
Rachid Benmansour
Angelo Sifaleras
Nenad Mladenović (Eds.)
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Preface

This volume edited by Rachid Benmansour, Angelo Sifaleras, and Nenad Mladenović
contains peer-reviewed papers from the 7th International Conference on Variable
Neighborhood Search (ICVNS 2019) held in Rabat, Morocco, during October 3–5,
2019. The conference follows previous successful meetings that were held in Sithonia,
Halkidiki, Greece (2018); Ouro Preto, Brazil (2017); Malaga, Spain (2016); Djerba,
Tunisia (2014); Herceg Novi, Montenegro (2012); and Puerto de La Cruz, Tenerife,
Spain (2005). This edition was organized by Rachid Benmansour, from the Institut
National de Statistique et d’Economie Appliquée (Morocco), who was the conference
chair, Nenad Mladenović, from Khalifa University (UAE), who was the general chair,
and Pierre Hansen, from GERAD and HEC Montréal (Canada), who was the honorary
chair.

The main goal of ICVNS 2019 was to provide a stimulating environment in which
researchers coming from various scientific fields could share and discuss their
knowledge, expertise, and ideas related to the VNS Metaheuristic and its applications.
The location of ICVNS 2019 in Rabat, Morocco, allowed to combine academic pre-
sentations and social networking.

The following three plenary speakers shared their current research directions with
the ICVNS 2019 participants:

• Martine Labbé, from the Université Libre de Bruxelles, Belgium, “Bilevel
optimisation and pricing problems”

• Eduardo G. Pardo, from the Universidad Politécnica de Madrid, Spain,
“Parallelization of Variable Neighborhood Search: the present and future paradigm”

• Said Salhi, from Kent Business School, UK, “Hybridization and Deep Learning:
case of VNS & LNS for a class of routing problems”

Around 40 participants took part in the ICVNS 2019 conference and a total of 28
submissions were accepted for oral presentation. A total of 13 full papers were accepted
for publication in this LNCS volume after thorough peer reviewing by the members
of the ICVNS 2019 Program Committee. These papers describe recent advances in
methods and applications of VNS. The editors thank all the participants at the con-
ference for their contributions and for their continuous effort to disseminate VNS, and
are grateful to the reviewers for preparing excellent reports. The editors wish to
acknowledge the Springer LNCS editorial staff for their support during the entire
publication process.

Finally, we express our gratitude to the organizers and sponsors of the ICVNS 2019
meeting, especially:



• The National Institute of Statistics and Applied Economics (INSEA)
• The EURO Working Group on Metaheuristics (EWG EU/ME)
• The Research Laboratory in Information Systems, Intelligent Systems and Mathe-

matical Modeling (SI2M)

Their support is greatly appreciated for making ICVNS 2019 a great scientific event.

February 2020 Rachid Benmansour
Angelo Sifaleras

Nenad Mladenović

vi Preface
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A Reduced Variable Neighborhood
Search Approach for Feature Selection

in Cancer Classification

Angelos Pentelas, Angelo Sifaleras(B) , and Georgia Koloniari

Department of Applied Informatics, School of Information Sciences,
University of Macedonia, 156 Egnatia Street, 54636 Thessaloniki, Greece

apentelas@uom.edu.gr, {sifalera,gkoloniari}@uom.gr

Abstract. In this work we propose a Reduced Variable Neighborhood
Search (RVNS) algorithm, to handle the gene selection problem in cancer
classification. RVNS is utilized as the search method and gene subsets
obtained are evaluated by three learning algorithms, namely support vec-
tor machine, k-nearest neighbors, and random forest. Experiments are
conducted on five publicly available cancer related datasets, all charac-
terized by a small sample size to dimensionality ratio. Since RVNS seeks
gene subsets that yield accurate predictions for all three aforementioned
classifiers, the obtained results can be considered more reliable. To the
best of our knowledge, the proposed methodology is innovative due to the
fact that, it combines the Recursive Feature Elimination (RFE) heuristic
with a RVNS algorithm. Despite the large size of the problem instances,
the suggested feature selection scheme converges within reasonably short
time, when compared to similar methods. Results indicate high perfor-
mance for RVNS that, is further improved when the RFE method is
applied as a pre-processing step.

Keywords: Reduced Variable Neighborhood Search · Feature
selection · Cancer classification

1 Introduction

Compelling technological advances, along with a well-established existent theo-
retical background, shaped the era of Big Data and Artificial Intelligence. These
terms, usually intertwined, imprint the development of tools capable of collecting
and storing complex data, as well as methods for mining knowledge from them.
Industry and organisations tested and adopted such techniques in a sense that
data-driven decisions and operations carry less bias and are, thus, more reliable.

However, the aforementioned trend results in datasets complicated enough
that it takes great computational effort for machines to analyze and makes
impossible for human experts to interpret, e.g., microarray datasets. In an
attempt of achieving a fair trade-off between leveraging all the available infor-
mation and interpreting an objective’s results, Feature Selection (FS) emerged.
c© Springer Nature Switzerland AG 2020
R. Benmansour et al. (Eds.): ICVNS 2019, LNCS 12010, pp. 1–16, 2020.
https://doi.org/10.1007/978-3-030-44932-2_1
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On a high level, FS can be considered as a technique that, ideally, maintains
only relevant information, i.e., features, of a dataset about the imminent anal-
ysis’ scope and discards the rest as irrelevant. Since the FS problem has been
proven to be NP-hard [19] and, in addition, in [21] it is implied that the choice
of an effective FS method is dataset dependent, various FS techniques have been
proposed in the literature. These can be arranged into four groups, namely Fil-
ters, Wrappers, Embedded, and Ensemble. However, following the recent research
studies within the field, an observable shift towards hybridized FS schemes is
apparent [1,3,5,8,18]. In the next three paragraphs, all methods are shortly
described within a classification task context.

The Filter methods rely only on the intrinsic data characteristics, i.e., statis-
tical metrics. Such techniques benefit from a low time complexity and limit the
risk of model over-fitting since they do not take the learning algorithm’s perfor-
mance into consideration. The latter can be proven one of their most significant
drawbacks, since the predictive ability of a model is a significant concern for
domain experts.

Wrappers include techniques that continuously search into the feature space,
select a feature subset, evaluate its quality by, usually, one classifier and repeat
this process until some stopping criteria are met. The selection of a feature
subset is typically driven by an intelligent mechanism (e.g., metaheuristics) and
is not randomized. Despite being computationally more expensive than the filter
methods, these techniques yield more accurate results and manageable sized
solutions. Nevertheless, wrappers seem to undergo the risk of model over-fitting.

Trying to balance the pros and cons of the aforementioned FS classes, Embed-
ded methods emerged. As stated in [6], such methods use the core of the clas-
sifier to establish criteria to rank features. Finally, Ensemble techniques, acting
like ensemble of classifiers, combine methods described above on the assump-
tion that combining the output of multiple experts is better than the output of
any single expert [6]. Nonetheless, both of the aforesaid techniques come with
deficiencies. In particular, Embedded methods are generally driven by heuristic
approaches, thus leading to insufficient exploration of the solution space. Ensem-
ble FS schemes, on the other hand, require higher computational time than any
single FS technique they incorporate does. Moreover, the contribution of each FS
scheme to the final feature subset is not obvious and necessitates examination.

The purpose of this work is to propose an efficient search mechanism for
gene selection in cancer classification that limits the drawbacks of wrapper FS
techniques, i.e., the risk of model over-fitting and the high computational cost,
while it manages to obtain accurate results. To this end, we implement a Reduced
Variable Neighborhood Search (RVNS) algorithm that searches the solution space
in a systematic, yet computationally light, manner. Solutions provided by the
RVNS are shared across Support Vector Machine (SVM), k-Nearest Neighbor
(k-NN) and Random Forest (RF) classifiers for evaluation and their average
accuracy, along with the solution’s number of selected genes, are taken into
consideration by an appropriate evaluation function. As a result, the final gene
subsets obtained by our algorithm yield accurate predictions for more than one
learning algorithms and findings can be further used with more reliability.
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In the rationale that population-based meta-heuristics have been extensively
studied within the FS field, we provide a single-point search meta-heuristic algo-
rithm (i.e., RVNS) that, performs exceptionally in terms of accuracy, final gene
subset size, and convergence time. By applying the embedded Support Vector
Machine - Recursive Feature Elimination (RFE) technique as a pre-processing
step that significantly reduces the feature space, we suggest the RFE-RVNS
hybrid method. Both RFE-RVNS and RVNS were tested on five high-dimensional
cancer-related datasets, frequently used in cognate research papers.

The structure of this work is as follows. In Sect. 2, we discuss similar
approaches within the gene selection problem, focusing on recent research work
and the methods they utilize. Next, we introduce our methodology in Sect. 3.
Section 4 presents the results of our methods on five datasets and a comparison
with related well-performing algorithms is quoted. Last comes a short summary
of our findings, as well as thoughts for future work and improvements, in Sect. 5.

2 Related Work

Focusing on recently conducted studies, in [1] authors implemented two wrapper
methods, namely a Genetic Algorithm (GA) and a Geometrical Particle Swarm
Optimization (GPSO) to address the gene selection problem. The proposed FS
schemes use SVM as their learning algorithm which obtains noteworthy results,
after evaluating 4,000 solutions.

Another population-based approach is presented in the work of Alshamlan
et al. [3]. A Genetic Bee Colony (GBC) optimization algorithm is applied on a
reduced solution space, provided by the Maximum Relevance Minimum Redun-
dancy (MRMR) filter method. SVM’s accuracy is again selected as the primary
optimization parameter. The overall performance of the hybridized technique is
considered acceptable in terms of predictive capability and gene subset size. How-
ever, parameter values indicate the requirement of great computational effort,
since more than 8,000 evaluations occur.

In a more recent study [5], two hybrid algorithms are presented combining
both filter and wrapper FS methods. These two proposed approaches consist
of a pre-selection phase, carried out by filter techniques, followed by a search
phase that determines a good subset of genes for the classification. A wrapper
metaheuristic is responsible for the latter. From an accuracy standpoint, results
in eight datasets indicate competitive performance. The computational effort,
though, proves underwhelming, with tens of minutes and even hours of run-
time. Worth noticing, the classifiers utilized in the two methods are SVM and
k-NN, respectively.

Finally, valuable insights come from [18], where authors combine the SVM-
RFE embedded method with the MRMR filter one. The novelty of this research
work is that, genes are ranked by a convex combination of the relevance given by
SVM weights and the MRMR criterion. Results in this case are also acceptable,
even though gene subset sizes can not be considered small enough.
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With all referenced studies being after 2007, a trend towards hybridized FS
schemes becomes apparent. More specifically we note that, filters and embed-
ded methods are in many cases used as a pre-processing step in order to reduce
the vast solution space of the gene subset selection problem. Afterwards, wrap-
pers’ advantages being exploited, producing small and informative gene subsets.
Concerning the learning algorithms used, SVM and k-NN have been the most
popular choices.

3 Research Methodology

In this section, we elaborate on all algorithms used within our research, as well as
how they are combined to form the proposed RVNS and RFE-RVNS FS schemes.

3.1 Reduced Variable Neighborhood Search

Variable Neighborhood Search (VNS) is a metaheuristic method based on sys-
tematic changes in the neighborhood structure within a search, for the solution
of various optimization problems. A large number of successful applications of
VNS have already been proposed in the literature, [17,23]. In the years follow-
ing, several variations of VNS emerged, with Reduced VNS (RVNS) being one
of them. The essential difference between VNS and RVNS is that, the latter
avoids any kind of local search within each neighborhood structure, as shown in
Algorithm 1. This fact results in RVNS being computationally lighter than the
basic algorithm and, thus; a promising search strategy in large problem instances.

Algorithm 1: RVNS pseudocode for a minimization problem
initialize solution x
while stopping criteria are not met do

k = 1
while k ≤ kmax do

generate x′ a random solution from neighborhood Nk(x)
if evaluate(x′) < evaluate(x) then

x = x′

k = 1

else
k = k + 1

end

end

end
return x;

Each candidate solution s is represented as a binary, 1-dimensional array of
length N , with N denoting the number of genes in each dataset. For instance, a
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candidate solution in a dataset with five genes could be: s = [0, 1, 1, 0, 1] which
means that, the second, third, and the fifth genes of the dataset are selected;
while the first and the fourth are not.

Furthermore, the three following neighborhood structures (i.e., kmax = three)
are used by both RFE-RVNS and RVNS schemes:

1. Replace a selected gene of the incumbent solution with an un-selected one.
2. Replace two selected genes of the incumbent solution with an un-selected one.

If the incumbent solution has only one gene selected, return the incumbent
solution.

3. Add an un-selected gene to the incumbent solution. If there are no more genes
to add, return the incumbent solution.

The neighborhood order, which is also decisive, is as indicated above. In this
manner, RVNS first tries to improve the current solution by keeping the same
number of selected genes and, in case that fails, moves to the second neighbor-
hood that reduces the selected genes by one. It is only when both these strategies
are unsuccessful that the algorithm will seek a new solution with more selected
genes. It should be pointed out that, in all experiments, the initial solution is
generated arbitrarily with two randomly selected genes. Therefore, according to
the neighborhood definitions above, no exception-handling is required for the
case of zero selected genes.

Example 3.1 Assume a microarray dataset with five genes and an incumbent
solution s = [0, 1, 1, 0, 1]. Let us denote with Ni(s), i ∈ {1, 2, 3}, the sets of
neighboring solutions of s. According to the three neighborhood structures as
defined above, three resulting solutions could be s1 = [0, 1, 1, 1, 0] ∈ N1(s),
s2 = [1, 0, 1, 0, 0] ∈ N2(s) and s3 = [1, 1, 1, 0, 1] ∈ N3(s).

3.2 Recursive Feature Elimination

Recursive Feature Elimination (RFE) is a heuristic feature ranking approach
that determines the importance of each feature based on a learning model’s
coefficient attribute or a feature importance metric. RFE is capable of yielding
subsets with a specified number of features by repeatedly removing the least
significant one(s).

Appertaining to the embedded FS techniques, RFE needs to be associated
with a learning algorithm in order to be meaningful. Authors in [14], who intro-
duced the RFE algorithm, combined it with an SVM classifier and successfully
tested their SVM-RFE method on two microarray datasets.

In Algorithm 2, the process that SVM-RFE follows to rank all features is
given. More specifically, at each iteration, the least significant feature is removed
from the survivable features vector (i.e., s) and is appended to the ranked list of
features (i.e, r) one. The necessity of each feature is quantified by the extent of
contribution it occupies in the learning model. In the case of SVM, the impor-
tance of each feature is calculated through the w and c vectors, as illustrated in
the aforementioned algorithm.
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Algorithm 2: SVM-RFE pseudocode
Input: X0 = [x1, x2, ..., xk, ..., xl]

T // training examples

Input: y = [y1, y2, ..., yk, ..., yl]
T // class labels

initialize subset of surviving features s = [1, 2, ..., n]
initialize feature ranked list r = [ ]
while s �= ∅ do

X = X0(:, s) // restrict training examples

α = SVM-train(X,y) // train the classifier

w =
∑

k αkykxk // compute the weight vector

ci = (wi)
2, ∀i // compute the ranking criteria

f = argmin(c) // find the feature with the smallest ranking

r = [s(f), r] // update feature ranked list

s = s(1 : f − 1, f + 1 : length(s)) /* eliminate the feature with

smallest ranking criterion */

end
return r;

3.3 Learning Algorithms

Support Vector Machine. In [9], Cortes and Vapnik proposed a remark-
ably effective learning algorithm called Support Vector Machine (SVM). SVM,
conceptually implemented on a very simple idea, seeks for the surface, i.e., hyper-
plane, that can optimally segregate two-class training data. Predictions are based
on what side of the, already defined, hyper-plane future data are mapped into.
Note that SVMs can also be extended for multi-class classification tasks. Its
simplicity, flexibility, and satisfactory computational complexity render SVMs
superior to many supervised learning algorithms. As a result, several FS meth-
ods suggested in the literature have adopted the aforementioned classifier as
their primary evaluation metric [1,3,5,11,14,18].

k-Nearest Neighbors. k-Nearest Neighbors (k-NN) is another powerful super-
vised learning algorithm widely used within the FS process [5,8,22]. It is consid-
ered a lazy learning algorithm, i.e., it does not make any assumptions about the
underlying data distribution. Given a distance metric and a future data point
mapped into the feature space, the class label assigned to the latter depends on
the class labels of its k less-distant records. Leveraging mathematical topology’s
attributes, computation of the k-nearest neighbors can be efficiently achieved.

Random Forest. A Decision Tree (DT) is a logical structure consisting of
parent and children nodes. In a high level approach, a splitting criterion is applied
on each parent node in an attempt to yield pure children nodes, i.e., nodes
that contain data points of one class, only. The Random Forest (RF) classifier
improves the predictive capability of a single DT by incorporating many DTs
that are built upon a random subset of data features. The class prediction of
a future instance is justified by the majority of the partial class predictions
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each DT makes. RF is, thus, an ensemble of classifiers and demonstrates high
performance in many machine learning applications, e.g., [4,10].

3.4 Hybrid RFE-RVNS Method

In an attempt to enhance RVNS’s performance, we apply the RFE heuristic
approach as a pre-processing step. In that way, a significant number of possibly
redundant genes are eliminated and the resulting solution space is handed over
RVNS to search into. Therefore, a new search strategy is formed that we refer
to as RFE-RVNS. Figure 1 depicts the aforementioned process.

Fig. 1. The RFE-RVNS flowchart. The value of k indicates the neighborhood structure
the algorithm is searching into.
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Each candidate solution is evaluated by four metrics; the accuracy of the
three classifiers and the size of the incumbent gene subset. Consequently, we
define a fitness function that, is described below:

evaluate(s) = α ∗ 3
a1(s) + a2(s) + a3(s)
︸ ︷︷ ︸

a(s)

+ (1 − α) ∗ g(s) (1)

where a1(s), a2(s), and a3(s) denote the accuracy the SVM, k-NN and RF
classifiers yield from solution s, respectively, and g(s) indicates the number of
selected genes. Assuming each predictive model performs at least as good as a
random classification, ai(s) ∈ [0.5, 1.0],∀i ∈ {1, 2, 3} (binary classification), thus

3∑
i=1,3 ai(s)

∈ [1, 2], while g(s) is a positive integer restricted by the number of
genes in each dataset. Parameter α acts as weight to the average accuracy of the
three classifiers, while 1 − α acts similarly to the gene subset size.

The evaluation function in Eq. 1 was selected since it can offer a good trade-
off between the overall accuracy and the final number of selected genes. Experi-
mentation led us to setting α to 0.99; a value that, is consistent both with our
objective of finding informative gene subsets and with the co-domains of 3

a(s)

and g(s) in Eq. 1.
A similar fitness function is used in [1] and manages to balance accurate

predictions and small gene subsets, although with different weight values and
using the accuracy of a single learning algorithm.

4 Experimental Results and Comparison

All learning algorithms mentioned, the RFE heuristic, as well as the data normal-
ization leverage the Python’s scikit-learn library, developed for data science pur-
poses. Experiments are conducted on an Intel i7-7700k 4-core processor, clocked
at 4.2 Ghz, with 16 Gb of RAM. Single runs of both RVNS and RFE-RVNS never
exceeded a minute, pre-processing included.

4.1 Parameter Settings

RVNS. Along with the neighborhood structures defined in Sect. 3, an essen-
tial parameter of RVNS that should be specified is the algorithm’s termination
criteria. In our implementation, we set those to be 300 iterations. The latter
indicates that the RVNS algorithm evaluates exactly 300 solutions which is just
as 900 classifications, i.e., three classifications per evaluation.

RFE. The RFE heuristic is applied with an SVM classifier. In each dataset, the
SVM-RFE method eliminates 95% of the genes that, are considered irrelevant.
The way of achieving this is by removing nine times a 10% (referring to the
initial number of genes) of the least important genes and, finally, a 5%. Let us
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note that, in a typical RFE execution, such an elimination-step is considered
quite large. In order to maintain the computational complexity low, and since
RFE is not the primary search method, we apply it with the selected parameters
we mentioned above.

Learning Algorithms. Core parameters of the learning algorithms are empir-
ically selected with two ends in mind; accuracy performance and computational
efficiency. Seeking for a balance between these two, we tested k-NN with k in
{1, 3, 5, 7, 9}. Additionally, various RF implementations, with number of DT’s in
{10, 20, 30, 40, 50} and pruning depth value in {10, 15, 20}, helped us proceed to
our final choice.

The number of neighboring classes that k-NN takes into consideration before
classifying an unknown patient is set to five and the RF classifier predicts class
labels by consulting with 20 10-depth pruned decision trees. Moreover, the SVM
classifier is implemented with a linear kernel meaning that, it searches for the
best linear hyper-plane that is able to discriminate the data. The accuracy
obtained from each learning algorithm is averaged after a 10-fold cross-validation.

4.2 Data Description and Preprocessing

The proposed methodology is tested on five publicly available cancer-related
datasets; the Leukemia, Lung, Ovarian, Colon, and Breast cancer datasets.
The first four were originally taken from the public Kent Ridge Bio-medical
Data Repository, which is now hosted in the ELVIRA Biomedical Data Repos-
itory (http://leo.ugr.es/elvira/DBCRepository). The Breast Cancer Dataset
was available under https://data.mendeley.com/datasets/v3cc2p38hb/1. Sam-
ple size, dimensionality, and the number of classes of each dataset are depicted
in Table 1.

Table 1. Dataset characteristics

Dataset Sample size Number of genes Number of classes Reference

Leukemia 72 7,129 2 [12]

Lung 181 12,533 2 [13]

Ovarian 253 15,154 2 [20]

Colon 62 2,000 2 [2]

Breast 590 17,814 2 [7]

All data values are normalized and missing ones are replaced by zero’s, i.e.,
their mean. It should be noted that, only in the Breast cancer dataset, a few
missing values are found.

http://leo.ugr.es/elvira/DBCRepository
https://data.mendeley.com/datasets/v3cc2p38hb/1
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4.3 Performance of RFE-RVNS and RVNS

The performance of the proposed algorithms on the selected datasets is depicted
in Tables 2, 3, 4, 5, and 6. The metrics measured are the Best, Mean, and Worst
values of each of the classifiers’ accuracy, along with the respective number of
genes values (#Genes). The Average accuracy metric, which is measured as the
average accuracy value of SVM, k-NN and RF in a single run, should not be
interpreted as a typical learning algorithm’s accuracy, but rather as the ability
of the proposed algorithms to obtain informative genes for all classifiers.

Table 2. Performance of RFE - RVNS and RVNS algorithms when applied with the
SVM, k-NN and RF classifiers on the Leukemia dataset after ten independent runs.

RFE-RVNS RVNS

Metric Best Mean Worst Best Mean Worst

Average accuracy 99.58 98.88 97.64 97.44 94.26 89.35

SVM accuracy 100 98.75 94.58 100 95.18 86.67

k-NN accuracy 100 99.58 97.08 97.5 93.84 87.56

RF accuracy 100 98.32 97.08 97.5 93.76 87.2

#Genes 3 3.8 5 2 4.7 8

Table 3. Performance of RFE - RVNS and RVNS algorithms when applied with the
SVM, k-NN and RF classifiers on the Lung cancer dataset after ten independent runs.

RFE-RVNS RVNS

Metric Best Mean Worst Best Mean Worst

Average accuracy 99.44 98.65 97.22 98.55 95.67 91.88

SVM accuracy 99.44 98.73 97.22 98.36 95.75 91.17

k-NN accuracy 100 98.67 97.22 98.36 95.19 91.14

RF accuracy 100 98.56 97.22 98.92 96.07 93.33

#Genes 2 2.2 3 2 2.5 3

Commenting upon figures in Tables 2, 3, 4, and 6, RFE-RVNS managed to
obtain a maximum, i.e., the maximum of bests, of 100% accuracy and a mini-
mum, i.e., the minimum of worst, of 97.22%, while the corresponding values for
RVNS are 99.10% and 89.35%, respectively. In the case of the Colon dataset, both
RFE-RVNS and RVNS faced some adversities in finding small and informative
gene subsets with a mean accuracy of 91.23% and 87.22%, respectively. Notable
is the fact that, in the Ovarian dataset, RFE-RVNS managed to simultaneously
yield 100% accuracy for all three classifiers.
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Table 4. Performance of RFE - RVNS and RVNS algorithms when applied with the
SVM, k-NN and RF classifiers on the Ovarian cancer dataset after ten independent
runs.

RFE-RVNS RVNS

Metric Best Mean Worst Best Mean Worst

Average accuracy 100 99.18 97.87 98.67 96.94 94.77

SVM accuracy 100 99.49 97.62 99.6 98.06 95.63

k-NN accuracy 100 99.21 98 98.4 97.04 94.52

RF accuracy 100 98.85 97.6 95.74 95.74 91.39

#Genes 2 2.4 3 3 4.1 7

Table 5. Performance of RFE - RVNS and RVNS algorithms when applied with the
SVM, k-NN and RF classifiers on the Colon cancer dataset after ten independent runs.

RFE-RVNS RVNS

Metric Best Mean Worst Best Mean Worst

Average accuracy 93.73 91.23 88.57 89.68 87.72 85.24

SVM accuracy 96.90 93.36 88.57 93.33 89.50 84.05

k-NN accuracy 96.90 92.69 89.05 90.00 87.79 84.05

RF accuracy 90.24 87.64 84.05 88.57 85.88 80.48

#Genes 4 5.5 8 3 5.5 8

Table 6. Performance of RFE - RVNS and RVNS algorithms when applied with the
SVM, k-NN and RF classifiers on the Breast cancer dataset after ten independent runs.

RFE-RVNS RVNS

Metric Best Mean Worst Best Mean Worst

Average accuracy 99.27 98.83 98.37 99.1 98.35 97.06

SVM accuracy 99.32 98.83 98.47 99.32 98.39 96.95

k-NN accuracy 99.32 98.97 98.31 99.32 98.39 97.12

RF accuracy 99.32 98.7 98.14 99.16 98.29 97.12

#Genes 1 1.7 2 2 2.5 3

Concerning the gene subset size, the mean number of selected genes is impres-
sively small under both approaches, with 3.8-gene and 4.7-gene subsets being the
largest average ones for RFE-RVNS and RVNS respectively. Again, in the Colon
dataset, the behavior differs a little with slightly larger gene subsets.

While both methods perform worthy, not only in terms of yielding informa-
tive, to all classifiers, gene subsets, but also small sized ones, the dominance of
RFE-RVNS over RVNS cannot be overlooked.
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Questioning whether one learning algorithm is favored over the others, or
whether their predictive ability significantly varies, Fig. 2 shows that only in the
case of the Colon cancer dataset, the RF model performs somewhat worst.

Fig. 2. SVM, k-NN and RF mean accuracy in each dataset obtained by RFE-RVNS.

Trying to decipher our method’s behavior on the Colon dataset, we depict
the classifiers’ accuracy on current best solutions found every 15 iterations of
a typical RVNS execution. The graphs illustrated in Fig. 3 indicate that, gene
subsets obtained often improve one learning algorithm’s performance but worsen
another’s, e.g., iterations 40 and 145. This phenomenon adds to our intention of
implementing a gene selection strategy that returns informative gene subsets for
more than one classifier, in the sense of quality and reliability.

4.4 Comparison

As stated earlier, the proposed fitness function tries to achieve high performance
on three learning algorithms while maintaining a small gene subset size. How-
ever, most related work was conducted by targeting one or two ends. Thereby,
within the context of a search strategy comparison, the objective function of
RFE-RVNS and RVNS is modified in order to take only the SVM’s accuracy
into consideration, meaning that only a third of the classifications originally
made will occur. That allows us to intensify the search capability of RFE-RVNS
and RVNS by increasing the iterations from 300 to 500 and 1,000 respectively.
Comparatively, in most related studies, wrapper methods tend to evaluate a few
thousands candidate solutions as mentioned in Sect. 2.
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Fig. 3. SVM, k-NN, RF and average accuracy values from a typical execution of RVNS
on the Colon dataset.

It is also in the same section that we refer to the Genetic Algorithm (GA) [1],
the Geometrical Particle Swarm Optimization (GPSO) [1], the Genetic Bee
Colony (GBC) [3] and the Maximum Relevance Minimum Redundancy - SVM-
RFE (MRMR+SVM) [18] algorithms. Furthermore, in Table 7, performance of
FS schemes like the Multiple Filter Multiple Wrapper (MFMW) [15] and the
Ensemble Neural Network (ENN) [16] is presented. Lastly, it must be pointed
out that, the Feature Selection - Random Projection (FS+RP) [24] method does
not appertain to typical FS techniques presented in this paper; instead, it is
associated with the feature extraction ones. However, we proceed to a compari-
son with it since, to the best of our knowledge, no other FS methods tested on
the exact Breast cancer dataset can be found in the literature.

In Table 7, results indicate that RFE-RVNS outperforms well-known gene
selection methods in all datasets except for the Colon one, while RVNS also
obtains notable results. Thus, a small, yet informative, gene subset can be suc-
cessfully obtained under a Variable Neighborhood Search strategy. Compared to
similar methods, our algorithms require less amount of computational time since
they evaluate significantly less candidate solutions.
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Table 7. The performance of RFE-RVNS and RVNS algorithms, when applied only
with the SVM classifier, compared to similar methods.

Reference Leukemia Lung Ovarian Breast Colon

RFE-RVNS 99.86[4] 99.51[3] 99.80[3] 99.12[2] 96.69[5]

RVNS 98.84[5] 98.67[3] 98.55[4] 98.66[2] 93.74[6]

GA [1] 95.86[4] 99.49[4] 98.83[4] - 100[3]

GPSO [1] 97.38[3] 99.00[4] 99.44[4] - 100[2]

GBC [3] 96.43[5] - - - 91.51[5]

MFMW [15] - 98.34[6] - - 95.16[6]

MRMR+SVM [18] 98.35[37] - - - 91.68[78]

ENN [16] - - 99.21[75] - 81.48[-]

FS+RP [24] - - - 98.97[>100] -

5 Conclusions and Future Work

In this paper, our aim was to suggest an efficient wrapper feature selection
method capable of yielding informative gene subsets for cancer classification.
Therefore, we proposed a Reduced Variable Neighborhood Search algorithm as
the primary search strategy. In many cases though, performance of different
learning algorithms may significantly vary, despite learning from the same data
(i.e., gene subsets). Consequently, we evaluated each gene subset by three clas-
sifiers, i.e., support vector machine, k-nearest neighbors and random forest, and
balanced the extra computational effort by enforcing considerably less, com-
pared to the literature, classification attempts. In addition to that, we applied
the Recursive Feature Elimination heuristic method to reduce the feature space
which was then given to RVNS to search into.

Both RFE-RVNS and RVNS performed well despite the large size of problem
instances and the computationally intensive 3-model building. Results on five
well-known publicly available microarray datasets indicate high performance of
RVNS that manages to obtain high accuracy for all three classifiers while still
keeping the gene subset size relatively small. By applying RFE and executing
the RVNS algorithm on a significantly reduced feature space (5% of the initial
size), the total performance is considerably improved. As a result, small-sized
gene subsets obtained can be suggested to experts with higher reliability.

We conclude by acknowledging that, an algorithm’s robustness constitutes
an important performance criterion. The development of an appropriate initial-
ization (construction) method might add to that direction. Further study on the
latter, along with testing our method on more datasets and different domains
(e.g., text classification) will concern us in future work.

Acknowledgement. The second author has been funded by the University of
Macedonia Research Committee as part of the “Principal Research 2019” funding
scheme (ID 81307).



RVNS for Feature Selection in Cancer Classification 15

References

1. Alba, E., Garcia-Nieto, J., Jourdan, L., Talbi, E.G.: Gene selection in cancer clas-
sification using PSO/SVM and GA/SVM hybrid algorithms. In: IEEE Congress
on Evolutionary Computation (CEC 2007), pp. 284–290 (2007)

2. Alon, U., et al.: Broad patterns of gene expression revealed by clustering analysis
of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl.
Acad. Sci. 96(12), 6745–6750 (1999)

3. Alshamlan, H.M., Badr, G.H., Alohali, Y.A.: Genetic bee colony (GBC) algorithm:
a new gene selection method for microarray cancer classification. Comput. Biol.
Chem. 56, 49–60 (2015)
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Abstract. The Online Order Batching Problem is a combinatorial opti-
mization problem related to the process of retrieving items within a ware-
house. It appears in the context of warehousing, when the warehouse
follows an order-batching picking policy, which means that orders are
packed together into batches before been collected. Additionally, since
this problem is online, orders are arriving to the warehouse continuously,
which is usually due to the fact that orders come from an e-commerce
platform. The variant of the problem tacked in this paper also considers
an additional characteristic: there are multiple pickers available to col-
lect the batches. In this paper we propose several strategies, based on the
Variable Neighborhood Search methodology, to tackle the problem and
we compare them with the algorithms in the state of the art, using pre-
viously referred data sets. Additionally, we test the influence of different
routing strategies not used before in the context of this variant.

Keywords: Online Order Batching Problem · Batching · Variable
Neighborhood Search · Multiple pickers

1 Introduction

The e-commerce has suffered an explosion in last few years, thousands of prod-
ucts are sold online everyday and this is just the beginning. The increase in
the online sales has made companies to development new processes related to
their supply chain management, and also to improve/modify the old ones. How-
ever, the evolution in the supply chain models is not new, since it has been
happening for many years, as it is possible to trace back in the associated
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literature from the early eighties up to today. Particularly, in the last ten years,
the number of papers related to the supply chain management has suffered a sig-
nificant increase. In this sense, the online commerce has appeared as one of the
next steps. In fact, many classical optimization problems have been reformulated
taking into consideration online restrictions.

As part of the supply chain, we focus our attention in the activities that
happen within a warehouse. More exactly, in the picking process of items. The
global objective of the picking activity is mainly related to satisfy the demand
of the customers as soon as possible. However, there are also other important
issues in which Warehouse Management Systems (WMS) must pay attention
to, such as: balance the workload of the workers in the warehouse, satisfy a
predefined due date, save energy, or simply reduce the travel time of the pickers
when collecting the items.

In this paper, we tackle the Online Order Batching Problem with Multiple
Pickers (OOBPMP). In this optimization problem, orders are arriving to the
warehouse 24 h a day/7 days a week, so it means that instances of the problem
are changing dynamically. The objective of this optimization problem is either
minimizing the time used to collect all the items in the orders received, or min-
imizing the maximum turnover time of any order (i.e., the time that an order
remains in the system). In this problem, the picking strategy is based the con-
cept of batch, which stands for a group of orders that are packed together, before
start collecting them. Then, all the items in the same batch are collected in a
single route. Notice that the orders can not be split into more than one batch.
Also, the batches can not exceed a predefined maximum capacity (weight and/or
volume restriction). Every batch can be assigned only to one picker, and every
picker can not simultaneously collect items from more than one batch. In this
sense, the picking strategy falls into the picker-to-part category. Additionally,
the OOBPMP takes into consideration the existence of multiple pickers in the
warehouse. In this paper, we propose several strategies to construct the batches,
to set the priority in which the batches are assigned to the pickers, and to deter-
mine a route to collect the items in the same batch. We do not study here the
impact of the storage policy, nor the influence of the different distributions of
arrival time moments of the orders.

There are different and well-known routing policies for the picker in the litera-
ture related to warehousing, which are suitable for this problem. These strategies
range from exact to heuristic methods. The performance of each method par-
tially depends on the shape and structure of the warehouse. The exact methods,
further than the longer times needed to calculate a route for the problem, are
frequently excluded from real scenarios, because many times they create routes
difficult to understand and follow by the operators. This difficulty increases as
the complexity of the warehouse grows. On the other hand, simple routing heuris-
tics are usually fast to calculate and they produce reasonable good results with
routes easy to understand for the pickers.
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The rest of the paper is organized as follows: in Sect. 2, we present the state
of the art of the Order Batching family of problems and we focus our attention
in the OOBPMP. We also review here the most outstanding heuristic routing
procedures in the literature. In Sect. 3, we present a new algorithm for tackling
the batching task of the considered problem. Section 4 compiles the computa-
tional results obtained with the proposed algorithms over some referenced data
sets. Finally, our conclusions and future research lines are exposed in Sect. 5.

2 State of the Art

The Order Batching Problem, further than a single optimization problem, can
be considered as a family of optimization problems which groups together those
problems related to the retrieval of goods from a warehouse, using a picking
policy based on the order batching strategy.

However, within this family of problems, the simplest and most classical
version is also referred to in the literature as Order Batching Problem (OBP)
[81]. The OBP consists in minimizing the total time needed to collect a group of
orders received in a warehouse in a context with a single picker, and having all
the orders considered at hand, before starting the batching process. This version
of the problem can be considered as static and it has raised a relevant interest
in the scientific community. Theoretical studies about the OBP indicated that
the problem is NP-hard for general instances [23], but solvable in polynomial
time if each batch does not contain more than two orders [23]. However, most
of the real instances does not usually fulfill the previous requirement. Due to
its hardness, but also to the necessity of finding solutions to the problem in
short amounts of time, heuristics and metaheuristics have been applied to tackle
the problem. The First-Come First-Served (FCFS) strategy was one of the first
heuristic strategies proposed and used in practice to assign orders to batches
in a warehouse. This strategy has been widely used due to its simplicity. Other
important heuristic methods are the seed methods [25,38,62] and the saving
methods [76]. In [13] it is possible to find a survey of those methods where the
authors proposed a classification. The first metaheuristic algorithm applied to
the simple OBP was based in a Genetic Algorithm and it was proposed in [42].
Later, a method based on the Variable Neighborhood Search methodology was
presented in [1]; an Iterated Local Search in [36] and a Tabu Search in [34]. In
[59], the authors proposed an new Iterated Local Search algorithm with a Tabu
Thresholding. The current state of the art for the problem, as far as we know,
was a multi-start Variable Neighborhood Search method proposed in [53].

Despite of the fact that the simplest OBP has received the largest attention,
other static variants have also been studied in the literature: the Order Batching
and Sequencing Problem (OBSP) is a variant of the OBP which introduce due
dates in the orders [33,52]; and the Min-Max Order Batching Problem (Min-Max
OBP) looks for a work balance among several operators in a warehouse [22,55].
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As far as the online variants are concerned (i.e., those which receive orders
continuously in the system) the first approach found was presented in [81], where
the authors proposed a simple FCFS algorithm and considered a variant of the
OOBP with multiple pickers. Later, in [86] the OOBP was studied for multiple-
block warehouses. In [77] the Online Rescheduling Problem with multiple pickers
was tackled by using a Steepest Descent Insertion strategy, and a Multistage
Rescheduling strategy. In [27,32,66] a single-block warehouse with a single picker
version was tackled in the online context. In the first case the authors proposed
an Iterated Local Search and, in the second case, they proposed an Estimation of
Distribution Algorithm (EDA). In [94,95] the authors added a new constraint to
the problem, related to the scheduling of the delivery. The first work considered
only one picker, meanwhile the second one considered multiple pickers. The most
recent approach within this context was presented in [10], where the OOBP was
studied for multiple blocks and multiple pickers.

We have summarized all the aforementioned methods in Table 1, where the
papers are classified depending on the variant of the problem considered. Par-
ticularly, we have divided the works into two columns: offline (static) and online
(dynamic). For each column we have separated those works which consider only
one picker from those which consider multiple pickers. Also we have classified
the papers depending on the inclusion or not of due dates in the orders.

Table 1. Publications related with the Order Batching Problem, classified according
to the variant of the problem tackled.

Online Offline

One picker With due date [19] [4,8,36,43,44,52,82,99]

Without due date [11,26,32,45,48,66,
69,72,81,86,87,91,
95,96]

[1,2,5,6,9,13,20,23–
25,34,38–40,42,46,49–
51,53,54,56,57,59–63,
65,67,68,73,76,78,83–
85,88–90,92,93,97,98]

Multiple pickers With due date – [37,41,79,80]

Without due date [10,21,77,94] [3,7,22,35,55]

In this paper we focus our attention in the online version of the OBP which
considers multiple pickers and do not include due dates, previously referred to as
OOBPMP. Next, in Sect. 2.1 we review the latest batching strategy published for
the problem in [94]. Finally, in Sect. 2.2, we review some the most outstanding
routing strategies in the context of the OBP.
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2.1 Batching State-of-the-Art Algorithm for the OOBPMP

As far as we know, the latest batching algorithm proposed for the OOBPMP
was introduced in [94]. The authors used the well-known “seed” strategy [38] for
clustering, in order to perform the batching task of the problem. This clustering
strategy consists in selecting a “seed” (in this case the seed is represented by
an order) as a centroid of a cluster (in this case the cluster is represented by a
batch). Then, the seed is assigned to an empty cluster (i.e., the order is assigned
to an empty batch) and other available orders might be added to the same
batch, depending on the similarity with respect the selected seed order, while
the capacity of the batch is not exceeded.

Therefore, for each “seed method” it is necessary to decide how to choose the
seed order, and how to determine the similarity of the orders with respect to the
seed. In this case, the strategy used to select an order as a “seed” is based on the
Smallest Arrival Time rule (i.e., the order which arrived first to the system and
has not been assigned yet to any batch is selected as a seed). Once the seed order
has been chosen, it is assigned to an empty batch. Then, the strategy used to
aggregate other orders to the same batch follows an Aisle-Time-Based strategy.
This strategy takes into consideration two dimensions: the percentage of orders
that the seed order has in common with the candidate order; and also, since
we are in an online context, it includes a measure related to the arrival time of
the considered order. This similarity measure is calculated for every order whose
device-capacity demand do not exceed the remaining capacity of the picking
cart, and then the next order be added to the current batch is selected in a
greedy way. Once the batch is full (i.e., no other order among the available ones
can be added) the method selects a new seed and so on, until all the orders have
been assigned to a batch. We invite the reader to carefully review this method
in [94].

2.2 Routing Algorithms

The routing algorithm is responsible for generating a path to collect every item
in the orders of the batch, following a single route. As it was aforementioned,
the order picking operations are one of the most important and costly processes
in a warehouse [12,16]. In this case, when the picking policy is based on batches,
considering the batching and picking tasks together might suppose a reduction
up to 35% in the total travel time [14].

The problem of finding a route within the warehouse, where the picker must
visit a group of positions, is a simplified version of the Travelling Salesman
Problem (TSP) [15] and therefore, there are many different proposals available
in the literature to solve it. Particularly, in this case, specific algorithms have
been developed considering the rectangular structure of the warehouse used in
this paper, which defines a special metric space, whose properties can be used
in the design of the route. In fact, there are an exact method [74], based on
dynamic programming, which generates the optimal path within this context.
However, further than the extra time needed to compute the route, the exact
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method generates complicated paths for the pickers, which make them to have
difficulties to remember and interpret the generated routes [23]. In this sense,
other simpler methods, like heuristic ones, are commonly used in practice to solve
the problem. The heuristic procedures are usually very fast to compute and they
generate simple paths, which are easy to follow for the pickers. Many routing
heuristics have been proposed in the literature (see [28,70,71,75] for several
proposals and comparisons). In this paper we review the most important and
used heuristic procedures in the literature: S-Shape, Largest Gap and Combined.

S-Shape. The S-shape algorithm is one of the most used routing algorithms in
the literature mainly due to its simplicity. It is not only easy to implement but
also it generates simple routes for the operators. The method constructs a route,
starting from the depot, which begins traversing the leftmost aisle which contains
at least one item to collect. Then it goes through all the aisles that have items to
pick up from any order in the batch. Therefore the picker is performing changes
from the front-cross aisle to the back-cross aisle and the other way round. If the
number of aisles to be traversed is even, the last parallel aisle will be completely
covered (i.e., the picker will finish the route in the front-cross aisle). However,
if the number of aisles to traverse is odd, the last corridor is only covered until
the last element to be collected and then, the picker performs a U-turn, in order
to come back to the front-cross aisle (which contains the depot). An example of
a route following this strategy is depicted in Fig. 1. Notice, that in this example
there are 5 aisles which contain items to collect.

Fig. 1. Path created with S-Shape method.
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Largest Gap. The Largest gap algorithm, along with the S-shape, is one of
the routing algorithms widely used in the literature. To understand the largest
gap, we first define the concept of gap as the space in an aisle between every
two positions which contain an item to collect. Additionally, the space between
the front cross-aisle and the first position which contains an item to collect and,
the space between the last position which contains an item to collect and the
back-cross aisle are also considered gaps. For each aisle that has items to pick
up, the largest gap in an aisle is the longest distance among all the possible
gaps in the aisle. Then, the Largest gap strategy avoids traversing the largest
gap of each aisle by performing an U-turn each time a picker arises the position
where the largest gap starts/ends. This algorithm also starts exploring the first
aisle to the left which contains items to collect. This aisle will be fully traversed,
in order to start collecting from the back-cross aisle. Similarly, the last parallel
aisle with items to collect will be also fully traversed in order to come back to
the front-cross aisle. An example of a route following this strategy is depicted in
Fig. 2.

Fig. 2. Path created with Largest Gap method.

Combined. The Combined algorithm was first proposed in [47]. The idea was
to combine the two previously introduced methods (S-shape and Largest gap)
in order to make a more efficient method. In this case, the algorithm decides,
for each parallel aisle, if it is shorter to collect the items in that aisle using an
S-shape strategy or a Largest gap one. Then, the algorithm selects the most
convenient way. The method has to consider that the number of parallel aisles
traversed with S-shape must be even. In some occasions, the circumstances may
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force the algorithm to change the previously selected strategy for a particular
aisle, in order to end the route in the front-cross aisle. An example of a route
following this strategy is depicted in Fig. 3.

Fig. 3. Path created with Combined method.

3 Algorithmic Proposal

In this section we present our algorithmic proposal to tackle the OOBPMP.
In particular, we propose the use of the Basic Variable Neighborhood Search
(BVNS) schema [31,58]. BVNS is a variant of the VNS methodology which was
proposed in [58] as a general method to solve hard optimization problems. It
is based on the concept of change of the neighborhood structure in order to
escape from local minima. There are many different variants of VNS, however
the best known ones are: Reduced VNS (RVNS), Basic VNS (BVNS), Variable
Neighborhood Descent (VND), General VNS (GVNS), Skewed VNS (SVNS),
and Variable Neighborhood Decomposition Search (VNDS). Those variants dif-
fers in the use of stochastic/deterministic explorations or a mix of both (as it
is the case of BVNS) of the neighborhoods considered. We refer the reader to
[29,30,58] for a deep understanding. Some other interesting variants of the VNS
methodology have been recently proposed. Among others, we can find: Variable
Formulation Search (VFS) [64], Multi-Objective Variable Neighborhood Search
[17], and Parallel Variable Neighborhood Search [18,55].

In Algorithm 1 we present a pseudocode of the BVNS method proposed in
this paper. The method receives three input parameters: (i) an initial solution
S; (ii) a value kmax; and (iii) the maximum time (tmax). The initial solution
will be calculated using an external method that will be described in Sect. 3.1.
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On the other hand kmax determines the maximum number of neighborhoods
that will be explored. Particularly, the method explores the current neighbor-
hood of the solution trying to obtain a better solution. BVNS includes three
different stages to explore the current neighborhood and it determines if there
has been an improvement. First, the method performs a perturbation to the
current solution, in order to escape from the current local optimum. Second,
the method runs an improvement procedure based on a local search, which is
able to find a local optimum in the current neighborhood. Third, the procedure
Neighborhoodchange, determines if there has been any improvement in the solu-
tion. If so, the next neighborhood to explore will be the first one. Otherwise, the
value of the variable k is increased and, therefore, in the next iteration the num-
ber of perturbations performed to the current solution in the Shake procedure is
increased. The method stops when the value of k equals kmax, and the maximum
allowed time is reached.

Algorithm 1. BVNS(S, kmax, tmax)
1: repeat
2: k ← 1
3: while k ≤ kmax do
4: S′ ← Shake(S, k)
5: S′′ ← LocalSearch(S′)
6: k ← NeighborhoodChange(S, S′′, k)
7: end while
8: until t < tmax

9: return S

The description of the Shake and LocalSearch procedures are presented, in
Sects. 3.2 and 3.3 respectively. The NeighborhoodChange procedure follows an
standard implementation which can be reviewed in [58].

3.1 Constructive Procedure

We have used a random algorithm as a constructive method in order to provide
an initial solution to the BVNS algorithm. The constructive algorithm receives
a list of orders Lorders as an input parameter. In each iteration, an order is
randomly selected from the list and it is placed in the next available batch. When
the selected order does not fit in the current batch, a new batch is created with
this order. Then, the next order will be placed in this new batch and the process
is repeated until the order list is fully scanned and all the orders have a batch
assigned. Once the process is finished, the procedure returns a list of batches S
as a solution. In Algorithm 2 we present a pseudocode of this procedure.
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Algorithm 2. Constructive(Lorders)
1: S ← NewBatchList()
2: B ← NewBatch()
3: repeat
4: o ← ChooseRandomOrder(Lorders)
5: Lorders ← Lorders \ o
6: if Fits(B, o) then
7: Add(B, o)
8: else
9: Add(S,B)

10: B ← NewBatch()
11: Add(B, o)
12: end if
13: until Lorders = ∅
14: return S

3.2 Shake Procedure

The shake procedure is in charge of performing a perturbation to the current
solution. The method starts by selecting two random batches. Then, it selects
two random orders (one from each batch) and finally, the method tries to perform
an exchange move. The move is not done if the size of any of the selected batches
is exceeded. This process is repeated as many times as indicates k.

The Shake procedure receives two input parameters: an initial solution S
and the size of the perturbation k. In each iteration, k indicates the number
of perturbations to perform. At the end of this procedure, a solution in a dif-
ferent neighborhood is returned. We present a pseudocode of this procedure in
Algorithm 3.

Algorithm 3. Shake(S, k)
1: repeat
2: repeat
3: Bi ← ChooseRandomBatch(S)
4: Bj ← ChooseRandomBatch(S)
5: until Bi �= Bj

6: oi ← ChooseRandomOrder(Bi)
7: oj ← ChooseRandomOrder(Bj)
8: if Fits(Bi \ oi, oj) and Fits(Bj \ oj , oi) then
9: Bi ← Bi \ oi

10: Add(Bi, oj)
11: Bj ← Bj \ oj
12: Add(Bj , oi)
13: k ← k − 1
14: end if
15: until k = 0
16: return S
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3.3 Local Search Procedure

The BVNS uses a local search in order to deterministically find a local optimum
in the current neighborhood. The local search proposed here is based in the one-
to-one exchange move. The only input parameter to the local search is a solution
S. The method will return another solution which is locally optimum with respect
to the initial solution and the neighborhood defined by the exchange move. The
local search ends when all candidate interchanges have been explored and no
one produces an improve in the current solution. We present the pseudocode of
the local search procedure in Algorithm 4.

Algorithm 4. LocalSearch(S)
1: repeat
2: improved ← false
3: for ∀ oi ∈ S do
4: for ∀ oj ∈ S do
5: S′ ← Exchange(S, oi, oj)
6: if f(S′) < f(S) then
7: S ← S′

8: improved ← true
9: break

10: end if
11: end for
12: end for
13: until improved = false
14: return S

4 Results

In order to test our proposals, we compare our BVNS with the Seed method
introduced in [94] and described in Sect. 2.1. The objective function used to
compare the algorithms is the total time needed to collect all the orders in a
context where the number of pickers is two. The experiments were run an Intel
(R) Core (TM) 2 Quad CPU Q6600 2.4 Ghz machine, with 4 GB DDR2 RAM
memory. The operating system used was Ubuntu 18.04.1 64 bit LTS, and all the
codes were developed in Java 8.

The 64 instances used in our experiments were derived from those reported
in [32]. Those instances represent a real warehouse with one block, rectangular
shape and 900 storage positions. Particularly, there are 10 aisles with shelves
at both sides of the aisle and 45 picking positions in each side. The warehouse
layout and the distribution of the items are key elements in the design of the
batches. We consider both: random and ABC sorting strategies of the items. The
depot (i.e., the place where the items are handed once they have been collected)
is placed in the front cross-aisle, either in the left corner or in center of the aisle.
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As far as the orders are concerned, the instances contain different number of
orders (40, 60, 80, 100). Also there are several picking-cart sizes (30, 45, 60, 75).
It is important to notice that, not all the orders represented in each instance are
available at the beginning of the process, but they arrive through the working
time observed. Particularly, in this paper we consider a time horizon of 4 h.
This means that we will observe the behaviour of our algorithms in four hours
(remember that in an online problem, the system is actually working 24 h). Then,
then number of orders of each instance must arrive to the system in four hours.
We use an exponencial distribution for determining the instant in the time when
each order arrives to the system, as it is customary in this kind of scenarios.

The BVNS algorithm was parameterized with kmax = 5 and tmax = 30 s,
and then it has been successfully compared with a variant of the Seed algorithm
described in the Sect. 2 using different routing methods. In Table 2 we report the
results obtained when using the S-Shape routing method. Similarly, in Table 3
and Table 4 we report the results obtained when using the Largest Gap and
Combined routing methods, respectively. For each table, we report the average
time used to collect all the orders (Avg. (s)), the deviation with respect to
the best value found in the experiment (Dev. (%)) and the number of best
solutions found (#Best). In these three experiments we have compared both
methods (BVNS and Seed) using the same routing algorithm. Therefore, the
results obtained are merit just from the batching strategy. As it is possible to see
observing these three tables, BVNS is consistently better than Seed considering
both: deviation and number of best solutions found. However, the differences
in deviation are very small for the three routing methods. Additionally, when
using the Largest Gap routing method, the number of best solutions found by
the BVNS and Seed method are almost the same.

However, despite of the fact that we have paired either BVNS and Seed
methods with three routing strategies, the original proposal of the Seed method
introduced in [94] was based only on the S-Shape routing algorithm. Next, we
compare the results obtained by our BVNS paired with Largest Gap and Com-
bined routing methods with respect to the Seed method paired with S-Shape (as
it is described by the authors). The results are reported in Tables 5 and 6 respec-
tively. In both cases, the deviation obtained has been considerably improved with
respect to the method in the state of the art. Similarly, the number of best-known
values has also been increased.

In order to facilitate future comparisons, in the AppendixA we report the
best values found per each of the instances considered in this paper.

Table 2. Comparison with the state of the art using the S-Shape routing method.

Batching BVNS Seed [94]

Routing S-Shape S-Shape

Avg. (s) 32886 33046

Dev. (%) 0,29% 0,91%

#Best 48 28
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Table 3. Comparison with the state of the art using the Largest Gap routing method.

Batching BVNS Seed [94]

Routing Largest Gap Largest Gap

Avg. (s) 32315 32309

Dev. (%) 0,44% 0,51%

#Best 37 36

Table 4. Comparison with the state of the art using the Combined routing method.

Batching BVNS Seed [94]

Routing Combined Combined

Avg. (s) 31420 31534

Dev. (%) 0,21% 0,66%

#Best 46 24

Table 5. Comparison between the BVNS paired with Largest Gap with respect to the
Seed method paired with S-Shape.

Batching BVNS Seed [94]

Routing Largest Gap S-Shape

Avg. (s) 32315 33046

Dev. (%) 0,91% 3,18%

#Best 42 22

Table 6. Comparison between the BVNS paired with Combined with respect to the
Seed method paired with S-Shape.

Batching BVNS Seed [94]

Routing Combined S-Shape

Avg. (s) 31420 33046

Dev. (%) 0,04% 5,01%

#Best 60 4

5 Conclusions

In this paper we have dealt with a variant of the Online Order Batching Problem.
Particularly, the variant which considers multiple pickers to collect the items in
the batches. We have reviewed the state of the art of the problem and highlighted
the latest approach to tackle it. We have also designed an algorithm, based on
the Basic Variable Neighborhood Search methodology, in order to provide good
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quality solutions for the OOBPMP. The obtained results have been compared
with the state of the art using different routing algorithms. In all the considered
cases, the BVNS proposed improved the previous method in the state of the art.
We also noticed that the use of the Combined routing method was the most
effective among the considered ones for this problem.

A Best-Known Values per Instance

See Table 7.

Table 7. Best-known values of the objective function Time (s) per instance.

Instance Time (s) Instance Time (s) Instance Time (s)

abc1 40 29 23992 abc1 40 30 22398 abc1 40 31 22526

abc1 40 32 22528 abc1 60 37 31029 abc1 60 38 28469

abc1 60 39 25501 abc1 60 40 24796 abc1 80 61 41391

abc1 80 62 33856 abc1 80 63 29225 abc1 80 64 29963

abc1 100 69 44026 abc1 100 70 35298 abc1 100 71 32068

abc1 100 72 31089 abc2 40 9 23942 abc2 40 10 21370

abc2 40 11 21098 abc2 40 12 20909 abc2 60 17 29979

abc2 60 18 29193 abc2 60 19 27954 abc2 60 20 22775

abc2 80 45 38246 abc2 80 46 31943 abc2 80 47 30175

abc2 80 48 28280 abc2 100 53 49381 abc2 100 54 35574

abc2 100 55 36281 abc2 100 56 30630 ran1 40 29 26011

ran1 40 30 23601 ran1 40 31 24904 ran1 40 32 21948

ran1 60 37 35830 ran1 60 38 30448 ran1 60 39 26893

ran1 60 40 27907 ran1 80 61 47704 ran1 80 62 39016

ran1 80 63 31755 ran1 80 64 30074 ran1 100 69 52084

ran1 100 70 39676 ran1 100 71 35887 ran1 100 72 33779

ran2 40 9 25476 ran2 40 10 25794 ran2 40 11 22076

ran2 40 12 21629 ran2 60 17 33661 ran2 60 18 30619

ran2 60 19 26974 ran2 60 20 26496 ran2 80 45 44121

ran2 80 46 36148 ran2 80 47 32117 ran2 80 48 30286

ran2 100 53 56735 ran2 100 54 40345 ran2 100 55 40688

ran2 100 56 33380
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order batching problem in manual order picking systems. Bus. Res. 3(1), 82–105
(2010)

37. Henn, S., et al.: Variable neighborhood search for the order batching and sequenc-
ing problem with multiple pickers. Technical report, Otto-von-Guericke University
Magdeburg, Faculty of Economics and Management (2012)

38. Ho, Y.C., Tseng, Y.Y.: A study on order-batching methods of order-picking in
a distribution centre with two cross-aisles. Int. J. Prod. Res. 44(17), 3391–3417
(2006)

39. Ho, Y.C., Su, T.S., Shi, Z.B.: Order-batching methods for an order-picking ware-
house with two cross aisles. Comput. Ind. Eng. 55(2), 321–347 (2008)

https://doi.org/10.1007/978-3-030-15843-9_8
https://doi.org/10.1007/978-3-030-15843-9_8
https://doi.org/10.1007/s10479-009-0657-6
https://doi.org/10.1007/s10479-009-0657-6
https://doi.org/10.1007/s13675-016-0075-x
https://doi.org/10.1007/s10696-012-9164-1
https://doi.org/10.1007/s10696-012-9164-1


Basic VNS for a Variant of the Online Order Batching Problem 33

40. Hong, S., Johnson, A.L., Peters, B.A.: Analysis of picker blocking in narrow-aisle
batch picking. Technical report, Texas A&M University (2010)

41. Hong, S., Johnson, A.L., Peters, B.A.: Batch picking in narrow-aisle order picking
systems with consideration for picker blocking. Eur. J. Oper. Res. 221(3), 557–570
(2012)

42. Hsu, C.M., Chen, K.Y., Chen, M.C.: Batching orders in warehouses by minimizing
travel distance with genetic algorithms. Comput. Ind. 56(2), 169–178 (2005)

43. Huang, M., Guo, Q., Liu, J., Huang, X.: Mixed model assembly line scheduling
approach to order picking problem in online supermarkets. Sustainability 10(11),
3931 (2018)

44. Jiang, X., Zhou, Y., Zhang, Y., Sun, L., Hu, X.: Order batching and sequencing
problem under the pick-and-sort strategy in online supermarkets. Procedia Com-
put. Sci. 126, 1985–1993 (2018)

45. Kamin, N.: On-line optimization of order picking in an automated warehouse.
Ph.D. thesis, Technische Universität Belin, Belin, Germany (1998)
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57. Miguel, F., Frutos, M., Tohmé, F., Rossit, D.: A memetic algorithm for the inte-
gral obp/opp problem in a logistics distribution center. Uncertain Supply Chain.
Manag. 7(2), 203–214 (2019)

https://doi.org/10.1007/s11573-015-0789-x
https://doi.org/10.1007/s11573-015-0789-x
https://doi.org/10.1007/978-3-319-73758-4_11
https://doi.org/10.1007/978-3-319-73758-4_11


34 S. Gil-Borrás et al.
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79. Scholz, A., Schubert, D., Wäscher, G.: Order picking with multiple pickers and due
dates-simultaneous solution of order batching, batch assignment and sequencing,
and picker routing problems. Eur. J. Oper. Res. 263(2), 461–478 (2017)
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89. Wäscher, G., Scholz, A., et al.: A solution approach for the joint order batching and
picker routing problem in a two-block layout. Technical report, Otto-von-Guericke
University Magdeburg, Faculty of Economics and Management (2015)

90. Wasusri, T., Theerawongsathon, P.: An application of discrete event simulation on
order picking strategies: A case study of footwear warehouses. In: Claus, T., Frank
Herrmann, M.M.O.R. (eds.) Proceedings 30th European Conference on Modelling
and Simulation - ECMS, pp. 121–127 (2016)

91. Won, J., Olafsson, S.: Joint order batching and order picking in warehouse opera-
tions. Int. J. Prod. Res. 43(7), 1427–1442 (2005)

92. Won, J.: Order batching and picking optimization in terms of supply chain man-
agement. Ph.D. thesis, Iowa State University, Iowa, USA (2004)

93. Yu, M.M.: Enhancing warehouse performance by efficient order picking. Ph.D. the-
sis, Erasmus University Rotterdam. Erasmus Research Institute of Management,
Rotterdam, Holland (2008)

https://doi.org/10.1007/s10100-017-0467-x
https://doi.org/10.1007/s00291-018-0517-3
https://doi.org/10.1007/s00291-018-0517-3
http://arxiv.org/abs/1808.00499


36 S. Gil-Borrás et al.

94. Zhang, J., Wang, X., Chan, F.T.S., Ruan, J.: On-line order batching and sequenc-
ing problem with multiple pickers: a hybrid rule-based algorithm. Appl. Math.
Model. 45, 271–284 (2017)

95. Zhang, J., Wang, X., Huang, K.: Integrated on-line scheduling of order batching
and delivery under B2C e-commerce. Comput. Ind. Eng. 94, 280–289 (2016)

96. Zhang, J., Wang, X., Huang, K.: On-line scheduling of order picking and delivery
with multiple zones and limited vehicle capacity. Omega 79, 104–115 (2018)

97. Zhu, J., Zhang, H., Zhou, L., Guo, J.: Order batching optimization in dual zone
type warehouse based on genetic algorithms. Sci. J. Bus. Manag. 3(3), 77–81 (2015)

98. Žulj, I., Kramer, S., Schneider, M.: A hybrid of adaptive large neighborhood search
and tabu search for the order-batching problem. Eur. J. Oper. Res. 264(2), 653–664
(2018)

99. Zuniga, C., Olivares-Benitez, E., Tenahua, A., Mujica, M.: A methodology to solve
the order batching problem. IFAC-PapersOnLine 48(3), 1380–1386 (2015)



A VNS-Based Algorithm for the
Mammography Unit Location Problem

Marcone Jamilson Freitas Souza(B) , Puca Huachi Vaz Penna ,
Manoel Victor Stilpen Moreira de Sá , and Patrick Moreira Rosa
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Abstract. This work deals with the mammography unit location prob-
lem in Brazil. In this problem, there is a set of mammography units to
be installed in cities with hospital infrastructure and a set of cities, each
with a demand for mammography screenings to be performed in women
aged 40 to 69 years old. The goal is to decide where to install mammogra-
phy units to maximize the total demand, satisfying the constraints that
a woman can not travel more than 60 km to be attended and that not all
cities are candidates to host a mammography unit. One mathematical
programming formulation and a VNS-based algorithm are introduced.
The methods were tested using data from Minas Gerais State, Brazil.
We analyze the performance of the VNS algorithm considering several
scenarios created from the base instance. The results show that the pro-
posed algorithm is able to provide good quality solutions quickly. In
addition, it has been shown that with the proposed allocation it is pos-
sible to increase the coverage of mammography screenings in the real
instance.

Keywords: Mammography unit location · Maximal Covering Location
Problem · Variable Neighborhood Search · Mathematical programming

1 Introduction

Among female population, cancer is the second leading cause of death worldwide,
accounting for 14% of all deaths. Breast cancer is the most commonly diagnosed
cancer among women in most countries of the world [17]. This situation is not
different in Brazil [13].

According to [19], the reduction in the number of breast cancer-related deaths
in the female population is directly related to the early diagnosis of this disease.
On the other hand, the screening by mammography unit is the primary means
of early detection of breast cancer.

The current recommendation of the Health Ministry of Brazil is that mam-
mography screenings should be offered to women aged from 50 to 69 years old
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biennially, as this age group benefits more from the examination in terms of
traceability [11,12]. Moreover, studies show an additional 8.9% screenings annu-
ally for a diagnostic indication to women in this age group. Thus, for women
aged 50–69, the estimated demand is 58.9% of the female population per year
[11]. Besides, according to these studies, annual screenings are required in 20% of
women between the ages of 40 and 49, of which 10% are for diagnostic purposes
and 10% for other indications.

Mammography screening is one of the diagnostic services offered by the
Brazilian government health care, named Unified Health System (SUS, in Por-
tuguese), through which a large part of the Brazilian population has its health
care needs satisfied. According to the National Cancer Institute [14], each equip-
ment is capable of performing 5,069 mammography screenings annually. Federal
Government researches show that 70% of the population have SUS as a refer-
ence in health care and use the Health Care Network (RAS) to perform health
services under the SUS, among them the diagnostic support services.

Regarding access to health services in RAS, Andrade et al. [4] emphasize
that studies are essential to optimize mammography unit allocation. The woman
travel distance to the place where the equipment is installed is one of the fac-
tors that most contribute to women failing the screening. In other words, many
women do not perform the mammography screening simply because the equip-
ment is installed far from their residences.

The SUS inefficiency in offering mammography screenings to the Brazilian
female population is verified in several works, as in [3], [4] and [18]. These authors
verified that considering only the demand for mammography screenings to be
performed annually and the existing number of mammography units, the current
number of equipment is sufficient. However, the distribution of this equipment
is inadequate, since some regions are well covered and others are not. Besides,
in many locations, there is a skilled labor shortage to operate the equipment.

This work deals with the Mammography Unit Location Problem (MULP)
and contributes to the development of optimization models for a better distri-
bution of mammography units, while at the same time doing a preliminary case
study of Minas Gerais State, Brazil. A heuristic algorithm based on the Variable
Neighborhood Search (VNS) method is presented to obtain approximate solu-
tions to the Maximal Covering Location Problem (MCLP) [5]. This heuristic
algorithm is proposed since the MULP is NP-hard [7].

The rest of this paper is organized as follows. In Sect. 2, a literature review is
made, while in Sect. 3 the problem under study is described. Section 4 introduces
a mathematical programming formulation for solving the MULP and Sect. 5
presents a VNS-based algorithm to obtain high quality solutions for it. In Sect. 6,
the computational results are reported. Section 7 concludes the work and presents
perspectives for future work.

2 Literature Review

In [4], the authors analyzed the number of existing mammography units and the
female population that requires mammography screenings in the State of Minas
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Gerais in 2012. The authors concluded that distance and women displacement
time to the equipment are important limiting factors for mammography screen-
ing. According to them, if the equipment is far from the women’s residence, it is
very likely that they will not travel to realize the mammography screenings. The
authors emphasize the importance of studies to optimize these mammography
unit allocation.

According to [3], several factors can create barriers to health services accessi-
bility, such as educational level, socioeconomic status, transportation cost, health
center location. The concept of accessibility is not only related to the availabil-
ity of resources in a given period ([1] apud [3]); in fact, it is also related to the
ability of individuals to appropriate the services offered. According to [8], it is
not enough to offer the health service, it is also necessary that the patient can
reach the center where it is offered at reasonable times and costs. In [3], the
authors conclude that the availability of mammography units in Brazil is suffi-
cient to cover the full demand of women for mammography screenings. However,
when the maximum distance restriction is added in the context, the equipment
distribution is inadequate since many of them do not cover all regions.

The demands of the public health medical specialties in the Minas Gerais
State were studied in [16]. The object of research was the location of 51 Medical
Specialty Centers (CEMs) in 853 cities of the State, and in five specialties: car-
diology, pediatrics, mastology, gynecology, and endocrinology. They were chosen
by the criterion of higher demand for medical attention in the State and medical
care hours. The authors proposed a mixed integer programming model, based
on the Maximal Covering Location Problem (MCLP), and considered three sce-
narios to define a set of candidate cities to receive a CEM. The first scenario
considered 853 cities as candidates, the second 372, and the third 98. The max-
imum distance parameter varied in the values 400, 300, 200, and 100 kilometers
(km), in order to identify the configuration that provides the highest coverage
and the shortest average distance of displacement. The cities distance matrix
was obtained by calculating the distance between two points according to the
spherical law of the cosines, updated by a correction factor. The authors verified
that the selected variations showed a better geographic distribution for the 51
CEMs with smaller distances of maximum coverage in all scenarios. Moreover,
given the economic crisis in the Minas Gerais State, they suggested adopting the
third scenario, considering the possibility of cost reduction as well as the number
of CEMs to be installed, without coverage demand loss.

In [6], the authors analyzed the mammography units location in a set of 12
health regions of Minas Gerais State, involving 142 cities. The authors developed
four mathematical programming formulations, all of them based on the p-median
problem. In the first one, the goal is to minimize the total distance traveled by
women when going to the mammography center. In the second formulation, the
maximum displacement distance constraint is relaxed, and the distance exceed-
ing the maximum distance is penalized in the objective function. The last two
formulations differ from the previous two because they consider as objective
function the distance and the women demand to be attended. More precisely,
the objective function is given by the product between the traveled distance to
the mammography unit and the number of women who travel. The objective
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of these last two formulations is to encourage the installation of equipment in
cities with the highest mammography demand. As observed in [3], the authors
concluded that there are more mammography units in the analyzed region than
necessary and the current location is inadequate because it does not comply with
the recommended Health Ministry rules.

A comprehensive review of models and solution methods for the healthcare
facility location problem can be found in [2].

3 Problem Statement

The Mammography Unit Location Problem (MULP) addressed here has the
following characteristics:

(a) There is a set S of n candidate cities to host p mammography units, with
p < n;

(b) Each mammography unit has an annual capacity of realizing cap mammog-
raphy screenings;

(c) Each city has an annual demand of mammography screenings for women in
the age range indicated to do the screening, that is, 58.9% of women aged
50–69 and 20% of women between the ages of 40 and 49, according to the
current recommendation of the Health Ministry of Brazil;

(d) A woman cannot travel more than R km to a city that hosts a mammography
unit;

(e) Only cities with hospital infrastructure are candidates to host mammogra-
phy units. In this paper we consider that a city is candidate to host mam-
mography equipment if it has at least demMin women in the age range
indicated for realizing the screening;

(f) Each city must be either fully covered by a mammography equipment or not
covered. That is, we consider in this paper that a city cannot be partially
covered. This restriction is imposed for administrative reasons, since this
would require managing which women in a city should do the mammography
screenings.

The objective is to decide where to install the mammography units in order
to maximize the total demand for mammography screenings.

4 Mathematical Formulation

For applying the proposed formulation, we assume that the demand for mam-
mography screenings of each city is smaller than the capacity for screenings of a
mammography unit. When this does not happen, we allocate as many mammog-
raphy units as necessary until the demand is less than the equipment capacity.
In this way, the demand covered with this preprocessing is maximum.

In order to introduce the model, the input parameters and the decision vari-
ables are defined according to Table 1.
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Table 1. Parameters and decision variables

Parameters

N Set of cities

dij Distance from city i to city j

demj Demand for mammography screenings in city j

cap Annual screening capacity of an equipment

p Amount of mammography units to be located

R Maximum travel distance to be served

demMin Minimum annual screening demand that a city must have to host
an equipment

Si Set of cities whose distance from city i is less or equal to R km, that
is, Si = {j ∈ N | dij ≤ R and dji ≤ R}

Decision variables

xij Binary variable that assumes value 1 if the women from city j are
served by an equipment installed at city i and value 0, otherwise

yi Integer variable that represents the number of equipment installed
at city i

zi Binary variable that assumes value 1 if the city i hosts some
equipment and value 0, otherwise

Equations (1) to (11) represent the MULP:

max
∑

i∈N

∑

j∈Si

demj · xij (1)

s. t.
∑

i∈Sj

xij ≤ 1 ∀ j ∈ N (2)

∑

i∈N

yi = p (3)

∑

j∈Si

demj · xij ≤ cap · yi ∀ i ∈ N (4)

zi ≥ yi/p ∀ i ∈ N (5)
zi ≥ xij ∀ i, j ∈ N (6)
xii = zi ∀ i ∈ N (7)
yi = 0 ∀ i ∈ N | demi < demMin (8)
xij ∈ {0, 1} ∀ i, j ∈ N (9)
yi ∈ Z

+ ∀ i ∈ N (10)
zi ∈ {0, 1} ∀ i ∈ N (11)

The objective function (1) aims to maximize the total demand for mammog-
raphy screenings. Constraints (2) indicate that each city j must be served by a
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single mammography unit installed in city i, or not served. Constraint (3) deter-
mines that all available p equipment must be allocated, and a city may receive
more than one equipment. Constraints (4) guarantee that the equipment’ capac-
ity must be respected. Constraints (5) ensure that if at least one equipment is
installed in the city i then the variable zi assumes the value 1. Constraints (6)
ensure that a city j can only be served by a city i if an equipment is installed
in this city. Constraints (7) ensure that the demand of city i has to be covered
by the equipment installed in the city itself. Constraints (8) indicate that an
equipment can only be installed in a city that has the demand for mammog-
raphy screenings greater than or equal to demMin, to economically justify its
installation. Finally, Constraints (9), (10) and (11) impose the domain of the
decision variables.

5 The Proposed VNS Algorithm

As stated in Sect. 4, we assume that there is an initial preprocessing stage to
allocate mammography units to each city with demand greater than the mam-
mography unit’s capacity. Furthermore, no modification of this allocation is made
by any procedure (local search or shaking) during the search.

Subsection 5.1 describes the proposed VNS-based algorithm, and the follow-
ing subsections describe its modules.

5.1 Variable Neighborhood Search

The Variable Neighborhood Search (VNS) algorithm [9] developed for the MULP
is a basic VNS [10] and works according to Algorithm1.

Algorithm 1: VNS
1: s0 ← InitialSolution()
2: s ← LocalSearch(s0)
3: while Stopping criterion is not satisfied do
4: k ← 2;
5: while k ≤ r do
6: s′ ← Shaking(s, k)
7: s′′ ← LocalSearch(s′)
8: if ( f(s′′) > f(s) ) then
9: s ← s′′

10: k ← 2
11: else
12: k ← k + 1
13: end if
14: end while
15: end while
16: Return s;
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Algorithm 1 begins in line 1 by constructing an initial solution according to
Subsect. 5.4. Next, in line 2 it is refined by the local search procedure described
in Subsect. 5.6. In order to avoid getting stuck in a local optimum, the algorithm
goes into a loop that works as follows. Initially, all mammography units of k cities
are removed, as well as all links associated with these k cities. In the next step,
the solution is restored by a constructive mechanism described in Subsect. 5.4.
Both steps (removal and construction) compose the Shaking procedure, which
is described in Subsect. 5.7. In line 7, the current solution is refined. If this local
optimum solution s′′ is better than the current solution s (line 8), then s is
updated and the level of perturbation returns to its minimum value (k = 2);
otherwise, the perturbation is increased (line 12). The algorithm ends when the
stopping criterion is satisfied.

5.2 Solution Representation

A solution s of the MULP is represented by a tuple s = (u, v), where u and v
are vectors, both of size n. Each position j of the vector u shows that the city j
is covered by some equipment installed in the city uj . If uj assumes the value 0,
it means that city j is not covered by any mammography unit. Each index j of
the vector v indicates that the city j holds a total of vj mammography units.

An example of a solution to the problem is shown in Table 2. In this case,
p = 2 mammography units are available to cover up to n = 8 cities. The first
line of the table shows the indexes of the cities; the second line, uj , shows the
links between cities, for example: cities 1, 2, and 3 are all covered by city 1, while
cities 4 and 5 are covered by city 5. Cities 6, 7, and 8 are not covered by any
city. Finally, the last line corresponds to the vector v that stores the number of
equipment per city; in the case, one mammography unit was allocated to city 1
and another to city 5.

In Fig. 1(a), a map is displayed with the spatial distribution of 8 cities and 2
mammography units to be located. Each vertex in the map corresponds to a city
and the number positioned inside the circle indicates the index of the respective
city. A vertex in red color indicates that the respective city receives equipment.
Thus, the mammography units were installed in cities 1 and 5. An edge connects
the cities that will be served by these equipment. For example, edges (1, 2) and
(1, 3) show that cities 2 and 3 are covered by city 1.

Table 2. Solution example

j 1 2 3 4 5 6 7 8

uj 1 1 1 5 5 0 0 0

vj 1 0 0 0 1 0 0 0
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5.3 Evaluate Function

A solution s = (u, v) is evaluated by the function f , given by Eq. (12), which
must be maximized:

f(s) =
∑

j∈N |uj �=0

demj (12)

where N is the set of cities, demj represents the demand for mammography
screenings of the city j, and uj is a variable that assumes a non-zero value if
the city j is covered by some city and value 0, otherwise. The objective is to
maximize the total number of screenings using p mammography units.

5.4 Initial Solution

We present below a constructive heuristic procedure to generate a solution for
the MULP.

Step 1: Calculate, for each city i yet not covered, the demand of its coverage
region, including its own demand for mammography screenings;

Step 2: Sort the cities, in decreasing order according to the demand from each
region covered;

Step 3: Calculate the number of mammography units that are necessary to cover
the city i that has the greatest demand. If this number is less than or equal
to the number of mammography units available, cover the total demand of
this city and update the available number of mammography units; otherwise,
return to Step 1. In both cases, remove this city from the list;

Step 4: Calculate the amount of idle mammography screenings of the equipment
installed in the city i and determine the cities in the region that are not
covered;

Step 5: Solve the knapsack problem, considering the city i as a knapsack of
capacity equal to the amount of idle mammography screenings and as items,
the demands for mammography screenings of the cities still not covered that
belong to its region;

Step 6: Assign the cities returned by Step 5 to the city i;
Step 7: If the remaining number of mammography units is still greater than

zero, return to Step 1; otherwise, finalize the procedure and return the cities
in which the mammography units will be installed, as well as the cities covered
by them.

Note that the cities in this constructive procedure are initially sorted in
decreasing order of the total number of mammography screenings demanded
by each city of the region that it can cover, i.e., the demand of the city itself
is summed up with the demands of the cities that are in its coverage region.
The coverage region of a city i is composed by all cities j which are at distance
dij ≤ R km and dji ≤ R km from it.

In this sorting, only the cities that have hospital infrastructure are candi-
dates, here considered those that have a high demand for mammography screen-
ings, that is, greater than demMin ones. This value is adopted to economically
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justify the installation of mammography units in a city. Whenever a mammog-
raphy unit is allocated to a city i, it is considered that this city will be fully
covered. The amount of idle mammography screenings of this equipment is used
to cover the demand of the cities that are in its coverage region.

The choice of which cities will be covered by the city i is done by solving the
0–1 Knapsack Problem (KP). The KP consists of filling a knapsack of capacity
W with items of different weights and profits. The goal is to fill the knapsack
with the highest possible profit so that it does not exceed its capacity. The
following analogy is made in the construction of the initial solution for this
problem: the uncovered cities of the region correspond to the items that can be
inserted in the knapsack; each city or item has a profit and a weight and both
match the demand for screenings from the respective city. Finally, the knapsack
is represented by the city i, which has a mammography unit with idle capacity
W = cap−wi, where cap is the capacity of the equipment and wi is the demand
for mammography screenings of the city i. The method returns the list of cities
that will be covered by the mammography unit installed in the city i.

Fig. 1. Illustration of the exchange move (Color figure online)

We apply a dynamic programming algorithm1 to solve the knapsack problem.
Thus, the solution returned by it is exact. It has pseudo-polynomial time com-
plexity, that is, O(mW ), where m is the amount of items and W is the capacity
of the knapsack. For the largest instance (m = 310 and W < cap = 5069), the
problem is solved instantly.

5.5 Neighborhood Structure

The exploration of the solution space is made using a single type of move, called
exchange function. This move consists of removing a mammography unit from
a city and then allocating it to another city that has infrastructure to receive it
but does not yet have that equipment.
1 Its code was extracted from https://www.geeksforgeeks.org/0-1-knapsack-problem-

dp-10/.

https://www.geeksforgeeks.org/0-1-knapsack-problem-dp-10/
https://www.geeksforgeeks.org/0-1-knapsack-problem-dp-10/
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An application example of this move is shown in Figs. 1(a) and (b). In these
figures, each vertex corresponds to a city, and the ones highlighted in red are the
cities that have mammography units. The edges connecting two vertices indicate
service dependency. In Fig. 1(a), for example, it is possible to verify that cities 1
and 5 have equipment and they cover the cities {1, 2, 3} and {4, 5}, respectively.

In these figures, it can be seen that one mammography unit was removed
from the city 5 and thus the city 4 is no longer covered by the city 5. Then
it is necessary to choose another city that respects the restrictions to receive
the equipment that is now available. In this example, city 6 was chosen to illus-
trate this move, as we can see in Fig. 1(b). Once these choices have been made,
the next step is to determine which cities will be covered by city 5. Thus, the
knapsack problem is solved. After applying the dynamic programming procedure
mentioned before, city 8 was chosen to be served by city 6. Finally, in Fig. 1(b),
we have the final solution resulting from the application of the exchange function
move. The mammography unit of the city 5 is now in city 6 and this, in turn,
only covers itself and the city 8.

5.6 Local Search

A solution s is refined by an Uphill Method with the First Improvement (FI)
strategy using the exchange function move described in Subsect. 5.5.

Briefly, the method chooses a city from the current solution to remove its
equipment and another city to receive it. This process is repeated as long as
there are improvements. It is important to note that the mammography units
allocated by preprocessing are not modified by the local search. They remain
fixed throughout the procedure.

Initially, two sets of cities, S and V , are formed. The set S contains all cities
that can host mammography units but do not yet have them, and the set V
contains all cities that have at least one equipment. These sets are scrambled
at each procedure call to prevent the method from always considering the same
choice of cities in different runs.

Then, for each city i ∈ V , we remove its equipment. The next step is to
choose a city j ∈ S to receive such equipment. To fulfill this task, for each city
j ∈ S we solve a knapsack problem in order to choose the cities of the coverage
region of the city j to be served. If the exchange move improves the current
solution, it is accepted and the method is reset; otherwise, the method proceeds
to the next city j ∈ S.

The method ends when all possible exchanges do not generate an improve-
ment solution, thus ensuring that the returned solution is a local optimum in
relation to the neighborhood used.

The uphill method described in Algorithm 2 takes as input a solution s. Ini-
tially it builds the sets S and V based on s (lines 5 and 6). In line 10, the
RemoveEquipment(i) method is called. It is responsible for removing the mam-
mography unit from city i and eliminating its dependencies, thus returning an
incomplete solution s. In line 11, the loop that iterates on the cities that have
infrastructure to receive an equipment starts. In line 12, the InsertEquipment(j)
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method is responsible for inserting an equipment in the city j, returning a new
solution s′. Then, the knapsack problem is performed in order to define which
cities in the coverage region of city j will be covered. If the solution s′′ returned
by the knapsack improves the best solution found so far, then it is updated and
the method restarts from line 3. Otherwise, the loop continues with the next
city j. Finally, if the loop in line 3 ends without improvement, we terminate the
method and return the solution sbest found with the assurance that we find a
local optimum for this neighborhood.

5.7 Shaking Procedure

The shaking procedure works as follows. All mammography units and their
dependencies of k cities (k ≤ r) are removed from the current solution s (except
those related to the preprocessing phase) and then this solution is restored by
solving the knapsack problem according to Subsect. 5.4.

After the removal operation, the cities that will host the mammography units
are selected in a partially greedy way as follows. For each city i that has not a
mammography unit and that can host it, we calculate its potential of service, that
is, the sum of the demands of mammography screenings of the coverage region
of that city i. In other words, the service potential is calculated by summing the

Algorithm 2: First Improvement
Require: Solution s
1: sbest ← s
2: hasImprovement ← true
3: while hasImprovement do
4: hasImprovement ← false
5: S ← {Available cities in solution s that can host equipment}
6: V ← {Cities in solution s that have equipment}
7: Shuffle(S)
8: Shuffle(V )
9: for i ∈ V do

10: s ← RemoveEquipment(i)
11: for j ∈ S do
12: s′ ← InsertEquipment(j, s)
13: s′′ ← KnapsackProblem(j, s′)
14: if f(s′′) > f(sbest) then
15: s ← s′′

16: sbest ← s′′

17: hasImprovement ← true
18: Goto line 3
19: end if
20: end for
21: end for
22: end while
23: return sbest
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demand of all cities that are less than 60 km from city i. The partially greedy
choice is made so that different solutions are analyzed. We chose one of the four
cities that have the greatest service potential.

Then, for each city i chosen to host an equipment, it is also necessary to define
its service dependencies, that is, which cities in its coverage region will be served
by the city i. For this decision we solve the knapsack problem (Subsect. 5.4),
obtaining, thus, the greatest possible demand that the city i can cover.

After that, the city chosen to host the equipment and the cities it serves are
included in the current solution, and the solution restoration method proceeds by
recalculating the service potential of the remaining cities as previously presented.

6 Computational Experiments

The mathematical programming model presented in Sect. 4 was implemented
in the Gurobi solver, academic version 8.0.0, with default settings, while the
proposed VNS algorithm, presented in Sect. 5.1, was developed in C++ language.
To test them was used an Intel Core i5 @ 2.5 GHz computer, with 8 GB of RAM
under the Ubuntu 18.04 operating system.

Table 3. Characteristics of the instances

Instance # Cities # Cities with
infrastructure

# Total
equipment

# Preproc.
equipment

# Remaining
equipment

1 853 420 310 114 196

2 853 420 261 114 147

3 853 420 212 114 98

4 853 420 163 114 49

5 142 73 55 19 36

6 142 73 46 19 27

7 142 73 37 19 18

8 142 73 28 19 9

For testing the methods, 8 instances were used. These instances refer to
female population data for the year 2010 of the Minas Gerais State, Brazil,
and they are available at http://www.decom.ufop.br/prof/marcone/projects/
MULP/instances-MG-2010.rar. This State has 853 cities and according to the
sector of statistics of its State Secretary for Health (SES/MG), there were 310
mammography units in July of 2018 and the total demand was 1293968 mam-
mography screenings. Considering the current equipment location and the prob-
lem characteristics described in Sect. 4, it is possible to perform 970103 mam-
mography screenings, that is, only 75% of total demand. The distances between
cities in instances 1 to 4 were obtained by applying the formula of Euclidean dis-
tance between cities, while in instances 5 to 8 these values refer to real distances

http://www.decom.ufop.br/prof/marcone/projects/MULP/instances-MG-2010.rar
http://www.decom.ufop.br/prof/marcone/projects/MULP/instances-MG-2010.rar
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obtained through Google Maps with travel by car. We consider that a city has
hospital infrastructure if it has the demand for at least demMin mammography
screenings. In our case, we set demMin = 500. The maximum travel distance to
be served was set at R = 60 km, a value that is recommended by the Health
Ministry of Brazil. The scenarios differ by the number of mammography units
available for allocating and the number of cities considered. In the first four
instances, the whole State is considered, while in the last four ones only cities
that are 100 km from Ouro Preto city, except Belo Horizonte, are considered.

Table 3 summarizes the characteristics of these instances. Column 1 shows
the instance number. The second column indicates the total number of cities and
the third one shows the number of cities that have the infrastructure to receive
equipment. The fourth column reports the number of equipment in the instance.
The fifth column shows the number of equipment used by the preprocessing
strategy established at the beginning of Sect. 5. Finally, the last column reports
the amount of equipment available for applying the methods.

For calibrating the parameters of the VNS algorithm, we test empiri-
cally the following values: r ∈ {4, 6, 8, 10} as the number of mammogra-
phy units removed in the Shaking procedure according to Subsect. 5.7 and
iterMax ∈ {100, 200, 300, 400} as the maximum number of iterations without
improvement. The best values found empirically were r = 8 and iterMax = 100.

Table 4. Results Gurobi × VNS

Inst. Demand preproc. Gurobi VNS

ub Best Time (s) Best Average Time (s)

1 577866 1291621 1291621 3.37 1291621 1291621 1.25

2 577866 1290753 1288076 3600.00 1278820 1276812 2466.89

3 577866 1074628 1074466 3600.00 1074563 1074541 3600.00

4 577866 826247 826225 3600.00 826247 826247 19.80

5 96311 221140 221140 0.94 221140 220690 3.32

6 96311 221140 221140 102.17 221140 216462 71.53

7 96311 187553 187544 3600.00 187478 187386 326.37

8 96311 141932 141932 2.95 141932 141930 494.65

Table 4 reports the results considering that a mammography unit performs
5069 mammography screenings per year [14]. Column 1 shows the instance, and
column 2 indicates the demand served by preprocessing (114 equipment were
allocated after this phase for the instances 1 to 4 and 19 for the instances 5
to 8). Columns 3–5 show the upper bound and the value returned by the Gurobi
solver with the remaining equipment, as well as the time consumed for solving
the instance. Since the solver has been applied only for 3600 s of processing
time, then this value returned by Gurobi is optimal if the time spent by it is
less than 3600 s. The last three columns show the best result, the average result
and the time spent by the VNS algorithm, respectively. The columns “Best” and
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“Average” represent the total demand, including the preprocessing one. Values
highlighted in bold indicate the best solution for the instance.

According to Table 4, in instance 1, which represents the real instance of
Minas Gerais State, both the VNS algorithm and Gurobi Solver are able to find
the optimal solution quickly. The total demand met, of 1291621 mammography
screenings, is higher than the current allocation of 970103 ones. We can also
observe that the VNS algorithm achieves the optimal solution in 5 instances and
produces a better solution than Gurobi in two instances (instances 3 and 4).
Only in two instances (2 and 7) the VNS algorithm did not overcome Gurobi.

Figure 2 illustrates a typical evolution of the best solution’ value produced
by the VNS algorithm over the time. As we can see, the VNS method is able to
improve the value of the solution over the time.

Fig. 2. Evolution of the best solution: instance 3

7 Conclusions and Future Work

This work addressed the Mammography Unit Location Problem (MULP). To
solve it, a mathematical programming formulation and a VNS-based heuristic
algorithm were developed. In order to test them, eight instances related to data
from the State of Minas Gerais, Brazil, were used.

The proposed algorithm was able to produce good quality solutions and out-
perform the Gurobi solver in two instances. The variability of the final solutions
is also low, except in instance 6. Besides it, the algorithm was able to improve
the value of the solution over time. It is interesting to note that the total demand
of the Minas Gerais State was almost fully covered with the existing mammog-
raphy units. In fact, the demand served was 99.8% in instance 1. On the other
hand, the demand covered by the two models (exact and heuristic) was much
higher than the present one. This is due to the fact that the allocations of these
equipment have much political influence.

The variability of the final solutions of the VNS algorithm can be reduced
by adequately calibrating its parameters. This can be done, for example, by
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using the Irace package [15]. In addition, other neighborhood structures can be
designed to improve its performance.

We also suggest as future work to consider: (1) more recent data of the female
population in the age range indicated for mammography screenings; (2) the
current grouping of cities in health regions; (3) the real distances between cities;
(4) that a city can be partially covered by an equipment and (5) the proposition
of itineraries for mobile mammography units to cover cities not covered by the
current location of the mammography units.

Acknowledgments. The authors thank the Brazilian agencies FAPEMIG (grant
PPM-CEX 676/17), CNPq (grants 438473/2018-3, 428817/2018-1 and 307915/2016-
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Abstract. In this paper, we propose a simple heuristic algorithm based
on the Variable Neighborhood Search (VNS), which combines with the
Set Covering strategy in order to solve the Dial-a-Ride Problem (DARP).
In this problem, customers must be served by a heterogeneous fleet of
vehicles. Each customer has a pickup and a delivery location, where
each one of them has time windows that must be obeyed. All vehicles
have a duration time and have to start and end their routes in a single
depot, and each customer has a maximum time ride. We have tested our
algorithm on the benchmark instances of literature. Experiments showed
that although the algorithm is simple, it can obtain the optimal solutions
for some instances and achieve solutions near the optima for the others.

Keywords: Dial-a-ride · Vehicle routing · Pickup and delivery ·
Variable Neighborhood Search · Randomized Variable Neighborhood
Descent · Metaheuristic

1 Introduction

Lutz et al. [14] have reported the fact of the combinations of declining fertility,
and increasing life expectancies resulted in the aging of the population. They
also presented a likely increase in the speed of the aging population in the next
decades and continuous aging of the world’s population throughout the century.
Due to this aging of the population, a lot of services need to be improved. Among
them are transportation services. The problems involving the transportation
can be classified as Vehicle Routing Problems (VRP). The VRP consists of
determining a set of routes executed by a fleet of vehicles to satisfy the necessities
of a set of users [22]. Many VRPs with different characteristics have been studied
over the years, and one of them is the Dial-a-Ride Problem - DARP [4].

The DARP arises in the context of users transportation, a service for the
people with reduced locomotion, or disabled people. Different from other VRPs,
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in the DARP, the customer’s inconvenience has to take into account. The cus-
tomer’s nuisance can be defined as waiting time and travel time. The DARP
consists of planning routes and schedules to meet a set of customers from a fleet
of vehicles. Each customer has a pickup and a delivery location, where it must be
collected and delivered, respectively. A maximum ride time has to be respected
for each customer and duration time for each vehicle. A time window must be
respected for every pickup and delivery point. The aim is to design a routing
plan, i.e., a set of routes, capable of attending as many users as possible, under
a set of constraints. Not different from other VRP variants, the DARP can be
classified as static and dynamic. In the static case, all information about trans-
portation request is known beforehand and used to calculate an a priori routing
plan. In the dynamic case, the routing plan is designed in a real-time manner
when a new request is revealed [6].

The DARP can be classified as the combination of two classical optimization
problems: Vehicle Routing Problem with Pickup and Delivery (VRPPD) and
Vehicle Routing Problem with Time Windows (VRPTW). The DARP differs
from them as far as the human perspective is concerned, in DARP the comfort
and convenience of users should be taken into account [6].

Besides, DARP is classified as an NP-Hard problem due to its high complex-
ity. Thus, optimal solutions cannot be obtained in a reasonable computational
time. Therefore, DARP has been mainly addressed by heuristic and metaheuris-
tic algorithms [6,10].

In this paper, we propose a VNS-based algorithm to solve the DARP. Our
algorithm was combined with a Set Covering Problem (SCP) formulation, which
is applied throughout the VNS algorithm in order to improve its current solution.
This approach has been able to find high-quality solutions in short computational
time.

The remainder of this paper is organized as follows. In Sect. 2, we present a
brief literary review, contextualizing and exemplifying the DARP and its vari-
ants, as well as different ways for solving them. The formal definition is shown
in Sect. 3. The proposed algorithm is detailed in Sect. 4. Section 5 presents the
computational experiments and results. Conclusions are given in Sect. 6.

2 Literature Review

Several DARP variants have been studied in the past few years. We can classify
them into two main branches: static and dynamic versions.

In the static version, all the information about the customer requests and
vehicles is known beforehand. Cordeau and Laporte [4] considered the problem
with a homogeneous fleet of vehicles and single depot. To solve it, they used a
Tabu Search (TS) algorithm combined with three heuristic methods. Cordeau [5]
approached the DARP by an exact branch-and-cut algorithm, which was tested
on a set of instances randomly generated with a maximum of 48 requests. Jor-
gensen et al. [12] addressed the variant of DARP with a Genetic Algorithm (GA),
which considers a heterogeneous fleet of vehicles and multiple depots they made
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the algorithm basing on the classical cluster-first and route-second approach.
Mauri et al. [17], using the data provided by the city of Vitória–ES in Brazil,
approached a static variant with a heterogeneous fleet of vehicles and multiple
depots. The authors used a Simulated Annealing (SA) algorithm to solve the
problem. Their results show that SA produced good quality solutions for all the
instances.

Parragh [19] combined other constraints to the classic DARP and proposed
a branch-and-cut algorithm to solve the problem. She added real characteristics
to the problem as heterogeneity to the vehicles and users. In her tests, for the
instances up to 40 requests, she found the optimal solution. Again, Parragh et
al. [20] proposed a hybrid column generation and large neighborhood search
algorithm to solve the problem. They improved nine of the 20 instances used in
their tests in 1.1%. Currently, the best-known solutions of eight of these instances
are the solutions founded by Parraagh et al. [20].

Braekers et al. [3] approached the DARP using the branch-and-cut algorithm
combined with a metaheuristic named determinist annealing based in the sim-
ulated annealing metaheuristic. They formulated the problem as a single depot
and multi-depot for heterogeneous DARP. They tested their approach in bench-
marks created by Cordeau [5], Parragh 2011 [19], and Cordeau et al. [4]. They
also extended the sets of instances creating 36 larger new instances in the same
way of Parragh [19]. They match or exceed most of the best-known results found
for these instances. Most of the solutions founded by the authors remain as the
best-known solution for the instances. Masmoudi et al. [16] solved the same het-
erogeneous version of the DARP using a hybrid Genetic Algorithm. They used
a constructive heuristic and efficient crossovers to guided the algorithm. They
tested their approach in the instances of [5,19], and [3]. The results demonstrate
the algorithm is efficient in terms of best and average solution quality.

In the dynamic version of DARP, new customer requests are added during
the route. Madsen et al. [15] solve the DARP adapting an insertion algorithm
called REBUS originally developed by Jaw et al. [11]. The version of the problem
solved used the multiple capacities and multiple objectives. Using data given by
Copenhagen Fire-Fighting Service, they tested their approach on real-life cases.
In a flexible way, the algorithm permits a weighing of multiple goals such that
the solution reflects the customer’s preferences. Attanasio et al. [1] approached
the dynamic DARP with the objective to accept as many requests as possible
while satisfying the constraints of the problem. To solve the problem, they used
a parallel strategy of a Tabu Search heuristic previously used by Cordeau and
Laporte [4] in the static case of the problem.

In Germany, Beaudry et al. [2] proposed a two-phase heuristic to solve a
dynamic DARP. The first phase is a simple insertion scheme, and the second
phase is a Tabu Search algorithm that considers infeasible solutions during the
search process. The problem was structured with data given by several large
hospitals. They proposed additional constraints on the standard problem. For
example, a different degree of urgency in the requests, the patient of the request
cannot share the vehicle with another patient, among others. Experiments pro-
vided high-quality solutions, and the algorithm show capable of handling the
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dynamic aspect of the problem. Schilde et al. [21] proposed a dynamic DARP
to solve the problem of the organization performing patient transportation in
Austria. They approached the dynamic case of the DARP with a homogeneous
fleet of vehicles and a single depot. To solve the problem, the authors pro-
posed four different metaheuristics, a Variable Neighborhood Search (VNS), a
Stochastic Variable Neighborhood Search (S-VNS), both dynamics, a Multiple
Plan Approach (MPA), and a Multiple Scenario Approach (MSA). They tested
their algorithms on a set of 12 instances based on a real road network. Results
show that dynamic S-VNS strongly outperforms the others. Again in Germany,
Hanne et al. [8] solve a dynamic DARP with hospital-specific constraints. They
designed a computer-based planning system, Opti-TRANS, to support several
concerns related to patient transport. They illustrated the system work in the
daily performance of a large German hospital, and the system presents many
benefits, including streamlined transportation processes and workflow.

Thus, the large number of DARP variants, here, we study the Heterogeneous
DARP with single depot proposed by Parragh et al [20]. The heterogeneity is
considered in the user and vehicles [20].

3 Formal Definition

The DARP can be defined as follows. Let G = (V,E) be a complete graph,
where V is the set of vertices and E the set of arcs. The set of vertice V is
partitioned into {{0, 2n + 1}, P,D}, where 0 and 2n + 1 are two copies of the
depot, P = {1, ..., n} is the set of pickup vertices and D = {n + 1, ..., 2n} is the
set of delivery vertices. For each arc (i, j) ∈ E is associated a routing cost cij
and a travel time tij .

Each customer request i consists of a pickup and delivery vertex pair {i, n+i},
where i ∈ P and n + i ∈ D. The maximum travel time of each customer cannot
exceed L. To each vertex i ∈ V is associated a load qi, with q0 = q2n+1 = 0,
qi ≥ 0 ∀i ∈ P and qi = −qi+n ∀i ∈ D, and a non-negative service time τi.
Moreover, each i ∈ V has a time window [ei, li], where ei and li are integers
non-negative.

The set of vehicles is represented by K. Each vehicle k ∈ K starts and ends
its route in the depot. The capacity of vehicle k is Qk and the maximal duration
of route k is denoted by Tk.

Given the vertex vi we denoted by Ai the arrival time of the vehicle in the
vertex; and Bi the beginning of the service, where Bi ≥ max{Ai, ei}, cannot
start before ei. The departure time Di = Bi + τi is the time the vehicle leaves
the vertex. The vehicle waiting time is defined by Wi = Bi−Ai. The ride time of
the client is determined by Li = Bn+i −Di and the total duration of the route is
calculated as Bk

n+1−Bk
0 , where Bk

n+1 and Bk
0 represents the beginning of service

on the depot by vehicle k, when it finishes and starts the ride, respectively.
The objective of the DARP is to find a set of routes that serve all customers

such that minimizes the total routing cost.
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4 Heuristic Approach

To solve the problem we based our heuristic on a VNS and a set covering pro-
cedure. Sections 4.1–4.4 define the heuristic components, while Sect. 4.5 presents
the set covering model.

4.1 Solution Representation

We represent a DARP solution through a matrix of |K| rows, where each row
informs the route assigned to a vehicle (the k-th row refers to the route of the
k-th vehicle). Each route begins and ends at the depot. The pickup and delivery
customers are inserted in the route, satisfying the problem constraints.

Figure 1 shows a solution representation for an instance with five vehi-
cles (A,B, · · · , E) and 13 customer requests. The numbers with positive sign
(1 + · · · 13+) represent the pickup locations and the ones with negative sign
(1 − · · · 13−) are the delivery points. The depot is represented by node 0.

A 0 9+ 4+ 9- 2+ 2- 4- 6+ 6- 0
B 0 3+ 5+ 3- 1+ 1- 5- 0
C 0 7+ 8+ 7- 8- 0
D 0 10+ 12+ 13+ 10- 12- 13- 0
E 0 11+ 11- 0

Fig. 1. Example of a solution representation.

4.2 Solution Evaluation

The solution evaluation was done based on an approach used by Cordeau and
Laporte [4] and Parragh et al. [18]. Following them, we penalized the violations
of load q(s), duration d(s), time windows tw, and user ride time t(s). The load
and duration are computed and penalized in the route, based on the constraints
Qk and Tk. The time windows penalization is computed as

tw =
2n∑

i=0

(Bi − li)+

where x+ = max {x, 0}. In turn, the ride time is calculated as

t =
n∑

i=1

(Li − L)+

Thus, the solution evaluation was calculated as follows:

f(s) = c(s) + αtw(s) + βt(s) + δd(s) + γq(s)

The penalization variables for load (γ), duration (δ), time window (α), and
ride time (β) violations were set to α = β = δ = γ = 1.
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4.3 Neighborhood Structures

To explore the solution space of the DARP, six neighborhoods was implemented.
These neighborhoods consist in the relocation of requests among the solution
routes. For all neighborhoods, two routes, r1 (blue line) and r2 (black line) are
randomly selected.

– Relocation – A request (pickup and delivery points) are removed from r1 and
inserted in r2. Figure 2 shows the relocation of request (1+, 1−) from r1 to r2.

Fig. 2. Relocation. (Color figure online)

– Swap – Two requests are selected, one from r1 and another and r2, and
exchanged them. Figure 3 shows the exchange of one request (6+, 6−) in route
r1 with other request (4+, 4−) in route r2.

Fig. 3. Swap. (Color figure online)

– Crossover – Two points are selected, one in r1 and other in r2. All pickup
customers before the selected point in r1 (and their respective deliveries) are
connected to all pickup customers (and their respective deliveries) that come
after the selected point in r2. The same way to the customers before r2 point
and after the r1 point. Figure 4 shows the crossover of routes, the red line
shows the selected points for each route and the relocation of requests.
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Fig. 4. Crossover. (Color figure online)

– Swap(2) – Four requests are selected, two adjacent requests from r1 and
two adjacent requests in r2, and they are exchanged. All the four possible
combination orders of exchanging the request arcs are considered. Figure 5
shows the exchange of two requests (6+, 6−) and (8+, 8−) in route r1 with
two requests (4+, 4−) and (3+, 3−) in route r2.

Fig. 5. Swap2. (Color figure online)

– Swap(2-1) – Three requests are selected, two adjacent requests from r1 and
one in r2, and they are exchanged. The move examines the two possible
visiting orders of transferring the r1 requests. Figure 6 illustrates the exchange
of two requests (6+, 6−) and (8+, 8−) in route r1 with the request (4+, 4−) in
route r2.

– Relocation(2) – Two adjacent requests are removed from r1 and inserted in
r2. Figure 7 shows the relocation of requests (6+, 6−) and (8+, 8−) from r1
to r2.
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Fig. 6. Swap2. (Color figure online)

Fig. 7. Relocation. (Color figure online)

4.4 Variable Neighborhood Search

To tackle the DARP, a VNS-based algorithm [9] was proposed. For its use, three
components have to be specified:

– Generate initial solution Procedure: A function that greedily selects each
request taking into account the time window allocating to each chosen car
with the shortest time traveled.

– Local Search Procedure: The method used as local search was the Random-
ized Variable Neighborhood Descent (RVND), that has its behavior like a
classic Variable Neighborhood Descent, but the neighborhoods are randomly
selected.

– Shaking Procedure: Let Ω be a set of neighborhood structures. The shaking
procedure consists of selecting a random neighborhood belonging to Ω and
then choosing a random neighbor of the current solution in this neighborhood.

All steps of our VNS algorithm applied to solve the DARP are presented in
Algorithm 1. The algorithm receives as parameters an initial solution s0 and the
maximum number of iterations (iterMax ). In the line 4 is applied a shaking in the
current solution. The local search is applied in line 5, where all different feasible
routes are stored in a set R. This set is used in the set covering model. When
the number of iterations exceeds half of iterMax, the set covering procedure is
applied (line 13).
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Algorithm 1. VNS procedure
1: procedure VNS ( s0, iterMax)
2: iter ← 0
3: while iter ≤ iterMax do
4: s′ ← Shaking(s)
5: s′′ ← LocalSearch(R, s′)
6: if f(s′′) < f(s) then
7: s ← s′′

8: iter ← 0
9: else

10: iter ← iter + 1
11: end if
12: if iter ≥ iterMax/2 then
13: s′′ ← setCovering(R)
14: if f(s′′) < f(s) then
15: s ← s′′

16: iter ← 0
17: end if
18: end if
19: end while
20: return s
21: end procedure

4.5 Set Covering

Let R be a set of different feasible routes found by VNS algorithm, V the set of
customers and |K| the maximum number of vehicles available. A cover of V is
a combination J of routes j ∈ R, where each customer i ∈ V is covered by at
least one route j ∈ R. Let cj be the cost of each route j and the binary constant
ρij that informs if customer i is served by route j. The Set Covering problem
(SCP) consists in finding a set J ⊆ R such that the total cost is minimized.

In order to present the mathematical model for the SCP, let yj be a binary
variable associated with a route j ∈ J . Follow the model used in our algorithm.

min
∑

j∈R

cjyj

Subject to:
∑

j∈R

ρijyj ≥ 1, ∀i ∈ V (1)

∑

j∈R

yj ≤ |K|, (2)

yj ∈ {0, 1} (3)
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5 Computational Experiments

The developed heuristic was coded in C/C++ using the mathematical solver Gurobi
8.0.0, with all its default settings. All experiments were performed on an Intel Core
i7-7700K processor with 3.60 GHz and 16 GB RAM running Ubuntu 16.04 LTS 64 bits.

5.1 Instances Description

In order to validate our approaches, the computational experiments were performed
using three groups of instances (E, I, U) proposed by Parragh [19]. These instances
have heterogeneity based on data given by the Austrian Red Cross. The instances were
randomly generated in the square [−10, 10]2 using the uniform distribution. The depot
was located in the center of the plan. Each edge (vi, vj) ∈ A has the cost cij and travel
time tij were calculated using Euclidean distance. Each vertex i was defined a time
window [ei, li]. The pickup vertices ei were established in a range of [0, T − 60], where
T is the time of planning horizon and li was set as ei +15. The delivery vertices li were
defined in the interval [60, T ] and ei was set as li − 15. Each instance is represented by
the name ak-n, where k is the number of vehicles used and n is the total number of
requests.

In group E of instances, half of the patients are normal ones, 25% are wheelchair
ones and 25% stretcher ones. 10% of the patients have one companion. The fleet of
vehicles for this group is homogeneous with vehicles of type V1. Each vehicle V1 has
two places to companions, one for a wheelchair patient, one for the stretcher patient
and one for a normal patient. In group I of instances, 83% of requests are from normal
patients, 11% are wheelchair ones, and 6% are stretcher ones. Half of the patients have
one companion. The fleet of vehicles is heterogeneous with vehicles of types V1 and
V2. Each vehicle V2 has one place to companions, one for a wheelchair patient, one
for stretcher patient and six for the normal patients. In group U of instances, are just
considered the normal patients and there are no companions. The fleet of vehicles is
homogeneous with vehicles of type V3. Each vehicle V3 just has places for normal
patients. Table 2 shows the heterogeneity of patients and vehicles by instance groups
(Table 1).

Table 1. Patients occupation

Patient type Place type:

Normal Wheelchair Stretcher Companion

Normal x x

Wheelchair x

Stretcher x

Companion x x x

5.2 Experimental Results

For each instance, the algorithm was executed 10 times using as stop criteria iterMax =
100, which represents the maximum number of the iterations without improving the
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Table 2. Instances information

Instance group Probability of patient be: Fleet of vehicles

Normal Wheelchair Stretcher Companion

E 0.50 0.25 0.25 0.10 hom(V1)

I 0.83 0.11 0.06 0.50 het(V1, V2)

U 1.00 0.00 0.00 0.00 hom(V3)
hom = Homogeneous, het = Heterogeneous
V1: 2 Companions, 1 Normal, 1 Wheelchair, 1 Stretcher
V2: 1 Companion, 6 Normal, 1 Wheelchair, 1 Stretcher
V3: 0 Companion, 3 Normal, 0 Wheelchair, 0 Stretcher

best solution found. For running the set covering problem was used half of the iterMax
iterations. The parameters used in the algorithm were calibrated using the IRACE
package [13]. Table 3 shows the tested configurations for the parameters. The best
configurations returned by IRACE are boldfaced. The neighborhoods are represented
as follow and the selected neighborhoods are presented in Sect. 4.3:

1 - Relocation - Relocation of one request of one vehicle to another.
2 - Swap - Exchange of one request of one vehicle to another.
3 - Crossover - Crossover between two vehicles.
4 - Swap(2) - Exchange of two requests of one vehicle to another.
5 - Swap(2-1) - Exchange of two requests of one vehicle with one request from

another.
6 - Relocation(2) - Relocation of two requests of one vehicle to another.

Table 3. IRACE Calibration

Parameter Values

Local search 123, 124, 125, 126, 134, 135, 136, 145, 146, 156

Neighborhood 234, 235, 236, 245, 246, 256, 345, 346, 356, 456

Initial penalty 1, 3, 5, 8, 10

iterMax 50, 100, 150

Table 4 presents the results on the instances group U, E and I. In group U, the
customers and vehicle fleet were considered as homogeneous. In group E the customers
were considered heterogeneous and the vehicle fleet was homogeneous. In the group I
the customers and vehicle fleet are heterogeneous. In this table, the column Instance
represents the name for each instance, this name is composed by the number of vehicles
used and the number of requests. The columns Parragh [19] and Braekers et al. [3]
show the results obtained by these authors in their experiments. The column Best
VNS presents the best solution found by our algorithm and the column AVG VNS
shows the average values in 10 executions of the VNS algorithm. For each column of the
table, sol reports the objective function value, gap the difference between the solution
value found and the best-known solution (BKS) value, while the column time shows
the time spend by the algorithm in seconds. The times in this work are from different
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Table 4. Results for instances U, E and I

Instances Parragh [19] Braekers et al. [3] Best VNS AVG VNS

Sol. Gap% Time Sol. Gap% Time Sol. Gap% Sol. Gap% Time

Group U

a2−16 294.25 0.00 68.20 294.25 0.00 8.60 294.25 0.00 294.25 0.00 3.83

a2−20 344.83 0.00 133.80 344.83 0.00 20.20 344.83 0.00 344.83 0.00 15.69

a2−24 431.12 0.00 187.80 431.12 0.00 17.40 434.53 0.78 436.48 1.23 42.26

a3−18 300.48 0.00 45.40 300.48 0.00 9.40 300.48 0.00 302.53 0.68 2.60

a3−24 344.83 0.00 86.80 344.83 0.00 16.60 344.91 0.02 347.50 0.77 14.58

a3−30 494.85 0.00 105.60 494.85 0.00 18.80 500.51 1.13 502.52 1.53 74.02

a3−36 583.30 0.02 162.60 583.19 0.00 28.40 599.43 2.71 607.24 3.96 247.54

a4−16 282.68 0.00 26.00 282.68 0.00 9.80 283.10 0.15 283.10 0.15 1.04

a4−24 375.02 0.00 50.80 375.02 0.00 13.00 379.36 1.14 380.81 1.52 6.36

a4−32 486.88 0.28 86.00 485.50 0.00 25.60 487.31 0.37 491.70 1.26 54.24

a4−40 561.80 0.74 130.60 557.69 0.00 26.40 557.69 0.00 569.36 2.05 243.66

a4−48 673.64 0.72 253.80 668.82 0.00 35.40 678.98 1.50 683.13 2.09 580.92

Group E

a2−16 331.16 0.00 65.60 331.16 0.00 9.40 331.16 0.00 331.16 0.00 4.89

a2−20 347.03 0.00 120.00 347.03 0.00 19.60 347.03 0.00 347.03 0.00 16.32

a2−24 450.25 0.00 160.40 450.25 0.00 15.80 450.38 0.02 452.92 0.65 76.08

a3−18 300.63 0.00 47.60 300.63 0.00 9.60 300.63 0.00 302.01 0.46 2.05

a3−24 344.91 0.00 76.20 344.91 0.00 14.60 344.91 0.00 347.63 0.86 17.73

a3−30 500.58 0.00 107.60 500.58 0.00 17.00 505.64 1.00 507.72 1.54 108.75

a3−36 583.19 0.00 161.60 583.19 0.00 23.60 599.43 2.71 610.46 4.47 316.76

a4−16 285.99 0.00 25.00 285.99 0.00 8.20 291.55 1.91 291.76 1.98 1.25

a4−24 383.84 0.00 52.60 383.84 0.00 12.20 386.06 0.58 289.09 1.35 8.60

a4−32 502.52 0.45 83.00 500.24 0.00 22.80 501.85 0.32 507.11 1.35 49.16

a4−40 585.64 0.90 121.00 580.42 0.00 24.20 589.29 1.51 597.89 2.92 204.60

a4−48 675.37 0.72 252.20 670.52 0.00 33.60 676.28 0.85 688.57 2.62 786.57

Group I

a2−16 294.25 0.00 68.40 294.25 0.00 7.20 294.25 0.00 294.25 0.00 5.33

a2−20 355.74 0.00 141.80 355.74 0.00 17.40 360.23 1.25 362.69 1.92 14.16

a2−24 431.12 0.00 211.00 431.12 0.00 12.60 434.53 0.78 441.32 2.31 59.08

a3−18 302.17 0.00 47.20 302.17 0.00 8.40 302.17 0.00 303.27 0.36 3.53

a3−24 344.83 0.00 83.60 344.83 0.00 13.40 345.31 0.14 350.79 1.70 19.23

a3−30 494.85 0.00 106.80 494.85 0.00 14.80 502.77 1.57 511.75 3.30 93.29

a3−36 618.58 0.07 170.60 618.15 0.00 22.60 636.97 2.95 641.98 3.71 296.38

a4−16 299.05 0.00 27.00 299.05 0.00 7.20 302.87 1.26 307.23 2.66 1.09

a4−24 375.07 0.01 51.60 375.02 0.00 12.00 379.36 1.14 381.91 1.80 9.83

a4−32 486.93 0.00 88.00 486.93 0.00 21.00 488.74 0.37 496.25 1.88 59.96

a4−40 561.35 0.66 132.20 557.69 0.00 23.80 566.11 1.49 573.02 2.68 279.11

a4−48 680.43 1.45 262.40 670.72 0.00 30.00 684.37 1.99 695.95 3.63 749.48
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computers, the computer used by Parragh [19] was an Intel Pentium D with 3.20 GHz
and 4 GB RAM and the computer used by Braekers et al. [3] was an Intel Core with
2.6 GHz and 4 GB RAM, and the computer used in this work is an Intel Core I7-7700
CPU @ 3.60 GHz with 16GB RAM. Some methods have been developed for a fair
comparison, methods that measure the performance of computers in general, and can
be found in work of Dongarra [7].

According to Table 4, we can see that our algorithm was able to find the BKS
solution for 10 of 36 instances, where they are four in group U and E and two in group
I. The VNS found solutions with gap up to 1% for 12 of 36 cases, where they are four
in group U, five in group E and three in group I. In the last 14 cases our algorithm
obtained solutions with gap up to 2.95%.

Regarding computation time, our algorithm on average is faster in 26 out of 32
instances compared to Parragh [19] and find the better solution just for one case (a4−40
of group U). Compared to Braekers et al. [3], the VNS algorithm on average is faster
just for half of 32 instances.

6 Conclusions

In this paper, we propose a simple heuristic algorithm based on the Variable Neighbor-
hood Search for the Dial-a-Ride Problem. This problem is a variation of the Vehicle
Routing Problem, where the customer’s convenience is taken into account. We consid-
ered a heterogeneous demand for customers and vehicles. Our algorithm was tested in
the instances described in the literature. In three groups with a total of 36 instances.
The VNS algorithm showed able to find 10 of 36 best-known solutions, and for 12 of
36 solutions, we find a solution with a gap less than 1%. For the other 14 instances, in
the worst case, we find a solution with a gap of 2.95%.
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Gerais (FAPEMIG), Conselho Nacional de Desenvolvimento Cient́ıfico e Tecnológico
(CNPq), Universidade Federal de Ouro Preto (UFOP) and Universidade Federal de
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Abstract. The Portfolio Selection Problem looks for a set of assets with
the best trade-off between return and risk, that is, with the maximum
expected return and the minimum risk (e.g., the variance of returns).
As these objectives are conflicting, it is a difficult multi-objective prob-
lem. Different models and algorithms have been proposed to obtain the
(optimal) Pareto front. However, exact approaches take days for a large
set of points to the Pareto front. Within this perspective, we develop
a basic variable neighborhood search heuristic to solve the bi-objective
portfolio selection problem. The proposed heuristic considers ten neigh-
borhood structures that are mainly based on swap moves and has a local
improvement based on averaging the proportions that are invested in
consecutive assets. The proposed heuristic was experimentally compared
with the Mean-Variance model of Markowitz, using benchmark instances
from the OR-Library. The number of assets in these instances ranges from
31 to 225. According to the experimental results, the proposed heuristic
performed well in the construction of different Pareto fronts.

Keywords: Portfolio optimization · Basic variable neighborhood
search · Mean-variance model · Multiobjective optimization

1 Introduction

According to the modern portfolio theory [17,18], it is possible to select portfo-
lios with the minimum risk for a given expected return. Portfolios can also be
selected by maximizing the expected return for a given level of risk [6]. Aiming
at analyzing the trade-off between risk and expected return, the Mean-Variance
(MV) model in [17], which is bi-objective and quadratic, can be used to obtain
a front of optimal portfolios in terms of minimum risk, which is measured as the
variance of returns, and maximum expected return.
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Recently, the survey in [11] discussed modelings and applications of the MV
model and its variants, showing the importance of this model in solving the
portfolio selection problem. The authors reviewed 175 papers that were published
in the last two decades, precisely from 1998 to 2018. From this survey, we notice
that the number of published articles is significantly higher in the last decade
(i.e., from 2009 to 2018), with 136 published papers out of 175. Despite several
attempts to linearize the measure of risk in the MV model, as the Mean Absolute
Deviation (MAD) model in [13] and the Gini Mean difference (GMD) model in
[25], the literature has been solving it with heuristic methods.

In terms of heuristics for the MV model, in [9] there is a multi-objective
evolutionary algorithm (MOEA), where cardinality constraints (i.e., there is a
limit on the number of assets that can be invested) are included. The results
of the MOEA were compared with those of the resolution of the MV model,
showing that for small values of cardinality (i.e., about five assets), both attained
similar results. In [21], there is another MOEA in which three-objectives are
considered, that is, to maximize the expected return, to minimize the uncertainty
risk, and to minimize the relation risk. The binary codification was adopted to
the chromosomes and indicates whether an asset is in the portfolio. The crowding
distance was used to sort the chromosomes and to determine the Pareto front.
The computational results showed that such a method could give flexible and
accurate Pareto fronts.

Different heuristics were implemented in [24] for the MV model with car-
dinality, floor, and round-lot constraints. Some of the heuristics are the Vector
Evaluated Genetic Algorithm (VEGA) from [23], the Multi-objective Optimiza-
tion Genetic Algorithm (MOGA) from [12], the Strength Pareto Evolutionary
Algorithm second version (SPEA2) from [26], and the Non-dominated Sorting
Genetic Algorithm II (NSGA-II) from [7]. The computational results showed the
NSGA-II and SPEA2 could produce diverse portfolios in the Pareto front, as well
as they had similar results, although the SPEA2 performed a little better.

In [1], the Pareto Envelope-based Selection Algorithm (PESA) from [5],
SPEA2, and NSGA-II are codified for a variant of MV model with three objec-
tives, to maximize the expected return, to minimize the variance of returns, and
to minimize the number of assets in the portfolio. The computational results
indicated that the SPEA2 had the best performance in terms of Pareto fronts,
whereas the PESA was the fastest one. In [2], the authors compared five multi-
objective evolutionary-based heuristics for the MV model with cardinality con-
straints. In such a study, the NSGA-II and SPEA2 outperformed the others in
terms of solution quality and convergence criteria to the optimal Pareto front.
The authors noticed that the SPEA2 could perform even better than NSGA-II
for some instances.

The NSGA-II and SPEA2 were also used in [15] and [16]. In the recent
work of [16], instead of the MV model, the authors solved a Mean-Semivariance
model, which considers only adverse return variations, by using the NSGA-II
and SPEA2. In such work, the NSGA-II performed better in comparison with
the SPEA2, although both achieved Pareto fronts with good outcomes in terms
of Bollinger bands. Although we could not find any work in which there was a
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clear superiority of the NSGA-II over the SPEA2, the NSGA-II seems to be more
popular, as pointed in [11]. These authors listed 26 papers that used the NSGA
and NSGA-II and 14 ones that used the SPEA2 for solving the MV model and
its variants.

Recent works have also considered other heuristic frameworks, not based
on evolutionary algorithms, to successfully solve portfolio selection problems,
as swarm optimization and the variable neighborhood search. In [14], a co-
variance guided artificial bee colony algorithm is proposed to the MV model.
Then, NSGA-II is used when ranking and generating non-dominated solutions.
In [4], there is a multi-objective particle swarm optimization to solve a variant of
the MV model in which higher moments (i.e., based on skewness and kurtosis)
are included. On the other hand, in [22], there is a variable neighborhood search
based heuristic for solving large instances of the project portfolio selection prob-
lem with uncertainty. The authors aimed at maximizing the expected return,
while considering random cash flows, discount rates, and a given level of risk.

With this in mind, we propose a multi-objective basic variable neighborhood
search [8], to solve the MV model and build an effective Pareto front of portfolios.
The proposed heuristic considers ten neighborhood structures mainly based on
swap movements. Each portfolio is represented as a vector of assets, where each
position of the vector has the proportion of the total capital that is invested in
the respective asset. The remainder of this work is organized as follows: Sect. 2
describes the problem and the MV model; Sect. 3 has the proposed heuristic
for the problem; Sect. 4 presents the computational experiments on instances
from the OR-Library, where a comparison is made between the solutions of the
proposed heuristic and those from the MV model; and, Sect. 5 has the concluding
remarks and proposals for future works.

2 Problem Formulation

In the Portfolio Selection Problem (PSP), there are n assets, each one with an
expected return per period μ. The covariance between two assets is represented
by σ. Let xi ≥ 0 indicates the proportion of the total capital that is invested in
the asset i. Then, the objective of the problem is to determine the percentage to
invest in each asset i, for i = 1, . . . , n, to achieve a portfolio with the maximum
expected return and the minimum risk.

In [17], the PSP is tackled employing a mean-variance model in which the
risk is measured according to the variance of the portfolio’s expected return.
With the non-negative variables xi, such model is then defined in (1)–(4).

In the MV model (1)–(4), there are two objectives, that is, to maximize the
expected return (1) and to minimize the variance of the expected return (2),
which is quadratic in the variables x. These objectives are conflicting since it is
usually well-documented that the smaller the variance, the lower the expected
return. Constraint (3) ensures the proportions that are invested in all assets
must sum up to one, while the domain of variables is expressed in (4).
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Maximize E =
n∑

i=1

μixi (1)

Minimize V 2 =
n∑

i=1

n∑

j=1

σijxixj (2)

Subject to:
n∑

i=1

xi = 1, (3)

xi ≥ 0, ∀ i = 1, . . . , n. (4)

3 A Heuristic for the Portfolio Selection Problem

The Variable Neighborhood Search (VNS) [19] is a single solution based heuris-
tic that has been showing powerful to tackle different mono- and multi-objective
optimization problems [8,10]. In the VNS, the solution travels through neigh-
borhood structures to become globally optimal in relation to all neighborhoods.
When an improved solution is found, the VNS comes back to the first neighbor-
hood, or else it continues toward the next neighborhood.

In [8], the VNS is adapted to solve multi-objective optimization problems.
These authors discussed the multi-objective versions of the reduced VNS, the
variable neighborhood descent, and the general VNS, pointing out the advan-
tages of each one. The reduced VNS has the particularity of obtaining new solu-
tions by random perturbations, while the variable neighborhood descent consid-
ers local searches with deterministic perturbations. The general VNS combines
random perturbations with local searches that are related to the variable neigh-
borhood descent to balance diversification and intensification of the search.

Another version that is not discussed in [8] is the basic VNS, where local
searches do not need to consider the variable neighborhood descent. Based on
this, we develop a Multi-Objective Basic VNS (MO-BVNS) for the PSP for
which the following ten neighborhood structures are proposed.

In the MO-BVNS, a solution represents an approximated Pareto front of the
PSP. The Pareto front is a set of efficient (i.e., non-dominated) points px. In each
px, x is a vector of size n and xi holds the proportion of the total capital that is
invested in the asset i, for i = 1, . . . , n. Figure 1 illustrates examples of vectors
x from points px considering six assets. A point px dominates a point p′

x if the
expected return (see (1)) and the risk (see (2)) of px is, respectively, greater and
smaller than those of p′

x. Therefore, a point is non-dominated by any other of
the Pareto front if one of its objective (expected return or risk) value is better
than the respective objective of the other points. The proposed neighborhood
structures are discussed next, where Fig. 1 has an example of a neighbor point
of px considering each of the neighborhood structures:
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– Neighborhood N1: select two assets i and j, and swap the values in xi and xj ;
– Neighborhood N2: select two assets i and j, and define xi and xj as xi+xj

2
(i.e., they receive the average of their values);

– Neighborhood N3: select two assets i and j, and define xi as xi + xj and xj

as 0 (i.e., the proportion of j is added into i);
– Neighborhood N4: divide the assets in two sets A and B, where A contains

the n
2 assets with the highest expected returns and B the remaining assets.

Select two assets, i in A and j in B, and define xi as xi + xj and xj as 0;
– Neighborhood N5: divide the assets in two sets C and D, where C contains

the n
2 assets with the lowest risks and B the remaining assets. Select two

assets, i in C and j in D, and define xi as xi + xj and xj as 0;
– Neighborhood N6: consider the two sets C and D as in N5, and select two

assets, i in C and j in D. Define xi and xj as xi+xj

2 ;
– Neighborhood N7: let E be the set with all assets i for which xi ≤ β (i.e., E

contains all assets whose the proportion invested in each one is less than β

percent of the total capital). Define s as
∑

i∈E xi∑
j /∈E 1 , xi as 0 for each i ∈ E, and

update the remaining assets xj as xj + s, for each j /∈ E;
– Neighborhood N8: let i be the asset in which xi ≥ γ (i.e., the proportion

invested in i is more than γ percent of the total capital). Define s as xi

n−1 , xi

as 0, and update the remaining assets xj as xj + s, for each j = 1, . . . , n and
j �= i;

– Neighborhood N9: select two assets i and j, such that i < j, and define the
set F as {i, i + 1, . . . , j}. Define s as

∑
k∈F xk∑
l/∈F 1 , xk as 0 for each k ∈ F , and

update the remaining assets xl as xl + s, for each l /∈ F ;
– Neighborhood N10: select two assets i and j, such that i < j, and define the

set F as {i, i + 1, . . . , j}. Define s as
∑

k/∈F xk

|F | , xk as 0 for each k /∈ F , and
update the remaining assets xl as xl + s, for each l ∈ F .

Algorithm 1 describes the proposed MO-BVNS that has the neighborhood
structures N1 to N10. As input, it receives the total number of neighborhood
structures kmax, which is ten, the number of consecutive assets na that are
combined in the local improvement phase, and the time limit that is used as the
stopping criterion. As output, it returns the approximated Pareto front Ebest.

The heuristic starts with a solution E whose points px are generated from
randomly dividing the total capital among the n assets, for a total of 500
points. After creating these points, only the non-dominated ones are kept. While
the imposed time limit is not reached, the heuristic considers an inner-loop
(lines 5–9) that iterates over the neighborhood structures by considering a
perturbation phase (i.e., MO-Shake), a local improvement phase (i.e, MO-
LocalImp), and a neighborhood change phase (i.e., MO-NeighborhoodChange).
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Fig. 1. Example of neighbor points considering each of the neighborhood structures.

Algorithm 1: Multi-objective basic variable neighborhood
search for the portfolio selection problem
Input: K, na, T .
Output: Ebest.

1 E ← randomly generated solution;
2 Ebest ← E;
3 do
4 k ← 1;
5 do
6 E′ ← MO-Shake(E, k);
7 E′′ ← MO-LocalImp(E′, na);
8 MO-NeighborhoodChange(E,E′′, Ebest, k);
9 while k ≤ kmax;

10 while t ≤ tmax;
11 return Ebest;
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The MO-Shake phase is presented in Algorithm 2. In this phase, a new solu-
tion is obtained from E by considering the k-th neighborhood structure. For
each point px in E, a new point p′

x is randomly (given a uniform distribution)
obtained by applying the neighborhood Nk. The new points originate a new
solution, E′, which is the output of this phase.

Algorithm 2: MO-Shake.
Input: E, k.
Output: E′.

1 E′ ← ∅;
2 foreach px ∈ E do
3 p′

x ← apply the neighborhood Nk to px;
4 E′ ← E′ ∪ {p′

x};
5 end
6 return E′;

The MO-LocalImp phase is described in Algorithm 3. It consists of generat-
ing new points from averaging two consecutive points of a given solution E. It
has been observed that non-dominated points can emerge from combining the
proportions that are invested in two consecutive assets. The number of successive
assets that are combined is due to the parameter na ≤ n.

Algorithm 3: MO-LocalImp.
Input: E, na.
Output: E′.

1 E′ ← E;
2 foreach px ∈ E do
3 for i ← 1, . . . , na − 1 do
4 m ← xi+xi+1

2 ;
5 xi ← m;
6 xi+1 ← m;
7 end
8 E′ ← E′ ∪ {px};
9 end

10 return E′;

In the MO-NeighborhoodChange phase, see Algorithm 4, the current solu-
tion E and the best solution Ebest are updated if the solution E′′, which is
obtained after the local improvement phase, has at least one non-dominated
point in comparison with E. If this is the case, then the current and best solu-
tions are updated to contain the new non-dominated points, and the search is
reset to the first neighborhood. Otherwise, the search continues with E to the
next neighborhood structure.
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Algorithm 4: MO-NeighborhoodChange.
Input: E, E′, Ebest, k.

1 if MO-Improvement(E,E′) then
2 Ebest ← Ebest ∪ E′ ∪ E;
3 Remove all dominated points of Ebest;
4 E ← Ebest;
5 k ← 1;
6 else
7 Remove all dominated points of E;
8 k ← k + 1;
9 end

Algorithm 5 describes the routine MO-Improvement. This routine aims at
checking whether the current solution E′ contains at least one non-dominated
point in comparison with all the points in E. If this is true, then the current
solution E is updated to contain this new non-dominated point (and possibly
others), according to Algorithm 4.

Algorithm 5: MO-Improvement.
Input: E, E′.
Output: True or False.

1 foreach px ∈ E′ do
2 if px /∈ E AND non-dominated(px, E) then
3 return True;
4 end
5 end
6 return False;

4 Computational Experiments

All the algorithms were coded in the C++ programming language and the exper-
iments were carried out in a computer with Intel� CoreTM i7-2600, 3.40 GHz, 16
GB of RAM, and Ubuntu 12.04 LTS. A time limit of 60 s was imposed on solv-
ing each instance as the stop criterion, and the proposed heuristic was executed
five times (with different seeds). Regarding the parameters of the heuristic, they
were calibrated by trial and error, choosing after all na as the total number of
assets n, β as 0.1, and γ as 0.9.

The authors in [11] discussed the most used data sets, pointing out that
about 2% of the literature has adopted hypothetical data sets, 39% of it have
used instances from the OR-Library, and 59% of it have used data sets of case
studies. Hypothetical data sets have the inconvenient of hardly representing
the reality of stock markets, while data sets of case studies are not frequently
available for other researchers and practitioners. Therefore, the instances in this
work were obtained from the OR-Library [3], and Table 1 has details of them.
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Table 1. Data sets that are used in this work.

Name Index Country Number of assets

Port1 Hang Seng Hong Kong 31

Port2 DAX Germany 85

Port3 FTSE United Kingdom 89

Port4 S&P United States 98

Port5 Nikkei Japan 225

To assess the quality of the Pareto fronts that are obtained by the proposed
heuristic, we solve the MV model in (1)–(4) by the approach in Algorithm 6.
This approach is based on the ε-constraint method, and it was used in [3] to
compare the results of heuristics with a near-optimal Pareto front. The idea is
to solve a mono-objective MV model, that is, to maximize the expected return
(1), where the other objective, to minimize the risk (variance of returns) (2), is
transformed into a constraint that is limited by a given ρ. Then, the Pareto front
is composed of non-dominated points that are solutions of the mono-objective
MV model for different values of ρ. Each mono-objective model is solved with a
sequential least squares programming algorithm that uses the Han-Powell quasi-
Newton method [20].

Algorithm 6: Approach for a mono-objective MV model.
Input: n, μ, σ, N , [ρmin, ρmax].
Output: Pareto front F .

1 F ← ∅;
2 S ← ρmax−ρmin

N ;
3 for i = 1, . . . , N do
4 ρ ← ρmin + i × S;
5 x ← with the ε-constraint method, to solve the MV model (1), (3),

(4), and
√∑n

i=1

∑n
j=1 σijxixj ≤ ρ;

6 F ← F ∪ {x};
7 end
8 Remove all dominated points of F ;
9 return F ;

In Algorithm (6), the input has information of the instance, as the number of
assets n, the expected return μi of each asset i, the covariance σij between assets
i and j, and the quantity N of values of ρ that is considered. The values of ρ are
obtained from the interval [ρmin, ρmax], where ρmin is function (2) calculated
with the solution of the linear MV model with the objective function (1) set
as minimize and constraints (3)–(4). On the other hand, ρmax is function (2)
calculated with the solution of the linear MV model with the objective function
(1) set as maximize and constraints (3)–(4). Notice that in these linear models,
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the second objective (i.e., related to the risk) is not considered, and its function
is used to determine the interval in which the risk varies in the ε-constraint
method. In the experimental tests, we imposed a time limit of 48 h, and then,
for instances Port1, Port2, and Port3, we obtained N = 1000, while for instances
Port4 and Port5, we obtained N = 100.

The Pareto fronts of the MO-BVNS and the approach for the MV model in
Algorithm 6 are illustrated in Figs. 2, 3, 4, 5 and 6, for the respective instances
Port1 to Port5. The dashed curve in red (i.e., Pareto F) represents the Pareto
front of the approach in Algorithm 6, while the others are the Pareto fronts
obtained with the MO-BVNS from each of the five runs (different seeds).

Observing Figs. 2, 3, 4, 5 and 6, the MO-BVNS has obtained Pareto fronts
that differ from each other, especially in the instances that have more assets,
Port4 and Port5. However, the differences between them are quite small, show-
ing a low variability in the results of the heuristic when different seeds are used.
Concerning the solution of MV model, the Pareto F has fewer points in com-
parison with the Pareto fronts of the MO-BVNS. We notice the left part (along
the direction of the risk, on x-axis) of the Pareto F dominates the left part of
the Pareto fronts of the heuristic, for all the instances. On the other hand, the
right part of the Pareto fronts of the heuristic has many non-dominated points
(i.e., they dominate) in comparison with the Pareto F, especially in the instances
Port2, Port3, Port4, and Port5.

In the results of Figs. 2, 3, 4, 5 and 6, we observe the MO-BVNS has generated
Pareto fronts with a large number of points that are better spread and spaced. On
the other hand, notice that the Pareto F is quite small (i.e., it has few points)

Fig. 2. Pareto fronts for Port1. (Color figure online)
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for the instances Port2, Port3, and Port4. It is worth mentioning the Pareto
fronts of the heuristic have confirmed the higher the risk, the higher the expected
return.

Fig. 3. Pareto fronts for Port2. (Color figure online)

Fig. 4. Pareto fronts for Port3. (Color figure online)
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Fig. 5. Pareto fronts for Port4. (Color figure online)

Fig. 6. Pareto fronts for Port5. (Color figure online)
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5 Concluding Remarks

In this work, a bi-objective portfolio selection problem is solved with a basic
variable neighborhood search based heuristic, namely the MO-BNVS. The pro-
posed heuristic considers ten neighborhood structures, with movements that
swap, insert, combine, and redistribute proportions that are invested in assets.
Besides that, there is a local improvement that combines the proportion of two
consecutive assets.

The results of the MO-BNVS are compared with those of the quadratic bi-
objective mean-variance model solved with an approach based on the ε-constraint
method. The MO-BVNS could obtain Pareto fronts with a large number of non-
dominated points, although several points seemed to be dominated by those
of the Pareto front of the MV model. One advantage of the MO-BVNS is the
computational time that was required to construct the Pareto fronts, which is
by far much smaller than that spent when solving the bi-objective MV model.

Future works are going to use the NGSA-II to compare with the proposed
heuristic. In this case, different metrics are going to be used to assess the perfor-
mance of each method in terms of convergence and diversity among points of the
optimal Pareto set. Another direction is related to investigate other neighbor-
hood structures and a local search based on the variable neighborhood descent
method.
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Abstract. In the (r | p)-centroid problem, two players, called the Leader
and the Follower, open facilities to service customers. We assume that
customers are identified with their location on the plane, and facilities
can be opened anywhere on the plane. The Leader opens p facilities.
Later on, the Follower opens r facilities. Each customer patronizes the
closest facility. The distances are calculated according to �1-metric. The
goal is to find the location of the Leader’s facilities maximizing her mar-
ket share. We provide the results on the computational complexity of
this problem and develop a local search heuristic, based on the VNS
framework. Computational experiments on the randomly generated test
instances show that the proposed approach performs well.

Keywords: Variable neighborhood search · Stackelberg game ·
(r | p)-centroid · Facility location · Bilevel programming · Manhattan
metric

1 Introduction

This paper addresses a well-known Stackelberg facility location game on a two–
dimensional plane, namely the (r|p)–centroid problem. The problem can be
stated as follows. We are given a set of customers that are concentrated at a
finite number of points in the two–dimensional plane. We assume that a weight
wi, which represents the demand, is assigned to each customer. At the first stage
of the game, a player, called the Leader, opens p facilities. At the second stage,
another player, called the Follower, opens r facilities. Both players are able to
open their facilities anywhere on the plane. At the third stage, each customer
chooses the closest opened facility as a supplier. We consider the case when
the distances are defined according to �1-metric. In case of ties, the Leader’s
facility is preferred. Customer’s service induce an income of wi to the supplier.
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Each player aims to maximize its own market share. The goal of the game is to
find p points for the Leader facilities to maximize her market share.

The (r | p)–centroid problem was first studied by Hakimi [8]. He explored
the formulation considering location on a network, reviewed its applications and
variations and showed that the problem is NP–hard. Since then, decent amount
of publications has been dedicated to the centroid problem. In study [10], by
Kress and Pesch, the authors presented an overview of the latest developments in
the area of sequential competitive location problems. Special attention was paid
to problems defined on networks. Authors also provide a highlight of work that
has been done in the field of (r | Xp)–medianoid and (r | p)–centroid problems.
The problems in the review were studied under different formulations, metrics
and location spaces. Bauer et al. in [2] explored the (1—1)-centroid problem on
the network with different types of clients behaviour. The optimal location for
the Leader in this work is defined as location, such that no point on the network
with higher expected value exists. Authors showed that the set of such optimal
points consists only of network vertices assuming that clients are located only
at the vertices too. As a main result authors proposed two algorithms which can
determine all optimal points of a network in polynomial time. For the case p =
r = 1 on the Euclidean plane an exact polynomial-time algorithm is introduced in
[7]. The author addressed two problems in his work, one of which is how to locate
new facility in order to gain more value from the existing one. A more general
case with an arbitrary values of p and r is considered in [3]. Authors presented
an alternating heuristic for the (r | p)–centroid problem on two-dimensional
Euclidean plane combined with a greedy heuristic for the Follower’s problem.
The development of this approach can be found in [9]. An exact method is applied
for the Follower problem. In order to improve the results of the Leader’s problem
a clustering procedure is introduced combined with exact polynomial algorithm
for (1 | 1)–centroid problem. More in-depth review of problem’s complexity and
properties can be found in [1]. Ashtiani summarizes recent publications devoted
to competitive facility location problems and introduces the classification based
on specific components, for example, variables, competition type, solution space,
etc. Based on this taxonomy a comparison of various studies is provided.

A gap we intend to fill in this work is devoted to �1-metric case of this prob-
lem. Although, this case has various applications and is of certain theoretical
interest, to our knowledge no papers have considered such formulations before.
We present a mathematical model for the (r|p)-centroid problem under �1 metric
and propose a local search heuristic combined with an exact approach for the
Follower problem. We consider the (r | Xp−1 + 1)-centroid sub-problem where
the Leader moves exactly one facility, searching for its optimal relocation. We
use this problem in order to find the best neighboring solution in the Swap neigh-
borhood. To reduce the computational efforts we use the concept of randomized
neighborhoods and apply a local descent algorithm to evaluate the goal function
during the neighborhood exploration. We also adopt a maximum clique approach
from [13] to reduce the computational complexity of the Follower’s problem.
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The paper is organized as follows. In Sect. 2 we present a comprehensive for-
mulation and provide a mathematical model for the problem. In Sect. 3 we pro-
pose an exact approach to tackle the Follower’s problem. Section 4 provides the
formulation for the auxiliary problem of the Leader, called the (r | Xp−1 + 1)-
centroid problem. Sect. 5 provides results of computational experiment and Sect. 6
concludes the study.

2 Mathematical Model

First let us provide a mathematical model for the (r | p)–centroid problem in
a following formulation: let n define the number of clients located on a two–
dimensional plane. Each client j is associated with the positive weight wj repre-
senting the demand. The set X of size p represents points, in which the Leader
located his facilities. Similarly, Y defines the set of Follower’s r points, in which
his facilities are located. The �1 distance from client j to the closest facility
patronized by the Leader is defined as d(j,X). The �1 distance to the closest
Follower’s facility is denoted by d(j, Y ). Customer j chooses Follower’s facil-
ity instead of Leader’s one if d(j, Y ) < d(j,X) and chooses Leader’s facility
otherwise. By

U(Y ≺ X) := {j | d(j, Y ) < d(j,X)}
let us denote the set of customers, who prefer facility from Y instead of X.
The Follower’s profit, gained by locating his facilities at Y , in response to the
Leader’s facilities in X is represented by:

W (Y ≺ X) :=
∑

(wj | j ∈ U(Y ≺ X)).

In response to the Leader ’s solution X, the Follower tries to maximize his
gain. The maximal value W ∗(X) is defined to be

W ∗(X) := max
Y,|Y |=r

W (Y ≺ X).

Later on, we will refer to this problem as a Follower’s problem. The whole
market is divided between competitors, so the Leader tries to minimize the
market share of the Follower. This minimal value W ∗(X∗) is defined as

W ∗(X∗) := min
X,|X|=p

W ∗(X).

For the best solution X∗ of the Leader, her market share is
∑n

j=1 wj −
W ∗(X∗).

In the (r | p)–centroid problem the aim is to find X∗ and W ∗(X∗). We claim
that the (r | p)-centroid problem under �1 metric is Σp

2 -hard, while the Follower’s
problem is NP–hard.
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3 Follower’s Problem

In this section we present an exact approach for the Follower ’s problem. It can
be formulated as an ILP and solved using the branch and bound method. The
exact algorithm for the Follower ’s problem consists of two stages. At the first
stage the problem is discretized. This can be done in the following way. In order
to “capture” customer j, a Follower needs to place his facility closer than the
nearest Leader’s facility, i.e. at a distance less than d(j,X) from client j. For
each client j we associate a disk Dj of radius d(j,X) with the center at the
point where the client j is located. If two or more disks form the intersection,
then by placing the facility inside of the intersection the Follower captures more
than one customer at once. Disks and their intersections divide the plane into a
number of areas. For each area we can calculate the income that the Follower
will receive by placing his facility in this area.

Basic concepts of the Follower ’s problem in terms of �1 metric can be defined
as follows. A circle is a set of points with a fixed distance, called the radius, from
a point called the center. In �1 metric, distance is determined by a different
metric than in Euclidean geometry and the shape of the circles changes as well.
Under �1 norm the circles have a square shapes with sides oriented at a 45◦ angle
to the coordinate axes. For a fixed solution X of the Leader, for each client j,
we introduce a square Dj with radius d(j,X) centered in client location point.
If the Follower would place the facility in region Dj he would for sure capture
the client j. Let us consider the resulting intersection of each set of two or more
such squares, which will be called a region. In order to simplify the computation
of the regions described above, we used the following result for R2:

Lemma 1. Let P1, ..., Pn ⊂ R2 be rectangles with sides parallel to the coordi-
nate axes, such that every two rectangles intersect. Then all rectangles have a
nonempty intersection.

Curious reader can find the proof of this lemma in [12].
This lemma helps to reduce computation time in the algorithm of searching

for interesting points for facility location when solving the Follower ’s problem.
Instead of computing an intersection of each set of squares we can now count only
pairwise intersections in order to find out whether these rectangles have a point
in common or not. In order to reduce computational time it is also important to
find the regions which correspond to intersections that are maximal in inclusion.
We propose to solve this problem by reformulating it in graph theory terms
and solve it as maximal clique problem. To this end let us introduce the graph
G = (V,E), where V represents the set of clients and the edges E are calculated
in the following way:

ei,j

{∈ E if Di has not empty intersection with Dj ,
/∈ E otherwise

Therefore, we can think of finding the regions with maximal intersection
as of Maximal Clique problem. A comprehensive review of publications on this
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well-studied topic can be found in [14]. In order to solve this problem we have
applied the approach proposed by Tanakaa et al. [13] with the notable complexity
(O(3n/3)). Here we briefly describe the scheme of the algorithm.

Definition 1. For a vertex (v ∈ V ), let (Γ (v)) be the set of all vertices that are
adjacent to (v) in G = (V,E).

The scheme of the algorithm is presented below:

procedure CLIQUES(G) /* Graph G=(V,E) */
begin
0: /* Q := ∅ */
1: EXPAND(V, V)
end of CLIQUES

procedure EXPAND(SUBG, CAND)
begin
2: if SUBG = ∅
3: then maximal clique is found.
return

4: else u := a vertex u in SUBG that maximizes | CAND ∩ Γ (u) |;
5: while CAND - Γ (u) �= ∅
6: do q := a vertex in (CAND - Γ (u));
7: print(q, ",");
8: SUBG q := SUBG ∩ Γ (q);
9: CAND q := CAND ∩ Γ (q);
10: EXPAND(SUBGq, CANDq);
11: CAND := CAND - q;
12: /* one step out of the reqursion */
od

fi
end of EXPAND

The general procedure expands the desired clique until the maximal one is
found. The EXPAND procedure starts from an empty set and expands a global
variable Q step by step by applying a recursive procedure EXPAND to the set of
vertices V and its succeeding induced subgraphs to search for larger and larger
complete subgraphs until they reach maximal ones. Here SUBG is a full set
of candidates to be added to the clique. SUBG consists of all vertices from V
that are adjacent to all vertices of Q. Let FINI denote a subset of vertices of
SUBG that have already been processed by the algorithm. The set of remaining
candidates for expansion is denoted by CAND: CAND = SUBG?FINI. Γ (u)
denotes the set of al vertices adjacent to u.

If the Follower would place his facility inside a region, he captures all the
clients, whose squares Dj form the following region. The resulting number of
regions may be large, however, we can choose the regions formed by maximal
intersections and eliminate the dominated ones. The algorithm presented above
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allows to obtain these regions effectively. As we need to solve the Follower’s
problem many times during the solution of the Leader’s problem, it is extremely
important to reduce the computational costs of the solution procedure.

We can indicate the clients who patronize Follower ’s facility if he would open
one inside the region k by introducing a matrix a, such that ak,j = 1 if the facility
of the Follower in region k ∈ K captures client j and ak,j = 0 otherwise . We
formulate the Follower ’s problem in form of ILP by introducing two sets of the
decision variables:

yk =
{

1 if the Follower open his facility inside region k ∈ K
0 otherwise

zj =
{

1 if the Follower captures client j
0 otherwise

The Follower’s problem now can be formulated as the maximum capture
problem:

max
n∑

j=1

wjzj (1)

subject to

zj ≤
K∑

k=1

akjyk j = 1, ..., n (2)

K∑

k=1

yk = r, yk, zj ∈ {0, 1}. (3)

The objective function targets the maximization of Follower ’s gain. First
constraint guarantees that client j can patronize the Follower’s facility only if
there is one, opened in a proper region. Second constraint enforces the Follower
to open exactly r facilities.

With a reduced number of regions K this problem can be easily solved to
optimality with the help of any ILP solver.

4 Local Search Algorithm

At the first step we address the Follower’s problem (lower level problem). In this
case the location of Leader ’s facilities is known and given as an input. In order to
tackle the upper level problem (the Leader’s one) we propose a VNS-based app-
roach [11]. To explore the neighborhood we consider the (r|Xp−1 +1)− centroid
problem where the Leader has a set of p− 1 facilities and wants to open another
facility in the best position [9]. We applied an alternating heuristic from [4] as an
alternative approach to achieve baseline results. The idea of this heuristic is as
follows. For a given Leader ’s solution X, in response, Follower computes his best
possible solution Y . Next, the Leader may decide to move his facilities in order
to improve his solution. Among other options, one is to use the solution Y of
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the Follower to locate the facilities of the Leader. Thus, on this step the Leader
acts as Follower, trying to find her best response to the Follower ’s move. This
process repeats until the stopping criterion is met. The scheme of the method is
as follows:

1. Create a starting solution X for the Leader
while not termination condition do

2.1 Find the best solution Y for the Follower against the solution X;
2.2 Find the best solution X for the Leader against the solution Y;

end
Algorithm 1: Alternating heuristic

The algorithm begins with random initial solution. The stopping criterion
is the number of iterations performed. As a result of the Follower’s problem
solution we do not have precise location coordinates, but only the regions where
the Follower locate his facilities. Therefore the procedure of finding the exact
coordinates for the facilities must be used in order to proceed to the alternating
step. All points inside each region are equivalent from the Followers point of view.
In contrast, it is not true in the Leader ’s case. At Step 2.2 of the alternating
process the facilities of the Leader have to be opened in exact location. To reduce
the computational costs of the iterative process, we take the center points of the
regions as locations.

Consider the (r|Xp−1 + 1)–centroid problem, where the Leader has p − 1
open facilities and intends to open one more in the best position. Each candidate
location for new facility can be evaluated by solving the Follower’s problem. The
point maximizing the Leader ’s income is the desired one. As in the Follower ’s
problem, we associate with each client j a disk Dj of radius Rj = d(j,Xp − 1).
Note that the disks divide the plane into a fixed number of regions. When the
new facility is opened by Leader, some of the disks and the corresponding regions
may shrink or even disappear as the radius of the disks cannot increase. Note
that all points within the same region are of equal value for the Follower.

According to the Helly theorem, for d = 2 intersections of pairs disks define
the way all disks intersect. Number of regions change only if the structure of
intersection changed at least in one intersecting pair.

Let D1 and D2 be disks with radius R1 and R2 respectively. Let’s consider all
possible locations of new Leader’s facility at which at least one region disappears:

1. Disks do not intersect. If leader opens his facility in point j1 or j2, correspond-
ing disk disappears, which means that now we have new input data for the
Follower’s problem. All the other points are equivalent and make no interest
for the Leader.

2. Disks do intersect, and center of one, say j1 is inside D2. In this case, we have
two sub-regions of interest and if Leader would place the facility inside a union
of those, the intersection will disappear: Rectangle, formed by diagonals - is
the rectangle, formed by intersection of corresponding diagonals of the disks;
Sub-disk - is basically a rhombus with center in point j2. Its radius equals the
closest �1 distance to another disk.
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Fig. 1. Center of one disk is inside of other

Fig. 2. Centers are inside the area of opposite disk

3. Disks do intersect and their centers are inside each other. In this case, leader
only can eliminate the intersection by placing the facility inside Rectangle
formed by diagonals of that intersection.

4. Disks do intersect, neither of centers is inside another disk. In this case we
have region of interest formed by following sub-regions: Sub-disk of D1 ∪
Sub-disk of D2 ∪ Rectangle, formed by diagonals.

Fig. 3. Regular intersection

Lets consider now all clients at once. The above cases describe all points,
segments and discs that make up the boundaries of regions. Regardless of the
choice of a point inside the region, by placing a new facility at this point, the
Leader creates the same instance of the Follower problem and therefore gets the
same goal function value. The Follower problem can change only when intersec-
tions vary. As mentioned above, in the case of equal distances to the facilities of
the Leader and the Follower, the client prefers the Leader. This means that any
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point on the boundary of the region is not worse than internal. Thus, it suffices
to consider only points of intersection of the region boundaries and calculate
the value of the goal function for each of them. There are no more than O(n2)
segments and disks, and therefore no more than O(n4) intersection points.

To solve the problem we propose a heuristic based on a variable neighborhood
search (VNS). There were mainly two reasons to make that choice. The first one
is that VNS approach in know to be very efficient when solving the location
problems [6]. The second reason is that the neighborhood structure that can
be obtained from the results above perfectly correlates with the scheme of the
approach. We use the Swap (k, l) neighborhood with different values of k and
l. In this neighborhood, k facilities of the Leader moves to new places, but not
further than at a distance l from their current position. At the diversification
step, the values li = 50i, i = 2, ..., imax and k = 1, ..., kmax are used. At the
local improvement step l1 = 50 and k = 1. As the number of candidate points
for relocation of the facility of the Leader is large enough, during the local search
step we consider only the closest vicinity of current location of the transferred
facility. During the shake step the area to consider becomes larger and larger
with the growth of i parameter.

Below we present the scheme of the variable neighborhood search for the
(r|p)–centroid problem:

1. Initialization. Generate the initial Leader’s solution X and calculate its
gain F (X); determine imax, kmax, and stopping criterion.
while not termination condition do

i = 1, k = 1
while i ≤ imax and k ≤ kmax do

2.1 Shake (Diversification). Generate the solution X ′ by selecting
it from the (k, li)–Swap neighborhood arbitrarily;
2.2 Local Search. Apply the local improvement method, taking X ′

as the initial solution; denote by X ′′ the obtained local optima;
2.3 Move or not. If F (X) < F (X ′′), thenX = X ′′, i = 1, k = 1.
Else i = i + 1

end
end

Algorithm 2: VNS scheme

As the stopping criterion, the running time of the algorithm is used. The
initial solution is generated using alternating heuristic. The most computation-
ally intensive part of the VNS scheme introduced above is Step 2.2. We propose
two approaches in order to decrease the computation time. One of them is to
divide the neighborhood (k, l)–Swap into several disjoint neighborhoods. These
neighborhoods are investigated sequentially using the first improvement rule for
local search in step 2.2 of the algorithm. The second idea is to use probabilistic
neighborhoods. Instead of scanning all elements of a neighborhood in a row, a
probabilistic (k, l)q neighborhood is used. Each element from the (k, l)–Swap
neighborhood is included into (k, l)q neighborhood with a given probability q.
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This approach can significantly reduce the complexity of the calculations without
losing the quality of the solutions obtained [5].

5 Computational Experiments

The presented algorithm was implemented in the Python3 environment and
was tested on examples from the Discrete Placement Electronic Library [15].
In all examples, n = 100 and clients are placed with a uniform distribution on
the square with side length 7000. Two types of demand (purchasing power) are
considered: equal, wj = 1, and differentiated, when purchasing power is chosen
with a uniform distribution from the interval, wj ∈ [1, 200]. For all instances,
the behavior of the algorithm is studied for p = r = 10.

The experiments were carried out on a PC with Intel? Core? i7 4700HQ
processor and 8 GB RAM. The termination criterion for alternating heuristic was
set as 50 consecutive iterations without improvement. The termination criterion
for VNS was set as 10 min of computational time. These values were obtained
during the test process. It was established that, there is no sense to conduct the
computations any longer as no improvement of the solution occurs.

Table 1. Alternating heuristic

No. Initial Improvement % Total (%) Time (s)

111 625 +25.58% 2848 (32.78%) 38

211 376 +29.33% 3462 (32.91%) 38

311 421 +26.35% 2885 (30.85%) 42

411 803 +22.43% 3030 (30.52%) 44

511 898 +21.80% 3131 (30.57%) 39

611 734 +23.42% 2984 (31.35%) 39

711 649 +27.13% 3688 (32.93%) 37

811 1200 +17.59% 2881 (30.15%) 41

911 687 +32.60% 3389 (32.6%) 48

1011 946 +30.84% 3154 (30.84%) 51

Tables 1 and 2 shows the results of experiments for 10 instances, the pur-
chasing power of customers wj ∈ [1, 200], both for alternating heuristic and
VNS approach. For Table 1, first column represents the benchmark number. The
second column shows the initial market share of the Leader for a random initial
solution X. The third column represents market share improvement percentage,
obtained by alternating heuristic. Total Leader’s gain is shown in 4-th column
of the Table 1.

Table 2 is devoted to the local search results. Solution gain, obtained by
alternating heuristic is shown in second column. Third column represents the
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Table 2. Alternating heuristic and local search

No. Alt. h. Improvement % Total (%) Time (s)

111 2848 +3.71% 3171 (36.49%) 113

211 3462 +2.58% 3734 (35.49%) 236

311 2885 +1.5% 2994 (32.02%) 119

411 3030 +2.69% 3297 (33.21%) 381

511 3131 +1.45% 3280 (32.02%) 136

611 2984 +1.25% 3103 (32.60%) 113

711 3688 +1.63% 3871 (34.56%) 283

811 2881 +2.98% 3166 (33.13%) 261

911 3389 +2.22% 3620 (34.82%) 167

1011 3154 +3.97% 3560 (34.81%) 433

improvement of the VNS regarding alternating heuristic result. Forth column
contains the total market share of the Leader. Fifth column in both tables rep-
resents the running time until the best known solution is found. From these tables
we observe that results, obtained by alternating heuristic could be improved by 2
to 4% with the help of our approach. The resulting market share of the leader is
about one third of the market. Comparing these results with the corresponding
goal function values for the same instances under different metrics, we observe
the following. In the discrete case, when facilities can be opened only in a fixed
number of points, the Leader’s share is about a half (48–51%) of the market.
In a continuous case, under Euclidean metric, the share of the Leader become
10% lower, and is about 39–41%. Apparently the ell1 case appears to be the
most unprofitable for the Leader. The reason might be that the distances in �1
are usually significantly larger, thus the disks are larger too, giving the Follower
more opportunities to capture another customer.

In order to verify the results we have conducted two additional experiments
aiming to improve the solutions obtained. We considered the instance 111. Dur-
ing the experimental runs we set the termination criteria for the VNS-approach
to 84000 seconds of computational time (one day). During the first run we used
the same neighborhood structure as before. During the second run, instead of
using the intersections of discs as candidate points, we used the grid vertices
to relocate Leader’s facilities. Grid step was set to 7 (while). Regardless the
neighborhood structure we were unable to improve the results of a “short” run,
although we faced 12 different solutions with the same goal function value (of
3171) during the search. This observation allows us to assume that the solutions
found are probably not far from being optimal. The construction of effective
upper bounds on the Leader’s objective function value seems to be an extremely
interesting direction for further research, as these bounds will help us to approve
our brave assumption.



92 I. Davydov and P. Gusev

Figure 4 shows the landscape of the goal function. We consider the instance
111 from the benchmark library. We generated the solution with the algorithm
presented. Then, we selected one facility and move it along the grid with step 20.
For each movement of that facility we solved the Follower ’s problem. Then, for
each point, the resulted Follower ’s gain was subtracted from the total market
value and assigned to that point as Leader ’s gain, if he would place the facility
in that point. At the end of this procedure we had 122,500 values, which we used
as the height in our graphs, in which the greater the height represent the greater
Leader ’s income.

There are few peaks with different values of the goal function. In Fig. 5a
the same landscape is presented from other point of view. Finally, in Fig. 5b
the top view of the same landscape is presented. There are several rectangles,
triangles and their intersections. The upper-right region is considered the most
attractive for the Leader. These pictures graphically proves the effectiveness of
the proposed local search approach. Indeed all the structures, listed above can
be seen from the top view.

Fig. 4. Landscape side view
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Fig. 5. a. Landscape side view, b. Landscape top view

6 Conclusion

In this study we considered the (r|p)-centroid problem on a plane. We provide an
overview of studies devoted to the topic of research. The main result of this paper
is the implementation of the algorithm for solving the (r|p)–centroid problem in
�1 metric. An alternating heuristic and a variable neighborhood search app-
roach were developed. We presented a computational experiments which shows
that the proposed algorithm preforms well. The result were compared to those
achieved in works of other authors in different metrics. The landscape view of the
(r|Xp−1+1)–centroid problem solution confirms our claim on how to accomplish
a search for good Leader facility location points.
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Abstract. This paper addresses a problem that maintenance service
providers often face: determining the best routing-maintenance policy
for all technicians and machines. It consists of defining for each tech-
nician the sequence of the maintenance operations to perform so that
the total expected costs are minimized while maintaining a high service
level on machines availability. We propose in this paper a mathemati-
cal model with different objective functions which integrates both rout-
ing and maintenance considerations. To solve the problem, we propose
constructive and improvement heuristics and a Variable Neighborhood
Search that uses sequentially different neighborhood structures. The per-
formance of our algorithms is evaluated using new generated instances.
Results provide strong evidence of the effectiveness of our heuristic app-
roach.

Keywords: Time based maintenance · Random failures · Vehicle
routing problem · Variable Neighborhood Search · Variable
Neighborhood Descent · Heuristics

1 Introduction

Maintenance is a primary service in industry, especially when failures cause
important damages on personnel and environmental safety. The companies
mostly outsource their maintenance operations to a service provider in order
to focus on their core business. The maintenance provider agrees to satisfy the
requirements of its customers by ensuring good quality maintenance services
at the lowest overall cost. Finding when and how to execute the maintenance
are therefore major concerns. In this paper, we propose a mathematical model
and neighborhood search approaches to tackle the problem in the case of time
based preventive maintenance. The proposed model aims to jointly integrate
maintenance and routing considerations in the technicians assignment to the
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maintenance tasks. Three objective functions are tested. For each objective, a
General Variable Neighborhood Search, a Variable Neighborhood Descent and a
Best Improvement Local Search are tested. We have designed greedy construc-
tive heuristics to find an initial solution. Our algorithms are therefore compound
integrating construction and improvement phases. The remainder of this paper is
organized as follows: Sect. 2 gives an overview of the related literature. Section 3
describes the problem and provides its mathematical formulation. A description
of the proposed solution approaches and details on their implementation are
shown in Sect. 4, followed by experimental results in Sect. 5. Finally, concluding
remarks and directions for future research are presented in Sect. 6.

2 Literature Review

Most of the papers that deal with routing and maintenance optimization consider
separated routing and maintenance models. Indeed, we distinguish two main
streams of research in the literature: the first one use the routing model to
plan maintenance operations and the second combines maintenance and routing
models.

The main problems defined in the first category are: the Technician Rout-
ing and Scheduling Problem (TRSP) [3,5], workforce scheduling, the Technician
and Task Scheduling Problem (TTSP) [1], the Service Technician Routing and
Scheduling Problem (STRSP) [2] and Geographically Distributed Asset Mainte-
nance Problems (GDMP) [8]. Cordeau et al. [1] propose a construction heuris-
tic and an adaptive large neighborhood search heuristic to solve the technician
and task scheduling problem arising in a large telecommunications company.
Each technician is specialized in different tasks with different skill levels and
can perform tasks requiring skills at lower levels than his own. In addition, each
operation is associated to a specific time window and has skills requirements.
The proposed heuristic defines technicians teams and assigns tasks to each team.
Kovacs et al. [2] define the service technician routing and scheduling problem
which considers routing and outsourcing costs, skills and team building. The
problem is then solved using an adaptive large neighborhood search algorithm.
Zamorano and Stolletz [3] present a mixed integer program for the multiperiod
TRSP. Technicians skills are considered in the assignment to tasks and to teams
of technicians. The skill constrained tasks have to be realized within a time
window that can last several periods. The objective is minimizing total travel
costs, waiting costs and overtime costs. A branch-and-price algorithm is then
proposed to solve this problem. Mathlouthi et al. [4] propose a mixed integer
programming model for the multi-attribute technician routing and scheduling
problem taking into accounts several attributes: technicians skills, task priori-
ties, multiple time windows, parts inventory, breaks and overtime. Pillac et al.
[5] highlight an approach based on an adaptive neighborhood search algorithm,
first used to compute an initial solution, then to re-optimize it when a new
request arrives over time to solve the dynamic routing and scheduling techni-
cians problem (DTRSP). Technicians with the necessary skills, tools and spares



Optimization of Maintenance Planning and Routing Problems 97

must be assigned to the tasks while minimizing the total cost. Technicians have
the option of replenishing tools and spares at the depot at any time to handle
more requests.

The second stream of research is relatively recent. It focuses on the combi-
nation of maintenance and routing characteristics. Lopez-Santana et al. [6] pro-
pose a combined maintenance and routing (CMR) model in two stages. The first
step is used to determine an optimal maintenance policy by calculating for each
machine the frequency of preventive operations and their time windows while
minimizing the cost related to preventive and corrective operations. In the second
step, the output data of the maintenance model is considered as the input data
of the routing model which aims to determine the routes that each technician
must follow. We then obtain the start time of each preventive operations. With
this information, the maintenance model is again solved. The procedure repeats
until meeting the stopping criterion. No heuristic approach was proposed to solve
the problem. Jbili et al. [7] considers a new variant of the vehicle routing prob-
lem where vehicles are subject to random breakdowns. Preventive maintenance
operations should be performed by replacing critical vehicles components when
reaching selected customers. The proposed model takes into account the vehi-
cle’s reliability, maintenance costs, maintenance duration, transportation cost,
and penalties corresponding to late arrivals. The objective is to simultaneously
determine the optimal routing sequence and the optimal sequence of preventive
actions on the vehicles. They then proposed a genetic algorithm to solve large
instances. Chen et al. [8] consider gully pot maintenance as a risk-driven main-
tenance problem. They propose a multi-period VRP which takes into account
the risk impact of gully pot failure, estimated using meteorological information,
and its failure behaviour on each day.

3 Problem Definition and Formulation

We consider several geographically distributed machines in multiple customers
sites that are subject to random failures that can lead to sudden breakdowns
and production losses. Preventive maintenance operations are scheduled for each
machine at regular time intervals to limit the risk of sudden failures. Each pre-
ventive operation must be performed in the time window associated with it.
When a machine suddenly breaks down, the team of technicians must repair it
by performing a corrective operation. After each preventive or corrective oper-
ation, the machines are considered in a state similar to that of new machines.
Maintenance operations have a duration and are associated with maintenance
costs. The duration of the corrective operation is greater than the duration of the
preventive operation. Likewise, the cost of a corrective maintenance operation
is greater than the cost of a preventive maintenance operation. Our proposed
model takes into account several important characteristics derived from the real-
ity of today’s industries. Teams of technicians with the same skills are available
to perform preventive and corrective maintenance operations. If a preventive
operation cannot be performed within its time window due to the high work-
load of technicians, we allow that a team of technicians arrives to an operation
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i after the closing of its time windows bi with a penalty cost. The lower bound
of the time window however remains a hard constraint. When arriving before
ai, the technicians team has to wait until ai to start the preventive maintenance
operation.

The maintenance model uses information from equipment degradation. The
stochastic aspect is integrated into the failure costs objective function (25) by
including the failure probability and the reliability of each equipment. This is
particularly useful in industries where breakdowns are very dangerous and influ-
ence safety. We test three main objective functions, the classical travel cost (24),
the failure cost (25), and finally the total maintenance cost (26) used in [6]. In
(25), the cost of failure represents the probability that a machine will fail before
the start of the maintenance operation multiplied by the cost of the corrective
action. We consider that the random variable of time to failure for each machine
follows a Weibull law whose parameters are βi and σi but it is possible to use any
law that results from the historical data of failure of each machine. We consider
βi superior to 1 to consider the third part of the bathtub curve, which represents
the wearout life of the machine. The wearout is the phenomenon of accelerating
the risk of failure over time.

3.1 Notation of the Joint Maintenance and Routing Problem

The following sets and parameters are used to define the problem throughout
the paper.

Sets

– M = {1, . . . , l}: set of machines locations.
– Pm = {pm

1 , . . . , pm
nm

}: the set of preventive maintenance operations associated
to machine m ∈ M.

– P = ∪m∈MPm: the set of all preventive maintenance operations.
– O = {1, . . . , n}: the indexes of preventive maintenance operations (n =∑

m∈M nm).
– V = {0, . . . , n+1}: set of vertices (departure depot 0, indexes of maintenance

operations, arrival depot n + 1)
– Vo = {0, . . . , n}: set of origins vertices
– Vd = {1, . . . , n + 1}: set of destinations vertices
– K = {1, . . . , K}: set of technicians teams
– A = {(i, j), i ∈ Vo, j ∈ Vd, i �= j}: set of arcs between vertices

Global Parameters

– H: planning horizon for technicians and maintenance operations.
– n: total number of preventive maintenance operations to do in the planning

horizon.
– K: total number of technicians teams.
– r: total number of tours needed.
– B: big number greater than the maximum duration of the tours.
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Maintenance Parameters

– Cpmm: cost of preventive maintenance (PM) operation for machine m.
– Ccmm: cost of corrective maintenance (CM) operation for machine m.
– Cwm: waiting cost per unit time due to the time waited before the arrival

of the technicians team to machine m for a corrective operation (the cost of
production loss).

– Tpmm: duration of PM operation for machine m.
– Tcmm: duration of CM operation for machine m.
– Mm(δm): the expected time to failure for machine m assuming the failure

occurs before the preventive maintenance period δm.
– Wm: expected waiting time before the beginning of CM operation in case of

sudden failure of machine m.
– CMm(δm): total cost per unit time incurred in one cycle for machine m when

the preventive maintenance period is δm.
– Tm: random variable of the time to failure of machine m.
– βm: the shape parameter of Weibull law for machine m.
– σm: scale parameter of the Weibull law for machine m.
– Fm(t): the probability of failure of machine m in the interval [0, t].
– fm(t): the density function of the Weibull law as a function of time of machine

m.
– tolm: the percentage of time of postponing or preempting a PM operation. It

should be determined based on the total cost of maintenance.

Routing Parameters

– ti,j : travel time between locations i and j.
– ci,j : cost of routing between locations i and j.
– ai: lower bound of the time window to perform a PM operation i.
– bi: upper bound of the time window to perform a PM operation i.
– c: fixed penalty cost per unit time for violating the upper bound of the time

window bi.

Decision Variables

– xijk: binary variable which equal 1 if the team of technicians k traverses the
arc (i, j) and 0 otherwise.

– pi: a violation variable expressing the amount of violation of the upper bound
of the time window bi. It is equal to max(0, θi − bi).

– θi: the start time of the maintenance operation i.
These variables below are variable only for the maintenance model but are
constant parameters for the routing one.

– δm: the optimal maintenance period for machine m.
– nm: the frequency of PM operations for machine m in the fixed horizon.
– φi: the execution date of operation i.
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3.2 The Maintenance Model

The objective of the maintenance model is to determine for each machine m the
optimal time period δm to perform a PM operation while minimizing the total
maintenance cost. Consequently, we obtain for each machine m the frequency
nm of PM operations. In the following, we introduce some notation used in the
maintenance model.

The probability of failure of machine m in the interval [0, δm], where Tm is a
random variable of time to failure of machine m, Pm a probability and fm the
density function of machine m, is:

Fm(δm) = Pm(Tm ≤ δm) =
∫ δm

0

fm(t) dt (1)

The maintenance model widely used in the literature to determine the best
times to perform preventive maintenance operations for time directed tasks, is
presented in [10]. Given a machine m, we look for the best time δm to perform
preventive maintenance while minimizing the total maintenance cost CMm(δm):

CMm(δm) =
E[CMm(δm)]
E[Tm(δm)]

=
Cpmm(1 − Fm(δm)) + CcmmFm(δm)
δm(1 − Fm(δm)) + Mm(δm)Fm(δm)

(2)

The term E[CMm(δm)] represents the total expected cost of a cycle of a
machine m and E[Tm(δm)] is the expected cycle length of a machine m.

By adding the expression of the waiting cost as well as the preventive and
corrective maintenance durations which are not negligible in large scales systems,
Lopez-Santana et al. [6] consider this extended maintenance cost:

CMm(δm) =
Cpmm(1 − Fm(δm)) + (Ccmm + Wm ∗ Cwm)Fm(δm)

(δm + Tpmm)(1 − Fm(δm)) + (Mm(δm) + Wm + Tcmm)Fm(δm)
(3)

Where Mm(δm) is the expected time to failure for machine m assuming the
failure occurs before δm.

Mm(δm) =
∫ δm

0

tfm(t)
Fm(δm)

dt (4)

Lopez-Santana et al. [6] define the waiting time Wi for an operation i as the
difference between the start time of the PM operation θi and the expected time
of failure assuming the failure occurs before θi:

Wi = θi − Mm(θi) i ∈ {1, . . . , nm} (5)

Note that the value of θi is obtained from the routing model. The waiting
time Wm associated to machine m is then updated considering the average value
of all Wi such as i corresponds to the indexes of PM operations associated to
machine m. Since the value of θi are unknown before solving the routing model,
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we consider that a PM operation will necessarily be planned at each δm period.
The waiting time can be approximated as follows:

Wm = δm − Mm(δm) (6)

The maintenance cost for a machine m is finally equal to:

CMm(δm) =
Cpmm(1 − Fm(δm)) + (Ccmm + (δm − Mm(δm))Cwm)Fm(δm)

(δm + Tpmm)(1 − Fm(δm)) + (δm + Tcmm)Fm(δm)
(7)

The optimal time period for each machine m corresponds to δ∗
m = argmin

CMm(δm). The frequency of a maintenance operation on the planning horizon
H is calculated as follows:

nm =
H

E[Tm(δ∗
m)]

(8)

The frequency of an operation represents the number of times it must be exe-
cuted in the horizon. If we have a frequency nm, the PM operations must be exe-
cuted on machine m at times {δ∗

m, δ∗
m +E[Tm(δ∗

m)], δ∗
m +2∗E[Tm(δ∗

m)], . . . , δ∗
m +

(nm − 1) ∗ E[Tm(δ∗
m)]}. The execution date φi of an operation i corresponding

to machine m, is calculated as follows:

φi = δ∗
m + (i − 1) ∗ E[Tm(δ∗

m)], i ∈ {1, . . . , nm} (9)

The time windows [ai, bi] of PM operations associated to machine m depend
on [am, bm] the time windows for operations of machine m on the first cycle.
[am, bm] are based on the percentage of time of postponing or preempting PM
operations that we can accept. In this interval, the cost remains relatively low
and near to the optimal minimal value CMm(δ∗

m). [ai, bi] can be determined as
follows:

ai = am + (i − 1) ∗ E[Tm(δ∗
m)], i ∈ {1, . . . , nm} (10)

bi = bm + (i − 1) ∗ E[Tm(δ∗
m)], i ∈ {1, . . . , nm} (11)

Where:
am = δ∗

m − tolm ∗ δ∗
m, m ∈ M (12)

bm = δ∗
m + tolm ∗ δ∗

m, m ∈ M (13)

3.3 The Routing Model with Maintenance Considerations

The mathematical model can be formulated as follows:

min f(xijk, θi, pi) (14)

S.t.
n+1∑

j=1

K∑

k=1

xijk = 1, ∀i ∈ O, i �= j (15)
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n∑

i=0

K∑

k=1

xijk = 1, ∀j ∈ O, i �= j (16)

n∑

i=0

xijk =
n+1∑

i=1

xjik, ∀j ∈ O, ∀k ∈ K (17)

θi + di + tij ≤ θj + B(1 −
K∑

k=1

xijk), ∀i ∈ Vo, ∀j ∈ Vd, i �= j (18)

ai ≤ θi ≤ bi + pi, ∀i ∈ V (19)

n+1∑

j=1

K∑

k=1

x0jk = r, r ≤ K (20)

n∑

i=0

K∑

k=1

xin+1k = r, r ≤ K (21)

n+1∑

j=1

x0jk ≤ 1, ∀k ∈ K (22)

θi, pi ≥ 0, xijk ∈ {0, 1} (23)

The objective function f depends on the variables used and equals either f1,
f2 or f3 defined below:

f1 =
n∑

i=0

n+1∑

j=1

K∑

k=1

cijxijk +
n+1∑

i=1

c ∗ pi (24)

f2 =
n∑

i=1

CcmiFi(θi) +
n+1∑

i=1

c ∗ pi (25)

f3 =
n∑

i=1

CMi(θi) +
n+1∑

i=1

c ∗ pi (26)

The objective function f1 (24) minimizes the total travel cost and the
penalty’s cost of violating the upper bound of the time window bi. The objective
function f2 (25) minimizes the cost of failure in order to maximize machines
reliability and penalty’s cost. The objective function f3 (26) minimizes the total
maintenance cost and the penalty’s cost. Constraints (15, 16) indicate that each
operation must be performed only once. Constraints (17) ensure that if a team
of technicians arrives on a vertex i to do a maintenance operation, it should
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leave it. The purpose of the constraints (18) is to prevent the creation of sub-
tours. Constraints (19) assure that each operation is performed within its time
window and set the opening time of the depot to a0 = 0 and the latest possible
arrival time to the depot. The violation of the closing time of the time window
by the amount pi is permitted. Constraints (20, 21) fix the number of tours
by specifying that each team should go from and arrive to the depot exactly r
times. Constraints (22) ensure that the teams are different whenever the tours
are different and that every technicians team tour starts at the depot. Finally,
the constraints (23) specify the domain values of decision variables.

In the routing model and all what follows, if the operations i correspond to
the same machine’s m operations then Fi, Ri, σi and βi equal respectively to
Fm, Rm, σm and βm.

In the second objective function we have used Fi(θi) to exploit information
from equipment degradation and therefore to consider failure risks when assign-
ing technicians to the different tasks. This term is stochastic and non linear. It
is equal to:

Fi(θi) = 1 − e−(θi/σi)
βi

, i ∈ O (27)

The density function of the Weibull law as a function of time is given below,
where γm is the Weibull law position parameter. It is positive if the failures can
not occur before the age γm. We consider it equal to 0 to start from the origin.
Indeed, failures can occur at any time between 0 and γm.

fm(t) =
βm

σm
(
t − γm

σm
)βm−1e−( t−γm

σm
)βm

(28)

The duration of the maintenance operations is calculated using δ∗
i the optimal

preventive maintenance time for operation i:

di = Tpmi(1 − Fi(δ∗
i )) + TcmiFi(δ∗

i ), i ∈ O (29)

4 Variable Neighborhood Search

Variable neighborhood search (VNS) is a metaheuristic proposed by Mladenovic
and Hansen [9]. VNS systematically changes neighborhood structures during the
search for an optimal (or near-optimal) solution. Starting from an incumbent
solution S, basic VNS iteratively applies two important mechanisms: a pertur-
bation (or shaking), procedure followed by local search to improve the current
solution. Shaking is essential for VNS schema as it is used to escape from the
local minima traps (diversification). The local search procedure (intensification
phase) aims to exploit the accumulated search experience. In this paper, we
apply the most used variant of VNS, the General Variable Neighborhood Search
(GVNS) which uses Variable Neighborhood Descent (VND) as a local search to
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explore several neighborhood structures. We have also used the Best Improve-
ment Local Search (BILS) with the first neighborhood generated using the swap
operator and the VND for our problem.

Algorithm 1. General Variable Neighborhood Search
1 Initialization
2 {N1, N2, . . . , Nkmax} : Set of neighborhood structures to be used in VNS;
3 {N1, N2, . . . , Nlmax} : Set of neighborhood structures to be used in VND;
4 nS : diversification parameter representing the number of times shaking is

applied to the solution;
5 S ← an initial solution (random or constructed for the first objective and using

the constructive greedy heuristics for the others).
6 repeat
7 k ← 1 ;
8 while k ≤ kmax do

9 S
′ ← S;

10 for p = 1 to nS do

11 S
′ ← Shaking(S′, k);

12 S” ← VND(S
′
, lmax);

13 if f(S”) < f(S) then

14 S ← S” ;
15 k ← 1;

16 else
17 k ← k + 1;

18 until stopping criterion (maximum number of iterations);

4.1 Representation of the Solution and Constraints Handling

In our implementation, a solution is represented as a sequence of PM operations
in each tour. We allow that a team technician arrives to an operation i after the
closing of its time window. All the other constraints, including the respect of
the lower bound of the time window, are hard. We therefore accept only feasible
solutions that respect these hard constraints.

4.2 Greedy Constructive Heuristics for the Initial Solutions

We propose a fast heuristic to construct a good quality solution in the case
where the objective function of the model is (25). This objective aims to mini-
mize the probability that a machine fails before the start time of the preventive
maintenance operation. We call therefore the heuristic, the Greedy Constructive
Heuristic Failure (GCHF). The heuristic is based on the fact that the mainte-
nance operations must be carried out as soon as possible in case of minimization
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of equipment’s failures. The best start time an operation tends towards is the
lower bound of its time window. We have also proposed a second fast heuristic to
construct a good quality solution in the case where the objective function of the
model is (26) which consists on the minimization of the total maintenance cost
that we call the Greedy Constructive Heuristic Maintenance (GCHM). It is based
on the principle that the best time of execution φi of maintenance operations
is the optimal value obtained with the maintenance model. Since the routing
model has the same objective, with some flexibility allowed by the time windows
and more constraints due to the large number of maintenance operations, it can
be a good heuristic for the problem. When using these heuristics to build an
initial solution, computational time is considerably reduced for the VND and
BILS. These greedy heuristics can also lead to optimal solutions on the small
instances and when the penalty’s cost equal 0. GCHM produces better results
than GCHF for the third objective since it is dedicated to it. The heuristics are
presented on the algorithm below.

Algorithm 2. Greedy Constructive Heuristics Failure and Maintenance
1 Initialization Initialize r empty routes, the lower bounds of the time window

ai and the optimal execution times φi i ∈ O ;
2 Sort ai for GCHF (resp. φi for GCHM) from least to highest;
3 OS ←Operations sorted by ai for GCHF (resp. φi for GCHM);
4 if r = 1 then
5 Insert first and last depot and this is the final solution ;
6 else
7 repeat
8 Select r operations with the least ai for GCHF (resp. φi for GCHM)

from OS not previously assigned;
9 Insert them in the following empty positions of the r routes from first

route to last route ( 1 to r );

10 until OS = ∅;
11 Insert first and last depot in all routes and this is the final solution;

4.3 Variable Neighborhood Descent, Best Improvement Local
Search and Shaking

The Variable Neighborhood Descent is a search procedure that uses multiples
neighborhoods unlike a local search which explores only one neighborhood at
time.
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Algorithm 3. Variable Neighborhood Descent
1 Initialization
2 {N1, N2, . . . , Nlmax}: Set of neighborhood structures;
3 S ← initial solution
4 repeat
5 l ← 1 ;
6 while l ≤ lmax do

7 Choose S
′

in a neighborhood Nl, such that f(S
′
) ← argmin

S∈Nl(S)

f(S);

8 if f(S
′
) < f(S) then

9 S ← S
′

;
10 l ← 1;

11 else
12 l ← l + 1;

13 until no improvement is obtained ;

The shaking procedure consists of selecting a random solution S
′

from the
current kth neighborhood of the current solution S (S

′ ∈ Nk(S)) to diversify the
search process. It is applied nS times.

The best improvement local search is used to classify the neighborhoods, in
the VND and as a heuristic approach.

Algorithm 4. Local Search Best Improvement
1 Initialization Choose an initial solution S ;
2 Let N be a neighborhood of S ;
3 repeat

4 Choose S
′

in a neighborhood N of S, such that f(S
′
) ← argmin

S∈V (S)

f(S);

5 if f(S
′
) < f(S) then

6 S ← S
′

;

7 until S is a local optimum;

4.4 Neighborhood Structures

The VNS and the VND procedures depend on the set of neighborhood structures
chosen and the order of their execution. The neighborhood structures should
be applied from the best to the least performing [9]. The sequence of moves
operators that we considered is the swap, the insert, the 2-opt* and the 2-opt
procedure. The same order is usually used for VRP problems in the literature.
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To validate this order, we used a Steepest Descent Heuristic, known also as Best
Improvement Local Search. Moves can be performed on a single route (intra-
route moves) or on multiple routes (inter-route moves). For each operator used,
all possible positions are examined.

The Swap move consists of exchanging two operations from the same route
or from different routes.

The Insert move generates a neighbor of a solution by removing an oper-
ation from its position and inserting it in a different one, within the same route
or in another route.

The 2-opt* operator removes arcs (i, i+1) and (j, j+1) from two different
routes and reconnects arcs (i, j + 1) and (j, i + 1). This operator is inter-route.

The 2-opt operator removes arcs (i, i + 1) and (j, j + 1) from the same
route and reconnects arcs (i, j) and (i + 1, j + 1). This operator is equivalent to
reversing the elements between i and j + 1. This operator is intra-route.

The insert and 2-opt* operators change the number of operations in the
routes in addition to the order of operations in the routes.

5 Computational Results

In this section, we present results of the mathematical model with the different
objectives, using CPLEX solver, BILS, VND and GVNS. We also present the
solutions obtained by the Greedy Constructive Heuristics proposed (GCHF and
GCHM). All tests in this work were run using Python 3.6 to solve the mainte-
nance model and using C++ for the routing one, on a windows 7, 64-bit machine,
with an intel i7-4510U processor (2*2.60 GHz) and 8 GB of RAM. The solver
used is CPLEX 12.7.1.

5.1 Instances Description

We use first, instances created whose values are nearer to industrial reality
denoted by Re. We incorporated larger and shorter maintenance duration (Tcm
and Tpm can vary from 0.5 to 48 h). We consider β superior to 1 to consider old
machines where the risk of failure increase rapidly over time (wearout). We have
chosen very short distances between operations (27 km) as well as very large
ones (up to 500 km). The speed is 60 km/h which corresponds to reality. The
horizon is fixed to H = 101 h for n = 12 and H= 80 h for n = 6. The penalty cost
is set to c = 10. The depot’s time window is a0 = 0 and bn+1 = H. The data used
to illustrate our results are presented in Table 1. In this class of instances, we
consider 6 machines which can need more than one operation in the horizon.
The travel time between the same machine’s operations in this case is 0. We
then used the first 10 machines of Solomon’s instance C101 as a time matrix
with a unitary speed and an horizon H of 100 h. The opening time is a0 = 0
and the latest possible arrival time to the depot is bn+1 = 200. The maintenance
parameters were generated in the same way as described in [6]: Tpmi ∼ Uc[5, 10],
Tcmi ∼ Uc[15, 30], Cpmi ∼ Uc[100, 200], Ccmi ∼ Uc[400, 800], Cwi ∼ Uc[10, 20],
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σ ∼ t0i ∗ Uc[2, 5], β = 2. In both class of instances, the percentage of tolerance
for time windows is fixed to tol = 7%. It is inspired from the values adopted in
heavy industries.

Table 1. Travel time (hours) between operations and data of the illustrative case
study Re

tij 0 1 2 3 4 5 6 Cpmi Ccmi Cwi Tpmi Tcmi fi(t)

0 0 0.45 0.83 0.67 1 0.67 7.5 − − − 0 0 −
1 0.45 0 1 1.33 0.67 1.17 7.5 193 425 19 1 2 W (66, 2)

2 0.83 1 0 0.33 1.67 1.17 6 156 561 14 1 2 W (100, 2)

3 0.67 1.33 0.33 0 0.83 1.17 5.5 138 561 13 1 3 W (63, 2)

4 1 0.67 1.67 0.83 0 0.83 5 163 462 15 0.5 3 W (84, 2)

5 0.67 1.17 1.17 1.17 0.83 0 4 200 400 20 0.5 3 W (90, 2)

6 7.5 7.5 6 5.5 5 4 0 600 1000 30 24 48 W (110, 2)

5.2 Numerical Results

We have set as stopping condition for the GVNS a maximum number of itera-
tions Itermax. For the two first objective (24) and (25), Itermax equals 8 for 23
operations and 5 routes and 1 for all the other instances. For the last objective
(26), Itermax equals 8 for 23 operations and 5 routes and 2 for all the other
instances. The diversification parameter nS in the shaking phase is set to 3. In
Table 3, VND, GVNS*, and GVNS represent the results of VND, the best value
of GVNS and the average value of GVNS in 5 runs, respectively. We indicate
also a Value Best which is the CPLEX value for the linear objective function
(24) and the Best value of GVNS* for all the initial solutions when we fix the
Itermax to 500 iterations for the non linear two others objectives. An asterisk
is used to mark the optimal solutions obtained by CPLEX. In Table 2, LS(F),
LS(M) and LS(R) refer respectively to BILS applied with the GCHF, GCHM
and the random initial solutions.

We tested several instances to compare the different objective functions. The
results are reported in Tables 2 and 3. The greedy heuristics find very near opti-
mal solution for instances with small values of penalties in the case of minimizing
the failure risk with the cost objective (25) and for the maintenance cost objec-
tive (26). They are faster than the VND and GVNS, even when using them as
initial solutions with VND and GVNS. The BILS provides a good solution when
choosing the best neighborhood in the search procedure and the constructed
initial solutions, and is faster than VND and GVNS. The algorithms for the two
first objectives are faster than the algorithms considering the third objective.
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The time search of VND, BILS are inferior to the GVNS time for the model
with the three objectives. We notice that for the two last objectives (25) and
(26) for which initial solutions were proposed, VND is sufficient for finding the
optimal solutions. For BILS, VND and GVNS, the quality of the final solutions
increases with the proposed initial solutions in comparison to using random ini-
tial solutions. The execution times with the constructed initial solutions are also
less than the execution times when starting from random solutions as one can
notice in Table 3. Choosing a good initial solution is very important for reducing
the execution time and improving rapidly the quality of the final solution. When
using the greedy initial solutions, the execution time of our search algorithms
considerably decreases.

The percent decrease of CPU time when using the constructive initial solution
CS compared to a same random feasible initial solution RS is given by:

TimeDev(RS,CS) = (
Time(RS) − Time(CS)

Time(RS)
) ∗ 100% (30)

The gap between the objective value of the heuristic and the optimal solution
or best solution is calculated as follows:

ObjDev(Best,Heuristic) = (
V alue(Heuristic) − V alue(Best)

V alue(Best)
) ∗ 100% (31)

Table 2. Results of the BILS with the first neighborhood

225.078
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Table 3. Results of the GVNS and the VND

Inst n r CIS with GCHF CIS with GCHM Random IS GCH

Best VND GVNS* GVNS VND GVNS* GVNS VND GVNS* GVNS GCHF GCHM

The routing cost objective function

Re 6 2 Value 110.88* 110.88 110.88 110.88 110.88 110.88 110.88 110.88 110.88 110.88 130.8 130.8
Time - 0.018 0.02 0.0408 0.019 0.019 0.0378 0.021 0.02 0.041 0.017 0.016
ObjDev - 0 0 0 0 0 0 0 0 0 17.97 17.97
TimeDev - 14.29 0 0.49 9.52 5 7.80 - - - - -

Re 12 4 Value 353.52* 353.52 353.52 353.52 378.96 353.52 353.52 377.76 353.52 353.52 622.8 590.88
Time - 0.03 0.052 0.0558 0.026 0.055 0.0738 0.034 0.055 0.0786 0.025 0.025
ObjDev - 0 0 0 7.20 0 0 6.86 0 0 76.17 67.14
TimeDev - 11.76 5.45 29.01 23.53 0 6.11 - - - - -

C101 23 5 Value 225.078* 225.078 225.078 225.078 225.078 225.078 225.078 228.432 225.078 226.517 661.591 630.193
Time - 0.089 1.31041 1.72849 0.106 1.57561 1.63801 0.172 1.71601 1.89385 0.039 0.043
ObjDev - 0 0 0 0 0 0 1.059 0 0.211 192.69 178.79
TimeDev - 48.26 23.64 8.73 38.37 8.18 13.51 - - - - -

C101 23 8 Value 128.359* 129.251 128.359 128.359 128.359 128.359 128.359 128.359 128.359 128.359 149.815 150.179
Time - 0.085 0.249602 0.443043 0.098 0.327602 0.361922 0.168 0.405603 0.508563 0.038 0.046
ObjDev - 0.694 0 0 0 0 0 0 0 0 16.715 16.999
TimeDev - 49.4 38.46 12.88 41.67 19.23 28.83 - - - - -

The failure cost objective function

Re 6 2 Value 869.471 869.471 869.471 869.471 869.471 869.471 869.471 869.471 869.471 869.471 869.471 869.471

Time - 0.018 0.019 0.0446 0.023 0.02 0.038 0.036 0.024 0.0484 0.017 0.018
ObjDev 0 0 0 0 0 0 0 0 0 0 0 0
TimeDev - 50 20.83 7.85 36.11 16.67 21.49 - - - - -

Re 12 4 Value 2841.77 2841.77 2841.77 2841.77 2841.77 2841.77 2841.77 2841.77 2841.77 2841.77 2851.67 2851.67
Time - 0.034 0.052 0.045 0.056 0.045 0.0608 0.08 0.055 0.0724 0.024 0.026
ObjDev 0 0 0 0 0 0 0 0 0 0 0.35 0.35
TimeDev - 57.5 5.45 37.85 29.50 18.18 16.02 - - - - -

C101 23 5 Value 8097.44 8097.44 8097.44 8097.44 8100.5 8097.44 8097.44 8272.59 8097.44 8106.71 8755.39 8664.85
Time - 0.093 2.82362 3.31034 0.097 2.58962 2.86106 0.195 2.83922 3.48506 0.044 0.043
ObjDev - 0 0 0 0.037 0 0 2.163 0 0.114 8.125 7.007
TimeDev - 52.31 0.55 5.01 50.26 8.79 17.91 - - - - -

C101 23 8 Value 7707.42 7707.42 7707.42 7707.42 7707.42 7707.42 7707.42 7707.42 7707.42 7707.42 7707.42 7707.42

Time - 0.071 0.202801 0.252722 0.064 0.187201 0.287042 0.191 0.249601 0.386882 0.037 0.042
ObjDev - 0 0 0 0 0 0 0 0 0 0 0
TimeDev - 62.83 18.75 34.68 66.49 25 25.81 - - - - -

The maintenance cost objective function

Re 6 2 Value 45.0156 45.0156 45.0156 45.0156 45.0156 45.0156 45.0156 45.0352 45.0156 45.0156 45.0521 45.0521
Time - 0.021 0.035 0.0382 0.021 0.031 0.048 0.096 0.043 0.0794 0.02 0.018
ObjDev - 0 0 0 0 0 0 0.04 0 0 0.08 0.08
TimeDev - 78.13 18.60 51.89 78.13 27.91 39.55 - - - - -

Re 12 4 Value 100 100.02 100 100 100.02 100 100 100 100 100 100.132 100.132
Time - 0.056 0.227 0.2404 0.059 0.237 0.2702 0.068 0.279 0.2858 0.023 0.025
ObjDev - 0.02 0 0 0.02 0 0 0 0 0 0.13 0.13
TimeDev - 17.65 18.64 15.89 13.24 15.05 5.46 - - - - -

C101 23 5 Value 350.039 350.076 350.039 350.054 350.076 350.039 350.054 350.039 350.039 350.054 780.088 747.736
Time - 0.28 5.05443 5.68156 0.31 8.81406 10.0309 0.86 9.36006 11.9497 0.04 0.04
ObjDev - 0.01 0 0.042 0.01 0 0.042 0 0 0.042 122.857 113.615
TimeDev - 67.44 46 52.45 63.95 5.83 16.06 - - - - -

C101 23 8 Value 235.46 235.46 235.46 235.46 235.46 235.46 235.46 235.46 235.46 235.46 235.505 235.505
Time - 0.2 1.23241 1.49137 0.25 1.66921 1.93753 0.45 1.79401 2.12161 0.04 0.04
ObjDev - 0 0 0 0 0 0 0 0 0 0.019 0.019
TimeDev - 55.56 31.30 29.71 44.44 6.96 8.68 - - - - -

6 Conclusion

In this paper, a new formulation of the joint maintenance and routing prob-
lem is proposed. A mathematical model with different objectives functions is
presented and discussed. The model consider several routes and flexible time
windows which are interesting features of real industrial problems. We differen-
tiate between essential conflicting objectives: the routing cost, the failure cost,
and the total maintenance cost. The contributions of this paper are threefold:
we first have introduced a non linear and stochastic failure cost that uses infor-
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mation from equipment degradation, with the routing model. This objective
is particularly valuable for industries, where failures have serious damages. Five
heuristic approaches were then proposed and compared: BILS, VND, GVNS and
two proposed greedy constructive heuristics. We finally show that the quality of
the initial solution, obtained with the greedy constructive heuristics, consider-
ably reduces the CPU time and improves the objective value when using BILS,
VND and GVNS. Future research will include testing these algorithms on larger
instances, extending the model to a dynamic setting where incidents appear over
time, and adding interesting features like skills and level of expertise.
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Abstract. In this paper, we study the m identical parallel machines
scheduling problem with a single server to minimize the schedule length
(makespan). Each job requires a prior set-up which must be performed
by a single server. For this strongly NP-hard problem, a variable neigh-
borhood search is proposed. We conduct a comparative analysis with
existing algorithms using previously solved instances from the literature.
The results indicate that the algorithm presented in this paper is effective
and efficient regarding the quality of the solution: the obtained objective
function values are very close to lower bounds.

Keywords: Identical parallel machines scheduling · Scheduling with a
single server · Variable neighborhood search

1 Introduction

In this paper, we study the identical parallel machines scheduling problem with
a single server in order to minimize the makespan. In this problem, a set N =
{1, 2, . . . , n} of n independent jobs has to be processed on m identical parallel
machines. Each jobs i is available at the beginning of the scheduling period, and
has a known integer processing time pi. Before its processing, job j must be
set up on a particular machine by a single server. The setup operation, has a
known integer value sj . During the setup operation, both the machine and the
server are occupied and after setting up a job on a particular machine the server
becomes available. The processing operation starts immediately after the end of
setup. The machines are ready at the beginning of the scheduling period. In the
literature, this problem is referred to as Pm,S1|pj , sj |Cmax, where m represents
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the number of identical parallel machines, S1 represents the only available server,
pj and sj are respectively the processing time of job j and its setup time and
Cmax is the makespan ([21]). The Pm,S1|pj , sj |Cmax was proven to be unary
NP-hard (see [10,21]).

A feasible schedule of the Pm,S1|pj , sj |Cmax is a permutation π of the set N
where π = (π1, π2, . . . , πn), such that the jobs are scheduled according to both
the availability of machines and the server. Due to the complexity of the consid-
ered problem, only small-size instances can be solved optimally by exact methods
such as mixed integer programming formulation (see [13,18]). This is why we
propose a metaheuristic to solve large-size instances of the Pm,S1|pj , sj |Cmax.

We provide hereafter a brief overview of previous related works. In 2002,
Abdekhodaee and Wirth [1] proposed a mixed integer programming model for
the regular case and two forward/backward heuristics for the general case of the
P2, S1|pj , sj |Cmax. Abdekhodaee et al. [2] showed that the P2, S1|pj = p, sj =
s|Cmax is NP-hard and proposed two heuristics for the cases with equal setup
time and equal processing time. Abdekhodaee et al. [3], developed a genetic
algorithm, two greedy heuristics, and a version of the gilmore gomory algorithm
for the general case of the P2, S1|pj , sj |Cmax.

Gan et al. [14] proposed two mixed integer programming formulations and
two variants of a branch-and-price algorithm for the P2, S1|pj , sj |Cmax.

Kim and Lee [18] presented two mixed integer programming formulations for
the Pm,S1|pj , sj |Cmax. The first one is developed to minimize the makespan,
and the second one is developed to minimize the total server waiting time (i.e.,
the gaps between the loading of all jobs). A hybrid heuristic algorithm is also
suggested to minimize the total server waiting time for small instances with up to
40 jobs.

Hasani et al. [16] considered the P2, S1|pj , sj |Cmax. They proposed a simu-
lated annealing and genetic algorithms to solve large-size instances of the prob-
lem with up to 1000 jobs. The results obtained are much better than all the
previous heuristics and models proposed in [3,14].

In another study by Hasani et al. [17], two constructive greedy heuristics were
proposed to solve very large instances with up to 10000 jobs for the same prob-
lem. Later, Arnaout [5] introduced an ant colony optimization algorithm for the
P2, S1|pj , sj |Cmax. The computational experiments showed that the proposed
method outperformed the algorithms in [16], in particular for large-size instances
with up to 1000 jobs.

Elidrissi et al. [13] considered the Pm,S1|pj , sj |Cmax with arbitrary number
of machines. The authors proposed two mixed integer programming formulations
to solve the problem. The results obtained are much better than the assignment
and positional dates variables formulation proposed in [18]. In another study
by El Idrissi et al. [12] two constructive greedy heuristics were designed for the
Pm,S1|pj , sj |Cmax to minimize respectively the server waiting time and machine
idle time. The obtained results are much better than the algorithms presented
in [3] and [17].
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Benmansour et al. [7] showed that the P2, S1|pj = p, sj |Cmax with equal
processing time is equivalent to the single-machine scheduling problem with time
restrictions (STR). The STR problem is a new scheduling problem studied first
in [6,9].

Recently, Alharkan et al. [4] suggested a tabu search and particle swarm
optimization algorithms for the P2, S1|pj , sj |Cmax. The conducted experiments
showed that the two proposed algorithms performed well especially for medium-
size and large-size instances compared to the algorithms proposed in [16,17].

The rest of the paper is organized as follows: In the next Sect. 2, we present
a detailed description of the proposed Variable Neighborhood Search algorithm.
Section 3 describes a new lower bound for the studied problem. Computational
results are discussed in Sect. 4. Finally, Sect. 5 gives some concluding remarks.

2 Variable Neighborhood Search

Variable neighborhood search (VNS) is a metaheuristic proposed by Mladenović
and Hansen [23] based on a systematic change of the neighborhood structures.
The changing of the neighborhoods is motivated by the following observations:
(i) A local minimum found in one neighborhood structure is not necessarily a
local minimum for another neighborhood structure; (ii) A global optimum is a
local one for all the neighborhood structures; (iii) For many problems, the local
optimums are relatively close. VNS metaheuristic and its variants or hybrids of
VNS combined with other metaheuristics have been applied to NP-hard prob-
lems in different fields such as: scheduling, supply chain, routing, maintenance,
etc. [22,24–26]. Hansen et al. [15] proposed an overview of VNS applications,
VNS variants and hybrids of VNS combined with other metaheuristics.

2.1 Initial Solution

Since VNS is a trajectory-based algorithm, we need to start from an initial
solution. Any permutation of all jobs π defines a feasible solution for the consid-
ered Pm,S1|pj , sj |Cmax. The jobs should be scheduled on the machine which
becomes free first at the earliest time. The first m jobs are scheduled on the first
m machines, and the remaining jobs of π are scheduled if both the server and
a particular machine are available. The initial solution π is generated by using
the Longest Processing Time (LPT) rule which was proven to be a good rule
to generate initial solution for the parallel machine scheduling problem with a
single server (see [12]).

2.2 Neighborhood Structures for the Pm,S1|pj , sj |Cmax

To obtain an efficient VNS algorithm we have to decide about three things [23]:
(i) The neighborhood structures to use, (ii) The order of these neighborhoods in
the search process, (iii) The search strategy to use in changing neighborhoods.
We proposed the following four neighborhood structures to explore the solution
space for the Pm,S1|pj , sj |Cmax.
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– N1(π) = Transpose(π): The neighborhood structure consists of all permuta-
tions that can be obtained by swapping two adjacent jobs in π.

– N2(π) = Swap(π): The neighborhood structure consists of all solutions
obtained from solution π by swapping two random jobs of π.

– N3(π) = Insertion(π): The neighborhood structure consists of all solutions
obtained from the solution π by inserting each job of π at the position p
(1 ≤ p ≤ n).

– N4(π) = 2-opt(π): Given two random jobs πj and πk we reverse the order of
jobs being between those two jobs.

These neighborhood structures have been used in literature to solve different
single and parallel machines scheduling problems [8,11,19,22]. After performing
preliminary tests, the following neighborhood order was chosen in our proposed
VNS: N4(π), N3(π), N2(π) and N1(π) (kmax = 4).

2.3 Shaking and Local Search

The aim of a shaking procedure used within a VNS algorithm is to hopefully
escape from local minima traps. The simple shaking procedure consists of select-
ing a random solution from the current neighborhood of the current solution
Nk(π). Algorithm 1, summarizes the steps of the shaking phase.

Algorithm 1: Shaking(π,k)
Data: Solution π and neighborhood structure Nk

Result: Solution π
Select randomly π′ ∈ Nk(π);
π ← π′;
return π

Algorithm 2: Local Search(π0,k)

Data: Solution π0, neighborhood structure Nk

Result: Solution π
π ← π0;
Select π′ ∈ Nk(π) such that Cmax(π′) = minx∈Nk(π) Cmax(x);
if Cmax(π′) < Cmax(π) then

π ← π′;
end
return π

The Local Search procedure receives an initial solution π0 from the shaking
procedure and tries continually to construct a new improved solution (improved
neighbor) from the current solution π by exploring its neighborhood Nk(π).

This procedure returns the local optimum within the neighborhood of the
solution. In our VNS, we propose to use the best improvement search strategy
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for each neighborhood structure. In order to compute the cost of a given sequence
of the jobs π, denoted as Cmax(π), reader can refer to [12]. Note that Cmax(π)
corresponds to the makespan of the sequence π. In Algorithm 2, we present the
pseudocode of the local search procedure.

2.4 VNS Algorithm

The different steps of our proposed VNS algorithm for the Pm,S1|pj , sj |Cmax

are summarized in Algorithm 3. It starts with an initial solution generated by the
LPT rule. We generate a random neighbor of this solution π with respect to the
correspondent neighborhood structure Nk. Then, we apply a best improvement
local search (Algorithm 2). If no improvement exists, the neighborhood structure
will be changed and the VNS algorithm stops when the execution time limit is
reached or if the makespan solution is equal to the proposed lower bound.

Algorithm 3: Variable Neighborhood Search
Data: An instance of Pm,S1|pj , sj |Cmax, neighborhood structures Nk

for k = 1, 2, . . . , kmax, CPUmax: the execution time limit
Result: Solution π, Cmax(π)
Generate an initial solution π with LPT rule;
k ← 1 ;
while CPU < CPUmax do

while k ≤ kmax do
π′ ← Shaking(π, k);
π′′ ← Local Search(π′,k);
if Cmax(π′′) < Cmax(π) then

π ← π′′;
k ← 1;

else
k ← k + 1;

end
end
if Cmax(π) = LB then

CPU ← CPUmax;
else

k ← 1 ;
end

end

3 Lower Bound

For evaluating the quality of the VNS solution, we generalize the lower bound
suggested by Abdekhodaee and Wirth [1] for the Pm,S1|pj , sj |Cmax.
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Proposition 1. Let pi be the processing time of the job i, and si its correspond-
ing setup time.

LB1 =
∑

i∈N

si + min
i∈N

pi (1)

LB2 =
∑

i∈N si + pi

m
(2)

LB = max(LB1, LB2) (3)

To show the effectiveness of the proposed lower bound, we have compared it
with the linear relaxation of the mixed integer programming models proposed
by Elidrissi et al. [13] for several instances. We have found that our lower bound
is approximately equal to the linear relaxation for the majority of the cases, in
particular for the time-indexed variables model.

4 Computational Results

In this section, the evaluating of the performance of the proposed VNS algorithm
is conducted by computational experiments. The proposed algorithm was coded
using the C++ language. We use for run a PC with 2.90 GHz Intel(R) Core(TM)
i7-4600M CPU and 16 GB of RAM memory, on Windows 7 operating system.

4.1 Benchmark Description

To verify the effectiveness of the proposed algorithm (VNS) appropriately, we
perform our tests on some known benchmarks. The data was generated in the
same way as described firstly by Koulamas [20]. The data are generated in the
uncorrelated case, where the processing time values pj are generated from a
discrete uniform distribution U(0,100) and setup time values sj are generated
from a discrete uniform distribution U(0,100L) where L = E(sj)/E(pj) is the
server load and E(x) denotes the mean of x.

4.2 Comparison Between VNS and the MIP Model

In this Subsection, we present the results obtained by the VNS algorithm and
the MIP model. The MIP model used for computational results was published by
Kim and Lee [18] based on assignment and positional dates variables. In order to
compare the performance of the proposed VNS with the MIP model, three factors
are used: a fixed number of machines m ∈ {2, 3, 4, 5}, a fixed number of jobs
n ∈ {8, 20}. The server load is fixed to L ∈ {0.1, 0.5, 0.8, 1.5, 1.8, 2}. 5 instances
are generated randomly for each combination of (n,m,L). The computational
results for L ∈ {1.5, 1.8, 2.0} are given in Table 1 and the computational results
for L ∈ {0.1, 0.5, 0.8} are given in Table 2.

The columns of each table correspond respectively to the number of jobs n,
the number of machines m, the server load L, the minimum value (Min), the
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Table 1. Comparison of the efficiency of VNS and MIP for L ∈ {1.5, 1.8, 2.0}

n m L CPUMIP GAPMIP RV NS RMIP

Min Avg Std Min Avg Std Min Avg Std Min Avg Std

8 2 1.5 0.29 0.38 0.09 0.00 0.00 0.00 0.00 1.16 2.59 0.00 1.16 2.59

1.8 0.21 0.33 0.12 0.00 0.00 0.00 0.00 1.27 2.11 0.00 1.27 2.11

2.0 0.29 0.36 0.10 0.00 0.00 0.00 0.00 1.13 2.52 0.00 1.13 2.52

3 1.5 0.25 0.29 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.8 0.21 0.29 0.11 0.00 0.00 0.00 0.00 0.5 0.12 0.00 0.5 0.12

2.0 0.26 0.30 0.03 0.00 0.00 0.00 0.00 0.10 0.23 0.00 0.10 0.23

20 2 1.5 1.49 768.19 1584.42 0.00 0.20 0.45 0.00 0.78 0.51 0.00 0.44 0.45

1.8 0.79 1696.27 1624.99 0.00 0.45 1.00 0.00 1.51 1.75 0.00 1.46 1.78

2.0 0.53 25.34 54.11 0.00 0.00 0.00 0.00 0.31 0.70 0.00 0.18 0.41

3 1.5 0.29 0.49 0.15 0.00 0.00 0.00 0.00 0.50 0.10 0.00 0.50 0.10

1.8 0.36 0.69 0.26 0.00 0.00 0.00 0.00 0.10 0.30 0.00 0.10 0.30

2.0 0.38 0.59 0.21 0.00 0.00 0.00 0.00 0.10 0.20 0.00 0.10 0.20

4 1.5 0.41 0.63 0.35 0.00 0.00 0.00 0.00 0.80 0.18 0.00 0.80 0.18

1.8 0.53 0.71 0.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2.0 0.31 0.39 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5 1.5 0.28 0.51 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.8 0.43 0.52 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2.0 0.42 0.59 0.15 0.00 0.00 0.00 0.00 0.10 0.20 0.00 0.10 0.20

average value (Avg) and the standard-deviation value (Std) of the CPU time
(in seconds) (over 5 test instances) needed to compute optimal values using the
MIP formulation solved by IBM ILOG CPLEX 12.6 solver on C++: (CPUMIP ),
the minimum value (Min), the average value (Avg) and the standard-deviation
value (Std) of the GAP: (GAPMIP ), the deviation of the VNS algorithm from
the lower bound (RV NS), and in the last column, the deviation of the MIP model
from the lower bound (RMIP ).

The last two metrics are calculated as follows:

RV NS =
Cmax(V NS) − LB

LB
× 100

RMIP =
Cmax(MIP ) − LB

LB
× 100

Cmax(V NS) and Cmax(MIP ), are the solution values obtained by the VNS
algorithm and the MIP model.

– The time limit for CPLEX was set to 3600 s for all instances.
– The stopping criteria for VNS was set to 165 s for L ∈ {1.5, 1.8, 2.0} and 650 s

for L ∈ {0.1, 0.5, 0.8}.
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Table 2. Comparison of the efficiency of VNS and MIP for L ∈ {0.1, 0.5, 0.8}

n m L CPUMIP GAPMIP RV NS RMIP

Min Avg Std Min Avg Std Min Avg Std Min Avg Std

8 2 0.1 1.52 2.02 0.68 0.00 0.00 0.00 0.00 0.15 0.20 0.00 0.15 0.20

0.5 0.80 1.00 0.15 0.00 0.00 0.00 0.25 0.86 0.55 0.25 0.86 0.55

0.8 0.44 0.63 0.15 0.00 0.00 0.00 1.81 4.03 2.25 1.81 4.03 2.25

20 2 0.1 3600 3600 0.00 33.23 48,86 12.93 0.00 0.05 0.07 0.00 0.02 0.04

0.5 3600 3600 0.00 13.52 22.89 11.29 0.00 0.14 0.14 0.00 0.18 0.20

0.8 3600 3600 0.00 0.70 6.01 6.67 0.05 1.71 1.45 0.26 1.54 1.49

The following summary can be given:
For L > 1, the VNS algorithm found optimal solutions for all instances except

the two cases with (n = 20,m = 2, L = 1.5) and (n = 20,m = 2, L = 1.8), where
both CPLEX and VNS are not able to produce optimal solution for all instances.
For L < 1, CPLEX and VNS are not able to produce optimal solution for all
instances for (n = 20,m = 2, L ∈ {0.1, 0.5, 0.8}).

In addition, for (n = 20,m = 2, L = 0.5) VNS produces better solution
in comparison with the MIP model in term of the deviation from the lower
bound and the average solution time of VNS for this case is 597.98 s. Due to the
complexity of the Pm,S1|pj , sj |Cmax, VNS can also be used to solve large-size
instances, while the MIP model is only suitable for small-size instances. In the
next subsection, we compare the results of the VNS algorithm with benchmark
algorithms existing in the literature.

4.3 Comparison Between VNS and Benchmark Algorithms

In order to compare the performance of the proposed VNS with benchmark
algorithms from the literature, three factors are used:

– A fixed number of machines.
– Problem size fixed to three levels: small-size instances with n ∈ (8, 20),

medium-size instances with n ∈ (30, 40, 50, 100) and large-size instance with
n ∈ (200, 250, 300, 350).

– The server load is also fixed to L ∈ {0.1, 0.5, 0.8, 1.5, 1.8, 2}.

The stopping criteria for VNS was set to 165 s for L ∈ {1.5, 1.8, 2.0} and to
750 s for L ∈ {0.1, 0.5, 0.8}.

For each value of the server load 5 instances are generated randomly for n ∈
{8, 20} and 10 instances were generated randomly for each of the other combina-
tions of n, m and L. The computational results of VNS for L ∈ {0.1, 0.5, 0.8} are
given in Tables 3 and 4. The computational results of VNS for L ∈ {1.5, 1.8, 2.0}
are given in Tables 5, 6 and 7. In Tables 3, 4, 5, 6 and 7, column 1 gives the number
of jobs, column 2 gives the number of machines, columns 4 until the last column
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Table 3. Computational results of VNS for small, medium and large-size instances for
L ∈ {0.1, 0.5}

n m L = 0.1 L = 0.5

VNS HS1-LST FH/(MIT) VNS HS1-LST FH/(MIT)

8 2 Ravg 1.00146 1.03591 1.03591 1.00860 1.17261 1.08607

Rmax 1.00424 1.11385 1.11385 1.01645 1.30882 1.13388

20 2 Ravg 1.00047 1.02269 1.02464 1.00142 1.06107 1.04708

Rmax 1.00145 1.02269 1.01634 1.00337 1.13828 1.00260

50 2 Ravg 1.00034 1.01033 1.01119 1.00322 1.02050 1.01431

Rmax 1.00127 1.03451 1.03080 1.00482 1.03686 1.02459

100 2 Ravg 1.00033 1.00611 1.00611 1.00389 1.01405 1.00910

Rmax 1.00070 1.01296 1.01296 1.00833 1.04478 1.03046

150 2 Ravg 1.00017 1.00459 1.00459 1.00271 1.00572 1.00429

Rmax 1.00039 1.00745 1.00745 1.00409 1.01021 1.00822

200 2 Ravg 1.00010 1.00484 1.00484 1.00371 1.00443 1.00259

Rmax 1.00027 1.00825 1.00825 1.00625 1.00985 1.00518

250 2 Ravg 1.00021 1.00251 1.00251 1.00297 1.00370 1.00230

Rmax 1.00065 1.00614 1.00614 1.00424 1.00883 1.00610

300 2 Ravg 1.00007 1.00182 1.00182 1.00279 1.00144 1.00098

Rmax 1.00031 1.00470 1.00470 1.00376 1.00509 1.00262

350 2 Ravg 1.00008 1.00090 1.00090 1.00353 1.00122 1.00098

Rmax 1.00021 1.00248 1.00248 1.00491 1.00395 1.00167

give the values Ravg, denoting the average value of the ratio Cmax/LB, and
Rmax, denoting the maximum value of the ratio Cmax/LB among all instances
for a particular value of L and for a particular algorithm.

Comparing the obtained results for VNS for L ∈ {0.1, 0.5, 0.8} with the
results in El Idrissi et al. [12] for the HS1-LST heuristic and the results in
Hasani et al. [17] for the Min-idle algorithm which we denote as (MIT) and the
results in Abdekhodaee and Wirth [3] for the forward heuristic which we denote
as (FH) and also comparing the obtained results of VNS for L ∈ {1.5, 1.8, 2.0}
with the results in El Idrissi et al. [12] for the HS2-LPT heuristic and the results
in Hasani et al. [17] for the Min-loadgap algorithm which we denote as (MLG)
and the results in Abdekhodaee and Wirth [3] for the backward heuristic which
we denote as (BH) when using the same instances, the following summary can
be given:

In Tables 3 and 4, VNS is compared with HS1-LST, FH and MIT for L ∈
{0.1, 0.5, 0.8} and for m = 2. Since FH and MIT can be applied only for the
case of two machines. It must be noted that FH and MIT provide the same
result for all proposed instances. VNS algorithm outperform all algorithms for
the majority of the cases. For example, for the case of (n = 8,m = 2, L = 0.5)
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Table 4. Computational results of VNS for small, medium and large-size instances for
L = 0.8

n m L = 0.8

VNS HS1-LST FH/(MIT)

8 2 Ravg 1.04170 1.20681 1.13497

Rmax 1.06886 1.35988 1.17917

20 2 Ravg 1.01754 1.08417 1.10650

Rmax 1.03368 1.17402 1.27185

50 2 Ravg 1.01871 1.06299 1.03064

Rmax 1.03708 1.12111 1.07610

100 2 Ravg 1.02300 1.04793 1.02527

Rmax 1.03003 1.08919 1.04048

150 2 Ravg 1.01478 1.01687 1.00722

Rmax 1.02487 1.03687 1.01504

200 2 Ravg 1.01652 1.01611 1.00844

Rmax 1.02379 1.02805 1.01666

250 2 Ravg 1.01532 1.01129 1.00498

Rmax 1.01942 1.02280 1.01124

300 2 Ravg 1.01894 1.02038 1.00678

Rmax 1.02265 1.03069 1.01391

350 2 Ravg 1.01895 1.01518 1.00646

Rmax 1.03576 1.03719 1.02185

and for VNS, the maximum value of the relation Cmax/LB was 1.01645 and the
average value for the relation Cmax/LB was 1.005141, where for HS1-LST the
maximum value of the relation Cmax/LB was 1.30882 and the average value for
the relation Cmax/LB was 1.17261.

In Tables 6 and 7, VNS is compared with HS2-LPT, BH and MLG for
L ∈ {1.5, 1.8, 2.0} for small-size instances. As a point of clarification MLG
was proposed only for the case of two machines and the symbol (�) is used
to specify that no solution can be found with this algorithm. VNS is better than
all all examined algorithms in term of the deviation from the lower bound for
(n = 8,m = 2), (n = 8,m = 3), (n = 20,m = 2). It provides also the same
results as HS2-LPT for the remaining cases.

In Table 5, VNS is compared with HS2-LPT and BH for m ≥ 2 and for
L ∈ {1.5, 1.8, 2.0}. It can be noted that VNS algorithm is able to produce optimal
solution for all combinations of (n = 30,m = 3), (n = 40,m = 4), (n = 40,m =
5), (n = 50,m = 3), (n = 50,m = 4), (n = 100,m = 3), (n = 100,m = 5),
(n = 200,m = 3), (n = 200,m = 4), (n = 250,m = 3) and (n = 2500,m = 5).

The overall results show that the performance of the VNS algorithm is related
to the number of jobs, the number of machines and the the value of the server
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Table 5. Computational results of VNS for medium and large-size instances for L ∈
{1.5, 1.8, 2.0}

n m L = 1.5 L = 1.8 L = 2.0

VNS HS2-LPT BH VNS HS2-LPT BH VNS HS2-LPT BH

30 3 Ravg 1.00000 1.00000 1.00264 1.00000 1.00000 1.00026 1.00000 1.00000 1.00000

Rmax 1.00000 1.00000 1.01634 1.00000 1.00000 1.0026 1.00000 1.00000 1.00000

4 Ravg 1.00014 1.00014 1.00014 1.00018 1.00018 1.00018 1.00000 1.00000 1.00000

Rmax 1.00141 1.00141 1.00141 1.00181 1.00181 1.00181 1.00000 1.00000 1.00000

40 3 Ravg 1.00000 1.00000 1.0025 1.00000 1.00000 1.00000 1.00034 1.00034 1.00070

Rmax 1.00000 1.00000 1.0184 1.00000 1.00000 1.00000 1.00336 1.00336 1.00336

4 Ravg 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

Rmax 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

5 Ravg 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

Rmax 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

50 3 Ravg 1.00000 1.00000 1.00145 1.00000 1.00000 1.00007 1.00000 1.00000 1.00000

Rmax 1.00000 1.00000 1.00848 1.00000 1.00000 1.00065 1.00000 1.00000 1.00000

4 Ravg 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

Rmax 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

60 3 Ravg 1.00002 1.00002 1.00027 1.00000 1.00000 1.00029 1.00000 1.00000 1.00000

Rmax 1.00021 1.00021 1.00142 1.00000 1.00000 1.00235 1.00000 1.00000 1.00000

5 Ravg 1.00002 1.00002 1.00002 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

Rmax 1.00021 1.00021 1.00021 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

100 3 Ravg 1.00000 1.00000 1.00000 1.00000 1.00000 1.00010 1.00000 1.00000 1.00000

Rmax 1.00000 1.00000 1.00000 1.00000 1.00000 1.00102 1.00000 1.00000 1.00000

5 Ravg 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

Rmax 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

200 3 Ravg 1.00000 1.00000 1.00002 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

Rmax 1.00000 1.00000 1.00014 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

4 Ravg 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

Rmax 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

250 3 Ravg 1.00000 1.00000 1.00006 1.00000 1.00000 1.00001 1.00000 1.00000 1.00000

Rmax 1.00000 1.00000 1.00051 1.00000 1.00000 1.00009 1.00000 1.00000 1.00000

5 Ravg 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

Rmax 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

Table 6. Computational results of VNS for small-size instances for L ∈ {1.5, 1.8}

n m L = 1.5 L = 1.8

VNS HS2-LPT BH MLG VNS HS2-LPT BH MLG

8 2 Ravg 1.01157 1.04044 1.02051 1.03388 1.01273 1.03848 1.0274 1.03959

Rmax 1.05785 1.16529 1.08058 1.16942 1.04874 1.11372 1.11372 1.11045

3 Ravg 1.00000 1.00000 1.00000 � 1.00053 1.00103 1.01303 �

Rmax 1.00000 1.00000 1.00000 � 1.00266 1.00266 1.0625 �

20 2 Ravg 1.00777 1.02533 1.02085 1.01949 1.01506 1.04400 1.03147 1.05137

Rmax 1.01332 1.03900 1.03874 1.04212 1.03971 1.09224 1.07453 1.09835

3 Ravg 1.00045 1.00045 1.00076 � 1.00011 1.00011 1.00011 �

Rmax 1.00226 1.00226 1.00226 � 1.00057 1.00057 1.00057 �

4 Ravg 1.00083 1.00083 1.00547 � 1.00000 1.00000 1.00000 �

Rmax 1.00413 1.00413 1.02324 � 1.00000 1.00000 1.00000 �

5 Ravg 1.00000 1.00000 1.00000 � 1.00000 1.00000 1.00000 �

Rmax 1.00000 1.00000 1.00000 � 1.00000 1.00000 1.00000 �
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load. The best performance is observed by VNS algorithm. For L ∈ {1.5, 1.8, 2.0},
VNS is able to produce an optimal solution for the majority of the cases. For
L ∈ {0.1, 0.5, 0.8}, VNS shows better results in term of the deviation from the
lower bound in comparison with all proposed algorithms.

Table 7. Computational results of VNS for small-size instances for L = 2.0

n m L = 2.0

VNS HS2-LPT BH MLG

8 2 Ravg 1.01126 1.03309 1.02827 1.03480

Rmax 1.05628 1.09957 1.09668 1.13131

3 Ravg 1.00101 1.00101 1.02060 �

Rmax 1.00504 1.00504 1.05804 �

20 2 Ravg 1.00313 1.01054 1.00295 1.00536

Rmax 1.01567 1.03893 1.01416 1.02679

3 Ravg 1.00010 1.00010 1.00010 �

Rmax 1.00050 1.00050 1.00050 �

4 Ravg 1.00000 1.00000 1.00000 �

Rmax 1.00000 1.00000 1.00000 �

5 Ravg 1.00011 1.00011 1.00011 �

Rmax 1.00054 1.00054 1.00054 �

5 Conclusion

This paper proposes a variable neighborhood search algorithm to solve small,
medium and large-size instances of the arbitrary number of identical parallel
machines scheduling problem with a single server to minimize the makespan.
The instances were generated in the same way as in previous works so that the
results can be compared with existing algorithms in the literature. Based on the
generated instances, it turns out that the proposed VNS algorithm performed
very well in terms of the deviation from the lower bound. In particular, it outper-
formed the heuristics of El Idrissi et al. [12], Abdekhodaee et al. [3] and Hasani
et al. [17] and reached the lower bound for the majority of the cases for L > 1. In
future work, it will be interesting to compare different metaheuristic approaches
for solving the Pm,S1|pj , sj |Cmax, and take into consideration other types of
objective functions.
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Abstract. This paper addresses the Uncapacitated Single Allocation
p-hub Maximal Covering Problem (USApHMCP), which aims to deter-
mine the best allocation for the p-hubs within a node network in order
to maximize the network coverage. We proposed a search strategy-based
heuristic Basic Variable Neighborhood Search (VNS) to solve the prob-
lem. Two different sets of test instances from the literature, Civil Aero-
nautics Board (CAB) and Australian Post (AP), were used to evaluate
the performance of VNS and to compare it with the Tabu Search (TS)
metaheuristic. In most instances, the bounds obtained by VNS and TS
were the same but, on the other hand, for some of them, VNS presented a
slight advantage and vice versa. That is, both algorithms are convenient
to solve the proposed problem.

Keywords: Maximum coverage problem · Uncapacitated Single
Allocation p-hub · Variable Neighborhood Search

1 Introduction

Hub-and-spokes networks are interconnection paths between hubs and remote
nodes. Given a set of nodes, the hubs are strategically chosen based on the
amount of activity/service flow intended to be transported among nodes, that is,
it is necessary to establish a connection configuration network capable of covering
the demands among nodes at the same time that consider the transportation
costs [8]. Moreover, authors in [5] highlight that it is unfeasible to create a
network that makes the direct path among all pairs of nodes due to its high cost
in most of the cases.

Real applications of hub-and-spoke networks are easily found in environments
such as the public transportation, telecommunication systems, logistic systems
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and air transportation [11]. In addition, authors in [5] present that hub-and-
spoke problems also include satellites, industrial and postal delivery networks.
In all cases, authors in [11] state that hubs are used in a way that the traffic of
remote nodes is consolidated, which allows an efficient and effective connection
among the arcs through simplified routes of low costs. In contrast, when the total
number of hubs (p) and connections are limited, the trade-off between traffic cost
and remote nodes coverage for the hubs becomes a challenge.

The study of the problem of the maximal coverage of a predefined number of
p-hubs was introduced by author in [2]. In his studies, Campbell proposed four
integer programming approaches and formulations for the problem: the p-median
problem; the uncapacitated facility location problem; the p-center problem and
the hub covering problem. The first considers opening p facilities in order to
minimize the sum of the distances among the facilities and remote nodes. The
second aims to minimize the sum of facilities installation and the nodes sup-
ply (customers), both predefined through installation and transportation cost
parameters, considering that the facilities have an endless supply capacity. The
third is a variation of the data clustering problem and aims partitioning a set
of nodes in p clusters according to the distances minimization among hubs and
served points. The fourth aims to maximize the p-hubs covering percentage con-
sidering their unlimited services flow capacity and only enables simple allocation
among nodes.

In this sense, this paper presents the Uncapacitated Single Allocation p-Hub
Maximal Covering Problem (USApHMCP), which aims to maximize the covering
of the uncapacitated hubs through different arrange possibilities of connections
in a network, since these connections are single allocations between each node
and its respective hub. In the literature, this problem is classified as NP-Hard,
that is, the computational effort grows exponentially as the number of nodes is
increased to solve the problem [6]. Thus, integer programming formulations may
present difficulty to reach the optimal solutions of USApHMCP as the problem
dimension grows.

Due to this difficulty of exact approach to solve the large-scale USApHMCP
instances, authors in [11] have proposed an approximate approach for this prob-
lem based on the metaheuristic Tabu Search (TS), introduced by authors in [4].
TS is an adaptive procedure that guides the local searches in the neighborhoods
and presents as main characteristic the use of a tabu list of prohibited solutions
normally associated to the last n solutions inserted. In the TS algorithm, given
an initial solution, complete descent procedures are done in a neighborhood in
parallel with the addition of these solutions in the tabu list. In that way, the
method prevents from visiting the recent solutions, which enables to discover
new neighborhoods until satisfying a stop criteria.

In order to provide an approximated strategy not presented so far in the
literature for this problem, this paper proposes the metaheuristic Basic Variable
Neighborhood Search (VNS) proposed by [7] for the USApHMCP. To analyze
the computational performance, two sets of instances from the literature – Civil
Aeronautic Board (CAB) and Australian Post (AP) – are solved and compared
with the results obtained by TS developed by [11].
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Based on this methodology, this paper is divided into sections as follows:
Sect. 2 describes the mathematical formulation for the USApHMCP; Sect. 3
presents the metaheuristic Basic VNS; computational experiments are in Sect. 4,
while conclusions and remarks are shown in Sect. 5.

2 Uncapacitated Single Allocation p-Hub Maximal
Covering Problem

Different mathematical formulations regarding the allocation of p-hubs can be
found in the literature. Specifically, for this paper, authors have chosen the
USApHMCP formulation proposed by [10] and presented in the next paragraphs.

Let N be a set of nodes and p the total number of hubs, Wij the flow services
and Cij the transportation cost among the nodes, all of them for all pair (i, j) ∈
N . It is possible to state a path among the nodes (i → k → m → j) composed by
two remote nodes i and j and two hubs k and m, since the total path cost should
be lower or equal to β, that is, χCik + αCkm + δCmj ≤ β in which χ and δ are
discounting factors between the hub and the spoke, and α the discount factor
of paths between the hubs. All these factors are in range [0, 1]. To evaluate the
possibility of the paths coverage, the binary parameter ak,m

i,j is inserted in the
formulation.

ak,m
i,j =

{
1 : χCik + αCkm + δCmj ≤ β
0 : otherwise.

Thus, given a network of nodes, the problem consists in the efficient allocation
of the spokes to the hubs, with the aim to maximize the coverage of all service
flow of the network. For that, each spoke node can only be connected to only
one hub. The hub, in turn, can be connected to all the remote nodes and should
be connected to the all others hubs in the network. Figure 1 exemplify a possible
hub-and-spoke allocation in a network nodes which contains a total of ten nodes
and p equal to 2, that is, only two flow hubs are selected.

4

2 8

10

5

6

7 3

9

1

Fig. 1. Example of a hub-and-spoke network.

Figure 1 presents the simple connection of remote nodes n = {1, 3, 7, 9,
10} to the hub flow 5 and the connection of nodes n = {2, 4, 8} to the hub 6
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at the same time. Besides that, it is necessary to emphasize that the hubs can
be connected with all the spokes and have links to all the other network hubs
as represented by the arc between nodes 5 and 6, aiming the transition flow
connection.

In this context, adding the decision variables Xij and Zij which are respon-
sible to indicate if a node i is connected (1) to a hub j or not (0) and state the
flow coverage fraction of node i to j, respectively, it is possible to structure the
mathematical formulation described by Eqs. 1–7.

max
∑
i∈N

∑
j∈N

WijZij (1)

s.a:
∑
k∈N

Xkk = p (2)

∑
k∈N

Xik = 1 ∀ i ∈ N (3)

Xik ≤ Xkk ∀ i, k ∈ N (4)

Zij ≤
∑
k∈N

ak,m
i,j Xik + λij(1 − Xjm) ∀ i, j ∈ N,m ∈ N (5)

Xij ∈ {0, 1} ∀ i, j ∈ N (6)
Zij ≥ 0 ∀ i, j ∈ N (7)

The objective function 1 aims the maximization of the coverage flow of the
network. The constraint 2 ensures that only p-hubs are being allocated, while
constraints 3 and 4 ensure that each spoke only has one hub associated and each
node can be allocated only to one hub, respectively. In the end, constraints 5 are
used to indicate the coverage flow percentage between the node pairs i and j.
Note that parameter λij is used to tighten constraints 5 and these assume values
indicated by Eq. 8.

λij = maxkm(ak,m
i,j ) ∀ (i, j) ∈ N (8)

However, it is possible to note that when the spoke j is connected to the hub
m, Xjm = 1, constraints 5 are limited to Zij ≤ ∑

k∈N ak,m
i,j Xik. In contrast, when

Xjm = 0, the constraints take the configuration Zij ≤ ∑
k∈N ak,m

i,j Xik + λij . At
last, the domain of variables Xij and Zij are given by Eqs. 6 and 7, respectively.

3 Basic Variable Neighborhood Search Algorithm

In order to represent computationally the solution for the problem, a two-
dimension array was used (two lines × n columns), referring to the amount
of nodes in each instance. Table 1 shows how the solution from Fig. 1 could be
represented.
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Table 1. Solution representation of the example from Fig. 1

0 0 0 0 1 1 0 0 0 0
5 6 5 6 5 6 5 6 5 5

Note that Fig. 1 shows a feasible solution for the problem and can be obtained
by the selection of 5 and 6 as initial hubs. Thus, to create an initial feasible
solution, it is necessary to associate a set of p nodes to cover the flow service in
the network.

To build the initial solution of the problem, two randomly nodes were chosen
and the number of hubs was increased as each instance requests. The method
of choice of the initial solution is justified because in the algorithm proposed to
improve the solutions, all nodes will be tested as hubs. In the example in Table 1,
nodes 5 and 6 were chosen as hubs to compose the initial solution, taking into
account an instance with p equal to two. After the allocation of these nodes
as hubs, all the others were allocated to these hubs considering the hub which
presents the lowest cost.

When p is bigger than 2, after finding a solution with two hubs, the other
hubs are incorporated to the current solution in such a way that maximizes the
coverage of the network configuration. That is, while the total of hubs is lower
than p, new hubs are added, one by one, having as selection criteria the hubs
which enable the most significant enhancement in the coverage percentage of the
network. Thus, once inserted p hubs, it is possible to obtain an initial solution
for the problem.

In order to improve the solution quality, the metaheuristic known in the lit-
erature as Variable Neighborhood Search (VNS) was developed for the problem.
Proposed by [7], this method aims to explore the set of solutions through sys-
tematic changes in some neighborhood structures with the aid of local searches
procedures to find good solutions in the set of the possible ones. VNS pseudo-
code is presented in the Algorithm 1.

In Algorithm 1, the VNS input parameters are the current solution s (line
line 1) and the number of iterations without any improvement (Tmax). In line
line 2, the algorithm starts the variable s with the current solution obtained as
a parameter. The loop in line line 3 is responsible to control how many times
the procedure VNS will be applied, that is, how many iterations without any
improvement will be executed.

In line line 4, a shake will be applied in the current solution. In line line 5, a
local search procedure will be applied. In line line 6 it is verified if the solution s0
is better than s and if so, solution s is updated by s0 and t is reinitialized in 0, as
proposed by lines line 7 and line 8, respectively. If the solution is not improved,
t is increased in one unit (line 10) and the procedure returns the solution s.

A shake method in the current solution and a local search method were used
in the development of VNS algorithm. The shake objectives to modify the present
solution structure in order to escape from good local results and to search new
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Algorithm 1. Basic Variable Neighborhood Search algorithm
1: procedure VNS(s, Tmax)
2: s0 ← s
3: while t ≤ Tmax do
4: s0 ← Shake(s0)
5: s0 ← LocalSearch(s0)
6: if f(s0) > f(s) then
7: s ← s0
8: t ← 0
9: else

10: t ← t + 1
11: end if
12: end while
13: return s
14: end procedure

options aiming to explore the new set of solutions and to reach better results.
For this problem, the shake occurs as follows: two nodes, k and m (which are
hubs), are chosen randomly and two nodes, i e j (which are spokes), also cho-
sen randomly. The shake procedure occurs by the change in the hub-and-spoke
configuration, that is, nodes that are spokes or hubs can be alternated changing
its function or continue as before. The new hub-and-spoke configuration is given
randomly considering 20% of probability to one of the following combinations
happens:

First option =
{

i , j ← hubs
m , k ← spokes

Second option =
{

i , k ← hubs
j , m ← spokes

Forth option =
{

j , k ← hubs
i , m ← spokes

Third option =
{

i , m ← hubs
j , k ← spokes

F ifth option =
{

j , m ← hubs
i , k ← spokes

As stated before and considering Fig. 1 as example, the computational rep-
resentation can be given by Table 1. From that, if the shake was applied on this
solution, the hubs would be 5 and 6 (m = 5 and k = 6). In addition, two nodes
would be randomly chosen as spokes, e.g., nodes 2 and 8 (i = 2 and j = 8).
Since the nodes i, j, k and m were chosen, one from the five shake procedures
are randomly applied. If the fourth option was chosen, e.g., the new hubs would
be j and k, that is, nodes 8 and 6, and the new spokes i and m (i = 2 e m = 5)
as presented in Table 2.
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Table 2. Representation of the fourth pertubation option

Before After

0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0

5 6 5 6 5 6 5 6 5 5 8 6 6 8 6 6 6 8 8 8

Regarding the local search proposed, a method in which all the nodes are
tested as hubs was developed. For that, a spoke node and one hub are selected
and the reallocation of the spoke as a new hub and the hub as a new spoke
is done. From that, a reallocation procedure of the spokes aiming to maximize
the coverage flow is also done. Table 3 represents how this modification in the
solution structure would be done from the solution presented in Table 1.

Table 3. Representation of local search

Before After

0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0

5 6 5 6 5 6 5 6 5 5 1 6 6 6 1 6 6 1 6 6

4 Computational Experiments

The VNS algorithm developed in this paper was implemented using the C + +
programming language using a Windows 10 computer with an Intel Core i7-
8550U 1.80 GHz processor with 4 cores and 8 GB of RAM memory. The com-
mercial solver ILOG CPLEX 12.6 was used as the exact approach strategy of the
instances evaluated, and it was implemented in AMPL language. Experiments
made by [11], which are compared in this paper, were done in a computer with
an Intel Xeon E7-2870 2.40 GHz processor with 10 cores, 20 threads and 512 GB
of RAM memory.

It is important to highlight that the comparison presented in this paper is
not totally appropriated because in numerical terms there are some differences
between the machines used. In the TS algorithm from [11], the machine has a RAM
memory of 512 GB and 2.40 Ghz of clock frequency, whereas the machine in which
VNS was performed has 8 GB of RAM memory and 1.80 Ghz of clock frequency.

All the instances evaluated were executed once by the exact approach, that is,
by CPLEX, and three times by VNS. For the VNS, the instances were executed
with three different seeds and the number of iterations without any improvement
was fixed in 60 based in some tests previously provided by the authors of this paper.

4.1 Instances Description

Two different sets of instances from the literature were evaluated in this
paper: the Civil Aeronautics Board (CAB) and the Australian Post (AP).
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Instances from CAB were firstly introduced by [9] and are commonly used in
hub-and-spoke problems. CAB instances are arranged in relation to the number
of nodes (n = {10, 15, 20, 25}), number of hubs to be fixed (p = {2, 3, 4, 5}) and
the discount factor among the hubs (α = {0.2, 0.4, 0.6, 0.8, 1.0}). Discounting
factors χ and δ in all cases are set as 1, that is, there is no discount by the trans-
port among the spokes once the problem does now allow connections among
them. As an alternative comparison, the maximum cost values of route β were
the same used by [11].

Regarding the AP instances, introduced by [3], instances with the number of
nodes n equal to {10, 20, 25, 40, 50, 100} were evaluated. In all of the cases, the
discount factors α are fixed as 0.75, while χ and δ are fixed in 1. Again, in order
to standardize the comparisons, β was defined to be the same proposed by [11]
for each instance.

4.2 Results and Discussion

This section aims to explore the computational results obtained from the heuris-
tic approaches VNS and TS, as well as the exact approach from the CPLEX

Table 4. Results of CAB instances with n set to 10

Instances CPLEX VNS TS

n p α β optsol cov(%) t(s) t(s) t(s)

10 2 0.20 1425 994540 99.55 0.91 0.05 0.00

10 3 0.20 1117 999026 100.00 0.55 0.08 0.05

10 4 0.20 811 999026 100.00 0.36 0.08 0.08

10 5 0.20 736 991270 99.22 0.45 0.08 0.09

10 2 0.40 1627 994540 99.55 0.86 0.05 0.02

10 3 0.40 1185 990542 99.15 0.44 0.07 0.03

10 4 0.40 970 999026 100.00 0.36 0.08 0.08

10 5 0.40 863 999026 100.00 0.34 0.08 0.09

10 2 0.60 1671 987490 98.85 0.59 0.06 0.02

10 3 0.60 1387 984530 98.55 0.41 0.08 0.03

10 4 0.60 1148 999026 100.00 0.36 0.08 0.08

10 5 0.60 1079 999026 100.00 0.34 0.08 0.13

10 2 0.80 1744 999026 100.00 0.38 0.06 0.00

10 3 0.80 1589 999026 100.00 0.36 0.08 0.03

10 4 0.80 1457 999026 100.00 0.38 0.08 0.06

10 5 0.80 1413 999026 100.00 0.38 0.08 0.09

10 2 1.0 1839 984836 98.58 0.41 0.06 0.02

10 3 1.0 1791 999026 100.00 0.33 0.08 0.03

10 4 1.0 1770 999026 100.00 0.36 0.08 0.06

10 5 1.0 1766 999026 100.00 0.34 0.08 0.13

SGM 0.44 0.07 0.06
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commercial solver. For easy reading we highlight the predefined parameters in
all the result tables, to quote: the number of nodes (n), the number of hubs (p),
the discount factor (α) and the maximum cost allowed β. Furthermore, Tables 4,
5, 6, 7 and 8 also present the optimal solution value obtained by CPLEX (optsol),
the coverage percentage of the network flow (cov(%)) and the CPU computa-
tional time of the execution of the algorithms, in seconds (t(s)), required to find
the optimal solutions, as well as the Shifted Geometric Mean [1] of the values
(SGM).

The SGM was used to reduce the distortion between the average performance
of the algorithms according to the dimension of the problems. We define 10 as
the shifts values for the time (t(s)) as suggested by [1].

In cases in which one of the algorithms did not reach the optimal solution
for the problems (Tables 5 and 7), the percentage distance from the obtained
solution to the optimal is presented (gap(%)). Otherwise, when the values for
the gap are equal to 0 (Tables 4 and 6) it means that the solutions presented by
VNS, CPLEX and TS are optimal.

Table 5. Results of CAB instances with n set to 15

Instances CPLEX VNS TS

n p α β optsol cov(%) t(s) gap(%) t(s) gap(%) t(s)

15 2 0.20 2004 2358068 99.71 3.06 0.00 0.14 0.00 0.03

15 3 0.20 1638 2358068 99.71 1.88 0.00 0.26 0.00 0.19

15 4 0.20 1324 2364942 100.00 0.63 0.00 0.36 0.00 0.34

15 5 0.20 1149 2353712 99.53 0.88 0.00 0.48 0.00 0.58

15 2 0.40 2019 2364942 100.00 1.02 0.00 0.14 0.00 0.05

15 3 0.40 1741 2364942 100.00 0.66 0.00 0.26 0.00 0.19

15 4 0.40 1436 2364942 100.00 0.52 0.00 0.37 0.00 0.33

15 5 0.40 1287 2364942 100.00 0.41 0.00 0.43 0.00 0.59

15 2 0.60 2103 2364942 100.00 0.44 0.00 0.13 0.00 0.03

15 3 0.60 1844 2304218 97.43 1.20 0.00 0.29 0.00 0.19

15 4 0.60 1756 2364942 100.00 0.47 0.00 0.38 0.00 0.33

15 5 0.60 1560 2320434 98.12 0.44 0.00 0.45 0.00 0.59

15 2 0.80 2424 2364942 100.00 0.45 0.00 0.14 0.00 0.06

15 3 0.80 2165 2320434 98.12 0.69 0.00 0.25 0.00 0.19

15 4 0.80 2100 2364942 100.00 0.56 0.01 0.38 0.00 0.34

15 5 0.80 2080 2320434 98.12 0.50 0.00 0.45 0.00 0.59

15 2 1.00 2611 2364942 100.00 0.47 0.00 0.14 0.00 0.06

15 3 1.00 2610 2364942 100.00 0.55 0.00 0.25 0.00 0.16

15 4 1.00 2605 2364942 100.00 0.45 0.00 0.37 0.00 0.36

15 5 1.00 2600 2320434 98.12 0.52 0.00 0.48 0.00 0.56

SGM 0.77 0.00 0.31 0.00 0.29
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Tables 4 and 5 show the results of the two smaller sets of CAB instances with
nodes n set to 10 and 15, respectively. VNS and TS reached the optimal solution
in almost all of the cases with the average time lower than the commercial solver
CPLEX. For these two sets of smaller instances, VNS and TS were great alter-
natives to solve the problem, in both cases the optimal solution was obtained, as
proved by CPLEX results, with a processing time lower than 1 second for most
of the instances.

In a similar way, for larger instances with nodes n set to 20 and 25, the
TS algorithm was more effective than VNS because it could reach the optimal
solutions for all the cases, as shows in Tables 6 and 7. This scenario indicates
that, although VNS is efficient to obtain good solutions in a reduced time, it
can be improved in order to explore new solutions and escape from local optimal
solutions, either by the addition of new neighborhood structures, or other type
of initial solutions generation.

Table 6. Results of CAB instances with n set to 20

Instances CPLEX VNS TS

n p α β optsol cov(%) t(s) t(s) t(s)

20 2 0.20 1851 5747720 99.88 8.95 0.37 0.19

20 3 0.20 1549 5743058 99.80 2.06 1.03 0.56

20 4 0.20 1356 5754594 100.00 4.70 1.29 1.08

20 5 0.20 1162 5722742 99.45 4.02 2.11 1.86

20 2 0.40 2067 5737094 99.70 3.27 0.36 0.17

20 3 0.40 1744 5739610 99.74 1.14 0.79 0.53

20 4 0.40 1473 5754594 100.00 1.05 1.31 1.11

20 5 0.40 1386 5754594 100.00 3.22 1.96 1.84

20 2 0.60 2255 5748824 99.90 3.17 0.38 0.16

20 3 0.60 1996 5719090 99.38 1.31 0.84 0.56

20 4 0.60 1835 5754594 100.00 0.67 1.38 1.09

20 5 0.60 1663 5754594 100.00 2.13 1.67 1.84

20 2 0.80 2493 5754594 100.00 0.89 0.38 0.17

20 3 0.80 2264 5754594 100.00 0.70 0.77 0.55

20 4 0.80 2154 5754594 100.00 0.84 1.31 1.11

20 5 0.80 2118 5752254 99.96 1.09 2.14 1.81

20 2 1.00 2611 5754594 100.00 1.11 0.42 0.19

20 3 1.00 2605 5754594 100.00 1.19 0.89 0.53

20 4 1.00 2601 5754594 100.00 1.11 1.38 1.08

20 5 1.00 2600 5710086 99.23 1.10 1.77 1.81

SGM 2.06 1.11 0.89
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Table 7. Results of CAB instances with n set to 25

Instances CPLEX VNS TS

n p α β optsol cov(%) t(s) gap(%) t(s) gap(%) t(s)

25 2 0.20 2136 2358068 100.00 20.70 0.00 0.78 0.00 0.42

25 3 0.20 1913 2358068 99.93 49.42 0.00 1.72 0.00 1.34

25 4 0.20 1617 2364942 99.93 19.23 0.00 3.18 0.00 2.67

25 5 0.20 1346 2353712 100.00 4.81 0.00 4.53 0.00 4.52

25 2 0.40 2401 2364942 99.96 16.66 0.00 0.69 0.00 0.44

25 3 0.40 2099 2364942 100.00 13.55 0.04 1.68 0.00 1.48

25 4 0.40 1881 2364942 99.73 14.55 0.00 3.82 0.00 2.69

25 5 0.40 1597 2364942 99.84 2.73 0.00 4.36 0.00 4.52

25 2 0.60 2557 2364942 99.96 6.34 0.00 0.67 0.00 0.42

25 3 0.60 2336 2304218 99.96 4.70 0.00 1.66 0.00 1.36

25 4 0.60 2184 2364942 100.00 2.58 0.10 3.22 0.00 2.67

25 5 0.60 2002 2320434 99.81 6.28 0.00 5.51 0.00 4.50

25 2 0.80 2713 2364942 99.96 3.78 0.00 0.69 0.00 0.41

25 3 0.80 2552 2320434 99.96 2.92 0.00 1.71 0.00 1.34

25 4 0.80 2457 2364942 100.00 2.70 0.10 3.10 0.00 2.69

25 5 0.80 2307 2320434 99.42 3.38 0.00 5.29 0.00 4.48

25 2 1.00 2806 2364942 99.86 1.98 0.00 0.72 0.00 0.45

25 3 1.00 2762 2364942 100.00 1.84 0.00 1.91 0.00 1.30

25 4 1.00 2726 2364942 99.96 1.58 0.00 2.99 0.00 2.69

25 5 1.00 2725 2320434 99.96 1.72 0.00 4.41 0.00 4.53

SGM 7.08 0.01 2.54 0.00 2.15

For the set of AP instances, which contains more nodes, CPLEX was limited
into 5 hours of execution. Results in bold present the best solution found for each
instance. Besides, it is presented in Table 8 the percentage distance (gapb(%))
between the results obtain by VNS and TS. In some instances, CPLEX did not
obtained any solution because the machine in which the tests were executed
does not have memory enough to solve it and because of that the results were
represented by a symbol (–) in Table 8. Note that for the majority of instances the
algorithms found the same solutions for the problems (Table 8). It is highlighted
that VNS did not reach the same solutions when compared with the TS in some
of the large-scale instances, although the gapb(%) is very tiny.

In contrast, the computational effort spent by VNS to reach solutions equal
to TS or with a little bit difference is sufficiently slower, which indicates that the
solutions are equivalents, but VNS also had two best solutions when compared
with TS for two large instances (n = 100).
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Table 8. Results of AP instances

Instances CPLEX VNS TS

n p α β optsol cov(%) t(s) solVNS gapb(%) t(s) solTS gapb(%) t(s)

10 2 0.75 40383 3978.915 100.00 0.36 3978.915 0.00 0.04 3978.915 0.00 0.02

10 3 0.75 34772 3937.305 98.95 0.47 3937.305 0.00 0.05 3937.305 0.00 0.05

10 4 0.75 32574 3954.533 99.39 0.44 3954.533 0.00 0.09 3954.533 0.00 0.10

10 5 0.75 32531 3954.533 99.39 0.63 3954.533 0.00 0.08 3954.533 0.00 0.13

20 2 0.75 45954 3973.210 99.86 1.33 3973.210 0.00 0.30 3973.210 0.00 0.20

20 3 0.75 43400 3973.198 99.86 2.13 3973.198 0.00 0.69 3973.198 0.00 0.60

20 4 0.75 38607 3974.269 99.89 0.61 3974.269 0.00 1.20 3974.269 0.00 1.21

20 5 0.75 37868 3973.198 99.86 0.81 3973.198 0.00 1.63 3973.198 0.00 2.01

25 2 0.75 53207 3976.570 99.94 2.94 3976.570 0.00 0.72 3976.570 0.00 0.46

25 3 0.75 46608 3972.507 99.84 2.80 3972.507 0.00 1.71 3972.507 0.00 1.47

25 4 0.75 45552 3976.681 99.94 2.20 3976.681 0.00 2.93 3976.681 0.00 2.95

25 5 0.75 45552 3976.681 99.94 1.98 3976.681 0.00 4.31 3976.681 0.00 5.06

40 2 0.75 61683 3978.915 100.00 128.47 3978.915 0.00 4.24 3978.915 0.00 3.29

40 3 0.75 58193 3978.915 100.00 8.00 3978.915 0.02 11.92 3978.915 0.00 10.13

40 4 0.75 52265 3977.276 99.96 185.59 3977.276 0.00 22.17 3977.276 0.00 20.82

40 5 0.75 49741 3977.966 99.98 21.78 3977.966 0.02 33.91 3977.966 0.00 35.62

50 2 0.75 65523 – – – 3978.688 0.00 10.66 3978.688 0.00 7.90

50 3 0.75 60132 – – – 3978.415 0.00 33.65 3978.415 0.00 24.16

50 4 0.75 52906 3978.915 100.00 15.73 3978.032 0.02 63.00 3978.915 0.00 49.05

50 5 0.75 50708 3978.915 100.00 12.36 3977.623 0.03 97.66 3978.915 0.00 82.87

100 2 0.75 65915 – – – 3978.851 0.00 169.31 3978.688 0.00 7.90

100 3 0.75 60659 – – – 3978.590 0.00 539.99 3978.415 0.00 24.16

100 4 0.75 56125 – – – 3978.620 0.00 981.37 3978.915 0.00 49.05

100 5 0.75 54243 – – – 3978.725 0.00 1550.64 3978.915 0.00 82.87

200 2 0.75 68232 – – – 3978.818 0.00 3457.71 3978.915 0.00 2749.00

200 3 0.75 64237 – – – 3978.833 0.00 11455.46 3978.915 0.00 7677.75

200 4 0.75 59999 – – – 3978.833 0.00 15852.32 3978.915 0.00 15987.99

200 5 0.75 58562 – – – 3978.833 0.00 42003.27 3978.915 0.00 26731.48

SGM 0.02 65.83 0.00 48.21

5 Conclusions and Remarks

This paper presented a study of the problem known in the literature as Unca-
pacitated Single Allocation p-hub Maximal Covering Problem (USApHMCP).
This problem consists in selecting p-hubs in a network design, selecting nodes to
be hubs in such a way to maximize the coverage of the network, considering that
the remote nodes (which are not hubs) must be allocated to a single hub. From
this, it was proposed an algorithm based on the Basic Variable Neighborhood
Search metaheuristic to solve USApHMCP. Two different set of test instances
from the literature, the Civil Aeronautics Board (CAB) and the Australian post
(AP), are evaluated. The computational performance of our VNS and a Tabu
Search (TS) proposed by [11] are compared in solution quality.

Computational results have shown that VNS and TS are good alternatives to
solve the problem. Both reached optimal solutions, as proved by CPLEX, to the
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majority of the instances considered. For the CAB instances, the TS found the
optimal solution in all of the cases. Even though the algorithms were executed in
machines with different capacity of processing, it is possible to realize that VNS
is a great alternative to solve the problem considering the solutions presented. In
an opposite way, VNS did not reach the optimal solution in about 5% (4 of 80)
of the CAB instances with the SGM gap(%) lower than 0.10% in the worst case.
In relation to the large-scale AP instances, that is, the instances with the highest
number of nodes, it is verified that both VNS and TS reached good solutions in
a timely manner, yet, VNS reached two results that are better when compared
with those presented by TS.

At last, as the next stage of the research, new strategies to generate initial
solutions and neighborhood structures, as well as other metaheuristics, will be
implemented aiming to improve the solutions presented until then.

Acknowledgements. The authors acknowledge the UFOP, Fapemig, CAPES and
CNPq for supporting this research.
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7. Mladenović, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res.
24(11), 1097–1100 (1997)

8. O’Kelly, M.E.: Activity levels at hub facilities in interacting networks. Geogr. Anal.
18(4), 343–356 (1986)

9. O’Kelly, M.E.: A quadratic integer program for the location of interacting hub
facilities. Eur. J. Oper. Res. 32(3), 393–404 (1987)

10. Peker, M., Kara, B.Y.: The P-Hub maximal covering problem and extensions for
gradual decay functions. Omega 54, 158–172 (2015)

11. Silva, M.R., Cunha, C.B.: A tabu search heuristic for the uncapacitated single
allocation p-hub maximal covering problem. Eur. J. Oper. Res. 262(3), 954–965
(2017)

https://doi.org/10.1007/978-3-319-91086-4_2


A Variable Neighborhood Search
Algorithmic Approach for Estimating

MDHMM Parameters and Application
in Credit Risk Evaluation for Online

Peer-to-Peer (P2P) Lending

Monir El Annas(B), Mohamed Ouzineb, and Badreddine Benyacoub

Institut National de Statistique et d’Economie Appliquée, Rabat, Morocco
elannas.mounir@gmail.com, ouzineb.insea@gmail.com, benyacoubb@gmail.com

Abstract. Online peer-to-peer (P2P) lending is a new financing chan-
nel on which lenders are matched with borrowers using internet platform.
Borrowers can get financing more easily, but it means higher credit risk
to lenders, making credit scoring models a key tool for lending P2P plat-
forms. The goal is to estimate the level risk (being good or bad borrower),
from the collected informations of each applicant. One of the classifica-
tion approaches is Multi dimensional Hidden Markov Model (MDHMM).
The MDHMM parameters are usually estimated using Baum-Welch algo-
rithm (BW). However, the Baum-Welch algorithm tends to arrive at local
optimal points. In this paper a strategy called Variable neighborhood
search (VNS), is proposed to addresses this problem. The hybrid model in
which VNS algorithm is coupled with Baum-Welch algorithm for param-
eter estimation of MDHMM, is applied in credit scoring domain, using
real peer-to-peer lending data. The experiments results show the perfor-
mance efficiency of our model in comparison with classical and alterna-
tive machine learning models for credit scoring.

Keywords: Multi dimensional Hidden Markov Model · Baum-Welch
Algorithm · VNS algorithm · Credit scoring · P2P lending

1 Introduction

After the recent world financial crisis, more attention was given from banks and
financial institutions to credit risk, since it can cause great cost losses to owners,
managers, workers, lenders, clients, community and government. Therefore, it is
very important to predict bankruptcy and decide whether to grant credit to new
applicants or not. One of the primary tools used by banks is credit scoring. The
problem in the credit scoring generally, is presented as a classification task where
the applicant may be assigned to a class target (good or bad) based on their char-
acteristic such Age, Salary and Housing... The goal is to estimate the level risk
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(being good or bad), from the collected information of each applicant. One o the
classification approaches is by modeling the risk level using HMM models with
two hidden states where each state represent a different risk category. MDHMM
can be employed to modulate the behavior of borrowers and estimate the risk
being good or bad using multiple observation sequences where each sequence
correspond to an input variable (characteristic). Those HMM models are usu-
ally trained by Baum-Welch Algorithm. However, Baum-Welch algorithm tends
to arrive at local optimal points. A possible way to escape Baum-Welch algo-
rithm (BWA) local optimum is by using VNS algorithm. VNS is based on the
application of local search by systematically changing the neighborhood during
the search.

The rest of this paper is structured as follows. Section 2 is a comprehen-
sive literature review concerning credit scoring studies in p2p lending and meta-
heuristics used for hidden Markov models training. Section 3 is an introduction to
HMM, MDHMM, BWA, and VNS associated notations and algorithms. Section 4
is a description of the data used in this paper and explains the experiment setup
and results. Finally, Sect. 5 concludes and discusses future work.

2 Literature Review

2.1 Credit Scoring in P2P Lending

Peer-to-peer (P2P) lending platforms (also known as social lending) are new
financial intermediary between borrowers and lenders are, emerging rapidly
worldwide. For example, loans the biggest P2P lending platform in USA between
June 2007 and June 2018, accepted 2,004,090 loans, and rejected 22,469,074
loans, issued loans are roughly 8% of all loan requests on their website [16,17].
Given the critical role of credit scoring in P2P lending, various studies focused
on the specific P2P lending domain. These models are categorized into statistical
models and AI-based models. LR is one of the most popular statistical models in
P2P lending mainly due to its acceptable performances and interpretability. AI-
based methods, such as SVM, HMM, Random forest and Neural network have
been applied in credit scoring of P2P lending due to their superior predictability
[1–6].

2.2 Metaheuristics for Hidden Markov Models Training

Seven main kinds of generic metaheuristics have been adapted to tackle the issue
of HMMs training: the simulated annealing (SA), the tabu search (TS), genetic
algorithms (GA), the population based incremental learning (PBIL), the API
algorithm and the particle swarm optimization (PSO) [26–31]. All those adap-
tations do not try to maximize the same criterion but the maximum likelihood
criterion is the most often used.
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3 Methodology

3.1 Hidden Markov Model

Elements of a Hidden Markov Model
An HMM model is characterized by the following elements [7]:

– St The random variable representing the state at time t, where 0 ≤ St ≤ N−1
and 0 ≤ t ≤ T − 1, N is the number of states in the model, and T being the
length of the observation sequence. Let S = (S0, S1, . . . , ST−1) be the states
sequence.

– Ot The random variables representing the observation at time t, where 0 ≤
Ot ≤ M and 0 ≤ t ≤ T , where M is the number of observation symbols, and
T the length of the observation sequence. Let O = (O0, O1, . . . , OT−1) be the
observation sequence.
In this paper we consider the values of Ot and the values of St to be discrete.

– A = {aij} the state transition probabilities matrix, where A ∈ RN×N and
aij = P (St+1 = j|St = i)

– B = {bi(k)} the observation probability matrix, where where B ∈ RN×M and
bi(k) = P (Ot = k|St = i)

– π = {πi} be the initial probability vector, where π ∈ RN .
and πi = P (St = i)

– we denote an HMM as a triplet λ = (π,A,B)

Training with Baum-Welch algorithm
Baum-Welch is a learning algorithm [10] that is based on the principles of Expec-
tation Maximization (EM) [11] to find the optimum model parameter λ that
maximizes P (O|λ) we first define the following probabilities:

– αt(i) = P (O0, O2, . . . , Ot, St = i|λ)
– βt(i) = P (Ot+1, Ot+2, . . . , OT−1|St = i, λ)
– γt(i) = P (St = i|O, λ)
– ζt(i, j) = P (St = i, St+1 = j|O, λ)

Then given a random initial conditions for λ, (it can also be set using prior
information about the parameters if it is available).:

for i = 0, 1 . . . , N − 1 and t = 1, 2 . . . , T − 1

• α0(i) = πibi(O0) and αt(i) = [
∑N−1

j=0 αt−1(j)aji]bi(Ot)
for i = 0, 1 . . . , N − 1 and t = T − 2, T − 3 . . . , 0

• βT−1(i) = 1 and βt(i) =
∑N−1

j=0 aijbj(Ot+1)βt+1(j)
for i, j ∈ 0, . . . , N − 1 and t = 0, 2 . . . , T − 2

– ζt(i, j) = αt(i)aijbj(Ot+1)βt+1(j)
∑N−1

k=0 αT−1(k)

for i = 0, 1 . . . , N − 1 and t = 0, 2 . . . , T − 2
– γt(i) = αt(i)βt(i)∑N−1

k=0 αT−1(k)
=

∑N−1
j=0 ζt(i, j)
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The parameter reestimation formulas, are described by the following expres-
sions:

for i, j ∈ 0, . . . , N − 1 and k = 0, 1 . . . , M − 1

– π̂i = γ0(i)

– âij =
∑T−2

t=0 ζt(i,j)
∑T−2

t=0 γt(i)

– ̂bi(k) =
∑T−1

t=0,Ot=k γt(i)
∑T−1

t=0 γt(i)

Given a sequence of observed symbols O the probability that the sequence
was generated by HMM with parameters λ is: P (O|λ) =

∑N−1
j=0 αT−1(j)

The parameter λ will be estimated iteratively by Baum-welch procedure as
follow:

1. Start with a random guess of parameters λ = λ0 for the model
2. Estimate αt(i) and βt(i), ζt(i, j), γt(i) using the observation sequence O and

the parameters of λ as shown in the equations
3. Update λ using equations and calculate P (O|λ)
4. Repeat steps 2 and 3 until a convergence to a stationary point of the likeli-

hood. (i.e: P (O|λ) is a local maximum).

3.2 Multi Dimensional HMM

MDHMM can be considered as an extension of hidden Markov model. The differ-
ence is in the number of observed variables. HMM defines only a single observed
variable, whereas the MDHMM supports multiple observed variables with one
common hidden sequence. In this paper we will assumes independence between
the different dimensions of the input data.

Elements of MDHMM
The parameters of the multi-dimensional HMM can be defined with the same
assumptions for random variable St where N is the number of states and T is the
length of the observation sequence S = (S0, S1, . . . , ST−1). Note also that the
matrix A corresponding to state transition probabilities and π the initial proba-
bility vector have the same structure as defined in the Sect. 3.1. Then, P (St|St−1)
is represented by the matrix A. For calculating observation probability matrix,
we suppose that the situation depicted in single observation sequence model will
be extended to a multiple observation sequences as follows [12–14].

– Ot The random variables representing the observation at time t, where Ot =
{O0

t , O1
t , . . . , OM−1

t } and 0 ≤ t ≤ T −1, M is the number of observed variables,
and T is the length of the observation sequence.

– O = (O0, O1, . . . , OT−1) be the observation sequence from the M variables.
– Om = (Om

0 , Om
1 , . . . , Om

T−1) the m-th sequence of observation In this paper
we consider the values of observed symbols Om

t and the values of St to be
discrete.
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– Bm = {bm
i (k)} the m-th observation probability matrix, where Bm ∈ RN×Lm

and bm
i (k) = P (Om

t = om
k |St = i) where om

k is a possible value of the random
variable of the observation Om

t . Lm being the number of observations symbols
of m-th observation sequence.

– We denote an MDHMM as a triplet λ = (π,A,B0:M−1)
– An MDHMM has the joint probability function:

P (Ot, St) = P (St−1)P (St|St−1)
∏M−1

m=0 P (Om
t |St)

– Each P (Om
t |St) is represented by the matrix Bm.

The learning approach is similar to the one described in the case of HMM.
The only difference is that there are multiple emission functions Bm.

The parameter learning process can be performed by means of the Baum-
Welch algorithm extended for MDHMM based on the probabilities αt(i), βt(i),
γt(i) and γt(i, j). Computed as follows:

– α0(i) = πi

∏M−1
m=0 bm(Om

0 )

– αt(i) = [
∑N−1

j=0 αt−1(j)P (St = i, St−1 = j, λ)]
∏M−1

m=0 P (Om
t |St = i, λ)

= [
∑N−1

j=0 αt−1(j)aji]
∏M−1

m=0 bm(Om
t )

– βt(i) =
∑N−1

j=0 P (St+1 = i, St = j, λ)
∏M−1

m=0 P (Om
t+1|St+1 = i, λ)βt+1(i)

= [
∑N−1

j=0 aijβt+1(i)]
∏M−1

m=0 bm(Om
t+1)

– βT−1(i) = 1

– ζt(i, j) = αt(i)βt+1(j)aij

∏M−1
m=0 bm(Om

t+1)∑N−1
j=0 αT−1(j)

– γt(i) = αt(i)βt(i)∑N−1
j=0 αT−1(j)

=
∑N−1

j=0 ζt(i, j)

The variables αt(i), βt(i), ζt(i, j), γt(i) are calculated for each training sequence
Om and then, re-estimation is performed on the accumulated values. To generate
the new better model λ̂, the parameter λ can be updated as follows:

– π̂i = γ0(i)

– âij =
∑T−2

t=0 ζt(i,j)
∑T−2

t=0 γt(i)

– ̂bm
i (k) =

∑T−1
t=0/Om

t =om
k

γt(i)
∑T−1

t=0 γt(i)

The iterative process described above is performed until a convergence to a
stationary point of the likelihood.

3.3 VNS Algorithm

VNS [19–24] is based on a simple principle: the systematic change of neigh-
borhoods within the search. It explores increasingly distant neighborhoods of
the current solution, jumping from this solution to a new one if and only if an
improvement has been made. Working in this way, favorable characteristics of
the current solution will be often kept and used to obtain promising solutions.
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Moreover, in order to obtain local optima, a local search routine is repeatedly
applied to these neighboring solutions. VNS algorithm performs as follows:

Firstly, a finite set of neighborhood structures Nj , (j = 1, . . . , n) is defined.
Next, an initial solution S is randomly generated or using a constructive heuristic.
At each iteration, the neighborhood index (j) is initialized to 1. VNS’s loop is
composed of three steps: shaking, local-search and move. In the shaking step,
a solution S

′
in the jth neighborhood of the incumbent solution S is randomly

generated. Then, a local-search procedure is applied to the shaking’s output
S

′
. The local search’s output is denoted Ŝ. If Ŝ is better than S, Ŝ replaces S

from which the search continues with j = 1. Otherwise, j is incremented and a
new shaking step starts using the (j +1)th neighborhood structure. The process
continues until a stopping condition is met. The stopping condition may be
the maximum number of iterations allowed and/or the maximum computational
time allowed. The pseudocode of a VNS algorithm is given by Algorithm1.

Algorithm 1. VNS algorithm
1: procedure VNS(S)
2: S ← InitialSolution ()
3: define a set of neighborhood structures Nj , (j = 1, . . . , n)
4: while stopping condition is not met do
5: j ← 1
6: while j < n do
7: S

′ ← Shaking (Nj(S))

8: ̂S ← LocalSearch (S
′
)

9: if ̂S is better then S then
10: S ← ̂S
11: j ← 1
12: else
13: j ← j + 1
14: end if
15: end while
16: end while
17: return S
18: end procedure

3.4 Estimating MDHMM Parameters Using BW and VNS for the
Credit Scoring Problem

The problem in the credit scoring generally, is presented as a classification task
where the applicant may be assigned to a class target (good or bad) based on
their characteristic such Age, Salary and Housing...... Our goal is to estimate the
level risk (being good or bad), from the collected information of each applicant.
We take risk level to be represented by two hidden states where each state
represent a different risk category. In this work, MDHMM can be employed
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to modulate the behavior of borrowers and estimate the risk being good or
bad using multiple observation sequences where each sequence correspond to an
input variable (characteristic). In our setup, a sequence of observable symbols
preprocessed into a canonical form for different features.

We assumed that the observable symbols were dependent on a set of 2 hidden
states to be S0 = good applicant, S1 = bad applicant. For each feature m,m =
1, 2, . . . ,M we calculate Bm and we built a MDHMM model λ = (π,A,B) where
B = B0:M−1.

The observed sequences Om = (O
m

0 , O
m

1 , . . . , O
m

T−1),m = 1, 2, . . . ,M will be
used to estimate MDHMM parameters as described in Sect. 3.2. Therefore, we
can perform the iterative calculation of the αt(i), βt(i), ζt(i, j), γt(i). Given an
observation vector of information applicant noted by Ot = {O0

t , O1
t , . . . , OM−1

t }.
The developed MDHMM model returns the most likely state for each applicant
using the probability γt(i).

From the definition of γt(i) = P (St = i|O, λ) it follows that the candidate
state at time t is the state Si for which γt(i) is maximum, where the maximum
is taken over the index i. The iterative procedure of Baum-Welch is used to
improve the estimated parameters of HMM and to adjust the parameters to
observed sequence. However, it has a limited convergence to a local optimum.
VNS could overcome the drawbacks of HMM using the neighborhood of the
current solution to search existing other best solutions iteratively. The hybrid
approach can be exploited to improve the performance of the developed model
for credit scoring.

For single HMM we represent parameter λ = (π,A,B) of feature i as a
vector Wi. For example, a HMM with two hidden states and five observable
variables would be represented as a string Wi where |Wi| = |π|+ |A|+ |B| = 16.
Each Wi,j could have any values. However, only positive values would be used.
Normalization would ensure that the HMM has well-formed probability entries.
Then, we extend the representation of parameters for all input variables.

For generating the initial solution for the proposed VNS algorithm, the
Baum-Welch algorithm is used to construct a set of feasible solutions and then
select the best solution as the starting point for the proposed VNS algorithm.
In the proposed VNS algorithm, three neighborhood structures, N1(), N2() and
N3(), are used. Let S = λ0 = (π,A,B); be a feasible solution N1(S): the set of
solutions obtained by adding 1 for each Wi,j and keep the remaining and do a
normalization. N2(S): the set of solutions obtained by adding 2 for each Wi,j and
keep the remaining and do a normalization. N3(S): the set of solutions obtained
by adding 3 for each Wi,j and keep the remaining and do a normalization. Each
iteration on Wi elements represent one plausible set of HMM parameters for the
feature i.

In the proposed model two phases are considered to present the whole
process of the hybrid model. In the first phase, we choose initial parameters
λ0 = (π0, A0, B0), using the Baum-Welch algorithm on the training set, we
re-estimate parameters iteratively λ = λ0 until to find the optimal model
λ = λ∗ = (π∗, A∗, B∗). Therefore, the optimal model obtained will be evalu-
ated on the testing test. In the second phase, the VNS process of the hybrid
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model is start from the parameters of the optimal model generated from Baum-
Welch procedure. The optimizing process of the hybrid model was first presented
by Baum-Welch which consist to find parameters that maximize the likelihood of
observation sequences. Then, the VNS method was start from the HMM parame-
ters generated by Baum-Welch procedure where the obtained optimal model will
be used as initial solution. In order to maximize the accuracy of credit scoring
model, a set of new parameters given by neighborhood of current solution are
constructed and tested. VNS process continues to generate neighboring solutions
(candidate credit scoring models) until reach convergence. This process is shown
in the following figure (Fig. 1).

Fig. 1. The flow chart for creating a HMM/VNS hybrid model

4 Experimental Setup

4.1 Data Description

The P2P dataset we used is from Lending Clubs dataset [17]. Excluding records
containing obvious errors and the characteristics, with missing information, and
by keeping accepted records, with both good/bad statuses observed, we got a
dataset consisting of 799,443 issued loans including 158,592 defaults, with 5
attributes, which 3 numerical, and 2 categorical: loan amount, FICO score, DTI
ratio, address state, employment length.
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We will use a balanced dataset of the Lending Clubs dataset created by
the SMOTE technique (Synthetic Minority Over-sampling Technique), it’s an
over-sampling method, it creates synthetic samples of the minority class. Hence
making the minority class equal to the majority class. SMOTE does this by
selecting similar records and altering that record one column at a time by a
random amount within the difference to the neighbouring records.

4.2 K Fold Corss Validation

To minimize the impact of data dependency and improve the reliability of the
estimates, k-fold cross validation is used to create random partitions of the data
sets. The procedure of k-fold cross-validation is as follow:

1. The data set is split into k mutually folds of nearly equal size.
2. Choose the first subset for testing set and the k − 1 remainder for training

set.
3. Build the model on the training set.
4. Evaluate the model on the testing set by calculating the evaluation metrics.
5. Alternately choose the following subset for testing set and the k − 1 remainder

for training set.
6. The structure of the model is then trained k times each time using k−1 subsets

(training set) for training and the performance of the model is evaluated k− 1
on the remaining subset (testing set).

7. The predictive power of classifier is obtained by averaging the k validation
fold estimates found during the k runs of the cross validation process.

The common values for k are sometimes 5 and 10. The Cross validation
method is used in this work to assess the performance of classification techniques
and we choose 10 as value for k for our experiments evaluation method. This
approach can be computationally expensive, but does not waste too much data
(as it is the case when fixing an arbitrary test set), and lower the variance of the
estimate.

The whole building process of model can be presented into three phases,
which are shown in Fig. 2. First, the cross validation procedure is applied to
split the dataset into two different subsets. Secondly, the VNS-MDHMM model
is trained by the training set and the multiple emission functions Bm parameters
are estimated. Then the estimated Bm are employed to classify the observations
given in testing set and finally evaluate the performance of the model.
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Fig. 2. Block diagram of the HMM/VNS hybrid model

4.3 Evaluation Metrics

There are many metrics that can be used to measure the performance of a classi-
fier different fields have different preferences for specific metrics due to different
goals. In this paper the performance of the models used was first measured in
terms of average accuracy, precision, recall, and F1-score. The following equa-
tions show the process to calculate the accuracy, precision, recalls and F1-score:

Accuracy = TP+TN
TP+TN+FP+FN Precision = TP

TP+FP

Recall = TP
TP+FN F1 = 2(Precision ∗ Recall)

Precision+Recall = 2TP
2TP+FP+FN

Where true positive (TP) is the number of instances that actually belong to
the good group that were correctly classified as good by the classifier, true nega-
tive (TN) is the number of instances that belong to the bad group and correctly
classified as bad, false positive (FP) is the number of instances that are of the
bad group but mistakenly classified as good, and, finally, false negative (FN) is
the number of instances that are actually of good but incorrectly classified as
bad.

4.4 Computation

We conduct the experimental analysis for the proposed method and compared
the results with other models, using Scikit-learn an open source Python library
that provides a range of machine learning algorithm, and we used GridSearchCV
for parameters setting and combinations.
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4.5 Experiments Results

Table 1 compare the accuracy, accuracy, precision, recall, and F1-score for meth-
ods namely SGDC, RandomForest, SVM, KNN, MDHMM, and VNS-MDHMM
performed with 10 fold cross validation.

Table 1. Comparison performance of the models over P2P lending dataset

Measures of performance

Accuracy Precision Recall F1-score

SGDC 53.06 31.35 59.97 40.00

RandomForest 84.15 85.68 79.07 79.11

SVM 51.51 59.54 65.93 46.45

KNN 53.44 50.73 81.29 62.58

MDHMM 61.15 72.53 58.65 64.85

VNS-MDHMM 61.43 61.31 83.72 70.78

The results show that, the best accuracy is obtained by RandomForest
84.15% followed by VNS-MDHMM with 61.43% improving the accuracy of
MDHMM which is 61.15% followed by SVM 51.51%, KNN with 53.44% and
SGDC 53.06%. But the Recall for VNS-MDHMM is highest than other classi-
fication models with 83.72% followed by KNN with 81.29% and RandomForest
with 79.07% followed by the rest of the models. A key advantage of the proposed
model over the existing models is that, we can build a set of models based on
iterative procedure. But since the Baum-Welch algorithm and the VNS algo-
rithm are local iterative methods, the resulting MDHMM performance depend
heavily on the initial model.

5 Conclusion and Future Research

In this paper, a simple version of the VNS algorithm is employed to search out
the optimal parameter structure of MDHMM for credit scoring in P2P lending.
Experimental results show that the classification performance of the proposed
have a high prediction rate and comparable performance to other widely used
methods in credit scoring. As future work, it would be interesting to build a
parallel implementation of our model [25], especially with the grow of big data
sources like mobile phone data and social network data for credit scoring appli-
cations [18].
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Abstract. This paper deals with Unmanned Aerial Vehicle (UAV) rout-
ing in dynamic grid scenarios with limited battery autonomy and multi-
ple charging stations. The problem is inspired by real-world constraints,
specially designed for overcoming challenges of a limited vehicle driving
range. Recently, these kinds of vehicles have started to be used for deliver-
ing and collecting products, requiring experts in several knowledge fields
to manage this novel logistics. Inspired by a multi-criteria view of real
systems, we consider different objective functions introduced in the liter-
ature. A multi-objective variant of Variable Neighborhood Search is con-
sidered for finding a set of non-dominated solutions, while respecting the
navigation over forbidden areas and also battery capacity. A case of study
was developed where one UAV has to attend clients spread throughout
a grid representing a map. The drone starts in a given grid point with a
given battery charge, where the grid is composed by four different kinds
of points: a regular one and three special (prohibited, recharge and client
delivery). Any sequence of valid adjacent points forms a route, but since
this yields a huge number of combinations, a pre-processing technique is
proposed to pre-compute distances in a given dynamic scenario. Compu-
tational results demonstrate the performance of different variants of the
proposed algorithm.

Keywords: Unmanned Aerial Vehicle · Microgrids · Multi-objective
optimization · Variable Neighborhood Search

1 Introduction

Technological innovations such as the miniaturization of electronic control sys-
tems and the cost reduction of electronic components [8] has resulted in an
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upsurge in the availability of Unmanned Aerial Vehicles (UAV), also known as
Drones, or Unmanned Aerial Systems (UAS).

Although the drone is often related to hobbyists, entertainment and photo-
graphic industries, their uses has been spread to military, civil and commercial
applications. Aerial surveillance, recognizing and tracking objects are some of
many other applications that are emerging with potential for UAV’s use. Count-
less others may arise from human creativity in the near future [3]. There are
already some works that show applications in everyday life:

– Infrastructure inspection [13,15,16]: The UAV can follow a predetermined
path or could move by visual servoing and detects by the means of image
treatment the size and location of defects and cracks. The use of a drone
for inspection will give us multiple advantages over traditional inspection
method:
• Reducing work accident risk;
• Budget reduction: less logistics and less working hours;
• Less invasive operations: the bridge will not be closed for traffic while the

inspection is done.
– Power Line Inspection [1,5]:

• Aerial inspection of electric power transmission lines is typically per-
formed using human-piloted helicopters, which is a procedure that is both
expensive and prone to accidents, bringing risks to human beings’ lives. In
this sense, the drone is a low cost solution with several potential benefits.

– Surveillance of a target space using aerial vehicles is a topic of current research
interest for applications such as weather monitoring, geographical surveys,
and perhaps extraterrestrial exploration [18];

– The great flexibility of UAVs can enable new approaches during collection
of remote sensing data, which for example integrate real-time mapping and
autonomous navigation [11];

– The environmental monitoring is the wide research field for single UAV solu-
tions, where the monitoring of the environment is realized just by one vehicle
[12].

The load transportation sector, in particular, is already showing some interest
and investments in UAV applications. The growth of e-commerce has sustained
this interest from huge companies. Transportation drones are capable of safely
taking off and landing in the proximity of buildings and humans, improving the
quality of current service in congested or remote areas [8].

When deliver service are discussed, we, implicitly, are talking about a Travel-
ing Salesman Problem (TSP) and its variations, as the Vehicle Routing Problem
for example. Which briefly means a problem of designing optimal routes from
one or several depots to a number of geographically scattered cities, customers
or strategic points, subject to side constraints [14].

Although there are many works in the literature related to TSP variations
[10], the ones that approach UAV routing are still few as the TSPD (Traveling
Salesman Problem with Drone) [2], the vehicle routing problem with drones [23]
and the VNS approach of Schermer et al. [20].
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However, we can not just focus on technological advancements and simply
forget about the damage to the environment that they may cause. That is why
the scientific community has been concerned so much with developing green
technologies and this does not differ in computing. The Green Vehicle Routing
Problem (G-VRP), for example, proposed by Erdoğan et al. [7], add to the
original VRP, constraints about fuel economy.

The TSP with hotel selection [22] is a TSP variation with similarities with
the problem addressed in this article. The main objective is to minimize the
number of trips and total traveled time. This problem is found in real scenarios
like delivery of products by electric vehicles that need to be recharged along a
tour.

In order to approach real systems, it is necessary to design a multi-objective
problem providing a set of non-dominated solutions with different possible routes
and schedules. The more objective functions and constraints, the more similar
to real world, but also more complex the problem becomes.

The main contributions of this current work are:

– Complement to the linear mathematical model of Coelho et al. [3] by devel-
oping a metaheuristic algorithm for a time-dependent UAV routing problem,
in particular:
• respecting UAVs operational requirements;
• tackling the micro-airspace considering a scenario of points inspection,

and avoiding prohibited points (docking constraints) [4];
• integrating UAVs into the new concepts of mini/microgrid systems, in

which vehicles can be charged at different points of the future smart
cities;

• dynamic routes considering drones already in movement: instances with
initial battery different than 100%, random origin point and a number of
clients already visited.

The remainder of this paper is organized as follows. Section 2 describe the
proposed model and the range of real parameters considered in our analyses,
while Sect. 3 contains the methodology employed to solve the problem. In Sect. 4,
one can find the computational experiments comparing the different implemen-
tations, instances, variables and results. Finally, Sect. 5 concludes the work and
presents future research directions.

2 Problem Description

The case of study designed here is composed of an airspace divided into horizon-
tal and vertical strips, where the vehicle is allowed to move following Chebyshev
distance, where the distances between any adjacent points are the same. Energy
stations are spread in the routing area and accessed by the drone for recharging
its batteries. To represent prohibited areas, the grid is also composed by pro-
hibited points which the UAV cannot access, otherwise it would invalidate the
route.
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As a routing problem, the vehicle should attend clients that are spread across
the grid. To do so, the point correspondent to the client should be part of the
final route. That means that the coordinates X and Y of the client must be part
of the array that represents the solution. On Sect. 3 we discuss an alternative to
preprocess shortest distances and store them in auxiliary data structure, so that
only the origin-destination points and distances need to be considered between
charging and delivery points. However, due to dynamic nature of the problem,
it may be required to process these once again, after changes occur in the input
data1.

2.1 Objectives

As previously mentioned, this paper addresses a multi-objective problem, in
which we want to find a set of non-dominated solutions. In a real UAV routing
problem, a great amount of variables should be considered in order to obtain the
most adequate solution. However, in order to turn this real problem into a com-
putable one, we mapped three main objectives that summarize, in a satisfactory
manner, how the real system should behave.

Consumption: it is desirable that during the route, the vehicle consume
the least possible of battery/fuel.

Final charge: it is interesting to finish the route with the maximum charge
rate possible, ensuring that the drone is prepared for a future route.

Time: the total route should be performed in the shortest possible time
frame.

As can be seen, the algorithm proposed in this paper focuses on finding a
balanced trade-off between solutions, since one element may affect another one.
Smaller the time, greater the velocity, than, greater the consumption. Greater the
final charge means more time spent recharging/fueling which results in greater
times.

2.2 Constraints

In order to have a valid solution, the route must attend some requirements listed
below:

Consumption: The fuel/battery level of the vehicle should not reach below
zero in any part of the path, that would mean that the UAV would be out of
fuel/energy in the middle of the route. However, if it reaches zero and the route
is over or the drone reached one energy point, this does not affect the validity
of the solution.

Prohibited Area: In real life, there are areas where drones are not allowed to
access or cross. This situation was represented by special points scattered across
the grid. If the route contains these points, the solution is invalid.
1 The current work considers that the dynamic data is passed as input, so that no

changes need to be performed during the search. As instances already consider arbi-
trary drone initial location and capacity (battery load), a time-dependent variant
can be considered as an extension of this work (see Sect. 5).
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2.3 Variables

There are two variables that affect the final result of the objective functions:
speed in the stretch and charging time.

Speed in the stretch: influence not just the total time of the route, but
also the consumption, once higher the speed (v), greater the consumption. The
fuel/battery level at the end of the stretch (f) is a result of the fuel/battery level
at the beginning of the stretch (f0) decreased by the fixed consumption (cf ) and
the speed multiplied by the coefficient of variable consumption (cv) as shown at
Eq. 1.

f = f0 − v × cv − cf (1)

Time at energy station: the time spent at the energy station (r) is added to
the total time spent at the route. However, if the vehicle spends more time at
it, it can accumulate more fuel/energy to its battery. The fuel/battery level at
the end of the stretch is a result of the fuel/battery level at the beginning of
the stretch increased by the quantity of fuel/energy recharged (fr) as shown at
Eq. 2.

f = f0 + fr (2)

Equation 3 shows that the time at the end of the stretch (t) is a result of the
time at the beginning of the stretch (t0) increased by the quantity of fuel/energy
recharged multiplied by the coefficient of time per fuel/energy (tf ) as shown at
Eq. 3.

t = t0 + fr × tf (3)

3 Methodology

The metaheuristic GRASP with MOVND (G-MOVND) as local search was the
chosen to be applied. It can be seen as a multi-start metaheuristic for combi-
natorial optimization problems, in which each iteration basically consists of two
phases: construction and local search.

3.1 Construction

The construction phase is based on GRASP, where “[...] construction phase
builds a solution using a greedy randomized adaptive algorithm” [19]. In a greedy
construction of this problem we iteratively choose the closest client from the
actual position. However, the construction phase of this algorithm is a greedy
procedure with random and adaptative components, meaning that instead of
always choosing the closest one, we select a set of k clients closest to the actual
position and, then, we choose a client randomly from this set (candidate list) to
be inserted in the initial solution. In this work, we get to the parameter k = 3
in a empirical way.
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3.2 VND Local Search

The Variable Neighborhood Descent (VND), developed by Mladenović and
Hansen [17] in 1997, is a method and a method that has proven to be very
efficient and capable of navigating the space of solution based on the use of
neighboring solutions. Local search heuristics commonly use one neighborhood
structure (for example, Hill Climbing), unlike VND. This metaheuristic works by
applying a local search method concerning a neighborhood structure to a initial
solution x. If the solution x’ obtained is better than the former, we attribute x’
to x (x := x’), and continue the search with the current neighborhood structure;
otherwise, we change it.

The multi-objective variant of the VND (MOVND) [6] was implemented with
10 neighborhood structures. Different neighborhoods affect different objective
functions. As we were dealing with a set of solutions and not just a single desired
final solution, we do not use just one best that is modified through the iterations,
but a pool of solutions. An initial solution is generated by the GRASP, which now
passes through exhaustive VND searchers, the obtained neighboring solutions are
inserted into a global pool if they are not dominated.

The neighborhoods are presented next, in the order of execution of the meta-
heuristic:

Swap. This neighborhood is responsible to switch clients positions in the route.
If the solution generated is not dominated or equal to any other route in the
current pool of solutions, the new solution is added to it.

As this is the more costly neighborhood, were implemented other versions,
so it was possible to compare the one that provides best results during the
computational experiments. The difference from the versions was that instead
of switching a client from the route with every other, the switch just occur with
the k nearest, furthest or random clients.

Remove Recharge. This neighborhood is responsible for remove possible
recharge points in each subpath (path between clients) and verify if it improves
the current solution. The idea is that removing this stretch, the UAV would
reach the end of the route in a shorter time.

We find a path that links two clients or the origin to a client and remove it
from the route. After, we link directly the two clients. This way if there was a
recharge point in this subpath it would be removed.

Closest Recharge. After we remove unnecessary recharge points, we try to
add other ones that could improve the current solution.

Remove Repeated. After all the previous operations been executed on the
route, we might have inserted repeated clients in the route. The idea of this
neighborhood is to remove the repeated ones, trying to reduce the size of the
route and, in consequence, reduce the consumption and/or time.
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Speed Section Increase. Increases speed by 1 unit in each entire section of
the route that links two important points (clients and/or recharge point).

Speed Section Decrease. Decreases speed by 1 unit in each entire section of
the route that links two important points (clients and/or recharge point).

Speed Random Increase. Increases speed by 1 unit in each segment of a
subpath chosen randomly.

Speed Random Decrease. Decreases speed by 1 unit in each segment of a
subpath chosen randomly.

Recharge Random Increase. Increases by 1 unit the load percentage at each
recharge point of a subpath chosen randomly.

Recharge Random Decrease. Decreases by 1 unit the load percentage at
each recharge point of a subpath chosen randomly.

3.3 Acceptance Criterion

After generating a neighbor of the current solution, the current route is evaluated
and compared to the routes in the pool of solutions. It will be inserted if it is
not dominated by any other one present in the pool. If the new route dominates
any other, the latter is removed from the set of solutions.

In this case of study, we limited the size of the set of non-dominated solution,
limiting, in consequence, the number of operations (local search). If the set is
full and the new route is non-dominated, it will only be inserted if there is a
solution in the pool with result smaller than the new one. Thus, the incoming
solution should dominate, at least, one solution of the current pool.

3.4 VND Implementation

To solve the proposed problem by generating the routes, different versions of
an algorithm were implemented in C++. Four versions of the SWAP method
were implemented, since it is the most computationally costly neighborhood.
The versions, as described in a section before, were named S1, S2, S3 and S4.
The size of the pool was also considered as a variable and different tests were
done to verify its impact to the results. It was considered pools of size 5, 15
and 30.

The MOVND was the metaheuristic chosen, as addressed in previous sessions.
However, a different approach was also considered. The original MOVND with
a pool of solutions is known for execute a loop for each solution and inside a
loop for each neighborhood. In our current implementation, there is an inversion
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where the external loop runs through the neighborhoods and the internal one
runs through the solutions. This metaheuristic was named I-MOVND.

Algorithm 1. I-MOVND
1: procedure I-MOVND(E, Neighborhood)
2: repeat
3: x ← Select(E \ Si) � Selection among the non-exploited points
4: for all k ∈ Neighborhood do
5: added ← true
6: while added do
7: added ← false
8: x′ ← neighbor(x, k)
9: if MO-Improvement(E, x, x’) then

10: added ← true
11: E ← Update(E, x′)
12: end if
13: end while
14: end for
15: until E \ Si = Ø
16: return E
17: end procedure

The activity of calculate routes can be really costly when executed many
times through the algorithm. Therefore, a pre-processing was implemented in
order to make comparisons if it brings gains to the results. The method consists of
pre-calculating the best routes between the important points of the map (clients,
prohibited area and recharge points). The routes are saved and after read as part
of the entry of the problem.

To summarize the different implementations, each sample varies as:

– Instance
• eil51A and eil51B: both with 51 clients, 5% of prohibited points and 1% of

recharge points. The difference between each other is due to the position
of the random prohibited and recharge points generated.

• eil101A and eil101B: same as before but with 101 clients
– SWAP

• S1: swap 1
• S2: swap 2
• S2-3: swap 2 and 3
• S2-4: swap 2 and 4
• S4: swap 4

– Local Search
• MOVND
• I-MOVND

– Pre-processing
• Yes
• No
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4 Computational Experiments

As, from our knowledge, there is not a well-established library of instances for
the problem addressed in this article, with all the restrictions considered here in
the literature, two well known TSP instances in Euclidean 2D format were used
as base of the tests: Christofides/Eilon eil51 and eil101. These instances have 51
and 101 clients, respectively. From these, arrays were generated representing the
area that comprises all clients, where the value of x varies from the minimum x
value from the instance to the maximum. The same happens to the y coordinates.

After the matrix is generated, points in it are chosen randomly and set as
points of recharge and prohibited ones. For matter of tests, it was stipulated a
rate of 5% of the matrix to prohibited points and 1% to recharge points. For
each instance, two different maps were generated.

Every sample was executed 5 times, each one for 5 min. It was considered the
set of non-dominated solutions of all the 5 executions in matter of results.

4.1 Comparison Measures

In order to compare the results obtained during the experiments, three measures
referents to the quality of the solutions were used: hypervolume, coverage and
cardinality.

According to [21], hypervolume is an indicator associated with an approxi-
mation given by the volume of the objective space portion that is weakly dom-
inated by a set. This indicator needs the specification of a reference point Z
that denotes an upper bound over all the objectives. In this problem normalized
objective function were used. In addition, it has been ensured that as closer to
better the measure is. The code of the calculation of hypervolume is provided
by [9].

The other measures are coverage and cardinality. Coverage, meaning the
percentage amount of solutions generated by a specific method that is in the
Pareto reference. For example, if we would like to compare methods A and B,
we would run both methods and in the end we would gather the solutions of
both methods and select the only ones not dominated. In this final pool, we have
4 solutions from method A and 6 solutions of method B. Then, the coverage of
A is of 40% and 60% of B.

Cardinality is referent to the absolute amount.

4.2 Computational Results

The first tests were developed to verify the methods that return the best results.
To do so, it was used samples with pre-processing and pool of fixed size of 30.

The best results ranged between the S2-4 and S4 from VND and I-VND as
shown at Table 1. Therefore, the next step was to execute the algorithm in order
to evaluate how the size of the pool and the pre-processing affected the result.
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Table 1. Samples with pre-processing.

Methods eil51P5R1a eil101P5R1a

Hyperv. Cov. Card. Hyperv. Cov. Card.

MOVND S1 0.37 0.02 1 0.26 0 0

MOVND S2 0.10 0 0 0.29 0 0

MOVND S2-S3 0.27 0 0 0.30 0 0

MOVND S2-S4 0.40 0 0 0.51 0.45 45

MOVND S4 0.46 0.60 29 0.47 0 0

I-MOVND S1 0.40 0 0 0.20 0 0

I-MOVND S2 0.26 0 0 0.31 0 0

I-MOVND S2-S3 0.33 0 0 0.37 0.22 22

I-MOVND S2-S4 0.43 0.35 17 0.46 0 0

I-MOVND S4 0.42 0.02 1 0.48 0.34 34

Table 2. Sample eil51P5R1a.

Methods With PP Without PP

Hyperv. Cov. Card. Hyperv. Cov. Card.

MOVND 30 S2-S4 0.30 0 0 0.30 0.23 22

MOVND 30 S4 0.35 0.26 24 0.29 0.01 1

I-MOVND 30 S2-S4 0.32 0.18 17 0.29 0 0

I-MOVND 30 S4 0.31 0.01 1 0.29 0 0

MOVND 15 S2-S4 0.26 0 0 0.27 0 0

MOVND 15 S4 0.32 0.15 14 0.28 0 0

I-MOVND 15 S2-S4 0.30 0.03 3 0.28 0 0

I-MOVND 15 S4 0.27 0 0 0.31 0.12 11

MOVND 5 S2-S4 0.23 0 0 0.27 0 0

MOVND 5 S4 0.21 0 0 0.29 0 0

I-MOVND 5 S2-S4 0.30 0 0 0.26 0.01 1

I-MOVND 5 S4 0.24 0 0 0.27 0 0

The Tables 2, 3, 4, 5 show that pre-processing results in better values of
hypervolume, coverage and cardinality in almost all the tests. Meaning that the
pre-calculation of routes generates a pool of solutions more diversified which is
a good result when we are talking about a multiobjective problem. In terms
of max size of the pool, in the samples with the smaller instance, bigger the
pool, better the results. And with the bigger instance, this difference was not so
evident since the size of the instance already orders more computational time
and a bigger pool does the same.
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Table 3. Sample eil51P5R1b.

Methods With PP Without PP

Hyperv. Cov. Card. Hyperv. Cov. Card.

MOVND 30 S2-S4 0.23 0.29 24 0.21 0 0

MOVND 30 S4 0.21 0.33 27 0.19 0 0

I-MOVND 30 S2-S4 0.19 0.13 11 0.20 0 0

I-MOVND 30 S4 0.35 0.06 4 0.16 0 0

MOVND 15 S2-S4 0.17 0 0 0.17 0 0

MOVND 15 S4 0.18 0 0 0.16 0 0

I-MOVND 15 S2-S4 0.22 0.16 13 0.15 0 0

I-MOVND 15 S4 0.19 0 0 0.15 0 0

MOVND 5 S2-S4 0.14 0 0 0.12 0 0

MOVND 5 S4 0.10 0 0 0.15 0 0

I-MOVND 5 S2-S4 0.15 0 0 0.16 0 0

I-MOVND 5 S4 0.16 0 0 0.14 0 0

Table 4. Sample eil101P5R1a.

Methods With PP Without PP

Hyperv. Cov. Card. Hyperv. Cov. Card.

MOVND 30 S2-S4 0.43 0.30 29 0.14 0 0

MOVND 30 S4 0.40 0 0 0.03 0 0

I-MOVND 30 S2-S4 0.40 0 0 0.06 0 0

I-MOVND 30 S4 0.41 0.21 20 0.09 0 0

MOVND 15 S2-S4 0.29 0 0 0.11 0 0

MOVND 15 S4 0.41 0.125 12 0.12 0 0

I-MOVND 15 S2-S4 0.43 0.36 35 0 0 0

I-MOVND 15 S4 0.36 0 0 0.10 0 0

MOVND 5 S2-S4 0.33 0 0 0.15 0 0

MOVND 5 S4 0.35 0 0 0.27 0 0

I-MOVND 5 S2-S4 0.38 0 0 0.32 0 0

I-MOVND 5 S4 0.35 0 0 0.23 0 0

On Figs. 1 and 2 we can see the pareto fronts generated by the execution
of the algorithm. We can infer from it that the pool of size 30 generates better
results to bigger instances, while the pool of maximum size 15, generates better
results with smaller instances (less points of inspection/clients), smaller pools.
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Table 5. Sample eil101P5R1b.

Methods With PP Without PP

Hyperv. Cov. Card. Hyperv. Cov. Card.

MOVND 30 S2-S4 0.17 0 0 0 0 0

MOVND 30 S4 0.08 0 0 0.04 0 0

I-MOVND 30 S2-S4 0.09 0 0 0.03 0 0

I-MOVND 30 S4 0.17 0 0 0.04 0 0

MOVND 15 S2-S4 0.24 0.79 15 0.14 0 0

MOVND 15 S4 0.18 0 0 0.02 0 0

I-MOVND 15 S2-S4 0.22 0 0 0.04 0 0

I-MOVND 15 S4 0.19 0 0 0.01 0 0

MOVND 5 S2-S4 0.12 0 0 0.09 0 0

MOVND 5 S4 0.12 0 0 0.16 0 0

I-MOVND 5 S2-S4 0.16 0 0 0.11 0 0

I-MOVND 5 S4 0.11 0 0 0.19 0 0
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Fig. 1. Pareto fronts for instance eil101-70-50
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Fig. 2. Pareto fronts for instance eil51-80-10

5 Conclusions

The multi-objective, grid, docking constraint, and the concern with consumption
(Green Computing) and the dynamism of this problem shows a very practical
approach, for real applications. Instances have considered arbitrary initial posi-
tions of drones, and also variable initial battery capacities, so that it is possible
to integrate this tool into an online solver that resolves a series of instances con-
sidering changes on the dynamic features of the scenario (due to wind conditions,
logistics and other operational constraints).

This work also shows a potential of growth approaching increasingly from a
real situation. Thus, we visualize future works taking into account more layers
of grid representing the vertical movement of the drone. Besides that a prob-
lem with heterogeneous drones and temporary prohibited points are some other
variables that could be explored in future works involving this problem.
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17. Mladenović, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res.
24(11), 1097–1100 (1997)

18. Nigam, N., Kroo, I.: Persistent surveillance using multiple unmanned air vehicles.
In: 2008 IEEE Aerospace Conference, pp. 1–14. IEEE (2008)

https://doi.org/10.1007/s10898-014-0213-z
https://doi.org/10.1007/b101971


166 E. L. Marques et al.

19. Resende, M.G.C., Ribeiro, C.C.: Greedy randomized adaptive search procedures:
advances and extensions. In: Gendreau, M., Potvin, J.-Y. (eds.) Handbook of Meta-
heuristics. ISORMS, vol. 272, pp. 169–220. Springer, Cham (2019). https://doi.
org/10.1007/978-3-319-91086-4 6

20. Schermer, D., Moeini, M., Wendt, O.: A variable neighborhood search algorithm
for solving the vehicle routing problem with drones. Technical report, Technische
Universität Kaiserslautern (2018)

21. Talbi, E.G.: Metaheuristics: from Design to Implementation, vol. 74. Wiley, Hobo-
ken (2009)
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Abstract. In this paper an order picking and route planning problem is studied.
The main objective is to minimize the number of pickers involved in collecting
the order pool and the total distance covered by the pickers. Since the problem
under study is NP-hard, a variable neighborhood search (VNS) is proposed as a
heuristic solution approach. Neighborhood is changed according to VNS scheme
employing four tailored structures.

Finally, computational tests demonstrate that the proposed VNS algorithm
can find good quality solutions for all practical problems examined. The objective
values, regarding both the number of pickers employed and the total distance
covered by them, are better than the results of genetic algorithm and close to the
ones obtained by CPLEX Solver, if it was able to provide a feasible solution.

Keywords: Order picking · Batch sequencing · Variable neighborhood search

1 Introduction

Warehouses are essential elements in supply chains and logistics as they are responsible
for linking suppliers, production facilities and distribution systems, as well as for storing
products and handling customer orders on time. Since warehousing can account for
approximately 20% of supply chain costs [8], any improvement in the efficiency of
warehouse operations can generate significant savings in operational costs.

The problem of order-picking is defined as collecting the items from their location
in the warehouse in order to satisfy the demand from internal or external customers [12].
Petersen [12] also distinguishes two types of the order-picking problem in which human
resources (pickers) are involved:

– items-to-picker, in which the items are automatically delivered to the picker at the
point of collection and dispatching of items,

– picker-to-items, in which an employee (picker) travels to different locations in order
to pick up the demanded items.
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In many warehouses we deal with the second type of the order-packing problem.
Despite the increasing automation of the process, according to the literature, still around
80% warehouses in Western Europe use manually picker-to-items system [14].

Order picking consists of three successive stages: (1) order batching, (2) batch
sequencing, and (3) picker routing. Order batching groups many customer orders into a
single picking order taking into account, for example, the elements common to customer
orders, delivery times of client orders, and the location of items in the warehouse. Order
batching is especially important in manual picking systems, because grouping several
customer orders into individual picking orders reduces the total number of routes, total
travel distance or total travel time. Batch sequencing determines the order in which
batches are processed and how the clients’ orders are allocated to operators (pickers) to
meet deadlines and minimize tardiness and earliness of customer orders. Picker routing
consists in planning the best route for all pickers to follow in order to retrieve all the
elements of batch, starting and ending in the depot.

The warehouses may be organized in different ways. We consider a standard layout
where the bays (storage locations) of identical size are arranged on both sides of picking
aisles. Order pickers can move from one aisle to another by two cross aisles, one at the
front and one at the rear of the picking area. A wide-aisle warehouse is assumed, i.e. the
width of picking aisles allows for overtaking maneuvers, so traffic jams caused by the
pickers collecting the items from the same storage location are not considered. However,
in the considered case, the depot is not a single point but a line located at front aisle
where the pickers return to in order to deposit the picked items.

In this paper we study the joint batch sequencing and picker routing problem with
time windows, i.e. the orders should be completed during given period of time (release
time of an order and due date required by a customer), at minimal costs. The aim of
the paper is to develop the model and an appropriate algorithm of its solution able to
achieve optimized pickers’ tours. We propose a variable neighborhood search algorithm
with four neighborhood structures to solve the problem. Test cases based on data from
one of the automotive warehouses in Poland are used to evaluate the solutions from
the proposed heuristic and are compared with the outputs from genetic algorithm and
CPLEX Solver.

The paper has the following structure. Section 2 presents the literature review. Defi-
nition of the problem and notation are described in Sect. 3. Section 4 gives the details on
proposed heuristic approach. The computational experiments are summarized in Sect. 5,
and the conclusions are drawn in Sect. 6.

2 Literature Review

There aremany studies reported in the literature related to one ormore stages of the order
picking process (subproblems), i.e. order batching, batch sequencing and picker routing.
A comprehensive review on problems’ formulations as well as solution approaches are
presented in [3, 5] and [8]. The surveys’ authors characterize models with various objec-
tive functions, consideration of due dates, warehouse layouts and information availabil-
ity. They classify the solution approaches into five categories: (1) simulation based, (2)
exact methods, (3) heuristic (greedy) algorithms, (4) metaheuristics, and (5) data mining
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methods. As each subproblem of the order picking process is NP-hard and realistically
sized instances of them cannot be solved in polynomial time, the authors note the great
popularity of metaheuristics.

For practical reasons, this section gives a limited review of the methods used to solve
considered problem: we focus only on approaches that use VNS metaheuristic or any of
its variants.

Albareda-Sambola et al. [1] addressed basic order batching problem with the objec-
tive of minimizing the total travel time. They proposed a heuristic based on Variable
Neighborhood Search (VNS), where three neighborhoods were employed: (1) transfer-
ring an order from one batch to another one, (2) transferring at most two orders from
one batch to others, and (3) transferring at most two orders. The results of simulation
experiments showed that proposed approach is competitive method which can be used in
practice. It should be noted that the test instances were limited in size (max 250 orders)
and VNS algorithm was compared only with Clarke and Wright constructive heuristic.

Henn [7] proposed VND and VNS to minimize the total tardiness of customer orders
for order batching and batch sequencing. In both approaches the author used a construc-
tive Earliest Start Date (ESD) rule to generate an initial solution. Two classes of neigh-
borhoods were applied: (1) four moves that change the position of a complete batch, and
(2) four moves that change the position of a customer order. In both cases only moves
generating feasible solutions were considered. Numerical experiments showed that both
approaches generate better solutions than those created by heuristics based on priority
rules. In addition, they showed that the deterministic VND algorithm outperforms the
stochastic VNS. The VNS approach is able to generate high quality solutions if the cal-
culation time is long enough. However, implementing these algorithms can significantly
improve warehouse performance.

Menéndez et al. [9] suggested a General Variable Neighborhood Search (GVNS)
algorithm to tackle the order batching problemwhich objective was to minimize the total
time needed to collect all items. They used two neighborhood structures: (1) insertion
of any order in a different batch, and (2) swap of two orders from different batches.
The perturbation was achieved by random swapping two orders from different batches.
Both neighbor and perturbation moves were performed in such a way that each result
was a feasible solution. The authors confronted the operation of their approach with the
Albareda-Sambola et al. algorithm [1] using data sets presented by the authors of the
latter algorithm. The results indicated that GVNS algorithm outperforms VND approach
of Albareda-Sambola et al.

More recently, Menéndez et al. [10] developed a parallel GVNS for the min–max
order batching and sequencing problem which objective is to minimize the maximum
retrieving time for any batch. They used two neighborhood structures, the same as were
presented in [9]. The shake stage involved four different orders allocated in four different
batches and was inspired by the ejection chain method. The best improvement local
search, based on swap moves, was employed as a local search. The parallel computing
was performed in a basic form: the algorithm used several threads, where each one was
responsible for perturbation the current solution with the shake procedure. The objective
of the parallelization was not to reduce the computing time, but to explore a wider area of
the solution space. Additionally, the authors introduced a novel scheme for calculating



170 J. Duda and A. Stawowy

the objective function (based on a matrix of retrieving times) which twice reduced the
computing time. The extensive experimental comparison showed that the parallel version
of the VNS evidently outperformed the best known at this time approaches.

Scholz et al. [13], for the first time in literature, considered all picking subprob-
lems simultaneously. They introduced a mathematical model of the joint order batching,
sequencing and routing problem that allows for exact solving small problem instances.
For larger instances, a VND algorithm was presented. The initial solution for the VND
was generated by means of two constructive approaches as the better from two solutions
obtained. The first approach was ESD rule introduced by Henn [7] and the second – a
seed algorithm which consecutively rearranged the orders to minimize the total tardi-
ness. The authors’ algorithm employed six neighborhoods: (1) exchanging two batches,
(2) breaking up a complete batch and reassign the orders to other batches, (3) moving an
order from one batch to another batch assigned to the same picker, (4) moving an order
from one batch to another batch assigned to another picker, (5) exchanging two orders
which are included in different batches assigned to the same picker, and (6) exchang-
ing two orders which are included in different batches assigned to different pickers. By
means of extensive numerical experiments, the authors demonstrated that the algorithm
provided solutions of very good quality. Furthermore, it was shown that a simultane-
ous solution approach to the picking subproblems can reduce the total tardiness of all
customer orders by up to 84% which makes the proposed VND a valuable tool for an
efficient organization of warehouse operations.

Ardjmand et al. [2] modelled and solved the joint order batching, sequencing and
routing problem with multiple pickers in a wave picking warehouse of a major US
third party logistics company. For small size waves a Lagrangian decomposition heuris-
tic combined with a particle swarm optimization (LD-PSO) algorithm was proposed,
while for large-scale problems a hybrid parallel simulated annealing and an ant colony
optimization (PSA-ACO) was presented. The approaches were compared against the
heuristic being used in the examined warehouse and a VND algorithm proposed by
Scholz et al. [13] and it was shown that PSA-ACO and VND can improve the makespan
by approximately 7.0% over the existing heuristics.

Finally, Gil-Borrás et al. [5] considered the online order batching problem (OOBP)
in which changes of pick-lists during a pick cycle are allowed. The objective was to min-
imize the maximum time that the orders remained in the system. To tackle this problem
the authors proposed the Basic Variable Neighborhood Search (BVNS) approach which
combines stochastic and deterministic exploration by means of a set of neighborhoods.
The neighborhood structures and the perturbation move were similar to the one used
in Menéndez et al. [9]. The authors’ VNS algorithm was confronted with some simple
classical greedy algorithms and a modified Clark & Wright Savings algorithm, demon-
strating its superiority (from 7.7% up to 102.2% for the largest problem instances with
250 orders).

3 Problem Formulation

We consider a practical example from a large automotive parts warehouse located in
southern Poland. Batches in that warehouse are prepared on the basis of customers’
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individual attributes, location area of items and due dates required. The batching algo-
rithm for thewarehouse is not straightforward, so its analysis and possible improvements
are out of scope of the presented paper. Thus we will focus only on batch sequencing
and route planning for available pickers during a working shift. Since the composition of
each batch is known, the tour length (depending on the underlying routing strategy – in
our case the largest gap), the search time and the pick time can be calculated beforehand
and stored in matrices. Items to be picked are depicted in an order’s line along with theirs
demanded quantity. Items for a single line are stored in the same location, but different
lines must be usually collected in different locations of the same warehouse area.

The main goal is to develop the picking plan that minimizes the number of pickers
engaged in picking process in a given area and simultaneously to optimize the route they
have to travel when picking items for orders in the batches (completion lists). The main
assumption is that items picking for all orders in each completion list must be finished
before deadline (beginning of delivery to a customer) and cannot be picked before the
completion list is released. Time here is considered discrete, i.e. the planning horizon
is divided into several time periods (with a predefined granularity). The mixed integer
programming (MIP) model of the problem can be presented as follows:

Data
I – number of batches,
T – number of discrete time periods,
P – total number of pickers,
di – due time for batch i,
li – number of lines in batch i (different items’ locations),
si – the earliest possible time for picking batch i (release time),
ep – performance of picker p (expressed e.g. as the number of order lines per hour),
apk – 1, if picker p is available in area k; 0 otherwise,
gjk – 1, if items for batch line j are located in area k; 0 otherwise,
bk – maximum number of pickers that can work in area k,
Ptk – set of pickers available in time window t and area k,
δ(j, j′) – distance between locations of batch line items j and j′ that are picked in a planned
sequence j, j′ε Oi, following routing strategy,
Oi – set of lines (item groups) for batch i.

Decision Variables
xipt – 1, if picker p is due to pick for order i in time t; 0 otherwise,
rj – time (discrete period) in which line item j is to be picked.

Objective function

w1

P∑

p=1
max

i=1..I,t=1..T
xipt + w2

P∑

p=1

T∑

t=1

I∑

i=1

∑

j, j ′∈Oi

xiptδ
(
j, j ′

) → min (1)

Constraints

I∑

i=1
xipt li ≤ ep, p ∈ Ptk, t = 1, . . . , T (2)



172 J. Duda and A. Stawowy

T∑

t=1

∑

p∈Ptk

xipt = 1, i = 1, . . . , I (3)

(
xipt gik

) ≥ apk, i = 1, . . . , I ; p ∈ Ptk; t = 1, . . . , T ; k = 1, . . . , K (4)

r j ≤ di , i = 1, . . . , I ; j ∈ Oi (5)

r j ≥ si , i = 1, . . . , I ; j ∈ Oi (6)

∑

p∈Ptk

xipt gik ≤ bk, i = 1, . . . , I ; t = 1, . . . , T ; k = 1, . . . , K (7)

Goal function (1) optimizes a weighted sum of the number of pickers engaged in
the picking process in a given planning horizon and the total length of the routes each
picker has to travel in order to collect all necessary items. Weights w1 and w2 can be set
by a planner, however for the experiments they have been set to 100 and 1 respectively
in order to balance both criteria. Constraints (2) ensure that picker performance is not
exceeded. This can be expressed in various ways, depending on the picker’s performance
measure used in a warehouse, or even combination of them (e.g. items quantity and items
weight). In this paper we assume an average orders’ lines that are collected by a picker
as the weight of the items is comparable in all areas that have been used for benchmark
instances. According to constraints (3) only one picker can pick for a single batch i
starting in time t. In reality we can have orders that may exceed picking performance
of any picker, but in such case the order can be divided into few different batches. The
location in which picker p can operate is limited by constraints (4). Constraints (5) say
that all items (batch lines) must be picked before their due dates and not earlier than the
time in which the batch is released – constraints (6). Finally, constraints (7) limit the
number of pickers that can work in the same area in the same time.

4 VNS Algorithm

In [4] a genetic algorithm, solving the problem similar to the one described in the previous
section, was introduced. However, in the model under consideration each item was
treated separately and no order lines were considered, which occurred to be unrealistic
assumption in practical application.

Nevertheless, it was possible to adapt representation structure of a solution (Fig. 1).
The solutions are represented by the set of two vectors π and τ, each of the length equal
to the number of batches that have been released for picking in a given planning horizon.
Vector π represents picker’s indices that are engaged in picking batch i and vector τ

represents the time (approximated by discrete time periods with a determined precision
– in the presented case 30 min) in which the picker picks batch i.
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i 1 2 3 4 5 6 7 8 9 10 

πi 1 2 1 2 1 2 2 3 1 3 

τi
6:30 
7:00 

7:30 
8:00 

9:00
9:30

8:00
8:30

6:00
6:30

8:00 
8:30

7:00
7:30

8:30
9:00

8:00
8:30

7:30
8:00

Fig. 1. The representation of solution.

Again four different mutations defined in [4] have been adapted for building
neighborhood structures in a VNS algorithm. These are as follows:

– changes the picking time to another one within the acceptable range, i.e. between
the availability time of batch i and its required collection time,

– changes picker’s index to a different index,
– swaps the picking time for the two randomly chosen batches. If the picking time

(more precisely: the beginning of the discrete time period) is smaller than release time
of the batch, it is changed to the latter time; the same is done if the time (the end of the
discrete time period) is greater than the required collection time,

– swaps pickers’ indexes for the two batches.

The main procedure of the VNS algorithm is shown in Algorithm 1. It follows the
basic VNS scheme with the first improvement strategy proposed by Mladenovic and
Hansen [11]. In the initial phase, for each batch to be collected a picker’s index is drawn
in a random way from the available range and the time period is drawn as a period
between release time and due time for the batch.

Algorithm 1. VNS algorithm. 
1:   for i:=1 to maxinit

2:  initialize(s) 
3:     s’:=local_search(s); 
4:     if f(s’) < f(sbest) 
5:       sbest:=s’
6:   end for
7:   for i:=1 to maxiter

8:    for n:=1 to 4
9:      generate solution s’ from neighborhood n

10:    s’’:=local_search(s’) 
11:    if f(s’’) < f(sbest) 
12:      sbest:=s’’
13:  n:=1 
14:       else 
15:      n:=n+1 
16:   end for
17: end for 
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Local search procedure is based on the first improvement strategy and it is performed
in two steps. At first, the picker with the lowest number of batches that are scheduled
to pick is found, then it is replaced with another picker, starting from the one that is
involved in picking for the highest number of batches. The procedure continuous for all
possible pickers. In the second step, the standard 2-Opt algorithm is used to optimize
the routes for all the pickers remaining from the first stage. The local search procedure
is summarized in Algorithm 2.

Algorithm 2. Local search for VNS. 
1:  sort all pickers according to the number of batches planned to be picked by them 
2:  i:=1 
3:  repeat
4:    take picker pi from the sorted list 
5:    j:=P; 
5:    repeat
6:       take picker p’j from the sorted list 
7:       replace pi with p’j

8:       if performance of p’j is not violated 
9:          success:=true 
10:     else 
11:         restore original pi

12:    until success or there are no other pickers in the list 
13:  until success
14:  for each picker pi with batches assigned 
15:    for all items locations lpi assigned for pi

16:       2-Opt(lpi) 
17:   end for
18:  end for 

The initial procedure is repeated maxinit times in order to find a relatively good
starting solution. Then for maxiter times the procedures of systematic search – using the
four defined neighborhoods of the solution – are performed. The sequence of the four
neighborhoods and themaxinit parameter has been fixed to 1000 on the basis of Taguchi’s
DoE procedure (maxinit from 100 to 2000 with step 100). The maxiter parameter was
set to 10000, which allowed to limit the algorithm’s execution time for 1, 3 and 5 min,
depending on the size of the instances. Limiting the execution time to only few minutes
was a crucial requirement due to the fact that the batch (completion) list remains open
and new orders for collection may appear during the day and the picking plan has to be
quickly reoptimized.

Three sizes of the problem instances have been used as a benchmark for the proposed
VNS algorithm. 10 instances in each size have been generated (giving 30 test instances
in total), basing on the real data from the warehouse mentioned earlier in Sect. 3. The
characteristic of the instance groups is shown are shown in Table 1.

In each case the planning horizon was 8 h (one working shift), time granularity was
set to 15 min. It was set in such a way that CPLEX Solver (version 12.8) was able to
solve the problem for the smallest instance. For the instances with more batches and
more pickers it was impossible for CPLEX to find any feasible solution even after one
hour (machine with Intel Xeon 1220 v2 and 16 GB RAM).
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Table 1. Characteristics of the three instances groups.

Problem instances No of batches
(completion lists)

No of order lines to be
collected

No of pickers available

Small 20 30 5

Medium 50 270 30

Large 80 520 40

For comparison, in addition to CPLEX Solver, we used the genetic algorithm similar
to the one presented in [4], which achieved very good results compared to the actual
picking plans in the analyzed warehouse (up to 71.2%). The VNS algorithms described
in the literature, presented in Sect. 2, could not be used for the comparison. First of all
in most cases the presented algorithms were designed exclusively to minimize tardiness
regarding picking time, without taking into account the number of pickers. Moreover,
they refer primarily to the order batching step, which is not considered in this paper.
For example four out of six neighborhood structures in the Scholz et al. VNS algorithm
[13] are constructed around moving one or two orders from one batch to the other. The
remaining two neighborhoods relay on the swapping batches between pickers (we use
similar and neighborhoods). Their routing optimization procedure involves either
Lin-Kernighan-Helsgaun (LKH) heuristic, 3-Opt or 2-Opt, and the latter is used in our
algorithm in order to maintain short execution time of the VNS.

In the experiments computational time for the GA was limited to 1 min, 3 min and
5 min for the small, medium and large instances, respectively, i.e. it was the same as
for the VNS algorithm. Additionally the results with the VNS algorithm without local
search procedure is presented to show the impact of the LS on the algorithm. Each of
the instance was calculated 20 times and average result was taken as the final result for
each algorithm. Summary of the results is presented in Table 2. For each approach the
average number of pickers engaged and total distance travelled by them are shown.

Table 2. Average results for the compared algorithms.

Instances VNS VNS-wLS GA CPLEX

Small

average
std. deviation

5.0
0.0

2482.3
54.8

5.0
0.0

3090.3
73.2

5
0

2512.2
88.5

5.0
-

2465.7*
-

Medium

average
std. deviation

22.9
1.8

5834.0
127.4

29.2
0.5

6938.0
46.8

23.7
1.9

5980.3
146.1

N/A
-

N/A
-

Large

average
std. deviation

33.3
2.1

9611.8
138.2

40.0
0.0

11669.2
53.5

34.8
2.9

10427.1
194.4

N/A
-

N/A
-
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Aswe can observe in theTable 2, the proposedVNSalgorithmwas better than genetic
algorithm in the assumed time limits. For the smallest instances CPLEX Solver gave the
best results, however for one instance it was unable to find any feasible solution after 1 h.
Results achieved by both VNS and GA were close to the one found by CPLEX Solver.
For the medium instances of the problem in most cases VNS was able to plan little less
than 23 pickers on average, contrary to the GA which usually planned almost 24 pickers
with longer total distance (146m on average) to be covered by them. A similar advantage
of VNS occurred in the case of the largest instances, but the difference between VNS
and GA is even larger, especially regarding the distance the pickers have to travel (816 m
on average).

We can also see that the local search procedure has a huge impact on the results
of the VNS algorithm. Without it the algorithm usually used all available pickers, that
additionally have to travel amuch longer distance. Its use, however, is very time expensive
– it increases the calculation time by over 6 times.

5 Conclusions and the Future Work

Batch sequencing and picker routing problem with time window is one of the most
practical problems that is faced in warehouse logistic systems. The paper proposes an
efficient VNS approach to minimize the pickers effort.

The contributions of this study are as follows:

– We suggest a new mathematical programing formulation to this problem. A math-
ematical model was developed to minimize a weighted sum of the pickers engaged
in the picking process in a given planning horizon and the total length of the routes
the pickers have to travel in order to pick all items. The warehouse studied employs
traditional wave picking with multiple pickers.

– We propose a variable neighborhood search able to deal with large instances.
– We conduct numerical experiments to evaluate the performance of our approach.

The computational experiments presented in the paper prove that the proposed VNS
based approach can be well applied to the batch sequencing and picker routing problem.
The performance of the proposed heuristic depends strongly on the time granularity
(discrete time periods) that is used for planning. It is up to the decision maker how small
it should be. It is a very important, because smaller time windows lead to the increase of
the number of workers involved in the picking process and to the decrease of the average
reduction of the routes the pickers have to travel. In our experiments we assumed 15min,
which in practical applications is usually enough.

In the future research better local search algorithm may be considered, allowing for
faster (and maybe even better) reduction of the number of pickers that must be engaged
in the picking process. Also benefits from using 3-Opt or other heuristics developed for
TSP like LKH should be carefully analyzed in relation to the increase of the overall
execution time of the VNS algorithm.
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Abstract. The home health care routing and scheduling problem
(HHCRSP) is an extension of the vehicle routing problem with time win-
dows (VRPTW). It consists of providing services operations at patients’
homes in case of aging or disabling disease. In this paper, we address the
HHCRSP with multiple availability periods of patients, which are consid-
ered as soft/flexible time windows. A mathematical model is proposed
to define a daily planning by minimizing the total penalized earliness
and tardiness of service operations, and caregivers’ total waiting time.
Taking into account requested services of patients, qualifications and
time windows of caregivers, patients’ preferences expressed as multiple
availability periods. The model is implemented and tested using CPLEX
IBM. To deal with large instances a general variable neighborhood search
(GVNS) based heuristic is proposed, implemented and tested using the
language C++. Computational results show that the proposed heuristic
could find a good solution in a very short computational time.

Keywords: Variable neighborhood search · Home health care ·
Routing and scheduling · Multiple time windows · Mathematical
modeling

1 Introduction and Literature Review

The home health care (HHC) consists of providing care services at patients’
home in case of illness, injury or aging in a personal environment [7]. These ser-
vices include: (i) medical care such as the nursing and the physical therapy, (ii)
and non-medical care, including social services and assistances, such as cleaning,
preparing food and getting out of bed. Due to the variety of the offered services,
people with many different qualifications are employed as caregivers [19]. The
HHC will allow patients to remain in their home and receive care and assistance.
One of the most important decisions for HHC companies is to assign caregivers
to patients by finding for each one an efficient route schedule to reduce operat-
ing cost and to improve customer service quality. This problem is well known
as the Home Health Care Routing and Scheduling Problem (HHCRSP) is a
c© Springer Nature Switzerland AG 2020
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combination of two NP-hard problems: the nurse rostering problem [6] and the
vehicle routing problem with time windows [5], it can be described as follows:
a set of patients, scattered in a geographic area, need care services which must
be provided by caregivers. They start from the HHC center, travel to provide
services for clients, and return to the center with respect to some constraints
such as patients’ time windows. The objective is to find a set of routes in order
to optimize one or more criteria according to the decision maker choice.

Time windows are considered as an important criterion for measuring the
patients’ satisfaction, so the decision maker should respect as much as possi-
ble these time windows’ choices by the patients. Two types of time windows
are used in the literature: hard/fixed time windows [1,2,14,20], or soft/flexible
[12,16,18,24]. In the first one, the decision maker have to schedule the visit
within the time window. In the second one, time windows could not be respected,
and delays can be accepted with a penalty cost. Redjem et al. [20] defined a
heuristic dealing with a simultaneously visits and possibly in a predefined order
where patients are supposed to be assigned to caregivers. The objective is to
minimize the traveling and waiting times. The heuristic has two steps. The first
step is to search the optimal tours by calculating for each caregiver the shortest
travel duration. The second step is the introduction of the precedence and the
synchronization constraints. Liu et al. [14] have proposed a Branch and Price
algorithm (B&P) for the HHCRSP with lunch break requirements, which has
to be scheduled on each tour of the care workers. The objective is to minimize
the total travel cost and unvisited clients. The B&P algorithm was tested on
both real-life data and randomly generated instances modified from the classical
Solomon’s VRPTW benchmarks. Mankowska et al. [16] have focused their work
on temporal dependencies of services, they defined a mathematical model and a
heuristic which dealing with double synchronization as well as pairwise temporal
precedence between jobs to minimize the total distance traveled by caregivers,
the total tardiness of services operations and the maximal tardiness observed
over all services. Randomly generated instances were used to test both math-
ematical model and proposed heuristic. Trautsamwieser and Hirsch [24] have
defined a mathematical model and VNS algorithm to optimize the daily plan-
ning with respect to mandatory breaks, feasible assignment, hard time windows
and working time restrictions. The algorithm was tested on real-life data sets,
the randomly generated data sets were used to benchmark the VNS algorithm
and to find tuning parameters. Bertels and Fahle [4] have studied the HHCRSP
considering both soft and hard times windows, the first included in the second.
A hybrid algorithm was used to solve the problem combining linear program-
ming (LP), constraint programming (CP) and simulated annealing (SA) or tabu
search (TS). Tricoire et al. [25] and Belhaiza et al. [3] have proposed respectively
a heuristic and a hybrid variable neighborhood tabu search heuristic to solve the
Vehicle Routing Problem with Multiple Time windows.

Decerle et al. [8] Have proposed a mixed integer-programming model and a
memetic algorithm to deal with home health care routing scheduling problem
with soft time windows and possible double synchronized services for patients.
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Benchmark instances from the literature as well as new instances based on real
life data are used to test the proposed methods. Rest and Hirsh [21]: have focused
their word on daily scheduling of home health care services considering a mul-
timodal transportation network. A mathematical model and Tabu Search are
proposed to deal with the problem, time-dependent travel time is computed by
a dynamic programming approach, to optimize travel and waiting times of care
staff. Deterministic models and methods are usually less robust. In case of any
possible changes in practical situations, the planned scheduling must be redone.
Shi et al. [22] proposed a stochastic Programming model, Simulated Anneal-
ing, Tabu Search, and Variable Neighborhood Search to solve the problem with
stochastic travel and service times. Liu et al. [14] have combined A branch-and-
price (B&P) algorithm and a discrete approximation method to solve the Home
health care problem where caregiver’s travel times and patients’ service times
are stochastic.

The contribution of this work consists of developing a new mathematical
model for the HHC dealing with soft/flexible multiple time windows with a max-
imum of earliness(Emax) and a maximum tardiness(Tmax) of services operations,
where patients could define all periods in which they are available to receive care
services. A soft/flexible time windows would increase the chance of finding a fea-
sible schedule as delays are accepted. However, any delays occurred in the case
of hard/fixed time windows, the schedule is infeasible and the company must
use, maybe hire, more caregivers, which are an additional cost. The soft/flexible
time windows proposed with Emax and Tmax is a general case of hard/fixed time
windows(Emax = 0, Tmax = 0) and of soft/flexible time windows(Emax = ∞,
Tmax = ∞).

Three objectives are considered. The first goal is to minimize the earliness
of operations services to ensure patients’ availability. The second objective is
to minimize the tardiness of operations services to avoid unnecessary waiting
times of the patients [16]. The third goal is to minimize caregivers’ waiting
times, which is considered as an unproductive time [20]. Another distinguishing
characteristic of this search is the proposed solving approach, we have developed
a metaheuristic, based on General Variable Neighborhood Search, to reduce the
computational time needed to solve the model.

2 Problem Statement

Given a set of patients denoted by N = {1, 2, 3, ..., n} where n is the number
of available patients scattered in a geographic area. Patients need some services
denoted by S = {1, 2, 3, ..., q}, where q is the number of available services pro-
vided by the company of HHC. Each patient i ∈ N has a service duration tis,
which it depends on the requested service s. The patient i can specify a multiple
times windows [ail, bil], where ail and bil are the earliest and latest service times
at his availability period l ∈ L = {1, 2, 3, ..., p} in which he will be available to
receive care service. However, only one period will be selected to provide the
requested service operation.
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Caregivers are denoted by a set K = {1, 2, 3, ..., c} where c is the number of
available caregivers. They are characterized by a subset of skills S. Each one has
a time window [dk, ek] where dk and ek are the earliest and latest service times.
They start and finish their tours at the center of HHC organization, which will
be represented by artificial nodes 0 and n + 1. The travel time from the patient
i to the patient j is denoted by Tij .

Each patient requires one service. Patients’ requested services are expressed
by a matrix of binary parameters δis, which is equal to 1 if the patient i ∈ N
requires a service operation s ∈ S, and 0 otherwise. Each service operation s
will be assisted only by the caregiver k who have that qualification. Caregivers’
skills are expressed by a matrix of binary parameters Δks, which is equal to 1
if the caregiver k ∈ K is qualified to perform a service operation s ∈ S, and 0
otherwise.

The problem is to define a daily planning by minimizing caregivers’ wait-
ing time and respecting as much as possible selected patients’ time windows,
one period for each patient. While assigning qualified caregivers to patients and
determining for each one a route such that each caregiver leaves from the HHC
center, to serve assigned patients, must to return within their time windows with-
out exceeding the maximum earliness, the maximum tardiness and the maximum
waiting time fixed by the decision maker.

The main hypotheses of this problem are:

– The HHC center provides a set of services operations;
– Caregivers start and finish tours at the HHC center;
– Caregivers depart as they are available from the HHC center, i.e. waiting at

HHC center is not allowed;
– Each caregiver has a time window and a subset of skills that he could provide;
– Each patient requests a single service and has multiple availability periods;
– Patients’ time windows are soft/flexible, it can be violated with a penalty

cost;
– A maximum of earliness and tardiness of operations services which not to be

exceeded is fixed;
– A maximum waiting time which a caregiver have not to exceed is fixed;
– Processing times of services operations are known and without preemption;
– The travel time between patients are known.

3 Mathematical Formulation

3.1 Parameters

The notation of parameters used in the model is defined as follows:

– α, β, γ: the weights respectively, of total earliness and total tardiness of service
operations, and caregivers’ total waiting time where α + β + γ = 1;

– N : set of patients;
– N0 = N ∪ {0} and Nn+1 = N ∪ {n + 1}: set of patients including the HHC

center which is represented by artificial nodes 0 and n + 1;
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– n: number of patients;
– K: set of caregivers;
– c: number of caregivers;
– S: set of services (skills);
– q: number of services (skills);
– M : big number;
– L: set of patients’ times windows (availability periods);
– p: number of availability periods;
– l: index of patients’ times windows;
– [ail, bil]: the lth availability period of the patient i;
– [dk, ek]: caregivers’ time windows;
– Tmax: maximal tardiness of a service operation;
– Emax: maximal earliness of a service operation;
– Wmax: maximal waiting time for each caregiver;
– Tij : travel time from the patient i to the patient j;
– tis: processing time of the service operation s at the patient i ∈ N ;
– δis:equals to 1 if a patient i ∈ N requires service the operation s ∈ S;
– Δks:equals to 1 if the caregiver k ∈ K is qualified to provide the service

operation s ∈ S.

3.2 Decision Variables

The notation of decision variables used in the model is defined as follows:

– xijk: binary, 1 if the caregiver k visits the patient j after the patient i, 0
otherwise;

– yiks: binary, 1 if the service operation s is provided by the caregiver k to the
patient i, 0 otherwise;

– zil: binary, 1 if the lth availability period will be chosen for the patient i, 0
otherwise;

– ui: earliness of a service operation at the patient i;
– vi: tardiness of a service operation at the patient i;
– Aik: arrival time of the caregiver k to the patient i;
– Sik: start time of a service operation at the patient i provided by the caregiver

k;
– Wik: waiting period of the caregiver k at the patient i;
– Wk: total waiting time of the caregiver k.

3.3 Mathematical Model

The MILP formulation of the problem statement, is an extension of VRPTW
[23] adapted and augmented by constraints that are specific to the HHC context,
is defined as follows:

min Z =
n∑

i=1

(αui + βvi) +
c∑

k=1

γWk
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s.t.
n∑

i=0

c∑

k=1

xijk = 1, j ∈ N (1)

n+1∑

j=1

c∑

k=1

xijk = 1, i ∈ N (2)

n∑

i=0

xi(n+1)k = 1, k ∈ K (3)

n+1∑

j=1

x0jk = 1, k ∈ K (4)

n∑

i=0

ximk =
n+1∑

j=1

xmjk, m ∈ N, k ∈ K (5)

Sik +
q∑

s=1

tisyiks + Tij ≤ Sjk + (1 − xijk)M, i ∈ N0, j ∈ Nn+1, k ∈ K (6)

Sik +
q∑

s=1

tisyiks + Tij ≤ Ajk + (1 − xijk)M, i ∈ N0, j ∈ Nn+1, k ∈ K (7)

Sik +
q∑

s=1

tisyiks + Tij ≥ Ajk + (1 − xijk)M, i ∈ N0, j ∈ Nn+1, k ∈ K (8)

Wik = Sik − Aik, i ∈ N, k ∈ K (9)

Wik ≤
q∑

s=1

yiksM, i ∈ N, k ∈ K (10)

Sik ≤
q∑

s=1

yiksM, i ∈ N, k ∈ K (11)

n+1∑

j=1

xijk =
q∑

s=1

yiks, i ∈ N, k ∈ K (12)

2yiks ≤ δis + Δks, i ∈ N, s ∈ S, k ∈ K (13)
S0k = dk, k ∈ K (14)
A(n+1)k ≤ ek, k ∈ K (15)

(zil +
q∑

s=1

yiks − 2)M + ail − ui ≤ Sik, i ∈ N, l ∈ L, k ∈ K (16)

Sik +
q∑

s=1

tisyiks ≤ bil + vi + (2 − zil −
q∑

s=1

yiks)M, i ∈ N, l ∈ L, k ∈ K (17)
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p∑

l=1

zil = 1, i ∈ N (18)

ui ≤ Emax, i ∈ N (19)
vi ≤ Tmax, i ∈ N (20)

Wk =
n∑

i=1

Wik, k ∈ K (21)

Wk ≤ Wmax, k ∈ K (22)
xiik = 0, i ∈ N, k ∈ K (23)
Wik ≥ 0, i ∈ N, k ∈ K (24)
Sik ≥ 0, i ∈ N, k ∈ K (25)
Aik ≥ 0, i ∈ N, k ∈ K (26)
ui ≥ 0, i ∈ N (27)
vi ≥ 0, i ∈ N (28)
xijk ∈ {0, 1}, i ∈ N, j ∈ N, k ∈ K (29)
yiks ∈ {0, 1}, i ∈ N, k ∈ K, s ∈ S (30)
zil ∈ {0, 1}, i ∈ N, l ∈ L (31)

The objective function is to minimize the total penalized earliness and tar-
diness of services operations, and caregivers’ total waiting time. Constraints (1)
and (2) state that each patient will be visited exactly by one caregiver. Con-
straints (3) and (4) state that each caregiver left the center must to return.
Constraints (5) express the flux conservation. Constraints (6) determine the ser-
vice operations’ starting time of the patient j with respect to service operations’
completion time of the patient i. These constraints enforce that the starting
time of services along the route of a caregiver are strictly increasing. In doing
so, they also eliminate sub-tours because a return to an already visited patient
would violate the start time of the previous visit [16]. Constraints (7) and (8)
define the arrival time of a caregiver k to the patient j. Constraints (9) define
the waiting time of the caregiver k at the patient i. Constraints (10) and (11)
initialize the waiting time and the starting time to zero if the caregiver k will not
be affected to the patient i. Constraints (12) define the variable yiks. Constraints
(13) ensure that a qualified caregiver k performs a requested service operation
s to patient i. Constraints (14) and (15) enforce the respecting of caregivers’
time windows. Constraints (16) and (17) ensure the respecting of patients’ time
windows. Constraints (18) guarantee that a one period time is selected of the
patient’s availability periods. Constraints (19) and (20) guarantee not to exceed
the maximal earliness and tardiness of a service operation. Constraints (21)
define the total waiting time for each caregiver. Constraints (22) ensure not to
exceed the maximal waiting time for each caregiver. Constraints (23 to 31) set
the domains of the decision variables.
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4 Variable Search Neighborhood

Due to the weakness of local search strategies that fall into a local optimum
and have no ability to leave it, several metaheuristics, extend the local search
strategies, has been proposed to avoid being trapped in a local optimum such
as Tabu Search (TS) [11], Simulated Annealing (SA) [13] and Variable search
neighborhood (VNS). The VNS was proposed by Mladenovic and Hansen [17], is
based on the idea of systematic changes of neighborhoods structure in the search
for a better solution. VNS proceeds by a descent method exploring a series of
predefined neighborhood to find a local minimum. Each time a starting point
is generated randomly using the current neighborhood in the shaking phase to
run a local descent method. The new local minimum found is compared to the
incumbent, the search jumps to the new solution if and only if is better. Hence,
VNS is not a trajectory following method and does not specify forbidden moves.
Many versions of VNS are used in the literature such as: (i) Reduced Variable
Search Neighborhood (RVNS) is a pure stochastic search method, only shaking
phase is applied without improving the generated solution using a local descend
method. (ii) Variable neighborhood descent (VND) is a deterministic version
of VNS where all neighborhood defined are applied to the initial solution in a
predefined order, if a new better local minimum is found the searching is restarted
from the first neighborhood. (iii) And the General Variable Search Neighborhood
(GVNS) which is a VNS where the local descend method is replaced by the VND.

4.1 Encoding

A solution will be represented by a matrix where the number of columns equals
to the number of patients n. Two lines are used, the first one will contain patients
and services operations requested (are included in parenthesis), and the second
will contain assigned caregivers. Example: we assume that we have 6 patients
and 2 caregivers skilled to provide 3 types of services operations. A solution will
be encoded as follow (see Table 1).

The caregiver 1 will visit the patient 1 to provide the service operation 3,
the patient 2 to provide the service operation 1 and the patient 5 to provide the
service operation 2.

Table 1. Example of solution encoding

Patients 1 (3) 3 (1) 4 (3) 2 (1) 6 (2) 5 (2)

Caregivers 1 2 2 1 2 1
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4.2 Decoding

Algorithm 1: Caregivers’ arriving early to patients
1 if (α ≤ γ) then
2 if (ETil ≤ Emax) then
3 set ui ←− ETil ;
4 else if (Wk + ETil − Emax ≤ Wmax) then
5 set ui ←− Emax and Wk ←− Wk + ETil − Emax ;
6 else
7 the availability period l is infeasible
8 end
9 else

10 if (ETil + Wk ≤ Wmax) then
11 set Wk ←− Wk + ETil ;
12 else if (Wk + ETil − Wmax ≤ Emax) then
13 set ui ←− Wk + ETil − Wmax and Wk ←− Wmax ;
14 else
15 the availability period l is infeasible
16 end
17 end

Given a solution encoded as proposed above. For each sub set of patients assigned
to a caregiver, the starting, the arrival and the waiting times will be calculated
iteratively in the same order as they appear at the matrix. For each patient i, the
period l ∈ L , constraints (1) to (31) are taken into account, that minimize the
waiting time, the earliness and the tardiness of the service operation is selected
(see Eq. 32).

arg min
l∈L

{αui + βvi + γWik | s.t. Constraints (1) to (31)} (32)

For each period l ∈ L, three possible cases of caregivers’ arrival times are to
distinguish:

1. The caregiver arrives to a patient and finish providing requested service oper-
ation within the availability period:

ui = 0, vi = 0 and Wik = 0

2. The caregiver arrives to a patient within the availability period and finish
providing requested service operation with a tardiness time:

ui = 0, vi = Aik + tis − bil and Wik = 0

3. The caregiver arrives to a patient before the availability period . In this case,
many possibilities arise to calculate the waiting time and the earliness of the
service operation. This problem could be formulated as a MIP problem to
determine the optimal combination. However, the Algorithm1 is used. The
early time of the caregiver k at patient i for the availability period l (ETil)
is defined by the following formula: ETil = ail − Aik.



Daily Scheduling and Routing with Multiple Availability Periods of Patients 187

4.3 Neighborhoods

The neighborhood of a solution is defined as a transformation function applied
to this solution to get a set of solutions where one can move some amount in
any direction away from that solution without leaving the set. Four neighbor-
hoods structure are proposed, two neighborhoods are used to intensify patients’
assignment to caregivers (switch and inter-swap) and the two others are used to
intensify the order visiting (intra-shift and intra-swap).

1. Switch (i.e. Patients’ reassignment to caregivers): the neighborhood of a solu-
tion is defined as a reassignment of another caregiver k to a patient i. The
size of possible neighborhoods will be less than n(c − 1) depending on care-
givers’ qualifications. The equality could be hold if all caregivers are skilled
to provide all services operations (see Fig. 1);

Original solution :
Patients 1 (3) 3 (1) 4 (3) 2 (1) 6 (2) 5 (2)

Caregivers 1 2 2 1 2 1

Neighbor solution :
Patients 1 (3) 3 (1) 4 (3) 2 (1) 6 (2) 5 (2)

Caregivers 2 2 2 1 2 1

Fig. 1. Example of switch neighborhood moves

2. Inter-swap: this neighborhood aims to change patients’ assignment to care-
givers. Given two patients, caregivers’ assignment are swapped. The size of
possible neighborhoods equals to (n−1)×n

2 (see Fig. 2);

Original solution :
Patients 1 (3) 3 (1) 4 (3) 2 (1) 6 (2) 5 (2)

Caregivers 1 2 2 1 2 1

Neighbor solution :
Patients 1 (3) 3 (1) 4 (3) 2 (1) 6 (2) 5 (2)

Caregivers 2 2 2 1 1 1

Fig. 2. Example of inter-swap neighborhood moves

3. Intra-shift: given a visiting order, the neighborhood is defined as shifting of
a patient to another position. The size of possible neighborhoods equals to
(n − 1) × n (see Fig. 3);

Original solution :
Patients 1 (3) 3 (1) 4 (3) 2 (1) 6 (2) 5 (2)

Caregivers 1 2 2 1 2 1

Neighbor solution :
Patients 3 (1) 4 (3) 2 (1) 1 (3) 6 (2) 5 (2)

Caregivers 2 2 1 1 2 1

Fig. 3. Example of intra-shift neighborhood moves
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4. Intra-swap: given a visiting order, the neighborhood is defined as two patients’
position exchanging. The size of possible neighborhoods equals to (n−1)×n

2
(see Fig. 4).

Original solution :
Patients 1 (3) 3 (1) 4 (3) 2 (1) 6 (2) 5 (2)

Caregivers 1 2 2 1 2 1

Neighbor solution :
Patients 6 (2) 3 (1) 4 (3) 2 (1) 1 (3) 5 (2)

Caregivers 2 2 2 1 1 1

Fig. 4. Example of intra-swap neighborhood moves

4.4 Shaking

The shaking phase is the heart of the algorithm which is used to avoid being
trapped in a local optimum. It is defined as one or a series of moves applied
to a solution to jump from a local optimum. The four proposed neighborhoods
are used for the shaking phase (kmax = 4) as operators which will be applied m
times, each time the move is generated randomly. A series of tests was executed
to find the best value of m which is fixed to m = 5.

4.5 Local Search

Two types of algorithm could be used in local search: first improvement and
best improvement, the first one consists of staring over the search when the
first neighbor that improve the initial solution is found and the second consists
of starting over the search when all neighbors are tested and the best one is
selected. Four local search methods will be used where each one is matched to
a neighborhood of the four proposed, the best improvement algorithm will be
adopted to these local search methods.

4.6 Initial Solution

The initial solution is generated randomly as follow:

1. Patients are sorted by increasing end of their time windows for single period.
for multiple periods the visiting order is generated randomly (see Table 2)

Table 2. Example of visiting order

Patients 1 (3) 3 (1) 4 (3) 2 (1) 6 (2) 5 (2)

Caregivers

2. For each patient, assign a qualified caregiver selected randomly(see Table 3);
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Table 3. Example of caregivers’ assignment to patients

Patients 1 (3) 3 (1) 4 (3) 2 (1) 6 (2) 5 (2)

Caregivers 1 2 2 1 2 1

3. Calculate caregivers’ waiting times, the earliness and tardiness of services
operations using the decoding method proposed above.

4. If the solution is infeasible repeat steps 1, 2 and 3. Otherwise, go to the step 5;
5. calculate the objective function value.

4.7 GVNS Algorithm

The stopping condition is fixed as a number of no improvement in the best
solution found for X iterations which equals to the number of patients n times
10. Therefore the counter is initialized to zero if a new better solution is found.
The VND is applied to each solution x′ generated by the shaking phase. each
time the solution x (resp. x′) is improved the k (resp. l) is initialed to 1.

Algorithm 2: GVNS algorithm
1 Initialization : ;
2 - set Kmax = 4 and lmax = 4 ;
3 - generate an initial solution x ;
4 while (the stopping condition is not reached) do
5 for k ← 1 to kmax do
6 generate at random x’ in the kth Neighborhood of x, the kth

Neighborhood move is applied 5 times to x ;
7 for l ← 1 to lmax do
8 find the best neighbor x” of x in Nl(x′) ;
9 if f(x′′) < f(x′) then

10 set x′ ←− x′′ and l ←− 1 ;
11 else
12 set l ←− l + 1 ;
13 end
14 end
15 if f(x′) < f(x) then
16 set x ←− x′ and k ←− 1 ;
17 else
18 set k ←− k + 1 ;
19 end
20 end
21 end
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5 Numerical Experiments

The experiments run on the computer with Intel i7–7600U 2.80-GHz CPU and
16 GB of RAM under windows 10. The MIP model is implemented and tested
using CPLEX IBM version 12.8. The metaheuristic based on GVNS is coded
and tested using the language C++.

5.1 Test Instances

Tests instances have been generated randomly using the benchmark instances
from Mankowska et al. [16]. Patients and the HHC office are placed at random
locations in the area of 100×100 distance units. Travel times Tij are equal to the
Euclidean distance between patients truncated to integer. Processing times of
services operations tis are randomly chosen from the interval [10, 20]. Six types
of services S = {1, ..., 6} are considered. Caregivers are grouped into two subsets
with different skills. Each caregiver of the first group is qualified for providing
at most three services, which are randomly selected from the subset {1, 2, 3} of
S. Accordingly, each caregiver of the second group is qualified for providing at
most three services from subset {4, 5, 6}. Each patient requires a single service,
which is randomly drawn from S = {1, ..., 6}. The time windows are of length
120 min (2 h) and are randomly placed within a daily planning period of 10 h.
Regarding instances which contains two availability periods, the first period will
be placed in the first 5 h, and the second period will be placed in the interval
[5, 10]. No special preference for the three sub-goals and, therefore, weights are
set to α = β = γ = 1/3. The maximum earliness and the maximum tardiness
of service operations are set respectively to 0 min and 15 min, the maximum
waiting time is set to 90 min. 8 instances are generated, each one is used with
1-period and with 2-periods availability of patients. The instance Int1 1 refers
to the instance 1 with one availability period and the instance Int1 2 refers to
the instance 1 with two availability periods. A series of tests was executed to
find the best tuning parameters for the proposed metaheuristic.

5.2 Computational Results

Instances are generated as described above and solved. Instances with two avail-
ability periods are generated feasible in the first time. However, instances with
single time windows need many regenerations to get a feasible solution. Table 1
summarizes the results of CPLEX and GVNS according to the sizes and patients’
availability periods of test instances. ‘LB’ is lower bound of the model given by
CPLEX IBM. ‘Z’ is the objective function value, ‘GAP’ is calculated as 100%×
((average – lower bound)/average) and ‘CPU’ is computing time elapsed of
solved instances. For the GVNS algorithm, each instance is running 10 times
and the best, the worst and the average solution are considered. ‘CPU’ comput-
ing time correspond to sum of time elapsed to solve each instance 10 times. All
instances are solved, using CPLEX IBM, to optimality except instances Int7 2
and Int8 2. Instances Int6 2, Inst7 2 and Int8 2 are hard to solve compared to
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others instances. The instance Int6 2 required 47530 s to be solved, the instance
Int7 2 and Int8 2 was executed for 18 h and CPLEX could not find respectively
the optimal solution and a feasible solution, which shows the limit of the exact
method used considering the problem is NP-hard. The proposed metaheuristic
(GVNS), was able to find a good solution in a very short computational time,
solution in bold are proven optimal (see Table 4). The proposed GVNS could
find optimal solutions at least one time of the 10 executions for 11 instances.

Table 4. Numerical results of tested instances

CPLEX GVNS

Instances N K L LB Z CPU Best Worst Average Gap CPU

Int1 1 7 2 1 11 11 1.58 11 11 11 0% <1

Int2 1 10 3 1 31.33 31.33 1.90 31.33 31.36 31.53 1% <1

Int3 1 14 4 1 24 24 2.52 24 35.33 27.76 13% 1.79

Int4 1 20 5 1 7 7 3.02 7 9.33 7.43 6% 8.82

Int5 1 25 6 1 45 45 5.16 59.86 84 65.1 30% 25

Int6 1 30 6 1 34.6 34.6 12.13 35.3 44.6 39.13 17% 25

Int7 1 40 8 1 54 54 255 72 100 78 30% 111

Int8 1 50 10 1 7.66 7.66 381 11 18.66 13.73 44% 210

Int1 2 7 2 2 11.33 11.33 1.73 11.33 11.33 11.33 0% <1

Int2 2 10 3 2 5.33 5.33 1.91 5.33 6.33 5.43 2% <1

Int3 2 14 4 2 2.66 2.66 2.60 2.66 4 3.16 16% 1.74

Int4 2 20 5 2 0 0 16.31 0 9 2.7 100% 9.77

Int5 2 25 6 2 0 0 61 0 6.33 4.366 100% 32

Int6 2 30 6 2 35.3 35.3 47530 35.3 44.66 41.96 15% 52.64

Int7 2 40 8 2 0 2.33 64800 5.66 13.66 7.86 100% 248

Int8 2 50 10 2 0 - 64800 0 1.33 0.23 100% 561

Fig. 5. Objective function values according to the number of time windows (TW)
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Due to the LB equals zero, gap of instances Int4 2 and Int6 2 is 100%. Because
when LB approaches zero, the gap tends to 100%.

The objective function values of instances with two availability periods are
less than those with single period, except the first and the sixth instances, their
values are very close (see Fig. 5). Therefore, patients will be more satisfied seeing
that the earliness and tardiness of service operations are minimized. On the other
hand, the waiting time is also minimized which will increase the productive time
of caregivers since the waiting time is considered as unproductive time.

6 Conclusion

In this paper we have addressed the home health care routing and scheduling
problem with soft/flexible multiple time windows for patients. The objective is
to define a daily planning in which each caregiver would visit assigned patients
and return to the HHC center. To do that, a mathematical model is proposed to
minimize the total penalized earliness and tardiness of services operations, and
the caregivers’ total waiting time. The model is tested on randomly generated
data. Since exact methods did not provide a good solution in the reasonable
computational time, a powerful metaheuristic, based on general variable neigh-
borhood search (GVNS), is proposed to deal with large instances, which could
find a good solution in a very short computational time. The soft/flexible time
windows would increase the chance of finding a feasible solution since delays are
accepted with a penalty cost. However, patients will be less satisfied because
their availability periods are not respected. The future work will be focused on
hard/fixed multiple time windows for patients and multiple synchronized ser-
vices.
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