
the matrix formulation, the coefficients Am and Bm at z = m� are related to those at
z = (m + 1)� with the propagation matrix P and dynamical matrix D as follows:

(
Am

Bm

)
= (PaD−1

a Db)(PbD−1
b Da)

(
Am+1

Bm+1

)
(9.58)

From Eq. (9.56), the ratio of the electric fields at two points separated by a period
� along the z-direction is equal to exp(iK�); thus,

(
Am+1

Bm+1

)
= eiK�

(
Am

Bm

)
(9.59)

The Bloch wavevector parameter K can be obtained by solving the eigenvalue
equation:
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M
(
Am+1

Bm+1

)
= e−iK�

(
Am+1

Bm+1

)
(9.60)

where M = (PaD−1
a Db)(PbD−1

b Da). In general, K depends on the frequency ω and
the parallel wavevector component kx , for a given geometry and refractive indices.
OnceK is determined, the electric field in the PC can be expressed in the Bloch wave
form as

Ey(x, z) = u(z)eiKzeikx x (9.61)

where u(z) is a periodic function of z. For m� ≤ z ≤ (m� + da),

u(z) = [A0e
ikza(z−m�) + B0e

−ikza(z−m�)
]
e−iK (z−m�) (9.62a)

and for (m� + da) ≤ z ≤ (m + 1)�,

u(z) = [C0e
ikzb(z−m�−da) + D0e

−ikzb(z−m�−da)
]
e−iK (z−m�) (9.62b)

Note that A0 and B0 are amplitudes of the first layer, i.e., at m = 0, and

(
C0

D0

)
= (PaD−1

a Db
)−1
(
A0

B0

)
(9.63)

The expressions for the magnetic field can be obtained from those of the electric
field using Maxwell’s equations. For p-polarization, the magnetic field is parallel to
the y-axis. The same procedure can be used to determine the magnetic field first and
then the electric field. The amplitudes A0 and B0 depend on the boundary condition
at z = 0, i.e., the interaction of the PC with the medium in the left half space.

For a given PC, the Bloch wavevector can be solved from the eigenvalue problem
given in Eq. (9.60), for any real positive values ofω and kx . In general,K is complex.
When K is purely real, i.e., Im(K) = 0, the electric field oscillates in the direction
of z, and the Bloch wave propagates into the positive z-direction, which is called an
extended mode. When Im(K) �= 0, on the other hand, the amplitude of the Bloch
wave decays exponentially along the positive z-direction, and the wave is confined
to the first few unit cells of the photonic crystal; this is called a localized mode [17,
25]. For the localized mode, the field is localized in the vicinity of the defect or the
edge. Notice that K = K(kx, ω), and the regions with Im(K) = 0 in the ω–kx plane
are called pass bands, and those with Im(K) �= 0 are called stop bands. Suppose light
is incident from air (in the left half space) on the PC at z = 0. In the stop band, the PC
will act like a perfect mirror, which is also called a Bragg reflector. A diagram in the
ω–kx domain, showing the different regions, allows one to study the band structures
of a PC.
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Example 9.6 Consider the 1D PC depicted in Fig. 9.18, with the following param-
eters: na = 2.4, nb = 1.5, and da = db. Construct the band structure for both
polarizations, and calculate the normal reflectance.

Solution The PC is semi-infinite, and the incidence is from air. The unit cell of the
1D PC is defined by the thickness of the unit cell � = da + db since da = db.
Following the previous discussion, we have calculated the band structure of the 1D
PC for either polarization, and the results are shown in Fig. 9.19. Here, the parallel
component of the wavevector is kx = (ω/c0) sin θ , where θ is the angle of incidence.
The band structure is expressed by the reduced frequency and wavevector; hence,
it is independent of the period of the PC. For the calculation, it is assumed that the
1D PC is a perfectly periodic structure infinitely extended into z-direction (i.e., no
defect or edge exists in the PC). The shaded regions represent the stop bands, while
unshaded regions are the pass bands. The light line in air, which corresponds to
θ = 90◦, is plotted as a dash-dot line based on ω = kxc0. On the upper left side of
this line, propagating waves exist in air and θ ≤ 90◦. On the lower right side of this
line, evanescent waves exist in air since θ becomes complex. Note that stop bands
shrink to zero only for p-polarization. The point where the top and bottom band edges
merge together corresponds to the Brewster angle between the dielectric of types a
and b of the PC. At the Brewster angle, the reflectivity at the interface between two
dielectrics is zero; thus, waves or incident energy can propagate into the PC. For the
1D PC considered here, because the Brewster angle is located on the lower right side
of the light line, the propagating waves in air will not be affected by the Brewster
angle of the constituent dielectrics of the PC.

Figure 9.20 shows the reflectance of the 1D PC structure with different numbers
of periods (N = 30 and 300), calculated using the 1D matrix formulation. The
wavelength is normalized to the period �. The reflectance approaches to unity in
the stop band (when N > 30). In the pass band, interference effects affect the free
spectral range of oscillation and, thus, the oscillation frequency increases with the
number of periods of the PC structure. A special type of 1DPCs is theBragg reflector,

Fig. 9.19 Band structures of a 1D PC. a TM wave (p-polarization). b TE wave (s polarization)



532 9 Radiative Properties of Nanomaterials

Fig. 9.20 Reflectance of a
1D PC, with different
numbers of periods

which is composed of alternating high- and low-index films, each at a thickness of
one-quarter of the wavelength in the film, i.e., da = λ/(4na) and db = λ/(4nb).
Further discussion about surface waves and coherent emission characteristics of PC
structures will be deferred to the next chapter.

9.3.2 Periodic Gratings

Diffraction grating is considered as one of the simplest and most important devices
in optical metrology; subsequently, there have been extensive research works on the
effect of gratings on the radiative property modification [29, 30]. Nanoscale diffrac-
tion elements fabricated with nanolithography have important applications in bio-
chemical sensing, surface diagnostics, and nanophotonics. Patterned semiconductor
microelectronics has periodic structures on the surface with a period below 100 nm
[31]. Understanding the radiative properties is essential for thermal processing and
modeling in semiconductor manufacturing as the feature size continues to shrink.

In the inhomogeneous region, where the permittivity ε and the permeabilityμ are
spatial functions, the monochromatic plane wave equations become more compli-
cated. By assuming the solution is a time-harmonic plane wave, we can rewrite the
Maxwell equations as follows [32]:

∇ × E = iωμμ0H (9.64)

∇ × H = −iωεε0E (9.65)

ε∇ · E + E · ∇ε = 0 (9.66)
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μ∇ · H + H · ∇μ = 0 (9.67)

Since only isotropic media are considered here, both ε and μ are scalars. By
taking the curl of Eq. (9.64) and applying the vector identities in Appendix B.7 and
Eqs. (9.66) and (9.67), we obtain

∇2E + ∇(E · ∇ ln ε) + ∇ lnμ × (∇ × E) + k2μεE = 0 (9.68)

∇2H + ∇(H · ∇ lnμ) + ∇ ln ε × (∇ × H) + k2μεH = 0 (9.69)

where k = ω/c is the wavevector in vacuum.
These equations cannot be solved easily and numericalmethods are often required.

Among them are rigorous coupled-wave analysis (RCWA), finite-difference time-
domain (FDTD), finite-element method (FEM), boundary element method (BEM),
as well as the volume integral method. Effective medium formulation is another
approach that takes the average field by approximating the inhomogeneous medium
with effective homogenous electric and magnetic properties. The concept of RCWA
will be presented next because it is an effective tool for calculating the optical
properties of the grating geometry with sufficient accuracy.

9.3.3 Rigorous Coupled-Wave Analysis (RCWA)

Webeginwith a discussion restricted to s polarization and for incidence perpendicular
to the gratings, as illustrated in Fig. 9.21. A plane wave is incident on a 1D grating
surface from free space, region I with εI = 1, nI = 1, and κI = 1. Region II is
composed of binary materials A and B so that the dielectric function in region II is
a periodic function of x and the period � is called the grating period. The filling
ratio φ is the volume fraction of material A, and the lateral extension of the grating
is assumed to be infinite. Region III is the substrate with a dielectric function εIII .

The wavevector k defines the direction of incidence, and the angle between k
and the surface normal ẑ is the angle of incidence θ, also called the polar angle.
The grating vector K is defined in the positive x-direction with a magnitude K =

Fig. 9.21 Schematic
drawing for TE wave
incident on a grating layer,
showing the reflected
diffraction orders j = –2, –1,
0, and 1
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2π/�. In the following discussion, it is assumed that the incident wavevector is
on the x-z plane, i.e., the y-component of k is zero. For s polarization, the electric
field E is parallel to the y-direction and perpendicular to the grating vector K. The
magnitude of the incident electric field, after normalization, can be expressed as
exp(ikx x + ikzz − iωt). For simplicity, the time-harmonic term exp(-iωt) will be
omitted hereafter. The magnitude of k in regions I and III can be expressed as

kI = 2πnI
λ

= 2π

λ
= k and kIII = 2πnIII

λ
= nIIIk (9.70)

where nIII is the refractive index of region III. There exists a phase difference of
2π� sin θ

/
λ = kx� between the incident wave at (x, z) and that at (x + �, z)

due to a path difference of � sin θ . This condition must also be satisfied by each
diffracted wave, i.e., the magnitude of the jth-order reflected wave can be written as
r j exp

(
ikx, j x − ikIz z

)
, where r j is the reflection coefficient, and kx, j is determined

from the Bloch–Floquet condition [30, 32]:

kx, j = 2π

λ
sin θ + 2π

�
j = kx + K j (9.71a)

This equation can be expressed in terms of the angle of reflection given by

sin θ j = sin θ + jλ

�
(9.71b)

where θ j = sin−1(kx, j/k) is the jth-order diffraction angle for reflection and
Eq. (9.71b) is the well-known grating equation. When kx, j > kI, sin θ j > 1 and
the jth-order reflected wave decays exponentially toward the negative z-direction.
This is an evanescent wave that exists only near the surface, within a distance on the
order of the wavelength. Note that the z-component of k for the jth-order reflected
wave is

kIz, j =
⎧⎨
⎩
(
k2I − k2x, j

)1/2
, kI > kx, j

i
(
k2x, j − k2I

)1/2
, kx, j > kI

(9.72)

Because kx, j must be the same in all media, similar criteria can be applied to the
transmitted waves in region III to obtain kIIIz, j by replacing I by III in the subscripts
in Eq. (9.72).

The electric field in region I is a superposition of the incident and reflected waves;
therefore,

EI(x, z) = exp(ikx x + ikzz) +
∑
j

r j exp
(
ikx, j x − ikIz, j z

)
(9.73)
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The electric field in region III can be obtained by superimposing all transmitted
waves as

EIII(x, z) =
∑
j

t j exp
[
ikx, j x + ikIIIz, j (z − d)

]
(9.74)

where tj is the transmission coefficient for the jth-order transmitted wave.
The electric field in region II can be expressed as

EII(x, z) =
∑
j

� j (z) exp
(
ikx, j x

)
(9.75)

where� j (z) is the amplitude of the jth space-harmonic component. Here, the order j
ismatchedwith the diffraction order in regions I and III. Due to the periodic structure,
the dielectric function of region II can be expanded in the following Fourier series:

ε(x) =
∑
m

εm exp

(
i
2mπ

�
x

)
, m = 0,±1,±2, . . . (9.76)

where εm is the mth coefficient that can be calculated from

ε0 = φεA + (1 − φ)εB and εm = (εA − εB) sin(mφπ)

mπ
(m �= 0) (9.77)

for rectangular gratings depicted in Fig. 9.21. It should be noted that each εm is not
a physical property of the material, and its imaginary part may be negative for a
passive medium.

The coupled-wave formulation comes from the wave equation of the total electric
field in region II. Due to the factors that ε is independent of y and E is parallel to the
y-axis, we have from Eq. (9.68) that

∇2EII(x, z) + k2ε(x)EII(x, z) = 0 (9.78)

A differential equation can be obtained by substituting Eqs. (9.75) and (9.76) into
Eq. (9.78) as

∑
j

d2� j

dz2
exp
(
ikx, j x

)−
∑
j

k2x, j� j exp
(
ikx, j x

)

+ k2
[∑

m

εm exp

(
i
2mπ

�
x

)][∑
n

�n exp
(
ikx,nx

)] = 0 (9.79)

Equation (9.79) can be rearranged in terms of exp(ikx, j x) for the jth-order as
follows:
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∑
j

(
d2� j

dz2
− k2x, j� j + k2

∑
n

ε j−n�n

)
exp
(
ikx, j x

) = 0 (9.80)

In order to satisfy this equation for any value of x, the coefficient of exp(ikx j x)
must be zero for all j’s. Hence, Eq. (9.80) is an infinite set of second-order cou-
pled equations. Note that each space-harmonic term is coupled to other components
through the harmonics of the grating. The numerical solution is obtained with suf-
ficiently large number of diffraction orders. Suppose j = 0,±1,±2, . . . ,±q, then
there are N = 2q + 1 diffraction orders so that n = 0,±1,±2, . . . ,±q will also
have N terms. Equation (9.80) can be represented by an N × N matrix. The Fourier
expansion of the dielectric function will have m = 0,±1,±2, . . . ,±2q, or 4q + 1,
terms. The magnetic field can be obtained from Eq. (9.67) and expressed in terms
of � j . The N unknown functions � j ( j = 0,±1,±2, . . . ,±q) can be expressed as
summations of the eigenfunctions, which have 2N unknown coefficients. Together
with r j and t j ( j = 0,±1,±2, . . . ,±q), there are 4N unknowns. By matching the
boundary conditions for the electric field and the tangential component of the mag-
netic field at the interface between regions I and II and that between regions II and
III, the corresponding 4N linear equations can be solved using the matrix method.
An enhanced, numerically stable transmittance matrix approach was developed and
applied to the implementation of RCWA for surface-relief and multilevel gratings,
with detailed equations and solution procedures [32]. The derivation of TM wave is
more complicated because of the extra term in Eq. (9.69). Nevertheless, a corrected
procedure has been proposed by Li [33].Many researchers have considered the effect
of azimuthal angle of incidence on the radiative properties of gratings, i.e., when the
incident wavevector k is not perpendicular to the grating grooves [34]. RCWA has
also been developed and applied for 2D gratings as well as gratings of complicated
geometries and anisotropy [35]. Some RCWA codes and other codes for radiative
properties and thermal radiation can be found from author’s website [36].

Once the reflection and transmission coefficients are obtained, it is possible to
compute the fields inside and outside the grating structures, as well as to obtain the
grating efficiency for each diffracted wave by calculating the time-averaged Poynt-
ing vector. The directional-hemispherical reflectance ρ ′

λ is the summation of the
reflectance of all orders. Furthermore, the directional absorptance can be calculated
by α′

λ = 1 − ρ ′
λ, assuming region III is semi-infinite.

As an example, the reflectance at normal incidence of a silicon grating for both p
and s polarizations is shown in Fig. 9.22. The grating region simulates polycrystalline
silicon gates in the 65 nm devices, used in high-performance complementary metal-
oxide-semiconductor (CMOS) technology [31]. The grating period is � = 240 nm.
The thickness of the grating or the height of the gates is d = 50 nm. The width of the
gates is 30 nm, yielding a filling ratio of φ = 1/6. The properties of the gates and the
substrate are taken from data combined in Palik [2] for single-crystal silicon at room
temperature. Comparison has been made to the reflectance of plain silicon, which is
independent of the polarization, and that predicted by effective medium formulations
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Fig. 9.22 Calculated reflectance of silicon gratings. a TE wave (s polarization). b TM wave (p-
polarization) [31]

(to be discussed later). When compared with plain silicon, the reflectance is signif-
icantly reduced by the thin grating layer, and the reduction depends strongly on the
wavelength and the polarization. For TEwave, the reduction is largest atλ = 520 nm;
whereas for TM wave, the reduction is more significant at shorter wavelengths and
grating anomalies occur at the wavelengths of 240 and 380 nm. Figure 9.22 also
shows the calculation based on effective medium formulations as discussed next.

9.3.4 Effective Medium Formulations

When the grating period is much smaller than the wavelength, i.e., �/λ < (nIII +
sin θ)−1, all the diffractedwaves are evanescent waves, except the zeroth-order (spec-
ular direction) one. The reflection is similar to a smooth film with an effective uni-
form dielectric function. This approach is called the method of homogenization, and
the underlying physics is based on the effective medium theory (EMT). Effective
medium formulations have been used widely to describe the optical properties of
inhomogeneous media. The EMT was first postulated by Maxwell-Garnett [37] to
obtain the effective dielectric function of metallic particles embedded in a dielectric
medium. The general assumption is that the spacing separating the particles to be
sufficiently large or the filling ratio of the particles is small. Bruggeman [38] devel-
oped a different formulation by assuming that two materials are embedded in the
effective medium and obtained an expression, which has been successfully applied
to study the effect of porosity on refractive index and absorption coefficient of dif-
ferent materials. The dielectric function of the effective medium εEMA is related to
those of the two components by

φ
εEMA − εA

εA + 2εEMA
+ (1 − φ)

εEMA − εB

εB + 2εEMA
= 0 (9.81)
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where φ is the volume fraction (filling ratio) of material A. Bruggeman’s expression
given in Eq. (9.81) is often called the effectivemedium approximation (EMA). Rytov
[39] in 1956 first applied the EMT for a periodic structure by treating a stratified
mediumas a homogeneous uniaxial crystal and obtained the effective permittivity and
permeability tensors. The zeroth order is considered to be applicable when � � λ

and has been used for designing surfaces with antireflection and selective radiative
properties. The expression has been extended to include higher order terms for both
1D and 2D gratings [40]. The effective medium formulation for gratings depends on
the polarization. The zeroth-order expressions of the dielectric function for different
polarizations are given below:

εTE,0 = φεA + (1 − φ)εB, for TE wave (9.82)

1

εTM,0
= φ

εA
+ 1 − φ

εB
, for TM wave (9.83)

The results of the effective medium formulation are compared with those of the
RCWA in Fig. 9.22, in which the reflectance predicted by the EMA is independent
of the polarization. Both of the effective medium formulations cannot predict the
radiative properties well at shorter wavelengths. The agreement between effective
medium formulations and the RCWA is reasonable in the long-wavelength end,
except that the EMA is worse for TE wave. Chen et al. [31] performed a detailed
study on the effects of temperature, wavelength, polarization, and angle of incidence
on the absorptance of nanoscale patterned wafers for the CMOS technology. They
also compared the configuration of combined polycrystalline silicon gates with SiO2

trenches or a SiO2 film. The results demonstrate nanostructures can have a significant
impact on the radiative properties in unexpected ways. Hence, further research is
much needed to fully understand the effect of complex nanostructures on radiative
energy transfer and properties. The effective medium formulations will be further
discussed and applied to various inhomogeneous media such as carbon nanotube
arrays and metallodielectric photonic crystals in Sect. 9.5.7.

9.4 Bidirectional Reflectance Distribution Function
(BRDF)

As discussed in Chap. 8, the bidirectional reflectance distribution function (BRDF) is
a fundamental radiative property that describes the redistribution of energy reflected
from a rough surface and/or an inhomogeneous medium. Knowledge of BRDFs is
essential for the analysis of radiative heat transfer between rough surfaces. Because
the major heating source in rapid thermal processing is the lamp radiation, knowl-
edge of the radiative properties of materials is important for the thermal budget and
temperature control during the process. A challenging problem is for the accurate
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measurement ofwafer temperature based on radiation thermometry, because it is non-
intrusive and can achieve fast response. The accuracy of radiation thermometry can
be affected by the emittance change and the background radiation, especially when
the measured surface is rough, such as the backside of the silicon wafer [41]. The
surface roughness affects not only the emittance of the wafer but also the directional
distribution of the reflected radiation by scattering. Therefore, a detailed understand-
ing of the directional radiative properties of rough surfaces is essential to model the
apparent emittance, considering the background radiation and multiple reflections.

Roughness is a measure of the topographic relief of a surface. It describes features
of irregularities on the surface. Some common roughness parameters and functions
include rms roughness σrms, power spectral density (PSD), autocorrelation length
τcor, and slope distribution function (SDF) [42, 43]. A surface appears to be smooth
if the wavelength is much greater than σrms. A highly polished surface can have
an rms roughness on the order of nanometers. Some surfaces that look rough to
human eyes may appear to be smooth for the far-infrared radiation. The reflection of
radiation by rough surfaces is more complicated. For randomly rough surfaces, the
scattered energy distribution or the BRDF often exhibits a peak around the direction
of specular reflection, an off-specular lobe, and a diffuse component.

The BRDF of a surface can be predicted by solving the Maxwell equations if the
surface roughness is fully characterized. The boundary integral method is commonly
used to rigorously solve the Maxwell equations by matching the boundary condi-
tions for the electric and magnetic fields. Since the rigorous electromagnetic wave
solution generally requires a huge memory with a high-speed CPU, this approach is
practically applicable to 1D rough surfaces only, though in some cases, solutions for
2D rough surfaces have been obtained. It is common to use approximation methods,
such as the Rayleigh-Rice perturbation theory, the Kirchhoff approximation, and the
geometric optics approximation. These approximations are appropriate only within
certain ranges of roughness and wavelength.

The geometric illustration for the BRDF definition has been given in Fig. 8.11.
The Rayleigh-Rice perturbation theory can be used for relatively smooth surfaces,
i.e., for surfaces with σrms cos θi/λ < 0.05, or small particles on surfaces. It is
based on a statistical Fourier analysis of the surface and predicts that the BRDF is
directly proportional to the PSD and inversely proportional to the fourth power of
the wavelength [43]. The Kirchhoff approximation is another physical-optics-based
method that is often used to model the surface scattering with wave characteristics,
like wave diffraction, by assuming that the radius of the surface curvature is smaller
than thewavelength and there is nomultiple scattering. TheKirchhoff approximation
is applicable when the surface profile is slightly undulating (i.e., without sharp crests
and deep valleys). The condition for this approximation to hold is that σrms must be
relatively small compared with λ and τcor. In the Kirchhoff approximation, the effects
of shadowing and multiple scattering, which may be significant at large angles of
incidence, are usually neglected. Most studies assumed that the roughness statistics
is Gaussian.

The geometric optics approximation (GOA) neglects interference and diffraction
effects and treats a rough surface as one with many small facets where an incident
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ray reflects specularly. Under these assumptions, the ray-tracing technique can be
applied to predict the BRDF either with appropriate analytical expressions or with
a Monte Carlo method. The shadowing and multiple scattering can be taken into
account through a probability density function called shadowing ormasking function.
Multiple scattering can be incorporated into the geometric optics formulation with
the Monte Carlo method. The GOA is applicable to surfaces whose σrms and τcor
are greater than λ. There exists a good agreement between the simulation results
employing the GOA and the rigorous electromagnetic wave solution. However, the
simulation based on geometric optics requires much lesser computational resources
and takes much lesser time than that based on the rigorous solution. In the following,
the GOA-based analytical formulation and ray-tracing algorithms will be presented,
and the results are compared for anisotropic surfaces.

9.4.1 The Analytical Model

For the in-plane BRDF (either φr = φi or φr = φi+180◦), referring to Fig. 8.11, Zhu
and Zhang [44] unified several analytical models considering first-order scattering
only. The expression of the BRDF is given in the following:

fr(θi, φi, θr, φr) = p(ζx , ζy)S(θi)S(θr)

4 cos θi cos θr cos4 α
ρ(n, θ0) (9.84)

Here, p
(
ζx , ζy

)
is the 2D SDF, and ζx and ζy are the slopes in x- and y-directions,

given by

ζx = ∂ζ

∂x
= − sin θi cosφi + sin θr cosφr

cos θi + cos θr
(9.85a)

and

ζy = ∂ζ

∂y
= − sin θi sin φi + sin θr sin φr

cos θi + cos θr
(9.85b)

The microfacet reflectance ρ(n, θ0), where n is a complex refractive index and θ0
is the local incidence angle, is calculated from Fresnel’s reflection coefficients by
averaging over the two polarizations. In the denominator of Eq. (9.84), α is the
inclination angle of themicrofacet. Forφr = φi,α = (θi+θr)/2 and θ0 = |θi − θr|/2,
while forφr = φi+180◦, α = |θi − θr|/2 and θ0 = (θi+θr)/2.A shadowing function
S is used in Eq. (9.84) to account for shadowing and re-striking and is a function of the
incidence or reflection zenith angles and the rms slopew,which equals

√
2σrms/τ for

Gaussian surfaces. Smith [45] derived a shadowing function based on the Gaussian
statistics. The Smith shadowing function is expressed as
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S(θ) = 1 − 0.5erfc(�)

1 − 0.5erfc(�) + exp
(−�2

)/(
2
√

π�
) , 0 ≤ θ ≤ 90◦ (9.86)

where θ is the zenith angle of incidence (for shadowing) or reflection (for masking),

and � = tan(90◦ − θ)
/(√

2w
)
. While the expression is simple, the GOA allows

calculations for the in-plane BRDF with first-order scattering only.

9.4.2 The Monte Carlo Method

Lee et al. [46] developed two ray-tracing techniques for modeling the BRDF in
the Monte Carlo method, namely, the surface generation method (SGM) and the
microfacet slope method (MSM). The major difference lies in how to simulate the
rough surfaces. The SGM is the most commonly used ray-tracing method, in which
a surface realization (i.e., a numerically generated rough surface) is required prior to
tracing the ray bundles. Therefore, the origin and direction of reflection is determined
based on the physical location and orientation of the microfacet that the ray strikes.
The BRDF is obtained from an ensemble average over a sufficiently large number
of surface realizations. On the other hand, the MSM does not need to generate the
entire surface a priori. In the MSM, ray tracing is performed by generating a normal
vector of a microfacet for each ray bundle, based on the SDF and the direction of
the incoming ray [47]. Because a surface profile does not exist in the MSM, the
optical path of a propagating ray and whether the ray re-strikes the surface cannot
be directly determined. Hence, the MSM relies on a shadowing function, which is
the probability that a reflected ray re-strikes another surface facet, to model multiple
scattering. Zhu et al. [48] compared the two ray-tracing techniques with rigorous
solutions of the electromagnetic wave equation, using the boundary integral method,
for dielectric surfaces coated with a thin film. Although the MSM is not applicable
for very rough surfaces at oblique incidence, it takes less computational time and has
the advantage for multiscale problems, such as light scattering from semitransparent
materials, because theMSMalgorithm is compatible in bothmicro- andmacroscales.

The spectral method is commonly used for surface realization in the SGM by
using the power spectrum. The power spectrum can be obtained from the roughness
statistics. The autocorrelation function multiplied by σrms and the PSD are a Fourier-
transform pair. A rough surface, defined with the height distribution function and
the autocorrelation function, are usually generated with the spectral method, regard-
less of whether the surface is Gaussian or not. However, it is difficult to generate an
anisotropic surface with this method. On the other hand, the surface topographic data
from the AFMmeasurement are stored in a 2D array of the height, which can be con-
veniently incorporated into the SGM algorithm without using the spectral method.
The challenge is how to deal with the trade-off between the measurement area, spa-
tial resolution, noise and artifacts in the AFM measurements, measurement time,
and the number of measurements that will produce statistical meaningful results.
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The anisotropic SDF can be numerically evaluated as a 2D histogram using topo-
graphic data for use in the MSM. A weight function must be included in generating
microfacets because, statistically, the incident energy that is intercepted by a micro-
facet depends not only on the SDF but also on the projected area of the microfacet.
The rejection method allows the generation of microfacets, following the weighted
SDF, with uniform random numbers. The rejection method is suitable for any type
of distribution function as long as a comparison function is appropriately selected.
Meanwhile, the Smith shadowing function determines the probability of re-striking,
in the MSM.

The polarization state may change upon reflection by a 2D rough surface, because
of the random orientation of the microfacets. When the microfacet reflectivity is
calculated using Fresnel’s reflection coefficients, the change of the polarization state
should also be considered. In a 2D rough surface, even though the incident radiation
is purely s or p polarized (TE wave or TMwave, respectively), the radiation incident
at the microfacet can have both polarization components in the local coordinates.
Furthermore, depolarization may occur upon reflection so that the polarization of the
scattered wave is different from that of the incident wave. The geometrical relations
between wavevectors and polarization vectors delineate the contribution of each
polarization to the reflectivity. As illustrated in Fig. 9.23, unit vectors in the direction
of incidence and reflection, i.e., si and sr, respectively, are defined in the following:

si =
⎛
⎝− sin θi cosφi

− sin θi sin φi

− cos θi

⎞
⎠ and sr =

⎛
⎝ sin θr cosφr

sin θr sin φr

cos θr

⎞
⎠ (9.87)

The vectors si and ẑ define the plane of incidence in the global coordinates, and
the vectors sr and ẑ define the plane of reflection. A unit vector hi perpendicular and
a unit vector vi parallel to the plane of incidence characterize the two polarizations of
the incident wave. Here, hi indicates the electric field for s polarization while vi the
electric field for p-polarization. Similarly, hr and vr represent the two polarizations
of the reflected wave. Hence,

Fig. 9.23 Schematic of
incident and scattered rays.
Here, x, y, and z are the
global coordinates, where
the x-y plane is the mean
plane of a rough surface
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hi = ẑ × si∣∣ẑ × si
∣∣ =

⎛
⎝ sin φi

− cosφi

0

⎞
⎠ and hr = ẑ × sr∣∣ẑ × sr

∣∣ =
⎛
⎝− sin φr

cosφr

0

⎞
⎠ (9.88)

vi = hi × si =
⎛
⎝ cos θi cosφi

cos θi sin φi

− sin θi

⎞
⎠ and vr = hr × sr =

⎛
⎝ cos θr cosφr

cos θr sin φr

− sin θr

⎞
⎠ (9.89)

Calculation of the reflectivity involves two conversions of the polarization compo-
nents. The s- and p-polarization components of the incidentwave defined in the global
coordinates are first converted to their counterparts in the local coordinates. The local
polarization components are multiplied by Fresnel’s reflection coefficients and then
converted to the global components. Accordingly, the microfacet reflectivities for
the co- and cross-polarizations can be expressed as follows:

ρss = ∣∣(vr · si)(vi · sr)rs + (hr · si)(hi · sr)rp
∣∣2/ |si × sr|4 (9.90a)

ρsp = ∣∣(hr · si)(vi · sr)rs − (vr · si)(hi · sr)rp
∣∣2/ |si × sr|4 (9.90b)

ρps = ∣∣(vr · si)(hi · sr)rs − (hr · si)(vi · sr)rp
∣∣2/ |si × sr|4 (9.90c)

ρpp = ∣∣(hr · si)(hi · sr)rs + (vr · si)(vi · sr)rp
∣∣2/ |si × sr|4 (9.90d)

where r denotes Fresnel’s reflection coefficient. The subscripts s and p stand for each
polarization. On the left-hand side, the double subscripts indicate the polarization
for the incidence and the reflection, respectively.

In terms of the microfacet reflectivities, the reflected energies Gr,s and Gr,p are
related to the incident energies G i,s and G i,p by

[
Gr,s

Gr,p

]
=
[

ρss ρps

ρsp ρpp

][
Gi,s

Gi,p

]
(9.91)

The reflectivity is defined as a ratio of the reflected energy Gr = Gr,s + Gr,p

to the incident energy G i = G i,s + G i,p; thus, it depends on the polarization state
of the incident wave. To facilitate the calculation, the incident energy of each ray
bundle is set to unity such that

(
G i,s,G i,p

) = (1, 0) for s-polarization,
(
G i,s,G i,p

) =
(0, 1) for p-polarization, and

(
G i,s,G i,p

) = (0.5, 0.5) for random polarization (i.e.,
unpolarized incidence). For the first reflection, Gr,s and Gr,p are calculated from
Eq. (9.91). For multiple reflections, the previously reflected energies are substituted
for G i,s and G i,p, and the next reflected energy is updated according to Eq. (9.91).
Each ray bundle is traced until it leaves the surface, and then, the information of its
direction and energy for each polarization is stored in a database. Because the energy
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of the bundle is reduced after each reflection, there is no need to use random numbers
to decide whether a ray bundle is reflected at the microfacet or not.

In a special case, when the planes of incidence and reflection are identical, the
polarization state is maintained for either s- or p-polarization if only the first-order
scattering has been considered. Thismeans that the vectorshi andhr are either parallel
or antiparallel (refer to Fig. 9.23); consequently, hi · sr = 0 and hr · si = 0. It can be
seen from Eqs. (9.90a)–(9.90d) that ρsp = ρps = 0, ρss = |rs |2, and ρpp = ∣∣rp∣∣2.
The corresponding BRDF is called the in-plane BRDF (φr = φi or φr = φi + 180◦ ).
Nevertheless, the cross-polarization term is nonzero for the in-plane BRDF when
multiple scattering is significant. After a large number of ray bundles have been
traced, the BRDF can be calculated in terms of the energy of the ray bundles:

fr(λ, θi, φi; θr, φr) = 1

G i(θi, φi)


Gr(θr, φr)

cosθr
�r
(9.92)

where G i(θi, φi) is the total energy of the incident ray bundles, and 
Gr(θr, φr) is
the energy of the ray bundles leaving the surface within the solid angle 
�r, in the
direction (θr, φr). The integration of the BRDF yields the directional-hemispherical
reflectance. The directional emittance can be obtained according to the conservation
of energy and Kirchhoff’s law.

9.4.3 Surface Characterization

In most studies, surface roughness is assumed to satisfy the Gaussian statistics in
the derivation of the BRDF model and for the surface generation in the Monte Carlo
simulation. Furthermore, the roughness statistics of 2D rough surfaces is assumed to
be isotropic in most publications so that the autocorrelation function is independent
of the direction. However, the Gaussian distribution may miss important features
of natural and man-made rough surfaces that are strongly anisotropic. Before the
invention of the AFM, the surface profile was usually measured with a mechanical
profiler that scans the surface line-by-line. Some mechanical stylus profilers can
measure rough surfaces with a vertical resolution of a few nanometers. However,
the lateral resolution is usually on the order of 1 μm due to the large radius of the
stylus probe. Because the radius of curvature of the probe tip is in the range from
5 to 50 nm, AFM can provide detailed information on the topography of a small
area on the microrough surfaces, with a vertical resolution of subnanometers and a
lateral resolution around 10 nm. The result is stored in an array, containing the height
information, z(m, n), where m = 1, 2,…, M and n = 1, 2,…, N are the points along
the x- and y-directions, respectively.

To evaluate the 2Dslope distribution p(ζx , ζy), each surface element is determined
by the four closest nodes in the data array. The four-node element can be considered
as two triangular surfaces with a common side. The surface normals for the two
triangles can be averaged to give the mean slope of the surface element such that
[44]



9.4 Bidirectional Reflectance Distribution Function (BRDF) 545

Fig. 9.24 2D slope distribution obtained from AFM topographic measurements for two samples:
a Si-1; b Si-2

ζx = zm+1,n − zm,n

2l
+ zm+1,n+1 − zm,n+1

2l
(9.93a)

ζy = zm,n+1 − zm,n

2l
+ zm+1,n+1 − zm+1,n

2l
(9.93b)

where l is the lateral distance between adjacent data points. The SDF can be deter-
mined by evaluating the slopes of all measured surface elements. For a scan area of
100 × 100 μm2, the lateral interval l ≈ 0.2μm, when the data are stored in a 512
× 512 array.

The 2D SDFs from the AFM measurement in the tapping mode, for two lightly
doped < 100 > single-crystal silicon surfaces, are shown in Fig. 9.24 [44]. In the
contactmode, lateral or shear forces can distort surface features and reduce the spatial
resolution. Thus, deep valleys may not be correctly measured. The AFM scanning
performed in the tappingmodewith sharper silicon tips allowsmeasuring precipitous
slopes. The two SDFs are non-Gaussian and anisotropic, while the anisotropy of Si-1
is not as striking as that of Si-2. The SDF of Si-1 contains only one dominant peak
at the center, indicating that a large number of microfacets are only slightly tilted.
The SDF of Si-2 also has a dominant peak at the center, though smaller than that of
Si-1. Four side peaks can also be seen that are nearly symmetric. These side peaks
are associated with the formation of {311} planes, during the chemical etching in
the (100) crystalline wafer [44, 46]. The angle between the (100) plane and any of
the four (311) planes is cos−1(3/

√
11) = 25.2◦, which is close to the location of the

observed side peaks.

9.4.4 Comparison of Modeling with Measurements

Figure 9.25 compares the predicted BRDFs based on the slope distribution with the
BRDFs measured using TAAS at λ = 635 nm, for Si-2, which is strongly anisotropic
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Fig. 9.25 Comparison of Monte Carlo model based on the MSM and the measured in-plane BRDF
for Si-2. The observation angle θobs is the same as the reflection polar angle when φr = φi + π and
negative refraction polar angle when φr = φi [46]

[46]. For clarity, only the prediction using theMSMis presented. The predictionswith
the SGMand the analyticalmodel yield a similar agreementwith experiments. As can
be seen from Fig. 9.25, the prediction and the measurement agree well, except near
θobs = 0◦, where the measurements cannot be taken within ±2.5° and the simulation
has a large fluctuation. The simulation captures the general features and trends of the
measured BRDF, while some discrepancies exist near the side peaks. For θi = 0◦ and
φi = 45◦, as shown in Fig. 9.25b, the BRDF contains two large side peaks associated
with the side peaks in the SDF for Si-2 at |ζx | ≈ ∣∣ζy∣∣ ≈ 0.38 in Fig. 9.24b. TheMonte
Carlo simulations also predict the side peaks located approximately at θr = 57◦,
which deviates somewhat from the measured value of 50°. Based on Snell’s law, the
inclination angle of microfacets is half of θ r, at θi = 0◦. Therefore, the measured side
peaks in the BRDF correspond to an inclination angle 25°, which is very close to the
angle of 25.2° between any of the four {311} planes and the (100) plane. On the other
hand, the predicted side peaks correspond to an inclination angle of 28.5°, which is
almost the sameas that calculated from the slope at |ζx | = ∣∣ζy∣∣ = 0.38.Consequently,
the side peak position obtained from the BRDF measurement is more reliable than
that predicted by theMonte Carlo methods using the topographic data from the AFM
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measurement. Due to the artifacts in the AFM measurements, the BRDF values are
underpredicted when 15◦ < θr < 50◦ and overpredicted when 50◦ < θr < 80◦.
When θi = 45◦, theMonte Carlo method overpredicts the specular peak, presumably
due to the limitation of geometric optics. The disagreement between the predicted
and measured BRDFs, for 60◦ < θobs < 85◦, may be due to the combined result
of the artifacts in the AFM measurement, the limitation of the GOA, and multiple
scattering. For θi = 45◦ and φi = 45◦, a small side peak appears at θobs = −60◦ in
the measured curve and at θobs = −71◦ in the predicted curve. This is believed to
be due to microfacets with {111} orientation that have an inclination angle of 54.7°.
The small side peak should occur around θobs = −64.4◦ based on simple geometric
arguments.

Figure 9.26 shows the directional-spectral emittance measured using an inte-
grating sphere coupled with a monochromator [49]. The directional emittance was
calculated from the measured the directional-hemispherical reflectance at an inci-
dence angle of approximately 7°. The emittance values calculated from the models
based on Gaussian distribution and anisotropic slope distribution are compared with
those obtained from experiments. For Si-1, which is nearly isotropic, the difference
between the models is small and the agreement with the experiment is excellent.
The combined uncertainty in the measurement is estimated to be 0.01, except at λ =
1000 nm, where the silicon wafer becomes slightly transparent. For Si-2, however,
the Gaussian model underpredicts the emittance and there is a large enhancement of
the emittance due to anisotropy, as large as 0.05. The Monte Carlo model, based on
the MSM, significantly improves the prediction. Given the fact that the AFM surface
topographic measurements may not perfectly match the actual surface slope distri-
bution, an uncertainty of 0.01 has been estimated for the Monte Carlo model. It can
be seen that the prediction agrees with the measurement better at short wavelengths,
where the geometric optics is more suitable.

The out-of-plane BRDFs of Si-1 and Si-2, coated with a Au film, are calculated
with the MSM. The results at θi = 30◦ are shown in Fig. 9.27 as contour plots in a

Fig. 9.26 Comparison of the predicted and measured emittance of Si-1 and Si-2, in a polar angle
approximately equal to 7° [49]
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Fig. 9.27 BRDF predicted by the MSM at θi = 30◦ for random polarization [46]: a Au-1 at
φi = 0◦, b Au-1 at φi = 45◦, c Au-2 at φi = 0◦, and d Au-2 at φi = 45◦. In the polar contour plots,
the radial coordinate corresponds to θ r, and the azimuthal coordinate corresponds to φr

polar coordinates system [46]. In these plots, the coated rough surfaces are identified
as Au-1 and Au-2, respectively. The radial and azimuthal coordinates correspond to
θr and φr, and the color contour represents fr cos θr.

The BRDFs depend little on φr around the specular direction; however, the depen-
dence becomes large as the angular separation from the specular peak increases. The
region where the BRDF is independent of φr is broader for Au-1 than for Au-2.
The predicted BRDFs for Au-2 display a strong specular reflection peak, together
with the four large side peaks associated with {311} planes. In addition, a small side
peak associated with a {111} plane appears at large θ r, as illustrated in Fig. 9.27c
at φr = 294◦ and another in Fig. 9.27d at φr = 45◦. The results for Si without Au
coating are similar except with smaller BRDF values and hence are not shown. The
actual magnitudes of the small side peaks may be smaller than those predicted by
the MSM, and their positions may shift toward smaller θ r. Nevertheless, Fig. 9.27
indicates that the Monte Carlo method is an effective technique to study the BRDFs
for anisotropic surfaces. A comprehensive review of surface and volume scattering
can be found from Zhu et al. [50].
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9.5 Plasmon, Polariton, and Electromagnetic Surface Wave

In metals, electrons move freely like a gas as discussed previously. This is somewhat
similar to the plasma state where a gas is ionized and becomes highly conductive;
however, in a solid medium, the ion cores with positive charges are at fixed locations.
The collective rapid oscillations of electrons (or electron density) in a plasma or
metal are called plasma oscillation, which form a longitudinal wave since the field
is oscillating in the same direction as the wavevector. The oscillation frequency is
known as the plasma frequency, already introduced in Sect. 8.4.2. A plasmon is the
quantum or quasiparticle of plasma oscillation. Based on the simple Drude model,
the dielectric function due to free electrons in metal can be written as

ε(ω) = 1 − ω2
p

ω2
(9.94)

which can be obtained from Eq. (8.118) by neglecting damping and setting ε∞ = 1.
Plasmon can be excited by an oscillating electric field, such as in electron energy
loss spectroscopy [51]. According to Eq. (8.3) for a charge neutral medium, ∇ ·D =
∇·(εmE) = 0.This requires either∇·E = 0 or εm = ε0ε = 0.However,when ε �= 0,
the electric field must be perpendicular to the wavevector, and this a transverse wave
cannot excite a plasmon or a longitudinal charge oscillation in a bulk. It is therefore
only possible to couple a plasmon in a bulk medium with an electromagnetic wave
when ε = 0, so that the electric field can have a nonzero component in thewavevector
direction. The coupling of a photon and a plasmon is called a plasmon polariton. The
concept and term of polaritons were introduced in the 1950s to describe the coupling
between photons and quasiparticles (such as plasmons, phonons, and excitons) in
solids [52].

When ε �= 0, only transverse electromagnetic waves can exist in the medium.
According to Eq. (8.24), the wavevector and the angular frequency are related by

k(ω) = ω

c0

√
ε(ω) or ω(k) = c0k√

ε(k)
(9.95)

The above relationship is called the plasmon-polariton dispersion. It suggests that
propagatingwaves can exist in themediumonly at frequencies higher than the plasma
frequency: ω > ωp. In real materials, due to transitions at very high frequencies,
the zero permittivity (or near-zero permittivity if damping is considered) occurs at
ω ≈ ωp/

√
ε∞.

From lattice dynamics, phonons have high-frequency longitudinal and transverse
modes, called optical phonons, as discussed inChap. 6. In ionic crystals, lattice vibra-
tions generate dipole moments with oscillating electric fields. Both the longitudinal
modes and transverse modes can interact with infrared photons, forming phonon
polaritons. The interaction modifies the photon dispersion so the phase speed is
frequency-dependent due to the dispersion of the dielectric function. The interaction
also modifies the phonon behavior since it allows propagating waves to exist inside
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the solid in certain spectral regions rather than only at the resonance frequencies for
longitudinal and transverse optical phonons: ωLO and ωTO [53]. Rewrite Eq. (8.123)
by neglecting damping, we have

ε(ω) = ε∞
(

ω2
LO − ω2

ω2
TO − ω2

)
(9.96)

Equation (9.96) gives a low-frequency dielectric constant ε(ω → 0) =
ε∞ω2

LO/ω2
TO. As the frequency increases, the dielectric function increases to a pole

at ω = ωTO. It becomes negative in the region ωTO < ω < ωLO and varies from −∞
to 0 as ω increases from ωTO to ωLO. Beyond ωLO, the dielectric function increases
from zero to ε∞. The interaction of photon and phonon yields two branches where
propagating waves can exist inside the solid. Between ωTO and ωLO the wavevector
calculated from Eq. (9.95) is purely imaginary. Subsequently, no propagating waves
can exist inside the medium. As discussed in the previous chapter, this region is
called the reststrahlen band where the reflectance is very high.

The dispersion curves according to Eq. (9.95) are plotted in Fig. 9.28 for both
plasmon polaritons with Eq. (9.94) and phonon polaritons with Eq. (9.96). They
are often called bulk (or volume) plasmon and phonon polaritons, respectively. As
shown in Fig. 9.28a, the horizontal dashed line is the excitation frequency for a bulk
plasmon polariton and the solid line is the dispersion curve when propagating waves
can exist (ω > ωp). The inclined dash-dotted line shows the linear dispersion when
the dielectric function is equal to 1 and is independent of frequency. Similarly, the two
horizontal dashed lines in Fig. 9.28b correspond to transverse and longitudinal optical
phonon frequencies, respectively. The values of ε∞ = 3 and ωLO/ωTO = 1.5 are
used to produce the plots. The inclined dash-dotted line represents light propagation
in a nondispersive dielectric with a (constant) phase speed, vp = c0/

√
ε∞. The

Fig. 9.28 Dispersion curves for a a plasmon polariton and b a phonon polariton, according to
Eqs. (9.94)–(9.96). Note that normalized coordinates are used
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bulk phonon polariton modifies the dispersion and results in a branch below ωTO and
another branch aboveωLO. The phase speed of electromagnetic waves in the medium
is a function of frequency in these two branches where waves can propagate inside
the medium.

Many unique phenomena can be explained or better understood by introducing
the concept and properties of polariton excitations. Up to this section, the dielec-
tric function has been used in calculating radiative properties without any in-depth
discussion on the nature of polaritons. In the following subsections, wewill study sur-
face polaritons, coupled polaritons, localized surface plasmon polaritons, magnetic
polaritons, graphene plasmons, and hyperbolic polaritons as well. The terminologies
used in the literature change over time andmay vary to some extent between different
authors. This can be rather confusing for researchers who are relatively new to the
field. It should be noted that oftentimes it is indeed difficult to clearly distinguish
one type versus the other type of polaritons or modes; therefore, it is not surprising
that different authors may analyze the problem from different aspects as well as use
different notations and terminologies.

9.5.1 Surface Plasmon (or Phonon) Polariton

Plasmons can be formed near the surface of themetal, where electrons oscillate along
the interface; such plasmons are called surface plasmons. The quantum that describes
the interaction between a surface plasmon and a photon is called a surface plasmon
polariton (SPP). The interaction can result in strong absorption or emission of pho-
tons in a specific direction, characterized by the wavevector of the electromagnetic
wave. SPPs have played an important role in near-field microscopy, nanophotonics,
and biomolecular sensor applications [54–56]. Surface plasmons usually occur in
the visible or near-infrared region of the electromagnetic wave spectrum for highly
conductive metals such as Ag, Al, and Au. It is also possible to excited SPPs at longer
wavelengths in doped semiconductors [57].

In some polar dielectric materials, phonons, or bound charges can also interact
with the electromagneticwaves in themid-infrared spectral region to cause resonance
effects near the surface; the associate quasiparticle is called surface phonon polariton
(SPhP). SPhPs have applications in tuning the thermal emission properties [58, 59]
and nanoscale nondestructive imaging [60].

The excitation of an SPP or SPhP gives rise to a surface electromagnetic wave,
which propagates along the interface and decays into both media. It should be noted
that in traditional materials, only TM waves can excite SPPs or SPhPs because the
electric field must have a component parallel to the charge oscillation. Furthermore,
the electric field has a nonzero component both parallel with and perpendicular to the
interface. Hence, surface polaritons cannot simply be characterized as a transverse
wave or a longitudinal wave. In the following, the basic mechanisms of surface
polaritons are presented, with an emphasis on the fields near the interface and the
influence on the radiative properties.
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As shown in Fig. 9.29a, the charges oscillate along the surface or interface between
air and a metal when a surface plasmon polariton is excited. The field associated with
a SPP is localized at the surface. Oscillations of the charge in the x-z plane result
in a magnetic field in the y-direction. The amplitude of the field decays away from
the interface, as shown in Fig. 9.29b. Note that η = Im(kz) and both η1 and η2
are positive. Surface plasmons can be excited by electromagnetic waves and are
important for the study of optical properties of metallic materials, especially near the
plasma frequency,which usually lies in the ultraviolet. The requirement of evanescent
waves on both sides of the interface prohibits the coupling of propagating waves in
air directly to surface plasmons. For this reason, surface electromagnetic waves are
often regarded as nonradiative modes. Another way to understand the excitation
condition is that both photons and surface polaritons must have the same frequency
(energy) and parallel wavevector component (momentum). However, the momentum
of SPPs (�kSPP) is greater than that of photons in free space (�k0).The attenuated total
reflectance (ATR) arrangements are commonly used to excite surface plasmons, as
illustrated in Fig. 9.30, for (a) prism-air-metal configuration named after A. Otto and
(b) the prism-metal-air configuration named after E. Kretschmann and H. Raether.
When light is incident from the prism, kx can be sufficiently large to match the SPP
momentum. It is therefore possible for evanescent waves to occur simultaneously in
the underneath metallic and air layers. A detailed discussion with historical aspects
can be found from Raether [61].

In addition to the requirement of evanescent waves on both sides of the interface,
the polariton dispersion relations must be satisfied. They are expressed as follows
when both media extend to infinity in the z-direction:

k1z
ε1

+ k2z
ε2

= 0 for TM wave (9.97)

k1z
μ1

+ k2z
μ2

= 0 for TE wave (9.98)

Fig. 9.29 Illustration of surface plasmon polariton. a Charge fluctuations and the magnetic field
at the interface between a metal and air. b The exponentially decaying field amplitudes away from
the interface
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Fig. 9.30 Typical configurations for coupling electromagnetic waves with surface plasmons using
attenuated total reflectance arrangements. a The Otto configuration (prism-air-metal). b The
Kretschmann configuration (prism-metal-air); also called the Kretschmann-Raether configuration.
Note that a polar dielectric may be substituted for the metal to excite SPhPs

Let us consider lossless media first. In order for evanescent waves to occur, we
must have k1z = iη1 and k2z = iη2 with η1 and η2 being positive, in order for the field
eikx x−ik1z z = eikx x+η1z to decay toward z = −∞ and eikx x+ik2z z = eikx x−η2z to decay
toward z = ∞. This means that the sign of permittivity must be opposite for media
1 and 2 in order to couple a surface plasmon with a TM wave. On the other hand,
we will need a magnetic material with negative permeability for a TE wave to excite
a surface polariton. In fact, surface magnon polaritons have been demonstrated in
the microwave region [62]. A magnon is the quantum for the collective motion of
magnetic dipoles. As discussed in Chap. 8, negative index materials (NIMs) exhibit
simultaneously negative permittivity and permeability in the same frequency region.
They are sometimes called double-negative (DNG) materials. Therefore, both TE
and TM waves may excite surface polaritons with a NIM, as predicted by Ruppin
[63].

Comparing Eqs. (9.97) and (9.98) with Fresnel’s reflection coefficients,
Eqs. (8.68a) and (8.77a), respectively, it can be seen that the condition for the exci-
tation of surface polaritons is that the denominator of the reflection coefficient be
zero. A pole in the reflection coefficient is an indication of a resonance. Therefore,
the excitation of a surface plasmon polariton gives rise to a surface plasmon res-
onance (SPR). Taking a TM wave for example, since k21z = μ1ε1ω

2/c2 − k2x and
k22z = μ2ε2ω

2/c2 − k2x , we can solve Eq. (9.97) to obtain

kx = ω

c

√
μ1/ε1 − μ2/ε2

1/ε21 − 1/ε22
(9.99)
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Equation (9.99) relates the frequency with the parallel component of the wavevec-
tor and it may be considered as another form of the polariton dispersion relation
or SPR condition. It should be noted that solutions of this equation are for both
k1z/ε1 + k2z/ε2 = 0 and k1z/ε1 − k2z/ε2 = 0, i.e., not only the poles but also the
zeros of the Fresnel reflection coefficient are included. For nonmagnetic materials,
Eq. (9.99) becomes

kSPP = ω

c0

√
ε1ε2

ε1 + ε2
(9.100)

Here, kSPP signifies a surface plasmon polariton resonance or excitation condition.
It should be emphasized that it is the parallel component of the wavevector, since
SPP propagates along the interface. One should bear in mind that the permittivities
are in general functions of the frequency. For a metal with a negative real permittivity
(ω < ωp), the normal component of the wavevector is purely imaginary for any real
kx because μεω2/c20 < 0. Thus, evanescent waves exist in metals regardless of the
angle of incidence.

Consider either the Otto configuration or Kretschmann-Raether configuration,
shown in Fig. 9.30. We can use the three-layer structure with a middle layer, medium
1, of thickness d. According to Eq. (9.7), the reflection coefficient can be expressed
as follows:

r = r01 + r12e2iψ

1 + r01r12e2iψ
= r01 + r12e−2η1d

1 + r01r12e−2η1d
(9.101)

where the subscript 0 signifies the incidence medium, which is the prism, and ψ =
k1zd = iη1d is the phase shift. When d is sufficiently large, exp(−2η1d) � 1, and
the reflectance R′

λ = rr∗ ≈ r01r∗
01 is close to unity. When surface polaritons are

excited, however, r12 increases dramatically and thus it is possible for r12e−2η1d to be
of the same magnitude as r01, but with opposite phases (i.e., a phase difference of π ).
At the condition of surface plasmon resonance, the reflectance R′

λ drops suddenly.
Let us use an example to illustrate the polariton dispersion curves and the effect on
the reflectance in ATR arrangements.

Example 9.7 Calculate the dispersion relation between Al and air. Calculate the
reflectance versus angle of incidence for both the Otto and Kretschmann-Raether
configurations at λ = 500 nm, using Al as the metallic material. Determine the
polariton propagation length at the wavelength λ = 500 nm. Assume the prism is
made of KBr with εd = 2.46 and the dielectric function of Al can be described by
the Drude model.

Solution The Drude model parameters for Al have been given in Example 8.7.
Thus, we have ε2(ω) = 1 − ω2

p/(ω
2 + iωγ ), where the plasma frequency ωp =

2.4 × 1016 rad/s and the scattering rate γ = 1.4 × 1014 rad/s. One way to calculate
the dispersion relation is to assume ω is real and calculate kx (ω) = k ′

x (ω) + ik ′′
x (ω).

The dispersion curves between Al and air (εair = 1) are usually plotted in an ω − kx
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graph, for the real part of kx shown in Fig. 9.31a by the solid line. At very low
frequencies, the magnitude of ε2 is so large that kx ≈ ω/c0. Note that the dash-
dotted line with kx = ω/c0 represents the light line. On the left of this line, there
exist propagatingwaves in air; whereas on the right of the light line, evanescentwaves
occur in air because kx > ω/c. The light line can be considered as a wave incident
from air at 90° incidence. On the polariton dispersion curve, kx increases quickly
as ω increases and reaches an asymptote at ω = ωp/

√
2, when the real part of the

dielectric function of Al approaches to–1. Between ωp/
√
2 < ω < ωp, the real part

of the dielectric function of Al becomes negative with an absolute value less than 1.
Therefore, the solution of Eq. (9.100) has a large imaginary part, while the real part
of kx drops to near zero, as reflected by the bending of the dispersion curve toward
left and the steep rise upward. Beyond ω > ωp, metal becomes transparent and
the real part of the dielectric function becomes positive. Solutions beyond ω > ωp

correspond to zeros in the reflection coefficient and thus are not the solutions for
Eq. (9.97), which are poles of the reflection coefficient. Notice that the dotted line
refers to the light line of the prism. In the shaded region, there exist evanescent
waves in air and propagating waves in the prism; as a result, surface plasmons can
be coupled to propagating waves in the prism.

The reflectance (R′
λ = rr∗) is calculated from Eq. (9.101) at the wavelength

λ = 500 nm, corresponding to a wavenumber of 20,000 cm−1. As can be seen from
Fig. 9.31a, at this frequency, the surface polariton curve is very close to the light
line in air. Therefore, the excitation of SPP is expected to be near the critical angle
θc ≈ 39.6◦ between the prism and air. The reflectance would be close to 1 at θ > θc.
However, as shown in Fig. 9.31b, the reflectance drops suddenly around 40° due
to SPR. Furthermore, the reflectance dips are very sensitive to the thickness of the
middle layer. In the Otto configuration, the air thickness of 900 nm yields a sharp
dip. For the Kretschmann-Raether configuration, on the other hand, a metallic film
thickness of 24 nm yields a sharp dip in the reflectance. If the Al film exceeds 50 nm,

Fig. 9.31 a The dispersion relation of surface plasmon polaritons between Al and air, where kx is
the real part solution of Eq. (9.100). b Reflectance in ATR arrangements, either with Al or air as
the middle layer
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the reflectance is close to 1. Therefore, the location and width of the reflectance
minimum depend on the thickness of the middle layer.

When a surface plasmon is excited, the reflectance minimum implies a strong
absorption near the metal surface due to coupling of the electromagnetic energy to a
surface wave. The propagation length of the surface electromagnetic wave or surface
plasmon can be determined using the imaginary part of kx . Note that the field can be
expressed as eik

′
x x−k ′′

x x for surface waves propagating in the positive x-direction and
as eik

′
x x+k ′′

x x for surface waves propagating in the negative x-direction. The power is
proportional to the square of the field amplitude, and the e−1 power decaying length
or the polariton propagation length is given by [61].

lsp = 1/(2k ′′
x ) (9.102)

Using Eq. (9.100) and the given dielectric functions, we obtain lsp ≈ 80μm.Note
that the Drude model somewhat underpredicts the imaginary part of the dielectric
function. If Im(ε) of Al is taken as 10 at λ = 500 nm, one obtains lsp ≈ 13μm, still
much longer than the wavelength.

An alternative way to calculate the dispersion is to take thewavevector component
kx as purely real while using a complex frequency ω̃ = ω′ + iω′′ [61]. In this case,
the imaginary part of the frequency represents a temporal decay. In practice, if only
the resonance condition is desired, the dispersion solution is often approximated by
dropping the imaginary part in the dielectric function, which gives a real function
ω = ω(kx ) as the dispersion relation. Caution should be taken when the imaginary
part of the dielectric function is large. In such a case, a sharp resonance does occur,
though the spectrum may contain an extremum close to ω = ω(kx ).

It should be mentioned that SPPs or SPhPs can also be excited by using a grating.
When light is incident onto a grating at a kx value that is less than kSPP, the parallel
wavevector component of reflected and refracted waves depends on the diffraction
order according to the Bloch–Floquet condition: kx, j = kx + 2π j/�, where j is
the diffraction order and � is the period of the gratings. For this reason, surface
polaritons can be excited along a grating surface in the direction perpendicular to
the grooves. To analyze the grating excitation of SPP, the dispersion relation can be
folded into the region for kx ≤ π/� (first Brillouin zone). As an example, Fig. 9.27a
shows the SPP dispersion relation for a binary grating made of Ag with � = 1.7μm
in the reduced zone scheme. The SPP dispersion curve is very close to the light line.
The solid lines are the folded dispersion curves; the dash-dotted lines, which are
also folded, correspond to an incidence angle of 30°. The intersections identify the
location where surface plasmons can be excited for a TM wave incidence, when the
magnetic field is parallel to the grooves.

The reflectance of a shallow grating on Ag is calculated and plotted in Fig. 9.32b
at θ = 0◦ and 30◦. The grating height d = 100 nm, and the filling ratio φ = 0.65 (see
Fig. 9.21 for the grating geometry). For a TE wave, no drops exist in the reflectance
because surface waves cannot be excited. The reflectance is very high for TE waves
and has little difference between θ = 0◦ and θ = 30◦. For a TM wave, the excitation
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Fig. 9.32 a Dispersion curves for gratings. b Reflectance for a Ag grating

of surface polaritons is responsible for the dips in the reflectance. Furthermore, the
frequency locations agree well with those predicted by the dispersion curves. Note
that at normal incidence, the excitation frequencies are located at the intersections
between the dispersion curve and the vertical axis, as shown in Fig. 9.32a. These dips
have also been known asWood’s or theRayleigh-Wood anomalies, when a diffraction
order just appears at the grazing angle [64]. The actual resonance frequency may
shift slightly from the frequency associated with the appearance or disappearance of
a diffraction order, because the dispersion curve is not a straight line [34, 35, 65].
The Rayleigh-Wood anomaly may also occur for gratings whose dielectric functions
have a positive real part, i.e., not associated with surface plasmon polaritons. Surface
roughness is yet another way to excite surface waves because a rough surface can
be considered as a Fourier expansion of multiple periodic components, each acting
as a grating. Plasmonic excitations have been used to enhance the performance of
photovoltaic cells using corrugated metallic film or a layer of metallic nanoparticles
[66].

It should bementioned that many polar dielectric or semiconductor materials such
as MgO, SiC, and GaAs contain a phonon absorption band, called the reststrahlen
band, whereRe(ε) is negative and Im(ε) is very small. The surface polariton condition
described in Eq. (9.97) can be satisfied in the infrared to excite SPhPs [58–60]. In
the following discussion of polaritons, the word “metal” is used to signify a material
with a negative real permittivity or a negative-ε material.

9.5.2 Localized Surface Plasmon Resonance

When surface plasmons are confined to small structures, such as the tip of a scanning
microscopic probe, quantum dots or nanoparticles, nanowires, or nanoapertures, they
are referred to as localized plasmons. The resonance behavior in nanoparticles or
quantum dots has enormous applications in chemical sensing andmedical diagnoses.
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Gustav Mie in 1908 developed a formulation to describe scattering and absorption
of small spherical particles. The exact solution is expressed in an infinite series of
spherical multipole partial waves [67]. When the radius r0 is much smaller than the
wavelength, the scattering efficiency factor and the absorption efficiency factor of
the sphere can be expressed as [1]

Qsca,λ = 8

3
ξ 4

∣∣∣∣ ε2 − ε1

ε2 + 2ε1

∣∣∣∣
2

(9.103)

and

Qabs,λ = 4ξ Im

(
ε2 − ε1

ε2 + 2ε1

)
(9.104)

where ξ = 2πr0/λ1 is called the size parameter with λ1 being the wavelength in
the surrounding dielectric medium (matrix) whose dielectric function is ε1; while ε2
is the dielectric function of the particle [67]. It should be noted that the efficiency
factors may exceed one; this is why the word “factor” is appended after efficiency.
Nevertheless, the word factor is often dropped in the literature.

Equations (9.103) and (9.104) are the dipole approximation, also called quasi-
static or electrostatic limit, of the exact solutions of Maxwell’s equations for light
scattering by a sphere. While Eq. (9.103) has the same form as the expression of
Rayleigh scattering with the 1/λ4 relationship of the scattering cross section, defined
asCsca = πr20Qsca,λ, the scattering ofmetallic spheres is distinctly different from that
of dielectric spheres because the dielectric function ofmetals is complex and depends
strongly on the wavelength. The scattering cross section is usually a very complex
function of thewavelength. This is especially truewhen the resonance condition ε2 =
−2ε1 is satisfied, resulting in a localized surface plasmon resonance (LSPR) whose
quanta are called localized SPPs. Geometric optics completely failed to describe
scattering and absorption of small particles. The scattering cross section can bemuch
greater than the actual surface area, especially at theLSPR.Furthermore, the absorbed
energy can exceed that of a blackbody of the same size [67]. In fact, the blackbody
concept is misleading in the subwavelength regime. The actual resonance condition
may be complicated for different geometries and coatings, as well as for clusters
of particles or nanoparticle aggregates. Numerical methods are frequently used to
calculate LSPR in complicated structures such as discrete dipole approximation
(DDA), T-matrix method, finite-element method (FEM), boundary element method
(BEM), and finite-difference time-domain (FDTD) techniques.

Nanoplasmonics has become one of the most active research fields in the past
two decades [68–70]. The use of metal nanoparticles dispersed in a dielectric matrix
to create lusterware and stained glass has been known since the 4th century A.D.
(e.g., the Lycurgus Cup). Michael Faraday was the first to perform detailed scien-
tific experiments to study the effect of metal particle type and size on the color
in the 1850s. For finite size particles, the scattering and absorption efficiencies of
spherical particles or shells are expressed as the Mie solution that is a summation
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of contributions of electric and magnetic dipoles and multipoles [67]. This results
in a redshift of LSPR spectrum, and resonance wavelength becomes longer and the
absorption peak becomes broader as the particle size increases. LSPR is also very
sensitive to the refractive index of the surrounding medium as well as the shape and
arrangement of the nanoparticles [71–78]. Resonance phenomena in small particles
have been applied to surface-enhanced Raman scattering microscopy and surface-
enhanced fluorescence microscopy for single-molecule detection [79, 80]. The study
of resonance phenomena in small particles continues to be an active research area
because of the applications in biological imaging and molecular sensing [74–80]
as well as photothermal therapy [81, 82]. Surface wave scattering and coupling of
a cluster or layer of nanoparticles near a substrate surface have also been theoreti-
cally and experimentally investigated and may enable tools for characterization of
nanoparticle clusters [83, 84].

Plasmonic core-shell nanoparticles have been studied for solar energy harvesting
in a fluid because of their broadening absorption band in the visible and near-infrared
spectrum with high absorption and extinction efficiencies [85–88]. These nanopar-
ticles have also been applied for local heating, vapor generation, and steam pro-
duction [89–91]. Manipulating and probing local plasmonic heating have also been
demonstrated [92, 93]. Lee et al. [94] theoretically modeled the solar absorptance
of a nanofluid containing nanoparticles with different Au nanoshell thicknesses over
SiO2 core of different sizes. The nanofluid with blended nanoparticles can signifi-
cantly enhance solar collector efficiency to 70% with a layer thickness of 1.5 mm
at a particle volume fraction as low as 0.05% [94]. Xuan et al. [95] experimentally
demonstrated plasmonic nanofluid with TiO2/Ag core-shell nanoparticles (with an
outer radius of 30 nm) for solar absorption enhancement. Wang et al. [96] modeled
carbon-Au core-shell structures to enhance the solar absorption efficiency for sin-
gle nanoparticle by taking advantage of the absorptive properties of carbon core.
Their results showed an enhancement of solar absorption efficiency that can exceed
blackbody limit for the same geometric cross section by a factor of 1.5 with spher-
ical nanoparticles (with an external diameter around 100 nm) and 2.3 with cubic
nanoparticles. Further enhancement is also possible with star-shape nanoparticles
[97].

For isolated nanoparticles, when LSPR occur, the field decays away from the
interface. However, when nanoparticles are placed in close proximity, evanescent
waves can be coupled. Furthermore, in a linear chain of nanoparticle, the collective
oscillations of the electron clouds inside the nanoparticles can give rise to a prop-
agating wave, forming a 1D waveguide like in a nanowire [98–100]. Nanoparticle
plasmonic waveguides can transfer electromagnetic energy beyond the diffraction
limit and can enable detection of manipulation at extreme length scale, with poten-
tial applications from single-photon light source to photonic integrated circuit [101–
103]. Coupled point-dipole approximation is typically used to model the plasmonic
interaction and plasmon wave propagation along the nanoparticle chains. When con-
sidering the effects of retardation and losses, the dispersion for transverse modes
splits into two anticrossing branches. The propagation length, bandwidth, and group
velocity of plasmonic waveguide have been extensively studied for both finite and
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infinite nanoparticle chains, with and without disorder [104–107]. The absorption
and scattering in the visible and near-infrared regions for 2D and 3D plasmonic
nanoparticle arrays have been modeled [108, 109]. The effects of propagating SPP
and SPhP waves and near-field radiative transfer between nanoparticles on the ther-
mal transport in a nanoparticle chain or array have also been investigated [110–113].
Further discussion on near-field thermal radiation will be given in Chap. 10.

9.5.3 Polaritons in Thin Films and Layered Structures

Polaritons can exist on both surfaces of a thin film, resulting in a standingwave inside
the film, as shown in Fig. 9.33. Economou [114] performed a detailed investigation of
different configurations of a thin-film structure. An essential requirement for coupled
surface polaritons to occur is the existence of evanescent waves that decay in both
media 1 and 3. Such amethodwas used in Sect. 9.2.4 for obtaining themode equation
for waveguides. A more convenient method to derive the polariton relations is to set
the denominator of the reflection coefficient to zero. For the configuration shown
in Fig. 9.33, similar to Eqs. (9.7) or (9.101), we can write r = r12+r23e2ik2z d

1+r12r23e2ik2z d
, whose

poles are at 1 + r12r23e2ik2zd = 0. A further extension using the Fresnel coefficients
for TM waves gives,

tanh(ik2zd)

(
k22z
ε22

+ k1zk3z
ε1ε3

)
= k2z

ε2

(
k1z
ε1

+ k3z
ε3

)
(9.105)

which is the polariton dispersion relation for a slab sandwiched between two semi-
infinite media. Because tanh(ik2zd) = i tan(k2zd), when medium 3 is identical to
medium 1, Eq. (9.105) is identical to the mode equation of a planar waveguide given
in Eq. (9.52). Attention should also be paid to the different meanings of the subscripts
in Eqs. (9.52) and (9.105). For the coupled surface polariton, however, k2z is purely
imaginary if loss is neglected. In the case of ε3 = ε1 and μ3 = μ1, Eq. (9.105) can
be rewritten into two equations [115]:

k1z
ε1

+ k2z
ε2

tanh

(
k2zd

2i

)
= 0 (9.106a)

Fig. 9.33 Illustration of polaritons in a slab. 1—symmetric mode coupled surface polaritons; 2—
antisymmetric mode coupled surface polaritons; and 3—bulk polariton
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k1z
ε1

+ k2z
ε2

coth

(
k2zd

2i

)
= 0 (9.106b)

Each of them gives a dispersion curve, and the field distribution can be illustrated
in Fig. 9.33 for case 1: a lower frequency symmetric mode, where the surface charges
are symmetric and the magnetic fields at the interfaces are in phase, and case 2: a
higher frequency antisymmetric mode, where the surface charges are asymmetric
with respect to the middle plane and the magnetic fields at the interfaces are out
of phase. Due to the coupling of surface waves (which are two evanescent waves
decaying toward opposite directions), the field inside medium 2 resembles a standing
wave. It should also be noted that when d → ∞, both Eqs. (9.106a) and (9.106b)
reduce to the surface polariton equation between two semi-infinite media.

The preceding discussion is also applicable to TE waves. The only change is
to replace ε’s by μ’s in the Fresnel reflection coefficients and hence the dispersion
relations. Ifmedium2 is ametalwith a negative real permittivity (ε2 < 0) andmedia 1
and 3 are dielectric, evanescent waves must exist in the dielectric and coupled surface
polaritons can interact only with TM waves for kx > max

(√
ε1ω/c0,

√
ε3ω/c0

)
. If

medium 2 is a NIM, i.e., ε2 < 0, μ2 < 0, in the frequency of interest, both TE and
TM waves can excite coupled surface polaritons.

If a dielectric is placed as medium 2 between two metallic media, 1 and 3, res-
onance is also possible, even though k2z is real, since k1z and k3z are imaginary in
media 1 and 3. A standing wave can be formed in medium 2, which is a waveguide
mode discussed previously. Such an excitation is identified as a bulk polariton or
a guided mode polariton [63, 114–117]. The field distribution for a bulk polariton
is illustrated in Fig. 9.33 as case 3. Both TE and TM waves can excite bulk polari-
tons when kx > k0. When kx ≤ k0, propagating waves can exist in vacuum and
the structure is essentially a Fabry–Perot resonance cavity [16]. Furthermore, more
polariton modes may exist if the thickness d is large enough [115, 117]. Each polari-
ton dispersion line corresponds to an order of the waveguide modes as discussed
in Sect. 9.2.4. As in dielectric waveguides, the metal cladding can be replaced by a
dielectric material of smaller refractive index.

Park et al. [115] identified a polariton regime map for a NIM slab sandwiched
between two different dielectrics, one of which is a vacuum, as shown in Fig. 9.34a.
The NIM is represented by the permittivity and permeability functions given in
Eqs. (8.135) and (8.136). For developing the dispersion curves, the damping terms
is typically assumed to be zero; therefore,

ε2(ω) = 1 − ω2
p

ω2
and μ2(ω) = 1 − Fω2

ω2 − ω2
0

(9.107)

Figure 9.34b represents the regimes with F = 0.56 and ω0 = 0.4ωp shown in
the ω − kx graph, where both kx and ω are normalized with respect to ωp. Note that
no polaritons can be excited for ω > ωp because both ε2 and μ2 are positive. In the
shaded region for 0.4ωp < ω < 0.6ωp, both ε2 and μ2 are negative, and this entails
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Fig. 9.34 Illustration of polaritons in a NIM slab. a ATR arrangement. b Regimes of surface and
bulk polaritons [115]

a NIM region. Four dotted lines (i), (ii), (iii), and ω = ω0 separate nine different
regions. Lines (i), (ii), and (iii) correspond to ω = kxc0

√
εμ for media 1, 2, and 3,

respectively. If the two dielectrics are identical, lines (i) and (iii) will merge and the
regions in between will be eliminated. Notice that the condition for ω = kxc0

√
εμ

corresponds to kz = 0 in any given medium. In the regions on the left of line (i), kx is
too small to excite any evanescent waves in media 1 and 3; hence, no polaritons can
exist in regions R1, R2, and R3. In regions between lines (i) and (iii), an evanescent
wave appears in medium 1 whilst a propagating wave exists in medium 3. A surface
polariton may exist only at the interface between media 1 and 2, and energy may
be transmitted from the prism into medium 3 through photon tunneling which will
be further discussed in Chap. 10. In regions on the right of line (iii), evanescent
waves emerge in both media 1 and 3; hence, surface polaritons may exist at dual
boundaries, and several bulk polaritons may also exist. Unlike plasmon polariton or
phonon polariton discussed in the beginning of Sect. 9.5, here, the bulk polariton
dispersion is expressed in terms of ω − kx relations and may be considered as a
planar bulk polariton.

In the upper regions of line (ii), evanescent waves exist in the NIM layer. In the
shaded area, surface polaritons may be observed in region SS1 at a single boundary
and in region SD1 at dual boundaries of the NIM slab, for both polarizations. Surface
polaritons may also exist in regions SS1 and SD1 above the shaded area only for TM
waves. On the other hand, in regions between the lines ω = ω0 and (ii), propagating
waves exist in the NIM layer because k2z > 0. Therefore, no polaritons may exist in
region R4, whereas bulk polaritons can occur in region BK. Below the line ω = ω0,
medium 2 behaves like a normal metal because ε2 < 0 andμ2 > 0 surface polaritons
may occur only for TMwaves at a single boundary in region SS2 and both boundaries
in region SD2.
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The reflection coefficient for the four-layer structure shown in Fig. 9.35a can be
expressed as follows:

r = Y01X12X23e−iφ1 + X01X12Y23eiφ1 + Y01Y12Y23e−iφ2 + X01Y12X23eiφ2

X01X12X23e−iφ1 + Y01X12Y23eiφ1 + X01Y12Y23e−iφ2 + Y01Y12X23eiφ2
(9.108)

where Xi j = 1 + k jzεi
ki zε j

and Yi j = 1 − k jzεi
ki zε j

for TM waves, Xi j = 1 + k jzμi

ki zμ j
and

Yi j = 1 − k jzμi

ki zμ j
for TE waves, and φ1 = k1za + k2zd and φ2 = k1za − k2zd are the

phase terms. This analytical expression may be used as an alternate to the matrix
formulation for the calculation of r, and the reflectance R = rr∗ as well, of the
four-layer structure.

Figure 9.35 shows the calculated reflectance spectra for different NIM layer thick-
nesses, normalized to λp = 2πc0/ωp , for both TM wave (solid curves) and TE

Fig. 9.35 Reflectance of NIM slab in the ATR arrangement shown in Fig. 9.34a for both TM and
TE waves at θ = 60◦ [115]
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wave (dotted curves). The permittivity and the permeability of the NIM are mod-
eled with F = 0.56, ω0 = 0.4ωp, and damping coefficients γe = γm = 0.012ωp

using Eqs. (8.135) and (8.136). The thickness of the vacuum layer is assumed to be
a = 0.25λp. For the prism, εd = 6, and for the dielectric, ε3 = 2. The incidence
angle is kept at θ = 60◦ so that only evanescent waves exist in medium 3. The
corresponding regions are SD1, BK, and SD2 in Fig. 9.34b. The shaded region in
Fig. 9.35 corresponds to the frequency region where the refractive index is negative.

Several dips, due to surface and bulk polaritons, can be clearly seen in the
reflectance spectra. Triangular and circular marks (filled for TM wave and unfilled
for TE wave) represent surface and bulk polariton resonance frequencies that are
obtained from the polariton dispersion relations in the lossless case. While damping
terms affect the width of the dips, it is the vacuum gap distance a that affects the
location of the reflectance dips strongly. For d/λp = 0.5 and TE waves, there are
three bulk polaritons in 0.4 < ω/ωp < 0.45 and two surface polariton curves in 0.45
< ω/ωp < 0.5. When the NIM layer thickness is reduced, the surface polariton of
the lower frequency, in the pass band, is converted into a bulk polariton, while the
other bulk polaritons are compressed to the vicinity of ω0 and have little effect on
the reflectance. The transition from a surface polariton to a bulk polariton occurs
at d/λp between 0.25 and 0.5 for TE waves, and between 0.15 and 0.25 for TM
waves. It is clear that both surface and bulk polaritons affect the radiative properties
significantly. Further examples will be provided in Sect. 9.6.

9.5.4 Magnetic Polariton

Metamaterials are artificially ordered structures that display physical properties
rarely observed in naturally occurring materials. Electromagnetic metamaterials are
synthesized or unconventional materials with exotic electric and magnetic proper-
ties, such as a negative index material as discussed before. In the optical and even
microwave frequencies, very fewnaturalmaterials have amagnetic response and their
permeability is the same as that of vacuum (relative permeability μ = 1). Conven-
tional magnetic materials have either ferromagnetic or antiferromagnetic resonances
usually in the radio frequency region [62, 118]. Pendry et al. [119] first proposed
to use metallic subwavelength structures to enable magnetic resonance and theoret-
ically calculated the effective magnetic permeability for the split-ring resonators as
given in Eq. (8.136). The split-ring structure is shown in Fig. 9.36a, along with other
structures that exhibit magnetic resonances.

When a time-varying magnetic field is parallel to the axis of a spiral coil of
metal wire, an induced magnetic field will occur due to the resultant current in the
coil according to Lenz’s law. Diamagnetism can also occur with the split-ring and
other resonators shown in Fig. 9.36. In order to scale the diamagnetic response to
the near infrared, the single split-ring and U-shape cells have also been employed.
With these artificial structures, sometimes called magnetic atoms, electromagnetic
waves can interact with materials via both the electric and magnetic fields [120].
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Fig. 9.36 Structures made of conducting split ring(s) of circular and straight lines, U shape, and
paired wires/strips that can result in diamagnetism, when the magnetic field is normal to the plane
of these structures. These unit cells are sometimes called magnetic atoms

In fact, diamagnetic response can occur with a pair of conducting wires due to the
antiparallel currents induced by a time-varying magnetic field perpendicular to the
plane of the wires. Metamaterials have been demonstrated in the near infrared and
for red light with paired metal strips. Another successful variation is the so-called
fishnet double-layer structure, which has been used to produce NIM in the infrared
region.

Since the effective magnetic permeability can be negative in certain frequency
region, surface polaritons can be excitedwith these artificialmagneticmaterials in the
optical frequency region. These resonance excitations are frequently called magnetic
plasmon polaritons or magnetic polaritons (MPs), though diamagnetism behavior is
very different from the quantification of electron spin waves (i.e., magnons). Since
subwavelength metallic structure is needed, the magnetic polariton is undoubtedly
related to plasmonic resonances. The excitation of MPs can enable tailoring of spec-
tral radiative properties, and the dispersion curves are quite different from SPP/SPhP.
The resonance frequency of the fundamental mode (first order) MP can be predicted
using an equivalent electric circuit model, which usually contains capacitive and
inductive elements for a unit cell of the structure. Some basic background is given
next.

Consider two parallel metal strips separated by a dielectric gap as shown in
Fig. 9.37a. When the fundamental mode of MP is excited, there exists an oscillating
electric current around the structure that produces a transverse oscillating magnetic
field. The charge distributions near the metal surface are illustrated in Fig. 9.37a,
which results in a current flow along the effective capacitor-inductor circuit (neglect-
ing resistive element), as shown in Fig. 9.37b. Assume the metal strip length is h and
depth in the direction perpendicular to the paper is l. The skin thickness δ is usually
determined by the field penetration depth. Consider a dielectric gap width b with a
dielectric constant εd, which may be set to 1 for vacuum or air. The gap capacitance
is split into two in the LC circuit model and expressed as

C = c1
ε0εdhl

2b
(9.109)
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Fig. 9.37 a Schematic of the charge distribution at the surface of two parallel conducting plates
and the electric field in the dielectric gap; b the equivalent LC circuit model for magnetic resonance,
where the arrows indicating electric current flow loopwhich produces amagnetic field perpendicular
to the paper

where c1 is a numerical factor near 0.5 that accounts for the nonuniform charge
distribution at the metal surfaces [121]. The mutual inductance between the two
plates can be written as

Lm = μ0
hb

2l
(9.110)

while the kinetic inductance due to drift electrons can be expressed as

Lk = − ε′

ω2|ε|2
h

ε0δl
≈ h

ε0ω2
pδl

(9.111)

Here, ε′ is the real part of the dielectric function ε of the plate material. If themetal
plate is thinner than the field penetration depth, δ should be taken as the thickness of
the plate. Inwriting the last expression, the dielectric function has been approximated
as ε(ω) ≈ −ω2

p/ω
2. The total impedance can be expressed as

Z tot(ω) = 2i
[
ω(Lm + Lk) − (ωC)−1] (9.112)

The resonance frequency can be obtained by setting Z tot = 0; hence,

ωR = [(Lm + Lk)C]−1/2 (9.113)

The actual LC circuit may be more complicated due to additional coupling
between the unit cells and can become rather complicated for complex structures
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Fig. 9.38 a Schematic of a 1D periodic structure when the metal gratings are separated from the
base plane by a dielectric layer; b the equivalent circuit showing capacitors in the dielectric as well
as gap capacitances of a unit cell as illustrated on the left panel

[121, 122]. In the following, we use an example to illustrate the MP dispersion, field
distribution, and the effect on the reflectance of a grating structure.

Consider the structure depicted in Fig. 9.38a made of periodic silver strips with a
dielectric spacer deposited on a silver film, which may be assumed opaque. Without
the spacer, it is simply a binary Ag grating. The geometry of the one-dimensional
grating geometry is represented by a period �, strip width w, and thickness h. The
thickness of dielectric spacer is denoted by d. A linearly polarized TM wave is
incident from air at an incidence angle θ . The oscillating magnetic field in the y-
direction between the metal strip and the base plane can cause antiparallel currents
in the metal strip and the metal surface.

Using RCWA simulation with 101 Fourier components and the frequency-
dependent dielectric functions of Ag and SiO2 from Palik [2], The reflectance is cal-
culated and shown in Fig. 9.39 in the wavenumber range from 3,000 to 20,000 cm−1

at θ = 25◦. The grating parameters are � = 500 nm, w = 250 nm (filling ratio of
0.5), and h = d = 20 nm. For the sake of comparison, the reflectance of a simple
grating is shown as the dotted curve, by setting d = 0 without changing the other
parameters. It is well known that gratings can support SPP according to Eq. (9.100)
and can result in sharp reflectance dip at ν̄ = 13,780 cm−1. On the other hand, if a
20 nm SiO2 spacer is added, several additional reflectance dips also show up.

These reflectance dips are attributed to the excitation of magnetic resonances.
The diamagnetic response is then coupled to the metallic film to cause a surface
magnetic polaritonwith a fundamental mode at the wave number around 5,670 cm−1.
Magnetic polaritons of the second and higher order harmonics can also be excited.
Therefore, the reflectance spectrum with spacer exhibits dips at ν̄ = 5, 670, 11,490,
and 16,095 cm−1, corresponding, respectively, to the fundamental, second, and third
harmonic modes. Unlike SPP whose resonance frequency is very sensitive to the
incidence angle, MPs resonance frequency depends on weakly on the incidence
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Fig. 9.39 Calculated reflectance of the grating structure shown in Fig. 9.38 with and without the
dielectric spacer using RCWA [123]

angle up to a certain value. Furthermore, SPP is more sensitive to the grating period,
while MPs are more sensitive to the strip width [123].

Since the metal film forming the base plane is opaque, one can regard the
reflectance dip as the emittance peak according to Kirchhoff’s law. The contour plots
of the spectral-directional emittance εν,θ are shown in Fig. 9.40a for the simple grat-
ing and Fig. 9.40a for the gratingwith spacer by folding the dispersion curves. Darker
colors represent lower emittance, whereas brighter colors correspond to higher emit-
tance (reflectance dip). The region outside the light line on the lower right corner is
left blank. The emissivity is greatly enhanced when surface plasmons are excited.

Fig. 9.40 Contour plot of the spectral-directional emittance of a the simple grating and b the Ag
grating and film separated by a SiO2 spacer [123]. At an incidence angle θ = 25◦, the surface
plasmon polariton is labeled as SP, while the magnetic polaritons are labeled as MP1, MP2, and
MP3 for the fundamental, second, and third harmonic modes, respectively
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The branch at ν̄ < 18,200 cm−1 corresponds polaritons coupled with the –1 diffrac-
tion order and the high-frequency branch is associated with the +1 diffraction order.
The intersection of the surface plasmon dispersion line and the inclined white line,
representing θ = 25◦, is marked as SP that corresponds to the reflectance dip shown
in Fig. 9.39. In general, the resonance condition of SPP depends strongly on both
frequency and the incidence angle; thus, the emittance peak exhibits both spectral
and directional selectivity.

It can be seen from Fig. 9.40b that the excitation of MPs gives several nearly
horizontal bright dispersion bands. The even-order magnetic polaritons (such as the
second harmonic mode) can only be excited at oblique incidence, whereas the odd-
order magnetic polaritons can be excited at normal incidence. Furthermore, SPPs can
strongly interact with MPs to give rise to crossing and anticrossing mode coupling
[124]. As a result, the interaction of SPP and MP can result in either enhancement or
suppression of the emittance. The magnetic polaritons are localized in the vicinity of
metal strips and are not significantly coupled with each other. Hence, the emittance
peak resulted from MP exhibits diffuse characteristic (independent of the direction)
that is desirable for thermophotovoltaic emitters [125, 126].

The physical mechanism of the magnetic resonance can be better understood by
plotting themagnetic field distribution and electric current flow, as shown in Fig. 9.41
for θ = 25◦ at the MP1, MP2, and MP3 resonance frequency. Here, the z-axis is
pointed upwards so that the Ag strips appear to be below the Ag film. The back-
ground contour represents the logarithmic values of the square of the magnetic field
magnitude, and the arrows indicate the electric field vectors. Antiparallel currents in
the metallic strips and film confine strong magnetic field inside the dielectric spacer.
The considered structure acts similarly to the metal strip pairs regarding the mag-
netic field distribution. The number of resonances corresponds well with the number
of order of MPs. The corresponding electric field distribution further confirms the
magnetic induction around the antinodes of the magnetic field distribution. Hence,
the effective permeability of the considered structure exhibits a resonance like dis-
persion according to the electric and magnetic fields distribution in the dielectric
spacer. Although not shown here, SPPs generate enhanced magnetic field very close
to the interface between the dielectric and metal film, as well as along the interface
between metal strips and air.

MPs have been used to explain resonance transmittance in a periodic strip array,
double strip gratings, as well as patterned metallic structures over a metal ground
plane separated by a thin dielectric layer [121–130]. The fundamental modes or
microcavity resonance in deep gratings can also be accurately modeled using the
LC circuit and this has been demonstrated recently [131, 132]. Resistive elements
can also be introduced [133]. Furthermore, the metal materials may be replaced
by polar dielectric and in the region where ε′ < 0, MPs can be excited due to
coupled SPhPs [134]. Due to the complexity involved and different point of view,
the magnetic resonances or polaritons discussed here are often identified by other
names such as LSPR, metamaterial, gap plasmons, etc. for controlling radiative
properties [135–138]. Gap plasmon (or gap surface plasmon) refers to the plasmonic
resonance occurring in a structure where a dielectric is sandwiched between an array
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Fig. 9.41 Contour shows the magnitude strength and the arrows illustrate electric field when MPs
are excited at θ = 25◦ [123]. The loops indicate electric current flow. a MP1: ν̄ = 5, 670 cm−1;
bMP2: ν̄ = 11, 490 cm−1; c MP3: ν̄ = 16, 095 cm−1
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of subwavelength metal elements and a metal ground plane [137], or between two
uniform metal films [125, 138]. It should be noted that the electric field distribution
does not always form a close loop when MPs are excited. However, when both
the conductive current and displacement current are considered, the electric current
always forms a closed loop [126]. The local energy density and dissipation can
also be calculated; hence, the local absorption distribution can be determined [139].
The application of MPs and MP coupled with other resonances will be given in
forthcoming sections.

9.5.5 Graphene: Optical Properties and Graphene Plasmon

Since the discovery of a simplemethod for isolating graphene through the exfoliation
of graphite in 2004, which leads to the 2010 Nobel Prize in Physics to Andre Geim
andKonstantin Novoselov, graphene has been extensively studied for potential appli-
cations in nanoelectronics, optoelectronics, plasmonics, transformation optics, and
energy conversion. Nowadays, high-quality graphene and few-layer graphene can be
fabricated by chemical vapor deposition (CVD) on metal (e.g., Cu or Ni) surfaces
and then transferred to other substrates. Unlike conventional metals, the electrons in
graphene are massless quasiparticles that exhibit a linear energy-momentum disper-
sion governed by the Dirac equation for 2D relativistic fermions. As such, graphene
offers certain exotic characteristics such as the extremely high mobility, a universal
conductance in the optical frequency region, and unique plasmonic characteristics
with 2D graphene patches and ribbons. Furthermore, the infrared conductance of
graphene can be tuned by chemical doping or voltage gating, leading to promising
high-speed photodetectors as well as optical modulators and antennas [140, 141].
Researchers have also developed scattering-type scanning near-field optics for char-
acterizing graphene plasmons (GPs) with nanometer spatial resolution [141, 142].
This section introduces sheet conductivity of graphene, as well as the associated
optical properties and plasmons in a single layer of graphene, a dielectric adjacent to
two graphene sheets, and patterned a graphene ribbon array, as schematically shown
in Fig. 9.42.

As shown in Fig. 9.42a, graphene atoms form a honeycomb structure along the
plane for which each carbon atom is adjacent to three carbon atoms, forming strong
covalent bonds with sp2 hybridization (σ -bonds). The remaining p-orbital electron
in each carbon atom dangles above and below the sheet and is highly mobile. As
discussed in Chap. 6, these electrons form a large conjugated π -bond system that is
responsible for the unique electrical andoptical characteristics of graphene.Graphene
can be characterized as a 2Dmaterial with a sheet conductivity that needs to be mod-
eled based on its Dirac band structure. Alternatively, it may be thought as an ultrathin
slice of anisotropic material that has a high in-plane conductivity and behaves like a
dielectric when the electric field is perpendicular to the plane.

The sheet conductivity is defined as the electric conductance for a square sheet and
its unit is siemens [S] or [�−1]. The contribution to graphene optical conductivity
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Fig. 9.42 Illustration of graphene plasmons. a A monolayer graphene sheet sandwiched between
two (dielectric) media. b A plane wave incident from medium 1 onto a graphene layer adjacent to
a substrate. c Two parallel graphene sheets separated by a distance d inside a homogeneous media.
d A periodic array of graphene ribbon whose width is w

includes the intraband transition and interband transition. The sheet conductivity
may be written as σs = σD + σI, where σD stands for the Drude-like free electron
contribution and σI is due to interband transition. The conductivity can bemodeled as
a complex function of frequency, temperature, scattering rate, and chemical potential
(i.e., Fermi energy). The conductivity components can be derived from the Kubo
formula and expressed as follows [143]:

σD = i

ω + i
/

τ

2e2kBT

π�2
ln

[
2 cosh

(
μ

2kBT

)]
(9.114)

and

σI = e2

4�

⎡
⎣G
(

�ω

2

)
+ i

4�ω

π

∞∫
0

G(ζ ) − G(�ω/2)

(�ω)2 − 4ζ 2
dζ

⎤
⎦ (9.115)

where G(ζ ) = sinh
(
ζ
/
kBT

)/[
cosh

(
μ
/
kBT

)+ cosh
(
ζ
/
kBT

)]
, e is the electron

charge, and μ is the chemical potential (i.e., Fermi level) of graphene. Near room
temperature, the scattering rate (1/τ ) is on the order of 1013 rad/s. The chemical
potential depends on the doping and can be tuned by electrostatic gating. Note that the
intraband conductivity has a Drude-like term and dominates the conductivity at low
frequencies, while the interband conductivity dominates at high frequencies. It can be
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shown that when the frequency falls in the near infrared to visible region, σs ≈ σI ≈
g0 = e2/(4�), which is independent of the frequency. This is called the universal
optical conductance, which has real part only and gives graphene a wavelength-
independent optical absorptivity of about 2.3% per layer. The conductivity being a
real value also suggests that no plasmonic response can exist in graphene from the
ultraviolet to the near infrared. In the mid- and far-infrared region, when the Drude-
like term dominates, graphene can support surface plasmons. When μ 
 kBT,

Eq. (9.114) reduces to

σD ≈ i

ω + i
/

τ

e2μ

π�2
(9.116)

which is very much the same as the Drude model. Both the chemical potential and
scattering rate are related to the carrier concentration. Under the same limit,

σI =
⎧⎨
⎩
g0
(
1 − i

π
ln �ω+2μ

�ω−2μ

)
, �ω > 2μ

g0
(
− i

π
ln 2μ+�ω

2μ−�ω

)
, �ω < 2μ

(9.117)

Note that in Eqs. (9.114) to (9.117), the chemical potential μ takes the absolute
value. Equation (9.117) suggests that the real part of σI is a step function, while the
imaginary part has a negative dip around the photon energy of 2μ .

The calculated sheet conductivity related to g0 is plotted in Fig. 9.43 at T =
300 K using Eqs. (9.114) and (9.115) for several μ values by assuming τ = 10−13

s. It can be seen that the real part is g0 at short wavelength and drops at photon
energy close to 2μ, where the imaginary part is negative. At longer wavelength, σD

dominates and both the real and imaginary part increases with wavelength. At very
long wavelength in the microwave and radio wave region, Re(σD) 
 Im(σD) and
graphene becomes a very good 2D conductor. It should be mentioned that when
�ω > 3 eV or λ < 0.4μm, the linear dispersion at the K point of the Brillouin

Fig. 9.43 a Real part and b imaginary part of the sheet conductivity of graphene calculated using
Eqs. (9.114) and (9.115) at 300 K for different chemical potentials
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zone breaks down. Hence, the real part of the sheet conductivity first increases with
the frequency, reaches a peak in the UV region due to excitons at the saddle-point
singularity at the M point of the Brillouin zone, and then drops [144].

In calculating the radiative properties, graphene may be treated as either a sheet
conductivity σs(ω) or an ultrathin layer with a thickness 
 = 0.335 nm, which is
the interlayer distance in graphite, and an in-plane dielectric function

ε(ω) = εh + i
σs(ω)

ωε0

(9.118)

where εh is the dielectric function of the host medium. The out-of-plane dielectric
function of graphene may be taken as εh [145].

When graphene is treated as a sheet conductor, Fresnel’s coefficients need to be
modified. Consider the structure shown in Fig. 9.42b, we have for p-polarization
[146]

rp =
ε3
k3z

− ε1
k1z

+ σs
ωε0

ε3
k3z

+ ε1
k1z

+ σs
ωε0

and tp = 2 ε3
k3z

ε3
k3z

+ ε1
k1z

+ σs
ωε0

(9.119a)

For s-polarization, taking the relative permittivity of the upper and lower media
as μ1 and μ3, respectively, we have

rs =
k1z
μ1

− k3z
μ3

− σsωμ0

k1z
μ1

+ k3z
μ3

+ σsωμ0

and ts = 2 k1z
μ1

k1z
μ1

+ k3z
μ3

+ σsωμ0

(9.119b)

Note that surface plasmon with a single graphene sheet can be excited for both
TM wave and TE wave even if μ1 = μ3 = 1. For TM wave, the dispersion of the
graphene surface plasmon is given by

ε1√
k2x − ε1k20

+ ε3√
k2x − ε3k20

= −i
σs

ωε0
(9.120a)

If ε3 = ε1, it can be shown that

kx = kGSP = k0

√
ε1 − 4ε0ε21

σ 2
s μ0

(9.120b)

where k0 = ω/c0 and the subscript GSP stands for graphene surface plasmon.
Using Eq. (9.116) for σD by neglecting σI (�ω � 2μ), it can be shown that kGSP ≈
a1(ω2 + iω/τ) where a1 = 2π�

2ε0/(e2μ) depends on the chemical potential. The
imaginary part determines the propagation length. Graphene plasmon for TE wave
can also be excited when Im(σs) < 0, which cannot be satisfied by conventional



9.5 Plasmon, Polariton, and Electromagnetic Surface Wave 575

materials [147]. The detail of TE wave GSP is not discussed here as the spectral
region is somewhat limited as can be seen from Fig. 9.43b.

For the two layers of graphene separated by a dielectric as shown in Fig. 9.42c,
the dispersion includes a symmetric branch and an antisymmetric branch, governed
by [148]

1 + σsk1z
ωε0ε1

= coth

(
ik1zd

2

)
, symmetric branch (9.121a)

1 + σsk1z
ωε0ε1

= tanh

(
ik1zd

2

)
, antisymmetric branch (9.121b)

Note that when coupled surface plasmons are excited, k1z = i
√
k2GSP − ε1k20 is

imaginary. Like coupled SPPs between twometal films, these equations can be solved
to find the dispersion relations. When d → ∞, both Eqs. (9.121a) and (9.121b)
reduces to Eq. (9.120b). Figure 9.44 illustrates the dispersion curves in the mid-
infrared. Large parallel wavevector is needed to excite GSPs. Coupled GSPs can
enhance near-field radiative transfer between two graphene sheets [146, 149] and
will be discussed in Chap. 10.

For graphene ribbon array as shown in Fig. 9.42d when the magnetic field is
parallel to the ribbon (transversemagnetic wave), Fabry–Perot-type resonance across
the ribbon occurs that gives the so-called graphene ribbon plasmon. This is due to
that the wave is reflected back and forth at the edge of the ribbon with a phase shift
φedge. For a graphene ribbonwidthw, the resonance of themth order can be expressed
as [150]

Fig. 9.44 GSP dispersion
relations for a single layer
(solid lines) and two layers
separated by d = 20 nm
(dashed lines above and
below each solid line). The
upper and lower branches
will meet at an apex if the
frequency and wavevector
are sufficiently large (not
shown). The graphene
chemical potentials are
μ = 0.3 eV and 0.6 eV with
a scattering rate of
6.28 × 1013 rad/s
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wRe(kGSP) + φedge = mπ (9.122)

wherem = 0 represents the fundamental modes. Substituting the expression of kGSP
for a monolayer of graphene in vacuum, we obtain

ωm = e

�

√
μ(mπ − φedge)

2πε0w
(9.123)

The phase shift has been found to be φedge = π/4 for free-standing ribbons in
vacuum [151] and φedge = −π if the edge is adjacent to a metal [152]. The ribbon
polariton is proportional to

√
μ/w. Since the ribbon array can be considered as a

1D grating, plasmonic modes can be excited within the light line. The ribbon modes
are essentially discrete points on the folded dispersion line. The resulting ribbon
modes according to Eq. (9.123) are independent of the wavevector kx or horizontal
lines. Graphene plasmons can often be coupled to other types of polaritons such as
magnetic polaritons or phonon polaritons to affect the radiative properties [59, 146,
152]. Figure 9.45 illustrates the ribbon plasmon polaritons and its coupling with
the magnetic polariton. The contour plots are based on RCWA simulation, while
the ribbon polariton dispersion curves are predicted with Eq. (9.123) using different
φedge depending on whether the ribbon is adjacent to vacuum or Ag. Only odd orders
m = 1, 3, 5 . . . of ribbon plasmon polaritons can be excited at normal incidence.
Furthermore, the MP in deep grating can significantly enhance the absorptance of
graphene as well as structure to achieve nearly perfect absorption. Besides, the MP
resonance condition (fundamental mode) can be well predicted by an equivalent LC
circuit model [152].

Fig. 9.45 Calculated absorptance at normal incidence using RCWA of a a graphene ribbon array;
b a graphene ribbon located in the trench of a Ag grating so that w = b [152]. Note that the period
for both structures is 4 μm. For the Ag grating, the depth is 2 μm. The chemical potential and
relaxation time of graphene are taken as 3 eV and 10−13 s, respectively
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9.5.6 Hyperbolic (Plasmon or Phonon) Polariton

A composite with repeating alternative layers of metal and dielectric forms a unique
typeof photonic crystal calledhyperbolicmetamaterial.When the thicknesses of indi-
vidual layers are much smaller than the wavelength, the effective dielectric behav-
ior depends on whether the electric field is parallel with or perpendicular to the
interfaces. Such a subwavelength multilayer structure can be modeled as a uniax-
ial crystal with a dielectric tensor. The distinct feature of a hyperbolic dispersion
is that the two dielectric components have different signs. The excitation of plas-
mon polaritons between the two metal films plays a key role in the exotic optical
properties of metallodielectric multilayers and is therefore called a volume (bulk)
plasmon polariton or hyperbolic (plasmon) polaritons [138, 153, 154]. Thanks to
the anisotropic dielectric or magnetic behavior, hyperbolic metamaterials can enable
negative refraction, form waveguides, facilitate far-field diffraction limited imaging
(so called optical hyperlens), as well as enhance spontaneous emission and near-field
thermal radiation [146, 149, 155, 156].

Figure 9.46 shows a multilayer structure with alternative metal or dielectric layers
arranged periodically. For simplicity, assume both materials are nonmagnetic so that
the permeability is the same as free space. When the optic axis is aligned with the
z-axis, the dielectric tensor can be expressed as

¯̄ε =
⎛
⎝ εO 0 0

0 εO 0
0 0 εE

⎞
⎠ (9.124)

Fig. 9.46 Illustration of
wave incident on a
metallodielectric medium
with a total thickness d, the
upper and lower medium are
semi-infinite lossless
dielectric. Here, dm and dd
are the thickness of the metal
layer and dielectric layer,
respectively, and � is the
period of the unit cell
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where the (complex) dielectric function for electric field perpendicular to the optic
axis is called the ordinary component εO and that for the electric field parallel with the
optic axis is called the extraordinary component εE. The detail of wave propagation
in anisotropic media is beyond the scope of this text. However, it will be shown that
when the optic axis is parallel with one of the coordinates, only minor modifications
in Fresnel’s coefficients need be made to calculate the reflectance, transmittance, as
well as the field distribution inside a layer of homogeneous uniaxial medium.

In the coordinates shown in Fig. 9.46, for TE wave, since the electric field is
parallel to the y-axis and perpendicular to the optic axis (z-axis), the uniaxial medium
can be treated as an isotropic medium using its ordinary dielectric function εO. For
a TM wave in the case of oblique incidence, both εO and εE affect the reflection,
refraction, and wavevector. Assume medium 1 is a lossless dielectric medium with

a dielectric function ε1, and the angle of incidence is θi, we have k1z =
√

ε1k20 − k2x ,

where kx = √
ε1k0 sin θ1 = √

ε1ω/c0 sin θ1 is the same in all media. Taking the
metamaterial as a homogeneous medium 2, it can be shown that [157–160]

k2z =
√
k20εO − k2xεO/εE (9.125)

Then, the Fresnel coefficients can be modified as [146, 159]

r12,p =
k1z
ε1

− k2z
εO

k1z
ε1

+ k2z
εO

=
εO
k2z

− ε1
k1z

εO
k2z

+ ε1
k1z

(9.126a)

t12,p = 2 k1z
ε1

k1z
ε1

+ k2z
εO

= 2 εO
k2z

εO
k2z

+ ε1
k1z

(9.126b)

Furthermore, the phase shift in medium 2 can be expressed by ψ = k2zd, where
d is the total thickness of medium 2. This allows an extension of the calculation of
wave propagation in a uniaxial thin film [159, 160]. It should be noted that when the
optic axis is tilted in the x-z plane, the dielectric tensor given in Eq. (9.124) needs
to be modified by a coordinate rotation and k2z has different values for forward and
backward propagation [161]. Furthermore, when the optic axis is in the y-z plane,
cross-polarization may occur such that the polarization of the reflected wave may be
different from the incident wave [162].

The ordinary and extraordinary dielectric functions can be obtained based on the
effective medium theory (EMT) based on the dielectric function of the metal εm and
dielectric εd, similar to Eqs. (9.82) and (9.83) as follows:

εO = φεm + (1 − φ)εd (9.127)

and 1/εE = φ/εm + (1 − φ)/εd, which can be expressed as

εE = εdεm

φεd + (1 − φ)εm
(9.128)
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where φ = dm/� = dm/(dm + dd) is the metal volume fraction or filling ratio.
It should be noted that doped semiconductors may be substituted for the metal

layer in Fig. 9.46 to excite hyperbolic plasmon polariton (HPP) in the mid-infrared
region. This is because the plasma frequency of free carriers in heavily doped
semiconductors typically falls in the near- to mid-infrared region as discussed in
Chap. 8. Furthermore, a polar material may also be used since near the real part of
the dielectric function is negative near the reststrahlen band, giving rise to hyperbolic
phonon polaritons (HPhPs). As an example, Fig. 9.47 shows the effective dielectric
functions (real part only) of two multilayer structures [155]. One of them uses n-
doped Si with a doping concentration of 1020 cm−1, which has a plasma frequency
ωp = 1.09 × 1015 rad/s (corresponding to a wavelength of 1.73μm), and Ge for
which the dielectric function in the infrared is taken as a constant εd = 16 [2]. The
other structure uses SiCwhose dielectric function is given in Eq. (8.123) with a filling
ratio of 0.3 and Ge. As shown in Fig. 9.47a for the D-Si/Ge multilayer, ε′

O < 0 at
ω < 1.82 × 1014 rad/s, while ε′

E < 0 at 2.3 × 1014 rad/s < ω < 2.9 × 1014 rad/s.
These are identified as type II and I hyperbolic bands, respectively. Similarly, in the
SiC/Ge multilayer, two hyperbolic bands exist in the mid-infrared spectral region
that fall in the SiC reststrahlen band from 1.49 to 1.83 × 104 rad/s.

To better illustrate optical hyperbolicity, Eq. (9.125) may be rewritten in a more
general dispersion relation of a uniaxial medium as follows:

k2x + k2y
εE

+ k2z
εO

= ω2

c20
(9.129)

Fig. 9.47 Real part of the dielectric function calculated from EMT [155]: a doped Si and Ge with
φ = 0.5; b SiC and Ge with φ = 0.3 for SiC. The multilayer structures are illustrated by the insets.
The hyperbolic band are shaded and indicated by the hyperbola
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Fig. 9.48 Isofrequency curves for extraordinary waves in uniaxial media: a elliptical, b type I
hyperbolic, and c type II hyperbolic. The directions ofwavevector and Poynting vector are indicated.
The curves can be rotated about the z-axis to form 3D isofrequency surfaces

For an isotropic medium when εE = εO, it is the same as Eq. (9.95). There-
fore, Eq. (9.129) may be identified as the polariton dispersion relation for extraor-
dinary waves. The constant-frequency curves depend on the signs of εO and εE, as
illustrated in Fig. 9.48 for ky = 0 in the lossless case. For lossy material, usually
only ε′

O and ε′
E are taken into consideration. For hyperbolic dispersion, waves can

propagate inside the medium at very large kx . In the asymptotic limit (kx 
 k0),
tan(θk) = kx/Re(kz) ≈ √−ε′

E/ε
′
O. Furthermore, the Poynting vector is always

perpendicular to the isofrequency surface.
It can be seen from Fig. 9.48 that for type I hyperbolic metamaterial, the x-

component of the Poynting vector Sx is negative, suggestion bending the light in
the wrong way. This is not surprising since even for a metal whose ε′ is negative,
Sx becomes negative. The advantage of using a multilayer is that it can reduce the
loss so that light can propagate through many metal layers whose total thickness is
significantly greater than the penetration depth. The Poynting vector refraction angle
is defined as

θS = tan−1

(
Sx
Sz

)
= tan−1 Re(kx/εE)

Re(kz/εO)
(9.130)

at the interface, where Sz is always positive. When kx 
 k0 , θS = tan−1
√−ε′

O/ε′
E.

When the hyperbolic medium is semitransparent, the Poynting vector in medium 2 is
affected by both the forward and backward propagating wave and must be calculated
based on the total field.

For type II hyperbolic metamaterial, kz < 0. While negative refraction cannot be
observed for top incidence shown in Fig. 9.47, negative refraction can occur for side
incidence [145]. Furthermore, themetal layers can be substituted by graphene sheets.
It should be noted that when εO < 0, ordinary waves cannot propagate inside the



9.5 Plasmon, Polariton, and Electromagnetic Surface Wave 581

medium but SPP can be excited near the surface of the medium when it is adjacent
to a dielectric.

Example 9.8 Prove Eq. (9.125) for a uniaxial medium, omitting subscript 2, for a
TM wave.

Solution Note that the medium is a nonmagnetic medium whose dielectric tensor is
given by Eq. (9.124), so that the optic axis is in the z-direction. TheMaxwell equation
in terms of wavevector Eq. (8.26) should be modified as k×H = −ωε0 ¯̄εE. For TM
wave incidence, ky = 0 andH = Hy ŷ.Hence, we have kx Hy = −ωε0εOEx , Ey = 0,
and kzHy = ωε0εEEz . Plugging the electric field components into k × E = ωμ0H,

which is Eq. (8.25), we obtain

k2z εE + k2xεO = (ω/c0)
2εOεE

This proves Eq. (9.125); since the plane of incidence can be rotated about the
optic axis, we can also prove that Eq. (9.129) is for a plane wave propagating in the
uniaxial medium whose magnetic field is perpendicular to the plane of incidence.
Readers can find the derivations for more general cases from [157, 158]. Since
k · D = k · ( ¯̄εE) = 0, k⊥D always holds. However, the electric field E and the
wavevector k may not be perpendicular to each other.

In general, it is known that for EMT to be applicable, the wavelength should be
much greater than the period of the unit cell. Zhang and Zhang [160] considered the
wave propagation and radiative properties for several multilayer structures. Consider
a metallodielectric multilayers with Ag and TiO2 (rutile) whose refractive index is
around 3 (εd ≈ 9) in the visible and ultraviolet. Let d = 480 nm and φ = 0.5.
The Poynting vector can be traced in each layer based on the combined field for
the forward and backward waves, forming so-called energy streamlines [67, 155].
Figure 9.49 shows the energy streamlines for θi = 40◦ at λ = 400 nm and 600 nm,

respectively. Note that ε′
O is negative at wavelengths longer than 440 nm, due to the

large negative value of ε′
Ag. As the wavelength is reduced to below 440 nm, while

ε′
Ag < 0, its magnitude becomes smaller than εd, so that ε′

O becomes positive while
ε′
E becomes negative, according to Eqs. (9.27) and (9.128).
In Fig. 9.49, the dots show calculations based on the effective medium theory.

The solid lines are for dm = dd = 12 nm (20 periods) and the dashed lines are for
dm = dd = 30 nm (8 periods); they are calculated using the transfer matrix method
discussed in Sect. 9.2.2. Note that the streamlines are curved in the incident medium
(ε1 = 1) due to interference with the reflected wave. As the thickness of the layer
is reduced, the results are closer to the EMT. At λ = 400 nm the transmittance
calculated using EMT is 53%. On the other hand, the transmittance calculated using
the exact solution is 42% for� = 24 nm and 15% for� = 60 nm. This suggests that
EMT can help qualitatively understand the underlying physics but care should be
taken in using EMT for accurate calculation of the radiative properties [160]. Loss is
high at λ = 600 nm, resulting relatively large deviation and negligible transmittance.
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Fig. 9.49 Energy streamlines for a Ag-TiO2 metallodielectric hyperbolic medium [160]: a λ =
400 nm with type I hyperbolicity. b λ = 600 nm with type II hyperbolicity

The validity of EMT can be further analyzed based on the photonic crystal
dispersion relation [158], based on the Bloch theorem.

cos(kb�) = cos(γmdm) cos(γddd) − 1

2

(
εmγd

εdγm
+ εdγm

εmγd

)
sin(γmdm) sin(γddd)

(9.131)

Here, kb is the Bloch wavevector of the 1D PC, γm =
√

εmk20 − β2 or γd =√
εdk20 − β2 is the z-component of the wavevector in metal and dielectric, respec-

tively, and β =
√
k2x + k2y is the parallel wavevector component. Under the limit

kb� � 1, γmdm � 1, and γddd � 1, we can use the approximation cos(x) ≈
1 − x2/2 and sin(x) ≈ x . Equation (9.131) can be reorganized using Eqs. (9.127)
and (9.128) to obtain [153, 158]:

β2

εE
+ k2b

εO
= ω2

c20
(9.132)

which is exactly the dispersion relation for a uniaxial medium when kb = kz . The
practical criteria are γmdm < π/4, γddd < π/4, and kz� < 1 [160, 163]. However,
more strict criteria may be necessary to accurately predict the radiative properties
and near-field radiation.

Certain naturally occurringmaterialsmay also support hyperbolic polaritons, such
as graphite, YBCO superconductor, hexagonal boron nitride (hBN), Bi2Te3, etc. [35,
59, 164, 165]. These materials may enable a large range of thermal applications
coherent thermal emission to energy harvesting. In addition to planar multilayers,
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arrays of nanowires, carbon nanotubes, and nanoholes can also support hyperbolic
polaritons [120, 149, 159], as discussed in the following.

9.5.7 General Effective Medium Theory

Arrays of nanowires and nanoholes are illustrated in Fig. 9.50, assuming the optical
properties are isotropic in the x-y plane so the subwavelength structure forms an
effective uniaxial medium whose optic axis is parallel to the z-axis. For nanowires,
the matrix is assumed to be a dielectric with a dielectric function εd (which may be
vacuum or air), and the filler is assumed to be a metallic or some polar materials
with a dielectric constant of εm. The volume filling fraction or ratio for the wire φ.
It is expected that for a low filling ratio, the behavior for electric field perpendicular
to the optic axis should be dielectric and for electric field parallel to the optic axis
should be dilute metallic. For nanoholes, the filling ratio is based on the holes, the
filler is a dielectric (εd) inside a metallic matrix (εm). The effective medium behavior
of hole arrays may be complicated and magnetic resonance may also be excited. In
this section, the general effective medium theory is present, without considering
magnetic response, and the multilayers and periodic arrays are viewed as special
cases.

The effectivemedium theory has been studied and compared bymany researchers.
In essence, it uses mean field and seeks an average permittivity based on the permit-
tivities and volume fractions of individual constituents. TheMaxwell-Garnett theory
assumes one constituent as the host and all other constituents as embedded grains
that are spatially separated, and therefore, it is valid for dilute systems (i.e., relatively
low volume fractions of the filling constituents). On the other hand, the Bruggeman
approximation treats all constituents equally as grains imbedded in an otherwise

Fig. 9.50 Schematic drawings of arrays of a nanowires and b nanoholes. The actual dimensions
may be large as long as they are much smaller than the wavelength
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homogenous “effective” medium which is assumed to possess the average proper-
ties of the composite. Furthermore, the shape of the filler can play a major role for
different polarization. Therefore, a geometric factor g can be included whose value
depends on the geometry and polarization. The general expression of the effective
medium theory for the dielectric function can be expressed as [67, 166]:

εeff − εh

εh + g(εeff − εh)
= φ1

ε1 − εh

εh + g(ε1 − εh)
+ φ2

ε2 − εh

εh + g(ε2 − εh)
+ . . . (9.133)

For the Bruggeman approximation, the host medium is the resulting effective
medium, thus, εh = εeff. In this case, the left side becomes zero and the right side is
a function in terms of εeff whose zeros are the solutions of εeff. For a two-constituent
system with spherical particles or randomly oriented particles, g = 1/3, and we
obtain Eq. (9.81) which is the traditional effective medium approximation [38]. The
Maxwell-Garnett theory treats one of the constituents as the host. Suppose there are
N types of constituents and φN is greater than 50%. Taking the N th constituent as
the host, Eq. (9.133) can be rewritten as follows:

εeff − εN

εN + g(εeff − εN )
=

N−1∑
j=1

φ j
ε j − εN

εN + g(ε j − εN )
(9.134)

Since 0 ≤ g ≤ 1, this equation allows an explicit expression for εeff. Next, we
will discuss some simple systems with two components only.

As discussed byBohren andHoffman [67], the summation of all three components
of g must be 1. For a long wire when the electric field is polarized along the wire,
g = 0. It follows that for aligned wire or hole arrays, gE = 0 and gO = 0.5 since
there are two in-plane directions. This ensures that the sum of the three components
of g is 1. In the case of layered structures, gE = 1 and gO = 0. It can be shown that
both the Maxwell-Garnett and Bruggeman formulations give the same results for a
two-component system when g = 0 or g = 1. Therefore, Eq. (9.127) and (9.128)
can be obtained from the general EMT formula Eq. (9.133). This is left as an exercise
in Problem 9.39.

With the Maxwell-Garnett theory, it can be shown that for nanowire arrays,

εO = εd
εm(1 + φ) + εd(1 − φ)

εm(1 − φ) + εd(1 + φ)
(9.135a)

εE = φεm + (1 − φ)εd (9.135b)

where φ is the filling ratio of metal. For air or vacuum, we can set εd = 1. The
expression for nanoholes can be obtained by switching εm and εd in Eq. (9.135), and
letφ be the volume fraction of the void (holes). It should be noted that the Bruggeman
approximation gives a different expression for εO that requires finding the roots of a
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quadratic equation (usually only one solution is physical). When the volume fraction
exceeds 0.3, it may be more appropriate to use the Bruggeman approximation.

Bothmetal nanowires and nanoholes and semiconductor nanowires and nanoholes
have been shown to exhibit exotic optical properties, including hyperbolic dis-
persion and negative refraction [57, 149, 156, 159, 161, 167]. It should be noted
that Mie resonance dielectric particles, especially with phonon resonances like
SiC can be embedded in another dielectric to enable both electrical and magnetic
resonances [168].

The similar concept can be applied to aligned carbon nanotubes (CNT). However,
since CNT is rolled graphene sheet, the effective dielectric functions for a vertically
aligned CNT array in air are usually expressed in terms of the ordinary (ε⊥) and
extraordinary (ε‖) components of graphite using a coordinate transform [169]:

εO = (1 + φ)ε‖ + (1 − φ)
√

ε‖/ε⊥
(1 − φ)ε‖ + (1 + φ)

√
ε‖/ε⊥

(9.136a)

εE = φ(ε‖ − 1) + 1 (9.136b)

The volume fraction can be estimated by the ratio of the density of the CNT array
to that of graphite and is usually between 2 and 15% [170]. However, fabricated
nanowires are often misaligned or entangled. To account for these imperfections, an
alignment parameter is introduced such that the dielectric functions are modified as
follows [171, 172]:

εO,mod = xεO + (1 − x)εE (9.137a)

εE,mod = xεE + (1 − x)εO (9.137b)

Aligned CNTs exhibit high absorptance from the visible to infrared wavelength
region due to interband transitions and free-electron absorption, as well as impedance
matching with air [170–172]. Furthermore, CNT arrays form type I hyperbolic
metamaterial that can facilitate light collimating, infrared imaging, solar energy
harvesting, and near-field radiation [171–173].

9.6 Spectral and Directional Control of Thermal Radiation

There have been numerous studies on the spectral and directional control of ther-
mal radiation such as coherent thermal emission, spectrally selective emitters or
absorbers, extraordinary optical transmission, resonance perfect absorption, and
wideband perfect absorption. Many of the metamaterial structures have a relatively
small total thickness and are fabricated onto a substrate. They are sometimes called
metasurfaces when the patterned structure has subwavelength thickness. Some of the
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metasurfaces can have optical chirality and respond differently for electromagnetic
waves with left-handed or right-handed circular polarizations. We will limit our dis-
cussion to linearly polarized plane waves and for materials with linear responses.
Several examples of using micro/nanostructures and metamaterials for tailoring the
far-field radiative properties are discussed in this section.

9.6.1 Polariton-Enhanced Transmission

As mentioned previously, polaritons can enhance transmission for metal films, such
as with metallodielectric multilayers. The prism-air-metal-prism structure can be
used to excite surface polaritons at the interface between air and the metal to enable
a larger tunneling transmittance for TM waves. Photon tunneling refers to energy
transmission through a vacuum gap or dielectric film when the parallel wavevector
exceeds the wavevector in the medium. In such case, the perpendicular wavevector is
imaginary and only evanescent waves can exist in themedium.When the thickness of
the medium is sufficiently small, energy can still be transmitted through the vacuum
gap or dielectric film. This will be extensively studied in Chap. 10. In this section,
we consider propagating waves that are incident from air or vacuum. Examples are
given for layers with NIMs and with a paired negative-ε and negative-μ composite,
as well as for a periodic slit array and graphene covered slit arrays.

The transmittance of multilayer structures with alternating vacuum and NIM gaps
are shown in Fig. 9.51 for TE wave incidence [174]. The number of layers (2N)
includes the top and bottom semi-infinite dielectric media with εd = 2.25 which
can be considered as prisms. Therefore, for the 2N layers, there are N − 1 layers
of alternating vacuum and NIM between the two prisms. The dielectric function
and relative magnetic permeability of the NIM are calculated with Eqs. (8.121) and

Fig. 9.51 Radiative properties of multilayer structures with NIMs for TE wave [174]. a Trans-
mittance spectra at incidence angle θ = 60◦. b Transmittance and absorptance as a function of
incidence angle at ω = 0.665ωp
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(8.122) usingω0 = 0.5ωp, F = 0.785, and γe = γm = 0.0025ωp. The total thickness
of the NIM is fixed to 0.85λp = 1.7πc/ωp. The thickness of the vacuum layer is
the same as that of the NIM layer. The transmittance spectra at an incidence angle
θi = 60◦ are shown in Fig. 9.51a. The tunneling transmittance is greatly enhanced by
reducing the individual layer thicknesses while maintaining the same total thickness.
The enhanced transmittance is caused by the coupled surface polaritons as well
as bulk polaritons. Figure 9.51b illustrates the transmittance and the absorptance
as functions of the incidence angle. Note that the critical angle between the prism
and vacuum is 41.8°. While the transmittance is slightly reduced as the number
of layers increases for propagating waves in vacuum, the tunneling transmittance
is greatly enhanced. The absorptance reaches a peak at a certain incidence angle.
At large incidence angles, the absorptance also increases as the number of layers
increases. Therefore, the enhanced transmittance is associated with a reduction in
the reflectance.

A large number of publications have dealt with a paired negative-ε and negative-
μ bilayer composite and demonstrated unique transmission and emission properties
[175, 176]. Since ε1ε2 < 0 and μ1μ2 < 0, when loss is neglected, both k1z and k2z
are purely imaginary regardless of kx . For simplicity, let us model the electric and
magnetic properties of these two materials with loss using

ε1(ω) = 1 − ω2
p

ω2 + iωγe
and μ2 = 1 (9.138a)

and

ε2(ω) = ε2 and μ2(ω) = 1 − Fω2

ω2 − ω2
0 + iωγm

(9.138b)

where ε2 is real positive. The dispersion relations for ε2 = 1, 2, and 4 are shown in
Fig. 9.52a for both polarizations, assuming ω0 = 0.5ωp, F = 0.785, and γe = γm =
0. It can be seen that polaritons can be coupled with propagating waves in air, even
at normal incidence. Figure 9.52b shows the transmittance spectra of such a bilayer
with loss using ε2 = 4 and γe = γm = 0.0025ωp, for TE wave incidence from air.
The thicknesses are assumed to be a = 2d = 0.425λp. Sharp transmission peaks
occur near the surface polariton resonance frequency. It should be noted that, if each
individual layer is used, the transmittance is very small since evanescent waves exist
in each medium. The calculation of the transmittance for a TM wave is left as an
exercise. Jiang et al. [176] examined the resonance transmission of a PC, made of
alternating layers of negative-ε and negative-μ materials, for potential application
of high-Q filters.

The cross coupling of surface plasmon polaritons between corrugated metal films
has been studied since the 1970s and employed to enhance light emission from tunnel
junctions and light-emitting diodes. The coupled surface polaritons enable the coher-
ent transmission of light through a narrow wavelength region in well-defined direc-
tions. A schematic of corrugated or grating-perturbed surfaces is shown in Fig. 9.53a,
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Fig. 9.52 Dispersion relations and transmittance of a paired negative-ε and negative-μ composite in
air. aDispersion relations for both polarizations between two semi-infinite losslessmedia.bSpectral
transmittance for a TE wave at different angles of incidence

Fig. 9.53 Various structures for transmission enhancement. a Grating or periodically perturbed
surfaces for cross coupling of surface plasmons. b Subwavelength hole array. c 1D periodic slit
array in a metal or polar material. d Corrugated metallic surfaces with an aperture for directional
transmission. e Photonic bandgap structure for beaming light. f Bowtie nanoaperture for near-field
focusing and transmission enhancement

along with some structures that have been extensively investigated for the control
of light transmission through nanostructures. The work by Ebbesen and coworkers
in 1998 on enhanced transmission of metallic films perforated with subwavelength
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holes has spurred a keen interest in studying transmission of light through nanostruc-
tures [177], including 2D hole arrays and 1D slit arrays, as shown in Figs. 9.53b–d,
that include annular aperture and gratings. Coupled and localized SPPs and Fabry–
Perot-type resonances have been used to explain the observed enhancement with
some success, though quantitative predictions require rather complicated numerical
modeling.

Another type of the enhanced transmission configuration is an aperture in corru-
gated surfaces, as shown in Fig. 9.53d for a metallic film and Fig. 9.53e that uses
the bandgap of PCs to beam the light. The corrugated surface serves as a funnel to
guide the light into the aperture or slit. In either case, the transmitted light becomes
highly directional and the transmittance spectrum exhibits sharp peaks [177]. These
structures may be considered as periodic slits with an infinite period or distance
of separation. Circularly corrugated surfaces have also been used to funnel light
through a subwavelength aperture. Surface plasmon-mediated transmission through
single nanoholes and double slits without corrugated surfaces has also been studied.
Light transmission through single nanoapertures of different shapes has been of great
interest to nanolithography. For example, the bowtie nanoaperture as illustrated in
Fig. 9.53f can couple SPPs to the near field and function as a nanoantenna to collect
light and focus light to subwavelength spots [178].

Several mechanisms responsible for extraordinary optical transmission (EOT) in
periodic 1D slit arrays were described including Wood’s anomaly, SPPs or cou-
pled SPPs, EMT, cavity resonance modes, as well as MPs [34, 124, 177, 179].
Chen et al. [179] fabricated 1D Au slit arrays on Si with a period between 800 nm
and 1000 nm and measured the mid-infrared transmittance for individual polariza-
tion. They demonstrated the effects of Wood’s anomaly for both polarizations at the
grating-substrate interface. In order for Wood’s anomaly to occur, the z-component
of the wavevector inside the dialectic must be zero for given diffraction order. This
gives the dispersion relation regardless of the polarization as

kW = kx = ndk0 − j
2π

�
(9.139)

where � is the grating period, nd is the refractive index of the adjacent dielectric,
and j = 0,±1,±2, . . . is the diffraction order. For normal incidence, Eq. (9.139)
reduces to λ j = nd�/j, where λ j is the wavelength in vacuum and j = 1, 2, . . .
For TM waves, Wood’s anomaly dispersion is very close to the SPP dispersion and
there is essentially no distinction between Wood’s anomaly and SPP. However, for
TE waves, Wood’s anomaly yields slight shift in the transmission spectrum [179].
When the wavelength is much greater than the period, the EMT can help explain
the broadband high transmittance for TM wave [34, 179]. Since the electric field
is perpendicular to the metal trips, the effective conductivity is very small and the
metal gratings exhibit dielectric behavior as predicted by Eq. (9.128). However, for
deep metal gratings with narrow slit opening, resonance transmission occurs. This is
often explained by the Fabry–Perot-type cavity resonance or organ-pipe mode based
on the following equation [180, 181]:
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2kheff = 2πm, m = 1, 2, . . . (9.140)

where heff ≈ h is a modified or effective grating height due to phase shift at the ends.
Assuming the phase shift is zero so that heff = h, Eq. (9.140) gives a fundamental
resonance wavelength of λmax = 2h.Wang and Zhang [124] usedmagnetic polariton
to explain resonance transmission and absorption for a metal slit array. Because
MPs or cavity resonance modes are localized resonances where a strong field exists
inside the slit, both the transmittance and absorptance reach a maximum (although
with a slightly different locations) about the resonance frequency. The radiative
properties for the Ag slit array shown in Fig. 9.54a are plotted in Fig. 9.54b at
normal incidence for� = 500 nm, h= 400 nm, and b= 50 nm. TheMP1 resonance
wavenumber corresponds to a wavelength of 1.33 μm, which is more than 3 h.
Wood’s anomaly (more accurately, SPP) also enhances absorptance or transmittance
at λ = � = 400 nm. It should be noted that MPs are insensitive to the incidence
angle unlike SPP. Furthermore, the resonance bandwidth for MP is usually broader
than that for SPP. The LC circuit model, according to Fig. 9.37b and Eq. (9.113),
also allows the quantitative prediction of the dependence of resonance frequency on
the slit width as demonstrated in Ref. [124].

Liu et al. [129] designed a high-extinction-ratio polarizer in the wavelength region
from 1.6 to 2.3μm that has a transmittance above 89% for TMwaves and essentially
zero transmittance for TE waves using double-layer slit arrays made of Ag strips
separated by a thin dielectric film. The openings of the upper and lower slits are
blocked by the metal strips of the other gratings with relative a lateral shift between
the upper and lower gratings. The excitation of two MP modes yields a relatively
wideband transmittance for TMwaves that is insensitive to the incidence angle up to
about 60°. The transmission band may be tuned by the geometric parameters [129].
Furthermore, graphene-covered 1D or 2D grating arrays can support MPs in the mid-
infrared [182]. In addition to the grating geometry, the transmittance band can be

Fig. 9.54 a Schematic of the 1D slit array with Ag gratings. b Reflectance (R), transmittance (T ),
and absorptance (α) spectra at normal incidence for wavenumbers from 2500 cm−1 to 25000 cm−1

with a grating period � = 500 nm, height h = 400 nm, and slit width b = 50 nm [124]
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Fig. 9.55 a Schematic of graphene-covered 2D pillar arrays with periods and slit widths in x- and
y-directions as �x ,�y, bx , by , respectively, and Ag grating height h. b Transmittance of plain and
graphene-covered 2D pillar arrays at normal incidence for different graphene chemical potentials
(μ = 0.4 eV, 0.6 eV, and 0.8 eV). The geometric parameters are h = 200 nm, bx = by = 50 nm,

and �x = �y = 1000 nm [182]

tuned by the chemical potential of graphene, as shown in Fig. 9.55 for a 2D Ag pillar
array. The advantage of the 2D grating is that the transmittance is independent of the
polarization at near normal incidence due to the structural symmetry. A commercial
finite-difference time-domain (FDTD) software package was used to compute the
transmittance. Without graphene, there is a broadband transmission with increasing
transmittance toward longer wavelengths. The graphene coverage enables an MP
excitation that can be modeled by an equivalent LC circuit. The excitation of MP
results in a transmittance peak with significantly reduced reflectance [182].

9.6.2 Perfect Absorption

Black materials with low reflectivity have numerous applications; for instance, high-
efficiency absorbers or emitters for energy conversion, radiometers and bolometers
for space-borne infrared systems, calibration standards and backing materials for
radiation measurements, and light trappers in optical systems [1, 41, 183, 184]. High
absorptance can be achieved using various pigments in painting materials, metallic
particles, oxidization (such as anodized aluminum), carbonblack, and gas-evaporated
gold blacks (ultralow-density pure Au flakes) [183]. This section describes black
absorbers made by aligned carbon nanotubes (CNTs), metasurfaces, and with 2D
materials such as graphene or hBN.

Vertically aligned CNT films have been shown to exhibit record high visible
absorptance and very high absorptance all the way to far-infrared region [172, 184,
185]. The absorption of carbon-related materials in the ultraviolet is mainly due to
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Fig. 9.56 a, b SEM images of two vertically aligned CNT arrays identified as Sample 1 and Sample
2. c Directional-hemispherical reflectance in percentage at wavelengths from 400 nm to 1000 nm
measured with a monochromator and a Si photodetector [185]

the electronic transition between the π and π* bands. As for graphene, the Dirac-
like interband transition can have a major impact on the absorption spectrum at
high frequencies in infrared and visible region. In the mid- to far-infrared region,
absorption is mainly due to the intraband transition in the graphene sheet (like free
electrons in metal). Due to the alignment and low density of the CNT arrays, the
refractive index is not very far from that of free space, especially for the ordinary
direction. On the other hand, the absorption is stronger in the extraordinary direction
since the electric field is parallel to the tube direction [170–173]. Subsequently, the
absorptance of vertically aligned CNTs can exceed 0.99 or 0.999 in the visible and
near-infrared region.

Figure 9.56 shows the directional-hemispherical reflectance at wavelengths from
400 nm to 1000 nm measured for three CNT samples grown on Si. All these sam-
ples are opaque and the SEM for Sample 1 and Sample 2 are shown in Fig. 9.56a,
b, respectively. In the spectral measurements with a tungsten halogen lamp and
monochromator, the sample is mounted at the center of the integrating sphere. For
measurement with a laser beam at 635 nm wavelength, the sample is mounted at the
back of the integrating sphere. The relative error for the reflectance measurements
is estimated to be 30% due to the low reflection signal. The surface of Sample 1 is
relatively smooth and it is a specular black, whose reflectance is between 0.3 and
0.5%, suggesting an absorptance from 0.995 to 0.997. The reflectance for Samples
2 and 3 with relatively rough surfaces are even lower, and their absorptance ranges
from 0.998 to 0.999 in the measured spectral region [185]. The BRDF of these sam-
ples has also been characterized by using high amplification gains to detect the very
low reflected signal. The measured results agree well with model predictions based
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on the EMT described in Eqs. (9.136a), (9.136b) and a surface roughness model
according to Eqs. (9.25a) and (9.25b) [185].

The dielectric functions of vertically alignedCNTarray consideringmisalignment
can be calculated from Eqs. (9.136a), (9.136b) to (9.137a), (9.137b). Then the mod-
ified Fresnel coefficient given in Eq. (9.126a) for reflection upon uniaxial medium
can be used to calculate the directional-hemispherical reflectance by ignoring surface
roughness. The normal reflectance of semi-infinite CNT films is shown in Fig. 9.57a
for varying filling ratio and alignment factors in the wavelength region from 1 μm
to 1000 μm. It can be seen that R′

λ for φ = 0.05 and x = 0.99 and for φ = 0.03
and x = 0.98 is less than 0.1% at λ < 25μm and less than 2% up to λ = 100μm.

Beyond λ = 200μm, however, the reflectance increases to around 50%. Exper-
imental measurements of vertically aligned single-wall CNT arrays demonstrated
high absorptance of 0.98 for 0.2μm < λ < 200μm [186]. This is possibly due
to surface texture effect that can create a profile of gradient refractive index to for
impedance matching with that of air. Another reason is that CNTs can have different
band structures, chemical potentials, as well as scattering rate than what were used
in the modeling.

In general, the reflectance increases as the angle of incidence approaches 90°.
Therefore, the hemispherical reflectance is expected to be greater than that at nor-
mal incidence. The calculated hemispherical absorptance spectra of the CNT arrays
with φ = 0.05 and x = 0.98 by integrating over the zenith angle are plotted in
Fig. 9.57b. In the near- and mid-infrared region for random polarization, the hemi-
spherical absorptance exceeds 0.95 for λ < 9μm and exceeds 0.90 for λ < 33μm.

Interestingly, the absorptance is higher for s-polarized incident waves at λ < 40μm.

For an isotropic medium, the reflectance for p-polarization is smaller than that for
s-polarization at any incidence angles. This is not always the case for a uniaxial

Fig. 9.57 Predicted radiative properties of vertically aligned CNT arrays. a Normal reflectance
spectra at wavelengths from 1 μm to 1000 μm, with varying filling ratios and alignment factors.
b Hemispherical absorptance spectra for s- and p-polarization, and the average of the two [172]
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medium. The reflectance at large incidence angles for CNT arrays can be higher for
p-polarization than for s-polarization. Subsequently, the absorptance is higher for s-
polarization than for p-polarization unless the wavelength exceeds 40μm, when the
reflectance is always higher for s-polarization than for p-polarization [172]. Aligned
doped silicon nanowires can also achieve broadband nearly perfect absorptance in
the mid-infrared region for both polarizations [57, 187]. Furthermore, the doped sil-
icon nanowires form a hyperbolic metamaterial and can support negative refraction
with low loss in the mid-infrared [187].

Patterning subwavelength metallic elements on a thin dielectric film, which is
coated on a metal ground plane, forms a metamaterial (also called metasurface) that
can excite magnetic polaritons as discussed previously. The localized magnetic res-
onance results in an omnidirectional high absorption peak as discussed in Sect. 9.5.4
[120, 123]. Themetasurfacemay be understood to have an effectivemagnetic perme-
ability due to the diamagnetism [135–137]. By using 2D structures, the absorption
peaks can be achieved for incident waves with both p- and s-polarizations. Different
pattern shapes (such as strips, crosses, circular disks, squares, and square rings) and
sizes can be formed to control the emission peaks to make it broader or to create
multiple peaks [130, 167, 188].

Sakurai et al. [188] studied the effect of patterns on the polarization dependent
absorptance. The normal spectral emittance spectra for two structures, shown in the
insets, are plotted Fig. 9.58. The FDTD method was used to calculate the infrared
reflectance of the twometamaterial absorbers by solving theMaxwell equations. The

Fig. 9.58 Absorptance spectra at normal incidence for two different patterns as indicated in the
insets. a Pattern made of two separate rectangles (L = 1.7 μm and w = 1.1 μm) for which the
absorptance is independent of the polarization angle ψ ; b Pattern made of an L-shape (L = 1.7 μm,
and w = 0.85 μm) for which the absorptance depends on ψ . The unit cell period is � = 3.2μm
for either pattern in both the x- and y-directions. The pattern is made of Au film with a thickness of
100 nm on a 140-nm-thick continuous Al2O3 film, which is coated on a semi-infinite Au ground
plane [188]
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optical constants of gold are taken from Palik [2]. For simplicity, losses and disper-
sion of Al2O3 are neglected by assuming a constant refractive index n = 1.57 based
on tabulated value atλ= 6.25μm[2]. The polarization angleψ is defined as the angle
between the electric field and the plane of incidence such that ψ = 0◦ and 90◦ corre-
spond to TMandTEwaves, respectively. The azimuthal angle for normal incidence is
set toφ = 0◦ or the plane of incidence is the x-z plane.Whenψ = 0◦, the electric field
is parallel with the x-direction. In this case, ψ defines the angle between the electric
field and the x-axis. It can be seen from Fig. 9.58a that absorptance for the double-
rectangle patterned metamaterial is enhanced significantly around λ = 4.72 μm and
6.67 μm. Furthermore, the absorptance is independent of the polarization angle. On
the other hand, the polarization effects can be observed in Fig. 9.58b for the L-shape
patterned metamaterial. Note that the curves for the cases ψ = 0◦ and 90◦ overlap;
however, for ψ = 45◦ and 135◦, the absorptance spectra are dramatically different.
The peak at λ = 4.72μm shows up forψ = 45◦ but disappears whenψ = 135◦. The
reverse is true at λ = 6.67 μm where the peak occurs for ψ = 135◦ but disappears
for ψ = 45◦. The following focuses on the case of the double-rectangle patterned
metamaterial.

The field distributions revealed that each absorption peak in Fig. 9.58a corre-
sponds to a resonance absorption by each rectangle. The LC circuit model can be
used to predict the absorption peaks due to the excitation of the fundamental mode
of MP based on the short and long sides of the rectangle [188]. The geometric sym-
metry makes the absorption spectra independent of the polarization angle. For the
L-shape, two resonance modes are observed atψ = 45◦ and 135◦ with different field
distributions. The MP resonance frequency can also be predicted by modifying the
effective width of the strip and the capacitance between the patterned structure and
the ground plane. At ψ = 0◦ or 90◦, both modes can be excited but with roughly
half of the strength, resulting in two peaks with roughly half of the absorptance as
shown in Fig. 9.58b. Zhao et al. [188] obtained an analytical expression to describe
the polarization dependence (or independence) of periodic micro/nanostructures.

Broadband perfect absorption can also be achieved with metallodielectric mul-
tilayers, made into sawtooth gratings [189]. As discussed in Sect. 9.5.6, metal-
lodielectric multilayers form an effective hyperbolic metamaterial. The trapezoidal
shape helps impedance matching and can create multiple waveguide modes that trap
the incident radiation at different height when the group velocity is zero. Natural
hyperbolic materials [59, 164, 165] may also be used to achieve perfect absorp-
tion. Figure 9.59 shows the dielectric functions of hBN and the calculated spectral
absorptance, demonstrating a mid-infrared perfect absorption band [190].

The sheet of hBNconsists of alternating boron and nitrogen atoms in a honeycomb
arrangement. Due to its wide bandgap (~ 5.9 eV), hBN is a dielectric material. Due
to its 2D layered crystalline structure, hBN has anisotropic lattice vibration modes in
the mid-infrared, making it a natural low-loss hyperbolic metamaterial. The in-plane
phonon modes (ωTO,⊥ = 1370 cm−1 and ωLO,⊥ = 1610 cm−1) and out-of-plane
phonon modes (ωTO,‖ = 780 cm−1 and ωLO,‖ = 830 cm−1) contribute to the in-
plane (E lies in the x-y plane, denoted by ⊥) and out-of-plane (E parallel to the optic
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Fig. 9.59 a Real part of the dielectric function of hBN with two hyperbolic bands. b Calculated
absorptance for TMwaves of 1D trapezoidal hBN gratings on an opaque Ag layer [190]. The period
� = 3μm, height h = 10μm, and the bases of the trapezoid are 40 nm and 2μm, respective

axis or the z-direction, denoted by||) dielectric functions, which can be written as
follows [35, 59]:

ε⊥ = ε∞,⊥

(
1 + ω2

LO,⊥ − ω2
TO,⊥

ω2
TO,⊥ − iγ⊥ω − ω2

)
(9.141a)

ε‖ = ε∞,‖

(
1 + ω2

LO,‖ − ω2
TO,‖

ω2
TO,‖ − iγ‖ω − ω2

)
(9.141b)

The remaining parameters used in the model are ε∞,‖ = 2.95, γ‖ = 4 cm−1,
ε∞,⊥ = 4.87, and γ⊥ = 4 cm−1. The actual parameters may vary depending on the
defects and isotope fractions [191]. The real part of the dielectric function becomes
negative between the TO and LO phonon modes, making the in-plane and out-of-
plane dielectric functions of hBN possess opposite signs in either Reststrahlen band
as shown in Fig. 9.59b.

The absorptance for TM waves of the designed structure displayed in Fig. 9.59b
is close to unity in a relatively broadband for 6.2μm < λ < 7.3μm in the type
II hyperbolic region. The calculations are based on a modified RCWA considering
anisotropic media [35, 190]. Additional calculations not shown here demonstrate
that the broadband absorptance is insensitive to the incidence and remains higher
than 0.8 even at an incidence angle θ = 80◦. Furthermore, the mechanisms can be
explained by considering local absorption distribution inside the hBN trapezoidal
according to

w(x, z) = 1

2
ε0ω
(
ε′′
⊥|Ex |2 + ε′′

‖ |Ez|2
)

(9.142)
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where w is the local power dissipation density. The field distribution and dissipation
profile demonstrated a slow-light effect and the absorption distribution is strongly
wavelength dependent. The absorption in the short wavelength end occurs near the
top of the trapezoid and that in the long-wavelength end occurs near the bottom of
the trapezoid. Furthermore, due to hyperbolic phonon polaritons (HPhP), resonance
perfect absorptionmay also exist in both trapezoid and square gratings of hBN [190].

For the 1D trapezoidal structure, perfect absorption based on the hyperbolic polari-
tons can only be achieved for extraordinary waves (p-polarization). Wang et al. [165]
proposed to use pyramid structures to enable perfect absorption for both polarizations.
Using crystalline Bi2Te3, which exhibits anisotropy in the visible and near-infrared
region, perfect absorption was predicted at wavelengths from 300 nm to 2400 nm for
harvesting solar energy. Furthermore, with the selected pyramidal structures on Ag
substrate, the absorptancewas predicted to exceed 99.9% in thewhole spectral region
[165]. Fabrication of the nanoscale structure period of 200 nmwithmicrometer (3μm
height) remains a major challenge.

Graphene may be used as ultrafast photodetectors from the visible to the near
infrared due to its higher carrier mobility and interband absorption. However, the
absorptance of amonolayer graphene sheet is only about 2.3% in this spectral region;
this is related to thefine structure constant [192].Variousmethods canbeused to boost
the absorption of graphene, including the use of microcavities, photonic crystals,
optical antennas, localized plasmonic resonators, etc. Zhao et al. [193] employed
deep metal grating to enhance graphene absorption and to achieve nearly perfect
absorption when MPs or SPPs are excited. The structure is graphene-covered deep
metal gratings, as shown in Fig. 9.60a and the calculated absorptance spectra with
andwithout graphene are shown in Fig. 9.60b for p-polarization at an incidence angle
θ = 10◦. In the calculation using RCWA, graphene is treated as layer with a finite
thickness of 0.3 nm.

Fig. 9.60 a Schematic of graphene-covered Ag deep grating. b Calculated absorptance at an inci-
dence angle θ = 10◦ for TM waves, with and without graphene, for h = 200 nm, b = 30 nm, � =
400 nm, and graphene chemical potential μ = 0.3 eV [193]
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Three peaks can be seen in Fig. 9.60b at wavenumbers ν̄ = 6700 cm−1 (1.49μm),
18350 cm−1 (545 nm), and 20930 cm−1 (478 nm). These peaks correspond well with
MP1, MP2, and SPP in the deep grating. Note that due to interband transitions,
graphene behaves as a resistive element with a finite conductivity at wavelength
shorter than 2.1 μm. For a plain Ag grating, the absorptance is only 0.21, 0.66, and
0.57 at the resonance of MP1, MP2 and SPP, respectively. With graphene coverage,
the absorptance at the corresponding wavenumber is raised to 0.81, 0.99, and 1.0,
respectively. Yet, it is interesting to find out the absorption distribution and what
fraction is actually absorbed by the graphene.

Zhao et al. [193] calculated the absorption distribution using the power dissipation
density as discussed in Eq. (9.142) for isotropic materials as

w(x, z) = 1

2
ε0ωε′′(x, z)|E(x, z)|2 (9.143)

Furthermore, the fraction of absorption can be calculated by the ratio of the total
absorbed power within a volume V to the incoming power through the exposed
surface area A as follows:

α =
∫ ∫ ∫

w(x, z)dV
1
2c0ε0|Einc|2A cos θ

(9.144)

Clearly, the denominator is the product of the Poynting vector and the projected
surface area. Itwas shown that only the suspendedgraphene contributes to absorption,
while the graphene over Ag does not. At ν̄ = 6700 cm−1 (MP1), the fraction of
absorption by graphene is 0.68, which is nearly 30 times greater than a free-standing
graphene. The fraction of absorption by Ag grating is 0.13, which is less than the
value of 0.21 without the graphene coverage. Applying graphene reduces the field
strengths inside the trench region but graphene itself significantly absorbs the incident
radiation. At MP2 and SPP resonance frequencies, the fraction of absorption of
graphene is 0.77 and 0.80, respectively, while the fraction of absorption of the Ag
grating is reduced to 0.22 and 0.20, respectively. In the mid-infrared, graphene can
modify the MP resonance frequency since its inductance is not negligible due to
intraband transitions [152, 182].

Understanding the distribution of local absorption and electromagnetic energy
density in nanostructures are very important for solar cell, local heating, and other
optoelectronic devices [139]. In addition to graphene, other 2D materials such as
hBNcan couplewith deepmetal gratings to yield perfect absorption peaks, especially
when hybrid hyperbolic phonon-plasmon polaritons are excited [35, 59].
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9.6.3 Tailoring Thermal Emission with Nanostructures

Thermal emission is a spontaneous emission process that occurs from any object.
Spontaneous emission from the molecules or atoms can be enhanced or suppressed
by micro/nanostructures, such as photonic crystals and nanocavities [21, 194]. It has
been clearly demonstrated that the spontaneous emission from light emitters embed-
ded in photonic crystals can be suppressed by the photonic bandgap, whereas the
emission efficiency in the direction where resonance modes exist can be enhanced.
Thermal radiation emitted from solids is generally manifested as broadband and
quasi-isotropic. By introducing thin-filmcoatings andmultilayer structures, the emis-
sion spectrumcanbe significantlymodified.Wavelength-selective coatings havebeen
developed since the 1960s for space application and solar collectors. Gratings can
also modify the wavelength and angular dependence of thermal emission [58]. These
approaches can be generalized tomultidimensional complexmicrostructures, includ-
ing photonic crystals, for spectral and directional control of spontaneous emission.
There are a number of applications that require spectral and directional selection of
thermal radiation. Besides space application and solar energy, thermophotovoltaic
(TPV) devices utilize a heating source or an emitter around 1500 K to generate elec-
tricity based on photovoltaic principle. The efficiency is often limited by the portion
of absorption of long-wavelength photons that cannot create electron-hole pairs in
the photovoltaic cell [65, 126, 127].

It has been known for a long time that radiative properties, especially the direc-
tional and spectral properties, can be modified by surface roughness and structures.
Most of the earlier studies dealt with rather simple geometries and did not con-
sider diffraction; see [1, 8]. The emergence of microfabrication and the increased
computing capabilities have led to more systematic investigations of the effect of
microstructures and material properties on thermal emission and absorption charac-
teristics. Hesketh et al. [181] published a series of studies on the thermal emission
from periodically groovedmicromachined silicon surfaces. The grooves were 45μm
deep with straight ridges etched on heavily doped p-type Si wafers, with a grating
period � ranging from 10 to 22 μm. Thermal emission was measured at tempera-
tures between 300 and 400 °C at wavelengths ranging from 3 to 14 μm. Compared
with smooth Si wafers, the grooved surfaces increased the spectral emittance and the
observed enhancement was polarization dependent even at normal incidence. The
observed resonance emittance enhancement was explained by organ pipe resonant
modes since geometric optics models largely failed to predict the observed behavior.
Heinzel et al. [195] fabricated 2D arrays of tungsten circular pillars as near-infrared
emitters and hole arrays on gold films as wavelength-selective filters, for applications
in TPV systems. For these structures, the lateral period was between 1 and 2 μm,
and the thickness was between 200 and 300 nm. Surface plasmons may play a key
role in the wavelength selection. Theoretical modeling based on a 2D RCWA was
performed and compared with experiments. The emittance was measured in vacuum
at temperatures up to 1700 K with a Fourier-transform spectrometer [195].
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Greffet and coworkers [58] showed a strongly coherent thermal emission medi-
ated by surface phonon polaritons using a SiC grating with a period of 6.25 μm
and a height of 0.28 μm. They observed coherent thermal emission for TM waves
within narrowband atwavelengths near 11μmtowardwell-confined directions,when
heated to 800 K. Spectrally coherent thermal emission means that the emission is
confined in a narrow wavelength region for any given direction; this is also referred
to as temporal coherence, because coherence time and coherence length are inter-
related. A nearly monochromatic radiation will have a very long coherence length
and time. When the emission at a given wavelength is confined to a narrow angular
range, it is referred to as spatial coherence, like a collimated beamwhose wavefronts
do not alter significantly as it travels. At the resonance conditions, surface plasmon
or phonon polaritons are coupled with spontaneous emission due to randomly fluc-
tuating charges or dipoles in the thermal field; consequently, thermal emission is
enhanced at a particular wavelength and direction. At wavelengths where the sur-
face mode is not excited, the radiation emitted inside the material is either absorbed
by the neighboring atoms or reflected back by the material-air interface, yielding a
very low emissivity that is typical for metallic materials in the infrared. It should be
noted that the bandwidth for spontaneous thermal emission is far greater than that
of a laser, which operates under the principle of stimulated emission. Nevertheless,
a much longer coherence length than that of blackbody radiation or emission from
plain solids could be achieved.

Maruyama et al. [196] fabricated 2D microcavities using Cr-coated Si surfaces
and demonstrated discrete thermal emission peaks from these structures as a result
of cavity resonances and the enhanced density of states. The structure is illustrated in
Fig. 9.61. The resonance wavelengths are identified by the cavity modes (that include
both TE and TM waves) that must satisfy

λ(m, n, p) = 2

[(m
a

)2 +
(n
b

)2 +
( p

2h

)2]−1/2

(9.145)

where m or n = 0, 1, 2, 3, p = 0, 1, 3, 5 (odd number only), and no more than one
index can be zero. Equation (9.145) has been verified by experiments [196, 197]. It

Fig. 9.61 Illustration of 2D
microcavities
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should be noted that SPPs can also be observed. The localized cavity modes require
that the wavelength to satisfy Eq. (9.145) and is usually not sensitive to the incident
directions. On the other hand, as discussed previously, SPPs are very sensitive to the
incidence angle.

For 1D deep gratings, resonance cavity mode can occur with m = 0 and p =
1, so that the fundamental mode is predicted by λmax = 4 h. Using the LC circuit
model, it can be shown that the excitation wavelength for MP1 can be much greater
than 4 h [131]. This is mainly due to the large kinetic inductance at smaller gap
distances (or coupled SPPs). However, if the structure geometry and wavelengths
are scaled to the far-infrared or microwave region, the effect of kinetic inductance
is small. The predicted MP1 resonance wavelength is between 4 h and 5 h. Yang
et al. [132] demonstrated MP in Al deep gratings. The MP1 resonance wavelength
for a 1.44-μm-deep grating was 7.18 μm or 5 h. The values are consistent among
the RCWA simulation, LC circuit model, and measurements for three samples.

Various types of microstructures have been considered for wavelength selective
emitters for TPV applications such as 1D grooves and complex gratings, multilay-
ered films, microcavities, inverse opal and woodpile photonic crystals, perforated
hole arrays, metasurfaces, etc. [27, 65, 195–199]. Zhao et al. [127] designed a 2D
trilayer structure as a wavelength-selective and polarization-insensitive TPV emitter.
The structure is similar to the metasurface structure mentioned earlier, except that
the metallic material is tungsten with square patterns as shown in Fig. 9.62a. The
simulation was based on a 2DRCWA code to calculate the directional-hemispherical
spectral reflectance, and the emittance can then be determined using Kirchhoff’s law.
The normal emittance spectrum for the 2D structure was compared with those for 1D

Fig. 9.62 a Schematic of the 2D tungsten grating/thin-film nanostructure. b Predicted normal
emittance spectra of the 2D structure with�x = �y = 600 nm, lx = ly = 300 nm, h = d = 60 nm
[126, 127]. The emittance spectra of the 1D counterpart for both polariton and of a plain tungsten
are also shown. Note that for the 1D metamaterial, the tungsten is continuous in the y-direction
(ly = �y)
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structure and plain tungsten as shown in Fig. 9.62b. The optical constants were taken
from Palik [2]. The objective is to achieve high emittance at wavelength shorter than
the bandgap of the TPV cell, which corresponds to λg = 2.1μm (for In0.2Ga0.8Sb)
and to suppress the emittance at wavelengths longer than λg. Note that the normal
emittance is independent of polarization for the 2D structure. The emittance spec-
trum of the 1D grating/thin-film structure for TE waves is similar to that of plain
tungsten except for the peak at 0.6 μm, which is due to Wood’s anomaly.

The overall emittance at normal direction is the average of those for TE and
TM waves. As an example, the normal emittance λ = 1.7 μm for the 2D structure
is 0.85 and the emittance averaged over the two polarizations for the 1D structure
is only 0.58. Therefore, the throughput and efficiency of the TPV system can be
significantly improved with the 2D grating/thin-film structure [127]. The emittance
spectrum for the 1D structure with TM waves and that for the 2D structures are very
similar, both contain two major emission peaks (near 0.7 and 1.8 μm) that do not
exist in the spectra for the TE wave and plain tungsten. It has been shown that [127]
the emittance peak around λ = 0.7 μm is due to the excitation of SPP, while the
emittance peak atλ= 1.83μmis due to the coupling of themagnetic resonance inside
a micro/nanostructure with the external electromagnetic waves or magnetic plasmon
polariton. When the MP is excited, the magnetic field is strongly enhanced in the
dielectric layer between the tungsten grating and tungsten substrate. Several small
peaks located near 0.4, 0.8, and 1.4 μm are associated with the interband transitions
of tungsten [127].

The effect of MPs on the thermal emission has been demonstrated using a trilayer
metamaterial as shown in Fig. 9.38a [128]. The structure was fabricated on a Si
substrate coatedwith a 200 nmSiO2 film as a barrier layer using the plasma-enhanced
CVD.A 200 nmAufilmwas thermally evaporated to the sample surfacewith a 30 nm
Ti film as an adhesive layer. After a 185 nm SiO2 spacer was deposited onto the Au
film, the Au grating was formed with deep-UV lithography and lift-off process. The
emittance was measured using the emissometer setup described in Sect. 8.5.4 (see
Fig. 8.30). The measured emittance spectra of one sample with a period � = 7μm
and Au strip width of 3.5 μm are shown in Fig. 9.63. The thickness of the Au strip
array is 170 nm. Two detectors were used to measure different spectral regions: a
DTGS pyroelectric detector was used for 1000 cm−1 < ν̄ < 2000 cm−1 and a liquid-
nitrogen-cooled InSb photodetector was used for 2000 cm−1 < ν̄ < 3000 cm−1.
Note that the measurements are for p-polarization with different emission angles.
The peak MP1 can be well predicted by the LC circuit model and is insensitive
to the incidence angle. MP2 does not show up in the normal direction but can be
seen at oblique incidence. This agrees well with the RCWA predictions as shown in
Fig. 9.40b, although the materials, geometric parameters, and wavelength region are
all different. MP3 and be coupled with SPP to form anticrossing modes that is very
sensitive to the emission angle as shown in Fig. 9.63b.

Planar structures can also be used for tailoring the thermal emission spectrum
such as the asymmetric Fabry–Perot resonance cavity [16]. Fu et al. [200] proposed
to use the paired negative-ε and negative-μ bilayer to achieve coherent emission
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Fig. 9.63 The emittance for TM wave at 700 K for different directions measured with the high-
temperature emissometer based on an FTIR spectrometer using a a DTGS detector and b an InSb
detector [127]

through the excitation of surface polaritons at all angles, for both TE and TMwaves,
as illustrated in the following example.

Example 9.9 For a thin metallic-type film, with Re(ε1) < 0 and Re(μ1) > 0,
of thickness d, on an opaque magnetic material, with Re(μ2) < 0 and Re(ε2) >

0, calculate the emittance, using the functions given in Eqs. (9.138). Assume the
parameters are F = 0.785, ω0 = 0.5ωp, d = 0.5λp = πc/ωp, ε2 = 4, and
γe = γm = 0.002ωp.

Solution Under the lossless conditions, the polariton dispersion relations are the
same as shown in Fig. 9.52a for two semi-infinite media. The directional-spectral
emittance can be calculated by ε′

λ = 1− R′
λ, because the magnetic medium is semi-

infinite, where R′
λ can be evaluated using Eq. (9.101) for each polarization. The

calculation results are shown in Fig. 9.64a at normal direction as well as at θ = 45◦
for either TE or TM wave using the reduced frequency. It can be seen that the peak
shifts toward lower frequencies for the TM wave and higher frequencies for the TE
wave as θ increases and the center frequency of the peak ωc is in good agreement
with the polariton dispersion curves, shown in Fig. 9.52a. The Q-factor, defined
as Q = ωc/δω with δω being the FWHM, is around 100. Figure 9.64b shows the
angular distribution of the emission at the center frequencies shown on the left figure.
The emission is not diffuse but rather direction selective.

Fu et al. [200] further proposed to use a three-layer structure with a negative-ε
film and a negative-μ film onto a negative-ε substrate to achieve a higher Q and
a spatially coherent source. In such a case, surface polaritons at both sides of the
negative-μ medium can be coupled. A temporally coherent diffuse emitter was also
predicted.

Surface electromagnetic waves coupled with a PC can also produce coherent
emission characteristics because a PC can support surface modes or surface waves
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Fig. 9.64 Emissivity of a negative-ε layer of thickness d on a semi-infinite negative-μ layer.
a Frequency dependence at fixed angles. b Angular dependence at fixed frequencies

for both the TM and TE waves in the stop band [17]. If a metallic layer is coated on a
1D PC, surface waves can be excited by a propagating wave in air; this will result in
a strong reduction in the reflectance at the resonance frequency. Lee et al. [201] pre-
dicted coherent thermal emission based on a modified 1D PC coated with a thin film
of SiC. When the thicknesses and dielectric properties are adjusted, surface waves
can be excited in the stop band of the PC by radiative waves propagating in air, for
either polarization. Subsequently, the emission from the proposed structure contains
sharp peaks within a narrow spectral band and toward well-defined directions. The
geometry and the electric field distribution are illustrated in Fig. 9.65a, and the field
plots are shown in Fig. 9.65b at different frequencies.

A PC is a heterogeneous structure as discussed previously, here, εa = n2a , εb =
n2b, and μa = μb = 1 (nonmagnetic). Therefore, it is inappropriate to define the
equivalent ε andμ of the PC separately by considering it as a homogeneous medium.

Fig. 9.65 Schematic of the SiC-coated 1D PC (upper) and the field distributions (lower) for a TE
wave incident from air [201]
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However, surface waves can be excited at the stop band of the PC because there
exists in the PC an effective evanescent wave, which is an oscillating field whose
amplitude gradually decays to zero as z approaches infinity. The effective evanescent
wave does not carry energy into a semi-infinite PC. Note that the wavelength range
corresponding to the stop bands of the PC can be scaled by changing the thickness
of the unit cell. Here, � is chosen to be 3 μm in order to approximately match the
wavelengths corresponding to the first bandgap of the 1D PC, shown in Fig. 9.19,
with the phonon absorption band of SiC. Surface waves can be excited at the SiC-PC
interface within the SiC phonon absorption band for both polarizations. By using the
equivalent layer method or the supercell method, it is possible to obtain dispersion
relations of surface waves between a PC and another medium [202–204].

Figure 9.65b shows the square of the electric field, normalized to the incident
field, inside the SiC-PC structure at θ = 0. The real part of the complex electric field
is used to show the actual field inside the structure. The solid line represents the field
calculated from the matrix formulation described in Sect. 9.2.2. An oscillating field
exists inside the PC, and the amplitude of the oscillating field decays gradually with
increasing z. The dots represent the electric field obtained using the equivalent layer
method, which matches the matrix solutions at the boundaries of each unit cell. The
upper panel corresponds to the wavelength λ = λc = 11.479μmwhen a surface wave
is excited, and the lower panel corresponds to λ = 11.0 μm where no surface mode
is excited. The field strength at the boundary between SiC and the PC is enhanced
by more than an order of magnitude due to excitation of the surface wave. When a
surface wave is excited, the incident energy is resonantly transferred to the surface
wave, which causes a large absorption in SiC. Because SiC is the only material in the
structure that can absorb the incident energy, it is also responsible for the emission
of radiation from the SiC-PC structure. It is interesting to note that the maximum
electric field is slightly off from the interface between SiC and the PC. If a smooth
curve connects all the dots, the magnitude of the electric field will be maximum at the
SiC-PC interface and decay gradually deep into the PC. Furthermore, the Poynting
vector or the energy flux toward the positive z-direction is zero inside the PC at the
stop band. Therefore, the effective field inside the PC at the stop band resembles
an evanescent wave in a semi-infinite medium. The fact that the field near the SiC-
PC interface is greatly enhanced confirms the existence of a surface wave. Further,
surface waves at the interface between SiC and the PC can be excited at any angle
of incidence and for both polarizations.

Figure 9.66a shows the calculated spectral-directional emittance in the wave-
lengths between 10.5 and 12.5 μm at θ = 0◦, 30◦, and 60◦ for both polarizations
[201]. Notice that since the emission peak values depend on the thickness of SiC, ds
can be tuned to maximize the emissivity for any given emission angle and polariza-
tion states. Here, the thickness of SiC is set to be ds = 1.45μm, which results in a
near-unity emissivity at θ = 60◦ for s-polarization. Narrowband emission peaks can
be seen and for TE waves, they are centered at λc = 11.479, 11.293, and 10.929 μm
for emission angles of 0◦, 30◦, and 60◦, respectively. The spectral emission peaks
clearly indicate temporal coherence of the thermal emission. The corresponding qual-
ity factor Q = λc/δλ are 230, 185, and 133, respectively, which are comparable to
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Fig. 9.66 Calculated directional-spectral emissivity of the SiC-PC structure when surface wave is
excited [201]. a Spectral dependence at different polar angles for both polarizations. The symbols
with circle for TM wave and triangles for TE wave indicate the resonance wavelengths predicted
using the dispersion relation. b Polar plot of showing the angular distribution of the emissivity at
λc = 11.479, 11.293, and 10.929 μm for TE waves

those for SiC gratings [58]. From the solution of the surface wave dispersion relation,
assuming no absorption in SiC, the resonance wavelength can be predicted for the
given emission angle. These values are also marked as circles for TM waves and
triangles for TE waves.

The spatial coherence of the proposed emission source can be seen from the angu-
lar distributions of the emissivity, shown in Fig. 9.66b at the three peak wavelengths
for TE waves. The emittance is plotted as a polar plot to clearly show the angular
lobe into a well-defined direction. However, if one considers the actual source with
finite dimensions, due to the axial symmetry of the planar structure, the coherent
emission from the SiC-PC structure exhibits (axially symmetric) circular patterns,
in contrast to the antenna shape for the grating surfaces. The emittance at each λc is
confined in a very narrow angular region, although the angular spread corresponding
to the peak at θ = 0◦ is broader than the other two peaks [201].

Lee et al. [204] demonstrated spectral coherence near the wavelength of 1 μm
using truncated 1DPConAg,whichwas deposited on a silicon substrate, as displayed
in Fig. 9.67.ATi adhesive layerwas first deposited on a Si substrate, followed by aAg
film, which is thick enough to be opaque (semi-infinite). The truncated PC with six
unit cells was formed on the Ag film using plasma-enhanced CVD of SiO2 and Si3N4

layers, as shown in Fig. 9.67a. The refractive index at the wavelength λ = 1μm is
approximately n1 = 1.45 for SiO2 and n2 = 2.0 for Si3N4. The thicknesses were
obtained fromfitting the reflectance dip wavelengths to be d1 = d2 = 153 nm and the
surface termination layer is dt = 100 nm. The dispersion relation can be predicted
and agrees with the measured resonances [203].

The bidirectional reflectance of the fabricated sample was measured with a
custom-designed three-axis automated scatterometer, as described in Fig. 8.31, at
891 nm wavelength. The measured and calculated reflectances at different incidence
angles are shown in Fig. 8.31b for TE waves. The measured reflectance exhibits a
very sharp dip with a minimum at θ = 54◦ and compares well with the prediction.
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Fig. 9.67 a A cross-sectional image of the fabricated PC-on-Ag structure [204]. b Reflectance for
TE waves at λ = 891 nm as a function of θ . The inset shows the spectral-directional emittance
calculated from Kirchhoff’s law. In the inset, the right half represents the measurement and the left
half represents the prediction

The electron scattering rate of Ag film in the fabricated film may be larger than that
the sample used for the tabulated optical constants [2]. The additional loss may result
in a line broadening of the reflectance dip as well as a reduction of the reflectance
at small incidence angles. Surface waves for both TE and TM waves have been
demonstrated [203, 204].

The directional emissivity, obtained from the measured reflectance using Kirch-
hoff’s law, is plotted in the vicinity of the peak as an inset in Fig. 9.67b. The right half
represents the measurement and the left half represents the prediction. The angular-
dependent emissivity exhibits strong directional selectivity. The coherence length
given by Lcoh = λ/(π
θ cos θ) is a measure of the spatial coherence, where 
θ is
the full-width-at-half-maximum of the emissivity peak. The estimated 
θ from the
measurement is 2.2°, and the corresponding coherence length is 14.1λ [204]. These
values are comparable with those obtained from binary gratings [68].

9.7 Summary

This chapter provides a detailed treatment of the radiative properties of stratified
media based on the electromagnetic wave theory, considering partial coherence, and
extended to the discussion of periodic layered structures or 1D photonic crystals.
Electromagnetic waveguides and guided mode equations are also introduced. The
coupled-wave analysis for periodic gratings is present with some examples on the
diffraction in gratings. Numerical models and experimental measurements of surface
roughness and BRDF for anisotropic surfaces are summarized.

Built upon previous background, a comprehensive description of plasmonics and
polaritonics is given in Sect. 9.5 without invoking details of quantum theory. The



608 9 Radiative Properties of Nanomaterials

topics are evolved gradually from basic definitions of plasmons and phonon polari-
tons to surface plasmon (or phonon) polaritons, localized SPPs, coupled SPPs, bulk
polaritons,magnetic polaritons, graphene plasmons, and hyperbolic polaritons. Some
application examples are provided in Sect. 9.6 on how the far-field radiative proper-
ties can be tailored using phenomena and theories explained in preceding sections.
Further discussions on near-field energy transfer by electromagnetic waves, espe-
cially due to evanescent waves, surface plasmons, and various types of polaritons
will be given in the next chapter.

Problems

9.1. A greenhouse looks like a small glasshouse used to grow plants in the winter.
Based on the transmittance curve of fused silica (SiO2), shown in Fig. 9.2,
explain why glass walls can keep the plants warm in the winter. Discuss
the greenhouse effect in the atmosphere. What gases are responsible for the
greenhouse effect?

9.2. Calculate the transmittance T, the reflectance R, and the absorptance A of a
thick (without considering interference) silicon wafer (0.5 mm thick) at normal
incidence. Plot T, R, and A versus wavelength, in the range from 2.5 to 25 μm.
The refractive index and the extinction coefficient of the doped silicon are given
in the following table.

Optical constants of a doped silicon wafer

Wavelength λ (μm) Refractive index n Extinction coefficient κ

2.5 3.44 0

5.0 3.43 1.0 × 10-7

7.5 3.42 8.4 × 10−5

10.0 3.42 2.1 × 10−4

12.5 3.42 4.0 × 10−4

15.0 3.42 5.0 × 10−4

17.5 3.42 9.0 × 10−4

20.0 3.42 1.0 × 10−3

22.5 3.42 1.1 × 10−3

25.0 3.42 1.3 × 10−3

9.3. Calculate and plot the transmittance and reflectance of at λ = 5μm as func-
tions of the polar angle θ for the same silicon wafer described in Problem 9.2.
Consider the individual polarizations and their average. Compare your results
with those by Zhang et al. (Infrared Phys. Technol., 37, 539, 1996).
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9.4. Using data from the table in Problem 9.2, calculate and plot the normal
transmittance of a 100-μm-thick silicon wafer, near 10 μm wavelength,
considering interference.

(a) Plot the transmittance in terms of wavelength (μm) with an interval
between the data spacing of 0.05 and 0.005 μm, respectively, on one
graph.

(b) Plot the transmittance in terms of wavenumber (cm−1) with an interval
between the data spacing of 5 and 0.5 cm−1, respectively, on one graph.

(c) What is the fringe-averaged transmittance at 10 μm wavelength?
(d) What is the free spectral range in wavenumber and in wavelength? How

will 
ν̄ and 
λ change if the wavelength λ is changed to 20 μm?

9.5. For gold, the refractive index at λ = 0.5μm is n = 0.916 + i1.84, and at
λ = 2.0μm is n = 0.85 + i12.6. Calculate the normal transmittance of a
free-standing gold film at these wavelengths for d = 10, 20, 50, and 100 nm,
using Eqs. (9.2), (9.10) and (9.11). Which equation gives the correct results,
and why?

9.6. For the three-layer structure shown in Fig. 9.3, calculate the normal reflectance
for n1 = 1.45 (glass), n2 = 1 (air gap), and n3 = 2 (substrate) without any
absorption at λ = 1μm. Plot the reflectance as a function of the air gap width
d. Obtain the analytical formulae of the reflectance maximum and minimum.

9.7. Assume that glass has a refractive index of 1.46 without any absorption in the
visible spectrum (0.4μm < λ < 0.7μm). Design an antireflection coating
(for normal incidence) that will minimize the reflectance from a semi-infinite
glass. You need to determine the coating thickness and the refractive index
(assuming it is also independent of wavelength). Plot the normal reflectance
of the coated glass surface in the spectral range from 0.4 to 0.7 μm. What
material will you recommend for use with the desired property?

9.8. To evaluate the effect of antireflection coating for oblique incidence, assume
the antireflection coating has a refractive index of 1.21 and a thickness of
114 nm. What will be the reflectance, at 45° and 60°, for each polarization?

9.9. While the extinction coefficient is often related to absorption or loss, it should
be noted that when κ 
 n, it is the real part of the refractive index that is
related to the loss. This is because the dielectric function can be expressed
as ε = ε′ + iε′′ = (n2 − κ2) + i2nκ and ε′′ is related to the dissipation. For
a semi-infinite medium, a purely negative dielectric function means perfect
reflection. The effect of n on the absorption by a thin film can be studied
by considering a thin film of thickness d with a complex refractive index
n2 = n + iκ. For a wavelength of λ = 0.5μm and at normal incidence,
let d = 30 nm and κ = 3.0. Plot the transmittance, the reflectance, and the
emittance (which is the same as the absorptance), against the refractive index
n ranging from 0.01 to 2. Discuss the effect on n on the absorption.

9.10. Use the dielectric function of SiC given in Example 8.7 to calculate the normal
emittance for a SiC film at wavelengths from 9 to 15 μm, for different film
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thicknesses: d = 1, 10, 100, and 1000μm. Assume the multiply reflected
waves to be perfectly coherent.

9.11. Calculate the emittance as a function of the emission angle for a doped silicon
wafer of 200μm thickness, atλ = 20μmwith n2 = 3.42+i0.001.Consider p
and s polarizations separately, and then, take an average. Assume the multiply
reflected waves to be perfectly coherent.

9.12. This problem concerns the transmission and reflection of infrared radiation
of a YBCO (YBa2Cu3O7) film on a thin MgO substrate of 325 μm thickness,
at 300 K and normal incidence. For the YBCO film, use the properties for
sample A fromKumar et al. [15]. ForMgO, use the Lorentz model in Problem
8.31.

(a) Plot the radiation penetration depth of the YBCO film, δf(λ), and that of
MgO, δs(λ), for 1μm < λ < 1000μm.

(b) Neglecting the interference effect in the MgO substrate, calculate and
plot the transmittance T, the film-side reflectance Rf, and the backside
reflectance Rs, for 1μm < λ < 1000μm, with different film thick-
nesses: 0, 30, 48, 70, and 400 nm. Plot T, Rf, and Rs in terms of both
wavelength (μm) and wavenumber (cm−1).

(c) Repeat the previous calculation, considering the interference effects in
the MgO substrate, for 200μm < λ < 1000μm (50 to 10 cm−1). Plot
in terms of the wavenumber only. What happens with the interference
fringes when the film thickness is 48 nm?

9.13. Calculate the normal transmittance of a 10 μm film with a refractive index
n = 2.4 without any absorption in the spectral range from 1000 to 3000 cm−1.
One surface of the film is polished, and the other surface has a roughness σrms

of 0.10 μm. How does σrms value affect the transmittance? Compare your
result with that shown in Fig. 9.10.

9.14. Reproduce Example 9.2 and Fig. 9.10. Suppose the coherence spectral width
δν = 1.5
ν, where 
ν is the free spectral range. Determine the fringe-
averaged transmittance. Explain why the peaks and the valleys flip after fringe
averaging.

9.15. Calculate and plot the transmittance of a Fabry–Perot resonance cavity, assum-
ing the medium to be lossless with n2 = 2, d2 = 100μm, and R = 0.90, for
normal incidence in the wavenumber region from 950 to 1050 cm−1. What
are the free spectral range, the FWHM of the peak, and the Q-factor of the
resonator? Does the theoretically predicted FWHM match with the plot?

9.16. Group project: A reflectance Fabry–Perot cavity can be constructed by coating
a SiO2 film onto a silver substrate first and then a thin silver film onto the SiO2

film. Derive a formula for the reflectance. Based on Kirchhoff’s law, one can
calculate the emissivity of the structure. Show that the emissivity exhibit sharp
peaks close to unity at specific wavelengths for normal incidence. When the
wavelength is fixed, calculate the emissivity versus the polar angle for each
polarization. Plot and show that there exist angular lobes in the emissivity of
such structures. Hint: Choose the thicknesses of the silver film (on the order
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of 100 nm) and the SiO2 film (on the order of 3000 nm), and the wavelength
(around 1 μm). Use the optical constants from Palik [2].

9.17. Develop a MATLAB code for the multilayer radiative properties based on the
matrix formulation described in the text for both TE and TM waves. Refer to
author’s website [36].

9.18. For a planar waveguide with n1 = 1.54 and n2 = 1.23, with a thickness of d
= 200 nm, how many total modes are there in the waveguide at λ = 635 nm,
λ = 1.55μm, and λ = 3.2μm?

9.19. DeriveEq. (9.52) by setting the determinant of the characteristic 4×4matrix to
be zero. Sometimes, it is desirable to plot the solutions of Eq. (9.52) in curves
that relate ω to kx . These curves are called waveguide dispersion relations.
Given n1 = 1.6, n2 = 1.3, and d = 300μm, plot the dispersion curves
for the first four TE modes. Explain why the group velocities are different
for different modes, even though the refractive indices are independent of
wavelength.

9.20. In an asymmetric dielectric waveguide, the guided region (refractive index
n1 = 3.5) is sandwiched between two different materials (n2 = 1.5 and
n3 = 2.5). Show that themode equation canbe expressed as 2k1zd+ψ2+ψ3 =
2mπ, form = 0, 1, 2, . . ., where ψ2 and ψ3 are the phase angles upon total
internal reflection bymedia 2 and 3, respectively. If the thickness of the guided
region is d = 3μm, find the wavelength region where the fiber is a single-
mode fiber (TE0 only). Find the wavelength regionwhere the fiber allows only
TE0 and TM0 modes to be guided, i.e., single mode for each polarization.

9.21. Evaluate the plot the photonic band structures of a Bragg reflector made
of quarter-wave high- and low-index materials GaAs, n = 3.49, and AlAs,
n = 2.95, around the wavelength of 1064 nm. Optional: Plot the normal
reflectance near 1064 nm wavelength with 7, 17, and 27 periods, assuming
that the substrate is GaAs.

9.22. Derive Eqs. (9.68) and (9.69).
9.23. Based on Eq. (9.72), show that when the evanescent wave exists, it will decay

toward negative z. Change the subscript from I to III, and show that when the
evanescent wave exists, it will decay toward positive z.

9.24. Derive Eqs. (9.79) and (9.80).
9.25. Use different effective medium formulations to compute the effective dielec-

tric function for silicon with a filling ratio φ = 1/6 in air at λ = 300 nm (n =
5.0 and κ = 4.2), λ = 400 nm (n = 5.6 and κ = 0.39), λ = 500 nm (n =
4.3 and κ = 0.073), and λ = 800 nm (n = 3.7 and κ = 0.0066).

9.26. Consider a grating region consisting of Si, with a filling ratio of 1/6, on a
semi-infinite Si substrate. The height of the grating is 50 nm. Calculate the
reflectance for normal incidence, using different effective medium formu-
lations at the corresponding wavelengths given in Problem 9.25. Compared
your results with those in Fig. 9.22.

9.27. Use RCWA downloaded from author’s website [36] to reproduce Fig. 9.22.
9.28. Plot the shadowing function for a Gaussian distribution as a function of the

polar angle θ for the rms slope w = 0.05, 0.1, 0.2, and 0.3.
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9.29. Calculate the BRDFs at λ = 0.5 and 2μm based on the analytical model for a
gold surface (opaque) with a Gaussian roughness statistics. The SDF is given

by p(ζx , ζy) = 1
2πw exp

(
− ζ 2

x +ζ 2
y

2w2

)
. Use the optical constants from Problem

9.5 and the rms slope w = 0.1 and 0.3.
9.30. Comment on the limitations of different analytical models for the BRDF, such

as the Rayleigh-Rice perturbation theory, the Kirchhoff approximation, and
the geometric optics approximation.

9.31. Calculate the real and imaginary parts of kx based on the SPP relation given in
Eq. (9.100) for Al, like in Example 9.7. What is k ′

x for λ = 400 nm? Assum-
ing that the prism has an index of refraction nd = 1.53, find the incidence
angle that would yield kx = k ′

x . Calculate the reflectance for Al in the ATR
arrangements at λ = 400 nm. Discuss whether the obtained reflectance dip
in the angular distribution of the reflectance agrees with that predicted by the
surface plasmon polariton. Calculate the polariton propagation length at this
wavelength.

9.32. Studies suggest that the surface plasmon dispersion relation described in
Eq. (9.100) can be solved by assuming that kx is real but ω = ω′ + iω′′.
The real part of ω corresponds to the SP resonance frequency, while the
imaginary part corresponds to the bandwidth. Develop a computer program
to solveω′(kx) andω′′(kx ) for Al with a thickness 24 nm that is adjacent to the
prismwith εd = 2.46. For θ = 40.23◦, calculate the reflectance spectrum near
the resonance frequency of the surface polariton, and compare the bandwidth
with the calculated ω′′.

9.33. Examine Fig. 9.32 to confirm whether the surface polariton resonance fre-
quencies predicted by the dispersion relation agree with the reflectance dips
for a TM wave incident on a grating. Note that one of the dips in the dotted
line (θ = 30◦) overlaps with that of the solid line (θ = 0◦) near 12,000 cm−1.
Hence, there are three notable dips in the reflectance at θ = 0◦ and five notable
dips at θ = 30◦.

9.34. Discuss why a nanoparticle can absorb more energy than a blackbody of the
same size. Is it possible for a nanoparticle of radius r0 to emitmore energy than
4πr20σSBT 4,whereT is the temperature of the spherical particle? Furthermore,
is it possible for a nanoaperture to transmit more energy than the product of
the incident energy flux (i.e., irradiance) times its area? Why or why not?

9.35. Reproduce some cases in Fig. 9.35 under the same conditions for a = 0.25λp

and d = 0.25λp. To examine the effect of a, recalculate the reflectance spectra
with a = 0.15λp and 0.1λp for the same d. Compare your results with those
of Park et al. [115].

9.36. Based on the dielectric function model of SiC, at λ = 11μm, εs = −3.256+
0.208i and ns = 0.059+ 1.953i, which correspond to a radiation penetration
depth of 0.448 μm. If a film of SiC with a thickness of d = 1.8 μm is
sandwiched between two prisms of the same dielectric constant εd = 2.89,
calculate the transmittance as a function of the incidence angle. Considering
a prism-air-SiC-prism arrangement, where the width of the air gap is a =
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5μm, calculate the transmittance again. You should see a peak near 43°
with a transmittance around 0.3 for a TM wave. Verify that the transmittance
enhancement is due to surface plasmon excitation, by calculating the angle-
dependent reflectance.

9.37. Consider a prism-air-Al-prism configuration with εd = 2.45 for both prisms,
air gap width a = 120 nm, and aluminum thickness d = 30 nm. Use the
dielectric function of Al from Example 8.7 to calculate the transmittance and
the reflectance at λ = 180 nm for a TM wave at the incidence angle θ = 47◦.
Discuss the effect of the air gap width.

9.38. Show Eq. (9.132) is indeed an approximation for Eq. (9.131) under the
conditions described in the text.

9.39. Show that both the Maxwell-Garnett and Bruggeman formulations as given
in Eq. (9.133) yield the same expressions as given in Eqs. (9.127) and (9.128)
for metallodielectric multilayers.

9.40. Reproduce Figs. 9.51 and 9.52. Discuss single-negative and double-negative
materials.

9.41. Reproduce Fig. 9.54b using the code from the author’s webpage [36].
9.42. Reproduce Example 9.9. Discuss the surface polariton effects on both TE and

TM waves.
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Chapter 10
Near-Field Energy Transfer

Thermal radiation has played an important role in incandescent lamps, solar energy
utilization, temperature measurements, materials processing, remote sensing for
astronomy and space exploration, combustion and furnace design, food processing,
cryogenic engineering, as well as numerous agriculture, health, safety, and surveil-
lance applications. Near-field effects can realize emerging technologies, such as
superlenses, subwavelength light sources, polariton-assisted biosensors, and energy
conversion devices. The control of thermal radiative properties by micro/nanoscale
1D, 2D, and 3D photonic structures has been extensively addressed in previous
chapters. Because of the important applications in energy transport and conversion,
this chapter focuses on near-field radiative heat transfer between objects in close
vicinity. The phenomenon of photon tunneling and the principle of fluctuation–dis-
sipation theorem will be presented, along with recent theoretical and experimental
developments.

10.1 From Near-Field Optics to Nanoscale Thermal
Radiation

Near-field optics and near-field microscopy have played a significant role in
nanoscience and nanobiotechnology in the past 30 years and continue to be an
active research area, especially when dealing with field localization and resonances
in micro/nanostructures, with applications in biochemical sensing and nanolithogra-
phy. The preceding two chapters have laid the foundation of electromagnetic waves
in bulkmaterials and nanostructures. The present chapter offers amore detailed treat-
ment of the energy transfer by electromagnetic waves in the near field. The applica-
tions include nanomanufacturing, energy conversion systems, and nanoelectronics
thermal management.
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Ernst Abbe in 1873 and Lord Rayleigh in 1879 studied the required angular sep-
aration between two objects for their images to be resolved. The resolution of a
conventional microscope is diffraction limited such that the smallest resolvable dis-
tance is approximately 0.5λ/n, where λ is the wavelength in vacuum and n is the
refractive index of the medium. Even with immersion oil (n ≈ 1.5), the imaging
sharpness is rather limited to the order of wavelength. The concept of near-field
imaging was first described by E. H. Synge in a paper published in Philosophical
Magazine in 1928. This work envisioned the use of a subwavelength aperture as
small as 10 nm in diameter to introduce light to a specimen (e.g., a stained biological
section), placed within 10-nm distance, which could move in its plane with a step
size less than 10 nm. By measuring the transmitted light with a photoelectric cell
and a microscope, an ultramicroscopic image could be constructed. In a subsequent
paper published in 1932 (also in Philosophical Magazine), Synge described the idea
of using piezoelectricity in microscopy. Synge’s works, however, were largely unno-
ticed and the idea of near-field imaging was rediscovered many years later. Ash and
Nicholls published a paper in Nature in 1972 entitled “Super-resolution aperture
scanning microscope.” This work experimentally demonstrated near-field imaging
with a resolution of λ/60 using 10-GHz microwave radiation (λ = 3 cm). Read-
ers are referred to Refs. [1, 2] for more details about the early history of near-field
microscopy.

In the 1980s, two groups successfully developed near-fieldmicroscopes in the vis-
ible region. The IBM group in Zurich formed the aperture through a quartz tip coated
with a metallic film on its sides [3], whereas the Cornell group used silicon micro-
fabrication to form the aperture [4]. The fabrication process was later improved by
using metal-coated tapered optical fibers. In the early 1990s, Nobel Laureate R. Eric
Betzig at Bell Labs and his collaborators demonstrated single-molecule detection and
data storage capabilities of 45 gigabits per square inch [5]. Nowadays, the near-field
scanning optical microscope (NSOM), also known as the scanning near-field optical
microscope (SNOM), has become a powerful tool in the study of fundamental space-
and time-dependent processes, thermal metrology, and optical manufacturing with
a spatial resolution of less than 50 nm. NSOM is usually combined with the atomic
force microscope (AFM) for highly controllable movement and position sensing. An
alternative approach is to use a metallic AFM tip to couple the far-field radiation
with the near-field electromagnetic waves in a subwavelength region underneath the
tip. This is the so-called apertureless NSOM, which does not require an optical fiber
or an aperture. Apertureless tips allow high-intensity laser energy to be focused on
nanoscale dimensions for laser-assisted nanothermal manufacturing [1–10].

Figure 10.1 illustrates three typical NSOM designs. The first is an aperture-based
setup, where a very small opening is formed on an opaque plate and collimated light
is incident from the above. The second is based on a tapered optical fiber whose
tip serves as an aperture. The third uses an apertureless metallic sharp tip, which
reflects (scatters) the incident laser light. All of the three designs have one thing in
common. The light is confined to a narrow region, whose width may be much less
than a wavelength. Furthermore, the electromagnetic field within one wavelength
distance is very intense and highly collimated. In the near-field region, evanescent
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Fig. 10.1 Schematic illustrations of different NSOMsetups. aAperture on an opaque plate. bAper-
ture at the end of a coated optical fiber. c Apertureless metallic tip. The opening or the tip is much
smaller than the wavelength λ. The electric field is highly collimated in the near field within a
distance of λ and diverges as the distance increases

waves dominate. Because the amplitude of an evanescent wave decays exponentially
away from the aperture or tip, the far-field, or the radiation field diverges and becomes
very weak. Understanding the nature of evanescent waves and the localized fields is
essential for the NSOM and other near-field optical devices.

Evanescent waves are also essential in energy transfer between adjacent objects,
through photon tunneling, and in surface plasmon polaritons or surface phonon
polaritons as discussed in the previous chapter. The concept of Fabry–Perot reso-
nant cavities has also been introduced. Two- and three-dimensional optical cavities
and microwave cavities support resonance modes, which are standing waves within
the cavity. These devices are important for photonics and optoelectronics. High Q-
factors can be achieved with microfabricated cavities for quantum electrodynamics
(QED), enhancement and suppression of spontaneous emission, and biological and
chemical sensing [11–13]. Cavity QED is a field that was initiated in the 1980s
to study the spontaneous emission of atoms inside a subwavelength cavity. Both
enhancement and inhibition of spontaneous emission have been theoretically and
experimentally demonstrated. There have been a large number of publications deal-
ing with spontaneous emission of microstructures since nanostructures may enhance
or suppress spontaneous emission [11–13]. As discussed in the previous chapter,
surface plasmons may enhance transmission, suppress transmission but enhance
absorption, or enhance both transmission and absorption in nanostructures at the
same time, depending on the coupling with the resonance and boundary conditions.

If an object is at thermal equilibrium with itself, can it emit more energy (in any
spectral range, polarization, and solid angle) to free space (far field) than a blackbody
with the identical shape and size at the same temperature? Saying in other words:
“Can the emitted intensity fromanobject exceed the blackbody intensity described by
Planck’s law at any particular wavelength and angle of emission?” By using intensity,
we are talking about the far field, not the near field. The answer is definitely “yes,”
if the overall size of the body is less than the wavelength, and definitely “no” if the
overall size of the body is much greater than the wavelength of interest, even though
the object is made of subwavelength structures. Rather than considering spontaneous
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emission toward an empty space, let us consider the thermodynamic equilibrium in
an enclosure, where the object is placed inside and is in thermodynamic equilibrium
with the enclosure. Generally speaking, stimulated emission is much smaller than
stimulated absorption (see Chap. 3, Sect. 3.6), and we can treat the net absorption as
stimulated absorption subtracted by stimulated emission. At thermodynamic equilib-
rium, the net absorbed energy must be the same as the spontaneously emitted energy
of any objects inside the cavity. The density of states inside any medium is modified
by its electric and magnetic properties. For a medium with a refractive index of n,
Planck’s distribution as given in Eq. (8.44) is proportional to n2. If the refractive
index depends on wavelength, the group velocity will be different from the phase
velocity and, hence, the equilibrium distribution will further deviate from Planck’s
law. If absorption is also considered, the equilibrium distribution inside the medium
will be completely different. However, Planck’s distribution is always observed in
the evacuated region, as long as the location is away from either the object or the
walls of the enclosure. This condition or restriction implies that the enclosure must
have enough room for the evacuated region to be much greater than the characteristic
wavelength. It is impractical to establish the concept of blackbody for objects and
cavities with a size less than the wavelength of interest, as noted by Planck over
100 years ago [14]. It has been known for some time that a large field enhancement
exists near the surface when surface polaritons are excited [15]. The enhancement
also exists around subwavelength structures [16]. However, the energy density in an
evacuated large enclosure at thermal equilibrium is the same as Planck’s distribution,
except at close vicinity of the objects, including the walls of the enclosure.

Spontaneous emission can be viewed as a coupling of the field inside the material
with that outside the material. A small object can couple with the electromagnetic
field by bending the energy streamlines or the Poynting vectors (due to the coupling
of the incident and emitted fields) toward it, and hence, the object will absorb more
energy than a “blackbody” of the same size [16]. Figure 10.2 illustrates qualitatively
and somewhat exaggerated interactions of the incident field with a small object and a

Fig. 10.2 Schematic drawing of the energy streamlines for an incident plane wave, showing the
Poynting vectors of the incident field and the cross-coupling between the incident and scattered
fields. a A small object with resonance absorption. b A large object with subwavelength structures
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large object. A small object can perturb the incoming energy streamlines (or the field
of the electromagnetic waves) by creating an additional term in the Poynting vector
that arises from the coupling between the incident and scattered fields. Therefore, the
absorptance and spontaneous emission can be enhanced at the resonancewavelength,
which depends on the geometric structure and material’s properties. This was briefly
discussed in the previous chapter, e.g., Eq. (9.104) for small spheres. On the other
hand, for a large body, the incoming energy is limited by the projected area with-
out any geometric enhancement even with surface or volume micro/nanostructures.
Because of reflection and transmission, the net absorbed energy is always smaller
than the energy incident on the object. Hence, it is not possible for spontaneous
emission from a large object or composite to exceed the blackbody intensity in the
far field.

Many researchers have demonstrated near-field thermal radiation when objects
at different temperatures are separated by distances smaller than the characteristic
thermal wavelength [17, 18]. Recently, theoretical calculations and experiments have
demonstrated that radiative heat transfer between two nanostructures separated by a
distance greater than the characteristic wavelength (i.e., in the far field) can exceed
that predicted by Planck’s law [19, 20]. The rest of this chapter aims at presenting and
explaining the basic theory and formulations for calculation of near-field radiative
energy exchange between objects. Following the methodology used in the previous
chapters, wewill start with simple geometric structures and easy-to-understandmate-
rials. Advanced concepts and derivations will be subsequently introduced. Recent
advances in theoretical and experimental research and in the applications of nanoscale
thermal radiation will be outlined.

10.2 Photon Tunneling and Near-Field Radiative Heat
Transfer

10.2.1 Photon Tunneling by Coupled Evanescent Waves

In the preceding sections, we have clearly demonstrated that an evanescent wave
exists inside the optically rarer medium, which can be air or vacuum, and decays
exponentially away from the surface. Furthermore, the evanescent wave or field does
not carry energy in the direction normal to the interface. On the other hand, if another
optically denser medium is brought to close proximity of the first medium, as shown
in Fig. 10.3, energy can be transmitted from the first to the thirdmedium, even though
the angle of incidence is greater than the critical angle. This phenomenon, known
as frustrated total internal reflection, photon tunneling, or radiation tunneling, is
very important for energy transfer between two bodies when the distance of separa-
tion is shorter than the dominant wavelength of the emitting source. Frustrated total
internal reflection has been known since Newton’s time and was theoretically inves-
tigated by Hall in 1902 [21]. Cryogenic insulation is a practical example of when
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Fig. 10.3 Illustration of photon tunneling. a Schematic drawing of the three layers and fields, where
A and B indicate decaying and growing evanescent waves, respectively. b Calculated transmittance
for a TE wave, assuming n1 = n3 = 1.414 and n2 = 1. Note the distinct differences between the
interference effect and the photon tunneling phenomenon, where the transmittance decreases with
increasing d and becomes negligibly small for d > λ

photon tunneling may be significant [22]. Advances in micro/nanotechnologies have
made it possible for the energy transfer by photon tunneling to be appreciable and
even dominant at room temperature or above. This may have applications ranging
from microscale thermophotovoltaic devices to nanothermal processing and thermal
management in nanoelectronics [17, 18, 23–25].

While photon tunneling is analogous to electron tunneling, through a potential
barrier, which may be explained by quantum mechanics [26], it can be understood
by the coupling of two oppositely decaying evanescent waves [27–29]. Because of
the second interface, a backward-decaying evanescent wave is formed inside layer 2,
the optical rarer medium. The Poynting vector of the coupled evanescent fields has
a nonzero normal component, suggesting that the energy transmission between the
media is possible as long as the gapwidth is smaller than thewavelength. Beyond this
wavelength, the field strength of the forward-decaying evanescent wave is too low
when it reaches the second interface and the reflected evanescent field is negligible.
Thematrix formulationdiscussed inChap. 9 canbeused to calculate the transmittance
and the reflectance through the gap (i.e., medium 2) as if there were propagating
waves. To illustrate this, consider all three layers are dielectric. Taking the TM wave
incidence as an example, let us write the magnetic field inside medium 2 as follows:

Hy(x, z) = (Aeik2z z + Be−ik2z z)eikx x , 0 ≤ z ≤ d (10.1)

where A and B are determined by the incident field and boundary condi-
tions. When two waves are combined, the Poynting vector of the field 〈S〉 =
1
2Re

[
(E1 + E2) × (H∗

1 + H∗
2)
]
has four terms. Two of them can be associated with

the power flux of each individual wave, while the other two represent the interac-
tion between the waves. After simplification, the normal component of the Poynting
vector can be expressed as
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〈Sz〉 = k2z

2ωε2ε0

(|A|2 − |B|2), when k2
2z = k2

2 − k2
x > 0 (10.2a)

and

〈Sz〉 = − η2

ωε2ε0
Im
(

AB∗), when η2
2 = −k2

2z = k2
x − k2

2 > 0 (10.2b)

Because there is no loss or absorption, 〈Sz〉 is independent of z in medium 2, and
the ratio of 〈Sz〉 inmedium 2 to that of the incidence inmedium 1 is the transmittance.
When propagating waves exist in medium 2 or the angle of incidence is smaller than
the critical angle, interference will occur and the energy flux in the z-direction can be
represented by the forward- and backward-propagating waves, see Eq. (10.2a). The
transmittance oscillates as the thickness of medium 2 is increased. When evanescent
waves exist in medium 2 at incidence angles greater than the critical angle, the
transmittance is a decaying function of the thickness of medium 2, as shown in
Fig. 10.3b. While the individual evanescent wave does not carry energy, the coupling
results in energy transfer, as suggested by Eq. (10.2b). Equation (9.10), derived in
the previous chapter, can be used to calculate the transmittance. These equations
are applicable to arbitrary electric and magnetic properties as long as the medium is
isotropic and homogeneous within each layer. The phase shift ψ in these equations
is purely imaginary when medium 2 is a dielectric or vacuum.

Example 10.1 Assuming that the incident field has an amplitude of 1, determine A
and B in Eq. (10.1) for θ1 > θc = sin−1(n2/n1), when all three media are dielectric
with n3 = n1 > n2. Find an expression of the tunneling transmittance using real
variables only.

Solution The tangential field components can be written as follows for

the three-layer structure shown in Fig. 10.3a. Let η2 =
√

k2
x − k2

2 =
(2πn1/λ)

√
sin2 θ1 − sin2 θc, where λ is the wavelength in vacuum.

Hy =
⎧
⎨

⎩

(eik1z z + re−ik1z z)eikx x , z ≤ 0
(Ae−η2z + Beη2z)eikx x , 0 < z ≤ d

teik1z zeikx x , z > d
(10.3)

Ex =

⎧
⎪⎨

⎪⎩

k1z

ωn2
1ε0

(eik1z z − re−ik1z z)eikx x , z ≤ 0
iη2

ωn2
2ε0

(Ae−η2z − Beη2z)eikx x , 0 < z ≤ d
k1z

ωn2
1ε0

teik1z zeikx x , z > d

(10.4)

The continuity of the tangential components at the two interfaces allows us to
determine t, r, A, and B. Note that because the incident field has an amplitude of
1, the preceding equations do not yield a set of homogeneous linear equations as in
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the case of guided waves. According to Eq. (8.90), rp = eiδ , where δ = −2α and
cot(α) = (k1z/n2

1)/(η2/n2
2) for a TM wave. Let us rewrite Eqs. (9.7) and (9.8) for

the reflection and transmission coefficients as follows:

r = eiδ(1 − e−2η2d)

1 − e2iδe−2η2d
(10.5)

t = (1 − e2iδ)e−η2d

1 − e2iδe−2η2d
(10.6)

where we have used the relationship of Fresnel’s coefficients and set the phase shift
in Eq. (9.6) to ψ = iη2d. After matching the boundary conditions at z = d, we have

A = 0.5t[1 − icot(α)] and B = 0.5t[1 + icot(α)]e−η2d (10.7)

It can be shown that the normal component of the Poynting vector is the same in
media 2 and 3 (see Problem 10.1). The tunneling transmittance becomes

T ′
λ = t t∗ = 2[1 − cos(2δ)]e−2η2d

1 + e−4η2d − 2 cos(2δ)e−2η2d
(10.8a)

or

T ′
λ = sin2(δ)

sin2(δ) + sinh2(η2d)
(10.8b)

Clearly, the tunneling transmittance does not oscillate as d increases; rather, it
decreasesmonotonically from 1 to 0 as d is increased from 0 to infinity. The tunneling
transmittance can also be thought as a phonon tunneling probability for the given
mode as specified by the polarization and frequency. Equations (10.5)–(10.7) can
also be applied to TE waves by setting cot(α) = k1z/η2; this changes the Fresnel
reflection coefficient rp to rs . Equations (10.8a, 10.8b) can be conveniently used for
calculating the tunneling transmittance between dielectrics for both polarizations.

10.2.2 Thermal Energy Transfer Between Closely Spaced
Dielectrics

Energy exchange between closely spaced dielectric plates can be calculated by inte-
grating Planck’s function over all wavelengths as well as over the whole hemisphere
using the directional-spectral transmittance. In essence, thermal emission originates
from one medium (volumetrically) and is then transmitted through the space (gap)
to another medium, where it is absorbed volumetrically. Let us use an example to
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illustrate the procedure and the effect of photon tunneling and interferences on the
near-field thermal radiation.

Example 10.2 Calculate the hemispherical transmittance between two dielectrics
of n1 = n3 = 3, separated by a vacuum gap d (n2 = 1). Use the results to calculate
the radiative energy transfer between the two media, assuming T1 = 1000 K and
T3 = 300 K.

Analysis. In the far field, we can use the following formula discussed in Chap. 2
(see Example 2.6) to calculate the net radiative heat flux:

q ′′
13,d→∞ = σSBT 4

1 − σSBT 4
3

1/ε1 + 1/ε3 − 1
(10.9)

The hemispherical emissivity (or emittance) of each surface can be evaluated
using Eq. (8.105), which can be rewritten as follows, assuming that the emissivity is
independent of the azimuthal angle φ:

εhλ = 2

π/2∫

0

ε′
λ(θ) cos θ sin θdθ (10.10)

One could average the directional-spectral emissivity over the two polarizations.
However, the preferable way is to calculate the hemispherical emissivity for each
polarization and use it to calculate the net heat flux by taking half of Eq. (10.9). Equa-
tion (10.10) can be weighted to the blackbody emissive power and integrated over
all wavelengths to obtain the total, hemispherical emissivity according to Eq. (8.106).
The heat fluxes calculated for the two polarizations can then be added, resulting in
the net heat flux in the far-field limit, as loosely given in Eq. (10.9). Clearly, the
calculated far-field heat flux is always smaller than that between two blackbodies
given by q ′′

13,BB = σSB(T 4
1 − T 4

3 ) for the parallel-plate configuration. However, the
situation will be different in the near field when interference and tunneling effects
are important.

Solution The hemispherical transmittance can be evaluated in the similar way by
an integration over the hemisphere. Note that only a small cone of radiation, origi-
nated from medium 1, will result in propagating waves in medium 2. This half cone
angle is the critical angle, which is θc = sin−1(n2/n1) ≈ 19.5◦. Thus, we can divide
the hemispherical transmittance into two parts to separately evaluate the transmit-
tance. Keeping in mind that the transmittance is defined as the ratio of the transmitted
energy to the incident energy, we can sum the two parts to obtain the hemispherical
transmittance.

Tλ,h = Tλ,prop + Tλ,evan (10.11)

where
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Fig. 10.4 Radiation heat transfer between dielectric surfaces in close proximity. a Contributions to
hemispherical transmittance by interference and tunneling, where the transmittance is the average
of both polarizations. b Net heat flux as a function of the distance of separation

Tλ,prop = 2

θc∫

0

T ′
λ cos θ sin θdθ (10.12a)

and

Tλ,evan = 2

π/2∫

θc

T ′
λ cos θ sin θdθ (10.12b)

If n1 �= n3, θc will depend on whether the incidence is from medium 1 or 3;
however, the resulting hemispherical transmittance will remain the same. We can
calculate the average transmittance for the two polarizations and the results are shown
in Fig. 10.4a. The contribution of propagating waves exhibits some oscillations when
d and λ are close to each other, but reaches a constant value when d/λ → 0 where
all waves will be constructively added. At d/λ � 1, the constructive and destructive
interferences cancel out so that Tλ,prop becomes a constant again. The contribution of
evanescent waves becomes important when d/λ < 1 and starts to dominate over that
of the propagating waves when d/λ  1. When d/λ → 0, the evanescent wave or
tunneling contributes to nearly 90% of the transmittance when n1 = 3. This explains
why photon tunneling is very important for the near-field energy transfer.

Planck’s blackbody distribution function, given by Eq. (8.44), can be rewritten
for each polarization in media 1 and 3, respectively, as

eb,λ(λ, T1) = n2
1C1

2λ5(eC2/λT1 − 1)
(10.13a)

and
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eb,λ(λ, T3) = n2
3C1

2λ5(eC2/λT3 − 1)
(10.13b)

where λ in μm is the wavelength in vacuum, and C1 = 3.742× 108 Wμm4/m2 and
C2 = 1.439× 104 μmK are the first and second radiation constants in vacuum. The
emissive power in a nondispersive dielectric is increased by a factor of the square of
the refractive index, as a result of the increased photon density of states. The factor 2
in the denominator is included because only single polarization has been considered.
The net radiation heat flux from medium 1 to 3 is

q ′′
1→3 =

∞∫

0

eb,λ(λ, T1)Tλ,h(λ)dλ (10.14a)

and that from medium 3 to 1 is

q ′′
3→1 =

∞∫

0

eb,λ(λ, T3)Tλ,h(λ)dλ (10.14b)

where Tλ,h is obtained from Eq. (10.11). Hence, the net radiation heat transfer
becomes

q ′′
13 = q ′′

1→3 − q ′′
3→1 (10.15)

One can also separately substitute the hemispherical transmittance of propagating
and evanescent waves to Eqs. (10.14a, 10.14b). Equation (10.15) should be individ-
ually applied to TE and TM waves, and then summed together to get the net heat
flux. The integration limits can be set such that the lower limit λL = 0.1λmp and
the upper limit λH = 10λmp, where λmp is the wavelength corresponding to the
maximum blackbody emissive power at the temperature, as expressed in Eq. (8.45),
for the higher temperature medium. The calculated results of the near-field radia-
tive transfer are shown in Fig. 10.4b as a function of the separation distance d.
Several important observations can be made. (a) When d  λmp, the propagat-
ing waves result in q ′′

13,prop = σSB(T 4
1 − T 4

3 ) and the evanescent waves result in
q ′′
13,evan = (n2

1 − 1)σSB(T 4
1 − T 4

3 ). The combined net radiation heat transfer is
q ′′
13,comb = n2

1σSB(T 4
1 − T 4

3 ). (b) As the distance increases, the evanescent wave con-
tribution goes down monotonically and becomes negligible when d = λmp, which is
about 3μm. (c) Due to interference effects, the energy transfer by propagating waves
decreases slightly as d/λ increases and then reaches the far-field limit, Eq. (10.9),
when d/λ � 1.

If themediawere conductive, the previous calculations are not appropriate because
of the large imaginary part of the refractive index or the dielectric function. In fact,



634 10 Near-Field Energy Transfer

near-field radiation heat transfer can be greatly enhanced with the presence of sur-
face waves or if the media are semiconductors [23–25]. The treatment of these situ-
ations requires knowledge of fluctuational electrodynamics, which will be discussed
in Sect. 10.4 at length.

10.2.3 Resonance Tunneling Through Periodic Dielectric
Layers

There exists a photonic analogue of resonance tunneling of electrons in double-
barrier quantum well structures. The geometry to illustrate resonance photon tun-
neling is depicted in Fig. 10.5a, with periodic layers of thicknesses a and b, like
the photonic crystal (PC) structure discussed in Sect. 9.3, and a period  = a + b.

For tunneling to occur, the double-prism structure can be used so that light is inci-
dent from medium 1 with a refractive index n1. The barrier of thickness b is made of
another dielectric with a refractive index n2 that is lower than n1. There areN periods
or unit cells in total between the end media. Light is incident at an incidence angle
θ1 > θc = sin−1(n2/n1).Yeh [27] performed a detailed analysis of this phenomenon
and derived the equation of transmittance, which can be expressed as

T ′
λ = 1

1 + sinh2(ηb)

sin2(δ)
sin2(N K)

sin2(K)

(10.16)

where K is the Bloch wavevector of the PC, δ is the phase angle upon total internal
reflection, and η is the imaginary part of the normal component of the wavevector in
the lower index dielectric, as defined in Example 10.1. It can be seen that Eq. (10.16)
reduces to Eq. (10.8a) for N = 1.Note that the layer of thickness a has the same index
as the media at the ends. In this case, the transmittance is 1 at b = 0, and decreases
monotonically with increasing b as discussed previously for the three-layer setup
shown in Fig. 10.3.

The following equation can be used to calculate K:

cos(K) = cos(k1za) cosh(ηb) + cot(δ) sin(k1za) sinh(ηb) (10.17)

where k1z is the normal component of the wavevector in medium 1. While cos(K)

is real, K is in general complex. However, there exist regions or pass bands where
|cos(K)| ≤ 1 so that K is real. Note that evanescent waves exist in lower index
dielectric layers and subsequently, no interference effects should show up in the
transmittance in a regular PC in the pass band; see Fig. 9.20. It can be shown that the
transmittance expressed in Eq. (10.16) becomes unity when the following equation
holds:



10.2 Photon Tunneling and Near-Field Radiative Heat Transfer 635

Fig. 10.5 Illustration of resonance tunneling. a Alternate high-index (n1) and low-index (n2) mul-
tiple dielectric layers in between two prisms. b Calculated transmittance spectra for N = 2 and 5,
in different wavelength regions, with n1 = 3, n2 = 2, a = b/2, and θ1 = 45◦

sin(N K)

sin(K)
= 0 (10.18)

The denominator of this equation cannot be zero; therefore, K �= mπ, m =
0,±1,±2, . . . It turns out that in each pass band, there exist (N − 1) solutions, for a
given combination of ω, kx , and the thicknesses a and b. As an example, Fig. 10.5b
illustrates the transmittance as a function of λ/b when n1 = 3, n2 = 2, θ1 = 45

◦
,

and a/b = 0.5. Because of the narrow transmittance peaks, the plot is broken into
two panels, each corresponding to a pass band. For N = 2, there is only one peak
in each pass band, while for N = 5, there are four peaks. Yeh [27] showed that the
resonance frequencies correspond to the guided modes in the multilayer-waveguide
equations. Hence, the fields are highly localized near the higher index layer. Total
internal reflection causes very high reflection on the surfaces of the higher index
layer and produces resonances similar to those in a Fabry–Perot cavity resonator. It
should be noted that extremely sharp transmittance peaks can be obtained when λ is
close to the gap thickness b (see the upper panel).

Resonance tunneling may have applications as narrow band-pass filters. Due to
the guided modes and the localized field, the magnitude of the evanescent wave may
be amplified in the forward direction in some region (see Problem 10.4). Similar
to the lateral shift by total internal reflection, due to the parallel energy flow in the
high-index layer (waveguide), there must be a lateral shift of the transmitted light for
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finite beams. Little has been reported in the literature about the beam shift and the
field distribution in dielectricmultilayer structures,when resonance tunneling occurs.
When such structures are used in near-field thermal radiation by adding more layers
in the vacuumgap between the top layer and the bottom layer of Fig. 10.3a, dispersion
and loss often need to be considered.

10.2.4 Photon Tunneling with Negative Index Materials

Negative index materials (NIMs), for which the permittivity and the permeability
become negative simultaneously in a given frequency region, can also be used to
enhance photon tunneling [28]. The concept of NIMs has already been presented in
Sect. 8.4.6. The structure is illustrated in Fig. 10.6a with a pair of layers in between
two prisms. One of the layers has a negative refractive index. Assume that one of the
layers is vacuum and the other can be described by ε = μ = −1, so its refractive
index is exactly–1. The transmittance becomes unity when the thickness of the NIM
layer and that of the vacuum are the same, regardless of the angle of incidence and
polarization. Let us use the full notation of ε andμwithout using the refractive index.
The transmission coefficient can be expressed as follows [28]:

t = 8

ξ1e−iφ1 + ξ2eiφ1 + ξ3e−iφ2 + ξ4eiφ2
(10.19)

Here, the phase angles φ1 and φ2 can be expressed as

φ1 = k2zd2 + k3zd3 and φ2 = k2zd2 − k3zd3 (10.20)

Fig. 10.6 Photon tunneling with a layer of NIM. a The tunneling arrangement. b The field
distribution in the middle layers for a TE wave
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where d2 and d3 are the thicknesses of layers 2 and 3, and k2z and k3z are the normal
components of the wavevector in media 2 and 3, respectively. Note that when tun-
neling occurs, k2z and k3z become purely imaginary for the lossless case, as will be
discussed later. For a TE wave, the coefficients in Eq. (10.19) are

ξ1 =
(
1 + k2zμ1

k1zμ2

)(
1 + k3zμ2

k2zμ3

)(
1 + k4zμ3

k3zμ4

)
(10.21a)

ξ2 =
(
1 − k2zμ1

k1zμ2

)(
1 + k3zμ2

k2zμ3

)(
1 − k4zμ3

k3zμ4

)
(10.21b)

ξ3 =
(
1 + k2zμ1

k1zμ2

)(
1 − k3zμ2

k2zμ3

)(
1 − k4zμ3

k3zμ4

)
(10.21c)

and

ξ4 =
(
1 − k2zμ1

k1zμ2

)(
1 − k3zμ2

k2zμ3

)(
1 + k4zμ3

k3zμ4

)
(10.21d)

For a TMwave, the transmission coefficient is defined based on themagnetic fields
and the coefficients can be easily obtained by substituting ε’s forμ’s in Eqs. (10.21a)–
(10.21d). The sign selection of klz was mentioned in Sect. 9.2.2 in the discussion of
the matrix formulation. Basically, when there exist propagating waves in medium
l, klz = (2πnl/λ)

√
1 − (n1/nl)

2 sin2 θ1 and its sign becomes negative in a NIM.
On the other hand, if the waves become evanescent in medium l, we use klz =
i(2π/λ)

√
n2
1 sin

2 θ1 − n2
l = iηl . Here, ηl is always positive in a lossless medium,

even in a NIM. Assume that the prisms are made of the same materials so that
the properties of medium 1 and medium 4 are identical. Furthermore, layer 2 is made
of a NIM with index-matching conditions, i.e., ε2 = −ε3 and μ2 = −μ3 so that
n2 = −n3. For propagating waves in the middle layers, k2z = −k3z and ξ3 = ξ4 = 0,
so Eq. (10.19) can be further simplified to

t = 1

cos(k3z�) − iY sin(k3z�)
(10.22)

where� = d3−d2,Y = 1
2

(
k3zμ1

k1zμ3
+ k1zμ3

k3zμ1

)
forTEwaves, andY = 1

2

(
k3zε1
k1zε3

+ k1zε3
k3zε1

)
for

TM waves. Because media 1 and 4 are made of the same material, the transmittance
for propagating waves can be written as follows:

T ′
λ = 1

cos2(k3z�) + Y 2 sin2(k3z�)
(10.23)

For evanescent waves, we have k2z = k3z = iη3, where η3 =
(2π/λ)

√
n2
1 sin

2 θ1 − n2
3. Now that ξ1 = ξ2 = 0, Eq. (10.19) can be simplified

as follows:
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t = 1

cosh(η3�) + i cot(δ) sinh(η3�)
(10.24)

where cot(δ) = 1
2

(
η3μ1

k1zμ3
− k1zμ3

η3μ1

)
, with δ being the phase change upon total internal

reflection between medium 1 and 2. The transmittance T ′
λ = t t∗ is real and always

decreases with increasing �, the difference between the layer thicknesses. Although
Eqs. (10.22) and (10.24) are identical because sin(ix) = i sinh(x) and cos(ix) =
cosh(x), the use of real variables allows us to observe the variation of transmittance
with � easily. When tunneling occurs, the field is highly localized near the interface
between theNIM and the PIM layers, as shown in Fig. 10.6b for a TEwave, where the
fields are the sumof the forward-decaying and backward-decaying evanescentwaves.
The amplitude of the evanescent wave in the NIM increases in the direction of energy
flow. It can be shown that the amplitude will still increase in medium 2, even though
the NIM is placed in layer 3 and layer 2 is a vacuum. This corresponds to another
resonance effect, which is associated with the excitation of surface electromagnetic
waves or surface polaritons as discussed in Sect. 9.5.1.

The directional and hemispherical transmittances for the structure shown in
Fig. 10.6a are illustrated in Fig. 10.7 with the following parameters: n1 = n4 = 1.5,
n2 = −1 (ε2 = μ2 = −1), and n3 = 1 (vacuum). Both the directional and hemi-
spherical transmittances become 1 when d3 = d2. The hemispherical transmittance
has two components, due to propagating and evanescent waves. The effects of loss
and dispersion have also been examined [29].

Fig. 10.7 Transmittance for a four-layer structure with one middle layer being matching-index
NIM. a Directional transmittance. b Hemispherical transmittance
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10.3 Energy Streamlines and Superlens

As discussed in Chap. 8, Sect. 8.4.6, a NIM or a double-negative material (DNG)
forms a flat lens that can focus light (see Fig. 8.18). Pendry [30] predicted that a
DNG flat lens not only focuses propagating waves but also allows complete trans-
mission of evanescent waves because of an amplifying effect on the evanescent
wave amplitude. Furthermore, a single-negative material (SNG) like a Ag film also
exhibits focusing properties in the closest proximity. Such a lens is thereafter called
a perfect lens or superlens. Many researchers have been working on the fabrica-
tion of micro/nanostructures with tailored electric and magnetic properties. Photonic
crystals have also been realized with focusing properties for electromagnetic waves
(photons). Researchers have also experimentally demonstrated that a flat Ag lens can
focus light at nanoscale distances for nanolithographic applications [31, 32].

While the electromagnetic wave theory describes the tunneling phenomenon and
surface polaritons elegantly, the energy ray concept meets a difficulty for coupled
evanescentwaves because the parallel component of thewavevector for an evanescent
wave is so large that no polar angle within the real space can be defined. On the other
hand, the Poynting vector can always be defined, and by following the traces, the
energy streamline method appears to be a promising technique for analyzing the
energy flow directions in the near field. The basic concept developed in a recent
study by Zhang and Lee [33] is described next. For convenience, let us consider the
layered medium to be oriented along the x-direction as shown in Fig. 10.8, where
media 1 and 3 are semi-infinite. If the incident wave is a TM wave with an angular
frequency ω, the magnetic field in each region is given by

Hz(x, y) = [
Aeikx x + Be−ikx x

]
eiky y (10.25)

where A and B are the coefficients of forward and backward waves at the interface as
indicated in Fig. 10.8; x is relative to the origin in media 1 and 2, while in medium

Fig. 10.8 Schematic of a
three-layer structure, where
Aj and Bj (j = 1, 2, and 3)
are the coefficients of
forward and backward waves
at the nearest interface
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3, x is relative to d; and kx and ky are the x (normal) and y (parallel) components of
the wavevector. Note that k2

x + k2
y = εμω2/c2 for this geometry. The components of

the time-averaged Poynting vector can be expressed as follows:

〈Sx 〉 = 1

2ωε0
Re

(
kx

ε

)[
|A|2e−2k ′′

x x − |B|2e2k ′′
x x
]

− 1

ωε0
Im

(
kx

ε

)
Im
(

AB∗e2ik
′
x x
)

(10.26)

〈
Sy
〉 = ky

2ωε0
Re

(
1

ε

)[
|A|2e−2k ′′

x x + |B|2e2k ′′
x x
]

+ ky

ωε0
Re

(
1

ε

)
Re
(

AB∗e2ik
′
x x
)

(10.27)

Here, kx = k ′
x + ik ′′

x is the normal component of the wavevector. Note that the
present section uses a slightly different notation from that of preceding sections. The
last terms in Eqs. (10.26) and (10.27) arise from the coupling between the forward
and backward waves. The direction of 〈S〉 of the combined wave can always be
defined by a polar angle φ = arctan

(〈
Sy
〉
/〈Sx 〉

)
; in contrast, it is not always possible

to define the angle of incidence or refraction θ = arctan(ky/kx ) in the real space.
The trajectory of 〈S〉 for given values ofω and ky may be called an energy streamline,
which defines the path of the net energy flow. The matrix formulation can be used
to evaluate A and B in each layer by setting A1 = 1 and B3 = 0. Note that the
dependence of μ is implicit in Eqs. (10.26) and (10.27), since kx is a function of
μ, and furthermore, Aj and Bj depend on kx . For TE waves, the magnetic field can
be replaced by the electric field in Eq. (10.25), and ε should be replaced by μ in
Eqs. (10.26) and (10.27).

The energy streamlines in the prism-DNG-prism and prism-SNG-prism configu-
rations are shown in Fig. 10.9, for different incidence angles or ky values. The energy
transport is from the left to the right, and the trajectory of the Poynting vector in the
three regions forms a zigzag path, especially when d  λ . The x- and y-axes are
normalized to the slab thickness d. All streamlines are for positive ky values and
pass through the origin. With the dielectric prism (ε = 2.25), the critical angle is
θc = 41.81◦.

Causality requires that 〈Sx 〉 be positive; furthermore, when loss is neglected,
〈Sx 〉 is independent of x. Note that

〈
Sy
〉 = ky

2ωε0
Re
(
1
ε

)|Hz|2 is opposite to ky when
Re(ε) < 0, as in the DNG layer (medium 2). At θ1 = θc, when the phase refraction
angle θ2 = 90

◦
, the energy refraction angle φ2 is much less than 90◦. In order to

remove the singularity, the computation for θ1 = θc can be approximated by using an
angle that is either slightly greater or slightly smaller than θc. Furthermore, the dash-
dotted line in the slab separates the propagating-wave streamlines (inside the cone)
from the evanescent-wave streamlines (outside the cone). The observation that the
energy paths of propagating and evanescent waves are separated by a cone provides a
newexplanation of the photon tunneling phenomenonbased onwave optics.Note that
tunneling phenomena have been extensively studied in quantummechanics regarding
the time delay and beam shift, but the results are somewhat controversial [27]. The
energy transmittance through the slab, calculated by T = |A3/A1|2, is labeled for
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Fig. 10.9 Energy streamlines for prism-DNG-prism and prism-SNG-prism configurations at vari-
ous incidence angles [33]: θ1 = 20◦ (solid), 30◦ (dotted), 41.81◦ (dash-dotted), and 50◦ (dashed).
The prism has ε = 2.25 and μ = 1, so θ1 = 41.81◦ corresponds to the critical angle for DNG in
a and b. Only evanescent waves exist in medium 2 for SNG in c and d. The transmittance T from
medium 1 to 3 is shown for each incidence angle

each streamline. The tunneling transmittance decreases rapidly as d increases, and
the streamlines are curved when d = λ/5. Figures 10.9c and 10.9d are for a negative-
ε but positive-μ slab (such as a metal, but lossless). In this case, only evanescent
waves exist in the slab because kx is purely imaginary even at normal incidence.
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Energy is carried through medium 2 by coupled evanescent waves, whose path can
be completely described by a streamline. The transmittance with a SNG slab is much
smaller than that with a DNG slab, and the beam shift in the y-direction becomes
very large, as illustrated in Fig. 10.9d. Nevertheless, Figs. 10.9a and 10.9c look alike.
When d  λ, the propagating waves and evanescent waves are similar because
both the sinusoidal and hyperbolic functions are the same under the small-argument
approximation [34]. Assume that only propagating waves exist in medium 1, and
both ε1 and ε2 are real. The following approximations can be obtained for the energy
incidence and refraction angles in the limit d/λ → 0:

φ1 = θ1 and tan φ2 = (ε1/ε2) tan φ1 (10.28)

Note that μ2 does not affect the TM wave results in the electrostatic limit, when
the distance is much shorter than the wavelength. However, the effect ofμ2 becomes
significant when d/λ > 0.1.

Both positive and negative phase-time shifts were noticed by Li [35] for an opti-
cally dense dielectric slab in air without evanescent waves. It is worthwhile to take
a look at the streamlines for the vacuum-dielectric-vacuum configuration. For prop-
agating waves, because the second term in Eq. (10.27) depends on x, the streamline
exhibits wavelike features for d = λ, as can be seen from Fig. 10.10a, where the
solid curve is the streamline and the dashed lines are the traces of the wavevector.
The lateral shift of the energy line is determined by point Q rather than P. When d/λ

is reduced to 0.01 as shown in Fig. 10.10b, the streamline is almost a straight line in
each medium. However, point Q becomes closer to the x-axis than P, in contrary to
Fig. 10.10a. When d/λ  1, Snell’s law determines θ2 and Eq. (10.28) determines
φ2 . The shift of Q with respect to P depends on the incidence angle, which can be
positive or negative. Perhaps the lateral shift of the energy path can be understood
by the energy flow parallel to the film as a result of the combined field, similar to
the Goos–Hänchen shift. The difference here is due to the fact that a plane wave
of infinite width is used to calculate the lateral shift of transmission through a thin
film, as well as tunneling. While Poynting vector traces have been presented for
transmission through nanoslits as well as for scattering around nanoparticles, the
application of the streamline method to planar layers reveals some fundamental and
counterintuitive behavior; see Bohren and Huffman [16] and Bashevoy et al. [36].
It appears to be more natural for thermal engineers to deal with energy streamlines
rather than evanescent waves. This method allows the visualization of energy flow
in the optical near field.

Understanding the energy transport in the subwavelength region has an enormous
impact on near-field optics and nanolithography. Figure 10.11 shows the streamlines
for the three-layer structure made by Fang et al. [32]. A 35-nm-thick Ag film was
evaporated over a polymethyl methacrylate (PMMA) followed by a photoresist (PR)
coating. The source is assumed to be at x = −40 nm and y = 0 inside the PMMA.The
properties at λ = 365 nm are taken from Ref. [32] as follows: ε1 = 2.30 + 0.0014i
for the PMMA, ε2 = −2.40 + 0.25i for Ag, and ε3 = 2.59 + 0.01i for the PR.
The solid lines are for propagating waves in the PMMA at θ1 = 20◦ and 50◦.
The dash-dotted lines correspond to θ1 = 90◦ or ky = Re(k1) = 2πRe(

√
ε1)/λ,
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Fig. 10.10 The streamline for vacuum-dielectric-vacuum configuration at θ1 = 30◦ when a d/λ =
1 and b d/λ = 0.01 [33]. Solid curves are streamlines, and dashed lines are the wavevector direction

Fig. 10.11 Energy streamlines for a three-layer structure, showing the imaging features for a silver
lens with a thickness of a d = 35 nm and b d = 8.75 nm, at the wavelength λ = 365 nm. The dot
represents the source, and circles indicate the foci
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where ε1 is the dielectric function of the PMMA. Outside the cone, defined by the
dash-dotted lines with ky = 1.06Re(k1), evanescent waves exist inside the PMMA.
Note that evanescent waves exist in vacuum for θ1 > 41.25◦. The use of PMMA
allows evanescent waves from the light source with ky much greater than ω/c to be
transmitted through. In the calculations, both the PMMA and the PR are assumed
semi-infinite, and this assumption should have little effect on the imaging properties.

The streamlines shown in Fig. 10.11 are curved (i.e., φ1 �= θ1). The streamline
graph clearly reveals two foci, one inside the Ag film and the other at about 20 nm
outside the Ag film in the PR. It should be noticed that the foci are somewhat blurred
due to losses. The actual structure fabricated byFang et al. [32]wasmore complicated
and may require an integration over the wavevector space to fully understand the
imaging properties. To examine the proximity limit, the thickness of the Ag film
and the distance between the source and the Ag film are fourfold reduced without
changing other conditions. As shown in Fig. 10.11b, a single focus is formed near
the Ag-PR interface, and the streamlines are nearly straight lines in each medium.
Because of the loss in the Ag film, the energy refraction angle in Ag depends on ky

and is slightly greater than that calculated from Eq. (10.28) based on the real parts
of ε’s. The streamline method presented here provides information on the paths of
light energy and can be used to study lateral beam shifts in photon tunneling and
to construct near-field images inside and outside of flat lenses made of a NIM or a
silver film.

Further discussion of energy streamlines in near-field thermal radiation for lossy
media, multilayers, and hyperbolic metamaterials will be given later.

10.4 Radiative Transfer Between Two Semi-Infinite Media

Heat transfer between surfaces placed at extremely short distances has important
applications in near-field scanning thermal microscopy [37–40] and thermal rectifier
or thermal diode [41–43]. The microscale (near-field) thermophotovoltaic devices
offer promise for enhanced performance for energy harvesting [17, 18, 23, 44–47].
The calculation of near-field radiation heat transfer between dielectric materials
has already been described in Sect. 10.2.2. However, dispersion and dissipation are
unavoidable in real material systems. Nanoscale radiation heat transfer can be fur-
ther enhanced by several orders of magnitude using lossy materials, especially when
surface polaritons are excited [24, 25, 44, 48–50]. Earlier theoretical works were
centered on the prediction of the net heat flux between two parallel metallic plates,
using a simple Drude model for the dielectric function [51, 52]. While many metals
support surface waves through surface plasmon polaritons, the plasma frequencies
are usually much higher than the characteristic frequencies of thermal sources. Con-
sequently, the near-field enhancement of thermal radiation between good conductors
is not very large. On the other hand, semiconductors and semimetals, with smaller
electric conductivities, may greatly enhance radiation heat flux at nanometer scales
[25, 49]. The use of polar materials such as SiC allows surface phonon polaritons
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to be excited, resulting in large near-field radiation heat transfer that is concentrated
in a very narrow wavelength band [24, 48, 49]. Analytical solutions of nanoscale
energy transfer between a sphere and a surface or between two spheres are also
available [48, 51, 52]. Since 2011, numerical methods have also been extensively
applied to model near-field radiative heat transfer between nanostructures, including
2D materials [53–61].

This section introduces fluctuational electrodynamics, originally developed by
Rytov and coworkers in late 1950s, based on the fluctuation–dissipation theorem
[62]. Detailed discussions will be given on the calculation of the near-field thermal
radiation between two parallel plates, with an example based on doped silicon and
polar dielectric materials. The fluctuation–dissipation theorem has applications in
the study of thermal conductivity of nanostructures and has also been used to study
van der Waals forces and noncontact friction at nanometer distances [63–65].

10.4.1 Fluctuational Electrodynamics

Consider the geometry shown in Fig. 10.12a, where two homogeneous media, each
at equilibrium but with different temperatures, T1 and T2, are separated by a vac-
uum gap of width d, ranging from several tens of micrometers down to 1 nm. For
a nonmagnetic and isotropic medium, the complex dielectric function or relative
permittivity is the only property needed to fully characterize the optical behavior.
Some models of the dielectric function such as the Drude and/or Lorentz models
were discussed in Chap. 8. The foundation of fluctuational electrodynamics is the
fluctuation–dissipation theorem, under which thermal radiation is assumed to arise
from the randommovement of charges inside the medium at temperatures exceeding
0 K. The charge movement causes fluctuating electric currents that in turn result
in a fluctuating electromagnetic field in space and time. The frequency components
of the fluctuating field or current can be analyzed via the correlation function. The

Fig. 10.12 Schematic drawings for the study of near-field thermal radiation in the cylindrical
coordinates. a Radiation heat transfer between two parallel plates separated by a vacuum gap.
b The electric field near the surface due to thermally induced charge fluctuations
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movement of charges from an equilibrium position can also be viewed as oscillating
dipoles as illustrated in Fig. 10.12b. The electromagnetic field at any location is a
superposition of contributions from all of the point sources in the radiating region.
The electromagnetic waves deep inside the medium will attenuate due to absorption
(i.e., dissipation) inside themedium. The basic assumptions for calculating near-field
radiative heat transfer between two parallel plates are as follows: (a) Each medium
is semi-infinite and at a thermal equilibrium, presumably due to a sufficiently large
thermal conductivity of the solid. (b) Both media are nonmagnetic, isotropic, and
homogeneous, so that the frequency-dependent complex dielectric function (relative
permittivity) ε1 or ε2 is the only material property that characterizes the electrody-
namic response and thermally excited dipole emission of medium 1 or 2. (c) Each
surface is perfectly smooth, and the two surfaces are parallel to each other. In the
structure as illustrated in Fig. 10.12b, thermal emission in the far field as well as the
photon local density of states (LDOS) near the surface can be directly calculated via
fluctuational electrodynamics [66, 67].

Due to axial symmetry, we can use the cylindrical coordinates so that the spatial
variable x = r + z = r r̂ + zẑ. Consider a monochromatic electromagnetic wave
propagating from medium 1 to 2. The complex wavevectors in media 1 and 2 are
k1 and k2, respectively, with k2

1 = ε1k2
0 and k2

2 = ε2k2
0 , where k0 = ω/c0 = 2π/λ

is the magnitude of the wavevector in vacuum. In general, ε1 and ε2 are complex;
hence, k1 and k2 should be viewed as complex functions of ω. Only real and positive
ω values are considered so that the wavevector in vacuum k0 = ω/c0 is real. The
monochromatic plane wave can be expressed in terms of a time- and frequency-
dependent field, exp(ik j · x − iωt), where j = 0, 1, or 2 refers to vacuum, medium
1, or medium 2, respectively. The phase-matching condition requires the parallel
components of all three wavevectors to be the same. To simplify the notation, let us
use β for the parallel component and ζ j for the normal component of the wavevector

k j . Thus, k j = β r̂+ ζ j ẑ and ζ j =
√

k2
j − β2. The spatial dependence of the field in

vacuum can be expressed as exp(iβr + iζ0z). Because its amplitude must not change
along the r-direction, β must be real. Keep in mind that both r and β are positive
in the cylindrical coordinates. The normal component of the wavevector in vacuum

ζ0 =
√

k2
0 − β2 will be real when 0 ≤ β ≤ k0 and purely imaginary when β > k0.

Thus, an evanescent wave exists in vacuum when β > k0. Note that ζ1 and ζ2 are in
general complex.

The random thermal fluctuations produce a spatial-time-dependent electric current
density j(x, t) inside themediumwhose time average is zero. The current density can
be decomposed into the frequency domain using the Fourier transform, which gives

j(x, ω). With the assistance of the dyadic Green’s function G(x, x′, ω), the induced
electric field in the frequency domain can be expressed as a volume integration:
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E(x, ω) = iωμ0

∫

V ′
G(x, x′, ω) · j(x′, ω)dx′ (10.29)

where μ0 is the magnetic permeability of vacuum, and the integral is over the region
V that contains fluctuating sources. The physical significance of the Green’s function
is that it is a transfer function for a current source j at a location x′ and the resultant
electric field E at x. Mathematically, the dyadic Green’s function satisfies the vector
Helmholtz equation:

∇ × ∇ × G(x, x′, ω) − k2G(x, x′, ω) = Iδ(x − x′) (10.30)

where k is the amplitude of the wavevector at x, and I is a unit dyadic. The
corresponding magnetic field H(x, ω) can be obtained from the Maxwell equation:

H(x, ω) = 1

iωμ0
∇ × E(x, ω) (10.31)

The spectral energy density of the thermally emitted electromagnetic field in
vacuum can be calculated from Eq. (8.19) in terms of the ensemble average.
Therefore,

uω(x, ω) = ε0

4

〈
E(x, ω) · E∗(x, ω)

〉+ μ0

4

〈
H(x, ω) · H∗(x, ω)

〉
(10.32)

where “<>” denotes the ensemble average of the random currents. The emitted
energy flux can be expressed by the ensemble average of the Poynting vector, i.e.,

〈S(x, ω)〉 = 1

2

〈
Re[E(x, ω) × H∗(x, ω)]〉 (10.33)

To evaluate the ensemble average, the required cross-spatial correlation function
between the fluctuating currents at two locations x′ and x′′ inside the emittingmedium
is given as [68]

〈
jm(x′, ω) j∗

n (x′′, ω′)
〉 = 4ωε0Im(ε)

π
�(ω, T )δmnδ(x′ − x′′)δ(ω − ω′) (10.34)

where jm (m = 1, 2, or 3) stands for the x-, y-, or z-component of j. The Dirac delta
function δ(ω − ω′) implies that the spectral quantities with different frequencies are
statistically uncorrelated. The term δmnδ(x′−x′′) comes from the fact that themedium
is isotropic and said to be local whereby certain properties are only affected by its
immediate surroundings. In Eq. (10.34), �(ω, T ) is the mean energy of Planck’s
oscillator at the frequency ω in thermal equilibrium and is given by
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�(ω, T ) = �ω

exp(�ω/kBT ) − 1
+ �ω

2
(10.35)

In Eq. (10.35), the second term 1
2�ω accounts for vacuumfluctuation or zero-point

energy [69]. This does not affect the calculation of the net radiative energy exchange
since the second term is independent of temperature. However, in the calculation
of the Casimir forces, the second term needs to be included [68]. When the second
term is dropped, the calculated energy density should be regarded as being relative
to the vacuum ground energy density. The local density of states (LDOS) or density
of modes D(z, ω) is defined by the following relation [68]:

uω(z, ω) = D(z, ω)�(ω, T ) (10.36)

The spectral energy density uω(z, ω) and LDOS are independent of r because
of the infinite-plate assumption. The physical significance of D(z, ω) [m−3 s rad−1]
is the number of modes per unit angular frequency interval per unit volume. It can
become very large when z → 0 (in the proximity of the surface) at certain frequen-
cies. Equation (10.36) assumes that the contribution is only from the medium and did
not consider the contribution from free space as well as that reflected by the interface.
This omission is justifiable in the near-field regimes because the contribution from
free space may be orders of magnitude smaller than that from the medium.

Note that the energy density given in Eq. (10.32) and the Poynting vector defined
in Eq. (10.33) can be evaluated by integration over the source region, using the
correlation function given in Eq. (10.34). As an example, we canwrite the component

〈
Em(x, ω)E∗

n (x, ω)
〉 = 4ε0μ2

0ω
3

π

∑

i

∫

V ′

ε′′�(ω, T )Gmi (x, x′, ω)G∗
ni (x, x

′, ω)dx′

(10.37)

where ε′′ = Im(ε). The dyadic Green’s function may be expressed in terms of a 2D
spatial Fourier transfer as [70, 71]

G(x, x′, ω) = 1

4π2

∞∫

−∞

∞∫

−∞

¯̄g(β, z, z′, ω)eiβ(r−r ′)dkxdky (10.38)

After substituting Eq. (10.38) into Eq. (10.37), the integration over dxdy is trans-
formed to dkxdky . The integration in the k-space can be converted using cylindrical
coordinates for isotropic media. For a homogeneous medium or even for multilayers,
the integration over the z-direction in the source region (according to Fig. 10.12b)
can be evaluated. Usually, a magnetic Green’s function is introduced to facilitate the
derivations. The results for the simple case with parallel plates as an example are
discussed next. More details are given in Sect. 10.5.4.
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10.4.2 Near-Field Radiative Heat Transfer Between Two
Parallel Plates

The Green’s function depends on the geometry of the physical system, and for two
parallel semi-infinite media sketched in Fig. 10.12a, it takes the following form [24,
68]:

G(x, x′, ω) = i

4π

∞∫

0

βdβ

ζ1

(
ŝts ŝ + p̂2tpp̂1

)
ei(ζ2z−ζ1z′)eiβ(r−r ′) (10.39)

where x = r r̂ + zẑ and x′ = r ′r̂ + z′ẑ. Note that ts and tp are the transmission
coefficients from medium 1 to medium 2 for s-and p-polarizations, respectively,
and can be calculated using Airy’s formula given in Eq. (9.8). The unit vectors are
ŝ = r̂×ẑ, p̂1 = (

β ẑ − ζ1r̂
)
/k1, and p̂2 = (

β ẑ − ζ2r̂
)
/k2. If the interest is to calculate

the radiation field from a medium to vacuum, ts and tp can be replaced by the Fresnel
transmission coefficients between the medium and vacuum. The Poynting vector
and energy density can then be calculated using the Green’s function by performing
integration over the z-direction in either region 1 or region 2. Note that the term
eiβ(r−r ′) will drop out when multiplied by its complex conjugate [70]. The local
density of states in vacuum near the surface of medium 1 can be expressed in two
terms, that is,

D(z, ω) = Dprop(ω) + Devan(z, ω) (10.40)

where

Dprop(ω) =
k0∫

0

ω

2π2c20ζ0

(
2 − ρs

01 − ρ
p
01

)
βdβ (10.41a)

and

Devan(z, ω) =
∞∫

k0

e−2zη0

2π2ωη0

[
Im(r s

01) + Im(r p
01)
]
β3dβ (10.41b)

Here, r01 is the Fresnel reflection coefficient, k0 = ω/c0 is the wavevector in
vacuum, and ρ01 = |r01|2 is the (far-field) reflectivity at the interface between vac-

uum and medium 1, η0 = −iζ0 =
√

β2 − k2
0 , and superscripts s and p signify

s-polarization and p-polarization, respectively. Note that r s
01 = (ζ0 − ζ1)/(ζ0 + ζ1)

and r p
01 = (ζ0−ζ1/ε1)/(ζ0+ζ1/ε1). It is assumed that medium 2 is either far away or
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does not exist. Basu et al. [50] calculated the LDOS in the vacuum gap by including
medium 2. It should be mentioned that, in deriving Eq. (10.40), the imaginary part
of the permittivity of medium 1 in Eq. (10.34) has been combined with other terms.
No matter how small Im(ε1) may be, such as for a dielectric, it must not be zero for
the semi-infinite assumption to hold. The contribution of propagating waves given
by Eq. (10.41a) is independent of z and exists in both near and far fields; whereas
the contribution of evanescent waves decreases exponentially with increasing z. In
the far-field limit, the contribution of propagating waves is responsible for thermal
emission. In fact, Eq. (10.41a) contains terms related to the directional-spectral emis-
sivity: ε′s

ω,1 = 1− ρs
01 and ε

′p
ω,1 = 1− ρ

p
01. As it gets closer and closer to the surface,

the contribution of evanescent waves near the surface may dominate when Im(r p
01) is

large, especially in the case when surface phonon polaritons can be excited. Subse-
quently, extremely large energy densities can exist near the surface at that particular
frequency [24, 66].

The z-component of the time-averaged Poynting vector can be expressed in the
following,

〈Sz(x, ω)〉 = 1

2
Re
[〈

Ex (x, ω)H∗
y (x, ω)

〉− 〈
Ey(x, ω)H∗

x (x, ω)
〉]

(10.42)

q ′′
ω,1−2 = �(ω, T1)

4π2

∞∫

0

ξ12(ω, β)βdβ (10.43)

Therefore, the spectral energy flux from medium 1 to medium 2 can be expressed as
where ξ12(ω, β) = ξ

p
12 + ξ s

12

= 16Re(ε1ζ ∗
1 )Re(ε2ζ ∗

2 )
∣
∣ζ 2
0 e

2iζ0d
∣
∣

∣
∣(ε1ζ0 + ζ1)(ε2ζ0 + ζ2)(1 − r p

01r p
02e

2iζ0d )
∣
∣2

+ 16Re(ζ1)Re(ζ2)
∣
∣ζ 2
0 e

2iζ0d
∣
∣

∣∣(ζ0 + ζ1)(ζ0 + ζ2)(1 − rs
01rs

02e
2iζ0d )

∣∣2

Here, ξ j
12(ω, β), j = p or s, is called the energy transmission coefficient or pho-

ton tunneling probability for evanescent waves for the given polarization. Note
that 0 ≤ ξ

j
12(ω, β) ≤ 1. Equation (10.43) includes the contributions from both

propagating and evanescent waves. The expression of q ′′
ω,2−1 is readily obtained by

replacing�(ω, T1)with�(ω, T2) since the exchange function is reciprocal, namely,
ξ

j
12(ω, β) = ξ

j
21(ω, β). The net total energy flux can be calculated by integrating

(q ′′
ω,1−2 − q ′′

ω,2−1) over the frequency, viz.

q ′′
net = 1

4π2

∞∫

0

∞∫

0

[�(ω, T1) − �(ω, T1)]ξ12(ω, β)βdβdω (10.44)

Equation (10.44) provides away to calculate radiative transfer that is applicable for
both the near- and far-field heat transfer. The contribution of evanescent waves when
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β > ω/c0 with imaginary ζ0 reduces as d increases and is negligible when d is on
the order of the wavelength. The energy transfer can be separated into contributions
of propagating waves and coupled evanescent waves (i.e., photon tunneling). For
propagating waves, we have for either p-or s-polarizations,

ξ p,s
prop(ω, β) = (1 − ρ

p,s
01 )(1 − ρ

p,s
02 )

∣∣1 − r p,s
01 r p,s

02 e2iζ0d
∣∣2

, when β < k0 (10.45)

where r0 j is the Fresnel coefficients and ρ0 j = r0 j r∗
0 j is the reflectivity from vacuum

to the jth medium. If only the propagating waves are considered as is the case in
the far field, we note that β = k0 sin θ = (ω/c0) sin θ , where θ is the polar angle
in vacuum. The integration over β from 0 to k0 is equivalent to the integration from
θ = 0 to π/2. By averaging the oscillation terms, we can obtain the far-field and
incoherent limit when d � λ:

∣
∣1 − r p,s

01 r p,s
02 e2iζ0d

∣
∣2 → (

1 − ρ
p,s
01 ρ

p,s
02

)
(10.46)

Thus, it can also be shown that the inverse of Eq. (10.45) becomes

1 − ρ
p,s
01 ρ

p,s
02

(1 − ρ
p,s
01 )(1 − ρ

p,s
02 )

= 1

ε
′ p,s
ω,1

+ 1

ε
′ p,s
ω,2

− 1 (10.47)

The total energy flux in the far-field limit becomes

q ′′
net,far = 1

4π2c20

∞∫

0

π/2∫

0

[�(ω, T1) − �(ω, T2)]ω
2

×
(

1

1/ε′ p
ω,1 + 1/ε′ p

ω,2 − 1
+ 1

1/ε′ s
ω,1 + 1/ε′ s

ω,2 − 1

)

cos θ sin θdθdω

(10.48)

which is similar to the equation found in radiation heat transfer texts cited in previous
chapters, except that angular frequency is used here instead of wavelength. While
the energy flux includes the contributions of both polarizations, one should integrate
the two polarizations separately as done in Eq. (10.48). If the emissivities of the
two surfaces have different dependences on the polar angle and polarization status,
averaging over the two polarizations to obtain the directional emissivity of each
surface may cause some error in the calculation.

For evanescent waves in vacuum when β > k0, the photon tunneling probability
ξ becomes

ξ p,s
evan(ω, β) = 4Im(r p,s

01 )Im(r p,s
02 )e−2η0d

∣∣1 − r p,s
01 r p,s

02 e−2η0d
∣∣2

, when β > k0 (10.49)
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Clearly, the tunneling probability decays exponentially as the distance of separation
d increases.

At the nanometer scale, when near-field radiation dominates, especially for metal-
lic media, doped silicon, or polar materials in the absorption band, the tunneling
probability from Eq. (10.49) can be expressed with an approximate formula. Note
that at β � k0, we have ζ1 ≈ ζ2 ≈ ζ0 ≈ iβ. In this case, it can be shown that r s

01 and
r s
02 are negligibly small, and hence, the contribution of TE waves can be ignored.
Furthermore, r p

01 ≈ (ε1 − 1)/(ε1 + 1) and r p
02 ≈ (ε2 − 1)/(ε2 + 1) are independent

of β; therefore,

ξevan(ω, β) ≈ 4Im(r p
01)Im(r p

02)e
−2βd

∣∣1 − r p
01r

p
02e

−2βd
∣∣2

(10.50)

Using the relation: Im
(

ε−1
ε+1

) = 2Im(ε)

|ε+1|2 , the spectral heat flux from 1 to 2 in the limit
d → 0 can then be expressed as

q ′′
ω,1−2 ≈ �(ω, T1)

π2d2

Im(ε1)Im(ε2)

|(ε1 + 1)(ε2 + 1)|2
∞∫

x0

∣
∣∣∣1 − (ε1 − 1)(ε2 − 1)

(ε1 + 1)(ε2 + 1)
e−x

∣
∣∣∣

−2

xe−xdx

where x0 = 2k0d. The heat flux will be inversely proportional to d2 in the proximity

limit. The integral approaches 1 when
∣∣∣ (ε1−1)(ε2−1)
(ε1+1)(ε2+1)

∣∣∣  1. Consequently, the net

spectral flux becomes [24]

q ′′
ω,1−2 − q ′′

ω,2−1 ≈ 1

π2d2

Im(ε1)Im(ε2)

|(ε1 + 1)(ε2 + 1)|2 [�(ω, T1) − �(ω, T2)] (10.51)

When β � k0, Eq. (10.41b) reduces to

Devan(z, ω) ≈ 1

π2ω

Im(ε1)

|ε1 + 1|2
∞∫

k0

e−2βzβ2dβ (10.52a)

By evaluating the integration and keeping the highest order terms only, one obtains
the following asymptotical expression for z → 0 as [66]

Devan(z, ω) ≈ 1

4π2ωz3
Im(ε1)

|ε1 + 1|2 (10.52b)

This equation suggests that, as z decreases, the near-field density of states increases
with z−3 and is localized at the surface. There are questions about when the fluctu-
ation–dissipation theory will fail and when conduction will dominant radiation. In
general, the locality and homogeneous assumptions should be valid until the sep-
aration spacing approaches interatomic distances or is below about 1 nm [72, 73].
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Surface roughness may prevent the two interfaces from reaching interatomic spacing
before touching each other at certain locations. Some controversials still remain as
evidenced by the recent experiments performed at distances below about 1 nm from
different labs [74, 75].

10.4.3 Effect of Surface Plasmon Polaritons (SPPs)

Radiation heat transfer may be important when the characteristic dimensions are on
the nanometer scale. AFM cantilevers with integrated heaters and nanoscale sharp
tips made of doped silicon have been developed for thermal writing and reading
[76]. These heated cantilever tips may provide local heating for the study of radiative
energy transfer between two objects separated by a few nanometers. It is critical to
quantitatively predict the near-field radiation heat flux between doped silicon. The
dielectric function of doped silicon can be described by theDrudemodel, considering
the effects of temperature and doping level on the concentrations and scattering
times of electrons and holes, as described in Sect. 8.4.4 of Chap. 8. Polar dielectric
materials may excite phonon polaritons. The excitation of coupled surface plasmon
polaritons (SPPs) or coupled surface phonon polaritons (SPhPs) can significantly
enhance near-field radiation in a narrowband near the resonance frequency.

To calculate the radiative energy flux, it is essential to perform the integration of
the energy transmission coefficient in Eq. (10.42), ξ12(ω, β), over the wavevector
β ranging from 0 to infinity. Then, the integration of the spectral energy flux can
be carried out over all frequencies. Usually, angular frequency is preferred over
wavelength for consistency with the electrodynamic formulation. The integration
over β from 0 to k0 corresponds to radiation heat transfer by propagating waves.
In this range, the integrand exhibits highly oscillatory behavior for large d. In this
regard, Simpson’s rule is an effective technique in dealingwith oscillatory integrands.
The integration for β from k0 to infinity corresponds to radiation heat transfer by
evanescent waves, and the photon tunneling probability is given as ξevan(ω, β) in
Eq. (10.49). For small d values, the upper limit βmax should be on the order of 1/d; but
for large d values, 1/d would be less than k0. A semi-empirical criterion can be used
to set βmax as 3/d or 100k0, whichever is larger, to ensure an integration error less than
1%. For materials with strong SPhP resonances like SiC, an even large βmax needs to
be applied and the limit is set to π/dc, where dc ≈ 0.5 nm is on the order of the lattice
constant [48, 77]. An effectiveway to perform the integration is to break it into several
parts and evaluate each part using Simpson’s rule. For example, the integration can
be carried out in two parts, k0 < β < 6k0 and 6k0 < β < βmax. A relative difference
of 0.1% may be used as the convergence criterion between consecutive iterations.
For conventional radiation heat transfer calculations, the lower and upper bounds of
the integration over frequency (or wavelength) can be selected such that 99% of the
blackbody emissive power falls between the limits. For example, 99% of blackbody
radiation emissive power is concentrated between 1.2 and 25 μm at 1000 K, and
between 4 and 85 μm at 300 K. Although λmp predicted by Wien’s displacement
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law does not exactly correspond to the peak in near-field radiation [48, 49, 78], these
criteria can give satisfactory results. The enhancement of near-field radiation heat
transfer is generally greater at longer wavelengths; as such, the integration should be
performed over a much broader spectral region.

Figure 10.13 shows the predicted radiation heat transfer between two silicon
plates [25]. Medium 1 is intrinsic silicon at T1 = 1000K, whereas medium 2 is at
T2 = 300K. Medium 2 is either intrinsic or doped silicon with phosphorus as the
donor (n-type). For convenience of discussion, sometimes the higher temperature
heat source is called the emitter and the lower temperature heat sink is called the
receiver. In the calculations, the wavelength region is chosen in the range from
approximately 0.94 to 1880 μm (ω from 1012 to 2 × 1015 rad/s). The dotted line
represents the far-field radiation heat flux between two blackbodies, σSB(T 4

1 − T 4
2 ),

as predicted by the Stefan–Boltzmann law. Wien’s displacement law suggests that
the dominant wavelength λmp for the 1000 K emitter is around 3 μm. The energy
flux is essentially a constant when the distance d is greater than 10 μm, which is the
far-field regime. The net energy flux increases quickly when d < λmp due to photon
tunneling. When medium 2 is intrinsic or lightly doped, i.e., ND2 < 1015 cm−3, the
maximum q ′′

net is achieved when d < 50 nm. The maximum net energy flux is 21.3
times that of the far-field limit and 11.7 times that of blackbodies for intrinsic silicon,
as predicted earlier when the silicon plates are treated as dielectrics. On the other
hand, q ′′

net for ND2 > 1016 cm−3 continues to increase as d is reduced and does not
saturate. The heat flux at d = 1 nm with ND2 = 1018 cm−3 is 800 times greater than
that between two blackbodies and exceeds that between doped silicon in the far field
by more than three orders of magnitude.

If one of the media is a slightly absorbing dielectric, as is the case for silicon
with a carrier concentration less than 1015 cm−3, the Fresnel coefficients becomes
imaginary beyond the critical angle. There is a propagating wave in the medium and
an evanescent wave in vacuum (corresponding to frustrated total internal reflection).

Fig. 10.13 Net energy flux
between an emitter made of
intrinsic Si at 1000 K and a
receiver made of Si with
different doping levels at
300 K [25]



10.4 Radiative Transfer Between Two Semi-Infinite Media 655

If the refractive index of the dielectric medium is n, then ξevan(ω, β) is nonzero for
k0 < β < nk0. However, because the extinction coefficient κ is negligibly small,
ξevan(ω, β) becomes very small beyond nω/c and decays exponentially with increas-
ing β . Therefore, for lightly doped silicon, the enhancement is limited to approxi-
mately (n2−1)σSB(T 4

1 −T 4
2 )when the near-field flux reaches q ′′

net ≈ n2σSB(T 4
1 −T 4

2 ),
as discussed previously. Because of the small difference between the refractive
indices of the two media, n is used here for both media for simplicity. On the other
hand, if κ is relatively large, the integration over β > nk0 will have a significant
contribution and may even dominate the heat flux when d reaches a few nanometers.

The enhancement of near-field heat transfer can be better understood from
the energy flux spectra shown in Fig. 10.14. The units of q ′′

ω are expressed as
Wm−2 s rad−1 rather than Jm−2 rad−1 to keep the integrity of the angular frequency
units, i.e., rad/s. Notice that at 1000 K, the carrier concentration is about 1018 cm−3

for intrinsic silicon. The spectral flux between two blackbodies at 1000 and 300 K,
calculated from Planck’s spectral emissivity power, is also shown for comparison.
Interference becomes important at d = 10 μm and causes the wavy features in the
spectral energy flux. When the receiver is intrinsic, as Fig. 10.14a reveals, the shape
of the spectrum is similar for d < 100 nm and scaled up with n2( ≈ 11.7) times that
between blackbodies. However, the slightly increased κ due to phonon or impurity
absorption, along with free carrier absorption in the far infrared, can result in an
increase in the spectral energy flux at very small distances. These effects are relative
small and do not have notable influence on the total heat flux as seen previously in
Fig. 10.13.

The near-field spectral flux is greatly enhanced when medium 2 is doped, as can
be seen from Fig. 10.14b, especially in the far-infrared region. At d < 100 nm, the
peak due to near-field enhancement is located aroundλ = 80μmand becomes higher
than that due to blackbody emission around λ = 3μm.Asmentioned previously, the

Fig. 10.14 Spectral energy flux for different separation distances between silicon plates, where
medium 1 is always intrinsic, T1 = 1000 K, and T2 = 300 K [25]. a Medium 2 is intrinsic.
bMedium 2 is n-type silicon with a donor concentration ND2 = 1018 cm−3
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increased energy flux in the longer wavelengths requires the integration to be carried
out over amuch broader range than typically donewith the blackbody spectrum. It has
been shown that for highly conductive materials and polar materials in the resonance
region, Eqs. (10.50) through (10.52a, 10.52b) can give excellent approximations in
the extreme near field [24, 48, 77]. However, for doped silicon, Eq. (10.50) is not
applicable for ω > 1014 rad/s, where the major contribution of evanescent waves
comes from k0 < β < nk0, i.e., propagating waves in silicon. Even in the frequency
region from 1012 to 1014 rad/s, Eqs. (10.50) and (10.51) significantly underpredict the
near-field radiation between silicon plates. Therefore, care must be taken in applying
the asymptotic expressions.

By comparisonwith themeasured spectral properties of thin filmsmade of heavily
doped silicon, Basu et al. [50] obtained more realistic parameters for the carrier con-
centration and mobility in heavily doped silicon at temperatures from 250 to 400 K
and used the modified Drude model to calculate the near-field radiative heat transfer
between doped silicon plates. The basic argument was that the model employed by
Fu and Zhang [25] gives a much lower majority carrier concentration since only a
fraction of the dopant atoms are assumed to be ionized and contribute to the carrier
concentration. Figure 10.15a shows the calculated net heat flux for T1 = 400K and
T2 = 300K with various doping concentrations. In all cases, n-type silicon (e.g.,
doped with phosphorus atoms) is used and it is assumed that both medium 1 and
medium 2 have the same doping concentration ND1 = ND2. Comparing Fig. 10.15a
with Fig. 10.13, we see that the enhancement near room temperature is even stronger
than at elevated temperatures. As the doping concentration increases from 1018 to
1019 cm−3, the heat flux for d < 100 nm continues to increase but does not change
much as the doping concentration is increased to approximately 1019 cm−3. Any
further increase in the doping concentration will result in a reduction of the heat flux.
The spectral heat flux for the same emitter and receiver temperatures is plotted in
Fig. 10.15b for three doping levels at a distance d = 10 nm. The peak locations are
totally determined by the dielectric functions rather than the blackbody spectrum.

Fig. 10.15 Radiative heat transfer between heavily doped n-type silicon [50]: aNet heat flux versus
separation distance; b spectral heat flux at d = 100 nm
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The location of the peak shifts toward higher frequencies as the doping concentra-
tion increases (more metallic behavior): from ωm = 2.3 × 1013 to 7.1 × 1013 to
2.5 × 1014 rad/s for doping concentrations of 1018, 1019, and 1020 cm−3, respec-
tively. These peaks are associated with the coupled SPPs as discussed in Sect. 9.5.3.
Wien’s displacement does not hold in this case. The resonance frequency for the
SPPs is governed by the dielectric function when the real part ε′ approaches –1 [49].
Furthermore, the imaginary part ε′′ of the dielectric function determines the width
as well as the peak height. A larger ε′′ generally gives a broader peak with a smaller
height. As the total heat flux equals the area under the curve, the values are similar
for ND = 1019 and 1020 cm−3.

The contribution of coupled SPPs to near-field radiation is related to the mode’s
large β values at the peak resonance frequency ωm given in Fig. 10.15. This can be
clearly seen using the contour plot shown in Fig. 10.16, where the value of βξ12/2π
is shown as a function of the normalized wavevector β/k0 and the angular frequency
ω for d = 10 nm. Both the emitter and receiver are made of 1020 cm−3 doped Si.
Note that the contribution from TEwaves is negligible at this gap spacing for heavily
doped Si. The contour plot reveals that the contribution by propagating waves (in the
region β/k0 < 0) is much smaller than that by evanescent waves. The two dashed
curves are calculated from Eq. (9.106) for the symmetric and asymmetric coupled
SPP branches. The left branch corresponds to the symmetric mode, while the right
branch represents the asymmetric mode. The actual distribution according to the
contour plot is much broader; however, the shape of the brighter region generally
matches with the dispersion curves. The peak is located near ωm = 2.6× 1014 rad/s
and β = 60k0. Most of the nanoscale energy transfer is through modes about the res-
onance frequency and wavevector location. Note that near-field radiation inherently
excites coupled SPPs due to the existence of large-β modes without using gratings.
Furthermore, as d is reduced, themodes with larger β values can be excited, resulting
in the 1/d2 dependence of the total heat flux [79].

Fig. 10.16 Contour plot of
the function ξ12(ω, β)β over
2π for the case with
ND1 = ND2 = 1020 cm−3

when d = 10 nm; the two
branches of the SPP
dispersion are shown as the
dashed curves [50]
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While the contribution of TE waves is smaller at very small gap spacings, the
contribution needs to be included in moderate gap spacings. The two contributions
are separately plotted along with the sum in Fig. 10.17 for two levels of 1020 and
1021 cm−3, respectively. When the doping concentration is 1020 cm−3 as shown in
Fig. 10.17a, the TM wave contribution dominates the net energy transfer, although
the TE wave contribution may need to be considered if d > 100 nm. For doping
concentration of 1021 cm−3, on the contract, the TE wave contribution is greater than
the TM wave contribution for d > 12 nm. The contribution of TM waves further
increases while that of TE waves saturates as d further reduces. Most of the TE
wave contributions are limited to smaller β values, because both Im(r s

01) and Im(r s
02)

decrease quickly as β increases and become negligible when β > 5k0. Similar results
have been observed between two metallic surfaces [78].

Example 10.3 At what distance d, would the nanoscale thermal radiation, between
two plates at T 1 = 400 K and T 2 = 300 K, exceed that of heat conduction by air at
the pressure P = 1 atm? Consider doping concentrations ND1 = ND2 = 1019 cm−3

for n-type silicon.

Solution When d is much smaller than the mean free path, which is about 70 nm
at standard atmospheric conditions, boundary scattering or ballistic scattering dom-
inates gas conduction. The thermal conductivity decreases linearly as d decreases,
whereas the heat flux is independent of d in this regime. Assuming a thermal accom-
modation coefficient of 1, the heat transfer by gas conduction can be estimated from
the theory in Chap. 4, Eq. (4.93), as

q ′′
cond = cv(γ + 1)P

(8π RTm)1/2
(T1 − T2) (10.53)

where R is the ideal gas constant, P is the pressure, Tm = 4T1T2/
(√

T1 + √
T2
)2

is a
mean temperature, and cv is the specific heat at constant volume evaluated at Tm. The

Fig. 10.17 Polarization dependence of the total heat flux between heavily doped silicon when
T1 = 400K and T2 = 300K [50]: a ND1 = ND2 = 1020 cm−3 ; b ND1 = ND2 = 1021 cm−3
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resulting q ′′
cond for air at a pressure P = 1 atm is approximately 1.1 × 107 W/m2 for

T 1 = 400 K and T 2 = 300 K. According to Fig. 10.15a, the calculated near-field net
energy transfer by radiation is at the same level when d ≈ 3 nm with heavily doped
silicon.Atd =1nm, thenear-field radiationheat transfer canbe anorder ofmagnitude
greater than the heat transfer by air conduction at the atmospheric pressure. Because
the conduction heat flux further decreases as the pressure is reduced, nanoscale
thermal radiationmay dominate the heat transfer process for scanning thermal probes
and heated cantilever tips that use heavily doped silicon.

The radiation heat transfer coefficient can be defined as hr = q ′′
net/(T1 − T2) in

analogy to Newton’s law of cooling. It can be seen from Fig. 10.15a that for heavily
doped silicon, hr ∼ 106 W/m2 K at d = 1 nm and hr ∼ 104 W/m2 K at d = 10 nm.
It is important to verify whether the local-equilibrium assumption is valid. Assume
that the near-field radiation penetration depth is 100 nm and the thermal conductivity
for doped silicon is 100W/m ·K. For a heat flux of 109 W/m2, the temperature drop
would be 1Kwithin the radiation penetration depth. Therefore, the local-equilibrium
assumption should still be valid. However, for a wafer of 100-μm thickness, the
temperature drop would be 1000 K. The preceding calculations suggest that indeed
near-field radiation can be an effective way of heating and cooling. As an alternative
to the parallel-plate configuration, it is possible to pattern one of the silicon wafers
with a 2D array of truncated cones or pyramids to remove heat locally for thermal
control in nanoelectronics, for example. Local cooling based on near-field radiation
has also been demonstrated with a SiO2 coated tungsten tip [80].

10.4.4 Effect of Surface Phonon Polaritons (SPhPs)

We will use an example to discuss the effect of SPhPs on near-field radiative heat
flux between polar dielectric materials.

Example10.4 Calculate the radiative heat transfer coefficient near room temperature
between two parallel plates separated by a vacuum gap, as illustrated in Fig. 10.12a
for various polar materials. Use polar materials SiC, MgO, and silica (amorphous
SiO2), and assume that the emitter and receiver are made of the same material.

Solution The dielectric function of SiC has been given in Example 8.8, and that of
MgO has been given in Problem 8.31. The dielectric function of amorphous SiO2 can
be found fromeither using the data fromPalik’s handbook or theLorentzmodel. They
are also available on the author’s webpage. Codes for near-field radiation between
parallel plates are also downloadable.

The radiative heat transfer coefficient hr may be calculated by setting T1 = 301K
and T2 = 300K, since the value of the net heat flux per degree temperature difference
is the same as that of hr . Another way is to modify Eq. (10.44) to the following

hr(d, T ) = 1

4π2

∞∫

0

∞∫

0

∂�

∂T
ξ12(ω, β)βdβdω (10.54)
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Both methods give essentially the same results. Figure 10.18 shows the calculated
hr for d from 1 nm to 100μm. It can be seen that the trends are similar and both silica
and MgO have slightly higher near-field radiative heat transfer coefficients than SiC.
As discussed byWang et al. [49], there is a trade-off between the height and width of
the resonance peak. Furthermore, silica has two phonon resonance modes. The heat
flux spectra of the three materials are very different due to the different frequencies
of the optical phonons. Details are left as exercises.

For SiC, the enhanced near-field radiation is attributed to the excitation of coupled-
SPhP in the mid-infrared near λ = 10.5 [24, 48, 70]. The peak is very sharp due
to the small imaginary part of the dielectric function ε′′ at the resonance frequency
of phonon polaritons. The enhancement of nanoscale radiation may be understood
from the large values of ξ12 around the resonance frequency where ε′′/|1 + ε|2 is
large in both media. The contour plot of ξ12β/2π for SiC at d = 10 nm is displayed
in Fig. 10.19. A very narrow peak can be seen with much larger values of β/k0 and
ξ12β/2π , as compared with Fig. 10.16. The FWHM bandwidth is only about 0.1
μm, and 80% of the heat flux is within the region 10.4μm < λ < 10.7μm. The
dispersion relations given in Eq. (9.106) are plotted as the white dotted lines, which
capture the resonancemodes verywell. The energy streamlines and field distributions
have also been investigated [70, 81].

Figure 10.20 plots the contour of the field distribution and energy streamlines
adjacent to the vacuum gap of d = 100 nm for a TM wave λ = 10.55μm [81]. The
energy streamlines are calculated for β = 40 k0 (where the peak is located) for d =
100 nm. The region below z = 0 is a semi-infinite SiC emitter and that above z =
d is a semi-infinite SiC receiver (whose temperature is set to zero). It can be seen
that the field varies periodically along the interfaces and the contrast (magnitude) is
greatly enhanced near the interfaces due to SPhPs. The energy streamlines are curved

Fig. 10.18 Radiative heat
transfer coefficient as a
function of the separation
distance for several materials
at 300 K
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Fig. 10.19 Contour plot of the function ξ12(ω, β)β over 2π for the case when both the emitter and
the receiver are made of SiC with d = 10 nm. The dashed lines are the SPhP dispersion curves

Fig. 10.20 Contour plot of the field distribution
∣
∣Hy

∣
∣ and energy streamlines for d = 100 nm and

λ = 10.55μmwhen both the emitter and receiver are made of SiC [81]. The region z < 0 represents
the emitter and z > d represents the receiver

due to the coupled forward and backward evanescent waves, except in the receiver
where only decaying evanescent waves exist. Negative refraction between SiC and
vacuum and between vacuum and SiC can be seen in the energy streamlines since
the Poynting vector changes sign due to the negative ε′ value of SiC. This plot also
shows that in order for the medium to be approximated as being infinitely extended
laterally, the lateral dimension should be at least one order of magnitude greater than
the gap spacing.
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10.4.5 The Landauer-Like Formulism

It is instructive to consider the k-space integration for a given frequency in terms
of the mode, as illustrated in Fig. 10.21. Each cross or a unit area in the k-space
represents a mode or energy transfer channel [82, 83]. The integration of ξ12 over
the k-space, or rings determined by the radius β in the case of isotropic media,
yields the efficiency of energy transfer at the given frequency. Three regions are
identified as 1, 2, and 3. In region one, the radius is k0 and when β < k0, propagating
waves exist in vacuum. For region 2, k0 < β < nk0, where n > 1 is the refractive
index of the medium, propagating waves exist in the medium such as in a dielectric
medium, while photon tunneling occurs via frustrated total internal reflection. These
modes are called frustrating modes [84]. In the case when both medium 1 and 2 are
dielectric with the same refractive index n, near-field radiation can contribute up to
(n2 − 1) times the blackbody radiation. For region 3, when surface electromagnetic
waves can be excited, the outer radius is determined by d−1 so that the total area
can be enhanced by d−2 if the tunneling probability is close to 1. These modes are
called surface modes due to the excitation of coupled SPPs or SPhPs. Following the
work of Biehs et al. [83], one may first integrate over all frequencies, along with the
energy transmission coefficients, and express the radiative heat transfer coefficient
in a Landauer-like formula, as discussed in Sect. 5.6, as follows,

hr(d, T ) = π2k2
BT

3h

⎛

⎝
∑

j=s,p

∞∫

0

1

2π
τ

j
12(ω, β, d)βdβ

⎞

⎠�T (10.55)

Fig. 10.21 Illustration of
different modes in the
k-space. The three regions
are identified as propagating
waves, frustrated modes, and
surface modes
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Here, the heat source and sink temperatures are assumed to be T1 = T +�T and
T2 = T , and τ

j
12 is a mean transmission factor that is between 0 and 1, viz.

τ
p,s
12 = 3

π2

∞∫

0

f (x)ξ
p,s
12 (x, β, d)dx (10.56)

where x = �ω/kBT and f (x) = x2ex/(ex −1)2 [83]. Equations (10.55) and (10.56)
offer another view of nanoscale thermal radiation in terms of quantum conductance
as for electrons and phonons in the ballistic regime. When anisotropy exists or in
a photonic crystal structure, additional modes such as hyperbolic modes can also
enhance near-field thermal radiation as discussed in subsequent sections.

10.5 Multilayers, Anisotropic Media, and 2D Materials

In this section, near-field radiative transfer between multilayers, hyperbolic metama-
terials, and 2D anisotropic materials such as graphene and hexagonal boron nitride
are studied. This section will end with a discussion of the dyadic Green’s function
for multilayer systems.

10.5.1 Multilayers and Hyperbolic Modes

If the emitter and/or receiver are made of a multilayer at a uniform temperature
and each layer is isotropic, the net near-field heat flux can still be calculated with
Eqs. (10.44), (10.45), and (10.49). However, the reflection coefficients r p,s

01 and r p,s
02

must be replaced by the reflection coefficients from vacuum to each multilayered
structure, as done in Chap. 9 using the transfer matrix method based on Eq. (9.40),
r = B1/A1 = M21/M11 for either polarization. If the penetration depth in a medium
ismuch smaller than the layer thickness, that layer should be treated as a semi-infinite
layer (N th layer in Fig. 9.12). The sign of the wavevector kN z should be such that
it decays towards +∞ or −∞ . For a multilayer that is semitransparent, the semi-
infinite medium is vacuum. In such a case, the default is to treat the N th layer as
a blackbody at the same temperature as the adjacent medium. This method is also
applicable tomagneticmaterials for whichμl = μl(ω) in any arbitrary layer l as long
as each layer is homogeneous and isotropic. For magnetic materials or materials that
can be modeled as an effective homogeneous magnetic medium, surface polaritons
can also be excited forTEwaves [85–87]. It should be noted that formultilayerswith a
temperature gradient in the z-direction or if one wishes to calculate the heat transfer
from a particular layer to another, the multilayer Green’s functions are necessary and
will be discussed in Sect. 10.5.4.
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For uniaxial media whose optic axes are aligned parallel to the z-axis, the Fresnel
coefficients are the same as with an isotropic medium for s-polarization using the
ordinary dielectric function. For p-polarization, Eqs. (9.125) and (9.126) can be used
to calculate the reflection and transmission coefficients. Suppose the two adjacent
media are identified as i and j, then we have

kiz =
√

k2
0εi,O − k2

xεi,O/εi,E (10.57a)

k jz =
√

k2
0ε j,O − k2

xε j,O/ε j,E (10.57b)

where subscripts O and E signify ordinary and extraordinary components. For a plane
wave incident from medium i to medium j,

r p
i j =

kiz

εi,O
− k jz

ε j,O

kiz

εi,O
+ k jz

ε j,O

=
ε j,O

k jz
− εi,O

kiz

ε j,O

k jz
+ εi,O

kiz

(10.58a)

t p
i j =

2 kiz

εi,O

kiz

εi,O
+ k jz

ε j,O

=
2 ε j,O

k jz

ε j,O

k jz
+ εi,O

kiz

(10.58b)

These equations can be combined to thematrix formulation to calculate the refrac-
tion coefficients with multiple uniaxial laminae whose optic axes are parallel to the
z-axis. Formulations for more complicated arrangements such as tilting or rotation
will be given in Sect. 10.5.3. While simple, these formulas are especially useful
for calculating near-field radiative transfer between two uniaxial media or films. As
discussed in Sect. 9.5.6, hyperbolic metamaterials may be realized with artificial
multilayers or arrays of aligned nanowires/nanotubes based on the effective medium
theory. Furthermore, some naturally existing materials can also exhibit hyperbolic-
ity. Two examples are given next: one is aligned CNT arrays and the other is doped-Si
nanostructures, such as nanowires, nanoholes, and multilayers.

Example 10.5 Calculate the radiative heat transfer betweenvertically aligned carbon
nanotube arrays with an alignment factor x = 0.98 and filling ratio φ = 0.05. Assume
that the CNTs are sufficiently long so that the CNT arraysmay be considered as semi-
infinite. Compare the result to those for graphite–graphite and SiC–SiC at different
distances. In all cases, the emitter and receiver can be set at T1 = 300K and T2 = 0K,
respectively. Also plot the spectral heat flux for CNTs and graphite at d = 10 nm.

Solution The dielectric function of aligned CNT arrays can be modeled using
Eqs. (9.136) and (9.137) and references cited there. Graphite is also anisotropic
and its dielectric functions were also described in Sect. 9.5.7. The net radiative heat
fluxes for the three materials are shown in Fig. 10.22 normalized to σ T 4

1 for com-
parison. It can be seen that CNT arrays can significantly enhance the near-field heat
transfer, to about ten times that of SiC for 10 nm < d < 100 nm. This is mainly
due to the hyperbolic band at low frequencies as can be seen from Fig. 10.22b by
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Fig. 10.22 Near-field radiative heat transfer for aligned CNT, graphite and SiC [88]: a distance
dependence; b spectral heat flux at d = 10 nm

Fig. 10.23 Configuration of two near-field radiative heat transfer between two semi-infinite
nanostructured metamaterials, separated by a vacuum gap at a distance d: a Doped-S nanowires
(D-SiNWs), b doped-Si nanoholes (D-SiNHs), and c D-Si/Ge multilayers

the peak in the shaded region (hyperbolic band of CNTs). In the heat flux spectra, the
spectrum for graphite is magnified by 10 and that for blackbody (BB) is magnified
by 104 to make the comparison clear. The near-field radiation with graphite is also
significantly enhanced though not as much as that for SiC, even though graphite can
support both coupled-SPP and hyperbolic types of resonances [88]. In the far-field,
CNT resembles a blackbody with high absorptance as discussed in Chap. 9. On the
other hand, graphite resembles metals with a high reflectance, resulting in much
lower radiative heat flux in the far field.

Example 10.6 Consider the three different configurations shown in Fig. 10.23 for
D-SiNWs, D-SiNHs, and D-Si/Ge multilayers, for which Ge may be treated as a
dielectric with εd = 16. (a) Calculate and plot hr at room temperature as a function
of d, assuming the Si volume fractionφ = 0.05 for nanowires,φ = 0.3 for nanoholes,
and φ = 0.4 for multilayers. (b) Calculate and plot hr as a function of the volume
fraction of Si for d = 10 nm.
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Fig. 10.24 Radiative heat transfer coefficient for doped Si nanostructures [89]: a distance
dependence; b dependence on the filling ratio. For D-SiNHs, the volume fraction is also for Si

Solution The dielectric function of these structures can be modeled as a uniaxial
medium with effective medium theory described in the previous chapter, assuming
that the structural features are sufficiently small. In general, they should be smaller
than the characteristic wavelength and 1/β, where β is the parallel wavevector com-
ponent. Equations (9.135a) and (9.135b) should be used for nanowires and nanoholes,
while Eqs. (9.127) and (9.128) should be used for multilayers. The results are plotted
in Fig. 10.24 normalized to that of bulk doped Si with ND = 1020 cm−1 [50, 89].
The volume fraction of Si in the case of nanoholes has a low limit when the wall
thickness is zero. The lower limits of φ for nanowires and multilayers are arbitrarily
set.

It should be noted that when d is from 10 to 100 μm, the heat transfer coefficient
for the nanowires is very close to that between two blackbodies. At 10–100 nm
gap distances, bulk doped Si can greatly enhance near-field radiation as shown in
Fig. 10.15 due to the excitation of coupled SPPs. Nanowires and nanoholes can
further enhance nanoscale thermal radiation by an order of magnitude compared
with the bulk. The reason is discussed next.

Discussion. The hyperbolic modes enable photon tunneling with a large trans-
mission probability in a broad frequency region, as shown in Fig. 10.25a for D-
SiNWs. On the other hand, both the hyperbolic modes and low-frequency SPP
mode can enhance the photon tunneling probability for D-SiNHs as can be seen
from Fig. 10.25b. Compared with Fig. 10.16 for bulk Si (note that the contour plots
are rotated by 90°), the region where ξ

p
12 is relatively large becomes much broader.

Detailed discussionwith further parametric study and contour plots for themultilayer
structures can be found from Liu et al. [89].

Bright et al. [71] examined the lateral shift and energy streamlines for hyperbolic
materials made of multilayers. Green’s functions for anisotropic media must be used
to calculate the Poynting vector components. It was shown that the lateral shifts of
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Fig. 10.25 Energy transmission coefficient contours for p-polarization at d = 10 nm [89]. The
hyperbolic band is indicated by the vertical arrows. a D-SiNWs; b D-SiNHs, where the black
dashed line denotes the lower branch of SPP dispersion. The filling ratios are the same as for
Fig. 10.24a

energy streamlines can be 3–4 orders of magnitude that of the gap distances. Care
must also be taken in the applicability of EMT when β becomes large [90–92].
The general consensus is d > 1/β. Suppose we are dealing with a wavelength of
λ = 19μm (ω ≈ 1014 rad/s), for β = 300 k0, the gap spacing should be greater
than 10 nm.

10.5.2 Graphene and Hexagonal Boron Nitride

Graphene can also be incorporated as either a thin film or a conducting sheet using
Eqs. (9.119a) and (9.119b). Furthermore, hBN is a natural hyperbolic material as
described in Fig. 9.59. The dielectric functions of hBN can be calculated with
Eqs. (9.141a) and (9.141b). The near-field heat transfer for other 2D materials such
as MoS2 and black phosphorous (BP) has also been studied [93–96]. This section
focuses on graphene sheets, graphene over CNT arrays, hBN films, and graphene
over hBN.

Liu et al. [97] studied hybridized graphene plasmon and hyperbolicmodes by con-
sidering graphene covered D-SiNW arrays, as shown in Fig. 10.26a. The tunnel-
ing probability is shown in Fig. 10.26b for three cases: D-SiNWs, graphene, and
graphene-covered D-SiNWs. The nanowires are assumed to be sufficiently long for
thenanowire array tobe treated as semi-infinite. In the case of graphene–graphene, the
space extending to infinity is assumed to possess the same temperature as the adjacent
graphene sheet. In the calculations, the properties of graphene and doped Si are evalu-
ated at 300K at a vacuum gap spacing of 200 nm. The chemical potential of graphene
is set to be 0.3 eV and relaxation time is 10−13 s. The filling ratio of the doped-Si
nanowire array is φ = 0.02 and the dopant concentration is ND = 1020 cm−1. It can
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Fig. 10.26 a Schematic of graphene-covered D-SiNWs; b Photon tunneling probability ξ
p
12 at

ω = 5 × 1013 rad/s and d = 200 nm with two D-SiNWs, graphene sheets, and graphene-covered
D-SiNWs (hybrid) [97]

be seen from Fig. 10.26b that ξ p
12 decreases exponentially with increasing β with D-

SiNWs only. Due to coupled graphene surface plasmons, there are two peaks for the
case with two graphene sheets. When the D-SiNWs are covered with graphene, ξ p

12
in the hybrid case is close to unity when β < 15k0. The near-field radiative transfer
can therefore be greatly enhanced with graphene coverage.

Note that the heat transfer coefficient hr at d = 200 nm is 135W/m2 K for D-
SiNWs and is increased to 615W/m2 K with graphene coverage. The heat transfer
coefficient between two blackbodies is hr,BB = 4σBBT 3 ≈ 6.1W/m2 K. Due to the
excitation of graphene plasmons, even with two graphene sheets, hr = 454W/m2 K.

Covering graphene on D-SiNWs can give a heat transfer coefficient greater than the
sum of the individual cases.

The enhanced energy transmission coefficient can be clearly seen by the con-
tour plots displayed in Fig. 10.27. The dashed lines on Fig. 10.27b are calculated
dispersion curves of coupled GSPs from Eqs. (9.121a) and (9.121b). The effect of

Fig. 10.27 Energy transmission coefficient ξ
p
12(ω, β) contours for p-polarization at d = 200 nm

[97]: a D-SiNWs; b graphene; c hybrid, where the scale bar is for all three cases
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hyperbolic band at frequencies ω < 1.02 × 1014 rad/s on D-SiNWs is similar to
Fig. 10.25a, although the magnitude of β is very different due to the different d val-
ues. For suspended graphene, the coupled GSPs can give a large enhancement in ξ

p
12

near the two branches when GSPs are excited. When graphene covers the D-SiNWs
for both the emitter and receiver, ξ p

12 becomes very high at ω < 1.5× 1014 rad/s and
β < 20k0. The existence of D-SiNWs can significantly modify the GSPs, suggesting
that a hybridization occurs between the hyperbolic modes and the coupled graphene
plasmonmodes. All the photons emitted in this regime will be absorbed, which is the
blackbody behavior in the near field [83, 97]. The calculated heat transfer coefficient
for the hybrid case is close to 80% of the theoretical limit [83]. It should be noted
that graphene coverage does not always enhance the near-field radiation and para-
metric adjustment is also important to maximize the enhancement [97]. Near-field
radiation for graphene-covered bulk doped Si [98] and CNT arrays [99] has also been
investigated.

Example 10.7 Calculate the near-field radiative heat flux for graphene-covered hBN
films, shown in Fig. 10.28a, as a function of d. The thickness of hBN is h = 50μm
for both the emitter and receiver. Assume T1 = 300K and T2 is very small. For
graphene, take μ = 0.37 eV and 1/τ = 1013 rad/s.

Solution Asdiscussed inChap. 9, hBN is a natural hyperbolicmaterialwhose dielec-
tric tensor can be expressed as ¯̄ε(ω) = diag(ε⊥, ε⊥, ε‖) using Eq. (9.141). Assume
that the dielectric functions of graphene and hBN can be evaluated at 300 K and
are independent of temperature. Since hBN is a thin film, some formulation is given
below when graphene is treated as a conducting sheet [100, 101]. Since we can
assume T2 = 0K, we may write

Fig. 10.28 Near-field radiation between graphene/hBN heterostructures [100]. a Schematic of
near-field radiation between graphene-covered hBN film structures; b Illustration for the reflection
coefficient calculation. c Radiative heat flux versus gap spacing for the cases with graphene, hBN,
and the heterostructure
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(10.60)

Here, superscript j denotes the polarization status (s or p), r1 is the reflection
coefficient from vacuum to medium 1 (emitter), r2 is the reflection coefficient from
vacuum to medium 2 (receiver), and ρ1 = r1r∗

1 and ρ2 = r2r∗
2 for each polarization.

If the emitter and receiver are made of the same structure whose properties are
independent of temperature, r2 = r1. For graphene-covered hBN film as shown in
Fig. 10.28b, the reflection coefficient for either polarization can be expressed as [101]

r = r12 + t12t21r23e2ik2z h

1 − r21r23e2ik2z h
(10.61)

where k2z is for the uniaxial medium whose optic axis is parallel to the z-axis. The
above expression has the same form as Airy’s formula, Eq. (9.7). However, the
expression for k2z and the Fresnel coefficients for an anisotropic medium must be
used. It can be shown that

k2z = (
ε2,⊥k2

0 − ε2,⊥β2/ε2,‖
)1/2

for p polarization (10.62a)

or

k2z = (
ε2,⊥k2

0 − β2
)1/2

for s polarization (10.62b)

When there is a conducting surface (with negligible thickness), the Fresnel reflec-
tion and transmission coefficients between two dielectric materials (which may be
anisotropic) can be expressed in a way similar to Eq. (9.119a) and Eq. (9.119b), as
follows:

r p
αβ =

εβ,⊥
kβz

− εα,⊥
kαz

+ σs
ωε0

εβ,⊥
kβz

+ εα,⊥
kαz

+ σs
ωε0

and t p
αβ =

2 εβ⊥
kβz

εβ⊥
kβz

+ εα⊥
kαz

+ σs
ωε0

(10.63)

where α, β = 1, 2 or 3 according to Fig. 10.28b. If the medium is a vacuum or an
isotropic dielectric, we can set the dielectric functions for different polarizations to
be the same. For nonmagnetic materials, the expressions for s-polarizations are
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Fig. 10.29 Contour plot of ξ12 for three cases at d = 20 nm [100]. a Two graphene sheets; b Two
hBN films; c Two graphene/hBN heterostructures

r s
αβ = kαz − kβz − σsωμ0

kαz + kβz + σsωμ0
and t s

αβ = 2kαz

kαz + kβz + σsωμ0
(10.64)

If there is no graphene, we can set σs = 0 in Eqs. (10.63) and (10.64). By substitut-
ing Eqs. (10.62)–(10.64) into Eq. (10.61), we can calculate the reflection coefficients
which are needed for evaluating ξ12 using Eq. (10.60). Then the heat flux can be
calculated with Eq. (10.59). One can also calculate the reflection coefficient when
graphene covers both sides of the hBN film. The results are plotted in Fig. 10.28c
for the cases with graphene sheets, hBN films, and graphene-covered hBN films
(shown in Fig. 10.28b). A dramatic enhancement in near-field radiative flux can be
observed with the heterostructure. At d = 10 nm, the heat flux is 305 kW/m2 between
graphene monolayers and 212 kW/m2 between hBN films (h = 50 μm). With the
heterostructure, the heat flux is increased to 800 kW/m2, which is 50%more than the
sum of the heat fluxes of the individual graphene and hBN cases. When d exceeds
about 200 nm, the heat flux for the heterostructures is very close to that between sus-
pended graphene layers and the effect of hBN is negligibly small. The hybridization
of the graphene surface plasmon modes with the hBN phonon polariton modes are
discussed next.

Discussion.The contours of ξ12 are shown in Fig. 10.29 for the three cases. Again,
the dominant contribution comes from TMwaves, though the maximum of the scale
is set to 2. The bright bands shown in Fig. 10.29 indicate efficient photon tunneling
due to the excitation of different polaritons, corresponding to the dispersion curves
where the denominator of ξ

p
12 in Eq. (10.60) approaches zero. The GSPs result in

the two bands in Fig. 10.29a, corresponding to the symmetric (lower frequencies)
and asymmetric (higher frequencies) coupled GSPs, similar to Fig. 10.27b. For hBN
films shown in Fig. 10.29b, multiple bulk polaritons or waveguide modes exist in
each Reststrahlen band, as seen between the horizontal dashed lines. However, when
the hBN film is covered by a graphene layer, new branches can be seen in different
regions, as shown in Fig. 12.29c. Note that the angular frequency ranges are different
in different contours to show the branches clearly. The hBN Reststrahlen bands
divide the GSPs into different regions. These hybridized polaritons outside the hBN
Reststrahlen bands are called surface plasmon-phonon polaritons (SPPPs), which are
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due to the coupling between surface plasmons in graphene and phonon polaritons in
hBN [100]. Zhao et al. [101] also investigated the near-field radiation with multiple
layers of graphene-hBN heterostructures and demonstrated the effect of additional
hybridized modes.

10.5.3 Anisotropic Media

Near-field radiative heat transfer between anisotropic media may also be important.
Using either effective or naturally existing anisotropic materials may enable various
mechanisms to allow the near-field heat flux to be manipulated. Figure 10.30a illus-
trates a 1D grating structure that may be modeled as an effective uniaxial medium.
The grating orientation can be rotated with respect to the z-axis so that the angle
between the two gratings can be varied to modulate near-field radiation [89, 102–
104]. Figure 10.30b represents a general case of uniaxial medium whose optic axis
is tilted and also can be rotated. Multilayers are also possible. When the emitter and
receiver are individually at thermal equilibrium, the net radiative heat flux can be
calculated based on the scattering theory and expressed in a way similar to (10.44)
as following.

q ′′
net = 1

8π3

∞∫

0

[�(ω, T1) − �(ω, T2)]dω

2π∫

0

∞∫

0

ξ(ω, β, φ) βdβdφ (10.65)

where φ is the azimuthal angle and the energy transmission coefficient ξ(ω, β, ϕ)

can be expressed as [89, 102]

Fig. 10.30 Schematic of near-field radiation between anisotropicmedia. a 1D gratingsmade of two
materials that can be treated as an effective uniaxial medium; b Two arbitrarily oriented uniaxial
films separated by a distance d
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Note that the superscript “†” denotes a conjugate transpose (Hermitian transpose),
Tr(M) takes the trace of a matrixM, and I is a 2× 2 unit matrix. Here,R is the reflec-
tion coefficient matrix for reflection from vacuum to medium 1 or 2, respectively,
and can be expressed as

R j =
[

r ss
j r sp

j

r ps
j r pp

j

]

, j = 1, 2 (10.67)

where the first and second superscripts denote the polarization of the incident and
reflected waves, respectively. Note that for isotropic medium, the polarization for the
incident and reflected waves is the same so that only co-polarization coefficients r pp

and r ss are nonzero, while the cross-polarization terms r ps and r sp are zero. These
coefficients can be obtained by using a modified 4 × 4 transfer matrix method for
an anisotropic medium or multilayer [104, 105]. The matrix D is given by

D = (I − R1R2e
2ik0d)−1 (10.68)

where –1 signifies matrix inverse.
Biehs et al. [102] calculated heat flux between two Au gratings or SiC gratings

and demonstrated a large modulation if the gratings are rotated relative to each other.
Large modulation by rotating hBN films and graphene-covered hBN films has also
been theoretically predicted [103, 104]. The above formulation can be extended
to biaxial anisotropic materials such as black phosphorus [94–96] as long as the
reflection coefficient matrix can be obtained using anisotropic optics.

10.5.4 Green’s Functions for Multilayer Structures

Green’s functions are necessary if the temperatures are nonuniform or if the local
fields and LDOS or streamlines are desired. Consider a multilayer structure shown
in Fig. 10.31a, consisting of perfectly parallel and smooth interfaces. Each layer is
made of an isotropic, homogeneous nonmagnetic material (μ = 1) with a relative
permittivity εl , l = 1, 2, . . . N . Region 1 extends to negative infinity and Region N
extends to positive infinity. The lateral extensions in the x- and y-direction are both
assumed to be ±∞. For layers from Region 2 to Region (N − 1), the thickness is
dl = zl − zl−1, similar to Fig. 9.12. However, here, each medium can emit radia-
tion according to the fluctuation–dissipation theorem and each medium may absorb
radiation. It is assumed that the temperature in each region is uniform and at local
equilibrium. This assumption can be relaxed or can be satisfied by dividing the region
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Fig. 10.31 a Schematic of near-field radiation in a multilayered structure expressed in cylindrical
coordinates. b Schematic of response at x from a source at x′ with a propagation path (solid) and a
reflection path (dashed)

with a temperature gradient to sufficiently small slices. Region 1 orN maybe vacuum
or any material that is thick enough to be treated semi-infinite. Some middle layer(s)
can be assumed vacuum to study radiative transfer between two-layered structures or
even three-body problems [55]. In some calculations, one may set Tl = 0 for l > j
so that only z < z j portion can emit radiation. One can evaluate the absorption by
each layer when l > j from the media below z j . This can be done if the z-component
of the Poynting vector due to thermal fluctuation can be evaluated at zl−1 and zl using
Sz(zl−1)− Sz(zl). The dyadic Green’s function in different regions can be derived in
the following [106–108].

Consider two points x = r + z and x′ = r′ + z′, located in Region N, the semi-
infinite region of uniform temperature. The response at location x to a source at
location x′ (x �= x′) may come from direct propagation, as if in a homogeneous
medium everywhere, or after multiple reflections (scattering) by the multilayer. The
two paths are illustrated in Fig. 10.31b.

For the direct propagation, the Green’s function can be written the same as for a
homogeneous infinite medium. The term due to direct propagation or primary wave
is also applicable when the two points are located in the same region in any layer.
Therefore, we will use a subscript l = 1, 2, … N. Using cylindrical coordinates, we
have

GP,l (x, x′, ω) =
⎧
⎨

⎩

i
8π2

˜ dkxdky
ζl

[
ê(ζl)ê(ζl ) + ĥ(ζl )ĥ(ζl )

]
eiβ·(r−r′)eiζl (z−z′), if z > z′

i
8π2

˜ dkxdky
ζl

[
ê(−ζl)ê(−ζl ) + ĥ(−ζl )ĥ(−ζl )

]
eiβ·(r−r′)e−iζl (z−z′), if z < z′

(10.69)

where β = kx x̂ + ky ŷ and ζl = klz are used to represent kl in the cylindrical
coordinates. Note that
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ê(±ζ ) = ky

β
x̂ − kx

β
ŷ (10.70a)

is the unit vector for TE waves, which is independent of the sign of ζl , and

ĥ(±ζ ) = ∓ ζ

kβ
(kx x̂ + ky ŷ) + β

k
ẑ (10.70b)

Note that Eq. (10.69) is similar to Eq. (10.38) but with different notations. The
term due to reflection or response by the multilayer can be expressed in Region N as

GR,N (x, x′, ω) = i

8π2
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dkxdky
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N ĥ(ζl)ĥ(−ζl)e

iβ·(r−r′)eiζl (z+z′)

]

, l = N

(10.71)

where Rs
N and R p

N are the reflection coefficients of the multilayer for incidence from
Region N onto the plane at z = zN−1 = 0. When x′ is located in Region 1 (semi-
infinite), transmission coefficients can be used to replace the reflection coefficients in
Eq. (10.71) and other terms should also be replaced since upward waves exist. This is
similar to Eq. (10.39) for a three-layer system (two semi-infinite media separated by
a vacuum). Suppose x is still in Region N, while the source is from a different layer
l(l = 2, . . . N − 1), one needs to consider the upward and downward propagating
waves: the upward wave will propagate to x while the downward wave will be
reflected by the lower stratified media and travel upward to reach x [106]. The field
amplitudes at different boundaries can be obtained using the transfer matrix method
discussed in Sect. 9.2.2 and used to find the reflection and transmission coefficients.
The magnetic Green’s function can also be obtained using Maxwell’s equations.
With Green’s functions, we can relate the contribution of the excitation at x′ to the
field at location x. This is expressed as a function of the source location at z′ and
an integration over the parallel wavevector space, as discussed before. According to
Eqs. (10.29) and (10.37), to obtain the field or Poynting vector at location x caused
by the source layer, an integration over z′ within the layer is needed in addition
to integration over kx and ky . If we wish to find the Poynting vector or LDOS at a
particular location x inside any prescribed layer l due to fluctuating sources in certain
region V ′, which could extend to the whole space or within certain regions only, we
need to determine the Green’s functions for the source x′ at an arbitrary location and
then integrate over z′ before integrating over all parallel wavevectors.

In general, when x is in any layer l and x′ is in any layer n, (l, n = 1, 2, . . . N ),
we can express the electric Green’s function as

Ge(x, x′, ω) = i

4π

∑

j=p,s

∫
βdβ

ζn
F j (β, z, z′, ω)eiβ(r−r ′) (10.72)

where
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Fs(β, z, z′, ω) = As
lne

iζl (z−zl )−iζn z′
ê+

l ê
+
n + Bs

lne
−iζl (z−zl )−iζn z′

ê−
l ê

+
n

+ Cs
lne

iζl (z−zl )+iζn z′
ê+

l ê
−
n + Ds

lne
−iζl (z−zl )+iζn z′

ê−
l ê

−
n (10.73)

For p-polarization, change the superscript from “s” to “p” and replace “ê” with “ĥ”.
Here, we have used ê±

l ≡ ê(±ζl) and ĥ±
l ≡ ĥ(±ζl) for simplicity. For n = N ,

set zn = zn−1 . The coefficients A’s and B’s are the amplitudes of the forward and
backward waves at layer l due to an upward emitting source located at point x′ ;
the coefficients C’s and D’s are the amplitudes of the forward and backward waves
at layer l due to a downward emitting source located at point x′. If the emission
is from the lower half space in Region 1 (n = 1), then all C’s and D’s become
zero. If the emission is from the upper half space in Region N (n = N ), then all
A’s and B’s become zero. Suitable matrix formulations or recursive methods can
be used to find the coefficients for a given source located anywhere [109–111]. It
should be noted that Eq. (10.72) only includes the scattered field. If l = n, the electric
Green’s function should be obtained by adding the contribution of the primary wave
Eqs. (10.69)–(10.72).

Therearedifferentways toobtain thesecoefficients,whichare thewaveamplitudes
at the boundaries due to a point source excitation. Note that the coefficients A’s and
B’s (for an upward emitting source) can be evaluated separately from the coefficients
C’s and D’s (for a downward emitting source). Taking [Al, Bl], l = 1, 2, . . . N , for
example, the transfer matrix method (TMM) explained in Sect. 9.2.2 is a convenient
method that can relate the field amplitudes [Al, Bl ] to [Al+1, Bl+1]. If all the matri-
ces are multiplied, it can relate [A1, B1] to [AN , BN ]. When β is very large, such as
in the case when a surface wave is excited, k ′′

lz = Im(ζl) tends to be very large. The
propagatingmatrix in the TMMcontains both exp(iklzdl) and exp(−iklzdl) terms; the
latterwill exponentially growwith k ′′

lzd andmay approach infinity, resulting in numer-
ical instability in such situations. This problem can be circumvented using a recursive
method [109–111]. Francoeur et al. [55] gave a detailed formalism using the scatter-
ing matrix (S-matrix) method for near-field radiative transfer in stratified media. The
S-matrix relates the amplitudes of the outgoing (scattered) waves to those of the inci-
dent waves. In terms of the coefficients Al and Bl , the S-matrix relates [Al, Bl−1] to
[Al−1, Bl ]. Ultimately, it relates [AN , B1] to [A1, BN ] for the whole multilayer. The
scatteringmatrixmethod is an implicit formulation. Once the source excitation is pre-
scribed, a recursive approach can be used to determine the matrix components [55].
Anadvantageofusing the recursivemethodorS-matrixmethod is that onlyexp(iklzdl)

terms are involved in the formulation while the exp(−iklzdl) terms that might cause
numerical instability are eliminated. The calculation of near-field radiative transfer
between different layers is very important for detailed modeling of microscale ther-
mophotovoltaic devices since we need to determine where the photon is absorbed to
generate photocurrent [17, 45, 84, 109, 112–115].

The magnetic Green’s function can be defined in the following:
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H(x, ω) =
∫

V ′
Gm(x, x′, ω) · j(x′, ω)dx′ (10.74)

Comparing Eq. (10.74) with Eq. (10.29), it can be shown that Gm(x, x′, ω) = ∇x ×
Ge(x, x′, ω), whereGe(x, x′, ω) is given inEq. (10.72). Recalling thePoynting vector
defined in Eq. (10.33) and the z-component Poynting vector in Eq. (10.42), we can
write the spectral heat flux

q ′′
w(z) = k2

0

π2

∞∫

−∞
ε′′

l (ω)�(ω, Tl)Re

⎡

⎣i

∞∫

0

(
ge,xαg∗

m,yα − ge,yαg∗
m,xα

)
βdβ

⎤

⎦dz′

(10.75)

Here, l indicates the particular layer where z′ is located, and gαβ (α, β =
x, y, or z) denotes a tensor component of ¯̄g defined according to Eq. (10.38) for
the electric and magnetic Green’s functions, respectively. It should be noted that in
Eq. (10.75),

ge,xαg∗
m,yα = ge,xx g∗

m,yx + ge,xy g∗
m,yy + ge,xzg∗

m,yz (10.76a)

and

ge,yαg∗
m,xα = ge,yx g∗

m,xx + ge,yy g∗
m,xy + ge,yzg∗

m,xz (10.76b)

Zheng and Xuan [86] extended the formulation to stratified media with magnetic

materials inwhichμl are complex functions of frequency. In addition toGee andGme,
which are the electric andmagneticGreen’s functions due to electric dipoles, onemust

consider theelectricGreen’s functionGem and themagneticGreen’s functionGmm due
to magnetic dipoles. For two stratified media separated by a vacuum gap, as long as
each side is at local equilibrium, the net radiative heat flux can be evaluated based on
Eq. (10.59), which is consistent with Eq. (10.65) based on the scattering theory. The
additional terms due to magnetic dipoles only affect the Fresnel coefficients. Never-
theless, magnetic metamaterials can excite surface waves for s-polarizations that can
cause a large heat flux in certain wavelength region [85–87]. It should be noted that
the dyadic Green’s functions for anisotropic media or multilayer structures have also
been formulated though the equations are quite complicated [116–118]. In the case of
a uniaxial medium whose optic axis is parallel to the z-axis, a slight modification can
be made for the p-polarization Fresnel coefficients as discussed previously.
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10.6 Nanostructures and Numerical Methods

Volokitin andPersson [48] obtained an analytical expression for heat transfer between
a sphere and a planar half medium (plate) that reduces to the case of dipole-plate
solutions when the sphere radius is much smaller than the closest gap distance (d)
between the sphere and the plate [24, 82]. In the proximity limit, the heat conduc-
tance is proportional to d−3. Here, the conductance is defined as the heat transfer
rate per unit temperature difference between the two objects. For two particles that
can be modeled as dipoles (when the radius is much smaller than the center-to-
center distance d), the thermal conductance between two dipoles varies with d−6 as
d becomes very small [53]. Narayanaswamy and Chen [54] derived an analytical
solution for near-field radiative heat transfer between two spheres using the vector
spherical wave (VSW) expansion method, which was extended to cylindrical geo-
metrics and nanorods [119]. In principle, the method is applicable to spheres of any
size at arbitrary separation distances. In terms of two spheres, the VSW expansion
method begins by expanding the field in terms of the VSWs of each sphere. Then
the VSWs of one sphere are re-expanded in terms of the VSWs of the other in order
to satisfy the boundary conditions. Recurrence relations for VSWs can be used to
reduce the computational demands for calculation of the translation coefficients of
each spherical wave function. The convergence criteria have been developed for large
sphere and small sphere approximations in terms of the number of VSWs needed
in the series. It should be noted that when the sphere is very large and at extremely
small distances (i.e., in the proximity limit), the thermal conductance is proportional
to 1/d due to the curvature effect. It has also been pointed out that for dipole approx-
imations to be valid in the case for two spheres of the same radius a, typically, the
center-to-center distance d should be at least 3a [54, 121, 122]. This criterion is very
important for analyzing thermal radiation in dipolar chains and arrays [123] as will
be discussed later. When d > 4a, that is, the gap in between is greater than the
diameter of the sphere, the dipole approximation can be safely applied [124].

Numerical methods are very important for the calculation of near-field thermal
radiation between complex structures, including periodic structures [18, 58, 59, 91,
108, 125–134]. This section provides an overview of the commonly used numer-
ical methods, mainly including the scattering theory for periodic gratings, finite-
difference time-domain (FDTD), boundary element method (BEM) using fluctuating
surface current, and thermal-discrete dipole approximation (T-DDA). An emphasis
is placed on the periodic structures with some unique observations.

10.6.1 The Scattering Theory for Periodic Structures

The scattering theory has received significant attention in calculating radiative trans-
fer and the Casimir–Lifshitz force between objects at different temperatures (while
each object is at thermal equilibrium) [128, 135]. In principle, if the scattering matri-
ces are known for all objects with arbitrary shapes the radiative heat transfer between
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the objects can be calculated if their temperatures are known [136, 137]. A conve-
nient way to obtain the scattering matrix for a periodic grating is to use RCWA as
discussed in Sect. 9.3.3. The net radiative heat flux between the two grating structures
shown in Fig. 10.32 can be expressed as follows.

q ′′
net = 1

8π3

∞∫

0

[�(ω, T1) − �(ω, T2)]dω

π/∫

−π/

∞∫

−∞
ξ
(
ω, kx , ky

)
dkxdky (10.77)

where  is the grating period in the x-direction. It is assumed that the gratings are
extended to infinity in the y-direction. Thus, the integration over kx is carried out
in the first Brillouin zone. Although rotating gratings or gratings in both x- and y-
directions can be modeled in general, the RCWA calculation for 2D gratings and
for conical diffraction may be very time consuming with sufficient orders in order
to obtain convergence. According to the scattering theory, the energy transmission
coefficient ξ(ω, kx , ky), which includes all polarization states, can be expressed as a
trace of the matrix product [138, 139]

ξ
(
ω, kx , ky

) = Tr
(
DW1D†W2

)
(10.78)

where

D = (I − S1S2)−1 (10.79)

W1 = �
pw
−1 − S1�

pw
−1S

†
1 + S1�ew

−1 − �ew
−1S

†
1 (10.80)

W2 = �
pw
1 − S†2�

pw
1 S2 + S†2�

ew
1 − �ew

1 S2 (10.81)

Fig. 10.32 Illustration of near-field radiative transfer between two grating structures. a Two parallel
gratings with a lateral displacement; b Graphene-covered gratings
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Here, † is the Hermitian adjoint (conjugate transpose), S1 = R1, and S2 =
eik0zdR2eik0zd , where R1 or R2 is the reflection (scattering) matrix for each grating
that can be obtained from RCWA. Due to diffraction by the grating, the z-component
of wavevector k0z depends on the diffraction order. Therefore, proper mode counting
is needed to calculate S2 [138]. All the matrices are square matrices (M × M). When
the highest diffraction order used in the computation is q, M = 2(2q + 1). This
is because R can be written similar to Eq. (10.67) consisting of co-polarization and
cross-polarization components, except that each corner is a (2q+1)×(2q+1)matrix
that is to be determined using RCWAbased on the diffraction order. The symbol� in
Eqs. (10.80) and (10.81) denotes a matrix operator (rather than summation). Super-
scripts “pw” and “ew” identify propagating and evanescent modes, while subscript
“1” and “–1” indicates forward and backward, respectively. The operator definition
can be found in Ref. [139]. Sufficient orders must be used in the RCWA calculations
to ensure numerical convergence and accuracy. Guérout et al. [138] demonstrated
an enhanced near-field heat transfer between nanocorrugated Au surfaces compared
with two flat surfaces when the separation is at the minimum distances between the
two gratings. On the other hand, the proximity approximation (PA) considers the heat
fluxes between flat surfaces separated by different gap distances and hence always
predicts a reduction rather than enhancement. For silica gratings, the PA model was
found to be reasonable for aligned gratings but failed to explain the effect of lateral
displacement [139].

Liu et al. [140] modeled doped-Si gratings using the scattering theory and com-
pared with the EMT approach and PA model. For the EMT model, the grating is
assumed to be an effective uniaxialmediumwhose optic axis is parallel to the grooves.
In the proximity approximation, as shown in Fig. 10.32a, the heat flux between two
parallel gratings with a lateral displacement may be expressed as

q ′′
PA =

{
φ−δ


q ′′

d + 2δ


q ′′
d+H + −φ−δ


q ′′

d+2H , δ ≤ φ

2φq ′′
d+H + (1 − 2φ)q ′′

d+2H , φ < δ ≤ 0.5
(10.82)

for gratings with a volume fraction φ ≤ 0.5.

q ′′
PA =

{
φ−δ


q ′′

d + 2δ


q ′′
d+H + −φ−δ


q ′′

d+2H , δ ≤ (1 − φ)

(2φ − 1)q ′′
d + 2(1 − φ)q ′′

d+H , (1 − φ) < δ ≤ 0.5
(10.83)

when φ > 0.5 [140]. In Eqs. (10.82) and (10.83), q ′′
d , q ′′

d+H , and q ′′
d+2H are the

radiative heat flux for plane–plane configurations at gap distance of d, d + H, and d
+ 2H, respectively. Due to symmetry, the range of lateral displacement that needs to
be considered is from 0 to /2 only.

The near-field radiative heat flux between gratings based on the scattering theory
is compared with the predictions from EMT and PA, as shown in Fig. 10.33, and
compared with that of bulk silicon. The Si considered here is n-type with a doping
concentration of 1020 cm−3 and in the modeling, T1 = 310K and T2 = 290K.

The predicted heat fluxes by EMT and PA are independent of the period for aligned
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gratings as shown in Fig. 10.33a, where d = 400 nm, φ = 0.2, and H = 1 μm.
When the period is sufficiently large, the PA prediction agrees with the scattering
theory (marked as exact) well. As the period decreases, the heat flux predicted by the
scattering theory approaches andfinally coincideswith that byEMT.With decreasing
the period and width of the gratings, it becomes difficult for waves to sense the small
features and, therefore, homogenizing the grating as an effective medium becomes
more reasonable. Corrugating bulk doped silicon helps to enhance the radiative heat
flux for small periods.

With respect to the gapdistance, as shown inFig. 10.33busing the sameparameters
as in Fig. 10.33a, except now the period  is fixed to 0.2 μmwhile d is the variable.
The agreement between the scattering theory and EMT is very good when d >
0.6 μm. However, EMT has limitations at small gap distances because significant
photon tunneling contributions arise from modes having large parallel wavevector
(β) values [92]. Interestingly, with decreasing d, the exact solution approaches the PA
prediction. Hence, the near-field radiative heat transfer tends to be localized at small
gap spacing since the fieldwill be highly confined due to the dominant contribution of
high-k modes. For the chosenvalues ofφ,H, and, doped-Si gratings canoutperform
their bulk counterparts in terms of heat transfer enhancement for d > 15 nm. Another
interesting observation is that the near-field heat flux for the gratings follows a power
law close to d−1 for submicron gap spacing rather than the well-known d−2 as is the
case for both bulk and homogenized media. Liu et al. [140] also showed that the
lateral displacement has little effect on the heat transfer for small periods when EMT
applies; however, δ can affect the heat flux in the regime when PA is applicable such
as with a large /d. The applicable regimes also apply to Casimir force calculations
[140].

Fig. 10.33 Comparison of radiative heat flux calculated from the scattering theory (exact) with
EMT, PA, and bulk for T1 = 310 K and T2 = 290 K [140]: a varying period; b varying gap
distance. The other parameters are set as δ = 0, φ = 0.2, and H = 1 μm
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Yang andWang [141] calculated the near-field radiation for alignedmetal gratings
using scattering theory with RCWA. Their calculations demonstrated a strong reso-
nance effect due to the excitation of magnetic polaritons (MPs) within the two metal
strips at the closest distance (d ≤ 100 nm), rather than due to the cavity resonance
(guided modes) in the grooves as discussed in Ref. [138]. The resonance frequency
and dispersion can be well accounted for by the MP modes as explained in this work
[141].

Liu and Zhang [142] studied near-field radiative heat transfer between graphene-
covered silica gratings as shown in Fig. 10.32b. The results are plotted in Fig. 10.34a
for varying graphene chemical potentials at a gap distance of 100 nm, in comparison
with those for bulk silica and graphene-covered bulk silica. Due to the coupling and
hybridization of graphene plasmonswith surface phonon polaritons, amaximumheat
flux (about four times that for bulk silica) can be achieved with graphene-covered
gratings at μ = 0.28 eV. The coupling between graphene and bulk silica results in
some enhancement but not as strong as in graphene-covered silica gratings. It should
be noted that the heat flux between plain silica gratings is generally lower than that
between bulk silica as indicated in Fig. 10.34b. With the parameters chosen and for
d = 100 nm, PA is a good approximation for plain grating. Therefore, the radiative
heat transport or photon tunneling between plain silica gratings tends to be a local
phenomenon due to the short lateral propagating length of surface phonon modes
[139]. Nevertheless, placing a graphene sheet on top of the grating will make the heat
transfer much more effective. The heat flux for graphene-covered corrugated silica
is much greater than that without graphene. Besides, the heat flux does not increase
linearly with φ according to PA since PA cannot capture the hybridized plasmonic
effects and this underestimates the heat flux for filling ratios less than 1. Detailed

Fig. 10.34 Comparison of near-field radiative heat flux for graphene-covered silica grating with
other structures at T1 = 310 K and T2 = 290 K with a gap distance d = 100 nm, period  =
500 nm, and height H = 500 nm [142]: a Effect of chemical potential with φ = 0.4; b Effect of
filling ratio with μ = 0.3 eV for covered and uncovered silica gratings
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discussions and the contour plots of the transmission coefficient can be found from
Ref. [142].

The near-field radiative transfer between two aligned graphene ribbon arrays sep-
arated by a vacuum gap of d, as shown in Fig. 10.35a has also been investigated
[60]. As discussed in Example 10.7 and shown in Fig. 10.28c, near-field radiative
heat transfer between two single-layer graphene sheets can be greatly enhanced
due to coupled graphene plasmons. By patterning graphene into ribbon arrays (lat-
erally extended to infinity), hyperbolic modes can be supported. Using scattering
theory with RCWA or the EMT, the near-field radiative heat transfer is calculated
for the emitter T1 = 310K and receiver T2 = 290K, as shown in Fig. 10.35b. The
results are divided between two graphene sheets for the same total area. Note that
the graphene area in the ribbon array is only one-fifth that of a graphene sheet with
φ = W/ = 0.2. As expected, EMT failed to predict the heat flux when d < 50 nm
or so. When d = 20 nm, according to the (exact) scattering theory, the heat transfer
enhancement is near 14 times with only 20% of the material.

The energy transmission coefficient ξ is plotted in the k-space for graphene sheets
and for graphene arrays at a fixed frequencyω = 5×1013 rad/s, shown in Fig. 10.36.
Coupled graphene surface plasmon (GSP) results in two bright annuluses that can
be predicted by the coupled GSPs. The white dashed circle with a radius β = 4.6k0
indicates the isofrequency curve of GSPs for a single sheet of graphene in vacuum,
which is split into two regions due to the coupling of the two graphene sheets as
discussed previously. The regimes with large ξ for graphene ribbon arrays become
hyperbolic, where the white dashed lines are the calculated hyperbolic dispersion
based on the graphene conductivity and EMT, which is a good approximation even
at d = 50 nm. By patterning graphene into ribbons, the closed circular isofrequency
dispersion is opened to become hyperbolic, leading to broadband singularities in the
DOS. The hyperbolic graphene plasmons can couple strongly with extremely high-k

Fig. 10.35 Near-field radiative transfer between graphene ribbons [60]: a schematic of two
graphene ribbon arrays separated by a distance d. b Ratio of the heat transfer rate for two rib-
bon arrays to that for two graphene sheets near room temperature calculated from the scattering
theory (exact) and EMT using parameters given in the figure
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Fig. 10.36 Contour plots of the energy transmission coefficient contours at d = 50 nm and ω =
5 × 1013 rad/s [60]: a graphene sheets in which the dashed circle is for a single-layer graphene
plasmon; b graphene ribbon arrays showing hyperbolic dispersions with dashed curves

modes, enabling very efficient radiative energy transport, especially at d < 100 nm
[60].

Liu et al. [143] also investigated nanopatterned black phosphorene arrays in dif-
ferent directions and demonstrated quasi-elliptic coupled SPPs and quasi-hyperbolic
coupled SPPs. The scattering theory has also been used to model the performance
of a near-field thermophotovoltaic device using tungsten nanogratings [144] and a
thermoradiative power generator with a heat sink made of ZrC nanogratings [145].

10.6.2 Finite-Difference Time-Domain (FDTD) Method

Afinite difference refers to a numerical differentiation that canbeused to approximate
a derivative. Thus, the finite difference method is a numerical method for solving
differential equations by converting them into a set of linear algebraic equations,
using a spatial mesh (or grid) scheme. The values at all grid points are solved at
an initial time and advanced over small time steps in a leapfrog manner. Since the
electromagnetic wave equations involve coupled electric and magnetic vectors that
change rapidly with time, it was not so easy to discretize them until 1966 when
Kane S. Yee developed a numerical algorithm with the cubic unit cell, known as
the Yee space lattice [146]. The Yee space lattices elegantly fill the space in the
Cartesian coordinates with an array of contours that satisfy the Ampere’s law and
Faraday’s law. The field components can then be discretized and iteratively solved,
whilemarching in time progressively. Further improvementsweremade sincemiddle
1970s bymany researchers in terms of numerical stability and convergence, treatment
of boundary conditions and curved boundaries, convolution method for dispersive
materials, near-field to far-field transformation, and various applied sources such as
a plane wave, a Gaussian beam, a short pulse, and a dipole emitter [146]. With the
advances in computing capabilities and algorithm developments, FDTD has become



10.6 Nanostructures and Numerical Methods 685

a powerful numerical method for modeling electromagnetic wave propagation and
scattering in broad frequency regions for both very large and very small geometric
structures. Many commercial, open source, and homemade FDTD solution packages
are available [147].

For a nonmagnetic, isotropic, and homogeneous medium, the 3D Maxwell curl
equations can be written in terms of the field components as follows,
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)
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where Jo is an internal current source that may be applied to the cell and J = σE
is the induced current. For a dispersive medium, a Fourier transform needs to be
performed to obtain the convolution of the dielectric function. In the time domain,

D(t) = ε0ε∞E(t) + ε0

t∫

0

E(t − τ)χ(τ)dτ (10.86)

where ε∞ is the high-frequency dielectric constant such as in the Drude–Lorentz
model, and χ(t) is the time-dependent electric susceptibility, which can be obtained
by an inverse Fourier transformofχ(ω) = ε(ω)−ε∞ [146].Alternatively, the Fourier
transform is performed using recursive accumulators such as the piecewise linear
recursive convolution [148]. Equations (10.84) to (10.86) can be discretized follow-
ing the Yee algorithm or some alternative ones and solved iteratively for prescribed
geometrics, materials, boundary conditions, and illumination sources. The frequency
response and spectral information can be analyzed during the post-processing using
a fast Fourier transform (FFT) [147].

Fu and Hsu [149] used FDTD to study the far-field scattering or bidirectional
reflectance distribution function (BRDF) from 1D random rough dielectric andmetal
surfaces. Xuan et al. [150] developed a FDTD code and investigated the BRDF of 2D
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rough surfaces in the visible and near infrared. In Chap. 9, examples were given on
using FDTD to obtain the far-field radiative properties of nanostructures and periodic
structures, also see [59, 151].Most other studies use commercially available software
packages.

For near-field radiative heat transfer calculations, the internal source needs to be
treated based on the randomly fluctuating current described previously. Lu et al.
[125] used the Langevin approach where the fluctuating current term is implemented
through the equation of motion to directly calculate thermal emission from photonic
crystals. The time-dependent current source can be obtained by a Fourier transform
of Eq. (10.34). An alternative fluctuating current source can be developed based on
thewhite noise spectrumwhere the correlation is instantaneous [58]. Thismethod has
been extended to calculate near-field radiative heat transfer between nanostructures
[127, 152]. The source current can also be generated using the FFT [153] and this
method has been employed to calculate near-field radiative transfer using FDTD
[131]. One can treat the fluctuation term as electric dipoles, along each of the three
axes, that are distributed in the source region. The corresponding electric or magnetic
dyadic Green’s function is the ratio of the Fourier transform of the time-dependent
electric field or magnetic field to the transform of the current induced by the dipole
[132].A large number of dipoles need to be generated to guarantee sufficient accuracy
in the solution. Didari and Mengüç [132, 154] used the Ricker wavelet, which is the
second derivative of the Gaussian pulse, as the source term to eliminate the DC term
since the time-average of the electric field for a typical pulse is nonzero.

Liu and Shen [91] used FDTD with the Wiener chaos expansion, which is based
on Hermite polynomial chaos expansion and can separate the deterministic effects
from the randomness. Wen [126] used a finite-difference frequency-domain method
to calculate near-field radiation resulting from all of the different eigenmodes of
randomly fluctuating thermal currents. Liu and Shen [91] used FDTD to obtain
solutions of the Wiener chaos expansion for near-field radiative transfer between
split-ring metamaterial and metal-wire arrays. The Wiener chao expansion method
combined with FDTD appears to be an efficient technique for spatially incoherent
sourses than the brute-force FDTD [155].

As an example, Liu and Zhang [61] used the scattering theory with RCWA and
FDTD for calculating near-field radiative heat transfer between metasurfaces made
of n-type doped-Si (1020 cm−3) 1D strip arrays and 2D periodic patches, as shown
in Fig. 10.37. The numerical results for d = 100 nm and  = 100 nm are compared
to EMT as well as that for homogeneous films (φ = 1 with the same thickness).
The brute-force FDTD was used to calculate the near-field radiation for the 2D
metasurfaces by implanting the Ricker wavelet sources using a commercial software
package [61]. As shown in Fig. 10.38a, patterning thin films into metasurfaces could
increase the radiative heat flux due to the hyperbolic dispersion and coupled SPPs,
especially for the 1D structure when the filling ratio is small φ < 0.2. The 2D pattern
gives slight heat transfer enhancement for f < 0.36, but results in some deterioration
for 0.36 < f < 1. While calculations from EMT can capture the general trend, it
significantly overpredicts the heat flux. As shown in Fig. 10.38b, the radiative heat
flux of 2D metasurface increases monotonically with the thickness, while the heat
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Fig. 10.37 Illustration of near-field radiative transfer between metasurfaces [61]: a 1D thin strips;
b periodic 2D patches. The filling ratio can be calculated by φ = W/ for 1D patterning and
φ = W 2/2 for 2D patterning

Fig. 10.38 Calculated heat fluxes for T1 = 310K and T2 = 290K with = 100 nm and d =
100 nm [61]: a varying the filling ratio while fixing h = 400 nm; b varying the thickness h with
φ = 0.16 for both the 1D and 2D metamaterials. The exact calculation for 1D patterning is based
on the scattering theory

flux of 1D metasurface is not so sensitive to the thickness. Interestingly, the radiative
heat flux for thin films monotonically increases with decreasing thickness until the
thickness is about 3 nm due to the coupling of SPPs in thin film structures. For Si
at this doping level, reducing the film thickness to below 50 nm and even to a few
nanometers is another way for to enhance radiative energy transfer. Note that due to
the large parallel component of the wavevector β, the penetration depth for nanoscale
heat transfer becomes extremely small [156].
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10.6.3 Boundary Element Method (BEM)

The brute-force FDTD can take a long time for modeling individual nanostructures.
For the Wiener chaos expansion, it is challenging to find the proper current modes
of the thermal source. Based on the scattering theory, if the field correlator for the
isolated object is obtained, then the radiative energy exchange can be calculated [58,
128]. Analytical solutions exist only for limited geometric shapes such as plates,
spheres, or even cylinders [128, 129]. McCauley et al. [157] used the boundary ele-
ment method (BEM) or method of moments to discretize the scattering matrix in
the cylindrical wave multipole basis. They have calculated cylinder-plate and tip-
plate near-field heat transfer in addition to sphere-plate configurations. Rodriguez
et al. [130] developed a fluctuating-surface-current (FSC) formulation for arbitrary
geometries using the surface-integral-equation (SIE) formulation within the frame-
work of BEM. In general, the BEM involves a much smaller number of unknowns
since the scattering fields are expressed using the fictitious surface current that can
be determined by the boundary conditions. The volume integral can be replaced by
a surface integral of the fictitious surface currents, which can be discretized using
a set of basis functions [158]. These surface currents are arbitrary vector fields that
do not need to satisfy any wave equations. The ensemble-averaged spectral heat flux
can be written in terms of a trace of the Green’s functions.

q ′′
ω(ω, T1, T2) = 1

2π
[�(ω, T1) − �(ω, T2)]Tr

⎡

⎣G1 + G
†

1

2
W

†

21
G2 + G

†

2

2
W21

⎤

⎦

(10.87)

where the dyadicW21 relates the field incident on object 2 to the equivalent currents
at the surface of object 1 and can be calculated using an inverse of the SIE matrix.
Rodriguez et al. [130] used this method to calculate radiative transfer between var-
ious nanostructured objects, such as finite cylinders, sphere-ring, disks, interlocked
rings, cones, and cone-plate configurations. Recently, Nguyen et al. [159] calculated
the near-field radiative transfer between a heated AFM tip and a substrate. The shape
of the tip was modeled with different geometries such as semi-spheres, sharp cones,
and rounded cones. Since the plate was modeled as a large cylinder, the influence
of the cylinder size on the numerical results was also examined [159]. Note that
the same formulation has been modified and applied for calculation of momentum
exchange or Casimir forces [160]. A complete derivation in terms of surface integrals
of the tangential components of the Green’s functions can be found from Ref. [65].
For inhomogeneous medium, Polimeridis et al. [161] extended the FSC formulation
and developed a fluctuating-volume-current (FVC) formulation that incorporates a
volume-integral-equation (VIE) matrix. Since both the FSC and FVC use a source
term, the scattering matrix does not require the separation of the incoming and out-
going waves like in the scattering theory discussed in Sec. 10.6.1. In the end, the
radiative transfer (power) and momentum transfer (Casimir force) are expressed in
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simple trace formulas involving SIE or VIE and the current correlation matrices.
While there are more unknowns using the FVC than the FSC formulation, the FVC
method can handle more complex property-structure combinations as those with
inhomogeneous permittivities [161].

10.6.4 Multiple Dipole Approaches

Earlier study of heat transfer in multiple dipole systems was motivated by plas-
monic nanoparticle arrays and waveguides [162, 163]. Ben-Abdallah and coworkers
[122, 164] developed a kinetic theory (KT) approach for a metallic dipole chain (see
Fig. 10.39a), based on the dispersion relation of the collective plasmonic modes.
Within the framework of the KT approach, the diffusive regime refers to the situa-
tion when the propagation length of the polaritonic wave is much shorter than the
chain length. Similar to the BTE equation for phonons, the group velocity and mean
free path are important parameters entering into the formulation and can be deter-
mined from the dispersion relations using P(ω) = ∣∣τPvg,P

∣∣ and vg,P = (dω/dk)P ,
respectively, where P denotes a particular polarization. The relaxation time or mean
free path can be obtained from either the complex wavevector or the complex fre-
quency [165–167].When the propagation length ismuch longer than the chain length,
plasmon or phonon polaritons can propagate ballistically through the nanoparticle
arrays. For 2D and 3D nanoparticle arrays, the dispersion relation may be numeri-
cally computed [168]. Recently, Tervo et al. [169] theoretically calculated a photonic
thermal conductivity up to 1 W/m K in semiconductor nanowires by infrared plas-
monic resonators. For nanoparticle powders with SiC and SiO2, it is still an open
question whether phonon polariton effects through nanoscale radiation could play a
significant role in the thermal conductivity of the powders.

Baffou et al. [170] extended the discrete-dipole approximation (DDA) with the
Green’s function and calculated the near-field heating effect in thermoplasmon-
ics without considering the spectral nature of thermal emission. Since 2011, Ben-
Abdallah et al. [171, 172] and Messina et al. [173] developed a multiple-dipole

Fig. 10.39 Schematic of multiple dipole systems: a A chain of nanoparticles; b N nanoparticles
(dipoles) embedded in a dielectric matrix with a relative permittivity εh
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radiative transfer formalism that incorporates fluctuational electrodynamics tomodel
the emission and absorption by individual particles; each is assumed to be an elec-
tric dipole, immersed in a host medium which could also emit thermal radiation.
Edalatpour and Francoeur [56] formulated a thermal discrete-dipole approximation
(T-DDA) for calculation of radiative transfer between arbitrary 3D objects.

The multiple dipole approaches are summarized below, largely following the
derivations given in Tervo et al. [123] with modifications to be consistent with the
previous given formulation in the preceding sections of this chapter. Consider amany-
dipole system embedded in a host dielectric with a relative permittivity εh, shown in
Fig. 10.39b. For the dipole approximation to be valid, particles should be sufficiently
smaller than the thermal wavelength [16]. Since the thermal wavelength is in the
infrared, this is usually valid for particles with diameters below 300 nm. In addition,
as mentioned previously, the minimum separation distance between particles needs
to be greater than a diameter or at least a radius [54, 121–123].

For an electric dipole located at x j with a dipole moment p j , the induced electric
field at a location xi can be expressed as follows.

Ei j (xi , ω) = k2
0

ε0
G0

ij(xi , x j , ω) · p j (ω) (10.88)

where k0 = ω/c0 is the wavevector in vacuum, and the Green’s function can be
expressed as

G0
ij(xi , x j , ω) =

[
I + 1

k2
∇ ⊗ ∇

]
eik R

4π R
(10.89)

or

G0
ij(xi , x j , ω) = eik R

4π R

[(
1 + ik R − 1

k2R2

)
I + 3 − 3ik R − k2R2

k2R2

R ⊗ R
R2

]
(10.90)

Here, k = k0
√

εh, R = xi − x j and R = ∣∣xi − x j

∣∣. Note that R and R depend
on both locations which are omitted to make the expression more concise. From the
Green’s function, we can see that the term R−1 dominates the far field. However,
as the distance decreases, the near-field terms that vary with R−2 and R−3 become
more and more important. The magnetic field can be written as

Hi j (xi , ω) = −iω∇ × G0
ij(xi , x j , ω) · p j (ω) (10.91)

where

∇ × G0
ij(xi , x j , ω) = eik R

4π R

(
i − 1

k R

)
kR × I

R
(10.92)
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In general, xi can be any arbitrary location with or without a dipole as long as
R �= 0. To study dipole–dipole interactions, we can take xi as a dipole location and
the total field at xi can be expressed in the following [173],

Ei (xi , ω) = E(inc)(xi , ω) +
∑

j (�=i)

Ei j (xi , ω) (10.93)

Here, the first term on the right-hand side denotes the incident field without scat-
tering, which is often assumed to be zero to neglect the radiation from the host
medium; the summation takes into consideration dipolar scattering of all particles
and the field emitted by all other dipoles. In the following, we set E(inc) = 0 for
simplicity. According to Eq. (10.88), Ei j is related to the dipole moment p j by the
dyadic Green’s function. The dipole moment includes two parts:

p j = p(fl)
j + p(ind)

j (10.94)

where the first term arises from the thermal fluctuation and the second term is due to
scattering by all dipoles, viz.

p(ind)
j = ε0α jE j = ε0α j

∑

n(�= j)

E jn (10.95)

Here, α j is the dressed polarizability that has taken into account the radiative
correction [173], which can be expressed as

α j = αCM
j

1 − iαCM
j k3/(6πεh)

(10.96)

where the Clausius–Mossotti polarizability [16] for a spherical particle is

αCM
j = 3εhVj

ε j − εh

ε j + 2εh
(10.97)

Plugging Eq. (10.95) into Eq. (10.94) and using Eq. (10.88), we get

p j = p(fl)
j + α j k

2
0

∑

n(�= j)

G0
jn(p j , xn, ω)pn (10.98)

This forms a set of N linear equations that relates the
{
p j
}
to
{
p(fl)

j

}
or vice versa,

each is an N × 1 matrix. One can put Eq. (10.98) in the following matrix form:

{
p(fl)

j

}

N×1
= {A}N×N

{
p j
}

N×1 (10.99)
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Note that since the dipole moment is a vector, there are actually 3N × 3N matrix
elements to deal with. An equivalent way is to write Eq. (10.98) as follows [123].

p j = p(fl,0)
j + α

(0)
j k2

0

∑

n

G0
jn(x j , xn, ω)pn (10.100)

where α
(0)
j = (ε j − εh)Vj is the bare polarizability and

G0
jj =

(
ik

6π
− 1

3Vj k2

)
I (10.101)

The introduction of Green’s function for n = j takes into account the dressed
polarizability.However, the correlation of the fluctuating dipolemoments has slightly
different expressions. In Eq. (10.100), the correlation function in terms of the dipole
moments is expressed in terms of the bare polarizability [123]. The power dissipated
(or absorbed) by particle j from particle n can be expressed as

Q̇nj = ω

2
Im
〈
p j · E∗

jn

〉
(10.102)

which can be converted to time domain by

Q̇ j (x j , t) = 1

2

∞∫

0
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0

ωIm
〈
p j · E∗

j

〉
e−i(ω−ω′)t dωdω′ (10.103)

where the dipole moments can be solved in terms of the fluctuating dipole moments,

according to Eq. (10.100). Using the fluctuation–dissipation theorem,
〈
p j · E∗

j

〉
can

be expressed in terms of
〈
p(fl,0)

i,α (ω)p(fl,0)∗
j,β (ω′)

〉
, which can be written as

〈
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j,α (ω)p(fl,0)∗
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〉
= 4

ωπ
ε0Im(α0

j )�(ω, Tj )δ jnδαβδ(ω − ω′) (10.104)

Equation (10.104) can be derived from Eq. (10.34) using j j = −iω p j Vj and
Im(α0

j ) = Vj Im(ε j ). The actual calculations are typically performed using matrices.
In such case, the complex conjugate should be replaced by the conjugate transpose.
After some manipulation, it can be shown that the total energy absorbed by particle
j is

Q̇ j (x j ) =
∞∫

0

dω
∑

n �= j

�(ω, Tn)τnj (ω) (10.105)
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where τnj can be expressed as a function of the trace of the coefficient matrix [123,
173]. The heat transfer between two particles can be expressed as

Q̇nj =
∞∫

0

[
�(ω, Tn) − �(ω, Tj )

]
τnj (ω)dω (10.106)

If the temperature difference is small (near equilibrium), the thermal conductance
between two particles can be expressed as

Gnj (T ) =
∞∫

0

τnj (ω)
∂�

∂T
dω (10.107)

Considering either a 1D chain or a 2D particle array, the thermal conductivity in
the direction ŝ along the temperature gradient at a given location may be calculated
from [123]

κ(T ) = 1

S

∑

j

∑

n

Gnj (T )(r j − rn) · ŝ (10.108)

where S is an effective cross-sectional area. Tervo et al. [123] used this to calculate the
radiative thermal conductivity of ordered and disordered nanoparticle arrays. Dong
et al. [174] incorporated magnetic dipoles into the formulation. Near-field radiation
transfer has also been investigated recently for spherical core-shell particles [175]
and for graphene wrapped nanoparticles [176].

Note that in the case of only two dipoles in vacuum, it can be shown that in the
near-field regime

τ12 = 1

4π3
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3

d6
+ k2

0

d4
+ k4

0

d2

)
Im(αCM

1 )Im(αCM
2 ) (10.109)

where d is the center-to-center distance [48, 53]. In the near-field limit, τ12 is propor-
tional to d−6 but independent of the frequency; while in far-field limit, τ12 ∝ ω2d−2 .
Note that since we are considering subwavelength particles, the far-field result is
different from that based on geometric optics. Hence, the energy transfer between
two nanoparticles (or any nanostructures) in the far field may exceed that between
two ideal blackbodies with the same geometry since the concept of blackbody is not
applicable for subwavelength structures [16, 19].

Edalatpour andFrancoeur [56] developed a thermal discrete-dipole approximation
(T-DDA) for calculation of near-field radiation between closely spaced nanostruc-
tures, as shown in Fig. 10.41a, that can be inhomogeneous and each object does
not need to be at a thermal equilibrium. The method is based on the well-known
DDA method for light scattering calculations [177] to implant fluctuational dipoles
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Fig. 10.40 Schematic of the T-DDA method used for simulating nanostructure near-field radiative
transfer: aTwo arbitrary structures in vacuum;bAnarbitrary structure above a semi-infinitemedium

as described previously in this section. The method is based on discretizing objects
of arbitrary shape into cubic subvolumes, each of which can be approximated as a
point dipole whose polarizability can be treated using the Clausius–Mossotti model
described in Eq. (10.97). The volume integration is then discretized using summa-
tions of the dipolar points; and this method can be used to studymany-body problems
[178]. If the interaction equation with N-dipoles is solved and their individual radia-
tive exchanges can be calculated according to Eq. (10.106), then, one can set the
receiver temperature to zero (no emission) and add all of the power received by the
dipoles within the receiver volume to calculate the absorbed power. Since thermal
emission is spatially uncorrelated, one can choose any volume and use the same way
to calculate the power absorbed by any subset of dipoles.

The T-DDA method has also been extended to calculating a small object near a
semi-infinite planarmedium shown in Fig. 10.40b by using Sommerfeld’s integrals to
evaluate the electric dipole radiation above an infinite plane [179]. As the number of
dipoles increases the simulation accuracy improves,while the required computational
resources and time grow quickly. Even though only electric dipoles are involved, the
DDA-based method takes into account of multipole effects if sufficient subvolumes
(dipoles) are used to discretize the structures. The T-DDA method has also been
extended to study anisotropic media including magneto-optical materials [180]. All
computational methods are time-consuming when dealing with complex problems
and each has its own advantages and disadvantages.

10.7 Measurements and Applications

Before closing this chapter and the whole book, we would like to review the progress
in the development of experiments for measuring near-field radiative heat transfer,
as well as the prospective application of nanoscale thermal radiation.
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10.7.1 Measurements of Near-Field Thermal Radiation

When the first edition of this bookwas published in 2007, experimental investigations
of near-field radiative energy transfer were very limited [108]. Tien and coworkers
[181] and Hargreaves [182] were the first to measure the energy flux of two parallel
plates at cryogenic temperatures. Domoto et al. [181] used 8.5-cm-diameter copper
disks as the emitter and receiver that were coaxially mounted and varied the gap
spacing d from 10 μm to 2 mm. Near-field effects were observed when d < 200 μm
since the temperature is around 10 K. At d = 10 μm, the heat flux was enhanced
by more than three times compared to the far-field value, though it is still much
smaller than that between blackbodies. Hargreaves [182] measured the near-field
heat transfer between two chromium-coated plates separated by a vacuum gap from
approximately 6 to 1.5 μm. At d ≈ 1.5μm and near room temperature, the heat
transfer rate was five times greater than that for the far field, approaching 40% of the
value between two blackbodies.

More than 20 years later, in an attempt to probe near-field radiation at submicron
vacuum gaps, Xu et al. [37] used a scanning tunneling microscope (STM) with
a heated indium needle that has a flat tip surface of 100-μm diameter. A thin-film
thermocouple with a flat junction area of 160×160 μm2 was evaporated onto a
glass substrate to probe the heat flow. Müller-Hirsch et al. [38] investigated the heat
transfer between a tungsten tip and a planar thermocouple on a substrate by cooling
the substrate. While the proximity effect was observed at distances down to 10 nm
or so, it was difficult to quantitatively determine the absolute heat flux between
the tip and the substrate. There were also challenges in accurately measuring the
temperatures of the tip and the substrate [37, 38].

Kittel et al. [183] used a scanning thermal microscope tip with a platinum wire
inside a glass micropipette which is gold coated to form a thermocouple junction
that could be calibrated to indicate the tip temperature. The gold-coated platinum tip
with a radius of approximately 60 nm can be resistively heated. Near-field radiative
heat transfer has been measured between the tip (which is maintained near 300 K)
and a plate whose temperature is lowered to 100 K using liquid nitrogen via a cold
finger. The plate is either made of gallium nitride or coated with a gold film for
comparison. Near-field thermal radiative transfer was observed for gap spacings of
d = 100 nm down to about 1 nm. The measured values agree with those predicted
from fluctuational electrodynamics for 10 nm < d < 100 nm. However, when d <
10 nm, themeasured heat transfer rate saturates and deviates from the predicted trend
which continues to increase as d further decreases. Nevertheless, this is a significant
development in nanoscale thermal radiation measurements.

Tremendous progress has beenmade in recent years toward the experimental real-
ization of near-field enhancement of thermal radiation [73–75, 184–209]. Generally
speaking, the measurements can be categorized according to their configurations
shown in Fig. 10.41 as plate-plate, tip-plate, sphere-plate, and microfabricated sus-
pended structures. The key challenges are how tomaintain parallelism and determine
the gap distances as well as how to measure the temperatures and heat transfer rate
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Fig. 10.41 Various experimental configurations for measuring near-field radiative heat transfer:
a plate-plate; b tip-plate, c sphere-plate, and d microfabricated suspended structures

accurately. Corrections for heat conduction and far-field thermal radiation are often
required. Since all measurements have been performed in an evacuated chamber,
convection and gas conduction are usually negligibly small. Basu [108] gave a com-
prehensive review of the studies done before 2015. A brief survey of the major
publications and some examples are given below, along with updated literature since
2015.

Hu et al. [184] measured the near-field heat transfer between two parallel, optical-
flat glass (fused quartz) disks of 1.27-cm diameter, separated by sparsely dispensed
polystyrene spheres whose nominal diameters are 1 μm. The microspheres serve as
spacers with a low thermal conductivity to reduce the conduction heat transfer. The
emitter is heated by a heating pad with a temperature controller using a platinum
resistance temperature sensor from about 50 to 100 °C. The temperature of the
heat sink (receiver) is measured by a thermocouple to be around 24 °C. The heat
transfer was measured by a heat flux sensor placed between the receiver and the heat
sink. Their results demonstrated a near-field radiative heat transfer exceeding that
between two blackbodies bymore than 35%, and themeasured heat fluxes agree with
the predicted values for a vacuum gap of d = 1.6μm [184]. More recently, Lang
et al. [185] used monodisperse silica nanospheres to reduce the gap spacing down to
150 nm, which was verified with interferometric measurements, and achieved a heat
flux that exceeds the blackbody limit by more than an order of magnitude between
two 20-mm-diameter disks near room temperature.

Narayanaswamy et al. [186] developed a method for measuring nanoscale radia-
tive heat transfer between a sphere and a plate down to a 100 nm gap spacing, using
a biomaterial AFM cantilever, as shown in Fig. 10.42a. The method was further
improved using a higher resolution piezoelectric controller that enabled measure-
ments for a vacuum gap down to 30 nm [187]. Silicon dioxide microspheres with
different sizes were used with a radius a = 25 and 50 μm, respectively. The plate
substrate was made of SiO2 or Si or a gold-coated surface. With the configuration
of SiO2–SiO2 that can support coupled SPhPs, nearly three orders of magnitude
enhancement of the heat transfer coefficient was demonstrated at a gap spacing d =
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Fig. 10.42 Experimental setup andmeasured results for sphere-plate configuration: a experimental
setup; b measured radiative heat transfer coefficient, where the triangular marks are for radius a =
25 μm and circles are for a = 50 μm microspheres. Inset is the plot in log–log scale. Reprinted
with permission from Shen et al. [187]; copyright (2009) American Chemical Society

30 nm as shown in Fig. 10.42b. The principles of their measurement technique are
briefly described here.

As shown in Fig. 10.42a, the biomaterial cantilever is made by coating a gold
film onto a silicon nitride triangular beam which can measure the temperature at the
tip, where a silica microsphere is epoxied, due to the different thermal expansion
coefficients of Au and SiNx. By measuring the deflection of the cantilever using
the focused laser beam and a position sensitive detector (PSD), the temperature of
the sphere can be determined. The laser irradiation also heats the tip (or sphere),
resulting in bending of the cantilever. The tip temperature can be raised a few tens of
degrees relative to the base. The effective thermal conductance of the cantilever was
calibrated bymeasuring the bending with different input powers. As the gap between
the sphere and the surface is reduced by moving the substrate using a piezoelectric
motion controller, near-field radiation results in a cooling of the sphere that can be
measured by the beam deflection. With the vertically mounted cantilever beam, the
bending of the cantilever causes negligibly small vertical displacement of the sphere.
It should be noted that, due to the small heating power, the base of the cantilever and
the flat substrate are passively maintained at ambient temperature. Therefore, both
the sphere (emitter) temperature and the near-field radiative transfer can bemeasured
based on the additional bending of the cantilever [186, 187].

Given the relatively large sphere, the near-field radiative heat transfer between
the sphere and the plate can be approximated by treating the sphere as slices of
flat disks and calculated by integration of the plate-plate heat flux. This is called
the proximity approximation or specifically the Derjaguin approximation [54]. As
discussed previously, the near-field radiative heat transfer is proportional to 1/d2;
while upon integration, the radiative heat transfer coefficient is proportional to 1/d.
In order to compare with the flat plate heat transfer coefficient (hr), Shen et al. [187]
normalized hr using an effective surface area of Aeff = π R2

eff, where Reff = √
2ad.
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The resulting heat transfer coefficients between a SiO2 sphere and a SiO2 plate are
plotted in Fig. 10.42b, against the far-field blackbody limit (hr,BB = 3.8W/m2 K). It
can be seen that hr increases dramatically as d decreases and the value at d = 30 nm
is 2230W/m2 K or about three orders of magnitude greater than the blackbody limit.
Surface roughness for these measurements is less than 4 nm as measured with AFM
[187]. Shi et al. [188] studied the near-field radiation between a SiO2 sphere and
a silicon substrate with various doping concentrations. Later, Shi et al. [189] also
investigated the near-field radiation between a microsphere and a metamaterial made
of metal (Ni) wire arrays embedded in anodic aluminum oxide (AAO) matrix. The
AAO can be removed partially to expose a protruded nanowire array at the top
layer of 400 nm height. They found that the protruded case gives the maximum heat
conductance while the bare nanowire array gives negligibly small heat conductance,
suggesting that metal nanowires can serve as a low-loss waveguide to couple the
high-k modes to the hyperbolic metamaterial.

A different method for measuring nanoscale radiative heat transfer between a
sphere and a plate was developed by Rousseau et al. [190]. In this work, a biomaterial
cantilever was also vertically mounted with a microsphere attached to its tip near the
surface, similar to the work of Ref. [186]. The interference pattern of the laser beam
reflected from the cantilever was measured with an optical fiber system and used to
monitor the deflection of the cantilever. The flat substrate was heated by a few tens of
degrees andmounted on a piezoelectric actuator. The temperature of the substrate and
that of the endof the cantileverweremeasured using thermocouples. Themicrosphere
temperature is deduced by analyzing the thermal resistance network and calibration
of the thermal conductance based on far-field experiments. Note that the radiative
thermal resistance even at d = 50 nm still dominates, so the temperature of the sphere
is very close to that measured at the end of the cantilever. Silica spheres of radius 20
μmand11μmwere usedwith a surface roughness of 40 nmand 150 nm, respectively.
For the a = 20 nm sphere,measurements showed an enhancement factor that exceeds
400 in radiative heat transfer when d is reduced from 2500 to 30 nm [190]. Later,
van Zwol et al. [191, 192] used this setup to measure near-field radiation between
a SiO2 sphere and SiC, doped-Si, or graphene-covered substrate, as well as a VO2

(a phase transition material) plate. Quantitative measurements of near-field thermal
radiation in the sphere-plate configuration have provided convincing experimental
confirmation of the fluctuation–dissipation theorem in predicting near-field energy
transfer at gap distances down to 30 nm [186–192].

Even though the sphere-plate experiments have been successfully used in mea-
suring near-field heat transfer at submicron gaps, such a geometrical configuration
is not as ideal as the plate–plate geometry. As an example, the effective area 2πad
for a sphere of radius a = 50μm and a gap spacing d = 50 nm is less than 16μm2,
which is too small for applications such as near-field thermophotovoltaic devices or
rectifiers. In the last 10 years, continuous efforts have been made to experimentally
demonstrate the near-field enhancement of energy transfer for parallel-plate geom-
etry with an area greater than a square millimeter [193–202]. Ottens et al. [193]
used sapphire (α-Al2O3) plates, each with a 50 × 50 mm2 area and 5-mm thick-
ness, to measure the near-field radiative transfer coefficient from 100 μm down to
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about 2 μm. Their measured heat transfer coefficients exceed that between black-
bodies in the far-field at the smallest gap spacings near room temperature. Si-diode
thermometers were used to measure the temperatures of the emitter and receiver.
The sapphire surfaces are optically smooth with a specified flatness of 160 nm over
the 50 mm lateral displacement. The four corners of the facing surfaces (each with
1 mm2 area) were coated with a 200-nm-thickness copper film to form capacitor
plates for gap spacing measurements. Kinematic mirror mounts with stepper motors
were used to linearly move the emitter in the z-direction as well as to adjust the tip
and tilt angular movements [193]. Kralik et al. [194] performed cryogenic near-field
radiationmeasurements between two parallel tungsten-coated plates of 35-mmdiam-
eter with separation distances from 500 μm down to about 1 μm. The gap spacing
was measured with a capacitance method. They used a plane-parallelism equalizer
to maintain parallelism between the emitter and receiver at cryogenic temperatures.
They observed heat flux enhancement of nearly four orders of magnitude over the
corresponding far-field value (or two orders of magnitude greater than the black-
body limit) when the cold plate temperature is between 10 and 40 K and the hot
plate is maintained at 5 K higher at d ≈ 1 μm [194]. Ijiro and Yamada [195] mea-
sured near-field radiative transfer between two 25-mm-diameter SiO2 glass plates
at room temperature using an optic-fiber coupled spectrometer to determine the gap
spacing at several locations. They used a piezoelectric motor that drives a kinematic
mount with a linear stage for both translational motion and tip/tilt angular adjustment
to keep the emitter and receiver surface parallel with a vacuum gap distance from
100 μm down to 1 μm. The near-field radiative heat flux is nearly twice that for the
far-field case at room temperature. Furthermore, they also fabricated 5 μm × 5 μm
× 5 μm microcavities on the glass plate. Interestingly, while the far-field heat flux
is enhanced by 20% with the microcavities, the near-field heat flux is actually lower
with the microcavities. The far-field enhancement can be explained by the enhanced
emittance/absorptance due to guided modes or cavity resonance; while the near-field
radiative transfer may be explained by the proximity limit [139, 142]. Nevertheless,
when the microcavities are coated with a Au layer, the near-field radiative transfer
can be significantly enhanced compared to that between flat Au surfaces [195]; this
is consistent with the predictions [138].

In 2015–2016, several groups reported measurements of near-field radiation
between parallel plates at distances below 500 nm with surface areas exceeding
1 mm2 using spacers or micropillars between the emitter and receiver [196–199]. Ito
et al. [196] fabricated micropillars in truncated square pyramid shape of thicknesses
500, 1000, and 2000 nm to measure the near-field radiative heat transfer between
rectangular fused quartz (silica) plates of 19 mm by 8.6 mm. These spacers were
etched on the silica surface with a lateral spacingof 1 mm between nearest pillars. A
small force (about 1 N) was applied to the plate by compressing a spring with a very
low spring constant. The emitter was heated to 5, 10, 15, and 20 K above the receiver
temperature of 293 K. A flat heat flux sensor was used to measure the heat flux to the
thermoelectrically cooled receiver. Themeasured heat transfer coefficients are higher
than those predicted by theory, presumably due to the contribution of heat conduction
through the pad, though quantitative analysis of the heat conduction contribution was
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not provided [196]. Lim et al. [197] used microfabrication to form a 13.4-mm-long
and 0.59-mm-wide strip with a heater as the emitter and a 0.48-mm-wide receiver
of the same length, made of doped silicon. The gap was formed by patterned metal
spacers, located far away from the heating and receiving strips, and could be varied
by adjusting the normal load. The effective surface area is approximately 6.4 mm2.
The separation distance, as measured by the capacitance between the emitter and the
receiver, can be varied from about 900 nmdown to 400 nm.A heat transfer coefficient
of 2.9 times the far-field blackbody limit was observed at d = 400 nm [197]. Watjen
et al. [198] fabricated SiO2 micropillars to separate 10 mm× 10 mm doped-Si plates
with various vacuum gaps down to d = 200 nm and obtained near-field heat flux
more than an order of magnitude higher than the blackbody limit. The experimental
setup and measurement results are outlined in the following.

As shown in Fig. 10.43a, the spring presses the stack of layers onto a copper base
to form a nearly one-dimensional heat flow path. A heater is epoxied onto a copper
plate above the sample using silver grease to ensure good thermal contact. A tiny
hole drilled halfway through the side allows a thermocouple to be inserted on each
copper plate to measure the hot-side and cold-side temperatures. The thermocouples
measure the relative temperatures, while the absolute temperature is measured at the
base (heat sink) as T0 using a calibrated silicon diode thermistor. The heat transfer
rate from the emitter to the receiver is measured by a heat flux meter (HFM). The
sample is placed in themiddle and consists of two doped-Si pieces with a sparse array
of SiO2 micropillars, as shown in Fig. 10.43b. The pillars with heights ranging from
200 to 800 nm were fabricated using ultraviolet photolithography on a Si wafer and
then cut into 10 mm by 10 mm pieces. The patterned plate and a flat (unpatterned)
plate of the same size were mated together and pressed by spring loading forces to
maintain the necessary gap spacing. Heat conduction was reduced using an array
of 1-μm-diameter SiO2 pillars with a relatively large span, i.e., S = 300, 400, or
500μm. It was estimated that more than half of the heat flux is due to radiation when
S exceeds about 300 μm [198].

Fig. 10.43 Illustration of the near-field radiative transfer measurement setup [198]: a The mea-
surement stage with a heater, the specimen, temperature sensors, and a heat flux meter (HFM).
b Schematic of two doped-Si plates separated by SiO2 micropillars
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A Fourier-transform infrared spectrometer (FTIR) was used to measure the
reflectance of each sample to quantify the gap spacing prior to the heat transfer
measurement. Different forces were applied for both the FTIR measurement and the
heat transfer measurement, allowing the gap spacing to be adjusted. Contact thermal
resistances were also considered in the data analysis [198]. The measured radiative
heat transfer rate qrad and heat transfer coefficient hr are plotted in Figs. 10.44a,
10.45b, respectively. The heat transfer rate for three gap distances is plotted against
the temperature difference between the emitter (TH) and receiver (TL). The solid sym-
bols represent the measured results with uncertainty bounds indicated by the error
bars. The dashed lines are from the fluctuational electrodynamic calculation with
the shaded region indicating the range of uncertainty due to the uncertainty in the
gap spacing determination. The large enhancement in nanoscale thermal radiation is
attributed to the excitation of coupled surface plasmon polaritons (SPPs).

Figure 10.44b plots the radiative heat transfer coefficient hr for 14 measurements,
as shown by the filled symbols with error bars. The calculated values with the same
gap spacings and temperatures are shown as open circles. The solid curve repre-
sents the calculated results using the average emitter and receiver temperatures:
T H = 318.5K and T L = 302.3K. The two dotted lines are the upper and lower
bounds of the calculation uncertainty. The blackbody limit is indicated by the dashed
horizontal line calculated based on T H and T L. It can be seen that hr increases as
d decreases, reaching 81.2 W/m2 K, which is 11 times that of the blackbody limit.
The methodology and setup could be further modified and improved for the study of
near-field energy conversion and thermal management [198].

Bernardi et al. [199] fabricated a compliant Si membrane structure with 20-μm
thickness that supports a 5mm× 5mmSi emitter with a thickness of about 0.5mm in

Fig. 10.44 Near-field radiative transfer measurement results [198]: a Radiative heat transfer rate
(qrad) for three different gap spacings as a function of the temperature difference. b Radiative heat
transfer coefficient (hr) for 14 measurements at different gap spacings with �T ranging from 10 K
to 20 K. Different marks represent different samples and the spacing for some samples was varied
by the applied force
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the middle. The emitter can be heated and compressed closer to the receiver surface
by an applied force. The vacuum gap distance is confined by 3.5-μm-tall SU-8 pho-
toresist posts, with a diameter of 0.25 mm, placed away from the emitter without an
applied force. SiO2 stoppers of 150-nm height were fabricated on the receiver plate
below the emitter to limit the vacuum gap spacing when a force is applied above the
emitter. The radiative heat flux between two intrinsic silicon plates was obtained for
temperature differences as large as 120 K at gap distances from 3500 nm down to
150 nm [199]. As discussed previously, nanospheres have also been used to create
a gap down to 150 nm between 20-mm-diameter fused silica plates or BK7 glass
plates [185]. Yang et al. [200] used four photoresist posts with a height of 3700,
1400, or 430 nm, to create a vacuum gap between the emitter and receiver, with
lateral dimensions of 20 mm × 20 mm. They used this setup to measure the near-
field radiative transfer between graphene-covered intrinsic silicon substrates with
a vacuum gap down to 430 nm and demonstrated enhanced radiative transfer due
to graphene surface plasmons. Ying et al. [201] fabricated SU-8 polymer posts to
measure the near-field radiative transfer between doped silicon plates with vacuum
gaps from about 500 nm down to 190 nm, measured by the capacitance method.
Ghashami et al. [202] developed a nanopositioning platform using piezomotors to
provide six degrees of freedom with 1-nm translational resolutions in all three axial
directions and 1-μrad rotational resolutions in each rotational direction. They mea-
sured near-field radiation between crystalline quartz plates from 1200 nm down to
200 nm at temperature differences up to 156 K, and observed more than 40 times
enhancement of the blackbody limit in the far field. More recently, DeSutter [203]
fabricated micropillars within micrometer-deep pits so that the length of the pillars
could be much longer than the vacuum gap spacing to minimize conduction heat
transfer. The emitter was heated to about 100 K above the receiver, which was main-
tained at 300 K. They achieved a vacuum gap spacing down to 110 nm between two
doped-Si plates with a surface area of 5.2 × 5.2 mm2 and observed an enhancement
of radiative transfer approximately 28.5 times that of the blackbody limit. The recent
advances in the plate–plate configuration hold great promise for practical applications
of nanoscale thermal radiation.

Using MEMS to fabricate suspended structures is another way for measuring
near-field thermal radiation [204–209]. Feng et al. [204] fabricated a MEMS device
that contains two suspended membrane islands of 77 μm × 77 μm with Pt heaters
and four long beams. The membrane was made of a silicon nitride beam sandwiched
between two SiO2 films. They showed that at a vacuum gap spacing of 1 μm, the
near-field radiative transfer coefficient is about ten times that of the far field, though
still less than heat conduction through the beams. St-Gelais et al. [205] fabricated
double nanobeams (referring to Fig. 10.41d) with an electrostatic actuator to tune
the gap spacing down to about 200 nm in their first paper and down to about 40 nm
in their second paper. They observed a near-field enhancement of nearly two orders
of magnitude at d ≈ 42 nm, with a temperature difference between the two beams
exceeding 200 K. The nanobeam is 200 μm long with a height of nearly 500 nm
and width of 1–2 μm. Although the effective area is small (on the order of 1 μm),
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this double-beam MEMS structure can be made on-chip and the gap spacing can be
tuned by an applied voltage.

Another group [206–209] developed a nanopositioning platform that uses piezo-
electric actuators and high-resolution stepper motors to control the transverse and
rotational movements of one of the MEMS structures relative to the other. The fabri-
cated structures for near-field measurements between a sphere and a plate are shown
in Fig. 10.45 [206]. Integrated heaters and thermometers were made on both struc-
tures, with lateral dimensions on the order of 100 μm. A laser and a PSD were used
to detect the mechanical contact.

Fig. 10.45 The nanopositioning platform to place two MEMS structures with nanoscale gaps in
between: a schematic drawing of the experimental setup; b SEM images of the suspended emitter
with a sphere and heater/thermometer (inset); c SEM images of the receiver structure with a SiO2
film and heater/thermometer (inset). Reprinted with permission from Song et al. [206]; copyright
(2015) Springer Nature
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Song et al. [206] measured the near-field radiation in the sphere-plate configura-
tion at distances from 10 μm down to 20 nm using a 53-μm-diameter SiO2 sphere,
as shown in Fig. 10.45. Furthermore, they have investigated the effect of flat SiO2

layer thickness by changing it from 50 nm to 3 μm. Their results confirmed the
theoretical prediction that the photon penetration depth is largely dependent on the
vacuum gap spacing in the near-field regime [156]. A 48 μm by 48 μm square mesa
with a height of 20 μm was fabricated for measuring near-field radiation between
planar surfaces at separation distances down to near 30 nm [207]. Recently, Fiorino
et al. [208] demonstrated nearly 1200-fold enhancement of near-field radiation when
the gap spacing is reduced to 25 nm. This setup was also used to build a nanoscale
thermophotovoltaic (TPV) device with 40 times enhancement in the output power
compared to that of the far field [46]. Lim et al. [209] usedMEMS devices (with sup-
porting pads) as done in their previous work [197] for measuring near-field radiative
heat transfer between layered hyperbolic metamaterials.

Continuous efforts have also been placed in measuring nanoscale thermal radia-
tion at ultrasmall spacings with tip-based configurations [210, 211]. Probing near-
field heat transfer at vacuum gap spacings down to 1 nm and below has been made
possible; yet further theoretical and experimental investigations are necessary in
order to better understand the interplay between phononic and photonic contributions
[72–75, 212, 213].

10.7.2 Application Prospects of Nanoscale Thermal
Radiation

In late 1960s and early 1970s, the study of near-field thermal radiation was mainly
motivated by space thermal control usingmultilayer insulation, known as heat shields
or radiation shields, where metal-coated polymer films are stacked in close spacing
to diminish radiative heat loss from the spacecraft to deep space [22, 181, 182].
The study of near-field radiation in the 1990s was largely driven by the applica-
tions of scanning thermal microscopy [37, 38, 82]. Significant developments have
been made in the last 10 years in tip-based near-field spectroscopy for imaging
microscale thermal sources and for probing the LDOS of thermal emission from
nanostructured surfaces [211, 214–216]. In late 1990s and early 2000s, microscale
TPV energy conversion devices were proposed and qualitatively demonstrated in a
study [23, 217, 218]. Near-field thermophotovoltaics has been a subject of numer-
ous theoretical investigations and some experimental studies using various materials
and nanostructures [44–46, 109, 113, 144, 219–222]. Novel radiative energy con-
version devices have also been proposed and the performance can be significantly
improved at nanoscale separation distances [47, 112, 115, 145, 223–229]. In addi-
tion, the enhanced energy density and radiative heat flux associated with the strong
evanescent wave coupling in the near field between a sharp tip and a surface have
also been used to achieve local heating or cooling and to fabricate nanostructures at
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the nanometer length scale beyond the diffraction limit [9, 10, 80]. Plasmonic lithog-
raphy has been developed for maskless nanofabrication and heat-assisted magnetic
recording (HAMR) technology [230–233]. In recent years, a large number of sce-
narios have been envisioned for tuning heat flow using nanoscale thermal radiation
with promising applications in thermal management, including noncontact thermal
diode or rectifier [41, 42, 192, 234–239], thermal modulator and switcher [102, 103,
240–244], thermal transistor or actuator and interconnector with many bodies [176,
245–252], as well as thermal memory andmemristor [253–256]. Some of the devices
have already been demonstrated experimentally [238, 239, 242, 244, 252]. Readers
can also find comprehensive literature surveys from Refs. [18, 108, 133, 144]. In
the following, we highlight the recent research progress and challenges in applying
near-field thermal radiation to radiative energy conversion systems.

As discussed inSect. 6.8.4, thermophotovoltaics is promising forwaste heat recov-
ery since there are no moving parts and the device can be compact and portable. A
TPV system is based on the same principle as a solar cell, except with a terrestrial
heat source that provides mid-infrared photons instead of the sun whose emission is
largely in the visible and near infrared. In a TPV receiver, the bandgap of the semi-
conductor is usually narrower so that photons emitted at longer wavelengths can also
be utilized to generate photocurrent. By operating in the near-field regime, it has been
predicted that the power output can be significantly enhanced [17, 109]. Near-field
TPV systems have recently been demonstrated [46, 222]. Fiorino et al. [46] used a
nanopositioning system and achieved a 40-fold enhancement in power output when
the separation distance is reduced to 60 nm. The emitter is an 80-μm-diameter Si
mesa that can be heated to a temperature up to 655 K. The photovoltaic (PV) cell is
made of InAsSb with a bandgap of 0.345 eV (corresponding to a wavelength of 3.6
μm). The maximum power output is 30.2 nW due to the small active area and low
efficiency (0.02%). The low efficiency may be due to the low emitter temperature
and other imperfections. Inoue et al. [222] fabricated an on-chip TPV device that
coupled the frustrated evanescent modes from a 2-μm-thick silicon film to a PV cell
made of InGaAs with a bandgap of 0.73 eV (i.e., 1.7 μm). Using spacers, a vacuum
gap less than 150 nm was achieved with emitter temperatures above 1000 K. They
demonstrated a 10-fold near-field enhancement of the photocurrent with a conver-
sion efficiency close to 1% for an effective area of 500 μm × 500 μm. Continuous
efforts and development are needed to further increases the active surface area and
conversion efficiency.

From thermodynamic consideration, a low-temperature heat sink (such as a cold
sky or outer space) can also be utilized to produce power by using an object at the
ambient temperature as the heat “source” [257]. This concept has been further devel-
oped into a device called the thermoradiative cell, which is essentially a photodiode
(p-n junction) on the higher temperature emitter exposed to a lower temperature
background [258, 259]. In this case, the I–V curve shown in Fig. 6.28b is shifted
upward so that a negative open-circuit voltage exists [47]. The system operates with a
negative bias voltage and positive photocurrent output, and the output power is equal
to |I × V |. The physical mechanism can be interpreted as being due to the negative
chemical potential of the p-n junction that reduces the number of photons it could
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emit at frequencies above the bandgap. In the mean time, a current is driven through
the circuit to generate photocurrent [227]. By using narrow bandgap semiconduc-
tors, the operating temperature of the thermoradiative cell can be relatively low (i.e.,
500 K or lower when the surroundings are near or below ambient temperature). The
thermoradiative energy converter has also been analyzed and shows great promise
to achieve high throughput and conversion efficiency by operating in the near-field
regime [223, 224]. Wang et al. [145] theoretically demonstrated enhanced perfor-
mance of thermoradiative cells using nanoscale gratings as the heat sink due to the
excitation of resonance modes.

Light-emitting diodes (LEDs) operate with a high bias voltage that produces
photon emission at frequencies greater than the bandgap. This phenomenon can also
be explained by the modification of Planck’s distribution due to increased photon
chemical potential of the p-n junction as proposed by Wurfel [260]:

Iω(ω, T, μ) =
( ω

2πc

)2 �ω

e(�ω−μ)/kBT − 1
, for �ω > Eg (10.110)

The chemical potential for an ideal diode is proportional to the bias voltage and
given by μ = eV , where e is the absolute value of the electron charge. When the
photon energy is less than the bandgap energy, the distribution function is the same
as Planck’s distribution at thermal equilibrium, i.e., μ = 0 in Eq. (10.110). Equa-
tion (10.110) can also be written in terms of a modified Bose–Einstein distribution
function that includes photon chemical potential as

fBE,mod(ω, T, μ) = 1

e(�ω−μ)/kBT − 1
(10.111)

The modified spectral entropy of a mode can be expressed as [47, 223]

sω(ω, T, μ) = kB[(1 + f ) ln(1 + f ) − f ln f ] (10.112)

where f is the modified Bose–Einstein distribution function given in Eq. (10.111).
The principle of LED is called electroluminescence, which can be employed to

produce a refrigeration effect to remove heat from a diode at a lower temperature
[261]. This can be understood since the intensity of emission for photon energies
higher than the bandgap, as calculated from Eq. (10.110) with a positive bias volt-
age, can be much greater than that at the equilibrium temperature. The challenge is
that the net emission at higher frequencies must be sufficiently large to counterbal-
ance the net photon energy transfer at lower frequencies. By operating in the near-
field regime with carefully selected materials combinations, the performance can be
greatly enhanced [112, 225–227]. The near-field refrigeration effect has recently been
demonstrated experimentally [228]. In principle, it is also positive to use a reverse
bias (effectively reduce thermal emission) on the hot side to achieve negative lumi-
nescent refrigeration with near-field enhancement [262]. The four devices, namely,
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TPV, thermoradiative cell, electroluminescent refrigerator, and negative electrolu-
minescent refrigerator can be analyzed coherently using the concept of chemical
potential and the modified Planck distribution [47, 227]. In addition, two p-n junc-
tions can be used, one on the emitter and one on the receiver to form combined energy
conversion systems for achieving either high-efficiency, high throughput power gen-
eration [115] or refrigeration [226]. The chemical potential in a real p-n junction or
p-i-n junction is the difference between the electron and hole quasi-Fermi levels. A
recent study showed that the reverse saturation current, which is important in mod-
eling TPV devices, can increase significantly in near-field operation [263]. In the
previous calculations, it has been assumed that the electron (or hole) population in
the conduction (or valence) band has reached a well-established quasi-equilibrium
condition. This assumption needs to be further examined considering the coupled
charge transport and local photon generation and recombination processes. The spa-
tial variation of the chemical potential needs to be further considered, which can
also affect the photoemission and photocurrent generation. While Eq. (10.110) has
been used to fit the LED emission spectra [260], quantitative and systematic mea-
surements and comparison of the emission spectra at various temperatures and with
varying bias voltages (such as negative bias) are very limited. Challenges also remain
in how to reduce the imperfections of the semiconductor materials and the associated
nonradiative losses.

10.8 Summary

This last chapter of the book describes a field that is clearly associated with radiation
heat transfer but has its foundations deeply rooted in physical optics, electrodynam-
ics, quantum mechanics, and perhaps quantum electrodynamics. This field has been
advancing rapidly, especially in the past 15 years or so. Significant developments
have been made in terms of computation, experiments, as well as novel applications
of nanoscale thermal radiation. Recent graduate textbooks on radiation heat transfer
have included coverage on near-field thermal radiation. Compared with the first edi-
tion published in 2007, this chapter has largely been rewritten to provide comprehen-
sive coverage of the theoretical foundations, numerical methods, and experimental
measurement techniques developed in recent years. Extensive examples associated
with radiative transfer in micro/nanostructured materials have also been provided. It
is expected that more and more prototype demonstrations and practical realizations
will emerge in the coming years to harvest near-field radiation in thermal man-
agement and energy conversion applications. Fundamental issues that need to be
researched further include the delineation of the conduction and radiation regimes at
subnanometer separations, as well as the interplay of phonon and photon transports
in a vacuum due to quantum fluctuations.
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Problems

10.1 Consider the three-layer structure shown in Fig. 10.3a. Use Eqs. (10.2b) and
(10.7) to show that the normal component of the Poynting vector in medium
2 is not a function of z in the case of photon tunneling. Prove that 〈S〉z in
medium 3 is the same as that in medium 2. Can you separate the incident
power from the reflected power at the interface between media 2 and 3?

10.2 For thermal radiation originated from medium 1 with a refractive index of
n1 = 2 to air, what is the critical angle? If medium 3 is close to medium 1
to form an air gap of width d, plot the directional-spectral transmittance at
different angles as a function of d/λ. Calculate the hemispherical transmit-
tance for s-polarization, for both propagating and evanescent waves, and plot
it against d/λ.

10.3 Two dielectric materials 1 and 3 are placed in close vicinity at cryogenic
temperatures, separated by a vacuum of thickness d. Given n1 = n3 = 4,
T1 = 4K, and T3 = 2K, calculate the net radiative energy transfer when
d = 1mm. Plot the radiative energy transfer from 1 to 3 and that from 3 to
1, as a function of d.

10.4 In the resonance tunneling setup shown in Fig. 10.5a, show that for N = 2 the
transmittance can be expressed as T ′

λ = sin2(δ)/[sin2(δ) + 4p2 sinh2(ηb)],
where p = cos(k1za) cosh(ηb) + cot(δ) sin(k1za) sinh(ηb). For n1 = 3,
n2 = 2, and a = b, find the wavelengths where resonance tunneling occurs.
Plot the transmittance spectra for the TMwave, and determine the FWHM of
each peak. [Discussion: It is interesting to find out the field distribution and
localization in the three middle layers. The amplitude of the evanescent wave
may either increase or decrease in the forward direction. One can use the
matrix formulation to solve the field distribution to demonstrate the growth
of evanescent waves in this arrangement. Discuss the lateral beam shift of
the transmitted beam due to the parallel energy flow in the central layer.]

10.5 Derive Eqs. (10.22), (10.23), and (10.24), assuming layer 2 is a PIM and
layer 3 is a NIM in Fig. 10.10a, with the same absolute values of refractive
index. How will the field distribution in Fig. 10.10b change if the two middle
layers switch positions?

10.6 Refer to photon tunneling with negative index layers. Consider two dielectric
prisms with refractive index n1 = n5 = 1.5, sandwiching three middle layers
of thicknesses d2, d3, and d4. Media 2 and 4 are vacuum with n2 = n4 =
1, while the middle layer, medium 3, is made of a NIM with n3 = −1,
i.e., ε3 = μ3 = −1. Show that when the incidence angle is greater than
the critical angle, the transmission coefficient can be expressed as follows:

t = 1/[coth(η2�) + i cot(δ) sinh(η2�)], where η2 =
√

k2
x − n2

2ω
2/c2, δ is

the phase angle upon total internal reflection from medium 1 to 2, and � =
d2+d4−d3. Plot the transmittance as a function of�/λ, at incidence angles of
45◦ and 60◦ for each polarization. Derive the expression for the transmittance
of propagatingwaves. Calculate the hemispherical transmittance for a chosen
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polarization, and plot it as a function of �/λ for both the propagating and
evanescent waves in vacuum.

10.7 Reproduce Fig. 10.10, and discuss the features of energy streamlines for
the radiative transfer through a dielectric film. Switch the vacuum and the
dielectric regions so that the structure becomes dielectric-vacuum-dielectric,
with d/λ = 0.1 and 0.01. Show the streamlines for both propagation and
evanescent waves in air.

10.8 Calculate the nanoscale heat transfer between two SiC plates with a vacuum
gap as a function of the gap width. Assume that T1 = 600K and T2 = 300K,
and use the dielectric function of SiC at room temperature. Plot and discuss
the spectral energy transfer in the near field.

10.9 Consider the radiation heat transfer between two plates at T1 =
800K and T2 = 300K, separated by a vacuum gap of width d. The dielectric
function of the plates can be modeled as a Drude model: ε1(ω) = ε2(ω) =
1 − ω2

p

ω2+iωγ
. Choose different values of ωp and γ to calculate the near-field

and far-field radiation heat transfer. Comment on the effect of each parameter.
[Hint: You probably want to set ωp in the near infrared, say, at 8000 cm−1,
and γ ≈ 0.01ωp to start with.]

10.10 Calculate the near-field radiative heat flux at temperatures T1 = 350K and
T2 = 250K for both SiC and MgO at different gap distances. Plot the heat
flux spectra for both materials at d = 20 nm. Discuss the contributions of
different phonon modes.

10.11 Calculate the near-field radiative heat flux at temperatures T1 = 500K and
T2 = 300K at d = 100 nm for different combinations of emitter and receiver
SiC–SiC, SiC–MgO, and MgO–MgO. Plot the heat flux spectra in all three
cases. Discuss why dissimilar materials give the smallest heat flux. Do you
expect any difference if SiC–MgO is swapped?

10.12 Calculate the radiative heat transfer coefficient at T = 300 K between two
parallel plates make of SiC as a function of the gap spacing d considering
the following cases. As given in Example 8.8, the experimentally obtained
scattering rate is γ = 4.76 cm−1. In this homework, you are asked to the-
oretically explore the effect of γ on the radiative heat transfer coefficient
by setting γ = 1 cm−1, 4.76 cm−1, 10 cm−1. Plot the spectral heat transfer
coefficient near the resonance frequency.

10.13 Develop a code to plot the contour plots shown in Figs. 10.16 and 10.19.
10.14 Repeat the calculation of Example 10.5 for CNTs with x = 0.98 but with

several values of the filling ratio (φ): 0.03, 0.05, 0.09, and 0.15.
10.15 Repeat the calculation of Example 10.6 for silicon nanowires (SiNWs) for

volume filling ratio φ = 0.02, 0.03, 0.05, and 0.09.
10.16 Repeat the calculation of Example 10.6 for silicon nanoholes (SiNHs) for Si

volume fraction φ = 0.3, 0.4, 0.6, and 0.8.
10.17 Calculate the near-field radiative heat flux between two graphene sheets

separated by different distances for μ = 0.2, 0.3, and 0.4 eV. Assume
T1 = 320K and T2 = 300K.
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10.18 Reproduce Figs. 10.26b and 10.27. What if the volume fraction and/or the
doping level of Si are changed?

10.19 Calculate the near-field radiative heat transfer between graphene-covered
CNT arrays using parameters from Ref. [99].

10.20 Reproduce Fig. 10.28b for the three cases. What if the hBN layer thickness
is halved or doubled?

10.21 Reproduce Fig. 10.28b for the three cases. Then, evaluate the heat flux when
graphene covers both sides of the hBN film as in case 4. Plot them together.

10.22 Obtain the contour plots shown inFig. 10.29.Discuss hybrid surface plasmon-
phononpolaritons. If you integrate the heat fluxover the frequency in different
regions, which region contributes the most to near-field heat transfer?

10.23 Consider two SiC spheres, each with a diameter of a = 100 nm. One is at a
temperature T1 = 350K and the other is at T2 = 300K. They are placed in
vacuum and separated by a center-to-center distance of d. Plot the net heat
transfer rate as a function of the distance for 3a < d < 7a.

10.24 Redo Problem 10.23 for 5μm < d < 20μm, i.e., in the far-field limit using
dipolar approximation. You may also choose d = 10μm to plot the spectral
heat flux. Calculate the net heat transfer if the spheres were blackbodies. How
do the results compare?

10.25 Perform a literature study on the experimental techniques in measuring near-
field thermal radiation.

10.26 What are the applications or potential applications of near-field radiative heat
transfer?

10.27 Comment on the heat transfer by conduction and by radiation for a powder
of SiO2 or SiC nanoparticles.

10.28 In a porous material, when and how will radiation heat transfer exceed
conduction heat transfer?
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Appendix A
Physical Constants

Avogadro’s constant (NA) 6.022 × 1026 kmol−1

Universal gas constant (R̄) 8.314 kJ/kmolK
Speed of light in vacuum (c0) 299,792,458m/s (exact)
Boltzmann’s constant (kB) 1.381 × 10−23 J/K
Planck’s constant (h) 6.626 × 10−34 J s
Stefan-Boltzmann constant (σSB) 5.670 × 10−8 W/m2 K4

Electron charge (absolute value) (e) 1.602 × 10−19 C (coulumb)
Electron mass (me) 9.109 × 10−31 kg
Proton mass (mp) 1.673 × 10−27 kg
Standard acceleration of gravity (gn) 9.80665m/s2 (exact)
Magnetic permeability (vacuum) (μ0) 4π × 10−7 N/A2 (exact)
Electrical permittivity (vacuum) (ε0) 8.854 × 10−12 C2/Nm2 (or F/m)

1 atm = 760 mm Hg = 101.325 kPa (standard atmosphere, exact)
1 eV = 1.602 × 10−19 J (electron volt)

SI Prefixes

Power 10−21 10−18 10−15 10−12 10−9 100 109 1012 1015 1018 1021

Prefix zepto atto femto pico nano — giga tera peta exa zetta

Symbol z a f p n — G T P E Z

Reference: http://physics.nist.gov/cuu/index.html
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B.1 Some Useful Formulae

B.1.1 Series and Integrals

Binary equation:

(a + b)N = bN + NabN−1 + N (N − 1)

2! a2bN−2 + N !
3!(N − 3)!a

3bN−3

+ · · · + NaN−1b + aN =
N∑

M=0

N !
M !(N − M)! a

M bN−M (B.1)

Geometric series:

1 + e−x + e−2x + e−3x + · · · = 1

1 − e−x
(x > 0) (B.2)

Using the Taylor expansion, we can write

ex = 1 + x + x2

2! + x3

3! + · · · (B.3)

ln(1 + x) = x − x2

2
+ x3

3
− x4

4
+ · · · (−1 < x < 1) (B.4)

Integrate
∫ ∞
−∞ e−x2dx . This integral may be evaluated by a transformation from

the Cartesian coordinators to polar coordinators:
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⎛

⎝
∞∫

−∞
e−x2dx

⎞

⎠

⎛

⎝
∞∫

−∞
e−y2dy

⎞

⎠ =
¨

−∞<x<∞−∞<y<∞

e−(x2+y2) dxdy

=
¨

0<r<∞
0<φ<2π

e−r2rdrdφ =
∞∫

0

e−r22πrdr = π

∞∫

0

e−tdt = π

Therefore,

∞∫

−∞
e−x2dx = √

π (B.5)

It can be seen that
∫ ∞
−∞ e−ax2dx = √

π / a. It should be noticed that∫ ∞
−∞ xe−ax2dx = 0, but

∞∫

0

xe−ax2dx = 1

2a

Furthermore

∞∫

0

xn+2e−ax2dx = n + 1

2a

∞∫

0

xne−ax2dx (n = 0, 1, 2 . . .) (B.6)

Another type of important integral equation is the following.

∞∫

0

xnex

(ex − 1)2
dx = n

∞∫

0

xn−1

ex − 1
dx (B.7)

where

∞∫

0

xn−1

ex − 1
dx = (n − 1)!ζ(n) (B.8)

Here, ζ(n) is the Riemann zeta function defined as

ζ(n) = 1 + 1

2n
+ 1

3n
+ 1

4n
+ · · · · · · (B.9)
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The values of ζ(n) are given below for several n values:

n 1 2 3 4 5 6 7 8

ζ(n) ∞ π2

6 1.202… π4

90 1.037… π6

945 1.008… π8

9450

Examples are
∫ ∞
0

x
ex−1dx = π2

6 ,
∫ ∞
0

x2

ex−1dx = 2.404 . . ., and
∫ ∞
0

x3

ex−1dx = π4

15 .

B.1.2 The Error Function

The error function is defined as

erf(x) = 2√
π

x∫

0

e−x2dx (B.10)

The complementary error function is erfc(x) ≡ 1 − erf(x). The error function
can only be evaluated numerically. As shown in the table below, erf(x) changes with
x almost linearly for x < 0.5 but approaches to unity rapidly as x increases.

x 0 0.01 0.1 0.2 0.5 1 2 3 ∞
erf(x) 0 0.0113 0.1125 0.2227 0.5205 0.8427 0.9953 0.99998 1

B.1.3 Stirling’s Formula

Stirling’s formula is an approximation of the logarithm of a factorial for large
numbers. Note that

ln x ! = ln 1 + ln 2 + ln 3 + · · · + ln x

=
x∑

n=1

ln n ≈
x∫

0

ln x dx = x ln x − x + 1 ≈ x ln x − x

More complicated analysis results in the same approximation for large x. Stirling’s
formula is expressed as

ln x ! ≈ x ln x − x, for x � 100 (B.11)
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The relative error of this approximation is 13.8% for x = 10 and less than 1% for
x > 100. Therefore, it is applicable for very large x.

B.2 The Method of Lagrange Multipliers

The method of Lagrange multipliers is a procedure for determining the maxi-
mum/minimum point in a continuous function subject to one or more constraints.
Consider a continuous function f (x1, x2, . . . , xn). At the maximum/minimum,

d f =
n∑

i=1

∂ f

∂xi
dxi = 0 (B.12)

Therefore, if xi and x j (i �= j) are independent, we must have

∂ f

∂xi
= 0, i = 1, 2, . . . , n (B.13)

If they are dependent and related by m(m < n) constraint equations (or
constraints), then

ψ j (x1, x2, . . . , xn) = 0, j = 1, 2, . . . ,m (B.14)

and

dψ j =
n∑

i=1

∂ψ j

∂xi
dxi = 0, j = 1, 2, . . . ,m (B.15)

Multiply β j to the jth equation in Eq. (B.15) and add to Eq. (B.12), we obtain

n∑

i=1

⎛

⎝ ∂ f

∂xi
+

m∑

j=1

β j
∂ψ j

∂xi

⎞

⎠dxi = 0 (B.16)

where β j ′s are called Lagrangian multipliers. For Eq. (B.16) to hold, we must have

∂ f

∂xi
+

m∑

j=1

β j
∂ψ j

∂xi
= 0, i = 1, 2, . . . , n (B.17)
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The n equations given about allow the determination of mβ j ′s and n − m
independent variables.

Example B.1 Determine the positive values of x, y, and z that will maximize the
function f (x, y, z) = 8xyz, subject to the constraint x

2

a2 + y2

b2 + z2

c2 = 1, where a, b,
and c are positive constants.

Solution The constraint equationmaybe rewritten asψ(x, y, z) = x2

a2 + y2

b2 + z2

c2 −1 =
0. Hence,

d f = 8yzdx + 8xzdy + 8xydz = 0

βdψ = 2βx

a2
dx + 2βy

b2
dy + 2βz

c2
dz = 0

Adding these two equations and setting the coefficients to zero, we have
8yz + 2βx/a2 = 0, 8xz + 2βy/b2 = 0, and 8xy + 2βz/c2 = 0; that is,
β = −4a2yz/x , β = −4b2xz/y, and β = −4c2xy/z. Dividing the product of the
three equations β3 = −64a2b2c2xyz by each equation gives β2 = 16a2b2c2(x2/a2),
β2 = 16a2b2c2(y2/b2), and β2 = 16a2b2c2(z2/c2). Solving for and substituting
x2/a2, y2/b2, and z2/c2 into the constraint equation, we obtain β = −4abc/

√
3.

Therefore, x = a/
√
3, y = b/

√
3, and z = c/

√
3. Thus, the maximum of the given

function under the specified constraint is fmax = 8abc/3
√
3 ≈ 1.54abc.

B.3 Permutation and Combination

This section discusses several permutation and combination problems that are
directly related to the derivation of equilibrium distributions of different types of par-
ticles, such as molecular gases, electrons in a conductor, electrons and holes in semi-
conductors, photons in a thermodynamic equilibrium, and phonons in a crystalline
solids. One of the important concepts in quantum statistics is related to the indistin-
guishable nature of particles, also known as identical particles or indiscernible parti-
cles.We can understand the indistinguishability by considering identical particles, for
which no way exists for us to track their trajectories (location and velocity to be able
to discern one from the other). These particles include photons, phonons, electrons,
protons, etc.

Case 1. How many ways can we arrange N distinguishable objects in a row?
There are N objects to select for the first place, N − 1 for the second, N − 2 for

the third, and so on. The number of permutations of N objects is therefore given by

NPN = N ! (B.18)

Case 2. How many ways can we arrange N objects out from a group of g
distinguishable objects (N ≤ g)?
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An equivalent problem is: How many ways can we put N distinguishable objects
in g distinguishable boxes with a limit that each box can at most have one object
(N ≤ g)? There are g ways of placing the first object, g − 1 ways of placing the
second, g − 2 ways of placing the third, …, and g − N + 1 ways of placing the N th
object. Therefore, the number of permutations of g objects taken N at a time is given
by

gPN = g(g − 1)(g − 2) · · · (g − N + 2)(g − N + 1) = g!
(g − N )! (B.19)

Case 3. How many ways can we put N distinguishable objects into g distinguish-
able boxes (without regard to order within the boxes)?

Because each box can contain any number of objects, there are g ways of placing
each object. Hence, the number of ways is

gN (B.20)

Here, g can be smaller than, equal to, or greater thanN. Note that this is equivalent
to the permutation problemwith repetition:Howmanyways canwearrangeNobjects
taken from g types of objects (each type hasmore thanN identical objects) by allowing
repetition?

Example B.2 a. How many 4-digit integers can be made from the numbers 1, 2, …,
and 9, without allowing repetition? b. Same as (a) but with repetition. c. Same as (b)
but with zero.

Solution a. There are 9× 8× 7× 6 = 3024. b. There are 9× 9× 9× 9 = 6561. c.
There are 9 × 10 × 10 × 10 = 9000, because the first number must not be zero for
it to be a 4-digit integer.

Example B.3 a. How many ways can we put 3 different books on 5 shelves without
caring about their order on each shelf? b. Same as (a) but each shelf cannot have
more than one book.

Solution a. Since each shelf can have any number of books and each book can go
to any shelf, the ways to put the books are 5× 5× 5 = 125. b. In this case, there are
5 × 4 × 3 = 60 ways only.

Case 4. How many ways can we choose N from g distinguishable objects without
caring about their order (N ≤ g)?

This is a combination problem. Because the order to arrange the objects is not
considered, the number of combinations ofN objects taken from a group of g objects
is then given by

gCN = g!
N !(g − N )! (B.21)
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An equivalent problem is:Howmany ways can we put N indistinguishable objects
in g distinguishable boxes with a limit of at most one object in each box?We learned
from Case 2 that there are g!/(g − N )! ways of placing N distinguishable objects in
g boxes. Now that theN objects are indistinguishable, the number of ways is reduced
by a factor of N!.

Case 5. How many ways can we place N distinguishable objects in r distinguish-
able boxes such that there are N1 objects in the first box, N2 in the second, …, and
Nr in the rth box?

Because the order within each box is not considered, we must divide the total
number of arrangements N! by the number of arrangements in each box, keeping in
mind that N1 + N2 + · · · + Nr = N . Therefore, the number of ways is

N !
N1!N2! · · · Nr ! = N !

r∏
i=1

Ni !
(B.22)

Case 6. How many ways can we place N indistinguishable objects in g
distinguishable boxes without limiting the number of objects per box?

The answer to this problem is less straightforward as compared with previous
cases. The order within each box does not matter since the objects are indistinguish-
able. Let’s use a dot for each object and use g − 1 slashes to separate them into g
groups such that:

Each arrangement corresponds to one way of placing N indistinguishable objects
in g distinguishable boxes. Although the slashes are identical, their order makes the
“boxes” distinguishable. Note that the dot and slash are symbols: each occupies one
location. The question becomes how many ways to select g − 1 slash locations out
from N + g − 1 total locations? Said differently, how many ways can we select N
dot locations out from N + g − 1 total locations? The answer is equivalent to the
combination problem given in Case 4, except that there are N +g−1 total locations,
i.e.,

(N + g − 1)!
N ! (g − 1)! (B.23)

The preceding discussions are very important for understanding statistical
thermodynamics as discussed in Chap. 3.

https://doi.org/10.1007/978-3-030-45039-7_3
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B.4 Events and Probabilities

If an evenly cast coin is tossed, the probability of ending up with a head or tail would
each be 0.5. Denote the occurrence of head as event A and that of tail as event B, we
can write the probability of each event as p(A) = 0.5 and p(B) = 0.5. In general,
the probability of any event is between 0 and 1, i.e.,

0 ≤ p(A) ≤ 1 (B.24)

If p(A) = 0, it is an impossible event, and if p(A) = 1, it is a certain event. If A*

is used for anything but A, then p(A)+ p(A∗) = 1. Two events may be dependent or
independent. If we toss the coin twice, the result of the second toss is independent of
that of the first. Similarly, if we throw two dice, the result of each die is independent
of that of the other. On the other hand, if two balls are drawn sequentially from a
box containing 3 red and 4 black balls, the probability of the second ball being red
depends upon whether the first ball is red or black. If A and B are independent events,
then the probability for both A and B to happen is

p(A and B) = p(A) × p(B) (B.25)

while the probability of either A or B to happen is

p(A or B) = p(A) + p(B) − p(A) × p(B) = 1 − p(A∗) × p(B∗) (B.26)

Example B.4 What is the probability of getting 7 if two dice are thrown?

Solution The numbers on the six faces of each die is 1, 2, 3, 4, 5, and 6. Therefore
the total number of combinations is 36. The combinations that yield 7 are (1,6), (2,5),
(3,4), (4,3), (5,2), and (6,1). Thus, there are 6 out of 36 combinations that will give
a sum of 7. The probability of getting 7 is then p(7) = 1/6. It can be shown that the
probability of getting 8 is p(8) = 5/36.

Consider an experiment for which the probability of event A to occur is φ. For a
single trial, the probability is φ for event A and 1−φ for anything but A. For N trials,
the probability for event A to occur M times is given by the following equation:

p(M) = NCM φM(1 − φ)N−M = N !
M !(N − M)!φ

M(1 − φ)N−M (B.27)

which is equal to the corresponding coefficient of the binomial equation (B.1) by
setting a = φ and b = 1 − φ.

Example B.5 Toss three coins, what are the probabilities for getting all tails, one
head and two tails, two heads and one tail, and all heads?

Solution Here φ = 0.5 and 1 − φ = 0.5. Notice that
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(
1

2
+ 1

2

)3

=
(
1
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+ 3

(
1

2

)2(1

2

)
+ 3

(
1

2

)(
1

2

)2

+
(
1

2

)3

= 1

8
+ 3

8
+ 3

8
+ 1

8

We have p(0) = 0.125, p(1) = 0.375, p(2) = 0.375, and p(3) = 0.125.

Example B.6 Calculate the probability for the number 4 to appear more than twice
in six tosses of a fairly weighted die.

Solution The probability of 4 to occur in one toss is φ = 1/6. Using Eq. (B.27), we
get

p(0) = 1 ×
(
1

6

)0

×
(
5

6

)6

≈ 0.3349

p(1) = 6 ×
(
1

6

)1

×
(
5

6

)5

≈ 0.4019

p(2) = 15 ×
(
1

6

)2

×
(
5

6

)4

≈ 0.2009

Therefore, p(> 2) = 1 − p(0) − p(1) − p(2) ≈ 0.0623.

B.5 Distribution Functions

Figure B.1 shows a plot of a surface roughness distribution (histogram) measured
from an atomic force microscope (AFM) for an unpolished silicon wafer within 50
μm × 1 μm area with a total of 512 × 10 = 5120 data points. The vertical axis
records the number of points with height between xi−1 and xi . Let N be the total
number of data points and Ni the number of points with a height greater or equal to
xi−1 but less than xi . Then, N = ∑

i Ni , and average and variance (mean-square
deviation) are

x̄i = 1

N

∑

i

xi Ni and uvar = 1

N

∑

i

(xi − x̄i )
2Ni (B.28)

The average is the mean surface height, and the square root of the variance is the
root-mean-square (rms) roughness, respectively. The rms value associated with a set
of measurements is called the standard deviation. If we randomly pick a point, the
probability for it to have a height between xi−1 and xi is

p(xi−1, xi ) = Ni/N (B.29)

For large N, we may expect a continuous distribution function,
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Figure B.1 Histogram of surface roughness for a silicon surface measured using an AFM

f (x) = lim

xi→0

(
Ni


xi

)

where 
xi = xi − xi−1, and f (x) is called a distribution function. By definition,

xi∫

xi−1

f (x)dx = Ni and

∞∫

−∞
f (x)dx = N (B.30)

The average and variance of the distribution can then be expressed as

x̄ = 1

N

∞∫

−∞
x f (x)dx and uvar = 1

N

∞∫

−∞
(x − x̄)2 f (x)dx (B.31)

The average of x2, x2is in general different from uvar:

x2 = 1

N

∞∫

−∞
x2 f (x)dx (B.32)

The distribution function f (x) may be normalized by dividing N to obtain

F(x) ≡ f (x)

N
(B.33)
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where F(x), the normalized distribution function, is called the probability density
function (PDF). It is related to the probability by,

p(x1, x2) =
x2∫

x1

F(x)dx, p(−∞, x) =
x∫

−∞
F(x)dx, and

d

dx
p(−∞, x) = F(x)

(B.34)

Note that the function P(x) = p(−∞, x) defined in Eq. (B.34) is called the
cumulative distribution function (CDF) whose value varies from 0 to 1. Furthermore,
it can be shown that

∞∫

−∞
F(x)dx = 1,

∞∫

−∞
xF(x)dx = x̄, and

∞∫

−∞
(x − x̄)2F(x)dx = uvar (B.35)

Example B.7 Under certain conditions, the x-component velocity (U) ofN particles
in a fixed volume obeys the following distribution (the Gaussian distribution or
normal distribution):

f (U ) = A exp

(
− U 2

2σ 2

)

where U ∈ (−∞,∞), and A and σ are positive constant. Determine the following:
(a) The number of particles N in the volume; (b) The probability density function,
F(U ); (c) The average velocity (Ū ); (d) The variance (uvar); and (e) the average of
U 2.

Solution Using the definitions and formulations given above, we have

(a) N = ∫ ∞
−∞ f (U )dU = ∫ ∞

−∞ A exp
(
− U 2

2σ 2

)
dU =A

√
2πσ ;

(b) F(U ) = f (U )

N = 1√
2πσ

exp
(
− U 2

2σ 2

)
;

(c) Ū = ∫ ∞
−∞ UF(U )dU = 0;

(d) uvar = ∫ ∞
−∞ U 2F(U )dU = σ 2; and

(e) U 2 = σ 2 = uvar because Ū = 0.

Discussion The general form of Gaussian probability density function is

F(x) = 1

σ
√
2π

exp

(
− (x − μ)2

2σ 2

)

It is a bell-shaped graph centered around x̄ = μ with uvar = σ 2. It has two
inflection points at x = μ ± σ , at which the second order derivative becomes zero.
If the Gaussian statistics is used to describe the variations of a set of experimen-
tal measurements, the standard deviation σ is called the standard uncertainty. The
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probability for a measurement to fall within |x − μ| < σ is 68% and increases to
95% within |x − μ| < 2σ . The expanded uncertainty is usually defined based on
the 95% confidence interval, which is approximately 2σ for Gaussian statistics.

B.6 Complex Variables

A complex quantity z may be expressed in terms of a real component x = Re(z) and
an imaginary component y = Im(z) so that

z = x + iy (B.36)

where i = √−1 and x and y are both real. The most convenient way to understand a
complex variable is to use the complex plane shown in Fig. B.2. The expression of a
complex number is very similar to a two-dimensional vector. Notice that r = |z| =√
x2 + y2 is the magnitude or complex modulus and φ = arg |z| = tan−1(y/x) is

the phase or complex argument of z. It is obvious that x = r cosφ and y = r sin φ.
By defining

eiφ = cosφ + i sin φ (B.37)

We can also express the complex quantity in terms of its magnitude and phase as
follows:

z = reiφ (B.38)

Figure B.2 Illustration of
the complex plane and
complex quantity



Appendix B: Mathematical Background 737

The complex conjugate is defined as

z∗ = x − iy = re−iφ (B.39)

Hence,

zz∗ = x2 + y2 = r2 = |z|2 (B.40)

Most of the algebra for real variables can be transformed straightforwardly to
complex algebra. For example, if A = A′+iA′′ = rAeiφA and B = B ′+iB ′′ = rBeiφB ,
then

A ± B = (A′ ± B ′) + i(A′′ + B ′′) and AB = rArBe
i(φA+φB ) (B.41)

It can be shown that

(A ± B)∗ = A∗ + B∗ and (AB)∗ = A∗B∗ (B.42)

Furthermore,

An = rneinφ = rn(cos nφ + i sin nφ) (B.43)

Example B.8 Suppose z = −1 + iδ, where the real number δ  1. First evaluate
y = z2 and then evaluate x = y1/2.

Solution Clearly z is in the second quadrant of the complex plane and y = 1 −
i2δ − δ2 = (1 − δ2) − i2δ is in the fourth quadrant. Alternatively, we can write z =√
1 + δ2eiφ , where φ = tan−1(−δ) ≈ π − δ for small δ. Hence, y = (1+ δ2)ei2φ ≈

(1+ δ2)ei(2π−2δ) = (1+ δ2)e−i2δ . Finally, x = y1/2 = √
1 + δ2e−iδ ≈ 1− iδ = −z.

However, if we use y ≈ (1 + δ2)ei(2π−2δ), we will end up with x = √
z2 = z.

This example shows that multiple solutions often exist in complex algebra. Which
solution should be accepted depends on the particular physical problem. Care must
be taken when using a computer to do complex calculations to ensure that the final
solution is physical.

Sometimes we may deal with problems involving a complex quantity z with a
complex magnitude α = α′ + iα′′ and a complex phase β = β ′ + iβ ′′ such that

z = αeiβ (B.44)

It can be considered as the multiplication of two complex quantities, such that
|z| = e−β ′′√

α′ 2 + α′′ 2, and arg(z) = arg(α) + β ′. Alternatively, we can write
Re(z) = α′e−β ′′

cosβ ′ − α′′e−β ′′
sin β ′ and Im(z) = α′e−β ′′

sin β ′ + α′′e−β ′′
cosβ ′.

Note that |eiβ | = e−β ′′
, which is not equal to 1 unless β ′′ is zero.

Complex functions f = f (z) can be defined when z is a complex variable. The
differentiation and integration can also be performed. In addition to the difficulty in
dealing with multiple solutions, singularities are frequently involved.
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B.7 The Plane Wave Solution

The wave equation is a hyperbolic equation. In the one-dimensional case, it is given
as

∂2u

∂x2
= 1

c2
∂2u

∂t2
(B.45)

where x is the spatial coordinate and t is the time. It can be verified that the following
is a solution of the wave equation:

u(x, t) = A cos(kx − ωt) (B.46)

as long as k = ω/c. Note that any analytic function of (x ± ct) would satisfy Eq.
(B.45). Hence, Eq. (B.46) is only a special solution that we choose to illustrate
the nature of the wave equation. Let us further simply the problem by taking only
positive values of A, k, ω, and c. Figure B.3 shows the spatial dependence of the
wave function at t = 0 and t = δt . Clearly, A is the amplitude of the wave. The
period in space, which is the wavelength λ, is related to k by

k = 2π

λ
(B.47)

Therefore, k is called the wavevector because it is a vector in the 3D coordinates
with a magnitude k. The wavenumber is defined as the number of waves per unit
length, i.e., ν̄ = 1/λ. From the time dependence, we can see that the period T =
2π/ω. The frequency is the number of periods (cycles) per unit time, hence, ν = 1/T ,
with a unit Hz. Therefore, ω = 2πν is called the angular frequency with a unit rad/s.
Notice thatψ = kx −ωt is called the phase. The speed of propagation is determined
by the movement of the constant phase position:

Figure B.3 Illustration of
the wave function and phase
speed
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vp =
(
dx

dt

)

ψ

= ω

k
= c (B.48)

We have just shown that c is the speed of propagation of the wave or the phase
speed. In a 3D case, the wave equation is written as

∇2u = 1

c2
∂2u

∂t2
(B.49)

where ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 . The solution for a given frequency may be expressed
as

u(r, t) = Aeik·r−iωt (B.50)

where k = kx x̂+ky ŷ+kz ẑ is called thewavevector and its magnitude is k = 2π/λ =
(k2x + k2y + k2z )

1/2. It can be shown that Eq. (B.50) represents a plane wave whose
constant phase plane is always perpendicular to k, and this wave propagates in the k
direction. Furthermore, using the plane wave solution, we see that

∂

∂x
u = ikxu,

∂

∂y
u = ikyu, and

∂

∂z
u = ikxu

or the gradient

∇u =
(
x̂

∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

)
u = ik u (B.51)

Similarly,

∇2u = −k2u (B.52)

In the above discussion, u is treated as a scalar. Frequently, we need to deal with
a vector function, such as the electric field E, the wave equation can be written as

∇2E = 1

c2
∂2E
∂t2

(B.53)

Its solution can be expressed as

E(r, t) = A exp(ik · r − iωt) (B.54)

where the amplitude A is also a vector. It can be shown that

∂

∂x
Ex = ikx Ex ,

∂

∂y
Ey = iky Ey, and

∂

∂z
Ez = ikx Ez
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Thus, the divergence is

∇ · E = ∂Ex

∂x
+ ∂Ey

∂y
+ ∂Ez

∂y
= ik · E (B.55)

the curl is

∇ × E =
⎛

⎜⎝
x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

Ex Ey Ez

⎞

⎟⎠ =
⎛

⎝
x̂ ŷ ẑ
ikx iky ikz
Ex Ey Ez

⎞

⎠ = ik × E (B.56)

and

∇2E = −k2E (B.57)

Equation (B.54) represents a monochromatic wave solution. For polychromatic
waves with multiple frequencies, the phase speed is frequency dependent in a dis-
persive medium. In such as case, waves of different frequency will travel at different
speeds. A wave group (or wave packet) contains waves of more than one frequency.
The group velocity represents the velocity of energy carried by the wave packet and
is given by

vg = dω

dk
= x̂

dω

dkx
+ ŷ

dω

dky
+ ẑ

dω

dkz
(B.58)

The functional relation ω = ω(k) is called a dispersion relation. In the 1D case,
we can express Eq. (B.58) as

vg = dω/dk (B.59)

If the phase speed c = ω/k is constant, we say that the dispersion relationω = ck
is linear. Subsequently, the group velocity is the same as the phase velocity because
vg = dω/dk = c = ω/k = vp.

Example B.9 Consider light propagating in a glass whose refractive index n =
1.5+αω2, where α is a very small coefficient. Find the dispersion relation, the phase
speed and group speed as functions of ω.

Solution The speed of light in a medium c = c0/n, where n is the refractive index.
Therefore, vp(ω) = ω/k = c = c0/(1.5 + αω2). The dispersion relation is given
by 1.5ω + αω3 = c0k. The group speed vg(ω) = (dk/dω)−1 = c0/(1.5 + 3αω2) =
c0/ng, where ng = n + ωdn/dω is called the group index.

Some useful vector operators and identities are given below for convenience:

A · B = B · A (B.60)

https://doi.org/10.1007/978-3-030-45039-7_8
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A × B = −B × A (B.61)

A × (B × C) = (C × B) × A = (A · C)B − (A · B)C (B.62)

A · (B × C) = B · (C × A) = C · (A × B) = det(ABC) (B.63)

∇ × (∇ × A) = ∇(∇ · A) − ∇2A (B.64)

∇ · (φA) = φ∇ · A + A · ∇φ (B.65)

∇ × (φA) = φ∇ × A + ∇φ × A (B.66)

∇ · (A × B) = B · (∇ × A) − A · (∇ × B) (B.67)

∇ × (A × B) = (B · ∇)A − B(∇ · A) + A(∇ · B) − (A · ∇)B (B.68)

and

∇(A · B) = A × (∇ × B) + (A · ∇)B + B × (∇ × A) + (B · ∇)A (B.69)

If A is a constant matrix, say A = K then Eqs. (B.68) and (B.69) reduce
respectively to

∇ × (K × B) = K(∇ · B) − (K · ∇)B

∇(K · B) = K × (∇ × B) + (K · ∇)B

The divergence theorem or Gauss’s theorem can be expressed as

˚

V

∇ · E dV =
∫∫
©
A

E · n dA (B.70)

It states that the integral of the divergence over the entire volume is equal to the
surface integral over the enclosed surface. The curl theoremorGreen’s theorem states
that

¨

A

(∇ × E) · ndA =
∮

C

E · dr (B.71)

In this equation, it is assumed that C is a closed, piecewise smooth curve that
bounds the surface area A. The equation converts a surface integration of the curl
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of a vector to a line integration of the vector. Both the divergence theorem and curl
theorem can be considered special cases of Stokes’ theorem.

B.8 The Sommerfeld Expansion

In the free-electron theory discussed in Chap. 5, the integration often includes the
Fermi-Dirac function

fFD(ε, T ) = 1

e(ε−μ)/kBT + 1
(B.72)

where ε and μ are the electron energy and chemical potential, kB is the Boltzmann
constant, and T is absolute temperature. Unless the temperature is very high, kBT 
μ; note that μ is a weak function of temperature, μ = μ(T ). At T → 0 K, the
chemical potential is called the Fermi energy μF = μ(0). However, the chemical
potential μ is often called Fermi level or Fermi energy as well in many texts. At very
low temperatures, fFD(ε, 0) ≡ fFD(ε, T → 0) = 1 for ε < μ, and fFD(ε, 0) =
0 for ε > μ, as illustrated in Fig. 5.5a. Thus,

∞∫

0

G(ε) fFD(ε, 0)dε =
μF∫

0

G(ε)dε (B.73)

When kBT  μ, fFD(ε, T ) is essentially the same as fFD(ε, 0), except when
|ε − μ| < kBT . The integration at intermediate temperatures will be discussed later.
The following approximation is often used when kBT  μ:

μ∫

0

G(ε)dε =
μF∫

0

G(ε)dε + (μ − μF)G(μF) + · · · (B.74)

Let us now consider the derivative

∂

∂ε
fFD(ε, T ) = − 1

kBT

e(ε−μ)/kBT

[
e(ε−μ)/kBT + 1

] (B.75)

The derivative is nonzero only when |ε − μ| < kBT . When T → 0, the peak at
ε = μ goes to infinite. Note that

∞∫

0

∂ fFD
∂ε

dε =
∞∫

0

d fFD = fFD|∞0 = 0 − 1 = −1

https://doi.org/10.1007/978-3-030-45039-7_5
https://doi.org/10.1007/978-3-030-45039-7_5
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Therefore, ∂ fFD/∂ε is a Dirac delta function, i.e.,

∂ fFD
∂ε

≈ −δ(ε − μ), kBT  μ (B.76)

Hence,

∞∫

0

G(ε)
∂ fFD
∂ε

dε ≈ −G(μ), kBT  μ (B.77)

The above equation is exact only at absolute zero temperature. A difficulty arises
when the integrand contains terms such as (ε − μ) or (ε − μ)2. In this case, higher-
order terms must be retained. Sommerfeld in 1927 developed an expansion to handle
the integral. A detailed discussion can be found from the work of J. McDougall and
E.C. Stoner, Phil. Trans. Roy. Soc. Lond., Series A, 237, 67 (1938). The approx-
imations necessary for the free-electron model of metals are discussed below. At
intermediate temperatures when T > 0 K, Eq. (B.73) can be written in terms of an
expansion as follows:

∞∫

0

G(ε) fFDdε =
μ∫

0

G(ε)dε + π2(kBT )2

6
G ′(μ) + 7π4(kBT )4

360
G ′′′(μ) + · · ·

(B.78)

where G ′(μ) = dG
dε

∣∣
ε=μ

and G ′′′(μ) = d3G
dε3

∣∣∣
ε=μ

.

Example B.10 When G(0) = 0, show that

∞∫

0

G(ε)(ε − μ)

(
−∂ fFD

∂ε

)
dε ≈ π2(kBT )2

3
G ′(μ) (B.79)

and

∞∫

0

G(ε)(ε − μ)2
(

−∂ fFD
∂ε

)
dε ≈ π2(kBT )2

3
G(μ) (B.80)

Solution We can use Eq. (B.78) by dropping the termwith (kBT )4G ′′′(μ) and higher
order terms.

∞∫

0

G(ε)(ε − μ)

(
−∂ fFD

∂ε

)
dε
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= − fFDG(ε)(ε − μ)|∞0 +
∞∫

0

G(ε) fFDdε +
∞∫

0

(ε − μ)G ′(ε) fFDdε

=
μ∫

0

G(ε)dε + π2(kBT )2

6
G ′(μ) +

μ∫

0

(ε − μ)G ′(ε)dε + π2(kBT )2

6
G ′(μ)

= π2(kBT )2

3
G ′(μ)

since
∫ μ

0 (ε − μ)G ′(ε)dε = (ε − μ)G(ε)|μ0 − ∫ μ

0 G(ε)dε = − ∫ μ

0 G(ε)dε. This
proves Eq. (B.79). The proof of Eq. (B.80) is similar and it is left as an exercise.

Another useful equation is

∂ fFD
∂T

= e(ε−μ)/kBT

[
e(ε−μ)/kBT + 1

]2
1

kBT

(
−ε − μ

T
− dμ

dT

)
= −∂ fFD

∂T

(
ε − μ

T
+ dμ

dT

)

(B.81)

If we neglect dμ/dT , then

∂ fFD
∂T

≈ −∂ fFD
∂ε

(
ε − μ

T

)
(B.82)
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A
Ab initio, 239, 303, 305, 311, 313, 462, 463
Absorbing, dissipative, or lossy medium,

417, 440, 442, 443, 498, 504, 520
Absorptance or absorptivity, 64, 328, 392,

408, 427, 437, 440–442, 450–452,
472, 476, 482, 499, 504, 515, 521,
536, 538, 559, 573, 576, 585–587,
590–598, 627, 665, 699

Absorption
by free carriers, 465
fundamental or interband, 454, 597
intraband or intersubband, 468
local absorption distribution, 571, 596
phonons or lattice vibrations, 213, 297,
298, 464, 557, 605

Absorption bands, 103, 460, 500, 559, 595,
652

Absorption coefficients, 74, 120, 366, 420,
462–464, 472, 489, 492, 537

Absorption edge, 454, 462
Absorption spectra, gases, 103
Acceptance cone, 521
Acceptors, 8, 262, 323
Accommodation coefficients, 160, 161, 165,

166, 168, 658
Acoustically thick or thin limits, 365, 367,

369, 370, 373, 375
Acoustic Mismatch Model (AMM), 378,

381, 382, 398
Acoustic waves, 179, 208, 213, 293, 414
Active medium, 120
Adiabatic availability, 44, 69
Advection, 59, 60, 153
Affinity, 225
Airy’s formulae, 503, 649, 670
Ampere’s law, 684

Angle of incidence, 64, 235, 438, 439, 442,
443, 480, 485, 487, 491, 499, 531,
533, 536, 538, 541, 554, 578, 593,
605, 627, 629, 636, 640

Anharmonic vibration, 116, 189, 289, 309
Anomalous dispersion, 460
Anomalous skin effect, 458
Antireflection coating, 502, 507, 520
Anti-Stokes, 298, 299
Apertureless NSOM, 624
Aperture, numerical, 521
Atomic binding, 263
Atomic emission, 62, 113, 114, 507
Atomic Force Microscope (AFM), 17, 18,

173, 303, 388, 390, 541, 544–547,
624, 653, 688, 696, 698, 733, 734

Atomic theory, 6, 7, 258
Atomistic Green’s Function (AGF), 378,

382–384, 396
Atomistic simulation, 148, 303
Attenuated Total Reflectance (ATR), 483,

552–555, 562, 563, 612
Aufbau principle, 259
Autocorrelation function, 313, 541, 544
Autocorrelation length, 382, 512, 514, 539
Autocovariance function, 512
Average collision distance, 26, 138, 141
Avogadro’s constant, 52, 723

B
Ballistic-diffusion approximation, 375
Ballistic or ballistic regime, 158, 168, 170,

211, 227, 230, 239, 241, 242, 244,
301, 317, 345, 346, 359, 364, 367,
370, 371, 375–377, 385, 395, 658,
663
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Balmer series, 114
Bandgap

direct or indirect, 273, 462, 463, 474
Band structures (electronic)

allowable band, 260, 280
conduction band, 260–262, 282–284,
286, 321, 322, 326, 328, 329, 454,
462–465

extended-zone scheme, 280, 281
forbidden band, 260, 322
of photonic crystals, ix
reduced-zone scheme, 280, 281
valence band, 260–262, 282–284, 286,
321, 326, 328, 329, 454, 462–465

Bidirectional reflectance, 472, 473, 606
Bidirectional ReflectanceDistribution Func-

tion (BRDF)
BRDF measurements, 546
microfacet slope method (MSM), 541,
542, 546–548

Monte Carlo method, 540, 541, 546, 547
reciprocity, 449, 452
surface generation method (SGM), 541,
546

Binding energy, 263–265, 314, 315
Birefringence, 526
Blackbody

cavity, 62, 63, 289, 422, 423, 427, 451,
473, 474

concept, 558
enclosure, 450

Blackbody radiation
cosmic background, 427, 489
dilute, 436, 490
solar radiation, 490
spectral distribution, 7, 63, 409, 473, 474

Bloch–Floquet condition, 534, 556
Bloch formula, 201
Bloch theorem, 277, 582
Bloch (wave) condition, 527, 529
Bloch wavevector, 528–530, 582, 634
Bohr radius, 114
Bolometer, 327, 409, 427, 473, 476–478,

492, 591
Boltzmann constant, 52, 63, 88, 94, 123, 427,

723, 742
Boltzmann Transport Equation (BTE)

Peierls–Boltzmann equation, 208, 294,
310

Boltzons, 86
Born–Oppenheimer approximation, 305
Born–von Kármán periodic conditions, 189,

196

Boron Arsenide (BAs), 293
Boron nitride (hexagonal), hBN, 289, 384,

501, 582, 663, 667
Bose–Einstein (BE) statistics, 124, 179, 258,

292, 294, 367, 422
Bose–Einstein condensate, 26, 90, 122, 410
Bose–Einstein distribution function, 179,

422, 706
Bosons, 86, 89, 90, 123, 180
Boundary conditions, electrodynamics, 437,

439
Boundary Element Method (BEM), 159,

533, 558, 678, 688
Boundary layers (velocity, thermal), 59, 73
Boundary scattering, 4, 27, 157, 168, 200,

201, 203, 207, 209, 211, 224, 227–
231, 234–236, 238, 239, 244, 293,
296, 310, 346, 360–362, 365, 384,
388, 658

Boyle’s law, 134
Bragg reflectors, 11, 470, 530, 531
Bravais lattices, type of, 266
Brewster angle, 443, 452, 491, 492, 531
Brewster window, 427
Brightness temperature, 428
Brillouin zone, first, 275, 276, 278–282, 286,

290, 291, 293, 294, 308, 309, 313,
556, 679

Brownian motion, 119, 156, 314
Buckminsterfullerene, 14
Built-in potential, 329–331, 333

C
Carbon Nanotubes (CNTs)

field emission, 14, 320
specific heat, 189, 193, 198, 244
thermal conductivity, 3, 14, 57, 244, 335,
389

Casimir force, Casimir–Lifshitz force, 648,
678, 681, 688

Casimir limit, 369
Cattaneo equation, 349, 352, 354, 356, 364,

396, 397
Causality, principle of, 347, 348, 364, 419,

454
Cavity resonance, 589, 590, 600, 682, 699
Characteristic functions, 45, 69
Characteristic lengths, 4, 5, 114, 149, 153,

156, 157, 201, 227, 238, 293, 317,
345, 396

Characteristic temperatures
Einstein temperature, 177
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for rotation, translation, or vibration, 98–
100, 102

see Debye temperature, 177
Charge-Coupled Device (CCD), 12, 156,

479, 480
Chemical bonds, see atomic binding
Chemical etching, 545
Chemical potential, 39, 46, 47, 89, 105, 207,

217, 241, 572–576, 591, 593, 597,
667, 682, 705–707, 742

Chemical Vapor Deposition (CVD), 14, 18,
284, 301, 497, 514, 571, 602, 606

Christiansen wavelength, 461
Classifications of solids, 258
Clausius–Mossotti polarizability, 691
Coherence

degree of, 498, 508–511
spatial, temporal, 600, 605–607

Coherent thermal emission, 517, 582, 585,
600, 604

Collision frequency (or rate), 135, 136
ComplementaryMetal-Oxide-Semiconductor

(CMOS), 22, 479, 536, 538
Complex conductivity, 419, 456
Complex planes, 470, 736, 737
Complex refractive index, 410, 418, 419,

455, 472, 489, 540
Complex variables, 412, 503, 736
Conductance quantization, see quantum

conductance, 242
Conductors, 197, 203, 213, 217, 226, 241,

244, 255–258, 260, 263, 274, 282,
315, 411, 417, 418, 468, 491, 573,
574, 644, 729

Conservative equations, 153
Constitutive equations, 152, 355, 411, 412,

460
Constraints, 35, 84, 179, 436, 728, 729
Contact resistance, thermal, 378, 484
Continuity equation, 61, 153, 225, 411
Continuum assumption or regime, 2, 3, 155–

159, 172, 345, 364
Corpuscular theory, 6, 79
Correlation function, spatial, 647
Cosmic background radiation, 427, 489
Coulomb’s force, 113
Creation or annihilation reactions, 121
Critical angle, 379, 380, 442, 444, 447, 522,

555, 587, 627, 629, 631, 640, 641,
654

Critical point (pressure, temperature), 48,
49, 90, 327, 467, 477

Crystal momentum, 292, 294, 297

Crystal structures, 5, 262, 265, 269, 271, 274,
275, 386, 663

Crystal, types of
covalent, 264, 265
ionic, 263, 271, 549
molecular, 265
polycrystalline, 8, 210, 227, 231, 265,
361, 536, 538

Current density, electrical, 199, 200, 206,
217, 220, 233, 257, 315, 316, 318,
320, 331, 333, 411, 417, 456, 646

D
Damping coefficients, 200, 459, 564
Dark current, 333
De Broglie wavelength, 80, 109, 126, 187,

235, 248
Debye model, Debye temperature, 177–183,

188, 195, 196, 201, 202, 205, 208,
211, 245, 247, 296, 297, 303, 361,
367–369, 374–376, 381, 382, 384

Defect (or impurity) scattering, 200–202,
204, 208, 209, 211, 244, 296, 297,
310, 327, 365, 467

Degeneracy, 81–83, 86, 93, 98, 99, 110, 112,
116, 123–126, 179, 183, 239, 241,
244, 259, 282, 293, 410, 422

Degrees of freedom, 97, 98, 100–104, 126,
161, 176, 305, 702

Density-Functional Perturbation Theory
(DFPT), 305, 307, 386, 462

Density-Functional Theory (DFT), 286,
304–306, 386

Density Of States (DOS)
for electrons, 239
for phonons, 208
in 1D or 2D solid, 192, 239
in semiconductors, 322
local density of states (LDOS), 19, 646,
648–650, 673, 675, 704

quantization, 198
Dielectric functions, 410, 417–419, 438,

453–460, 462, 467, 468, 488, 489,
491, 492, 533, 535–538, 549–551,
554–558, 566, 567, 574, 578, 579,
583–586, 593, 595, 596, 633, 644–
646, 653, 656, 657, 659, 660, 664,
666, 667, 669, 670, 685

Diffraction grating, see gratings, 532
Diffraction limit, 21, 187, 559, 705
Diffraction order, 480, 533, 535, 536, 556,

557, 569, 589, 680
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Diffuse emitter, 63, 603
Diffuse-gray surface, 64, 373, 490
Diffuse Mismatch Model (DMM), 381, 382,

398
Diffusion coefficient, binary, 143–145, 171
Diffusion length, thermal, 329
Diffusion (particles, heat, mass, momen-

tum), 138–145, 155, 167–169
Diffusivity (mass, momentum, or thermal),

61, 144, 210, 211, 329, 347, 386, 387,
395

Digital Voltmeter/Multimeter (DVM), 220
Dimensionality for solids, 191–193, 245
Dipole moment, 146, 265, 460, 549, 690–

692
Dipoles

electric dipole, 443, 454, 677, 686, 690,
694

induced dipole, 147, 148, 265
magnetic dipole, 443, 553, 559, 677, 693
thermally excited dipole, 646

Dirac delta function, 206, 247, 309, 449, 468,
647, 743

Direct Simulation Monte Carlo (DSMC),
149, 158–160

Discrete Dipole Approximation (DDA),
thermal, 678, 690, 693, 694

Discrete ordinates method, 375
Dispersion relation, 27, 183, 191, 192, 194,

195, 198, 208, 212, 237, 243, 255,
290, 291, 300, 301, 307, 309, 310,
334, 502, 554–556, 561, 575, 579,
582, 587–589, 605, 606, 660, 689,
740

Distribution functions, 81, 86, 123, 125, 129,
130, 133, 134, 150, 153, 154, 159,
181, 183, 185, 187, 205, 207, 209,
231, 232, 237, 238, 241, 242, 246,
295, 314–316, 320, 321, 345, 348,
354, 359, 365–367, 369, 379, 381,
397, 410, 437, 448, 450, 473, 538,
541, 542, 632, 685, 706, 733–735

Donor, 8, 262, 323, 465, 654, 655
Doping concentration, 73, 323, 334, 467,

492, 579, 656–658, 680, 698
Doppler shift, 90
Double Negative (DNG) materials, 488
Drift velocity, 199, 200, 256, 324, 326, 329,

335
Drude–Lorentz theory, 199
Drude model for free carriers, 456
Duality between electric andmagnetic quan-

tities, 442

Dual-phase-lag model, 354–356, 396
Dulong-Petit law, 177, 188, 368

E
Effectivemass, 239, 284, 287, 317, 322, 324,

325, 458, 463–466
Effective Medium Approximation (EMA),

538, 584
Effective medium formulation, 497, 533,

536–538
Effective Medium Theory (EMT), 526, 537,

538, 578, 579, 581–584, 589, 593,
664, 666, 667, 680, 681, 683, 686

Effective temperature
electrons, 360
nonequilibrium, 364, 365, 376
phonons or lattice, 359, 360

Effective thermal conductivity, 169, 228,
249, 301, 346, 365, 375–377, 397,
398

Eigenfunction, 107–109, 189, 197, 536
Eigenvalue, 107, 109, 112, 113, 115, 116,

126, 242, 309, 529, 530
Einstein coefficient, 118, 119
Einstein model of specific heat, 178, 182,

245
Einstein relation, 329
Electrical conductivity, 199–201, 203, 206–

208, 218, 222, 224, 227, 228, 233,
234, 236, 247, 258, 259, 261, 262,
265, 284, 288, 301, 322, 324, 325,
334, 338, 378, 456

Electrical resistivity, 185, 201, 202, 208,
221, 247, 325, 337

Electrochemical potential, 217, 241
Electromagnetic spectrum, 4, 5
Electromagnetic waves, 6, 22, 27, 56, 62, 64,

66, 79, 80, 179, 213, 276, 294, 313,
319, 385, 407, 408, 410, 413–415,
417, 422, 426, 430, 453, 469, 488,
497, 518, 522, 525, 527, 528, 539–
541, 549, 551–553, 556, 564, 586,
602, 603, 607, 608, 623, 624, 627,
638, 639, 646, 662, 684, 685

Electromotive Force (EMF), 219
Electron–phonon coupling constant, 360,

391, 397
Electron–phonon scattering, 200–202, 204,

207, 208, 244, 297, 361, 365
Electron spin degeneracy, 241, 244
Electron configuration, 258–260, 281, 335
Electronic transitions



Index 749

bound–bound, bound–free, free–free, 65
bound-bound, bound-free, free-free, 117
intraband or interband, 282, 298, 309,
392, 453, 454, 456, 458, 462–464, 572,
585, 592, 598, 602

Electron microscopy, 7, 22, 187
Electron tunneling, 16, 27, 255, 318–320,

628
Electrostatic force, 146, 263
Electrostatic limit, 558, 642
Electrostatic potential, 217, 219, 241
Ellipsometry, 473, 487, 488
Emission of photons

atomic, 117
fluorescence, luminescence, or phospho-
rescence, 334

radiative transitions, 118
spontaneous or stimulated, 117–120
thermal, 118, 119

Emissive power, 63, 64, 372, 373, 423–425,
430, 433, 450, 451, 489, 631, 633,
653

Emissivity or emittance, 64, 65, 370, 376,
377, 408, 427, 429, 435, 437, 450–
453, 461, 472–474, 482, 484, 490–
492, 539, 544, 547, 568, 569, 594,
599–607, 631, 650, 651, 655, 699

Energy density, 70, 119, 368, 369, 417,
423, 430, 437, 521, 571, 598, 626,
648–650, 704

Energy levels, 11, 26, 65, 76–78, 81–83, 87,
89, 90, 93, 98–100, 104, 109, 112–
114, 116–119, 123, 124, 177, 179,
186, 189, 190, 198, 239, 240, 259–
261, 280, 314, 315, 318, 323, 360,
410

Energy storage modes, 97
Energy streamlines, 581, 582, 626, 627,

639–644, 660, 661, 666, 667
Energy transmission coefficient, 650, 653,

662, 667, 668, 672, 679, 683, 684
Entropy

definition in statistical mechanics, 488
entropy intensity, 430, 432, 434–436,
490

generation by irreversibility, 434
radiation entropy, 27, 430, 436

Equation of Phonon Radiative Transfer
(EPRT), 27, 211, 236, 346, 365, 366,
368, 371, 375, 396, 436

Equation of Radiative Transfer (ERT), 66,
67, 129, 366, 375, 434

Equation of state, 44, 50–52, 54, 93, 147

Equilibrium
chemical, mechanical, thermal, 26, 40,
41, 56, 64, 69, 117–119, 161, 327, 329,
330, 333, 345, 352, 358, 362, 379, 408,
423, 433, 435, 451, 452, 625, 626, 646,
647, 672, 678, 693, 706

stable-equilibrium state principle, 37
Equipartition principle, 101, 177, 187, 409
E-S graph, 43, 50, 69
Eucken’s formula, 141
Euler relation, 46, 47
Evanescent waves, 410, 420, 421, 442, 444,

483, 488, 489, 491, 526, 531, 534,
537, 552–555, 559–562, 564, 586,
587, 605, 608, 625, 627–629, 632–
635, 637–642, 644, 646, 650, 651,
653, 654, 657, 661, 704

Ewald–Oseen extinction theorem, 443
Extinction coefficient, 418, 455, 457, 460,

461, 465, 466, 471, 473, 489, 492,
498, 505, 506, 525, 655

Extinction theorem, 443
Extraordinary Optical Transmission (EOT),

585, 589

F
Fabry–Perot interferometer, 515, 516
Fabry–Perot resonator, 517
Faraday’s law, 411, 684
Fermat’s least-time principle, 408
Fermi–Dirac (FD) statistics, 185, 258
Fermi–Dirac function or Fermi function,

183, 185, 205, 206, 246
Fermi’s golden rule, 307, 309, 310
Fermi-Dirac (FD) statistics, 81–83, 85–87,

90, 122
Fermi-Dirac function or Fermi function, 742
Fermi energy or level, 86, 183, 185, 186, 198,

205–207, 242, 246, 260–262, 281,
282, 286–288, 314, 315, 318, 322,
323, 329–331, 337, 572, 707, 742

Fermions, 15, 86, 90, 123, 287, 571
Fermi velocity, 186, 187, 200, 203, 246, 287,

298, 329, 347
Fick’s law, 142, 143, 329
Field emission, 14, 255, 318, 320, 334
Figure of merit (ZT), 18, 224, 301, 477
Filling ratio, 533, 536–538, 556, 567, 579,

583, 584, 593, 664, 666, 667, 682,
686, 687

Finite-Difference Time-Domain (FDTD)
method, 594, 684
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Finite-Element Method (FEM), 159, 533,
558

First law of thermodynamics, 36, 37
First-principlesmethod (or simulation), 293,

304, 462
Fluctuating electric current, 645
Fluctuational electrodynamics, 453, 634,

645, 646, 690, 695, 701
Fluctuation–dissipation theorem, 312, 453,

623, 645, 673, 692, 698
Fluxes (particle, charge, heat, momentum,

etc.), 3, 18, 56–58, 60, 62, 63, 65, 67,
74, 132, 138, 141, 154, 163–170, 173,
198, 207, 217, 220, 234, 237, 311,
312, 315, 347–349, 351, 352, 354–
356, 364, 368–370, 372, 373, 375–
380, 382, 383, 386, 396, 397, 407,
411, 489, 631–633, 644, 652–660,
663–665, 669, 671–673, 677, 679–
683, 686, 687, 695–697, 699, 700,
702, 704

Fourier’s law, 27, 56, 58, 60, 129, 141, 154,
155, 167, 170, 211, 231, 310, 311,
331, 345, 346, 348, 352–354, 356,
357, 360, 363–365, 367, 376–378,
384, 385, 396, 397

Fourier-transform infrared spectrometer,
103, 478, 481, 482, 701

Free-electron gas, 81, 110, 183, 246, 260,
265, 314, 315, 321

Free molecule flow, 27, 156, 158–160, 166,
170, 211, 228, 367

Free spectral range, 504–506, 510–512, 517,
531

Fresnel’s coefficients, 504, 574, 578, 630
Fresnel’s rhomb, 446
Friction factor, 60
Frustrated total internal reflection, 627, 654,

662
Fullerene, 14, 23, 198, 263, 311
Full-Width-at-Half-Maximum (FWHM),

517, 603, 607, 660
Fundamental relation, 39, 44, 45, 69

G
Gain medium, 120
Galvanometer, 219, 409, 476
Gauss’s law, 411, 412
Gauss’s theorem, 412, 489, 741
General dielectric, 412
Generation of electron–hole pairs, 327, 332,

475

Geometric optics approximation, 539
Giant Magnetoresistive (GMR) effect, 257
Gibbs–Duhem relation, 46, 47
Gibbs free energy, 45, 47, 91, 92
Gibbs relation, 39, 46
Globar (IR source), 474, 475
Goos–Hänchen shift, 444, 642
Graphene, 14, 15, 197, 198, 246, 274, 275,

284, 286–289, 293, 300, 334, 337,
384, 390, 398, 551, 571–576, 580,
585, 586, 590–592, 597, 598, 608,
663, 667–673, 679, 682–684, 693,
698, 702

Graphene surface plasmon, 574, 668, 671,
683, 702

Gratings, surface relief
complex gratings, 601
diffraction order, 480
grating equation, 480, 526, 534
surface plasmon excitation in, 517
wood’s anomaly, 589, 590, 602

Gray surface, 64
Green–Kubo relation, 303
Green’s function, dyadic, 663, 674, 677, 691
Green’s theorem, 411, 741
Ground-state energy, 43, 100, 116, 124, 305
Group velocity, 212, 214, 237, 238, 243, 284,

291–294, 301, 307, 309, 310, 337,
358, 361, 366, 382, 414, 424, 492,
525, 559, 595, 626, 689, 740

H
Hagen–Ruben equation, 457, 492
Hall effect, 255–258, 288, 300, 321, 325
Hamiltonian operator, 106, 276
Harmonic oscillator, 100, 115, 126, 176, 177,

180, 214
Heat-Assisted Magnetic Recording

(HAMR), 16, 705
Heat capacity, 49, 50, 293, 347, 361, 362,

382, 388, 492
Heat carriers, 5, 140, 214, 354, 396
Heat conduction

ballistic, 170, 242, 346
by electrons, 384
by phonons, 302, 360
diffusive, 369
nonequilibrium, 331, 396
non-Fourier, 312, 349
regimes, 346, 384, 385

Heat equation
hyperbolic, 349–354, 356, 358, 359, 364,
386, 396, 397
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lagging, 356–360, 363, 386, 396
parabolic, 350, 351, 353, 358

Heat interaction, 39, 50, 56, 68, 345
Heat reservoir, 50, 222, 241, 242, 366
Heat transfer, 2–4, 9, 10, 12, 18, 24–28,

35, 40, 41, 56, 58–62, 64, 65, 68,
73, 74, 87, 88, 102, 129, 145, 155,
157–159, 165–172, 175, 201, 211,
214, 215, 221–223, 241, 243, 244,
300, 316, 333, 335, 345, 349, 351,
357, 358, 360, 364, 365, 378, 384–
386, 388–390, 396, 397, 407, 421,
431, 435, 437, 450, 467, 488, 527,
538, 623, 627, 632–634, 644–646,
649–651, 653–656, 658–660, 662–
669, 672, 678, 680–683, 686–689,
693–702, 704, 707

Heat wave, 350
Helmholtz equation, 647
Helmholtz free energy, 45, 91, 92, 430
Hermite polynomials, 115, 686
Heterogeneous state, 46, 47
Heterogeneous structures, 8, 18, 239, 317,

604
Heterojunction, 11, 331
Highest entropy principle, 38, 43
Histogram, 542, 733, 734
Hot electrons, 317, 320, 360
Hot spots (local heating), 8, 18, 175, 331,

385, 559, 598, 653, 704
Hot-wire anemometers, 156
Huygens’ principle, 408
Hybrid orbital, 272, 285
Hydrodynamic equations, 27, 151
Hydrogen atom, 2, 110, 113, 114, 126, 147,

260, 265, 284, 285
Hydrogen molecules, ortho- and para-, 125
Hydrogen technologies, 21
Hyperbolic dispersion or band, 577, 579,

580, 585, 596, 664, 665, 667, 669,
683, 684, 686

Hyperbolicity, 579, 582, 664
Hyperbolic metamaterials, 577, 580, 585,

594, 595, 644, 663, 664, 698, 704
Hyperbolic polariton, 551, 582, 583, 597,

608

I
Ideal gas, 26, 42, 44, 51–53, 69, 76, 86, 93,

97, 101, 102, 104, 110, 116, 122, 123,
126, 129, 130, 133–135, 138, 140–
142, 146, 167, 170, 183, 228, 329,
658

Information technology, 7
Infrared radiation, discovery of, 6
Insulators, 8, 16, 17, 175, 197, 198, 208, 210,

213, 216, 221, 237, 240, 258, 260–
263, 265, 293, 300, 303, 310, 313,
335, 346, 350, 359, 384, 388, 417,
454, 463, 468, 477, 500

Integrated circuits, 4, 8, 13, 22, 175, 331,
479, 497, 559

Intensities
blackbody, 74, 423, 429, 435, 451, 625,
627

entropy, 431, 432, 434–436, 490
optical, 508
phonon, 366, 370
radiation, 66
Raman, 299

Interatomic force constants, 304, 305, 383
Interference, 4, 28, 300, 336, 350, 385, 395,

408, 435, 436, 479, 482, 497, 498,
502, 503, 507, 509, 514, 515, 520,
531, 539, 581, 628, 629, 631–634,
655, 698

Intermolecular forces, 17, 26, 75, 94, 97,
130, 145–147, 172, 264

Intermolecular potential, 145, 147, 149, 159,
384

Internal energy, 37, 38, 40, 44, 47, 50, 52,
54, 55, 57, 61, 70, 76, 83, 94, 97,
100–102, 124, 125, 153, 159, 181,
187

International Temperature Scale (ITS), 42
Intramolecular forces, 146
Ionization energy, 114, 260, 262, 323, 327
Irradiance

total solar irradiance (TSI), 426
Irreversible thermodynamics, 18, 27, 224–

226, 245, 317, 352

J
Jeffrey’s equation, 385
Joule heating, 220–223, 297, 388, 416

K
Kapitza resistance, 378
Kinetic temperature, 90, 134, 170
Kinetic theory, 26, 27, 75, 129, 130, 134,

139, 149, 150, 170, 198, 199, 203,
205, 207, 208, 227, 297, 349, 350,
361, 689

Kirchhoff’s approximation, 539
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Kirchhoff’s law, 64, 408, 437, 450–452, 544,
568, 601, 607

Knudsen number, 27, 156–158, 165, 166,
170, 172, 173, 228, 237, 238, 345,
367

Kramers–Kronig dispersion relations, 454
Kramers–Kronig relations, 454
Kretschmann-Raether configuration, 553–

555
Kronecker delta, 133
Kronig–Penney model, 280, 336

L
Lab-on-a-chip, 13, 155
Lagging behavior, 354
Lagrangian multipliers, 84, 85, 88, 728
Laguerre polynomials, associated, 113
Lamp

deuterium, 475
gas discharge, 475
mercury arc or xenon arc, 475
tungsten halogan, 592
tungsten halogen, 474

Landauer’s formalism, 239, 241, 244, 245,
383

Laser ablation, 497
Laser cooling (and) trapping, 90, 436
Lasers

diode laser, 474, 486
population inversion, 120, 334
quantum well, 11, 255, 334
semiconductor, 11, 12, 255, 334, 497
ultrafast, 2, 4, 10, 66, 392, 433

Latent heat, 44, 48, 49, 51, 145
Lattice Boltzmann method, 354, 382
Lattice constant, 179, 189, 213, 214, 266,

268–273, 290, 291, 336, 381, 528,
653

Lattice dynamics, 190, 214, 239, 290, 305,
307, 309, 313, 383, 461, 549

Lattice vibrations or lattice waves, 4, 5, 76,
176, 179, 181, 188, 191, 193, 200,
208, 210, 245, 261–264, 289, 291–
293, 297, 300, 301, 311, 317, 383,
384, 407, 417, 454, 462, 464, 465,
500, 549, 595

Lattice wavevector, 190, 191
LC circuit model, LC circuit, 565, 566, 569,

576, 590, 591, 595, 601, 602
Left-Handed Materials (LHMs), 469
Legendre polynomials, associated, 112
Lennard-Jones potential, 148, 172

Lewis number, 144
Light-Emitting Diodes (LEDs), 12, 255,

273, 328, 333, 334, 474, 587, 706,
707

Light line, 531, 555, 556, 568, 576
Liouville equation, 150
Lithography

deep-UV, 9, 602
dip-pen nano-, 18
e-beam nano-, 187
focuses-ion beam (FIB), 14
photolithography, 10, 700
plasmonic, 705
x-ray lithography, 9

Local equilibrium, 4, 56, 129, 138–140, 149,
154, 203, 205, 206, 345, 346, 348,
351–353, 358, 360, 361, 364, 365,
367, 369, 374, 396, 436, 673, 677

Local heating, 8, 18, 331, 385, 559, 598, 653,
704

London dispersion force, 148
Lorentz force, 256, 326
Lorentz number, 203, 244
Lorentz oscillator model, 459, 460
Lossy medium, 440, 491, 519, 520, 644
Lowest energy principle, 44
Lyman series, 113

M
Mach number, 157
Macrostate, 77, 78, 88, 124
Magnetic polaritons, surface, 567
Magneto-optical effect (or material), 394
Magnetoresistance, 255, 257
Matrix formulation, 416, 497, 517, 520, 521,

529, 531, 563, 605, 628, 637, 640,
664, 676

Matthiessen’s rule, 200, 202, 209, 228–231,
346, 376

Maximum kinetic energy, 314
Maxwell–Boltzmann distribution, 187, 316,

322, 337
Maxwell’s displacement current, 411
Maxwell’s velocity distribution, 86, 95, 110,

119, 132, 133, 135, 154, 155, 160,
161, 172

Maxwell-Boltzmann distribution, 123
Maxwell-Boltzmann (MB) statistics, 26, 81,

86, 119, 122
Maxwell equations, 27, 409–411, 413, 449,

488, 532, 539, 581, 594, 647
Maxwell relations, thermodynamic, 50, 69
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Mayer relation, 52, 246
Mean free path (MFP)

MFP distribution, 238
MFP spectrum, 238
size effect on, 346

Mechanistic length (scale), 3, 157, 227, 345
Melting temperature or melting point, 178,

204, 205, 263–265, 309, 474
Memory effect, 354
Memory function, 356
MEMS, see microelectromechanical sys-

tems
Metal-Oxide-Semiconductor Field-Effect

Transistor (MOSFET), 8, 9, 257, 331
Metamaterials, 420, 469, 471, 472, 485, 488,

564, 565, 569, 578, 586, 594, 595,
601, 602, 665, 677, 686, 687, 698

Michelson interferometer, 482, 483, 507,
515

Microbridge, 387, 388
Microcavity, optical, 526, 597
Microchannel, 13, 155–157, 161, 162, 170,

173
Microelectromechanical systems, 1, 4, 13,

14, 16, 25, 26, 155, 162, 166, 244,
321, 386, 702–704

Microelectronics, 1, 7–10, 14, 17–19, 24, 26,
56, 58, 59, 175, 193, 300, 321, 329,
532

Microfabrication or micromachining, 4, 10,
13, 21, 599, 624, 700

Microfluidics, regimes, 135, 156
Micro-heat pipes, 156
Micro/nanostructures, 2, 129, 156, 170, 349,

437, 586, 595, 599, 602, 623, 627,
639

Micro-particle image velocimetry, 156
Microscale regimes, 134
Microscopy, optical, 5, 21, 187, 386
Microstate, 77, 78, 124
Microwave, 4, 16, 80, 117, 120, 261, 264,

408, 420, 426, 427, 453, 457, 469,
471, 475, 515, 525, 553, 564, 573,
601, 624, 625

Miller indices for crystal planes, 270, 271
Miniaturization, 2, 4
Mobility, 15, 284, 288, 321, 324, 325, 334,

467, 571, 597, 656
Modes

for energy storage in ideal gases, 97
of interaction, 36
optical cavity, 525, 625
optical fiber, 522

phonon, 179, 183, 190, 195, 197, 198,
213, 237, 240, 243, 244, 246, 249, 292,
307, 366–368, 370, 379, 380, 383, 460,
461, 464, 595, 596, 682

quantum confinement, 239, 240
waveguide, 525, 561, 595, 671

Modified Fourier equation, 349, 352, 353
Molecular Beam Epitaxy (MBE), 11, 15, 16,

497, 513
Molecular chaos, 130
Molecular dynamics simulation

equilibrium (EMD), 239, 311–313
Green–Kubo method, 311
nonequilibrium (NEMD), 239, 311, 312,
382

Molecular electronics, 21–24
Molecular hypothesis, 130
Molecular weight, 52, 136, 178, 246, 268,

335
Momentum flux, 133, 139, 153, 171
Momentum space, 78, 79, 179, 180, 183,

352, 422
Monochromatic radiation, 62, 432, 433, 436,

474, 479–481, 490, 600
Monochromatic (radiation) temperature,

432
Monochromator, 473, 480, 481, 498, 547,

592
Monte Carlo methods, 67, 346, 378, 382,

540, 541, 546–548
Moore’s law, 8, 9
Most probable microstate, 77
Most probable wavelength, 381, 489

N
Nanocontact, 240, 242, 258
Nanocrystals, 5, 12, 189, 196, 247
Nanoelectromechanical systems (NEMS), 1,

14, 25, 155, 166, 242, 386
Nanoelectronics, 3, 9, 284, 384, 571, 623,

628
Nanofluidics, 1, 129, 155
Nanofluids, 18, 559
Nanoindentation, 18
Nanolithography, 12, 470, 532, 589, 623,

642
Nanomeshes, 302
Nanoparticles, 18, 22, 196, 197, 557–560,

642, 689, 693
Nanophotonics, 10, 12, 15, 20, 27, 289, 532,

551
Nanostructures, other, 2, 5, 12, 15, 16, 18–

22, 24, 27, 28, 57, 76, 155, 175, 189,
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191, 198, 238, 242, 258, 293, 296,
312, 345–347, 370, 383, 388, 389,
392, 437, 538, 588, 589, 598, 599,
601, 623, 625, 627, 645, 664, 666,
678, 686, 688, 693, 694, 704

Nanotechnology, 1, 5, 12, 14, 23–26, 217,
390, 628

Nanowires, 4, 5, 14, 19, 189, 192, 193, 195,
224, 237, 239, 242, 244, 245, 247,
265, 311, 335, 346, 383, 388, 389,
557, 559, 583–585, 594, 664–667,
689, 698

National Nanotechnology Initiative (NNI),
24

Navier–Stokes equation, 61, 129, 158, 162,
170

Near-field
optics, 392, 421, 571, 623, 642
radiative transfer, 560, 575, 633, 663,
664, 668, 676, 679, 683, 686–688, 694,
697–702

Near-Field Scanning Optical Microscopes
(NSOMs), 5, 21, 624, 625

Nearly free-electron model, 218, 276, 281
Negative absolute temperature, 124
Negative absorption, 118, 120, 452
Negative Index Materials (NIM), 443, 448,

469–471, 488, 489, 492, 553, 561–
565, 586, 587, 636–639, 644

Negative refractive index, 469, 470, 636
Nernst’s theorem, 43
Neutron scattering, 182, 291, 298, 300
Newton’s law of cooling, 60, 659
Newton’s law of motion, 75
Newton’s law of shear stress, 139
Newton’s prism, 408
Noise Equivalent Power (NEP), 477
Nonabsorbing, nondissipative, or lossless

medium, 412, 440–442, 503, 504,
513, 519, 553, 577, 578, 588, 637

Nonequilibrium thermodynamics, 224, 227
Nonradiative recombination, 328
Normal modes (or Bloch phonons), 303,

307, 309, 462
Nuclear spin degeneracy, 112, 125
Number density, 52, 94, 123, 124, 130, 135,

140, 142, 168, 180, 185, 186, 203,
214, 256, 257, 268, 297, 321–325,
331, 334, 337, 460, 468

Nusselt number, 60, 164–166, 172, 173

O
Occupation number, 85, 90, 180, 422

Ohm’s law, microscopic
at high frequencies, 419

One-electron model, 276
Onsager’s theorem, 225
Onsager reciprocity, 225, 226
Optical communication, 12, 521
Optical constants, 418, 438, 453–455, 457,

458, 460, 465, 466, 472, 473, 487,
490, 491, 500, 504, 595, 602, 607

Optical fiber
holey or photonic crystal, 526
modes, 522, 523

Optically thick limit, 67, 367, 376
Optically thin limit, 67
Optical path length, 66
Optical properties, 15, 266, 284, 286, 301,

410, 419, 420, 472, 487, 488, 497,
533, 537, 552, 571, 577, 583, 585

Optical tweezers, 430
Optoelectronics, 1, 8, 10, 14, 27, 109, 255,

284, 321, 326, 332, 468, 497, 521,
522, 526, 528, 571, 598, 625

Organ pipe resonance modes, 599
Oscillator strength, 460
Otto configuration, 553–555

P
Partial coherence, 28, 497, 506–511, 514,

607
Participating media, 62
Partition function, 87, 91–93, 98, 100, 102,

105, 125, 126
Pauli’s exclusion principle, 264
Peclet number, 166
Peltier effect, 220–222, 226
Penetration depth, radiation or photon, 135,

137, 328, 366, 420, 450, 457, 466,
489, 491, 659, 704

Perfect absorber or perfect absorption, 576,
585, 591, 595, 597, 598

Perfect gas, 52, 53
Perfect lens, 470, 639
Periodic microstructures, 526
Periodic potential, 275, 277, 278, 297
Permeability, magnetic, 411, 564, 565, 586,

594, 647, 723
Permittivity, electric, 336, 411
Permutation, 76, 729, 730
Perpetual motion, 37
Perpetual-Motion Machine of the first kind

(PMM1), 37
Perpetual-Motion Machine of the second

kind (PMM2), 40
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Phase diagram, 48, 49, 55
Phase lag, 356, 358, 395, 477
Phase-matching condition, 518, 528, 646
Phase rule, Gibbs, 47
Phase shift, thin film, 515, 578
Phase space, 78, 81, 93, 130, 131, 150, 151,

179, 410, 422
Phase velocity, 292, 358, 361, 366, 367, 413,

414, 469, 525, 626, 740
Phonon

acoustic, optical, 198, 213, 255, 290, 292,
293, 295, 297, 303, 359, 374, 460, 461,
549, 550, 660

coherent, 300–302, 334, 384, 385
dispersion relations, 27, 183, 212, 255,
291, 307, 334

modes, 430
Phononic crystals, 301, 302
Phononics, 300, 302, 383, 704
Phonon–phonon scattering

four-phonon processes, 296, 307, 310
normal or N-processes, 310
three-phonon processes, 294
umklapp or U-processes, 295, 310

Photoconductivity, 326, 328, 334
Photocurrent, 332, 333, 479, 676, 705–707
Photodiode, 475, 481, 483, 486, 705
Photoelectric effect or photoemission, 7, 27,

255, 313–315, 334, 410, 478, 479,
707

Photon chemical potential, 706
Photonic crystal fibers (PCFs), 526
Photonic crystals, 2, 11, 12, 18, 20, 301, 497,

526–528, 530, 538, 577, 582, 597,
599, 601, 607, 634, 639, 663, 686

Photons, radiation quanta, 7, 119
Photon tunneling, 319, 320, 436, 437, 448,

470, 488, 503, 562, 586, 623, 625,
627, 628, 631, 632, 634, 636, 640,
644, 650, 651, 653, 654, 662, 666,
668, 671, 681, 682

Photovoltaics, 18, 19, 21, 331–334, 338, 436,
473, 475, 478, 557, 599, 705

Piezoelectric actuator, 394, 698, 703
Piezoelectricity, 16, 624
Piezoelectric (motion) controller, 697
Planck’s constant, 79, 427, 723
Planck’s law for blackbody radiation

derivation, 425
limitations, 437

Plane of incidence, 438, 485, 486, 518, 542,
581, 595

Plane waves

transverse electric (TE), 438, 439, 442,
443, 446, 447, 455, 491, 518, 522–525,
531, 533, 537, 538, 542, 552, 553, 556,
561, 563, 564, 574, 575, 586–590, 595,
600, 602–607, 628, 630, 633, 636–638,
640, 652, 657, 658, 663, 675

transverse magnetic (TM), 438, 442–
445, 447, 491, 519, 522, 523, 531, 536–
538, 542, 551–553, 556, 560–564, 567,
574, 575, 578, 581, 586, 587, 589, 590,
596, 597, 600, 602, 603, 606, 607, 628,
630, 633, 637, 639, 642, 658, 660, 671

wavefront, 350, 351, 354, 386, 408, 413,
414, 600

Plasma frequency, 457, 458, 468, 470, 471,
491, 492, 549, 552, 554, 579, 644

Plasma oscillation, 457, 549
Plasmon, see surface plasmon, 22
P-n junction, 12, 222, 328–334, 338, 474,

705–707
Poiseuille flow, 162, 166, 173
Polariton dispersion relations, 552, 554, 560,

564, 580, 603
Polaritons

bulk polaritons, 560–562, 564, 587, 608,
671

hyperbolic polaritons, 551, 582, 583,
597, 608

magnetic polaritons, 485, 551, 564, 565,
567–569, 576, 590, 594, 608, 682

phonon polaritons, 549–551, 576, 579,
597, 600, 608, 653, 659, 660, 671, 672,
689

plasmon polaritons, 549–551, 562, 565,
576, 577, 579, 598, 602

surface polaritons, 28, 488, 551–557,
560–562, 564, 565, 586, 587, 603, 626,
638, 639, 644, 663

Polarizability, 147, 148, 263, 691, 692, 694
Polarization

circularly polarized, 416, 442, 446
co-polarization, 673, 680
cross-polarization, 543, 544, 578, 673,
680

depolarization, 542
elliptically polarized, 416
linearly polarized, 413, 416, 421, 438,
446, 487, 490, 518, 567, 586

longitudinal, 179–181, 198
parallel or p-, 441, 543, 574, 593, 594,
597, 602, 664, 667, 668, 676, 677

perpendicular or s-, 543, 574, 593, 594,
664
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propagation length, 554, 556, 559, 574,
689

randomly polarized, 416
unpolarized, 416, 430, 432, 442, 499, 543

Polarization vector, 460, 542
Polyatomic molecules, 97, 102, 161
Polychromatic light or radiation, 414, 505
Polymethyl methacrylate (PMMA), 18, 642,

644
Position Sensitive Detector (PSD), 539, 541,

697, 703
Potential barrier, 16, 317–320, 628
Potential well, 107–109, 126, 479
Potentiometer, 220
Poynting vector, 416, 417, 421, 440–442,

446, 489, 491, 492, 504, 521, 536,
580, 581, 598, 605, 626–628, 630,
639, 640, 642, 647–650, 661, 666,
674, 675, 677

Prandtl number, 60, 61, 141, 166
Principal angle, 443
Principal values of integral, 454
Probability, 77, 85, 86, 88, 96, 105, 107,

117–119, 123, 136, 137, 150, 170,
199, 215, 234, 242, 243, 280, 294,
296, 299, 309, 318, 348, 364, 381,
541, 542, 650, 651, 653, 666, 668,
732, 733, 735, 736

Probability Density Function (PDF), 80,
107, 116, 123, 137, 280, 540, 735

Properties, thermodynamic
additive, 37, 38, 131
extensive, 46, 47
intensive, 3, 46, 47, 50, 131
specific, 46, 47, 51

Proximity limit, 644, 652, 678, 699
Pseudopotential method, 281
Pulse heating, 345, 360, 384, 392
Pump-and-probe method, 362, 392
Pyroelectric effect or material, 477

Q
Q-factors or finesse, 517, 526, 603, 625
Quantization

of conductance, 241
of specific heat, 189, 194, 196, 239

Quantum computing, 9, 13, 242
Quantum conductance (electrical or ther-

mal), 14, 27, 239, 241, 346, 385,
663

Quantum confinement, 22, 109, 224, 239,
240, 334

Quantum Dots (QDs), 11, 12, 14, 22, 189,
239, 240, 265, 557

Quantum efficiency, 18, 327, 333
Quantum Electrodynamics (QED), cavity,

12, 526, 625
Quantum number, 109, 112, 113, 258, 259
Quantum size effect, 27, 175, 176, 189, 193–

197, 203, 213, 239, 245, 247, 320,
377, 385

Quantum states, 81, 82, 85, 86, 90, 93, 107,
109, 110, 112, 179, 180, 183, 186,
192, 205, 258–260, 264, 410, 422

Quantum theory, 28, 75, 79, 80, 105, 116–
118, 463, 607

Quantum tunneling, see electron tunneling,
16

Quantum well
multiple quantum wells, 11, 109, 224

Quantum wires, 11, 12, 240

R
Radiance, 62, 428, 429, 448
Radiance temperature, 421, 428, 429, 433,

434, 475, 490
Radiation detector, types of, 327, 475
Radiation jump (or slip), 375, 376
Radiation pressure, 70, 409, 430, 488
Radiation tunneling, see photon tunneling,

26
Radiative equilibrium, 368, 372–374
Radiative properties, 26–28, 62, 67, 118,

407, 410, 423, 437, 450, 453, 458,
472–474, 481, 484, 488, 497, 498,
506, 508, 509, 511, 514, 520, 521,
526, 532, 536, 538, 539, 551, 564,
565, 569, 574, 576, 581, 582, 586,
590, 593, 599, 607, 608, 623, 686

Radiative thick limit, 376
Radiative thin limit, 397
Radiometer, cryogenic, 204, 427, 428, 443,

479
Raman or micro-Raman spectroscopy, 10,

103, 299, 386, 390, 462
Raman scattering

anti-Stokes shift, 298, 299
Stokes shift, 298, 299

Rapid thermal processing, 9, 429, 497, 538
Rarefied gas dynamics, 228
Rayleigh–Jeans formula, 74, 409, 424
Rayleigh-Rice perturbation theory, 539
Rayleigh scattering, 66, 296, 409, 558
Rayleigh-Wood anomaly, 557
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Ray-tracing method, 498, 514, 521, 541
Reciprocal lattice, 275–277, 282, 290, 336
Reciprocal lattice space, 191, 313
Reciprocal lattice vector, 277, 280, 295
Recombination or annihilation, 121, 296,

298, 326–328, 333, 334, 707
Reflectance or reflectivity, 11, 64, 65, 301,

362, 392, 437, 440, 442, 443, 448–
452, 455, 457–459, 461, 462, 467,
469, 472, 474, 481–483, 487, 491,
492, 498–500, 502, 503, 506, 507,
509, 512–516, 519–521, 531, 532,
536–538, 540, 542–544, 550, 552–
557, 563, 564, 567–569, 578, 587,
590–594, 601, 604, 606, 607, 628,
649, 651, 665, 685, 701

Reflection, 19, 64, 65, 133, 160, 161, 231,
234, 235, 241, 243, 261, 282, 369,
377, 378, 381–383, 394, 407, 408,
410, 435–439, 441–446, 448–450,
452, 455, 457, 480, 481, 485–488,
491, 498, 499, 502–504, 506, 509,
512, 513, 515, 516, 519, 521, 522,
526, 534, 536, 537, 539–544, 546,
548, 553–555, 560, 561, 563, 578,
592, 593, 627, 630, 635, 649, 663,
664, 669–671, 673–675, 680

Reflection coefficient of electrons, 316
Reflection coefficients for electromagnetic

waves, 441–445, 455, 487
Refraction, 408, 410, 437, 438, 442, 445,

469, 470, 488, 500, 503, 520, 546,
577, 578, 580, 585, 594, 640, 642,
644, 661, 664

Refractive index, 79, 80, 336, 414, 418, 422,
424, 438, 455, 457, 459–461, 463,
465, 471–473, 487, 489–492, 498–
502, 504, 506, 507, 511–513, 517,
521, 525, 534, 537, 559, 561, 564,
581, 589, 592, 593, 595, 606, 624,
626, 633, 634, 636, 655, 662, 740

Relativity, special theory of, 26, 120
Relaxation time, 4, 129, 135, 136, 149, 151,

154, 155, 159, 160, 199, 200, 202–
209, 212–214, 231, 232, 237, 239,
245, 288, 303, 309, 310, 313, 324,
327, 335, 349, 352–354, 358, 359,
361, 363, 364, 384, 456, 459, 460,
576, 667, 689

Relaxation-time approximation, 354, 365
Resonance frequency, 115, 454, 460–462,

471, 550, 557, 564–567, 569, 587,

590, 595, 598, 604, 635, 653, 657,
660, 682

Resonance tunneling, 634–636
Rest energy, 80, 120, 121
Reststrahlen band, 461, 550, 557, 579, 596,

671
Retardation time, 355, 363
Retroreflection, 486
Reynolds number, 60, 61, 156, 157, 166
Richardson–Dushman equation, 316
Richardson constant, 316
Riemann zeta function, 726
Rigid rotor, 110
Rigorous Coupled-Wave Analysis (RCWA),

526, 533, 536, 538, 567, 568, 576,
596, 597, 599, 601, 602, 679, 680,
682, 683, 686

Roughness statistics
autocorrelation length, 382, 512, 514,
539

Gaussian surface, 540
microfacets, 540
power spectral density (PSD), 448, 539
rms roughness, 512–514, 539
shadowing function, 540, 541

S
Sackur-Tetrode equation, 95, 125
Saturated liquid, vapor, 48
Saturation current, reverse, 707
Saturation dome, 48, 49
Scalar scattering theory, 512, 514
Scanning Electron Microscope (SEM), 14,

15, 19, 387, 391, 592, 644, 703
Scanning Near-field Optical Microscope

(SNOM), see NSOM
Scanning Probe Microscopes (SPMs), 5, 14,

17, 22, 390
Scanning Thermal Microscopy (SThM), 17,

386, 390, 644, 695, 704
Scanning TunnelingMicroscope (STM), 16,

17, 266, 320, 695
Scattering

albedo, 66
cross section, 297, 558
diffuse, 232
elastic, 231, 234
inelastic, 296, 298, 300, 364, 383, 436
phase function, 66
probability, 150, 298
specular, 234, 381

Scattering coefficient, 66
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Scattering matrix (S-matrix), 242, 676, 678,
679, 688

Scattering phase function, 66
Scattering rate, 135, 136, 200–202, 207–211,

214, 216, 234, 237, 238, 247, 294–
296, 303, 307, 309, 310, 359, 361,
364, 365, 374, 456–458, 461, 464–
468, 492, 554, 572, 573, 575, 593,
607

Scattering theory, 672, 677–684
Scatterometer, optical, 485, 486, 606
Schmidt number, 144
Schrödinger’s equation, 242, 305, 384
Second law of thermodynamics

Clausius statement, 40, 41
Kelvin–Planck statement, 40

Second relaxation time, 385
Second sound, 350, 358, 359, 364, 386
Seebeck effect or coefficient, 218–224, 226,

234, 247, 301, 388
Semiconductor

electrical conductivity, 201, 325, 334
extrinsic, intrinsic, 237, 262, 282, 322,
325

n-type, p-type, 219, 221, 222, 257, 262,
323, 329

wideband, 262, 273
Semimetal, 188, 222, 261, 273, 644
Shear stresses, 59, 133, 166
Simpson’s rule, 653
Single-Negative (SNG) material, 639
Size effect, 4, 18, 26, 168, 175, 189, 198,

199, 201, 224, 227, 228, 230, 231,
234–237, 312, 346, 360, 361, 390

Slip boundary condition, 162
Slip flow, 27, 156, 158, 159, 162, 170, 172,

173
Slope Distribution Function (SDF), 539–

542, 545, 546
Smith shadowing function, 540, 542
Snell’s law, 379, 408, 439, 444, 500, 546,

642
Solar cells, dye-sensitized, 18, 19
Solid angle, 62, 63, 66, 95, 132, 133, 209,

366, 368, 425, 432–435, 486, 490,
544, 625

Solid-state energy conversion devices, 217
Sommerfeld constant, 188
Sommerfeld expansion, 185–187, 742
Specific heat, constant volume or pressure,

49–51, 53, 102, 104, 189, 430, 658
Specific heat of nanostructures, 189, 198
Specific heat ratio, 53, 126, 141

Spectral energy density, 423, 647, 648
Spectral heat flux, 62, 372, 373, 652, 656,

664, 665, 677, 688
Specularity (parameter), 234–236, 238, 249,

381
Speed

average, 80, 96, 123, 125, 132, 136, 139,
181, 186, 192, 208

distribution, 95–98, 123, 125, 134
of sound, 69, 136, 156, 157, 180, 292,
347, 348, 350, 361, 364, 397

root-mean-square, 96, 125, 171, 246
Spherical coordinates, 62, 63, 78, 111, 113,

132, 209, 232, 258
Spherical harmonic method (PN approxima-

tion), 67, 375
Standard conditions, 52, 75, 123
Standing waves, 109, 112, 179, 189, 279,

291, 522, 525, 560, 561, 625
State principle, stable-equilibrium, 4, 37, 38,

41–45, 68, 69, 77, 88, 374
Statistical ensembles, 104, 126
Statistic hypothesis, 130
Stefan–Boltzmann constant, 63, 70, 243,

367, 427, 473
Stefan–Boltzmann law, 63, 409, 424, 426,

654
Stefan-Boltzmann constant, 723
Stefan-Boltzmann law, 4
Stokes’ hypothesis, 61, 152
Sublimation, 49
Superconductivity

BCS theory, 468
Cooper pairs, 90, 468
high-Tc, 467
SQUIDs, 16
two-fluid model, 358, 468

Superfluidity
liquid helium, 90
λ-point or λ-transition, 90
second sound, 358

Superlattices, 11, 16, 109, 189, 224, 239,
245, 300–303, 319, 365, 377, 382,
384, 398

Superlens, 623, 639
Supermolecule, 264
Surface-enhanced fluorescence microscopy,

559
Surface-Enhanced Raman Microscopy

(SERS), 559
Surface forces, 4, 156
Surface magnon polariton, 553
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Surface Phonon Polariton (SPhP), 551, 553,
556, 557, 560, 565, 569, 600, 625,
644, 650, 653, 659–662, 682, 696

Surface Plasmon Polariton (SPP), 551–558,
560, 565, 567–569, 575, 581, 587,
589, 590, 597, 598, 601, 602, 608,
625, 644, 653, 657, 662, 665–667,
671, 684, 686, 687, 701

Surface Plasmon Resonance (SPR), Local-
ized, 557–559, 569

Surface realization or generation, 541, 544
Surface roughness, 58, 161, 235, 248, 249,

302, 303, 377, 381, 448, 472, 497,
498, 512–514, 539, 544, 557, 593,
599, 607, 653, 698, 733, 734

Surface scattering, 497, 498, 512, 539
Surface topography, 17, 541, 547
Surface waves, electromagnetic, 549

T
T-cubic law, 182
Temperature

absolute zero, 89, 90, 186, 190, 241, 242,
283, 315, 743

kinetic temperature, 90, 134, 170
of the sun, 432
of the universe, 427
scale, 42, 426, 427
thermodynamic, 42, 426, 427, 432

Temperature jump, 27, 158, 160, 165, 168,
173, 312, 346, 370, 375, 376

Temperature wave, 350, 352, 358, 359, 364,
397

Thermal Boundary Resistance (TBR), 27,
346, 362, 363, 365, 377, 378, 380–
384, 391, 392, 395, 396

Thermal conductivity
accumulation function, 239
across layered structures, 365
along a thin film, 231, 346, 365
along a thin wire, 231, 236
classical size effect, 27, 175, 203, 207,
211, 227, 231, 245, 303, 346, 384

derivation fromBTE, 129, 150, 227, 303,
353

ideal gases & rarefied gases, 141, 167,
170

ideal gases and rarefied gases, 141
insulators, 175, 208, 210, 213, 216, 221,
237, 293, 310, 388

metals, 27, 57, 175, 183, 203–205, 221
minimum, 213, 215, 302, 313

nanotubes, 3
polymers, 216
quantum size effect, 27, 175, 203, 245,
385

radiative, 129, 150, 646, 693
superlattices, 224, 301, 302, 398

Thermal creep, 162, 163
Thermal diffusion

average speed, 348
infinite-speed paradox, 396
see heat diffusion, 57

Thermal equilibrium, 26, 41, 56, 64, 69,
117–119, 161, 327, 329, 330, 333,
345, 352, 358, 362, 379, 408, 423,
433, 435, 451, 452, 625, 626, 646,
647, 672, 678, 693, 706

Thermal fluctuations, 117, 350, 646, 674,
691

Thermalization time, 363
Thermal metrology, 16, 27, 175, 362, 386,

390, 624
Thermal radiation, 4, 9, 12, 19, 28, 42, 56,

62, 68, 74, 211, 376, 388, 407–410,
416, 426, 431, 433, 435–437, 473,
536, 560, 577, 585, 599, 623, 627,
631, 636, 644, 645, 658, 659, 663,
666, 678, 690, 694–696, 701, 702,
704, 705, 707

Thermal resistance, 58, 59, 168, 204, 224,
294, 295, 301, 312, 359, 374–378,
389, 698, 701

Thermal time constant, 363
Thermal velocity of electrons, 139, 152, 155,

298, 324, 329, 338
Thermal wavelength, 213, 627, 690
Thermionic emission, 27, 255, 313–315,

317, 318, 320, 334, 337, 362–364,
397

Thermionic refrigeration, 317
Thermocouple, 17, 73, 156, 219, 247, 390,

408, 476, 485, 695, 696, 698, 700
Thermocouple junction, 219, 476, 695
Thermodynamic cycles, 20
Thermodynamic equilibrium, 3, 37–41, 44,

45, 48, 53, 68, 88, 104, 130, 364, 430,
432, 433, 436, 626, 729

Thermodynamic probability, 77, 81–83, 85,
87, 88, 90, 123, 124

Thermodynamic systems, 105, 122
Thermoelectric devices, 221, 222, 224, 248,

301, 302
Thermoelectric effect or thermoelectricity

absolute thermopower, 221
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cooling or refrigeration, 220, 221, 224,
245, 248

power generation, 18, 175, 317
Thermometry

absolute, 219, 426
radiation, 371, 421, 426–428, 479, 488,
521, 539

Raman, 392
Thermophotovoltaics (TPV); solar TPV, 2,

19, 20, 255, 332–334, 431, 432, 490,
497, 569, 599, 601, 602, 628, 644,
676, 684, 698, 704, 705, 707

Thermopiles, 408, 473, 476
Thermopower, see thermoelectric effect, 218
Thermoreflectance

frequency-domain (FDTR), 394, 395
time-domain (TDTR), 301–303, 392–
394

Thin-film optics, 502, 510, 515
Thin films

radiative properties, 28, 407, 450, 508,
514, 520

specific heat, 193, 195
thermal conductivity, 26, 394, 398

Third law of thermodynamics, 42, 43, 87, 89
Thomson effect, 220, 222, 226
Three-omega (3-ω) method, 388
Tight-binding model, 287
Time-harmonic, 413, 417, 438, 524, 532,

534
Total internal reflection, 380, 410, 437, 442,

444, 446, 491, 521, 522, 524, 526,
634, 635, 638

Transfer Matrix Method (TMM), 514, 517,
520, 581, 663, 673, 675, 676

Transient thermal grating (TTG), 395, 398
Transistors, 7, 8, 15, 23, 242, 284, 300, 317,

331, 384, 705
Transition flow, 156, 160
Transition Metal Dichalcogenides (TMD)

MoS2, WSe2, etc., 289
Transmission coefficients

for electromagnetic waves, 439, 441, 630
for phonons, 379, 383, 398
in near-filed radiation, 653, 669
in quantum conductance, 241
in quantum tunneling, 318–320

Transmission Electron Microscope (TEM),
14, 15

Transmission enhancement, 588
Transmission probability, 241, 319, 383, 666
Transmissivity, internal, 498, 499, 505

Transmittance, 64, 432, 437, 467, 469, 472–
474, 481–483, 498–500, 502, 504–
507, 509, 510

Transport equations, 26, 129, 138, 149, 154,
170, 175, 245, 294, 346, 382

Transverse Electric (TE) wave, 442, 443,
447, 455, 491, 518, 522, 524, 525,
533, 537, 538, 542, 552, 553, 556,
561, 563, 564, 574, 575, 578, 586–
590, 595, 602–606, 628, 630, 637,
638, 640, 652, 657, 658, 663, 675

Transverse Magnetic (TM) wave, 438, 442–
447, 491, 519, 522, 523, 531, 536,
537, 542, 551, 553, 556, 560–564,
567, 574, 575, 578, 581, 586, 587,
589, 590, 596, 597, 600, 602, 603,
606, 607, 628, 630, 633, 637, 639,
642, 658, 660, 671

Triple point, 42, 48, 49
Tunneling

electron, 320
photon, 630
tunneling probability, 630, 652, 662, 667

Two-dimensional (2D) materials, 15, 28,
284, 289, 293, 334, 394, 571, 591,
598, 645, 667

Two-phase mixture, 47, 50
Two-relaxation-time approximation, 359,

386
Two-temperature model, 360, 363, 385

U
Ultra-shallow junction, 9
Ultraviolet catastrophe, 424
Uncertainty principle, 81, 93, 109, 116, 348
Uniaxial medium, 578, 579, 581–583, 593,

594, 666, 670, 672, 677, 680
Unit cells, primitive, 269, 270, 274
Universal gas constant, 52, 123, 723

V
Vacuum fluctuations, 190, 648
Valence band, 260–262, 282–284, 286, 321,

326, 328, 329, 454, 462–465
Valence electrons, 146, 184, 259, 260, 262,

263, 265, 282, 283, 301
Vanadium dioxide (VO2), 477, 698
Van der Waals force, 146–148, 645
Velocity

bulk or mean, 138, 139, 152–154, 157,
163, 172
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distribution, 26, 82, 93, 95, 96, 122, 132,
133, 163, 165, 172, 345

random or thermal, 139, 152, 153, 155,
298, 324, 329, 338

Velocity slip, 158, 160, 163, 173, 375
Vertical Cavity Surface Emitting Laser

(VCSEL), 11
Very-Large-Scale Integration (VLSI), 8, 9
Vibration–rotation spectrum, 66
Virial theorem, 159
Viscosity, 26, 60, 61, 90, 138–140, 142, 170,

172
Volumetric heat capacity, 57, 357, 360, 361,

368, 382
Von Klitzing constant, 258

W
Wavefront, 350, 351, 354, 386, 408, 413,

414, 600
Wave functions, 105, 107–109, 116, 126,

260, 263, 275–277, 279, 280, 297,
301, 304–307, 319, 304, 384

Waveguide, 12, 243, 421, 442, 448, 470, 497,
521–526, 528, 559–561, 577, 595,
607, 635, 671, 689, 698

Wavenumber, 102, 243, 426, 483, 489, 504,
509, 512, 516, 555, 567, 590, 598,
738

Wave packet, 447, 740
Wave-particle duality, 7, 14, 105, 106, 292,

300, 346
Wavevector, 190, 192, 196, 197, 205, 206,

212, 214, 215, 237, 239, 243, 255,
275, 277, 283, 287–289, 292–295,
300, 307–310, 383, 410, 412–414,
418–421, 436, 438, 439, 444, 446,
463, 469, 492, 504, 527–531, 533,
534, 536, 542, 549–552, 554, 556,
575, 576, 578, 580–582, 586, 589,
634, 637, 639, 640, 642–644, 646,

647, 649, 653, 663, 666, 675, 680,
681, 687, 689, 690, 738, 739

Weak-potential assumption, 278
Whispering Gallery Mode (WGM), 526
Wiedemann–Franz law, 203, 204, 207, 234,

236, 247
Wien’s displacement law, 213, 429, 489, 654
Wien’s formula, 409, 424, 429
Wigner–Seitz primitive cell, 270
WKB approximation, also BWK or KWB,

319
Wood’s anomaly, see Rayleigh-Wood

anomaly, 589
Work function, 314, 315, 317, 318
Work interaction, 39

X
X-ray crystallography, 266
X-ray diffraction, 336
X-ray lithography, 9
X-Ray Photoelectron Spectroscopy (XPS),

314, 315
X-ray properties, 457

Y
Young’s double-slit experiment, 6, 408, 509

Z
Zeolites, 293
Zero absolute temperature, see third law of

thermodynamics, 42
Zero-entropy states, 43
Zero-point energy, 190, 648
Zeroth law of thermodynamics, 41, 364
ZnO nanobelts, nanowires, 14, 15, 18, 19,

265
Zone edge, 276, 279, 280, 291, 292, 309
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