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7.1  Introduction

The development of green extraction processes is aimed at reducing the use of organic 
solvents and the energy consumption through reduced reaction and processing times 
that will produce safe products of good quality and purity (Chemat et  al. 2019). 
Chemat et al. (2019) have described the six principles for identifying the green extrac-
tion process (Chemat et  al. 2012) and developed accordingly the good practices 
guidelines for each of these principles. The principles described by Chemat et  al. 
(2012, 2019) are (1) “innovation by selection of varieties and use of renewable plant 
resources”, (2) “use of alternative solvents and principally water or agro-solvents”, 
(3) “reduction of energy consumption by energy recovery and using innovative tech-
nologies”, (4) “production of co-products instead of waste towards bio-refinery con-
cepts”, (5) “reduction of unit operations number and development of safe, robust and 
controlled processes” and (6) “aim for green extract with green values and non-dena-
tured and biodegradable extract without contaminants”. The application of supercriti-
cal carbon dioxide (SC-CO2), a “generally recognized green solvent” (GRAS) 
(Rovetto and Aieta 2017; Chemat et al. 2019), for the use of the extraction of biomol-
ecules fulfils the requirements under principle 2 and is the most common used green 
solvent for supercritical fluid (SF) extractions (Stuart et al. 1996; Lang and Wai 2001; 
Rovetto and Aieta 2017). This is also evident from the numerous review articles pub-
lished in the past 20 years on the use of SFs, which have provided numerous reports 
on the SC-CO2 extraction applications (Table 7.1). This phenomena is attributed to 
the properties of the carbon dioxide as being non-flammable, non-toxic, cheap and 
non-corrosive (Lang and Wai 2001; Huang et al. 2012) with the SC-CO2 extraction 
process being highly selective, obtaining solvent free products with no development 
of co-products (Knez et al. 2019). Extracts obtained from a SF extraction have been 
commonly found to be of greater quality when compared to other methods (Fornari 
et al. 2012a). A wide array of published reviews discuss the supercritical extraction of 
bioactives (Table 7.1), which are essentially biomolecules possessing specific bio-
logical activities or functions (Fig. 7.1) with a great range of applications in industry 
(da Silva et al. 2016). De Melo et al. (2014) have described reported SF extractions 
from vegetable matrices of about 600 essays for the period 2000–2013, including 
modelling, operating conditions, scale-up and an economic assessment. A review by 
Khaw et al. published in 2017 focusses on SF extraction of bioactives from different 
natural sources. The review, including other green extraction methods, provides 
insights on the SC-CO2 extraction of bioactives and operating conditions from about 
40 plant species. A summary of the reported SC-CO2 extraction parameters of bioac-
tives, among other newer methods such as “subcritical water extraction”, “ultrasound-
assisted extraction” and “microwave-assisted extraction”, specifically from marine 
macroalgae was reported by Cikoš et al. (2018). Gallego et al. (2019) have described 
reported bioactives extracted by subcritical and supercritical fluid extraction from 
various plant sources, seaweeds, microalgae and food by-products for the period from 
2015 to 2019. Previously, Herrero et al. (2015) published a review on the same theme 
for the period 2006–2014. The bioactives extracted from these sources using 
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Table 7.1 Published reviews on the use of supercritical fluids for the extraction of biomolecules

Title of the review References

Analytical supercritical fluid extraction of natural products Modey et al. (1996)
Compounds of agricultural significance using environmental 
analytical supercritical fluid extraction

Stuart et al. (1996)

Natural extracts using supercritical carbon dioxide Mukhopadhyay (2000)
Supercritical fluid extraction in herbal and natural product studies Lang and Wai (2001)
Supercritical extraction from solid: Process design data (2001–2003) Meireles (2003)
Supercritical fluid extraction and fractionation of natural matter Reverchon and De Marco 

(2006)
Comparative assessment of technologies for extraction of artemisinin Lapkin et al. (2006)
Supercritical fluid extraction in plant essential and volatile oil 
analysis

Pourmortazavi and 
Hajimirsadeghi (2007)

Supercritical fluid extraction of bioactive compounds: Fundamentals, 
applications and economic perspectives

Pereira and Meireles 
(2010)

Isolation of essential oil from different plants and herbs by 
supercritical fluid extraction

Fornari et al. (2012a)

Principles of supercritical fluid extraction and applications in the 
food, beverage and nutraceutical industries

Knez et al. (2013)

Supercritical fluid extraction of vegetable matrices: Applications, 
trends and future perspectives of a convincing green technology

De Melo et al. (2014)

Essential oils: Extraction, bioactivities, and their uses for food 
preservation

Tongnuanchan and 
Benjakul (2014)

Supercritical carbon dioxide extraction of carotenoids from pumpkin 
(Cucurbita spp.)

Durante et al. (2014)

Extraction of triacylglycerols and fatty acids using supercritical 
fluids—Review

Martínez and de Aguiar 
(2014)

Plants, seaweeds, microalgae and food by-products as natural 
sources of functional ingredients obtained using pressurized liquid 
extraction and supercritical fluid extraction

Herrero et al. (2015)

Supercritical fluid extraction of bioactive compounds Da Silva et al. (2016)
Supercritical fluid extraction of bioactive compounds from plant 
materials

Wrona et al. (2017)

Plant growth biostimulants, dietary feed supplements and cosmetics 
formulated with supercritical CO2 algal extracts

Michalak et al. (2017)

Solvent supercritical fluid technologies to extract bioactive 
compounds from natural sources: A review

Khaw et al. (2017)

Overview on the application of modern methods for the extraction of 
bioactive compounds from marine macroalgae

Cikoš et al. (2018)

Recent applications of on-line supercritical fluid extraction coupled 
to advanced analytical techniques for compounds extraction and 
identification

Sánchez-Camargo et al. 
(2019)

Are supercritical fluids solvents for the future? Knez et al. (2019)
Supercritical fluid extraction of essential oils Yousefi et al. (2019)
Sub- and supercritical fluid extraction of bioactive compounds from 
plants, food-by-products, seaweeds and microalgae—An update

Gallego et al. (2019)

Green extraction techniques in green analytical chemistry Armenta et al. (2019)
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specifically SC-CO2, with or without co-solvents, include carotenoids, anthocyanins, 
phenolic compounds, polyphenolics, sesquiterpenes, antioxidant compounds, poly-
phenols, monoterpenes, vitamin E, cannabinoids, non-polar flavonoids, lycopene, 
piperine, tetrahydrocannabinol, colchicine, tocols, tocopherols, polar and non-polar 
lipids, oils, essential oils, oleanolic acids, ursolic acids, fatty acids, chlorophyll A, 
ergosterol, fucosterol, fucoxanthin and triacylglycerides (Gallego et  al. 2019). 
Michalak et al. (2017) have presented a summary of reported biologically active com-
pounds (fucoxanthin, beta-carotene, carotenoids, astaxanthin, canthaxanthin, chloro-
phyll, polyphenols, fatty acids, lipids, oil, auxins, cytokinins, micro- and 
macro-elements) that have been obtained via SC-CO2 extraction from algal biomass. 
Algae extracts obtained by this method are proposed by Michalak et al. (2017) to be 
used in cosmetics and dietary feeds and as growth stimulants due to their components 
being solvent-free. Table 7.3 provides a summary of reported SC-CO2 extractions of 
biomolecules discussed in this chapter. The chapter intends to present recent applica-
tions of SC-CO2 extraction of selected biomolecules with potential uses in industry 
and provides an overview of published reports on this critical area of Green Chemistry.

7.2  Design and Optimization of the Supercritical Carbon 
Dioxide Extraction Process

In order to ensure high extraction efficiencies and to obtain high quality and purified 
extractions (Chemat et al. 2019; Yousefi et al. 2019), the design and the optimization 
strategies are critical. In particular, with SF extractions, the aim is on the reduction 
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Fig. 7.1 Overview of the supercritical carbon dioxide (SF-CO2) extraction process of biomole-
cules (Grosso et al. 2010; Sovová 2012; Huang et al. 2012; da Silva et al. 2016; Shukla et al. 2019; 
Yousefi et al. 2019)

N. Cheikhyoussef



145

Table 7.2 Reported theoretical models for supercritical fluid extraction

Title of the publication References

Mathematical modeling of sunflower seed extraction by 
supercritical CO2

Perrut et al. (1997)

Mass transfer modelling of apricot kernel oil extraction with 
supercritical carbon dioxide

Özkal et al. (2005)

Mathematical modelling of supercritical CO2 extraction of volatile 
oils from aromatic plants

Grosso et al. (2010)

Prediction of isoflavone extraction from soybean meal using 
supercritical carbon dioxide with cosolvents

Kumhom et al. 2011

Theoretical models for supercritical fluid extraction Huang et al. (2012)
Kinetic study of the supercritical CO2 extraction of different plants 
from the Lamiaceae family

Fornari et al. (2012b)

Modeling the supercritical fluid extraction of essential oils from 
plant materials

Sovová (2012)

Effects of high water content and drying pre-treatment on 
supercritical CO2 extraction from Dunaliella salina microalgae: 
Experiments and modelling

Mouahid et al. (2016)

Modeling of the kinetics of supercritical fluid extraction of lipids 
from microalgae with emphasis on extract desorption

Sovová et al. (2016)

Supercritical carbon dioxide extraction of Calendula officinalis: 
Kinetic modeling and scaling up study

López-Padilla et al. (2017)

Modeling of the kinetics of supercritical fluid extraction of lipids 
from microalgae with emphasis on extract desorption

Sovová et al. (2016)

Broken-and-intact cell model for supercritical fluid extraction: Its 
origin and limits

Sovová (2017)

Supercritical carbon dioxide extraction of pomegranate (Punica 
granatum L.) seed oil: Kinetic modelling and solubility evaluation

Natolino and Da Porto 
(2019)

New developments in the modelling of carotenoids extraction from 
microalgae with supercritical CO2

Sovová and Stateva (2019)

Extraction of vetiver (Chrysopogon zizanioides) root oil by 
supercritical CO2, pressurized-liquid, and ultrasound-assisted 
methods and modelling of supercritical extraction kinetics

Santos et al. (2019)

Evaluation of the effects of temperature and pressure on the 
extraction of eugenol from clove (Syzygium aromaticum) leaves 
using supercritical CO2

Frohlich et al. (2019)

of extraction time, amount of solvent, energy usage, costs, waste produced and the 
environmental impact (Chemat et al. 2019; Yousefi et al. 2019). Figure 7.1 presents 
a summary of the various components of the SC-CO2 extraction process of biomol-
ecules. Understanding the mass transfer mechanisms of the extraction process is 
imperative for starting the design of the extraction process (Huang et al. 2012) and 
in choosing the appropriate mathematical model to be applied (Kumhom et  al. 
2011). The development of mathematical models for the SC-CO2 extraction process 
was reported by various research groups (Table 7.2). These models are generally 
described as the models that are based on “heat transfer analogies”, models based 
on “differential mass balances”, empirical models and the shrinking core model 
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Table 7.3 Reported publications on the supercritical carbon dioxide extraction of biomolecules

Primary source for biomolecule(s) Target biomolecule(s) References

Chlorella vulgaris Carotenoids, lipids Mendes et al. (1995)

Artemisia annua L. Artemisinin, artemisinic acid Kohler et al. (1997)

Sargassum hemiphyllum (turn.) C. Ag. J. Lipids Cheung et al. (1998)

Red seaweed n-3 fatty acids Cheung (1999)

Cunninghamella echinulata Fungal oil containing γ-linolenic 
acid

Certik and Horenitzky 
(1999)

Echinacea angustifolia Alkylamides Sun et al. (2002)

Botryococcus braunii
Chlorella vulgaris
Dunaliella salina
Arthrospira maxima

Alkadienes
Carotenoids
β-Carotene
γ-Linolenic acid

Mendes et al. (2003)

Foeniculum vulgare Volatile oil Coelho et al. (2003)

Artemisia annua L. leaves Artemisinin Quispe-Condori et al. (2005)

Artemisia annua L. Artemisinin Lin et al. (2006)

Nannochloropsis sp. Lipids Andrich et al. (2005)

Artemisia annua L. Scopoletin, artemisinin Tzeng et al. (2007)

Blakeslea trispora NRRL 2895 and 2896 Lycopene Choudhari, Singhal (2008)

Haematococcus pluvialis Astaxanthin Krichnavaruk et al. (2008)

Italian coriander seeds Volatile oil Grosso et al. (2008)

Santolina chamaecyparissus Volatile oil Grosso et al. (2009a)

Satureja montana Volatile oil (thymoquinone) Grosso et al. (2009b)

Ampelopsis grossedentata stems Bioactive compounds Wang et al. (2011)

Soybean meal Isoflavone Kumhom et al. (2011)

Chlorella vulgaris microalgae Lipids Dejoye et al. (2011)

Citrus grandis (L.) Osbeck (pomelo) peel Flavonoids He et al. (2012)

Origanum vulgare, Thymus zygis, Salvia 
officinalis, Rosmarinus officinalis

Essential oil Fornari et al. (2012b)

Tiger nut (Cyperus esculentus L.) Oil Lasekan and Abdulkarim 
(2012)

Cannabis sativa L. (hemp) seed Seed oil, oxidative stability Da Porto et al. (2012a)

Cannabis sativa L. (hemp) seed Seed oil, oxidative stability Da Porto et al. (2012b)

Grape Seed oil, polyphenol co-extraction Rombaut et al. (2014)

Moringa oleifera Seed oil Ruttarattanamongkol et al. 
(2014)

Prunus persica seeds Oil, phytosterols Ekinci and Gürü (2014)

Sasa palmata (bamboo) leaves Phenolics Zulkafli et al. (2014)

Tetraselmis sp. (green algae) Lipids Li et al. (2014)

Sasa palmata (bamboo) leaves Phenolic compounds Zulkafli et al. 2014

Artemisia sphaerocephala Krasch seeds Polysaccharides Chen et al. (2014)

Brazilian plants Phenolics Veggi et al. (2014a)

Hymenaea courbaril L. (jatoba) Phenolic compounds Veggi et al. (2014b)

Cannabis sativa L. (hemp) Seed oil Aladić et al. (2015)

Tiger nuts Oil, phenolic compounds Koubaa et al. (2015)

Euterpe oleracea (açaí) Berry oil, fatty acids, phenolics, 
anthocyanins

De Cássia et al. (2016)

Dunaliella salina microalgae Carotenoids Mouahid et al. (2016)

(continued)
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Table 7.3 (continued)

Primary source for biomolecule(s) Target biomolecule(s) References

Sunflower seed Oil Rai et al. (2016)

Diospyros kaki L. (persimmon) Carotenoids Zaghdoudi et al. (2016)

Artemisia annua L. Artemisinin Baldino et al. (2017)

Eremanthus erythroppapus (Candeia) Oil Santos et al. (2017)

Cannabis sativa L. (hemp) Cannabinoids
δ9-Tetrahydrocannabinolic acid, 
δ9-tetrahydrocannabinol

Rovetto and Aieta (2017)

Artemisia annua L. leaves Bioactive extracts Martinez-Correa et al. 
(2017)

Ocimum sanctum Linn. Eugenol Chatterjee et al. (2017)

Calendula officinalis Oleoresin López-Padilla et al. (2017)

Spinach by-products Lutein and chlorophyll Derrien et al. (2018)

Artemisia annua L. Artemisinin Ciftzi et al. (2018)

Phyllostachys heterocycle (bamboo) Polysaccharide Zou et al. (2018)

Oats Phenolic acids, avenanthramides 
and antioxidant activity

Walters et al. (2018)

Craterellus tubaeformis (Finnish wild 
mushrooms)

Volatile compounds (aroma 
compounds)

Chen et al. (2018)

Algerian Thymus munbyanus Essential oils Bendif et al. (2018)

Avena sativa L. (oats) Polyphenols Escobedo-Flores et al. 
(2018)

Cacao pod husk Phenolic compounds Valadez-Carmona et al. 
(2018)

Garlic Phenolic compounds Liu et al. (2018)

Radish leaves Bioactive compounds Goyeneche et al. (2018)

Oenocarpus bacaba (bacaba) Oil Pinto et al. (2018)

Avena sativa L. (oats) Oil, main fatty acids, polyphenols Fernández-Acosta et al. 
(2019)

Soybean residue Phytochemicals Alvarez et al. (2019)

Parboiled rice bran Rice bran oil Juchen et al. (2019)

Solidago gigantea Ait. Lipids Wrona et al. (2019)

Euterpe oleracea Mart. (lyophilized açaí) Pulp oil Silva et al. (2019)

Artemisia annua L. Artemisinin Rodrigues et al. (2019)

Ginger rhizomes Volatile oil and gingerols enriched 
oleoresin

Shukla et al. (2019)

Chrysopogon zizanioides Vetiver essential oil Santos et al. (2019)

“Horchata” by-products Oils-phenolic profile Roselló-Soto et al. (2019a)

“Horchata” by-products Fatty acid profile, α-tocopherol, 
phenolic compounds and lipid 
oxidation parameters

Roselló-Soto et al. (2019b)

Punica granatum L. (pomegranate) Seed oil Natolino and Da Porto 
(2019)

Curcuma longa, Curcuma amada Oleoresin Nagavekar and Singhal 
(2019)

Origanum vulgare L. Oil García-Pérez et al. (2019)

Syzygium aromaticum (clove) leaves Eugenol Frohlich et al. (2019)

Oenocarpus distichus Mart. 
(bacaba-de-leque)

Oil Cunha et al. (2019)

Virola surinamensis (ucuúba) Seed oil Cordeiro et al. (2019)
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(Özkal et al. 2005). Huang et al. (2012) have described several models such as the 
“broken and intact cell” model (BIC), hot ball diffusion (HBD) model, shrinking 
core (SC) model, Tan-Liou model, partitioning coefficient model and the logistic 
model (LM) for different SC-CO2 extraction systems (Fig. 7.1). The most widely 
used model for obtaining extracts via SC-CO2 extraction from plant sources is the 
BIC model (Huang et al. 2012). The BIC model has been found suitable for the 
extraction of oleoresin from marigold (Calendula officinalis) plants (López-Padilla 
et al. 2017). Natolino and Da Porto (2019) have applied kinetic (BIC model) and 
solubility (Chrastil model) modelling for the SC-CO2 extraction of pomegranate 
seed oil from Punica granatum L. The “shrinking core model” was applied for the 
isoflavone extraction (SC-CO2 and methanol) from soybean meal by Kumhom et al. 
(2011) and investigated the axial dispersion coefficient, effective diffusivity, solu-
bility and the film “mass transfer coefficient”, of which the film “mass transfer coef-
ficient” and the solubility were found to be the most significant. Sovová (2012, 
2017), Sovová et al. (2016) and Sovová and Stateva (2019) have described the mod-
elling of the SF extraction process for essential oils, lipids and carotenoids, which 
have been readily adapted to represent extraction curves.

Optimization targets (Fig. 7.1) are based on varying mainly the pressure, tem-
perature and the flow rate of the SC-CO2. Co-solvents such as water, methanol, 
diethyl ether, ethanol, acetone, acetonitrile or dichloromethane are added at varying 
concentrations to observe the effect on the extraction yield and the extract composi-
tion, as these improve the solvating power of the SC-CO2 (Michalak et al. 2017; 
Rovetto and Aieta 2017). This is necessary for the extraction of polar compounds 
since SC-CO2 is a non-polar solvent and its polarity can be influenced with the use 
of polar modifiers (Nagavekar and Singhal 2019). Additional parameters (Fig. 7.1) 
that are targeted for optimization are the sample’s particle size, extraction time and 
solvent power (Ekinci and Gürü 2014). The effects of the solvent power of SC-CO2 
are critical during any extraction process, whereby the effects on solvent power and 
extraction selectivity are discussed by Ekinci and Gürü (2014). Solvent density is 
significantly affected by changes in pressure (Derrien et  al. 2018). Rovetto and 
Aieta (2017) investigated the effect of different pressures, flow rates and co-solvent 
(ethanol) on the yield of cannabinoids from Cannabis sativa L., whereby pressure 
and plant material had notable effects on the extraction yield.

7.3  Lipids, Volatile Oils and Oleoresins

Lipids have been extracted from various macroalgae (MA) and microalgae (MI) 
species using SC-CO2 such as Chlorella vulgaris (MI) (Mendes et al. 1995; Dejoye 
et  al. 2011), Tetraselmis sp. (MI) (Li et  al. 2014), Chaetomorpha linum (MA) 
(Aresta et  al. 2005), Sargassum hemiphyllum (MA) (Cheung et  al. 1998) and 
Hypnea charoides (MA) (Cheung 1999). Fatty acids from Arthrospira maxima 
(Spirulina maxima) (MI) have been extracted with SC-CO2 and with 10% ethanol 
(Mendes et al. 2003). Michalak et al. (2017) reported a comparative summary of the 
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SF extraction methods and parameters used for the extraction of algae bioactives. 
Mainly, SC-CO2 extraction alone has been applied with some reported to have 
added organic solvents, water or vegetable oils to the extraction process. 
Biomolecules that are oxidized easily and that are heat labile are suitably extracted 
with SC-CO2 due to its non-oxidant nature (Michalak et al. 2017). SC-CO2 has been 
identified as an appropriate method to extract lipids (Li et al. 2014). A low tempera-
ture of 30 °C and a pressure of 35 MPa were found to be optimum for the SC-CO2 
extraction of Moringa oleifera seed oil (75.27%) and in having the greatest solva-
tion power (Ruttarattanamongkol et  al. 2014). The solvent CO2 showed higher 
selectivity at the low pressure of 15 MPa towards the extraction of sterols, tocoph-
erols and fatty acids (Ruttarattanamongkol et al. 2014). At conditions of 15 MPa 
and 35 °C, biomolecules β-sitosterol, campesterol, γ-tocopherol and α-tocopherol 
were found to be at highest concentrations of 2310.9, 1179.2, 106.8 and 230.3 mg/
kg, respectively (Ruttarattanamongkol et al. 2014). SC-CO2 extraction of hemp seed 
oil from Cannabis sativa L. has been previously reported with oil yields of 21.50% 
w/w (40 °C, 300 bar, particle size of 0.71 mm) (Da Porto et al. 2012a) and 22% 
(300 bar and 40 °C and at 400 bar and 80 °C) obtained (Da Porto et al. 2012b). 
Hemp (Cannabis sativa L.) seed oil was extracted at varying temperature of 40 and 
60 °C and at a constant pressure of 300 bar with a CO2 flow rate of 1.94 kg/h (Aladić 
et al. 2015). The yield of seed oil was not affected by changes in temperature but 
increased with increasing pressure (Aladić et al. 2015). The fatty acid concentration 
was affected by pressure, whilst extraction time did not affect the content (Aladić 
et  al. 2015). Temperature had a varying effect on the content of the fatty acids 
(Aladić et  al. 2015). The common vegetable oil, sunflower oil (54.37 wt%), has 
been extracted with SC-CO2 from the sunflower seed (particle size, 0.75 mm) with 
a flow rate of 10 g/min, 5% co-solvent at 400 bar and 80 °C (Rai et al. 2016). Oil 
from Eremanthus erythropappus (candeia wood) has been optimally extracted at 
70 °C and 24 MPa with 2 ml/min flow rate and ethanol (1.3% v/v) and ethyl acetate 
(5% v/v) as co-solvents, yielding 2.35 wt% oil (Santos et al. 2017). The highest 
concentration of α-bisabolol (16.53 g/kg), a naturally occurring sesquiterpene alco-
hol, was obtained with 5% ethanol (Santos et al. 2017). A review on the properties 
(pharmacological), mechanisms of action and the applications of α-bisabolol and 
oils rich in α-bisabolol has been published by Kamatou and Viljoen (2010). The 
yield of total lipids extracted from Solidago gigantea Ait. (goldenrod) has been 
evaluated using a “Box-Behnken design with three variables” studied, temperature 
(40–80 °C), pressure (20–80 MPa) and the flow rate of CO2 (3–7 kg/h) (Wrona et al. 
2019). The optimum conditions reported are temperature at 313.95 K, pressure at 
68.07  MPa and CO2 flow rate of 3.18  kg/h yielding 203.32  mg stearic acid 
equivalent/g dry mass, with temperature having a negligible effect on the content of 
total lipids (Wrona et al. 2019).

Shukla et al. (2019) have applied SC-CO2 (single-step) extraction and fraction-
ation process to obtain oleoresin enriched with gingerols and essential oil from 
dried ginger rhizomes. Optimum conditions reported by Shukla et  al. (2019) for 
obtaining 28.3  wt% volatile oil and 37.97  wt% major actives were pressure at 
276 bar, temperature at 40 °C and flow rate of 30 g/min for 153 min. Shukla et al. 
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(2019) have presented a summary of reported literature on obtaining ginger extracts 
using SC-CO2 extraction processes. Oregano oil (Origanum vulgare L.) extracted 
with SC-CO2 (100  bar, 40  °C, 8  g/min ethanol) with a highest yield of 13.40% 
showed high antimicrobial and antioxidant activity (García-Pérez et al. 2019). The 
volatile compound, carvacrol (29.99%), and the fatty acids (70.9–76.8%), α-linolenic 
(C18:3ω3, 20.55–24.66%), palmitic (C16:0, 22.76–23.65%), oleic (C18:1ω9c, 
15.19–16.63%) and linoleic acids (C18:2ω6c, 12.16–13.35%), were found at high-
est concentrations in the oil (García-Pérez et al. 2019). Oil has been extracted from 
parboiled rice bran with SC-CO2 and ethanol, and the effects of varying pressures 
(100, 150, 200 bar) and temperatures (40, 60, 80 °C) and ethanol to rice bran (0:1, 
0.5:1, 1:1, 2:1) were analysed (Juchen et al. 2019). Conditions for one experimental 
run for 250 min at 200 bar, 40 °C, 45.94 g CO2/g bran and 1:1 ethanol to rice bran 
yielded 25.48 wt% of rice bran oil. Two sequential extractions at the same condi-
tions yielded 26.32 wt% (Juchen et al. 2019). Roselló-Soto et al. (2019a) have com-
pared the SC-CO2 (10–40 MPa, 40 °C) extraction with the conventional extraction 
(modified Folch et al. 1957) of oil extracted from the “horchata” by-products with 
the SC-CO2 extraction obtaining higher amounts of α-tocopherol and total phenolic 
compounds. The α-tocopherol concentration decreased, whilst total phenolic com-
pounds increased with increasing pressure, respectively. The highest oil yield was 
obtained with conventional extraction (14.85%). Oil yield and pressure during the 
SC-CO2 extraction were shown to have a linear relationship (10  MPa  =  0.61%; 
40 MPa = 7.36%), which has been reported by several other researchers (Lasekan 
and Abdulkarim (2012); Rombaut et  al. 2014; Koubaa et  al. 2015). Pinto et  al. 
(2018) have obtained a yield of 60.39% after SC-CO2 extraction of “bacaba oil” 
from Oenocarpus bacaba at temperature of 60 °C and pressure of 420 bar. A good 
quality bacaba-de-leque pulp oil from Oenocarpus distichus Mart. has been 
extracted using SC-CO2 extraction with a yield of 46% at a pressure of 270 bar and 
temperature of 60 °C (Cunha et al. 2019). SC-CO2 extraction (320 bar and 60 °C) 
has been used in the extraction of pomegranate (Punica granatum L.) seed oil that 
contained a higher punicic acid concentration and with a higher oxidation stability 
as compared to the Soxhlet extraction method (Natolino and Da Porto 2019). The 
extraction times with SC-CO2 (2 h) were much shorter than the period needed for 
Soxhlet extraction (8 h) to reach the asymptotic yield. A CO2 flow rate of 8.0 kg/h 
at 320 bar and 60 °C resulted in the highest yield of the seed oil (Natolino and Da 
Porto 2019). Fernández-Acosta et al. (2019) recently studied the effect of chemical 
pre-treatment, pressure, temperature, dynamic and static time and particle size on 
the SC-CO2 extraction of oil Avena sativa L. (oats). The oat oil yield was signifi-
cantly influenced by pressure and the size of particles. The pre-treatment, tempera-
ture and particle size significantly influenced the fatty acid composition and oxygen 
radical absorbance capacity (ORAC) antioxidant activity. Polyphenol concentration 
and total phenolic content were affected by pre-treatment and temperature 
(Fernández-Acosta et  al. 2019). Cordeiro et  al. (2019) recently investigated the 
SC-CO2 extraction of ucuúba oil from the seeds of Virola surinamensis, a tree grow-
ing in the Amazon, with antimicrobial activity against Staphylococcus aureus. 
Extraction conditions applied were pressure (350 bar), temperature (40, 60 or 80 °C) 
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and a CO2 mass flow of 7.9 × 10 kg/s (Cordeiro et al. 2019). De Cássia et al. (2016) 
have extracted the oil from the popular fruit (berries) açaí (Euterpe oleracea Mart.) 
obtained from Pará, Brazil, under varying temperature and pressure conditions. 
Highest oil yield was obtained at 70 °C and 490 bar. The fatty composition was 
affected by the varying operating conditions with significant effects reported on 
type and concentration of fatty acid detected (De Cássia et al. 2016). Silva et al. 
(2019) have evaluated the effects of pressure (350, 420, 490 bar), temperature (50, 
60 or 70  °C) and geographical location on the extraction of the oil from açaí in 
lyophilized form. Oil yields between 49.28 (location, Anajás, 60 °C, 420 bar) and 
57.06% (location, Chaves, 70 °C, 490 bar) were obtained (Silva et al. 2019) with the 
operating conditions not affecting the fatty acid composition within each study area. 
Operating conditions of 60 °C and 420 bar and 70 °C and 490 bar resulted in opti-
mum results of antioxidant capacity, total anthocyanins and total phenolic com-
pounds in the oil from Chaves (Silva et  al. 2019). Kerrihard and Pegg (2015) 
reported on the suitability of the application of SC-CO2 extraction of oils containing 
higher concentrations of γ-linolenic acid (GLA; 18:3n-6), which have as a result 
higher anti-inflammatory functionalities. Scale-up experiments and validation pro-
cesses for the SC-CO2 extraction of lipids and volatile oils have been investigated 
by several researchers with promising results of potential extraction at a commercial 
scale (Shukla et al. 2019; Wrona et al. 2019).

Essential oils, also referred to as volatile oils, are commonly used in traditional 
medicine and aromatherapy and as natural additives due to their reported antimicro-
bial activities (Chávez-González et  al. 2016) in the food and cosmetics industry 
(Fornari et al. 2012a). Grosso et al. (2010) have tested five mathematical models for 
the modelling of the extraction of aromatic plants, fennel, coriander, cotton laven-
der, savoury, winter savoury and thyme by which extraction was impacted by par-
ticle size, internal mass transfer coefficient, internal diffusion, and pressure and 
temperature changes.

Sovová (2012) has described various published mathematical models for the 
extraction of essential oils from plants for a 15-year period up to 2012. Tongnuanchan 
and Benjakul (2014) have discussed the extraction methods, including aspects of 
SC-CO2 extraction among others, and the uses and bioactivities of essential oils. 
Yousefi et al. (2019) have compiled a review that investigates the SF extraction of 
essential oils from plants. The review describes conventional extraction methods as 
compared to the SF extraction, optimization and modelling techniques commonly 
applied and the effects of the various operating parameters on the supercritical 
extraction process (Yousefi et  al. 2019). SC-CO2 has been investigated for the 
extraction of the volatile oil from the flower heads of Santolina chamaecyparissus 
L. under different operating conditions. Notably, pressure increase to 9  MPa 
enriched the content of sesquiterpene in the extracted Santolina chamaecyparissus 
essential oil (Grosso et  al. 2009a). The volatile oil from Satureja montana 
L. extracted by SC-CO2 was reported by Grosso (2009b) to contain higher concen-
trations of thymoquinone (1.6–3.0%) as compared to the hydrodistillation, a con-
ventional extraction method. Essential oils produced via SC-CO2 extraction from 
various herbs and plants have been reported by Fornari et al. (2012a). A cooled mill 
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was used to crush the dried leaves (O. vulgare, Thymus vulgaris, Salvia officinalis, 
Rosmarinus officinalis, Ocimum basilicum, Origanum majorana) and petals 
(Calendula officinalis) and then sieved (200–600  μm). Essential oils were then 
extracted at 30 MPa and 40 °C with a flow rate of 60 g/min for 5 h (Fornari et al. 
2012a). The economically important vetiver essential oil was extracted with SC-CO2 
among other methods (“pressurized liquid and ultrasound- assisted methods”) from 
Chrysopogon zizanioides (L.) Roberty, syn. Vetiveria zizanioides (L.) Nash root 
with the highest yield (2.23% m/m) obtained at 20 MPa and 60 °C (Santos et al. 
2019). A higher yield (2.66% (m/m)) was obtained after the addition of 5% (v/v) of 
the co-solvent, ethanol (Santos et al. 2019). The dominant compounds were isova-
lencenol (9.04% SC-CO2; 8.70% SC-CO2+ 5% EtOH 5%), khusimol (30.49% 
SC-CO2; 31.33% SC-CO2+ 5% EtOH 5%), zizanoic acid (8.33% SC-CO2; 6.82% 
SC-CO2+ 5% EtOH 5%) and α-vetivone (6.42% SC-CO2; 6.61% SC-CO2+ 5% 
EtOH 5%). Leaf powder (20 g, dp = 0.42 mm) of Ocimum sanctum Linn. has been 
used for the extraction of eugenol (2.96 mg/g dry leaves) with SC-CO2 at a flow rate 
of 2.5 L/min, 200 bar and 50 °C for 90 min (Chatterjee et al. 2017). Eugenol yield 
was affected only by pressure changes, and the kinetics of the extraction were 
reported to be first-order kinetics (Higuchi model) (Chatterjee et al. 2017). Eugenol 
(29.84%) has been extracted from clove at 40 °C and 220 bar with highest antioxi-
dant activity of the extract found after extraction at 40 °C and 150 bar (Frohlich 
et al. 2019). In comparison to the Soxhlet extraction, it was revealed that the SC-CO2 
was more efficient in terms of yield, antioxidant activity, sample clean-up, reaction 
time and temperature (Frohlich et al. 2019).

Oleoresin has been optimally extracted from Curcuma longa (conventional tur-
meric) and Curcuma amada (mango ginger) at 65 °C and 350 bar for 150 min and 
at 40  °C and 300  bar for 30  min, respectively (Nagavekar and Singhal 2019). 
Modifier (30% ethanol) and pre-treatment with Stargen®002 enzyme significantly 
improved the yield (Nagavekar and Singhal 2019).

7.4  Artemisinin

The active pharmaceutical ingredient, artemisinin, is extracted from the herbaceous 
plant Artemisia annua L. (sweet wormwood) and is used in pharmaceutical applica-
tions for the treatment of malaria and cancer (Rodrigues et al. 2019). Artemisinin is 
a sesquiterpene that is highly oxygenated with a 1,2,4- trioxane ring structure 
(Brown 2010). Faurant (2011) have provided a historic background on the discovery 
of artemisinin and market-related developments, with Brown (2010) having pro-
vided a review on the photochemistry of the plant A. annua L. and the biosynthesis 
of the compound artemisinin. The SC-CO2 extraction has commonly been employed 
in the high yield extraction of artemisinin from A. annua L. yielding high purity and 
clean extracts (Kohler et  al. 1997; Quispe-Condori et  al. 2005; Lin et  al. 2006; 
Tzeng et al. 2007; Baldino et al. 2017; Martinez-Correa et al. 2017; Ciftzi et al. 
2018; Rodrigues et al. 2019). Lapkin et al. (2006) have published a comparative 
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analysis on existing conventional and green technologies such as SC-CO2 for the 
extraction of artemisinin.

Pure, non-degraded extracts of artemisinin have been obtained with a flow rate of 
2 ml/min of SC-CO2/3% methanol at 50 °C and 15 MPa within 20 min (Kohler et al. 
1997). Artemisinin yields of 0.62% and 0.70% have been achieved at conditions of 
150 bar and 30 °C and 300 bar and 50 °C, respectively (Quispe-Condori et al. 2005). 
Artemisinin of high purity within a short reaction time was yielded at optimized 
conditions of 33 °C, 18.72 MPa, SC-CO2/16.25 wt% of n-hexane after an extraction 
time of 1.5  h (Lin et  al. 2006). The highest purity was obtained at 60  °C and 
17.34 MPa and proved to be far better than when Soxhlet extraction (hexane) was 
applied (Lin et al. 2006). Martinez-Correa et al. (2017) reported the suitability of a 
two-step extraction procedure, starting with SC-CO2 extraction (60 °C, 40 MPa), 
followed by further extractions with either ethanol (25 °C) or water (60 °C). Baldino 
et al. (2017) on the other hand reported the optimum procedure to be a one-step 
extraction at 40 °C and 100 bar for 600 min. Ciftzi et al. (2018) reported optimum 
conditions to be 33 °C and 30 MPa for yielding 1.09% (predicted yield). The cost-
effectiveness of the SC-CO2 extraction process of artemisinin as compared to the 
conventional extraction (ethanol) was evaluated by Rodrigues et al. (2019), which 
determined that this process is more attractive economically and viability could be 
achieved if reduced cost for the raw material could be achieved. An artemisinin 
content of 23.4% was reached at 50 °C and 200 bar for 60 min (Rodrigues et al. 
2019). A reaction time of 180 min was needed to obtain 6% of artemisinin using 
conventional extraction with ethanol (Rodrigues et al. 2019).

7.5  Alkylamides

Alkylamides from the dried roots of Echinacea angustifolia were extracted by Sun 
et al. (2002) at highest concentration as compared to the fresh roots, by which the 
yield was positively affected by temperature and pressure.

7.6  Phenolics, Flavonoids, Chlorophylls and Carotenoids

Phenolics and flavonoids extracted from plants via the SC-CO2 process have been 
reported by several researchers (Table 7.3). Ampelopsis grossedentata stems were 
used to optimally extract flavonoids and phenolics at 40 °C and 250 bar for 50 min 
with 1:3 v/v methanol/ethanol and 1:1 v/v methanol/ethanol, respectively (Wang 
et  al. 2011). Pomelo peel was used for the extraction of flavonoids (2.37%) at 
39 MPa, 80 °C, 85% ethanol for 49 min (He et al. 2012). SC-CO2 extracted flavo-
noids had higher scavenging activities as compared to the conventional process (He 
et al. 2012). Increased concentration of total phenolic content and antioxidant activ-
ity were obtained with the addition of co-solvents (ethanol and ethyl acetate) to the 
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SC-CO2 extraction process of the oil from Eremanthus erythropappus (candeia 
wood) (Santos et  al. 2017). Total phenolics from radishes (Raphanus sativus L.) 
were reported at concentrations of 1375 mg GAE/100 g and 1455 mg GAE/100 g at 
operating conditions of 400 bar at 35 °C and 40 °C, respectively (Goyeneche et al. 
2018). Escobedo-Flores et  al. (2018) extracted polyphenols from Avena sativa 
L. (oats) obtaining maximum yields at 55 °C and 38 MPa. An optimum concentra-
tion of 1437.57 mg/g was predicted with the generated quadratic models (Escobedo-
Flores et  al. 2018). The effects of particle size on the concentrations of 
avenanthramides and phenolics extracted from medium oat bran, whole flour (WF), 
low bran and fine bran have been reported by Walters et al. (2018), with larger sizes 
presenting a limiting factor during SC-CO2 extractions. Higher radical scavenging 
activities were observed with the extracts via the SC-CO2 extraction of the defatted 
fraction of the fine particles (Walters et  al. 2018). Avenanthramides have been 
reported to possess strong anti-inflammatory properties (Sur et al. 2008). The yield 
of total phenolics and total chlorophylls extracted from Solidago gigantea Ait. 
(goldenrod), a medicinal plant, has been evaluated using a “Box-Behnken design 
with three variables” studied, temperature (40–80 °C), pressure (20–80 MPa) and 
the flow rate of CO2 (3–7 kg/h) (Wrona et al. 2019). The three variables studied had 
an effect on the yield of total phenolics and total chlorophylls with optimum condi-
tions reported as temperature of 313.59 K and 352.22 K, pressure of 79.14 MPa and 
74.59 MPa and CO2 flow rate of 3.25 kg/h and 3.00 kg/h, respectively (Wrona et al. 
2019). Increased temperature resulted in a decrease in the total phenolic content, but 
increased when pressure was increased (Wrona et al. 2019). Alvarez et al. (2019) 
determined that conditions of 40 MPa and 35 °C with the co-solvent ethanol were 
optimum or the extraction of polyphenols and flavonoids with highest antioxidant 
activity. Roselló-Soto et  al. (2019a) affirmed the suitability of applying SC-CO2 
extraction of lipophilic phenolic compounds when compared to the conventional 
extraction. Isohydroxymatairesinol was extracted at highest concentrations at pres-
sures of 30  MPa (756.22  ppb) and 40  MPa (1331.45  ppb). Increasing pressures 
improved the extraction of the phenolic compounds, including the antioxidant activ-
ity (Roselló-Soto et al. 2019a). A SC-CO2 extraction process to obtain an extract 
rich in phenolic compounds from cacao (Theobroma cacao) pod husk was devel-
oped by Valadez-Carmona et al. (2018). The yield was influenced by pressure and 
co-solvent percentage, and a yield of 0.52% was obtained at optimum conditions of 
299  bar, 60  °C and 13.7% ethanol with high selectivity towards antioxidants 
(Valadez-Carmona et al. 2018).

Carotenoids are pigments and the secondary metabolites of plants and some 
microorganisms (Zaghdoudi et al. 2016) and can be successfully extracted using 
SC-CO2. Sovová et al. (2001) have published data on the effects of different tem-
peratures and pressures with and without ethanol and vegetable oil on the solubility 
of β-carotene in SC-CO2. Knowledge of the solubility of biomolecules such as the 
carotenoids in SC-CO2 is necessary to develop appropriate SC-CO2 extraction pro-
cesses. De la Fuente et al. (2006) have determined the solubility of lycopene and 
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astaxanthin at different temperatures and pressures. Similar to the behaviour of 
β-carotene in SC-CO2, lycopene and astaxanthin solubility was greater with 
increased temperature (313–333 K) and constant pressure (30 MPa) as compared to 
increased pressure (30–50 MPa) at constant temperature (313 K) (de la Fuente et al. 
2006). A review on the extraction of carotenoids from pumpkin (Cucurbita spp.) via 
the SC-CO2 process and the influence temperature and pressure, pre-treatment 
effects, entrainers (modifier or co-solvents) and co-matrices on total carotenoid 
yield and carotenoid composition has been published by Durante et  al. (2014). 
Choudhari and Singhal (2008) have extracted lycopene, a red-coloured tetraterpenic 
C40 carotenoid, from Blakeslea trispora, a zygomycete, at optimized conditions of 
349 bar and 52 °C for 1.1 h and using an entrainer such as acetone, yielding 92%. 
Astaxanthin has been extracted from the microalgae Haematococcus pluvialis with 
the use of olive oil and soybean oil as co-solvents achieving a yield of 51.03% and 
36.36%, respectively (Krichnavaruk et al. 2008). The microalgae Haematococcus 
pluvialis has been reported to be one of the greatest sources of the natural occurring 
astaxanthin, a carotenoid with potent antioxidant activity (Shah et al. 2016).

Xanthophylls (all-trans-lutein (15.46  μg/g), all-trans-zeaxanthin (16.81  μg/g) 
and all-trans-β-cryptoxanthin (33.23  μg/g)) have been optimally extracted from 
persimmon fruits (Diospyros kaki L.) at a flow rate of 3 ml/min, 300 bars, 60 °C and 
25% (w/w) ethanol for 30 min obtaining higher yields as compared to the Soxhlet 
extraction method (Zaghdoudi et al. 2016). Conditions of flow rate of 1 ml/min, 100 
bars, 40 °C and 25% (w/w) ethanol for 30 min were better suited for the extraction 
of 11.19 μg/g all-trans-β-carotene (Zaghdoudi et  al. 2016). Spinach by-products 
have been used by Derrien et al. (2018) for the optimization of SC-CO2 extraction 
of chlorophyll and lutein. Optimized conditions that resulted in a 72% and 50% 
yield of lutein and chlorophyll, respectively, were reported to be 39 MPa, 56 °C with 
a co-solvent of 10% ethanol for 3.6 h (Derrien et al. 2018). The SC-CO2 extraction 
process of carotenoids from microalgae with the use of published data was described 
and modelled by Sovová and Stateva (2019). The model confirmed that higher tem-
peratures and pressures increased yield of carotenoid in oil and extraction rate due 
to increased solubility of carotenoid in the supercritical fluid and the reduced capac-
ity of adsorption of the microalga (Sovová and Stateva 2019). The phase equilib-
rium was found to be responsible in controlling the extraction process (Sovová and 
Stateva 2019).

7.7  Polysaccharides

Polysaccharides have been extracted via the SC-CO2 process from the seeds of 
Artemisia sphaerocephala Krasch. at optimum conditions of temperature (extrac-
tion, 45 °C; separation, 56 °C), pressure (extraction, 45 MPa; separation, 10 MPa), 
a flow rate of 20 L/h for 2 h resulted in a yield of 18.59% (w/w) (Chen et al. 2014). 
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The 551.3 kDa polysaccharide was composed of the monosaccharides, mannose 
(10.8 mg/g), rhamnose (8.78 mg/g), galactose (9.86 mg/g), glucose (16.2 mg/g), 
arabinose (8.48 mg/g), xylose (38.48 mg/g) and fucose (10.09 mg/g) (Chen et al. 
2014). The polysaccharide extracted from Artemisia sphaerocephala Krasch. has 
been reported to have medicinal applications (Xing et al. 2009). A polysaccharide 
(2.47%) from the leaves of bamboo (Phyllostachys heterocycla) has been extracted 
with SC-CO2/ethanol modifier (30 ml) at optimized parameters of 50 °C and 40 MPa 
with a 2-h reaction time (Zou et al. 2018).

7.8  Tocopherols and Sterols

Plant cells synthesize α-, β-, γ- and δ-tocopherol, which are then stored in their 
seeds and leaves (Bendif et al. 2018). Tocopherols have strong antioxidant proper-
ties (Bendif et al. 2018). The content of tocopherols in extracted Cannabis sativa 
L. seed oil is significantly affected by temperature and pressure with higher tem-
peratures and pressures resulting in a negative response (Aladić et  al. 2015). 
Potential sources of tocopherol were reported by Bendif et al. (2018) to be con-
tained in the SC-CO2 extracts obtained from Thymus munbyanus subsp. coloratus 
(α-tocopherol [1580  μg/g], β-tocopherol [170  μg/g], γ-tocopherol [220  μg/g], 
δ-tocopherol [160 μg/g]) and Thymus munbyanus subsp. munbyanus (α-tocopherol 
[780  μg/g], β-tocopherol [140  μg/g], γ-tocopherol [120  μg/g], δ-tocopherol 
[130 μg/g]). The Thymus extracts were obtained with SC-CO2 extraction with a flow 
rate of 2 L/min at 70 °C and 45 MPa for 210 min (Bendif et al. 2018). Sitosterol 
(1220 mg/kg seed) has been found to be contained in peach oil (extracted yield, 
35.3 g/100 g seed) after SC-CO2 extraction from the Prunus persica seeds (0.3 mm) 
at optimum conditions of 200 bar, flow rate of 7 ml/min and at 40  °C after 3 h 
(Ekinci and Gürü 2014).

7.9  Conclusions

A wide variety of biomolecules can be efficiently extracted with the SC-CO2 extrac-
tion process. Optimization strategies are targeting to achieve parameters that can 
achieve high yield products with high purity and quality at less costs and environ-
mental impacts. Research on the cost-effectiveness, economics and possible facility 
designs for the scaling up of the SC-CO2 extraction process is underway with some 
successful examples already in place. The advent of the Green Chemistry era has 
made it possible to explore more opportunities in the development of innovative 
extraction and processing technologies.
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