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Preface

The concept of Nonlinearity is a universal feature in Mathematics, Physics, Chemistry,
and Biology as a characterization of systems whose behavior does not amount to a
superposition of simple building blocks, but rather features quite complex and often
chaotic patterns and phenomena. The systematic study of nonlinear systems, arguably,
has only been initiated in the last slightly over half a century. Initially, the watershed
moment was the study of lack of equipartition of coupled nonlinear oscillators in the
famous work of Fermi, Pasta, Ulam, and Tsingou in one of the first (if not the first)
reported examples of a computational experiment in Los Alamos in 1955. Then, it was
the seminal study of solitons and solitary waves in the mid-1960s by Zabusky and
Kruskal, and also the famous chaotic three-dimensional dynamical system obtained by
Ed Lorenz (that now bears his name, together with the associated attractor) in 1968.
Subsequently, there was the explosive growth that ensued in systems both with few and
many degrees of freedom, in theory (e.g., inverse scattering) and in applications (from
mechanical and electrical systems to chaotic signal transmission, and from supercon-
ducting Josephson junctions, to spiral waves, e.g., in the heart, and chemical reactions
such as the Belousov-Zhabotinsky one), to mention only a select few out of countless
examples in Physics, Chemistry, and Biology.

As we enter 2020, we are at a crucial juncture in this still young, but now far
more mature than in its first half-century, field of Nonlinear Science. As such, it is a
particularly apropos time to reflect on some of the major successes of the field, on
the key lessons we have learned and the techniques that have been developed in this
time frame. It is also an excellent opportunity to consider the major challenges lying
ahead and the perspectives opening up through the emergence of major new tools
including large scale computational resources, the explosion of data, and the
techniques of quantum computing, machine learning, and artificial intelligence,
among many others. It is thus within the scope of this book to summarize some
of the principal impact areas and themes of the past and also to ponder on the
enticing vistas opening up towards the future. Given this very timing, we wanted to
term this volume: “Nonlinear Science: a 20/20 Vision”, but in their marketing
wisdom, the Springer Nature Editors thought that the associated intended pun might
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render the book obsolete after 2020. That is how we converged on terming this
journey Emerging Frontiers in Nonlinear Science.

The resulting volume discusses a broad range of themes including time-honored
ones such as biology, geometry, topology, but also modern ones encompassing net-
works, metamaterials, and artificial intelligence, to name a few. Each chapter recaps
key elements of recent progress, but importantly also charts the territory of challenges
lying ahead. The volume consists of an interdisciplinary collection of the views of a
diverse group of experts and active scholars across different fields, in an unprecedented
effort to provide an overarching picture of the field: past, present, and future. This book
is expected to be of wide interest to both beginners and seasoned researchers in the field
of Nonlinear Science, in numerous areas of Physics (Optics, Quantum Physics, Waves,
Materials Physics, Biophysics), as well as Applied Mathematics (ODEs, PDEs,
Dynamical Systems, Machine Learning and beyond), and Engineering.

Here is a brief summary of the different Chapters and what they, respectively, offer:
Mark Ablowitz provides a systematic perspective on the history and recent

developments of one of the most celebrated directions in the study of nonlinear
waves, namely the notion of integrability and integrable systems. After going
through the basics of the methodology of the inverse scattering transform in some
of the prototypical relevant PDEs, he goes on to present some of the recent
extensions thereof in the corresponding nonlocal problems such as the Korteweg-de
Vries and the nonlinear Schrödinger equation.

Kirill Kalinin and Natalia Berloff present one of the major challenges and oppor-
tunities in the near future, namely the use of nonlinear systems as tools for uncon-
ventional computing. They identify numerous physical systems including nonlinear
oscillator networks, lasers, and polariton condensates that have been proposed and
realized with the aim of addressing hard computational problems stemming from a
diverse range of areas. Aside from reviewing the relevant physical systems, they
discuss the physically inspired algorithms used to solve a variety of problems.

Li Ge and Wenjie Wan describe one of the most versatile platforms used recently
in optical physics and quantum mechanics, namely the non-Hermitian systems.
These feature a different class of symmetries (e.g. parity-time reversal or PT) than
the standard Hermitian systems that we are accustomed to, and the authors examine
the manifestation of the nonlinear features in this novel class of systems.

Guofei Pang and George Em Karniadakis develop a comparison of a diverse
palette of very modern techniques aimed at studying linear and nonlinear PDEs.
This is accomplished through Gaussian processes and also via neural networks.
Both continuous-time and discrete-time models are developed for performing the
comparison. A number of case examples in both 1D (Burgers) and 2D
(Navier-Stokes) are provided for concreteness.

Edgar Knobloch studies pattern formation in dissipative systems, both in the
un-driven and in the driven (by an external force) case. He focuses on the proto-
typical snakes and ladders scenario of snaking bifurcation diagrams and offers a
wide variety of examples to illustrate the generic emergence of such a scenario in
dissipative nonlinear systems.
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Stefano Iubini, Stefano Lepri, Roberto Livi, Antonio Politi, and Paolo Politi
explore yet another aspect of important implications of nonlinear interactions. In
particular, they focus on their impact on non-equilibrium statistical mechanics. By
reviewing a number of classical anharmonic oscillator models, they present the
connection of such anharmonicity with slow relaxation processes and the potential
violations of the Fourier law for heat transport.

Alexandre Rosas, Daniel Escaff, and Katja Lindenberg focus on an insightful
example of emergence of collective behavior: they explore a system of discrete units
with all-to-all interaction. Their emphasis is on the widely important concept of syn-
chronization and how it emerges in such systems for finite and infinite populations.

Boris Malomed offers an overview of solitary waves as they appear in nonlinear
dynamical lattices. Among the prototypical examples used are the Toda and
Frenkel-Kontorova (discrete sine-Gordon), as well as the discrete nonlinear
Schrödinger lattice and its integrable analog, the so-called Ablowitz-Ladik model.
The emphasis is on one-dimensional and two-dimensional theoretical and compu-
tational findings, however, these are complemented with some of the main exper-
imental observations (e.g., in nonlinear optics) of such waves as well.

Nicholas Manton presents the geometric effects of a wide variety of intriguing
higher dimensional waveforms such as vortices, lumps, and monopoles. He shows
how these waves and their interactions can be well approximated via a
finite-dimensional dynamical system of collective coordinates. This also offers the
possibility of quantization and associated quantum models, such as the quantized
Skyrmion model, are shown to hold promise for understanding aspects of nuclear
physics and topics such as nuclear fusion more concretely.

Lei Xu, Moshen Rahmani, David A. Powell, Dragomir Neshev, and Andrey
Miroshnichenko contributed a chapter in an emerging and important area of non-
linear science, namely nonlinear metamaterials. These are engineered structures
designed to exhibit exotic electromagnetic properties (although more recently they
have also been extended to other areas such as acoustics). This was an effort
originally geared towards linear properties but has been substantially extended to
the nonlinear realm more recently. Along with a historical overview of the field, a
number of concrete examples such as strong local field enhancement or exotic
phase-matching conditions are presented.

Network theory is another recently emerging major area interfacing with ideas from
nonlinear systems. Mason Porter in the relevant chapter reviews topics from temporal
networks, stochastic and deterministic dynamical processes, adaptive networks (where
the structure is coupled to the dynamics), and even higher-order (rather than just
pairwise) processes. Numerous important applications of the fields, e.g., in contagion
dynamics, opinion models, and coupled oscillator networks are given.

Undoubtedly, Biology is an extremely wide and often largely unexplored field
where nonlinearity has been shown to play an enormous role. Zoi Rapti presents an
overview of select themes where the role of nonlinearity has been established often
in close connection with biological experiments, notably in ecology and epidemi-
ology. She also touches upon a number of additional fascinating areas of studies

Preface ix



including the regulation of glucose-insulin, models of cancer progression, pattern
formation in limbs, and DNA dynamics.

Naturally, for all of the above settings, numerical computation is of paramount
importance for understanding the nonlinear dynamical systems that model the
physical (or chemical or biological) reality. Thus carefully crafted and computa-
tionally efficient numerical methods are critical. Laurette Tuckerman reviews a
number of state-of-the-art methods for identifying steady states, periodic orbits and
bifurcation diagrams, coupling relevant aspects to the stability, and spectral char-
acteristics of the solutions (i.e., eigenvalues and Floquet multipliers). A series of
highly demanding classical examples are used to illustrate the methods drawn from
the theory of fluids (such as Rayleigh-Bénard convection or flow past a cylinder), as
well as that of superfluids and Bose-Einstein condensates.

Kazuya Fujimoto and Masahito Ueda explore one of the timely and important
research directions in quantum systems, through their potential universal relaxation
dynamics. They focus on emerging theories such as the Kibble-Zurek mechanism
of pattern formation (that is also relevant to cosmology), the dynamics of coars-
ening, and the important recent notion of non-thermal fixed points. They showcase
these types of relaxation dynamics by various mathematical examples of physical
models, including quantum spin models, the famous Gross-Pitaevskii PDE, and
kinetic equations.

Finally, Avadh Saxena, Panayotis G. Kevrekidis, and Jesús Cuevas-Maraver
explore the interplay of nonlinearity and topology in a wide variety of physical
systems such as chiral magnets, Bose-Einstein condensates, liquid crystals, topo-
logical materials, and photonic resonator arrays. They focus on a slew of topo-
logical defects, e.g., skyrmions, merons, hopfions, vortex rings, and monopoles in
these settings and discuss the effect of nonlinearity on various emergent properties
in the presence of such defects. They also illustrate the powerful technique of
Bogomolnyi decomposition in terms of studying soliton-like defects on curved
manifolds.

When this Preface was written, the world around us was a different place, i.e. it
was prior to the pandemic of COVID-19 and the associated virus SARS-CoV-2. As
we put these proofs together, it did not elude us that the epidemiological study of
disease spreading or mitigation (or, for that matter, the fluid mechanical studies
of the viral shedding, deposition, inhalation, sedimentation, etc.) are based on
fundamentally nonlinear models. This has turned out to be yet another—and per-
haps even more urgent than emergent—frontier for the nonlinear science of the next
few years. In this context we emphasize that the first chapter by Zoi Rapti covers
certain aspects of epidemiological modeling and the sixth chapter by Mason A.
Porter addresses contagion models.

Amherst, MA, USA Panayotis G. Kevrekidis
Seville, Spain Jesús Cuevas-Maraver
Los Alamos, NM, USA Avadh Saxena
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Chapter 1
Nonlinearity and Biology

Zoi Rapti

Abstract In this chapter we discuss the origin and role of nonlinearities in some
classes of biological models. We describe underlying biological mechanisms that
generate nonlinearities and how they have beenmodeled in subfields, such as ecology
and epidemiology.We present examples of recent models to highlight the importance
of indirect effects and the emergence of alternative stable states, and trade offs. At
the same time, we emphasize recent developments and unresolved challenges in
biological modeling, such as data-theory coupling, parameter estimation and the
generalization of results from low- to high-dimensional systems. We finish with
recent examples of mathematical models of the glucose-insulin regulatory system,
cancer treatment, limb development and pattern formation, and DNA.

1.1 The Origin of Nonlinearities in Biology

Living organisms and their interactions are, in general, complicated and variable.
Foraging ants leave pheromone trails aiming to recruit more foragers to a particular
food source [1]. The positive feedback generated by their infochemicals has been
found to be nonlinear: the strength of the trail is not proportional to the reaction it
elicits from the ants [1]. This nonlinearity generates a bias towards food sources with
the largest number of initial visitors, despite the fact that qualitatively it might be
equivalent to other nearby sources.

Female túngara frogs select their mate based primarily on acoustic cues. To attract
females, male frogs emit simple calls (a whine only) or complex calls (a whine
followed by one or more chucks) and females respond preferentially to complex
calls [2]. Frog groups range in size from a few to a hundred, hence competition
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among males is fierce. It has been determined that túngara frogs follow Webber’s
lawwhen comparingmating cues, namely they prefer one call over another not based
on the difference of the number of chucks, but rather based on the ratio of number
of chucks (a chuck is defined as a complex call consisting of two or more whines).
Lack of privacy makes mating success even more uncertain due to predation risk:
frog-eating bats also listen attentively to these mating calls in order to locate their
next meal.

It has been generally noted that the outcome of interactions between two species
often depends on which other species are present and interact with them [3, 4].
Moreover, these interactions may be direct or indirect. Competition for common
resources, parasitism, and predation are examples of direct effects. The effect of
species A on species B is indirect if it takes place by A altering the effect a third
species, C , has on B. Indirect effects can, in turn, be density- or trait-mediated. A
density-mediated indirect effect occurs when, for instance, a parasite affects only the
superior of two competitors, thus reducing its density, which in turn aids the inferior
competitor. An example of a trait-mediated indirect effect is when the presence of a
predator evokes anti-predatory behavior in one of two competitors, thus affecting the
outcome of their pairwise competition. Such indirect effects [4] were the focus of a
recent study of a host-parasite-competitor nonlinear model [5], where it was shown
that indirect effects are qualitatively and quantitatively as strong as direct effects.
This importance of indirect effects has long been advocated for by biologists [4].

In experiments of the same host-parasite system, kairomones fromdifferent preda-
tors evoked different effects [6]: fish predators increased host susceptibility to the
parasite, while an invertebrate predator induced no such effect. On the other hand,
the fish predator caused a decrease in the infective propagule yield per host, com-
pared to the invertebrate predator. Higher susceptibility aids the parasite, while lower
propagule yield harms its chances of successive infections. Therefore, it is nontrivial
to determine what the net effect of each predator on the disease dynamics and the
parasite is.

These examples illustrate not only the emergence of nonlinear phenomena in bio-
logical systems, but also how nuances in each system may lead to lack of uniformity
in modeling approaches, which in turn may partially explain the relative scarcity of
general “laws” and a general theory in biological modeling, when compared with
other disciplines, such as physics.

1.1.1 Interactions of the Lotka–Volterra Type

Few systems are probably more well-studied in mathematical biology than those of
prey-predator interactions. The most easily recognizable prey-predator model is the
Lotka–Volterra nonlinear system
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dx

dt
= (b − f y)x (1.1)

dy

dt
= (e f x − d)y. (1.2)

Here, x and y denote the prey and predator population density, respectively, and t
denotes time. The parameter b denotes the net per capita growth rate of the prey in
the absence of the predator, f the predator feeding rate, e the conversion efficiency
of prey to predator biomass, and d the per capita predator death rate. The model was
introduced almost 100 years ago independently by Lotka in 1925 [7] and Volterra
in 1926 [8]. It has the trivial equilibrium E0 = (0, 0) where both prey and predator
go extinct, which is a saddle for all realistic parameter values, and the co-existence

equilibrium Ec =
(

d
e f ,

b
f

)
. Its dynamics is fully understood and it has the following

constant of motion:

L(x, y) = b ln y − f y − e f x + d ln x . (1.3)

Plotting the contours of L yields periodic solutions around the coexistence equilib-
rium.

The terms b − f y, e f x − d in (1.1)–(1.2) are referred to as the per capita growth
rates and are linear functions of the dependent variables x, y. This linearity has
several underlying biological assumptions.

• First, it is assumed that predators have an insatiable appetite. The more prey exists,
the more they feed on it.

• Second, it is assumed that the prey has no defensive mechanisms and the more
predators exist, the greater its predation risk is.

Both of these assumptions have been contested, giving rise to different nonlinear
prey-predator models.

1.1.2 Holling-Type II Functional Response and the
Rosenzweig-MacArthur Model

The first assumption was amended by Holling in 1959 [9] and later analyzed by
Rosenzweig and MacArthur in 1963 [10]. Holling replaced the linear function f x
in the predator feeding rate by

F(x) = fmx

h + x
, (1.4)

where fm is the maximum feeding rate and h is the half-saturation constant, namely
the value of prey density where the feeding rate achieves half its maximum value fm

2 .
This is referred to asHolling Type-II functional response, whereas the linear feeding
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rate is referred to as Holling Type-I functional response. The saturating functional
response is used in the case of predators that require time for both searching for
and handling of the prey, while the linear functional response is used in the case
of predators that require no time for handling their prey, so all time can be used
for searching. In [11] the authors have recently used the framework of stochastic
processes (microscopic description at the individual level) to derive ODE models
(macroscopic description at the population level) of predator-prey interactions, while
carefully considering the entire life-cycle of the species involved. What is interesting
is the fact that the macroscopic equations contain the original Holling functional
responses, which were derived for individual predators. Rosenzweig and MacArthur
[10] also included the more realistic assumption that in the absence of the predator,
the prey does not grow exponentially according to bx in (1.1), but rather logistically,
according to:

r x
(
1 − x

K

)
, (1.5)

where r is the maximum intrinsic per capita growth and K the carrying capacity.

1.1.3 Higher-Order Interactions

The assumption that prey is defenseless and predation risk increases with predator
density was challenged, among others, by Abrams in 1983 [12]. Specifically, he
argued that some prey may actively engage in predator avoidance which would
lead to a decrease, rather than an increase, of predation rate with predator density.
He subsequently advocated for higher-order interactions in predator-prey models.
Higher order-interactions have indeed been incorporated in both prey (bacterium)-
predator (phage) models [13] and in other interactions, such as competitive ones
[14]. These interactions were found to have a stabilizing effect on the dynamics.
Specifically, it was shown in [13] that despite the system having a conserved quantity
like (1.3), the dynamics are not necessarily oscillatory: for certain initial conditions,
the trajectories converge to an attracting equilibrium point. Using a simple Lyapunov
function, it was shown in [14] that while competitive interaction of Lotka–Volterra
type (quadratic nonlinearities) lead to cyclic dynamics, higher-order interactions
yield a globally stable equilibrium point.

1.1.4 Lotka–Volterra in Disguise

Another equally well-known model is the classic epidemic model [15, 16]:
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ds

dt
= −βsi (1.6)

di

dt
= βsi − γ i. (1.7)

In this model, s and i denote, respectively, the fractions of susceptible and infected
classes in the total population, which also includes the recovered class r , and t
denotes time, as previously. The equation for the recovered class r ′ = γ i is omitted
for the following reason. The total population is assumed to be constant s(t) + i(t) +
r(t) ≡ 1, hence r(t) can be trivially obtained once s(t), i(t) have been found. The
parameter β denotes the contact rate between the two classes and 1/γ is the average
infectious period. One readily notices that system (1.6)–(1.7), as far as nonlinearities
are concerned, is identical to the Lotka–Volterra one (1.1)–(1.2). However, the focus
of mathematical analysis of this model, is different than of that of the Lotka–Volterra
system. Specifically, the question of interest is whether the infected population i will
first rise to a maximum and then decrease (existence of an epidemic outbreak) or
whether it will just decrease to zero monotonically (no epidemic outbreak taking
place). The answer depends on the threshold parameter β

γ
s0, which is the product of

the contact number β

γ
and the initial condition of the susceptible class s(0) = s0.

1.1.5 Holling-Type II Functional Response in Disguise

While theHolling-type II nonlinearity has its origins in ecology, the samenonlinearity
has two more aliases reflecting its alternative origins. The same type of saturating
nonlinearity was also introduced by Monod [17] in the context of bacterial growth
in an environment of limiting resources. Before that, Michaelis and Menten in 1913
were actually the first to use it in the context of enzyme-catalyzed reactions [18].
Specifically, in their seminal paper they derived a model for the rate of an enzymatic
reaction, where the binding of the reaction products competes with the binding of the
substrate, thus leading to saturation. More recently saturating functions have been
used to model the infection of bacteria by phages in order to account for biofilm
formation due to quorum-sensing [19].

1.1.6 Holling-Type III Functional Response and the Hill
Equation

Sigmoidal functional responses of the form

G(x) = gxn

hn + xn
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are used in prey-predator models [20], chemical reactions [21] and gene regulatory
networks [22, 23]. Here, g is the maximum of function which is achieved asymptoti-
cally and h can be seen as a half-saturation constant, since G(h) = g

2 . The parameter
n is referred to as the Hill coefficient, after Archibald Hill who was the first to intro-
duce a sigmoidal function when studying the binding of oxygen to haemoglobin
[21]. The value of n controls how abrupt the switch is, with high n yielding steeper
transition. In some prey-predator systems, the predator exhibits a learning behavior,
where in low prey densities it will not feed, but as the prey densities increase above
a threshold, the predator feeding rate increases until it saturates. As outlined in [20],
such a switch in predator feeding rate may occur for other reasons too, such as the
discovery of alternative areas or search paths and the learning of hunting techniques
or increased prey handling efficiency. In gene regulatory networks, Hill’s functions
are used to describe the control of one variable by another. In that context, g is inter-
preted as the maximum of the activation/induction rate and h as the half-maximal
induction concentration.

1.1.7 Hunting for Universal Biological Models

This phenomenon of using essentially the same model and reinterpreting it in dif-
ferent contexts permeates mathematical modeling in biology. It also demonstrates
the lack of general rules in biological modeling. However, the need for generaliza-
tion has been recently recognized [24]. In [24] the authors advocate the use of uni-
versal consumer-resource models, which encompass prey-predator and susceptible-
infected interactions, that can then be modified to describe particular systems while
still accounting for their intricacies. Specifically, many well known models, such as
Lotka–Volterra, susceptible-infected-recovered, and chemostat, have been recast as
a general consumer-resource model.

1.2 Dynamics in Nonlinear Biological Systems

Having identified some of the origins and modeling approaches of nonlinearities
in biological applications, the next step is to explore the types of dynamics they
generate. In particular, we will focus on indirect effects, the role of nonlinearities in
the creation of alternative steady states, and the emergence of trade-offs in biological
models.
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1.2.1 Indirect Effects

Cross-feeding in polymicrobial systems [25] is a prime mechanism demonstrating
the complicated relationships that arise due to indirect effects. The relevant biological
system consists of two competitors that are also indirectly linked due to the fact that
competitor A produces a toxic (to A) by-product, E , that is however beneficial to
competitor B, since B utilizes it as a resource. Thus, although the direct effect of
A on B, and vice versa, is competitive, the indirect effect of one competitor onto
the other is mutualistic. Hence, the net ecological interaction between A and B
could be of either kind and this was showcased in [25] using a simple mathematical
model. In otherwords, there is a trade-off between the negative effect (competition for
primary resources between A and B) and the positive effect (A offering an additional
resource to B without any cost to itself, and B removing the toxic for A by-product)
each competitor has on the other. Despite the fact that biologists acknowledge that
interactions are not permanent, neither in time, nor in space, mathematical models
are, with few exceptions, lagging behind. Namely, most theoretical studies focus on
interactions of fixed type (such as competitive: both species are harmed, mutualistic:
both species have a net benefit, antagonistic: one species benefits, while the other is
harmed) and assume that they retain their type throughout.

Indirect effects and trade-offs have been observed and demonstrated mathemati-
cally in a plethora of other systems. For instance, in invertebrate disease dynamics
they seem to be a prevailing theme. In [26], the role of the inferior competitorDaph-
nia pulicaria as diluter in fungal epidemics of the focal host Daphnia dentifera
was investigated. The two species compete for a common food resource (algae),
but D. pulicaria is not a competent host. Hence, when it consumes infectious fun-
gal propagules from the water column while filter-feeding, it decreases the disease
risk in the focal host. However, in that study it was found that the positive effect of
dilution (decrease in infection risk) was not enough to counterbalance the negative
direct effect of competition. Actually, depending on the competitive ability of the
two species, the density of the focal host was decreased, and in some cases, the focal
host was completely eliminated from the system. Only at low carrying capacity for
the algal resources was the net role of the inferior competitor positive, namely it
increased the density of the focal host through the dilution effect.

In the following example we use the simple 3-dimensional ODE model of [25] to
show the changing type of interactions due to indirect effects.

Example
The simple ODE model of [25] reads

dA

dt
= (r(1 − αA − βB) − f E)A (1.8)
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dB

dt
= ((1 − γ A − B) + ghE)B (1.9)

dE

dt
= yA − hEB − uE, (1.10)

where A, B and E denote the producer, cross-feeder, and by-product density,
respectively. In this model, r stands for the relative intrinsic growth rate of
A, α, β, γ are competition coefficients, f is the toxicity rate of E on A, h
represents the consumption rate of E by B, and g the conversion efficiency.
Finally, y is the production rate of E by A and u the decay rate of E . All
equilibrium points were found in [25] and their stability was analyzed. The
model is in non-dimensional form.

To showcase the variation in the interaction between the two competitors,
we plot the stable steady states as a function of byproduct toxicity f at two
different values for consumption rate h of E by B. Specifically, we pick a low
consumption rate h = 0.01 and a high consumption rate h = 0.8 and compare
the density of the two competitors when the other is absent and when they
coexist. As it is shown in Fig. 1.1, when the consumption rate of the toxic
byproduct E by B is small, both competitors have higher density when the
other is absent (panels a and b). On the other hand, when the consumption
rate is high and byproduct toxicity is above a threshold, both competitors are
benefited when they coexist, since their density is higher than the one they
would reach in the absence of the other (panels c and d). Hence, for h = 0.01
their net interaction is competitive, while at h = 0.8, their net interaction is
mutualistic, for high enough toxicity. However, at very low toxicity f and
high consumption rate h, one can see from panel c that competitor A has
higher density in the absence of B. Thus, for low toxicity rate, the interaction
is antagonistic: positive for B, but negative for A.

1.2.2 Alternative Stable States

It iswell-established that gene regulatory networks have feedback loopswhich induce
the bistability that underlies their binary (switch-like) behavior [27]. Actually, twenty
years ago, amathematicalmodelwas used to experimentally construct a bistable gene
network [28].

What has been shown in the past two decades is that the same nonlinear mech-
anisms that explain the switch-like behavior in regulatory networks, e.g. hysteresis,
are also at play in self-organization and collective behavior of certain species, such
as Pharaoh’s ants [29]. Specifically, it was shown experimentally that there exists a
behaviorally imposed hysteresis phenomenon which explains the transition of for-
ager ants from a disorganized state to an organized one (trail formation towards a
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Fig. 1.1 Equilibrium density of A as a function of toxicity rate f in the absence (red dashed-dotted
curve) and presence (blue solid curve) of B is shown in panel a for h = 0.01. Equilibrium density
of B in the absence (magenta dashed-dotted line) and presence (blue solid curve) of A is shown in
panel b for h = 0.01. Panels c and d are analogous to panels a and b, respectively, but correspond
to h = 0.8. The other parameter values are set at r = 1, α = 0.9, β = 0.2, γ = 1, u = 0.1, g = 1,
and y = 1.5

food source). The authors also wrote a simple nonlinear ODE model which exhibits
bistability and reproduces the experimental results.

Later on, they expanded the one-dimensional system to a coupled system of ODEs
in order to capture the ant dynamics when two food sources are available, as outlined
in Sect. 1.1. Since the results in [1] were mostly numerical, in this section we present
some analytical results on the two-dimensional model, as an illustrative example of
bistability in biological systems.

Example
In the ant-trail model with two food sources [1], XA and XB denote the number
of forager ants walking to food source A and B, respectively, and N is the
total number of ants able to forage. Each individual ant may find the food
source through a random search at a rate α or it may follow the pheromone
trail of other ants at a per-capita rate βi Xi , i = A, B. These per capita rates



10 Z. Rapti

are multiplied with the number of ants that have not selected a food source
yet, namely N − XA − XB . Since pheromones are quite volatile, their trail
diminishes over time. However, it is assumed that trail strength increases with
the number of ants using it and that the stronger the trail, the less likely it is
for ants to lose it. Hence, the loss rate of ants forming a trail was assumed
to depend nonlinearly on their number as sXi

K+Xi
, i = A, B, where s is the

maximum rate at which ants lose the trail when the trail is saturated and K is
the number of ants that result in a rate loss of s/2. Finally, it is assumed that
time t is measured in minutes. The coupled nonlinear ODE model then reads
[1]

dXA

dt
= (α + βAXA)(N − XA − XB) − sX A

K + XA
(1.11)

dXB

dt
= (α + βB XB)(N − XA − XB) − sXB

K + XB
. (1.12)

An interesting bimodality was observed in experiments [1]. Namely, when the
two food sources A, B are of identical quality, the one with the largest number
of ants after 60min (almost at steady-state), is the one that has the largest
number of ants initially. Bistability in the corresponding mathematical model
reflects this bimodality in the biological data.

It is straightforward to verify that Xi = 0 implies dXi
dt = α(N − X j ) ≥ 0,

j �= i , j = A, B and XA + XB = N implies dXi
dt = − sXi

K+Xi
≤ 0, i = A, B.

These, in turn, imply that the triangular region bounded by XA = 0, XB = 0,
and XA + XB = N is positively invariant for system (1.11)–(1.12).

If, in addition, the food sources are of equal quality, it is assumed that
βA = βB = β and the following are also true.
• The set XA = XB is invariant under the dynamics of (1.11)–(1.12).
• The equilibrium points satisfy XA = XB or XAXB = αK

β
, which yield a

saddle point on the invariant set XA = XB and two positive linearly stable
equilibrium points.

This information is summarized graphically in Fig. 1.2. The saddle point is
depicted by a red square. Any trajectory originating on XA = XB (the stable
manifold of the saddle point) ends us at the saddle point. On the other hand,
any trajectory originating in either of the smaller triangular regions is trapped
there and ends up in the respective green dot depicting the stable equilibrium
point.

How important were the nonlinearities in this model? It is noted in [1]
that, any change that would remove the cubic terms in (1.11)–(1.12) would
result in model predictions of equal final trails to both food sources, regardless
of the initial conditions. This is an undesirable outcome, as it violates the
experimental findings.
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Fig. 1.2 Equilibrium points and positively invariant regions for the ant trail model with two equal-
quality food resources. The red square corresponds to the saddle point and the green circles corre-
spond to the linearly stable equilibrium points. The triangles bounded by the blue line segments are
positively invariant regions for the system. Parameter values are set to N = 100 ants, α = 0.0052
1/min, βA = βB = 0.0015 1/(min × ant), s = 1 1/min and K = 10 ants

1.2.3 Trade Offs

One of the central questions in host-parasite interactions is related to the optimum
virulence from the pathogen’s perspective. Sincemost pathogens depend on their host
for survival and transmission, common sense would suggest that it is to their benefit
not to cause harm to their host [30]. This is the so-called “conventional wisdom” of
avirulence. It has, however, been suggested that due to feedbacks and adaptations
between pathogens and their hosts, pathogens will select for the virulence that max-
imizes their fitness, which is referred to as the “enlightened theory” [31]. In most
studies, the basic reproduction number, R0, namely the number of secondary infec-
tions generated by a single infected host when introduced in a completely susceptible
population [16] is used as a proxy for fitness [31–33]. Recently, both empirical [30]
and mathematical studies [32, 33] suggest that an intermediate level of virulence
maximizes the pathogen’s fitness.

There are various trade-offs that cause this intermediate optimum. First, there
is the trade-off between transmission and disease-induced mortality [31], where
disease-induced mortality increases with transmission rate. R0 increases with dis-
ease transmission, but decreases when the period over which hosts remain infectious
decreases, thus generating an intermediate level of optimum disease-induced mor-
tality. Second, there might be a trade-off between contact rate and transmissibility
[33]. This happens when the severity of the infection, which increases with pathogen
load in the host, causes a decrease in contacts due to the host experiencing too severe
symptoms to function normally. Increased pathogen load, on the other hand, increases
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the probability of disease transmission given contact. Third, in infectious diseases
with recovery, a trade-off between transmission and recovery is possible [34]. This
occurs when the activation of a host’s immune defenses depends on the pathogen’s
growth rate. Hence, the pathogen may increase its transmission rate, while simulta-
neously decreasing the infectious period. In this setting, the definition of virulence
has been expanded to also include non-lethal effects caused by the pathogen.

In the following example, we highlight how biologically imposed trade-offs result
in intermediate levels of optimum virulence.

Example
We consider a PDE model [32], where susceptible Daphnia hosts, S, become
infected, I , by accidentally ingesting fungal propagules, Z , while filter-feeding
on algae, A. The model is a combination of a prey-predator model (S and A),
similar to (1.1)–(1.2), and a susceptible-infected model (S and I ), similar to
(1.6)–(1.7). Host feeding rate fS(A) is given by a Holling type-II functional
response (1.4), and algal resources grow logistically, according to (1.5). The
infection rateμ

fS(A)

A Z per susceptible host S consists of the host susceptibility
μ and the contact ratewith spores,which is given by the product of the ingesting
rate fS(A)

A and the spore density Z . This arises because if we set fS(A) =
w(A)A for the functional response, then since spores Z are ingested in the
same way as algae A, the ingesting rate of spores is w(A)Z = fS(A)

A Z . Since
most species are part of interaction networks involving pathogens, competitors,
and predators, such eco-epidemiological models are quite common. In the
following model though, we combine eco-epidemiological interactions with
the process of within-host pathogen growth. A second time variable a, having
the sameunits as time t , is introduced to keep track of thewithin host-dynamics.
Here, I (t, a) denotes the density of infected hosts at time t that have been
infected for a days. Due to the growth rates of the Daphnia host and its fungal
pathogen, it is assumed that da

dt = 1. The within-host pathogen load is denoted
byW (a).Moreover, the term virulence encompasses all harm inflicted unto the
host by the pathogen, such as reduced fecundity modeled by 0 ≤ ρ(a) ≤ 1,
higher predation rate for the infected hosts by visual predators modeled by
θ(a) ≥ 1, as well as disease-induced mortality v(a) > 0. The full nonlinear
model is:

dS

dt
= eS fS(A)

(
S +

∫ a0

0
ρ(a)I (t, a)da

)
− (d + pS)S − μ

fS(A)

A
SZ

(1.13)

∂ I

∂t
+ ∂ I

∂a
= −(d + v(a) + θ(a)pS)I, I (t, 0) = μ

fS(A)

A
SZ (1.14)

dZ

dt
= σeS fS(A)

∫ a0

0
(d + v(a))I (t, a)W (a)da − λZ−
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fS(A)

(
S +

∫ a0

0
I (t, a)da

)
Z

A
(1.15)

dA

dt
= r

(
1 − A

K

)
A − fS(A)

(
S +

∫ a0

0
I (t, a)da

)
. (1.16)

Here, eS denotes the conversion efficiency of algal to host biomass, d denotes
the background mortality rate, pS the predation rate, σ is the propagule
release parameter, and λ is the fungal propagule loss rate. The integral∫ a0
0 ρ(a)I (t, a)da in (1.13) gives the total host biomass generated by the
infected hosts I (t, a) that reproduce at a rate modified by ρ(a) (compared
to the susceptible hosts) during their life-span a0. The integral

∫ a0
0 (d +

v(a))I (t, a)W (a)da in (1.15) denotes all the spores that are produced by the
infected hosts I (t, a) that either die due to natural causes at rate d or due to the
infection at rate v(a) and which after being infected for a days have a within-
host spore load of W (a). The integral

∫ a0
0 I (t, a)da in (1.15)–(1.16) denotes

the total biomass of all infected hosts, regardless of their age of infection a.
A trade-off exists due to the fact that as the pathogen proliferates within the

host, the normally transparent host becomes opaque, and hence is easier located
and preyed-on by visual predators (fish). Unfortunately for the pathogen, most
of the propagules contained in infected hosts consumed by fish are lost from
the water-column. Therefore, for given predator behavior θ(a), if the pathogen
kills the host too soon, the dead infected host will not release enough propag-
ules, whereas, if the pathogen kills the host too late, it might be consumed by
fish first, effectively removing all propagules from the water column. The dis-
ease induced mortality v(a) is given by a sigmoidal function as seen in panel
a of Fig. 1.3. In panel b of Fig. 1.3 the basic reproductive number R0 is shown
as a function of the time of the switch hv for various values of the maximum
disease inducedmortality v0. One can see that for fixed v0, the maximum value
of R0 in attained at intermediate values of hv .

1.3 Experiments, Observations, and the Pursuit of Realistic
Biological Models

Oftentimes, nonlinearities are ignored in experimental and field studies. Due to
time and cost limitations, when experiments and observational studies are designed,
restrictive choices are made regarding the range of varied parameters and observed
conditions. However, as highlighted in a 2013 note [35], not accounting for non-
linear relationships may yield inconsistent conclusions and contradictory findings.
Consider for instance the case where variable Q depends on variable p according to
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Fig. 1.3 The sigmoidal function v(a) = v0
2 (1 + tanh(a − hv)) is shown in panel a for

v0 = 0.22 day−1 and hv = 12 days. The basic reproductive number R0 is shown in panel b, as
a function of v0 and hv . The other parameter values follow [32] and are well known in the literature

Q(p) = pe−p,

which is the Ricker nonlinearity used in [35]. Then, depending onwhether the region,
before, close to, or after the maximum at p = 1 is explored, the outcome of the study
could be that Q increases, does not depend on, or decreases with p, respectively.

Another way in which data-theory coupling may become nontrivial is due to the
timescales considered and the existence of intrinsic oscillations in the data. This was
the case in a statistical analysis of global jellyfish blooms [36]. Themotivation behind
the study was the widespread awareness of increases in jellyfish numbers. Never-
theless, the major finding of the study, which was possible thanks to observational
studies spanning several decades, was that the perceived increase was part of decadal
oscillations in jellyfish abundance. This echoes the warning issued by Robert May
35 years ago [37], when he demonstrated how transient damped oscillations oper-
ating on a long timescale might, when not promptly identified as such, erroneously
suggest the failure of immunization campaigns.

There are currently two routes to obtain realisticmodels given biological data. One
is the so-called sparsity-promoting optimization that has been recently developed to
select nonlinear models from a library of existing ones [38]. This is a data-driven
method requiring no prior knowledge of the underlying biology, thus falling into the
category of an unsupervised learning algorithm. The main idea is to synthesize the
time series data into a nonlinear function library, relate the elements of the library
to the time derivatives using regression and enforce sparsity to ensure only a few
nonzero coefficients. Limitations of this method include the requirement of large
data sets and the treatment of noisy data when noise is too high.

An alternative method is to first use biological insight to create an appropriate
nonlinear model and then fine-tune its parameters, after having examined whether
they are indeed identifiable [39]. Identifiability may fail in two ways: due to the
structure of the model and the nature of the measurements (structural identifiability),
or due to the specific dataset used (practical identifiability), for reasons such as noise
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or having the wrong sampling frequency. The modeling process may first involve
rescaling the model to eliminate parameters. Afterward, the rescaled model is fitted
to data using least squares. Onemay also generate simulated data to assess estimation
errors and investigate alternative measurement scenarios. This method also detects
combinations of parameters that are unidentifiable based on the given data, and
hence informs of additional required measurements. The limitations of the method
are mostly computational in nature.

1.4 Recent Advances and Open Problems

Even before considering what types of models and nonlinearities should be exam-
ined, there is a more fundamental question to be asked by modelers. Namely, one
should ponder which biological systems, processes, or populations are important to
be modeled and studied in the first place. Models and theoretical studies should be
grounded on original biological questions. Within the last decade, such key ques-
tions are related to the comparative study of direct and indirect species interactions,
the role of hysteresis in ecological systems, and the study of life-history trade-offs
in relation to evolution, as well as the resilience of populations and ecosystems to
disturbances and perturbations, the quantification of extinction risk, the prediction
of tipping points and the reconciliation of multiple timescales [40].

Recent technological progress has resulted in a deluge of biological data, some
of which are time series. A key question regarding time series is the existence of
regular patterns (such as periodicity) or randomness. In some applications, such as
microbiota network analysis, periodicity, alternative states and the ability to construct
predictive models are of major importance [41].

Time Series Analysis
Using permutation entropy as a measure is an efficient way to detect and analyze
unusual patterns in biological time series data [42, 43]. It is simple to implement,
computationally fast, and robust [42]. It has been used to study qualitative and
quantitative changes in simulated dynamical systems (such as the Lorenz system
and the logistic map [43]) and real data (such as those from epileptic seizures
[44]). Permutation entropy is defined as follows. At each time instance s of a
given time series X = {xt : t = 1, . . . , T }, a vector composed of m subsequent
values is constructed s �→ (xs, xs+1, . . . , xs+(m−1)). Here, m is called the embed-
ding dimension and it has been shown empirically that it should be in the range
5 ≤ m ≤ 7. To each vector, an ordinal pattern is associated, defined as the per-
mutation π = (r0r1 . . . rm−1) of (01 . . .m − 1) with the property xs+r0 ≤ xs+r1 ≤
· · · xs+rm−2 ≤ xs+rm−1 . An embedding delay L can be introduced in a straightforward
way s �→ (xs, xs+L , . . . , xs+(m−2)L , xs+(m−1)L) [43, 44] to consider different tempo-
ral resolutions. To each time series, it is possible to associate a probability distribution
�, whose elements πi are the frequencies associated with the i−th possible permu-
tation pattern, where i = 1, 2, . . . ,m!. Then, the permutation entropy PE is defined
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as the Shannon entropy of this distribution:

PE = −
m!∑
i=1

πi logπi .

Unlike other complexity measures, the permutation entropy is able to distinguish
noise from chaos and can be used to reveal relationships between two time series [44].
Computer memory limitations and the length requirements are two of the restrictions
of the method.

Alternative Stable States
While the initial choice of a food source might not be catastrophic for a colony of
ants, alternative stable states may make all the difference to the state of coral reefs
(healthy vs. diseased) [45] or to the state of lakes (clear vs. turbid) [46]. Techniques
from bifurcation theory [47] have been used to study tipping points in the context of
local bifurcations.More recently, progress has beenmade to both define and quantify
resilience in the case when disturbances are repeated and discrete [48]. Specifically,
the authors introduced the novel kick-flowmethod to study the effect of disturbances
on the state of a dynamical system. The main idea of the method is to define a map
Gτ,κ that describes one cycle of the flow-kick process, where τ is the flow time (the
time interval between disturbances) and κ is the kick size (the size of the disturbance).
Then, if φτ (x) is the flow of the ODE describing the unperturbed system, it holds

Gτ,κ (x) = φτ (x) + κ.

Iteration by Gτ,κ amounts to repeated disturbances. Flow-kick fixed points and their
stability can then be used to determine the resilience boundary in τκ-space (dis-
turbance space). Unlike methods used to predict tipping-points [47], the flow kick
method does not require closeness to the equilibrium of the unperturbed system. This
method, however, has only been used in low-dimensional ODE systems, and, to the
best of our knowledge it has not been examined either for spatially explicit, or for
age-structured systems.

Models and Predictions
In [32] it was demonstrated how the age-of-infection structured model (1.13)–(1.16)
yields the same R0 and steady-state densities as a corresponding ODE model, under
an appropriate averaging of those parameters that depend on the age-of-infection.
In [5], it was shown that using different values in several parameter sets yields very
similar steady states. Finally, in [49], in comparisons of five cholera epidemicmodels,
it was found that R0 was poorly estimated by all models, due to an identifiability
issue between the parameter of pathogen transmission and the pathogen decay rate.
At the same time, other parameters were able to be estimated in all models. Hence,
any model predictions should be scrutinized and carefully interpreted.

In conclusion, due to noise, heterogeneity in the observed andmeasured variables,
and interactions that are necessarily omitted inmathematical models, direct compari-
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son between simple models and data might not always be feasible [37]. Nevertheless,
mechanistic models can be used, in conjunction with biological insight and data, to
understand the drivers of observed patterns.

1.5 Models Beyond Ecology and Epidemiology

In this final sectionwe present several recent studies of nonlinearmodels in biological
applications, other than those that are ecological or epidemiological in nature. In
particular, we focus on two diseases that are not infectious, namely diabetes and
cancer, on models of limb development and pattern formation, and finally on DNA
models.

1.5.1 Diabetes

The sugar glucose is the primary energy source for the human body. Glucose con-
centration in the blood increases through ingestion or through hepatic production,
namely when it is secreted in the liver. Insulin and glucagon are two hormones that
are produced in the pancreas and regulate the concentration of glucose. Glucagon is
secreted by α-cells when glucose in the bloodstream is low, while insulin is secreted
by β-cells when glucose levels are high. Insulin promotes the absorption of glucose
by cells in the body. High levels of insulin in the blood prohibit glucose secretion in
the liver.

Diabetes is a chronic metabolic disorder, occurring when either a person’s pan-
creas does not produce enough insulin (Type I diabetes), or when insulin is produced,
but is not used efficiently (Type II diabetes). The resulting health problems of dia-
betes include major cardiovascular diseases, stroke, vision loss, and kidney disease.
According to the Centers for Disease Control and Prevention [50], it is estimated that
more than 30 million people in the U.S. had diabetes (of any type) in 2015. In the
same report, it is noted that more than 14 million visits to emergency departments
around the country listed diabetes as the diagnosis in 2014. The disease also car-
ries great cost, since the total direct and indirect expenses were listed as 245 billion
dollars in 2012.

It is of little surprise then that numerous mathematical studies exist, which model
the glucose-insulin regulatory systemand the effect of drugs and other factors, such as
physical exercise, on the regulation of high levels of blood glucose. For a reviewof the
various types of models ranging fromODE-based, delay differential equation-based,
as well as stochastic differential equation-based models, see [51]. Delay models, in
particular, have played a prominent role, since it is known that time delays exist in
the glucose-insulin regulatory system due to the time lag τ1 between the signal of
elevated glucose concentration and the secretion of insulin from the β-cells, as well
as the time lag τ2 between the signal of increased insulin level and the suppression of
hepatic production [52, 53]. Besides using delay differential equations, delays can
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also be modeled by increasing the number of compartments in systems of ordinary
differential equations. Another feature of the dynamics of the glucose-insulin reg-
ulatory system is the existence of ultradian oscillations, namely oscillations with
period less than one day. These oscillations occur even in healthy individuals and
have a period of about two hours and are characterized by blood glucose fluctuations
of about 10% [53].

At a minimum, models of the glucose-insulin system include two compartments,
namely one of the glucose concentration G(t) and one for the insulin concentration
I (t), where t denotes time and ismeasured inminutes [52, 53]. The delay differential
equation model in [52] reads

dG

dt
= Gin − f2(G(t)) − f3(G(t)) f4(I (t)) + f5(I (t − τ2)) (1.17)

dI

dt
= f1(G(t − τ1)) − di I (t), (1.18)

where Gin denotes the glucose infusion rate, f1(G(t − τ1)) denotes the increase of
insulin production as a response to the glucose levels, f2(G(t)) and f3(G(t)) f4(I (t))
denote the insulin-independent and insulin-dependent glucose utilization by cells,
respectively, f5(I (t − τ2)) denotes the hepatic production, and finally di is the insulin
degradation rate. More recently, a similar model was presented and analyzed [53],
where instead of constant insulin degradation di , a Michaelis–Menten (1.4) degra-
dation was included, a prefactor was included in front of f3(G(t)) f4(I (t)) to model
the difficulty in the uptake of glucose by cells in a diabetic person, as well as an addi-
tional factor accounting for the positive effect of exercise on insulin sensitivity. In
the insulin compartment (1.18), a constant insulin infusion rate was added and also a
prefactor in front of f5(G(t − τ1)) modeling the decreased pancreatic efficiency in a
diabetic person. This study focused on the role of physical exercise and a medication
regime in controlling glucose levels. The study offered a promising glimpse of what
mathematical models have to offer in personalized medicine and the design of the
so-called artificial pancreas.

ODE models of the glucose-insulin system based on Lotka–Volterra type inter-
actions (1.1)–(1.2) have also been considered [54]. In [54], insulin was the predator
and glucose the prey, and the density of β-cells was also included. The dynamics
of the system included interesting phenomena, such as a parameter regime of peri-
odic behavior and another of chaotic dynamics. This further highlights the fact that
basic ecological and epidemiological models are often used as the building blocks
of models for diverse biological systems, as mentioned in Sect. 1.1.7.

1.5.2 Cancer

Another disease with high incidence and high cost of treatment is cancer. Not only
is it among the leading causes of death in about 100 countries, but the number of
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new cases is continuously increasing [55]. There were 18.1 million new cases and
9.6 million cancer deaths in 2018 alone. While surgery, radiation, and chemotherapy
remain the most common treatments, combination therapies also exist, including, for
instance, immunotherapy and chemotherapy.

Mathematical models of cancer-related processes are as diverse as the cancers
that affect the human body. In [56] a timeline is presented that summarizes 50 years
of prominent mathematical models of cancer. Such models have evolved from phe-
nomenological ones [57], aiming to discover the mechanism of tumor invasion in
healthy tissue, to those studying the effect of combination therapies parameterized
by actual patient data [58, 59].

Phenomenological models, namely those that are constructed using observations
of general relationships between variables, may be similar in nature to ecological
models. For instance, the interaction between healthy and neoplastic (tumor) tissue
has been modeled by reaction-diffusion equations [57] that include Lotka–Volterra
competitive interactions, since the two tissue types compete for space and resources.
Lotka–Volterra interactions have also been used in an ODEmodel of immunotherapy
[58], that eventually gives rise to a hybrid model, namely one where a deterministic
framework is used as long as population values exceed a threshold. When they
decrease below it, stochastic simulations are used for the populations. The growth
and invasion of cancer cells is a complicated process, affected by environmental
conditions, such as hypoxia [60], and including other processes, such as angiogenesis
[56] from the regular tissue to the tumor.

When spatial dynamics is taken into account, healthy tissue is not diffusing,
whereas neoplastic tissue diffuses at a rate depending on the healthy tissue con-
centration. In cancer and other biological processes, it is quite common to encounter
interacting diffusing and non-diffusing variables, resulting in interesting stability
problems of the model steady-states [61]. In the case of cancer invasion, stabil-
ity analysis reveals correlations between the structure of the healthy-tumor tissue
interface and the propagation speed of the tumor tissue [57]. More recently, a macro-
scopic mathematical model combined with diffusion tensor imaging data was used to
study the anisotropic invasion of gliomas [62]. By neglecting tumor-host interactions
beyond the directional spread of cancer cells, the model reads

ct = ∇∇ (DC(x)c) + f (c), (1.19)

where c denotes the macroscopic cell density as a function of time t and position in
space x , DC(x) themacroscopic glioma cell diffusion tensor, and f (c) the cell prolif-
eration rate, which is a standard logistic growth rate (1.5). The model was developed
by considering the individual-level dynamics of cells and then obtaining the mascro-
scopic model (1.19) by scaling techniques, hence it differs from phenomenological
models.
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1.5.3 Limb Development and Animal Coat Patterns

Models of animal limb development and coat patterns, also heavily rely on reaction-
diffusion equations. Alan Turing in his seminal work in 1952 [63], demonstrated how
morphogens, namely chemical substances that react together and diffuse through
tissue, form the basis of pattern formation. Since then, his idea has been used to
reproduce the spot- and stripe-like patterns on the coat ofmany living organisms [64],
and to model limb and fin development in animals ranging from Brachypterygius (a
type of Ichthyosaur) [65], to catsharks [66], and in mice [67]. Patterns through the
Turing mechanism are generated through an instability of the homogeneous state as
two or more morphogens diffuse and react, giving rise to stripes, spots, rings, and
spirals.

As an example of such a system we use the following model for vertebrate limb
development [65]

∂ca
∂t

= Da∇2ca +U (ca) − kacaci (1.20)

∂ci
∂t

= Di∇2ci + V (ca) − kacaci , (1.21)

where ca and ci denote the concentrations of two morphogens, the activator and the
inhibitor, respectively, Da, Di denote the diffusion coefficients, U and V are func-
tions that control morphogen production through feedback relationships, and finally,
ka is a decay constant. The reaction-diffusion system (1.20)–(1.21) was simulated
on domains resembling limb-bud contours using finite element algorithms. The sim-
ulation patterns showed a striking resemblance with actual limbs and the authors
proposed several future directions, including an extension of the model to take into
account the Hox gene regulatory network. Hox genes regulate segmentation, are
considered conserved across animals, and their expression patterns have also been
found to correspond to coloration patterns in bumblebees [68].

1.5.4 DNA

Besides mathematical biology, biophysics is another area that has contributed notable
models of biological processes. We will mainly focus on one such model, namely the
Peyrard–Bishop DNA model [69, 70], because its analysis has generated interesting
mathematics [71] and because it has been used to address significant biological
questions [72] (see also [73] for a review of other models).

For each pair of bases n (Adenine-Thymine or Guanine-Cytosine), a variable
for the out-of phase motion yn is attributed, since this is the motion that stretches
the hydrogen bonds. The stretching of the bonds plays a key role in DNA thermal
denaturation, which is a stepping stone for understanding DNA transcription. Like
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thermal denaturation, transcription requires the two strands of the DNA helix to be
separated. The potential representing the hydrogen bonds is assumed to be a Morse
potential

V (yn) = Dn(e
−an

√
2yn − 1)2,

where Dn denotes the depth of the potential and an sets the range of the interaction.
To represent the interaction between nearest-neighbor bases belonging to the same
strand, a stacking interaction term is included:

W (yn, yn−1) = kn
2

(
1 + ρe−b(yn+yn−1)

)
(yn − yn−1)

2,

where kn is a spring constant. Originally ρ = 0 was taken [69], but a few years later
ρ > 0 was introduced to effectively modify the spring constant, taking into account
the cooperativity between and bases and capturing the sharp melting transition of the
double helix [74].

The model has been used to study the formation of DNA bubbles, namely regions
along the helix where the strands are separated due to thermal destabilization [75,
76], the unzipping of DNA by mechanical forces [72, 77], and the identification of
promoter regions [78]. Ising type models, where the base pair is assumed to be in
either the open or closed state [79, 80] have been introduced as a coarse-grained
version of models such as the Peyrard–Bishop model, where the continuous variable
yn is used to characterize the state of the hydrogen bonds.

DNA denaturation based on the Peyrard–Bishop model is also related to multi-
breathers in discrete Klein–Gordon equations [81–83], in either the original model
or a modified model accounting for base interactions beyond the nearest neighbors
[84]. Multibreathers are time-periodic solutions that are spatially localized and are
solutions to the equations of motion of the Hamiltonian

H(y) =
∑
n

(m
2

(y′
n)

2 + W (yn, yn−1) + V (yn)
)

.

They have nontrivial existence and stability properties, which have been studied both
numerically [85] and analytically with the use of Floquet theory [86]. They have been
demonstrated to correlate with promoter strength and the location of transcription
start sites [85], and it is believed that stable strand separations could alter gene
expression in the presence of electromagnetic THz radiation [86].

1.5.5 Concluding Remarks

In conclusion, there is a wealth of open problems in both eco-epidemiology and in
other types of biological models, such as those presented in this section. One of the
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common themes is the call for a strong collaboration between experimentalists and
theoreticians, and also data-theory coupling. As themodeling of human diseases such
as diabetes and cancer has demonstrated, one of the opportunities of mathematical
modeling is the development of personalized treatments. Time series analysis and
parameter identifiability methods are going to be as important for these kind of
models as they have been for eco-epidemiological ones.

To end on a positive note, quite recently, persisting predator-prey oscillations,
that have long been predicted by mathematical models, were realized experimen-
tally [87]. Under constant experimental conditions, the population cycles persisted
for approximately 300 generations of the rotifer predator, which is unprecedented.
Moreover, a mathematical model was created that exhibits a Hopf bifurcation, mir-
roring the transition between a steady state and oscillations, that was observed in
the experiments. This recent development highlights the power and usefulness of
mathematical models when combined with experiments.
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Chapter 2
Nonlinearity and Topology

Avadh Saxena, Panayotis G. Kevrekidis, and Jesús Cuevas-Maraver

Abstract The interplay of nonlinearity and topology results in many novel and
emergent properties across a number of physical systems such as chiral magnets,
nematic liquid crystals, Bose–Einstein condensates, photonics, high energy physics,
etc. It also results in a wide variety of topological defects such as solitons, vortices,
skyrmions, merons, hopfions, monopoles to name just a few. The interaction among
and collision of these nontrivial defects itself constitute topics of significant interest.
Curvature and underlying geometry also affect the shape, interaction and behavior
of these defects. Such properties can be studied using techniques such as, e.g. the
Bogomolnyi decomposition. Someapplications of this interplay, e.g. in nonreciprocal
photonics as well as topological materials such as Dirac and Weyl semimetals, are
also elucidated.
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2.1 Introduction

The main context of this chapter is how topological effects in nonlinear systems
give rise to a rich playground of excitations and properties. Topology, whether in
real space or momentum space or more generally in a parameter space, is associated
with certain system properties remaining unaltered under continuous deformation.
It follows that during deformation neighboring points remain close to each other.
Topology could be local, e.g. change in the lattice or network due to a defect, or
global. The latter means attributes such as the genus (g) or Euler characteristic (χ )
are overall or global features of a system.

Boundary conditions play an important role (through χ ), for example in finite car-
bon nanotubes or edge states in topological materials: quantum Hall systems, topo-
logical insulators [1], topological superconductors [2], Dirac and Weyl semimetals
[3], etc. The latter are three dimensional analogs of graphene featuring gapless elec-
tronic excitations that are protected by topology and (time reversal, space inversion
or other crystalline) symmetry [3]. Very recent experiments indicate that these mate-
rials, specifically Weyl semimetals, may also provide a realization of axions, very
weakly interacting neutral particles in quantum field theory and potential candidates
for dark matter, in condensed matter [4, 5].

In many physical systems and materials [6] there are point defects as well as
extended or topological defects. The topological defects can significantly alter the
physical properties and dynamics of the system. Apart from the celebrated soliton-
like defects there is a whole slew of more elaborate ones that include skyrmions,
merons, hopfions, monopoles, dislocations, and disclinations among others. In this
chapter we discuss how such defects arise in chiral magnets, nematic liquid crystals,
Bose–Einstein condensates (BECs), etc. We also discuss the role of topology in the
momentum space, particularly in the context of topological materials.

The combination of nonlinearity and topology also provides a highly desirable
functionality in photonics, namely nonreciprocity, which is quite important for a
variety of photonic devices including optical isolators [7]. We thus provide examples
of the interplay between nonlinearity and topology in photonics as well as condensed
matter analogs. In addition, we illustrate the role of geometry and topology in deter-
mining spin textures via the so-called Bogomolnyi decomposition [8]. Finally, we
discuss several open problems and future directions with regard to the role of topol-
ogy in the presence of nonlinearity.

2.2 Topological Defects in Nonlinear Field Theories

We consider a variety of topological defects that arise in a number of field theories
including the nonlinear σ -model [9, 10]. The Hamiltonian for the latter is given by
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H =
∫

(∇n)2d2x , n2 = 1 , (2.1)

where the unit vector n lives on a unit sphere. This model can support scalar soliton
configurations under special conditions. However, under a scaling transformation
x → λx and y → λy theHamiltonian H remains invariant and thus a soliton solution
can be trivially scaled to a point because there is no length scale in the plane. We
will return to this point later when we consider the nonlinear σ -model on curved
manifolds.

We note here that to describe disorderedWeyl semimetals an anisotropic topolog-
ical term can be analytically derived from the action of the nonlinear σ model [11].
In the next section we consider a variety of topological defects such as skyrmions,
merons and hopfions. Given their extensive interest and applicability, subsequently
in Sect. 2.4, we consider vortices and vortex loops/rings. We then turn to different
prototypical applications such as liquid crystals (and the emergence of skyrmions in
them) in Sect. 2.5, as well as Bose–Einstein condensates in Sect. 2.6. After providing
an example of a theoretical tool for the study of topology in curved manifolds via
the Bogomolnyi decomposition (Sect. 2.7), we present a broader perspective of the
impact of topological ideas in Materials (Sect. 2.8), Optics (Sect. 2.9) and Acoustics
and beyond (Sect. 2.10). Then in Sect. 2.11, we summarize our findings and present
our Conclusions, as well as some directions for future work.

2.3 Skyrmions, Merons and Hopfions

Beyond the well known solitons, there are more exotic topological defects such as
vector field or spin textures called skyrmions [10], which can have topological charge
of one (or two or evenmore).As shown in Fig. 2.1, in a skyrmion at the outer boundary
all spins point up (red arrows) whereas at the center there is a spin pointing down
(blue arrow). Therefore somewhere in the middle the spins have to lie in the plane
(green arrows). Half skyrmions are also referred to as merons and have a topological
charge of one half: the outer spins point up whereas the spin in the center lies in the
plane. There are many other related topological defects such as sphalerons and bags
(or lumps) known in high energy physics [9]. Similarly, three dimensional defects,
e.g. vortex lines, vortex loops (rings) and knots appear in many physical systems,
including, e.g. polymeric knots [12].

2.3.1 Skyrmions in Chiral Magnets

Before discussing magnets we note that beyond magnetic materials (e.g. ferro-
electrics) skyrmions have been observed at interfaces [13]. In this case, the texture
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Fig. 2.1 a Bloch and b Néel type skyrmions in a chiral magnet MnSi and a lacunar spinel GaV4S8,
respectively. Below the skyrmion textures their radial cross sections show Bloch and Néel wall,
respectively. Reproduced from [16]. ©2015 by the Nature Publishing Group

is given in terms of polar vectors or electric dipoles. Nanodots and nanocomposites
can also stabilize skyrmions (due to boundary conditions) in polar materials [14].

The Hamiltonian for a chiral magnet (i.e. lacking spatial inversion symmetry in
its crystal structure, e.g. MnSi) consists of the nonlinear σ -model plus the Zeeman
term in addition to the Dzyaloshinskii–Moriya interaction [15]

H =
∫ [

J (∇n)2 + Dn · (∇ × n) − n · B
]
d2x , (2.2)

where J denotes the (magnetic) exchange constant,B is the external magnetic field in
the last term in theHamiltonian representing theZeeman interaction and D represents
the strength of the Dzyaloshinskii–Moriya interaction. The latter arises from the
spin-orbit interaction at the microscopic level. Here n is a unit vector describing the
direction of the magnetic moment.

The topological charge associated with a skyrmion spin configuration is given by
[15]

Q = 1

4π

∫
dr2

[
n · (∂xn × ∂yn)

] = ±1 . (2.3)

For a metallic material when a conduction electron traverses across a skyrmion it
gets spin polarized as a result of its interaction with the spin configuration of the
skyrmion. In addition, the conduction electron is subjected to an effective electric
and magnetic field [15], respectively given by

E = �

2e
[n · (∇n × ∂tn)], (2.4)

B = �c

2e
[n · (∂xn × ∂yn)]. (2.5)

These emergent fields give rise to the topological and skyrmion Hall effects.
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Fig. 2.2 a Anti-skyrmion (center panels) in Mn1.4Pt0.9Pd0.1Sn and its comparison with the Bloch
(left panels) and Néel skyrmions (right panels). The radial cross sections are shown below the
spin textures. Schematics of the magnetic moments (green arrows) and the associated Lorentz
deflections of transmitted electrons (red arrows) are shown in the middle row. The bottom row
shows the corresponding simulated Lorentz Transmission Electron Microscopy (LTEM) patterns
with dark and bright lobes. Reproduced from [17]. ©2017 by the Nature Publishing Group

Depending on the material or system, skyrmions can have chirality (i.e. Bloch
skyrmion as in MnSi) or no chirality (i.e. Néel skyrmion as in GaV4S8) as depicted
in Fig. 2.1. They are so called because the radial cut of a Bloch skyrmion provides a
magnetic Bloch domain wall (which is a strictly 3D structure) whereas a radial cut of
the Néel skyrmion leads to a magnetic Néel domain wall (which is a 2D structure).
Note that the spin configurations of the two types of skyrmions are topologically
equivalent. Anti-skyrmions, which have structural characteristics of both the Bloch
and Néel skyrmions, have also been observed using Lorentz Transmission Electron
Microscopy (LTEM) [17] in tetragonal Heusler materials even above the room tem-
perature, as shown in Fig. 2.2. We note here that spin-1 photonic skyrmions have also
been described in the literature [18].

2.3.2 Merons

Half-skyrmions whose field covers only a hemisphere (i.e. topological charge 1/2)
are known as merons. They have been observed (and modeled) in liquid crystals
[19] and magnetic multi-layers [20]. If we add a magnetic anisotropy energy term
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Fig. 2.3 Comparison of skyrmion andmeron latices in chiralmagnets. A triangular skyrmion lattice
arises from a spiral phase (top row) but a triangular meron lattice is at best metastable (bottom left).
In contrast, a square meron lattice is stable (bottom right) but a square skyrmion lattice is at best
metastable. On the other hand, in nematic liquid crystals a triangular meron lattice is stable but a
triangular skyrmion lattice is unstable (not shown). Reproduced from [19]

An2z to the skyrmion Hamiltonian in (2.2), in the large anisotropy limit a skyrmion
breaks into merons [21]. When A > 0 it is called the easy-plane anisotropy which is
what we will consider here. The case of A < 0 is called the easy-axis anisotropy. As
A is increased the skyrmion size increases, particularly due to the expansion of the
equatorial region of the skyrmion. At a certain large value of A, skyrmions become
unstable and merons emerge.

In chiral magnets a stable triangular lattice of skyrmions emerges from the spiral
(or helical) phase as depicted in Fig. 2.3. In the spiral phase all spins are parallel
and point in the same direction at one end. After a helical twist of 2π they come
back to the original parallel state, see Fig. 2.3a. The square skyrmion lattice is at best
metastable; however, a square meron lattice is allowed. On the contrary, in nematic
liquid crystals the triangular skyrmion lattice is at best metastable but a triangular
meron lattice is stable [19].

Merons have been experimentally observed at room temperature in a chiral-lattice
magnet Co8Zn9Mn3, a material exhibiting in-plane magnetic anisotropy [22]. In this
material a meron-antimeron square lattice emerges from the helical state of spins and
then transforms into a triangular lattice of skyrmionswhen amagnetic field is applied,
see Fig. 2.4. Interestingly, in analogy with the baryon model in high energy physics,
skyrmion bags have been observed both in chiral magnets and nematic liquid crystals
[23]. These bags are multi-skyrmion configurations where a large skyrmion contains
a variable number of anti-skyrmions inside it, as depicted in Fig. 2.5. Merons can be
compared and contrasted with magnetic vortices; there is a difference in their spin
configurations.



2 Nonlinearity and Topology 31

Fig. 2.4 a–d Various experimentally observed meron and anti-meron spin structures in the chi-
ral magnet Co8Zn9Mn3 at room temperature. e Theoretically predicted and f LTEM observed
meron/anti-meron square lattice. Reproduced from [22]

2.3.3 Hopfions and Torons

Three dimensional topological solitons (appearing in 3 + 1 dimensional scalar field
theories) that can be characterized by the integer-valued Hopf invariant are known as
hopfions [10]. Ludwig Faddeev proposed their existence in the 1970s. They represent
one of the best known examples of knot solitons in field theory. In 1931 Heinz Hopf
considered a link of two loops, thus paving the way for the linking number of circles
as a topological invariant, i.e. the Hopf number.

The topological charge or linking number of a hopfion is the homotopy group
of the Hopf map π3(S2) = Z, where Z is the group of relative integers. The Hopf
fibration is a topologically stable texture of a smooth, global configuration of a field.
In effect, it is an interwoven structure of preimages. A preimage is defined as the set
of all points where a field orientation takes a specific value. The Hopf fibration has
been observed in liquid crystals [24] and so are hopfions [25], see Figs. 2.6 and 2.7.
Similarly, there are light controlled torons in liquid crystals [26, 27]. The toron is
essentially a tube of double twist which is wrapped upon itself such that its boundary
forms a torus. It contains two point defects, which can be manipulated to create a
defect free structure topologically equivalent to a Hopf fibration. Finally, hopfions
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Fig. 2.5 Skyrmion bags in chiral magnets (MnSi) and nematic liquid crystals. Top panels cor-
respond to experimental (optical micrographs) observations in MnSi whereas middle panels are
simulations of the above states. Second and fourth panels in the bottom panel are the result of
simulations for the state of the optical micrograph at their left. This figure has been adapted from
the preprint version of [23] (arXiv:1806.02576v1). Only some of its panels were finally published
in [23]. ©2019 by the Nature Publishing Group

Fig. 2.6 Experimentally deduced hopfion texture in a liquid crystal (left panel) and a schematic
of the hopfion as a knotted soliton (right panel). The hopfion is obtained by linking the circle-
like preimages residing on nested tori in the material’s 3D space. The preimages correspond to
color-coded points on S2. Reproduced from [25]. ©2017 by the Nature Publishing Group

http://arxiv.org/abs/1806.02576v1
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Fig. 2.7 Left panel: The texture of a toron (reproduced from [26]). ©2010 by the Nature Publishing
Group). Second panel: Flow lines of the Hopf fibration. Third panel: The preimage surface of the
Hopf fibration. Right panel: The experimental preimage of a Hopf fibration. Reproduced from [24].
©2010 by the American Physical Society

have also been considered in chiral magnets [28] and torus knots have been described
as hopfions [29].

2.3.4 Monopoles

As such, free magnetic monopoles do not exist in nature but recent advances in
condensed matter and atomic physics have demonstrated the existence of effective
magnetic monopoles in artificial spin ice [30, 31], chiral magnets [32] and BECs
[33, 34]. The latter are created in 87Rb atom condensates in a synthetic magnetic
field. Note that a monopole-antimonopole pair is necessarily connected by a Dirac
string. When two skyrmion tubes touch at a point it creates an effective magnetic
monopole because the emergent magnetic field (see (2.5)) at that point is radially
outward [32], see Fig. 2.8. Similarly, amoving hedgehog at the end of a skyrmion line
(in a ferromagnetic nanowire) constitutes an emergent magnetic monopole [35], see
Fig. 2.9. An experimentally observed and simulated monopole in a Bose–Einstein
condensate is depicted in Fig. 2.10.

2.4 Vortices and Vortex Loops

In many physical systems such as fluids, superconductors and magnets (and those
modeled by the 3D Heisenberg model) vortices, vortex lines and vortex loops (rings)
[37] are observed. Creation and dynamics of trefoil-like (and other) knotted vortices
have been studied in water using specially shaped hydrofoils [38]. Since magnetic,
superconducting and other vortices as well as their dynamics have been studied
extensively, this is a fully developed area of research and thus we will not dwell on
this general theme, but rather limit ourselves to a number of recent developments.
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Fig. 2.8 Emergence of magnetic monopoles and anti-monopoles (colored circles). They result
either a from pinching off of a skyrmion string or b a partial merging of two neighboring
skyrmion strings. Reproduced from [36]. Creative Commons Attribution License (CC BY) https://
creativecommons.org/licenses/by/4.0/

Vortices are persistent circulating flow patterns that occur in diverse scientific
contexts [39], ranging fromhydrodynamics, superfluids, andnonlinear optics [40, 41]
to specific instantiations in sunspots [42], dust devils [43], and plant propulsion [44].
The study of the associated 2D effective particle dynamics that results from the
logarithmic interaction potential is a theme of broad interest in physics. Not only it is
relevant for the prototypical fluid/superfluid applications (see e.g. the review of Aref
et al. [45] and the book of Newton [46]), but also for a variety of other settings. As
such,wemention electron columns inMalmberg–Penning traps [47] andmagnetized,
millimeter sized disks rotating at a liquid-air interface [48, 49], among others.

The realm of atomic BECs [50–52] has produced a novel and pristine setting
where numerous features of the exciting nonlinear dynamics of single- and multi-
charge vortices, as well as of vortex lattices, can be not only theoretically studied,
but also experimentally observed. Although BEC is known to be a fundamental
phenomenon connected, e.g. to superfluidity and superconductivity [53], BECs were
only experimentally realized 70years later: thismajor achievement tookplace in 1995

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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Fig. 2.9 Left panel: Spin texture at the end of a skyrmion line. Middle panel: The magnetization
configuration is topologically equivalent to a hedgehog with radially outward magnetization, i.e. a
magnetic monopole. Right panel: Two separating hedgehogs (or monopoles) with opposite topo-
logical charge with an emergent solenoidal electric field (purple arrows). Reproduced from [35].
©2018 by the American Physical Society

Fig. 2.10 Experimental observation and theoretical prediction of a monopole in BEC. Reproduced
from [34]. Creative Commons Attribution License (CC BY) https://creativecommons.org/licenses/
by/4.0/

[54–56] and has already been recognized through the 2001 Nobel prize in Physics
[57, 58]. The role of vortices and the remarkable manifestation of highly ordered,
triangular vortex lattices were, in turn, cited in the 2003 Nobel Prize in Physics [59].
Importantly, vortex dipoles (pairs of oppositely charged vortices) that will be relevant
in what follows have played a quintessential role in the Kosterlitz–Thouless (KT)
transition [60] from a gas of dipoles to configurations of unbound vortices, earning

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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its discoverers the 2016 Nobel Prize in Physics. This transition has, moreover, found
one of its most canonical realizations in the context of atomic BECs [61].

In addition to being at the epicenter of some of themost important physical notions
of the past few decades, the coherent structures considered herein have been recog-
nized as having both practical, as well as more exotic applications. For instance,
solitary waves have been argued to provide the potential for 100-fold improved sen-
sitivity for interferometers to phase shifts [62], while their lifetime of a few seconds
enables precise force sensing applications [63]. Moreover, vortices present their own
potential for applications. An intriguing example is the so-called “analogue gravity”,
whereby they may play a role similar to spinning black holes. This allows to observe
in terrestrial, experimentally controllable environments associated phenomena such
as the celebrated Hawking radiation or simpler ones such as super-radiant amplifica-
tion of sonic waves scattered from black holes [64]. It has also been recently argued
that vortices of a rotating BEC can collapse towards the generation of supermassive
black holes [65] and that supersonically expanding BECs can emulate properties of
an expanding universe in the lab [66].

The first experimental observation of BEC vortices [67] paved the way for a sys-
tematic investigation of the dynamical properties of such entities. Stirring the BECs
[68, 69] above a certain critical angular speed [70–72] led to the production of few
vortices [72] and vortex lattices [73, 74]. Other vortex-generation techniques were
also used in experiments, including the breakup of the BEC superfluidity by dragging
obstacles through the condensate [75], as well as nonlinear interference between con-
densate fragments [76]. In addition, apart from unit-charged vortices, higher-charged
vortex structures were produced [77, 78] and their dynamical (in)stability was exam-
ined.

The majority of these early experiments focused on creating individual vortices
and large vortex arrays. However, in 2008, the work of [79] enabled the use of the
so-called Kibble–Zurek (KZ) mechanism to quench a gas of atoms rapidly across
the BEC transition. The result of this is that phase gradients do not have sufficient
time to “heal” but rather freeze, resulting in the formation of vortices. Then, in
2010 another technique was devised that enabled for the first time the dynamical
visualization of vortices [80] during an experiment. This, in turn, spearheaded the
work of [81, 82] where particle models were developed that predicted the dipole
dynamics (equilibria, near-equilibrium epicyclic precessions and far from equilib-
rium quasi-periodic motions) observed in these experiments. A nearly concurrent
development concerned the production in the lab of such vortex dipoles (one or mul-
tiple such), by the superfluid analogue of dragging a cylinder through a fluid [83].
More recently, the KZ mechanism together with rotation (i.e. injection of angular
momentum) have been used to “dial in” and observe the dynamics of vortex clusters
of, controllably, any number of vortices between 1 and 11. This is because rotation
favors the formation of vortices of the same charge and in this way, depending on
the angular momentum provided, different charge configurations (vortex clusters)
arise. The resulting configurations may suffer symmetry breaking events [84]. As a
result, instead of the commonly expected anti-diametric pair, equilateral triangle, or
square configurations that one may expect, it is possible to observe symmetry broken
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Fig. 2.11 Sampler of small vortex clusters in recent BEC experiments. Top row: vortex dipole
dynamics; reproduced from [83] (©2010 by theAmerican Physical Society). Bottom row: dynamics
for three (top row) and four (bottom row) same-charge vortices reported in [84]

configurations featuring asymmetric pairs, isosceles triangles, and rhombi or gen-
eral/asymmetric quadrilaterals [85]. To further add to these developments, 3-vortex
configurations of (same but also of) alternating charge in the form of a tripole (i.e.
a positive-negative-positive or its opposite) have been experimentally produced [86,
87]. This turns out to be one of the simplest setups where chaotic dynamics can
ensue [88, 89]. A sampler of experimental images from these different experimental
efforts is depicted in Fig. 2.11.

It is evident from the above recent developments that there is a tremendous
momentum toward the study of vortex dynamics in atomic physics. Moreover, this
theme presents nontrivial twists in comparison to the classical fluid or superfluid
playground [45, 46]. To mention a canonical difference between the two, atomic
BECs are typically confined by parabolic traps [50–52, 90] constraining the density
and hence the region within which the vortices evolve. This trapping induces vortices
to rotate around the center of the trap [90–92]. The frequency of this precessional
motion can be well approximated by a constant close to the center of the trap, yet as
the edges of theBECare approached and the density decreases, the relevant frequency
increases drastically [84, 85, 93]. These modifications of the “standard” picture of
the vortices interacting through a logarithmic potential are critically responsible for
some of the phenomena observed recently. For instance, the competition between the
rotation and the interaction in the case of the vortex dipole [81, 82] is responsible for
the existence of stationary states or epicyclic/quasi-periodic trajectories; the devia-
tion from a constant precession frequency is, in turn, responsible [85, 93] for the
symmetry-breaking bifurcations enabling asymmetric vortex configurations [84].

2.5 Skyrmions in Liquid Crystals

One can describe a liquid crystal by a tensor order parameter Q(r), which is related
to the director field n(r) and the scalar order parameter S(r) by Qαβ = S( 32nαnβ −
1
2δαβ). According to the Landau–de Gennes theory, one can express the free energy
density in terms of Q as [19]



38 A. Saxena et al.

F = 1

2
aTrQ2 + 1

3
bTrQ3 + 1

4
c
(
TrQ2

)2
(2.6)

+1

2
L(∂γ Qαβ)(∂γ Qαβ) − 2Lq0εαβγ Qαδ∂γ Qβδ.

The first line represents the free energy of a uniform system, when we expand it in
powers of the tensor order parameter. This part favors those eigenvalues of Q, which
are associated with a specific magnitude of uniaxial nematic order. One assumes
the coefficient a varies linearly with temperature, whereas b and c are constant with
regard to temperature. The last two terms are the elastic free energy corresponding
to variations in Q as a function of position. The first of these terms is the (equal)
energy cost of splay, twist, and bend deformations, where L is an elastic coefficient.
The last term allows a chiral twist of the nematic order, where q0 is a characteristic
inverse length that arises from the molecular chirality. Other possible elastic terms
giving different energy costs for splay, twist, and bend, e.g. 1

2 L2(∂αQαγ )(∂βQβγ ),
are neglected here for simplicity.

The chiral twist term q0 is analogous to the Dzyaloshinskii–Moriya interaction in
the magnetic case (see (2.2)). Comparative analysis and simulations based on (2.2)
for themagnetic case and (2.6) for the liquid crystals [19] provide the results depicted
in Fig. 2.3. For chiral magnets the triangular (or hexagonal) skyrmion lattice is stable
and it arises from the spiral (or helical) phase. However, a triangular meron lattice
is not stable but a square meron lattice is allowed. In contrast, based on energetic
grounds, in liquid crystals the skyrmion lattice is disfavored but a triangular lattice
of merons is allowed. This difference arises from the nature of the order parameter:
vector for chiral magnets versus tensor for nematic liquid crystals.

In addition to skyrmions and merons, stable skyrmion bags have been observed
in liquid crystals [23]. An observed and simulated example is illustrated in Fig. 2.5.
Corresponding skyrmions bags in chiralmagnets are also possible as shown inFig. 2.5
as a result of micromagnetic simulations. Interestingly, these bags are similar to
the models of atomic nuclei containing different number of baryons, as originally
surmised by T. H. R. Skyrme.

2.6 Bose–Einstein Condensates: From Vortex Lines to
Rings, From Hopfions to Skyrmions and Knots

We already discussed in Sect. 2.4 the relevance of Bose–Einstein condensates as a
prototypical playground where two-dimensional topological excitations in the form
of vortices naturally arise. We now turn to a 3D extension of such structures, starting
with the natural generalization of the vortex, namely the vortex line (VL). A VL,
also referred to as a solitonic vortex, is the 3D extension of a 2D vortex by (infinitely
and homogeneously) extending the solution into the axis perpendicular to the vortex
plane. VLs might be rendered finite in length if their background is made bounded
by an external potential. In that case, VLs are called vorticity “tubes” that are straight



2 Nonlinearity and Topology 39

or bent in U and S shapes depending on the aspect ratio of the background [94, 95].
If a VL is bent enough to close on to itself or if two VLs are close enough to each
other then they can produce a vortex ring [96]. Vortex rings (VRs) are 3D structures
whose core is a closed loop with vorticity around it [97] (i.e. a vortex that is looped
back into itself). VRs can also be produced by an impurity traveling faster than the
speed of sound of the background [98], by nonlinear interference between colliding
blobs of atomic matter [99, 100], by phase and density engineering techniques [101–
103], or even by introducing “bubbles” of one component in the other component in
two-component nonlinear Schrödinger (NLS) systems [104].

It should be noted that VRs inherently possess a velocity perpendicular to the
ring plane due to Helmholtz’s law [105] (unless they are stopped by the presence
of an external trap [106, 107]). Also, another special feature of VLs and VRs is
that they support intrinsic dynamics along the vortex line/ring. For example, it is
possible to transversally excite the vorticity line to produce oscillations called Kelvin
modes (or Kelvons) [108–111]. Kelvin modes not only have their own dynamics and
interactions across vortex lines [112], but they can also self interact within a single
VR and slowdown or even reverse the velocity of the VR [113, 114]. We note here
that Kelvin modes have also been studied in the context of skyrmion tubes [115].
Another possibility for exciting the vorticity line of the VR is by creating varicose
or capillary waves (periodic compressions of the vortex tube along its length) [109,
116]. Lastly, VRs interact in intriguing ways involving, e.g. leapfrogging motions
when they are co-axial (see Fig. 2.12), but also more complex interactions when they
are not [117]. Recently, an effective particle description has been utilized not only
in order to understand the stability and dynamics of a single VR [118, 119], but also
that of multiple or interacting VRs [120].

It is important to highlight here that the relevance of VLs and VRs goes beyond
atomic BECs. They emerge ubiquitously in fluid mechanics [117] and in Helium
and other related superfluid systems [97]. Rather, what is the case here is that atomic
condensates present a pristine,well-controlled setting for the creation and exploration
of these structures.

In addition to VRs and VLs, it was also realized that BECs offer also the potential
for the formation of more complex topological structures. This is to a consider-
able extent due to the potential of creating atomic condensates either of different
species (e.g. 87Rb and 23Na, i.e. hetero-nuclear mixtures) or of the same species
(e.g. confining and condensing two different hyperfine states of the same gas, such
as spin-1 and spin-2 states of 87Rb) [90]. Among the early suggestions along this
vein, is the multi-component skyrmion state creation in BECs. The topological prop-
erties of such a state enable its structural realization in a multi-component BEC.
Here, as originally proposed in [122, 123], the skyrmion consists of a VR in one of
the components, “trapping” a VL in a second component. Interestingly, more com-
plex skyrmion states involving three-component (so-called spinor) BECs have been
recently realized experimentally in both 2D [124] and 3D [125], involving, respec-
tively, coupled states of topological charge S = −1, 0, 1 and S = 0, 1, 2; see also
the recent theoretical work of [126].

Of increased interest recently has been not only this structure, but also its one-
component counterpart, which in the relevant recent BEC literature is referred to
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Fig. 2.12 The top panel
shows the snapshots of the
evolution of two vortex rings
leapfrogging through each
other. The bottom panel
illustrates this type of motion
in the radial-polar (r, z)
plane on a co-moving
reference frame. The solid
lines correspond to the orbits
predicted by ordinary
differential equations for the
radius and vertical position
of the rings as a function of
time. The dashed lines are
the corresponding numerics
of the full 3-dimensional
NLS equation. The bottom
panel is adapted from [121].
©2016 by the American
Institute of Physics

as a hopfion state [127–129]. The latter consists of a VR and a VL in the same
component with the axis of the VR constituting the line of vorticity of the VL. A
stable hopfion state was found to exist both in the setup of [127] which, however,
involved the rather elaborate realization of radially increasing nonlinear interactions
and the purely dynamical exploration of [128] for condensates that are being rotated
(and was suggested to be stable only for some intermediate rotation rate).

Lastly, the study of quantum (vortex) knots is one that has only a relatively short
history in the context of atomic BECs. To the best of our knowledge, the possibility
of such complex topological structures was introduced in the work of [130] (see
also [131]), illustrating how different torus knots T K ,q , with co-prime K and q,
can be generated in the wavefunction of an atomic species. Subsequently the work
of [132] seemed to put a full stop on the subject through the extensive simulation of
1458 vortex knots from the so-called “knot atlas” [133], and finding that the trapless
Gross–Pitaevskii equation (GPE) could not support stable knots: all of the simulated
knots would eventually untie into simpler patterns. Nevertheless, the recent work
of [134, 135], both at the level of the Biot–Savart dynamical law (for the vortex
knot motion), as well as at that of the full 3D GPE has, perhaps counter-intuitively,
indicated that the trefoil knot can be a very long lived structure in the context of a
trapped atomic BEC [136].
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2.7 Topology and Curved Manifolds: Bogomolnyi
Decomposition

Wenowprovide an example of how the types of configurations considered hereinmay
be used to minimize the energy of a system of classical spins. The continuum limit
of (classical) Heisenberg spins on a two-dimensional (planar or) curved manifold
corresponds to the nonlinear σ model. That is, the corresponding Hamiltonian H is
given by (2.1). If we impose homogeneous boundary conditions on the vector field
n in the plane R2, i.e. limr→∞ n → n0, then we can compactify the plane into the
surface of a sphere S2. This allows us to classify different configurations according
to the homotopy class π2(S2) = Z, where Z is the group of relative integers [137,
138].

Topology does not directly help us to state anything about the energy of the field
configuration but indirectly, by invoking the so-called Bogomolnyi inequalities [8],
it enables us to establish energy bounds for configurations belonging to equiva-
lent homotopy classes labeled by n ∈ Z. The inequality in the present case can be
expressed as

(∂in − εi j∂ jn)2 ≥ 0 , (2.7)

whereby it follows that

H ≥
∫

n · (∂xn × ∂yn)dxdy . (2.8)

Thus, the minimum energy in each homotopy class is attained when

∂in = ±εi j∂ jn , (2.9)

i.e. when these self-dual equations are satisfied by the field configurations.
If we consider this model on a plane (R2), there is no characteristic length. As a

result the nonlinear σ model Hamiltonian can be scaled and thus all the nontrivial
field configurations (satisfying homogeneous boundary conditions) can be scaled as
well. This situation is drastically changed if there is a characteristic length scale,
e.g. if the underlying manifold is curved. We will introduce a length scale in two
ways: (i) first we will consider the nonlinear σ model on a rigid cylinder and then
(ii) we will also apply an axial magnetic field through the cylinder. In the first case
the radius ρ0 of the cylinder is the characteristic length whereas in the second case
there is an additional length scale introduced by the magnetic fieldB. There are other
ways of introducing a length scale, e.g. through magnetic anisotropy, ellipticity of
the cylinder cross section, etc. but we will not consider these different cases here.

We set the unit vector n = (sin θ cos�, sin θ sin�, cos θ) in terms of the co-
latitude θ and the azimuthal angle �. Next, we write the Hamiltonian [137] in terms
of cylindrical coordinates (ρ, z, φ)
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H = J
∫∫

cyl

[
(∂zθ)2 + sin2 θ(∂z�)2 + (∂φθ)2/ρ2

0 + sin2 θ(∂φ�)2/ρ2
0

]
ρ0dzdφ ,

(2.10)
where J denotes the spin exchange interaction energy. In order to invoke topological
considerations let us impose homogeneous boundary conditions, i.e. limz→∓∞ ≡
0[π ] and limz→∓∞ dθ/dz = 0. If we seek cylindrically symmetric solutions then
� = φ and ∂θ/∂φ = 0. Thus the Hamiltonian simplfies to

H = 2πρ0 J
∫ ∞

−∞

[
(∂zθ)2 + sin2 θ/ρ2

0

]
dz . (2.11)

The variation of this Hamiltonian (δH = 0), i.e. the Euler–Lagrange equation turns
out to be the celebrated sine-Gordon equation

d2θ(z)/dz2 = (1/2ρ2
0 ) sin 2θ , (2.12)

with the well known kink solution θ(z) = arctan[exp(z/ρ0)]. It is depicted in
Fig. 2.13a. The energy for this configuration is H = 8π J , which is the minimum
energy belonging to the first homotopy class.

By invoking the technique used by Belavin and Polyakov [138], or equivalently
the Bogomolnyi decomposition [8], we note that the solutions that correspond to the
minimum energy in each homotopy class satisfy the first order self-dual equations

ρ0∂zθ = ± sin θ∂φ� , ∂φθ = ∓ρ0 sin θ∂z� . (2.13)

If we apply an external magnetic field (B) along the axis of the cylinder then the
Hamiltonian is modified as [140]

Hmag = J
∫∫

cyl
(∇n)2dS − gμ

∫∫
cyl

n · B dS , (2.14)

where g is the gyromagnetic ratio and μ denotes the Bohr magneton. With homoge-
neous boundary conditions (θ = 0 as z → ±∞) the Hamiltonian simplifies as

Hmag = 2J (2πρ0)

∫ ∞

−∞
[θ2

z + {sin2 θ/2ρ2
0 + (1/ρ2

B)(1 − cos θ)}]dz , (2.15)

where ρ2
B = 2J/gμB is the magnetic length scale. Variation of this Hamiltonian

leads to
θzz = (1/2ρ2

0 ) sin 2θ + (1/ρ2
B) sin θ , (2.16)

which is the double sine-Gordon equation. The corresponding 2π -kink solution that
is consistent with the boundary conditions is given by
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Fig. 2.13 a Heisenberg spins on a cylinder as a sine-Gordon π -soliton (reproduced from [139],
©1994 by Elsevier Science B.V.) and b in the presence of an axial magnetic field as a double
sine-Gordon 2π soliton (reproduced from [140])

θ(z) = 2 arcsin
1√

cosh2(z/ξ) − (ξ 2/ρ2
0 ) sinh

2(z/ξ)

, (2.17)

where the kink width ξ = ρ0ρB/(ρ2 + ρ2
B)1/2 is another characteristic length in the

problem. This solution is depicted in Fig. 2.13b.
Because of the homogeneous boundary conditions at the cylinder boundaries all

the spins point in the same direction, see Fig. 2.13. Thus they can be compactified to a
single spin and the spin configuration in Fig. 2.13a covers the unit sphere once, i.e. it
is a skyrmion of topological charge 1. Similarly, the spin configuration in Fig. 2.13b
covers the unit sphere twice, thus it is a skyrmion of topological charge 2. If the
cylinder were semi-infinite, it will be topologically equivalent to a plane with a hole
of radius ρ0. The spin configuration in this case will be a half-skyrmion (or a meron)
[141].

If the cylinder is elastic (i.e. deformable) then the geometric frustration caused
by the mismatch of the cylinder radius and kink width can be relieved by a pulse-
like deformation in the region of the magnetic kink [137, 140]. The Bogomolnyi
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technique is quite general and can be used in a broader context. Another application
of the Bogomolnyi decomposition is in the calculation of elastic deformation energy
of vesicles as a function of genus [142]. The latter has significance in the context of
the Willmore conjecture [143].

2.8 Topological Materials

In conventional materials such as metals, insulators and semiconductors the non-
relativistic Schrödinger equation describes the energy dispersion of low-lying elec-
tronic excitations, ES = p2/2m∗, which is quadratic in the electron momentum p
with effective mass m∗. However, over the past decade there is a growing class of
materials, which are known as Dirac materials [144] or more generally topological
materials, exhibiting linear electronic dispersion in their band structure. Examples
include topological insulators [1, 145], topological superconductors [2], topological
crystalline insulators [146] as well as Dirac semimetals and Weyl semimetals [3,
147].

One of the distinguishing features of these materials are Dirac points, where the
(conduction and valence) bands touch each other at an isolated set of points. The
corresponding band features are called Dirac cones. These points are topologically
protected due to specific (time reversal, spatial inversion or crystalline) symmetries in
that they are robust under perturbations. An example is graphenewhere the protection
comes from the sublattice symmetry (of the underlying honeycomb lattice) and the
energy dispersion of its electrons is linear in the momentum. Specifically, it is given
by the relativistic Dirac equation: ED = cσ · p + mc2σ . Here σ = (σx , σy) denotes
Paulimatrices and the speed of light c is replaced by the Fermi velocity vF . In d spatial
dimensions (with c = 1) the Dirac equation is written as (iγ μ∂μ − m)ψ = 0 [3],
where μ = 0, 1, . . . , d with μ = 0 denoting time and the Dirac gamma matrices γ μ

anticommute. In odd dimensions (d = 1, 3, . . .) it can be simplified. In particular, for
d = 1 one gets i∂tψ = (γ 0γ 1 p + mγ 0)ψ with momentum p = −i∂x . If we further
consider massless (m = 0) particles, we get the one-dimensional Weyl equation
i∂tψ± = ±pψ±. Thus we get simple linear dispersion E± = ±p representing the
right and left moving chiral particles or Weyl fermions.

Topology seems to enhance the nonlinear response of topological materials. A
recent important experimental technique is TFISH (Terahertz Field-Induced Second
Harmonic Generation) which allows to understand the nonlinear response of topo-
logical Dirac and Weyl semimetals, e.g. TaAs [148]. In particular, second harmonic
generation (SHG) is found to be enhanced in Weyl semimetals. The latter contain
Weyl points (or nodes) in their electronic structure at which linearly dispersing, non-
degenerate bands cross. They also exhibit Fermi arc surface states that are attached to
theWeyl nodes in the bulk material (Fig. 2.14). In these materials there is a transition
between the topological and non-topological (or trivial) phases which proceeds via
a gapless state.
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Fig. 2.14 The double Dirac
cone structure of a Weyl
semimetal with two Weyl
nodes connected by a Fermi
arc. Here EF denotes the
Fermi energy. These
materials exhibit
characteristic surface states
which can be observed
experimentally. Reproduced
from [156]. ©2011 by the
American Physical Society

When an appropriate nonlinearity is added to the usual (linear) Dirac equation
and Weyl equation, a nonlinear Dirac (NLD) equation [149] and a nonlinear Weyl
(NLW) equation [150] results, respectively. Their properties and attendant nonlin-
ear (topological) excitations such as solitons and vortices [151] are quite different
as compared to the nonlinear Schrödinger (NLS) equation. Currently, a significant
amount of analytical and numerical effort is being devoted to understanding the
stability and collision dynamics of solitons in NLD and NLW equations [152].

In closing this section we note that in addition to chiral magnets, liquid crystals
and BECs, there are many other materials including topological materials in which
a variety of topological defects can form under right conditions. In particular, fer-
roelectrics [13], multiferroic materials, e.g. Cu2OSeO3 [153] and magnetic shape
memory alloys such as Ni2MnGa [154] can also support skyrmion-like topological
excitations. There has been a recent observation of skyrmions in the heterostructures
of a ferromagnet (Cr2Te3) and a topological insulator (Bi2Te3) [155]. It would be
highly desirable to observe hopfions in such materials as well.

Although we have not discussed dislocations separately here, they play an impor-
tant role in determining the properties of topological materials [157].

2.9 Nonreciprocal Topological Photonics

Many of the modern photonic devices such as optical isolators and optical circula-
tors are based on the principle of Lorentz reciprocity. It entails that in a (i) linear,
(ii) time-independent material or medium with (iii) symmetric property (or con-
stitutive optical) tensors, the received and transmitted fields are identical for both
forward and time-reversed propagation directions [158]. However, in some cases
reciprocity is deleterious, as, e.g. in self-echo in antennas. In addition, for many



46 A. Saxena et al.

Fig. 2.15 Nonlinear coupled ring lattice or resonator array for transmittance studies related to
nonreciprocal topological photonics. a Transmittance T through a linear lattice as a function of
phase shift ξ . b Transmittance as a function of input power I through the nonlinear lattice. c Field
intensity distribution (normalized) above the discontinuity (I > 3). d Average phase shift as a
function of I . Reproduced from [159]. Creative Commons Attribution License (CC BY) https://
creativecommons.org/licenses/by/3.0/

desired and emerging optical functionalities (e.g. optical circulators) it is important
to break Lorentz reciprocity by relaxing any of the three conditions. Clearly, one
way to obtain nonreciprocity is by way of introducing optical nonlinearity. The latter
in conjunction with non-Hermitian photonics and topological photonics can signif-
icantly enhance nonreciprocity [7]. Examples of optical nonlinearities include the
Kerr effect, two-photon absorption and the thermo-optic effect. An example of non-
reciprocal topological photonic setup employing a nonlinear coupled resonator array
is depicted in Fig. 2.15.

One can create topologically nontrivial photonic band structures in analogy with
the electronic band structure of topological materials discussed above. In particu-
lar, one can create topological edge states that are robust against perturbations or
defects. One way to create such states is by forming an interface between a topo-
logically nontrivial and a trivial optical material. Just like in electronic topological
materials, photonic nontrivial topological bands cannot be deformed to trivial bands
in an adiabatic way. A photonic realization of a two-dimensional electronic Chern
insulator uses a lattice of magnetized ferrite rods at microwave scale [160] in which
the lattice edge state acts as an isolating waveguide. This structure leads to almost
perfect forward transmission and exponentially suppressed backward transmission
for frequencies in the photonic bandgap.

https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/
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There are two ways of realizing nonlinear topological photonic structures. One
can consider nonlinear propagation dynamics in an otherwise linear topological pho-
tonic system.Here the nonlinearity locally alters the systemproperties.An example is
that of waveguide arrays with evanescent coupling between neighboringwaveguides.
Another way is to use a probe beam to induce a phase transition in the dynamics of
a linearized probe beam. Coupled optical resonator lattices provide a realization of
this type where one gets quite strong nonlinear effects due to the resonant light con-
finement as compared to waveguide lattices. Finally, we note that a one dimensional
nontrivial topological lattice can be modeled by the photonic Su–Schrieffer–Heeger
(SSH) model [161, 162].

2.10 Topological Modes in Acoustics and Beyond

Admittedly, the study of topological insulators has drawn considerable interest in
a variety of fields, among other reasons because of the ability of such media to
feature transport that is immune to the presence of defects [1, 145]. One of the
most recent venues for such studies has been in the area of mechanical and acoustic
systems, where the topological properties can inspire the design of unconventional
mechanical structures with unique elastic and vibrational properties [163–167]. This,
in turn, can lead to significant new paradigms in the realm of energy harvesting, as
well as in that of vibration isolation [168].

One of the canonical examples that is possible to realize in this mechanical setting
is a direct analogue of a dimer in the form of an SSH model as has been suggested
e.g. in [169]. This enables through its corresponding phononic band-gap structure
the emergence of a zero-frequency topological mode. Finite (non-zero) frequency
topological modes can also be achieved [170]. There have been numerous recent
efforts in this direction of harnessing topological properties of suitable mechanical
media to improve the propagation or storage of energy. These include, among others,
the examination of edge solitons [171] and their ability for nonlinear conduction in
topological mechanical insulators [172, 173], the study of nonlinear edge states
that arise in phononic lattices [174], as well as the examination of topological band
transitions in tunable phononic systems, under the variation of suitable (e.g. stiffness)
parameters [175, 176].

Lastly, we touch upon the theme of topology optimization which is an important
methodused formany industrial and technological applications. For structural robust-
ness and additive manufacturing, nonlinear topology optimization [177] and topol-
ogy optimization for geometrically nonlinear structures [178] have been recently
studied. In the former case a nonlinear elastic model of the materials is considered
alongwith plasticity aspects in conjunctionwith invoking the vonMises (yield) crite-
rion. In the latter case it is assumed that the structures under consideration experience
large displacement but small strain. In particular, high-resolution topology optimized
solutions are obtained for structures that are geometrically nonlinear. Invariably, the
results are quite important for many engineering applications.
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2.11 Conclusions and Future Work

In this chapter, we have delineated the importance of topology in a variety of physical
systems and discussed the ubiquity of topological defects such as skyrmions, merons,
vortices, hopfions and monopoles in a number of distinct nonlinear systems, e.g.
chiral magnets, liquid crystals, BEC, etc. We have also elucidated the pervasive role
of topology in nonlinear condensedmatter and photonic, aswell as phononic systems.
Althoughwe did not discuss it here, topology in softmatter is also quite important e.g.
in topological colloids [179]. In addition, we illustrated the interplay of nonlinearity,
topology and geometry by considering the nonlinear σ model on simple curved
manifolds. The resulting spin configurations are sine-Gordon or double sine-Gordon
solitons.

Despite the above significant progress over the last few years, there are several
important open problems related to the interplay of nonlinearity and topology. Non-
linearity with “fragile topology” in a quantum system is a topic for future research.
Fragile topology (as opposed to strong topology) refers to a set of quantum phenom-
ena that endow materials or systems with unusual properties [180–182]. Examples
include the misaligned layers of graphene [183] and “knotty” electronic quantum
states in some topological materials. In the latter case electrons are restricted to
move along certain directions. Understanding these states properly may require con-
siderations other than K-theory [184], as discussed in e.g. [180].

Akin to the study of soliton collisions and vortex interactions, it would be desir-
able to study the interaction between and the collision of different hopfions. This is
certainly a challenging numerical problem.

A studyof one-dimensionalNLDandNLWequations on (planar and space) curves
and higher (two and three) dimensional such equations on curved manifolds will
provide important insights into the interplay of topology, geometry and nonlinearity.
In particular, the shape and dynamics of soliton and vortex solutions will be modified
by the curved geometry.

There are three fundamental (relativistic) fermions in nature: Dirac, Weyl (with
zeromass) andMajorana (which are their own antiparticles and thus neutral). Similar
to NLD and NLW equations there could exist a nonlinear Majorana equation; it
would be intriguing to explore its soliton solutions and their dynamics. Majorana
fermions also have potential applications in the growing field of (braiding-based)
topological quantum computing [185], especially with fault tolerance. We note here
that the nonlinear dynamics of Majorana modes has been studied using topological
Josephson junctions [186]. Similarly, it was proposed that Majorana-like modes of
light can also be realized in a one-dimensional array of nonlinear cavities [187].

During the last few years there have been studies of a class of nonlinear models
that harbor kink solitonswith non-exponential tails. Collision of such kinkswith non-
exponential tails, e.g. power-law [188] or super-exponential, in 1 + 1 dimensional
field theories is an important open question.
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Recently the field of quantum time crystals [189] has emerged with many insights
including topological considerations [190]. The role of nonlinearity in quantum time
crystals with topological aspects remains an open field.

Finally, we note that we could not be exhaustive in our coverage of topological
defects. For instance, many aspects related to hopfions [191, 192] and the Bogo-
molnyi decomposition [193, 194] among many other topics could not be included
simply for the lack of space.

Acknowledgements A.S. and P.G.K. acknowledge the support of the U.S. Department of Energy.
Specifically, LANL is operated by Triad National Security, L.L.C. for the National Nuclear Security
Administration of the U.S. Department of Energy under Contract No. 892333218NCA000001.
J.C.M. thanks financial support fromMAT2016-79866-R project (AEI/FEDER, UE). This material
is based upon work supported by the National Science Foundation under Grant No. DMS-1809074
(P.G.K.). Finally, P.G.K. gratefully acknowledges the support of the Leverhulme Trust towards a
visiting fellowship at the University of Oxford and the kind hospitality of theMathematical Institute
of the University of Oxford.

References

1. M.Z. Hasan, C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010)
2. M. Sato, Y. Ando, Rep. Prog. Phys. 80, 076501 (2017)
3. N.P. Armitage, E.J. Mele, A. Vishwanath, Rev. Mod. Phys. 90, 015001 (2018)
4. J. Gooth, B. Bradlyn, S. Honnali, C. Schindler, N. Kumar, J. Noky, Y. Qi, C. Shekhar, Y. Sun,

Z. Wang, B.A. Bernevig, C. Felser, Nature 575, 315 (2019)
5. D.J.E. Marsh, K.C. Fong, E.W. Lentz, L. Smejkal, M.N. Ali, Phys. Rev. Lett. 123, 121601

(2019)
6. S. Gupta, A. Saxena (eds.), The Role of Topology in Materials. Springer Series in Solid-State

Sciences, vol. 189 (2018)
7. W. Chen, D. Leykam, Y.D. Chong, L. Yang, MRS Bull. 43, 443 (2018)
8. E.B. Bogomol’nyi, Sov. J. Nucl. Phys. 24, 449 (1976)
9. N.Manton, P. Sutcliffe, Topological Solitons (Cambridge University Press, Cambridge, 2004)

10. Y.M. Shnir, Topological and Non-Topological Solitons in Scalar Field Theories (Cambridge
University Press, Cambridge, 2018)

11. Y.X. Zhao, Z.D. Wang, Phys. Rev. Lett. 114, 206602 (2015)
12. K. Koniaris, M. Muthukumar, Phys. Rev. Lett. 66, 2211 (1991)
13. S. Das, Y.L. Tang, Z. Hong, M.A.P. Gonçalves, M.R. McCarter, C. Klewe, K.X. Nguyen, F.

Gómez-Ortiz, P. Shafer, E. Arenholz, V.A. Stoica, S.-L. Hsu, B. Wang, C. Ophus, J.F. Liu,
C.T. Nelson, S. Saremi, B. Prasad, A.B. Mei, D.G. Schlom, J. Íñiguez, P. García-Fernández,
D.A. Muller, L.Q. Chen, J. Junquera, L.W. Martin, R. Ramesh, Nature 568, 368 (2019)

14. Y. Nahas, S. Prokhorenko, L. Louis, Z. Gui, I. Kornev, L. Bellaiche, Nat. Commun. 6, 8542
(2015)

15. N. Nagaosa, Y. Tokura, Nat. Nanotechnol. 8, 899 (2013)
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Chapter 3
Nonlinear Metamaterials

Lei Xu, Mohsen Rahmani, David A. Powell, Dragomir Neshev,
and Andrey E. Miroshnichenko

Abstract Metamaterials are engineered structures designed to exhibit exotic elec-
tromagnetic properties. Early on in the development of metamaterials, these prop-
erties were extended to exotic regimes of nonlinear behaviour, unknown in classical
nonlinear optics. In this chapter, we give a historical overview of metamaterials,
considering first their exotic linear properties, and show how these give rise to exotic
nonlinear properties, at frequency ranges from RF to visible. We overview the main
attractive features of metamaterials for nonlinear applications, namely their strong
local field enhancement, their ability to achieve exotic phase matching conditions,
and the possibility to create inclusionswith the correct symmetry to enhance a chosen
nonlinear process. We then summarise the two most important classes of nonlinear
optical metamaterials, plasmonic and all-dielectric.
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3.1 Introduction: From Microwave to Optics

Metamaterials have opened a new and exciting chapter in electromagnetic theory and
practice. The name originates from the Greek word “meta” meaning “beyond” or
“more than”, and it can refer to any artificial material with extraordinary electromag-
netic properties not existing in Nature. Their design is typically based on a bottom-up
approach, where the unusual electromagnetic properties arise from the combination
of heterogeneous and hybrid materials with a carefully engineered response. The
genesis of metamaterials can be traced back to Bose’s artificial twisted structure in
1898, which rotated the plane of polarisation of a linearly-polarised wave [1]. More
recently, metamaterials have come to be associated with materials having a negative
refractive index, where permittivity and permeability are simultaneously negative.
Such media was initially proposed by Veselago [2] as a Gedanken experiment. He
showed several unexpected consequences such as backward electromagnetic waves
(where thewave vector and energy flowpoint in opposite directions), inverseDoppler
shift and Cherenkov radiation, and also negative refraction at the interface with con-
ventional media. In particular, a slab with ε = μ = −1 should focus a divergent light
beam, a finding which was later revisited by Pendry [3], leading to the concept of the
perfect lens, which overcomes conventional diffraction limits on optical resolution.
This generated considerable interest in the scientific community, trying to realise a
negative index material at frequencies ranging from RF to the visible, in order to
achieve imaging resolution of less than half a wavelength.

3.1.1 Negative Index and Backward Waves

The backward electromagnetic waves which occur in negative-index media have a
much longer history, which can be traced back to Lamb [4], Pocklington [5], and
Mandelshtam [6] in the early 20th century. They discussed media with negative dis-
persion, resulting in electromagnetic waves where the wavefronts move towards the
source. Interesting enough, they analysed the properties of inhomogeneous mate-
rials with periodically varying permittivity, a concept which emerged again in the
1980’s under the label of “photonic crystals” [7]. Another prominent example is
microwave tubes known as backward wave oscillators, which exhibit opposite phase
and group velocities. However, many of these structures have unit cells comparable
in size to the wavelength, which prevents them being described by effective per-
mittivity and permeability. To realise negative permittivity is relatively easy, since
most metals exhibit this property. Metals typically exhibit a Drude type dispersion of
their permittivity, having infinitely negative permittivity at DC, then increasing with
frequency, up to the plasma frequency where it becomes positive. Most metals have
their plasma frequency in the visible frequency range, and at frequencies just below
their plasma frequency they possess relatively small negative values of permittivity,
enabling electric fields to penetrate within, and for waves to be trapped at interfaces,
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giving rise to the field of plasmonics [8]. In the 1960s it was shown that an “artificial
plasma” made of thin wire media could be described by a Drude-like permittivity
with plasma frequency in themicrowave range [9]. It was subsequently demonstrated
that this model is only valid for waves propagating normally to the wires [10, 11],
whereas for off-normal propagation, spatial dispersion is significant, resulting in new
features and phenomena (see Sect. 3.1.3). Moreover, above their plasma frequency,
such as wire and other media can be treated as an artificial dielectric, and this concept
has been used successfully to design light-weight microwave lenses.

To achieve negative permeability with natural materials is much more difficult
since the Larmor frequency of electrons limits the natural magnetic response. There
have been several different attempts to achieve artificial magnetism without mag-
netic constituents. Schelkunoff and Friis [12] elaborated one of the pioneering ideas
resulting in the development by split-ring resonators (SRRs), which later became
a commonly used meta-atom, i.e. a fundamental building block of metamaterials.
They were originally proposed for radio frequency antennas. Since their magnetic
resonance frequency is inversely proportional to their size, advances in micro and
nano-technology enabled SRRs to be subsequently extended from microwave to ter-
ahertz, and even near-infrared ranges. Importantly, an expression for the magnetic
polarizability of SRRswas derivedbasedon aLorentzianmodel, exhibiting a negative
response in a narrow band below the resonant frequency [13]. However, since most
metals exhibit quite strong dissipative losses in the visible, the magnetic resonances
can be very strongly damped, to the extent that negative magnetic polarizability may
not occur. This motivated studies into alternative meta-atoms based on high-index
dielectric nanoparticles, which can support strong magnetic resonance in the visible
frequency range [14].

At microwave frequencies, a negative refractive index was demonstrated by
combining split-ring resonators with the artificial plasma wire media. However,
the complex shape of this structure makes it incompatible with fabrication tech-
niques applicable to visible and near-IR frequencies. However, it was shown that
two patterned metallic layers separated by a dielectric layer (known as the “fishnet”
structure) could simultaneously exhibit the required electric and magnetic proper-
ties, while being compatible with planar fabrication techniques. Despite numerous
theoretical studies, the realisation of full 3D metamaterials remains challenging due
to fabrication limitations.

Although the concept of negative refractive index stimulated the modern devel-
opment of metamaterials, the field has since broadened to cover a wide range of
phenomena. One of the most promising areas of research is metasurfaces, the planar
version of metamaterials, which avoid the requirement for sophisticated 3D manu-
facturing techniques. They can be viewed as a reincarnation of frequency selective
surfaces or phased-array antennas, but in a much wider frequency range [15]. They
allow efficientmanipulation of the amplitude, phase, and polarisation of a transmitted
or reflected electromagnetic wave [16].
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3.1.2 Anisotropic Media

In general, the arrangement of ametamaterial’s constituent elements may not be fully
symmetric. Thus it can have a different material response for fields oriented in differ-
ent directions. This can be modelled by permittivity and permeability tensors, which
allow different responses to each field component. The ability of metamaterials to
control multiple components of a material tensor led to the study of “Transformation
Optics” [17], borrowing some ideas and approaches from General Relativity theory
by relating the product of the effective permittivity and permeability tensors to a
metric tensor. It even allows several interesting effects to be emulated, such as a
gravitational lensing and black holes for light.

Given that metamaterials can exhibit both positive and negative permittivity and
permeability, an interesting case arises when different components of the material
tensors have different signs at the same frequency. Media with this property are
commonly referred to as hyperbolic media, since their iso-frequency surfaces are
hyperbolic [18], in contrast to regular media, where they are ellipsoidal. Hyperbolic
media gained interest because they can be fabricated relatively easily at optical wave-
lengths using metal-dielectric multi-layers, and also have the potential to transfer
sub-wavelength image details.

3.1.3 Bianisotropy, Chirality and Spatial Dispersion

The various inclusions (meta-atoms) and their spatial arrangements define the bulk
electromagnetic properties of metamaterials. Only if their characteristic sizes and
separations are smaller than the operating wavelength, is it possible to introduce
effective bulk material parameters based on homogenization. Although homoge-
nization has its origin in three-dimensional bulk materials, appropriate techniques
have also been developed for metasurfaces [19]. Homogenization drastically simpli-
fies modelling of a metamaterial or metasurfaces’ scattering response. In the most
general case, the formal homogenization of bulk media is described not only by
permittivity and permeability tensors, but also by electromagnetic coupling or bi-
anisotropy tensors [20]. These tensors then define the constitutive relations between
electric and magnetic fields and the corresponding displacement fields. This requires
the full machinery of the tensor or dyadic approach to rigorously cover all cases.

Coupling between electric and magnetic responses occurs in structures with low
symmetry. There are two particular cases of common interest. Structures which
have no mirror or inversion symmetry are referred to as chiral, based on the same
considerations for chiral molecules, which are well known for their ability to rotate
the plane of polarisation of light. Examples of chiral metamaterials include spirals
[21], Swiss rolls [22] and multi-layered planar structures with twisted arrangement
[23]. Another important type of coupled electric and magnetic response is Omega
bianisotropy,which occurs in structures that have overallmirror symmetry, butwhich
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lack mirror symmetry along one of their principal axes [24]. Such media, which are
named after the canonical Omega particle, consist of coupled electric and magnetic
dipolar antennas and lead to more subtle effects, such as different characteristic
impedance values for opposite propagation directions.

The picture of equivalent material parameters that we have considered so far is
based on a local response, where the displacement fields at a point depend only on
the electric and/or magnetic field at the same point. More general models are based
on a non-local response, whereby displacement fields can be induced by electric or
magnetic fields at a different location. This can occur when fields are conducted
along long wires, or more generally when the unit cell is not sufficiently small
compared to the wavelength. It is typical to describe the response of such media in
the spectral domain, using amaterial tensor ε(ω,k), andwe refer to the corresponding
dependence on wavenumber k as spatial dispersion of the material properties. For
such spatially dispersive media, only a single material tensor is required, and from
it permittivity, permeability and bianisotropy tensors can be recovered as the lowest
order terms [25]. This gives us an alternative view of exotic metamaterial properties,
such as the artificial magnetism of split-ring resonators. From this point of view, the
SRR is responding to a spatial gradient of the electric field, which we can treat as an
effective magnetic field through the harmonic version of Maxwell’s equations.

3.1.4 Overview of Nonlinear Metamaterials

In addition to their exotic linear properties, many exciting phenomena have been
recently predicted and demonstrated using nonlinear metamaterials [26]. A key rea-
son why metamaterials are interesting for nonlinear physics is their tendency to
increase the effective field strength, through concentrating fields in small gaps, and
resonant enhancement, both ofwhich can lead to very large values of effective nonlin-
ear susceptibility. They have the potential to realise novel effects based on magnetic
type nonlinearity, which is otherwise impossible to obtain at optical frequencies.
The complexity of linear properties of metamaterials leads to considerably rich but
complex nonlinear phenomena, requiring the development of new tools and methods
to analyse them. A wide variety of methods have been reported to realize nonlin-
ear metamaterials, the most popular being nonlinear inclusions and immersion in
a nonlinear host medium. Below, we focus primarily on the use of nonlinear ele-
ments in various frequency ranges. Since the dimensions of the elements are much
smaller than the operating wavelength, their response is usually described by the
induced polarizability. Alternatively, they can be treated as lumped elements with
effective resistance, capacitance, and inductance. Their response can be described
and analysed based on the transfer function approach.

To achieve themacroscopic nonlinearity, various nonlinear elements can be added
to the resonant meta-atom. The nonlinear response of the element can be linked to
the currents in the meta-atom, which may be induced by either electric or magnetic
fields, leading to a corresponding nonlinear response. One of the earliest examples is
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SRRs which were made nonlinear by loading them with varactor diodes [26]. More
exotic nonlinear inclusions have also been investigated, including superconducting
Josephson junctions [27]. Because of the complex nonlinearity of circuit elements, it
is quite difficult to predict their nonlinear response analytically. In particular, it was
suggested that an array of SuperconductingQuantum InterferenceDevices (SQUIDs)
could be considered as a magnetic metamaterial with extraordinary properties sup-
porting counter-intuitive dynamic chimaera states [28]. Furthermore, since both elec-
tric and magnetic fields may be involved in any nonlinear process, the total number
of nonlinear tensor elements is very large. Therefore, homogenization procedures
based on numerical simulation have been proposed [29], with related methods also
having been developed for metasurfaces [30].

Similar to nonlinear optics, the harmonic generation has been demonstrated in
nonlinear metamaterials over a wider frequency range. An advantage of metamateri-
als for frequency conversion is that their response canbe simultaneously engineered at
multiple frequencies, greatly enhancing harmonic generation efficiency [31]. On the
other hand, negative refraction and backward waves propagation lead to rather inter-
esting peculiarities of wave interaction [32]. For example, second harmonic genera-
tion (SHG) can be achieved for the reflected wave of the pump excitation propagating
in the backward regime [33, 34]. This allows subwavelength imaging to be achieved
at the second harmonic. Phase matching conditions can also be altered, resulting in
higher conversion efficiency, peculiar phase-lockedharmonic generation, and trapped
spatio-temporal pulse propagation. In transmission-line based microwave metama-
terials nonlinear response can also be achieved by replacing capacitors with varactor
diodes leading to exotic phase matching regimes of forward and backward propagat-
ingwaves at fundamental and generated frequencies. They can be easily implemented
and used for various applications such as, for example, tunable leaky-wave anten-
nas [35]. In the microwave frequency range, high nonlinearity can be achieved at
low power levels (fraction of a Watt). On the other hand, parametric amplification
has been suggested and widely used as loss compensation mechanism mostly in
microwave range for transmission lines, magneto-inductive arrays and SRRs [26].

Nonlinear self-action at higher powers results in the switching of metamaterials
between different states, analogous to a Kerr-type nonlinear response. In addition
to the continuous tuning of the linear properties with incident power, bistable and
multistable behaviour can be observed [36]. The strong nonlinearities observable
particularly in transmission-line type microwave metamaterials defy many of the
common assumptions of stable steady-state behaviour. In such structures, a variety
of autonomous frequencies can be generated, which can only be described by a more
accurate nonlinear state-space model [37].

A very different type of nonlinear response can be observed when meta-atoms
attract or repel eachother due to electromagnetic forces.Byadding an elastic restoring
force to counter this electromagnetic force, the distance between a pair ofmeta-atoms
will depend on the incident field strength [38]. The resonant nature of meta-atoms
and their strong near-field leads to a very strong dependence of their frequency
response on their separation. The combination of these effects leads to a response
which depends on the strength of the incident field,whichwas experimentally demon-
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strated. To improve the strength of this nonlinear response, subsequent works used
a torsional restoring force between a pair of rotating rings [39]. By using this softer
elastic restoring force, a much stronger nonlinear response was observed. In experi-
ments with a pair of chiral meta-atoms of opposite handedness, spontaneous chiral
symmetry breaking was observed, where the structure was achiral to linear waves,
and became chiral at a range of high incident powers. Most interestingly, for a range
of incident powers, this structure was shown to exhibit self-oscillations, whereby a
constant intensity electromagnetic wave led to approximately periodic mechanical
oscillations of the rings.

While most studies have investigated the nonlinear response of microwave meta-
materials to a continuous wave signal, there have also been studies where the time-
domain response of a metamaterial or metasurfaces was considered. This allowed
the development of a waveform-dependent absorbing metasurfaces, as seen in the
review paper [40]. Note that nonlinear microwave metasurfaces have demonstrated
many of the same effects of metamaterials, and they have the advantage of a compact
structure which is readily fabricated with conventional circuit techniques. It is worth
noting that nonlinear metamaterials and metasurfaces are closed related to their tun-
able counterparts, and often make use of similar inclusions. A varactor diode can
be tuned by an external bias voltage, in order to shift the linear resonance, and also
leads to a nonlinear response at high incident power [41]. Recently this idea has
been developed further, by creating metasurfaces where the nonlinear coefficient is
tunable, and can vary across the surface [42].

Strong nonlinear effects have also been observed at interfaces between conven-
tional and nonlinear metamaterials [43]. In particular, nonlinear forward and back-
ward propagating surface guided waves can be excited and controlled based on their
nonlinear dispersion relation. Moreover, both positive and negative lateral Goos–
Hänchen shift can also be observed at the interfaces depending on the incident power
[44]. A particularly interesting class of edge states that have recently been observed
in photonics are topologically protected states [45], which are immune to scattering
by certain types of defects. Due to their ability to tailor the medium response, meta-
materials have served as an important platform for the observations of such states.
Recently it was shown that topological states can undergo nonlinear spectral shifts
due to a pump beam, eventually being destroyed at very high pump powers [46].

Metamaterials have delivered an extended set of tools for the design of novel
nonlinear electromagnetic media. The artificial magnetic response makes available
many more nonlinear susceptibility components, offering greater control over the
harmonic generation and wave mixing phenomena for novel nonlinear metadevices.
One of the exceptional abilities of nonlinear metamaterials and metasurfaces is to
control the direction of the nonlinear emission, resulting in significant improvement
of the nonlinear signal generation and detection [26]. At microwave frequencies
very strong nonlinearities are readily achieved, due to the availability of lumped
components with a strong response. However, from an applications perspective,
the greatest demand for new nonlinear functionality is expected to be at higher
frequencies. In the terahertz (THz) frequency range nonlinear metamaterials can
be realised by integrating subwavelength resonant inclusions with transition metal
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oxides or semiconductors such as GaAs and InAs [47–49]. The plasma frequency of
semiconductors can be tuned by adjusting the doping level. Semiconductors exhibit
strong nonlinear response at the THz frequency range, allowing highly efficient
nonlinear metamaterials to be designed. At mid-infrared frequencies, achieving a
nonlinear metamaterial response remains challenging, although related advances in
externally tunable metamaterials have been made [50]. The ready availability of
laser sources at near-infrared and visible wavelengths has enabled a wide variety of
nonlinear phenomena to be exhibited within these ranges. In the following sections,
we outline key achievements in nonlinear photonic metamaterials, considering both
metallic and dielectric metamaterial structures.

3.2 Plasmonic Nonlinear Metamaterials

Metallic nanostructures have been among the initially explored platforms to achieve
strong nonlinear responses at the nanoscale [51–61]. Such nanostructures interact
with light through the oscillation of free electrons on the surface, known as surface
plasmons, which cause strong near-field enhancements. These enhancements origi-
nate unusual light-matter interactions in both linear and nonlinear regimes [51–70].
Nanorod metamaterial slabs, so-called hyperbolic metamaterials, are good examples
for demonstrating the plasmonic capabilities in nonlinear nanophotonics [71–73]. As
compared to uniform dielectrics, Au nanorods with ∼10nm diameter can increase
the SHG intensity up to three orders of magnitude. Such a significant enhancement
is caused by the generated near-field, as well as dark evanescent second harmonic
components, which can be detected in the far-field.

3.2.1 Effect of Symmetry

Plasmonics can offer an additional nanoscopic degree of freedom, i.e. coupling,
among the neighbouring nanoparticles. Such a characteristic can find tremendous
applications in nonlinear nanophotonics. For example, a recent research work
reported by Gennaro et al. shows that the scattering of SHG light can be manip-
ulated by the symmetry of multi-resonant nanostructures [74]. This is a nonlinear
process that converts two photons of frequency ω into one photon of frequency 2ω.
Figure3.1a illustrates two different symmetries with the same components. In the
left case, two discs (2ω-particles), radiating in phase, lead to bright and directional
SHG. However, in the right case, SHG is suppressed, where two discs radiate out of
phase. Figure3.1b shows the scanning electron microscopy (SEM) images of vari-
ous studied symmetries. Subsequently, their corresponding experimentallymeasured
SHG are plotted in Fig. 3.1c, demonstrating the significant effect of the symmetry.

More recently, Krauth et al. have studied the effect of coupling in a 3D-fashion via
a dolmen type structure arrays (see Fig. 3.1d, e, f) [75]. They have studied the effect of
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Fig. 3.1 a An illustration of the symmetry effect on SHG in complex plasmonic nanoantennas. b
SEM images of various symmetrical configurations (CI-CV). In all cases, the dimension of the bar
is 340 × 80 × 40nm in x , y and z, respectively, and the discs 160 × 40nm in diameter and height,
respectively. In all cases, the gaps between the discs and the bar are kept at 20nm. c The experi-
mentally measured SHG signals for different symmetrical configurations, shown in b. The pump
and SHG signal are polarized along and perpendicular to the bar, respectively. d Illustration of the
3D plasmonic structure, with varied position of dipole rod (blue bar). e Two different SEM image
representing two different coupling case: top case (blue image) exhibit no coupling; bottom case
(red image) causes the maximal coupling. f Left: linear spectra for two different coupling strengths,
where the dashed, dotted, and solid lines represent transmittance, reflectance, and absorbance spec-
tra, respectively. Right: experimentally measured TH signals. Panels a, b and c are adapted from
[60] (©2016 by the American Chemical Society) whereas panels d, e and f are adapted from [75]
(©2019 by the American Chemical Society)

enhanced induced absorbance on third harmonic (TH) spectroscopy. The absorbance
(A) is calculated using A = 1 − T − R with T and R denoting the transmission
and reflection, respectively. Figure3.1f shows both linear and nonlinear spectra,
corresponding to the investigated nanostructures. Left panels represent the measured
spectra for two different coupling cases in the linear regime (see Fig. 3.1e), with
increasing coupling from top to bottom. In the uncoupled regime (top panel), just an
individual plasmon resonance exhibits at 1500nm. This is originated from the single
dipole rod. When the coupling is increased by shifting the dipole rod out of the
centre position (bottom panel), the absorbance grows in amplitude, remarkably. As
can be observed, with larger coupling, the second mode at 1700nm takes place. This
is due to the quadrupole mode. This feature is clearly observable in the absorbance
spectrum (Fig. 3.1f left, solid lines).
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Right panels in the Fig. 3.1f shows theTHenhancement spectra as a function of the
pump wavelength. Alongside this, each panel shows the corresponding absorbance
curves. The top panel shows the uncoupled case, where the single peak in the nonlin-
ear regime corresponds to the dipole resonance. In this case, an enhancement factor
of around 100 is obtained at 1500nm.When the coupling is increased (bottom panel),
the second peak comes to existence with relatively small amplitude (around 30 at
1670nm). This peak is relevant to the second mode of the linear spectrum. It is worth
mentioning that the first peak in the TH enhancement at around 1520nm remains
almost unchanged. In this case, a sizable TH enhancement of about 365 at 1680nm
can be observed. This peak, which corresponds to the secondmode, possesses a three
times stronger signal, as compared to the higher energy mode at around 1500nm.
This study can clearly confirm the effect of coupling and phase relations in the linear
regime on nonlinear response of complex plasmonic nanostructures.

In onemore exciting researchwork, Zhang et al. have employed the coupling effect
in other nonlinear interactions, e.g. four-wave mixing (FWM) at the nanoscale. They
have reported a plasmonic nanocluster that supports two Fano resonances (FRs),
a temporally oscillating superposition of two spatially coherent subradiant modes
[76]. Such an interesting capability of plasmonic nanostructures holds significant
potentials for realizing novel sensors, detectors, aswell as new types of optoelectronic
devices.

3.2.2 Vector Beam Excitation

The polarization state of the fundamental beam can also directly influence the non-
linear behaviour at the nanoscale. Recently, Bautista et al. [77] have demonstrated
this effect by azimuthal oligomers consisting of several nanobars. Figure3.2 demon-
strates the second harmonic images of the radial oligomers, while excited with radial
(see Fig. 3.2a) and azimuthal (see Fig. 3.2b) cylindrical vector beams. Corresponding
simulations are shown in Figs. 3.2c, d, respectively. The SEM image of the corre-
sponding sample is shown in Fig. 3.2e. The sample consists of oligomerswith varying
number of nanobars. As can be seen in Fig. 3.2a, c, for the case of radial excitation,
most of the oligomers show themaximum intensity in the centre and a ring of varying
intensities. The central intensity is caused by parallel excitation of all nanorods, when
the illumination is symmetric, therefore, the transverse electric fields of the radial
vector beams are oriented parallel to the long axes of all the constituent nanorods.
However, when the oligomers are asymmetrically illuminated, the surrounding pat-
terns exhibit lower intensity. Indeed, the ring-like nanorods cause n-fold rotational
symmetries, which is more observable when the number of nanorods is fewer.

In contrast, for the case of azimuthal excitation, the authors observed a central
minimum in the SHG scanning microscopy images for all cases (see Figs. 3.2b, d. In
this case, the nanorods barely contribute to the overall SHG, the transverse electric
fields of the azimuthal vector beams are oriented perpendicular to each individual
nanorod. Similar to the radial excitation, the SHG intensities of the are impacted by
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Fig. 3.2 a Experimentally measured second harmonic scanning images of the array of azimuthal
oligomers with varying number of nanorods employing a azimuthal and b radial cylindrical vector
beams. Scale bar is 1 µm. c, d Calculated corresponding images to a and b, respectfully, with
excitation wavelength of 1060nm. e Representative SEM image of an array azimuthal oligomers
with increasing numbers of nanorods, as shownwithmarks. Scale bars are 2µm. Adapted from [77].
Creative Commons Attribution License (CC BY) https://creativecommons.org/licenses/by/4.0/

the number of nanorods. This study demonstrates the potential of nonlinear engi-
neering nanophotonics through the vectorial beam control.

3.2.3 Decoding Near-Field Distributions

A significant application of nonlinear spectroscopy in plasmonics is the ability to
decode the near-field distribution. Rahmani et al. have recently shown this ability.
They have shown that nonlinear spectroscopy can be used to detect the variation of
near-field enhancement in isotropic nanostructures [63], e.g. oligomers. In isotropic
nanostructures, the linear far-field properties are independent of the direction of the
incident polarization. In other words, linear far-field spectroscopy does not provide
any information about the asymmetric near-field distribution in such symmetric struc-
tures. However, Rahmani et al. have demonstrated a detectable variation of nonlinear
signals from isotropic oligomers. They have monitored the SHG intensity versus the
polarization rotation of the incident light. Subsequently, a meaningful correlation
between the nonlinear response of symmetric oligomers and the polarisation angle
of the incident pump has been revealed. Figure3.3 shows the dependence of SHG
from symmetric pentamers, on the pump polarization angle at two different wave-
lengths. The twowavelengths are chosen as the representative features of two distinct
near-field distributions when rotating the polarization angle of the pump from θ = 0◦
to θ = 90◦ (see near-field intensity simulations in Fig. 3.3a). Figure3.3b shows the
measured SHG signal, in which significant fluctuations of the SHG intensity are
observable. By rotating the pump polarization angle, the SHG signal varies from
a minimum at θ = 45◦ to maximum at θ = 0◦ and θ = 90◦. This approach can be
employed for detecting the symmetry classes of oligomers, as well as the symmetry
classes of many molecules in nature. Moreover, this finding can enable the charac-
terization of the near-field patterns in symmetric nanostructures, a challenging task
due to the diffraction limits.

https://creativecommons.org/licenses/by/4.0/
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Fig. 3.3 a Numerically calculated near-field enhancement of a pentamer at 780nm and 820nm. b
Experimentally measured second harmonic spectrum of the pentamer at 780nm and 820nm versus
rotating azimuthal angle of the pump polarization. Adapted from [63]. ©2017 by the American
Chemical Society

3.2.4 Hybrid Metallo-Dielectrics

Recently, it has been shown that one can combine metallic and dielectric/
semiconductor nanoparticles to further enhance the nonlinear efficiency at the
nanoscale. Several types of hybrid nanostructures, consisting of metallic particles
embedded in dielectric and semiconductor media or vice-versa, have been realized
in this respect. Indium tin oxide (ITO) particles within gold nanobars [53, 54, 78,
79] is an example of such efforts with promising outcomes. Aouani et al. have
obtained a million-fold enhancement of third-harmonic generation (THG) from an
ITO nanoparticle, after being decorated by two Au nanobars [54]. Other hybrid
combinations include but are not limited to nanopatterned metallic films filled with
GaAs [80], metal/dielectric core-shell nanoparticles [81], plasmonic ring filled by
Germanium [82], AlGaAs [83] disks, etc.

3.3 Dielectric Nonlinear Metamaterials

3.3.1 Third-Order Nonlinearities from Si/Ge Nanostructures
and Metasurfaces

Silicon (Si) and Germanium (Ge) are semiconductors of broad fundamental and
technological interests. They have been continuously employed to realize unique
functionalities in the modern nanophotonics field. Owing to their high refractive
index, Si/Ge nanostructures can support strong Mie-type resonances of both electric
and magnetic natures, offering novel performance in subwavelength manipulation
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and concentration of light. Due to their large third-order susceptibilities as well as
large linear refractive index, Si- and Ge-based nanostructures form novel building
blocks for third-order all-dielectric nonlinear nanophotonics. As compared to their
metallic counterpart, Si and Ge-based nanostructures have several advantages: They
have less absorption and lower laser damage threshold. So it allows for pumping
at higher laser power to achieve higher nonlinear conversion efficiency; and also
the electric field confined in Si- or Ge-based nanostructures is not limited to the
surface. By exciting and engineering the Mie-type resonances supported by Si/Ge
nanostructures, the electromagnetic field can penetrate inside the structures. This
will significantly increase the effective light-matter interacting area, and facilitate the
nonlinear processes [84]; Importantly, both Si and Ge materials are complementary-
metal–oxide–semiconductor (CMOS) compatible, this will give great design and
fabrication flexibility for linking to existing integrated photonic architectures [85].

3.3.1.1 Third-Order Nonlinear Process Based on Mie Resonances

In recent years, with the development of “all-dielectric nanophotonics”, third-order
nonlinear processes based on Si or Ge semiconductors have been intensively inves-
tigated. Specifically, Si and Ge Mie resonators have been the primary focus for
investigating the nonlinear processes in recent years. For example, the fundamental
magnetic dipole (MD) resonance supported by Si/Ge nanodisks features a strong
circular displacement current excited inside the disk. It can significantly enhance
the THG process [86]. Shcherbakov et al. have experimentally demonstrated that
by exciting the resonance from a Si nanodisk, it is possible to get two orders of
magnitude enhancement of THG as compared with that from unstructured bulk sili-
con slab [87] (Fig. 3.4a). Based on the excitation and interference between different
Mie-type multipoles, researchers have been exploring various ways to enhance the
near-fields of the pump to boost the nonlinear processes further. For example, by
exciting electric dipole (ED) and toroidal dipole (TD) modes with the same scat-
tering magnitude but out of phase, and overlapping them spectrally and spatially, it
will create the nonradiating anapole state. The scattering contributions from ED and
TD will cancel each other, and exhibit a strongly enhanced near-field distribution
inside the nanostructure. Si/Ge nanodisks supporting anapole states have been used
to investigate the nonlinear process, and can significantly improve the third-order
nonlinear conversion efficiency of THG and FWM [82, 88–91]. Furthermore, the
anapole excitation can be further improved by placing an Au nanoring outside the
anapole resonator (Fig. 3.4b), or placing the anapole resonator on a metallic mirror
(Fig. 3.4c). In such a case, the excitation of both ED and TDmodes can be efficiently
enhanced, resulting in a much stronger near-field enhancement. It has been shown
that the third-harmonic radiation intensity from a dielectric anapole resonator located
on a metallic mirror can be enhanced by two orders of magnitude as compared to a
typical anapole resonator located on an insulating substrate [92].

By combining several individual resonators together to form complex nanopar-
ticle arrangements such as dimers [93], trimers [94] or quadrumers [95, 96], it can
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Fig. 3.4 a Illustration of THG process from Si nanodisk driven by MD resonance. Inset: Local
electric field distribution at the MD resonance. b THG enhancement through a metal-dielectric
hybrid nanostructure supporting an anapole state. Right upside: SEM image of the experimentally
fabricated sample. Right downside: Calculated electric field distribution at the anapole state. c
Schematic illustration of THGprocess from an anapole resonator on anAumirror surface. d Scheme
of the resonant THG in silicon quadrumers. Left downside: SEM image of the fabricated sample.
e Schematic illustration of THG enhancement by a Fano resonant metasurfaces. Inset: Simulated
electric near field distribution at the Fano resonance. f Nonlinear holographic image generation by a
Simetasurface based on aTHGprocess. gUltrafast all-optical switching in subwavelength nonlinear
silicon nanodisks. Panel a is adapted from [87] (©2014 by the American Chemical Society), panel
b is adapted from [82] (©2017 by the American Chemical Society), panel c is adapted from [92]
(Creative Commons Attribution License (CC BY) https://creativecommons.org/licenses/by/4.0/),
panel d is adapted from [95] (©2016 by the American Chemical Society), panel e is adapted from
[97] (©2015 by the American Chemical Society), panel f is adapted from [107] (©2018 by the
American Chemical Society) and panel g is adapted from [108] (©2015 by the American Chemical
Society)

support strong collective responses and Fano resonances with enhanced near-fields,
which will benefit the nonlinear generation processes. For example, Shorokhov et al.
observed a multifold enhancement of THG in dielectric quadrumers of silicon nan-
odisks supporting high-quality collective modes associated with the magnetic Fano
resonance originating from the interplay between the collective optically induced
magnetic responses of quadrumers and the individual magnetic responses of their
constituent Si nanodisks [95] (Fig. 3.4d). Arrangement of Si/Ge nanoparticles to form
nanoparticles array or metasurfaces can yield a more complicated optical responses
[97, 98]. Driven by a high-quality Fano resonance in Si-based metasurfaces com-
posed of disks and bars, Yang et al. have demonstrated highly efficient THG enhance-
ment [97] (Fig. 3.4e).

Besides, based on the coupling between resonant nanoparticles in metasurfaces,
topologically protected edge states [99, 100], bound state in the continuum [101–
103], and other high-quality collective modes [104, 105] can be generated and sup-
ported to facilitate the third-order nonlinear processes in Si/Ge nanostructures and
metasurfaces. Besides geometric engineering, different electric and magnetic modes

https://creativecommons.org/licenses/by/4.0/
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can also be selectively excited by structured light, such as an azimuthally-polarized
beam or a radially-polarized beam [106]. These modes can be employed to boost the
third-order nonlinear processes significantly.

3.3.1.2 Nonlinear Wavefront Engineering

Another important perspective of Si/Ge-based nonlinear nanophotonics is nonlinear
optical wavefront control. While linear wavefront control based on nanoparticles and
metasurfaces has been widely studied for long times, nonlinear wavefront control
using nanoparticles and metasurfaces have become more and more popular these
days. It enables efficient generation of light at new frequencies in predefined shapes.
Nonlinear metasurfaces have been a great tool to achieve this. Metasurfaces are
composed of subwavelength particles, so-called meta-atoms. Arranging meta-atoms
in different shapes and geometries enable the excitation of both linear and nonlin-
ear multipoles of different polarization-dependence or polarization-independence. It
enables engineering the spatial characteristics of the nonlinear interactions by locally
modify the nonlinear responses from each meta-atoms, i.e. control of the nonlinear
light amplitude, phase, polarization in the sub-wavelength regime, to achieve the
design of nonlinear optical wavefronts of light. By engineering the polarization,
amplitude, phase of the nonlinear emission waves locally, various nonlinear appli-
cations have been demonstrated from Si/Ge-based nanostructures and metasurfaces.
Recently, Gao et al. have demonstrated efficient third-harmonic holography by use
of a metasurfaces consisting of C-shaped Si nanoantennas [107]. The near-fields
from the incident light response is enhanced by the excitation of the resonance at
the pump frequency, whereas the THG signal is redistributed to the air gap region
by higher-order resonances to reduce the absorption loss at the harmonic frequency
(Fig. 3.4f). Besides, nonlinear vortex beams [109], nonlinear image tuning [102] and
nonlinear multiplexed holography [107, 110] have been reported recently.

3.3.1.3 Ultrafast Optical Switching

Furthermore, due to the enhanced nonlinearities from Si or Ge nanoresonators, it
is enabled all-optical modulation of light fields both spatially and spectrally at the
nanoscale, realizing novel functionalities such as ultrafast all-optical switching [108,
111, 112]. This will further benefit applications such as optical interconnects, optical
communication and computing. Pump-probe measurements have shown that the
switching of the Si nanodisks can be governed by bandwidth-limited 65-fs long two-
photon absorption being enhanced by a factor of 80 as compared to unstructured Si
film (Fig. 3.4g) [108].

Owing to its vast range of possibilities and potential applications, the emerging
field of nonlinear nanophotonics based on CMOS-compatible materials (such as
Si, Ge, SiN, etc) has attracted increasing attention in recent years [113–116]. Si/Ge
nanostructures andmetasurfaces holds the promising ability of advanced field control
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functionalities, enhanced nonlinear responses, and meanwhile they can be easily
linked to other integrated photonic architectures. It is expected that in the near future,
togetherwith the development of nanoscale fabrication techniques, tunable and active
metamaterials, multiple optical functions could be integrated together onto nonlinear
nanostructures to realize functional nonlinear on-chip elements. This will take a
further step for developing and realizing efficient nonlinear photonic metadevices,
enabling various applications in biosensing, nanolasing, all-optical signal processing
and quantum nanophotonics area.

3.3.2 III–V Nonlinear Metasurfaces

Dielectric nanoresonators indeed offer a unique platform for the enhancement of
light-matter interactions at the nanoscale. The ultimate goals in the field are to be
able to tailor the nonlinear emission from such nanoresonatorswith high-level of con-
trol in directivity and efficiency, see Fig. 3.5a. For this purpose, the implementation
of materials with non-centrosymmetric crystalline structure is highly beneficial, as
such materials exhibit quadratic nonlinear response, which is ultimate, the strongest
nonlinear term in the material polarisation. While metallic nanoresonators exhibit
quadratic nonlinear response, this is predominantly based on surface effects and
therefore weak. Therefore, implementing dielectric materials with the bulk nonlin-
ear response, such as lithium niobate (LiNbO3) and gallium arsenide (GaAs) for
nonlinear nanoresonators and metasurfaces is of paramount importance.

3.3.2.1 Second Harmonic Generation in III–V Nanoresonators

Out of all natural materials the noncentrosymmetric crystalline structure of GaAs
offers probably the strongest bulk quadratic nonlinearity with nonlinear suscepti-
bility of d = 100 pm/V [121, 122]. The GaAs and its aluminium compounds also
exhibit high transparency in a broad spectral window from 730nm up to the far-
infrared. This transparency is due to their direct electronic bandgap, tunable by
varying the aluminium compositions and further preventing two-photon absorption
at telecommunication wavelengths. Unfortunately, the use of GaAs comes with two
main challenges: (i) the peculiar off-diagonal nature of the nonlinear susceptibil-
ity tensor [122] and the difficulties of fabrication on transparent substrates without
defects in the crystalline structure [123].

Despite these peculiarities, the first theoretical studies on AlGaAs nanores-
onators for SHG have predicted efficiencies reaching 10−3 with a pump intensity of
1 GW/cm2 [117, 124–126], see Fig. 3.5b. These theoretical predictions have inspired
to experiment with AlGaAs nanoresonators. Experiments with multiple resonators
in a metasurface have quickly followed using structures fabricated through selective
oxidation of the substrate [127–130] or through a transfer to a transparent substrate
[118, 131], see Fig. 3.5c.
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Fig. 3.5 Nonlinear quadratic nanoresonators: a Tailoring of emission characteristics and second
harmonic directivity in forward and backward directions from quadratic nonlinear resonators. b
SHG efficiency as a function of pump wavelength and nanodisk radius. The MD resonance and the
resonant mode at the second harmonic wavelength are marked with a dotted white and magenta
line, respectively. After [117]. c SEM image of the AlGaAs nanoresonators being transferred into a
transparent polymer and subsequently onto a transparent substrate [118]. d–g Tailoring the second
harmonic emission via crystalline orientation of the underlying material: e (100) crystalline orien-
tation and the typical radiation patterns for a nanodisk of h = 300nm, r = 245nm; f, g (111) [119]
and (110) crystalline orientation, respectively, with radiation patterns for a nanodisk of h = 400nm,
r = 320nm. h Forward to backward ratio of the second harmonic emission for the three different
crystalline orientations vs. the incident polarisation angle [120]. This figure is a collage of original
images and other ones taken from the following references: [117, 118] (©2016 by the American
Chemical Society), [119] (©2019 by the American Chemical Society) and [120] (©2020 by the
American Chemical Society)

While the AlGaAs is a linearly isotropic material, the nonlinear properties of such
nanoresonators depend strongly on the crystalline orientation. The nonlinear effi-
ciency remains relatively similar for different crystalline orientations and is mainly
defined by the proximity of the resonances to the excitation and the second harmonic
wavelengths. The magnetic dipolar resonance has been found to strongly enhance
the nonlinear conversion efficiency [117] (Fig. 3.5b), however, the presence of elec-
tric or magnetic anapole also provides strong near-fields enhancement and harmonic
emission enhancement [132, 133].

The directionality and the radiation pattern of the second harmonic emission,
however, are strongly affected by the crystalline orientation. Most of the AlGaAs
metasurfaces and nanoresonators have been fabricated using a (100) crystalline ori-
entation, which is common toVCSEL fabrication [134]. However, for this crystalline
orientation the second harmonic emission comes in a doughnut shape [118], where
no light is emitted at the direction parallel to the excitation direction, regardless of
the nanoresonator size. This is a fundamental limitation and comes from the nature
of the nonlinear susceptibility tensor. Typical radiation patterns and their projection
(k-space image) are shown in Fig. 3.5d, e, f, g. For the case of (100) crystalline orien-
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tation the lack of normal direction of the second harmonic emission and the complex
polarisation patterns (shown with arrows) inhibits the practical application of such
resonators as nanoscale light sources.

A large body of work has been devoted to circumventing the lack of directional
emission. These include the use of inclined beam excitation [124, 135], broken
symmetry resonators [136], in-plane holographic gratings [137], and the interplay
between Mie and Bragg resonances in AlGaAs metasurfaces [138]. However, the
practical applicability of these approaches remains limited. Changing the crystalline
orientation of the underlying material gives much bigger opportunities to retain the
resonator geometry, while enabling emission normal to the resonator and control of
the back-to-forward emission. For example, the use of (111) crystalline orientation
[119] (Fig. 3.5f) allows for redirecting a significant portion of the second harmonic
emission towards the normal direction of the disk axis. In addition, the efficiency
of the SHG process becomes polarisation insensitive and does not depend on the
position of the incident polarisation, which is of great practical advantage. However
the radiation patterns is changing with the polarisation, as the nonlinearly excited
multipoles change their relative phase.

The use of resonators with (110) crystalline orientation (Fig. 3.5g) probably holds
the greatest potential for practical use. In this case, most of the energy of the SHG is
directed towards the normal direction and this property does not significantly depend
on the size of the nanoresonators. As such, these nanoantennas would be beneficial to
combine in spatially-variant metasurfaces, having applications in nonlinear hologra-
phy and ultra-thin light sources. Furthermore, the backward-forward directionality of
the emission can be easily altered by varying the incident polarisation direction. As
shown in Fig. 3.5h only in the case of (110) crystalline orientation one can vary the
forward-backward directionality of emission, which is due to the nature of the excited
multipoles. As such, the (110) III–V nanoresonators form an exciting platform for
quadratic nonlinear metasurfaces.

3.3.2.2 Quadratic Nonlinear Metasurfaces

The combination of multiple nanoresonators of the same or different sizes (but at the
same height) in an array forms a nonlinear dielectricmetasurfaces.When excited by a
pump beam, the emission of all nanoresonators interfere in the far-field to give rise to
the far-field emission, Fig. 3.6a. Importantly, if the emission of each nanoresonator is
zero in the normal direction, then the overall nonlinear emission of the metasurfaces
at normal direction is also zero. This is the case for (100) crystalline orientation of
AlGaAs nanoresonators, which is illustrated in Fig. 3.6a and was recently observed
experimentally in [139]. Figure3.6b shows the back-focal plane image of the SHG
from a (100) AlGaAs metasurfaces, showing that the second harmonic emission
collected by a high-numerical aperture objective is directed primarily to the four
first-order diffraction orders, while the emission at the zeroth order is negligible.

Nevertheless, when using finite-size pump beams and high-numerical aperture
collection objective one can detect the nonlinear emission, as done in the earlier
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Fig. 3.6 Quadratic nonlinear metasurfaces. a The total nonlinear emission from a metasurface is
a superposition of the emission from individual nanoresonators. b Back-focal plane image of the
second harmonic pattern emitted from (100) AlGaAs metasurfaces, demonstrating the lack of zero
emission order due to the symmetry of the nonlinear tensor. c, d Nonlinear mixing of two beams on
a AlGaAs metasurfaces (c), demonstrating seven nonlinear processes (d), such as SHG, THG, 4th
harmonic generation, sum frequency generation, FWM, six-wave mixing, and photo-luminescence
induced by two-photon absorption. e, f Spontaneous parametric down-conversion in an AlGaAs
nanoresonator (a) and the photon correlations measured due to the excitation with a pump beam at
785nm. The central bin represents bi-photons due to the spontaneous parametric down-conversion,
while the redGaussian fit represents photons due to the thermal excitation of the semiconductor. The
green band represents the statistical error of themeasurement. g Second and TH scanningmaps from
AlGaAs nanoantennas (diameter of 585nm) excited with cylindrical vector beams of radial (top
tow) and azimuthal polarisation (bottom row). Image size: 9.75µm × 9.75µm. Insets: calculated
far-field SHG and THG scanning maps of the nanodisks using the corresponding cylindrical vector
beam. Panel b is adapted from [139] (©2019 by the American Chemical Society), panels c and d
are adapted from [140] (Creative Commons Attribution License (CC BY) https://creativecommons.
org/licenses/by/4.0/), panels e and f are adapted from panel [141], and panel g is adapted from [133]
with permission from The Royal Society of Chemistry

experimental works [117, 124, 125, 127, 129, 130, 142]. Following experiments
[140] have explored this option to demonstratemultiple nonlinearmixingprocesses in
a single metasurface, excited by two beams, see Fig. 3.6c. Seven nonlinear processes
have been simultaneously observed, including SHG, THG, fourth harmonic gener-
ation, sum-frequency generation, FWM, six-wave mixing, and photo-luminescence
induced by two-photon absorption (Fig. 3.6d). This experiment demonstrates the
power of nonlinear metasurfaces as novel light sources.

It is worth noting that due to the peculiarity of the nonlinear tensor of III–V mate-
rials and the absorption in the visible spectral range, researchers have also explored
the opportunities for integration of other materials platforms. Lithium niobate shows
particular promises in this direction and linear metasurfaces for structural colours
have already been fabricated [143] and single nanoresonators have been tested for
second harmonic generation [144]. However, the difficulties in the fabrication tech-

https://creativecommons.org/licenses/by/4.0/
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niques are still hampering this development. Recent theoretical suggestions on the use
of monolithic substrates [145] might boost the future development of this materials
platform.

3.3.2.3 Applications of Quadratic Nonlinear III–V Nanoresonators and
Metasurfaces

The field of quadratic nonlinear metasurfaces and nanoantennas have made signifi-
cant advances over the past years and the field is maturing to find novel applications
in light sources. One of the most important applications includes the generation of
entangled photons through the process of spontaneous parametric down-conversion
in AlGaAs nanoresonators [141], as schematically depicted in Fig. 3.6e. The spon-
taneous parametric down-conversion process is strongly enhanced by the magnetic
resonance of the antenna, allowing, for the first time, to measure correlated photons
from a sub-wavelength nanocrystal. Themeasured coincidences (Fig. 3.6f) have very
concise duration, however, go well above the statistical noise of the detectors.

Other applications include the generation of cylindrical vector beams [118] as
well as their use for exciting the nanoantenna [133]. In a follow-up work [146]
such excitation has been used in combination with a bound state in the continuum
(BIC) mode to enhance further the nonlinear conversion per energy coupled into the
resonator. Finally, the nonlinear up-conversion from infra-red to visible can be used
to the conversion of infrared images to visible [147], therefore, opening the exciting
new application in infrared imaging and vision.

3.4 Conclusions and Outlook

The field of nonlinearmetamaterials continues tomature and brings a vast of practical
applications. Nowadays, it is shifting towards planar and integrated metadevices. It
includes tuning and switching functionalitieswhich are achieved by structuringmeta-
atoms at the subwavelength scale. Many devices have been already demonstrated at
microwave, terahertz, and visible frequency ranges by employing plasmonic and
semiconductor materials, as well as graphene and liquid crystals. It is expected that
manymore practicalmetadeviceswill emerge in the near future, including acoustical,
mechanical, and even quantum. The nonlinear response can be easier achieved there
via electrostatic or optomechanical forces, leading to novel structures with an exotic
response. One of the remaining challenges is the speed of the response. As we have
covered in this chapter, there are several attempts to improve it by using semicon-
ductor materials, but further investigations are required. Transmission modulation
and the broadband nonlinear optical response are the key features in the next gener-
ation metadevice applications, such as terahertz-rate all-optical data processing and
ultrafast optical limiters. Another challenge for quantum metamaterials is the ability
of the active coherent control of quantum meta-atom states. It implies that different
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parts of the bulk media should exhibit similar collective properties. By achieving it,
quantum metamaterials would allow for fast and high-precision image acquisition
and processing. Moreover, at the fundamental level, they can be viewed as a natural
test-bed for the study of the quantum-classical transition at the macroscopic scale.
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Chapter 4
Nonlinearity and Discreteness: Solitons
in Lattices

Boris A. Malomed

Abstract An overview is given of basic models combining discreteness in their
linear parts (i.e., the models are built as dynamical lattices) and nonlinearity act-
ing at sites of the lattices or between the sites. The considered systems include the
Toda and Frenkel–Kontorova lattices (along with their dissipative versions), as well
as equations of the discrete nonlinear Schrödinger and Ablowitz–Ladik types, and
their combination in the form of the Salerno model. The interplay of discreteness
and nonlinearity gives rise to a variety of states, most important ones being discrete
solitons. Basic results for 1D and 2D discrete solitons are collected in the review,
including 2D solitons with embedded vorticity, and some results concerningmobility
of discrete solitons. Main experimental findings are overviewed too. Models of the
semi-discrete type, and basic results for solitons supported by them, are also con-
sidered, in a brief form. Perspectives for the development of topics covered in the
review are discussed throughout the text.

4.1 Introduction: Discretization of Continuum Models, and
the Continuum Limit of Discrete Ones

Standard models of dynamical media are based on partial differential equations,
typical examples being the nonlinear Schrödinger (NLS) equation for the mean-field
complex wave function ψ (x, y, z.t) in atomic Bose–Einstein condensates (BECs;
in that case, the NLS equation is usually called the Gross–Pitaevskii equation (GPE)
[1]), and the NLS equation for the envelope amplitude of the electromagnetic field
in optical media [2]. In the scaled form, the NLS equation is

iψt = −(1/2)∇2ψ + g|ψ |2ψ +U (x, y, z) ψ, (4.1)
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where g = +1 and −1 correspond, respectively, to the self-defocusing and focusing
signs of the local cubic nonlinearity, and U (x, y, z) is a real external potential.
In the application to optics, the evolution variable t is replaced by coordinate z
in the propagation direction, while original z is replaced by the temporal variable,
τ = t − z/Vgr, where t is time, and Vgr is the group velocity of the carrier wave [3].
In optics, the effective potential may be two-dimensional (2D), −U (x, y) being a
local variation of the refractive index in the transverse plane.

In many cases the potential represents a spatially periodic pattern, such as optical
lattices (OLs) in BECs [4, 5], or photonic crystals which steer the propagation of
light waves in optics [6]:

Ulatt (x, y, z) = −ε [cos(2πL/x) + cos(2πL/y) + cos(2πL/z)] , (4.2)

as well as its 2D and 1D reductions. A deep lattice potential, which corresponds
to large ε, splits the continuous wave function into an array of “droplets” trapped
in local potential wells, which are coupled by weak tunneling. Accordingly, in the
framework of the tight-binding approximation, the NLS equation is replaced by a
discrete NLS (DNLS) equation, which was derived, in the 1D form, for arrays of
optical fibers [7–10] and arrays of plasmonic nanowires [11], as well as for BEC
loaded in a deep OL trap [12]:

iψ̇l,m,n = −(1/2)
[(
ul+1,m,n + ψl−1,m,n − 2ψl,m,n

) + (
ψl,m+1,n + ψl,m−1,n − 2ψl,m,n

)

+ (
ψl,m,n+1 + ψl,m,n−1 − 2ψl,m,n

)] + g
∣
∣ψl,m,n

∣
∣2 ψl,m.n, (4.3)

where the set of integer indices (l,m, n) replaces (x, y, z). DNLS equation (4.3) is
often reduced to 2D and 1D forms. While it includes the linear coupling between
the nearest neighbors, 1D lattices can be built in the form of zigzag chains, making
it relevant to add couplings between the next-nearest neighbors [13, 14]. 2D lattices
with similar additional coupling are known too [15].

As concerns the sign parameter, g = ±1, (4.3) admits flipping +1 ↔ −1 by
means of the staggering transformation of the discrete wave function:

ψl,m,n(t) ≡ (−1)l+m+n exp (−6i t) ψ̃∗
l,m,n(t) (4.4)

where∗ stands for the complex-conjugate expression, and in the 2Dand1Dsituations,
exp (−6i t) is replaced by exp (−4i t) and exp (−2i t), respectively.

It is well known that the 2D and 3D continuous NLS equation (4.1) with the self-
focusing nonlinearity, i.e. g < 0, gives rise to the critical and supercritical collapse,
respectively, i.e. appearance of singular solutions in the form of infinitely narrow
and infinitely tall peaks, after a finite evolution time [2]. The discreteness arrests the
collapse, replacing it by a quasi-collapse [16] when the width of the shrinking peak
becomes comparable to the spacing of the DNLS lattice.

The DNLS equation and its extensions constitute a class of models with a large
number of physical realizations, which have drawn much interest as subjects of
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mathematical studies as well [17]. The class also includes systems of coupled DNLS
equations [18, 19].

The 1D continuous NLS equation without the external potential and with either
sign of the nonlinearity, g, is integrable by means of the inverse-scattering transform
[20–23], although it is nonintegrable in the 2D and 3D geometries. On the contrary
to that, the 1D DNLS equation is not integrable, i.e. the direct discretization destroys
the integrability [24, 25]. However, the continuous NLS equation admits another
discretization in 1D, which leads to an integrable discrete model, viz. the Ablowitz–
Ladik (AL) equation [26]:

iψ̇n = − (ψn+1 + ψn−1)
(
1 + μ |ψn|2

)
, (4.5)

where positive and negative values of the real nonlinearity coefficient,μ, correspond
to the self-focusing and defocusing, respectively. Integrable discrete equations, such
as the AL and Toda-lattice (see (4.9) below) ones, are exceptional models which play
a fundamentally important role, providing exact solutions for discrete solitons and
other dynamical states [27].

Considerable interest was also drawn to the nonintegrable combination of the AL
and DNLS equations, in the form of the Salerno model (SM) [28], with an additional
onsite cubic term, different from the intersite one in (4.5):

iψ̇n = − (ψn+1 + ψn−1)
(
1 + μ |ψn|2

) − 2 |ψn|2 ψn , (4.6)

with the magnitude and sign of the onsite nonlinearity coefficient fixed by means of
the rescaling and staggering transformation, respectively. The SM finds a physical
realization in the context of the Bose–Hubbard model, i.e. BEC loaded in a deep OL,
in the case when dependence of the intersite hopping rate on populations of the sites
is taken into regard [29, 30].

While the above-mentioned DNLS, AL, and SM discrete systems are derived as
the discretization of continuous NLS equations, one can look at this relation in the
opposite direction: starting from discrete equations, one can derive their continuum
limit. In particular, in the case of the SM equation (4.6), the continuum approxima-
tion is introduced by replacing the intersite combination of the discrete fields by a
truncated Taylor’s expansion,

ψn(t) ≡ e2i t�(x, t), � (x = n ± 1, t) ≈ � (x = n) ± �x
∣
∣
x=n + (1/2)�xx

∣
∣
x=n,

(4.7)
where �(x) is treated as a function of the continuous coordinate x , which coincides
with n when it takes integer values. The substitution of this approximation in (4.6)
leads to a generalized (nonintegrable) form of the 1D NLS equation [31]

i�t = − (
1 + μ |�|2)�xx − 2 (1 + μ) |�|2 �, (4.8)

which amounts to the standard 1D NLS equation (4.1) with g = +1 and U = 0 in
the case of μ = 0.
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The objective of this Chapter is to present an overview of basic discrete nonlinear
models and dynamical states produced by them, chiefly in the form of bright solitons
(self-trapped localized modes). Before proceeding to models based on equations
of the DNLS, AL, and SM types, simpler ones, which were derived for chains of
interacting particles, are considered in the next section. The paradigmatic model of
the latter type is provided by the 1D Toda-lattice (TL) equation [32], written for
coordinates un(t) of particles with unit mass and exponential potential of interaction
between adjacent ones:

ün + e−(un+1−un) − e−(un−un−1) = 0. (4.9)

This equation can also be written for separations rn(t) ≡ un+1(t) − un(t) between
the particles:

r̈n + e−rn+1 + e−rn−1 − 2e−rn = 0. (4.10)

Equation (4.10) is integrable [20], its continuum limit being the so-called “bad”
Boussinesq equation [33], which is formally integrable too1 [22]:

rtt − rxx − (1/12)rxxxx + (
r2

)
xx = 0 (4.11)

Another famous, although not integrable, model of a chain of pairwise-interacting
particles with coordinates un(t), is the Fermi–Pasta–Ulam (FPU) system [34, 35]:

ün = (un+1 + un−1 − 2un)
[
1 + α (un+1 − un−1)

]
, (4.12)

whereα is a constant. Thismodelwas one of the first objects of numerical simulations
performed in the context of fundamental research (back in 1953, published in 1955
[34], see also [36]). Later, it became known that a very essential contribution to the
original FPU work was made by Mary Tsingou [37], therefore the model is also
called Fermi–Pasta–Ulam–Tsingou system.

The initial objective of the original numerical FPU-Tsingou experiment was to
observe the onset of ergodicity in the evolution governed by (4.12).A surprising result
was that long simulations demonstrated a quasi-periodic evolution, without mani-
festations of ergodicity (i.e. without statistically uniform distribution of the energy
between all degrees of freedom of the lattice system). Eventually, this perplexing
result was explained (in the same paper [38] by N. Zabusky and M. Kruskal which
had introduced word “soliton”) by the fact that the continuum limit of (4.12) may be
reduced (for unidirectional propagation of excitations in the continuum medium) to
the Korteweg – de Vries equation, which, being integrable, does not feature ergod-
icity.

The next section briefly addresses, in addition to the TL, more complex models
which combine the inter-particle interactions (taken in the linear approximation,
unlike the exponential terms in (4.10)), and onsite potentials – most typically, in the

1“Bad” implies that (4.11) gives rise to an unstable dispersion relation.
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form ofU = ε
∑

n (1 − cos un) , with ε > 0, which is the source of the nonlinearity
in the corresponding Frenkel–Kontorova (FK) model. It was originally introduced
as a model for dislocations in a crystalline lattice [39], and has found a large number
of realizations in other physical settings [40].

This Chapter also addresses, in a brief form, other fundamental aspects of non-
linear discrete systems. These are discrete multidimensional models, semi-discrete
ones, and experimental realizations of discrete media and bright solitons in them,
chiefly in the realm of nonlinear optics. The experimental results are considered in
a brief form too. Dissipative discrete nonlinear systems are partly addressed in this
Chapter, as a systematic consideration of dissipative discrete systems is a subject for
a separate review.

Because the length of the Chapter is limited, the presentation and bibliography
are not aimed to be comprehensive; rather, particular results mentioned in sections
following below are selected as exampleswhich help to understand general principles
supported by a large body of theoretical and experimental findings.

4.2 Excitations in Chains of Interacting Particles

4.2.1 The Toda Lattice

The TL equation (4.9) is characterized, first of all, by its linear spectrum. Looking
for solutions to the linearized version of the equation in the form of “phononmodes”,
i.e. plane waves with an infinitesimal amplitude u(0), frequency χ and wavenumber
p (which is constrained to the first Brillouin zone, 0 < p < 2π ),

(un)linearized = u(0) exp (i pn − iχ t) , (4.13)

it is easy to obtain the respective dispersion relation,

χ = ±2 sin (p/2) . (4.14)

Further, (4.13) produces phase velocities of the linear waves Vph = χ/p, which take
values

∣
∣Vph

∣
∣ < 1.

Integrable equation (4.9) generates exact soliton solutions, which were first found
in the original work of Toda [32]. The soliton represents a lattice deformation trav-
eling at constant velocity c:

un = − ln

∣∣
∣∣ξ

−2 − ξ−2 − 1

1 + ξ 2(n−ct)

∣∣
∣∣ , c = ±ξ−1 − ξ

ln
(
ξ−2

) , (4.15)

where ξ is an arbitrary real parameter taking values 0 < ξ < 1, the respective interval
of the inverse velocities being



86 B. A. Malomed

0 < |c|−1 < 1. (4.16)

Note that this interval has no overlap with the above-mentioned range of the phase
velocities of the linearmodes,

∣∣Vph

∣∣ < 1, in accordancewith thewell-knownprinciple
that solitonsmay exist in bandgaps of linear spectra, i.e. in regionswhere linearwaves
do not exist.

Comparing values of the solution (4.15) at n → ±∞, one concludes that the
soliton carries compression of the TL by a finite amount, 
u ≡ un=+∞ − un=−∞ =
ln

(
ξ−2

)
, while a characteristic width of the soliton is 
n ∼ 1/ ln

(
ξ−2

)
. Similar

to other integrable systems [20–23], collisions between solitons do not affect their
shapes and velocities, leading solely to finite shifts of the solitons’ centers.

The limit of ξ → 0 implies that the TL reduces to a chain of hard particles, which
interact when they collide. Accordingly, the soliton’s structure degenerates into a
single fast moving particle, the propagation being maintained by periodically occur-
ring collisions, as a result of which the moving particle comes to a halt, transferring
its momentum to the originally quiescent one. In the opposite limit, ξ → 1, soliton
(4.15) becomes a very broad solution, traveling with the minimum velocity, c → 1.
As mentioned above, no TL solitons exists with velocities |c| < 1.

Equation (4.9) conserves the total momentum, P = ∑+∞
−∞ u̇n , and Hamiltonian

(energy),

HTL =
+∞∑

n=−∞

{
1

2
u̇2n + [

e−(un+1−un) − 1
]}

. (4.17)

In fact, integrable equations, including (4.9), conserve an infinite number of dynam-
ical invariants, the momentum and energy being the lowest-order ones in the infinite
sequence [20]; however, higher-order invariants do not have a straightforward phys-
ical interpretation.

A realistic implementation of the TL includes friction forces with coefficient
α > 0, which should be compensated by an “ac” (time-periodic) driving force with
amplitude ε and frequency ω [41–43]. The accordingly modified equation (4.9) is

ün + e−(un+1−un) − e(un−un−1) = −αu̇n + εqn cos (ωt) . (4.18)

Here coefficients qn may be realized as the charge of the particles, if the drive is
applied by an ac electric field. Nontrivial coupling of the field to the TL dynamics is
not possible if all the charges are identical, i.e. qn ≡ 1. Indeed, in the latter case one
can trivially eliminate the drive by defining un(t) ≡ vn(t) − εω−2 cos (ωt), ending
up with equation (4.18) for vn(t) with no drive. The simplest nontrivial coupling is
provided by assuming qn = (−1)n , i.e. alternating positive and negative charges at
neighboring sites of the TL [41]. A particular choice of the periodic pattern for qn
defines the respective size, a, of the cell of the ac-drivenTL (in particular, qn = (−1)n

corresponds to a = 2).
The periodic passage of the soliton running through the lattice with velocity c, i.e.

with temporal period T = a/c, may provide compensation of the friction losses if it
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resonates with the periodicity of the ac drive, which defines the spectrum of resonant
velocities [41],

cN = ±ωa/ [2π (1 + 2N )] , (4.19)

where integer N = 0, 1, 2, ... determines the order of the resonance.2 Velocities cN
are relevant if they satisfy restriction |cN | > 1 (see (4.16)), which impliesω > 2π/a.

The progressive motion of solitons is actually supported by the drive whose
strength, ε, exceeds a certain minimum (threshold) value, εthr, which is roughly
proportional to the friction coefficient, α [42].

A specific class of dynamical chainswith essentially nonlinear interactionbetween
adjacent particles of a finite size (spheres) represents models of 1D granular media,
in which spheres interact when they come in touch. It was demonstrated that such
chains (in particular, those with the Hertz potential of the contact interaction [44])
support self-trapped states in the form of discrete breathers [45].

4.2.2 The Frenkel–Kontorova Model and Related Systems

A paradigmatic example of lattices which combine interactions between adjacent
particles and the onsite potential acting on each particle is the FK model [40], which
is the discretization of the commonly known sine-Gordon (sG) equation. In 1D, the
sG equation for a real wave field u is [20–23]

utt − uxx + sin u = 0. (4.20)

Elementary solutions to (4.20) are kinks

ukink = arctan
[
exp

(
σ (x − ct) /

√
1 − c2

)]
, (4.21)

with the velocity taking values −1 < c < +1 and the topological charge σ being

σ ≡ [u (x = +∞) − u (x = −∞)] / (2π) = ±1, (4.22)

The discretization of (4.20) with stepsize h implies defining

x ≡ hn, u (x = hn) ≡ un, (4.23)

and the replacement of the second derivative by its finite-difference counterpart:

uxx → h−2 (un+1 + un−1 − 2un) . (4.24)

2For velocities given by (4.19) with odd integer 1 + 2N replaced by an even one, 2N , with N =
1, 2, ..., the transfer of energy from the drive to the moving soliton averages to zero.
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The result is the FK model, which also includes the local friction with coefficient
α ≥ 0, and an external force fn , that may be time-dependent:

ün − (1/h2) (un+1 + un−1 − 2un) + sin un = −αu̇n + fn(t). (4.25)

The linearization of (4.25), with α = fn = 0, for phonon modes (4.13) gives rise to
the following spectrum:

χ2 = 1 + (
4/h2

)
sin2(p/2), (4.26)

cf. its counterpart (4.14) for theTL.The formof spectrum (4.26) implies that localized
oscillatory statesmay exists in the inner and outer bandgaps, with frequenciesχ2 < 1
and χ2 > 1 + 4/h2, respectively.

In the connection to the linear spectrum, it is relevant to mention that considerable
interest was recently drawn to specially designed discrete lattices whose spectrum
includes a flatband, i.e. a degenerate branch of the χ(p) dependence in the form
of χ = const, as such systems admit the existence of localized discrete modes in
the absence of nonlinearity [46, 47]. Effects of nonlinearity on localized states in
flatband systems have been investigated too [47, 48].

Generally similar to the discrete sG lattice governed by (4.25) are models based
on the discretization of Klein-Gordon equations. Typically, they feature the onsite
cubic nonlinearity, the simplest model being [49]

ün − (1/h2) (un+1 + un−1 − 2un) − un + u3n = 0. (4.27)

The spectrum of the linearization of (4.27) is unstable, with χ2 = −1 + (
4/h2

)
sin2

(p/2) takingnegative values.However, kink solutions,which connect constant values
un = ±1 atn → ±∞, are stable, as the constant nonzero background is stable against
small perturbations. As concerns moving kinks, it is possible to construct a discrete
model with a specially designed combination of nonlinear terms, which admits exact
solutions for moving kinks with particular values of the velocity [50].

Even in the case of α = fn = 0, the discrete sG equation (4.25), unlike its con-
tinuum counterpart (4.20), is not integrable. Therefore, in the absence of the friction,
the single dynamical invariant of (4.25) is the energy, provided that the driving force
is time-independent:

E =
+∞∑

n=−∞

[
(1/2)u̇2n + (1/2)h−2 (un+1 − un)

2 + (1 − cos un) − fnun
]
. (4.28)

Note that, treating un as per (4.23), and similarly defining fn ≡ f (x = hn), one can
formally write the energy as in the continuum setting, in which the discreteness is
introduced by means of a lattice of delta-functions with period h:
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E =
∫ +∞
−∞

dx
+∞∑

n=−∞
δ (x − hn)

{
u̇2n
2

+ [u(x + h) − u(x)]2

2h2
+ (1 − cos u) − f (x)u

}

.

(4.29)

A fundamentally important concept in models of the FK type is the Peierls-
Nabarro (PN) potential [51]. It is naturally defined in the quasi-continuum approxi-
mation, which implies that the lattice’s spacing is much smaller than a characteristic
size of the mode under the consideration, i.e. h � 1. In this limit, the mode may be
considered in the continuum form – e.g. as ukink(x − ξ), with the central point, ξ ,
placed at an arbitrary position, and the PN potential is defined as the total energy,
given by (4.29), considered as a function of ξ [52]. Then, using identity

+∞∑

n=−∞
δ (x − hn) ≡ 1

h

+∞∑

m=−∞
exp

(
i
2πm

h
x

)
, (4.30)

one obtains, in the lowest approximation, which is determined by the lowest har-
monics in expression (4.30), withm = ±1, an exponentially small but, nevertheless,
relevant result:

UPN(ξ) = U0

2
cos

(
2πξ

h

)
, U0 = (4π/h)2

sinh
(
π2/h

) . (4.31)

Thus, the broad quasi-continuum mode tends to have its center pinned at any local
minimum of the PN potential, ξ = h ((1/2) + N ), with arbitrary integer N . The PN
potential barrier, which separates neighboring minima, and thus creates an obstacle
for free motion of kinks, isU0. The PN barrier may be suppressed in FK lattices with
a long-range intersite interaction added to the linear coupling between the nearest
neighbors [53].

Unlike the TL solitons (4.15), which may only exist as moving states with veloc-
ities |c| > 1, the existence of quiescent FK kinks, pinned to local potential minima,
is not predicated on the presence of the driving force. On the other hand, the motion
of kinks is braked by friction, as well as by radiative losses, i.e. emission of lattice
“phonons” by a kink moving through the lattice, the latter effect usually being much
weaker than friction. As well as in the TL model, the motion of kinks can be sup-
ported by an ac drive, fn = (−1)nε cos (ωt), at the same resonant velocities as given
by (4.19), with a = 2 [54].

A relevant physical realization of the FKmodel is provided by an array of coupled
long Josephson junctions (JJs) [55, 56] (each junction is a narrow dielectric layer
separating twobulk superconductors [57]).An accuratemodel of the array is provided
by (4.25), where fn ≡ f represents the bias current applied to each junction, while
α is the coefficient of Ohmic loss. Especially interesting is this version of the FK
with periodic boundary conditions, which corresponds to the circular JJ array built
of N junctions [58, 59], as it gives rise to resonant interaction between a kink (in
terms of JJs, it is a fluxon, i.e. a quantum of the magnetic flux), moving at velocity c



90 B. A. Malomed

Fig. 4.1 The predicted relation between the velocity of the discrete kink, travelling in a ring-shaped
FK lattice composed of N = 10 sites, subject to periodic boundary conditions, and a driving force.
Numbersm, which label different vertical resonant steps, denote the “quantization” orders in (4.32).
Arrows indicate directions of hysteretic jumps between the steps, and the dashed curve represents the
f (c) dependence in the continuum version of the system. Insets display dependences u̇n , which are
proportional to the local voltage in the underlying JJ array, at the system’s midpoint, corresponding
to two points in the f (c) (current-voltage) characteristic marked by arrows. Parameters in (4.25)
are h = 1 and α = 0.1. Reproduced from [58]

in the ring-shaped array, and phonon modes whose phase velocity χ/p, determined
by the dispersion relation (4.26), may coincide with c. The periodicity of the array
imposes the “quantization” condition on wavenumber p in (4.26),

p = (2π/hN )m, m = 1, 2, 3, ... . (4.32)

The analysis of the kink-phonon interaction leads to a dependence of the fluxon’s
velocity c on the driving force (current), f , in the form of resonant Shapiro steps
[60] connected by hysteretic jumps, as shown in Fig. 4.1. This dependence predicts
an experimentally observable current-voltage characteristic of the JJ system, as the
voltage is proportional to c. The measured characteristic was found to be very close
to the theoretical prediction [58].

Lastly, it is relevant to mention that the FK model also supports breathers, i.e.
localized modes which are periodically oscillating functions of time [40, 61–63].
In the continuum limit, the breathers naturally carry over into the well-known exact
breather solutions of the sG equation (4.20),
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4.3 Nonlinear Schrödinger (NLS) Lattices

4.3.1 One-Dimensional (1D) Solitons

4.3.1.1 Fundamental States

DNLS equation (4.3) gives rise to discrete solitons, which cannot be represented by
analytical solutions, but can be easily found in a numerical form. General properties
of the soliton families can be understood by means of the variational approximation
(VA). Results for solitons in models of the DNLS type are well known, being broadly
represented in the literature [17]. Therefore, basic results for discrete NLS solitons
are summarized here in a brief form. Most studies addressed the 1D version of (4.3),
i.e.

iψ̇n = −(1/2) (ψn+1 + ψn−1 − 2ψn) − |ψn|2 ψn, (4.33)

where the nonlinearity coefficient is fixed to be g = −1, which corresponds to the
self-focusing sign of the onsite nonlinearity (recall that the sign of g may be flipped
by means of the staggering transformation (4.4)). The DNLS equation conserves two
dynamical invariants, viz. the total norm,

N =
+∞∑

n=−∞
|ψn|2 , (4.34)

and Hamiltonian (energy),

H =
+∞∑

n=−∞

[
(1/2) |ψn − ψn−1|2 − (1/4) |ψn|4

]
. (4.35)

A fundamental property of theDNLS equationwith self-attractive onsite nonlinearity
is the modulational instability of its spatially homogeneous state [64].

Stationary solutions to (4.33) with real frequency ω are looked for in the usual
form,

ψn(t) = e−iωt un, (4.36)

with real amplitudes un satisfying the discrete equation,

ωun = −(1/2) (un+1 + un−1 − 2un) − u3n. (4.37)

While (4.37) does not admit exact analytical solutions, theVAproduces quite accurate
approximations for discrete solitons. The VA is based on the Lagrangian, fromwhich
(4.37) can be derived by means of the variation with respect to the discrete field un:
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L =
+∞∑

n=−∞

{
(1/4)

[
(un − un−1)

2 − u4n
] − ωu2n

}
. (4.38)

The use of the VA is based on a particular ansatz, i.e. a trial analytical expression
which aims to approximate the solution [65]. The only discrete ansatz for which
analytical calculations are feasible is represented by the exponential function [66–
69]. In particular, an onsite-centered (OC) discrete soliton, i.e. one with a single
maximum (which is placed, by definition, at site n = 0) is approximated by

(un)onsite = A exp (−a|n|) , (4.39)

with a > 0. The corresponding norm, calculated as per (4.34), is

Nansatz = A2 coth a.

Actually, ansatz (4.39) works well for strongly and moderately discrete solitons (see
Fig. 4.2), but it is not appropriate for broad (quasi-continuum) modes, which are
approximated by the commonly known soliton solution of the NLS equation (the 1D
version of (4.1) with U = 0),

ψ (x, t) = η sech (η (x − ξ)) exp
(
iη2t

)
, (4.40)

with a large width, η−1 � 1, and central coordinate ξ .
For intersite-centered (IC) discrete solitons, with two symmetric maxima placed

at two adjacent sites of the lattice, n = 0 and n = 1 (and a formal central point located
between the sites, hence the name of these modes), an appropriate ansatz is

(un)intersite = A exp (−a|n − 1/2|) . (4.41)

The substitution of ansatz (4.39) in Lagrangian (4.38) and straightforward calcu-
lations yield the following effective Lagrangian:

Leff = (A2/2) coth(a/2) − (A4/4) coth (2a) − ωA2 coth a. (4.42)

Then, for given ω < 0 (solitons with ω > 0 do not exist), the squared amplitude,
A2, and inverse width, a, of the discrete soliton are predicted by the Euler-Lagrange
equations,

∂Leff

∂
(
A2

) = ∂Leff

∂a
= 0. (4.43)

The corresponding system of algebraic equations for A2 and a can be easily solved
numerically.A similar analysiswas performed for the IC solitons, startingwith ansatz
(4.41). The VA produces quite accurate predictions for solitons of both types, see
Fig. 4.2 and [70].
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Fig. 4.2 Comparison of typical OC (left panel) and IC (right panel) 1D discrete solitons, obtained
as numerical solutions of (4.37), shown by chains of blue dots, and their counterparts produced by
the VA (shown by red open circles). In this figure, ω = −1, see (4.36)

An extended version of VA for 1D discrete solitons was elaborated for nonstation-
ary solutions, and compared to their numerically generated counterparts [66, 68].
Moreover, it was demonstrated that VAmay be applied, in amore sophisticated form,
even to a challenging problem of collisions of moving discrete solitons [67]. Further
considerations addressed false instabilities, which are sometimes predicted by the
nonstationary VA [71], and rigorous justification of the VA [72]. Finally, the VA and
full numerical considerations demonstrate that the entire family of the OC discrete
solitons is stable, while all the IC ones are unstable [17].

4.3.1.2 Mobility of 1D Discrete Solitons

The DNLS equation does not admit solutions for moving discrete solitons. Indeed,
even in the quasi-continuum approximation, soliton (4.40) is running through the
effective PN potential, which, for 1D DNLS modes, is

UPN(ξ) = − π4

3 sinh
(
π2/η

) cos (2πξ) , (4.44)

cf. expression (4.31) for the PN barrier in the FK model. The periodic acceleration
and deceleration of the quasi-continuous soliton moving across the PN potential
gives rise to emission of small-amplitude “phonon” waves, i.e. losses which brake
the motion. However, the emission effect is extremely weak in direct simulations of
the DNLS equations, allowing the 1D discrete solitons to run indefinitely long [73].
On the other hand, discrete solitons in the 2D DNLS equation (see the following
subsection) have no mobility. This is explained by the fact that the above-mentioned
quasi-collapse effect [16] makes them very narrow modes strongly pinned to the
underlying lattice.

The mobility of 1D discrete solitons in NLS lattices may be essentially enhanced
by means of the nonlinearity management technique [74], i.e. replacing coefficient
g in the 1D version of (4.3) by a combination of constant (“dc”) and time-periodic
“ac” terms [75]:
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i u̇n + un+1 + un−1 − 2un + [gdc + gac sin(ωt)] |un|2un = 0. (4.45)

Similar to the situation for the damped driven TL, outlined above, discrete solitons
may move across the lattice at special values of the velocity, determined by the
resonance between the periodic passage of lattice sites by the soliton and periodically
oscillating ac component of the nonlinearity coefficient in (4.45), cf. (4.19):

(cres)
(M)
N = Mω

2πN
, (4.46)

where integers N and M determine the order of the resonance. This prediction was
corroborated by simulations of (4.45) [75].

4.3.1.3 Higher-Order Modes in the 1D DNLS Equation: Twisted
Solitons and Bound States

In addition to the OC and IC solitons, which are fundamental states, (4.37) admits
stable higher-order states in the form of twisted modes, which are subject to the
antisymmetry condition, un = −u1−n [76]. Such states exist and are stable only in a
strongly discrete form, vanishing in the continuum limit.

Stable discrete NLS solitons of the OC type may form bound states, which also
represent higher-order modes of the DNLS equation. They are stable in the out-
of-phase form, i.e. for opposite signs of the bound solitons [77, 78] (the same is
true for 2D discrete solitons [79]). Stationary bound states do not exist either in
the continuum limit, where bound states of NLS solitons are represented solely by
periodically oscillating breathers [80].

4.3.2 Two-Dimensional (2D) Discrete Solitons and Solitary
Vortices in Quiescent and Rotating Lattices

4.3.2.1 Static Lattices

The 2D cubic DNLS equation is a straightforward extension of the 1D equation
(4.33). In particular, its stationary form is

ωun = −(1/2)
(
um+1,n + um−1,n + um,n+1 + um,n−1 − 4um,n

) − ∣∣um,n

∣∣2 um,n,

(4.47)
cf. (4.37), where the stationary discrete wave function, um,n , may be complex.
Fundamental-soliton solutions to (4.47) can also be predicted by means of the VA
[81, 82] (see (4.53) below for the simplest 2D ansatz). More interesting in the 2D
case are discrete solitons with embedded vorticity, which were introduced in [83]
(see also [84]). Vorticity, alias topological charge, is defined as 
ϕ/ (2π), where
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Fig. 4.3 A stable discrete vortex soliton with topological charge S = 1, produced by (4.47). The
left and right panels show, respectively, distributions of the absolute value and phase of complex
wave function um,n in the plane of (m, n). Reproduced from [83]


ϕ is a change of the phase of complex discrete wave function um,n , corresponding
to any contour surrounding the vortex’ pivot. Stability is an important issue for 2D
discrete solitons, because it is commonly known that, in the continuum limit, the
NLS equation in 2D gives rise solely to unstable solitons, including fundamental
ones (usually called Townes’ solitons [85]), which are unstable against the critical
collapse, [2], and solitons with embedded vorticity [86], which are still more unstable
[87].

A typical example of a stable discrete 2D soliton is displayed in Fig. 4.3. 2D
fundamental and vortex solitons, with topological charges S = 0 and 1, remain stable
at −ω > |ω(S=0)

cr | ≈ 0.50 and −ω > |ω(S=1)
cr | ≈ 1.23, respectively [83], while the

higher-order localized discrete vortices with S = 2 and 4 are unstable, being replaced
by stable modes, in the form of quadrupoles and octupoles [88]. Higher-order vortex
solitons with S = 3 are stable only in a strongly discrete form, at −ω > |ω(S=2)

cr | ≈
4.94.

The theoretically predicted 2D discrete solitons with vorticity S = 1 were experi-
mentally created in [89, 90], using a photorefractive crystal. Unlike uniformmedia of
this type, where delocalized (“dark”) optical vortices were originally produced [91,
92], these works made use of a very deep virtual photonic lattice as a quasi-discrete
medium supporting nonlinear optical modes in light beams with extraordinary polar-
ization (while the photonic lattice was induced by the interference of quasi-linear
beams in the ordinary polarization). Intensity distributions observed in vortex solitons
of the OC and IC types are displayed in Fig. 4.4.

Another interesting result demonstrated (and theoretically explained) in deep vir-
tual photonic lattices is a possibility of periodic flipping of the topological charge of
a vortex soliton initially created with S = 2 [93].
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Fig. 4.4 Quasi-discrete optical solitons with vorticity S = 1, created in a bulk photorefractive
crystal with an induced deep photonic lattice. The left and right panels display, respectively, OC
and IC vortex solitons. Reproduced from [90]. ©2004 by the American Physical Society

4.3.2.2 Rotating Lattices

Dynamics of BEC loaded in OLs rotating at angular velocity �, as well as the
propagation of light in a twisted nonlinear photonic crystal with pitch �, is modeled
by the 2D version of (4.1), written in the rotating reference frame:

iψt = −
(
(1/2)∇2 + �L̂ z

)
ψ − ε [cos (kx) + cos(ky)]ψ + g|ψ |2ψ, (4.48)

where L̂ z = i(x∂y − y∂x ) ≡ i∂θ is the operator of the z-component of the orbital
momentum (θ is the angular coordinate in the (x, y) plane). In the tight-binding
approximation, (4.48) is replaced by the following variant of the DNLS equation
[94]:

iψ̇m,n = −(C/2)
{(

ψm+1,n + ψm−1,n + ψm,n+1 + ψm,n−1 − 4ψm,n
)

−i�
[
m

(
ψm,n+1 − ψm,n−1

) − n
(
ψm+1,n − ψm−1,n

)]} + g|ψm,n|2ψm,n , (4.49)

where C is the intersite coupling constant. In [94], stationary solutions to (4.49)
were looked for in the form of ansatz (4.36), fixing ω ≡ −1 and varying C in (4.49)
as a control parameter. Two species of localized states were thus constructed: off-
axis fundamental discrete solitons, placed at distance R from the rotation pivot,
and on-axis (R = 0) vortex solitons, with vorticities S = 1 and 2. At a fixed value
of rotation frequency �, a stability interval for the fundamental soliton, 0 < C <

C (fund)
max (R), monotonously shrinks with the increase of R, i.e. most stable are the

discrete solitons with the center placed at the rotation pivot. Vortices with S = 1 are
gradually destabilized with the increase of � (i.e. their stability interval, 0 < C <

C (vort)
max (�), shrinks). On the contrary, a remarkable finding is that vortex solitons with

S = 2, which, as said above, are completely unstable in the usual DNLS equation
with � = 0, are stabilized by the rotation, in an interval 0 < C < C (S=2)

cr (�), with
C (S=2)
cr (�) growing as a function of �. In particular, C (S=2)

cr (�) ≈ 2.5� at small �

[94].
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4.3.3 Spontaneous Symmetry Breaking in Linearly-Coupled
Lattices

A characteristic feature of many nonlinear dual-core systems, built of two identical
linearly-coupled waveguides with intrinsic nonlinearity, is a spontaneous-symmetry-
breaking (SSB) bifurcation, which destabilizes the symmetric ground state, with
equal components in the coupled cores, and creates stable asymmetric ones, when
the nonlinearity strength exceeds a critical value [95]. A system of linearly-coupled
DNLS equations is a basic model for SSB in discrete settings. Its 2D form is [96]:

i φ̇n = −(1/4)
(
φm+1,n + φm−1,n + φm,n+1 + φm,n−1 − 4φm,n

) − ∣
∣φm,n

∣
∣2 φm,n − Kψm,n ,

iψ̇n = −(1/4)
(
ψm+1,n + ψm−1,n + ψm,n+1 + ψm,n−1 − 4ψm,n

) − ∣∣ψm,n
∣∣2 ψm,n − Kφm,n ,

(4.50)

where φm,n and ψm,n are discrete fields, and K > 0 accounts for the linear cou-
pling between them. Stationary states are looked for as

(
φm,n, ψm,n

) = exp (−iωt)(
um,n, vm.n

)
, where the linear couplingmakes it necessary to have identical frequency,

ω, in both components. Real stationary fields are characterized by their norms,

Eu,v =
+∞∑

m,n=−∞

(
u2m,n, v

2
m,n

)
, (4.51)

which define the asymmetry degree of the symmetry-broken states:

r = (Eu − Ev) / (Eu + Ev) . (4.52)

The present system can be analyzed by means of the VA, which is based on the
simplest ansatz (cf. its 1D counterpart (4.39)):

(
um,n, vm,n

) = (A, B) exp [−a (|m| + |n|)] , (4.53)

with inverse width a and amplitudes, A and B, of the two components. The ansatz
accounts for the SBB in the case of A = B. A typical example of a stable 2D discrete
OC soliton is displayed in Fig. 4.5a, which corroborates accuracy of the VA. The full
set of symmetric and asymmetric 2D discrete solitons is characterized, in Fig. 4.5b,
by the dependence of asymmetry parameter r , defined in (4.52), on the total norm,
E ≡ Eu + Ev (see (4.51)). It is seen that the SSB bifurcation is one of a clearly
subcritical type [97], with the two branches of broken-symmetry states originally
going backward as unstable ones, and getting stable after passing the turning point.
Accordingly, Fig. 4.5b demonstrates a considerable bistability area, where symmetric
and asymmetric states coexist as ones stable against small perturbations.
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Fig. 4.5 a A stable 2D two-component discrete soliton with spontaneously broken symmetry
between the components, generated by system (4.50). The 2D soliton, with the total norm E ≡
Eu + Ev = 1.435, is displayed by means of its 1D cross section. Symbols labelled (UN, VN) and
(UA, VA) stand, respectively, for the components of the numerically constructed soliton and its
analytical counterpart predicted by the VA based on ansatz (4.53). b Families of 2D discrete solitons
of the OC type, generated by system (4.50), are shown by means of curves r(E) (where r is the
asymmetry parameter (4.52)). The dashed-dotted curve shows theVAprediction, while the solid and
dashed ones depict stable and unstable solitons produced by the numerical solution. Reproduced
from [96]

4.4 Ablowitz–Ladik and Salerno-Model Lattices

4.4.1 1D Models

1D models of AL and SM types, which are defined by (4.5) and (4.6), conserve the
total norm, but its definition is different from the straightforward one, given by (4.34)
for the DNLS equation; namely,

NAL,SM = (1/μ)
∑

n

ln
∣∣1 + μ|ψn|2

∣∣ (4.54)

[26, 98]. The Hamiltonian of the AL and SM equations is also essentially different
from the “naive” DNLS Hamiltonian given by (4.35). As found in the original work
of Ablowitz and Ladik, the Hamiltonian of their model is

HAL = −
∑

n

(
ψnψ

∗
n+1 + ψn+1ψ

∗
n

)
, (4.55)

while for the SM, it is [98]

HSM = −
∑

n

[(
ψnψ

∗
n+1 + ψn+1ψ

∗
n

) + (2/μ)|ψn|2
] + (2/μ)NAL. (4.56)
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The price paid for ostensible “simplicity” of expression (4.55) is the complex form
of the respective Poisson brackets, which determine the dynamical equations in
terms of the Hamiltonian as dψn/dt = {H, ψn}. For the AL and SM models, the
Poissonbrackets,written for a pair of arbitrary functions of the discretefield variables,
B

(
ψn, ψ

∗
n

)
, C

(
ψn, ψ

∗
n

)
, are

{B,C} = i
∑

n

(
∂B

∂ψn

∂C

∂ψ∗
n

− ∂B

∂ψ∗
n

∂C

∂ψn

) (
1 + μ |ψn|2

)
. (4.57)

As mentioned above, the continuum limit of the SM is represented by (4.8) [31].
This continuous equation conserves the total norm and Hamiltonian, written in terms
of variables � (x) (see (4.7)), which are straightforward continuum counterparts of
expressions (4.54)–(4.56):

(NAL)cont = 1

μ

∫ +∞

−∞
dx ln

∣
∣1 + μ|�|2∣∣ , (4.58)

(HSM)cont =
∫ +∞

−∞
dx

[
|�x |2 − 2

(
1

μ
+ 1

)
|�|2

]
+ 2

μ
(NAL)cont (4.59)

4.4.2 Discrete 1D Solitons

The AL equation (4.5) gives rise to an exact solution for solitons in the case of
self-focusing nonlinearity, μ > 0. Setting μ ≡ +1 by means of rescaling, the exact
solutions is

ψn(t) = (sinh β) sech [β(n − ξ(t))] exp [iα (n − ξ(t)) − iϕ(t)] , (4.60)

where β and α are arbitrary real parameters that determine the soliton’s amplitude,
A ≡ sinh β, its velocity, V ≡ ξ̇ = 2β−1 (sinh β) sin α, and overall frequency � ≡
ϕ̇ = −2 [(cosh β) cosα + (α/β) (sinh β) sin α].

The existence of exact solutions for traveling solitons in this discrete system is a
highly nontrivial property of the AL equation, which follows from its integrability. If
the system is not integrable, motion of a discrete soliton through a lattice is hampered
by emission of radiation, even if this effect may seem very weak in direct simulations
[73]. On the other hand, there are some special discrete equations which are not
integrable, but admit particular solutions for traveling solitons at exceptional values
of the velocity, rather than at an arbitrary velocities, as in the case of the AL solitons
[99, 100].

The stationary version of the SM, obtained by the substitution of the usual ansatz
(4.36), with real un , in (4.6), is

ωun = − (un+1 + un−1)
(
1 + μu2n

) − 2u3n, (4.61)
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cf. (4.37). Discrete solitons in the nonintegrable SM equation (4.6) with μ > 0, i.e.
withnoncompeting intersite andonsite self-focusingnonlinearities,were investigated
by means of numerical methods [98, 101, 102]. It has been demonstrated that the
SM gives rise to static (and, sometimes, approximately mobile [101]) solitons at all
positive values of μ.

Another possibility is to consider the SM with μ < 0, which features competing
nonlinearities, as the intersite cubic term, with coefficient μ < 0 in (4.6), which
accounts for nonlinear coupling between adjacent sites of the lattice, and the onsite
term in (4.6) (the last term in that equation) represent, respectively, self-defocusing
and focusing nonlinear interactions. It was found [31] that this version of the SM
gives rise to families of quiescent discrete solitons, which are looked for in the
usual form (4.36), with ω < 0 and real amplitudes un , of two different types. One
family represents ordinary discrete solitons, similar to those generated by the DNLS
equation. Another family represents cuspons, featuring higher curvature of their
profile at the center than exponential shapes. Examples of numerically found stable
discrete solitons of these types are displayed in Fig. 4.6a. The border between the
ordinary discrete solitons and cuspons is represented by a special discrete mode, in
the form of a stable peakon, which is also shown in Fig. 4.6a.

The continuum limit of the SM with competing nonlinearities, given by (4.8)
with μ < 0, produces continuous solitons in the usual form, � = exp (−iωt)U (x),
in the frequency band 0 < −ω < 1/|μ| − 1, provided that |μ| < 1. At the edge of
the soliton band, i.e. at ω = − (1/|μ| − 1), (4.8) gives rise to an exact solution in
the form of the continuous peakon Upeakon(x) = (

1/
√|μ|) exp (−√

(1/|μ|) − 1|x |)
[31]. For continuous solutions, the name of “peakon” implies a jump of the derivative
at the central point, while cuspons do not exist in the continuum limit.

Fig. 4.6 a Examples of three different types of discrete solitons, shown on the logarithmic scale,
which are produced by (4.61), i.e. the Salerno model, with competing nonlinearities (μ < 0), at
ω = −2.091: an ordinary soliton for μ = −0.3, a peakon for μ = −0.956, and a cuspon for μ =
−2.64. In the figure, |�n | has the same meaning as un in (4.61). b The norm of the discrete solitons
in the Salerno model with competing nonlinearities, versus the frequency (denoted here ωb, instead
of ω), for μ = −0.884. Reproduced from [31]
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The stability analysis of discrete solitons produced by the SM with competing
nonlinearities demonstrate that only a small subfamily of ordinary solitons is unsta-
ble, while all cuspons, including the peakon, are stable. For fixed μ = −0.884, a
typical situation for families of discrete solitons in the SM with competing nonlin-
earities is presented in Fig. 4.6b, which shows the norm (4.54) as a function of |ω|.
The plot clearly demonstrates that ordinary solitons and cuspons are separated by
the peakon, as mentioned above. Except for the part of the ordinary-soliton family
with the negative slope, dN/d(|ω|) < 0, which is marked in Fig. 4.6b, the discrete
solitons are stable. In particular, it is worthy to note that the cuspons and the peakon
are completely stable modes. The instability of the segment of the family of ordi-
nary discrete solitons with dN/d(|ω|) < 0 exactly agrees with the prediction of the
well-known Vakhitov–Kolokolov criterion [103]. On the other hand, it is seen from
Fig. 4.6b that the Vakhitov–Kolokolov criterion, being valid for ordinary solitons, is
actually reversed for cuspons [31].

As mentioned above, antisymmetric bound states of DNLS solitons are stable,
while symmetric bound states are unstable [77, 78]. As shown in [31], the same is
true for bound states of ordinary discrete solitons in the SM. However, a noteworthy
finding is that, in the frameworkof theSMwith competingnonlinearities, the situation
is exactly opposite for the cuspons: their symmetric and antisymmetric bound states
are stable and unstable, respectively [31].

4.4.3 The Two-Dimensional Salerno Model and Its Discrete
Solitons

The 2D version of the SM was introduced in [104]. It is based on the following
equation, cf. (4.6),

iψ̇n,m = − [(
ψn+1,m + ψn−1,m

) + C
(
ψn,m+1 + ψn,m−1

)]

×
(
1 + μ

∣∣ψn,m

∣∣2
)

− 2
∣∣ψn,m

∣∣2 ψn,m , (4.62)

where real constantC > 0 accounts for a possible anisotropyof the 2D lattice. Similar
to its 1D version, (4.62) conserves the norm and Hamiltonian, cf. (4.54) and (4.56),

(NAL)2D = (1/μ)
∑

m,n

ln
∣∣1 + μ|ψn,m |2∣∣ , (4.63)

(HAL)2D = −
∑

n,m

[(
ψn,mψ∗

n+1,m + ψn+1,mψ∗
n,m

) + C
(
ψn,mψ∗

n,m+1 + ψn,m+1ψ
∗
n,m

)

+(2/μ)|ψn,m |2] + (2/μ) (NAL)2D . (4.64)
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Fig. 4.7 Discrete solitons in the isotropic (C = 1) 2D Salernomodel with competing nonlinearities
[μ < 0 in (4.62)], obtained for frequency ω = −4.22: a a regular soliton at μ = −0.2; b a cuspon
at μ = −0.88. Reproduced from [104]

The continuum limit of this model is a 2D continuous equation which is a straight-
forward extension of its 1D counterpart (4.8):

i�t + (
1 + μ |�|2) (

�xx + �yy
) + 2 [(1 + C)μ + 1] |�|2� = 0. (4.65)

Note that term μ |�|2 (
�xx + �yy

)
prevents the onset of the collapse in (4.65).

2D solitons are looked for in the same form as their 1D counterparts, ψmn(t) =
e−iωt umn , cf. (4.36). In the most interesting case of the competing nonlinearities,
μ < 0, the situation is similar to that outlined above for SM in 1D: there are ordinary
discrete solitons, which have their stability and instability regions, and 2D cuspons,
which are entirely stable in their existence region. Typical 2D solitons of both types
are displayed in Fig. 4.7. Also similar to the 1D case, ordinary solitons and cuspons
are separated by 2D peakons, which are stable. In addition to that, antisymmetric
bound states of ordinary 2D discrete solitons, and symmetric complexes built of 2D
cuspons, are stable, while the bound states with opposite parities are unstable, also
like in the 1D model.

Along with the fundamental solitons, the 2D SM with the competing nonlinear-
ities gives rise to vortex-soliton modes with narrow stability regions [104]. In the
2D SM with non-competing nonlinearities, unstable vortex solitons spontaneously
transform into fundamental solitons, losing their vorticity (this is possible because
the angular momentum is not conserved in the lattice system). The situation is essen-
tially different in the 2D SM with competing nonlinearities, where unstable vortex
modes transform into vortical breathers, i.e. persistently oscillating localized modes
that keep the original vorticity.

4.5 A Brief Survey of Semi-discrete Systems

A topic which may be a subject for a separate major review, is semi-discrete sys-
tems, i.e. 2D setting which are discrete in one direction and continuous in the other.
Accordingly, such systems can create semi-discrete solitons. A system of this type
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which was explored in detail is an array of optical fibers [105], modeled by a sys-
tem of coupled NLS equations for amplitudes un (z, τ ) of electromagnetic waves in
individual fibers:

i∂zun + (1/2)D∂2
τ un + (κ/2) (un+1 + un−1 − 2un) + |un|2 un = 0, (4.66)

where D is the group-velocity-dispersion coefficient in each fiber, and κ > 0 is the
coefficient of coupling between adjacent fibers in the array. It supports semi-discrete
solitons in the case of anomalous dispersion, i.e. D > 0. A remarkable property of
semi-discrete modes generated by (4.66) is their ability to stably move across the
array, under the action of a kick applied to them at z = 0 [106]:

un(τ ) → exp (ian) un(τ ), (4.67)

with real a. An example of such amovingmode is displayed in Fig. 4.8. This property
may be compared to the above-mentioned mobility of 1D discrete solitons in the
DNLS equation [73].

Similarly, quasi-discrete settings modeled by an extension of (4.66) with two
transverse spatial coordinates, were used for the creation of spatiotemporal optical
solitons (“light bullets”) [107], as well as soliton-like transient modes with embed-
ded vorticity [108]. Waveguides employed in those experiments feature a transverse
hexagonal-lattice structure, written in bulk silica by means of optical technology.

A spatiotemporal vortex state (in the experiment, it is actually a transient one) in
the bundle-like structure is presented by Fig. 4.9, which displays both numerically
predicted and experimentally observed distributions of intensity of light in the trans-
verse plane, together with a phase plate used in the experiment to embed the vorticity
into the incident spatiotemporal pulse which was used to create the mode.

Fig. 4.8 An example of a
semi-discrete spatiotemporal
mode, generated by (4.66),
which performs stable
transverse motion under the
action of the kick, defined
according to (4.67), with
a = 1.5. The cross section of
the plot at any fixed z shows
the distribution of power
|un(τ )|2 for each n.
Reproduced from [106]
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Fig. 4.9 A semi-discrete vortex soliton in a hexagonal quasi-discrete array of waveguides made in
bulk silica. aA phase plate used for imprinting the vortex structure into the input beam. b, cNumer-
ically simulated and experimentally observed (transient) intensity distributions in the transverse
plane, with phase shifts 2π/3 between adjacent peaks. Reproduced from [108]. Creative Commons
Attribution License (CC BY) http://creativecommons.org/licenses/by/3.0/

Fig. 4.10 Left and right panels display, respectively, examples of amplitude and phase profiles of
stable OC and IC semi-discrete vortex solitons produced by (4.68). Reproduced from [109]

A new type of semi-discrete solitons was recently reported in [109], in the frame-
work of an array of linearly coupled 1D GPEs, including the Lee-Hung-Yang correc-
tion, which represents an effect of quantum fluctuations around the mean-field states
of a binary BEC [110, 111]. The system is

i∂tψ j = −(1/2)∂zzψ j − (1/2)
(
ψ j+1 − 2ψ j + ψ j−1

) + g|ψ j |2ψ j − |ψ j |ψ j ,

(4.68)
where ψ j (z) is the mean-field wave function in the j th core, the self-attractive
quadratic term represents the Lee-Hung-Yang effect, and g > 0 accounts for the
mean-field self-repulsion. This system gives rise to many families of semi-discrete
solitons, including a novel species of semi-discrete vortex solitons. Typical examples
of such states are displayed in Fig. 4.10.

http://creativecommons.org/licenses/by/3.0/
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4.6 Conclusion

4.6.1 Summary of the Chapter

The interplay of discreteness and intrinsic nonlinearity in various physical media
gives rise to a great variety of static and dynamical states. Among them, especially
interesting are self-trapped ones in the form of discrete solitons. The present Chapter
aims to briefly review basic theoretical models combining discreteness and nonlin-
earity, and basic results for discrete solitons produced by such models. Essential
experimental findings are included too (in particular, those for 2D and 3D discrete
solitons with embedded vorticity). In many cases, discreteness helps to produce
states which either do not exist or are unstable in continuum counterparts of discrete
settings. In particular, the 1D DNLS equation gives rise to stable bound states of
fundamental solitons, and the 2D DNLS equation readily creates fundamental and
vortex solitons, whose counterparts are completely unstable in the continuum. On
the other hand, some properties which are obvious in the continuum limit, such as
mobility of solitons, are problematic in discrete settings.

The work in this area is currently in progress, and new results may be expected.
A promising direction is to generate discrete counterparts of complex continuous
modes with intrinsic topological structures. Some results obtained in this direction
have already been reported, such as discrete solitons in a system with spin-orbit
coupling [112], sophisticated 3D discretemodeswith embedded vorticity [113, 114],
and discrete skyrmions [115]. A challenging task is the experimental realization of
such results which, thus far, were only predicted in the theoretical form.

4.6.2 Topics Not Included in the Chapter

Due to length limitations, someessentialmodels andmethods are not considered here.
One of them is the anti-continuum limit, which makes it possible to obtain “stems”
for many families of discrete solitons by considering, at first, lattice models with no
coupling between the sites. Using this approach, one can construct a great deal of
modes, by formally putting together various solutions supported by non-interacting
sites of the lattice. Then, the analysis allows one to identify solution branches that
can be extended to small nonzero values of the intersite coupling. This method is
efficient in constructing many families of discrete solitons in diverse models [61, 78,
84, 116].

Interaction of discrete solitons with local defects in the underlying lattice, as
well as with interfaces and edges (surfaces, if the underlying lattice is two- or three-
dimensional) is another vast area of theoretical and experimental studies. In particular,
defects and surfaces may often help to create and stabilize localized modes which
do not exist or are unstable in uniform lattices, such as Tamm [117] and topological-
insulator [118, 119] states.
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Large topics are solitons in discrete dissipative nonlinear systems, and in systems
subject to the condition of the parity-time (PT) symmetry. In this Chapter, dissipative
systems, which include friction and driving forces, are considered only in terms of the
TL and FKmodels (in particular, for arrays of Josephson junctions, in Fig. 4.1). Other
dissipative versions of TL models are known too, in the form of LC transmission
lines for electric pulses. They support traveling discrete solitons, which have been
produced in theoretical and experimental forms alike [120–122].

In other contexts, basic nonlinear dissipative models are represented by discrete
complex Ginzburg–Landau equations, i.e. DNLS equations with complex coeffi-
cients in front of onsite linear and nonlinear terms, which account for dissipative
losses and compensating gain [123]. These models give rise to discrete solitons
which do not exist in continuous families, unlike the DNLS solitons, but rather as
isolated attractors [124–128].

Systems with PT symmetry are dissipative models which share many properties
with conservative ones. They include mutually symmetric spatially separated linear
gain and loss elements [129–131]. This arrangement makes it natural to consider PT-
symmetric systems with a discrete structure. Their experimental realization in optics
[131] suggests to include the Kerr nonlinearity, thus opening the way to prediction
of PT-symmetric discrete solitons [132, 133]. In particular, various species of stable
1D and 2D discrete solitons were predicted in chains of PT-symmetric elements
[134–139]. An example of PT-symmetric solitons has been created experimentally
in a similar discrete setting [140].
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Chapter 5
Universal Relaxation in Quantum
Systems

Kazuya Fujimoto and Masahito Ueda

Abstract We review universal relaxation dynamics in quantum systems by focus-
ing on the Kibble–Zurek mechanism, coarsening dynamics, and non-thermal fixed
points. The first two subjects have recently been applied to quantum systems to
explore universal phenomena. The last one concerns universal scale-invariant relax-
ation dynamics in isolated quantum systems.Weoverview the theoretical foundations
of the universal properties and recent experiments on these topics on the basis of a
quantum spin model, the Gross–Pitaevskii theory, and kinetic equations.

5.1 Introduction

Universality plays a pivotal role in our understanding of various phenomena from a
unified point of view. The renormalization-group analysis of critical phase tran-
sitions unveils universal aspects behind many different systems close to critical
points [1]. Thismethod is also applicable to out-of-equilibriumphenomena described
by stochastic models [2]. The universal dynamics of critical phenomena has been
explored in such diverse systems as activematter [3, 4] and condensedmatter systems
[5].

Recent experimental advances in atomic, molecular, and optical (AMO) systems
enable one to study non-equilibrium phenomena in quantum systems. A number
of theoretical and experimental studies have explored the fundamental aspects of
many-body quantum systems [6, 7] such as many-body localization [8], thermal-
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ization in integrable models [9], and the eigenstate thermalization hypothesis [10].
In particular, universal relaxation dynamics has attracted growing interest from the
viewpoint of thermalization in isolated quantum systems. A prime example is the
defect formation close to a quantum phase transition point, around which universal
scaling relations arising from the Kibble–Zurek (KZ) mechanism [11, 12] hold for
the number of defects and the correlation length. After the defect formation, the sys-
tem often exhibits universal relaxation dynamics. This type of relaxation dynamics
cannot be captured by linear approximations such as the Bogoliubov analysis, and
nonlinear interactions must be taken into account to fully understand the emergence
of universal dynamics.

In this chapter, we review the fundamentals and recent developments of the KZ
mechanism, coarsening dynamics, and non-thermal fixed points (NTFPs). The first
two topics have been studied in quantum spin models and quantum degenerate gases.
The last one has emerged as a unified scenario to understand universal relaxation
dynamics in isolated quantum systems.While the concept of theNTFPwas originally
proposed in the context of quantumfield theory [13, 14], two experimental signatures
of the NTFPs have recently been observed in ultracold atomic gases [15, 16].

5.2 Kibble–Zurek Mechanism

Universal dynamics emerges close to second-order phase transitions, around which
the characteristic time and length scales diverge and adiabatic processes break down.
In this diabatic regime, defect formation occurs due to the KZ mechanism [11, 12],
which predicts a universal scaling relation for the number of defects such as kinks,
vortices, and domains. This section reviews the KZ mechanism and discusses its
manifestation in quantum systems.

5.2.1 Universal Scaling Relation of the KZ Mechanism

We consider quench dynamics across a second-order phase transition, and discuss a
universal scaling relation between the quench rate τq and the number Nd of defects
created in the process. Suppose that a d-dimensional system is characterized by
a parameter λ, which can be controlled by an external field, and that the system
undergoes a phase transition at λc. Then, the deviation from the transition point
is measured by ε = (λ − λc)/λc. Suppose that we quench ε as ε = t/τq in a time
interval [−ti, tf ], during which the system is rendered to cross the critical point
from a disordered state to a symmetry-broken one. Here, −ti < 0 and tf > 0 are the
initial and final times of the quench. Then, the local order is expected to grow as
schematically illustrated in Fig. 5.1a. Near the critical point, the characteristic time
tc and the length scale ξc diverge as
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Fig. 5.1 a Schematic illustration of nucleation of domains after a second-order phase transition.
Different color regions show different types of domains. b Schematic graph showing the freeze-out
region. The green curves illustrate the divergence of the characteristic time tc(t) and the yellow
lines show how the quench time scale |ε(t)/ε̇(t)| changes as a function of time. In the grey region
[−t̂, t̂], where tc(t) > |ε(t)/ε̇(t)|, the order parameter cannot adiabatically follow the change of
the parameter

tc = t0
|ε|zν , ξc = ξ0

|ε|ν , (5.1)

where t0 and ξ0 are constants, and the critical exponents ν and z characterize the
universality class of the phase transition. By comparing tc(t) with the quench time
scale |ε(t)/ε̇(t)|, we find that there is a freeze-out region (−t̂ < t < t̂) in which the
local order parameter cannot follow the quenchprocess (seeFig. 5.1b). The freeze-out
time t̂ can be determined from tc(t̂) = |ε(t̂)/ε̇(t̂)|, which gives t̂ ∝ τ

zν/(1+zν)
q .Outside

of the region, the local order parameter can follow the change of the parameter ε(t),
and thus the number of defects is determined by the physical quantities at t = t̂ and
obeys the followinguniversal scaling lawcharacterizedby the critical exponents [12]:

Nd ∝ ξc(t̂)
D−d ∝ τ

(D−d)ν

1+zν
q , (5.2)

where D is the dimension of the defect, e.g. D = 0 for a kink in a one-dimensional
(1D) system. This is the universal KZ scaling relation.

The KZ mechanism was originally proposed by Kibble in the context of cosmol-
ogy [11], and Zurek derived a universal scaling relation by applying the idea to the
superfluid helium at finite temperature [12]. Recent AMO experiments enable one to
study the KZ mechanism in quantum phase transitions, where the original argument
has been extended to quantum fields [17–20].
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5.2.2 KZ Mechanism in Quantum Systems

A prototypical model for describing the KZmechanism in quantum phase transitions
is the 1D transverse field Ising (TFI) model [17–20], whose Hamiltonian is given by

ĤTFI = −J
L∑

i=1

(
σ̂ z
i σ̂

z
i+1 + gσ̂ x

i

)
, (5.3)

where L is the number of lattice points, σ̂ α
i (α = x, y, z) is the Pauli matrix at site

i , J > 0 is the coupling constant, and g characterizes the strength of the transverse
field. This model can be mapped to a free-fermion model via the Jordan–Wigner
transformation [21]:

σ̂ x
i = 1 − 2ĉ†i ĉi , (5.4)

σ̂ z
i = −(ĉi + ĉ†i )

∏

j<i

(1 − 2ĉ†j ĉ j ), (5.5)

where ĉi and ĉ†i are the fermion annihilation and creation operators. Substituting
(5.4) and (5.5) into (5.3), we obtain the free-fermion model:

ĤTFI = −J
L∑

i=1

(
ĉ†i ĉi+1 + ĉi+1ĉi − gĉ†i ĉi + g

2
+ h.c.

)
, (5.6)

where h.c. denotes theHermitian conjugate of the preceding terms.Diagonalizing this
Hamiltonian by means of the Bogoliubov transformation, we find that the TFI model
undergoes a quantum phase transition at g = 1 between the ferromagnetic phase
(g < 1) and the paramagnetic one (g > 1) [21]. Thus, we can test the universal KZ
scaling relation for the quantum phase transition by quenching g and counting the
number of magnetic kink defects (D = 0).

In [18, 20], the control parameter g is linearly quenched as g = −t/τq (t ≤ 0),
and the number density of excited kinks is given by

Nk = 1

2L

L∑

i=1

〈1 − σ̂ z
i+1σ̂

z
i 〉, (5.7)

where the brackets denote the quantum average over the state vector at t = 0. In [18],
the number density is shown to obey

lim
L→∞ Nk = 1

2π

√
�

2Jτq
∝ τ−1/2

q . (5.8)
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This scaling relation is consistent with (5.2) because the 1D TFI model has tc ∝ 
−1

and ξc ∝ 
−1 with the energy gap 
 ∝ |ε| and then the exponents ν and z are both
equal to unity. Hence, the universal KZ scaling relation holds even in the quantum
phase transition.

Quantum degenerate Bose gases offer yet another testbed for the KZ mechanism
at zero temperature. Several theoretical works have predicted KZ scaling relations in
multicomponent Bose-Einstein condensates (BECs) within the mean-field approx-
imation [22–26]. Here we consider a binary BEC as an example. Let us consider
a binary mixture composed of identical atoms with different internal states such as
|F = 1, Fz = −1〉 and |F = 2, Fz = 0〉 of 87Rb with the hyperfine spin F and its
z-component Fz [27, 28]. The binary BEC in a uniform system is well described by
two macroscopic wave functions φm(r, t) (m = 1, 2) obeying the coupled Gross–
Pitaevskii equations (GPEs):

i�
∂

∂t
φm(r, t) = δE[φm(r, t), φm(r, t)∗]

δφm(r, t)∗
, (5.9)

where

E[φm , φ∗
m ]=

∫ [ 2∑

m=1

(
�
2

2M
|∇φm |2 + g0

2
|φm |4

)
+g1|φ1|2|φ2|2 − ��(φ∗

1φ2 + φ∗
2φ1)

]
dr

(5.10)

is theGross–Pitaevskii energy functional.HereM is the atomicmass, g0 and g1 are the
intra- and inter-species interaction strengths, and� is the Rabi coupling. The ground
state is miscible or immiscible depending on the Rabi coupling�, and the energy gap
of the excitation spectrum in the miscible region is given by Egap ∝ √

�(� − �c)

with the critical coupling �c [23, 29]. In this case, the critical exponents are given
by ν = 1/2 and z = 1, and the KZ theory predicts Nk ∝ τ

−1/3
q in the 1D quench

dynamics from the miscible to immiscible phases. This scaling has been verified by
numerical simulations [25].

5.2.3 Inhomogeneous KZ Mechanism

So far, we have considered the homogeneous systems, where the systems respect
continuous or discrete space translation symmetry. Cold atom systems, however, are
not usually homogeneous due to inhomogeneous trappingpotentials. Thus, to observe
the KZ scaling relation, modifications of the exponents due to inhomogeneities must
be taken into account [30]. Here, the causality plays a crucial role as pointed out by
Kibble and Volovik [31].

We illustrate the inhomogeneous KZ mechanism by using the TFI model with a
spatially dependent coupling J (i) = J (0) − ci2 where c is a constant [32]:
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ĤITFI = −
L∑

i=1

J (i)σ̂ z
i σ̂

z
i+1 − g(t)

L∑

i=1

σ̂ x
i . (5.11)

By assuming the local density approximation, the quantum phase transition occurs at
the positions ±Ip(t) satisfying J (Ip) = g(t), which means that kink defects can be
generated in the region [−Ip(t), Ip(t)]. This implies that the region in the symmetry-
broken phase spreads in time. According to the scaling analysis of [30], we can derive
Ip(t̂) ∝ 1/τq at the freeze-out time t̂ [32]. Combining this causality effect with the
KZ mechanism, we estimate the defect number density as

Nk ∝ 2Ip(t̂)

ξc(t̂)
∝ τ−3/2

q . (5.12)

Thus, the exponent in the inhomogeneous system is different from that in the homoge-
nous case (see (5.8)). Thismodification is numerically confirmedusing the dynamical
renormalization group [32]. In the context of trapped binary BECs, such a change in
the exponent is numerically discussed in [25].

5.2.4 Experimental Test of the KZ Mechanism

Several AMO systems have provided playgrounds to test the KZ mechanism. A
notable system is cold trapped ions, which can simulate quantum spin models by
utilizing internal states of ions. Figure5.2a shows an experimental setup to test theKZ
mechanism of the TFI model by using the Landau-Zener crossing, and the observed
kink number density after the quench is plotted in Fig. 5.2b. Cui et al. [33] found
that the number density agrees well with the KZ scaling relation in (5.8). Cold
trapped ions can be used to investigate symmetry breaking in ion crystals, in which
defects of zig-zag configurations can be generated by ramping the transverse trapping

DC

DC

RF

935 nm369 nm

Lens

RF

DC

DC

(a) (b)

Fig. 5.2 a Experimental setup of the KZ mechanism in a system of cold trapped 171Yb+ ions
[33]. The system serves as a quantum simulator for the KZ scaling relation in (5.8). b Growth of
the average kink density after the phase transition. The extracted exponent is 0.59 ± 0.03, which
is consistent with (5.8). Reproduced from [33]. Creative Commons Attribution License (CC BY)
https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/
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frequency [34–36]. The KZ scaling relation in this structural phase transition was
observed [37, 38]. In quantum degenerate gases, on the other hand, multi-component
BECs such as binary and spinor Bose gases exhibit second-order phase transitions,
which are used to study the KZmechanism. In [39], the universal scaling relationwas
observed in a ferromagnetic spinorBose gas. TheKZmechanismat finite temperature
was also reported in [40, 41].

5.3 Coarsening Dynamics

The previous section describes the universal aspects of defect-formation dynam-
ics near critical points. In fact, universal dynamics could emerge far from or even
without critical points. Such universal dynamics has been explored in the context of
coarsening dynamics in classical systems [42, 43], and recent developments in AMO
experiments have made it possible to observe the dynamics in quantum degenerate
gases. This section describes the basics of coarsening dynamics on the basis of a few
classical models, and then reviews recent related works in ultracold atomic gases.

5.3.1 Coarsening Dynamics in Classical Systems

Coarseningdynamics is a relaxation process accompanied by a scale-invariant growth
of the order parameter [42, 43]. A prototypical example is merging of spin domains
following the temperature quench in the Ising model, where the z-component of the
spin vector characterizes the spin order.Here, by illustrating the concept of dynamical
scaling, we discuss the universality classes of typical classical models.

5.3.1.1 Scale Invariance and Universality in Coarsening Dynamics

We denote the local order parameter by �(r, t) and assume that the system respects
translational symmetry and rotational symmetry. The growth of the order parameter
is quantified by the correlation function C(r, t) defined by

C(r, t) = 〈�(x + r, t)�(x, t)〉, (5.13)

where the brackets denote the ensemble average. If the system shows the scale-
invariant relaxation dynamics, the correlation function obeys the dynamical scaling
characterized by a certain function F(x):

C(r, t) = F(r/Lc(t)), (5.14)
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Table 5.1 Lc(t) for the Ising and XY models

Model Non-conserving Conserving

1D Ising log t [44] log t [45]

1D XY t1/4 [46] t1/6 [42, 47, 48]

2D and 3D Ising t1/2 [49] t1/3 [49]

2D and 3D XY t1/2 [49–51] t1/4 [49, 52]

Table 5.2 Lc(t) for the
binary liquid model [42]

Regime

Diffusive t1/3

Viscous hydrodynamic t

Inertial hydrodynamic t2/3

where Lc(t) is a time-dependent characteristic length. The striking feature of (5.14)
is that the time dependence of Lc(t) classifies the universality of the coarsening
dynamics, depending on the fundamental properties of the system such as the spatial
dimension and symmetry of the model. Tables5.1 and 5.2 list several universality
classes of classical coarsening dynamics. In the 1D Ising model, the coarsening
dynamics is dominated by interacting domain walls. The strength of interactions
decays exponentially as a function of the distance between two domainwalls, leading
to a logarithmic growth of Lc(t). On the other hand, in the 2D and 3D Ising models, a
domain wall has a curvature R and can move by itself with the velocity proportional
to R−n with some exponent n, leading to a power law growth of Lc(t).

5.3.1.2 Classical Models in Coarsening Dynamics

To give a general picture of coarsening dynamics, we consider a system character-
ized by a multicomponent order parameter�m(r, t) (m = 1, 2, . . .). The coarsening
dynamics is often described by two equations of motion: one is an order-parameter
non-conserving model and the other is an order-parameter conserving one. Here, by
conserving, we mean that a spatial integral of the order parameter is independent of
time:

d

dt

∫
�m(r, t)dr = 0. (5.15)

In the non-conserving model, the order parameter �m(r, t) obeys the Ginzburg–
Landau (GL)-type equation [42, 43]:

∂

∂t
�m(r, t) = −δF[�(r, t)]

δ�m(r, t)
, (5.16)
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where F[�(r, t)] is a model-dependent free-energy functional. In the Ising and XY
models, the functionals are given by

FIsing[�] =
∫ (

|∇�|2 + a(�2 − 1)2
)
dr, (5.17)

FXY[�] =
∫ (

|∇�|2 + a(|�|2 − 1)2
)
dr, (5.18)

where a is a coupling constant. Here, � = (�1,�2) is the vector order parameter
consisting of two scalar functions �1 and �2. We note that in the GL model the
energy decreases in time and the integral of �(r, t) is not conserved:

d

dt
F[�(r, t)] = −

∫ ∑

m

(
δF[�(r, t)]
δ�m(r, t)

)2

dr ≤ 0, (5.19)

d

dt

∫
�m(r, t)d r = −

∫
δF[�(r, t)]
δ�m(r, t)

dr. (5.20)

Because of (5.20), the GL equation is a non-conserving model.
An order-parameter conserving system is modeled by

∂

∂t
�m(r, t) = ∇2 δF[�(r, t)]

δ�m(r, t)
, (5.21)

which is known as the Cahn–Hilliard (CH)-type equation [42, 43]. In this case, we
obtain

d

dt
F[�(r, t)] = −

∫ ∑

m

(
∇ δF[�(r, t)]

δ�m(r, t)

)2

dr ≤ 0, (5.22)

d

dt

∫
�m(r, t)dr = 0. (5.23)

Thus, the integral of �m(r, t) is constant, while the energy decreases in time. The
existence of the conserved quantity drastically changes the relaxation dynamics and
lead to different universality classes. We summarize the universality classes for the
Ising and XY models in Table5.1, which shows that the exponents in the conserving
models are smaller than those in the non-conserving one except for the 1D Ising
model.

A binary liquidmodel has also been investigated and shows quite different dynam-
ics. Here, we summarize the time dependence of Lc(t) in Table5.2, which has three
exponents depending on which terms are dominant.
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5.3.2 Coarsening Dynamics in Quantum Degenerate Systems

We now review coarsening dynamics in quantum degenerate systems. Many theoret-
ical works focus on segregating multi-component BECs and discuss the universality
classes in comparison with the classical models [53–62]. Here, we discuss the coars-
ening dynamics of a ferromagnetic spin-1 BEC.

5.3.2.1 Coarsening Dynamics in a Spin-1 BEC

The spin-1 BEC considered here is well described by three macroscopic wave func-
tions ψm with the magnetic quantum number m = 1, 0,−1 [63, 64]. Within the
mean-field approximation, we can derive the GPE given by

i�
∂

∂t
ψm(r, t) = δE[ψm(r, t), ψm(r, t)∗]

δψm(r, t)∗
, (5.24)

where

E[ψm, ψ∗
m] =

∫ [ 1∑

m=−1

(
�
2

2M
|∇ψm |2 + qm2|ψm |2

)
+gd

2
ρ2 + gs

2
F2

]
dr (5.25)

is the spin-1 Gross–Pitaevskii energy functional. Here, q is the coefficient of the
quadratic Zeeman energy, gd is the spin-independent interaction strength, gs is the
spin-dependent one, ρ = ∑

m |ψm |2 is the total particle-number density, and F =∑
m,n ψ∗

m(F̂)mnψn is the spin density vector with the spin-1 matrix vector F̂. The
spin-dependent interaction is assumed to be ferromagnetic (gs < 0). Then, the ground
state depends on the value of q as shown in Fig. 5.3. The polar state ψ0 = √

ρ0 is
nonmagnetic, while the ferromagnetic state is fullymagnetized (ψ1 = √

ρ0 orψ−1 =

0
q

2|gs|ρ0

Fig. 5.3 Phase diagram of the ground states of the spin-1 ferromagnetic BEC as a function of
the quadratic Zeeman energy q . The ground states are obtained with the mean-field approxima-
tion [63, 64], where ρ0 denotes the uniform particle-number density. The ferromagnetic state is
fully magnetized, the broken-axisymmetry state is transversely magnetized, and the polar state is
nonmagnetic
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√
ρ0).Here,ρ0 is the uniformparticle-number density. The broken-axisymmetry state

has only transverse magnetization. Thus, through the quench from the polar phase to
the ferromagnetic phase, we can investigate the coarsening dynamics similar to the
Ising-type dynamics in ultracold atomic gases.

We might expect that the universality class for the Ising-type spin-1 BEC should
belong to the Ising class in Table5.1. However, this needs to be carefully examined
due to the conservation law respected by (5.24). In contrast to the classical models
discussed above, the GPE conserves the total energy:

d

dt
E[ψm, ψ∗

m] =
∫ 1∑

m=−1

(
δE

δψm

∂ψm

∂t
+ δE

δψ∗
m

∂ψ∗
m

∂t

)
dr = 0. (5.26)

Thus, the domain dynamics should be different from that in the dissipative classical
Ising models.

To consider the universality class inmore detail, we followWilliamson and Blakie
[55, 56] to rewrite (5.24) in terms of the hydrodynamic description [65–67]. First,
we derive the continuity equation for the total particle-number density ρ by using
(5.24):

∂

∂t
ρ + ∇ · (ρv) = 0, (5.27)

where the velocity v is given by

v = �

2Miρ

1∑

m=−1

(
ψ∗

m∇ψm − ψm∇ψ∗
m

)
. (5.28)

Assuming the fully magnetized state and the uniform density, we can derive

∂

∂t
v + (v · ∇)v = − 1

Mρ0
∇P, (5.29)

where the pressure is P = gsF2
z /2. Here, we neglect the third derivatives of the spin

density vectors because in the late stage of the dynamics the large-scale structures
become dominant and the terms with high-order derivatives are expected to be neg-
ligible. If the pressure satisfies the Young-Laplace equation, the pressure difference
across a domain wall is inversely proportional to the domain-wall curvature R. Using
this fact and applying the scale transformations (r → s p r, t → st) with a constant s
and the exponent p to (5.29), we find that the equation remains invariant at p = 2/3.
This implies that the correlation length obeys Lc(t) ∝ t2/3, which agrees with the
time evolution in the inertial hydrodynamic region of the binary liquid as shown in
Table5.2. By comparing the derivation given here with that in the binary liquid [42]
wefind that the coarseningmechanism in the Ising-typeBEC is almost identical to the
classical binary liquid in the hydrodynamic region. Williamson and Blakie numeri-
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Fig. 5.4 Numerical simulations of the ferromagnetic spin-1 Gross–Pitaevskii equation in two
dimensions [56]. a Spatial spin distribution Fz(r, t) at three different times. b Time evolution
of the spin correlation function G(r, t). The inset shows the raw numerical data. In the main panel
the abscissa is normalized by the correlation length L(t). All data points collapse into a single
curve, indicating the dynamical scaling. c Time evolution of L(t) for several different values of
quadratic Zeeman coupling q. All data points again collapse into a single line which indicates that
the correlation length obeys the 2/3 power law. Reproduced from [56]. ©2016 by the American
Physical Society

cally studied the coarsening dynamics as shown in Fig. 5.4a, and found the dynam-
ical scaling of the spin correlation function G(r, t) = 〈Fz(r + x, t)Fz(x, t)〉/ρ2

0
and the 2/3 power law (see Figs. 5.4b and c). Recently, several theoretical works
including scalar and binary BECs have found growth laws other than the 2/3
power law [53, 57–62].

5.3.2.2 Experiments in BECs

Ultracold atomic gases have a relatively long lifetime, and thus enable one to inves-
tigate the coarsening dynamics [68, 69]. Guzman et al. [68] studied the relaxation
dynamics in a ferromagnetic spinor Bose gas, and observed the growth of a large-
scale spin texture. In a binary BEC, De et al. [69] observed the generation of spin
domains by quenching the Zeeman energy shift, and the number of domains is found
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Fig. 5.5 Experimental observation of the spin-domain relaxation dynamics of binary BECs [69].
(Left) Time evolution of the magnetization. Spin domains are generated by the quench of the
Zeeman energy shift. (Right) Time evolution of the number of spin domains. The number decreases
over time, which implies the coarsening and growth of the spin order. The red circles show the
experimental data, and the blue solid curve shows the result of the numerical simulation based on
the stochastic GPE. The gray circles show Rz/2ξ1D with the system size 2Rz and the averaged
domain size 4ξ1D. Reproduced from [69]. Creative Commons Attribution License (CC BY) https://
creativecommons.org/licenses/by/3.0/

to decrease in time as shown in Fig. 5.5. The experimental result is well described by
the stochastic Gross–Pitaevskii model; however, the universal aspects of the coars-
ening dynamics, e.g. dynamical scaling, remains to be investigated.

5.4 Non-thermal Fixed Points

Emergence of universal relaxation dynamics does not necessarily require second-
order phase transitions as described in Sect. 5.3. Then, it is natural to ask how
we can understand the universal aspects from a unified point of view. A notable
scenario is a non-thermal fixed point (NTFP), which was originally proposed in the
context of quantum field theory [13, 14]. Recently, it has been applied to ultracold
atomic gases, and several theoretical and experimental studies have uncovered scale-
invariant relaxations related to the NTFP in turbulent decay [70–72] and coarsening
dynamics [73–75].

5.4.1 Concept of NTFPs

The NTFP concerns the scale-invariant relaxation dynamics that emerges in isolated
quantum systems [13, 14]. Let us consider quench dynamics characterized by a two-
point correlation function G(k, t) such as the momentum distribution. When the
scale invariance emerges, the correlation function exhibits the dynamical scaling:

https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/
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Fig. 5.6 Schematic illustration of universal and non-universal relaxations. When the system is
strongly quenched, the spatio-temporal scale invariance emerges in the relaxation process before a
thermalized or stationary state is reached. In the course of the dynamics, the system passes through
a particular scale-invariant point, which is referred to as a non-thermal fixed point (NTFP). A weak
quench may not lead to such universal relaxation dynamics. Reproduced from [74]

G(k, t) = sα/βG(sk, s−1/β t), (5.30)

where s is a scaling parameter and the exponentsα andβ characterize the universality
of the dynamics. Substituting s = tβ into (5.30), we find that the correlation function
can be expressed by a single scaling function f (x) as

G(k, t) = tα f (tβk), (5.31)

where f (tβk) = G(tβk, 1). When the control parameter is strongly quenched, the
system often shows the dynamical scaling before reaching a stationary state. This
situation is schematically illustrated in Fig. 5.6, where the system passes through a
NTFP en route to a thermalized or stationary state. On the other hand, when the initial
quench is not strong enough, the system may not show such universal dynamics.

The universal relaxation dynamicswas originally discussed using the kinetic equa-
tion for the momentum distribution n(k, t) in quantum field theory, and subsequent
works argued thatNTFPsmanifest themselves in the relaxation dynamics in ultracold
atomic gases [70–75]. In the following, we discuss some specified examples.

5.4.2 NTFPs in the Scalar Gross–Pitaevskii Model

We consider a one-component BEC, which is well described by a single macroscopic
wavefunction ψ(r, t) obeying the scalar GPE [27, 28]:

i�
∂

∂t
ψ(r, t) = − �

2

2M
∇2ψ(r, t) +U |ψ(r, t)|2ψ(r, t), (5.32)

where U characterizes the strength of interaction. Numerical simulations of (5.32)
with random initial noises [76, 77] can show dynamical scaling of the momentum
distribution defined by
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n(k, t) = |ψ̄(k, t)|2, (5.33)

where ψ̄(k, t) is the Fourier component of the macroscopic wavefunction. Here, we
discuss the universal relaxation dynamics in two dimensions [73].

We note that the conservation law respected by (5.32) leads to a scaling relation
for the exponents α and β unique to the NTFP. The GPE conserves the total parti-
cle number

∫
n(k, t)dk. Substituting the scaling form n(k, t) = tα f (tβk) into the

conservation law, we find

∫
n(k, t)dk =

∫
tα f (tβk)dk ∝ tα−dβ. (5.34)

Requiring that the total particle number be conserved, we find the scaling relation

α = dβ (5.35)

with the spatial dimension d.
By numerically solving (5.32) for highly excited initial stateswithmany quantized

vortices, Karl and Gasenzer [73] have demonstrated that the exponents α and β have
two different sets of values depending on the initial vortex number:

(α, β) =
{

(1.10, 0.56) (Gaussian NTFP);
(0.402, 0.193) (anomalous NTFP),

(5.36)

both of which are consistent with the scaling relation (5.35). The former is called the
Gaussian NTFP because the free-particle dispersion relation ω ∝ k2 gives β = 1/2
as in dynamic critical phenomena [2]. Figure5.7 shows the numerical results for the
anomalous NTFP, in which the initial state has many quantized vortices with the
winding number of six. Then, the time evolution of the density distribution in the
left panel of Fig. 5.7 shows the relaxation of density fluctuations. The momentum
distribution exhibits the dynamical scaling as shown in the right panel of Fig. 5.7,
where the exponents (5.36) of the anomalous NTFP canmake all data points collapse
to a single curve. This is a hallmark of theNTFP. For initial stateswithmore quantized
vortices, the power-law exponents are confirmed to approach the Gaussian NTFP.

5.4.3 NTFPs and Kinetic Equations

The idea of NTFPs can be understood on the basis of the kinetic theory [13, 14,
80–82]. We consider a quantum model such as the O(N ) model, and derive an
effective kinetic equation for the momentum distribution Nkin(k, t) of quasiparticles
by employing quantum field theoretic methods:
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(e)

Fig. 5.7 Numerical study on the NTFP in the two-dimensional Bose gas [73]. Figures a–d show the
time evolution of the density distributions calculated from the GPE. The initial state (a) has many
quantized vortices with the winding number of six. Such highly quantized vortices suffer dynamical
instabilities and develop complicated density distributions in Figs. b–d. Figure e shows the dynami-
cal scaling of the momentum distribution at different times. The inset shows the raw numerical data,
and in the main panel the abscissa and the ordinate are normalized by the corresponding power-law
functions of time, fromwhich the exponents α = 0.402 ± 0.05 and β = 0.193 ± 0.05 are obtained.
Reproduced from [73]. Creative Commons Attribution License (CC BY) https://creativecommons.
org/licenses/by/3.0/

∂

∂t
Nkin(k, t) = I [Nkin](k, t), (5.37)

where I [Nkin](k, t) is the collision integral that depends on the original Hamiltonian.
The investigation of (5.37) uncovers universal properties of the non-equilibrium
dynamics. Note that a similar analysis has been employed in the context of weak
wave turbulence [78, 79] to show that several steady turbulent states are characterized
by the power-law behavior of Nkin(k).

Solving the kinetic equation (5.37) under the assumption of the dynamical scaling
(5.31), we can seek for the power-law exponents α and β. The obtained time- and
scale-invariant state is originally identified with the NTFP of (5.37). We follow [80]
to assume that the momentum distribution is isotropic and expressed by

Nkin(k, t) = tαh(tβk) (5.38)

with h(tβk) = Nkin(tβk, 1). We assume that the collision integral has the following
scaling property:

I [Nkin](k, t) = s−μ I [Nkin](sk, s−1/β t), (5.39)

which is a natural extension of (5.30) and characterized by the exponentμ depending
on theoretical models and approximations. In a weakly interacting bosonic system,

https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/
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a perturbative calculation gives μ = 2d − z − 3α/β with the dynamical exponent z,
which is defined by ε(sk) = szε(k)with the energy spectrum ε(k) for quasiparticles.
Substituting s = tβ into (5.39), we have

I [Nkin](k, t) = t−βμ I [h](tβk). (5.40)

Substituting (5.38) and (5.40) into (5.37), we obtain

tα−1

(
α + βq

∂

∂q

)
h(q)

∣∣
q=tβk= t−βμ I [h](tβk). (5.41)

Requiring the scale invariance of (5.41), we obtain the scaling relation:

α = 1 − βμ. (5.42)

Furthermore, the energy conservation and the particle-number conservation give
other scaling relations. When the system shows a particle turbulent cascade, the
particle-number conservation gives α = βd. On the other hand, when an energy tur-
bulent cascade emerges, the energy conservation gives α = β(d + z). Using these
relations and (5.42), we can determine the exponents α and β. While we have con-
sidered the unidirectional self-similar transport, in which either particle turbulent
cascade or energy turbulent cascade occurs, a bi-directional self-similar transport is
also possible. Details of non-relativistic bosonic models are described in [80–82].

5.4.4 Experimental Investigation of NTFPs

Universal relaxation dynamics passing through a NTFP has recently been observed
in a quenched spin-1 ferromagnetic Bose gas in the 1D system [15]. Employing the
quench protocol from the polar phase to the broken-axisymmetry phase (see Fig. 5.3),
Prüfer et al. observed scale-invariant relaxation dynamics of the transverse compo-
nent of the spin density vector after an initial growth of the transverse spins, which is
triggered by quench-induced instability. To investigate the relaxation dynamics from
the viewpoint of the NTFP, they measured the spin correlation function given by

fθ (k, t) = 〈|θ(k, t)|2〉, (5.43)

where θ(k, t) is the Fourier transform of the azimuth angle of the spin density vector.
They find that the correlation function showed the dynamical scaling fθ (k, t) =
sα/β fθ (sk, s−1/β t) over 5 sec, which is the hallmark of the NTFP.

Erne et al. [16] reported a similar dynamical scaling in the 1D Bose gas, in
which a sudden temperature quench by evaporative cooling promotes relaxation.
They observed the dynamical scaling of the momentum distribution n(k, t). Using a



128 K. Fujimoto and M. Ueda

random soliton model [83], they analyzed the measured distribution and the scaling
exponents.

5.5 Concluding Remarks

We have reviewed the universal relaxation in several quantum systems. First, we
have discussed the KZ mechanism characterized by second-order phase transitions
by using the TFI model and the GPE. Second, we have addressed the universal
aspects of the coarsening dynamics that emerges even without or far from the critical
point and the universality classes in dissipative classicalmodels and the spin-1Gross–
Pitaevskiimodel. Finally,we have reviewed recent studies of theNTFPon the basis of
the scalar GPE, the kinetic equation, and the experimental observations. In these non-
equilibriumphenomena, interactions between quasiparticles in a kinetic equation and
topological excitations in coarsening dynamics play key roles, and thus nonlinear
effects are essential in the emergence of the universal relaxation dynamics.

In contrast to the vast amount of research performed on classical relaxation pro-
cesses, the study on the relaxation and coarsening dynamics in the quantum regime
has only recently attracted much attention due to the experimental progress in ultra-
cold atomic gases. While we have reviewed some of the remarkable achievements in
this direction, many fundamental problems remain to be investigated. For example,
what happens if the system relaxes to a turbulent state? Will the system be attracted
to a special NTFP? What happens if excitations are non-Abelian? Such a case can
be studied for biaxial nematic and cyclic phases of spin-2 BECs. It is also of great
interest to explore the cases in which the final relaxed state is topologically nontriv-
ial (e.g. topological order) or non-thermal (e.g. many-body localization). What is
the role of the Lieb-Robinson bound and the entanglement entropy for these exotic
cases? With these and other interesting questions, we are led to the conclusion that
the field of quantum relaxation and coarsening dynamics is still in its infancy and the
exploration of this new research arena will contribute to the deepening and widening
of our fundamental understanding of quantum, many-body and statistical physics.
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26. T. Świsłocki, E. Witkowska, J. Dziarmaga, M. Matuszewski, Phys. Rev. Lett. 110, 045303

(2013)
27. C.J. Pethick, H. Smith, Bose-Einstein Condensation in Dilute Gases (Cambridge University

Press, Cambridge, 2008)
28. L.P. Pitaevskii, S. Stringari, Bose-Einstein Condensation and Superfluidity (Oxford University

Press, Oxford, 2016)
29. P. Tommasini, E.J.V. de Passos, A.F.R. de Toledo Piza, M.S. Hussein, E. Timmermans, Phys.

Rev. A 67, 023606 (2003)
30. A. del Campo, T.W.B. Kibble, W.H. Zurek, J. Phys.: Condens. Matter 25, 404210 (2013)
31. T.W.B. Kibble, G.E. Volovik, JETP Lett. 65, 102 (1997)
32. F.J. Gómez-Ruiz, A. del Campo, Phys. Rev. Lett. 122, 080604 (2019)
33. J. Cui, Y. Huang, Z. Wang, D. Cao, J. Wang, W. Lv, L. Luo, A. del Campo, Y. Han, C. Li, G.

Guo, Sci. Rep. 6, 33381 (2016)
34. A. del Campo, G. De Chiara, G. Morigi, M.B. Plenio, A. Retzker, Phys. Rev. Lett. 105, 075701

(2010)
35. G.D. Chiara, A. del Campo, G. Morigi, M.B. Plenio, A. Retzker, New J. Phys. 12, 115003

(2010)
36. M. Mielenz, J. Brox, S. Kahra, G. Leschhorn, M. Albert, T. Schaetz, H. Landa, B. Reznik,

Phys. Rev. Lett. 110, 133004 (2013)
37. J. Roßnagel, G. Jacob, C. Degünther, S.T. Dawkins, U.G. Poschinger, R. Nigmatullin, A.

Retzker, M.B. Plenio, F. Schmidt-Kaler, K. Singer, Nat. Commun. 4, 2290 (2013)
38. K. Pyka, J. Keller, H.L. Partner, R. Nigmatullin, T. Burgermeister, D.M. Meier, K. Kuhlmann,

A. Retzker, M.B. Plenio,W.H. Zurek, A. del Campo, T.E.Mehlstäubler, Nat. Commun. 4, 2291
(2013)

39. M. Anquez, B.A. Robbins, H.M. Bharath, M. Boguslawski, T.M. Hoang,M.S. Chapman, Phys.
Rev. Lett. 116, 155301 (2016)

40. G. Lamporesi, S. Donadello, S. Serafini, F. Dalfovo, G. Ferrari, Nat. Phys. 9, 656 (2013)
41. N. Navon, A.L. Gaunt, R.P. Smith, Z. Hadzibabic, Science 347, 167 (2015)
42. A.J. Bray, Adv. Phys. 43, 357 (1994)
43. A. Onuki, Phase Transition Dynamics (Cambridge University Press, Cambridge, 2002)
44. K. Kawasaki, T. Nagai, Physica A 121, 175 (1983)
45. T. Kawakatsu, T. Munakata, Prog. Theor. Phys. 74, 11 (1985)
46. T.J. Newman, A.J. Bray, M.A. Moore, Phys. Rev. B 42, 4514 (1990)
47. M. Mondello, N. Goldenfeld, Phys. Rev. E 47, 2384 (1993)
48. M. Rao, A. Chakrabarti, Phys. Rev. E 49, 3727 (1994)
49. A.D. Rutenberg, A.J. Bray, Phys. Rev. E 51, 5499 (1995)



130 K. Fujimoto and M. Ueda

50. A.N. Pargellis, P. Finn, J.W. Goodby, P. Panizza, B. Yurke, P.E. Cladis, Phys. Rev. A 46, 7765
(1992)

51. B. Yurke, A.N. Pargellis, T. Kovacs, D.A. Huse, Phys. Rev. E 47, 1525 (1993)
52. S. Puri, A.J. Bray, F. Rojas, Phys. Rev. E 52, 4699 (1995)
53. K. Damle, S.N. Majumdar, S. Sachdev, Phys. Rev. A 54, 5037 (1996)
54. J. Hofmann, S.S. Natu, S.D. Sarma, Phys. Rev. Lett. 113, 095702 (2014)
55. L.A. Williamson, P.B. Blakie, Phys. Rev. Lett. 116, 025301 (2016)
56. L.A. Williamson, P.B. Blakie, Phys. Rev. A 94, 023608 (2016)
57. K. Kudo, Y. Kawaguchi, Phys. Rev. A 88, 013630 (2013)
58. K. Kudo, Y. Kawaguchi, Phys. Rev. A 91, 053609 (2015)
59. A. Bourges, P.B. Blakie, Phys. Rev. A 95, 023616 (2017)
60. L.M. Symes, P.B. Blakie, Phys. Rev. A 96, 013602 (2017)
61. L.A. Williamson, P.B. Blakie, Phys. Rev. Lett. 119, 255301 (2017)
62. K. Fujimoto, R. Hamazaki, M. Ueda, Phys. Rev. Lett. 120, 073002 (2018)
63. K. Kawaguchi, M. Ueda, Phys. Rep. 520, 253 (2012)
64. D.M. Stamper-Kurn, M. Ueda, Rev. Mod. Phys. 85, 1191 (2013)
65. A. Lamacraft, Phys. Rev. A 77, 063622 (2008)
66. K. Kudo, Y. Kawaguchi, Phys. Rev. A 82, 053614 (2010)
67. E. Yukawa, M. Ueda, Phys. Rev. A 86, 063614 (2012)
68. J. Guzman, G.-B. Jo, A.N. Wenz, K.W. Murch, C.K. Thomas, D.M. Stamper-Kurn, Phys. Rev.

A 84, 063625 (2011)
69. S. De, D.L. Campbell, R.M. Price, A. Putra, B.M. Anderson, I.B. Spielman, Phys. Rev. A 89,

033631 (2014)
70. B. Nowak, D. Sexty, T. Gasenzer, Phys. Rev. B 84, 020506(R) (2011)
71. J. Schole, B. Nowak, T. Gasenzer, Phys. Rev. A 86, 013624 (2012)
72. M. Karl, B. Nowak, T. Gasenzer, Phys. Rev. A 88, 063615 (2013)
73. M. Karl, T. Gasenzer, New J. Phys. 19, 093014 (2017)
74. K. Fujimoto, R. Hamazaki, M. Ueda, Phys. Rev. Lett. 122, 173001 (2019)
75. C.-M. Schmied, M. Prüfer, M.K. Oberthaler, T. Gasenzer, Phys. Rev. A 99, 033611 (2019)
76. P.B. Blakie, A.S. Bradley, M.J. Davis, R.J. Ballagh, C.W. Gardiner, Adv. Phys. 57, 363 (2008)
77. A. Polkovnikov, Ann. Phys. 325, 1790 (2010)
78. V.E. Zakharov,V.S. L’vov,G. Falkovich,Kolmogorov Spectra of Turbulence I:Wave Turbulence

(Springer, Berlin, 1992)
79. S. Nazarenko, Wave Turbulence. Lecture Notes in Physics, vol. 825 (Springer, Heidelberg,

2011)
80. I. Chantesana, A.P. Orioli, T. Gasenzer, Phys. Rev. A 99, 043620 (2019)
81. C. Scheppach, J. Berges, T. Gasenzer, Phys. Rev. A 81, 033611 (2010)
82. A.N. Mikheev, C. Schmied, T. Gasenzer, Phys. Rev. A 99, 063622 (2019)
83. M. Schmidt, S. Erne, B. Nowak, D. Sexty, T. Gasenzer, New J. Phys. 14, 075005 (2012)



Chapter 6
Nonlinearity + Networks: A 2020 Vision

Mason A. Porter

Abstract I briefly survey several fascinating topics in networks and nonlinearity. I
highlight a fewmethods and ideas, including several of personal interest, that I antic-
ipate to be especially important during the next several years. These topics include
temporal networks (in which a network’s entities and/or their interactions change
in time), stochastic and deterministic dynamical processes on networks, adaptive
networks (in which a dynamical process on a network is coupled to dynamics of
network structure), and network structure and dynamics that include “higher-order”
interactions (which involve three or more entities in a network). I draw examples
from a variety of scenarios, including contagion dynamics, opinion models, waves,
and coupled oscillators.

6.1 Introduction

Network analysis is one of the most exciting areas of applied and industrial mathe-
matics [1–4]. It is at the forefront of numerous and diverse applications throughout the
sciences, engineering, technology, and the humanities. The study of networks com-
bines tools from many areas of mathematics, including graph theory, linear algebra,
probability, statistics, optimization, statisticalmechanics, scientific computation, and
nonlinear dynamics.

In this chapter, I give a short overview of popular and state-of-the-art topics in
network science. My discussions of these topics, which I draw preferentially from
ones that relate to nonlinear and complex systems, will be terse, but I will cite many
review articles and highlight specific research papers for thosewho seekmore details.
This chapter is not a review or even a survey; instead, I give my perspective on the
short-term and medium-term future of network analysis in applied mathematics for
2020 and beyond.
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My presentation proceeds as follows. In Sect. 6.2, I review a few basic concepts
from network analysis. In Sect. 6.3, I discuss the dynamics of networks in the form of
time-dependent (“temporal”) networks. In Sect. 6.4, I discuss dynamical processes—
both stochastic and deterministic—on networks. In Sect. 6.5, I discuss adaptive net-
works, in which there is coevolution of network structure and a dynamical process on
that structure. In Sect. 6.6, I discuss higher-order structures (specifically, hypergraphs
and simplicial complexes) that aim to go beyond the standard network paradigm of
pairwise connections. I conclude with an outlook in Sect. 6.7.

6.2 Background on Networks

In its broadest form, a network encodes the connectivity patterns and connection
strengths in a complex system of interacting entities [1]. The most traditional type
of network is a graph G = (V, E) (see Fig. 6.1a), where V is a set of “nodes” (i.e.
“vertices”) that encode entities and E ⊆ V × V is a set of “edges” (i.e. “links” or
“ties”) that encode the interactions between those entities. However, recent uses of
the term “network” have focused increasingly on connectivity patterns that are more
general than graphs [5]: a network’s nodes and/or edges (or their associated weights)
can change in time [6, 7] (see Sect. 6.3), its nodes and edges can include annotations
[8], a network can include multiple types of edges and/or multiple types of nodes
[9, 10], a network can have associated dynamical processes [11] (see Sects. 6.3, 6.4,
and 6.5), a network can include memory [12], a network’s connections can occur
between an arbitrary number of entities [13, 14] (see Sect. 6.6), and so on.

Associated with a graph is an adjacency matrix A with entries ai j . In the simplest
scenario, edges either exist or they don’t. If edges have directions, ai j = 1 when
there is an edge from entity j to entity i and ai j = 0 when there is no such edge.
When ai j = 1, node i is “adjacent” to node j (because we can reach i directly
from j), and the associated edge is “incident” from node j and to node i . The edge
from j to i is an “out-edge” of j and an “in-edge” of i . The number of out-edges of
a node is its “out-degree”, and the number of in-edges of a node is its “in-degree”.
For an undirected network, ai j = a ji , and the number of edges that are attached to a
node is the node’s “degree”. One can assignweights to edges to represent connections
with different strengths (e.g. stronger friendships or larger transportation capacity) by
defining a functionw : E −→ R. In many applications, the weights are nonnegative,
although several applications [15] (such as in international relations) incorporate
positive, negative, and zero weights. In some applications, nodes can also have self-
edges (i.e. nodes can be adjacent to themselves) and multi-edges (i.e. adjacent nodes
can have multiple edges between them). The spectral properties of adjacency (and
other) matrices give important information about their associated graphs [1, 16].
For undirected networks, it is common to exploit the beneficent property that all
eigenvalues of symmetric matrices are real.
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Fig. 6.1 Several types of network structures: (a) a graph, (b) a temporal network, (c) a multilayer
network, and (d) a simplicial complex. (I drew panels (a) and (c) using Tikz- network, which is
by Jürgen Hackl and is available at https://github.com/hackl/tikz-network. Panel (b) is inspired by
Fig. 1 of [6]. Panel (d), which is in the public domain, was drawn by Wikipedia user Cflm001 and
is available at https://en.wikipedia.org/wiki/Simplicial_complex

6.3 Time-Dependent Networks

Traditional studies of networks consider time-independent structures, but most net-
works evolve in time. For example, social networks of people and animals change
based on their interactions, roads are occasionally closed for repairs and new roads
are built, and airline routes change with the seasons and over the years. To study
such time-dependent structures, one can analyze “temporal networks”. See [6, 7] for
reviews and [17, 18] for edited collections.

The key idea of a temporal network is that networks change in time, but there
are many ways to model such changes, and the time scales of interactions and other
changes play a crucial role in the modeling process. There are also other important
modeling considerations. To illustrate potential complications, suppose that an edge
in a temporal network represents close physical proximity between two people in a
short time window (e.g. with a duration of two minutes). It is relevant to consider
whether there is an underlying social network (e.g. the friendship network of mathe-
matics Ph.D. students at UCLA) or if the people in the network do not in general have
any other relationships with each other (e.g. two people who happen to be visiting
a particular museum on the same day). In both scenarios, edges that represent close
physical proximity still appear and disappear over time, but indirect connections (i.e.

https://github.com/hackl/tikz-network
https://en.wikipedia.org/wiki/Simplicial_complex
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between people who are on the same connected component, but without an edge
between them) in a time window may play different roles in the spread of informa-
tion. Moreover, network structure itself is often influenced by a spreading process
or other dynamics, as perhaps one arranges a meeting to discuss a topic (e.g. to give
me comments on a draft of this chapter). See my discussion of adaptive networks in
Sect. 6.5.

6.3.1 Discrete Time

For convenience, most work on temporal networks employs discrete time (see
Fig. 6.1b). Discrete time can arise from the natural discreteness of a setting, dis-
cretization of continuous activity over different time windows, data measurement
that occurs at discrete times, and so on.

6.3.1.1 Multilayer Representation of Temporal Networks

One way to represent a discrete-time (or discretized-time) temporal network is to
use the formalism of “multilayer networks” [9, 10]. One can also use multilayer
networks to study networks with multiple types of relations, networks with multiple
subsystems, and other complicated networked structures.

Amultilayer network M = (VM , EM , V,L) (see Fig. 6.1c) has a set V of nodes—
these are sometimes called “physical nodes”, and each of them corresponds to an
entity, such as a person—that have instantiations as “state nodes” (i.e. node-layer
tuples, which are elements of the set VM ) on layers in L. One layer in the set L is
a combination, through the Cartesian product L1 × · · · × Ld , of elementary layers.
The number d indicates the number of types of layering; these are called “aspects”.
A temporal network with one type of relationship has one type of layering, a time-
independent network with multiple types of social relationships also has one type of
layering, a multirelational network that changes in time has two types of layering,
and so on. The set of state nodes in M is VM ⊆ V × L1 × · · · × Ld , and the set of
edges is EM ⊆ VM × VM . The edge ((i, α), ( j, β)) ∈ EM indicates that there is an
edge from node j on layer β to node i on layer α (and vice versa, if M is undirected).
For example, in Fig. 6.1c, there is a directed intralayer edge from (A,1) to (B,1)
and an undirected interlayer edge between (A,1) and (A,2). The multilayer network
in Fig. 6.1c has three layers, |V | = 5 physical nodes, d = 1 aspect, |VM | = 13 state
nodes, and |EM | = 20 edges. To considerweighted edges, one proceeds as in ordinary
graphs by defining a function w : EM −→ R. As in ordinary graphs, one can also
incorporate self-edges and multi-edges.

Multilayer networks can include both intralayer edges (which have the same
meaning as in graphs) and interlayer edges. The multilayer network in Fig. 6.1c
has 4 directed intralayer edges, 10 undirected intralayer edges, and 6 undirected
interlayer edges. In most studies that have employed multilayer representations of
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temporal networks, researchers have included interlayer edges only between state
nodes in contiguous layers and only between state nodes that are associated with the
same entity (see Fig. 6.1c). However, this restriction is not always desirable (see [19]
for an example), and one can envision interlayer couplings that incorporate ideas like
time horizons and interlayer edge weights that decay over time. For convenience,
many researchers have used undirected interlayer edges in multilayer analyses of
temporal networks, but it is often desirable for such edges to be directed to reflect the
arrow of time [20]. The sequence of network layers, which constitute time layers, can
represent a discrete-time temporal network at different time instances or a continuous-
time network in which one bins (i.e. aggregates) the network’s edges to form a
sequence of time windows with interactions in each window.

Each d-aspect multilayer network with the same number of nodes in each layer
has an associated adjacency tensorA of order 2(d + 1). For unweighted multilayer
networks, each edge in EM is associated with a 1 entry of A, and the other entries
(the “missing” edges) are 0. If a multilayer network does not have the same number
of nodes in each layer, one can add empty nodes so that it does, but the edges that are
attached to such nodes are “forbidden”. There has been some research on tensorial
properties ofA [21] (and it is worthwhile to undertake further studies of them), but
the most common approach for computations is to flattenA into a “supra-adjacency
matrix”AM [9, 10], which is the adjacency matrix of the graph GM that is associated
with M . The entries of the diagonal blocks of AM correspond to intralayer edges,
and the entries of its off-diagonal blocks correspond to interlayer edges.

6.3.1.2 Centrality, Clustering, and Large-Scale Network Structures

Following a long line of research in sociology [22], two important ingredients in the
study of networks are examining (1) the importances (“centralities”) of nodes, edges,
and other small network structures and the relationship of measures of importance
to dynamical processes on networks and (2) the large-scale organization of networks
[1, 23].

Studying central nodes in networks is useful for numerous applications, such
as ranking Web pages, football teams, or physicists [24]. It can also help reveal
the roles of nodes in networks, such as nodes that experience high traffic or help
bridge different parts of a network [1, 23]. Mesoscale features can impact network
function and dynamics in important ways. Small subgraphs called “motifs” may
appear frequently in some networks [25], perhaps indicating fundamental structures
such as feedback loops and other building blocks of global behavior [26]. Various
types of larger-scale network structures, such as dense “communities” of nodes [27,
28] and core–periphery structures [29, 30], are also sometimes related to dynamical
modules (e.g. a set of synchronized neurons) or functional modules (e.g. a set of
proteins that are important for a certain regulatory process) [31]. A common way to



136 M. A. Porter

study large-scale structures1 is inference using statisticalmodels of randomnetworks,
such as stochastic blockmodels [33]. Much recent research has generalized the study
of large-scale network structure to temporal and multilayer networks [9, 18, 34].

Various types of centrality—including betweenness centrality [35, 36], Bonacich
and Katz centrality [37, 38], communicability [39], PageRank [40, 41], and eigen-
vector centrality [42, 43]—have been generalized to temporal networks using a
variety of approaches. Such generalizations make it possible to examine how node
importances change over time as network structure evolves.

In recent work,my collaborators and I usedmultilayer representations of temporal
networks to generalize eigenvector-based centralities to temporal networks [20, 44].2

One computes the eigenvector-based centralities of nodes for a time-independent
network as the entries of the “dominant” eigenvector, which is associated with the
largest positive eigenvalue (by the Perron–Frobenius theorem, the eigenvalue with
the largest magnitude is guaranteed to be positive in these situations) of a centrality
matrix C(A). Examples include eigenvector centrality (by using C(A) = A) [46],
hub and authority scores3 (by using C(A) = AAT for hubs andATA for authorities)
[47], and PageRank [24].

Given a discrete-time temporal network in the form of a sequence of adjacency
matrices A(t) ∈ R

N×N for t ∈ {1, . . . , T }, where a(t)
i j denotes a directed edge from

entity j to entity i in time layer t , we construct a “supracentralitymatrix”C(ω), which
couples the centralitymatricesC(A(t)) of the individual time layers.We then compute
the dominant eigenvector of C(ω), where ω is an interlayer coupling strength.4 In
[20, 44], a key example was the ranking of doctoral programs in the mathematical
sciences (using data from the Mathematics Genealogy Project [48]), where an edge
from one institution to another arises when someone with a Ph.D. from the first
institution supervises a Ph.D. student at the second institution. By calculating time-
dependent centralities, one can study how the rankings of mathematical-sciences
doctoral programs change over time and the dependence of such rankings on the
value of ω. Larger values of ω impose more ranking consistency across time, so
centrality trajectories over time are less volatile for larger ω [20, 44].

Multilayer representations of temporal networks have been very insightful in the
detection of communities and how they split, merge, and otherwise evolve over time.
Numerous methods for community detection—including inference via stochastic
block models [49], maximization of objective functions (especially “modularity”)
[50], and methods based on random walks and bottlenecks to their traversal of a
network [51, 52]—have been generalized from graphs to multilayer networks. They

1There are recent theoretical advances on examining network structure amidst rich but noisy data
[32], and it is important for research on both network structure and dynamics to explicitly consider
such scenarios.
2There is also much research on generalizing centralities (including eigenvector-based centralities
[45]) to other types of multilayer networks, such as multiplex networks [9, 34].
3Nodes that are good authorities tend to have good hubs that point to them, and nodes that are good
hubs tend to point to good authorities.
4A major open problem in multilayer network analysis is the measurement and/or inference of
values of ω (and generalizations of it in the form of coupling tensors) [10].
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have yielded insights in a diverse variety of applications, including brain networks
[53], granular materials [54], political voting networks [50, 55], the spread of infec-
tious diseases [56], and ecology and animal behavior [57, 58]. To assist with such
applications, there are efforts to develop and analyze multilayer random-network
models that incorporate rich and flexible structures [59], such as diverse types of
interlayer correlations.

6.3.1.3 Activity-Driven Models

Activity-driven (AD) models of temporal networks [60] are a popular family of gen-
erative models that encode instantaneous time-dependent descriptions of network
dynamics through a function called an “activity potential”, which gives a mecha-
nism to generate connections and characterizes the interactions between entities in a
network. An activity potential encapsulates all of the information about the temporal
network dynamics of an ADmodel, making it tractable to study dynamical processes
(such as ones from Sect. 6.4) on networks that are generated by such a model. It is
also common to compare the properties of networks that are generated byADmodels
to those of empirical temporal networks [18].

In the original AD model of Perra et al. [60], one considers a network with N
entities, which we encode by the nodes. We suppose that node i has an activity rate
ai = ηxi , which gives the probability per unit time to create new interactions with
other nodes. The scaling factor η ensures that the mean number of active nodes per
unit time is η〈x〉N , where 〈x〉 = 1

N

∑N
i=1 xi . We define the activity rates such that

xi ∈ [ε, 1], where ε > 0, and we assign each xi from a probability distribution F(x)
that can either take a desired functional form or be constructed from empirical data.
The model uses the following generative process:

• At each discrete time step (of length �t), start with a network Gt that consists of
N isolated nodes.

• With a probability ai�t that is independent of other nodes, node i is active and gen-
eratesm edges, each of which attaches to other nodes uniformly (i.e. with the same
probability for each node) and independently at random (without replacement).
Nodes that are not active can still receive edges from active nodes.

• At the next time step t + �t , we delete all edges from Gt , so all interactions have
a constant duration of �t . We then generate new interactions from scratch. This
is convenient, as it allows one to apply techniques from Markov chains.

Because entities in time step t do not have any memory of previous time steps, F(x)
encodes the network structure and dynamics.

TheADmodel of Perra et al. [60] is overly simplistic, but it is amenable to analysis
and has provided a foundation for many more general AD models, including ones
that incorporate memory [61]. In Sect. 6.6.4, I discuss a generalization of ADmodels
to simplicial complexes [62] that allows one to study instantaneous interactions that
involve three or more entities in a network.
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6.3.2 Continuous Time

Many networked systems evolve continuously in time, but most investigations of
time-dependent networks rely on discrete or discretized time. It is important to under-
take more analysis of continuous-time temporal networks.

Researchers have examined continuous-time networks in a variety of scenarios.
Examples include a compartmental model of biological contagions [63], a general-
ization of Katz centrality to continuous time [38], generalizations of ADmodels (see
Sect. 6.3.1.3) to continuous time [64, 65], and rankings in competitive sports [66].

In a recent paper [67], my collaborators and I formulated a notion of “tie-decay
networks” for studying networks that evolve in continuous time. We distinguished
between interactions, which wemodeled as discrete contacts, and ties, which encode
relationships and their strengths as a function of time. For example, perhaps the
strength of a tie decays exponentially after the most recent interaction. More realisti-
cally, perhaps the decay rate depends on the weight of a tie, with strong ties decaying
more slowly than weak ones. One can also use point-process models like Hawkes
processes [68] to examine similar ideas from a node-centric perspective.

Suppose that there are N interacting entities, and let B(t) be the N × N time-
dependent, real, non-negative matrix with entries bi j (t) that encode the tie strength
from entity j to entity i at time t for each j and i . In [67], we made the following
simplifying assumptions:

1. As in [69], ties decay exponentially when there are no interactions: dbi j
dt = −αbi j ,

where α ≥ 0 is the decay rate.
2. If two entities interact at time t = τ , the strength of the tie between them grows

instantaneously by 1.

See [70] for a comparison of various choices, including those in [67, 69], for tie
evolution over time.

In practice (e.g. in data-driven applications), one obtainsB(t) by discretizing time,
so let’s suppose that there is at most one interaction in each time step of length �t .
This occurs, for example, in a Poisson process. Such time discretization is common in
the simulation of stochastic dynamical systems, such as in Gillespie algorithms [11,
71, 72]. Consider an N × N matrixA(t) in which ai j (t) = 1 if node j interacts with
node i at time t and ai j (t) = 0 otherwise. For a directed network, A(t) has exactly
one nonzero entry in each time step when there is an interaction and no nonzero
entries when there isn’t one. For an undirected network, because of the symmetric
nature of interactions, there are exactly two nonzero entries in time steps that include
an interaction. We write

B(t + �t) = e−α�tB(t) + A(t + �t) . (6.1)

Equivalently, if interactions between entities occur at times τ (	) such that 0 ≤ τ (0) <

τ (1) < · · · < τ(T ), then at time t ≥ τ (T ), we have
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B(t) =
T∑

k=0

e−α(t−τ (k))A(τ (k)) . (6.2)

In [67], my coauthors and I generalized PageRank [24, 73] to tie-decay networks.
One nice feature of our tie-decay PageRank is that it is applicable not just to data
sets, but also to data streams, as one updates the PageRank values as new data
arrives. By contrast, one problematic feature of manymethods that rely onmultilayer
representations of temporal networks is that one needs to recompute everything for
an entire data set upon acquiring new data, rather than updating prior results in a
computationally efficient way.

6.4 Dynamical Processes on Networks

A dynamical process can be discrete, continuous, or some mixture of the two; it can
also be either deterministic or stochastic. It can take the formof one or several coupled
ordinary differential equations (ODEs), partial differential equations (PDEs), maps,
stochastic differential equations, and so on.

A dynamical process requires a rule for updating the states of its dependent vari-
ables with respect one or more independent variables (e.g. time), and one also has
initial conditions and/or boundary conditions. To formalize a dynamical process on a
network, one needs a rule for how to update the states of the network’s nodes and/or
edges.

The nodes (of one or more types) of a network are connected to each other in
nontrivial ways by one or more types of edges. This leads to a natural question: How
does nontrivial connectivity between nodes affect dynamical processes on a net-
work [11]? When studying a dynamical process on a network, the network structure
encodes which entities (i.e. nodes) of a system interact with each other and which
do not. If desired, one can ignore the network structure entirely and just write out a
dynamical system. However, keeping track of network structure is often a very useful
and insightful form of bookkeeping, which one can exploit to systematically explore
how particular structures affect the dynamics of particular dynamical processes.

Prominent examples of dynamical processes on networks include coupled oscil-
lators [74, 75], games [76], and the spread of diseases [77, 78] and opinions [79,
80]. There is also a large body of research on the control of dynamical processes on
networks [81, 82].

Most studies of dynamics on networks have focused on extending familiar
models—such as compartmental models of biological contagions [77] or Kuramoto
phase oscillators [75]—by coupling entities using various types of network struc-
tures, but it is also important to formulate new dynamical processes from scratch,
rather than only studying more complicated generalizations of our favorite models.
When trying to illuminate the effects of network structure on a dynamical process,
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it is often insightful to provide a baseline comparison by examining the process on
a convenient ensemble of random networks [11].

6.4.1 An Illustrative Example: A Threshold Model of a
Social Contagion

A simple, but illustrative, dynamical process on a network is the Watts threshold
model (WTM) of a social contagion [11, 79]. It provides a framework for elucidating
how network structure can affect state changes, such as the adoption of a product or
a behavior, and for exploring which scenarios lead to “virality” (in the form of state
changes of a large number of nodes in a network).

The original WTM [83], a binary-state threshold model that resembles bootstrap
percolation [84], has a deterministic update rule, so stochasticity can come only
from other sources (see Sect. 6.4.2). In a binary state model, each node is in one
of two states; see [85] for a tabulation of well-known binary-state dynamics on
networks. The WTM is a modification of Mark Granovetter’s threshold model for
social influence in a fully-mixed population [86]. See [87, 88] for early work on
threshold models on networks that developed independently from investigations of
the WTM. Threshold contagion models have been developed for many scenarios,
including contagions with multiple stages [89], models with adoption latency [90],
models with synergistic interactions [91], and situations with hipsters (who may
prefer to adopt a minority state) [92].

In a binary-state thresholdmodel such as theWTM, each node i has a threshold Ri

that one draws from some distribution. Suppose that Ri is constant in time, although
one can generalize it to be time-dependent. At any time, each node can be in one
of two states: 0 (which represents being inactive, not adopted, not infected, and so
on) or 1 (active, adopted, infected, and so on). A binary-state model is a drastic
oversimplification of reality, but the WTM is able to capture two crucial features of
social systems [93]: interdependence (an entity’s behavior depends on the behavior
of other entities) and heterogeneity (because nodes with different threshold values
behave differently). One can assign a seed number or seed fraction of nodes to the
active state, and one can choose the initially active nodes either deterministically or
randomly.

The states of the nodes change in time according to an update rule, which can
either be synchronous (such that it is a map) or asynchronous (e.g. as a discretization
of continuous time) [11]. In the WTM, the update rule is deterministic, so the choice
of synchronous versus asynchronous updating affects only how long it takes to reach
a steady state; it does not affect the steady state itself. With a stochastic update rule,
the synchronous and asynchronous versions of ostensibly the “same” model can
behave in drastically different ways [94]. In the WTM on an undirected network, to
update the state of a node, one compares its fraction si/ki of active neighbors (where
si is the number of active neighbors and ki is the degree of node i) to the node’s
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threshold Ri . An inactive node i becomes active (i.e. it switches from state 0 to state
1) if si/ki ≥ Ri ; otherwise, it stays inactive. The states of the nodes in the WTM are
monotonic, in the sense that a node that becomes active remains active forever. This
feature is convenient for deriving accurate approximations for the global behavior
of the WTM using branching-process approximations [11, 85] and when analyzing
the behavior of the WTM using tools such as persistent homology [95].

6.4.2 Stochastic Processes

A dynamical process on a network can take the form of a stochastic process [1, 11].
There are several possible sources of stochasticity: (1) choice of initial condition, (2)
choice ofwhich nodes or edges to update (when considering asynchronous updating),
(3) the rule for updating nodes or edges, (4) the values of parameters in an update rule,
and (5) the selection of particular networks from a random-graph ensemble (i.e. a
probability distribution on graphs). Some or all of these sources of randomness can be
present when studying dynamical processes on networks. It is desirable to compare
the sample mean of a stochastic process on a network to an ensemble average (i.e.
to an expectation over a suitable probability distribution).

Prominent examples of stochastic processes on networks include percolation [96],
randomwalks [97], compartmentmodels of biological contagions [77, 78], bounded-
confidence models of the dynamics of continuous-valued opinions [98], and other
opinion and voter models [11, 79, 80, 99].

6.4.2.1 Example: A Compartmental Model of a Biological Contagion

Compartmental models of biological contagions are a topic of intense interest in
network science [1, 11, 77, 78]. A compartment represents a possible state of a
node; examples include susceptible, infected, zombified, vaccinated, and recovered.
An update rule determines how a node changes its state from one compartment to
another. One can formulate models with as many compartments as desired [100], but
investigations of how network structure affects dynamics typically have employed
examples with only two or three compartments [77, 78]. The formulation and anal-
ysis of compartmental models on networks have played a crucial role—and have
influenced both human behavior and public policy—during the current coronavirus
disease 2019 (COVID-19) pandemic. For one nice example of such important work,
see [101].

Researchers have studied various extensions of compartmental models, includ-
ing contagions on multilayer and temporal networks [9, 34, 102], metapopulation
models on networks for simultaneously studying network connectivity and subpop-
ulations with different characteristics [103], non-Markovian contagions on networks
for exploring memory effects [104], and explicit incorporation of individuals with
essential societal roles (e.g. health-care workers) [105]. As I discuss in Sect. 6.4.4,
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one can also examine coupling between biological contagions and the spread of
information (e.g. “awareness”) [106, 107]. One can also use compartmental models
to study phenomena, such as the dissemination of ideas on social media [108] and
forecasting of political elections [109], that are much different from the spread of
diseases.

One of the most prominent examples of a compartmental model is a susceptible–
infected–recovered (SIR) model, which has three compartments. Susceptible nodes
are healthy and can become infected, and infected nodes can eventually recover. The
steady state of the basic SIR model on a network is related to a type of bond perco-
lation [110–113]. There are many variants of SIR models and other compartmental
models on networks [77]. See [114] for an illustration using susceptible–infected–
susceptible (SIS) models.

Suppose that an infection is transmitted from an infected node to a susceptible
neighbor at a rate of λ. The probability of a transmission event on one edge between
an infected node and a susceptible node in an infinitesimal time interval dt is λ dt .
Assuming that all infection events are independent, the probability that a susceptible
node with s infected neighbors becomes infected (i.e. that it transitions from the S
compartment to the I compartment, which represents both being infected and being
infective) in a time step of duration dt is

1 − (1 − λ dt)s → λ s dt as dt → 0 . (6.3)

If an infected node recovers at a constant rate of μ, the probability that it switches
from state I to state R (the recovered compartment) in an infinitesimal time interval
dt is μ dt .

6.4.3 Deterministic Dynamical Systems

When there is no source of stochasticity, a dynamical process on a network is “deter-
ministic”. A deterministic dynamical system can take the form of a system of cou-
pled maps, ODEs, PDEs, or something else. As with stochastic systems, the network
structure encodes which entities of a system interact with each other and which do
not.

There are numerous interesting deterministic dynamical systems on networks—
just incorporate nontrivial connectivity between entities into your favorite determin-
istic model—although it is worth noting that some stochastic aspects (e.g. choosing
parameter values from a probability distribution or sampling choices of initial con-
ditions) can arise in these models.
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6.4.3.1 Example: Coupled Oscillators

For concreteness, let’s consider the popular setting of coupled oscillators. Each node
in a network is associated with an oscillator, and we want to examine how network
structure affects the collective behavior of the coupled oscillators.

It is common to investigate various forms of synchronization (a type of coherent
behavior), such that the rhythms of the oscillators adjust to match each other (or to
match a subset of the oscillators) because of their interactions [115]. A variety of
methods, such as “master stability functions” [116], have been developed to study
the local stability of synchronized states and their generalizations [11, 74], such as
cluster synchrony [117]. Cluster synchrony,which is related towork on “coupled-cell
networks” [26], uses ideas from computational group theory to find synchronized sets
of oscillators that are not synchronized with other sets of synchronized oscillators.
Many studies have also examined other types of states, such as “chimera states”
[118], in which some oscillators behave coherently but others behave incoherently.
(Analogous phenomena sometimes occur in mathematics departments.)

A ubiquitous example is coupledKuramoto oscillators on a network [74, 75, 119],
which is perhaps themost common setting for exploring and developing newmethods
for studying coupled oscillators. (In principle, one can then build on these insights in
studies of other oscillatory systems, such as in applications in neuroscience [120].)
Coupled Kuramoto oscillators have been used for modeling numerous phenomena,
including jetlag [121] and singing in frogs [122]. Indeed, a “Snowbird” (SIAM)
conference on applied dynamical systems would not be complete without at least
several dozen talks on the Kuramoto model. In the Kuramoto model, each node i has
an associated phase θi (t) ∈ [0, 2π). In the case of “diffusive” coupling between the
nodes,5 the dynamics of the i th node is governed by the equation

θ̇i := dθi
dt

= ωi +
N∑

j=1

bi j ai j sin(θ j − θi ) , i ∈ {1, . . . , N } , (6.4)

where one typically draws the natural frequency ωi of node i from some distribution
g(ω), the scalar ai j is an adjacency-matrix entry of an unweighted network, bi j is the
coupling strength that is experienced by oscillator i from oscillator j (so bi j ai j is an
element of an adjacencymatrixW of a weighted network), and fi j (y) = sin(y) is the
coupling function, which depends only on the phase difference between oscillators
i and j because of the diffusive nature of the coupling.

Once one knows the natural frequencies ωi , the model (6.4) is a deterministic
dynamical system, although there have been studies of coupled Kuramoto oscillators
with additional stochastic terms [123]. Traditional studies of (6.4) and its general-
izations draw the natural frequencies from some distribution (e.g. a Gaussian or a
compactly supported distribution), but some studies of so-called “explosive synchro-

5In this case, linearization yields Laplacian dynamics, which is closely related to a random walk
on a network [97].
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nization” (in which there is an abrupt phase transition from incoherent oscillators
to synchronized oscillators) have employed deterministic natural frequencies [119,
124]. The properties of the frequency distribution g(ω) have a significant effect on
the dynamics of (6.4). Important features of g(ω) include whether it has compact
support or not, whether it is symmetric or asymmetric, and whether it is unimodal
or not [75, 125].

Themodel (6.4) has been generalized in numerousways. For example, researchers
have considered a large variety of coupling functions fi j (including ones that are not
diffusive) and have incorporated an inertia term θ̈i to yield a second-order Kuramoto
oscillator at each node [75]. The latter generalization is important for studies of
coupled oscillators and synchronized dynamics in electric power grids [126].Another
noteworthy direction is the analysis of Kuramoto model on “graphons” (see, for
example, [127]), an important type of structure that arises in a suitable limit of large
networks.

6.4.4 Dynamical Processes on Multilayer Networks

An increasingly prominent topic in network analysis is the examination of how mul-
tilayer network structures—multiple system components, multiple types of edges,
co-occurrence and coupling ofmultiple dynamical processes, and so on—affect qual-
itative and quantitative dynamics [9, 34, 102]. For example, perhaps certain types
of multilayer structures can induce unexpected instabilities or phase transitions in
certain types of dynamical processes?

There are two categories of dynamical processes on multilayer networks: (1) a
single process can occur on a multilayer network; or (2) processes on different layers
of a multilayer network can interact with each other [102]. An important example
of the first category is a random walk, where the relative speeds and probabilities
of steps within layers versus steps between layers affect the qualitative nature of
the dynamics. This, in turn, affects methods (such as community detection [51,
52]) that are based on random walks, as well as anything else in which diffusion
is relevant [128, 129]. Two other examples of the first category are the spread of
information on social media (for which there are multiple communication channels,
such as Facebook and Twitter) and multimodal transportation systems [130]. For
instance, a multilayer network structure can induce congestion even when a system
without coupling between layers is decongested in each layer independently [131].
Examples of the second category of dynamical process are interactions between
multiple strains of a disease and interactions between the spread of an infectious
disease and the spread of information [106, 107, 132]. Many other examples have
been studied [34], including coupling between oscillator dynamics on one layer and
a biased random walk on another layer (as a model for neuronal oscillations coupled
to blood flow) [133].

Numerous interesting phenomena can occur when dynamical systems, such as
spreading processes, are coupled to each other [106]. For example, the spreading of
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one disease can facilitate infection by another [134], and the spread of awareness
about a disease can inhibit the spread of the disease itself (e.g. if people stay home
when they are sick) [135]. Interacting spreading processes can also exhibit other
fascinating dynamics, such as oscillations that are induced by multilayer network
structures in a biological contagion with multiple modes of transmission [136] and
novel types of phase transitions [102].

A major simplification in most work thus far on dynamical processes on multi-
layer networks is a tendency to focus on toy models. For example, a typical study
of coupled spreading processes may consider a standard (e.g. SIR) model on each
layer, and it may draw the connectivity pattern of each layer from the same stan-
dard random-graph model (e.g. an Erdős–Rényi model or a configuration model).
However, when studying dynamics on multilayer networks, it is particular important
in future work to incorporate heterogeneity in network structure and/or dynamical
processes. For instance, diseases spread offline but information spreads both offline
and online, so investigations of coupled information and disease spread ought to
consider fundamentally different types of network structures for the two processes.

6.4.5 Metric Graphs and Waves on Networks

Network structures also affect the dynamics of PDEs on networks [137–141]. Inter-
esting examples include a study of a Burgers equation on graphs to investigate
how network structure affects the propagation of shocks [138] and investigations
of reaction–diffusion equations and Turing patterns on networks [140, 142]. The
latter studies exploited the rich theory of Laplacian dynamics on graphs (and con-
comitant ideas from spectral graph theory) [16, 97] and examined the addition of
nonlinear terms to Laplacians on various types of networks (including multilayer
ones).

A mathematically oriented thread of research on PDEs on networks has built
on ideas from so-called “quantum graphs” [137, 143] to study wave propagation on
networks through the analysis of “metric graphs”.Metric graphs differ from the usual
“combinatorial graphs”, which in other contexts are usually called simply “graphs”.6

As in a combinatorial graph, ametric graph has nodes and edges, but now each edge e
also has an associated positive length le ∈ (0,∞]. For many experimentally relevant
scenarios (e.g. in models of circuits of quantum wires [144]), there is a natural
embedding into space, but metric graphs that are not embedded in space are also
appropriate for some applications.

As the nomenclature suggests, one can equip a metric graph with a natural metric.
If a sequence {e j }mj=1 of edges forms a path, the length of the path is

∑
j le j . The

distance ρ(v1, v2) between two nodes, v1 and v2, is theminimum path length between
them. We place coordinates along each edge, so we can compute a distance between
points x1 and x2 on a metric graph even when those points are not located at nodes.

6Combinatorial graphs, and more general combinatorial objects, are my main focus in this chapter.
This subsection is an exception.
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Traditionally, one assumes that the infinite ends (which one can construe as “leads”
at infinity, as in scattering theory) of infinite edges have degree 1. It is also traditional
to assume that there is always a positive distance between distinct nodes and that
there are no finite-length paths with infinitely many edges. See [143] for further
discussion.

To study waves on metric graphs, one needs to define operators, such as the
negative second derivative or more general Schrödinger operators. This exploits the
fact that there are coordinates for all points on the edges—not only at the nodes
themselves, as in combinatorial graphs. When studying waves on metric graphs, it
is also necessary to impose boundary conditions at the nodes [143].

Many studies of wave propagation on metric graphs have considered generaliza-
tions of nonlinear wave equations, such as the cubic nonlinear Schrödinger (NLS)
equation [145] and a nonlinear Dirac equation [146]. The overwhelming majority
of studies of metric graphs (with both linear and nonlinear waves) have focused on
networks with a very small number of nodes, as even small networks yield very inter-
esting dynamics. For example, Marzuola and Pelinovsky [147] analyzed symmetry-
breaking and symmetry-preserving bifurcations of standing waves of the cubic NLS
equation on a dumbbell graph (with two rings attached to a central line segment
and Kirchhoff boundary conditions at the nodes). Kairzhan et al. [148] studied the
spectral stability of half-soliton standing waves of the cubic NLS equation on bal-
anced star graphs. Sobirov et al. [149] studied scattering and transmission at nodes
of sine–Gordon solitons on networks (e.g. on a star graph and a small tree).

A particularly interesting direction for future work is to study wave dynamics on
large metric graphs. This will help extend investigations, as in ODEs and maps, of
how network structures affect dynamics on networks to the realm of linear and non-
linear waves. One can readily formulate wave equations on large metric graphs by
specifying relevant boundary conditions and rules at each junction. For example, Joly
et al. [150] recently examined wave propagation of the standard linear wave equation
on fractal trees. Because many natural real-life settings are spatially embedded (e.g.
wave propagation in granular materials [54, 151] and traffic-flow patterns in cities),
it will be particularly valuable to examine wave dynamics on (both synthetic and
empirical) spatially-embedded networks [152]. Therefore, I anticipate that it will be
very insightful to undertake studies of wave dynamics on networks such as random
geometric graphs, random neighborhood graphs, and other spatial structures. A key
question in network analysis is how different types of network structure affect dif-
ferent types of dynamical processes [11], and the ability to take a limit as model
synthetic networks become infinitely large (specifically, a thermodynamic limit) is
crucial for obtaining many key theoretical insights.

6.5 Adaptive Networks

Dynamics of networks and dynamics on networks do not occur in isolation; instead,
they are coupled to each other. Researchers have studied the coevolution of network
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structure and the states of nodes and/or edges in the context of “adaptive networks”
(which are also known as “coevolving networks”) [153, 154]. Whether it is sensible
to study a dynamical process on a time-independent network, a temporal network
with frozen (or no) node or edge states, or an adaptive network depends on the relative
time scales of the dynamics of a network’s structure and the dynamics of the states
of the nodes and/or edges of the network. See [11] for a brief discussion.

Models in the form of adaptive networks provide a promising mechanistic
approach to simultaneously explain both structural features (e.g. degree distributions
and temporal features (e.g. burstiness) of empirical data [155]. Incorporating adapta-
tion into conventional models can produce extremely interesting and rich dynamics,
such as the spontaneous development of extreme states in opinion models [156].

Most studies of adaptive networks that include some analysis (i.e. that go beyond
numerical computations) have employed rather artificial adaption rules for adding,
removing, and rewiring edges. This is relevant for mathematical tractability, but it
is important to go beyond these limitations by considering more realistic types of
adaptation and coupling between network structure (including multilayer structures,
as in [157]) and the states of nodes and edges.

6.5.1 Contagion Models

When people are sick, they stay home from work or school. People also form and
remove social connections (both online and offline) based on observed opinions and
behaviors. To study these ideas using adaptive networks, researchers have coupled
models of biological and social contagions with time-dependent networks [11, 79].

An early example of an adaptive network of disease spread is the SIS model in
Gross et al. [158]. In this model, susceptible nodes sometimes rewire their incident
edges to “protect themselves”. Suppose that we have an N -node network with a
constant number of undirected edges. Each node is either susceptible (i.e. in state S) or
infected (i.e. in state I ). At each time step, and for each edge—so-called “discordant
edges”—between nodes in different states, the susceptible node becomes infected
with probability λ. For each discordant edge, with some probability κ , the incident
susceptible node breaks the edge and rewires to some other susceptible node. (Multi-
edges and self-edges are not allowed.) This is called a “rewire-to-same” mechanism
in the language of some adaptive opinion models [159, 160]. In each time step,
infected nodes can also recover to become susceptible again.

Gross et al. [158] studied how the rewiring probability affects the “basic repro-
duction number”, a scalar that measures how many infections occur, on average,
from one infected node in a population in which all other nodes are susceptible to
infection [77, 78, 100]. The basic reproduction number determines the size of a
critical infection probability λ∗ that is necessary to maintain a stable epidemic (as
determined traditionally using linear stability analysis). A high rewiring rate can sig-
nificantly increase λ∗ and thereby significantly reduce the prevalence of a contagion.
Although results like these are perhaps intuitively clear, other studies of contagions
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on adaptive networks have yielded potentially actionable (and arguably nonintuitive)
insights. For example, Scarpino et al. [105] demonstrated using an adaptive compart-
mental model (along with some empirical evidence) that the spread of a disease can
accelerate when individuals with essential societal roles (e.g. health-care workers)
become ill and are replaced with healthy individuals.

6.5.2 Opinion Models

Another type of model with many interesting adaptive variants are opinion models
[11, 80], especially in the form of generalizations of classical voter models [99].

Voter dynamics were first considered in the 1970s by Clifford and Sudbury [161]
as a model for species competition, and the dynamical process that they introduced
was dubbed “the voter model”7 shortly thereafter by Holley and Liggett [162]. Voter
dynamics are fun and are popular to study [99], although it is questionable whether
it is ever possible to genuinely construe a voter model as a model of voters [163].

Holme and Newman [164] undertook an early study of a rewire-to-same adaptive
voter model. Inspired by their research, Durrett et al. [159] compared the dynamics
from two different types of rewiring in an adaptive voter model. In each variant of
their model, one considers an N -node network and supposes that each node is in
one of two states. The network structure and the node states coevolve. Pick an edge
uniformly at random. If this edge is discordant, then with probability 1 − κ , one of its
incident nodes adopts the opinion state of the other. Otherwise, with complementary
probability κ , a rewiring action occurs: one removes the discordant edge, and one
of the associated nodes attaches to a new node either through a rewire-to-same
mechanism (choosing uniformly at random among the nodes with the same opinion
state) or through a “rewire-to-random” mechanism (choosing uniformly at random
among all nodes). As with the adaptive SIS model of [158], self-edges and multi-
edges are not allowed.

The models in [159] evolve until there are no discordant edges. There are several
key questions. Does the system reach a consensus (in which all nodes are in the
same state)? If so, how long does it take to converge to consensus? If not, how many
opinion clusters (each of which is a connected component, perhaps interpretable as
an “echo chamber”, of the final network) are there at steady state? How long does it
take to reach this state? The answers and analysis are subtle; they depend on the initial
network topology, the initial conditions, and the specific choice of rewiring rule. As
with other adaptive network models, researchers have developed some nonrigorous
theory (e.g. using mean-field approximations and their generalizations) on adaptive
voter models with simplistic rewiring schemes, but they have struggled to extend
these ideas to models with more realistic rewiring schemes. There are very few

7There are several variants of “the” voter model, depending on choices such as whether one selects
nodes or edges at random, that have substantively different qualitative dynamics [11, 97].
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mathematically rigorous results on adaptive voter models, although there do exist
some, under various assumptions on initial network structure and edge density [165].

Researchers have generalized adaptive voter models to consider more than two
opinion states [166] and more general types of rewiring schemes [167]. As with
other adaptive networks, analyzing adaptive opinionmodelswith increasingly diverse
types of rewiring schemes (ideally with a move towards increasing realism) is par-
ticularly important. In [160], Yacoub Kureh and I studied a variant of a voter model
with nonlinear rewiring (in ourmodel, the probability that determines whether a node
rewires or adopts a neighbor’s opinion is a function of how well it “fits in” with the
nodes in its neighborhood), including a “rewire-to-none” scheme to model unfriend-
ing and unfollowing in online social networks. It is also important to study adaptive
opinion models with more realistic types of opinion dynamics. A promising exam-
ple is adaptive generalizations of bounded-confidence models (see the introduction
of [98] for a brief review of bounded-confidence models), which have continuous
opinion states, with nodes interacting either with nodes or with other entities (such
as media [168]) whose opinion is sufficiently close to theirs. A recent numerical
study examined an adaptive bounded-confidence model [169]; this is an important
direction for future investigations.

6.5.3 Synchronization of Adaptive Oscillators

It is also interesting to examine how the adaptation of oscillators—including their
intrinsic frequencies and/or the network structure that couples them to each other—
affects the collective behavior (e.g. synchronization) of a network of oscillators [75].
Such ideas are useful for exploring mechanistic models of learning in the brain (e.g.
through adaptation of coupling between oscillators to produce a desired limit cycle
[170]).

One nice study is a paper by Skardal et al. [171], who examined an adaptive
model of coupled Kuramoto oscillators as a toy model of learning. First, we write
the Kuramoto system as

dθi
dt

= ωi +
N∑

j=1

fi j (θ j − θi ) , i ∈ {1, . . . , N } , (6.5)

where fi j is a 2π -periodic function of the phase difference between oscillators i and
j . The function fi j incorporates the matrix elements bi j and ai j from (6.4). One way
to examine adaptation is to define an “order parameter” ri (which, in its traditional
form, quantifies the amount of coherence of the coupled Kuramoto oscillators [75])
for the i th oscillator by
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ri =
N∑

j=1

bi j ai j e
iθ j , i ∈ {1, . . . , N }

and to consider the following dynamical system:

dθi
dt

= ωi + λ−1
D Im(zi e

−iθi ) , τ
dzi
dt

= ri − zi , T
dbi j
dt

= α + β Re(ri z
∗
i ) − bi j ,

(6.6)

where Re(ζ ) denotes the real part of a quantity ζ and Im(ζ ) denotes its imaginary
part. In the model (6.6), λD denotes the largest positive eigenvalue of the adjacency
matrix A, the variable zi (t) is a time-delayed version of ri with time parameter τ

(with τ → 0 implying that zi → ri ), and z∗
i denotes the complex conjugate of zi . One

draws the frequencies ωi from some distribution (e.g. a Lorentz distribution, as in
[171]), and we recall that bi j is the coupling strength that is experienced by oscillator
i from oscillator j . The parameter T gives an adaptation time scale, and α ∈ R

and β ∈ R are parameters (which one can adjust to study bifurcations). Skardal et
al. [171] interpreted scenarios with β > 0 as “Hebbian” adaptation (see [172]) and
scenarios with β < 0 as anti-Hebbian adaptation, as they observed that oscillator
synchrony is promoted when β > 0 and inhibited when β < 0.

6.6 Higher-Order Structures and Dynamics

Most studies of networks have focused on networks with pairwise connections, in
which each edge (unless it is a self-edge, which connects a node to itself) connects
exactly twonodes to eachother.However,many interactions—such as playinggames,
coauthoring papers and other forms of collaboration, and horse races—often occur
between three or more entities of a network. To examine such situations, researchers
have increasingly studied “higher-order” structures in networks, as they can exert a
major influence on dynamical processes.

6.6.1 Hypergraphs

Perhaps the simplest way to account for higher-order structures in networks is to
generalize from graphs to “hypergraphs” [1]. Hypergraphs possess “hyperedges”
that encode a connection between an arbitrary number of nodes, such as between
all coauthors of a paper. This allows one to make important distinctions, such as
between a k-clique (in which there are pairwise connections between each pair of
nodes in a set of k nodes) and a hyperedge that connects all k of those nodes to each
other, without the need for any pairwise connections.
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One way to study a hypergraph is as a “bipartite network”, in which nodes of a
given type can be adjacent only to nodes of another type. For example, a scientist can
be adjacent to a paper that they have written [173] and a legislator can be adjacent to
a committee on which they sit [174]. It is important to generalize ideas from graph
theory to hypergraphs, such as by developingmodels of random hypergraphs [8, 175,
176].

6.6.2 Simplicial Complexes

Another way to study higher-order structures in networks is to use “simplicial com-
plexes” [13, 177, 178]. A simplicial complex is a space that is built from a union of
points, edges, triangles, tetrahedra, and higher-dimensional polytopes (see Fig. 6.1d).
Simplicial complexes are topological spaces that one can use to approximate other
topological spaces and thereby capture some of their properties.

A p-dimensional simplex (i.e. a p-simplex) is a p-dimensional polytope that is
the convex hull of its p + 1 vertices (i.e. nodes). Any p̃-dimensional subset (with
p̃ < p) of a p-simplex that is itself a simplex is a face of the p-simplex. A simplicial
complex K is a set of simplices such that (1) every face of a simplex from S is also
in S and (2) the intersection of any two simplices σ1, σ2 ∈ S is a face of both σ1

and σ2. An increasing sequence ∅ = K0 ⊆ K1 ⊆ K2 ⊆ · · · ⊆ Kl = K of simplicial
complexes forms a filtered simplicial complex; each Ki is a subcomplex. As discussed
in [13] and references therein, one can examine the homology of each subcomplex. In
studying the homology of a topological space, one computes topological invariants
that quantify features of different dimensionalities [178]. One studies the “persistent
homology” of a filtered simplicial complex to quantify the topological structure
of a data set (e.g. a point cloud) across multiple scales of such data. The goal of
such “topological data analysis” is to measure the “shape” of data in the form of
connected components, “holes” of various dimensionality, and so on [13]. From the
perspective of network analysis, this yields insight into types of large-scale structure
that complement traditional ones (such as community structure). See [179] for a
friendly, nontechnical introduction to topological data analysis.

A natural goal is to generalize ideas from network analysis to simplicial com-
plexes. Important efforts include generalizing configurationmodels of randomgraphs
[180] to random simplicial complexes [181, 182]; generalizing well-known network
growth mechanisms, such as preferential attachment [183]; and developing geomet-
ric notions, like curvature, for networks [184]. An important modeling issue when
studying higher-order network data is the question of when it is more appropriate (or
convenient) to use the formalisms of hypergraphs or simplicial complexes.

The computation of persistent homology has yielded insights into a diverse set of
models and applications in network science and complex systems. Examples include
granular materials [54, 185], functional brain networks [177, 186], quantification of
“political islands” in voting data [187], percolation theory [188], contagion dynamics
[95], swarming and collective behavior [189], chaotic flows inODEs andPDEs [190],
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diurnal cycles in tropical cyclones [191], and mathematics education [192]. See the
introduction to [13] for pointers to numerous other applications.

Most uses of simplicial complexes in network science and complex systems have
been in the context of topological data analysis (especially the computation of per-
sistent homology) and its applications [13, 14, 193]. In my discussion, however, I
focus instead on a somewhat different (and increasingly popular) topic: the general-
ization of dynamical processes on and of networks to simplicial complexes to study
the effects of higher-order interactions on network dynamics. Simplicial structures
influence the collective behavior of the dynamics of coupled entities on networks
(e.g. they can lead to novel bifurcations and phase transitions), and they provide
a natural approach to analyze p-entity interaction terms, including for p ≥ 3, in
dynamical systems. Existing work includes research on linear diffusion dynamics
(in the form of Hodge Laplacians, such as in [194]) and generalizations of a variety
of other popular types of dynamical processes on networks.

6.6.3 Coupled Phase Oscillators with p-Body Interactions
with p ≥ 3

Given the ubiquitous study of coupled Kuramoto oscillators [75], a sensible starting
point for exploring the impact of simultaneous coupling of three or more oscillators
on a system’s qualitative dynamics is to study a generalized Kuramoto model. For
example, to include both two-entity (“two-body”) and three-entity interactions in a
model of coupled oscillators on networks, we write [195]

ẋi = ωi (xi ) +
∑

j,k

fi jk(xi , x j , xk) , (6.7)

where ωi describes the intrinsic dynamics of oscillator i and the three-oscillator
interaction term fi jk can also encompass two-oscillator interaction terms fi j (xi , x j ).

An example of N coupled Kuramoto oscillators with three-body interactions is
[195]

θ̇i = ωi + 1

N

∑

j

[
ai j sin(θ j i + α1i j ) + bi j sin(2θ j i + α2i j )

]

+ 1

N 2

∑

j,k

[
ci jk sin(θ j i + α3i jk) cos(θki + α4i jk)

]
, (6.8)

where we draw the coefficients ai j , bi j , ci jk , α1i j , α2i j , α3i jk , and α4i jk from various
probability distributions. Including three-body interactions leads to a large variety
of intricate dynamics, and I anticipate that incorporating the formalism of simplicial
complexes will be very helpful for categorizing the possible dynamics.
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In the last few years, several other researchers have also studied Kuramotomodels
with three-body interactions [196–198]. A recent study [198], for example, discov-
ered a continuum of abrupt desynchronization transitions with no counterpart in
abrupt synchronization transitions. There have been mathematical studies of cou-
pled oscillators with interactions of three or more entities using methods such as
normal-form theory [199] and coupled-cell networks [26].

An important point, as one can see in the above discussion (which does not
employ the mathematical formalism of simplicial complexes), is that one does not
necessarily need to explicitly use the language of simplicial complexes to study
interactions between three or more entities in dynamical systems. Nevertheless, I
anticipate that explicitly incorporating the formalism of simplicial complexes will
be useful both for studying coupled oscillators on networks and for other dynamical
systems. In upcoming studies, it will be important to determine when this formalism
helps illuminate the dynamics of multi-entity interactions in dynamical systems and
when simpler approaches suffice.

6.6.4 Social Dynamics and Simplicial Complexes

Several recent papers have generalized models of social dynamics by incorporating
higher-order interactions [62, 200–202]. For example, perhaps somebody’s opinion
is influenced by a group discussion of three or more people, so it is relevant to
consider opinion updates that are based on higher-order interactions. Some of these
papers use some of the terminology of simplicial complexes, but it is mostly unclear
(except perhaps for [201]) how the models in those papers take advantage of the
associated mathematical formalism, so arguably it often may be unnecessary to use
such language.Nevertheless, thesemodels are very interesting and provide promising
avenues for further research.

Petri and Barrat [62] generalized activity-driven models to simplicial complexes.
Such a simplicial activity-driven (SAD) model generates time-dependent simplicial
complexes, on which it is desirable to study dynamical processes (see Sect. 6.4), such
as opinion dynamics, social contagions, and biological contagions.

The simplest version of the SAD model is defined as follows.

• Each node i has an activity rate ai that we draw independently from a distribution
F(x).

• At each discrete time step (of length �t), we start with N isolated nodes. Each
node i is active with a probability of ai�t , independently of all other nodes. If
it is active, it creates a (p − 1)-simplex (forming, in network terms, a clique of
p nodes) with p − 1 other nodes that we choose uniformly and independently at
random (without replacement). One can either use a fixed value of p or draw p
from some probability distribution.

• At the next time step, we delete all edges, so all interactions have a constant
duration. We then generate new interactions from scratch.
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This version of the SAD model is Markovian, and it is desirable to generalize it in
various ways (e.g. by incorporating memory or community structure).

Iacopini et al. [200] recently developed a simplicial contagion model that general-
izes an SIS process on a graph. Consider a simplicial complex K with N nodes, and
associate each node i with a state xi (t) ∈ {0, 1} at time t . If xi (t) = 0, node i is part
of the susceptible compartment S; if xi (t) = 1, it is part of the infected compartment
I . The density of infected nodes at time t is ρ(t) = 1

N

∑N
i=1 xi (t). Suppose that there

are D parameters �1, . . . ,�D (with D ∈ {1, . . . , N − 1}), where �d represents the
probability per unit time that a susceptible node i that participates in a d-dimensional
simplex σ is infected from each of the faces of σ , under the condition that all of the
other nodes of the face are infected. That is, �1 is the probability per unit time that
node i is infected by an adjacent node j via the edge (i, j). Similarly, �2 is the
probability per unit time that node i is infected via the 2-simplex (i, j, k) in which
both j and k are infected, and so on. The recovery dynamics, in which an infected
node i becomes susceptible again, proceeds as in the SIR model that I discussed in
Sect. 6.4.2, except that the node is again susceptible to the contagion. One can envi-
sion numerous interesting generalizations of this model (e.g. ones that are inspired
by ideas that have been investigated in contagion models on graphs).

6.7 Outlook

The study of networks is one of the most exciting and rapidly expanding areas of
mathematics, and it touches on myriad other disciplines in both its methodology and
its applications. Network analysis is increasingly prominent in numerous fields of
scholarship (both theoretical and applied), it interacts very closely with data science,
and it is important for a wealth of applications.

My focus in this chapter has been a forward-looking presentation of ideas in
network analysis. My choices of which ideas to discuss reflect their connections to
dynamics and nonlinearity, although I have also mentioned a few other burgeoning
areas of network analysis in passing. Through its exciting combination of graph the-
ory, dynamical systems, statistical mechanics, probability, linear algebra, scientific
computation, data analysis, and many other subjects—and through a comparable
diversity of applications across the sciences, engineering, and the humanities—the
mathematics and science of networks has plenty to offer researchers for many years.
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Chapter 7
Integrability and Nonlinear Waves

Mark J. Ablowitz

Abstract Major developments in the study of nonlinear wave equations were the
discovery of the soliton, its connection to the eigenvalue of a linear operator and
solutions of the underlying equations by the inverse scattering transform. Inverse
scattering transform provides the solution to the initial value problem of a class of
nonlinear equations. In this article the background, key ideas and methodology of
inverse scattering transform are discussed in connectionwith somewell-known phys-
ically important nonlinear equations including the Korteweg–de Vries and nonlinear
Schrödinger equations. More recently a new class of nonlocal nonlinear Schrödinger
type equations have been found to be integrable; they arise from new symmetries in
the associated scattering problem that had not been previously known. The solution
of these novel systems is also discussed in this review. Other methods of solution of
soliton/integrable equations and comments regarding the future are also included.

7.1 Introduction

The topic of this chapter, integrability and nonlinear waves, has an interesting history.
In fact, on both topics separately, integrability and nonlinear waves, one can write
lengthy histories. What is surprising is that these topics were found to be intimately
related in the 1960s. This is where we shall begin. In the mid 1960s M. Kruskal
learned about the so-called Fermi–Pasta–Ulam (FPU) problem which is a nonlinear
spring mass system (see Fig. 7.1) with force law:

F(�) = −k(� + α �2), k, α const.

We refer the reader to [1] for additional background discussion about the FPU prob-
lem. This spring mass system had shown an unusual property, periodic initial con-
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Fig. 7.1 Fermi–Pasta–Ulam mass-spring system

ditions nearly recurred after some time. To understand this recurrence phenomena
Zabusky and Kruskal [2] took the continuum limit and they obtained the following
equation

ut + uux + δ2uxxx = 0, u(x, 0) = cos(πx) (7.1)

governing unidirectional waves; here δ2 is related to α. Numerical computations
were carried out in [2]; it was found that (7.1) like the FPU problem exhibited near
recurrence of initial states. The explanation of this recurrence was attributed to the
way special solutions of this equation interacted. In order to simplify the discussion,
(7.1) can be transformed to the following normalized form

ut + 6uux + uxxx = 0 (7.2)

Equation (7.2) has the following special localized solution called a solitary wave

us(x, t) = 2κ2sech2κ(x − 4κ2t − x0) (7.3)

where κ, x0 are constant. Remarkably Zabusky and Kruskal found that two such
waves, with different amplitudes, big one (amplitude: κ1) to the left of the small one
(amplitude: κ2), maintained the same amplitude (and speed) after they interacted (see
Fig. 7.2) they termed these localized waves solitons. Later in this Chapter we discuss
the mathematical underpinnings of this concept.

As Kruskal and Zabusky found out, (7.2) was one that was studied many years
earlier. Namely in 1895 in the context of small amplitude, shallow water waves
D. Korteweg and his student de Vries [3] derived this equation. In physical units they
found the following unidirectional equation

1√
gh

ηt + ηx + 3

2h
ηηx + h2

2

(
1

3
− T̂

)
ηxxx = 0 (7.4)

where η is the wave elevation, g gravity, h mean depth, T̂ normalized surface tension
(T̂ = T

ρgh2 , ρ density). This equation can be transformed to the normalized (7.2)
whichwe term theKorteweg–deVries (KdV) equation. Korteweg and deVries found
a special periodic solution in terms of Jacobian elliptic functions which they termed
the cnoidal wave. A special limit of the cnoidal wave is the solitary wave. When
1
3 − T̂ > 0 (most water waves have ‘small’surface tension) the solitarywave is one of

elevation.When 1
3 − T̂ < 0 (‘large’ T̂ can occur with high surface tension fluids like
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Fig. 7.2 Typical soliton interaction in the KdV equation. Here, κ1 > κ2

Mercury) the solitary wave is one of depression. Both have been observed, though
solitary waves of elevation is the standard case. The solitary wave of depression
was only observed in 2002 [4]. We remark that shallow water waves was heavily
studied by Boussinesq in the 1870s cf. [5]. Boussinesq was primarily interested in
two directional waves and found solitary waves for such equations; in his works he
did mention that one could find unidirectional equations such as the KdV equation.

We remark that the name soliton has resonatedwithin the broader physical science
and engineering community. To many researchers a soliton only means a localized
wave, namely this is what a solitary wave was originally called. So, many researchers
do not use the term soliton in the context of how it was originally derived; i.e. solitons
having special interaction properties and being associated with special equations
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such as (7.2). In this paper when we refer to a soliton we mean one that has special
properties.

Solitary waves of elevation were first observed by John Scott Russell in 1834
while riding on horseback next to the union canal. He discusses this in his report
to the British Association for the Advancement of Science in 1844 [6] where he
described a “rounded smooth […] well-defined heap of water”. He made the follow-
ing often quoted remark: “Such, in the month of August 1834, was my first chance
interview with that singular and beautiful phenomenon …”. Though he termed this
the “Great Wave of Translation”, it later became known as the solitary wave. Russell
also described experiments that he carried out on these solitary waves. Nevertheless
Russell’s work was controversial and not widely believed. It wasn’t until Boussinesq
and Korteweg–de Vries research with the underlying mathematics that explained
Russell’s observation was the controversy put to rest.

Earlier in the 1960s applied mathematicians realized that the KdV equation was
universal. It always arises inweakly dispersivemediawith quadratically small ampli-
tude cf. [7]. Soon after solitons were computationally discovered M. Kruskal and
his postdoctoral associate R. Miura began studying conservation laws. The idea was
that somehow conservation laws might explain the soliton interaction property. This
proved to be the tip of the iceberg. They began finding numerous conservation laws
associated with the KdV equation (7.2) and another closely aligned equation the
so-called modified KdV (mKdV) equation

vt − 6v2vx + vxxx = 0. (7.5)

They found an infinite number of conservation laws to these equations [8] and the
following transformation [9] between solutions of the mKdV and KdV equations

u(x, t) = v2(x, t) − vx (x, t). (7.6)

At first they thought that the above transformation might be similar to the explicit
Cole-Hopf transformation associated with the Burgers equation cf. [7]; since one can
view this transformation as a Riccati equation for v in terms of u they linearized the
transformation via u(x, t) = vx (x, t)/v(x, t) to find

vxx (x, t) + u(x, t)v = 0 (7.7)

This did not lead to any useful result regarding linearization. Then they argued that
since the KdV equation is Galilean invariant one should be able to add a constant
to u(x, t) without loss of generality. Hence they were led to the time independent
Schrödinger equation

Lsv = vxx (x, t) + u(x, t)v = λv(x, t). (7.8)

In [10] a second operator was found that was compatible with the KdV equation
which we write in the equivalent form below
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vt (x, t) = Mv = (γ + ux (x, t))v(x, t) − (4λ + 2u(x, t))v(x, t). (7.9)

We note that from (7.8) λv converts to (∂2
x + u)v; hence equivalently there are three

derivatives in (7.9). Taking the time derivative of Lsv and two x−derivatives of
vt (x, t) shows that λt = 0 if and only if the KdV equation is satisfied. KdV is said
to be an isospectral flow associated with the time independent Schrödinger equation
(7.8). This allowedGardner, Greene, Kruskal andMiura to develop amethod of solu-
tion (i.e. a linearization) to the KdV equation for rapidly decaying data [10]. More-
over solitons were associated with eigenvalues of the time independent Schrödinger
equation. No question, this was a stunning and remarkable result.

Shortly afterwards Lax [11] generalized these ideas. He introduced two operators

Lv(x, t) = λv(x, t), vt (x, t) = Mv(x, t) (7.10)

Taking the time derivative of the first equation and using the second equation Lax
found

Lt + [L,M] = 0, λt = 0 (7.11)

where the bracket represents the commutator [L,M] = LM − ML. This result
implies that whenever the formula (7.11) can be associatedwith a nonlinear evolution
equation, it is an isospectral flow associated with L.

The next important development was by Zakharov and Shabat [12] who criti-
cally used Lax ideas to find two compatible operators associated with the nonlinear
Schrödinger (NLS) equation

iqt + qxx + 2q2q∗ = 0 (7.12)

where ∗ represents the complex conjugate. This allowed Zakharov and Shabat to
linearize the NLS equation for rapidly decaying data. Like the KdV equation, the
NLS equation is universal. It occurswhenever one hasweak nonlinearity and a slowly
varying wave envelope.

Learning about the Zakharov and Shabat work Ablowitz, Kaup, Newell and Segur
(AKNS) [13] generalized the approach in [12]. They introduced the operators

vx (x, t) = Lv(x, t) =
(−ik q(x, t)

r(x, t) ik

)
v(x, t), k = const. (7.13)

vt (x, t) = Mv(x, t), M = M[q, r; λ], 2 × 2 matrix (7.14)

Note from (7.13–7.14): Taking the t-derivative of the first equation and setting it equal
to the x-derivative of the second equation leads to equations for the components of
M. In [13] methods to find compatible operators were developed. This led to classes
of nonlinear equations which are compatible with these operators. In general these
equations are evolution equations for both r(x, t) and q(x, t). The general evolution
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operator that was found to be associated with these equations is sometimes referred
to as a recursion operator.

When there are symmetries between r(x, t) and q(x, t) we find one scalar equa-
tion. Below we list the best known of these equations and the symmetries between
r(x, t) and q(x, t) that these equations satisfy.

• NLS equation:

r(x, t) = ∓q∗(x, t) ∈ C : iqt + qxx ± 2q2q∗ = 0 (7.15)

• KdV equation:
r(x, t) = −1 : qt + qxxx + 6qqx = 0 (7.16)

• mKdV equation:

r(x, t) = ∓q(x, t) ∈ R : qt + qxxx ± 6q2qx = 0 (7.17)

• sine-Gordon equation :

r(x, t) = −q(x, t) = ux (x, t)/2 ∈ R : uxt = sin u (7.18)

• sinh-Gordon equation:

r(x, t) = q(x, t) = ux (x, t)/2 ∈ R : uxt = sinh u (7.19)

Each of these equations have a differentM operator. AKNS used this formulation
to construct amethod of solution/linearization to all of these equations and they found
that solitons correspond to eigenvalues of the operator L. They termed this method
the Inverse Scattering Transform (IST) cf. [13, 14].

Soon after the above results were found, many new classes of nonlinear evolution
equations were obtained; some of the physically interesting ones are listed below cf.
[14, 15].

From matrix AKNS type systems the vector NLS equation was found

iqt + qxx + ||q||2q = 0 (7.20)

where q = (q1, q2, ...qn), ||q||2 = ∑
j |q j |2; similarly the three wave interaction

equations
q1,t + c1q1,x = γ1q

∗
2q∗

3 : 1, 2, 3 cyclic, c1, γ1 const. (7.21)

were solved by IST.1

Discrete nonlinear equations were solved by IST; two of the most interesting are
the Toda lattice equation

1By solved we mean linearized in terms of integral equations.
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qn,t t = e−(qn−qn−1) − e−(qn+1−qn) (7.22)

and the integrable discrete NLS equation

iqn,t = qn+1 + qn−1 ± |qn|2(qn+1 + qn−1) (7.23)

There were also nonlinear integro-differential equations; a well-known one is the
Benjamin–Ono equation

qt + qqx + H (qxx ) = 0 (7.24)

where Hq(x) = 1
π
P

∫ ∞
−∞

q(x ′)
x ′−x dx ′ is the Hilbert transform.

There were also two space one time dimensional systems solved via IST; two
important ones are the Kadomtsev–Petviashvili (KP) equations

∂x (qt + 6qqx + qxxx ) ± 3qyy = 0 : KPI (-), KPII (+) (7.25)

and the Davey–Stewartson (DS) equation

iqt + 1

2

(
γ qxx + qyy

) = (
φ − σ |q|2) q

φxx − γφyy = 2
(
σ |q|2)

xx
(7.26)

where γ = ±1, σ = ±1.
Indeed there is also a four dimensional system that is integrable: the self-dual

Yang–Mills system cf. [15].
The above list is only representative. There are many, many more. Most of these

equations were derived/solved by IST in the 1970–1980s.
In a seemingly unrelated development Bender and Boettcher [16] found that the

linear Schrödinger equation

iqt + qxx + V (x)q = 0 , with V (x) = V ∗(−x) (7.27)

could have real spectra. They proposed this symmetry as a different way to under-
stand/construct quantummechanical waves. A few years later optics researchers [17,
18] found that these ideas could be used to construct new optical wave modes which
were subsequently observed in laboratory experiments [19]. This has become a very
active field of research in optics.

This motivated Ablowitz and Musslimani to look for new nonlinear equations
with this symmetry. They found [20] the following integrable NLS equation with PT
symmetry

iqt (x, t) + qxx (x, t) + V (x, t; q)q(x, t) = 0 with V(x, t; q) = ±2q(x, t)q∗(−x, t)
(7.28)

wherewe see thatV (x, t; q) = V ∗(−x, t; q); alternatively the above equation,which
we have termed the PT-NLS equation, can be written in the form
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iqt + qxx ± 2q2(x, t)q∗(−x, t) = 0 (7.29)

Remarkably this equation is associated with the AKNS eigenvalue problem (7.13)
with the symmetry r(x, t) = ∓q∗(−x, t). This was the first time anyone had found
nonlinear equations with this symmetry. In 2016 Ablowitz and Musslimani [21]
developed the inverse scattering transform for this PT-NLS equation and found how
the associated symmetries in scattering space were found in IST.

In fact there are a huge number of nonlocal equations associated with these and
similar symmetries. A few integrable equations with PT symmetry are listed below.

• Integrable PT-symmetric vector NLS equation

iqt + qxx + q(x, t) · q∗(−x, t)q = 0 (7.30)

where q = (q1, q2, ...qN )

• Integrable PT-symmetric discrete NLS equation

iqn,t = qn+1 + qn−1 ± qn(t)q
∗
−n(t)(qn+1 + qn−1) (7.31)

The IST associated with this PT-DNLS equation was outlined in [22].
• Integrable nonlocal PT-symmetric DS equation

iqt + 1

2

(
γ qxx + qyy

) = (
φ − σq(x, t)q∗(−x, t)

)
q

φxx − γφyy = 2
(
q(x, t)q∗(−x, t)

)
xx (7.32)

where γ = ±1, σ = ±1; x = (x, y); see [23].

In 2017 Ablowitz and Musslimani [24] went further and found many more new
equations; in this case the equations are nonlocal in both space and time. Two other
nonlocal equations of NLS type with their associated q, r symmetries are the fol-
lowing:

• Reverse space-time (RST) NLS equation

iqt + qxx ± 2q2(x, t)q(−x,−t) = 0 (7.33)

• Reverse time (RT) NLS equation

iqt + qxx ± 2q2(x, t)q(x,−t) = 0, r(x, t) = ∓q(x,−t) (7.34)

Indeed, all of the NLS equations that are associated with the AKNS scattering
system where the time operator M in (7.14) is a quadratic polynomial in powers of
k; e.g. the (1, 1) component ofM is given byM1,1 = 2ik2 + iq(x, t)r(x, t), the two
functions (potentials) q(x, t), r(x, t) satisfy the coupled system
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iqt (x, t) = qxx (x, t) − 2r(x, t)q2(x, t) (7.35)

− irt (x, t) = rxx (x, t) − 2q(x, t)r2(x, t) (7.36)

Said differently, the classical NLS equation (7.12) with the symmetry r(x, t) =
∓q∗(x, t), the PT-NLS equation (7.29) with the symmetry r(x, t) = ∓q∗(−x, t),
the RST-NLS equation (7.33) with the symmetry r(x, t) = ∓q(−x,−t) and the RT-
NLS equation (7.34)with the symmetry r(x, t) = ∓q∗(x,−t), all satisfy the coupled
system (7.35)–(7.36).

Interestingly, the coupled system (7.35)–(7.36) and hence all these nonlocal NLS
reductions can be derived by asymptotic reductions of physical systems. In [25]
these systems were derived from small amplitude quasi-monochromatic reductions
of the KdV, nonlinear Klein-Gordon and water wave equations; indeed this reduction
procedure leads to the conclusion that the coupled system (7.35)–(7.36) is universal.

In the literature nonlocal systems and generalizations have been considered from
many points of view including how the solution of these nonlocal equations depend
on long distance interactions are related to physical phenomena. Recently Yang [26]
showed that the 2 × 2 vector Manakov system [27] has a nonlocal reduction of
similar type to those discussed here; this Manakov system has numerous physical
applications. Given the large number of new nonlocal systems found it is expected
that many further physically based nonlocal systems will be obtained.

Whenwe consider the time operatorM in (7.14) as different polynomial functions
of k different equations result from the AKNS procedure. For example when the time
operator M is cubic we find the nonlocal RST-mKdV equation

qt + qxxx ± 6q(x, t)q(−x,−t)qx (x, t) = 0 , r(x, t) = ∓q(−x,−t) (7.37)

and when the time operator M is inverse power of k we find the nonlocal RST
sine/sinh-Gordon equations

qxt + 2s(x, t)q(x, t) = 0, sx (x, t) = ±(q(x, t)q(−x,−t))t , r(x, t) = ∓q(−x, −t),
(7.38)

We remark that the standard sine/sinh-Gordon equations arise when r(x, t) =
∓q(x, t); in this case there is a further reduction to sine/sinh Gordon equations
by taking q(x, t) = ∓ux (x, t)/2 cf. (7.18)–(7.19). There are no apparent further
reductions in the nonlocal RST case.

At this point we have seen that there aremany integrable nonlinear wave equations
both local and nonlocal.

The basic methodology of the inverse scattering transform will be discussed in
the next section. Details and background information can be found in the following
references [14, 15, 28–31]. The reason we discuss IST for rapidly decaying data in
detail is the following.

1. Solitons are related to eigenvalues of the L.
2. From given initial data one can determine the number of eigenvalues and hence

the number of solitons.
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3. Phase shifts of solitons can be determined from initial data.
4. Long time asymptotic structure of the solution can be obtained from initial data;

e.g. for the KdV equation (7.2) the solitons move to the right away from where
localized initial data is given. The central portion of the solution decays like
O(1/t2/3) in the region the where the localized initial conditions were prescribed.
This portion is dominated by the self-similar solution which is related to the
second Painlevé equation. There is also a collisionless shock layer where the data
decays like O((log(t)/t)2/3) and an oscillatory region to the left which decays
like O(1/t1/2); its amplitude was determined in [14, 32]; the phase of the solution
in the oscillatory region was determined a little later [33].

5. For the NLS and mKdV equations the long time amplitude and phase was found
in [14, 27, 32–34] and later in [35] where a valuable steepest descent Riemann–
Hilbert approach was developed.

6. Underlying Hamiltonian structures and action-angle variables associated with
these equations were found.

7. An infinite number of conserved quantities/conservation laws can be determined.

There are other valuable approaches to understand solutions to integrable problems.
But only IST for rapidly decaying data (and also datawhose amplitude decays rapidly
to constants at infinity) can do all of the above.

We also note that the periodic boundary value problem has attracted considerable
attention cf. [14, 29, 36, 37]. These elegant algebro-geometric methods enable one
to find multi-phase (also called finite gap) solutions to a range of nonlinear wave
equations. We remind the reader that the single phase solution of the KdV equation
was first obtained by Korteweg and de Vries [3]; they termed this solution as the
cnoidal wave a limit of which is the solitary wave solution.

Later we will briefly discuss what we refer to as direct methods. These techniques
allow one to obtain special solutions such as multi-soliton solutions via algebraic
methods. They do not connect to the initial value problem.

7.2 Inverse Scattering Transform

Next we will outline the method of solution associated with second order systems
(7.13)–(7.14); asmentioned above, themethod is termed the InverseScatteringTrans-
form (IST). We note that while here we will concentrate on 2 × 2 systems, higher
oder, discrete and multi-dimensional systems can also be analyzed.

The scheme is given by the following diagram

q(x, 0), r(x, 0)
Direct Scattering−−−−−−−−→ L : S(k, 0)⏐⏐	t : time evolution: M

q(x, t), r(x, t)
Inverse Scattering (RH)←−−−−−−−−−−− S(k, t)
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Importantly we supplement the IST scheme with additional symmetry conditions in
physical space such as r(x, t) = ∓q∗(x, t), r(x, t) = ∓q∗(−x, t), r(x, t) =
∓q(−x,−t), .... We will see that these physical space symmetry conditions require
symmetry conditions on scattering data.

7.2.1 Direct Scattering

For potentials q, r decaying sufficiently fast at infinity (i.e. functions q, r ∈ L1), lin-
early independent eigenfunctions are defined by the following boundary conditions,
k ∈ R (note: in this section, for simplicity, the time variable t is suppressed):

φ(x, k) ∼
(
1
0

)
e−ikx , φ̄(x, k) ∼

(
0
1

)
eikx as x → −∞ (7.39a)

ψ(x, k) ∼
(
0
1

)
eikx , ψ̄(x, k) ∼

(
1
0

)
e−ikx as x → +∞ (7.39b)

Note: φ̄(x, k) is NOT the complex conjugate of φ(x, k), etc.; we use ∗ for complex
conjugation instead.

Since L is a second order operator we have

φ(x, k) = a(k)ψ̄(x, k) + b(k)ψ(x, k) (7.40a)

φ̄(x, k) = ā(k)ψ(x, k) + b̄(k)ψ̄(x, k) (7.40b)

Hence the ‘scattering data’: a(k), ā(k), b(k), b̄(k) satisfy:

a(k) = W (φ,ψ), ā(k) = W (ψ̄, φ̄) (7.41a)

b(k) = W (ψ̄, φ), b̄(k) = W
(
φ̄, ψ

)
(7.41b)

where the Wronskian of u and v is given by

W (u, v) = u(1)v(2) − u(2)v(1)

By formulating appropriate integral equations, one can prove that the functions

M(x, k) = φ(x, k)eikx , N (x, k) = ψ(x, k)e−ikx

are analytic and bounded in the upper half plane (UHP) and

M̄(x, k) = φ̄(x, k)e−ikx , N̄ (x, k) = ψ̄(x, k)eikx

are analytic and bounded in the lower half plane (LHP) cf. [14, 28].
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From the first of equations (7.41) we can show that a(k), ā(k) are analytic in the
UHP/LHP respectively.

Further analysis shows that the required scattering data we will need in order to
reconstruct the potentials q, r are the ‘reflection’ coefficients

ρ(k) = b(k)/a(k), ρ̄(k) = b̄(k)/ā(k) : reflection coef.

and certain information about so-called discrete spectrum discussed below.

(i) Location of the zero’s of a(k j ) = 0 : j = 1, 2...J and ā(k̄ j ), j = 1, 2... J̄

k j and k̄ j are the eigenvalues. Proper (generic) eigenvalues correspond to square
integrable (L2) bound states which are simple and do not lie on the real axis.

At a(k j ) = 0, k j = ξ j + iη j , η j > 0, j = 1, 2, ...J we have the following linear
dependence

φ j (x) = b jψ j (x) where φ j (x) = φ(x, k j ), ψ j (x) = ψ(x, k j ); (7.42)

Similarly at ā(k̄ j ) = 0, k̄ j = ξ̄ j − i η̄ j , η̄ j > 0, j = 1, 2, ... J̄ we also have linear
dependence

φ̄ j (x) = b̄ j ψ̄ j (x) where φ̄ j (x) = φ̄(x, k̄ j ), ψ̄ j (x) = ψ̄(x, k̄ j ). (7.43)

To reconstruct q, r we will also need the so-called ‘norming constants’

(ii) C j = b j/a′(k j ), j = 1, 2, ...J ; C̄ j = b̄ j/ā′(k̄ j ), j = 1, 2, ... J̄ ,

here a′(k j ) = da(k)/dk)(k = k j ).

Summary: for the inverse problem for q, r , and linearization required scattering
data:

S(k) = {
ρ(k), {k j , C j }, j = 1, 2, ..., J ; ρ̄(k), {k̄ j , C̄ j }, j = 1, 2, ... J̄

}

where ρ(k) = b(k)/a(k), ρ̄(k) = b̄(k)/ā(k) reflection coefficients and discrete
spectra:

k j : a(k j ) = 0, j = 1, 2...J ; k j : a(k j ) = 0, j = 1, 2, ... J̄ : eigenvalues

C j = b j/a′(k j ), j = 1, 2...J ; C̄ j = b̄ j/ā′(k̄ j ), j = 1, 2, ... J̄ : norming constants

7.2.2 Symmetries in Scattering Space

In this section we will discuss symmetries associated with the classical NLS and PT-
NLS equations. Additional information and symmetries can be found in our papers
[21, 24].



7 Integrability and Nonlinear Waves 173

When r(x) = σq∗(x), σ = ∓1 e.g. classical NLS equation (7.12) we find

ψ(x, k) = P1ψ
∗(x, k∗), φ(x, t, k) = PT

1 φ∗(x, k∗)

where

P1 =
(
0 1
σ 0

)

Thus we have that the analytic functions in the UHP φ(x, k), ψ(x, k) are related to
analytic functions in the LHP ψ̄, φ̄. This relationship is the analog of the Schwarz
symmetry principle for these eigenfunctions. From this key relationshipwe canderive
symmetries of the scattering data

ā(k) = a∗(k∗), k̄ j = k∗
j , C̄ j (t) = −C∗

j (t), j = 1, 2, ...J, b̄(k, t) = σb∗(k, t)
(7.44)

Thus the data we need is reduced by a factor of two. We also note that we can show
that only when σ = −1 there are discrete eigenvalues.

When r(x) = σq∗(−x), σ = ∓1 e.g. PT-NLS equation (7.29) we find

ψ(x, k) = P2φ
∗(−x,−k∗), ψ(x, k) = PT

2 φ
∗
(−x,−k∗)

P2 =
(
0 −σ

1 0

)

In this case we have that ψ(x, t, k) is related to φ(−x, t,−k∗) (both analytic in the
UHP) and ψ̄(x, t, k) is related to φ̄(−x, t,−k∗) (both analytic in the LHP). From
this we can find the following symmetries of the scattering data.

a(k, t) = a∗(−k∗, t), ā(k, t) = ā∗(−k∗, t); (7.45)

hence the pair: k j ;−k∗
j , j = 1, 2..., J , are eigenvalues and similarly the pair

k̄ j ;−k̄∗
j , j = 1, 2..., J are eigenvalues.

Note: k j is unrelated to k̄ j ; i.e. they ‘live in separate worlds’. We also find

b̄(k, t) = σb∗(−k, t), k ∈ R

When k j = iη j , k̄ j = −i η̄ j there is a simple relation among parts of the norming
constants; namely:

C j (0) = b j/a′(k j), b j = eiθ j , θ j ∈ R, j = 1, 2..., J

C̄ j (0) = b̄ j/ā′(k̄ j ), b̄ j = ei θ̄ j , θ̄ j ∈ R, j = 1, 2..., J
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In this case we need to compute a′(k j ), ā′(k̄ j ) via the trace formulae. The trace
formulae determine a(k), ā(k) in terms of the eigenvalues k j , k̄ j and b(k), b̄(k);
these formulae are given by

For Im(k) ≥ 0 :

a(k) =
J∏

m=1

(
k − km

k − k̄m

)
exp

{
1

2π i

∫ +∞

−∞

log
(
1 + b(ξ)b̄(ξ))

)
ξ − k

dξ

}
(7.46)

For Im(k) ≤ 0 :

ā(k) =
J∏

m=1

(
k − k̄m

k − km

)
exp

{
1

2π i

∫ +∞

−∞

log
(
1 + b(k)b̄(k)

)
ξ − k

dξ

}
(7.47)

We also note that we can show that only when σ = −1 for the case discussed above
there are discrete eigenvalues. We also see that the symmetry r(x) = σq∗(x) leads
to different scattering symmetries than does r(x) = σq∗(−x).

7.2.3 Inverse Scattering

From the scattering equations (7.40) dividing the first/second by a(k)/ā(k) and mul-
tiplying by eikx/e−ikx respectively and using the definitions of M(x, t, k), N (x, t, k)

and M̄(x, k), N̄ (x, t, k) (here we reinsert the time dependence which was omitted
in prior sections) we have

M(x, t, k)

a(k, t)
= N̄ (x, t, k) + ρ(k)e2ikx N (x, t, k) (7.48a)

M̄(x, t, k)

ā(k, t)
= N (x, t, k) + ρ̄(k)e−2ikx N̄ (x, t, k) (7.48b)

Sincewehave that M(x, k), a(k), N (x, k) are analytic in theUHPand M̄(x, k), ā(k),
N̄ (x, k) are analytic in the LHP the above system (7.48) define a Riemann–Hilbert
(RH) problem. Since the system is coupled we cannot solve it in closed form, as we
can do with scalar RH problems, we can nevertheless find integral equations that
govern the solution [38]. Furthermore these linear integral equations can be related
to Gel’fand-Levitan–Marchenko type integral equations.

We define the projectors: if f (ζ ), ζ ∈ R, is an integrable function the projection
operators are

P±[ f ](k) = 1

2π i

∫ +∞

−∞
f (ζ )

ζ − (k ± i0)
dζ.
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Thus if f+ (respectively f−) is analytic in the upper (respectively lower) k-plane and
f±(k) → 0 as |k| → ∞ for Im(k) > 0 (respectively Im(k) < 0), then

P± [
f±

] = ± f±, P± [
f∓

] = 0

P± are usually referred to as projection operators into the upper/lower half k-planes.
Then subtracting the poles at k j/k̄ j from each equation and taking the P± projec-

tors we find the following system of coupled integral equations for N (x, k), N̄ (x, k)

[28]

N (x, t, k) =
(
1
0

)
+

J∑
j=1

C j (t)e2ik j x N (x, t, k j )

k − k j

+ 1

2π i

∫ +∞

−∞
ρ(ζ, t)e2iζ x N (x, t, ζ )

ζ − (k − i0)
dζ , (7.49)

N (x, t, k) =
(
0
1

)
+

J∑
j=1

C j (t)e−2ik j x N (x, t, k j )

k − k j

− 1

2π i

∫ +∞

−∞
ρ(ζ, t)e−2iζ x N (x, t, ζ )

ζ − (k + i0)
dζ . (7.50)

In order to obtain a closed systemwe substitute k = k� and k = k� in (7.49) and (7.50)
respectively. This yields an additional linear algebraic integral system of equations.
Together these equations govern the inverse scattering problem for the eigenfunctions
N (x, t, k) and N (x, t, k).

To reconstruct the potentials for all time, q(x, t), r(x, t), we compare the asymp-
totic expansions of (7.49) and (7.50) to the asymptotic expansions of the eigenfunc-
tions and find cf. [28]

q(x, t) = 2i
J∑

�=1

C̄�(t)e
−2i k̄�x N̄1(x, k̄�) + 1

π

∫ ∞
−∞

ρ̄(ξ, t)e−2iξ x N̄1(x, t, ξ)dξ, . (7.51)

r(x, t) = −2i
J∑

�=1

C�(t)e
2ik�x N2(x, k�) + 1

π

∫ ∞
−∞

ρ(ξ, t)e−2iξ x N2(x, t, ξ)dξ, . (7.52)

where N (x, t, k) is a 2 × 1 vector: N (x, t, k) = [N1(x, t, k), N2(x, t, k)]t (with t

representing transpose) and similarly for N (x, t, k).
In the case with zero reflection coefficient, i.e. ρ(t) = ρ(t) = 0 the resulting

algebraic system is given by

N (x, t, k�) =
(
1
0

)
+

J∑
j=1

C j (t)e2ik j x N (x, t, k j )

k� − k j
, (7.53)
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N (x, t, k�) =
(
1
0

)
+

J∑
j=1

C j (t)e−2ik j x N (x, t, k j )

k� − k j
. (7.54)

These equations yield reflectionless eigenfunctions and from (7.51)–(7.52) reflec-
tionless potentials (with ρ(k, t) = ρ(k, t) = 0) when time is omitted or when time
is inserted the soliton solutions. Next we discuss the time dependence.

7.2.4 Time Dependence of Scattering Data

When time is included in (7.49)–(7.50)weneed to solve the coupled integral/algebraic
equations in order to find the eigenfunctions N (x, t, k), N (x, t, k); cf. [39] for a rig-
orous discussion of these and related issues. The time dependence of N (x, t, k),

N̄ (x, t, k) and the potentials q(x, t) and r(x, t) in (7.51) and (7.52) are encoded
in the reflection coefficients ρ(k, t), ρ̄(k, t) the eigenvalues and norming constants
C j (t) andC j (t).Their time evolution is derived from the compatible equations (7.13)
and (7.14). The space, time and space-time nonlocal NLS, mKdV and sG equations
belong to the same ‘hierarchy’, i.e. they all originate from the same scattering problem
(7.13) with different time operators M which in turn determines the time evolution
of the scattering data and norming constants. For the problems we are considering,
we find the following time dependence cf. [28]:

a(k, t) = a(k, 0), ā(k, t) = ā(k, 0),

i.e. a(k) and ā(k) and its zeros, which we have denoted by k j , k̄ j , j = 1, 2...J
respectively, are constant in time. For classical NLS and nonlocal NLS problems

bNLS(k, t) = b(k, 0)e−4ik2t ,

b̄NLS(k, t) = b̄(k, 0)e4ik2t , k ∈ R

CNLS
j (t) = C j (0)e

−4ik2j t , (7.55)

C
NLS
j (t) = C j (0)e

4ik
2
j t . (7.56)

Here, k j and k j are also referred to as soliton eigenvalues and C j (0), C̄ j (0) are the
norming constants. For mKdV and nonlocal mKdV problems

bmKdV(k, t) = b(k, 0)e8ik3t ,

b̄mKdV(k, t) = b̄(k, 0)e−8ik3t , k ∈ R
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CmKdV
j (t) = C j (0)e

8ik3j t , (7.57)

C
mKdV
j (t) = C j (0)e

−8ik
3
j t , (7.58)

7.2.5 Soliton Solutions

As indicated above pure soliton solutions arise when ρ(k, t) = ρ(k, t) = 0. This
means pure solitons are obtained from the linear algebraic system (7.53)–(7.54). In
the case of J = 1, i.e. a one soliton solution, we find

N2(x, t) = N̄1(x, t) = 1

1 + C1(t)C̄1(t)
(k1−k̄1)2e2i(k1−k̄1)x

. (7.59)

Hence the reflectionless potentials/one soliton solutions from (7.51)–(7.52) are given
by

q(x, t) = 2ie−2i k̄1x C̄1(t)

1 + C1(t)C̄1(t)
(k1−k̄1)2e2i(k1−k̄1)x

, (7.60)

r(x, t) = − 2ie2ik1x C1(t)

1 + C1(t)C̄1(t)
(k1−k̄1)2e2i(k1−k̄1)x

. (7.61)

For classical NLS substituting its time dependence and symmetries with J =
1, k1 = ξ + iη we find

qNLS(x, t) = 2ηsech(2η(x − 4ξ t − x0))e
−2iξ x+4i(ξ 2−η2)t−iψ0 , (7.62)

where e2ηx0 = |C1(0)|/(2η), ψ0 = arg(C1(0)) − π/2. We also note that the above
symmetries in scattering space imply that r(x, t) given by (7.61) automatically satisfy
the physical symmetry r(x, t) = ∓q∗(x, t).

Using the same ideas the one soliton solution associatedwith the PT-NLS equation
is given by

qPT(x, t) = 2(η + η̄)ei θ̄ e−2η̄x−4i η̄2t

1 − ei(θ+θ̄ )e−2(η+η̄)x+4i(η2−η̄2t)
. (7.63)

Alternatively this 1-soliton solution (7.63) can be written in the form

qPT(x, t) = (η + η̄)ei(θ̄−θ−π)/2e−(η̄−η)x e−2i(η2+η̄2)t

cosh
[
(η + η̄)x − 2i(η2 − η̄2)t − i(θ + θ̄ + π)/2

] . (7.64)

Next we make some remarks.
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• The solution q(x, t) given in (7.63) is doubly periodic in time with periods given
by T1 = π

2η̄2 and T2 = π
2(η2−η̄2)

.

• The intensity |q(x, t)|2 breathes in time with period given by T = π
2(η2−η̄2)• The solution (7.63) can develop a singularity in finite time. Indeed, at the origin

(x = 0) the solution (7.64) becomes singular when

tn = 2nπ − (θ + θ)

4(η2 − η2)
, n ∈ Z . (7.65)

• The solution (7.63) is characterized by two important time scales: the singularity
time scale and the periodicity of ‘breathing’.

• An interesting feature of this solution of (7.63) is that it can be defined after
singularity has developed; i.e. it has a pole in time and it can be avoided in the
complex time plane; i.e. the solution is of Painlevé type.

• We recall that not all members of the one-soliton family develop a singularity at
finite time. Namely, if one let η = η̄ ≡ η in (7.63) then we arrive at the following
well behaved soliton solution of the nonlocalPT -symmetric NLS equation (7.29)

q(x, t) = 2ηsech[2ηx − iθ ]e−4iη2t , (7.66)

where η and θ are arbitrary real constants.
• This singularity requires having an eigenvalue which in turn requires having a
sufficiently large L1 norm cf. [14].

• It should be stressed that another important nonlinear equation exhibits a singular-
ity in finite time; i.e. the 2 + 1, 3 + 1 dimensional NLS equations. In order for a
singularity to occur the L2 norm has to be sufficiently large. cf. [7, 40]. But 2 + 1,
3 + 1 dimensional NLS equations are not known/expected to be integrable.

In [24] the other nonlocal one soliton solutions to the RST-NLS and RT-NLS
equations are obtained.

Next we make a remark about soliton solutions to the real valued nonlocal RST-
mKdV equation (7.37). In this case we have r(x, t) = σq(−x,−t), q ∈ R. For this
case

C1(0) = i(η + η̄)b1, C̄1(0) = −i(η + η̄)b̄1 , (7.67)

but now with
b1 = ±1, b̄1 = ±1.

Thus the only difference from PT-NLS is that nowwe require θ, θ̄ = 0, π . Therefore,
in this case there are only two free real parametersη, η̄ and for the real nonlocalmKdV
equation (7.37) the one soliton solution is given by

q(x, t) = 2γ1(η + η̄)e−2η̄x+8η̄3t

1 + γ2e−2ηx+8η3t−2η̄x+8η̄3t
, (7.68)
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where γ j = ±1, j = 1, 2. If we set γ1 = γ2 = 1 then the solution can be written in
the following form

q(x, t) = (η + η̄)eη(x−4η2t)e−η̄(x−4η̄2t)

cosh
[
(η(x − 4η2t) + η̄(x − 4η̄2)t

] . (7.69)

This solution is not singular. When η = η̄ the solution reduces to the well-known
solution of the real mKdV equation

q(x, t) = 2η

cosh
[
(2η(x − 4η2t)

] . (7.70)

A singular solution to the nonlocal mKdV equation occurs when γ2 = −1. This
seems to be the case for these classes of nonlocal problems: there are singular and
nonsingular solution sectors.

7.2.6 Extensions

The methods associated with rapidly decaying data can be generalized to find solu-
tions to nonlinear wave equations whose data does not decay at infinity. Among the
most interesting situations is the NLS, integrable discrete NLS and vector NLS equa-
tions with data that rapidly decays to constant magnitude cf. [31, 41–43]; recently
these ideas were used to analyze the nonlocal NLS equation [44]. The KdVwith step
boundary values was also analyzed [45–49]. An interesting use of these ideas was the
consideration of a soliton moving into a step-like initial condition [50]. This leads
to the novel concept of a pseudo-embedded eigenvalues/solitons. In this situation
one has a soliton that becomes trapped by the step and although it seems there is an
eigenvalue, it is not the case. For problems like those above one can obtain detailed
information about the initial value solution to the wave equation.

7.3 Direct Methods

Often one does not require the solution of the initial value problem or even a con-
nection to initial value problems. In this case direct methods of solution might be
sufficient. To do this it turns out that there is a range of useful alternatives.

• Bilinear and related methods were pioneered by R. Hirota cf. [51]; see also [14]. In
this approach one transforms the original nonlinear equation to a convenient form
e.g. a bilinear equation, where one can find multi-soliton solutions as a sum of
exponential functions. This method was enhanced by the KP hierarchy reduction
methods cf. [52]. Noteworthy is the study of line soliton solutions of the KP
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equation cf. [53–55] and the observation of these structures in water waves on
shallow flat beaches [56].

• Another technique is to use a Darboux transformation [57]. These ideas go back to
geometric studies of Darboux and others in the 1800s. The method is to construct
a seed solution, typically from the vacuum, of the linear compatible pair. Using
this first solution, we can develop further solutions in an iterative fashion.

• Bäcklund transformations are also a valuable approach [58]. In a sense they are
similar to Darboux transformations except the iterative solutions are developed
from compatible nonlinear systems (see also [14]).

• Direct integral equation or Riemann–Hilbert/Dbar methods (cf. [15]). Here one
postulates an integral equation cf. [14, 59] or the dressing method using a
Riemann–Hilbert/Dbar formulation [60, 61] motivated typically by inverse scat-
tering methods. By applying suitable operators one can find nonlinear equations
and use the integral equation or Riemann–Hilbert/Dbarmethod to obtain solutions.
It appears that of the above direct methods currently the ones most frequently used
by researchers to obtain solutions are bilinear/related techniques and Darboux
transformations.

7.4 Outlook

This Chapter involves integrability and nonlinear waves. The field of integrable
equations is considerably broader than this, comprising numerous other areas of
research including: symmetries, methods to determine linear compatible systems,
classification of integrable systems of certain types, studies ofwide classes of discrete
integrable systems; Painlevé type equations both continuous and discrete. There are
journals that are closely related to studies in these areas. To cover such a large
scope/territory would require a considerably longer Chapter than this.

It was truly remarkable that so many interesting/important nonlinear wave equa-
tions have been identified and solved via IST. Some of these have been mentioned
earlier: e.g. KdV, modified KdV, NLS, vector NLS, three wave interaction equa-
tions, Toda lattice, integrable discreteNLS,Benjamin–Ono,Kadomtsev–Petviashvili
equation, Davey–Stewartson system etc. There are many others that have not been
discussed here; e.g. the intermediate long wave equation, sine-Hilbert equation,
loop-soliton system,Landau-Lifshitz system,Heisenberg ferromagnetic system, self-
induced transparency system, two dimensional Einstein equations, Benney system
[14, 15], Camassa–Holm equation [62] andmany others. Themethods used to under-
stand nonlinear wave equations via IST were new and very different from those used
earlier which were usually direct/explicit transformations such as the Hopf-Cole
transformation cf. [7] or hodograph type transformations cf. [14]. IST and its related
mathematics including the compatibility of two linear systems (i.e. Lax pairs), soli-
tons being related to eigenvalues of a linear operator, the connection to direct/inverse
scatteringwhich in turn involves linear integral equations andRiemann–Hilbert prob-
lems, led to many new and unexpected results.
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Furthermore the deep relationship of integrable nonlinear waves/IST to PT-
symmetric problems (e.g. the PT-NLS equation) discovered in 2013–2018 [20–22,
24, 25] was also unanticipated. Its connection to new physical space/hence new
scattering space symmetries of the AKNS system (7.13 with r(x, t) = ∓q(−x, t))
led to large classes of new integrable nonlinear wave systems being identified
and solved/linearized via IST. After so many years with so many people studying
IST/integrability and related matters it was surprising to find relatively simple equa-
tions connected to the well-known AKNS linear compatible system. Now one must
ask: what other interesting/important nonlinear waves systems will be identified? It
is natural to expect there will be more of them; the only issue is when will they be
found and what is an appropriate starting point. For the nonlocal equations discussed
here the surprise was i) they could be found by a modification of the AKNS and
higher order AKNS and (2 + 1) AKNS formalism; (ii) they are ‘simple’ equations;
(iii) there are so many new nonlocal systems; (iv) nevertheless the scattering theory
and solution process has numerous nontrivial differences from the known ‘classical’
AKNS systems

In terms of IST there are open questions of how far can the method be developed
including: rigorous functional analytic/geometric analysis, incorporating slower
decay than currently allowed in the theory (thereby incorporating algebraically slow
decaying solitons), finding new types of solutions bounded on the real line cf. [63,
64], new methods to analyze for 2 + 1 dimensional systems which tend to different
types of nonzero data at infinity, analyzing different types of boundary conditions
e.g. the semi-infinite problem [65], random initial/boundary data. Although meth-
ods to solve periodic initial boundary value problems have been heavily studied
there is still a need to put these theories in a form where applied researchers can
more easily use them and to develop hopefully more explicit/effective methods to
solve periodic initial value problems for a large range of nonlinear wave problems.
Finding solutions to equations which are ‘close’ to, i.e. perturbations of integrable
systems is important; continuing development of effective perturbation methods for
one and two-dimensional systems is an important goal. There are interesting IST
type formulations and formal solutions associated with vector fields and dispersion-
less equations like the dispersionless KP, Heavenly equations and 2 + 1 dimensional
Toda equation [66–68] and a number of others. These problems should be further
analyzed and better understood; here are a number of open questions that remain.

It is also natural to expect other novel classes of eigenvalue problems to be found
that can be used to create new compatible linear systems and new types of solutions.

There is considerable interest in discrete systems. We briefly discussed semi-
discrete equations above cf. [28]. But there are well-known integrable ordinary and
partial difference evolution equations related to compatible Lax pairs were discov-
ered early on cf. [14]. Over the years many more have been identified and studied
cf. [69]. In some cases the IST has been developed but in many cases their relation-
ship/solution via IST remains unexplored.

A goal that still seems elusive at this point in time is to find ‘simple’ three space,
one time (3 + 1) dimensional systems that can be effectively solved by IST. To date
potential integrable 3 + 1 dimensional systems have been complicated and highly
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nonlocal; cf. [15] for a discussion of this issue. What is clear from this analysis
is that the type of Lax pair needed to integrate/linearize local 3 + 1 dimensional
systems will need to be quite different from its 1 + 1, 2 + 1 counterparts. There
is a four dimensional system that is integrable: the self-dual Yang–Mills system.
But here the natural way to study this system is as 4 + 0 or 2 + 2 dimensional
systems. Interestingly the general self-dual Yang–Mills system (general underlying
group structure) has the virtue of being, in a sense, universal. From it one can derive
many (all?) known integrable systems cf. [15]. There is also amultidimensional sine-
Gordon equation of geometric significance that can be connected to a hierarchy of
one-dimensional linear problems. But there are constraints on this system that make
it similar to one dimensional problems than a ‘N +1’ dimensional system cf. [15].

7.5 Conclusion

In this Chapter the study of integrability and nonlinearwaveswas surveyed.Given the
necessary space constraints only certain aspects of this field were discussed: namely
the inverse scattering transform (IST) as a tool to investigate important nonlinear
wave systems. A brief history/background underlying this method (IST) was given
including the motivation from the Fermi–Pasta–Ulam problem, numerical discovery
of solitons, connection of solitons to eigenvalues of linear operators associated with
rapidly decaying data and direct/inverse scattering/linearization of the kdV equation
by Gardner, Greene, Kruskal, Miura [10], Lax pairs, [11] solutions of the NLS equa-
tion by Zakharov and Shabat [12], solutions of NLS, mKdV, sine/sinh-Gordon, KdV
equations and many more by Ablowitz, Kaup, Newell and Segur [13]. Surprisingly
aftermany years new nonlocal classes of integrable nonlinear systems by finding new
symmetries of the AKNS linear scattering problem [20]. Many physically interesting
nonlinear wave equations solvable by IST were mentioned cf. [15].

The methodology of IST applied to equations associated with second order linear
operators is an area where IST can be effectively used was surveyed. Some of the
equations that are amenable to this approach are the KdV, mKdV, NLS, sine/sinh
Gordon, PT-NLS, RST-NLS, RST-mKdV equations and many more. Extensions of
the IST technique were briefly mentioned as were different methods to find solutions
to integrable nonlinear wave equations. The outlook for the future was considered
and discussed.
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Chapter 8
Nonequilibrium Phenomena in Nonlinear
Lattices: From Slow Relaxation to
Anomalous Transport

Stefano Iubini, Stefano Lepri, Roberto Livi, Antonio Politi, and Paolo Politi

Abstract This chapter contains an overview of the effects of nonlinear interactions
in selected problems of non-equilibrium statistical mechanics. Most of the empha-
sis is put on open setups, where energy is exchanged with the environment. With
reference to a few models of classical coupled anharmonic oscillators, we review
anomalous but general properties such as extremely slow relaxation processes, or
non-Fourier heat transport.
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8.1 Introduction

The title of this chapter contains two negations, nonequilibrium and nonlinearity,
which signal a double source of difficulties. First, at variance with equilibrium sta-
tistical mechanics, there is no general approach to describe the evolution of a generic
system far from equilibrium. Second, nonlinear forces notoriously have to be handled
with care.

From the fundamental point of view, nonlinear interactions are essential for the
theoretical foundations of irreversible processes: a derivation of phenomenological
relations (like for instance Fourier’s law) from microscopic dynamics is indeed one
of the challenges of mathematical physics. On the other hand, understanding the
role of nonlinearity, low-dimensionality, long-range interactions, disorder etc. may
help developing innovative ideas for nanoscale thermal management with possible
future applications like controlling the heat fluxes in small devices built onmolecular
junctions, carbon nanotubes, polymers and nano-structured materials [1].

This chapter aims at illustrating the combined effect of nonlinear interactions on
relaxation and transport: since this is an exceedingly vast topic, we focus mainly
on selected specific issues. In particular, we wish to review through some exam-
ples (mostly relying on numerical simulations) of how relaxation and transport are
affected by nonlinear interactions in systems of classical nonlinear oscillators. This
class of model represents a large variety of different physical problems like atomic
vibrations in crystals and molecules or field modes in optics or acoustics.

The chapter is organized as follows. For concreteness, we discuss mostly one-
dimensional arrays of classical oscillators, that are reviewed in Sect. 8.2. For later
purposes, their equilibrium thermodynamics is recalled in Sect. 8.3. Section8.4 deals
with the typical time-scales of relaxation to a steady state in the presence of a dissipa-
tion applied to the boundaries and discusses how nonlinear localization can signifi-
cantly affect the process. This is the most detailed section, since the topic is still open
andwe have preferred to add some recent details for the sake of clarity. In Sect. 8.5we
address the issue of nonequilibrium steady states for chains in contact with different
thermal reservoirs. We recall there how nonlinear interactions affect fluctuations of
conserved quantities and conspire to yield energy superdiffusion. Finally, in Sect. 8.6
we outline possible future developments.

8.2 Classical Coupled Nonlinear Oscillators: Basic Models

A vast number of micro- and mesoscopic models have been introduced and stud-
ied to understand nonequilibrium dynamics. Many of them involve some form of
stochasticity [2]. Here we concentrate on open Hamiltonian models described by
unidimensional arrays of N classical nonlinear oscillators. Two families of models
are reviewed: (i) separable systems characterized by kinetic and potential energy;
(ii) non-separable ones such as the Discrete Nonlinear Schrödinger equation.
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The first class is generally characterized by the Hamiltonian

H =
N∑

n=1

[
p2n
2m

+U (qn) + V (qn+1 − qn)

]
, (8.1)

where qn and pn denote position and momentum of the point–like particles; m is
their mass while, the potential V (x) accounts for the nearest-neighbour interactions
between consecutive particles, and finally, the on-site potential U (qn) accounts for
the possible interaction with an external environment (e.g. a substrate).

The corresponding evolution equations are

mq̈n = −U ′(qn) − F(rn) + F(rn−1), n = 1, . . . , N , (8.2)

where rn = qn+1 − qn , F(x) = −V ′(x), and the prime denotes a derivative with
respect to the argument. If qn represents a longitudinal position, then L = ∑N−1

n=1 rn
represents the total length of the chain,which, in the case of fixed boundary conditions
(b.c.) and forU = 0, is a constant of motion. Conversely, if the particles are confined
in a simulation “box” of length L with periodic b.c., we have qn+N = qn + L .
Alternatively, one can adopt a lattice interpretation whereby the (discrete) position
is xn = an (where a is the lattice spacing), while qn is a transversal displacement.
Thus, the chain length is obviously equal to Na.

For isolated systems, the Hamiltonian (8.1) is a constant of motion. If the pinning
potential U is constant, the total momentum P = ∑N

n=1 pn is conserved, as well.
Since we are interested in heat transport, one can set P = 0 (i.e. we assume to work
in the center–of–mass reference frame) without loss of generality. As a result, the
relevant state variables of microcanonical equilibrium are the specific energy (i.e.
the energy per particle) h = H/N and the elongation � = L/N (i.e. the inverse of
the particle density).

An important subclass is the one in which V is quadratic, which can be regarded
as a discretization of the Klein–Gordon field: relevant examples are the Frenkel–
Kontorova [3, 4] and “φ4” models [5, 6] which, in suitable units, correspond to
U (y) = 1 − cos(y) and U (y) = y2/2 + y4/4, respectively. Another toy model that
has been studied in some detail is the ding-a-ling system [7], where U is quadratic
and the nearest-neighbor interactions are replaced by elastic collisions.

8.2.1 The Fermi–Pasta–Ulam–Tsingou Chain

In this context, the most paradigmatic example is the Fermi–Pasta–Ulam-Tsingou
(FPUT) model, with U (qn) = 0 and

V (rn) = k2
2

(rn − a)2 + k3
3

(rn − a)3 + k4
4

(rn − a)4, (8.3)
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introduced in a widely acknowledged seminal work [8] in nonlinear dynamics. It
is well known that the initial goal of the study was to demonstrate that a generic
nonlinear interaction should eventually drive an isolated mechanical system with
many degrees of freedom, towards an equilibrium state characterised by energy
equipartition among normal modes. Actually, in the following decades the related
problem of steady state transport was also considered [9–11].

Following the notation of the original work [8], the coupling terms k3 and k4 are
denoted by α and β, respectively; historically this model is sometimes referred to as
the “FPU-αβ” model. In the absence of the cubic nonlinearity (k3 = 0), the system
is referred to as “FPU-β” model. Notice that upon introducing the displacement
un = qn − na from the equilibrium position, rn can be rewritten as un+1 − un + a,
so that the lattice spacing a disappears from the equations.

8.2.2 The Discrete Nonlinear Schrödinger Equation

The Discrete Nonlinear Schrödinger (DNLS) equation has been widely investigated
in various domains of physics as a prototype model for the propagation of nonlinear
excitations [12–14]. Originally, it was proposed to describe electronic transport in
biomolecules [15] and later for nonlinear wave propagation in photonic or phononic
crystals [16, 17] as well as in ultra-cold atom gases in optical lattices [18].

The system (in its dimensionless form) is described by the Hamiltonian

H =
N∑

n=1

(|zn|4 + z∗
nzn+1 + znz

∗
n+1

)
(8.4)

where the complex variables zn and −i z∗
n (n = 1, . . . , N ) are canonical variables.

The Hamilton equations żn = −∂H/∂(i z∗
n) are written as

i żn = −2|zn|2zn − zn−1 − zn+1 . (8.5)

Sometimes it is convenient to decompose zn into real and imaginary components:
zn = (pn + iqn)/

√
2; this way qn and pn are standard conjugate canonical variables.

Besides the Hamiltonian, the system admits a second constant of motion, namely the
total norm A = ∑N

n=1 |zn|2 which, depending on the physical context, can be inter-
preted as the gas particle number, optical power, etc. At variance with its continuum
counterpart, the DNLS is non-integrable: it typically displays a chaotic dynamics.

As other oscillator models, including the FPUT one, the DNLS equation admits a
set of localized solutions, the so-called discrete breathers (DB) [14, 19], character-
ized by a large amplitude on a single site, |zn|2 � s2, where s2 is the amplitude of the
surrounding background. In the limit of s � 1, when perturbative calculations can
be carried out, the long term stability has been discussed in full detail [20]. We later
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on show that breather stability is an important issue also in physical setups, where
the background is fully chaotic.

8.2.3 The Coupled Rotors Model

Another interesting system is the coupled rotors chain described by the equations of
motion

q̇n = pn , ṗn = sin(qn+1 − qn) − sin(qn − qn−1) . (8.6)

This model is sometimes referred to as the Hamiltonian version of the XY spin chain.
It is a sort of intermediate model between standard oscillator chains (notice that here
the “position” qn is an angle) and the DNLS equation, once we think of the variable
zn as composed of amplitude and phase. In fact, it can be shown that in some limit
the DNLS reduces to a rotor chain [21].

8.3 Equilibrium

Equilibrium thermodynamics of the above models can be calculated by standard
means. For the Hamiltonian (8.1) without pinning (U = 0) this can be accomplished
straightforwardly by computing the partition function in the isobaric ensemble [22].
For models like Klein–Gordon and DNLS lattices, the computation requires the use
of transfer integral methods [23].

The case of the DNLS is of particular interest: a thermodynamic equilibrium
state is in fact specified by two intensive parameters, the mass density a = A/N ≥
0 and the energy density h = H/N or equivalently by the conjugate variables μ

(chemical potential) and β (inverse temperature). The equilibrium phase-diagram
in the (a, h) plane [23] is bounded from below by the (T = 0) ground–state line
h = a2 − 2a corresponding to a uniform state with constant amplitude and constant
phase–differences zn = √

aei(μt+πn), withμ = 2(a − 1). States below this curve are
not physically accessible.

The positive–temperature region lies between the ground–state line and the
infinite-temperature (β = 0) line, given by h = 2a2. In this limit, the grand–
canonical equilibrium distribution becomes proportional to exp (βμA), where the
finite (negative) product βμ implies a diverging chemical potential. Equilibrium
states at infinite temperature are therefore characterized by an exponential distribu-
tion of the amplitudes, P(|zn|2) = a−1e−|zn |2/a and random phases. Finally, states
above the β = 0 line belong to the so–called negative–temperature region [23, 24].
From a thermodynamic point of view, the presence of states at absolute negative tem-
perature is a consequence of the entropy being a decreasing function of the internal
energy. Very recently it has been found that this region is characterized by inequiva-
lence of statistical ensembles [25]. While just above the β = 0 line the microcanon-
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ical partition function can be computed explicitly by large-deviation techniques, the
grandcanonical partition function is undefined, due to the presence of a branch-cut
singularity in the complex β-plane. Moreover, the microcanonical ensemble predicts
the presence of a first-order phase transition from a thermalized phase, below the
β = 0 line, to a condensed phase, above the β = 0 line. This situation represents a
typical scenario of broken ergodicity in the negative-temperature phase, induced by
a condensation phenomenon, due to the spontaneous formation and coalescence of
DB.

Since the DNLS Hamiltonian (8.4) is not separable, one cannot determine tem-
perature and chemical potential via the standard molecular-dynamics tools. It is
necessary to make use of the microcanonical definition provided in [26]. The general
expressions are nonlocal and rather involved; we refer to [27] for details and the
related bibliography. Alternatively, one can determine the relations a(T, μ), h(T, μ)

numerically, by putting the system in interaction with an external reservoir that
imposes T and μ and by measuring the corresponding equilibrium densities.1

8.4 Relaxation

In this section we review and discuss relaxation dynamics, namely how the steady
state is reached starting from nonequilibrium initial conditions. Generally speaking
one may distinguish between two cases:

(i) relaxation to thermal equilibrium (energy equipartition) from a particular initial
state in the isolated (microcanonical) setup;

(ii) evolution towards a steady state in an open setup, whereby the system is allowed
to exchange energy, momentum etc. with the environment, composed of one (or
more) reservoirs.

A typical example of case (i) is the numerical experiment discussed in the original
FPUT paper, a problem deeply related to the validity of the ergodic hypothesis. In the
following, we will not dwell further on the FPUT problem: the interested reader can
look at some recent literature [30–32]. Here, we focus more on boundary-induced
relaxation phenomenawith a particular emphasis given to theDNLS, for the existence
of a negative-temperature region.

1The actual implementation of a reservoir for the DNLS is less straightforward than for usual
oscillator models [28]. Two main strategies have been proposed: the first is a Monte-Carlo
dynamics [27] whereby the reservoir performs random perturbations δz1 of, say, the state vari-
able z1 that are accepted or rejected according to a grand-canonical Metropolis cost-function
exp [−β(	H − μ	A)], where 	H and 	A are respectively the variations of energy and mass
produced by δz1. Between successive interactions with the environment the dynamics is Hamilto-
nian and can be integrated by symplectic algorithms [29]. Another approach is based on a Langevin
dynamics with a dissipation designed in such a way that equilibrium corresponds to the grand-
canonical measure [24].
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8.4.1 Localization by Boundary Cooling

Afirst numerical evidence of slow-relaxation induced by the spontaneous emergence
of localized inhomogeneities has been provided by Tsironis and Aubry [33], who
discussed the chain dynamics in the presence of a nonlinear pinning potential. The
system, initially prepared in a thermalized state at some given temperature T , was
put in contact with a cold (zero temperature) heat bath, by adding a damping term on
a few boundary particles. The chain eventually converges to a quasi-stationary state,
where a residual amount of energy is kept under the form of a few isolated DBs. It
has been later argued that the energy relaxation obeys a stretched exponential law in
time [34, 35].

The rotor model is yet another interesting example where boundary dissipation
leads to a slow relaxation. In [36] it was found that for long enough times the energy
decreases very slowly, according to a typical stretched-exponential law

E(t) = E(0) exp(−(t/τ)σ )

with σ < 1 (typically σ ≈ 0.5) and τ being some characteristic timescale. The occur-
rence of slow dynamics has been associated with a progressive destruction of local-
ized excitations (the so-called rotobreathers) and energy release at the boundaries.
At very long times a residual quasi-stationary state is again observed: a finite fraction
of the initial energy is stored into a single rotobreather and remains constant over the
rest of the simulation.

Recently, some mathematical insight on the origin of such slow process has been
proposed: it has been argued that the dissipation rate may become arbitrarily small in
certain physical regimes due to the decoupling of non-resonant terms, as it happens
in KAM problems [37–39].

A renewed interest in the problem of boundary cooling was provided by the
proposal of implementing it as a technique to localize Bose-Einstein condensates in
optical lattices [40]. Referring to the DNLSmodel, stationary and traveling localized
states were generated by removing atoms at the optical-lattice ends. Regimes of
stretched-exponential decay for the number of atoms trapped in the lattice were
clearly identified by numerical simulations. Further studies showed that the dynamics
of dissipated energy exhibits a characteristic avalanche behavior [41].

8.4.2 Dynamical Freezing of Relaxation to Equilibrium

In this section we discuss the relaxation process of a localized excitation (DB) in
the DNLS model (see (8.4)–(8.5)). For positive temperatures, DBs have a negligible
probability to arise at equilibrium and yet, as commented above, there are ways to
grow them (e.g. by boundary dissipation). Therefore, it is important to understand
their relaxation process. Simulations have been performed by superposing a large-
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Fig. 8.1 The relaxation process of a breather through the time dependence of its mass, b(t). The
abrupt character of the process allows to define a threshold value b∗ and to determine the relaxation
time τb as the shortest time satisfying the condition b(τb) = b∗. In the top right circle we zoom
in a jump of the mass. The inset shows the exponential increase of τb with the initial mass of the
breather: the dashed line is a fit, giving τb ≈ eαb(0), with α = 0.91 ± 0.01. The breather is initially
at the centre of a chain of N = 31 sites

mass DB at the origin, n = 0, to an otherwise equilibrium configuration for the
background (i.e.−N ≤ n ≤ N ). The temperature T = 10 and the chemical potential
μ = −6.4 are imposed by connecting the chain boundaries to suitable Langevin
baths.

Themain results are reported in Fig. 8.1, where we can see the time dependence of
the breathermass b = |z0|2 in a typical simulation (notice the logarithmic time scale).
The decay process is fairly abrupt and we can identify quasi-stationary regimes,
separated by jumps. Because of the abrupt decay of b(t)we can define the relaxation
time τb by setting a threshold b∗ (dashed horizontal time). In the inset, we show how
τb depends on the initial mass of the breather, namely exponentially. In the rest of
this section we will discuss the meaning of this numerical finding and some related
results.

The rapid increase of τb with b(0) suggests that the larger the mass of the breather,
the weaker the relaxation mechanism. This is not surprising, because the natural
frequency of a breather of mass b is ω = 2b, so the coupling term between the
breather and the nearest neighbors becomes negligible on the typical time scale of the
background (which is of order one). However, a rotational frequency proportional
to the breather mass cannot justify by itself an exponentially slow decay process.
Before trying any theoretical explanation, it is necessary to gain more insight on the
relaxation process.

From Fig. 8.1 we can see that the laminar regime preceding the final breather dis-
ruption is approximately quasi-stationary, with no specific drift (except for the final
part, where the mass clearly tends to decrease). It is, therefore, tempting to char-
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acterize this regime in terms of a suitable diffusion coefficient.2 The next question
is the identification of an optimal variable to characterize the hypothetical diffu-
sion process. The mass b(t) is too noisy to extract reliable estimates. A principal
component analysis performed on the triplet of variables z−1, z0, z1 suggests to use
Q̃ 
 E1/4

b [42], where Eb = |z0|4 + 1
2 [z∗

0(z1 + z−1) + c.c.] is the breather energy
(see (8.4)). Accordingly we define DQ̃ = 〈[Q̃2(t + τ) − Q̃2(t)]2〉/τ . The evaluation
of DQ̃ for breathers of increasing height (see Fig. 4 of [42]) shows that the diffusion
coefficient decreases exponentially with b(0), in agreement with the direct evidence
of an almost frozen dynamics. On the basis of fluctuation-dissipation considerations,
we should also expect a drift v ≈ DQ̃/T and, accordingly, an exponential increase
of the decay time. However, while the exponential increase is confirmed by the
simulations, we do not see a clear evidence of a (downward) drift.

Figure8.1 rather suggests that the relaxation is accompanied and perhaps caused
by sporadic jumps. This statement is supported by Fig. 8.2, where we plot the average
transfer of energy between the breather and the background in a given interval of time,
as a function of the initial mass of the neighbouring site, a1(0) (suitably rescaled).
There is an evident, narrow peak accompanied by some pinnacles. The peak appears
at a value very close to the analytical threshold for the existence of symmetric bound
states (dimers) between two neighbouring sites,

√
a∗
1(0) = √

b(0) − √
2.

The very emergence of such bound states is attested by the inset of the same figure,
where we plot the time dependence of the mass of the breather b(t) along with the
mass a1(t) of a neighboring site. When it happens that a1 > a∗

1 (see the dashed line)
the two sites are strongly coupled together and rotate with the same frequency. This
bound state eventually dissolves, with the net result that the “post-dimer” breather
has lost some energy with respect to the “pre-dimer” one.

Analytical, non-rigorous considerations allow evaluating the typical time scale
of such phenomena as the expectation time for a background fluctuation in one of
the two neighbouring sites to become larger than the threshold a∗

1 . In fact, from the
high-T equilibrium distribution P(θ) to have a mass θ [23], we can approximately
estimate the breather lifetime τb ≈ 1/P(a∗

1), which has the asymptotic expression
τb ≈ exp(βb2) for a diverging breather mass b. This expression implies a superexpo-
nential growth of the relaxation time with the mass, suggesting that the asymptotic
mechanism for breather decay might not be dimer formation (τb seems to increase
exponentially), but current simulation data does not allow to exclude it either.

As amatter of fact, the additional peaks appearing in Fig. 8.2 suggest the existence
of other mechanisms and the special setup we are going to discuss allows one to
conclude that relaxation occurs even if dimer formation is suppressed. We direct
reader’s attention to the inset of Fig. 8.3, where we consider the relaxation process
of the very same breather in different conditions. The full line is the standard DNLS
model, i.e. a curve fully similar to that plotted in Fig. 8.1. The dotted line has been
determined with a unidirectional coupling between breather and background: the
former feels the latter but not the other way around. In practice the breather is coupled

2Boundedfluctuationswould be possible only in the presence of an attractor, but this is aHamiltonian
system.



194 S. Iubini et al.

Fig. 8.2 The energy lost or gained on average by the breather after a fixed amount of time, as
a function of the initial mass of the neighbouring site, a1(0) (more precisely, of the ratio r =
a1(0)/b(0)). The sharp peak corresponds to the condition

√
a1(0) = √

b(0) − √
2, which allows

the formation of a symmetric bound state (dimer) between the breather and its neighbour. In the
inset we plot the time dependence of the mass in these two sites along with such threshold value
(horizontal dashed line)

Fig. 8.3 The relaxation time of a breather as a function of the temperature T , for two different
initial masses. The horizontal lines represent the analytical, asymptotic values as deduced by an
approximate approach (see the main text) where the breather feels the background but not the other
way around. In the inset we compare the time evolution of the mass of the same initial breather,
with exact and unidirectional coupling

to a background whose evolution is independent of the breather itself. The result is
a qualitatively similar evolution of the breather mass.

Since unidirectional coupling makes impossible the rising of a symmetric bound
state, in this case dimers cannot play any role in DB relaxation. On the other hand,
resonance mechanisms would not be affected by the unidirectional character of the
coupling and therefore they would persist, but the approximate expression for the
relaxation time would still give a superexponential growth.
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Unidirectional coupling is useful also to discuss the temperature dependence of
the relaxation time, τb(T ). The curves plotted in Fig. 8.3 refer to different initial
masses of the breather and the central result we focus on is the asymptotic behavior
of τb(T ), which seems to reach a constant. In other words, the relaxation time of a
finite breather is expected to be finite even at infinite temperature. The horizontal
lines have been determined analytically with the same criterion discussed here above,
taking the limit T → ∞ but also allowing |μ| = T/a to diverge so that the density
of mass, a, is kept constant (simulations have been performed in such a setup).

So far, we have mentioned two potentially interesting processes: (i) the diffusion
occurring during the laminar (quasi-stationary) regime; (ii) the jumps, both visible in
Fig. 8.1. The diffusion coefficient turns out to decrease exponentially with b and the
probability of dimer or resonances formation (related to the jumps) also decreases
exponentially or even superexponentially. It is evident that in the presence of several
relaxation channels, a frozen dynamics may appear if and only if all mechanisms are
exponentially slow.

However, it is not clear at all why dynamics is almost frozen. A former paper
by some of the present authors [42]—a first attempt in this direction—suggests that
Q̃ (the quantity derived from the principal component analysis and used to derive
the diffusion coefficient) is the approximate expression of an adiabatic invariant,
which might be broken by jumps. We have tried to determine the adiabatic invariant
perturbatively, by computing higher orders, but the attempt has not been successful.

Wewish to stress that understanding the relaxation process of a breather at positive
temperature is a useful ‘if not necessary’ step to later understand the negative T phase
from a dynamical point of view.

8.4.3 Role of Negative Temperatures

In the previous section we have seen that relaxation to equilibrium may be very slow
in the DNLS, in the positive temperature region of the (a, h) plane. As mentioned
in Sect. 8.3, there exists a second region (h > 2a2) where the absolute temperature
is expected to be negative (on the basis of microcanonical arguments). Relaxation
phenomena in this region turn out to be a rather controversial issue, not yet fully
settled.

Entropic arguments [43, 44] suggest that all the excess energy, which cannot be
stored in a homogeneous background for h > 2a2, should eventually concentrate
into a single breather. In fact, this is precisely what happens in a simplified, purely
stochastic version of the DNLS, where it has been shown that multiple breathers
progressively merge through a non conventional coarsening process [45, 46].

On the other hand, coalescence has not been observed inmolecular dynamics sim-
ulations slightly above the β = 0 line (e.g. for a = 1 and h = 2.4). On the contrary,
it looks like a sort of stationary regime sets in, characterized by a small breather den-
sity, where DBs spontaneously form and then die, after some typical lifetime [24],
see Fig. 8.4. This is due to the presence of a finite interaction (hopping) energy: the
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Fig. 8.4 Evolution of the local amplitude for DNLS in a negative temperature state, the dots
correspond to points where |zn |2 > 10. Microcanonical simulation with a = 1 and h = 2.4, N =
4192

background can store excess energy in the phase differences of neighbouring sites
and this implies that breathers can spontaneously nucleate. These findings have been
recently confirmed by more extensive simulations [47] which suggest the existence
of a finite region in the (a, h)-plane, where the dynamics covers a subregion of the
available phase space, doing so in an “ergodic manner” (i.e. no coarsening).

Further, independent evidence of a relatively stable negative-temperature regime
comes from the nonequilibrium simulations performed in [48], where a DNLS chain
was put in contact on one side with a positive temperature heat bath, while on the
other, with a pure dissipator. Depending on the temperature value of the first heat
bath, an extended portion of the chain settles in a regime characterized by a position-
dependent negative temperature, a flux of mass and energy, without being accompa-
nied by the onset of breathers.

Finally, recent statistical-mechanics calculations [25] suggest that slightly above
the critical β = 0 line, strong finite-size effects are to be expected, whichmight affect
the interpretation of the numerical simulations.

8.5 Transport

Let us now turn our attention to nonequilibrium steady states that emerge, at long
enough times, when the system is in contact with two (or more) heat reservoirs
operating at different temperatures. Generally speaking, several methods, based on
both deterministic and stochastic (Langevin or Monte-Carlo) algorithms, have been
proposed [28]. A complementary approach is based on linear-response theory, which
amounts to computing the equilibrium correlation function of currents. In principle,
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this task can be accomplished in any equilibrium ensemble, the microcanonical one
being the most natural choice.

8.5.1 Anomalous Energy Transport

The main results, emerging from a long series of works, can be summarized as fol-
lows. Models of the form (8.2) withU (q) = 0 typically display anomalous transport
and relaxation features. Said differently, Fourier’s law does not hold: the kinetics
of energy carriers is so correlated that they are able to propagate faster than in the
standard (diffusive) case. We refer the reader to existing review papers [1, 28, 49,
50] for a more comprehensive description. Here we just mention how this anomalous
behavior manifests itself in the simulations.

• The finite-size heat conductivity κ(L) diverges in the limit of a large system size
L → ∞ as, κ(L) ∝ Lγ [51], i.e. the heat transport coefficient is ill-defined in
the thermodynamic limit.

• The equilibrium correlation function of the total energy current J displays a non-
integrable long-time tail 〈J (t)J (0)〉 ∝ t−(1−δ), with 0 ≤ δ < 1 [52, 53]. Accord-
ingly, the Green–Kubo formula yields an infinite value of the conductivity.

• Energy perturbations propagate superdiffusively [54, 55]: a local perturbation of
the energy spreads, while its variance broadens in time as σ 2 ∝ tβ , with β > 1.

• Temperature profiles in the nonequilibrium steady states are nonlinear, even for
vanishing applied temperature gradients. Typically they are the solution of a frac-
tional heat equation [56, 57].

There is a large body of numerical evidence that the above features occur gener-
ically in 1D, whenever the conservation of energy, momentum and length holds.
This is related to the existence of long-wavelength (Goldstone) modes (an acoustic
phonon branch in the linear spectrum of (8.2) with U = 0) that are very weakly
damped. Indeed, it is sufficient to add external (e.g. substrate) forces, to make all
anomalies disappear and restore Fourier’s law.

8.5.2 Universality and the Kardar–Parisi–Zhang Equation

The nonlinear fluctuating hydrodynamics approach is able to justify and predict
several universal features of anomalous transport in anharmonic chains [22, 58]. The
main entities are the random fields describing deviations of the conserved quantities
with respect to their stationary values. The role of fluctuations is taken into account
by renormalization group or some kind of self-consistent theory.

The main theoretical insight is the intimate relation between the anharmonic
chain and one of the most important equations in nonequilibrium statistical physics,
the celebrated Kardar–Parisi–Zhang (KPZ) equation, originally introduced in the
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(seemingly unrelated) context of surface growth [59]. The KPZ equation for the
stochastic field h(x, t) in one spatial dimension reads

∂h

∂t
= ν

∂2h

∂x2
+ κ

2

(
∂h

∂x

)2

+ η. (8.7)

where η(x, t) represents a Gaussian white noise with 〈η(x, t)η(x ′, t ′)〉 = 2Dδ(x −
x ′)δ(t − t ′) and ν, κ, D are the relevant parameters. It has been shown [22, 58] that
large-scale dynamical properties of anharmonic chains are in the same dynamical
universality class as (8.7). Loosely speaking, we can represent the displacement field
as the superposition of counter-propagating plane waves, modulated by an envelope
that is ruled, at large scales, by (8.7). As a consequence, correlations of observables
display in the hydrodynamic limit anomalous dynamical scaling. For instance, the
dynamical structure factor S(k, ω) of the particle displacement shows for k → 0 two
sharp peaks at ω = ±ωmax(k) that correspond to the propagation of sound modes
and for ω ≈ ±ωmax behaves as

S(k, ω) ∼ fKPZ

(
ω ± ωmax

λsk3/2

)
. (8.8)

Remarkably, the scaling function fKPZ is universal and known exactly, while λs is a
model-dependent parameter. The main point is that the dynamical exponent z = 3/2
is different from z = 2 expected for a standard diffusive process.

Most of the predictions have been successfully tested for several models. For
a chain of coupled anharmonic oscillators with three conserved quantities like the
FPUT chains, such theoretical predictions have been successfully compared with the
numerics [60, 61]. Other positive tests have been reported in [62]. One further pre-
diction is that the FPUT-β model should belong to a different (non-KPZ) universality
class, as previously suggested by the numerics [63, 64].

8.5.3 Coupled Transport

As known from irreversible thermodynamics, when there are more conserved quan-
tities, the corresponding currents can be coupled: in the linear response regime,
transport is described by Onsager coefficients. The best-known example is that of
thermoelectricity, whereby useful electric work can be extracted in the presence of
temperature gradients [65–67].

In the present context, the simplest example is the one-dimensional rotor model,
(8.6), that admits two conserved quantities (energy and angular momentum), two
associated currents, and only one relevant thermodynamic parameter, the temperature
T . In this case [45] one can easily introduce the interaction with two reservoirs
by fixing the average angular momenta ω0, ω1 and kinetic temperatures T0, T1 at
the chain ends. This can be obtained by adding the Langevin term γ (ω0 − q̇1) +
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Fig. 8.5 Simulation of the
rotor chain with N = 400
particles, in contact at its
boundaries with two heat
baths at temperature
T0 = T1 = 0.5 and in the
presence of torques ω0 = −1
and ω1 = 1: a temperature
profile; b frequency
(chemical potential) profile;
c local heat flux. Adapted
from [68]
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strength with the bath and ξ is a Gaussian white random noise with zero mean and
unit variance. An analogous term, with ω1 and T1 replacing ω0 and T0, is added to
the equation of motion of the rightmost rotor.

To illustrate the peculiarities of this setup, Fig. 8.5 reports frequency and tempera-
ture profiles [68] in a case where only an angular momentum gradient is applied, i.e.
T1 = T0 andω0 = −1 andω1 = 1. The temperature profile Tn is non-monotonic [69]
as a consequence of the coupling with the momentum flux jp imposed by the torque
at the boundaries, although, in the end, the energy flux jh vanishes for symmetry
reasons. By recalling that jh = jq + ω jp we see that the heat flux jq = −ω jp varies
along the chain being everywhere proportional to the frequency, so that it is negative
in the left part and positive in the right side (this is again consistent with symmetry
considerations). Thus heat is generated in the central hotter region, where the tem-
perature is higher and transported towards the two edges. The total energy flux is
however everywhere zero as the heat flux is compensated by an opposite coherent
flux due to momentum transfer. Physically, the temperature bump can be interpreted
as a sort of Joule effect: the transport of momentum involves dissipation, which in
turn contributes to increasing the temperature, analogously to what happens when
an electric wire is crossed by a flux of charges.

Similar effects are studied in [27] for the DNLS case, where the dependence of
the Onsager matrix on temperature and chemical potential is considered. In this case
the cross-coupling term (the equivalent of the Seebeck coefficient in the language of
thermo-electricity) may change sign, leading to temperature- and mass-profiles with
opposite slopes.
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8.5.4 Integrable Models and Their Perturbations

The above results are mostly obtained in a strongly nonlinear regime or more gen-
erally far from any integrable limit. For the FPUT model, this means working with
high enough energies/temperatures to avoid all the difficulties induced by quasi-
integrability and the associated slow relaxation to equilibrium.

Integrable systems constitute per se a relevant case. In the framework of the
present work the most important example is certainly the celebrated Toda chain,
namely model (8.1) with U = 0 and

V (x) = e−x + x − 1

As intuitively expected, heat transport is ballistic due to its integrability and the
associated solitonic solution [70]. Mathematically, this is expressed by saying that
there is a non-vanishing Drude weight, namely a zero-frequency component of the
energy current power spectra [71, 72]. A lower bound of the Drude weight can be
estimated making use of Mazur inequality [73] in terms of correlations between
the currents themselves and the conserved quantities (see [71, 72] for the Toda
case). However, the idea of solitons transporting energy as independent particles
is somehow too simplistic. It has been recognized [74] that solitons experience a
stochastic sequence of spatial shifts as they move through the lattice interacting with
other excitations without momentum exchange [74]. At variance with the harmonic
chain, which is also integrable, but whose propermodes are non-interacting phonons,
the Toda chain, as proposed in [75], is an interacting integrable system. In particular,
it is characterized by what has been termed a non–dissipative diffusion mechanism
[74]. In fact, the calculation of the transport coefficients by the Green–Kubo formula
indicates the presence of a finiteOnsager coefficient, which corresponds to a diffusive
process on top of the dominant ballistic one [72, 76, 77].

A natural question concerns the behavior when a generic perturbation is applied
to an otherwise integrable system. For instance, adding a quadratic pinning potential
U (q) = q2/2 to the Toda chain is expected to restore standard diffusive transport, but
numerical simulations show that long-range correlations are preserved over relatively
long scales [77, 78]. Moreover, weak perturbations that conserve momentum (and
are thus expected to display anomalous transport in the KPZ class) display instead
significant differences [79] and evendiffusive transport over the accessible simulation
ranges [80]. Altogether a full unified picture of the problem is still lacking.

8.6 Overview and Open Problems

In spite of the noticeable progress that has been made over the last decades, the
study of nonequilibrium processes in nonlinear systems remains a fascinating and
challenging domain of research. On a methodological ground, it concerns mainly the
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scientific communities of mathematics and theoretical physics, but it is of primary
interest also for optics, materials science and soft matter, just tomention a few among
the related fields in experimental and applied research. Going through the reading
of this chapter, one can easily realize that most achievements have been possible
thanks to a fruitful combination of analytic approaches and numerical simulations
and this can be reasonably expected to hold also in the future. For what concerns
open problems, it is worthmentioning a few of them, that have already attracted some
interest. The first one is the study of nonlinear models with long-range interactions.
The main motivation stems from the observation that for this class of models the
equivalence between statistical ensembles may not hold. This is expected to yield
interesting consequences also for nonequilibrium phenomena. In fact, long-range
systems are known to exhibit further peculiar properties, like long-living metastable
states, anomalous energy diffusion, lack of thermalization when interacting with a
single temperature reservoir, propagation of perturbations with infinite velocity, etc.
(for a general review see [81]). The problem of heat transport in the long-range ver-
sion of the rotor and FPUT chains has been recently tackled in a series of papers
[82–86]. When the interaction is genuinely long-range, i.e. the long-range exponent
α is smaller than 1, the heat transport process is dominated by parallel transport: a
flat temperature profile sets in, simply because each oscillator, independently, takes
a temperature value which is the average of those applied by the thermal baths. For
α larger than 1, the long-range rotor model reproduces standard diffusion, i.e. nor-
mal heat conductivity, as in the short-range version. Conversely, the FPUT chain is
characterized by an anomalous scaling exponent γ (α), which seems to recover the
value of the short-range case only for large values of α. Anyway, a better understand-
ing of the transport problem demands further refined investigations, that should take
into account also a comparison with the unusual relaxation process to equilibrium
characterizing long-range systems.

Let us conclude by mentioning one further open problem, which is related to
energy localization induced by nonlinearity. In fact, localization processes may
emerge in nonlinear systems even in the absence of disorder. The typical example
is the spontaneous formation of breathers in the DNLS problem already discussed
in Sect. 8.4. In the negative temperature region the phenomenon of condensation of
DBs can be read as a process of ergodicity-breaking, because, in the microcanoni-
cal setup, energy equipartition is inhibited by its localization. It is well known that,
when condensation phenomena are present, statistical ensemble equivalence is not
granted [87]. This is the case of the DNLS Hamiltonian in the negative tempera-
ture region, where the only available statistical ensemble is the microcanonical one
[25]. It is worth recalling that both total energy and mass are conserved quantities in
the DNLS Hamiltonian: the breaking of ergodicity in the negative temperature phase
indicates that a standard thermalization process for both quantities is suppressed. The
analogywith the problem of the Eigenvalue Thermalization Hypothesis advanced for
genuine quantum integrable systems (see the review paper [88]) suggests that ensem-
ble equivalence should be reconsidered also in this context to properly formulate a
thermalization hypothesis or, alternatively, the many-body localization phenomenon
invoked in quantum integrable systems.
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Chapter 9
Nonlinearity, Geometry and Field Theory
Solitons

Nicholas S. Manton

Abstract Topological solitons occur in many types of nonlinear field theory. Their
motion and interactions can be simulated classically, and can bewell approximated by
afinite-dimensional dynamics on amoduli space of collective coordinates. Interesting
phenomena related to the curvature and topology ofmoduli spaces are illustrated here
through the examples of vortices, sigma model lumps, and monopoles. Collective
coordinate dynamics can be quantized, and it is shown how quantized Skyrmion
dynamics is used to understand aspects of nuclear physics. A novel model for nuclear
fusion, based on wormhole geometry, is also proposed.

9.1 Field Topology and Solitons

This chapter is about particles and multi-particle states modelled as solitons in
quantum field theory, and mainly in field theories that are Lorentz invariant [1, 2].
Particles are usually regarded as pointlike and structureless. This makes sense for
electrons, for which no internal structure has yet been discerned. But other particles,
such as protons and neutrons, have a finite size. In field theory, such an extended
particle can occur naturally as a soliton.

The usual treatment of quantum field theory is perturbation theory. Here, one
first studies the linearised field equation and quantizes it as an infinite collection
of harmonic oscillators. The linear classical field equation has oscillating, wavelike
solutions—plane waves or dispersing wavepackets—that have no definite spatial
structure. However, quantization of the wave amplitudes (note: not particle positions
as in ordinary quantummechanics) leads to states of definite momentum and energy,
with the usual relativistic energy-momentum relation for a particle (in units where
the speed of light is unity)

E2 = m2 + p · p , (9.1)
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where the non-negative constant m is obtained from the field equation. This relation
describes a point particle of mass m, momentum p and energy E , and the relativistic
field theory allows for multi-particle states and antiparticles too. Each particle has
definite momentum, but it has no obvious position coordinate, and no internal struc-
ture. Further terms in the classical field equation, beyond the linear terms, are treated
as small, and in the perturbative approach to the quantum field theory, these terms
generate interactions between the particles.

Here we treat the field theory differently. We consider the full field equation from
the start. Its nonlinear structure can lead to isolated (solitary) wavelike solutions
that have an obvious location and finite size, and do not disperse. In the principal
examples the wave can be static in a certain rest frame, and we call it a soliton, by
analogy with the localised nonlinear waves that occur in fluids and other condensed
matter systems, and which are stationary or static in some (usually moving) frame
of reference. The ending -on denotes a genuine particle.

So far the soliton is classical, but it has desirable features of a particle, like
energy and momentum, and is localised. In the soliton’s rest frame (in a relativistic
theory) the energy is identified with the mass of the soliton. Quantization is much
more tricky in the full nonlinear field theory than in perturbation theory, so some
approximations are needed; this is the price to pay for the advantages of a nonlinear
treatment of the classical theory. The most useful approximation is to restrict the
dynamics of solitons to some finite number of collective coordinates. For a single
soliton, these coordinates model the soliton’s position and, if needed, its orientation
in space and/or its orientation in internal field space. After quantization, the soliton
acquires quantized spin, and sometimes an electric charge or another charge quantum
number.

A fascinating feature of the collective coordinates is that they can in principle be
used to deal with the dynamics of two or more solitons in interaction. The geometry
of the collective coordinates is not just the product geometry for the two solitons
separately. Two-soliton dynamics often combines a non-trivial geometry of interac-
tion [3] with the more usual interaction potential energy. In practice, this means that
for two solitons the kinetic energy coefficients vary with the soliton separation. This
variation leads to velocity-dependent forces, supplementing the static forces derived
from the gradient of the potential.

In special cases there is no potential, and the interaction is purely geometrical. We
will discuss a fewexamples of the special solitonswhere this occurs. They are referred
to as Bogomolny solitons [4], or BPS solitons, and they arise in field theories that
have a remarkable extension as supersymmetric field theories. Bogomolny solitons
are also solutions of a first order field equation, somewhat like a Cauchy–Riemann
equation. We will hardly explore the supersymmetric extension here, because of
limitations of space, but see [5].

Quantization of the collective coordinate dynamics is usually possible. For one
soliton this is straightforward. For two ormore, it gives amodel of quantized interact-
ing solitons, where the number of solitons doesn’t change during the interaction, and
no antisolitons are created. So collective coordinate quantization is essentially a non-
relativistic approximation, appropriate for particles with relatively low energy. High-
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energy processes can generate soliton-antisoliton pairs, but this is hard to model.
There are some new ideas how to introduce collective coordinates for solitons and
antisolitons together, in the simplest field theories in one space dimension [6].

Let us introduce slightly more technical language. The collective coordinates are
coordinates on a manifold, and are usually called moduli. The manifold as a whole
is called the moduli space of the solitons, and there is a different one for each soliton
number. In the Bogomolny set-up, where there is no interaction potential, and hence
no static forces between solitons, themoduli spaceMn is simply themanifold of static
solutions of the field equation, representing n solitons. Mn is generally a smooth,
connected Riemannian manifold of dimension proportional to n. Its metric is derived
from the field theory kinetic energy, as we will explain further in Sect. 9.2. Defining
Mn when there are static forces is more difficult. One way is to take a known moduli
space where such forces vanish, and add a potential energy. The potential is adjusted
to match the energy of known solutions, for example, merged solitons and infinitely
separated solitons.

One may now ask—how is the number of solitons n defined? In many cases
the answer lies in the topological character of the soliton field. We summarise this
here, and refer to [1] for more details. Field theories always have a classical vac-
uum, a solution of minimal energy with spatially uniform fields. A localised wave
is generally a continuous deformation of a unique vacuum, and hence topologically
uninteresting. However, in some of the field theories of interest, the vacuum is not
unique, because of symmetry breaking, combined possibly with gauge invariance.
A soliton is then a field configuration that approaches a definite vacuum value along
any radial line away from the soliton core in a fixed direction, but that value varies as
the direction varies. There is a danger that such a soliton has infinite energy, because
the angular gradients of the field do not fall off rapidly enough towards infinity. This
problem is avoided in a gauge theory, because although the angular gradients fall off
slowly, the gauge covariant angular gradients can be arranged to fall off much more
rapidly, and these are what contribute to the energy. For (non-gauged) solitons with
a possibly divergent energy, the divergence can often be regularised. Global vortices
are like this. Two or more global vortices have a finite interaction energy, because the
divergent part of the total energy is a constant, independent of the vortex positions,
and can be discarded [7]. In practical situations, solitons are often in a finite region
of space, and this also regularises the total energy.

For this type of soliton, the soliton number n is a conserved, topological feature
of the field values at infinity. It is unchanged by any smooth evolution of the field,
including high-energy collisions of solitons, and quantum fluctuations of the field
are also believed not to affect its integer character or conservation.

To be more concrete, in several examples the classical field energy density has a
contribution

Vpot = λ(1 − φ · φ)2 , (9.2)

where the number of components of the fieldφ equals the dimension d of space, andλ

is a positive constant. For the field energy density to be localised, and its integral finite
after regularisation, φ on the (d − 1)-sphere at spatial infinity must be a continuous
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function of the angles there, and take its value in the unit (d − 1)-sphere φ · φ = 1,
which is the sphere of possible vacua. The asymptotic field configuration therefore
defines a mapping from the (d − 1)-sphere to itself, which has a topological degree
n. This degree is used in the context of vortices in two dimensions, and monopoles in
three dimensions. The topological degree counts solitons, because if n basic solitons
are well separated (radially, and in angles), then they each contribute one unit to the
degree, as can be verified through a calculation. When the solitons approach each
other, the degree does not change.

Both vortices andmonopoles exist in gaugefield theories,where the gradient terms
in the energy density are gauge covariant. The total energy is finite, without need for
regularisation. However, there is then always some curvature in the gauge field of
the soliton, i.e. a non-vanishing magnetic field. For vortices in two dimensions this
magnetic field decays rapidly towards infinity, but there is still a net magnetic flux
localised around the vortex cores, whose total magnitude is proportional to the vortex
number n. For monopoles in three dimensions the magnetic field has Coulomb-type
decay, and there is a net magnetic flux through the sphere at infinity proportional to
the monopole number n. So an n-monopole has a magnetic charge proportional to n.
The magnetic Coulomb field does not have a singularity, because soliton fields are
always smooth, and the energy is finite.

(Note that a 2-monopole is not a dipole, because a dipole consists of a monopole-
antimonopole pair. Physically, true magnetic monopoles have never been seen, and
they are forbidden by Maxwell’s equations in standard electromagnetic theory, but
they could exist in more exotic nonabelian gauge theories of particles, like Grand
Unified Theories.)

An alternative topological characterisation of a soliton can occur when the field
theory has a unique vacuum, but the field is everywhere subject to a nonlinear con-
straint. For example, a field ψ could be constrained to be everywhere a (d + 1)-
component unit vector, and also (for energetic reasons) take a unique vacuum value
at spatial infinity. In this case one may topologically compactify space by identifying
all points at infinity. This turns flat spaceR

d into a (large) d-sphere, and the field also
takes values in a d-sphere. So the field (throughout space) defines a mapping from
the d-sphere to itself, with a topological degree n, which is again identified with the
soliton number. An example of this kind of field topology occurs for Skyrmions
in three space dimensions [8, 9], where the field is constrained to a 3-sphere, not
exactly because the field is a unit vector, but because it takes values in the group
SU(2), which as a manifold is a 3-sphere. The unique vacuum is the identity group
element, the unit matrix 12.

For the much-studied magnetic Skyrmions in two space dimensions [10, 11],
the field is the magnetisation vector, which has values in a 2-sphere. The magnetisa-
tion can change its direction through the sample, but not easily its magnitude. The
Skyrmion number n is the degree of the mapping from the physical surface to the
target 2-sphere.

A topological degree can be defined more generally even when the field does not
have a unique limiting value at spatial infinity, because it is the integral of a local
density—the Jacobian of the mapping, suitably normalised. The integral then makes
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sense in any finite region, although it may not have integer values. Because of this,
one can for example calculate the number of Skyrmions per unit volume, or unit
area, in a periodic array of Skyrmions.

9.2 Moduli Spaces of Solitons

We consider here the moduli spaces of a few types of soliton, including one example
where there isn’t an underlying field theory. It is simplest to start with the mathemat-
ically precisely defined moduli spaces for Bogomolny solitons.

A key example is that of U(1) gauged vortices in a plane. Let x1, x2 be Cartesian
coordinates, and introduce the complex coordinate z = x1 + i x2. The fields are a
complex scalar field φ and a gauge potential with components a1, a2. Diφ = ∂iφ −
iaiφ denotes the gauge covariant derivative ofφ, and b = ∂1a2 − ∂2a1 is themagnetic
field. (In the fully dynamical theory, the fields also depend on time t ≡ x0, so there is
a time component a0 of the gauge potential, and an electric field ei = ∂0ai − ∂i a0.)
Static Bogomolny vortices are solutions of the first order coupled equations

(D1 + i D2)φ = 0 , (9.3)

b − 1

2
(1 − |φ|2) = 0 . (9.4)

Taubes showed that these equations have a unique n-vortex solution for every choice
of n (possibly coincident) points in the plane [12]. Let these n points have complex
coordinates Z1, Z2, . . . , Zn , and let

p(z) =
n∏

k=1

(z − Zk) = zn + p1z
n−1 + · · · + pn (9.5)

be the polynomial with unit leading coefficient (i.e. the monic polynomial) having
these points as zeros. There is then a convenient gauge choice where the vortex
field φ, as a function of z and z̄, is a real non-zero multiple of p(z), and such that
|φ| → 1 asymptotically. The points Z1, Z2, . . . , Zn are therefore the zeros of φ, and
are identified as the vortex locations. The winding number (degree) of φ at spatial
infinity is n, because this is the winding of the phase of zn , the leading term in p(z).

Naively, the moduli are the points Z1, Z2, . . . , Zn , but these are unordered, so
the moduli space Mn is not the obvious C

n for n labelled particles, but instead
C

n/Sn , where Sn is the permutation group. One might suspect that this quotient has
conical singularities, but remarkably it is still a smooth manifold, and is again C

n .
Its coordinates are not the Zk’s but instead the coefficients p1, p2, . . . , pn of the
polynomial p. These coefficients are the elementary symmetric polynomials in the
Zk’s, and have unconstrained values. (More generally, the symmetrised nth power
of any Riemann surface is a smooth complex manifold.)



210 N. S. Manton

This vortex example illustrates a common feature of solitons. They have locations
in space, but are indistinguishable at the classical level, because a permutation of their
locations does not change the field. Themoduli space therefore involves a quotient of
what would occur for labelled particles. However, the moduli space remains smooth,
and the dynamics of the solitons is smooth even if two or more solitons instanta-
neously coalesce at the same location. We will explain the consequence of this for
two-soliton collisions shortly.

The dynamics of Bogomolny vortices only depends on the field kinetic energy
(an integral involving D0φ and ei ), and if this energy is relatively small, the field
cannot escape far from the moduli space of static solutions. So the dynamics is effec-
tively controlled by the kinetic energy restricted to the moduli spaceMn . The kinetic
energy becomes a (hermitian) quadratic form in the collective coordinate veloci-
ties ṗ1, ṗ2, . . . , ṗn , and the coefficient matrix can be interpreted as a (hermitian)
Riemannian metric onMn . So we need to know something about this metric on the
moduli space. It is not flat. Samols calculated an implicit formula for it [13], showing
that it was not just hermitian but Kähler—the details are not needed here.

With the dynamics controlled by a metric on the moduli space Mn , the natural
motion is along geodesics at constant speed [3]. Let us see what this means for two-
vortex dynamics. Let the vortex locations be Z1 and Z2. As explained earlier, the
good coordinates are p1 = −(Z1 + Z2) and p2 = Z1Z2. The centre of mass motion,
i.e. the time-dependence of p1, decouples, as shown by Samols, so let us consider
centred vortex motion, where Z1 = Z and Z2 = −Z . Then p2 = −Z2. The centred
moduli space, with complex coordinate p2, is a real surface of revolution having the
shape of a cone, but smoothly rounded off near the vertex p2 = 0 (see Fig. 9.1). The
reasons are as follows. It is a surface of revolution because a rotation of z by angle α

is a symmetry, causing a rotation of both Z and −Z , and a rotation of p2 by 2α. The
surface is a cone because for well separated vortices (|p2| large), Z is itself a good
local coordinate and the metric is approximately Euclidean when expressed in terms
of Z . So the centred moduli space is asymptotically a flat plane quotiented by the
permutation group S2 exchanging Z and −Z , i.e. a cone with semi-vertex angle 30◦.
Finally, the metric is smooth at the vertex because vortex fields have no singularity
as the two points Z and −Z become coincident. Note that the smoothed cone has a
smaller area than the corresponding flat cone with its sharp vertex.

One geodesic on the smoothed cone is through the vertex, down on one side and
up on the other, at constant geometric speed. This corresponds to a straight line
motion of p2, passing through p2 = 0, though not at constant speed in terms of this
coordinate. Suppose the motion is along the real axis, from−∞ to+∞, and suppose
that p2 = 0 at time t = 0. Then, when −t is replaced by t , the sign of p2 is reversed.
That means that the sign of Z2 is reversed, so the locations Z and−Z are replaced by
i Z and −i Z . The incoming vortices are on the real z-axis, but the outgoing vortices
are on the imaginary z-axis. Instantaneously, when the vortices are coincident, the
field is circularly symmetric.

This 90◦ scattering of a vortex pair is very robust. It occurs during the short period
of time while the vortices are close together even if there are other vortices present
or the vortices are on a curved Riemann surface. It occurs because the vortices are
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Fig. 9.1 Rounded cone—the moduli space for centred two-vortex dynamics. Reproduced from
[1]

classically indistinguishable, and doesn’t occur for point particle dynamics with any
reasonable potential. Solitons behave as point particles while well separated, but not
when they are close together.

An analogy for this scattering behaviour is what happens to the foci of the
ellipse x2 + βy2 = 1 as β increases through 1. The ellipse evolves smoothly, passing
through a circle, but the major and minor axes are exchanged, and the foci scatter
through 90◦. Instantaneously the foci coalesce and there is circular symmetry.

A few other soliton moduli spaces are known in some detail. Sigma model lumps
are solitons in a nonlinear scalar field theory in two space dimensions. In the simplest
case, the field is a mapping from a 2-sphere (the compactified spatial plane) to a
target 2-sphere, and solutions of the relevant Bogomolny equation are meromorphic
functions (using a complex, stereographic coordinate on both spheres) [14]. The
soliton number n is the degree of the mapping. A meromorphic function of finite
topological degree n has to be a rational function

R(z) = p(z)

q(z)
(9.6)

where (generically) p and q are polynomials of algebraic degree n, having no com-
mon zeros. The moduli space of such rational functions is understood, but is quite
complicated because of the constraint of avoiding common zeros. Naively, the lumps
are localised solitons with four real moduli each. These moduli specify the location,
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the size and a phase angle for each lump. Lumps whose separations are much larger
than their sizes occur when the zeros of p and q are paired up close together. The
metric on the moduli space is again Kähler [15]. Geodesic motion on moduli space
can be studied for a single lump,when the lumpmoves either on a plane or on a sphere
of finite radius. For the lump on a plane, the size and phase cannot vary, according to
the geodesic dynamics, because the correspondingmetric terms are divergent and the
kinetic energy would be infinite. For a lump on a sphere, the metric is not divergent,
but instead it is incomplete, and a lump can contract to zero size in finite time [16].
This contraction to a singular field is also observed in solutions of the full dynamical
field equation on a plane, but the details are different [17].

For SU(2) Bogomolny (BPS) monopoles in three dimensions, the field equation
is

Bi = Di� (9.7)

where Bi is the SU(2) nonabelianmagnetic field, and Di� is the covariant gradient of
an SU(2) triplet Higgs field. � is required to have unit magnitude at spatial infinity,
and its angular variation there determines the topological degree, and hence the
monopole number n. The metric on the moduli space Mn of n-monopole solutions
is very interesting, but also complicated. The dimension ofMn is 4n and the metric
is hyperKähler. Atiyah and Hitchin made a deep study of Mn and its metric, and
explicitly constructed the metric on M2 [18]. From one point of view, Mn is again
the space of rational maps of degree n (subject to a suitable base point condition),
but the rational map does not have such a direct relation to the fields as it does for
lumps.

A single monopole has a location in R
3 and an internal phase. The monopole

has a fixed magnetic charge −2π , and when its phase is time-dependent, it becomes
electrically charged, with the electric charge proportional to the time-derivative of the
phase. In classical geodesic motion, a single monopole has a conserved momentum
and a conserved electric charge of arbitrary magnitude.

For two monopoles, the centre of mass and the overall phase decouple, so the
system has a conserved total momentum and conserved total electric charge. The
interesting part of the metric, known as the Atiyah–Hitchin metric, is on the 4-
dimensional moduli space of the relative location and phase. Here, certain types of
geodesic motion correspond to 90◦ scattering of monopoles similar to the 90◦ scat-
tering of vortices. A separatedmonopole pair is not exactly axially symmetric around
the line joining the centres, making 90◦ scattering possible. The initial condition for
the relative phase angle determines the plane of scattering. Other types of scattering
also occur; for example, if the incoming monopoles have no electric charges, then
generically the outgoingmonopoles have opposite non-zero charges. It is remarkable
how angular momentum conservation is maintained in such processes.

Skyrmions also have interesting dynamics. Despite the absence of a good moduli
space formore than one Skyrmion, it is still possible to numerically study the classical
scattering of two Skyrmions. If the initial trajectories and orientations are carefully
chosen, one observes the 90◦ scattering seen previously for vortices and monopoles
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Fig. 9.2 Scattering of two Skyrmions. Top row: snapshots of 90◦ scattering in a head-on collision;
bottom row: scattering with a small impact parameter. The colouring indicates field values. Repro-
duced from [19]. Creative Commons Attribution License (CC BY) https://creativecommons.org/
licenses/by/4.0/

[19] (see Fig. 9.2). This phenomenon persists even if the Skyrmions are spinning
[20].

9.2.1 Half-Wormhole and Fusion

There is a physical system involving the scattering or fusion of two objects with
localised energy density, having somewhat analogous geometry to the rounded cone
and 90◦ scattering we have just described. The system obeys dynamical equations,
but there are no true fields or solitons here.

The system consists of a colliding Oxygen-16 nucleus and an alpha particle (a
Helium-4 nucleus),modelled using the adiabatic self-consistent collective coordinate
method [21]. The nuclear density is simply the matter density, and protons and
neutrons are not distinguished. We do not need the details of the model, but only
to know that the density distributions are spherical and localised, with smoothly
decaying tails, when the two nuclei are initially well separated, and that the Oxygen-
16 nucleus is larger. The overall density is therefore initially axially symmetric, with
symmetry C∞v.

The nuclei may scatter elastically, or they may fuse into a Neon-20 nucleus, with
excess energy being radiated away. The energies we consider here are not sufficient
for the Oxygen-16 nucleus or alpha particle to break up.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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It is assumed that the density remains axially symmetric during the collision.
This is a simplification, because one model of Neon-20 is of five alpha particles
arranged as a trigonal bipyramid, that is, a (vertical) equilateral triangle of three
alpha particles with one additional alpha particle to the left and one to the right,
arranged symmetrically. In the model of Neon-20 considered here, this structure is
rotationally averaged about theC3 axis to give a prolate density with D∞h symmetry.
The important property for us is its left/right symmetry.

The model predicts that a smooth one-parameter family of configurations and
densities will occur during a head-on collision, where the Oxygen-16 starts on the
right, and moves towards the alpha particle on the left. There is initially no left/right
symmetry, but at some instant the nucleimerge intoNeon-20with left/right symmetry,
before splitting again into an Oxygen-16 on the left and alpha particle on the right,
which then separate. However, the outgoing alpha particle is not the incoming one—
it is part of the incoming Oxygen-16, and the rest of this Oxygen-16 nucleus merges
with the incoming alpha particle to produce the outgoing Oxygen-16. This dipole
evolution is like Newton’s cradle [22]: four touching particles come in and collide
with one other, and four touching particles go out, leaving one behind. But there has
been a permutation of the five particles.

There is a potential energy along this one-parameter family of densities, with a
dip at the Neon-20, but also a Coulomb barrier to overcome to reach it. Calculations
have beenmade of both this potential energy and the effective inertia, as a function of
the separation, but there has been some uncertainty about what separation parameter
to use. It is tempting to use the separation between the Oxygen-16 and alpha particle
centres, but these centres fail to bewell defined as the nucleimerge, and the separation
vector may then appear to jump discontinuously. The permutation of the matter
during the collision makes it unwise to use a separation distance at all, and one needs
a different geometrical picture. We offer such a picture here.

The physics we have described appears to be essentially 1-dimensional, but it
is better to allow for the separation between the Oxygen-16 and alpha particle to
be along any line in space passing through the origin. The configurations are as
before but with any orientation of the line, so the dimension of the configuration
space is three, and there is an action of the rotation group SO(3). The generic SO(3)
orbit is a 2-sphere because the Oxygen-16 and alpha particle are distinct. What were
previously an Oxygen-16 on the right and an Oxygen-16 on the left are now distinct
points on such an orbit. The Neon-20 cluster with its additional symmetry under a
180◦ end-over-end rotation has as its SO(3) orbit the real projective plane RP2, that
is, a 2-sphere with antipodal points identified. The complete configuration space is a
one-parameter family of 2-spheres, completed by thisRP2. This is a standard smooth
completion of such an orbit space. There is no problem defining good coordinates
and a candidate for a smooth metric.

In fact, this manifold is a half-wormhole, or something very similar. A spatial
three-dimensional wormhole is a Riemannian manifold with ‘radial’ coordinate r
running from −∞ to ∞, and spherical polar coordinates θ, φ, carrying the metric

ds2 = dr2 + (r2 + a2)(dθ2 + sin2 θ dφ2) , (9.8)
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with a positive. This is asymptotic to two copies of R
3, for |r | � a, smoothly joined

by a throat of minimal radius a at r = 0. |r | is the geodesic distance from the throat.
The wormhole has an obvious action of SO(3) and all orbits are 2-spheres. There
is also an antipodal map which combines the usual antipodal map on a 2-sphere
(θ, φ) → (π − θ, φ + π) with r → −r . This has no fixed points, so the quotient
by this map is smooth and moreover still oriented. (The analogue quotient in two
dimensions is aMöbius band and unoriented.)We call this quotient a half-wormhole.
Its coordinates are r with range 0 to ∞, together with θ, φ. The generic SO(3) orbit
is a 2-sphere but the orbit at r = 0 is RP2. The formula (9.8) is still the metric. A key
property of this metric, required for the antipodal symmetry, is that the derivative of
the radial scale factor r2 + a2 is zero at r = 0. Small or more substantial modifica-
tions of the scale factor do not change the orbit structure or geometry qualitatively,
but the factor must remain symmetric under r → −r for the quotient to work, and
for the quotient metric to be smooth, the factor’s derivative must be zero at r = 0.

Note that the half-wormhole has some curvature. If one just takes flatR3, cuts out a
ball and glues in anRP2, that does not give a smooth manifold (the radial scale factor
does not have zero derivative anywhere). So curvature of the configuration space is
inevitable in any smoothmodel with appropriate topology and orbit structure, though
hard to see from a 1-dimensional perspective.

We propose here that a half-wormhole geometry, supplemented by a potential
energy that depends only on r and has zero derivative at r = 0, is a useful model
for the scattering or fusion of Oxygen-16 and an alpha particle, resolving earlier
difficulties. Collisions can be head-on or have a non-zero impact parameter and non-
zero angular momentum. However we have not constructed a detailed model for the
potential, nor calculated the fusion cross section.

It is fairly easy to discuss quantummechanics on the half-wormhole. The quantum
Hamiltonian combines the negative of the Beltrami Laplacian on the half-wormhole
with the potential. The Beltrami Laplacian is the natural generalisation of the flat-
space Laplacian to a curved manifold. Stationary wavefunctions can be assumed to
have definite angular momentum, so they are spherical harmonics Ylm(θ, φ) times
a radial function χ(r). Crucially, χ must have zero derivative at r = 0 if l is even,
and vanish at r = 0 if l is odd. These conditions follow if one starts with a smooth
wavefunction on the complete wormhole and requires it to be invariant under the
antipodal map. The fusion cross section is dominated by the S-wave with l = 0.

We can consider rotational bands of Neon-20, based on bound states in this
model. The radial ground state allows for a K π = 0+ rotational band, built on the
left/right symmetric configuration where the Oxygen-16 and alpha particle have
merged. This band consists of states with spin/parity 0+, 2+, 4+, . . .. The first radial
excited state is dominated by a left/right asymmetric configuration of the Oxygen-
16 and alpha particle, still axisymmetric around the line joining them. Building
on this configuration one constructs a higher-energy K π = 0− rotational band with
1−, 3−, 5−, . . . states. These rotational bands, and others, are observed in the Neon-
20 spectrum [23–25].
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9.3 Soliton Quantization

Let us consider first themoduli spaceM1 of a basic solitonwith n = 1. The collective
coordinates of the soliton are its position, and possibly further internal coordinates
including its orientation. The potential energy is independent of all these, becauseM1

is the orbit of some symmetry group acting in the underlying field theory. Soliton
dynamics is therefore determined just by the metric on M1, which encodes the
kinetic energy of the soliton as it rigidly translates and rotates. The parameters of the
metric are the soliton mass, and moment of inertia. There can also be further inertia
parameters for internal motions, e.g. for a scale change in a theory with rescaling
invariance, when the soliton mass is independent of size. We defer consideration of
soliton vibrations until later.

The exact form of the metric sometimes needs to be calculated from the field
theory by integration of the kinetic energy density of the moving soliton, but its
general form is strongly constrained by symmetry. For example, for an SU(2) BPS
monopole, the metric in the units of [1] is

ds2 = dX · dX + dθ2 . (9.9)

Here X is the monopole position in R
3 and θ is the phase angle with range 2π ,

and there are no spatial orientational moduli. The surprise here is that the inertia
coefficients in the metric are all the same. This is because the energy associated with
the monopole acquiring an electric charge is related to the standard kinetic energy
of spatial motion.

The Lagrangian for the collective coordinate dynamics is

L = π(Ẋ · Ẋ + θ̇2) (9.10)

where the prefactor π is half the mass of the monopole. The conjugate momenta are
the spatial momentum p and electric charge Q,

p = 2πẊ , Q = 2πθ̇ , (9.11)

and the classical Hamiltonian (the Lagrangian expressed in terms of momenta) is

H = 1

4π
(p · p + Q2) . (9.12)

Classical motion is with p and Q constant.
Canonical quantization in the Schrödinger picture is achieved by replacing the

conjugate momenta by the operators

p = −i�∇ , Q = −i�
∂

∂θ
, (9.13)
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so the quantized Hamiltonian is

H = − �
2

4π

(
∇2 + ∂2

∂θ2

)
. (9.14)

Stationary states with definite momentum and electric charge have the simple plane
wave form

ψ(X, θ) = exp
i

�
(p · X + Qθ) , (9.15)

where p and Q are now the eigenvalues of the corresponding operators.
The momentum p can have any value, but because θ is an angle, and ψ should

be single-valued, Q is restricted in the quantum theory to be an integer multiple of
�. The magnetic charge of the classical monopole is −2π , and this is unchanged by
collective coordinate quantization. The product of the magnetic and electric charges
is therefore an integer multiple of 2π� in the quantum theory. This is consistent with
the quantization condition discovered byDirac, using a quite different argument [26].

Some features of this quantization extend to various other types of soliton, in
particular Skyrmions. The quantum Hamiltonian on moduli space is in general a
multiple of the Beltrami Laplacian derived from the moduli space metric. The trans-
lational part is rather trivial and decouples, so when we discuss Skyrmions we shall
concentrate on the rotational part, which is unaffected by the Skyrmion’s spatial
momentum.

It is a general principle of quantization that wavefunctions do not have to be
single-valued on the classical configuration spaceC, but only on its simply-connected
universal cover. Complex wavefunctions then transform under some 1-dimensional
representation of the fundamental group�1(C). Applying this to the monopole mod-
uli space M1, where �1(M1) = Z, we see that the electric charge could acquire a
fractional shift, but if it does so than it can be shown that in the n-monopole sector,
each monopole’s electric charge acquires the same shift. There is a generalised Dirac
quantization condition, due to Schwinger, to deal with this situation [27].

Care must be taken to ensure that the fundamental group of the field theory
configuration space C is properly represented on any moduli space of solitons. Such
a moduli space is always a finite-dimensional subspace of the much larger space C,
and loops that are non-contractible in a moduli space may become contractible in C.
This issue is important for Skyrmions. For U(1) gauged vortices, the moduli spaces
for all n are topologically trivial.

The outline we have just given of quantization is far from complete. It assumes
that the classical field Lagrangian has only quadratic terms in the time derivatives
of the fields, but some field theories have Lagrangians with additional terms that are
first order, and sometimes there are solely first order terms [28]. Such terms arise
in Chern–Simons theories and in field theories where the classical field equation is
more like a nonlinear Schrödinger equation than a nonlinear wave equation. Such
theories are usually not Lorentz invariant, but they are still energy conserving. The
classical dynamics restricted to moduli space becomes Hamiltonian, with the mod-
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uli space a symplectic rather than Riemannian manifold. This change of viewpoint
is straightforward if the moduli space is Kähler, and has a consistent metric and
symplectic structure. Quantization can be carried out using the ideas of geometric
quantization, with a holomorphic polarisation. This has been applied to multivortex
dynamics on a sphere [29], and on general compact Riemann surfaces [30].

(We are not considering here the solitons in condensed matter systems whose
motion is non-relativistic and dissipative. Such solitons include vortices in super-
conductors and magnetic Skyrmions. These are observed as classical objects, and it
appears that their motion should not be quantized.)

Quantization of n-soliton moduli spaces, for n > 1, is tricky, because the dimen-
sion of the moduli space becomes large as n increases, and the metric is often not
known explicitly. Despite this, there has been considerable interest in quantizing
multimonopoles. Sen understood that because multimonopole moduli spaces are
hyperKähler (and there’s no potential) it is natural to quantize in a supersymmet-
ric way [31]. This means that wavefunctions are differential forms on moduli space
rather than scalar functions. A non-zero degree of the form is related to themonopoles
acquiring spin, as expected in a supersymmetric context. Sen could find a harmonic
2-form bound state on the Atiyah–Hitchin manifold—the moduli space for the rel-
ative motion of two monopoles. The Sen form represents a 2-monopole state of
minimal energy (actually zero energy, because of supersymmetry). Its existence is
related to the 2-sphere at the centre of the Atiyah–Hitchin manifold (not very differ-
ent from theRP2 at the centre of the half-wormhole model of Sect. 9.2.1). Analogues
of Sen’s form on n-monopole moduli spaces with larger n have also been shown to
exist [32]. The mathematics is challenging because of the non-compactness of these
moduli spaces, but in the simpler case studied by Sen, the 2-form has been calculated
explicitly, and it decays exponentially fast as the two monopoles separate.

Standard quantization on the Atiyah–Hitchin manifold, using scalar wavefunc-
tions and a Hamiltonian proportional to the Beltrami Laplacian, is also possible [33].
Here most states are 2-monopole scattering states, but there are also some bound
states of positive energy. The details are quite complicated, because of the possibil-
ity of electric charge exchange (in integer units of �) during a collision, and bound
state energies have to be calculated numerically.

9.4 Quantized Three-Dimensional Skyrmions as Models of
Nuclei

Here,we discuss in a littlemore detail the three-dimensional Skyrmions and how they
are quantized. For these Skyrmions, the degree n is identified with baryon number
B, and this is the notation we use from now on.

Skyrme proposed this model for baryons (the particles now known to have three
quark constituents) around 1960 [8, 9]. By then it was clear that proton and neu-
tron interactions are mediated by the three pion fields and that the dynamics has an
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underlying approximate SO(4) symmetry, realised through a left and right action
of SU(2). As pions are bosons, Skyrme imagined they could form a classical con-
densate obeying nonlinear equations. Having constructed a suitable Lagrangian and
field equation for the pion fields, he realised that these equations have topologically
stable solutions, characterised by the integer topological charge B, and that B can
be identified with baryon number (atomic mass number A in nuclear physics). The
basic solution with B = 1 could therefore be identified with a classical version of a
proton or neutron. (Collectively, these particles are known as nucleons.) There is no
need for explicit nucleon sources for the pion field—the nucleons emerge from the
theory automatically as soliton solutions—and baryon number is conserved in all
interactions, in agreement with experimental observations. To explain the distinction
between proton and neutron, and also explain the spin of these particles, quantization
is required. We discuss this below.

The fundamental Skyrme field is an SU(2) matrixU (x) (also depending on time).
Recall that as a manifold, the group SU(2) is a 3-sphere, S3. The SO(4) symmetry
is realised by left and right multiplication of U by (x-independent) SU(2) matrices.
The Skyrme Lagrangian is dominated by SO(4)-symmetric terms depending on the
gradient and time-derivative of U . In addition there is a mild potential that fixes
the vacuum to be U = 12. Finite-energy fields must approach the vacuum at spatial
infinity. The field U (x) then defines a map from compactified space S3 to the target
SU (2) = S3, whose degree is the baryon number B.

The potential term breaks the SO(4) symmetry to an SO(3) subgroup, the isospin
subgroup, and also gives the pions a small mass. (In the fully symmetric theory, the
pions are massless Goldstone bosons, but this is known experimentally to be only
approximately true.) There are many variants of the Skyrme Lagrangian, depending
on how many powers of gradient terms are included, and also on whether fields
representing the heavier ρ and ω mesons are added.

In all versions of the Skyrme model, fields close to the vacuum are described by
the linearised Skyrme field

U (x) � 12 + iπ(x) · τ (9.16)

whereπ is the (three-component) pion field and τ are Pauli matrices. In the linearised
theory, π obeys a massive scalar wave equation with plane wave solutions that can be
quantized to give pion particles. By contrast, a B = 1 Skyrmion is a static solution
of the nonlinear field equation for U , whose energy density and baryon density
are spherically symmetric. The field has to be smooth at the centre, and this is
achieved by having U = −12 there. The field U covers the whole of SU(2) once
as x varies. Asymptotically, the Skyrmion has pion field components that are not
individually spherically symmetric. Instead, they have a (Yukawa) dipole decay, with
the three dipole moments mutually orthogonal. The frame of dipoles can be rotated,
so a Skyrmion has an SO(3) of orientational degrees of freedom in addition to the
translational degrees of freedom. For the B = 1 Skyrmion, the effect of a spatial
rotation and of an isospin rotation are equivalent, but for Skyrmions with larger B,
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these SO(3) actions are generally independent. A reflection turns a Skyrmion into an
antiSkyrmion.

Themoduli spaceof thebasicSkyrmion isR
3×SO(3).Thefield theoryLagrangian,

restricted to motion in this moduli space, defines a mass and moment of inertia for
the Skyrmion. The Skyrmion can then be quantized as a rigid body, a spherical rotor,
leading to stateswith definitemomentumand spin. Skyrmemade the important obser-
vation that SO(3) is not simply connected, so wavefunctions need be single-valued
only on its double cover SU(2). He suggested (on physical grounds) that one should
choose the odd quantization, where wavefunctions change sign under a 2π rotation.
This means that allowed quantum states have half-integer spin. The Skyrme model
can then be calibrated by identifying the spin 1

2 states with the proton and neutron,
and the spin 3

2 states with Delta resonances [34]. A rotor automatically has four spin
1
2 states. In terms of Euler angles, these are theWigner D-functions DJ

sm , with J = 1
2 .

The label s = ± 1
2 distinguishes proton and neutron, and the label m = ± 1

2 the spin
projection on the spatial 3-axis. The proton and neutron therefore form an isospin
doublet with very similar masses, but different electric charges.

There are sophisticated arguments backing up Skyrme’s choice of the half-integer
spin quantization [35]. This choice is shown to be consistent with QCD, the theory
of quarks and gluons, in the low-energy limit. In QCD the gauge group is SU(3), so
baryons are made of three (an odd number) spin 1

2 quarks. Topological features of the
full gauge theory restrict how one should quantize the Skyrme field theory, regarded
as a low-energy effective field theory approximating QCD. Baryons therefore have
half-integer spin, in QCD and in Skyrme theory.

Skyrme began a study of Skyrmion interactions by calculating the small force
between two well separated B = 1 Skyrmions, and how this force depends on the
relative orientation. By quantizing the orientations, and projecting the interaction on
to spin 1

2 states, one finds features of nucleon-nucleon forces, in particular the tensor
force [36].

As Skyrmions do not obey a Bogomolny-type equation, there is no easily defined
moduli space for Skyrmions of higher baryon number. Some ideas for tackling this
problem involve gradient flow [37, 38], and use of rational maps, but there is as yet
no satisfactory solution. Two or more well separated B = 1 Skyrmions in certain
orientations attract, so there are stable Skyrmion solutions with baryon number B,
where the basic Skyrmions come together [39, 40] (see Fig. 9.3). These have the usual
obvious moduli of translations and spatial rotations. In addition there are moduli of
the SO(3) isorotations (isospin rotations). So in total there are usually nine moduli.

Although the B = 1 Skyrmions are spherical balls, the minimal energy solutions
for larger B are not the clusters of balls familiar from popular depictions of nuclei.
Neither do the B = 1 Skyrmions completely merge, because they are almost incom-
pressible. Instead they partially merge, and the clusters have a fascinating, slightly
enhanced symmetry, a point group symmetry that combines rotations with isorota-
tions. For example, two Skyrmions merge into a torus, three into a tetrahedron, and
four into a cube [39]. But the ball cluster structures are not far away.
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Fig. 9.3 Skyrmions with baryon numbers 1 to 8.A selected surface of constant energy density is
shown, together with the baryon number and symmetry group. Reproduced from [1]

The classical energy is reduced by about 10% when B basic Skyrmions merge.
This is much more than the binding energy of nucleons into nuclei, which is of
order 1% of the rest energy. So classical Skyrmions are too tightly bound in the
standard Skyrme model, and they are also too rigid, but quantum fluctuations can
compensate for this. To model a nucleus, one should not just consider the rotational
and isorotational degrees of freedom of the minimal energy Skyrmion. One should
allow for vibrational degrees of freedom that deform the Skyrmion towards break-up
into individual B = 1 Skyrmions.

The detailed, rigid-body quantization of a Skyrmion with baryon number B > 1
is quite tricky, but over many years, several examples have been tackled [41–46].
The orbit of rotations and isorotations is six-dimensional for B > 2; it is the product
of two copies of SO(3) quotiented by the discrete symmetry group. (For B = 2
the orbit is five-dimensional as the symmetry group is D∞h .) There is a potentially
complicated 6 × 6 inertia tensor, although this simplifies when there is symmetry.
The rigid-body quantum states match a limited number of observed states quite well,
but many states are missed, and the overall energy is too low because of the too large
classical binding energy.

Much better nuclear spectra have been obtained by allowing shape changes of
the Skyrmions. Examples are the deuteron [47] and the isospin doublet of Lithium-
7/Beryllium-7 [48] (see Fig. 9.4). Another example is the quantized cubic B = 4
Skyrmion, whose ground state, modelling an alpha particle, has spin/parity 0+ and
whose lowest purely rotational excitation is an unobserved, high-energy 4+ state.
But the B = 4 Skyrmion has fairly low-lying vibrational modes transforming under
the various irreducible representations of the cubic group. The quantized 1-phonon
and 2-phonon states, coupled to rotations, give a realistic spectrum for more than ten
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Fig. 9.4 Deformation of B = 7 Skyrmion into B = 3 and B = 4 clusters. Reproduced from [48].
Creative Commons Attribution License (CC BY) https://creativecommons.org/licenses/by/4.0/

excited states of an alpha particle, all with spins 0, 1 or 2 [49]. Degenerate vibrational
modes have an internal angular momentum, and the Coriolis coupling of this to the
rotational angular momentum has a significant effect on the energy levels.

For larger Skyrmions, it is tempting to consider 6B degrees of freedom in total
(as each B = 1 Skyrmion has six degrees of freedom). It has also been suggested to
consider 7B degrees of freedom, including a scale parameter for each Skyrmion, as
the vibrational frequency spectrum appears to have a gap above this [50]. But quan-
tizing so many degrees of freedom is impractical in the case of, say, the Oxygen-16
nucleus with B = 16. Instead one observes that the B = 16 Skyrmion looks like a
tetrahedral arrangement of four fairly rigid alpha particles (B = 4 cubic Skyrmions)
[51], so one may consider just the few vibrational degrees of freedom of this tetra-
hedron, as in [52] and earlier alpha-particle models. Those of lowest frequency form
an E-mode doublet of the tetrahedral group Td , but this mode should be treated
nonlinearly, not as a pair of harmonic oscillators [53]. The E-mode deformations
extend to a two-dimensional E-manifold of alpha particle configurations of fairly
similar energy. Motion in the E-manifold allows a tetrahedron of alpha particles to
transform into a square and then into the dual tetrahedron (see Fig. 9.5). B = 16
Skyrmions of nearly equal energies, with square and tetrahedral shapes, are known.
The square has slightly higher energy and should be treated as a saddle point.

This E-manifold is topologically a 2-sphere, but six points on it represent con-
figurations where two pairs of alpha particles separate to infinity. So metrically, the
E-manifold is better described as a 6-punctured sphere with cubic symmetry, and in
[53] we found it convenient to assume that its metric was of constant negative curva-
ture, i.e. hyperbolic. In addition there is a potential on the E-manifold, matching the

https://creativecommons.org/licenses/by/4.0/
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Fig. 9.5 Dynamical path through tetrahedral and square B = 16 Skyrmions. Reproduced from
[53]

harmonic oscillator potential for E-mode vibrations near to the tetrahedron. Quanti-
zation of the E-manifold gives a good selection of excited states of the Oxygen-16
nucleus, and an even better, almost complete spectrum of Oxygen-16 up to 20 MeV
is obtained by coupling the E-manifold to harmonic F- and A-modes of vibration
[54]. Again, Coriolis terms are important.

Considerable work has been done on the Carbon-12 nucleus, composed of three
alpha particles, using similar ideas. So far, states of the Carbon-12 nucleus have
been modelled by an equilateral triangle of alpha particles that can deform into a
straight chain via isosceles triangles [55]. Many low-energy states—the ground state
rotational band, the Hoyle state and its rotational excitations, and the lowest 1− and
2− states—are accounted for in this model. But these ideas could be taken further.
The full shape space of triangles is a 3-punctured sphere, and one could use the
hyperbolic metric on this. (Note, the hyperbolic 6-punctured sphere, with its eight
ideal hyperbolic triangles glued together, is a 4-fold covering of the 3-punctured
sphere, with its two ideal triangles.) The shape space also needs to be coupled to
the A-mode of breather vibrations. This extended model includes scalene triangles
of alpha particles, and these are needed to capture the lowest 1+ state of Carbon-12,
which has rather high energy.

These results, going beyond rigid-body quantization, show rather generally that
Skyrmion quantization is a good way to study collective nuclear excitations. But
larger nuclei are still to be explored. Many large nuclei exhibit spectra indicating
an underlying intrinsic shape that is not spherical. Lead-208, a magic nucleus, has
ground state 0+ and first excited state 3−. Above that are many states that can be
modelled as 1-particle/1-hole states within the shell model, but the low-lying 3− state
and a few further states look collective. The latest thinking is that the 3− state is not
due to an octupole vibration, but is instead a rotational excitation of a tetrahedral,
permanently deformed intrinsic structure. Deformations into icosahedrally symmet-
ric shapes are also being considered [56]. It is a challenge to see if such shapes can
be understood using Skyrmions.
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9.5 Outstanding Issues

There is no doubt that topological soliton structures occur in condensed matter sys-
tems; images of them are widely available. The solitons canmove, but their dynamics
is classical, and usually dissipative. Much less clear is whether solitons are required
in fundamental particle physics. This is surprising, as particle physics is currently
understood using nonlinear quantum field theories, and such theories can have soli-
ton solutions. The problem is that solitons often require scalar fields, and so far the
only fundamental scalar field is the Standard Model Higgs field, coupled to gauge
fields, and these fields do not support topologically stable solitons. The topology is
wrong for this.

Some variant of the Skyrme model, as a low-energy limit of QCD, could provide
a compelling understanding of how protons and neutrons interact to form nuclei.
Work on this is continuing. Curiously, one of the most popular current approaches
to nuclear forces is via an effective field theory of pions and heavier mesons [57].
This is a perturbative approach to a field theory that could support non-perturbative
Skyrmions as solitons, replacing the fundamental proton and neutron. However, the
soliton connection has not yet been made.

When solitons are well separated they can be accurately treated as point particles
interacting through a potential and conventional forces. The field theory gives a
prediction for the strength of the long-range interactions, e.g. the strength of the
Yukawa dipoles making up a Skyrmion. However, we have seen that the short-range
interaction of two or more solitons is often of a very surprising kind, having a clear
geometrical description; it is not due solely to a potential. The classical soliton
dynamics is then modelled by geodesic motion on a smooth, curved moduli space,
possibly modified by an additional potential. The quantum dynamics is derived from
the classical dynamics, and an ingredient of the quantumHamiltonian is the Beltrami
Laplacian on themoduli space, which takes curvature into account.We explained that
nontrivial, curved geometry is an essential consequence of the permutation symmetry
acting on classical solitons. Solitons exhibit features of “identical particles” that one
usually attributes only to quantized bosons and fermions.

Itwould be desirable tofind compelling evidence for this geometrical picture of the
interactions. Unfortunately it is hard to scatter the solitons that occur in condensed
matter systems, although this might be achievable. It is also hard to calculate the
scattering cross section of quantized Skyrmions, as there is no convincing moduli
space for two Skyrmions that can be quantized. We have suggested here a new,
geometrical model for the fusion of Oxygen-16 with an alpha particle. This half-
wormhole model has an analogy with Newton’s cradle, and the dynamics is smooth.
If a detailed version of this model is successful, then one should try to generalise it,
and apply it elsewhere.

The best evidence for the usefulness of Skyrmions withmoderate baryon numbers
is the occurrence of intrinsic structures similar to what has been assumed in simple
alpha-particle models, but allowing for a more complete analysis of rotational and
vibrational excitations, and even isospin excitations. Good understandings of the
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nuclear spectra of Helium-4, Lithium-7/Beryllium-7, Beryllium-8, Carbon-12 and
Oxygen-16 have now been obtained. More should be done to model Coulomb effects
for larger Skyrmions, responsible for the neutron excess observed in most large
nuclei. There could then be a reconsideration of the Bethe–Weizsäcker nuclear mass
formula from a Skyrmion perspective. It might be possible to determine some of the
parameters in this formula.

There is currently more interest in magnetic Skyrmions than in Skyrme’s original
Skyrmions of nuclear physics. Magnetic Skyrmions also have geometrical features,
and can be studied on curved surfaces like spheres and cylinders, as well as on planar
domains. Some exact solutions have recently been constructed, but it is not yet clear
if these are physically important [58, 59].
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Chapter 10
Nonlinear and Novel Phenomena
in Non-Hermitian Photonics

Li Ge and Wenjie Wan

Abstract Photonic systems provide a convenient and versatile platform to study and
test novel phenomena in non-Hermitian physics, an emerging field that has benefitted
from a series of quantum-inspired symmetries without the Hermiticity restriction in
canonical quantummechanics. In this chapter we will highlight a few recent achieve-
ments in non-Hermitian photonics, with a focus on nonlinear behaviors and systems.
We will first discuss the realizations of parity-time symmetry and antisymmetric
parity-time symmetry using nonlinear optics, before turning our attention to phase
modulated nonlinear behaviors in non-Hermitian photonics. Nonlinear modal inter-
action in lasers with parity-time symmetry, non-Hermitian particle-hole symmetry
and supersymmetry will also be reviewed.

10.1 Introduction

Quantum mechanics is arguably the most important foundation of modern physics
and technology. The entire semiconductor industry would not be possible without
the establishment of quantum mechanism, not to mention the current pursuit of
quantum computing and quantum communication. Canonical quantum mechanics,
in its Hamiltonian form, deals with closed and hence lossless systems. As a result,
the Hamiltonian is Hermitian and gives rise to real-valued energy levels.
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However, most physical systems we encounter are open by nature; they exchange
energy and particles with their environment constantly. One effective way to describe
the openness of the system is to use a non-Hermitian formalism, which is a common
practice, for example, in optics and photonics: to describe the material loss for light
propagation, we include an imaginary part in the refractive index, and the wave equa-
tion immediately becomes non-Hermitian. Even when the material loss is negligible,
the finite size of the system usually implies the existence of incoming and outgo-
ing optical fluxes at its boundary, which also cause the system to be non-Hermitian
similar to nuclear physics [1].

A consequence of non-Hermiticity in these cases is that energy or frequency
associated with an eigenstate of the system becomes complex, and its imaginary
part, when negative in sign, gives the decay rate or inverse life time. To achieve a
stationary state with sustained oscillation, obviously we require an energy input to
balance out the loss or dissipation. The laser, widely used in optics and photonics, is
such an example. The energy input here takes the form of either another light source
(a flashtube, LED, another laser, etc.) or electrical current, and when its power is
increased to a critical value, the energy input and output is exactly balanced, and
the resonant frequency associated with the optical state of lasing, becomes real. This
critical value is known as the laser threshold, and upon further increase of the input
power, the intensity of the laser gradually increases from zero, while the resonant
frequency stays real due to optical saturation nonlinearity [2].

Whether it is possible to impose this explicit energy balance in quantum mecha-
nism, on the other hand, was less clear. Therefore, it stirred up quite an excitement
when Carl Bender and collaborators identified unbroken parity-time symmetry in
a non-Hermitian potential [3–5], which possesses an entirely real energy spectrum.
While the physical ramifications of a non-Hermitian quantum theory based on parity-
time symmetry are still under debate, the introduction of parity-time symmetry to
non-Hermitian photonics has led to many inspiring and fruitful explorations [6–9].

Unsurprisingly, the laser again played an important role in these endeavors. Its
narrow spectral linewidth (i.e. color purity) enabled the isolation of individual states,
which can be coupled conveniently across spatially separated elements, including
optical fibers,waveguides, and resonators. The loss of different opticalmodes, instead
of being a nuisance, is now an important tuning parameter to reach various regimes,
including both unbroken and broken parity-time symmetry.

In this chapter we will highlight a few recent achievements in non-Hermitian
photonics, with a focus on nonlinear behaviors and systems. An earlier survey on
this subject [10] has already covered many different approaches, and we have tried to
minimize the overlap for the benefit of the readers. Nonlinear optics describes a broad
range of phenomena and techniques that rely on nonlinear responses of the optical
medium. These nonlinear responses are typically very weak in normal materials, and
it requires a strong coherent light source to reveal their effects, i.e. a laser. The first
nonlinear optical phenomenon, i.e. second harmonic generation, was observed one
year after the first demonstration of the laser. We note that while photonics deals
with open systems and is hence non-Hermitian in nature, here we limit the scope of
our discussion to the subset that is based on quantum-inspired symmetries, including
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parity-time (PT) symmetry, antisymmetric parity-time (anti-PT) symmetry [11], non-
Hermitian particle-hole (NHPH) symmetry [12], and supersymmetry (SUSY) [13,
14].

We will start by discussing in Sect. 10.2 the realizations of these novel symme-
tries using nonlinear optics. In Sect. 10.3 we turn our attention to phase modulated
nonlinear behaviors in non-Hermitian photonics, including asymmetric interfero-
metric control near an exceptional point (Sect. 10.3.1), time-reversed second har-
monic generation and optical parametric amplification (Sect. 10.3.2), and anomalous
parity-time transition away from an exceptional point (Sect. 10.3.3). In Sect. 10.4 the
focus is shifted to modal interaction in lasers with novel non-Hermitian symmetries,
including parity-time symmetry (Sect. 10.4.1), non-Hermitian particle-hole symme-
try (Sect. 10.4.2) and supersymmetry (Sect. 10.4.3). We will conclude by a brief
outlook on emerging quests related to these topics.

10.2 Realizing PT, Anti-PT and Other Novel Symmetries
Using Nonlinear Optics

Parity-time (PT) symmetry, in its original context, requires the system to be invariant
under a combined parity and time-reversal operation. Therefore, its optical realiza-
tion imposes the following constraint: n(−x) = n∗(x). Here n(x) is the complex-
valued refractive index, and we have assumed a one-dimensional system along the
x-direction for simplicity. Two most important properties of a PT-symmetric system
are: (1) the possibility of having a real-valued spectrum; and (2) the transition of
two real energy levels to a pair of complex conjugated ones when they meet at an
exceptional point [15], where the two corresponding eigenstates also become the
same.

It should be noted that these two properties survive when parity is replaced by
another linear operator L, satisfying L(aφ1 + bφ2) = aLφ1 + bLφ2. Here φa,b are
two arbitrary states and a, b are their complex superposition coefficients. This obser-
vation opened the possibility of studying a broader range of systems under the PT-
symmetric framework [16], for example, those with rotation-time and inversion-time
symmetries [17]. In fact, this linear operator should not be limited to perform a spa-
tial operation; it can also act on the frequency domain, which does not necessarily
exchange the frequencies of two modes or flip the frequency axis.

Utilizing such a “synthetic parity operator” offers a more versatile approach to PT
symmetry in synthetic photonics [18], beyond spatially balanced gain and loss. This
additional, synthetic dimension is enabled by couplingmodes with different frequen-
cies, achieved by imposing nonlinear wavelength conversion in resonant whispering
gallery mode optical microcavities. Different optical nonlinearities can be employed
for this purpose, including stimulated Raman scattering [19], Brillouin scattering
[20], four-wave mixing [21] and optomechanical oscillations [22]. This nonlinear
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Fig. 10.1 Synthetic PT symmetry via degenerate FWM. aWeak light coupling into a micro-cavity
through a tapered fiber at near-critical coupling condition. Inset: Experimental image of the coupled
system. b Multiple resonances in the transmission spectrum observed by varying the frequency of
the input light. c Schematics of the FWM process, fulfilling the phase matching condition in linear
momentum (inset). d A transparent window at the signal frequency indicates nonlinear coupling to
the idler wave through the FWM process. Adapted from [21]

coupling approach has led to the observation of several novel photonic dynamics,
e.g. optically induced transparency and slow light [23, 24].

One proposal to realize PT-symmetric photonics in the synthetic dimension relies
on cavity-enhanced degenerate four wavemixing (FWM) [25]. This process converts
two photons of the same frequency (denoted as “pump”) into a pair of photons of dif-
ferent frequencies (denoted as “signal” and “idler”). A nonlinear coupling is achieved
between the signal and the idler, and it can be verified by observing a transparency
window in the otherwise opaque resonance dip of the signal, which is the manifes-
tation of the interference between two resonant transitions, i.e. direct absorption and
the FWMprocess. This phenomenon is known as optically induced transparency and
similar to electromagnetically induced transparency in atomic physics. It is highly
tunable via varying a strong pump beam, and a small frequency-detuning of the pump
can lead to a Fano-like asymmetric resonance.

Under this framework of nonlinear FWM, let us consider a nonlinear microcavity
with passive resonances ωi , ωp, and ωs (see Fig. 10.1). A pump beam is injected into
the nonlinear medium near ωp, and a weak signal wave of frequency �s ∼ ωs and
amplitude Ain

s is used to probe the response of the system. Under appropriate phase
matching conditions (both in energy and linear momentum), the idler wave, which
is another sideband at frequency �i ∼ ωi , is generated. Such a degenerate FWM
process can be described by a coupled mode theory:
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i
∂As

∂t
= (−�s − iκs)As − pAin

s − gA∗
i , i

∂Ai

∂t
= (−�i − iκi )Ai − gA∗

s .

(10.1)
Here As,i are the slowly-varying amplitudes of the signal and idler waves inside the
cavity, and their decay rates are denoted by κs,i (taken to be equal for simplicity).
�s,i are the frequency detunings from the corresponding passive frequencies, i.e.
�s,i = ωs,i − �s,i + Gs,i [21]. Note that Gs,i are the nonlinear frequency shifts due
to the coupling to the pump beam (i.e. “cross phase modulation”). Here g is the
nonlinear coupling between signal and idler induced by FWM (see Fig. 10.1d), and
p is the coupling rate of the injected signal wave into the system.

Clearly the coupled mode equation above describes a driven-dissipative system.
To understand its inherent dynamics, we extract its effective Hamiltonian H for the
amplitudes ( Ãs, Ã∗

i )
T ≡ [Ase(−iδ+κ)t , A∗

i e
(−iδ+κ)t ]T :

i
∂

∂t

(
Ãs

Ã∗
i

)
= H

(
Ãs

Ã∗
i

)
, H ≡

(−� −g
g∗ �

)
. (10.2)

Here δ ≡ (�i − �s)/2 and� ≡ (�i + �s)/2.Unlike a typical PT-symmetricHamil-
tonian, here the couplings g, g∗ also include implicitly the nonlinear gain and loss.
Therefore, its synthetic parity operator must take a different form [26]:

Ps = igrσy + �σz√
�2 − g2r

. (10.3)

It can be easily checked that the synthetic PT symmetry [H, PsT ] = 0 holds, where
σy,z are two Pauli matrices, gr = Re[g], and the denominator warrants (PsT )2 = 1.

The effective Hamiltonian given by (10.2) in fact has a series of other symmetries.
First of all, if it is PT symmetric, then it must be pseudo-Hermitian [27] as well, i.e.
H † = ηHη−1 �= H , where η is an arbitrarymatrix operator, η−1 is its inverse, and “†”
denotes the Hermitian conjugation. In this case we find that η is given conveniently
by σz .

In addition, H also satisfies antisymmetric PT symmetry [11], also anti-PT for
short. Different from PT symmetry, anti-PT symmetry was first constructed in
non-Hermitian photonics using n(−x) = −n∗(x) and the anti-commutation relation
{n(x), PT } = 0. The real part of the refractive index now needs to be anti-symmetric
about themirror plane at x = 0. Therefore, negative indexmaterials are necessary and
another relationμ(−x) = μ(x) ∈ Rwas initially imposed. In terms of the imaginary
part of the refractive index, it only needs to be symmetric and does not necessarily
require both optical gain and loss. An extension of this original ideawas applied to the
whole effective Hamiltonian, which is required to anti-commute with the combined
PT operation [28]. Anti-PT symmetry is responsible for many intriguing properties,
including a continuous lasing spectrum and a flat total transmission band [11]. It has
been demonstrated in hot mobile atoms [29], electric RLC resonators [30], nonlinear
optics [26, 31], coupled waveguides [32], and diffusive heat transfer [33].
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Fig. 10.2 Opposite phases of PT and anti-PT symmetry. Adapted from [25]

For H given by (10.2), the “parity” operator in anti-PT symmetry is given by
the Pauli matrix σx . It should be noted that this “parity” operator also lacks the
meaning of a mirror reflection in the spatial domain. It can however, be interpreted
as a permutation operator in the synthetic (frequency) dimension, which exchanges
the spectral order of the signal wave and the idler wave.

In Sect. 10.4.2 we will discuss non-Hermitian particle-hole (NHPH) symmetry,
which is defined in the same form as anti-PT symmetry, i.e. with H anti-commutating
with an anti-linear operator. Therefore, they also share similarmanifestations, includ-
ing the existence of non-Hermitian zero modes. We will discuss these consequences
in Sect. 10.4.2 in the general case (and in the absence of PT symmetry of any form).
Here we want to point out that the two eigenvalues of H in (10.2) are given by
ε± = ±√

�2 − |g|2, which can be real or complex conjugates as a result of synthetic
PT symmetry or pseudo-Hermiticity. They are also imaginary or formanegative com-
plex conjugate pair (i.e. ε+ = −ε∗−) as a consequence of anti-PT symmetry. Since
there are only two eigenvalues in this coupled mode theory, the exceptional points
at � = ±|g| are shared by PT and anti-PT symmetry: when the system is in its PT-
symmetric (PT-broken) phase, it must be in the anti-PT-broken (anti-PT-symmetric)
phase (see Fig. 10.2). We also mention in passing that a similar Hamiltonian can be
achieved using stimulated Brillouin scattering in a microcavity [26].

10.3 Phase Modulated Nonlinear Behavior in
Non-Hermitian Photonics

The phase angle of the electromagnetic field is fundamental to its wave properties,
including refraction, diffraction, and interference. In this section we showcase a few
examples where by controlling or engineering the phase between two optical beams
or modes, one can switch on and off an intensive beam using a weak control near an
exceptional point [34], perfectly absorb light in one frequency and convert it into light
of a different frequency [35], or induce a transition between broken and unbroken
phases of PT symmetry in a fashion that is otherwise impossible [36].
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Fig. 10.3 Schematic of an
asymmetric interferometric
light-light switch

E1 rE4

Control E2

E3

Signal

10.3.1 Asymmetric Interferometric Control Near an
Exceptional Point

The interaction between two photons in vacuum, i.e. the constituent particles of light,
is negligible under normal conditions. To achieve light-light interaction in a tabletop
experiment, one hence relies on the nonlinear response of the optical medium in
which light propagates. Even so, to switch a beam of light on and off using another
beam typically requires intense laser fields, which impose a high power consumption
and limit practical applications of all-optical devices.

Interferometric control, on the other hand, does not have this drawback. Its basic
principle is straightforward: let E1,2 denote the complex amplitudes of a signal beam
and a control beam, respectively. When the relative phase θ between them is zero,
the presence of the control beam enhances the overall amplitude of the optical field:
|E1 + E2| = |E1| + |E2| > |E1|. When θ is 180◦, the control reduces the overall
amplitude instead: |E1 + E2| = ||E1| − |E2|| < |E1|. Using this principle and that
of time-reversed lasing [37], it was shown that coherent perfect absorption (CPA)
can be achieved by tuning the phase of the control beam [38, 39], which enters a
symmetric optical cavity from the opposite side of the signal beam.

This setup requires the samemagnitude of the two optical beams (i.e. |E1| = |E2|)
and hence cannot be used to switch a strong signal beam using a weak control. To
achieve this goal, one can operate the optical cavity near an exceptional point of its
scattering matrix [40–42]. This scattering matrix, denoted by S below, connects the
incoming channels (e.g. the signal E1 from the left and the control E2 from the right;
see Fig. 10.3), to the scattered channels with amplitudes E3,4:

(
E3

E4

)
= S

(
E1

E2

)
=

(
t rr
rl t

)(
E1

E2

)
. (10.4)

Here t is the reciprocal transmission coeffient and rl,r are the reflection coefficients
from the two sides. An exceptional point of S is reached when either rl or rr becomes
zero, and S takes the Jordan normal form [15]. This condition leads to an anisotropic
transmission resonance in a PT-symmetric structure [41], where the transmission
from both sides is unity (i.e. |t | = 1) while the reflection vanishes only from one
side. Assuming rl = 0, the two coalesced eigenstates of S at this exceptional point
are given by [E1 E2]T ∝ [1 0]T .

To understand why operating near this exceptional point can achieve asymmetric
interferometric control and switching, we note that the reflected amplitude E3 is a
superposition of the reflection from the signal (i.e. rl E1) and the transmission from
the control (i.e. t E2). Therefore, to turn off the scattering light E3 with |E2| 	 |E1|,
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Fig. 10.4 An asymmetric interferometric light-light switch using a PT-symmetric grating. Adapted
from [34]

we require |rl | 	 |t |. Similarly, we find |rl | 
 |t | by considering the vanishing of
E4 in CPA. These two conditions then imply |rl | 	 |rr |, which is the case near the
aforementioned exceptional point.

The experiment was performed using a silicon waveguide with a PT-symmetric
grating on top (see Fig. 10.4a, b). CPA was detected at the designed wavelength of
1550nm (see Fig. 10.4c), where the output to input ratio Qs ≡ 10 log10

|E3|2+|E4|2
|E1|2+|E2|2 +

C is below 60 dB, providing the “off” state of the signal. Here C is a constant taking
into consideration the overall detection loss. By changing the phase of the control
beam by 180◦, a dramatically larger Qs was observed, which provides the “on” state
of the signal.

10.3.2 Time-Reversed Second Harmonic Generation and
Optical Parametric Amplification

Even though CPA mentioned in the last section can be interpreted as time-reversed
lasing, it should be stressed that the latter is at its lasing threshold and the saturation
nonlinearity is absent. To explore nonlinear optical effects in similar time-reversed
processes where the phase modulation is crucial, theoretical and experimental work
have investigated time-reversed second harmonic generation (SHG) and optical para-
metric amplification (OPA) [35, 43]. Unlike the case of CPA (in the linear regime)
where incident light is perfectly absorbed and converted into heat, the disappear-
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ance of certain incident light in such nonlinear time-reversed processes leads to the
generation of light at a different frequency. This mechanism offers new techniques
for flexible controls in nonlinear optics and has potential applications in all-optical
computing.

Here we briefly review the SHG process. It converts a fundamental wave of fre-
quency ω1 to its second harmonic of frequency ω2 = 2ω1 in a nonlinear crystal.
Under the slowly-varying amplitude approximation, the amplitude of the second
harmonic (“A2”) along the propagation (z) direction is given by

∂z A2 = iω2
2deffA

2
1

k2c2
ei�kz, (10.5)

where�k = 2k1 − k2 and k1,2 are the wave vectors of the two waves in the nonlinear
crystal. deff is the effective nonlinearity and c is the speed of light.

Time reversal of SHG should manifest as the generation of the fundamental wave
from the second harmonic. Since z plays the role of time in (10.5), it would require a
backward propagation that complicates the experimental setup. A more convenient
scheme keeps the propagation direction unchanged, which requires a second crystal
with the opposite phasematch condition (�k ′ = −�k)and aphase shift ofπ between
the fundamental wave and the second harmonic [35]. The process is illustrated in
Fig. 10.5a, where the two nonlinear crystals (denoted by BBO1 and BBO2) are cut
into the same length and configured with controllable phase-mismatching vectors.

Figure10.5b shows the amplitude of the second harmonic in the two crystals under
phase matched (�k = 0) and unmatched (�k �= 0) conditions. Without the π phase
shift between the two nonlinear crystals, A2 would keep increasing monotonically in
the phase matched case in the second crystal (red dashed line). The unmatched case
in this example will lead to an initial increase of A2 (blue dashed line) in the second
crystal, and eventually the energy flows back into the fundamental wave. With the π

phase shift between the two crystals, this time-reversed process of SHG is triggered
immediately once light enters the second crystal, producing a symmetric intensity
profile in the two crystals (blue solid curve). Two different sets of experimental
data are shown in Fig. 10.5c, for �kL/2 = 0.35π and 0.6π . With the π phase shift
implemented using a thin quartz plate, it is clear that the amplitude of the second
harmonic at the end of the second nonlinear crystal is reduced drastically when
�k ′ = −�k. Here �k and �k ′ can be tuned independently by rotating the crystals
accordingly.

One might wonder why OPA cannot be considered as the time-reversed SHG.
After all, one photon is split into twoof lower frequencies inOPA,which is exactly the
opposite of SHG. The reason lies in the low conversion efficiency of both processes,
and hence an intensity beam at the low frequency (fundamental wave) is required for
SHG, while an intensity beam at the higher frequency (second harmonic) is required
for OPA. Nevertheless, time reversal of OPA can be achieved in a similar scheme as
that in SHG, and we refer the reader to Refs. [35, 43] for details.



236 L. Ge and W. Wan

Fig. 10.5 Phase engineering in time-reversedSHG.aSchematic showing the twononlinear crystals.
b Intensity of the second harmonic as a function of propagation distance. Its value at z = 2L is
plotted against �k′ in c for two different values of �k’s. Adapted from [35]

10.3.3 Anomalous PT Transition Away from an Exceptional
Point

As we have mentioned previously, a PT-symmetric Hamiltonian has two distinct
phases: one has real energy levels and the other has complex conjugate energy eigen-
values. It was believed that the transition between these two phases can only occur
at an exceptional point, but an exception to this rule was observed and explained in
[36], where the couplings between two resonances change nonlinearly with the field
amplitudes, including their phases.

To understand this behavior, let us consider the following effective Hamiltonian
that couples two harmonic oscillators and depends nonlinearly on their complex
oscillation amplitudes ca,b:

H =
[

E0 + 2ε|ca|2 + iκ0 g0 + εβc∗
acb + εγ |ca|2

g0 + εβc∗
bca + εγ |cb|2 E0 + 2ε|cb|2 − iκ0

]
≡

[
Ea(ε) ga(ε)
ga(ε) Eb(ε)

]
. (10.6)

Even though the nonlinearity in H looks to be artificially constructed, it is extracted
and simplified from an actual system with the Kerr nonlinearity [36].

H reduces to the well-studied linear PT-symmetric Hamiltonian H0 when the
nonlinearity ε is zero, and here we analyze the properties of H0 first. H0 is in its
PT-symmetric phase when |g0| > κ0, where the two eigenvalues of H0 given by

E (1,2) = E0 ±
√
g20 − κ2

0 are real. The system is in the PT-broken phase when |g0| <

κ0, where E (1,2) become complex conjugates. Therefore, for the linear system to go
from one phase to the other, it must pass through the exceptional point at |g0| = κ0.
We emphasize that |ca| = |cb| in the PT-symmetric phase, while |ca| �= |cb| in the
broken PT phase. These properties play an important role in our analysis below.

For simplicity, we take the gain and loss strength κ0 to be independent of the
nonlinearity ε in (10.6). Here γ and β are two dimensionless real constants: γ

specifies the influence of the nonlinearity on the couplings relative to that of the
energy shifts, and β indicates how strongly the phases of the couplings depend on
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the nonlinearity, which is crucial for an anomalous PT transition: if β = 0, the two
original eigenvalues of H meet each other at an exceptional point as the nonlinearity
increases (see the red and black curves in Fig. 10.6a), which is the same scenario as
in the linear case. Afterward they disappear and the system is left with only a broken
PT phase, given by two additional eigenvalues of H that satisfy E (3) = [E (4)]∗ (blue
line in Fig. 10.6). However, if β �= 0, it is no longer an exceptional point where
the two original eigenvalues of H “annihilate” each other (filled dot in Fig. 10.6b).
Afterwards, the system again has only two additional eigenvalues satisfying E (3) =
[E (4)]∗.

Below we only focus on the two original nonlinear eigenstates of H . The β =
0 case is easy to understand. As mentioned previously, |ca| = |cb| holds for both
eigenvalues of the effective Hamiltonian when ε = 0. As we increase |ε|, ca,b change
but only in their relative phase. As a result, the two nonlinear oscillators still have
the same frequency (i.e. Re Ea = Re Eb) and the couplings are still real and equal
(i.e. ga = gb). Consequently, H itself remains PT symmetric, and its two nonlinear
eigenvalues annihilate each other at the exceptional point ε = −2(|g0| − |κ0|)/|γ | =
−0.075 in Fig. 10.6a. We have used the normalization |ca|2 + |cb|2 = 1 as usual.

The β �= 0 case is more intriguing. We start with the ansatz |ca| = |cb| when |ε|
is small. We again find Re Ea = Re Eb, but this time ga,b are no longer real and we
have ga = g∗

b instead. It is important to note that the values of ga,b depend on which
nonlinear eigenvalue of H we follow, due to the different relative phases between ca
and cb in the two corresponding nonlinear eigenstates. For the j th nonlinear eigen-
value ( j = 1, 2), we linearize H at the corresponding c( j)

a,b. The resulting linearized

Hamiltonian H ( j) is also PT symmetric; it has two real eigenvalues E ( j)
± when the

nonlinearity is small, and one of them equals the j th nonlinear eigenvalue (solid
black and red lines in Fig. 10.6b):

E ( j)
± = E0 + ε ±

√
|g( j)

a (ε)|2 − κ2
0 . (10.7)
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The corresponding eigenvectors of H ( j) still satisfy |ca| = |cb|, which is consistent
with our ansatz.

Equation (10.7) shows clearly that each H ( j) can have an exceptional point at
|g( j)

a (ε)| = κ0, which in principle could cause two PT transitions. However, these
points are not where the two original nonlinear eigenvalues of H annihilate each
other. One of themmaterializes in this case and is shown as the open dot in Fig. 10.6b.
It can be shown that H ( j) actually bounces right back into its PT-symmetric phase
at this exceptional point, instead of going into its broken PT phase [36]. This is the
reason that E (1)

± stay real between the values of ε specified by the open and closed
dots in Fig. 10.6b.

10.4 Modal Interaction in Lasers with Novel
Non-Hermitian Symmetries

The intense and coherent light provided by the laser largely enabled the development
of nonlinear optics. At the same time, the laser itself is also a nonlinear system in
disguise. Simple analyses based on the rate equation or the semiclassical theory show
that the laser intensity increases linearly with the pump power [2, 44]. However, this
seemingly linear behavior is impossible without the saturation nonlinearity of the
gain medium, which provides a large number of photons under stimulation. In this
section we discuss the effects of this saturation nonlinearity in lasers with several
non-Hermitian symmetries, operated under steady-state conditions.

10.4.1 Photonic Molecule Lasers with PT Symmetry

PT-symmetric lasers have attracted increasing amount of attention due to their intrigu-
ing properties and promising applications, such as single-mode lasing and enhanced
sensitivity near an exceptional point. While linear threshold analysis explained some
features of PT-symmetric lasers, it is important to consider nonlinear modal interac-
tions in the analysis of such novel lasers.

In the analysis below, we consider a photonic molecule laser that consists of two
laser cavities (e.g. waveguides, microdisks, and microrings) coupled via evanescent
waves [45–48]. Under steady-state conditions, several scenarios of gain clamping
can take place, for lasing operation in both the PT-symmetric and PT-broken phases.
In particular, their behaviors in the nonlinear regime fall into two distinct categories
[49]: in one the system remains “frozen” in the PT phase space (defined by the PT
parameter τ below) as the external pump strength increases, while in the other the
system approaches its exceptional point.

We illustrate these two contrasting behaviors using a coupled mode theory:
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H (μ) =
[
ω

(μ)
0 + i(γa − κa) g

g ω
(μ)
0 + i(γb − κb)

]
. (10.8)

This effective Hamiltonian acts on the wave functions ϕ(μ) = [ψ(μ)
a ψ

(μ)

b ]T in the
two cavities a and b. Here ω

(μ)
0 is the identical frequency of two cavity modes

close to the peak of the gain spectrum, one in each cavity in the absence of the
coupling g (taken to be real and positive). Note that κa,b and ra,b are the loss and
applied gain in the two cavities respectively, and we model gain saturation by γa,b =
ra,b/(1 + ∑

μ I (μ)

a,b ), where I (μ)

a,b ≡ |ψ(μ)

a,b |2 are the intensities of mode μ in the two
cavities, scaled by their natural units and hence dimensionless [50–54]. It is this
(homogeneously broadened) saturation nonlinearity that couples modes of different
frequencies and their respective effective Hamiltonians H (μ) in our model. Saturable
absorption can be modeled similarly if needed [55]. It should be noted that H (μ) is
PT-symmetric without requiring physically balanced gain and loss, i.e. γa − κa =
−(γb − κb). Instead, its PT symmetry holds with respect to the average gain and loss
[46].

A lasing mode μ in steady-state operation is given by ϕ(μ)(t) = ϕ(μ)(0)
exp(−iε(μ)t), where ε(μ) is the corresponding real eigenvalue of H (μ):

ε(μ) = ω
(μ)
0 + i(γ − κ) ± i

√
(� − δ)2 − g2. (10.9)

Here κ, γ denote the average of the losses and saturated gains in the two cavities
respectively, and �, δ are their half differences, i.e. � = (κb − κa)/2, δ = (γb −
γa)/2. The conditions that warrant a real-valued ε(μ) depend on whether the laser
is in its PT-symmetric or PT-broken phase, determined in turn by the PT parameter
τ ≡ (� − δ)2 − g2. In the PT-symmetric phase, the last term in (10.9) is real and
we find γ = κ , i.e. the average gain and loss in the two cavities need to be the
same. These PT-symmetric modes are stable in the nonlinear regime, even when the
underlying linear Hamiltonian (i.e. setting γa,b = ra,b) enters its PT-broken phase
when δ is large [56].

Below we will focus on the more interesting case of a laser in its PT-broken
phase, where the last term in (10.9) is now imaginary. In this case we find γ =
κ ± √

(� − δ)2 − g2, which also gives the thresholds of the two lasing modes when
I (μ)

a,b = 0. More specifically, the lasing threshold r (μ)
TH of modeμ can be defined using

the value of the applied gain at which the corresponding ε becomes real. We refer to
Im ε as the modal gain, which is negative for a mode below its threshold and equals
zero at or above its threshold.

Here we consider two configurations: in the first configuration, the two cavities
have the same loss (κa = κb) and the gain is only applied to the first cavity (γb =
rb = 0). In the second configuration, the same amount of gain is applied to both
cavities (ra = rb), and we assume one cavity is lossier than the other (κa < κb). In
both cases, the lasing mode at threshold is localized in cavity a, which warrants a
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Fig. 10.7 Lasing in the PT-broken phase in configuration 1 (a, b) and 2 (c, d). a The frozen PT
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lower threshold due to the stronger overlap with the pump in configuration 1 and a
lower loss in configuration 2.

In configuration 1, we have � = 0 (κa = κb ≡ κ) and δ = −γa/2 = −γ . It
requires κ > g for the photonic molecule to start lasing in the PT-broken phase,
and the first threshold is given by r (1)

TH = κ(1 + g2/κ2). For ε to remain real above
threshold, γa = r (1)

TH must hold, i.e. the saturated gain (in cavity a) is clamped at its
threshold value. Consequently, the system is frozen in the PT-broken phase, with a
constant τ = κ2(1 − g2/κ2)2/4 > 0 (see Fig. 10.7a) and a constant intensity ratio
I (1)
a /I (1)

b = κ2/g2 > 1 (see Fig. 10.7b). The intensity of mode 1 can be calculated
directly from the clamped gain: I (1)

a = κr(κ2 + g2)−1 − 1, and the modal gain of
mode 2 stays negative (i.e. suppressed) and clamped at Imε(2) = −2

√
τ < 0.

In configuration 2, even though the gain is applied equally to both cavities, it
is not necessarily true that δ = (γb − γa)/2 = 0 in the nonlinear regime. The laser
starts lasing at r (1)

TH = κ − √
�2 − g2 in the PT-broken phase if � > g. The intensity

of this mode is higher in cavity a than in cavity b above threshold: I (1)
a /I (1)

b =



10 Nonlinear and Novel Phenomena in Non-Hermitian Photonics 241

(
√

τ + √
τ + g2)2/g2 > 1 (see Fig. 10.7d). Therefore, as the applied gain increases

above threshold, it is saturated more in cavity a, leading to an increasing δ > 0.
Therefore, the PT parameter τ = (� − δ)2 − g2 decreases (see Fig. 10.7c).

This asymmetric saturation hence acts back on the lasing mode itself, and the sys-
tem is pulled towards its exceptional point where τ = 0. The intensity ratio I (1)

a /I (1)
b

also reduces as a result (see Fig. 10.7d):

I (1)
a

I (1)
b

→
[

κ + �

g +
√

κ2 + g2 − �2

]2

. (10.10)

This limit is approximately 1 when � ≈ g. Meanwhile, the saturated gains in the
two cavities also approach their clamped values in the large γ limit, leading to an
asymptotic value of the PT parameter:

τ = g2

4

[
g +

√
κ2 + g2 − �2

κ + �
− κ + �

g +
√

κ2 + g2 − �2

]2

. (10.11)

Similar to configuration 1, one can show that the modal gain of the next mode
is negative (given by Imε(2) = −2

√
τ ; see Fig. 10.7c) and hence suppressed, also

giving rise to a single-mode behavior.
Above we briefly discussed the nonlinear behavior of PT-symmetric lasers based

on photonic molecules, lasing in their PT-broken phase. To confirm whether the
single-mode behavior is robust, one also needs to consider other cavity modes of
different frequencies. A semiclassical approach is best suited for this purpose because
of spatial hole burning [49], and the extended range of single-mode operation was
indeed verified in [48].We alsomention in passing that a PT-symmetric laser can also
be realized in a single microcavity, which itself has separate gain and loss regions.
Two typical examples are a multilayer waveguide with balanced gain and loss [40,
41] and a microring cavity with a PT-symmetric grating on top [57–59]. The stability
analysis of the latter in the nonlinear regime can be found in [60].

10.4.2 Laser Arrays with NHPH Symmetry

We have discussed anti-PT symmetry and briefly mentioned its connection to NHPH
symmetry in Sect. 10.2. To gain some understanding of NHPH symmetry, we first
resort to the original particle-hole symmetry in Hermitian systems, first identified
in particle physics and playing an important role in condensed matter systems as
well. It is satisfied when the Hamiltonian anti-commutes with an anti-linear operator
CT : {H,CT } = 0. T here is the time reversal operator in the form of the com-
plex conjugation, and C is the charge conjugation operator that is a linear operator
by itself. Different from a linear operator, an anti-linear operator A is defined by
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A(aφ1 + bφ2) = a∗Aφ1 + b∗Aφ2, where φa,b are two arbitrary states and a, b are
their complex superposition coefficients.

One important property of Hermitian systems with particle-hole symmetry is the
possible existence of zero modes, such as the majoranas [61–65]. Their topological
protection and non-Abelian nature have stimulated wide research interests, espe-
cially in robust topological quantum computation. In a Hermitian system, its energy
spectrum is symmetric about the energy level that divides the energy of particles and
holes, i.e. Eμ = −Eν , as a direct consequence of {H,CT } = 0.

Remarkably, a non-Hermitian version of particle-hole symmetry hides in plain
sight in many previously investigated PT-symmetric systems [12, 66, 67]. If we
restrict parity to a mirror reflection in one dimension or an inversion in three dimen-
sions, NHPH symmetry then has a significant difference from anti-PT symmetry: a
system can have PT symmetry and NHPH symmetry simultaneously, which cannot
be true for PT and anti-PT symmetries. This NHPH symmetry imposes no restriction
on the spatial profile of gain and loss landscape. All it requires are that (1) the system
consists of coupled optical elements that form a lattice; and that (2) it has sublattice
symmetry (also known as chiral symmetry in condensed matter systems) in the Her-
mitian limit when the overall gain and loss strength approaches zero. The resulting
non-Hermitian Hamiltonian can be written as H = H0 + iγpδpq , where γp on the
main matrix diagonal describes the gain and loss landscape. H0 is the Hermitian part
with chiral symmetry, and in the block matrix form, it has two zero diagonal blocks
and two off-diagonal blocks G1,2 satisfying G1 = G∗

2.
This NHPH symmetry warrants an energy spectrum satisfying Eμ = −E∗

ν , where
the mode indices μ and ν are not necessarily the same. When they indeed are the
same, the system is in its NHPH symmetric phase and we find Eν = −E∗

ν which
defines a non-Hermitian zero mode, on the imaginary axis of the complex energy
plane. The phase of its wave function has a unique distribution: it can only take four
discrete values, with those on the two sublattices differ by π/2 [12]. In other words,
one can adopt the convention of making the wave function real on one sublattice
and imaginary on the other. We also note that this “zero” energy or frequency does
not represent infinite wavelength in this context. Rather, it refers to a well-defined
frequency in the system, from which all revelent frequencies (“detunings”) are mea-
sured.

We have in fact already encountered examples of non-Hermitian zeromodes in the
previous section: the photonic molecule lasers in their PT-broken phase are exactly
lasing in their zero modes. These modes have the same frequency as the individual
cavity modes, i.e. ε(μ) = ω

(μ)
0 in (10.9), from which the detunings are measured.

To exemplify the NHPH symmetry and its non-Hermitian zero modes in a more
general case (e.g. in the absence of PT symmetry of any form), we discuss a laser
array arranged into a square lattice (Fig. 10.8c). Each of the two sublattices, marked
by filled and open dots, has eight lattice sites that represent coupled optical cavities.
Here gx,y denote the horizontal and vertical couplings, and we assume that each
cavity has a loss equal to gx/2. The system does not have a non-Hermitian zero
mode initially (Fig. 10.8b) when the two lattice “A” sites in Fig. 10.8d are pumped
equally. If the pump strength is above a certain threshold, however, a pair of modes
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Fig. 10.8 Non-Hermitian zero mode laser. a Complex energy spectrum of a rectangular lattice with
NHPH symmetry at the laser threshold r (1)

TH = 1.07gx . The couplings satisfy gy = 1.25gx ∈ R. The
cavity decay rate is given by κ = 0.5gx . b Same as a but with a lower pump strength (r = 0.38gx )
and no zero modes. c, d Schematics showing the spatial profile and phase distribution of the lasing
mode at threshold. e Modal gain for all modes below and above the lasing threshold. f Intensity
ratio of the lasing mode in the two pumped cavities

first meet and then move along the imaginary axis in the complex energy plane
(filled stars in Fig. 10.8a), which are the non-Hermitian zero modes. Once one of
them reaches the real axis and starts lasing, the rest of the modes are suppressed due
to saturation nonlinearity when the pump is further increased (Fig. 10.8e).

The non-Hermitian zero modes depend on the gain (and loss) landscape across
the lattice: with a different pump configuration, one may find the lasing mode is a
zero mode with a completely different spatial profile. Nevertheless, they share the
same frequency since they are all zero modes, which provides a symmetry-protected
scheme to realize a laser with a fixed frequency but a tunable spatial profile, and
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coupling and cavity loss in the original array. g′ = 0.2g is the coupling between the two arrays,
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threshold at r = 6.4r (1)
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this additional degree of freedom may find applications in telecommunication and
encoding.

10.4.3 Laser Arrays with Supersymmetry

Supersymmetry, first introduced in particle physics, has also found its way into
non-Hermitian photonics. Instead of treating bosons and fermions on equal footing,
here two optical systems are constructed using a supersymmetry transformation,
which warrants identical frequency spectra except for an extra state in one of them,
usually chosen as its ground state. This principle can be applied, for example, to
engineering band structures in a quantum cascade laser [68], mode converters in
coupled waveguides [69], and single-mode laser arrays [70–73]. In this section we
will focus on the last example.

A single-mode laser array based on supersymmetry relies on the principle of Q-
spoiling. The basic idea is illustrated in Fig. 10.9a: even though the cavities in the
original array are identical, their couplings spread out the spectrum of the array. By
applying a supersymmetry transformation, one constructs another array with one less
cavity and one less mode [70]. The alignment of the two spectra then provides an
interesting scheme to single-mode lasing: by making the partner array lossier than
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the original array, the former acts as the “sink” and spoils the quality (Q) factor of
the frequency-matched states in the latter. The unmatched mode in the original array,
however, is barely affected (see Fig. 10.9b) and becomes the only lasing mode. If
it is chosen to be the ground state of the original array, the envelope of the field
distribution has a single intensity lobe (see Fig. 10.9c) and the same phase across all
cavities in the original array. This choice hence makes it ideal to combine the laser
radiation from all cavities into a strong beam in the farfield [72, 73].

We should caution that each individual cavity itself in fact hasmultiplemodes, and
they lead to multiple copies of the frequency ladder shown in Fig. 10.9a. Therefore,
unless each individual cavity is already optimized to have a single lasing mode by
its own, the unmatched modes from all the copies of the frequency ladder will lead
to multiple peaks in the lasing spectrum.

Previous studies of supersymmetry laser arrays in the nonlinear regime consid-
ered uniform pumping in both the original array and the partner array. Because the
unmatched mode (1 in Fig. 10.9b) in the original array has little intensity in the part-
ner array (see Fig. 10.9c), the gain in the latter is barely saturated and can in principle
support other modes to lase, once the pump is strong enough. However, the coupling
of the aligned modes between the two arrays are similar to that in the PT-symmetric
photonic molecule, and the resulting mode with the lowest loss (still higher than that
of the unmatched mode; see mode 2 in Fig. 10.9b) is necessarily in the “PT broken
phase.” Here the PT symmetry is not exact: the two arrays are not symmetric, and
two matched modes also couple weakly to other modes of different frequencies.

Nevertheless, this approximate PT symmetry indicates that the nextmode to lase is
also strongly localized in the original array (see Fig. 10.9c), and hence the unsaturated
gain in the partner array is ineffective in bringing thismode to its own lasing threshold
(see Fig. 10.9d). Interestingly, as the pump increases, this mode evolves to have
almost equal intensities in the original array and the partner array (see Fig. 10.9e), i.e.
approaching its “PT-symmetric” phase similar to what we have shown in Fig. 10.7d.
This more or less balanced intensity distribution has a much stronger overlap with
the gain, and eventually, this mode reaches its threshold as shown in Fig. 10.9d. The
range of single-mode operation can be extended by pumping just the original array.

One inconvenience of supersymmetric transformation is that even though all the
cavities in the original array are identical and equally spaced, the ones in the partner
array are not. Their sizes and spacings vary from cavity to cavity, which makes the
fabrication extremely challenging. One workaround is to apply the supersymmetry
transformation twice [71], with which the cavities in the partner array are of the
same size as in the original array, even though their spacings are still nonuniform.
The partner array now lacks both the ground state and the highest frequency mode
in one copy of the frequency ladder, and another “sink” in the form of a single cavity
is required to spoil the Q-factor of the highest frequency mode.
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10.5 Outlook

Nonlinearity covers a broad range of topics in both physics and mathematics. In this
section we have only briefly touched on some interesting aspects in non-Hermitian
photonics, not all of which fall into standard nonlinear optics. Nevertheless, we hope
that these discussions may stimulate further investigations of nonlinear and novel
phenomena in non-Hermitian photonics.

One particular direction is the role of non-Hermitian symmetries on the dynam-
ics of non-Hermitian systems. So far the majority of studies have focused on the
steady-state operations or stationary-state solutions, and the exploration of dynami-
cal behaviors including limit cycles [74] and chaos [75] is rather limited. We do want
to stress that the selection of a physically sound model is crucial for these studies
to be meaningful. For example, modeling optical cavities without the linear cavity
loss will lead to erroneous dynamical behaviors, and the results obtained from a two-
mode coupled theory in a PT-symmetric photonic molecule should be taken with a
grain of salt far above the laser threshold.

Due to the similarity of anti-PT symmetry and NHPH symmetry, we suggest
considering them in the same category that may be referred to as “fermionic anti-
linear symmetries.” Accordingly, PT symmetry and those with a similar formmay be
referred to as “bosonic antilinear symmetries,” since not all synthetic operators can
be regarded comfortably as an extension of parity. Here “bosonic” and “fermionic”
refer to the commutation and anti-commutation relation in their respective definitions,
and we remind the reader that T 2 = −1 (instead of T 2 = 1) holds in some of these
systems [76, 77]. Beyond these two categories, there are also recent findings that
include the transpose or Hermitian conjugate of the Hamiltonian [78], similar to
the definition of pseudo-Hermiticity. Further categorizing them according to their
topological properties is an interesting development [79], and we expect more work
to emerge that explore their unique nonlinear behaviors.

The intertwining of nonlinear optics and non-Hermitian photonics can undoubt-
edly enrich both fields simultaneously. So far however, it seems that the favor has
been heavily tilted towards the former. For example, new nonlinear behaviors have
been identified for both PT-symmetric nonlinear Schrödinger equation [80] andDirac
equation [81], and even a new scheme to achieve OPA without phase matching has
been proposed [82]. We believe that there are emerging possibilities to expand the
boundaries of non-Hermitian photonics using nonlinear optics. The introduction of
the synthetic dimension enabled by nonlinear optical processes looks to be particu-
larly promising, especially when the nonlinear coupling can be extended to form a
synthetic lattice [18]. This approach may finally allows us to investigate PT symme-
try experimentally in three and higher dimensions, where more exciting discoveries
await.
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Chapter 11
Computational Challenges of Nonlinear
Systems

Laurette S. Tuckerman

Abstract We survey some of the major types of dynamical-systems computations
that can be carried out for two or three-dimensional systems of partial differential
equations. In order of increasing complexity, we describe methods for calculating
steady states and bifurcation diagrams, linear stability and Floquet analysis, and
heteroclinic orbits. These are illustrated by computations for Rayleigh–Bénard con-
vection in a cylindrical geometry, the Faraday instability of a fluid layer, the flow
past a cylinder and over a square cavity, flow in a cylindrical container with counter-
rotating lids, and Bose–Einstein condensation. We discuss some mathematical ques-
tions raised by these computations and the need for improved numerical tools.

11.1 Time Integration

Many dynamical systems of interest in the sciences and engineering can be written
as

∂tU = F (U ) = LU + N(U ) (11.1)

where U consists of one or more time-dependent functions of spatial variables x ,
(x, y) or (x, y, z), and F combines algebraic and differential operators. In (11.1),
the evolution operator F has been decomposed into a linear operator L, while N
contains any other terms. Examples of such dynamical systems are the Navier–
Stokes equations, the Boussinesq equations, the Swift–Hohenberg equation, and the
Nonlinear Schrödinger equation. L is often the Laplacian ∇2 but may also be a
higher-order differential operator, as in the case of the Swift–Hohenberg equation,
and it may contain other types of terms, such as buoyancy forces.
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Themostwell-known and fundamental role of computation in nonlinear dynamics
is that of a perfect experiment: following the evolution ofU (t) in time from an initial
condition U0. Geometries and forces can be implemented perfectly, without noise,
and parameters can be scanned, even taking on values that are not physically real-
izable. In addition, numerical solutions provide all of the details of the system, e.g.
the velocity or temperature at every point in space. Research communities in com-
putational physics, chemistry, and engineering all have their own preferred methods
for discretizing partial differential equations in space and time.

Numerical integration in time can be seen as replacing the temporally continuous
dynamical system (11.1) by a temporally discrete system. The best choice of method
is dictated by the nature of F . If (11.1) is a Hamiltonian system, then methods that
conserve volume in phase space are essential. If L represents a highly dissipative
operator, then implicit methods are required for its integration. This is a vast topic
and here we will consider only the simple first-order Euler implicit-explicit scheme:

U (t + �t) = U (t) + �t (LU (t + �t) + N(U (t)))

leading to

U (t + �t) = B�tU (t) ≡ (I − �tL)−1(I + �tN)U (t) (11.2)

Scheme (11.2) will be used as a building block for other algorithms. When the goal
is time integration, other schemes that are more accurate than (11.2) can be used.

11.2 Steady States and Bifurcation Diagrams: Cylindrical
Convection

Dynamical systems can be organized around objects of increasing complexity: steady
states, periodic orbits, and then tori, heteroclinic orbits, and so on. The study of the
steady-state problem might seem prosaic, but in fact it is anything but that. For
motivation, we present in Figs. 11.1, 11.2, 11.3, 11.4, 11.5, 11.6, 11.7, and 11.8 the
results of experimental and numerical investigations of Rayleigh–Bénard convection
in a fluid-filled cylinder whose radius is twice the height and whose upper and lower
boundaries are maintained at different temperatures.

The governing equations of this system are the Navier–Stokes and Boussinesq
equations:

∂t H + (U · ∇) H = Ra Uz + ∇2H (11.3a)

Pr−1 (∂tU + (U · ∇)U) = −∇P + ∇2U + Hez (11.3b)

∇ · U = 0 (11.3c)
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Fig. 11.1 Patterns observed in the experiment of Hof et al. a–h are all observed at Ra = 14 200. a
three rolls, b two rolls, c inverted two rolls, d four rolls, e inverted four rolls, f mercedes, g inverted
mercedes, h axisymmetric pattern. i is a rotating pattern at Ra = 26 600 while j is a pulsed spoked
pattern at Ra = 33 000. Dark areas correspond to hot (rising) and bright to cold (descending) fluid.
Reproduced from [1]. ©1999 by the American Institute of Physics

The conductive temperature profiles is linear in the vertical direction; H is the devia-
tion of the temperature from this profile whileU is the velocity and P is the pressure.
Ra is the Rayleigh number, which is a nondimensional measure of the tempera-
ture difference imposed between the upper and lower plates, and Pr is the Prandtl
number, which is the ratio of the kinematic viscosity to the thermal diffusivity. The
boundary conditions for the velocity correspond to no-penetration and no-slip on the
horizontal plates and sidewalls:

U = 0 for z = ±1/2 and for r = 2. (11.4a)

The boundary conditions on the temperature correspond to perfectly conducting
horizontal bounding plates and perfectly insulating sidewalls:

H = 0 for z = ±1/2 and ∂r H = 0 for r = 2 (11.4b)

In their experiments, Hof et al. [1] observed a multiplicity of distinct patterns—
tori, dipoles, roll patterns squeezed into a baseball-like shape, and a three-fold pattern
that they named mercedes—at the same Rayleigh and Prandtl numbers, as shown in
Fig. 11.1. Boronska & Tuckerman were able to reproduce these states [2] and found
additional states as well by numerical time integration via, e.g. (11.2), of the spatially
discretized equations (11.3a)–(11.4b) in a domain with resolution Nr × Nθ × Nz =
40 × 120 × 20 ≈ 105, i.e. state vectors of size M ≈ 4 × 105. These time-dependent
simulations are summarized in Fig. 11.2.

An understanding of the origin of these states and their connections and ranges of
existence and stability can only be obtained from a full bifurcation-theoretic study.
This was done byBoronska&Tuckerman [3] in a large-scale calculation viamethods
that wewill describe below. The bifurcation diagram that we have computed is shown
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two-tori torus

mercedes four rolls

pizza dipole

two rolls three rolls

CO asym three rolls

Fig. 11.2 Overview of the patterns observed in time-dependent simulations of convection in a
cylinder with insulating radial wall. Initial simulations used a small perturbation of the conductive
state at the Rayleigh numbers indicated by stars and lead to the patterns listed on the boxes. The
Rayleigh numberwas then raised or lowered, either gradually, or abruptly as indicated by the arrows.
The panels on the right show the temperature field in the midplane, with rising warm fluid indicated
by light colors and descending cold fluid by dark colors. Reproduced from [3]

in Fig. 11.3. As complicated as it appears, it is still incomplete: many other branches
exist that have not been followed and so have been omitted.

Below the convective threshold, the system has symmetry O(2) × Z2, derived
from the azimuthal rotation and reflection symmetry of the cylinder, and the Boussi-
nesq reflection symmetry. Basic principles of bifurcation theory then dictate that
branches bifurcating from the conductive state must have a trigonometric depen-
dence on θ with some azimuthal wavenumber m, and Fig. 11.4 shows that this is
indeed the case.

In Figs. 11.5 and 11.6, we follow the branches emanating from them = 0 (axisym-
metric) and m = 3 bifurcations. Figure11.5 shows surprising and specific features:
the branch that bifurcates from the conductive state disappears again after undergo-
ing a saddle-node bifurcation, and a second disconnected set of axisymmetric states
exists. Figure11.6 shows the tortuous path taken by the m = 3 branch, from its birth
at a bifurcation from the conductive state (breaking the O(2) symmetry) followed
by a second pitchfork bifurcation (breaking the remaining Z2 symmetry) and then
two saddle-node bifurcations, finally leading to the mercedes states.

We now explain the computational method by which the bifurcation diagrams in
Figs. 11.3, 11.4, 11.5 and 11.6 have been calculated. Steady states are solutions to

0 = F (U ) (11.5)



11 Computational Challenges of Nonlinear Systems 253

Fig. 11.3 Bifurcation diagram for cylindrical convection. There are 17 branches of steady states, as
well as the conductive branch (shown as the short-dashed horizontal line).We call the branches pizza
(solid green), four-roll (long-dashed turquoise), two-tori (solid red; 2), torus (long-dashed magenta;
2), marigold (solid blue), mitsubishi (short-dashed purple), cloverleaf (long-dashed purple) and
mercedes (solid blue), three-roll (solid black), tiger (long-dashed brick), asymmetric three-roll
(solid brick; 2), two-roll (solid blue; 2), and CO (long-dashed red), where (·; 2) indicates related
pairs of branches. Dots indicate turning points or pitchfork bifurcations. No information about
stability is provided in this diagram. Reproduced from [3]

Fig. 11.4 Primary
bifurcations from conductive
state. The first four critical
wavenumber and Rayleigh
numbers are (m = 1,
Ra = 1828; black), (m = 2,
Ra = 1849; green), (m = 0,
Ra = 1861; red), and
(m = 3, Ra = 1985; blue)
for the radius-to-height
aspect ratio or 2 with
insulating radial walls.
Reproduced from [3]
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Fig. 11.5 Axisymmetric branches displayed via a schematic partial bifurcation diagram. Pitchfork
bifurcations at Ra = 1862 and 2328 from the conductive state lead to the two-tori branches, which
are themselves connected via a saddle-node bifurcation at Ra = 12 711; the upper one is stable for
2300 ≤ Ra ≤ 5438. A turning point at Ra = 3076 leads to the one-torus branches; the upper one
is stable for Ra ≥ 4918. Reproduced from [3]

The main way to find steady states, i.e. to solve (11.5), is via Newton’s method

FUu = F (U ) (11.6)

U ← U − u

where the subscriptU designates, here and elsewhere, the linearization of an operator
about U . The main challenge is the solution of the linear system (11.6). Indeed,
calculating the solutions of linear systems and the eigenvectors of large matrices is
the main bottleneck in numerical computations for studying dynamical systems.

Combining (11.1) and (11.6), Newton’s method calls for solving the linear system

(L + NU ) u = (L + N)U (11.7)

where NU is the linearization of N about the steady state U . Linear systems can
be solved directly or iteratively. For the calculations shown in Figs. 11.5 and 11.6,
the domain is represented by nearly 105 points and the state vector is of size M =
4 × 105. Inverting a matrix of this size directly is usually impossible for a discretized
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Fig. 11.6 Branches originating from them = 3 bifurcation displayed via a schematic partial bifur-
cation diagram. TheMarigold branch is created via an m = 3 circle pitchfork bifurcation from the
Conductive branch at Ra = 1985. A pitchfork bifurcation at Ra = 4103, creates the Mitsubishi
branch. A saddle-node at Ra = 18 762 produces the Cloverleaf branch, and another saddle-node at
Ra = 4634 leads to the Mercedes branch. The thick line for Ra > 5503 indicates the only stable
regime, a portion of the Mercedes branch. Reproduced from [3]

PDE in two or three spatial dimensions, since inversion takes a time proportional to
M3.

The class of iterative methods called Krylov methods generalize the conjugate
gradient (CG) method to matrices that are not symmetric definite and include the
algorithms GMRES [4], BiCGSTAB [5] and IDR [6]; interested readers should con-
sult these references. These methods construct a solution from the Krylov vectors,
formed by taking successive products of the matrix and the right-hand-side vector.
In order to simplify the notation, we write the problem we wish to solve as

Ax = b (11.8)

The general idea is to act repeatedly with A in order to form vectors

b, Ab, A2b, . . . AK−1b (11.9)

These vectors—or orthonormalized versions of them—are called Krylov vectors and
their linear combinations comprise the Krylov space. Krylov methods approximate
the solution x within the Krylov space:
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x ≈
K−1∑

k=0

ck A
kb (11.10)

In the worst-case analysis, if the number K of Krylov vectors attains the sizeM of the
vectors, then generically the Krylov space spans RM and x can always be expressed
via (11.10). Since a general matrix-vector product requires O(M2) operations, the
operation count for constructing M Krylov vectors is O(M3), the same as for a direct
method.

The challenge is thus to make the Krylov method less time-consuming. A first
savings is realized from the fact that matrices derived from spatially discretizating
PDEs are not arbitrary: the time required to act with them (rather than inverting
them) is typically closer to M than to M2. A second economy is realized by reducing
K � M . The number K of Krylov vectors required to approximate the solution
depends on the condition number of the matrix, basically the ratio of its largest to
its smallest eigenvalue. By preconditioning, i.e. by acting on both sides of (11.8)
with an operator that approximates the inverse of A, the ratio between maximum and
minimumeigenvalues is reduced. Thematrix in (11.7) is badly conditioned, primarily
(in the cases of interest to us) because L is. We multiply (11.7) by (I − TL)−1 T ,
where T is a large timestep. This acts to counterbalance L and leads to

(I − TL)−1 T (L + NU )u = (I − TL)−1 T (L + N)U

(I − TL)−1(I + TNU − I + TL)u = (I − TL)−1(I + TN − I + TL)U
[
(I − TL)−1(I + TNU ) − I

]
u = [

(I − TL)−1(I + TN) − I
]
U

[
BU,T − I

]
u = [BT − I ]U (11.11)

where BU,T ≡ (I − TL)−1(I + TNU ). (We will omit subscripts when they seem
unnecessary) Equation (11.11) shows that steady states, which are the roots of (L +
N), are also roots of the operator (BT − I ), where BT is obtained from a single
Euler timestep (11.2), for any value of T . A large value of T , on the order of T =
100 or 1000, serves to insure that (I − TL)−1 T ≈ −L−1. Solving (11.11) using
method BiCGSTAB for the cylindrical convection problem above then requires a
much smaller (30–800) number of Krylov vectors K than the system size M =
4 × 105. This method, called Stokes preconditioning (because L is associated with
the Stokes problem in hydrodynamics), has been presented and used in, e.g. [7–15].

Another method for finding steady states also relies on time-integration, using
the operator BT/�t

�t − I , meaning that T/�t timesteps are taken with a timestep of
conventional size, e.g. �t ≈ 0.01 for a typical non-dimensionalized hydrodynamic
stability problem. Since for �t � 1,

U (�t) ≈ B�tU (0) =⇒ U (T ) ≈ (B�t )
T/�t U (0)

U (T ) −U (0) ≈ (
(B�t )

T/�t − I
)
U (0)
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steady states are also roots of
(
(B�t )

T/�t − I
)
(in the limit �t → 0), and the corre-

sponding Newton step is

((
BU,�t

)T/�t − I
)
u = (

(B�t )
T/�t − I

)
U (11.12)

We call this the integration method. Each operator action of (11.12) requires T/�t
timesteps, rather than the single timestep required by the action ofBT − I . However(
(B�t )

T/�t − I
)
is better conditioned than BT − I and so fewer Krylov vectors are

required to represent the solution.
Theories depicting transitional turbulence as chaotic trajectories visiting unstable

steady states and traveling waves [19] have inspired the calculation of a large number
of such states, mostly by method (11.12), e.g. [16]. (In this context, unstable steady

Fig. 11.7 Upper row: Steady state in plane Couette flow. Lower row: Traveling wave in pipe flow.
Left column: depiction of flow. Middle and right columns: Performance of Newton’s method, with
timings measured by the number of timesteps taken. U is considered to be a steady state when
||G(U )|| < 10−13. Dots show the number of timesteps at the end of each Newton step, while
numbers show the time T used in either a single large timestep (Stokes method) or for multiple
timesteps (integration method). Middle column: performance of Newton’s method using the Stokes
method (11.11). Convergence is much faster when T is increased, showing the effectiveness of
Stokes preconditioning. Right column: performance of Newton’s method using the integration
method (11.12). The Stokes method is 11 times faster than the integration method for the plane
Couette flowcalculation and50 times faster for the pipeflowcalculation. Top left panel is reproduced
from [16] (©2009 by Cambridge University Press), bottom left panel is reproduced from [17]
(©2008 by the Royal Society) and the rest of panels are reproduced from [18] (©2019 by Springer
International Publishing)
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states are often called Exact Coherent Structures.) In [18] a comparison of methods
(11.12) and (11.11) has been carried out for the computation of unstable steady states
for plane Couette flow via Channelflow [20] and traveling waves for pipe flow via
OpenPipeFlow [21]. This comparison is summarized in Fig. 11.7. We find that the
tradeoff between fewer operator actions for (B�t )

T/�t − I vs. fewer timesteps for
each operator action for BT − I is such that the BT − I method is 10 to 50 times
faster in the Reynolds-number range that we have studied. However, some time-
integration codes rely on�t being small (in particular, to impose incompressibility),
making them difficult to incorporate into a single-timestep Newton’s method.

Traveling waves can be calculated using the same methods as steady states. Writ-
ing U = U (x − Ct), U is a solution to

∂tU = −CU = F (U ) (11.13)

i.e. (U,C) is a solution to

0 = CU + F (U ) (11.14)

An additional condition on the phase must be imposed to compensate for the addi-
tional variable C . Although traveling waves can be computed using either (11.11)
or (11.12), general periodic orbits cannot use (11.11), since the entire periodic orbit
must be integrated. That is, one must find roots of U (T ) −U (0) and not of F (U )

or CU + F (U ).

11.3 Linear Stability Analysis

In the bifurcation diagrams presented in Figs. 11.5 and 11.6, thick lines denote sec-
tions of branches in which the steady states are linearly stable. Unlike states com-
puted via time-integration, which are necessarily stable, those computed byNewton’s
method can also be unstable. How does one then determine their stability? The lin-
ear stability of a steady state is controlled by the eigenvalues λ j of FU . If none of
the eigenvalues have positive real parts, then the steady state is stable. Otherwise
it is unstable to perturbations of the form of the eigenvectors corresponding to the
eigenvalues whose real parts are positive. In Fig. 11.8a, we show the leading eigen-
values corresponding to the axisymmetric states of Fig. 11.5. For the same reasons as
for the conductive state, bifurcation-theoretic principles require that the correspond-
ing eigenvectors each be trigonometric in the azimuthal direction, with a single
wavenumberm. Another bifurcation-theoretic principle states that a new bifurcating
branch (with azimuthal wavenumber m) is generated via a circle pitchfork at each
zero-crossing of these eigenvalue curves. This is one of the reasons that we know
that many other branches exist in addition to those shown in the already quite com-
plex Fig. 11.3. Figure11.8b shows the single leading eigenvalue (that with largest
real part) corresponding to the states in Fig. 11.6. States for which this eigenvalue
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Fig. 11.8 a Leading eigenvalues of upper two-tori (solid) and one-torus (dashed) branches. The
upper two-tori branch has two positive eigenvalues at onset, which subsequently cross zero, lead-
ing to stability over the interval 2300 ≤ Ra ≤ 5438. The upper one-torus branch has five positive
eigenvalues at onset. These subsequently cross zero, leading to stability for Re > 4918, above
which the branch is stable. Each zero-crossing is associated with the formation of a new branch. b
Leading eigenvalue for each of the three-fold-symmetric branches: Marigold, Mitsubishi, Clover-
leaf, Mercedes (from highest to lowest). Dots indicate bifurcations between the branches and final
stabilization of Mercedes branch for Ra > 5503. Reproduced from [3]

is positive are unstable. From this figure it can be seen that all of the m = 3 states
are unstable until the leading eigenvalue of the Mercedes branch finally becomes
negative, as also seen in Fig. 11.6.

We now discuss the method by which these eigenvalues are computed. The most
straightforward way to conduct linear stability analysis is to form the matrix FU and
to diagonalize it, i.e. to compute all of its eigenvalues. If, however, (11.1) consists
of one or more partial differential equations in two or three spatial dimensions, then
U and u are on the order of size 1002 = 104 or 1003 = 106, and so the matrix FU

is too large to diagonalize completely. The solution is to calculate only the leading
eigenvalues, i.e. those whose real part is the largest and their eigenvectors. To do so,
we turn again to Krylov methods.

Like the Krylov methods for solving linear equations, those for finding selected
eigenvalues rely on repeated operator action to build up a Krylov space. The eigen-
values that are easiest to find are the dominant ones, those of largest magnitude. The
simplest such method is the power method, in which only one vector is retained,
which converges to the dominant eigenvector. Generalizations, e.g. the block power
method, converge to the dominant eigenvectors which, for dissipative systems like
the Navier–Stokes equations, correspond to highly damped modes of FU rather than
the bifurcating modes that are of interest. We can apply a mapping to FU , using the
fact that this maps the eigenvalues of FU to their images under this mapping, while
leaving the eigenvectors unchanged. Thus, we continue to use the power method or
the block power method, but on a different matrix whose dominant eigenvalues are
those we seek.

Two such operator mappings are illustrated in Fig. 11.9. Consider the two opera-
tors
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Fig. 11.9 Spectrumof amatrixA, alongwith that of eA�t and A−1.We seek the leading eigenvalues
of A (blue crosses) but these are difficult to obtain via the power or block powermethods because they
are not the dominant ones. When the exponential or inverse is applied to A, the leading eigenvalues
of A become the dominant ones of eA�t (green crosses) and of A−1 (red crosses) and are hence
much easier to obtain

exp(�t(L + NU )) and (L + NU )−1 (11.15)

We approximate the action of these operators on a vector u(n) by using variants of
the Euler time-stepping operator (11.2). The exponential power method uses

u(n+1) = BU,�t u
(n) ≡ (I − �tL)−1(I + �tNU )u(n) ≈ exp(�t(L + NU ))u(n)

(11.16)

for small �t . The inverse power method uses

(L + NU )u(n+1) = u(n) (11.17)

which, as seen in (11.11), is equivalent to

[
(I − TL)−1(I + TNU ) − I

]
u(n+1) = (I − TL)−1u(n) (11.18)

Equations (11.16) and (11.18) are analogous to the twomethods described in (11.12)
and (11.11) for computing steady states.

For simplicity, we have presented the power method, which computes a single
eigenvalue-eigenvector pair. Both the exponential powermethod or the inverse power
method can be generalized to compute a number of eigenpairs, by keeping a number
K of iterates of the matrix as follows. We renumber the first retained iterate to be u0.
The vectors {u0, . . . uK−1} are orthonormalized to yield a set {v0, . . . vK−1}, whose
span is the Krylov space. A K × K matrix is defined via Hi, j ≡ 〈vi , Av j 〉. The small
matrix H captures the action of the full matrix A on the Krylov space if AvK+1

does not venture too far outside the Krylov space, i.e. if there is some choice of
coefficients {c j } for which ||AvK−1 − ∑K−1

j=0 c j v j || is sufficiently small. In this case
the K eigenvalues of H are candidates for approximate eigenvalues of A. To capture
complex eigenvalues, K must be chosen such as to include both members of the pair.
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(a) (b)

Fig. 11.10 a Four leading eigenvalues for spherical Couette flow. Two eigenvalues form a complex
conjugate pair for Re < 744; their real part is shown as solid green squares and the imaginary part
as hollow black squares. The cross at (Re = 750, λ = −0.152) shows the targeted eigenvalue. b
Convergence of error |λ − λ̄| for various Krylov space dimensions and spatial resolutions. Solid
red circles: K = 2 and spatial resolution 16 × 128. Hollow green triangles: K = 4 and spatial
resolution 16 × 128. Hollow blue squares: K = 2 and 32 × 256. Reproduced from [22]

The eigenvalues in Fig. 11.8 were obtained using the exponential power method
(11.16), i.e. timestepping the linearized equations. This method is reliable and easy
but, because the approximation in (11.16) requires a small timestep �t , the operator
resembles the identity and so the iteration proceeds slowly. In contrast, iteration
using (11.18) is extremely rapid, converging to the eigenvector corresponding to the
eigenvalue closest to zero, typically in 10 or fewer actions of the inverse. Each inverse
action requires the solution of (11.18), typically via GMRES, BiCGSTAB or IDR. A
shift is easily included in (11.18) by subtracting s I from the explicit term NU , thus
finding eigenvalues close to s instead of 0. Figure11.10a shows eigenvalues computed
for spherical Couette flow (flow between differentially rotating concentric spheres)
using different shifts via the inverse power method (11.18); see [22]. Figure11.10b,
like Fig. 11.7, shows the speed of convergence in terms of number of actions of BT ,
and establishes that it is unchanged when the spatial resolution is increased, thus
demonstrating the effectiveness of Stokes preconditioning.

A complex shift can be used to target eigenvalues on or close to the imaginary axis,
which are those that lead to Hopf bifurcations. However, it is not clear how to scan
large portions of the imaginary axis, if the frequencies being sought are unknown.

11.4 Floquet Analysis

We now discuss the stability of periodic orbits U (t), i.e. solutions such that U (t +
T ) = U (t). Infinitesimal perturbations u to a periodic orbit U (t) are governed by
the equation

∂t u = FU (t)u (11.19)
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which is a Floquet problem, i.e. a linear differential equation whose coefficients are
periodic in the independent variable, here time. Solutions to (11.19) are of the form

u(x, t) = eλt v̂(x, t mod T ) (11.20)

where x is used to designate any possible spatial dependence, λ is a Floquet exponent,
and v̂ is a Floquet function. As is the case for ordinary linear stability problems, there
are as many pairs (λ, v̂) as there are degrees of freedom in U . U (t) is stable if none
of the Floquet exponents λ have positive real part. Otherwise, U (t) is unstable to
perturbations of the form of the Floquet function v̂(x, t mod T ) corresponding to λ.

Floquet problems cannot generally be solved analytically, even whenU is a scalar
and (11.19) is an ordinary differential equation. Floquet problems can be solved
numerically in a variety of ways. One way is to integrate (11.19) starting from an
initial condition u(t = 0) that is a unit vector, simultaneously with the determination
of the limit cycleU (t) by integrating the original problem (11.1). Assembling all the
resulting vectors u(t = T ) leads to the monodromy matrix, whose eigenvalues are
the Floquet multipliers eλT .

As is the case for ordinary stability problems, for problems with two or three
spatial dimensions, it is usually too onerous to assemble and diagonalize the full
monodromy matrix. The usual procedure is then to use Krylov methods, which
compute a subset of the leading eigenvalues via a number K of matrix actions where
K is much smaller than the total size of the system. The matrix action in this case is
the integration of (11.19) over a time T .

We now present a sample of some large-scale Floquet problems that have been
solved computationally. When a fluid layer is subjected to vertical oscillations of
a sufficient amplitude, a standing-wave pattern forms on the surface, as was first
studied by Faraday in 1831. The flat surface is a solution; the imposed vertical
oscillation means that its destabilization is described by a Floquet problem. In an
infinite horizontally homogeneous fluid layer, a solution is the product of a plane
wave, an exponential, and a Floquet function

ζ(x, t) = eik·xζ(t) = eik·xeλt
∑

n

ζne
inωt (11.21)

where ζ is the interface height, ω = 2π/T is the frequency of the imposed vertical
oscillation and k is the wavevector of the planewave that is a candidate for instability.
The sum in (11.21) is the temporal Fourier series of the unknown T -periodic Floquet
function. When viscosity is absent, the problem reduces to the Mathieu equation
[23]:

ζ̈ +
(
gk + σ

ρ
k3

)
ζ = a cos(ωt)ζ (11.22)

where a is the acceleration associated with the imposed oscillation, g is the gravita-
tional acceleration, σ is the surface tension, and ρ is the density.
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Fig. 11.11 a Critical acceleration for the onset of Faraday waves as a function of the wavenumber.
The solid curves represent the neutral curves obtained by Floquet analysis, while the values found
via full nonlinear simulation are indicated by the circles. b Linear evolution of the surface height of
Faraday waves, in the first two instability tongues. Floquet functions are plotted with the solid line,
while results from full nonlinear simulation near threshold are plotted with symbols. Reproduced
from [25]

This Floquet problem has been solved by an original method [24]: rather than
fixing the oscillation amplitude a and calculating the resulting Floquet exponents,
the Floquet exponent λ is set to 0 (the harmonic case) or to iω/2 (the subharmonic
case) thus determining the threshold ac directly as follows. In terms of the Fourier
coefficients ζn , (11.22) becomes

(
(λ + inω)2 +

(
gk + σ

ρ
k3

))
ζn = a [cos(ωt)ζ ]n (11.23)

where [·]n means the nth component of the expression within. Equation (11.23)
is an eigenvalue problem with the vector of temporal Fourier coefficients {ζn} as
the eigenvector, a as the eigenvalue, a diagonal matrix on the left-hand-side, and
a bi-diagonal matrix on the right-hand-side. The inclusion of viscosity complicates
the diagonal matrix on the left-hand-side but the basic idea of the method remains
the same. Results obtained using this method are shown in Fig. 11.11. These are
compared with the threshold calculated from a full three-dimensional free-surface
code [25].

One of the most classic hydrodynamic configurations is the wake of a circular
cylinder in a uniform flow. Above a critical Reynolds number, a temporally periodic
two-dimensional flow develops, in which vortices of alternating sign are generated
close to the cylinder and advected downstream, a flow called theBénard–vonKármán
vortex street. Above a second critical Reynolds number, this spanwise-independent
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Fig. 11.12 a Instantaneous visualization of a temporally periodic state in an open shear-driven
cavity at Re = 4500. The vertical velocity fluctuations travel rightwards over the cavity. b Floquet
multipliers of the periodic state in panel a, emphasizing the multiplier that traverses the unit circle
at a slightly higher Reynolds number, thus destabilizing this periodic state. Reproduced from [26]

temporally periodic flow U2D(x, y, t mod T ) becomes unstable to a spanwise peri-
odic mode. This instability is governed by a Floquet problem, whose leading mode
can be written as

u3D(x, y, z, t) ∼ eiβzeλtv(x, y, t mod T ) (11.24)

Barkley and Henderson [27] showed that the Bénard–von Kárman vortex street
becomes unstable at Re = 188 to a Floquet mode with spanwise wavelength of
about four cylinder diameters and a Floquet exponent λ = 0, meaning that no new
time dependence is introduced into the resulting spanwise-dependent flow.

Another classic configuration is that generated by a uniform flow over a square
cavity. Above a critical Reynolds number, a new flow appears that is temporally
periodic and approximately spatially periodic in the streamwise direction, shown
via its vertical velocity fluctuations in Fig. 11.12a. A Floquet analysis [26] shows
that above a second critical Reynolds number, this flow is in turn destabilized via a
Floquet mode with a complex Floquet exponent, as shown in Fig. 11.12b.

11.5 Heteroclinic Orbits

Among the more exotic phenomena displayed by dynamical systems are heteroclinic
orbits: limit cycles whose period is infinite. Although the theory and understanding
of heteroclinic orbits is well-grounded, they cannot be seen experimentally, since
they are broken by any perturbation, and in fact can barely be seen computationally.
Heteroclinic orbits can be divided into two broad categories. In one case, they occur
at a single parameter value, at one end of the parameter range of existence of a
limit cycle. Such a heteroclinic cycle is the signature of a global bifurcation that
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creates or destroys a limit cycle that, at neighboring parameter values, has a long but
finite period. These cycles evade experimental observation because they occur only
at isolated parameter values. Their existence is inferred from the divergence of the
nearby periodic orbits. The other case is that of heteroclinic cycles that are robust,
meaning that they exist over a range of parameters. These heteroclinic cycles result
fromsymmetry properties. They evade experimental observationbecause symmetries
in nature are rarely exact.

11.5.1 SNIPER Bifurcations

One mechanism by which heteroclinic cycles appear is via a SNIPER (Saddle-Node
In a PERiodic orbit, or Saddle-Node-Infinite-PERiod bifurcation) bifurcation [29,
30]. On one side of the bifurcation, there exists a closed curve consisting of a chain of
alternating stable and unstable fixed points connected by trajectories of the system.
(In the simplest case, there is a single pair of stable and unstable fixed points; in a
symmetric system, additional pairs exist.) The stable and unstable points meet and
annihilate one another in saddle-node bifurcations, leaving in their wake a closed
curve that forms one continuous closed trajectory, i.e. a limit cycle. At a bifurcation
point εc, the period of the limit cycle is infinite; slightly beyond εc, the period behaves
like (ε − εc)

−1/2.
A heteroclinic cycle was first observed for a full hydrodynamic configuration

in a simulation of Rayleigh–Bénard convection in a cylinder [28]. In this case, the
configuration is axisymmetric and the radius is five times the height. Two successive
pitchfork bifurcations lead to four steady states, each consisting of a set of four or
five concentric convection rolls, as shown in Fig. 11.13. When the Rayleigh number
is increased past the SNIPER bifurcation point, the rolls begin to travel radially
inwards. The innermost roll shrinks and disappears, while a new roll appears at the
outer boundary.

SNIPER bifurcations have been computed in other systems. In another axisym-
metric cylindrical convective configuration, the top and bottom disks bounding the
domain are rotated at equal and opposite speeds (the von Kármán flow described
below in Sect. 11.5.2), in addition to having fixed and different temperatures [31].
The height and radius are equal, with one large concentric roll filling almost the entire
domain. During the cycle a small roll appears alternatively at the outer radial bound-
ary, alternating between the top and the bottom of the cylinder. The limit cycle exists
in a region of the (Reynolds number, Rayleigh number) parameter plane delimited by
a SNIPER bifurcation curve and aHopf bifurcation curve. SNIPER bifurcations have
also been observed in simulations of other variants of cylindrical Rayleigh–Bénard
convection [32, 33], and have been hypothesized to play a role in the reversals of the
earth’s magnetic field [34].
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Fig. 11.13 SNIPER bifurcation in axisymmetric cylindrical convection. Upper left: instantaneous
streamfunction during the limit cycle at reduced Rayleigh number ε ≡ (Ra − Rac) = 1.39 at suc-
cessive times. The numbers label slowly varying quasi five-roll and quasi four-roll states. Upper
right:Nusselt number time series for ε = 2.60 (above) and for ε = 1.39 (below). The period diverges
at the SNIPER bifurcation. Lower right: Schematic bifurcation diagram using reduced Rayleigh
number ε as the control parameter and a projection A of the states as order parameter. Above (a, b)
are numerically calculated streamfunction contours of representative five-roll steady states. Below
(c–g) are phase portraits at the values of ε denoted by tickmarks. Solid lines and filled circles denote
stable states, while dashed lines and hollow circles denote unstable states. The straight bold curve
represents the limit cycle formed in the SNIPER bifurcation. Lower left: Phase portraits using as
coordinates the projections onto the two most unstable eigenvectors of the conductive state. Letters
correspond to the schematic phase portraits shown below the schematic bifurcation diagram on the
right. f is computed at ε = 1.38, for which all trajectories terminate at one of two steady states. g is
computed at ε = 1.39, for which the SNIPER bifurcation has led to a limit cycle. The numbers (4, 5,
4′, 5′) describe the instantaneous states corresponding to those in the streamfunction visualizations
above. Adapted from [28]
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11.5.2 1:2 Mode Interaction

Turning now to robust heteroclinic cycles, i.e. those that exist over a range of parame-
ters, one important mechanism is provided by the 1:2mode interaction. This scenario
occurs in a configuration with O(2) symmetry, when pitchfork bifurcations to modes
with azimuthal wavenumbersm = 1 andm = 2 modes occur at close parameter val-
ues. In this case, Armbruster et al. [35] predict the existence of m = 1 and m = 2
steady states, traveling waves, modulated traveling waves, and robust heteroclinic
cycles. These cycles are trajectories between twom = 2 states that differ by a change
in phase ofπ/2. Several full hydrodynamic computations have displayed realizations
of this 1:2 mode interaction scenario. Nore et al. [13] investigated the flow in a cylin-
der whose height is twice the radius and whose two bounding disks cylinder rotate
in equal and opposite directions, sometimes called von Kármàn flow. The basic state
is axisymmetric and consists of an axial shear of the azimuthal velocity combined
with two superposed toroidal cells driven by Ekman pumping and separated at the
midplane between the top and bottom disks. The flow undergoes circle pitchfork
bifurcations that break the axisymmetry, leading to an undulation in the separating
surface and to radially oriented vortices.

Figure11.14a shows results of linear stability analysis, in particular, them = 1 and
m = 2modes (calledmixedMand pure P, respectively, because the higher harmonics
of m = 1 contain both odd and even wavenumbers, while those of m = 2 contain
only even wavenumbers). The eigenmodes are represented visually via the vertical
velocity at the midplane. Figure11.14b shows the sequence of bifurcations in this
case, adapted from those predicted in [35]. The mixed branch engenders traveling
waves (via a drift pitchfork bifurcation) and then modulated traveling waves (via

Fig. 11.14 The 1:2 mode interaction in counter-rotating von Kármán flow. a Eigenvalues corre-
sponding to azimuthal wavenumbersm = 1 and 2 of the basic state for Re < ReP , the threshold of
bifurcation to the pure mode state, and of the pure mode state for Re > ReP . Contours of vertical
velocity of each eigenvector are shown. b Schematic bifurcation diagram showing bifurcations:
circle pitchforks from the basic branch to mixed (M) and pure (P) branches, drift to traveling
waves (TW), Hopf to modulated waves (MWH), pitchforks (MP, M’P) connecting mixed and pure
branches. The heteroclinic orbit is stable between thresholds Het and M’P. Timeseries of traveling
waves and the heteroclinic cycle are shown. Adapted from [13]
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a Hopf bifurcation). The branch of pure states is unstable at onset, but engenders
a heteroclinic cycle that consists of alternation between states that are π/2 out of
azimuthal phase from one another.

Returning to Fig. 11.14a, many of these transitions coincide with the crossings
of eigenvalues, as explained in the Armbruster et al. [35] scenario. The left part
(Re ≤ 401) shows the result of linearization about the basic state; the mixed and
pure branches are created via pitchfork bifurcations when the m = 1 and m = 2
eigenvalues cross zero. The right part (Re ≥ 401) shows the result of linearization
about the pure states. Azimuthal phase becomes significant and so the eigenmodes
of the basic state each split into those symmetric (S) and antisymmetric (A) with
respect to the pure mode. The m = 2 eigenmodes split into the classic negative
amplitude and neutral phase modes. The m = 1 eigenvalues decrease; the mixed
branch is annihilated when the eigenvalue associated with 1S becomes negative, and
when its magnitude surpasses that of the still-positive eigenvalue associated with
1A, the heteroclinic cycle becomes stable. Excursions consist of growth along the
1A direction and decay along the 1S direction. When the eigenvalue associated with
1A becomes negative, the pure mode becomes stable. This case shows the power
of combining full nonlinear time-dependent simulations with computational linear
stability analysis.

Heteroclinic cycles associated with the 1:2 mode interaction have been com-
puted in other hydrodynamic systems.Mercader et al. [37] simulated non-Boussinesq
two-dimensional Rayleigh–Bénard convection in a rectangle of width π (between
the favored wavelengths of approximately 2 and 4). Bengana and Tuckerman [36]
simulated Taylor–Couette flow between counter-rotating cylinders and discovered
two very different cycles, one whose excursions resemble the non-axisymmetric
azimuthally traveling ribbon state, and another whose excursions remain axisym-
metric, shown via the phase portraits in Fig. 11.15. Both cycles are based at the same
saddles and the crossover between them corresponds to the crossover between two
leading eigenvalues, that corresponding to 1A and a complex eigenvalue correspond-
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Fig. 11.15 Phase portraits of two heteroclinic orbits in counter-rotating Taylor–Couette flow. a
Excursions are non-axisymmetric and spiral in and out of the saddles. b After a spiralling ini-
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ing to a non-axisymmetric eigenmode. In all of these computations, the cycles may
behave in a regular or slightly irregular way. Their period is not infinite, so strictly
speaking, they should be called near-heteroclinic cycles.

All of the cycles described above were calculated using only time-integration.
However, there exist more specialized numerical methods aimed specifically at cal-
culating heteroclinic cycles [38–40].

11.6 Hamiltonian Systems: Bose–Einstein Condensation

ABose–Einstein condensate can be represented by a complex wave function(x, t)
that obeys the Gross–Pitaevskii equation

−i∂t =
[
1

2
∇2 − V (x) − a||2 + μ

]
 (11.25)

where a is the nondimensionalized scattering length and

V (x) ≡ 1
2 |ω · x|2 (11.26)

is a confining harmonic potential. The Lagrange multiplier μ is associated with the
constraint that the particle numberN ≡ ∫ ||2d3x be kept constant. (In this section,
we use N to denote particle number, in contrast to Sects. 11.1–11.3, in which it
denotes the nonlinear terms).

We have considered a potential with cylindrical symmetry, i.e. with inverse length
scalesωx = ωy = ωr andωz , in either the pancake (ωr < ωz) or cigar (ωr > ωz) con-
figuration. Equation (11.25) is distinguished from the equations considered in the
previous sections by the presence of the imaginary i . As a Hamiltonian system, its
bifurcations are different from those of dissipative systems. With the cylindrically
symmetric potential, we find that (11.25) exhibits a Hamiltonian saddle-node bifur-
cation. A saddle and a center coexist and annihilate one another at a critical value of
μ or, equivalently, N .

The search for steady states is not affected by the presence of i ; we merely solve

0 =
[
1

2
∇2 − V (x) − a||2 + μ

]
 (11.27)

This is done via the same technique as in Sect. 11.2, with L = 1
2∇2 and N =

−(V (x) + a||2 − μ). These steady states are shown for the pancake case via
their energy
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Fig. 11.16 Stationary
solutions of the GP equation
as a function of the particle
number N for a potential
(11.26) of pancake form with
ωz = 5ωr . Energy functional
(above) and square of the
bifurcating eigenvalue λ2±
(below). Exact numerical
solution (black solid lines) is
compared with Gaussian
approximation (red dashed
lines). Reproduced from
[41]
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in the upper part of Fig. 11.16. We mention some other methods that have been used
to compute such states. For a spherically symmetric potential ωr = ωz , the wave-
function is one-dimensional, so that linear systems arising in Newton’s method are
much smaller and can easily be solved directly. One method approximates the func-
tional dependence of (x) as Gaussian; this yields a problem without any spatial
dependence in which the few scalar parameters of this approximation are computed
via Newton’s method. Figure11.16 includes the resulting branches, which are qual-
itatively, but not quantitatively, the same as the exact solutions. Another method,
called relaxation or imaginary time, integrates

∂t =
[
1

2
∇2 − V (x) − a||2 + μ

]
 (11.29)

turning the system into a dissipative one. However, this method does not find the
branches that are unstable under the evolution of (11.29), and so cannot obtain the
full diagram of Fig. 11.16.

We now turn to the stability of the real steady states of (11.25). The eigenmodes
(λ, ψR, ψI ) satisfy

λ

(
ψR

ψI

)
=

[
0 −(L + DWI )

L + DWR 0

] (
ψR

ψI

)
(11.30)

where
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L ≡ 1

2
∇2, DWR ≡ μ − V (x) − 3a2, DWI ≡ μ − V (x) − a2.

(11.31)

The eigenvalues occur in equal and opposite pairs and the pair closest to zero deter-
mines the nature of each branch. For states on the stable elliptic branch E−, this pair
is imaginary, so λ2 is negative; |λ−| is the energy of excitations around this branch.
Along the unstable hyperbolic branchE+, this pair is real, so thatλ2+ is positive. At the
saddle-node bifurcation, these eigenvalues meet at zero. All of the other eigenvalues
are imaginary pairs.

In order to calculate the critical eigenvalue pair, we have used the inverse power
method (see Sect. 11.3). Moreover, we square the matrix, which leads to a block
diagonal matrix whose blocks both have the same eigenvalues λ2:

λ2
(

ψR
ψI

)
=

[ −(L + DWI )(L + DWR) 0
0 −(L + DWR)(L + DWI )

] (
ψR
ψI

)
(11.32)

Preconditioning by L−2, we carry out the inverse square iteration via:

− L−2(L + DWI )(L + DWR)ψ
(n+1)
R = L−2ψ

(n)
R (11.33)

These methods and results are described in detail in [11, 41].
In a separate investigation, is prolonged to include a second complex component

and a periodic lattice component is added to the confining potential

V (r, z) = 1

4
|ω · x|2 + A

[
sin2(2ωr x) + sin2(2ωr y)

]
(11.34)

leading to a problem that is not axisymmetric. Using the steady-state methods
described above, we have computed a non-axisymmetric solution consisting of stable
symbiotic vortex-bright solitons shown in Fig. 11.17; see [42].

Fig. 11.17 Stable symbiotic vortex-bright structure in the presence of an optical lattice with poten-
tial (11.34) with ωz = 5ωr . Surfaces of constant density are shown in blue for the vortex and
in yellow for the soliton. This 3D stationary state is stabilized by the second component, which
displaces the vortex component at its core. Reproduced from [42]
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11.7 Looking Ahead

In this chapter, we have described a number of dynamical-systems phenomena,
namely steady states and limit cycles; bifurcations, instability and Floquet modes;
and heteroclinic cycles, that occur in many nonlinear physical systems. Many of
these phenomena, such as unstable steady states or heteroclinic orbits, are accessible
only to computation.

The numerical simulations described in the previous sections have uncovered
several new dynamical-systems scenarios. Faraday waves provide an example for
which full nonlinear three-dimensional simulations have led to the discovery of
new phenomena. First, in simulations of Faraday waves in a minimal hexagonal
domain [43, 44], the hexagons give way after many subharmonic oscillation periods
to a pattern we have called beaded stripes. These are succeeded in turn by quasi
hexagons, and then by regular alternation between asymmetric beaded stripes and
quasi hexagons, as shown in Fig. 11.18. The bifurcation-theoretic genesis of this
complicated scenario is unknown. Secondly [45], a large square domain containing
Faraday waves spontaneously divides into a two-by-two grid in which the square
waves are in phase with those diagonally opposite, as shown in Fig. 11.19. Finally,
Faraday waves on the surface of a drop induced by a radially directed oscillatory
force display patterns [46], many of which resemble Platonic solids, as expected
[47]. However, some of the patterns we observe undergo a slow and long-lasting
drift in orientation, such as the axisymmetric pattern of Fig. 11.20. This feature
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Fig. 11.19 Supersquare pattern at instants separated by intervals of T/2, where T is the forcing
period and 2T is the subharmonic response period. In a and c, wells are surrounded by ridges with
peaks at each corner, while in b, the squares are centered around low peaks. The large squares on
the bottom left and top right are in phase, as are those on the bottom right and top left. Reproduced
from [45]

Fig. 11.20 Axisymmetric � = 4 pattern seen in capillary waves during one subharmonic response
period 2T . The interface sometimes resembles a top and sometimes a finite cylinder. Each fluid
drop is surrounded by its spherical domain. The magnitude of the velocity is indicated by the colors.
Reproduced from [46]

remains unexplained. The configurations in Figs. 11.19 and 11.20 were computed
with amassively parallelmultiphase time-integration code [48].Althoughbifurcation
analysis has been carried out for thin films [49], most tools for numerical bifurcation
analysis have not yet been applied to full three-dimensional nonlinear free-surface
problems.

Inmost quantitative sciences, a surprisingly important bottleneck is that of numer-
ical linear algebra, and this is certainly the case for nonlinear dynamics. The main
focus of computational science is time-integration, which has been tamed to yield
algorithms whose timing is approximately linear in the size M of the system. Over
the years, many monographs, e.g. [50–53], dedicated volumes, e.g. [54–56], review
articles, e.g. [15, 57, 58], and software packages such as AUTO [59], DSTOOL [60],
PDECont [61], MatCont [62], LOCA [63], JuliaDynamics [64], pde2path [65] have
been dedicated to targeting simple or complicated bifurcation-theoretic objects for
general dynamical systems. However, such algorithms usually require the solution of
linear systems or matrix diagonalization. Straightforward algorithms for these tasks
scale like M3, and if the matrix is derived from a two or three-dimensional partial
differential equation thenM = MxMyMz may be on the order of 106 ormore. Krylov
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space methods can be used, in which the solution is obtained as a superposition of
K vectors obtained by matrix actions. The timings for these scale like KM or K 2M ,
so the crucial challenge is to keep K low.

A number of strategies for speeding up the iterative solution of linear systems
have been proposed in this chapter, more specifically transforming the matrix or the
nonlinear problem to one that is more tractable. These include using the exponential
or the inverse of the operator and preconditioning by the Laplacian. An extension
of this approach is as follows. Consider a steady-state problem containing a linear
operator L and a bilinear operator N .

0 = F (U ) ≡ LU + N(U,U ) (11.35)

In order to compute u, an improvement to the estimateU , Newton’s method requires
us to solve

FUu = F(U )

Lu + N(U, u) + N(u,U ) = LU + N(U,U ) (11.36)

whereu is a decrement toU that should decrease ||LU + N(U )||. TheStokesmethod
described in Sect. 11.2 preconditions (11.36) with L−1

L−1 [Lu + N(U, u) + N(u,U )] = L−1 [LU + N(U,U )] (11.37)

It is easy to generate other decompositions of (11.35) that lead to other precondi-
tioners. For any fixed field Ubase, we may write

U = Ubase + Ũ (11.38)

The operator whose roots are sought is unchanged, but it now formally acts on the
unknown Ũ

F(Ũ ) = LUbase + LŨ + N(Ubase,Ubase) + N(Ubase, Ũ ) + N(Ũ ,Ubase) + N(Ũ , Ũ )

(11.39)

and has Jacobian

DFŨ ũ = Lũ + N(Ubase, ũ) + N(ũ,Ubase) + N(Ũ , ũ) + N(ũ, Ũ ) (11.40)

where ũ is a decrement to Ũ that should decrease F(Ũ ). IfUbase is sufficiently simple,
it may be possible to invert

L + N(Ubase, ·) + N(·,Ubase) (11.41)

The inverse of (11.41) may be a much better preconditioner for F than L−1 since it
includes parts ofN that were previously left out of the preconditioning. As an exam-
ple of this approach, [18] discusses the computation of steady states and traveling



11 Computational Challenges of Nonlinear Systems 275

waves in wall-bounded shear flows. For such flows, there is a known laminar base
flow Ubase = U (y)ex for which

(Ubase · ∇)u + (u · ∇)Ubase = U (y)∂xu + uy∂yU (y)ex (11.42)

Incorporating one or both of these terms into the Stokes preconditioner would almost
surely greatly lower the number K of Krylov vectors needed.

Another way in which the search for steady states may be accelerated is by apply-
ing an operator or functional G to F , transforming the steady-state problem to

0 = G(0) − G(F (U )) (11.43)

Again, this is advantageous if the Jacobian of G(F ), i.e. GFFU is better conditioned
than FU , or if a better preconditioner for it is available. In fact the two approaches
(11.11) and (11.12) constitute a special case of such a transformation, where G is
taken to be the time integral of F

G(F (U )) ≡
∫ t+T

t
F (U (τ ))dτ (11.44)

Similarly, if F is decomposed into L + N , as in (11.35), then applying G leads to
the problem

0 =G(L(U )) − G(−N(U )) (11.45)

that could be preconditioned by [G(L)]−1 if G is linear. It would be desirable to
popularize such strategies and to augment these by finding new ones, or, even better,
to automate the search for an optimal transformation.
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Chapter 12
Dissipative Systems

Edgar Knobloch

Abstract This chapter focuses on pattern formation, both extended and localized, in
driven dissipative systems. The origin of localized states and their organization into
a snakes-and-ladders structure is explained and the results illustrated with several
examples drawn from the physical sciences. The corresponding results for systems
with a conserved quantity are described, focusing on crystallization from a super-
cooled melt via a propagating crystallization front. Unsolved questions are high-
lighted throughout.

12.1 Introduction

Dissipative dynamical systems are fundamental to the physical sciences. These arise
in macroscale descriptions of physical systems with dissipation modeling the trans-
fer of energy, momentum, etc. from the macroscale to the microscale. Because of
dissipation, phase space volumes contract, and the long time behavior of the system
can be described in terms of attractors. For nontrivial attractors, energy, momentum,
etc. have to be supplied at the macroscale, i.e. the systems have to be driven. This
chapter is about pattern formation in infinite-dimensional pattern-forming systems,
i.e. in continuum systems, an area where many advances have recently taken place.
Discrete dynamical systems are not considered. For background reading, the books
[1–4] are recommended, as is the review [5].
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12.2 Nonconserved Systems

We first discuss the generic case, focusing on pattern-forming systems of the form

ut = Lu + N [u], (12.1)

where u(x, t) ∈ R
n is a vector of state variables, L is a linear (possibly nonlocal)

operator depending on a parameter r and N represents nonlinear terms.Many systems
can be written in this form, including reaction-diffusion systems and the equations
of fluid mechanics. We assume that the spatial variable x ∈ R

d is continuous.
In the special but important case where L is an autonomous operator and (12.1)

has a trivial solution u = 0 the properties of the latter are described by a dispersion
relation

σ = σ(k; r) ∈ C (12.2)

that determines the growth rate σr and frequency σi ≡ ω of wavenumber k at a
given value of the parameter r . Here the subscripts r , i indicate real and imaginary
parts. In one spatial dimension ω(k) determines the phase speed cp ≡ ω/k and
group speed cg ≡ dω/dk of infinitesimal perturbations of u = 0 with wavenumber
k. In systems that are invariant with respect to spatial reflection, x → −x , the waves
travel in both directions and an initial disturbance will spread in both positive and
negative directions. In cases where this symmetry is broken the waves will have a
preferred direction and the disturbance will spread asymmetrically. In both cases the
long time behavior of the disturbance depends on whether the domain is bounded
so that the disturbance ultimately interacts with the domain boundary, or infinite, in
which case it continues to propagate, evolving as it does so. When L is a dissipative
operator thewaves ultimately die unless the dissipation is compensated for by forcing
that injects energy into the system. Two types of forcing are frequently considered,
boundary forcing in which energy is injected into the system at a single location
(the boundary) and spatial forcing where energy is injected at every location. An
example of the former might be flow driven by a wall oscillating at frequency �;
such a flow is confined to the vicinity of the wall and decays away from it in a
distance that can be computed by solving i� = σ(k) in the relevant domain and
locating the wavenumber k with the smallest imaginary part ki . An example of the
latter is provided by buoyancy-driven flow above a uniformly heated horizontal plate.

In this review we are interested in describing the effects of the nonlinear term
N [u] in (12.1). In view of the above it will come as no surprise that nonlinear
dissipative systems exhibit both spatially localized and spatially extended states.
Nonlinearities can generate strongly localized structures (hereafter LSs) via a self-
pinning process which steepens the fronts connecting the state to the background and
allows locking or pinning of these fronts to heterogeneities within the structure. In
the case of extended states, nonlinearities select among the possible spatially periodic
structures whose growth is triggered by the loss of stability of u = 0 with respect to
symmetry-breaking (k �= 0) perturbations. The resulting stable periodic structures
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typically form the core of the possible LS. In generic systems this occurs in the
presence of bistability between an extended pattern state and a homogeneous state
such as u = 0. For these reasons we consider first spatially periodic patterns and
then the properties of fronts that may connect them to the background homogeneous
state.

12.2.1 Pattern Formation

In the vicinity of a pattern-forming instability at r = 0 the system (12.1) is described
by a low-dimensional system of equations for the amplitudes of the unstable modes
[6]. Periodic solutions can be found by restricting the dynamics to a periodic lat-
tice in one, two or three dimensions corresponding to the critical wavenumber kc

at r = 0. Center manifold reduction can then be employed to reduce (12.1) to a
finite-dimensional system of ordinary differential equations for the amplitudes of the
(slowly) growing modes. The form of these equations is entirely determined by the
symmetries of the problem when posed on a lattice. Consequently, group-theoretic
techniques can be used to find all primary solutions with maximal isotropy and to
determine their stability in terms of the coefficients in these equations [7].When trun-
cated the amplitude equations are of polynomial type and may be high-dimensional.
Specialized tools have therefore been developed that guarantee that one has found
all the solutions of the resulting (truncated) equations [8]. Software enabling the
computation of the coefficients for periodic domains or domains equipped with Neu-
mann boundary conditions has also been developed [9] but in more complex cases
the coefficients have to be found by solving a series of linear problems numerically
following weakly nonlinear theory. These techniques apply to both stationary and
oscillating patterns.

In unbounded domains the situation is understood less well. Here, there is usually
no spectral gap and stable eigenvalues accumulate on zero from below. These situ-
ations are usually studied using formal multiscale modulation equations which are
partial differential equations for the slowly varying amplitudes (in space and time) of
the critical modes. These equations are often local but in cases with strong advection
(cg = O(1)) they may be nonlocal [10]. In one spatial dimension the most common
of these equations, the real Ginzburg–Landau equation, has been justified rigorously
[11] but in two or more dimensions additional complications arise due to orienta-
tional degeneracy, a property that is usually lost when the modulation equations are
truncated. The resulting equations reveal that there is a range of wavenumbers for
which a pattern may be stable, bounded in one dimension by the Eckhaus stabil-
ity boundary, and in two dimensions by additional instabilities such as the zig-zag,
skewed varicose or oscillatory instabilities [1, 5, 12]. The resulting stability region
in the (k, r) plane is called the Busse balloon after the work of F. H. Busse on the
stability of convection rolls in two-dimensional Rayleigh–Bénard convection [13].
Similar stability regions are present for traveling and standing waves. The issue of
wavenumber selection as r increases represents a major unsolved problem in the
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theory of pattern formation, and it now appears that in unbounded systems there
is no unique answer. This is not so in bounded domains in which the presence of
distant boundaries has in general a profound effect on the observed wavenumber in
the domain interior [5]. We mention that it may happen that as r increases the system
reaches and crosses the Eckhaus boundary. In this case a phase slip is initiated that
ultimately restores a stable wavenumber. The process may then repeat, leading to
repeated loss or gain of phase, i.e. wavelengths of the pattern, as r varies [14, 15].

Systems with advection in one direction behave differently. Here a localized,
slowly growing perturbation near a pattern-forming instability is advected down-
stream with the result that the perturbation eventually dies out at any fixed location.
Such systems are called convectively unstable. If the growth rate is increased suffi-
ciently that the localized perturbation can expand upstream, against the flow, we call
the instability absolute. This transition can be computed from the dispersion relation
and occurs at r = ra for which the dispersion relation σ = σ(k) has a double root
in the complex k plane subject to appropriate pinching conditions [16, 17]. At this
point the (complex) group velocity cg vanishes. The real and imaginary parts of k
determine the wavenumber of the instability selected by the advection and its growth
rate in space. Convectively unstable systems are of interest because they are sensitive
to the injection of small amplitude noise at the upstream inlet. The noise is spatially
amplified in the downstream direction and may lead to complex noise-sustained
structures downstream of the inlet that propagate out of the system when the noise is
turned off [18]. The distinction between convective and absolute instability persists
in finite domains, with the threshold for the transition to absolute instability shifted
by O(L−2) when the domain size L is large compared to 2π/kr . In this case the
convective regime is associated with the presence of spatially amplifying transients
(when L is non-normal) that ultimately decay. Thus instability is only present for
r > rg = ra + O(L−2) for which the linear problem possesses a global eigenfunc-
tion. In this regime the upstream boundary serves as a pacemaker that selects the
frequency ω; the dispersion relation in turn selects the complex wavenumber k that
determines the spatial growth rate ki in the downstream direction and the wavenum-
ber kr of the downstream pattern. The selected wavenumber may fall outside of the
Busse stability region, however, triggering a secondary instability whose evolution
once again depends on whether the instability is convective or absolute [19]. In par-
ticular, the far-field breakup of target patterns or spirals requires the presence of an
absolute secondary instability [20]. In the convectively unstable regime r < rg the
system is highly noise-sensitive, and noise-sustained structures are present, just as
in the unbounded case [21, 22]. In contrast when advection is absent, the frequency
(if any) is determined by the dominant wavenumber, and noise-sensitivity is absent.

12.2.2 Localized Patterns

The above analysis has identified numerous systems where extended patterns coexist
with a homogeneous state in both one, two and three dimensions. This bistability
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region is typically created as a result of a subcritical bifurcation, and we consider
here the case where this instability is to a 1D pattern of stripes, or in the context
of thermal convection, 2D rolls, since the flow is then confined between a pair of
horizontal plates the lower of which is maintained at a higher temperature than the
upper. The essence of what happens in this case is captured by the Swift–Hohenberg
equation

ut = r u − (k2
c + ∇2)2 u + f (u) (12.3)

here written in d dimensions. The function f (u) represents a bistable nonlinearity of
the form f (u) = b2u2 − u3, b2 > 0, and we refer to the resulting equation as SH23.
The parameters r and kc represent the bifurcation parameter and a characteristic
wavenumber (inverse lengthscale). In unbounded domains the wavenumber kc can
be set equal to kc = 1 but this is not the case on finite domains. In addition, (12.3) has
the minimum number of spatial derivatives for the presence of robust heteroclinic
cycles. As a result we shall use it as a “normal form” for understanding systems
exhibiting spatially localized structures.

Equation (12.3) is equivariant with respect to the reflection R1 : x → −x , u → u
and possesses a trivial state u = 0, hereafter referred to as O . In addition it has
variational structure, i.e. it possesses a Lyapunov functional F[u(x, t)], such that

ut = −δF

δu
, (12.4)

where F is given by

F =
∫ ∞

−∞
dd x

[
−1

2
r u2 + 1

2

[
(k2

c + ∇2) u
]2 −

∫ u

0
f (v) dv

]
. (12.5)

It follows that
dF

dt
= −

∫ ∞

−∞
dd x

(
∂u

∂t

)2

≤ 0, (12.6)

and hence that dF/dt < 0 provided ∂u/∂t �= 0 somewhere in the domain. Thus on a
finite domain all solutions evolve towards stationary states; on unbounded or periodic
domains solutions in the form of steadily moving fronts are possible. In the follow-
ing we will think of the functional F[u] as the (free) energy of the system. Stable
(unstable) solutions correspond to local minima (saddle points) of this energy. As
emphasized below in appropriate parameter regimes the energy landscape described
by (12.5) can be exceedingly complex.

Figure12.1 shows the L2 norm, ||u|| = {∫ ∞
−∞ u2(x) dx}1/2, of the localized states

L0,π in SH23 in one spatial dimension as a function of the bifurcation parameter r .
The L2 norm (per unit length) of the periodic state, labeled γ , is shown for com-
parison. The figure shows that the two branches of even parity LS that bifurcate
subcritically from O at r = 0 enter a shaded region, hereafter the snaking or pin-
ning region, in which they undergo repeated saddle-node bifurcations as they snake
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⎥⎥u⎥⎥

Fig. 12.1 a Bifurcation diagram showing the snakes-and-ladders structure of LS in SH23. Away
from the origin the snaking branches L0 and Lπ are contained within a snaking region (shaded)
between E− and E+, where r(E−) ≈ −0.3390 and r(E+) ≈ −0.2593. Solid (dotted) lines indicate
stable (unstable) states. b Sample LS profiles uL (x): (i)–(iv) lie on L0, near onset and at the 1st,
3rd, and 5th saddle-nodes from the bottom, respectively; (v)–(viii) lie on Lπ , near onset and at the
1st, 3rd, and 5th saddle-nodes, respectively. Parameters: b2 = 1.8, kc = 1. Reproduced from [24,
25]

back and forth across the region. These saddle-nodes converge exponentially rapidly
to a pair of r values, hereafter r(E−) and r(E+), representing the boundaries of
the shaded region. The convergence is monotonic and from the right in both cases.
The lower panels show a series of profiles of uL(x) along L0,π (Fig. 12.1), starting
near r = 0 and followed by the profiles at successive saddle-nodes at the right of the
pinning region. These reveal that states L0 are characterized by a peak in the center
while Lπ have a dip in the center. As one proceeds up either branch each LS nucle-
ates a pair of peaks or cells, one on either side, in the vicinity of r = r(E−). These
grow to the amplitude of the coexisting periodic state γ by the time one reaches
the next fold on the right, at r = r(E+), and the branch turns around to repeat the
process. Thus as one proceeds up the intertwined L0,π branches the localized states
repeatedly add cells on either side while preserving their parity, each back-and-forth
oscillation increasing the width of the state by two wavelengths 2π/kc. On the real
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⎥⎥u⎥⎥

Fig. 12.2 a Close-up view of Fig. 12.1a showing two rungs connecting the snaking branches L0
and Lπ . Solid (dotted) lines indicate stable (unstable) states. b The profiles (i) and (viii) lie on L0
while (iv) and (v) lie on Lπ . Reproduced from [24, 25]

line this process continues indefinitely as both branches approach the periodic state
γ . These results are further explored in the review [23].

Figure12.2a is a close-up view of Fig. 12.1, focusing on the rung states which
connect the L0,π snaking branches. These states are asymmetric (Fig. 12.2b), unstable
but stationary and are created in pitchfork bifurcations which break the R1 symmetry
of the L0,π states. Consequently each rung in the figure corresponds to two states
related by R1 and hence of identical L2 norm. We refer to the resulting structure as
the snakes-and-ladders structure of the pinning region [24, 25].

In addition to these single-pulse states the pinning region also contains a variety
of multipulse states [26]. These are generally found on nested isolas (not shown)
instead of intertwined branches.

12.2.2.1 Mathematical Explanation of the Pinning Region

For applications it is important to understand what determines the width of the
pinning or snaking region. For this purpose it is helpful to observe that equilibria
of (12.3) satisfy a fourth order ordinary differential equation in space that defines a
(nonintegrable) autonomous Hamiltonian system with Hamiltonian

H = −1

2

(
r − k4

c

)
u2 + k2

c u2
x − 1

2
u2

xx + ux uxxx −
∫ u

0
f (v)dv. (12.7)
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μ

symmetric
localised
rolls

asymmetric
localised
rolls

Fix R0

Wu(0)

W s(0)

γ(ϕ)

Wu(0)

W s(0)

γ(ϕ)

⎥⎥u⎥⎥

Fig. 12.3 A cartoon showing the stable and unstable manifolds for the fixed points O and γ (φ)

in the level set H = 0, at different values of μ ≡ −r in the pinning region. Reproduced from [29].
©2009 by the Society for Industrial and Applied Mathematics

Thus dH/dx = 0 and any homoclinic orbit O → O must lie in the level set H = 0,
i.e. in a three-dimensional surface in four dimensions, and this is so for the hetero-
clinic cycle O → γ → O as well.

Because of translation invariance periodic orbits of (12.3) are not isolated – for
each H there is a continuous family of such orbits. In the following we pick H = 0
and select one representative from this family, for example by assigning the origin
x = 0 to the maximum value of u along the orbit. We call the resulting orbit γ . A
point on this orbit with phase φ relative to x = 0, γ (φ), will be a fixed point of a
“time-T ” map, where T is the (spatial) period of the orbit [27]. By construction the
“time-T ” map is two-dimensional and has two fixed points, O and γ (φ). The result
of repeated application of the “time-T ” map can therefore be represented in a plane,
as shown in Fig. 12.3. The figure shows the two fixed points as solid black points;
these lie on the green line, Fix(R1), representing solutions with the symmetry R1.
The figure shows the intersections of the stable and unstable manifolds of O , labeled
W s,u(O), with the surface H = 0. In the cartoon these are one-dimensional (blue
curves), and consist of points that approach O after an infinite number of backward
and forward applications of the map. The intersection of the corresponding (three-
dimensional) center-stable and center-unstable manifolds of γ with H = 0 at phase
φ = 0 is shown in brown and is also one-dimensional. Since we are dealing with
a discrete map these manifolds consist of discrete sequences of points obtained by
applying themap to different points in the stable and unstablemanifolds of these fixed
points. Because of the discrete nature of the resulting two-dimensional dynamics
we expect the unstable manifold W u(O) to intersect transversally with the center-
stable manifold W s(γ ) (top right panel in the figure). The point of intersection is
simultaneously on both manifolds implying that forward iterations take it to γ (φ)

while backward iterations take it to O , i.e. such a point is a heteroclinic point.
Each image of this point, forward or backward, will also be a heteroclinic point
since it must again lie on an intersection of these manifolds. Since the forward
iterates accumulate on γ the unstable manifold W u(O) must execute increasingly
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wild gyrations near γ (φ) as indicated in the figure. This is a consequence of the
Hamiltonian nature of (12.3) which implies that the “time-T ”map is area-preserving.
Thus the areas of the (primary) lobes are all the same and since the foot of the lobes
shrinks towards γ (φ) their length must grow in proportion. Spatial reversibility (i.e.
the symmetry R1) implies that W s(O) undergoes identical behavior and hence that
W u(O) also intersects W s(O). The primary intersections must lie on the green curve
(corresponding to thefixedpoint subspaceFix(R1)) andhence correspond to solutions
with u(−x) = u(x) that lie simultaneously in W u(O) and W s(O) (large red dot).
Such solutions represent symmetric homoclinic solutions of (12.3). Observe that
since the primary intersections accumulate on γ (φ) there will in fact be an infinite
number of such homoclinic solutions corresponding to symmetric LS of ever larger
length. The figure also indicates that associated with each primary intersection there
is a pair of secondary intersections (small red dots, bottom right panel in the figure).
These do not lie in the green line and hence correspond to asymmetric homoclinic
points, i.e. the rung states.

Figure12.3 shows that the heteroclinic tangle described above is created, as the
bifurcation parameter r increases, at the point of first tangency between W u(O) and
W s(γ ) (top left panel) and destroyed at the point of last tangency (bottom left panel).
Thus the snaking region is bounded on either side by the tangencies at E± and no
(long) LS are present outside of the parameter interval between these tangencies
[27–29].

An essentially identical picture applies to reversible but nonvariational systems
since the fundamental properties of the heteroclinic tangle depend only on the pres-
ence of a transversal intersection between W u(O) and W s(γ ) together with spatial
reversibility. For this reason the geometrical picture sketched here has a far greater
applicability than one may imagine at first sight. This is a consequence of the fact
that a transversal intersection between manifolds cannot be destroyed by small per-
turbations such as a change in the parameter r , or the addition of an R1-preserving
but nonvariational term to the equation itself, i.e. it is a consequence of structural
stability.

12.2.2.2 Physical Explanation of the Pinning Region

Consider now the energetics of the system. The free energy F allows us to com-
pare the energy of the homogeneous state O with that of the periodic state γ . The
point where these are equal is called the “Maxwell point” by analogy with first order
phase transitions between two homogeneous phases such as a liquid and a gas. At
the Maxwell point the two phases coexist; away from it one or other is energetically
favored and a front separating the two will move so as to lower the energy of the
system. In the present case F(O) < F(γ ) when r < rM implying that O is ener-
getically preferred and vice versa when r > rM . However, the phase γ is structured
and small changes in r will not result in front motion as the front is held back by
a “pinning potential” due to the structured state behind it [30]. This self-pinning
allows stationary fronts over a range of r straddling rM , and r must be changed by a
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finite amount to overcome the pinning potential and allow the fronts to move. Within
this interval many steady states coexist since it costs little to insert fronts between the
two competing phases. The pinning region can thus be thought of as an “unfolding”
of the Maxwell point due to the heterogeneity of one of the states.

The wavelength 
(r) of the pattern within LS depends on the value of r in the
pinning region. This wavelength is determined by the requirement H = 0. One finds
that for r < rM the wavelength is compressed relative to that at rM but that it is
stretched for r > rM [24].

Note that the presence of the fronts at either end of the structure leads to a unique
wavenumber between them, however far apart they are. Thus the fronts collapse the
Busse balloon [1, 5].

In nonvariational systems F does not exist, and neither does H . In this case the
role of the Maxwell point is played by a stationary front between the two competing
states, and the location of such fronts must now be determined numerically. As
mentioned, the snakes-and-ladders bifurcation diagram is expected in an interval
straddling this location but in the absence of a spatial Hamiltonian H the wavelength
selection problem within this interval remains unsolved.

12.2.3 Depinning

If r is moved sufficiently far from rM the energy difference between O and γ

exceeds the pinning potential and the fronts depin [28] . Direct integration of (12.3)
reveals time-dependent growth of the structure via sequential nucleation of new cells
(Fig. 12.4a). The nucleation time depends on the distance from the edge of the pin-
ning region, as indicated in Fig. 12.4b. The time diverges at the edge of the pinning
region (where it takes an infinite amount of time to nucleate a new cell) and decreases
as the distance from the pinning region increases. The speed of the front, which is a
‘pushed front’ because it propagates into a stable state [17], can be calculated from

Fig. 12.4 a Space-time plot of the evolution of LS in SH23 at r ≈ −0.2587, and b the nucleation
time T as a function of r . Parameters: b2 = 1.8, kc = 1. Reproduced from [25]
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the time it takes to nucleate cells at the front [24, 31]. This time can be computed
by projecting SH23 onto the three near-marginal eigenfunctions present at E±, the
amplitude and phase eigenfunctions and the translation mode [24]. To the left of the
pinning region (where the solution evolves towards the lower energy state O) the
fronts move inwards via sequential annihilation of cells with the same qualitative
dependence on the distance from E− as in the E+ case.

12.2.4 Generalizations

• Finite size effects. The multiple bifurcation at r = 0 (Fig. 12.1a) is unfolded when
L < ∞, i.e. it breaks up into a primary bifurcation to a periodicwavetrain, together
with a secondary bifurcation from this state to L0,π . Thus the LS bifurcate from O
only in the limit L → ∞. Moreover, on a finite periodic domain snaking does not
continue forever. Once the LS has grown to fill the domain no additional growth
is possible and the LS branch exits the snaking region and terminates near the fold
on a branch of periodic states. The details of this transition are in general complex
since they depend on exactly how much space is left, i.e. on L mod 
(r), where

(r) is the wavelength within the pinning region [32]. Moreover as L increases
the termination points must “jump” between different periodic states, a process
studied in [32, 33]. Near the fold the LS resemble holes in an otherwise periodic
wavetrain. This bifurcation is present even on the real line and gives rise to two
branches of holes that snake once the hole deepens enough to come close to u = 0
and starts to broaden. On the real line the LS branches bifurcating from u = 0 at
r = 0 and the branches of holes remain distinct, but on a periodic domain with
L < ∞ they connect up pairwise: a broad LS can, after all, be viewed as a hole
in a periodic state. Moreover, on smaller domains a single pulse state bifurcates
from the periodic states at a larger amplitude, and the resulting branch terminates
farther from the fold.
If the boundary conditions are changed fromperiodic toRobin (ormixed) boundary
conditions, the effect is dramatic. Since periodic states are now absent LS bifurcate
directly from u = 0 in a primary bifurcation. Thereafter they snake normally since
LS are insensitive to the details of the boundary conditions but when the domain
is almost full the snaking branch evolves continuously into an extended large
amplitude (almost) periodic state with defects at the boundaries [34, 35].

• Broken reversibility. The symmetry R1 can be broken, for example, by adding
dispersion to SH23. In this case all states generically drift and numerical compu-
tations [36] show that dispersion destroys the snakes-and-ladders structure of the
snaking regionwith the drifting LS now located on a stack of figure-eight isolas. As
the dispersion increases the isolas shrink and eventually disappear. Thus drifting
LS are absent for large dispersion.

• Broken translation invariance. Broken translation invariance, either through the
imposition of Robin boundary conditions at the boundaries of a finite domain [34]
or through space-dependent forcing [37, 38], has also been studied. The details are
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complex and not well understood. Either type of forcing selects preferred locations
for the LS [39], and may result in incomplete snaking depending on whether local
maxima are in phasewith the LSmaxima or out of phase. Large scale heterogeneity
may cause an overall slant to the snaking structure, as discussed in a different
context below. Moreover spatially periodic forcing can generate stable LS even in
systems where snaking would not otherwise be present [40]. In fact, this is always
the case in the vicinity of a Maxwell point between two homogeneous states
[41, 42] and is a consequence of the pinning introduced into the system by the
forcing. Discrete problems in which the spatial Laplacian is replaced, for example,
by nearest neighbor coupling, also lack translation invariance and constitute an
important class of systems with multiple coexisting LS that snake [43–45].

• Additional symmetry. The Swift–Hohenberg equation with f (u) = b3u3 − u5

(hereafter SH35) possesses an extra symmetry R2 : x → x , u → −u that is anal-
ogous to the so-called Boussinesq symmetry of Rayleigh–Bénard convection with
identical boundary conditions at the top and bottom [6]. For this reason predic-
tions based on SH35 find a number of applications, particularly in fluidmechanics.
The most important include: (i) the periodic states with k = kc bifurcate sub-
critically if b3 > 0. (ii) Exponentially small terms select four phases φ: 0, π/2,
π , 3π/2 [46, 47]. The φ = 0, π states are related by R2 and likewise for the
φ = π/2, 3π/2 states. A bifurcation diagram showing the L2 norm of uL thus
shows two branches, a branch of even parity φ = 0, π states, and a branch of
odd parity states φ = π/2, 3π/2. The former are invariant under R1 as in SH23;
the latter are invariant under R2 ◦ R1. Both bifurcate subcritically from u = 0 at
r = 0. (iii) The odd and even parity branches are organizedwithin a similar snakes-
and-ladders structure as found in SH23, and possess the same stability properties
[46].

• Noise. It is natural to consider the effect of small amplitude additive noise on LS in
the pinning region. Each local minimumwill have a lowest barrier in energy across
which escape is most probable. The type of evolution that results is expected to
depend on whether r < rM or r > rM . In the former case the LS should gradually
shrink; in the latter case it should gradually grow. Despite some numerical studies
of this process [48, 49] the details of the resulting evolution are by no means clear.
The effects of multiplicative noise have not been studied.

• Higher dimensions. Similar snaking behavior accompanies both two-dimensional
[50, 51] and three-dimensional localized patterns [52]. In addition, such systems
exhibit a variety of spot structures and localized target patterns that exhibit col-
lapsed snaking, an effect that arises from decreasing curvature as the structure
grows in size following the solution branch [53].

12.2.5 Examples

Gradient systems such as (12.3) are nongeneric. Generic systems no longer possess
an energy functional but the snakes-and-ladders structure of the snaking or pinning



12 Dissipative Systems 291

region persists when a gradient system is perturbed by nongradient terms. However,
while solutions with the symmetry R1 remain stationary, the asymmetric rung states
now drift; the drift direction is determined by the asymmetry. In addition, secondary
Hopf bifurcationsmay appear on the stable segments of the primary snaking branches
leading to breathing [54]. We now briefly discuss four systems of this type.

1. Bright and dark optical solitons in the Lugiato–Lefever equation. The Lugiato–
Lefever equation [55]

∂t A = −(1 + iθ)A + iν∂2
x A + i |A|2 A + ρ (12.8)

describes the dynamics of the electric field (proportional to A(x, t) ∈ C) in a
wide area Fabry–Perot interferometer partially filled with a nonlinear medium
or temporal dynamics in an optical ring cavity. In the latter case the variable
x represents a slow time [56]. Thus the equation describes both spatial optical
solitons and temporal solitons. The equation is dissipative but ρ ∈ R represents
injected power, while θ ∈ R represents cavity detuning. In temporal systems
bright and dark solitons can be found. Taking into account only second order
dispersion two regimes can be identified, characterized by either normal (ν =
−1) or anomalous (ν = 1) chromatic dispersion. In the latter case the only type
of dissipative solitons that exist are bright solitons and these are present in
both monostable [57] and bistable regimes [58–60]. In contrast, in the normal
dispersion case the main type of dissipative solitons that appear are dark solitons
[60–63].
For θ >

√
3 (the bistable regime) the spatially uniform states form a S-shaped

curve as a function of ρ, and LS bifurcate from both the left and the right folds.
Of particular interest is the situation θ > 2 in which the lower branch becomes
unstable to a pattern-forming bifurcation referred to in the present context as a
modulational instability. The periodic pattern that results bifurcates subcritically
and hence a pair of branches of localized states bifurcate from modulational
instability in addition to the pattern branch. In this case no LS bifurcate from the
right fold. The different scenarios that enable the two LS branches that bifurcate
at modulational instability to terminate at the upper left fold on the S curve are
complex and are discussed in [64, 65].

2. Reaction-diffusion models. Many two-species reaction-diffusion models behave
in a similar way to that just described. The Gierer–Meinhardt model serves as
example [66]

∂u

∂t
= u2v−1

1 + u2
− u + D

∂2u

∂x2
,

∂v

∂t
= Gu2 − Ev + S + ∂2v

∂x2
. (12.9)

Here the nonzero uniform state is also folded and for suitable parameter values
the upper state can lose stability at a pattern-forming Turing bifurcation. The
pattern state that results is initially subcritical before turning around, generat-
ing bistability between the uniform state and the pattern. In this case LS are
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also found and these snake as described by the Swift–Hohenberg equation [66].
Other equations with related behavior include the Brusselator model [67] and
the Schnakenberg model [68].

3. Vegetation models. A number of model equations have recently been proposed
to describe vegetation cover in arid ecosystems [4]. The simplest of these are
of Gray-Scott type and consist of two equations, one for the biomass and the
other for water. Both the biomass and available water are assumed to diffuse,
the former more slowly than the latter. The models capture tristability, that is,
coexistence of uniform vegetation cover, patchy cover and bare soil, and have
the desired property that decreasing precipitation results in (hysteretic) transi-
tions from uniform cover to patchy cover and eventually to vegetation collapse.
Because of folds in the uniform state, and the presence of a subcritical Turing
bifurcation from this state one finds two classes of LS, holes in the uniform
vegetation cover, and patches of vegetation on bare background [69, 70]. In gen-
eral these have different origins but can interact in the nonlinear regime. These
properties appear to be a general feature of models of this type [71].

4. Binary fluid convection. This system provides a more complex example of LS
because the system is confined between two horizontal plates. Thus in a 2D
system only the horizontal direction is spatially extended. Simulations show that
this system can form stable LS (hereafter convectons) via a focusing instability
of a complex state called dispersive chaos [72]. These convectons resemble
those in SH35 but are embedded in an unstable background state provided the
latter is only convectively unstable [73, 74]. The convectons are interesting
because they channel all the heat flux through the layer. Presumably as the domain
size increases the single convecton state transfers stability to multiconvecton
states in order to cope with the increasing heat flux although this has not been
demonstrated. Odd parity convectons will travel if the reflection symmetry in
the layer midplane (analogous to R2) is broken and undergo strongly inelastic
collisions [75] resembling those in SH35 with an extra term that simultaneously
breaks R2 and its gradient structure [76]. No stable convectons in 3D binary
convection have been found [77] although LS in 3D porous media [78] and in
3D vertical cavities [79] have been computed. A classical fluid system exhibiting
snaking LS is provided by plane Couette flow [80, 81].

12.3 Conserved Systems

Physical systems arising in nature frequently possess a conserved quantity and in
such systems the order parameter field has a fixed mean value [82]. Systems of
this type are distinguished from the standard snaking scenario described above by
the following properties: (i) the snaking becomes slanted (sometimes referred to as
“sidewinding”), (ii) LS may be present outside of the region of coexistence of the
homogeneous and periodic states, (iii) LS are present even when the periodic states
bifurcate supercritically, i.e. when the coexistence region is absent entirely. The
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slanting [83, 84] of the snakes-and-ladders structure is a finite size effect: in a finite
domain expulsion of the conserved quantity from an LS implies its increase outside,
a fact that progressively delays (to stronger forcing) the nucleation events whereby
LS grow in length. The net effect is that LS are found in a much broader region of
parameter space than in nonconserved systems.

12.3.1 The Conserved Swift–Hohenberg Equation

The conserved Swift–Hohenberg (cSH) equation provides arguably the simplest
illustration of the above results. Although this equation appears in earlier work in
different fields [85, 86] it arises naturally in the phase field crystal (PFC) model of
soft matter [87]. This model is in turn derived [87–89] from dynamical density func-
tional theory (DDFT) and represents the simplest microscopic model for the freezing
transition. In this model the transition from a homogeneous state to a periodic state
corresponds to the transition from a uniform density liquid to a periodic crystalline
solid. The LS of interest in this model then correspond to states in which a finite
size portion of the periodic crystalline phase coexists with the uniform density liquid
phase, and these are expected to be present in the coexistence region between the
two phases. In fact, it turns out that LS of this type are also present at state points
outside of the coexistence region [90]. Some rather striking examples of LS in large
2D systems with conserved mass include snow-flake-like and dendritic structures
[87, 91–93].

We write the cSH (or PFC) equation in the form

∂tφ(x, t) = α∇2 δF[φ]
δφ(x, t)

, (12.10)

where F[φ] ≡ ∫
dd x

[
φ

2 [r + (k2
c + ∇2)2]φ + φ4

4

]
and φ(x, t) is an order parameter

field that corresponds in the PFC context to a scaled density profile. Here r plays the
role of temperature (r < 0 for a supercooled liquid) and α is a (constant) mobility
coefficient. It follows that the system evolves according to the cSH equation

∂t φ = α∇2
[
rφ + (k2

c + ∇2)2φ + φ3
]
. (12.11)

Stationary states thus obey the equation

rφ + (k2
c + ∇2)2φ + φ3 = μ , (12.12)

whereμ is the chemical potential. This quantity controls the fraction of the mass that
is in the liquid and solid phases at any given temperature r , and hence determines
φ0, the conserved average value of the order parameter φ(x). Stability analysis of the
liquid phase in 1D shows it first becomes linearly unstable when r = 0, φ0 = 0.With
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decreasing r the system passes as tricritical point below which one finds thermody-
namic coexistence between the liquid and stripe phases. Figure12.5 shows the result-
ing bifurcation diagrams in terms of the L2 norm of δφ(x) ≡ φ(x) − φ0 revealing
the presence of a supercritical bifurcation to a spatially periodic state as φ0 increases,
as well as a pair of branches of symmetric spatially localized states (LSodd or LSeven,
according to whether the number of peaks is odd or even) exhibiting slanted snaking,
complete with rung states representing asymmetric LS, provided r is sufficiently
below the thermodynamic tricritical point. The LS described by these diagrams tend
to have lower energy than the periodic crystal [90], and when replotted as a function
of the chemical potentialμ standard snaking is recovered (Fig. 12.6). This is because
μ enforces the conservation of φ0 and so is the proper thermodynamic variable for
systems of this type. It would be of interest to identify a quantity that plays the role
of the chemical potential in the fluid systems with conserved dynamics described
below. Direct numerical simulation of the cSH equation in 2D and 3D [90] reveals
a similar thermodynamic preference for LS in particular intervals of φ0 (Figs. 12.7
and 12.8).
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Fig. 12.5 The L2 norm of the homogeneous, periodic and LS solutions of the cSH equation (12.11)
with kc = 1 as a function of the mean order parameter φ0, for a fixed domain size L = 100 and a
r = −0.7, b r = −0.6, c r = −0.5 and d r = −0.4. The n = 16 periodic state (16 wavelengths
2π/kc in the domain) is the first to set in as |φ0| decreases and the homogeneous state loses stability.
The solid black (dashed red) lines correspond to LSodd (LSeven). Reproduced from [90]
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Fig. 12.6 The L2 norm ||δφ|| of the homogeneous (φ(x) = φ0, dot-dashed green line), periodic
(n = 16) and localized solutions of the cSH equation (12.11) with kc = 1 as a function of the
chemical potential μ, for a fixed domain size of L = 100 and various values of r , showing that
standard snaking is recovered when slanted snaking is replotted against the correct thermodynamic
parameter. The dashed vertical lines indicate the coexistence values of the chemical potential for
r = −0.7, −0.6 and −0.3. The snaking region occupied by the two types of symmetric LS shrinks
as |r | decreases. Reproduced from [90]
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Fig. 12.7 Steady-state solutions of the cSH equation (12.11) in 2D for r = −0.9, kc = 1 and
different values of φ0 in the range −0.675 < φ0 < −0.45, where LS are present. The domain size
is 100 × 100. Reproduced from [90]
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Fig. 12.8 Steady-state solutions of the cSH equation (12.11) in 3D for r =
−0.9, kc = 1 and different values of φ0: from top left to bottom right |φ0| =
0.025, 0.125, 0.225, 0.325, 0.425, 0.525, 0.625, 0.725 and 0.750. The domain size is
100 × 100 × 100. Reproduced from [90]

Figure12.6 does not indicate the stability properties of the LS. Focusing on the
thermodynamically stable state at each φ0 one obtains Fig. 12.9a, showing that the
state corresponding to the global energy minimum changes with increasing φ0, and
that the corresponding chemical potential becomes concentrated in the vicinity of
the Maxwell point μM . Indeed one finds that the spread �μ around μM obeys
�μ ∼ 1.027L−0.998 [94] showing that in the thermodynamic limit one recovers the
Maxwell construction for a first order phase transition. Similar results hold in 2D as
well [94].
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Fig. 12.9 a Chemical potential μ for the liquid (homogeneous) state (blue line) and the crystalline
(periodic) state (black line) in the 1D PFC system on a domain of size L = 16Lc, together with
the crystallites (spatially localized states) with even (red line) and odd (green line) numbers of
bumps, all as a function of φ0. Linearly stable and unstable states are indicated by solid and dashed
lines, respectively. Global energy minima are indicated by thick line segments. When connected
up, the global minima corresponding to localized states lie on a curve with piecewise constant
slope: a zigzag curve. The width �μ of this zigzag region is indicated by a pair of horizontal lines.
Reproduced from [94]. b The front speed c as a function of the chemical potential μ for a GEM-4
fluid with temperature kB T = ε, where ε is the energy scale for particle-particle repulsion. The
red solid line shows the result from (12.13) while the black dashed line results from numerical
tracking of the hexagonal front. The black circle denotes the coexistence value βμ ≈ 17.0, where
β = (kB T )−1. Reproduced from [98]

12.3.2 Crystallization

Within the PFCmodel the dynamics of a crystallization front invading a supercooled
liquid can be determined from the dispersion relation σ = σ(k) for infinitesimal
density perturbations of the liquid state. Owing to mass conservation this dispersion
relation has a neutral mode at k = 0, in addition to unstable modes near k = kc when
r < 0. Since the front is pulled (stable crystalline state in x < 0 invades an unstable
liquid phase in x > 0) the marginal stability hypothesis [95] leads to the predictions

ic + dω(k)

dk
= 0, Re[ikc + ω(k)] = 0. (12.13)

These three equations are to be solved for the speed c of the front and k = kr + iki ,
i.e. the wavenumber kr selected by the moving front and the spatial decay rate ki > 0
of the front profile: δρ(x, t) ∼ exp(−ki x) sin(kr (x − ct) + Im[ω(k)]t). If no phase
slips take place, then the wavenumber of the density modulations left behind by the
front is [7, 8, 16, 24]:

k∗ = kr + 1

c
Im[ω(k)]. (12.14)

It follows that the wavelength 2π/k∗ of the density modulation generated behind
the advancing front differs in general from the equilibrium crystal lattice spacing,
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requiring substantial subsequent rearrangement in order to form a defect-free crystal
without strain. In some cases this rearrangement can lead to quasicrystalline struc-
ture [96] and when these states are subcritical they are accompanied by LS with a
quasicrystalline motif [97].

Figure12.9b shows the speed of a 2D front separating a supercooled liquid and the
growing crystalline phase in a more realistic soft matter model known as a GEM-4
fluid [98]. The front advances via a stripe phase precursor that subsequently breaks
up into a hexagonal phase. Figure12.9b compares the results of numerical tracking
of the front (crosses) with the predictions of the marginal stability hypothesis [17,
95] determined from the linear dispersion relation for the growth of infinitesimal
disturbances of the liquid phase (red curve). This 1D theory describes the invasion
of the liquid state by the stripe state and thus ignores the subsequent instability of the
stripe state; we see that the prediction works very well under strongly supercooled
conditions when the front speed is large but fails dramatically for slow speeds.

12.3.3 Example: Magnetoconvection

Convection in an imposedmagnetic field [99] provides a simple example of a system
with a conserved quantity, the magnetic flux imposed across the layer. Thus the flow
within the layer can at most redistribute flux. Recent computations [100] confirm that
all three departures (i)–(iii) from standard snaking behavior mentioned above take
place in this system and that these are a consequence of the coupling to a large-scale
magnetic mode.

Two-dimensional convection in an imposed vertical magnetic field is described
by the dimensionless equations [99]

σ−1
[∇2ψt + J (ψ,∇2ψ)

] = Raθx + ζ Q J (x + A,∇2 A) + ∇4ψ, (12.15)

θt + J (ψ, θ) = ψx + ∇2θ, (12.16)

At + J (ψ, A) = ψz + ζ∇2 A, (12.17)

withψ , θ and A defined such that the velocityu = ∇ × ψ ŷ, the temperature� = 1 −
z + θ and the magnetic field perturbation b = ∇ × Aŷ. In addition to the Rayleigh
number Ra and the Prandtl number σ = ν/κ the system is characterized by two
additional dimensionless parameters, the Chandrasekhar number Q measuring the
strength of the imposed magnetic field, and the diffusivity ratio ζ = η/κ . Here κ and
η are the thermal and ohmic diffusivities and ν is the kinematic viscosity.

With stress-free, fixed temperature, force-free boundary conditions [99]

ψ = ψzz = θ = Az = 0 on z = 0, 1, (12.18)

and periodic boundary conditions in the horizontal with dimensionless period L
one finds that the perturbation flux Ā ≡ L−1

∫ L
0

∫ 1
0 A(x, z, t) dx dz across the layer
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Fig. 12.10 The convecton branches L+ (red) and L− (black) in magnetoconvection together with
the periodic states P10 (dashed) when L = 10λc, 20λc, 40λc and (a) ζ = 0.1, (b) ζ = 0.5, shown in
terms of the total kinetic energy E in the domain (left panels) and themaximum Amax of the potential
A(x, z) in the domain (right panels), both as functions of the Rayleigh number Ra. The insets at top
left show enlargements at the locations indicated by arrows, and reveal that with increasing L the
convecton branches bifurcate from P10 at smaller and smaller amplitude and that they develop pairs
of saddle-node bifurcations but remain intertwined. In all cases the convectons on the upper branch
between the far left and right saddle-node bifurcations are stable, except for the short intervals
between the intervening pairs of saddle-nodes. Parameters: Q = 4, σ = 1. Reproduced from [100]

remains constant in time, Ā = 0. Figure12.10 shows the solutions for (a) ζ = 0.1
(subcritical bifurcation to periodic states) and (b) ζ = 0.5 (supercritical bifurcation to
periodic states) obtained by numerical continuation [100]. Two-dimensional rotating
convection with stress-free boundary conditions at top and bottom is very similar
[101]. Here the conserved mode is the zonal velocity and the convectons that form
expel shear from regions of strong convection thereby reducing the local shear. Thus
the convectons create the conditions required for their existence just as the convectons
in the magnetic problem expell magnetic field to facilitate their presence. While this
behavior is characteristic of subcritical instabilities, the presence of a conserved
quantity extends it into the supercritical regime, just as in the cSH equation.

12.4 Future

The field of pattern formation and in particular the study of spatially localized struc-
tures is evolving rapidly. The following areas appear to be promising.

1. Fronts and defects: Although much is known about the dynamics of fronts
between homogeneous phases this is not the case when one or both phases
are structured. Existing studies of the invasion of a liquid phase by a crystalline
phase have employed amplitude equations [102, 103]. Such descriptions suffer
from two shortcomings—they assume that the crystalline state is weakly non-
linear and they ignore pinning of the front to the crystal phase deposited behind
the front. Defects in wavetrains, particularly nontopological defects, also pin to
heterogeneities, in general leading to a hierarchy of potentially stable defects
undergoing snaking [68, 104]. These structures cannot be identified or stud-
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ied using amplitude-phase descriptions based on multiple scale approaches and
new approaches have to be developed. Multiple applications of these ideas in
materials science may be expected.

2. Swarming: Agent-based models of swarming and schooling lead naturally to
localized structures or groups. These may arise kinematically or dynamically
through mutual interactions. While much work is based on model simulations
continuum models have been successful in describing the properties of such
structures [105]. These are typically nonlocal, zero-temperature models. As a
result the density distributions are often compactly distributed. These systems
have much in common with studies of the dynamics of LS in activator-inhibitor
systems in the semi-strong regime. In these systems the LS are described via
geometric singular perturbation techniques and interact via a large scale inhibitor
field, as described by ordinary differential equations for their location [106].
In the presence of overcrowding some LS may collapse while in low density
situations LSmay split andmultiply in number leading to new types of dynamics
absent from agent-based models.

3. Elasticity: Many systems of interest in biological sciences are elastic, leading to
the interaction between fluid flow and elastic structures and chemical reactions
and elastic structures. These systems lead to new types of dynamics in which
the natural scale of the system has to compete with intrinsic scales imposed
by the Gaussian curvature of the surface [107, 108]. Other examples include
compression of floating elastica [109, 110], delamination phenomena [111], as
well as buckling and crack propagation.

4. Vortices: Vortices are quintessentially localized structures. In fluid mechanics
vortices are usually studied in the inviscid context although the equations of fluid
mechanics are dissipative. As a result vortices have to be forced, for example
by buoyancy forcing at small scales in rotating convection. In such flows the
vorticity profile in a vortex is nonmonotonic dramatically reducing the circulation
and hence vortex-vortex interaction [112]. The resulting system can then be
described in terms of a “gas” of weakly interacting vortices and so may be
amenable to techniques from statistical physics. Other dramatic examples of
vortex generation occur in geostrophic turbulence [113–115] and other strongly
anisotropic systems [116, 117]. Here vortices develop spontaneously on top of a
turbulent state via the transfer of energy fromsmall convective scales directly into
the boxscale mode in a process that resembles spectral condensation [118]. In
other cases jet-like structures may form by the same process [119, 120]. Similar
structures form in 2D active turbulence [121]. Much remains to be learned about
the development and properties of these remarkable coherent structures.
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Chapter 13
Synchronization in Discrete Models

Alexandre Rosas, Daniel Escaff, and Katja Lindenberg

Abstract In this chapter we discuss the emergence of a collective behavior in sys-
tems of discrete units with all to all interactions. Our focus is two fold: first we discuss
the differences between systems with an infinite number of units (corresponding to a
mean field approximation) and systems with finite populations; we also discuss con-
ditions for systems with a finite number of states to be able to describe the continuous
Kuramoto model.

13.1 Introduction

The Merriam-Webster Thesaurus [1] lists the following definition for the word
“synchronize”: to occur or exist at the same time. It lists the following synonyms:
accompany, attend, co-occur, coexist, coincide, concur.None of these convey the full
breadth of synchronization phenomena, nor do they exclude behaviors that occur due
to an external force, such as electrons flowing in the same direction due to an applied
field. The latter are not usually thought of as synchronization. From Wikipedia [2],
Tropical fireflies, in particular, in Southeast Asia, routinely synchronise their flashes
among large groups. This phenomenon is explained as phase synchronization and
spontaneous order.There is a plethora of examples of synchronization phenomena of
discrete units, each most likely responding to a different detailed mechanism: heart
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tissues of different origins can ‘beat’ in sync, dancers coordinating their movements,
synchronization in neural networks. The examples are endless in the world of com-
puter science. One can think of two units or many units or an infinite number of units
that synchronize.

Synchronization usually refers to emergent macroscopic behavior in systems con-
sisting of microscopic or mesoscopic nonlinearly interacting units. Usually synchro-
nization refers to temporal coincidence in a time dependent situation, for example, a
moving pattern of most units being in the same state (e.g. an oscillation). Themoving
or oscillating units may move in continuous time as do dancers, or in discrete steps
as do fireflies. The interactions among units may be short range or long range or
anything in between. Furthermore, synchronization may also refer to a static coin-
cidence in the state space of units, that is, to the formation of stationary patterns or
agglomerations in a particular state. The topic is vast and can and does fill many
books [3, 4].

In this Chapter we must narrow our discussion a great deal, and we focus on the
emergence of collective behavior in systems of identical discrete units stepping from
one state to another in discrete jumps. We assume all-unit to all-unit interactions.
The interactions may all be of the same strength (which we assume), in which case
geometry plays no role. In the absence of any disturbances, if the number of units is
infinite, the system behaves as described by mean field theory. The final state of the
system is then sharply determined.

The synchronizationmaynot beperfect, for example, if there is noise in the system.
Imperfect synchronization leads to a distribution of behaviors around amaximum that
usually represents the behavior if the synchronization were perfect. This distribution
may be stationary or may move in time, depending on the details of the model.
This could happen, for instance, if the units are not identical, a case that we do not
address here. We do address an important source of noise: when the number of units
is finite rather than infinite. Although the synchronization is not perfect in this case,
we will loosely use the terminology of dynamical systems to describe the stochastic
counterpart. In any case, our goal is and has been to understand synchronization
models that are simple enough for entire or partial analytic study. In all cases we
choose units that can be described by the smallest possible number of variables that
still allow for synchronization.

We introduce two-state models (“on-off”) as well as three-state models. This is
accomplished in Sect. 13.2. We take the interactions among units to be nonlinear.
Nonlinear interactions are essential to achieve synchronization, and we work with
polynomial interactions in the two-state case and exponential interactions in the
three-state model. In the two-state models a Markovian transition rate of each unit
between the two states leads to a patterned stationary distribution, that is, one of
the states turns out to be more populated than the other. To obtain time dependent
patterning in the two-state case it is necessary to introduce a memory whereby one
of the two transitions of each unit is non-Markovian. In the three-state case we take
the transitions to be unidirectional and obtain time-dependent effects such as waves
of the majority of units being in one of the three states followed by them being
in another state, in turn followed by the third state and then back to the first state.
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When the number of units in the system is infinite, the final behaviors, be they time
dependent or time independent, can often be handled analytically using mean field
theory, and the long-time distributions are infinitely sharp. However, if the number
of units is finite the problem becomes much more difficult because the evolution
equations now acquire a noise term (i.e. they are now Langevin equations) and need
to be handled at least in part numerically. We address the mean field theory cases as
well as the cases of finite numbers of units in Sect. 13.2.

Finally, it is of coursewell known thatKuramoto studied one of the firstmathemat-
ical models of synchronization [5]. His original model describes a continuous phase
continuous time array. We asked ourselves this question: can we take Kuramoto’s
model and coarse grain it to arrive at discrete models? We discuss this in Sect. 13.3
and arrive at a result that is difficult to “guess” a priori. We will leave this sus-
pense until the reader arrives at that section. Finally, in Sect. 13.4 we end with some
conclusions and perspectives.

An additional final note: the various models that we discuss, namely arrays of
two-state units, arrays of three-state units, and the coarse graining of Kuramoto’s
model are separate in the sense that the interactions among units are different, albeit
all nonlinear. This Chapter is thus meant as a presentation of various discrete unit
models without necessarily a comparison between them.

13.2 Finite Versus Infinite Population Models

In this section we will discuss the role of the number of units on the synchroniza-
tion of two-state units (Sect. 13.2.1) and three state units (Sect. 13.2.2) with global
coupling. In particular, whenever the steady state (t → ∞ limit) for infinite popula-
tions presents bistability, the large population limit for finite population destroys this
bistability. That is, the order of the limits of large times and large number of units
does matter in determining the fate steady state.

13.2.1 Two-State Models

The problem of synchronization of arrays of globally coupled two-state units was
discussed in [6, 7]. Here the term synchronization is used loosely to indicate that a
transition to an ordered state with more units in one state than the other is achieved.

13.2.1.1 Infinite Population

An infinite ensemble of two-state (states 1 and 2) stochastic units is governed by the
mean field equation
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ṅ1(t) = γ2n2(t) − γ1n1(t) = γ2 − (γ1 + γ2) n1(t), (13.1)

where n1(t) and n2(t) are the densities of units in state 1 or 2 at time t , respectively.
Here, we used density normalization n1(t) + n2(t) = 1 to write the last equality.
Despite the apparent simplicity of this mean field equation, there is a wealth of
possibilities hidden in the transition rates. For instance, the units may be coupled
or uncoupled, explicitly time-dependent or not, etc. Here, we are concerned with
Markovian globally coupled units, that is, the transition rates at any time t depend
on the densities of units in the states 1 and 2 at that time. Again, using the density
normalization, we may write the transition rates as γ1(n1) and γ2(n1).

It is worth noting that no fluctuations appear because the population is infinite.
Therefore, for infinite populations we have a deterministic evolution that is com-
pletely determinedby the initial conditions and, obviously, the transition rates.Hence,
determining the steady state for infinite populations is a matter of finding the steady
state of unidimensional dynamical systems, and phase transitions for those systems
correspond to the bifurcations of the dynamical systems. Bearing that in mind, we
try to map the mean field equation (13.1), onto one of the well-known normal forms
presented, for example, in [8]. In order to do that, we write the transition rates as
polynomials,

γ1(n1) =
∞∑

k=0

γ
(k)
1 nk1, (13.2)

γ2(n1) =
∞∑

k=0

γ
(k)
2 nk1. (13.3)

Different relations between these series lead to different normal forms. For more
general transition rates, the normal forms can still be seen as approximations near
the bifurcations (phase transitions). Therefore, we can write the mean field equation
as

ṅ1 =
∞∑

k=0

akn
k
1, (13.4)

where

a0 = γ
(0)
2 ,

ak = −γ
(k−1)
1 − γ

(k−1)
2 + γ

(k)
2 . (13.5)

13.2.1.2 Finite Populations

For finite populations, we need to take into account fluctuations due to the finite
number or units. Mathematically, we need to consider a Langevin equation instead
of the deterministic mean field equation of the previous section. Hence, we start our
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analysis writing the time-evolution of the number of units in state 1, N1(t),

N1(t + dt) = N1(t) −
N1∑

k=1

θ (γ1(n1)dt − ζk) +
N∑

k=N1+1

θ (γ2(n1)dt − ζk) , (13.6)

where θ(·) is the Heaviside step function and ζk is a random variable uniformly
distributed in the interval [0, 1]. Furthermore, dt is an infinitesimal time increment,
so that γk(n1)dt is the probability of jumping for a unit in state k. Thus, the first
sum represents the number of units that jump out of state 1 and the second sum
represents the number of units jumping into state 1. Equation (13.6) leads to the
Langevin equation [6]

ṅ1 = γ2(n1) − [
γ1(n1) + γ2(n1)

]
n1 + √

(1 − n1) γ2(n1) + n1γ1(n1)
ξ(t)√
N

, (13.7)

where ξ(t) is a Gaussian zero-centered white noise. Comparing Langevin equation
(13.7) and the mean field equation (13.1) we notice that they differ by the fluctuation
term (last term in the Langevin equation). In the limit of large populations N → ∞,
the fluctuations vanish and we recover the mean field equation. However, it should
be noticed that there are two limits to be taken in order to get the steady state for large
populations: time and number of units must both go to infinity. While the mean field
equation approach takes the limit N → ∞ first, the Langevin equation approach
takes the limit t → ∞ first. Therefore, when considering the Langevin approach we
should not take the limit N → ∞ at this point. Instead, we must find the steady state
before taking the infinite population limit.

Using the Itô interpretation [9] for this Langevin equation, we obtain a Fokker–
Planck equation for the probability of finding a fraction of n1 of units in state 1 at
time t ,

∂P(n1, t)

∂t
= − ∂

∂n1
[μ(n1)P(n1, t)] + ∂2

∂n21
[D(n1, N )P(n1, t)] , (13.8)

where
μ(n1) = γ2(n1) − [

γ1(n1) + γ2(n1)
]
n1 (13.9)

is the drift and

D(n1, N ) = γ2(n1) + [
γ1(n1) − γ2(n1)

]
n1

2N
(13.10)

is the diffusion coefficient. The Fokker–Planck equation (13.8) has the stationary
solution

Pst (n1) = cN
exp

[∫ n1
0

μ(n)

D(n,N )
dn

]

D(n1, N )
, (13.11)
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where cN is an N -dependent normalization constant for the probability density
Pst (n1). At this point, a few comments are relevant. First, since the drift of the
Fokker–Planck equation equals the right hand side of the mean field equation, we
may expect that for large populations (small fluctuations) the two approaches should
give similar results. However, contrary to the infinite population case, the steady
state probability density for finite N does not hold any memory about the initial
conditions. Therefore, they must differ in case of coexistence of two or more stable
solutions for the mean field equation. Here, we will discuss this point in more detail
for the saddle-node bifurcation. The reader interested in other types of bifurcations
should refer to [7].

Typically, the saddle-node bifurcation creates two fixed points (one stable and
one unstable) out of nothing. Hence, there is no coexistence of stable solutions and
we should not see the behavior described above. However, the normal form for the
saddle-node bifurcation ẋ = r + x2, poses a problem for our model. For r < 0, there
are two fixed points: the stable x∗ = √−r and the unstable x∗ = −√−r fixed points.
Any initial condition greater than the unstable fixed point will grow unboundedly,
while our variable n1 must lie in the interval [0,1]. Therefore, we must add another
fixed point above the unstable fixed point. A possible way to add this fixed point
without perturbing the bifurcation is to consider the following dynamical system

ṅ1 = [
r + (n1 − nB)2

] {
1 − A

[
r + (n1 − nB)2

]}
, (13.12)

where A is a positive constant and nB is a positive constant in the interval [0, 1]
chosen so that the two fixed points arising from the saddle node bifurcation are both
positive and also lie in this interval. For certain values of A near the bifurcation
point, this modified formula introduces two new fixed points—a stable fixed point
for large values of n1 (but still smaller than 1) and an unstable negative fixed point.
Therefore, there is only one new fixed point in the interval of interest. Moreover, this
new fixed point introduces a bistability region (see Fig. 13.1). For r < 0 there are two
stable fixed points: the one from the saddle-node bifurcation and the new fixed point
introduced by the

{
1 − A

[
r + (n1 − nB)2

]}
term. Consequently, in this bistability

region for the infinite population model, any initial condition below the dashed line
in the figure (unstable fixed point) will end up at the bottom fixed point, while initial
conditions above the dashed line evolve to the upper fixed point. As the bifurcation
parameter r increases and crosses zero, there is a saddle-node bifurcation and the
bottom stable fixed point collides with the unstable fixed point and they disappear,
leaving only one stable fixed point to which all the initial conditions evolve.

For finite population, however, comparing (13.4) and (13.12), and using (13.5),
we have

γ
(0)
2 = −An4B − 2An2Br − Ar2 + n2B + r,

γ
(1)
2 − γ

(0)
1 = 4An3B + 4AnBr − 2nB + γ

(0)
2 ,

γ
(2)
2 − γ

(1)
1 = −6An2B − 2Ar + 1 + γ

(1)
2 ,
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Fig. 13.1 Bifurcation diagram for the model given by (13.12) with A = 15 and nB = 0.15. The
full lines represent stable fixed points while the dashed line represents unstable fixed points

γ
(3)
2 − γ

(2)
1 = 4AnB + γ

(2)
2 ,

γ
(4)
2 − γ

(3)
1 = −A + γ

(3)
2 ,

γ
(k+1)
2 − γ

(k)
1 = γ

(k)
2 for k > 3.

Hence, the definition of the bifurcation model does not completely define the tran-
sition rates. As a matter of fact, different choices of the transition rates γ1(n1) and
γ2(n1) lead to the same mean field equation. Therefore, different finite population
models with different steady states may lead to the same infinite population model.
Moreover, the steady state probability density Pst (n1) favors one state. The finite
population fluctuations thus destroy the coexistence, as shown in Fig. 13.2. In this
figure, we can clearly see that as the number of units increases, the predominance of
one peak becomes stronger. That is, as the number of units goes to infinity, one state
becomes more andmore probable thus confirming the destruction of the coexistence.

We end this section with an important comment: while arrays of Markovian two-
state units can only lead to stationary ordering, the inclusion of a memory, e.g. a
refractory period that forces units arriving in state 2 to wait a certain amount of time
before returning to state 1, yield time-dependent oscillations [10].

13.2.2 Three-State Model

While two-state Markovian models can only provide synchronization as an asym-
metric steady state for which one state is more populated than the other, three-state
Markovian models may lead to the more striking form of synchronization in which
an aggregate of units move together from one state to the next, to the next, and so
on. We consider a set of states (in this case states 1, 2 and 3) and transition rates that
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Fig. 13.2 Steady state probability density as a function of the density of units in state 1. For this
figure, we used the following values for the parameters: A = 15, nB = 0.15, r = −0.01, γ (1)

2 =
3/2, γ (2)

2 = 1, γ (3)
2 = 1/5, γ (4)

2 = 1/4 and γ
(k)
2 = 0 for k > 4. The different curves correspond to

different numbers of units: N = 300 full line, N = 500 dashed line and N = 5000 dotted line

dictate the dynamics. Here, we use Wood’s model [11], for which the transitions are
unidirectional (units in a given state can only stay there or move to the next state in
a cyclic way: 1 → 2 → 3 → 1).

13.2.2.1 Infinite Population

An infinite array is thus governed by the mean field equations

ṅ1 = γ31 − (γ12 + γ31) n1 − γ31n2,

ṅ2 = γ12n1 − γ23n2. (13.13)

Once again, we used the density normalization, which in this case reads n1 + n2 +
n3 = 1, to eliminate the density of one of the states (n3). Moreover, in Wood’s
model [11], the transition rates are given by

γi,i+1 = γ exp
[
a (Uni+1 + Vni−1 + Wni )

]
, (13.14)

where the indices are cyclical as noted above.
The symmetry of the model implies that the point n1 = n2 = n3 = 1/3 is always

a fixed point. A linear analysis [11] shows that this fixed point is stable for a < ac =
3/(U − W ). Further, for U �= V , there is a Hopf bifurcation at a = ac. The type of
Hopf bifurcation (subcritical or supercritical) is determined by the sign of the first
Lyapunov coefficient l1, which is found to be
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Fig. 13.3 Bifurcation diagram for the three-state model. For the transition rates we used U = 1,
V = 4, and W = 0. The horizontal line represents the fixed point and the curves indicate the
maximum and minimum values of n1 in the limit cycle. In both cases the solid lines represent the
stable attractors and the dashed lines the unstable ones

l1 = −9
√
3 (U + V − 2W )

3 (U − W )
. (13.15)

For l1 > 0, the Hopf bifurcation is supercritical, that is, we have a continuous tran-
sition and no coexistence region. More interesting for our discussion, for l1 < 0, the
Hopf bifurcation is subcritical and presents a coexistence region (see Fig. 13.3). In
this case, for a ≡ alc a pair of limit cycles (one stable and one unstable) is created.
The stable limit cycle coexists with the symmetry-dictated fixed point. As a increases
further and approaches ac, the unstable limit cycle shrinkswhile the stable one grows.
At a = ac the unstable limit cycle radius vanishes whilst it collides with the fixed
point n1 = n2 = n3 = 1/3. For a < alc and a > ac there is only one attractor, the
fixed point or the limit cycle, respectively. Between the two, alc < a < ac, however,
there are two stable attractors and there is coexistence.

13.2.2.2 Finite Populations

Next we move to the finite population case. As in the two-state model, we start by
writing the evolution equation for the number of units in each state. However, for
the three-state case, we need to follow the number of units in two states, say 1 and
2, the third one being determined from the condition N = N1 + N2 + N3. A simple
counting protocol leads to

N1 (t + dt) = N1 (t) −
N1∑

k=1

θ (γ12 (n1, n2) dt − ζk) +
N∑

k=N1+N2+1

θ (γ31 (n1, n2) dt − ζk) ,

N2 (t + dt) = N2 (t) −
N1+N2∑

k=N1+1

θ (γ23 (n1, n2) dt − ζk) +
N1∑

k=1

θ (γ12 (n1, n2) dt − ζk) ,

(13.16)
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where the first sum in the N1 equation counts the number of units leaving state 1 to
state 2 between t and t + dt , and the second one counts the number of units arriving
at state 1 coming from state 3 during the same time interval. A similar interpretation
holds for the N2 equation. From these microscopic equations, one arrives at the
Langevin equations

ṅ1 = γ31(1 − n1 − n2) − γ12n1 + √
γ31(1 − n1 − n2)

ξ1 (t)√
N

− √
γ12n1

ξ2 (t)√
N

,

ṅ2 = γ12n1 − γ23n2 + √
γ12n1

ξ2 (t)√
N

− √
γ23n2

ξ3 (t)√
N

. (13.17)

From there using the Itô interpretation we obtain the Fokker–Planck equation

∂P (n1, n2, t)

∂t
= ∂�1

∂n1
+ ∂�2

∂n2
(13.18)

where

�i = −μi P +
2∑

j=1

∂(Di j P)

∂n j
, (13.19)

with

μ =
(

γ31(1 − n1 − n2) − γ12n1
γ12n1 − γ23n2

)
, (13.20)

being the drift vector, and

D = 1

2N

(
γ12n1 + γ31(1 − n1 − n2) −γ12n1

−γ12n1 γ12n1 + γ23n2

)
, (13.21)

the diffusion matrix.
The steady state solution Pss(n1, n2) of the Fokker–Planck equation, (13.18), can

be obtained numerically. We illustrate the qualitative behavior of Pss(n1, n2) for
two values of the control parameter a (both in the infinite population coexistence
region) and two different numbers of units. In Fig. 13.4, for the smaller value of a
(a = 2.85), we can see that for small N (left panel) there is a coexistence of the
symmetric fixed point (center of the triangle) and the limit cycle, characterized by
the brighter triangular region. For larger populations (right panel) there is only one
bright spot in the middle of the triangle, indicating that the steady state only presents
small fluctuations around the state n1 = n2 = n3 = 1/3 and there is no limit cycle
and hence no coexistence. This result is thus similar to that of the two-state model
and is again due to the fact that the t → ∞ and N → ∞ limits do not commute.

When we increase the value of a and approach ac (Fig. 13.5) the situation for
small populations (left panel) barely changes—we can see that the limit cycle now
is slightly favored in comparison to the fixed point, but the coexistence is still there.
However, for the larger population (right panel) the limit cycle clearly dominates
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Fig. 13.4 Steady state probability density for the three-state model with U = 1, V = −4 and
W = 0. For both panels, a = 2.85, while N = 500 for the left panel and N = 5000 for the right
panel. The gray shaded horizontal bar indicates the code for the values of Pss and the arrows indicate
the direction of increase (small values of Pss are darker and larger values are brighter)

Fig. 13.5 Steady state probability density for the three state model with U = 1, V = −4 and
W = 0. For both panels, a = 2.87, while N = 500 for the left panel and N = 5000 for the right
panel. The gray shaded horizontal bar indicates the code for the values of Pss and the arrows indicate
the direction of increase (small values of Pss are darker and larger values are brighter)

(there is only a very weak bright spot in the center of the triangle that completely
fades out for even larger populations). Therefore, once again, the finite population
fluctuations destroy the coexistence in the limit of large populations.

An order parameter that is a discrete version of one used by Kuramoto for con-
tinuous phases is

r(n1, n2) =
∣∣∣∣∣∣
1

N

N∑

k=1

exp(iφk)

∣∣∣∣∣∣
= |n1 + n2 exp(i2π/3) + (1 − n1 − n2) exp(i4π/3)| ,

(13.22)
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Fig. 13.6 Kuramoto order parameter as a function of the control parameter a forU = 1, V = −4
and W = 0. The full lines represent different numbers of units (N = 250, 500, 1000, 5000 and
50000) and the dashed line corresponds to the case of an infinite number of units (N → ∞ and then
t → ∞). The gray region, indicates the coexistence region for the infinite number of units case, for
which the order parameter is double valued

where the phase φk of state k is defined as φk = 2π
3 (k − 1). The average of the order

parameter over the steady state is then given by

〈r〉 =
∫ ∫

r(n1, n2)Pss(n1, n2)dn1dn2. (13.23)

In Fig. 13.6 we show the average order parameter as a function of a for several
numbers of units and also for infinite N . As N increases, the order parameter curve
becomes stiffer and stiffer, indicating a first-order transition and confirming our
assertion that the coexistence is destroyed.

13.3 Coarse Graining Kuramoto’s Model

So far we have only discussed discrete-state models. In this section we will present a
formal connection between continuous phase and discrete phase stochastic dynamics
to explore whether coarse graining a continuous phasemodel can lead to, say, a three-
state model. The results, as we will see, are somewhat unexpected. For this purpose
we will use the normal form formalism. Full details of this approach can be found
in [12].

We start with a globally coupled array of N continuous phase oscillators. The state
of each oscillator can be described by a d-dimensional vector X. That is, the entire
array is described by the variables {Xs}Ns=1, which obey the equations of motion

Ẋs = F (Xs) + I (X1, . . . ,XN ) + χ s(t). (13.24)

Here F accounts for the internal dynamics of each unit. These dynamics may be
schematically represented by Fig. 13.7a, which is meant to show an arbitrary limit
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cycle. The functionI accounts for the interactions among themembers of the ensem-
ble, which, in the mean field approach, takes the form

I (X1, . . . ,XN ) = I (R) where R = 1

N

N∑

s=1

As . (13.25)

The functions F and I are identical for all the oscillators and hence do not carry an
index. The last term of (13.24), χ s(t), represents the inherent fluctuations of each
oscillator.

In the vicinity of a Hopf bifurcation that gives rise to the formation of a limit
cycle, the dynamics of each oscillator can be reduced to a two-dimensional complex
amplitude (central manifold theorem) that obeys the normal form

Ȧs = J
(
1 − |As |2

)
As + K f

(|R|2)R + √
ηζs(t). (13.26)

Here the real constant parameter J governs the internal dynamics of each unit, and
we have scaled out irrelevant constants. In particular, this equation is in a moving
frame: we have removed the natural frequencyω of the oscillators. In these amplitude
variables, the internal dynamics lead to a perfectly circular limit cycle of the array,
as illustrated in Fig. 13.7b. The parameter K is a measure of the strength of the
interactionswhich iswritten in away that respects the phase invariance.Moreover, the
generic function f is positive definite so as tomodel an attractive interaction between
oscillators. In the original Kuramoto model [5], f (|R|2) = 1 and the interaction is
then linear in (R). For the fluctuations we choose δ-correlated complex Gaussian
noises:

ζs(t) = ζ s
R(t) + iζ s

I (t), (13.27)

where ζ s
R(t) and ζ s

I (t) are independent real Gaussian white noises of zero mean and
correlation functions

〈
ζ s
R (t) ζ s ′

R

(
t ′
)〉 =

〈
ζ s
I (t) ζ s ′

I

(
t ′
)〉 = δss ′δ

(
t − t ′

)
, and

〈
ζ s
R (t) ζ s ′

I

(
t ′
)〉 = 0.

(13.28)

If the internal dynamics dominates over the interaction and fluctuations (J � K
and J � η), after a short transient |As | ∼ 1, and the system can be described by the
phase equations

φ̇s = K F(r) sin (ψ − φs) + √
ηξs (t) where R = 1

N

N∑

s=1

eiφs ≡ reiψ, (13.29)

with F(r) = r f (r2). The phase evolution is represented by Fig. 13.7c, where only
the phase of oscillation is relevant.

At themeanfield level, this set of stochastic differential equations can be described
by a nonlinear Fokker–Planck equation for the one-particle probability density
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Fig. 13.7 Schematic picture of the coarse-graining of the phase variable. a Schematic of an arbitrary
limit cycle. b Amplitude equation near the point where the limit cycle first develops. c Reduction
to phase dynamics. d Markov chain model for coarse-grained phases

ρ (φ, t), that takes the form

∂ρ

∂t
= η

2

∂2ρ

∂φ2
− K

∂

∂φ
{ρ� [ρ, φ]} , (13.30)

where the second derivative term on the right is the diffusion term, and where the
drift contains

� [ρ, φ] = F(r [ρ]) sin (ψ [ρ] − φ) , (13.31)

with

R = r [ρ] eiψ[ρ] ≡
∫ 2π

0
ρ (φ, t) eiφdφ. (13.32)

The asynchronous state corresponds to a uniform distribution of phases,

ρ(φ) = 1

2π
, (13.33)
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which destabilizes at the critical point

Kc = η

f (0)
. (13.34)

Near the onset of synchronization, the dynamics can be described by the normal form

Ṙ = (
α − β |R|2) R with α = f (0)

2
(K − Kc) , and β = Kc

2

(
1

2
f (0) − f ′(0)

)
,

(13.35)

and f ′(0) ≡ (d f (r)/dr)|r=0. The bifurcation is supercritical ifβ > 0 and subcritical
ifβ < 0. Furthermore, the synchronization is tighter if f (r) is an increasing function,
representing stronger interactions with increasing r . Since we are interested in a
coarse-graining of the phase, for which a coarser synchronization is more propitious,
we will focus on a decreasing function f (r). Then β is always positive and the
bifurcation will always be supercritical.

We are now ready to perform the coarse graining of the phase. ConsiderM discrete
phases,

φ ∈ [0, 2π ] → φ ∈ { j�φ}M−1
j=0 , where �φ = 2π

M
.

Discretizing the nonlinear Fokker–Planck (13.30), we obtain

Ṗj = − (
wj→ j+1 + wj→ j−1

)
Pj + wj+1→ j Pj+1 + wj−1→ j Pj−1, (13.36)

where Pj (t) is the probability to be in the j th phase, and

wj→ j±1 = η

2(�φ)2
∓ K

2�φ
� j , with � j = F(r) sin (ψ − j�φ) . (13.37)

For this to be an acceptable physical description, the transition rates (13.37) must be
positive. A bound to insure this is (see [12])

K < Kmax = η

Fmax�φ
, (13.38)

where Fmax is the maximum of the function F(r) in the interval r ∈ [0, 1]. The
coarse-grained dynamics can be interpreted as a Markov chain, as illustrated in
Fig. 13.7d.

This discrete formalism reproduces the bifurcation structure of the continuous
phase model for M ≥ 4. Figure13.8 displays our numerical results for both dynam-
ics, continuous and discrete phases. Figure13.8a shows numerical simulations of the
amplitude equations (13.26), |As | ∼ 1 with a small dispersion but with an agglomer-
ation of the phases that indicates that the system has crossed the critical point where
phase synchronization first occurs. The seven-bar histogram of Fig. 13.8b has used
the same data as Fig. 13.8a, while the continuous curve is a numerical solution of
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Fig. 13.8 Numerical computations for J = 200, N = 5000, K = 1.5708 > Kc = 0.98696, η =
0.98696, and f (r) = exp (−r/a)with a = 0.3. aAmplitude equations (13.26), showing an agglom-
eration of phases along the limit cycle. b Comparison between phase distribution from the solution
of the nonlinear Fokker–Planck equation (13.30), and a seven-node Markov chain

the nonlinear Fokker–Planck equation (13.30). The black squares in Fig. 13.8b are
the result of a seven-node Markov chain following the prescription described above,
showing good agreement between both approaches.

The case of M = 3, however, turns out to be pathological, which we did not
anticipate. The bifurcation turns transcritical, and the system displays a very different
dynamical behavior than in the continuous phase model. A full analysis of these sorts
of three-state units can be found in [12].

13.4 Conclusions and Perspectives

The vast majority of the enormous literature on synchronization phenomena assumes
continuous time and often continuous state space for the evolution of the interacting
units of interest. However, a number of years ago we concluded that discrete time and
discrete state space would make these problems more approachable. In this Chapter
we discussed two aspects of synchronization related to discrete state models, namely,
the role of the number of units and of the number of states in the synchronization.

We presented arrays of two-stateMarkovian units and arrays of three-stateMarko-
vian units. In both cases, when the arrays of an infinite number of units present coex-
istence of stable states, the fluctuations created by a finite number of units destroy
the coexistence and the system “chooses” one of the stable states in the limit of a
large number N of units. We traced the apparent contradiction of the limit of a large
number of units unable to recover the coexistence to an ergodicity breaking—the
order of the limits t → ∞ and N → ∞ matters.

For arrays of globally coupled two-stateMarkovian units, when there is an infinite
number of these units in the array the problem becomes deterministic (described by
mean field equations) unless there is some external source of noise, which we have
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not included in our description. We were particularly interested in the steady state
of the system, which is necessarily time independent—two-state Markovian units
do not lead to time dependent configurations as t → ∞. We assumed a (modified)
nonlinear (polynomial) normal form for the interactions among the units which leads
the system to a saddle node bifurcation. For values of the control parameter below the
bifurcation value, there are two stable states, one arising from the ordinary normal
form for this type of bifurcation, and the other from the modification that keeps the
fractions of systems in each of the two states in the physical regime 0 to 1. (There is
also an unstable state in the bifurcation regime.) Hence, there is a coexistence of two
stable states in this region, the steady state being entirely settled by the deterministic
equation and the initial condition.

We then considered a globally coupled array of a finite number of two-state units.
The finite number introduces a noise term that entirely changes the behavior of the
system. In particular, as t → ∞ one state becomes more populated than the other,
and any memory of the initial state is forgotten. This imbalance in the population
of the two states describes a steady state synchronization. If we now take the limit
N → ∞, the system does not arrive at the description in the previous paragraph. The
initial state is forgotten in this case. In other words, as noted above, the limits t → ∞
and N → ∞ do not commute. As an aside, we noted that the inclusion of a memory,
for instance a refractory period that forces any unit that arrives at say state 2 to wait
for some time before returning to state 1, yields time-dependent oscillations [10].

We next considered a globally coupled array of three-state Markovian units. Once
again we started with a deterministic mean field noiseless model, with a different
form of the interactions, namely, exponential (highly nonlinear). As in the two-state
case, there is a coexistence of two stable states. However, in this case the bifurcation
is more interesting. Here, the bifurcation involves not only fixed points but a fixed
point and a limit cycle. The limit cycle implies that the steady state encompasses a
periodic variation of the densities. This is a more striking form of synchronization,
that is, one in which the units move together in unison. We moved on to the case of
a finite number of globally coupled units in the array, which naturally introduces a
noise contribution. Depending on the number of units and other parameter values,
the coexistence is still there, but one or the other stable state becomes weaker (i.e.
fewer units are in one stable state than in the other) as the number of units increases.
Once again the limits t → ∞ and N → ∞ do not commute and the coexistence is
washed away.

Finally we considered an entirely different question: is it possible to coarse grain a
collection of nonlinearly interacting Kuramoto oscillators to arrive at a three-state (or
two-state) model? The Kuramoto system resides in continuous time and continuous
phase, the latter ranging continuously from 0 to 2π , while our models have a finite
number of states. We showed that reduction by coarse graining is possible, but that
our particular three-state model can not be obtained via a simple coarse-graining
procedure of the Kuramoto model. We are able to reduce the continuum model
to discrete ones in this manner but with more than three states. On the other hand,
reduction to a three-statemodel is possible, but with different critical synchronization
behavior than our model.
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What remains to be done? Of course in any attempt to model synchronization
phenomena there is a very large field that others have populated, and that we have
not yet approached. There is also a huge literature on synchronization applications.
To name just a few directions we may take, we note the problems of the range
of interactions in three-state models, the role of the fluctuations due to the finite
number of units in systems with growing populations and the establishment of a
general framework for the coarse graining of continuous models.

In [13], we showed that for a two-state model the range of interaction produces
a transition from a disordered (short range interactions) to an ordered state (long
range interactions). Preliminary studies for a three-state model have indicated that
increasing the range of interactions interpolates the disordered and ordered (syn-
chronized) states with patterned spatial formations (spirals appear for middle range
interactions). A variant ofWood’s model for which there is a birth termwas proposed
in [14]. Such amodel also presents coexistence in themean field approach. The ques-
tion we pose is whether the fluctuations produced by the finite number of units also
destroys the coexistence for this model. Finally, we mention again that we studied
the coarse graining of Kuramoto’s model. However, the possibility of mapping the
phase transition of other continuous models into discrete coarse grained models is
still an open question. We hope our work along these lines will continue to shed light
on these phenomena.

Acknowledgements A.R. acknowledges the financial support of CPNq (Grant No.308344/2018-
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Chapter 14
Physics-Informed Learning Machines for
Partial Differential Equations: Gaussian
Processes Versus Neural Networks

Guofei Pang and George Em Karniadakis

Abstract We review and compare physics-informed learning models built upon
Gaussian processes and deep neural networks for solving forward and inverse prob-
lems governed by linear and nonlinear partial differential equations. We define a uni-
fied data model on which Gaussian processes, physics-informed Gaussian processes,
neural networks, and physics-informed neural networks are based. We develop
continuous-time anddiscrete-timemodels to facilitate different application scenarios.
Wepresent a connectionbetween aGaussianprocess and an infinitelywideneural net-
work, which enables us to obtain a “best” kernel, which is determined directly by the
data. We demonstrate the implementation of physics-informed Gaussian processes
and physics-informed neural networks using a pedagogical example. Additionally,
we compare physics-informed Gaussian processes and physics-informed neural net-
works for two nonlinear partial differential equations, i.e. the 1D Burgers’ equation
and the 2D Navier–Stokes, and provide guidance in choosing the proper machine
learning model according to the problem type, i.e. forward or inverse problem, and
the availability of data. These new methods for solving partial differential equations
governing multi-physics problems do not require any grid, and they are simple to
implement, and agnostic to specific application. Hence, we expect that variants and
proper extensions of these methods will find broad applicability in the near future
across different scientific disciplines but also in industrial applications.

14.1 Introduction

Unlike everyday commercial applications which are characterized by big data, in
scientific applications the data are scarce, noisy, unstructured, and of multifidelity.
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In the small data regime, supervised learning, where machine learning models only
act as black-box function approximators, is not adequate. However, in scientific
machine learning we have conservation laws expressed by partial differential equa-
tions (PDEs), which can provide additional information to amachine learningmodel.
For example, let us consider a parameter estimation problem, aiming to estimate γ in
the PDELγ u = f , whereL is a differential operator and γ is a collection of unknown
parameters of L. We can identify γ by solving the PDE N times under N different
γ ’s. From the training set D = {γ i , u(x; γ i )}N

i=1, we can train a machine learning
model M̃ to approximate the mapping from γ to solution u, i.e, u(· ; γ ) = M(γ ),
after which we search for the optimal γ that minimizes the misfit ‖M̃(γ ) − uobs‖,
where uobs are observations of u and the norm ‖ · ‖ is a norm in the function space
where u resides. In this setup, the machine learning model is a black-box function
approximator. A large number of training points, namely, large N , is needed to train
the model well. In contrast, by incorporating the expression of the PDE into the mis-
fit function explicitly, namely, ‖ũ(θ) − uobs‖ + ‖Lγ ũ(θ) − f ‖, where we minimize
the misfit with respect to both γ and the parameters θ of the machine learning model
ũ, we can reduce the number of training points {xi , uobs(xi )}N

i=1 substantially. We
call this paradigm physics-informed learning.

In this chapter, we give a brief introduction to two typical machine learning mod-
els, i.e. Gaussian processes (GPs) and deep Neural Networks (NNs), which can be
easily incorporated into the physics-informed learning paradigm.Gaussian processes
and physics-informedGaussian processes (PIGPs) [1–4] are among the class of prob-
abilistic machine learning algorithms [5, 6]. Both of the models provide the posterior
probabilistic distribution of their predictions in the context of Bayesian inference,
and enjoy the analytical tractability in doing Bayesian inference. Despite the math-
ematical elegance, these models compromise the accuracy of their predictions for
strongly nonlinear PDEs by linearizing nonlinear terms in time. Physics-informed
neural networks (PINNs) [7–10] can handle nonlinear PDEs without linearization,
and can also be easily modified to handle high-order temporal discretization, such
as the 500-stage Runge–Kutta method considered in [10]. Although GPs and NNs
are both universal approximators for arbitrary continuous functions [11, 12], NNs
are preferred in real-world applications, such as image recognition and natural lan-
guage processing, due to the linear computational cost with respect to the number
of model parameters, compared to the cubic cost with respect to training set size
in standard GPs. Unlike GPs, the standard NNs are, however, not a probabilistic
machine learning model, and thus it cannot estimate the uncertainty associated with
its predictions.

The rest of the chapter is organized as follows. In Sect. 14.2, we introduce a
unified data model working for all of GPs, PIGPs, NNs, and PINNs. In Sect. 14.3
we first briefly review the basic ideas of GPs and NNs for function approximation,
then introduce the methodology of PIGPs and PINNs in solving a linear PDE, and
finally discuss the connection between GPs and NNs. A pedagogical example for
linear diffusion problem is given in Sect. 14.4 to illustrate how to implement PIGPs
and PINNs. The corresponding Python codes are also shared. Section14.5 compares
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PIGPs and PINNs for solving forward and inverse problems of nonlinear PDEs.
Summary and outlook are provided in the last section.

14.2 Data Models for Machine Learning

We consider the following data model relating the model input x to m groups of
observations {y j }m

j=1

y1(x) = Lγ1
1 { f1(x), f2(x), . . . , f p(x)} + ε1, x ∈ �1,

y2(x) = Lγ2
2 { f1(x), f2(x), . . . , f p(x)} + ε2, x ∈ �2,

...
...

ym(x) = Lγm
m { f1(x), f2(x), . . . , f p(x)} + εm, x ∈ �m .

(14.1)

There are n quantities of interest (QoIs): f1(x), f2(x), . . . , fn(x). These quanti-
ties can be velocity, pressure, concentration, etc. The argument x can be spatial
and/or temporal coordinates. The input space � ⊂ R

d , where x resides, is assumed
to be a compact set. We will typically denote a column vector by a boldface let-
ter and a scalar by a standard letter. Note the difference between x ∈ R

d and
x ∈ R. It is reasonable to assume that the QoIs { fk(x)}p

k=1 and their transformation
Lγ { f1(x), f2(x), . . . , f p(x)} can be observed at certain subsets of the input space.
For instance, letting x = [x, t]T , p = 1, m = 2, L1 = I (identity operator), and
L2 = ∂2

∂x2 , we observe y1 at N1 different locations: y1(x1,1), y1(x1,2), . . . , y1(x1,N1)

for x1,i ∈ �1 = (0, 1) × (0, 0.5]. We call y1(x1,i ) = f (x1,i ) + ε1 the i th obser-
vation of the data model in the subset of the input space �1. Also, we observe
y2(x2,1), y2(x2,2), . . . , y2(x2,N2) for x2,i ∈ �2 = [1, 2] × (0.5, 1.0], where

y2(x2,i ) = ∂2 f (x2,i ,t2,i )
∂x2 + ε2. The symbol ε j denotes the additive white Gaussian noise

for the j th group of observations, and unless otherwise stated, ε1, ε2, . . . , εm are
assumed to have zero mean and variance σ 2

n . The symbol γ denotes a collection of
parameters in the operator L, e.g. Lγ = (c21 + c2)

∂2

∂x2 , where γ = [c1, c2]T . Let us
look at three typical data models:

• Data model for a scalar-valued function f (x). y(x) = f (x) + ε,where p = m =
1, Lγ = I

• Data model for the forward problem governed by Poisson equation

y1(x1) = c∇2u(x1) + ε1 = s(x1) + ε1, x1 ∈ �1

y2(x2) = u(x2) + ε2 = g(x2) + ε2, x2 ∈ �2 = ∂�1,
(14.2)

where p = 1,m = 2, f1(x) = u(x), γ1 = c,Lγ1
1 = c∇2, andLγ2

2 = I. Thismodel
corresponds to the Poisson problem
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c∇2u(x) = s(x), x ∈ �1,

u(x) = g(x), x ∈ �2 = ∂�1.
(14.3)

Here y1 and y2 are the observations for the source term s and the boundary condi-
tion g, respectively. The observations are assumed to be contaminated by noise.

Remark 1 There are no established theories that would inform us a priori how
many data points are required for the well-possedness of the problems we address
here.

• Data model for parameter estimation of 2D incompressible Navier–Stokes equa-
tions (corresponding to continuous-time machine learning models, see Sects.
14.3.3.1 and 14.3.4.1)

y1 = ut + λ1(uux + vuy) + px − λ2(uxx + uyy) = 0, x1 ∈ �1,

y2 = vt + λ1(uvx + vvy) + py − λ2(vxx + vyy) = 0, x2 ∈ �2 = �1,

y3 = ux + vy = 0, x3 ∈ �3 = �1,

y4 = u + ε4, x4 ∈ �4 = �1,

y5 = v + ε5, x5 ∈ �5 = �1,

(14.4)

where p = 3, m = 5, x = [x, y, t]T , f1 = u, f2 = v, f3=p, γ 1=γ 2 = [λ1, λ2]T ,
andLγ 1

1 andLγ 2
2 are nonlinear operators acting on the velocity components u and v

and thepressure p.Lγ 3{u, v, p} = ux + vy ,Lγ 4{u, v, p} = u, andLγ 5{u, v, p} = v.

14.3 Two Machine Learning Models

We define the machine learning task considered in this chapter as follows: given m
groups of input-output pairs

D = {D1,D2, . . . ,Dm}
= {{x1,i , y1(x1,i )}N1

i=1, {x2,i , y2(x2,i )}N2
i=1, . . . , {xm,i , ym(xm,i )}Nm

i=1}
(14.5)

and employing the structure of the data model (14.1), we are asked to predict QoIs
{ fk}p

k=1 at never-before-seen location x∗. We also need to identify the parameters of
the operator (i.e. γ ) if these parameters are not known beforehand.

To learn { fk}p
k=1 and γ , first of all, we need to select a machine learning model

fML(x; θ), which approximates fk in the data model. Here, θ is a collection of model
(hyper-)parameters to be learned. GPs fGP(x; θ) and deep NNs fNN(x; θ) are two
widely usedmachine learningmodels since they are both universal approximators for
arbitrary continuous function [11, 12]. In other words, the function spaces generated
by these twomodels are both dense inC0(�). The key step of employing themachine
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learning models is to obtain the model (hyper-)parameters θ after minimizing certain
cost (or loss) functions.

In Sects. 14.3.1 and 14.3.2, we give a brief introduction to GPs and deep NNs
models corresponding to the data model for a function, respectively. This introduc-
tion aims at demonstrating how to approximate a function using the two models. In
Sects. 14.3.3 and 14.3.4, we discuss the extensions of the twomodels to the datamod-
els for PDEs, illuminating data-driven approaches for solving forward and inverse
problems governed by PDEs.

14.3.1 Gaussian Process Regression

Recall the data model for a scalar-valued function: y(x) = f (x) + ε. A Gaus-
sian process is generally written as fGP(x) ∼ GP(m(x), k(x, x′; θ)), where the
mean function is m(x) = E( fGP(x)) and the covariance function is k(x, x′; θ) =
E

[
( fGP(x) − m(x))( fGP(x′) − m(x′))

]
. The symbol θ represents ad hoc parame-

ters in the kernel, a.k.a. hyper-parameters of GPs. A Gaussian process is a collection
of randomvariables, any finite number ofwhich have jointGaussian distribution [14].
From the definition, the random vector fGP(X) = [ fGP(x,1), . . . , fGP(x,N )]T obeys
themultivariateGaussian distribution,whereX = [x,1, x,2, . . . , x,N ]. Awell-known
property of multivariate Gaussian distribution is that the conditional distribution of
a Gaussian random vector given another Gaussian random vector is still a multivari-
ate Gaussian distribution. Let f and y be jointly Gaussian random vectors (column
vectors) [

f
y

]
∼ N

([
μf
μ y

]
,

[
A C
C

T
B

])
, (14.6)

where μ is the mean (column) vector, and A, B, and C are the covariance matrices,
then the conditional distribution of f given y is [14]

f | y ∼ N(μf + CB−1( y − μy), A − CB−1C
T
). (14.7)

From this formula, we note that the unknown information f can be inferred from
the known information y as long as we know the correlation between the unknown
and known information, which is embedded in the covariance matrix C. We expect
to predict f at q never-before-seen locations X∗ = [x∗

,1, . . . , x
∗
,q ], i.e. fGP(X∗) ≈

f (X∗). To make a prediction, we assume fGP(X∗) and the observations y =
[y(x,1), y(x,2), . . . , y(x,N )]T have the joint Gaussian distribution

[
fGP(X∗)

y

]
∼ N

([
0q×1

0N×1

]
,

[
k(X∗,X∗)q×q k(X∗,X)q×N

k(X,X∗)N×q k(X,X)N×N + σ 2
n IN×N

])
,

(14.8)
where k(X∗,X∗)i j = k(x∗

,i , x
∗
, j ) and Ki j = k(X,X)i j = k(x,i , x, j ). Using the for-

mula (14.7) yields the posterior mean and covariance functions [14]
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E{ fGP(X∗)} = k(X∗,X)(K + σ 2
n I)

−1 y, (14.9)

Cov
(

fGP(X∗), fGP(X∗)
) = k(X∗,X∗) − k(X∗,X)(K + σ 2

n I)
−1k(X,X∗). (14.10)

For single test point x∗, the covariance reduces to variance at x∗. To make the above
predictive formulas work, we also need to know the hyper-parameters θ and the noise
standard deviation (std for short) σn . They are generally learned by minimizing the
negative log marginal likelihood function [14]

− log p(θ , σn; y,X) = 1

2
y
T
(K + σ 2

n I)
−1 y + 1

2
log |K + σ 2

n I| + N

2
log 2π.

(14.11)

14.3.2 Deep Neural Network Approximation

We still consider the data model for a scalar-valued function: y(x) = f (x) + ε,
where x ∈ � ⊂ R

d . After being fed the input x, the deep feedforward neural network
will output

fNN(x) = xl = Wlxl−1 + bl ,

x j = G(W j x j−1 + b j ), j = 1, 2, . . . , l − 1,

x0 = x ∈ R
d .

(14.12)

The input x is first subject to a linear transformation with W1x0 + b1, where
W1 ∈ R

n1×d and b1 ∈ R
n1 are called weight matrix and bias vector, respectively.

Subsequently, the resulting vector is fed to a nonlinear function, G(·), which acts
on the vector element-wise; this function is called activation function. The activated
state x1 is viewed as the updated input, and it will be subject to another linear trans-
formation withW2 ∈ R

n2×n1 and b2 ∈ R
n2 and then the nonlinear activation function

G(·). This process is repeated many times until the activated state xl−1 is reached.
The output of the NN fNN(x) is a linear transformation of xl−1 with Wl ∈ R

1×nl−1

and bl ∈ R. The NN consists of one input layer, l − 1 hidden layers, and one output
layer. The widths of the hidden layers are n1, n2, . . . , nl−1. The depth of the NN is
l. Single output is assumed here. For multiple outputs, the width of the output layer
will become nl > 1, and Wl ∈ R

nl×nl−1 and bl ∈ R
nl . Note that in practical compu-

tation, the widths ni and depth l, which are hyperparameters of the NN, are usually
selected empirically. However, the on-going progress on meta-learning will enable
us to automate the selection process in the future [15]. The tunable parameters in the
NN are the collection of {W j }l

j=1 and {b j }l
j=1, which are denoted by θ . The NN can

be rewritten as fNN(x; θ). For the regression problem, the mean squared error loss
function is usually employed, i.e.
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min
θ

1

N

N∑

i=1

[y(xi ) − fNN(xi ; θ)]2 + J{ fNN}. (14.13)

The regularization functional J{ fNN} can be L1, L2, or L∞ norm of Wk , e.g.
J{ fNN} = λ

∑l
k=1 ‖Wk‖2L2

, where λ is a pre-selected parameter indicating the
penalization strength. Another regularization approach that prevents overfitting is
Dropout [16]. Adding regularization can avoid fitting the noise in the data and thus
lower the possibility of overfitting.

14.3.3 Physics-Informed Gaussian Process: PIGP

The operators in the general data model (14.1) can be differential operators in PDEs,
as the data models for Poisson and Navier–Stokes equations show. Machine learn-
ing models built upon the data models involving differential operators of PDEs
are physics-informed; physical laws, such as conservation of mass, momentum and
energy, are expressed by PDEs.We start from a simple linear PDE to explain the basic
idea of the PIGP model. Nonlinear PDEs will be considered in Sect. 14.5. Depend-
ing on whether temporal discretization is performed, we divide the PIGP model into
two categories: continuous-time GP and discrete-time GP models. The data models
corresponding to the two categories are different.

14.3.3.1 Continuous-Time GP

Consider the 1D diffusion problem

∂u(x, t)

∂t
= c

∂2u(x, t)

∂x2
+ s(x, t), [x, t] ∈ (0, 1) × (0, 1],

u(0, t) = u(1, t) = g(t), t ∈ (0, 1],
u(x, 0) = u0(x).

(14.14)

For the forward problem, the goal is to solve for the solution u given the diffusivity
c, the source term s, the boundary condition g, and the initial condition u0. At first
sight, we have two groups of observations for u: u on the boundary x = 0 and x = 1,
and u at the initial time t = 0. In fact, the equation can be viewed as the third group
of observations after we put the terms including the unknown solution u on the left-
hand-side and keep the known term s on the right-hand-side of the diffusion equation.
The data model takes the form

y1(x1) =
(

∂
∂t − c ∂2

∂x2

)
{u(x1)} + ε1 = s(x1) + ε1, x1 ∈ (0, 1) × (0, 1],

y2(x2) = u(x2) + ε2 = g(x2) + ε2, x2 ∈ {0, 1} × (0, 1],
y3(x3) = u(x3) + ε3 = u0(x3) + ε3, x3 ∈ (0, 1) × {0}.

(14.15)
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The symbol x instead of x, t is used for simplicity. To approximate u, we consider
a GP u(x; θ) ∼ GP(0, ku(x, x′; θ)). We need input-output pairs to learn the hyper-
parameters θ . The datasetsD2 = {x2,i , g(x2,i ) + ε2}N2

i=1 andD3 = {x3,i , u0(x3,i ) +
ε3}N3

i=1 can be directly applied to theGP u, but the datasetD1 = {x1,i , s(x1,i ) + ε1}N1
i=1

cannot, since D3 are the observations of a linear transformation of u. Thanks
to the fact that a linear transformation of a GP is still a GP [17], U (x; θ) :=
Lc

xu(x; θ) ∼ GP(0, kU (x, x′; θ)) is a GP sharing hyper-parameters with u, where
Lc

x = ∂/∂t − c∂2/∂x2. The x in the subscript of L emphasizes that the partial
differentiation acts on x. It should be noted that the operator Lc

x must be a lin-
ear operator. For nonlinear operators in other equations, they need to be lin-
earized first before GP regression works. For example, for nonlinear dynamical
systems, explicit time integration automatically provides this linearization about
the state of the previous time step. The covariance function for the GP U is
computed as kU (x, x′; θ) = Lc

xLc
x′ku(x, x′; θ). We have two GPs u and U now,

and they are correlated. Hence, we also need to know the cross-covariance func-
tion between them: kuU = Cov(u,Lc

x′u) = Lc
x′Cov(u, u) = Lc

x′ku ; similarly, kUu =
Cov(Lc

xu, u) = Lc
xCov(u, u) = Lc

xku . Due to ku(x, x′; θ) = ku(x′, x; θ), we have
kuU (x, x′) = kUu(x′, x). Assuming the QoI u(x∗; θ) and the observation vectors
y1, y2, y3 to have joint Gaussian distribution, we obtain a GP prior similar to (14.8)

⎡

⎢⎢
⎣

u(x∗; θu)

y1
y2
y3

⎤

⎥⎥
⎦ ∼ N

⎛

⎜⎜
⎝

⎡

⎢⎢
⎣

0
0
0
0

⎤

⎥⎥
⎦ ,

⎡

⎢⎢
⎣

ku(x∗, x∗) kuU (x∗,X1) ku(x∗,X2) ku(x∗,X3)

kUu(X1, x∗) kUn(X1,X1) kUu(X1,X2) kUu(X1,X3)

ku(X2, x∗) kuU (X2,X1) kun(X2,X2) ku(X2,X3)

ku(X3, x∗) kuU (X3,X1) ku(X3,X2) kun(X3,X3)

⎤

⎥⎥
⎦

⎞

⎟⎟
⎠ ,

(14.16)
whereXk = [xk,1, xk,2, . . . , xk,Nk ], kUn(X,X) = kU (X,X) + σ 2

n I, and kun(X,X) =
ku(X,X) + σ 2

n I. The subscript n in kUn and kun emphasizes that these covariance
matrices take into account “noise”. We omit θ in covariance function for simplicity.
Note that the covariance matrix is symmetric. Next, we can compute the predictive
mean and variance according to the formulas (14.9) and (14.10), respectively. The
hyper-parameters and noise std are learned by minimizing the negative log marginal
likelihood (14.11), where y = [ yT

1, y
T

2, y
T

2]T ,K consists of 3 × 3 sub-matrices in the
lower right of the covariance matrix in (14.16), and N = N1 + N2 + N3.

In addition to the forward problem, PIGPs can also handle inverse problems, such
as parameter estimation. The problem is defined as

∂u(x, t)

∂t
= c

∂2u(x, t)

∂x2
+ s(x, t), [x, t] ∈ (0, 1) × (0, 1],

u(x, t) = g(x, t), [x, t] ∈ [0, 1] × [0, 1],
(14.17)

where we aim to estimate the PDE parameter c given the source term s and the
observations g. The data model is

y1(x1) =
(

∂
∂t − c ∂2

∂x2

)
{u(x1)} + ε1 = s(x1) + ε1, x1 ∈ (0, 1) × (0, 1],

y2(x2) = u(x2) + ε2 = g(x2) + ε2, x2 ∈ [0, 1] × [0, 1]. (14.18)
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Compared to the forward problem, the sampling space for x2 (i.e. �2) now is the
whole spatio-temporal domain. Note that x2 is not necessarily sampled on the bound-
ary of spatio-temporal domain. The GP prior is similar to (14.16) except that y3 does
not exist. The negative log marginal likelihood is the same as that for the forward
problem. Other than θ and σn , one extra hyper-parameter, c, can be learned by min-
imizing

− log p(c, θ , σn; y, X) = 1

2
y
T
(K + σ 2

n I)
−1 y + 1

2
log |K + σ 2

n I| + N

2
log 2π.

(14.19)
The PDE parameter c enters the matrixK through the derivation of kU , kuU and kUu .
The optimal value of c is what we expect for parameter estimation.

14.3.3.2 Discrete-Time GPs

Analternative approach is to treat spatial and temporal coordinates differently, by dis-
cretizing the temporal domain of the problem (14.14) but leaving the spatial domain
approximated by GPs. For temporal discretization scheme, we start from the back-
ward Euler

un+1(x) − un(x)

	t
= c

d2un+1(x)

dx2
+ sn+1(x), x ∈ (0, 1), n = 0, 1, . . . , T − 1,

(14.20)
where 	t = 1/T , un(x) := u(x, n	t) and sn(x) := s(x, n	t). The initial and
boundary conditions are u0(x) = u0(x) and un(0) = gn(0) := g(0, n	t), un(1) =
gn(1) := g(1, n	t), respectively. The data model for the forward problem is

y1(x1) =
(

I − c	t
d2

dx2

)

{un+1(x1)} + ε1 = un(x1) + 	tsn+1(x1) + ε1, x1 ∈ (0, 1),

y2(x2) = un+1(x2) + ε2 = gn+1(x2) + ε2, x2 ∈ {0, 1}
(14.21)

with n = 0, 1, . . . , T − 1. The datasets are D1 = {x1, un(x1) + 	tsn+1(x1) + ε1}
and D2 = {x2, gn+1(x2) + ε2}. In the data model, the nth snapshot un(x1) is only
known for n = 0. We first obtain the estimate of u1(x1), denoted by ũ1(x1), using
GPs, and then repeat the GP regression to predict u2(x∗) after replacing u1(x1) with
ũ1(x1). Every time we move from nth snapshot to (n + 1)th snapshot, we use the
estimate of un(x1) predicted from the previous step to predict un+1(x∗). It is not hard
to see that the numerical error of GP approximation will be accumulated as we move
step by step in time.

Toapproximateun+1,we assumeaGPun+1(x; θn+1) ∼ GP(0, kn+1
u (x, x ′; θn+1)).

To utilize the observations y1, we derive the covariance function forU n+1(x; θn+1) =
Lc

x,	t u
n+1(x; θn+1)whereLc

x,	t = I − c	t d2

dx2 . Similar to the continuous-timeGPs,
the covariance functionofU n+1 is kn+1

U (x, x ′; θn+1) = Lc
x,	tLc

x ′,	t k
n+1
u (x, x ′; θn+1);

the cross-covariance functions between un+1 and U n+1 are kn+1
uU =Lc

x ′,	t k
n+1
u and
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kn+1
Uu =Lc

x,	t k
n+1
u . Note that kn+1

uU (x, x ′; θn+1)=kn+1
Uu (x ′, x; θn+1). The GP prior for

the data model is

⎡

⎣
un+1(x∗; θn+1)

y1
y2

⎤

⎦ ∼ N

⎛

⎝

⎡

⎣
0
0
0

⎤

⎦ ,

⎡

⎣
kn+1

u (x∗, x∗) kn+1
uU (x∗,X1) kn+1

u (x∗,X2)

kn+1
Uu (X1, x∗) kn+1

Un (X1,X1) kn+1
Uu (X1,X2)

kn+1
u (X2, x∗) kn+1

uU (X2,X1) kn+1
un (X2,X2)

⎤

⎦

⎞

⎠ ,

(14.22)
where kn+1

Un (X,X) = kn+1
U (X,X) + σ 2

n I, and k N+1
un (X,X) = kn+1

u (X,X) + σ 2
n I.Note

that the subscript “n” indicates “noise”, whereas the superscript “n” denotes the index
of time step. The predictive mean and variance are computed according to (14.9) and
(14.10), respectively. The hyper-parameters θn+1 and the noise std σn are learned by
minimizing the negative log likelihood function.

The datamodel for the inverse problem is the same as that for the forward problem
except the sampling space of x2. For the inverse problem, x2 ∈ [0, 1], whereas for
the forward problem, x2 ∈ {0, 1}. Solving inverse problems requires performing GP
regression only once based on observations of two successive snapshots, which is
more efficient than solving the forward problem. For instance, it suffices to estimate
the diffusivity c based on the observations y1 = u10(x1) + 	ts11(x1) + ε1 and y2 =
u11(x2) + ε2. The GP prior has a similar form to that of the forward problem. The
diffusivity c, the hyper-parameters θn+1, and the noise std σn are jointly learned by
minimizing the negative log likelihood function.

14.3.4 Physics-Informed Neural Network: PINN

In the PIGPs, the first step is to approximate the PDE solution with a GP prior
u(x; θ) ∼ GP(0, k(x, x′; θ)), where θ collects all the hyper-parameters in the kernel
k. Similarly, in the PINNs, the first step is to approximate the PDE solution with a
NN u(x; θ), where θ represents the parameters of the NN. The PINN models can
also be divided into two categories according to whether temporal discretization is
performed: continuous-time NNs and discrete-time NNs.

14.3.4.1 Continuous-Time NNs

We still consider the 1D diffusion problem (14.14). The data model is exactly the
same as the data model (14.15) of the continuous-time GPs. To learn θ , we minimize
the mean squared error loss function, which is similar to (14.13).
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Loss(θ) = 1

N1

N1∑

i=1

[
y1(x1,i ) − Lc

xu(x1,i ; θ)
]2 + 1

N2

N2∑

i=1

[
y2(x2,i ) − u(x2,i ; θ)]2

+ 1

N3

N3∑

i=1

[
y3(x3,i ) − u(x3,i ; θ)

]2 + J{u}.
(14.23)

We can evaluate Lc
xu(x; θ) analytically using the chain rule of differentiation. For

instance, the automatic differentiation routine provided in TensorFlow [18] can be
employed to compute the derivatives of u. For integral or integro-differential oper-
ators, where the chain rule does not work, one can discretize the operator with
traditional numerical approaches [19]. The data model for the inverse problem is the
same as (14.18), and the loss function takes the form

Loss(c, θ) = 1

N1

N1∑

i=1

[
y1(x1,i ) − Lc

xu(x1,i ; θ)
]2 + 1

N2

N2∑

i=1

[
y2(x2,i ) − u(x2,i ; θ)]2

+ 1

N3

N3∑

i=1

[
y3(x3,i ) − u(x3,i ; θ)

]2 + J{u}.
(14.24)

The diffusivity c enters the loss function through the differential operator Lc
x acting

on u. Also, c and θ are jointly learned to minimize the loss function.

14.3.4.2 Discrete-Time NNs

We consider the backward Euler scheme in temporal discretization again. The data
model is the same as (14.21) of the discrete-time GPs. We assume un+1(x) to be a
NN un+1(x; θn+1). The loss function takes the form

Loss(θn+1) = 1

N1

N1∑

i=1

[
y1(x1,i ) − Lc

x,	t u
n+1(x1,i ; θn+1)

]2 +

1

N2

N2∑

i=1

[
y2(x2,i ) − un+1(x2,i ; θn+1)

]2 + J{un+1}. (14.25)

The loss function for the inverse problem is exactly the same as (14.25) except for
one extra parameter c to be learned.
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14.3.5 Connection Between GPs and NNs

The kernel of GPs, k(·, ·), and the activation function of NNs, G(·), are related when
the widths of hidden layers of NNs are infinity, namely, n j → ∞, j = 1, . . . , l − 1,
and when the weights and biases are independently and identically distributed (i.i.d.)
random variables. Specifically, let us recall the matrix-vector form of feedforward
NNs (14.12). Suppose entries of theweightmatrix and the bias vector are i.i.d. random
variables with zero mean and variance σ 2, [Wk]i j ∼ 
(0, σ 2

w), [bk]i ∼ 
(0, σ 2
b ) for

k = 1, 2, . . . , l, where
 is a certain distribution. Entries of weight matrices and bias
vectors are independent both in the same layer and across layers. Then, we know
that the component of the output of the j th hidden layer, i.e. the component of x j for
j = 2, . . . , l, is aGP indexed by x, which is denoted by x j [i](x) ∼ GP(0, k j (x, x′))
for i = 1, 2, . . . , n j and n j → ∞. The GPs for different components are the same
with the kernel k j (x, x′). We rewrite the notation x j [i](x) as x j [·](x). Finally, we
have the formula relating the kernel of GPs to the activation function of this infinitely
wide NNs

k j (x, x′; θ = {σw, σb}) = σ 2
wE

[
G(x j−1[·](x) ) G(x j−1[·](x′) )

] + σ 2
b (14.26)

with j = 2, 3, . . . , l. We refer readers to [20] for the details of deriving the formula.
Using this formula, we can construct a GP with the NN-induced kernel kl(x, x; θ),
which could make GPs more flexible in approximating functions involving discon-
tinuities and in solving PDEs whose solutions have large gradients [20].

Remark 2We note that both PIGPs and PINNs require the solution of a non-convex
optimization problem, in which we are very easy to be stuck in local minima, par-
ticularly for high-dimensional optimization problems in PINNs. Therefore, even for
well-posed initial-boundary value problems, the current formulations do not guaran-
tee unique solutions. Multi-started gradient-based optimization algorithms are com-
monly used to minimize the non-convex loss functions. However, we have observed
that the presence of more data points can greatly increase the rate of training, which
is suggestive of attraction to a “relevant” minimum.

14.4 An Illustrative Example

We demonstrate the implementations of the PIGP and the PINN models using a
pedagogical example, i.e. how to solve forward and inverse problems of a 1D linear
PDE. The Python codes for the example are available at [13].

Let us consider the diffusion problem with the fabricated solution u(x, t) =
sin(2πx) exp{−t}.



14 Physics-Informed Learning Machines … 335

∂u(x, t)

∂t
= c

∂2u(x, t)

∂x2
+ s(x, t), [x, t] ∈ (0, 1) × (0, 1],

u(0, t) = u(1, t) = 0, t ∈ (0, 1],
u(x, 0) = sin(2πx), x ∈ (0, 1),

(14.27)

with c = 0.1 and the source term s(x, t) = sin(2πx) exp{−t}(4cπ2 − 1). The goal
of the forward problem is to predict u given diffusivity c, source term s, and initial-
boundary conditions. Here, 5% white Gaussian noise is added to y j , and the noise
std is calculated as σn = 5% × std(y j ), where std(y j ) is the population standard
deviation of the observation y j .

For continuous-time GPs, the data model is (14.15); x1, x2, and x3 are the inputs
of the datamodel; x1 are scattered in the spatio-temporal domain and are taken from a
quasi-random sequence, called the Sobol sequence, and x2 and x3 are uniformly dis-
tributed on the boundary of the spatio-temporal domain. We take the Sobol sequence
[21] for selecting x1 since the sequence can cover the domain �1 = (0, 1) × (0, 1]
as much as possible. The kernel for u is assumed to be a squared exponential

ku(x, x′; θ) = σ 2 exp

(
− (x − x ′)2

2θ2
x

− (t − t ′)2

2θ2
t

)
, (14.28)

where x = [x, t]T and θ = [σ, θx , θt ]T . The selection of a specific kernel depends
on the properties of the data, such as the smoothness and periodicity the data
demonstrates. Since the fabricated solution we consider is very smooth, we select
a smooth kernel, which is infinitely differentiable. Automatic selection of ker-
nels is possible, e.g. [22], but is beyond the scope of this book chapter. The ana-
lytical expression for the induced kernels kU , kuU , and kUu can be derived by
symbolic computation using Maple or other software. Before making predictions
using the mean and covariance formulas (14.9) and (14.10), we learn the hyper-
parameters θ and the noise std σn byminimizing the negative logmarginal likelihood
(14.11). A stochastic gradient descent algorithm –Adam, written in TensorFlow– is
employed to perform the minimization. We take 30 points for x1 (N1 = 30) and 28
points for {x2, x3} (N2 + N3 = 28). The initial guesses for the hyper-parameters
and noise std are all ones. After 30000 Adam iterations, these parameters are
σ = 4.300, σn = 8.743 × 10−8, θx = 0.4075, and θt = 1.842 for thenoise-free case,
and σ = 1.753, σn = 0.0569, θx = 0.4098, θt = 1.828 for 5%-noise case. In the
noise-free case, the learned noise variance is almost zero, while in the 5%-noise
case, the learned noise std has the same order of magnitude as the std of ε j , namely,
std(ε1) = 0.05 × std(y1) ≈ 0.07 and std(ε2,3) = 0.05 × std({y2, y3}) ≈ 0.02. We
see that the noisemagnitude canbe inferred accurately by theGPsmodel.Wenote that
the hyper-parameters are also known as characteristic lengths. The learned length,
θx , in x direction is smaller than θt , in t direction, which indicates that the solution
varies faster in x direction. The L2 relative error for predicting u is 1.15 × 10−4 and
0.029 for noise-free and 5%-noise cases, respectively.
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For continuous-time NNs, the data model is still (14.15). We specify the width
(n j in (14.12)) and the depth (l in (14.12)) of the NN. These two hyper-parameters
are selected empirically here, but they can also be automatically obtained based on
meta-learning strategies [15, 23]. We choose n j ≡ 20 and l = 3 for all NN examples
in this section. The automatic differentiation function in TensorFlow is employed
to analytically derive Lc

xu in the loss function (14.23). The loss function is also
minimized using the Adam optimizer in TensorFlow. We set the iteration number
of the Adam optimizer to be 0.1 million. The number of iterations can be pre-set
to be a large value, and a threshold condition, for instance, that the value of loss
function is lower than 10−6, is employed to terminate the iteration before reach-
ing that pre-set iteration number. We compare the L2 relative error of the predic-
tion u for the cases with and without regularization. For the 5%-noise case, in the
absence of regularization, the error is roughly 10%, but if we consider L2 regular-
ization J{ fNN} = 10−4 ∑l

k=1 ‖Wk‖2L2
, the error decreases to 3.7%. In addition, for

the noise-free case, the error is 6.4 × 10−3, which is one order of magnitude higher
than the error for GPs. The non-parametric feature of GPs accounts for its higher
accuracy. GPs is a non-parametric model, whereas NNs is a parametric model. There
is an infinite number of parameters in GPs (note that these parameters differ from
the hyper-parameters conceptually), but the number of the parameters in NNs model
is finite. For instance, for the index set x ∈ (0, 1), the parameters of a GP fGP(x) are
{ fGP(x)|x ∈ (0, 1)}, the cardinality of which is infinity.

In addition to the forward problem, we also test the inverse problem in which we
identify the diffusivity c based on the two snapshots of u at t = 0.5 and t = 0.51.
Since the observations are only two snapshots, the continuous-time models are not
appropriate.We consider instead the discrete-timeGP and the discrete-timeNNmod-
els, whose data models are the same, namely, (14.21). We set 	t = 0.01 according
to the observations. There are 20 equispaced training points for each snapshot, i.e.
N1 = N2 = 20. The initial guess for c is 1.0, and it converges to the true value
c = 0.1 after 2000 Adam iterations for GPs and 7500 Adam iterations for NNs, in
the noise-free case. The initial guess converges to 0.124 for GPs and 0.136 for NNs
in the 5%-noise case. The slower convergence for NN can be explained by the fact
that there are many more parameters to be optimized in NNs compared to GPs.

14.5 Comparison of PIGPs and PINNs for Nonlinear PDEs

Continuous-timeGPs does notwork for nonlinear equations, while discrete-timeGPs
works for nonlinear equations such as Burgers’ and Navier–Stokes equations upon
proper linearization. Compared to PIGP models, continuous-time and discrete-time
NNs are much more flexible for strongly nonlinear equations, without linearization
of PDEs. In this section, we demonstrate the results for 1D Burgers’ equation and
2D Navier–Stokes equation in order to show certain features of discrete-time GPs
and PINNs in handling nonlinear PDEs.

The Python codes for this section are available at [13].
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14.5.1 1D Burgers’ Equation

The forward problem is to solve for u [4]

ut + λ1uux − λ2uxx = 0, x ∈ (−8, 8), t ∈ (0, 5], (14.29)

with λ1 = 1, λ2 = 0.1, the Gaussian profile initial conditions [24] and the boundary
conditions u(−8, t) = u(8, t) = 0. In the inverse problem, the parameter estimation
task is to estimate the parameters λ1 and λ2 based on two snapshots of u at t = 1.5
and t = 1.6.

For the discrete-time models, instead of a backward Euler for temporal discretiza-
tion, which has only first-order accuracy, here we consider a fourth-order implicit
Runge–Kutta method [3]. The data model for the discrete-time models and for the
forward problem takes the form

y1(x1) = Lγ
1 {un+1, un+c2 , un+c1 } = un+1 − b1	tNγ

x {un+c1 } − b2	tNγ
x {un+c2 } = un,

y2(x2) = Lγ
2 {un+1, un+c2 , un+c1 } = un+c2 − a21	tNγ

x {un+c1 } − a22	tNγ
x {un+c2 } = un,

y3(x3) = Lγ
3 {un+1, un+c2 , un+c1 } = un+c1 − a11	tNγ

x {un+c1 } − a12	tNγ
x {un+c2 } = un,

y4(x4) = un+1 = 0, x4 ∈ {−8, 8},
y5(x5) = un+c2 = 0, x5 ∈ {−8, 8},
y6(x6) = un+c1 = 0, x6 ∈ {−8, 8},

(14.30)
where x1, x2, x3 ∈ (−8, 8), a11 = 0.25, a12 = 0.25 −

√
3
6 , a21 = 0.25 +

√
3
6 , a22 =

0.25, b1 = b2 = 0.5, c1 = 0.5 −
√
3
6 , c2 = 0.5 +

√
3
6 , and un+ci := u(x, (n + ci )	t).

The differential operator Nγ
x {uk} = −λ1ukuk

x + λ2uk
xx . To make the discrete-time

GPs work, we linearize the operator as Ñγ
x {uk} = −λ1unuk

x + λ2uk
xx , k = n +

1, n + c2 and n + c1, where un is known from the initial conditions or estimated in the
previous time step.ThreeGPpriors are, respectively, placedonun+1,un+c2 , andun+c1 :
un+1(x; θn+1) ∼ GP(0, kn+1

u (x, x ′; θn+1)), un+c2(x; θn+c2) ∼ GP(0, kn+c2
u (x, x ′;

θn+c2)), andun+1(x; θn+c1) ∼ GP(0, kn+c1
u (x, x ′; θn+c1)). The cross-covariance func-

tions between observations kyi ,y j (x, x ′) are derived in a similar manner as in
Sect. 14.3.3.2. The derived cross-covariance functions can be found in [3]. On the
other hand, for the discrete-time NNs, rather than linearized operator Ñγ

x , we still
consider the original operatorNγ

x , and assume un+1, un+c2 , and un+c1 to be the mul-
tiple outputs of a NN fNN(x, θ). In other words, we need to set the width of the
output layer of the NN to be three, or nl = 3. Note that the three outputs share the
same parameters θ .

We first compare the discrete-time GPs and the continuous-time NNs for the
forward problem. For the discrete-time GPs, we select 70 equispaced training points
for u0 (N1 = N2 = N3 = 70) and fix the locations of these points for n > 0. The
hyper-parameters we have learned in the nth time step are fed to the (n + 1)th time
step as the initial guesses for the hyper-parameters in (n + 1)th time step. We train
the GP u1 for 5000 Adam iterations and train the GPs un+1 only for 500 iterations
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for n > 0. For continuous-time NNs, we select 100 (N2 = 100) and 256 (N3 =
256) equispaced training points for enforcing the boundary and initial conditions,
respectively. We place 2000 training points, generated by the Sobol sequence, in the
spatio-temporal domain to enforce the PDE (N1 = 2000), and train the model by
0.2 million Adam iterations. We consider the noise-free case here and refer readers
to [4] for noisy cases. The width for the NN is 10, and the depth is 9.A hyperbolic
tangent activation function is employed. The fabricated solution is taken from [24].
The L2 relative error of u for the discrete-time GPs is 0.0158 for 	t = 0.05, 0.0032
for 	t = 0.01, and 0.0016 for 	t = 0.005. The error for the continuous-time NN
is 0.0014. Decreasing the temporal step size will increase the solution accuracy for
GPs, and GPs achieve comparable accuracy to NNs with 	t = 0.005. Since NNs
have many more parameters to be learned than GPs, NNs requires more training
data-points than GPs do to achieve comparable accuracy. Figure14.1 compares the
patterns in the absolute error fields ofGPs andNNs.We see fromFig. 14.1(b) thatGPs
approximation and linearization errors are accumulated when we move step by step
in time. Also, the absolute error is basically proportional to the solution magnitude.
In contrast, for NNs, there is no specific trend for the absolute error distribution
because the training points x1 are scattered in the spatio-temporal domain.

The estimated parameters for the inverse problemareλ1 = 1.019 andλ2 = 0.1012
for the discrete-timeGPs, and λ1 = 0.9997 and λ2 = 0.09942 for discrete-timeNNs,
whereas the true parameters are λ1 = 1.0 and λ2 = 0.1. We consider the discrete-
time NNs instead of the continuous-time NNs because of the availability of small
dataset. The same training points are taken as in the discrete-time GPs case, and we
take 	t = 0.1 as the observed data requires. The width of the NN is 10, and the
depth is 5. The hyperbolic tangent activation function is employed. In terms of the
accuracy of the estimated parameters, NNs outperform GPs slightly, which could be
explained by the fact that NNs are free of the linearization error.

14.5.2 2D Navier–Stokes Equations

Here we consider the inverse problem formulated as a parameter estimation problem,
aiming at estimating the parameters λ1 and λ2 of the equations [4]

ut + λ1(uux + vuy) = −px + λ2(uxx + uyy),

vt + λ1(uvx + vvy) = −py + λ2(vxx + vyy),
(14.31)

based on two snapshots of u, v at t = 0.18 and t = 0.20. The equations describe
a fluid flow past a cylinder, and here (x, t) ∈ (−1.7, 1.7) × (0, 10]. The flow is
incompressible ux + vy = 0. For convenience of implementation, we consider the
backward Euler scheme, instead of the higher-order schemes such as the aforemen-
tioned Runge–Kutta scheme, for the temporal discretization. The data model for the
discrete-time models is
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1D Burgers' equation: Exact solution
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Fig. 14.1 1D Burgers’ equation (Forward problem): Comparison of the discrete-time GP and the
continuous-time NN. a Fabricated solution in spatio-temporal domain with data taken from [24],
b absolute error of the discrete-time GP in spatio-temporal domain, and c absolute error of the
continuous-time NN in spatio-temporal domain. Time step size 	t = 0.005 for the discrete-time
GP

y1(x1) = Lγ
1 {un+1, vn+1, pn+1} = un+1 − 	tNγ

1,x,y{un+1, vn+1, pn+1} = un,

y2(x2) = Lγ
2 {un+1, vn+1, pn+1} = vn+1 − 	tNγ

2,x,y{un+1, vn+1, pn+1} = vn,

y3(x3) = un+1
x + vn+1

y = 0,

y4(x4) = un+1,

y5(x5) = vn+1,

(14.32)
where x j ∈ (−1.7, 1.7) × (0, 10], j = 1, 2, 3, 4, 5 and Nγ

1,x,y{un+1, vn+1, pn+1} =
−λ1(un+1un+1

x + vn+1un+1
y ) − pn+1

x + λ2(un+1
xx + un+1

yy ) and Nγ
2,x,y{un+1, vn+1,

pn+1} = −λ1(un+1vn+1
x + vn+1vn+1

y ) − pn+1
y + λ2(vn+1

xx + vn+1
yy ). The linearized

operators are Ñγ
1,x,y{un+1, vn+1, pn+1}= − λ1(unun+1

x + vnun+1
y ) − pn+1

x +
λ2(un+1

xx + un+1
yy ) and Ñγ

2,x,y{un+1, vn+1, pn+1} = −λ1(unvn+1
x + vnvn+1

y ) − pn+1
y +

λ2(vn+1
xx + vn+1

yy ). Three GP priors are placed on un+1, vn+1, and pn+1, and the mul-
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tiple outputs of the NNs are also un+1, vn+1, and pn+1. Alternatively, to reduce the
number of unknown functions, it is convenient to define an auxiliary function ψ ,
which relates to the velocity by un+1 = ψn+1

y and vn+1 = −ψn+1
x . We thus leave out

the third group of observations y3, and the GP priors and NN outputs both change
to ψn+1 and pn+1. We refer readers to [4, 10] for more implementation details of
the discrete-time GP and NN models for this problem. We take 250 scattered points
for each snapshot and consider the noise-free case. We take 	t = 0.02 according
to the observed snapshots. The Adam iterations for GPs and NNs are 3 × 104 and
2 × 106, respectively. The width of the NNs is 10, and the depth is 9; a hyperbolic
tangent activation function is used. In the noise-free case, the estimated parame-
ters are λ1 = 1.001 and λ2 = 0.0092 for the discrete-time GPs and λ1 = 0.9955 and
λ2 = 0.0094 for the discrete-timeNNs, whereas the true parameters are λ1 = 1.0 and
λ2 = 0.01. GPs andNNs produce comparable accuracy for the estimated parameters.
It should be noted that the NNs are easily extended to a very high order Runge–Kutta
method, such as the 500-stage Runge–Kutta method considered in [10], in which we
only need to let the NNs output un+1 and un+ci , i = 1, 2, . . . , 500. For the discrete-
time GPs, however, the resulting covariance matrix will become too large to make
the model computationally efficient.

14.6 Summary and Outlook

We review and compare recent physics-informed learning models built upon GPs
and deep NNs. In Sect. 14.2 we start with a unified data model on which GPs, PIGPs,
NNs, and PINNs are based. We then illustrate the concepts of GPs and NNs for func-
tion approximation in Sects. 14.3.1 and 14.3.2. Thanks to the analytical tractability
of differentiation of the GP kernel and of the deepNNs, it is straightforward to extend
GPs and NNs to solve PDEs. The differential operators in PDEs enter the likelihood
function of GPs and the loss function of NNs by acting on the GP kernel and deep
NNs, respectively, as discussed in Sects. 14.3.3 and 14.3.4. Continuous-time and
discrete-time models are distinguished, depending on whether it is necessary to per-
form temporal discretization. Moreover, a connection between the GP kernel and the
activation function of NNs is briefly discussed in Sect. 14.3.5. In Sect. 14.3.4, a ped-
agogical example is given to demonstrate the implementation of PIGPs and PINNs,
andwe include the Python codes to demonstrate the simplicity of the implementation.
In Sect. 14.3.5, we compare PIGPs and PINNs for two nonlinear equations: the Burg-
ers’ equation and theNavier–Stokes equations. Continuous-timeGPs are not possible
for nonlinear PDEs, and hence we compare the discrete-time GPs, the continuous-
time NNs, and the discrete-time NNs. For a forward problem, the discrete-time GPs
and the discrete-time NNs both suffer from the accumulated temporal discretization
error, while the discrete-time GPs also suffer from the linearization error. High-order
temporal discretization schemesmaymitigate the accumulated error, but it is not easy
to extend GPs to handle high-order schemes since forming the covariance matrix by
symbolic computation becomes very tedious. In contrast, it is much easier to modify
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NNs to handle high-order schemes by only changing the width of the output layer.
The continuous-time NN is trained only once, whereas the discrete-time NNs is suc-
cessively trained from one time instant to the next one. Nevertheless, the continuous-
time NN requires many more data-points than the discrete-time NNs, since it places
training points in the entire spatio-temporal domain. For parameter estimation, the
discrete-time models require fewer training data-points than the continuous-time
models. However, if the goal is to simultaneously identify the PDE parameters and
reconstruct the solution field, the continuous-time models may perform better [25].

The PIGPs could be optimized to assimilate heterogeneous datasets by employing
the kernels induced by NNs [20, 26] or kernels automatically selected from the
kernel space [22]; moreover, PIGPs could handle big data by leveraging scalable
GPs, e.g, [27]. On the other hand, PINNs may be more efficient in tackling long-time
integration of time-dependent PDEsby leveragingpararealmethods [28].Apart from
PDEs, PINNs can be easily extended to solve ODEs and integral/integro-differential
equations [19, 29]. Another attractive feature of PIGPs and PINNs is that both of
them can be modified to be trained based on multifidelity framework [30–32], which
could utilize experimental data and synthetic datasets to construct a surrogate for the
highest fidelity dataset.

The progress that has been made so far for physics-informed learning is encour-
aging, but there are still several open issues related to the accuracy and efficiency of
both PIGPs and PINNs. In both cases, the underlying difficulty is related to the solu-
tion of a non-convex optimization problem whose solution is not guaranteed. This
makes the solution of forward problems inefficient compared to traditional numer-
ical methods. At this juncture, our experience suggests that PIGPs and PINNs are
more effective for inverse problems for which the given data helps the minimizer to
reach a minimum at a faster rate. Moreover, the implicit regularization of machine
learningmodels allows them to solve ill-posed problems, e.g. due to lack of boundary
conditions, which is not possible with traditional methods. A fundamental question
still remains open as to the possibility of simulating nonlinear systems with chaotic
dynamics without the need of observers as suggested in the work of [33].

Despite the aforementioned current technical issues, we expect the methods pre-
sented herein and appropriate extensions and variants to form the algorithmic back-
bone of “digital twins” across scientific domains and applications. This is based on
the already clear advantages of PIGPs and PINNs over traditional numerical meth-
ods, e.g. in integrating seamlessly multi-fidelity data and mathematical models, their
simplicity of implementation and maintenance of the computer codes, and the lack
of need for laborious mesh generation. Moreover, they can be readily extended to
nonlinear multi-physics problems of industrial complexity and can be employed in
modern design as in the recent example where NVIDIA engineers have used PINNs
running on their GPUs to improve the design of the next generation of GPUs [34].
On the fundamental side, physics-informed learning machines are likely to tackle
grand challenges, e.g. the problems of turbulence, which is the last frontier in clas-
sical physics. In addition, they can be used to discover new principles in the form of
conservation laws, e.g. in social dynamics, where there are no governing principles
but there is an enormous amount of daily data thanks to social media.
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Chapter 15
Nonlinear Systems for Unconventional
Computing

Kirill P. Kalinin and Natalia G. Berloff

Abstract The search for new computational machines beyond the traditional von
Neumann architecture has given rise to a modern area of nonlinear science—
development of unconventional computing—requiring the efforts ofmathematicians,
physicists and engineers. Many analogue physical systems including nonlinear oscil-
lator networks, lasers, and condensates were proposed and realised to address hard
computational problems from various areas of social and physical sciences and tech-
nology. The analogue systems emulate spinHamiltonianswith continuous or discrete
degrees of freedom to which actual optimisation problems can be mapped. Under-
standing of the underlying physical process by which the system finds the ground
state often leads to new classes of system-inspired or quantum-inspired algorithms
for hard optimisation. Together physical platforms and related algorithms can be
combined to form a hybrid architecture that may one day compete with conventional
computing. In this chapter, we review some of the systems and physically-inspired
algorithms that show such promise.

15.1 Introduction

We live in a world dominated by information. Systems that enable faster information
processing and decision making are becoming more integrated into our daily lives.
This data-intensive science relies on continual improvements in hardware for solving
ever growing, e.g. in number of variables and constraints, optimisation problems.
Digital electronics can no longer satisfy this trend, as exponential hardware scaling
(Moore’s law) and the von Neumann architecture are reaching their limits [1, 2].
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Looking beyond the traditional computing one turns to physical platforms that
with their superior speed and reconfigurability and internal parallel processing can
provide faster alternatives to solving a specialised class of nonlinear problems.
Despite a number of physical systems that were proposed as quantum or analogue
simulators and further elucidated in active applied research, significant challenges
still remain before scalable analogue processors can be realised and show the supe-
rior performance in comparisonwith the vonNeumann computing architecture. Over
the years, various unconventional computing techniques were proposed that enable
simultaneous communication, computation, and memory access throughout their
architecture with the purpose to alleviate the device and system architectural chal-
lenges faced by conventional computing platforms.

Neuromorphic computing based on neural networks promises to make processors
that use low energies while integrating massive amounts of information. Quantum
annealer devices promise to find the global minimum of a combinatorial optimisation
problem faster than classical computers. Physical (natural) systems aim to become
analogue machines by bridging the physics of a particular system with hardware
platforms to enhance the performance of machine learning algorithms.

A central challenge is in the development of mathematical models—system-
inspired computing—linking physical platforms to models of complex analogue
information processing. Among such models, those based on principles of neural
networks and quantum annealing are perhaps the most widely studied.

A large class of problems that can be solved on physical platforms includes nonlin-
ear programmingproblems. They seek tominimise somenonlinear objective function
E(x) of real or complex variables x subject to a series of constraints represented by
equalities or inequalities, i.e. g(x) = 0 andh(x) ≤ 0.Numerous applications in social
sciences and telecommunications, finance and aerospace, biological and chemical
industries can be described in this basic framework [3–5].

Nonlinear optimisation problems are notoriously difficult to solve, and often
involve specialised techniques such as genetic algorithms, particle swarm optimi-
sation, simulation and population annealing. Around the vicinity of the optimal
solution nonlinear optimisation problems are quadratic to second order, and there-
fore, quadratic programming for minimising quadratic functions subject to linear
constraints is a usual simplification to such problems that can be used with a wide
array of applications. Quadratic programming occurs in various machine learning
problems, such as the support vector machine training and least squares regression.
At the same time, quadratic programming and other nonlinear optimisation problems
can bemapped to spinHamiltonians which can be emulated by real physical systems:
the degrees of freedom x become “spins,” the cost function E(x) is a “Hamiltonian”
that specifies the interaction pattern between spins. In this chapter we discuss two
possible ways by which the system can find the optimal solution—the ground state
of the corresponding spin Hamiltonian—depending on the nature of the system. The
system in thermodynamic equilibrium may find the optimal solution by quantum
annealing which is executed with the time-dependent Hamiltonian
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H(t) =
(
1 − t

τ

)
H0 + t

τ
Hobjective, (15.1)

where H0 is the initial trivial Hamiltonian whose ground state is known, and Hobjective

is the final Hamiltonian at t = τ which encodes an original objective function E(x).
If the system is in thermal equilibrium at all times then it stays close to the ground
state, as Hamiltonian parameters are adiabatically varied. A linear time dependence
in (15.1) is assumed for simplicity but more complex annealing schedules can be
used. The time τ for obtaining the result of optimisation is much larger than that
defined by the inverse of the spectral gap (the distance between the ground state
and the lowest excited state) of H(t) [6]. When spectral gap is large, the coupling
to the environment helps the annealer by cooling the system towards its ground
state, however, as the system becomes larger and the spectral gap shrinks (typically
exponentially fast with the system size) the excited states lead to large errors at the
same time slowing down the annealing procedure.

Non-equilibrium systems rely on a different principle of approaching the ground
state from below rather than via quantum tunnelling during the adiabatic annealing.
The principle of the gain-dissipative simulator is based on a two-stage process:
gain increase below the threshold and the coherence of operations at the threshold.
Ramping up the gain allows system to overcome its linear losses and to stabilise by
the nonlinearity of the gain saturation. The emergent coherent state minimises the
losses and, therefore, maximises the total number of particles as it will be explained
further below, which leads tominimising a particular functional that can bewritten as
the objective spin Hamiltonian. Close to the threshold, the resulting evolution of the
system elements resembles the dynamics of Hopfield networks which were shown
to be able to solve quadratic optimisation problems more than thirty years ago [7, 8]
by using a system of differential equations that describe the evolution of individual
neurons:

dxi

dt
= −

N∑
j=1

Ji j S j (x j ), (15.2)

where xi is an input, Sj (x j ) is the activation function (e.g. sigmoid), and Ji j is the
connectivity matrix among the neurons. Various modifications of Hopfield networks
were extensively proposed and studied [9], however, the optimisers based onHopfield
networks were surpassed by other computational methods. This is largely due to the
high connectivity between neurons that neural networks require and the concomitant
time it takes to evolve large networks on classical hardware. The recent interest
in Hopfield networks re-emerged as it became possible to create them in analogue
physical systems such as electronic circuits or photonic neural networks. Photonic
systems have an advantage over their electronic counterparts due to the picosecond
to femtosecond time scale of their operation and as hundreds of high bandwidth
signals can flow through a single optical waveguide. This means that a photonic
implementation of Hopfield networks as optimisers can have a large dimensionality
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and dense connectivity as well as a fast convergence time. However, the evolution
of Hopfield networks does not necessarily lead to the optimal solution.

In this chapter wewill review recent progress in building the analogue devices that
implement either quantumannealing or gain-dissipative principle in their architecture
while illustrating the idea of devising system-inspired algorithms.

15.1.1 Spin Hamiltonians

The majority of optimisation problems are computationally impractical for conven-
tional classical computers with classic examples of a so-called “hard optimisation
task” being the travelling salesman problem, the dynamic analysis of financial mar-
kets, the prediction of new chemical materials, and machine learning hardware [10].
Mathematically, it is possible to reformulate many of these optimisation problems
from vastly different areas as a problem of finding the ground state of a particular
spin New Hamiltonian with discrete or continuous degrees of freedom. Throughout
this chapter, we will refer to this spin Hamiltonian optimisation simply as solving
spin model. The spin Hamiltonian can be emulated with a given simulator, e.g. solid-
state system, that would need to have an easy mapping of the variables of the desired
Hamiltonian into the elements (spins, currents etc.) of the simulator, independently
tunable short and long range interactions between them, and would allow one to
perform measurements to obtain the answer with the required precision. Such spin
model Hamiltonians are experimentally challenging to implement and control but
their possible advantageous performance over classical computers, which struggle
solving sufficiently large problem sizes, leads to an intensive search for a superior
simulator. Such simulators have been proposed and realised to a various extent in
disparate physical systems. Among these systems, two classes of spin Hamiltonians
are more common: Ising and XY Hamiltonians. For instance, the Ising Hamiltonian
is widely used for a vast variety of hard discrete combinatorial optimisation prob-
lems, so that travelling salesman, graph colouring, graph partitioning, and others can
be mapped into it with a polynomial overhead [11]. This model is formulated for
N classical “spins” s j that take discrete values {−1, 1} to minimise the quadratic
unconstrained binary optimisation (QUBO) problem:

min −
N∑

i=1

N∑
j=1, j<i

Ji j si s j +
N∑

i=1

hi si subject to si ∈ {−1, 1} (15.3)

where hi represents external (magnetic) field. This term can be incorporated in J
matrix by considering N + 1 spins and thus will be omitted for the rest of the chapter.
Experimental realisation of the nonlinear terms beyond quadratic in the Ising Hamil-
tonian would lead to a k-local spin Hamiltonian with k > 2 and would allow for
a direct mapping of higher order binary optimisation (HOBO) problems including
Max-SAT [12] or number factorisation [13]:



15 Nonlinear Systems for Unconventional Computing 349

min −
N∑

i1,i2,...ik

Qi1,i2,...il ,...,ik si1si2 . . . sil . . . sik subject to sil ∈ {−1, 1}. (15.4)

In the XYmodel “spins” are continuous s j = cos θ j + i sin θ j and the corresponding
quadratic continuous optimisation (QCO) problem can be formulated as

min −
∑
i< j

Ji j si · s j = min−
∑
i< j

Ji j cos(θi − θ j ) subject to θi ∈ [0, 2π).

(15.5)
When phases θ j are limited to discrete values 2π/n with an integer n > 2 the model
(15.5) recovers the n-state Potts model (Clock model) with applications in protein
folding [14].

QCO, QUBO, and HOBO problems are all examples of NP-hard problems. The
corresponding spin models are universal. The connection between these notions are
detailed in the next section.

15.1.2 P, NP, NP-Complete Problems

The computational complexity of a problem can be revealed by looking at the depen-
dence of the problem’s size on time or the number of operations required to solve it. In
a simple case of such polynomial dependence, i.e. when a polynomial time algorithm
exists, a problem belongs to a P class. If a polynomial time algorithm of finding a
solution is not known but there exists a polynomial algorithm for verifying a solution
when presented, then a problem belongs to non-deterministic polynomial-time (NP)
class that clearly includes the P class. Whether P = NP is true or not is a major
unsolved problem in computer science although it is widely believed to be untrue
[15]. A problem isNP-hard when every problem inNP can be reduced in polynomial
time to it. The problems that are both NP-hard and NP are called NP-complete. All
NP-complete problems are equivalent in a sense that either all of them or none of
them admit a polynomial-time algorithm. Examples include the travelling salesman
problem, spin glass models, and integer linear programming. The computational
complexity of finding the ground state of the Ising Hamiltonian (Ising model) on
finite lattices has been studied before [16] where the two-dimensional Ising model
with amagnetic field (15.3) and equal antiferromagnetic couplings has been shown to
be NP-complete for planar graphs. In addition, NP-completeness was demonstrated
for the three-dimensional Ising model with nearest neighbour interactions and cou-
pling strengths from {−1, 0, 1} [16]. Consequently, the above mentioned hierarchy
of complexity classes allows one to conclude the impossibility of existence of a poly-
nomial algorithm for computing the ground state energy of the Ising model without
the existence of a polynomial algorithm for all NP-complete problems.

The existence of universal spin Hamiltonians has been established. Universality
means that all classical spin models with any range of interactions can be repro-
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duced within such a model, and certain simple Hamiltonians such as the 2D Ising
model on a square lattice with transverse fields and nearest neighbour interactions
are universal [17]. Thus, due to NP-hardness of the Ising model, there should exist
a polynomial time mapping of many practically relevant NP-complete problems to
the Ising Hamiltonian, whose decision version solves the NP-complete problem of
interest. The mapping of various NP problems, including Karp’s 21 NP-complete
problems [18], to Ising models with a polynomial overhead was demonstrated [11].
For example, the travelling salesman problem for N cities, that are connected with
weighted edges wuv ≥ 0 from the set E (distances between cities), can be formulated
as the following Ising problem of size N 2:

HTSP = A
N∑

i=1

(
1 −

N∑
v=1

xv,i

)2

+ A
N∑

v=1

(
1 −

N∑
i=1

xv,i

)2

+ A
∑

(uv)/∈E

N∑
i=1

xu,i xv,i+1

+ B
∑

(uv)∈E

wu,v

N∑
i=1

xu,i xv,i+1. (15.6)

Each spin xv,i ∈ {0, 1} in (15.6) represents the vertex v and its order i in a path. All
valid routes in this representation are regulated by the first three terms: each city
should be in the route (first term) and should appear in it only once (second term),
any adjacent cities in the route should be connected (third term), while the search
for the optimal route is realised by minimising the sum of weights of all cities in a
route (forth term). The reasonable choice of constants A and B (e.g. A should be
big enough with respect to B > 0) guarantees that only the space of valid routes is
explored. Reshaping this two-dimensional spin matrix with elements xv,i to a spin
vector of size N 2 allows one to recover the coupling matrix J and magnetic field
h to formulate the corresponding Ising Hamiltonian. The size of the Ising problem
can be reduced to (N − 1)2 by fixing a particular city to be the first in the route.
Note, that the Hamiltonian HTSP can represent both directed and undirected graphs,
and the generalisation for the cycles optimisation problem is straightforward. We
also note that a polynomial overhead does not always apply and some combinatorial
optimisation problems can be mapped to the Ising model of the same size N . For
example, the maximum cut problem

max
S+,S−

∑
i∈S+, j∈S−

wi j (15.7)

seeks for the cut of a graph into two subsets with a largest sum of their connecting
weighted edges. By assigning +1 and −1 spins to all vertices in subsets S+ and S−,
respectively, this optimisation problem can be formulated as

max
si

1

2

∑
i< j

wi j (1 − si s j ) = 1

2

∑
i< j

wi j + min
si

1

2

∑
i< j

wi j si s j (15.8)
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and thus a maximum cut of any graph can be converted to minimisation of the cor-
responding Ising Hamiltonian with the coupling matrix Ji j = −wi j with an addition
of an offset. A well-known standardised set of maximum cut type of problems often
serve as a metric for comparison of newly proposed simulators and algorithms [19–
21].

Another example of a universal spin model is the XY model which is directly
related to the notoriously hard to solve phase retrieval problem. The problem’s objec-
tive is to recover a general signal (or image) from the magnitude of its Fourier trans-
form [22–24]. This problem arises from the fact that the signal detectors can usually
record onlymodulus of the diffraction pattern, therefore, losing the information about
the phase of the optical wave. Mathematically, one needs to recover a signal x ∈ C

m

from the amplitude b = |Ax|, where A ∈ C
n×m , b ∈ R

n . Then the phase recovery
problem [25] can be formulated as:

min
x j ,ui

∑
i

(∑
j

Ai j x j − bi ui

)2

(15.9)

where u ∈ C
n is a phase vector that satisfies Ax = diag(b)u, |ui | = 1 for i = 1, n.

This optimisation problem can be further rewritten as

min
∑

i j

Mi j ui u j subject to |ui | = 1, i = 1, n, (15.10)

where M = diag(b)(I − AA†)diag(b) is the Hermitian matrix, I is the identity
matrix, and A† is the Moore–Penrose pseudoinverse of a matrix A (see [25] for
details).

It is important to note that when we refer to a spin problem as NP-complete we
understand that for some specific coupling matrix J (“problem instances”) finding
the solution can be easy (belong toP class). The termNP-completeness reflects worst
case behaviour and may allow a polynomial time to solution for most instances on
average. This leads to the cornerstone question of how to distinguish hard instances
from simple ones. The answer is especially important for the rivalry between clas-
sical hardware and unconventional computing machines which have to compete on
problems of known complexity. It is believed that the way to create “hard” instances
for spin Hamiltonians resides at the intersection of computational complexity and
physics, e.g. the hardness of problems can be connected to the existence of a first-
order phase transition in a system (see [26] and references therein). If an instance is
indeed hard then it would be difficult to solve even for a medium size on a classical
computer since the number of operations grows as an exponential function with the
matrix size. Thus, the time required to find reliably the ground state energy should
highly depend on the coupling matrix structure J and the way it was constructed.
For instance, finding the global minimum of the XY model for positive definite
matrices remains NP-hard due to the non-convex constraints but can be effectively
approximated using a semidefinite programming relaxation with some performance
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guarantee [27, 28]. Sparsity also plays an important role and for sufficiently sparse
matrices fast methods exist [29]. For spin models, the generation of matrix instances
J with tunable algorithmic hardness and, preferably, with a specifiable ground state,
is an ongoing problem studied by many research teams. An elegant way of creating
such problems has been recently proposed by a Microsoft research team [26] who
suggested to use the Wishart planted ensemble technique. Having a unified set of
optimisation problems with a tunable hardness and known solutions would allow
for an objective benchmark of quantum simulators on various physical platforms as
well as for classical algorithms. Otherwise, announcements of state-of-the-art plat-
forms and methods, which demonstrated their performance on some random and not
necessarily hard instances, would continue to happen.

15.2 Physical Platforms for Large-Scale Optimisation

Rather than trying tomodel nature one can consider a reverse idea of exploiting phys-
ical phenomena for solving NP-complete problems. Such problems can be tackled
by quantum computers or simulators to produce solutions in reasonable time. In the
last five years we have seen a competition of different physical platforms in solving
classical optimisation problems faster than it can be achieved on a classical hardware
for a given problem size. This rivalry resulted in the rapid emergence of a new field at
the intersection of laser and condensed matter physics, engineering and complexity
theories, which aims to develop quantum or classical analogue devices to simulate
spin Hamiltonians. Next we discuss the achieved success in such simulations for a
range of physical systems.

15.2.1 Cold Atoms in Optical Lattices

Ultracold atoms in optical lattices constitute awell-controlled experimental setting to
realise various spin Hamiltonians [30, 31]. Optical lattices are formed by directing
several laser beams to interfere and to create standing wave configurations. Such
waves provide practically loss-free external potentials in which ultracold atoms may
condense, move and interact with one another [32, 33]. The unprecedented control
and precisionwithwhich one can engineer such lattices and load the atoms there led to
many suggestions to consider such systems as possible candidates for unconventional
computing in quantum information processing and quantum simulations.

Here we will only discuss a weakly interacting Bose gas in an optical lattice.
The description of particles in the strongly-correlated regime is possible with Bose–
and Fermi–Hubbard models as well as with extended Hubbard models with nearest-
neighbour, next nearest-neighbour interactions, etc. [34]. If the bosonic gas is dilute,
the time evolution of the condensate wave function ψ is governed by the Gross–
Pitaevskii equation [35–37]
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i�
d

dt
ψ(r, t) = − �

2

2m
∇2ψ(r, t) + Vext(r)ψ(r, t) + g|ψ(r, t)|2ψ(r, t), (15.11)

where g is the strength of the delta-function interactions and the external potential
Vext describes an optical lattice—periodic potential—usually combined with a weak
harmonic trapping potential.

The condensate evolution and particles’ interactions at different local minima of
the optical lattice in superfluid regime can be describedwith the tight-binding approx-
imation, which is valid when the barrier between the neighbouring sites is much
higher than the chemical potential. In this approximation the condensate wavefunc-
tion ψ is written as a sum of normalized wave functions φi = φ(r − ri ) localized in
each minimum of the periodic potential, i.e. r = ri :

ψ(r, t) =
∑

i

�i (t)φ(r − ri ), (15.12)

where �i (t) = √
ρi (t)eiθi (t) is the complex amplitude of the i th lattice site, ρi and θi

are the number of particles and the phase in the i th site, respectively. The amplitude
�i describes the state of the so-called “coherent center” located at ri . By inserting
this anzats into (15.11) and integrating the spatial degrees of freedom out one obtains
the discrete nonlinear Schrödinger (DNLS) equation (see e.g. [38–40])

i�
∂�i

∂t
= −J (�i+1 + �i−1) + εi�i + U |�i |2�i , (15.13)

where J is the nearest-neighbour tunnelling rate,

J = −
∫

dr
[

�
2

2m
∇φi · ∇φi+1 + φi Vextφi+1

]
, (15.14)

εi is the on-site energy given by

εi =
∫

dr
[

�
2

2m
(∇φi )

2 + Vextφ
2
i

]
, (15.15)

and U is the nonlinear coefficient given by

U = g
∫

dr φ4
i . (15.16)

Such classical lattice models described by DNLS equations represent the mean-field
limit of Bose–Hubbard models [41]. The mean-field limit of the non-standard Bose–
Hubbardmodels includes the interactions beyond the nearest neighbours which leads
to a generalised DNLS
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i�
∂�i

∂t
= −1

2

∑
〈i, j〉

Ji j� j + (εi + U |�i |2)�i , (15.17)

where Ji j is the coupling strength between the i th and j th coherent centers. If one
loads an equal number of particles in each site of the lattice, the ground state of
(15.17) realises the minimum of the XY Hamiltonian −∑

〈i, j〉 Ji j cos(θi − θ j ). This
has been experimentally demonstrated in triangular lattices using the atomsmotional
degrees of freedom and tunable artificial gauge fields [42, 43].

The quantum annealing protocol can in principle be implemented in such a system
by using (15.1) with H0 = ∑

〈i, j〉 cos(θi − θ j ) and Hobjective = −∑
〈i, j〉 Ji j cos(θi −

θ j ). A similar principle of adiabatic quantum annealing has been realised in the
famous D-Wave machine that we discuss below.

15.2.2 D-Wave Quantum Annealer

D-Wave is a first commercially available quantum annealer that is built on super-
conducting qubits with programmable couplings and specifically designed to solve
QUBO problems (15.3) [44]. By specifying the interactions Ji j between qubits, a
desired QUBO problem is solved [45] via a quantum annealing process as in (15.1).
Adiabatic (slow) transition in time from an initial state of a specially prepared “easy”
Hamiltonian to the objective Ising Hamiltonian guarantees that the system remains
in the low energy state, which gives the final energy that corresponds to the optimal
solution of the QUBO problem.

Many benchmarks on different QUBO problems were performed on a D-Wave
One and D-Wave Two machines without a solid demonstration of quantum speedup
of annealer over classical algorithms [46–48]. A better performance was shown for
the last 2000-qubit D-Wave machine released in 2017 on a newly proposed synthetic
problem class in which the computational hardness is created through frustrated
global interactions. The major limitations of D-wave simulators is that each qubit
can be connected tomaximumof six other qubitswhich is the consequence of creating
chips with Chimera structure. The next generation of D-Wave quantum computer is
expected to be announced in 2020 with a different architecture which would allow
for 15 connections per each node. Together with reverse annealing and virtual graphs
features a significant performance improvement could be possibly demonstrated.

15.2.3 Complex Laser Networks

A new generation of complex lasers such as degenerate cavity lasers, multimode
fibre amplifiers, large-aperture VCSEL or random lasers have many advantages in
comparison with the relatively simple traditional laser resonators in terms of their
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computing properties [49]. They have a large number of spatial degrees of freedom,
their nonlinear interactions within the gain material can be controlled by adjusting
the spatial structures of lasing modes, the spatial coherence of emission can be tuned
over a wide range, and the output beamsmay have arbitrary profiles. These properties
allow the complex lasers to be used for reservoir computing [50] or for solving hard
computational problems.

In laser networks the coupling can be engineered by mutual light injection from
one laser to another. This introduces losses that depend on the relative phases between
the lasers. Suchdissipative couplingdrives the system to aphase locking and therefore
to a steady state solution of QCO (15.5), i.e. to the minimum of the XY Hamiltonian
[51–53]. Degenerate cavity lasers are particularly useful as solvers as all their trans-
verse modes have nearly identical quality factor. This implies that a large number of
transverse modes lase simultaneously since they all have similar lasing thresholds
[49].

The evolution of the N single transverse and longitudinal modes class-B lasers
can be described by the rate equations [54, 55] on the amplitude Ai , phase θi , and
gain Gi of the i th laser

dAi

dt
= (Gi − αi )

Ai

τp
+

∑
j

Ji j
A j

τp
cos(θi − θ j ), (15.18)

dθi

dt
= �i −

∑
j

Ji j
A j

τp Ai
sin(θi − θ j ), (15.19)

dGi

dt
= 1

τc
[Pi − Gi (1 + |Ai |2)], (15.20)

where Pi , αi ,�i represent the pump strength, loss, frequency detuning of laser i ,
respectively, whereas τp and τc denote the cavity round trip time and the carrier life-
time, respectively. The coupling strengths between i th and j th lasers are represented
by Ji j . If the amplitudes of all lasers are equal, (15.19) reduces to the system of
coupled phase oscillations, �i = �,

dθi

dt
= � − 1

τp

∑
j

Ji j sin(θi − θ j ). (15.21)

Equation (15.21) is a celebrated Kuramoto model of identical oscillators which is
widely used to describe the emergence of coherent behaviour in complex systems [56,
57]. By LaSalle Invariance Principle [58] every trajectory of the Kuramoto model
converges to a minimum of the XY Hamiltonian.

It was shown that the probability of finding the global minimum of the XYHamil-
tonian agrees between experimental realisations of the laser array and numerical sim-
ulations of (15.18)–(15.20). However, simulating the Kuramoto model of (15.21) on
the same matrix of coupling strengths gives a much lower probability of finding the
global minimum. The conclusion was made that the amplitude dynamics described
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by (15.18) provides a mechanism to reach the global minimum [55] by pumping
from below. This suggested that the cavity lasers can be used as an efficient physical
simulator for finding the global minimum of the XY Hamiltonian, and therefore, for
solving phase retrieval problems.

A digital degenerate cavity laser has recently been shown to solve phase retrieval
problems rapidly [59]. It is an all-optical system that uses nonlinear lasing process
to find a solution that best satisfies the constraint on the Fourier magnitudes of the
light scattered from an object. To make sure that the solution to the phase retrieval
problem is found the compact support aperture is introduced inside the cavity that
ensures that different configurations of laser phases compete to find the one with the
minimal losses. The system combines the advantages of short round-trip times of the
order of 20ns and high parallelism in selecting the winning mode.

15.2.4 Coherent Ising Machine

Network of coupled optical parametric oscillators (OPOs) is an alternative physical
system for solving the Ising problem (cf. [60] and references therein). Each OPO is
a nonlinear oscillator with two possible phase states above the threshold that can be
interpreted as binary spin states {−1, 1}with respect to the reference beam. The OPO
is stimulated with pulses of light which are then loaded into a loop of optical fiber.
Below threshold, pulses of low intensity have random phase fluctuations. Depending
on the enforced pulse interactions, the intensities are continuously modulated so that
after multiple runs around the loop the final binary phases are formed for all OPOs
at about the same time. Driving the system close to this near-threshold regime, the
lowest loss configuration state can be found. This state corresponds to the optimal
solution of the Ising Hamiltonian and, therefore, the OPO-based simulator is known
as the coherent Ising Machine (CIM).

The currently most successful implementations of CIMs have been realised using
a fiber-based degenerate optical parametric oscillators (DOPOs) and a measurement
based feedback coupling, in which a matrix-vector multiplication is performed on a
field-programmable gate array (FPGA) embedded in the feedback loop. The com-
putational performance of such scalable optical processor, that is bounded by the
electronic feedback, was demonstrated for various large-scale Ising problems [60–
62], while a speedup over classical algorithms is an ongoing study [63, 64]. The
ability to implement arbitrary coupling connections between any two spins [60] was
apparently the main reason to claim a better scalability of the CIM than the quantum
annealer, i.e. D-Wave machine [61].

In a Coherent Ising Machine each Ising spin corresponds to a DOPO that is
described by a rate equation for the complex amplitude of the signal field ai :

dai

dt
= pa∗

i − ai − |ai |2ai +
∑

j

Ji j a j , (15.22)
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where the dynamics is defined by a linear pump term p, normalised linear and
nonlinear losses, andmutual couplings Ji j . To experimentally realise these couplings,
a portion of light is extracted from the cavity after each round trip. That light is then
homodyned against a reference pulse to produce ai that is next supplied to FPGA
where a feedback signal is computed for each pulse. Lastly, an optical modulator is
applied to convert the signal back to light that can be used for the next round trip.
The equations (15.22) are often reformulated in terms of the in-phase and quadrature
components ai = ci + isi giving the equations in real terms:

dci

dt
=

(
p − 1 − (c2i + s2i )

)
ci +

∑
j

Ji j c j (15.23)

dsi

dt
=

(
− p − 1 − (c2i + s2i )

)
si +

∑
j

Ji j s j . (15.24)

The computational effectiveness of these equations has been demonstrated [65] by
tackling small size Ising type problems of order up to 20. In a part devoted to polariton
condensates we will show that for achieving the global minimum the realisation of
an individual pump variation pi for equalising all signal amplitudes |ai | is crucial.

Phase-stability for the whole length of the cavity is required which makes the
DOPOs system highly susceptible to external perturbations that can affect perfor-
mance [61]. Furthermore, the nonlinearDOPOgeneration process demands powerful
laser systems and temperature-controlled nonlinear materials, which result in large
and complex optical setups. These issues lead to recent proposals of other physical
platforms for implementing a CIM-like machine. A CIM based on opto-electronic
oscillators with self-feedback was suggested to be more stable and less expensive for
solving Ising optimisation problems on regular and frustrated graphs up to 100 spins
with similar or better performance compared to the original DOPO-based CIM [66].
An analogue all-optical implementation of a CIM based on a network of injection-
locked multicore fiber lasers [67] demonstrated a possibility to solve Ising Hamilto-
nians for up to thirteen nodes. The dynamics of a network of injection-locked lasers
was based on nonlinear coupled photon rate equations and the couplings were imple-
mented using spatial light modulators. The couplings were reported to be dependent
on the photon numbers that are not known beforehand, which can be amajor obstacle
on the way of solving a given Ising Hamiltonian with the proposed photonic CIM.
To solve this issue, approaches similar to gain variation [20, 68] may be considered
in the future. Another large-scale optical Ising machine based on the use of a spatial
light modulators was experimentally demonstrated by using the binary phases in sep-
arated spatial points of the optical wave front of an amplitude-modulated laser beam
and realising configurations with thousands of spins with tunable all-to-all pairwise
interactions [69].
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15.2.5 Photon and Polariton Networks

Microcavity exciton-polaritons, or simply polaritons, are quasi-particles that result
from the hybridisation of light confined inside semiconductor microcavities and
bound electron hole pairs (excitons). The steady states in these nonequilibrium
systems are set by the balance between the pumping intensity, coming from the
interconversion rate of the exciton’s reservoir into polaritons, and losses, happening
due to the leakage of photons. As polaritons are bosons and obey Bose–Einstein
statistics, they can form a condensed (coherent) state above a critical density [70].
Thus, polaritons offer a unique playground to explore nonequilibrium condensation
and related effects in solids. The advantage for such explorations comes from the
polariton’s small effective mass that is 4–5 orders of magnitude smaller than the
electron’s mass. The design and choice of material allows one to control the polariton
mass and to realise such solid state nonequilibrium condensates not only at cryogenic
temperatures but even at room temperature in organic structures. The weak coupling
at high temperatures and high pumping intensities transits continuously to strong
coupling at lower temperatures and lower pumping intensities. In the limit of small
gain and small losses, solid state condensates resemble equilibrium Bose–Einstein
condensates (BECs) and in the regime of high gain and high losses, they approach
lasers. This transition from the equilibrium BECs to normal lasers was described
with a unified approach via polariton condensates [71].

In another system, closely resembling the physics of polariton condensates,
macroscopic occupation of the lowest mode for a gas of photons confined in a
dye-filled optical microcavity was recently shown [72–75]. The rapid thermaliza-
tion of rovibrational modes of the dye molecules by their collisions with the solvent
and phonon dressing of the absorption and emission by the dye molecules leads
to the thermal equilibrium distribution of photons and concomitant accumulation of
low-energy photons. Such systems resemble microlasers [76], but unlike microlasers
exhibit a sharp threshold which occurs far below inversion.

To realise the lattices of polariton or photon condensates many techniques have
been proposed and realised in experiments. Polariton lattices can be optically engi-
neered by injecting polaritons in specific areas of the sample using a spatial light
modulator [77–81]. A variety of potential landscapes to confine polariton or pho-
tons have also been engineered [82–84]. The rate equations describing the evolution
of gain-dissipative condensates in a lattice were derived from the space and time
resolved mean-field equations [68, 85] and take a form of the Stuart-Landau equa-
tions

�̇i = −iU |�i |2�i + (γi − |�i |2)�i +
∑
j 
=i

Ci j� j , (15.25)

where �i = √
ρi exp[iθi ] is the complex amplitude of the i th condensate, U is the

strength of self-interactions between the quasi-particles, γi is the effective injection
rate (the difference between the pumping of the quasi-particles into the system and
linear losses). The coupling strengthCi j = Ji j + iGi j is generally a complex number
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and consists of theHeisenberg coupling Ji j mediated by the injection reservoir and the
Josephson part Gi j that comes from exchange interactions between the condensates.
The system described by (15.25) reaches the fixed point when Ji j � Gi j and the
pumping feedback is introduced in the system [68]. The feedback on the pumping
intensity ensures that all the occupations are the same at the fixed point, by adjusting
the pumping if the occupation exceeds the set threshold value |�i |2 = ρth. The total
injection of the particles in the system of N condensates at the fixed point is given
by

N∑
i=1

γi = Nρth −
N∑

i=1

N∑
j<i

Ji j cos(θi − θ j ). (15.26)

Choosing the lowest possible total particle injection
∑

γi that leads to the occupation
ρth for each condensate guarantees that the minimum of the XY Hamiltonian is
reached. In order to find the true global minimum the system has to slowly be brought
to the condensation threshold while spending enough time in its neighbourhood to
span various phase configurations driven by the system noise (classical and quantum
fluctuations). When the system reaches a phase configuration in the vicinity of the
minimum of the XY Hamiltonian it quickly converges to it by the gradient descent
given by the imaginary part of (15.25):

θ̇i = −Uρth −
N∑

j 
=i

Ji j sin(θi − θ j ). (15.27)

This idea has been theoretically justified [68] and experimentally realised for simple
polariton graphs [81]. It was also proposed how to extend the scheme to discrete
optimisation problems such as QUBO (minimising the Ising Hamiltonian) or n-
states Potts Hamiltonians [86]. When the resonant excitation is combined with a
non-resonant one, the spins are forced to take the discrete values aligning with the
directions set by the resonant excitation. If n : 1 resonant drive is added to the system,
the dynamics of the coherent centres obeys

�̇i = −iU |�i |2�i + (γi − |�i |2)�i +
∑
j 
=i

Ji j� j + h(t)�∗(n−1)
i , (15.28)

where h(t) is an increasing function that reaches some value H > maxi
∑

j |Ji j | at
the threshold density ρth. The adjustment of injection rates leads to the equal-density
fixed point and (15.26) becomes

N∑
i=1

γi = Nρth −
N∑

i=1

N∑
j<i

Ji j cos(θi − θ j ) − Hρ
n/2−1
th cos(nθi ). (15.29)
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At n = 2, the last term on the right-hand side provides the penalty to phases deviating
from 0 orπ reducing the optimisation problem toQUBO. For n > 2, the n-state Potts
Hamiltonian is minimised. The minimisation of HOBO may be achieved when the
systemoperatesmuch above the threshold andhigher order terms cannot be neglected
[87].

If the time evolution of the reservoir of noncondensed particles is slow, the system
of N interacting coherent centres is better described by the following equations [85]:

�̇i = −iU |�i |2�i + (Ri − γc)�i +
∑
j 
=i

Ji j� j , (15.30)

Ṙi = �i − γR Ri − Ri |�i |2, (15.31)

where Ri is the occupation of the i th reservoir, �i , γR and γc characterize the rate of
particle injection into the reservoir and the linear losses of the reservoir and conden-
sate, respectively. If one replaces �i by the electric field and Ri by the population
inversion of the i th laser, the result is a form of the Lang–Kobayashi equations nor-
mally derived to describe the dynamical behavior of coupled lasers from Lamb’s
semiclassical laser theory [88, 89]. The total injection of the particles in the system
of N condensates at the fixed point is given by

N∑
i=1

�i = (γR + ρth)

⎡
⎣Nγc −

N∑
i=1

N∑
j<i

Ji j cos(θi − θ j )

⎤
⎦ . (15.32)

Similar to (15.26), if the total injection into the system is minimal, the phases of
coherent centres minimise the XY Hamiltonian. Next we discuss the current and
future role of physical systems mentioned above in a rapidly developed machine
learning applications.

15.3 Analogue Physical Systems for Recurrent Neural
Networks and Reservoir Computing

The artificial neuron (perceptron) is a weighted decision-making procedure that takes
binary input vector and produces a single binary output [90]. For a stable learning
process, a small change in a weight (or bias) should cause only a small change in the
output so that a few updates of parameters with a technique such as backpropagation
[91] canproduce abetter output. Such conditiondoesn’t hold for a perceptronnetwork
that is sensitive to small changes in parameters of any single neuron. Introducing a
nonlinear activation function helps to overcome this problem with common choices
for the function being the sigmoid, tanh, and the rectified linear unit.With an addition
of intermediate layers of neurons, hidden layers, the architecture and the training of
the network can become nontrivial. The final design usually is a trade off between
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the number of hidden layers against the time required to train the network. In fact,
even optimising the design for single hidden-layer networks is an NP-hard problem
[10]. The outputs in each layer can be calculated given the outputs from the lower
layers, so the information is always transmitted forward.

Such feedforward neural networks are powerful learning models that have shown
state-of-the-art results on a variety of machine learning applications [92] though
they were still limited to the tasks with independent training and test data points.
Addressing the data with time and space relationships (e.g. video frames and audio
snippets) requires backward connection between layers of neurons, and so better
modelled with recurrent neural networks (RNNs).

The capability of RNNs with nonlinear activations to perform nearly arbitrary
computation was demonstrated with a simulation of a universal Turingmachine [93].
The two well-known RNN architectures for sequence learning were introduced later:
long short-term memory [94] and bidirectional recurrent neural networks [95]. The
former introduced the memory cell, a unit of computation that replaces traditional
nodes in the hidden layer of a network, while the latter proposed that the output at any
point in the sequence should be dependent on information from both the future and
the past (comprehensive reviews of RNNs can be found in [96, 97]). Following [97],
the input (target) sequence to a simple RNN with one hidden layer can be denoted as
a sequence of vectors x(t) (y(t)) for t = 1, T . The RNN will then produce predicted
vectors y(t) at each time step:

h(t) = f (1)
activation

(
W hxx(t) + W hhh(t − 1) + bh

)
(15.33)

ŷ(t) = f (2)
activation

(
W yhh(t) + by

)
(15.34)

where W hx (W yh) is the weight matrix between the input (output) and the hidden
layer, W hh is thematrix of recurrent weights connecting the hidden layer with itself at
adjacent time steps, bh and by are bias vectors, and f (i)

activation are nonlinear activation
functions. In such RNN, nodes with recurrent edges, i.e. edges that connect adjacent
time steps, receive input from both the current state x(t) and from the previous state
via hidden node values h(t − 1). Given the hidden node values h(t), the output
values ŷ(t) are affected by the input x(t − 1) and x(t). Such cyclic network can still
be trained across many time steps using backpropagation through time [98] since
RNNs can be interpreted as a deep network with one layer per time step and shared
weights across time steps.

RNNs constitute a natural approach to numerous problems ranging from hand-
writing generation [99, 100] to character prediction [101] to machine translation
[102, 103]. Such successful results and computational hardness of learning process
make recurrent networks a great candidate for simulations with a physically based
platform. Such physical systems can be much more efficient than any of known
classical hardware implementations due to the inherent physical properties such as
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quantum or classical parallellism and neural network-type architecture. A recent
mapping of dynamics of acoustic and optical waves to RNNs was suggested [104].

Other computational frameworks for data processing such as reservoir computing
(RC) (originally referred to as echo state networks [105] or liquid state machines
[106]) can benefit from an implementation with analogue physical platforms. A par-
ticular useful property is that RC systems require less accuracy of individual control
of all forward and backward neuron connections. Various nonlinear dynamical sys-
tems, including electronic [107–109], photonic [110, 111], spintronic [112–114],
mechanical [115], and biological [116] systems, have been recently employed as
potential reservoirs for RC (see [117] and references therein).

RCmethods have been successfully applied to many practical problems involving
real data,with focus onmachine learning applications. The role of the reservoir (phys-
ical system) in RC is to nonlinearly map sequential inputs into a higher-dimensional
space so that features can then be extracted from its output with a simple learning
algorithm. Therefore, such reservoirs become attractive for an experimental imple-
mentation in many physical systems with a motivation of realising fast information
processing devices with low learning cost. Networks of polaritons or lattices of
atomic condensates, discussed above, can serve as interacting nonlinear elements for
an efficient network-type RC system with a possible approach suggested recently
[118].

15.4 System-Inspired Algorithms

The discovered principles of operation of the analogue physical systems for finding
optimal solutions open opportunities for new optimisation algorithms that can be
realised on specialised but classical computing architectures: FPGAs, GPUs, etc.

The principle of operation of the Coherent Ising Machine was implemented as
the network of nonlinear oscillators described by simplified equations [119]:

dx j

dt
= − ∂V

∂x j
with V =

∑
j

Vb(x j ) + εVH (x j ), (15.35)

where x j are N analogue variables, Vb(x j ) = −0.5αx2
j + 0.25x4

j is the paradigmatic
bistable potential, α = −1 + p is the bifurcation parameter given by the normalized
decay rate and linear gain p for the signal field, ε � 1 is a positive coefficient,
VH (x j ) = −∑

i Ji j xi x j is the analogue of the Hopfield network. The addition of the
amplitude variation to these equations [21], i.e. ε → εe j , resulted in

de j

dt
= β(ρth − x2

j )e j , (15.36)
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Fig. 15.1 Schematics of Hybrid Computing. A computationally hard real life problem can be
mapped into a spin Hamiltonian, where spins represent the degrees of freedom (discrete or con-
tinuous) of the problem and coupling strengths represent the structure and the constraints of the
objective function. Suchmapping is possible if the original problem is nondeterministic polynomial,
and the resulting spin Hamiltonian is universal. The ground state of the spin Hamiltonian can be
found by an analogue physical system using quantum annealing or the gain-dissipative principle of
its operation coupled to a digital device (CMOS, FPGA, GPU, etc.) compatible with and based on
the system-inspired algorithms

where ei is a positive error variable andβ is a positive rate of change of error variables.
The initialisation of such additional control of the target amplitude ρth of all analogue
variables x j allowed to numerically optimise the medium-scale Ising type problems
(∼1000 spins). A similar approach has been recently realised using FPGAs for a
network of Duffing oscillators [120].

Another example of a gain-dissipative algorithm was inspired by the operation
of polariton networks [20]. By gradually increasing the pumping strength γi for i th
oscillator while inducing enough noise to span large volume of high dimensional
space of the problem one can explore the low energy part of the spin Hamiltonian.
This can be achieved by numerical integration of complex fields �i

�̇i = (γi − |�i |2)�i +
∑
j 
=i

Ji j� j + h(t)�∗(n−1)
i , (15.37)

γ̇i = ε(ρth − ρi ), (15.38)

with the meaning of parameters explained in Sect. 15.2.5. The performance of this
algorithm was demonstrated on the medium scale Ising and XY models [20].
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15.5 Conclusions and Future Challenges

What promise does unconventional computing platformhold?Would it be able to find
a better solution in a fixed time?Orfind a solution for a fixed precision faster?Or solve
more complex problems at fixed and limited cost?Would it appear as an accelerator in
neural networks, machine learning and artificial intelligence platforms? Would it be
able to solve a full range of different problems or perform a single computationally
intensive task or operation as a part of a hybrid platform? The answer “yes” to
any of these challenges could imply high technological gains from predicting and
developing new materials and designs to creating fully automated AI-controlled
systems.

In the short term one may anticipate appearance of a plethora of disparate uncon-
ventional computing systems designed to execute specific algorithms or solving a
particular practically relevant task. These will be more energy-efficient and will
demonstrate a superior performance over classical hardware architectures. These
systems could be further orchestrated together to perform larger tasks. The role of
orchestra conductor could be devoted to traditional computing resources including
CPUs, GPUs, FPGAs, and TPUs. Such symbiosis of classical and unconventional
hardware together with the development of system-inspired optimisation algorithms
will form an ultimate hybrid computing platform that may allow for continued scal-
ing beyond the physical limits of Moore’s law (Fig. 15.1). Many recent proposals
exploit this idea, including, for instance, a photonic accelerator for neural networks
with weights and inputs encoded in optical signals allowing for the neural network
to be reprogrammed and trained on the fly at high speed [121] and the recurrent Ising
machine in a photonic integrated circuit [122].

To establish the advantages of unconventional computing platforms we can apply
the “quantum supremacy” test formulated by John Preskill in 2012 to characterise
superior performance of a quantum simulator over any existing classical com-
puting machines [123]. A particular milestone of quantum supremacy has been
recently demonstrated with the Google’s Sycamore processor [124] based on 53
programmable superconducting qubits for a certain application, namely random cir-
cuit sampling. Their claimed speedup of 200s against 10000 years was immediately
scaled down to 200s compared to 2 days by using the absolute state-of-the-art clas-
sical supercomputer “Summit” at Oak Ridge National Lab [125]. Nevertheless, this
is still a remarkable, at least three orders of magnitude acceleration provided by
quantum simulations in comparison with classical conventional computing. This
achievement is bound to ignite a quantum supremacy race, as already shown by the
subsequent boson sampling experiment with tens of photons covering the Hilbert
space similar to that of 48 qubits [126]. In upcoming years, we envision many more
systems to actively participate in this race and demonstrate their superior suitability
for solving particular classes of problems.

The unconventional computing systems we described in this chapter are not quan-
tum computers in the traditional meaning of this term. Although quantum effects
contribute to the system operation (e.g. Bose–Einstein condensation is a quantum
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process that obeys quantum statistics), it is not clear if these systemoffer any quantum
speed-up during the search for a solution, e.g. via entanglement and superposition
of states. Although, unlike quantum computers these systems have a crucial ingredi-
ent that drives their operation: nonlinearity! Nonlinearity leads to the emergence of
coherence within each “bit” of the unconventional computers we discussed: a laser, a
condensate, an optical parametric oscillator. Nonlinearity drives the gain saturation,
mode locking, and coupling.

The physical systems that we described aim at finding the global minimum of hard
optimisation problems. All these systems have advantages and limitations. They vary
in nonlinearity of the underlying modes of operation, scalability, ability to engineer
the required couplings, flexibility of turning the interactions, precision of read-out,
factors facilitating the approach the global rather than local minimum. These issues
have to be addressed from the experimental point of view in all newly proposed
physical platforms.

All of the considered systems in this chapter have some parts of their opera-
tion that promise increased performance over the classical computations. Combined
with system-inspired computational algorithms these systems may indeed one day
revolutionise our computing.
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