
Chapter 13
Synchronization in Discrete Models

Alexandre Rosas, Daniel Escaff, and Katja Lindenberg

Abstract In this chapter we discuss the emergence of a collective behavior in sys-
tems of discrete units with all to all interactions. Our focus is two fold: first we discuss
the differences between systems with an infinite number of units (corresponding to a
mean field approximation) and systems with finite populations; we also discuss con-
ditions for systems with a finite number of states to be able to describe the continuous
Kuramoto model.

13.1 Introduction

The Merriam-Webster Thesaurus [1] lists the following definition for the word
“synchronize”: to occur or exist at the same time. It lists the following synonyms:
accompany, attend, co-occur, coexist, coincide, concur.None of these convey the full
breadth of synchronization phenomena, nor do they exclude behaviors that occur due
to an external force, such as electrons flowing in the same direction due to an applied
field. The latter are not usually thought of as synchronization. From Wikipedia [2],
Tropical fireflies, in particular, in Southeast Asia, routinely synchronise their flashes
among large groups. This phenomenon is explained as phase synchronization and
spontaneous order.There is a plethora of examples of synchronization phenomena of
discrete units, each most likely responding to a different detailed mechanism: heart
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tissues of different origins can ‘beat’ in sync, dancers coordinating their movements,
synchronization in neural networks. The examples are endless in the world of com-
puter science. One can think of two units or many units or an infinite number of units
that synchronize.

Synchronization usually refers to emergent macroscopic behavior in systems con-
sisting of microscopic or mesoscopic nonlinearly interacting units. Usually synchro-
nization refers to temporal coincidence in a time dependent situation, for example, a
moving pattern of most units being in the same state (e.g. an oscillation). Themoving
or oscillating units may move in continuous time as do dancers, or in discrete steps
as do fireflies. The interactions among units may be short range or long range or
anything in between. Furthermore, synchronization may also refer to a static coin-
cidence in the state space of units, that is, to the formation of stationary patterns or
agglomerations in a particular state. The topic is vast and can and does fill many
books [3, 4].

In this Chapter we must narrow our discussion a great deal, and we focus on the
emergence of collective behavior in systems of identical discrete units stepping from
one state to another in discrete jumps. We assume all-unit to all-unit interactions.
The interactions may all be of the same strength (which we assume), in which case
geometry plays no role. In the absence of any disturbances, if the number of units is
infinite, the system behaves as described by mean field theory. The final state of the
system is then sharply determined.

The synchronizationmaynot beperfect, for example, if there is noise in the system.
Imperfect synchronization leads to a distribution of behaviors around amaximum that
usually represents the behavior if the synchronization were perfect. This distribution
may be stationary or may move in time, depending on the details of the model.
This could happen, for instance, if the units are not identical, a case that we do not
address here. We do address an important source of noise: when the number of units
is finite rather than infinite. Although the synchronization is not perfect in this case,
we will loosely use the terminology of dynamical systems to describe the stochastic
counterpart. In any case, our goal is and has been to understand synchronization
models that are simple enough for entire or partial analytic study. In all cases we
choose units that can be described by the smallest possible number of variables that
still allow for synchronization.

We introduce two-state models (“on-off”) as well as three-state models. This is
accomplished in Sect. 13.2. We take the interactions among units to be nonlinear.
Nonlinear interactions are essential to achieve synchronization, and we work with
polynomial interactions in the two-state case and exponential interactions in the
three-state model. In the two-state models a Markovian transition rate of each unit
between the two states leads to a patterned stationary distribution, that is, one of
the states turns out to be more populated than the other. To obtain time dependent
patterning in the two-state case it is necessary to introduce a memory whereby one
of the two transitions of each unit is non-Markovian. In the three-state case we take
the transitions to be unidirectional and obtain time-dependent effects such as waves
of the majority of units being in one of the three states followed by them being
in another state, in turn followed by the third state and then back to the first state.
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When the number of units in the system is infinite, the final behaviors, be they time
dependent or time independent, can often be handled analytically using mean field
theory, and the long-time distributions are infinitely sharp. However, if the number
of units is finite the problem becomes much more difficult because the evolution
equations now acquire a noise term (i.e. they are now Langevin equations) and need
to be handled at least in part numerically. We address the mean field theory cases as
well as the cases of finite numbers of units in Sect. 13.2.

Finally, it is of coursewell known thatKuramoto studied one of the firstmathemat-
ical models of synchronization [5]. His original model describes a continuous phase
continuous time array. We asked ourselves this question: can we take Kuramoto’s
model and coarse grain it to arrive at discrete models? We discuss this in Sect. 13.3
and arrive at a result that is difficult to “guess” a priori. We will leave this sus-
pense until the reader arrives at that section. Finally, in Sect. 13.4 we end with some
conclusions and perspectives.

An additional final note: the various models that we discuss, namely arrays of
two-state units, arrays of three-state units, and the coarse graining of Kuramoto’s
model are separate in the sense that the interactions among units are different, albeit
all nonlinear. This Chapter is thus meant as a presentation of various discrete unit
models without necessarily a comparison between them.

13.2 Finite Versus Infinite Population Models

In this section we will discuss the role of the number of units on the synchroniza-
tion of two-state units (Sect. 13.2.1) and three state units (Sect. 13.2.2) with global
coupling. In particular, whenever the steady state (t → ∞ limit) for infinite popula-
tions presents bistability, the large population limit for finite population destroys this
bistability. That is, the order of the limits of large times and large number of units
does matter in determining the fate steady state.

13.2.1 Two-State Models

The problem of synchronization of arrays of globally coupled two-state units was
discussed in [6, 7]. Here the term synchronization is used loosely to indicate that a
transition to an ordered state with more units in one state than the other is achieved.

13.2.1.1 Infinite Population

An infinite ensemble of two-state (states 1 and 2) stochastic units is governed by the
mean field equation
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ṅ1(t) = γ2n2(t) − γ1n1(t) = γ2 − (γ1 + γ2) n1(t), (13.1)

where n1(t) and n2(t) are the densities of units in state 1 or 2 at time t , respectively.
Here, we used density normalization n1(t) + n2(t) = 1 to write the last equality.
Despite the apparent simplicity of this mean field equation, there is a wealth of
possibilities hidden in the transition rates. For instance, the units may be coupled
or uncoupled, explicitly time-dependent or not, etc. Here, we are concerned with
Markovian globally coupled units, that is, the transition rates at any time t depend
on the densities of units in the states 1 and 2 at that time. Again, using the density
normalization, we may write the transition rates as γ1(n1) and γ2(n1).

It is worth noting that no fluctuations appear because the population is infinite.
Therefore, for infinite populations we have a deterministic evolution that is com-
pletely determinedby the initial conditions and, obviously, the transition rates.Hence,
determining the steady state for infinite populations is a matter of finding the steady
state of unidimensional dynamical systems, and phase transitions for those systems
correspond to the bifurcations of the dynamical systems. Bearing that in mind, we
try to map the mean field equation (13.1), onto one of the well-known normal forms
presented, for example, in [8]. In order to do that, we write the transition rates as
polynomials,

γ1(n1) =
∞∑

k=0

γ
(k)
1 nk1, (13.2)

γ2(n1) =
∞∑

k=0

γ
(k)
2 nk1. (13.3)

Different relations between these series lead to different normal forms. For more
general transition rates, the normal forms can still be seen as approximations near
the bifurcations (phase transitions). Therefore, we can write the mean field equation
as

ṅ1 =
∞∑

k=0

akn
k
1, (13.4)

where

a0 = γ
(0)
2 ,

ak = −γ
(k−1)
1 − γ

(k−1)
2 + γ

(k)
2 . (13.5)

13.2.1.2 Finite Populations

For finite populations, we need to take into account fluctuations due to the finite
number or units. Mathematically, we need to consider a Langevin equation instead
of the deterministic mean field equation of the previous section. Hence, we start our
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analysis writing the time-evolution of the number of units in state 1, N1(t),

N1(t + dt) = N1(t) −
N1∑

k=1

θ (γ1(n1)dt − ζk) +
N∑

k=N1+1

θ (γ2(n1)dt − ζk) , (13.6)

where θ(·) is the Heaviside step function and ζk is a random variable uniformly
distributed in the interval [0, 1]. Furthermore, dt is an infinitesimal time increment,
so that γk(n1)dt is the probability of jumping for a unit in state k. Thus, the first
sum represents the number of units that jump out of state 1 and the second sum
represents the number of units jumping into state 1. Equation (13.6) leads to the
Langevin equation [6]

ṅ1 = γ2(n1) − [
γ1(n1) + γ2(n1)

]
n1 + √

(1 − n1) γ2(n1) + n1γ1(n1)
ξ(t)√
N

, (13.7)

where ξ(t) is a Gaussian zero-centered white noise. Comparing Langevin equation
(13.7) and the mean field equation (13.1) we notice that they differ by the fluctuation
term (last term in the Langevin equation). In the limit of large populations N → ∞,
the fluctuations vanish and we recover the mean field equation. However, it should
be noticed that there are two limits to be taken in order to get the steady state for large
populations: time and number of units must both go to infinity. While the mean field
equation approach takes the limit N → ∞ first, the Langevin equation approach
takes the limit t → ∞ first. Therefore, when considering the Langevin approach we
should not take the limit N → ∞ at this point. Instead, we must find the steady state
before taking the infinite population limit.

Using the Itô interpretation [9] for this Langevin equation, we obtain a Fokker–
Planck equation for the probability of finding a fraction of n1 of units in state 1 at
time t ,

∂P(n1, t)

∂t
= − ∂

∂n1
[μ(n1)P(n1, t)] + ∂2

∂n21
[D(n1, N )P(n1, t)] , (13.8)

where
μ(n1) = γ2(n1) − [

γ1(n1) + γ2(n1)
]
n1 (13.9)

is the drift and

D(n1, N ) = γ2(n1) + [
γ1(n1) − γ2(n1)

]
n1

2N
(13.10)

is the diffusion coefficient. The Fokker–Planck equation (13.8) has the stationary
solution

Pst (n1) = cN
exp

[∫ n1
0

μ(n)

D(n,N )
dn

]

D(n1, N )
, (13.11)
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where cN is an N -dependent normalization constant for the probability density
Pst (n1). At this point, a few comments are relevant. First, since the drift of the
Fokker–Planck equation equals the right hand side of the mean field equation, we
may expect that for large populations (small fluctuations) the two approaches should
give similar results. However, contrary to the infinite population case, the steady
state probability density for finite N does not hold any memory about the initial
conditions. Therefore, they must differ in case of coexistence of two or more stable
solutions for the mean field equation. Here, we will discuss this point in more detail
for the saddle-node bifurcation. The reader interested in other types of bifurcations
should refer to [7].

Typically, the saddle-node bifurcation creates two fixed points (one stable and
one unstable) out of nothing. Hence, there is no coexistence of stable solutions and
we should not see the behavior described above. However, the normal form for the
saddle-node bifurcation ẋ = r + x2, poses a problem for our model. For r < 0, there
are two fixed points: the stable x∗ = √−r and the unstable x∗ = −√−r fixed points.
Any initial condition greater than the unstable fixed point will grow unboundedly,
while our variable n1 must lie in the interval [0,1]. Therefore, we must add another
fixed point above the unstable fixed point. A possible way to add this fixed point
without perturbing the bifurcation is to consider the following dynamical system

ṅ1 = [
r + (n1 − nB)2

] {
1 − A

[
r + (n1 − nB)2

]}
, (13.12)

where A is a positive constant and nB is a positive constant in the interval [0, 1]
chosen so that the two fixed points arising from the saddle node bifurcation are both
positive and also lie in this interval. For certain values of A near the bifurcation
point, this modified formula introduces two new fixed points—a stable fixed point
for large values of n1 (but still smaller than 1) and an unstable negative fixed point.
Therefore, there is only one new fixed point in the interval of interest. Moreover, this
new fixed point introduces a bistability region (see Fig. 13.1). For r < 0 there are two
stable fixed points: the one from the saddle-node bifurcation and the new fixed point
introduced by the

{
1 − A

[
r + (n1 − nB)2

]}
term. Consequently, in this bistability

region for the infinite population model, any initial condition below the dashed line
in the figure (unstable fixed point) will end up at the bottom fixed point, while initial
conditions above the dashed line evolve to the upper fixed point. As the bifurcation
parameter r increases and crosses zero, there is a saddle-node bifurcation and the
bottom stable fixed point collides with the unstable fixed point and they disappear,
leaving only one stable fixed point to which all the initial conditions evolve.

For finite population, however, comparing (13.4) and (13.12), and using (13.5),
we have

γ
(0)
2 = −An4B − 2An2Br − Ar2 + n2B + r,

γ
(1)
2 − γ

(0)
1 = 4An3B + 4AnBr − 2nB + γ

(0)
2 ,

γ
(2)
2 − γ

(1)
1 = −6An2B − 2Ar + 1 + γ

(1)
2 ,
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Fig. 13.1 Bifurcation diagram for the model given by (13.12) with A = 15 and nB = 0.15. The
full lines represent stable fixed points while the dashed line represents unstable fixed points

γ
(3)
2 − γ

(2)
1 = 4AnB + γ

(2)
2 ,

γ
(4)
2 − γ

(3)
1 = −A + γ

(3)
2 ,

γ
(k+1)
2 − γ

(k)
1 = γ

(k)
2 for k > 3.

Hence, the definition of the bifurcation model does not completely define the tran-
sition rates. As a matter of fact, different choices of the transition rates γ1(n1) and
γ2(n1) lead to the same mean field equation. Therefore, different finite population
models with different steady states may lead to the same infinite population model.
Moreover, the steady state probability density Pst (n1) favors one state. The finite
population fluctuations thus destroy the coexistence, as shown in Fig. 13.2. In this
figure, we can clearly see that as the number of units increases, the predominance of
one peak becomes stronger. That is, as the number of units goes to infinity, one state
becomes more andmore probable thus confirming the destruction of the coexistence.

We end this section with an important comment: while arrays of Markovian two-
state units can only lead to stationary ordering, the inclusion of a memory, e.g. a
refractory period that forces units arriving in state 2 to wait a certain amount of time
before returning to state 1, yield time-dependent oscillations [10].

13.2.2 Three-State Model

While two-state Markovian models can only provide synchronization as an asym-
metric steady state for which one state is more populated than the other, three-state
Markovian models may lead to the more striking form of synchronization in which
an aggregate of units move together from one state to the next, to the next, and so
on. We consider a set of states (in this case states 1, 2 and 3) and transition rates that
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Fig. 13.2 Steady state probability density as a function of the density of units in state 1. For this
figure, we used the following values for the parameters: A = 15, nB = 0.15, r = −0.01, γ (1)

2 =
3/2, γ (2)

2 = 1, γ (3)
2 = 1/5, γ (4)

2 = 1/4 and γ
(k)
2 = 0 for k > 4. The different curves correspond to

different numbers of units: N = 300 full line, N = 500 dashed line and N = 5000 dotted line

dictate the dynamics. Here, we use Wood’s model [11], for which the transitions are
unidirectional (units in a given state can only stay there or move to the next state in
a cyclic way: 1 → 2 → 3 → 1).

13.2.2.1 Infinite Population

An infinite array is thus governed by the mean field equations

ṅ1 = γ31 − (γ12 + γ31) n1 − γ31n2,

ṅ2 = γ12n1 − γ23n2. (13.13)

Once again, we used the density normalization, which in this case reads n1 + n2 +
n3 = 1, to eliminate the density of one of the states (n3). Moreover, in Wood’s
model [11], the transition rates are given by

γi,i+1 = γ exp
[
a (Uni+1 + Vni−1 + Wni )

]
, (13.14)

where the indices are cyclical as noted above.
The symmetry of the model implies that the point n1 = n2 = n3 = 1/3 is always

a fixed point. A linear analysis [11] shows that this fixed point is stable for a < ac =
3/(U − W ). Further, for U �= V , there is a Hopf bifurcation at a = ac. The type of
Hopf bifurcation (subcritical or supercritical) is determined by the sign of the first
Lyapunov coefficient l1, which is found to be
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Fig. 13.3 Bifurcation diagram for the three-state model. For the transition rates we used U = 1,
V = 4, and W = 0. The horizontal line represents the fixed point and the curves indicate the
maximum and minimum values of n1 in the limit cycle. In both cases the solid lines represent the
stable attractors and the dashed lines the unstable ones

l1 = −9
√
3 (U + V − 2W )

3 (U − W )
. (13.15)

For l1 > 0, the Hopf bifurcation is supercritical, that is, we have a continuous tran-
sition and no coexistence region. More interesting for our discussion, for l1 < 0, the
Hopf bifurcation is subcritical and presents a coexistence region (see Fig. 13.3). In
this case, for a ≡ alc a pair of limit cycles (one stable and one unstable) is created.
The stable limit cycle coexists with the symmetry-dictated fixed point. As a increases
further and approaches ac, the unstable limit cycle shrinkswhile the stable one grows.
At a = ac the unstable limit cycle radius vanishes whilst it collides with the fixed
point n1 = n2 = n3 = 1/3. For a < alc and a > ac there is only one attractor, the
fixed point or the limit cycle, respectively. Between the two, alc < a < ac, however,
there are two stable attractors and there is coexistence.

13.2.2.2 Finite Populations

Next we move to the finite population case. As in the two-state model, we start by
writing the evolution equation for the number of units in each state. However, for
the three-state case, we need to follow the number of units in two states, say 1 and
2, the third one being determined from the condition N = N1 + N2 + N3. A simple
counting protocol leads to

N1 (t + dt) = N1 (t) −
N1∑

k=1

θ (γ12 (n1, n2) dt − ζk) +
N∑

k=N1+N2+1

θ (γ31 (n1, n2) dt − ζk) ,

N2 (t + dt) = N2 (t) −
N1+N2∑

k=N1+1

θ (γ23 (n1, n2) dt − ζk) +
N1∑

k=1

θ (γ12 (n1, n2) dt − ζk) ,

(13.16)
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where the first sum in the N1 equation counts the number of units leaving state 1 to
state 2 between t and t + dt , and the second one counts the number of units arriving
at state 1 coming from state 3 during the same time interval. A similar interpretation
holds for the N2 equation. From these microscopic equations, one arrives at the
Langevin equations

ṅ1 = γ31(1 − n1 − n2) − γ12n1 + √
γ31(1 − n1 − n2)

ξ1 (t)√
N

− √
γ12n1

ξ2 (t)√
N

,

ṅ2 = γ12n1 − γ23n2 + √
γ12n1

ξ2 (t)√
N

− √
γ23n2

ξ3 (t)√
N

. (13.17)

From there using the Itô interpretation we obtain the Fokker–Planck equation

∂P (n1, n2, t)

∂t
= ∂�1

∂n1
+ ∂�2

∂n2
(13.18)

where

�i = −μi P +
2∑

j=1

∂(Di j P)

∂n j
, (13.19)

with

μ =
(

γ31(1 − n1 − n2) − γ12n1
γ12n1 − γ23n2

)
, (13.20)

being the drift vector, and

D = 1

2N

(
γ12n1 + γ31(1 − n1 − n2) −γ12n1

−γ12n1 γ12n1 + γ23n2

)
, (13.21)

the diffusion matrix.
The steady state solution Pss(n1, n2) of the Fokker–Planck equation, (13.18), can

be obtained numerically. We illustrate the qualitative behavior of Pss(n1, n2) for
two values of the control parameter a (both in the infinite population coexistence
region) and two different numbers of units. In Fig. 13.4, for the smaller value of a
(a = 2.85), we can see that for small N (left panel) there is a coexistence of the
symmetric fixed point (center of the triangle) and the limit cycle, characterized by
the brighter triangular region. For larger populations (right panel) there is only one
bright spot in the middle of the triangle, indicating that the steady state only presents
small fluctuations around the state n1 = n2 = n3 = 1/3 and there is no limit cycle
and hence no coexistence. This result is thus similar to that of the two-state model
and is again due to the fact that the t → ∞ and N → ∞ limits do not commute.

When we increase the value of a and approach ac (Fig. 13.5) the situation for
small populations (left panel) barely changes—we can see that the limit cycle now
is slightly favored in comparison to the fixed point, but the coexistence is still there.
However, for the larger population (right panel) the limit cycle clearly dominates
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Fig. 13.4 Steady state probability density for the three-state model with U = 1, V = −4 and
W = 0. For both panels, a = 2.85, while N = 500 for the left panel and N = 5000 for the right
panel. The gray shaded horizontal bar indicates the code for the values of Pss and the arrows indicate
the direction of increase (small values of Pss are darker and larger values are brighter)

Fig. 13.5 Steady state probability density for the three state model with U = 1, V = −4 and
W = 0. For both panels, a = 2.87, while N = 500 for the left panel and N = 5000 for the right
panel. The gray shaded horizontal bar indicates the code for the values of Pss and the arrows indicate
the direction of increase (small values of Pss are darker and larger values are brighter)

(there is only a very weak bright spot in the center of the triangle that completely
fades out for even larger populations). Therefore, once again, the finite population
fluctuations destroy the coexistence in the limit of large populations.

An order parameter that is a discrete version of one used by Kuramoto for con-
tinuous phases is

r(n1, n2) =
∣∣∣∣∣∣
1

N

N∑

k=1

exp(iφk)

∣∣∣∣∣∣
= |n1 + n2 exp(i2π/3) + (1 − n1 − n2) exp(i4π/3)| ,

(13.22)
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Fig. 13.6 Kuramoto order parameter as a function of the control parameter a forU = 1, V = −4
and W = 0. The full lines represent different numbers of units (N = 250, 500, 1000, 5000 and
50000) and the dashed line corresponds to the case of an infinite number of units (N → ∞ and then
t → ∞). The gray region, indicates the coexistence region for the infinite number of units case, for
which the order parameter is double valued

where the phase φk of state k is defined as φk = 2π
3 (k − 1). The average of the order

parameter over the steady state is then given by

〈r〉 =
∫ ∫

r(n1, n2)Pss(n1, n2)dn1dn2. (13.23)

In Fig. 13.6 we show the average order parameter as a function of a for several
numbers of units and also for infinite N . As N increases, the order parameter curve
becomes stiffer and stiffer, indicating a first-order transition and confirming our
assertion that the coexistence is destroyed.

13.3 Coarse Graining Kuramoto’s Model

So far we have only discussed discrete-state models. In this section we will present a
formal connection between continuous phase and discrete phase stochastic dynamics
to explore whether coarse graining a continuous phasemodel can lead to, say, a three-
state model. The results, as we will see, are somewhat unexpected. For this purpose
we will use the normal form formalism. Full details of this approach can be found
in [12].

We start with a globally coupled array of N continuous phase oscillators. The state
of each oscillator can be described by a d-dimensional vector X. That is, the entire
array is described by the variables {Xs}Ns=1, which obey the equations of motion

Ẋs = F (Xs) + I (X1, . . . ,XN ) + χ s(t). (13.24)

Here F accounts for the internal dynamics of each unit. These dynamics may be
schematically represented by Fig. 13.7a, which is meant to show an arbitrary limit
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cycle. The functionI accounts for the interactions among themembers of the ensem-
ble, which, in the mean field approach, takes the form

I (X1, . . . ,XN ) = I (R) where R = 1

N

N∑

s=1

As . (13.25)

The functions F and I are identical for all the oscillators and hence do not carry an
index. The last term of (13.24), χ s(t), represents the inherent fluctuations of each
oscillator.

In the vicinity of a Hopf bifurcation that gives rise to the formation of a limit
cycle, the dynamics of each oscillator can be reduced to a two-dimensional complex
amplitude (central manifold theorem) that obeys the normal form

Ȧs = J
(
1 − |As |2

)
As + K f

(|R|2)R + √
ηζs(t). (13.26)

Here the real constant parameter J governs the internal dynamics of each unit, and
we have scaled out irrelevant constants. In particular, this equation is in a moving
frame: we have removed the natural frequencyω of the oscillators. In these amplitude
variables, the internal dynamics lead to a perfectly circular limit cycle of the array,
as illustrated in Fig. 13.7b. The parameter K is a measure of the strength of the
interactionswhich iswritten in away that respects the phase invariance.Moreover, the
generic function f is positive definite so as tomodel an attractive interaction between
oscillators. In the original Kuramoto model [5], f (|R|2) = 1 and the interaction is
then linear in (R). For the fluctuations we choose δ-correlated complex Gaussian
noises:

ζs(t) = ζ s
R(t) + iζ s

I (t), (13.27)

where ζ s
R(t) and ζ s

I (t) are independent real Gaussian white noises of zero mean and
correlation functions

〈
ζ s
R (t) ζ s ′

R

(
t ′
)〉 =

〈
ζ s
I (t) ζ s ′

I

(
t ′
)〉 = δss ′δ

(
t − t ′

)
, and

〈
ζ s
R (t) ζ s ′

I

(
t ′
)〉 = 0.

(13.28)

If the internal dynamics dominates over the interaction and fluctuations (J � K
and J � η), after a short transient |As | ∼ 1, and the system can be described by the
phase equations

φ̇s = K F(r) sin (ψ − φs) + √
ηξs (t) where R = 1

N

N∑

s=1

eiφs ≡ reiψ, (13.29)

with F(r) = r f (r2). The phase evolution is represented by Fig. 13.7c, where only
the phase of oscillation is relevant.

At themeanfield level, this set of stochastic differential equations can be described
by a nonlinear Fokker–Planck equation for the one-particle probability density
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ARBITRARY LIMIT CYCLE AMPLITUDE EQUATION

PHASE EQUATION (KURAMOTO) MARKOV CHAIN

a) b)

c) d)

Fig. 13.7 Schematic picture of the coarse-graining of the phase variable. a Schematic of an arbitrary
limit cycle. b Amplitude equation near the point where the limit cycle first develops. c Reduction
to phase dynamics. d Markov chain model for coarse-grained phases

ρ (φ, t), that takes the form

∂ρ

∂t
= η

2

∂2ρ

∂φ2
− K

∂

∂φ
{ρ� [ρ, φ]} , (13.30)

where the second derivative term on the right is the diffusion term, and where the
drift contains

� [ρ, φ] = F(r [ρ]) sin (ψ [ρ] − φ) , (13.31)

with

R = r [ρ] eiψ[ρ] ≡
∫ 2π

0
ρ (φ, t) eiφdφ. (13.32)

The asynchronous state corresponds to a uniform distribution of phases,

ρ(φ) = 1

2π
, (13.33)
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which destabilizes at the critical point

Kc = η

f (0)
. (13.34)

Near the onset of synchronization, the dynamics can be described by the normal form

Ṙ = (
α − β |R|2) R with α = f (0)

2
(K − Kc) , and β = Kc

2

(
1

2
f (0) − f ′(0)

)
,

(13.35)

and f ′(0) ≡ (d f (r)/dr)|r=0. The bifurcation is supercritical ifβ > 0 and subcritical
ifβ < 0. Furthermore, the synchronization is tighter if f (r) is an increasing function,
representing stronger interactions with increasing r . Since we are interested in a
coarse-graining of the phase, for which a coarser synchronization is more propitious,
we will focus on a decreasing function f (r). Then β is always positive and the
bifurcation will always be supercritical.

We are now ready to perform the coarse graining of the phase. ConsiderM discrete
phases,

φ ∈ [0, 2π ] → φ ∈ { j�φ}M−1
j=0 , where �φ = 2π

M
.

Discretizing the nonlinear Fokker–Planck (13.30), we obtain

Ṗj = − (
wj→ j+1 + wj→ j−1

)
Pj + wj+1→ j Pj+1 + wj−1→ j Pj−1, (13.36)

where Pj (t) is the probability to be in the j th phase, and

wj→ j±1 = η

2(�φ)2
∓ K

2�φ
� j , with � j = F(r) sin (ψ − j�φ) . (13.37)

For this to be an acceptable physical description, the transition rates (13.37) must be
positive. A bound to insure this is (see [12])

K < Kmax = η

Fmax�φ
, (13.38)

where Fmax is the maximum of the function F(r) in the interval r ∈ [0, 1]. The
coarse-grained dynamics can be interpreted as a Markov chain, as illustrated in
Fig. 13.7d.

This discrete formalism reproduces the bifurcation structure of the continuous
phase model for M ≥ 4. Figure13.8 displays our numerical results for both dynam-
ics, continuous and discrete phases. Figure13.8a shows numerical simulations of the
amplitude equations (13.26), |As | ∼ 1 with a small dispersion but with an agglomer-
ation of the phases that indicates that the system has crossed the critical point where
phase synchronization first occurs. The seven-bar histogram of Fig. 13.8b has used
the same data as Fig. 13.8a, while the continuous curve is a numerical solution of
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Fig. 13.8 Numerical computations for J = 200, N = 5000, K = 1.5708 > Kc = 0.98696, η =
0.98696, and f (r) = exp (−r/a)with a = 0.3. aAmplitude equations (13.26), showing an agglom-
eration of phases along the limit cycle. b Comparison between phase distribution from the solution
of the nonlinear Fokker–Planck equation (13.30), and a seven-node Markov chain

the nonlinear Fokker–Planck equation (13.30). The black squares in Fig. 13.8b are
the result of a seven-node Markov chain following the prescription described above,
showing good agreement between both approaches.

The case of M = 3, however, turns out to be pathological, which we did not
anticipate. The bifurcation turns transcritical, and the system displays a very different
dynamical behavior than in the continuous phase model. A full analysis of these sorts
of three-state units can be found in [12].

13.4 Conclusions and Perspectives

The vast majority of the enormous literature on synchronization phenomena assumes
continuous time and often continuous state space for the evolution of the interacting
units of interest. However, a number of years ago we concluded that discrete time and
discrete state space would make these problems more approachable. In this Chapter
we discussed two aspects of synchronization related to discrete state models, namely,
the role of the number of units and of the number of states in the synchronization.

We presented arrays of two-stateMarkovian units and arrays of three-stateMarko-
vian units. In both cases, when the arrays of an infinite number of units present coex-
istence of stable states, the fluctuations created by a finite number of units destroy
the coexistence and the system “chooses” one of the stable states in the limit of a
large number N of units. We traced the apparent contradiction of the limit of a large
number of units unable to recover the coexistence to an ergodicity breaking—the
order of the limits t → ∞ and N → ∞ matters.

For arrays of globally coupled two-stateMarkovian units, when there is an infinite
number of these units in the array the problem becomes deterministic (described by
mean field equations) unless there is some external source of noise, which we have



13 Synchronization in Discrete Models 321

not included in our description. We were particularly interested in the steady state
of the system, which is necessarily time independent—two-state Markovian units
do not lead to time dependent configurations as t → ∞. We assumed a (modified)
nonlinear (polynomial) normal form for the interactions among the units which leads
the system to a saddle node bifurcation. For values of the control parameter below the
bifurcation value, there are two stable states, one arising from the ordinary normal
form for this type of bifurcation, and the other from the modification that keeps the
fractions of systems in each of the two states in the physical regime 0 to 1. (There is
also an unstable state in the bifurcation regime.) Hence, there is a coexistence of two
stable states in this region, the steady state being entirely settled by the deterministic
equation and the initial condition.

We then considered a globally coupled array of a finite number of two-state units.
The finite number introduces a noise term that entirely changes the behavior of the
system. In particular, as t → ∞ one state becomes more populated than the other,
and any memory of the initial state is forgotten. This imbalance in the population
of the two states describes a steady state synchronization. If we now take the limit
N → ∞, the system does not arrive at the description in the previous paragraph. The
initial state is forgotten in this case. In other words, as noted above, the limits t → ∞
and N → ∞ do not commute. As an aside, we noted that the inclusion of a memory,
for instance a refractory period that forces any unit that arrives at say state 2 to wait
for some time before returning to state 1, yields time-dependent oscillations [10].

We next considered a globally coupled array of three-state Markovian units. Once
again we started with a deterministic mean field noiseless model, with a different
form of the interactions, namely, exponential (highly nonlinear). As in the two-state
case, there is a coexistence of two stable states. However, in this case the bifurcation
is more interesting. Here, the bifurcation involves not only fixed points but a fixed
point and a limit cycle. The limit cycle implies that the steady state encompasses a
periodic variation of the densities. This is a more striking form of synchronization,
that is, one in which the units move together in unison. We moved on to the case of
a finite number of globally coupled units in the array, which naturally introduces a
noise contribution. Depending on the number of units and other parameter values,
the coexistence is still there, but one or the other stable state becomes weaker (i.e.
fewer units are in one stable state than in the other) as the number of units increases.
Once again the limits t → ∞ and N → ∞ do not commute and the coexistence is
washed away.

Finally we considered an entirely different question: is it possible to coarse grain a
collection of nonlinearly interacting Kuramoto oscillators to arrive at a three-state (or
two-state) model? The Kuramoto system resides in continuous time and continuous
phase, the latter ranging continuously from 0 to 2π , while our models have a finite
number of states. We showed that reduction by coarse graining is possible, but that
our particular three-state model can not be obtained via a simple coarse-graining
procedure of the Kuramoto model. We are able to reduce the continuum model
to discrete ones in this manner but with more than three states. On the other hand,
reduction to a three-statemodel is possible, but with different critical synchronization
behavior than our model.
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What remains to be done? Of course in any attempt to model synchronization
phenomena there is a very large field that others have populated, and that we have
not yet approached. There is also a huge literature on synchronization applications.
To name just a few directions we may take, we note the problems of the range
of interactions in three-state models, the role of the fluctuations due to the finite
number of units in systems with growing populations and the establishment of a
general framework for the coarse graining of continuous models.

In [13], we showed that for a two-state model the range of interaction produces
a transition from a disordered (short range interactions) to an ordered state (long
range interactions). Preliminary studies for a three-state model have indicated that
increasing the range of interactions interpolates the disordered and ordered (syn-
chronized) states with patterned spatial formations (spirals appear for middle range
interactions). A variant ofWood’s model for which there is a birth termwas proposed
in [14]. Such amodel also presents coexistence in themean field approach. The ques-
tion we pose is whether the fluctuations produced by the finite number of units also
destroys the coexistence for this model. Finally, we mention again that we studied
the coarse graining of Kuramoto’s model. However, the possibility of mapping the
phase transition of other continuous models into discrete coarse grained models is
still an open question. We hope our work along these lines will continue to shed light
on these phenomena.
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