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Abstract  Cancer is a group of around 100 diseases that has been tormenting man-
kind since ancient time. Due to cancer, estimated 8.2 million people died globally in 
2012, and the toll is expected to reach 13 million in 2030. Despite the improvement 
of conventional therapeutic modalities, the outcome of cancer patients has not 
improved significantly. So, alternative therapeutic modalities and new effective 
anticancer drugs are highly sought for. Different parts of plants and their extracts 
have been used to cure many diseases and relive from physical agony since ancient 

M. Mahato 
Physics Division, Department of Basic Sciences and Social Sciences,  
North-Eastern Hill University, Shillong, Meghalaya, India 

S. Patra 
Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, 
North Guwahati, Assam, India 

M. Gogoi (*) 
Department of Biomedical Engineering, North-Eastern Hill University,  
Shillong, Meghalaya, India

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44921-6_2&domain=pdf
https://doi.org/10.1007/978-3-030-44921-6_2#ESM
https://orcid.org/0000-0002-1753-192X


42

times. In the traditional system of medicine, herbal products have been used for 
treating different types of diseases and alignments globally. Active compounds from 
herbal medicine, such as curcumin, are found to be effective against cancer. Despite 
their excellent therapeutic ability, the potential of these herbal compounds or phyto-
chemicals is limited due to their low water solubility and poor bioavailability.

Advances in nanomedicines are revolutionizing the healthcare sector. Significant 
progresses have been  made in development of nanocarriers in recent decades. 
Therapeutic efficacies of conventional drugs are reported to enhance by many folds 
using these novel nanocarriers through the intervention of nanotechnology. 
Application of nanotechnology may be effective in overcoming limitations of herbal 
drugs such as low water solubility, poor bioavailability, toxicity, and poor therapeu-
tic efficacy of the drugs. It greatly helps in achieving higher efficiency of the drugs 
compared to its molecular form. Development of herbal-based nanocarriers like 
polymeric nanoparticles, dendrimers, liposomes, and micelles is reported to be 
more effective in treatment and managements of cancer. Loading of herbal com-
pounds within these nanodrug delivery systems changes their pharmacokinetics 
profile and increases their bioavailability and therapeutic efficacy.

In this review, a comprehensive effort has been made on discovery of herbal 
drugs, herbal nanocarriers, and their application for cancer therapy. The coverage of 
this review will also extend to its current status and future prospects with elaborative 
and graphical examples.

Keywords  Cancer · Chemotherapy · Herbal compounds · Nanocarriers · 
Nanomedicine

2.1  �Introduction

2.1.1  �Cancer Overview

Cancer represents a diverse group of life-threatening diseases that causes abnormal 
and uncontrolled growth of malignant cells. These malignant cells are highly unor-
ganized, irregular in shape and size, and capable of invading neighboring healthy 
tissues and organs. The characteristics of cancer cells are: ability of tissue invasion 
and metastasis, sustain angiogenesis, self-sufficiency in growth signals, limitless 
replicative potential, evasion of apoptosis, and insensitivity to anti-growth signals 
(Hanahan and Weinberg 2000; Gogoi et al. 2016). Cancer has been affecting man-
kind since ancient times. There are more than 100 types of cancers reported till date, 
and their subtypes are found within specific organs (Gogoi et al. 2016). With time, 
the tumor cells disintegrate from the primary tumor and migrate through the blood 
vessels and lymphatic streams to form their colonies at different sites of the patient’s 
body. This process is called metastasis and it leads to the death of the host.

The exact causes and the ways of initiation and spreading of cancer are still not 
well understood, but both external factors (e.g., tobacco smoking, infections, expo-
sure to retroviruses, chemicals, and radiations) and internal factors (e.g., inherited 
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metabolism mutations, hormones, and immune conditions) are believed to be the 
reasons for cancer formation and growth (Feng and Chien 2003). These factors may 
act together or in sequential manners to initiate and promote cancer. Till date, no 
complete curing procedure for cancer is available, only remission or palliation is 
possible with the current treatment procedures. A cancer is said to be in remission 
state when all clinical evidence of cancer has been disappeared and the microscopic 
foci of cancer cells may still remain (Feng and Chien 2003).

2.1.2  �Limitation of Conventional Therapeutic Modalities

The most common and effective cancer treatment modalities are surgery, radiother-
apy, chemotherapy, hormone therapy, and immunotherapy. All these modalities have 
their own advantages as well as disadvantages and usually combination of two or 
more modalities gives the best result (Feng and Chien 2003). Surgery is one of major 
treatment procedures for treating tumor; but, erroneous or inadequately margined 
resection of tumor cells may lead to faster metastasis (Feng and Chien 2003; Gogoi 
et al. 2017). Moreover, tumors at metastasis cannot be treated with either surgery or 
radiotherapy. Radiotherapy is not selective to cancer cells, and it kills both malig-
nant and healthy cells. Success of chemotherapeutic agents in treating cancer is 
limited by their severe side effects and development of multidrug resistance by the 
cancer cells. A schematic representation of how chemotherapy kills cancer cells is 
shown in Fig. 2.1. Chemotherapeutic drugs which are effective against rapidly divid-
ing cells cannot kill large portion of dormant tumor cells. Thus the chemotherapy is 
compromised (Gogoi et al. 2017; Paszek et al. 2005; Tannock 2001). Hormone ther-
apy is applicable to only hormone-sensitive cancers like breast cancer, prostate can-
cer, ovarian cancer, etc. Hormone therapy inhibits the growth of cancer cell by 
blocking the action of hormones such as estrogen receptor-α responsible for the 
tumor growth (Hayashi and Kimura 2015). But, almost all patients with metastatic 
breast and prostate cancer that initially respond to hormone therapy develop resis-
tance to hormone therapy, and it leads to progression of the disease (Abraham and 
Staffurth 2016). Despite having number of therapeutic options, cancer is posing as a 
big menace to mankind. In 2008, 7.6  million people died of cancer, and toll is 

Fig. 2.1  Outline of chemotherapy (Subramanian et al. 2016)
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expected to reach 13.2 million by 2030 (Global cancer facts and figures, 2015, 2nd 
ed.). So, search for new effective and developed therapy is still going on.

2.1.3  �Importance of Nanomedicine

Application of nanotechnology especially nanomedicines opens up a window of 
opportunities to enhance the efficacy of anticancer drugs. According to the National 
Institute of Health, nanomedicine is referred as application of nanotechnology for 
treatment diagnosis, monitoring, and control of biological systems. Research into 
nanodrug delivery systems and diagnostic agents come within the preview of nano-
medicine (Moghimi et al. 2005). The size of nanocarriers is generally in the range 
of 1 to 100 nm (Subramanian et al. 2016). But, for the purposes of this chapter, we 
are considering all the drug delivery systems below size 1000  nm as “nanodrug 
delivery systems” or “nanocarriers.” Nowadays a lot of herbal nanocarrier-based 
nanomedicines are being investigated globally and showing promising results for 
the holistic treatment of cancer disease. Herbal compound-loaded nanocarriers can 
overcome the problems like aqueous solubility and permeability through biological 
membrane due to their size and modified surface properties as faced by herbal bio-
active compounds. Encapsulation of herbal drugs in nanocarriers improves the 
pharmacological activity and biodistribution of drugs, ensures their solubility and 
stability, and helps in maintaining sustained delivery (Jain et al. 2011). Moreover, 
application of nanodrug delivery systems may help in (i) achieving enhanced and 
targeted delivery of phytochemicals; (ii) crossing the tight epithelial and endothelial 
barriers and delivering large molecules to intracellular sites of action; and (iii) co-
delivering of two or more phytomedicines or therapeutic modalities for combined 
therapy and imaging the site of drug action (Lambert 2010; Liong et  al. 2008; 
Gunasekaran et al. 2014). Targeted delivery herbal bioactive molecules to the tumor 
site(s) reduces the side effects caused by off targeted delivery and increases the 
therapeutic efficacy of the nanoformulations.

Herein, we are reviewing the different types of herb-based nanocomposite exist-
ing in the literatures along with illustrative figures and explanation, which have 
been specially applied for the cancer treatment. The current development and future 
prospects in this direction have also been discussed.

2.2  �Bioactive Herbal Compounds: History 
and Discovery Strategies

Historically, plants and their products have been playing an important role in curing 
many diseases and reliving from different physical agonies. Plants are important 
sources of traditional medicines (Bhattacharjya and Borah 2008; Newman et  al. 
2000; Buss et  al. 2003). Herbal medicines were reported to use in different 
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civilizations around the world since ancient times. In Mesopotamia, approximately 
1000 plant-derived substances were reported to use as medicine in around 
2600 BCE. Egyptians had been using herbal medicines since 2900 BCE; but, the 
Ebers Papyrus only properly reported use of over 700 drugs of mostly plant origin 
in 1550 BCE. The Indian Ayurvedic system is dated prior to 1000 BCE. Charaka 
Samhita and Sushruta Samhita documented use of 341 and 516 drugs, respectively 
(Kapoor 1990; Dev 1999).The Chinese materia medica also documented use of 
large number of herbal medicine for treating different diseases. The Greco–Roman 
knowledge on their traditional herbal medicine was dated back to the first century 
AD, and large amount of this knowledge bases were preserved by the Arabs during 
the dark and middle ages during the fifth to twelfth centuries (Cragg and Newman 
2013). Much later, numbers of German books on herbal medicines were compiled 
during the period of the fourteenth to seventeenth century (Atanasov et al. 2015).

During all those periods, herbal medicines were used to treat different diseases 
or alignments without the in-depth knowledge of pharmacological activity or active 
components of the herbs (Atanasov et al. 2015). But, rational clinical investigation 
on medicinal herbs was laid down in the eighteenth century, when Anton von Störck 
had studied the properties of poisonous herbs like aconite and colchicum and 
William Withering had studied foxglove for the treatment of edema (Sneader 2005).

At the beginning of the nineteenth century, rational drug discovery from plants 
started when the German apothecary assistant Friedrich Sertürner had successfully 
isolated analgesic and sleep-inducing agent from opium named morphium (mor-
phine). Later numbers of papers were published based on this discovery. This led to 
successful isolation and study of numerous natural drugs from herbs and followed 
by chemical synthesis of these drugs (Kaiser 2008). As per the world health organi-
zation (WHO) report, 80% of rural people of world’s population especially in devel-
oping countries depend on the herbal medicine (World Health Organization 
Guideline 2001). Till today, substantial portion of therapeutic agents are comprised 
of natural products and their derivatives; e.g., 61% of anticancer compounds and 
49% anti-infectives approved during the period of 1981 to 2010 are derived from 
nature (Newman and Cragg 2012). However, the pharmaceutical companies have 
been avoiding investigation on natural product discovery processes since 1990, due 
to difficulties in supply, screening, characterization, and increase in rate of rediscov-
ering the known compounds (Li and Vederas 2009). Still, research on fast, inexpen-
sive next-generation genome sequence technology  and the discovery of natural 
product is flourishing at academic level (Luo et al. 2014).

The natural product discovery processes are broadly classified into two catego-
ries, namely, top-down and bottom-up approaches (Fig.  2.2). In top-down 
approaches, system level information are utilized to generate the new natural prod-
ucts without having prior knowledge of genes and enzymes involved in the biosyn-
thesis. These approaches don’t require complicated genome sequencing and 
sophisticated genetic manipulation.

In these approaches, biological samples are collected from diverse environments 
either for extraction or laboratory cultivation. The extracts are then screened for a 
desired bioactivity, and the “hits” are isolated for structural characterization. New 
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innovation in sampling and screening has mitigated the risk of rediscovering new 
chemical entities and allowing this approach to remain a viable means of natural 
product discovery (Luo et al. 2014). On the other hand, in the bottom-up approaches, 
the gene cluster of interest is identified, manipulated using transcription and transla-
tion processes, and then the corresponding natural product is synthesized (Luo et al. 
2014). Plant-derived natural products are generally nontoxic to the normal cells and 
well tolerated by our body (Singh et al. 2016).

The plant-derived marketed anticancer compounds can be divided into four 
important classes, the vinca alkaloids (vinblastine, vincristine, and vindesine), the 
epipodophyllotoxins (etoposide and teniposide), the taxanes (paclitaxel and 
docetaxel), and the camptothecin derivatives (camptothecin and irinotecan) (Desai 
et  al. 2008). Apart from these, the plants have tremendous potential to provide 
newer drugs, and search for new medicinal plants with potential anticancer com-
pounds is going on.

Vinca alkaloids are herbal compounds extracted from Madagascar periwinkle 
plant, Catharanthus roseus G. Don., and they have the potential to treat diabetes and 
cancer (Moudi et al. 2013). Vinca alkaloids inhibit microtubule assembly and hence 
disrupt the cellular division process of tumor cells (Duflos et al. 2002). Moreover, 
disruption of microtubules function affects the cellular functions like intracellular 
organelle transport, cell migration, cell signaling, and mitosis (Perez 2009). Herbal 
compounds derived from vinca alkaloid are used to treat breast cancer, Hodgkin’s 
lymphoma and Kaposi’s sarcoma, severe lymphoblastic leukemia, non-Hodgkin 
leukemia, William’s tumor, and non-small cell lung cancer (Safarzadeh et al. 2014).

Epipodophyllotoxins or podophyllotoxins are extracted from the root of the 
Indian podophyllum plant (Podophyllum peltatum). Etoposide and teniposide are 

Fig. 2.2  Overview of the recent strategies applied for the discovery of natural products (Luo 
et al. 2014)
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two active and semisynthetic compounds belonging to this family. These com-
pounds arrest the proliferation of tumor cells by inhibiting topoisomerase II, which 
causes breakdown of DNA double strands (Damayanthi and Lown 1998; Safarzadeh 
et al. 2014).

Taxanes such as paclitaxel, docetaxel, and other taxane homologs are considered 
as the most effective antitumor agents and effective against wide range of cancers 
such as breast, ovary, lung, and other metastatic cancers. Paclitaxel is derived from 
Pacific yew bark (Taxus brevifolia). These taxanes inhibit the polymerization of 
microtubules and thereby prevent proliferation of tumor cells (Hagiwara and 
Sunada 2004).

Camptothecins are natural cytotoxic drugs isolated from Camptotheca accumi-
nata of the Nyssaceae family. These are strong inhibitor of nucleic acid in mam-
malian cells and induce strand breaks in chromosomal DNA topoisomerase I 
(Hsiang et al. 1985).

Apart from these four groups of drugs, a large number of herbal drugs have been 
tried/investigated for their anticancer properties. These drugs from herbs or spices 
reveal their anticancer properties either by direct cytotoxic effects or modulating the 
immune system (Kitagishi et al. 2012). There are at least 2,50,000 species of plants 
out of which more than 1000 plants have been found to possess significant antican-
cer properties (Mukherjee et al. 2001). Active phytochemicals and their derivatives 
are found in leaf, root, flower, stem, and bark, and they perform number of pharma-
cological activities in human body (Singh et al. 2016). The search of novel bioactive 
compounds from natural sources continues with botanists, marine biologists, and 
microbiologists teaming up with chemists, pharmacologists, toxicologists, and cli-
nicians. A comprehensive list of phytochemicals investigated for treatment of dif-
ferent cancers is shown in Table 2.1.

2.2.1  �Structures of Important Herbal Compounds

Though a large number of plant-derived chemicals are investigated for their antican-
cer activity, only a few chemical entities were able to get approved for clinical 
applications due to stringent evaluation processes of pharmaceutical agents. The 
plant-derived anticancer agents approved for therapeutic use in the last 30 years 
(1984–2014) are summarized in Table 2.2.

2.3  �Cancer Targeting Strategies and Herbal Nanostructures

Despite discovery of large numbers of plant-derived drugs, success in treating solid 
tumor is limited due to the severe side effects of chemotherapeutic agents and the 
development of multidrug resistance. Moreover, highly acidic and oxygen-deprived 
hypoxic environments within the tumor mass reduce the effectiveness of drugs that 
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Table 2.1  Phytochemicals found to be effective in different types of cancers (Singh et al. 2016)

Phytochemical(s) Cancer models suppressed References

Alexin B, Emodin (Aloe 
vera)

Leukemia, stomach cancer, 
neuroectodermal tumors

Elshamy et al. 
(2010)

Allylmercaptocysteine, 
allicin (Allium sativum)

Colon cancer, bladder carcinoma Ranjani and Ayya 
(2012)

Amooranin (Aphanamixis 
polystachya)

Breast, cervical, and pancreatic cancer Chan et al. (2011)

Andrographolide 
(Andrographis paniculata)

Cancers of the breast, ovary, stomach, 
prostate, and kidney, nasopharynx 
malignant melanoma, leukemia

Geethangili et al. 
(2008)

Ashwagandhanolide 
(Withania somnifera)

Cancers of the breast, stomach, colon, 
lung, and central nervous system

Yadav et al. (2010)

Bavachinin, corylfolinin, 
psoralen (Psoralea 
corylifolia)

Cancers of the lung and liver, 
osteosarcoma, malignant ascites, 
fibrosarcoma, and leukemia

Wang et al. (2011b)

Berberine, cannabisin-G 
(Berberis vulgaris)

Cancers of the breast, prostate, liver, and 
leukemia

Elisa et al. (2015)

Betulinic acid (Betula utilis) Melanomas Król et al. (2015)
Boswellic acid (Boswellia 
serrata)

Prostate cancer Garg and Deep 
(2015)

Costunolide, Cynaropicrine, 
Mokkolactone (Saussurea 
lappa)

Intestinal cancer, malignant lymphoma, 
and leukemia

Lin et al. (2015)

Curcumin (Curcuma longa) Cancers of the breast, lung, esophagus, 
liver, colon, prostate, skin, and stomach

Perrone et al. 
(2015)

Daidzein and genistein 
(Glycine max)

Cancers of the breast, uterus, cervix, lung, 
stomach, colon, pancreas, liver, kidney, 
urinary bladder, prostate, testis, oral cavity, 
larynx, and thyroid

Li et al. (2012)

Damnacanthal (Morinda 
citrifolia)

Lung cancer, sarcomas Aziz et al. (2014)

β-Dimethyl acryl shikonin, 
arnebin (Arnebia nobilis)

Rat walker carcinosarcoma Thangapazham 
et al. (2016)

Emblicanin A & B (Emblica 
officinalis)

Cancers of breast, uterus, pancreas, 
stomach, liver, and malignant ascites

Dasaroju and 
Gottumukkala 
(2014)

Eugenol, orientin, vicenin 
(Ocimum sanctum)

Cancers of the breast and liver and 
fibrosarcoma

Preethi and Padma 
(2016)

Galangin, pinocembrine, 
acetoxychavicol acetate 
(Alpinia galangal)

Cancers of lung, breast, digestive systems, 
and prostate and leukemia

Sulaiman (2016)

Gingerol (Zingiber officinale) Cancers of ovary, cervix, colon, rectum, 
liver, urinary bladder, oral cavity, 
neuroblastoma, and leukemia

Rastogi et al. 
(2015)

Ginkgetin, ginkgolide A & B 
(Ginkgo biloba)

Glioblastoma multiforme, ovary, colon, 
hepatocarcinoma, prostate, and liver

Xiong et al. (2016)

(continued)
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Table 2.1  (continued)

Phytochemical(s) Cancer models suppressed References

Glycyrrhizin (Glycyrrhiza 
glabra)

Lung cancer, fibrosarcomas Huang et al. (2014)

Gossypol (Gossypium 
hirsutum)

Cancers of the breast, esophagus, stomach, 
liver, colon, pancreas, adrenal gland, 
prostate, and urinary bladder, malignant 
lymphoma and myeloma, brain tumor, and 
leukemia

Zhan et al. (2009)

Kaempferol galactoside 
(Bauhinia variegata)

Cancers of the breast, lung, liver, oral 
cavity, and larynx and malignant ascites

Tu et al. (2016)

Licochalcone A, 
licoagrochalcone 
(Glycyrrhiza glabra)

Cancers of the prostate, breast, lung, 
stomach, colon, liver, and kidney and 
leukemia

Zhang et al. (2016)

Lupeol (Aegle marmelos) Breast cancer, lymphoma, melanoma, and 
leukemia

Wal et al. (2015)

Nimbolide (Azadirachta 
indica)

Colon cancer, lymphoma, melanoma, 
leukemia, and prostate cancer

Wang et al. (2016)

Panaxadiol, panaxatriol 
(Panax ginseng)

Cancers of the breast, ovary, lung, prostate, 
and colon, renal cell carcinoma, leukemia, 
malignant lymphoma, and melanoma

Du et al. (2013)

Plumbagin (Plumbago 
zeylanica)

Cancers of the breast and liver, 
fibrosarcoma, leukemia, and malignant 
ascites

Yan et al. (2015)

Podophyllin and 
podophyllotoxin 
(Podophyllum hexandrum)

Cancers of the breast, ovary, lung, liver, 
urinary bladder, testis, and brain, 
neuroblastoma, and Hodgkin’s disease

Liu et al. (2015)

Psoralidin (Psoralea 
corylifolia)

Stomach and prostate cancer Pahari et al. (2016)

Sesquiterpenes and 
diterpenes (Tinospora 
cordifolia)

Lung, cervix, throat, and malignant ascites Gach et al. (2015)

6-Shogaol (Zingiber 
officinale)

Ovary cancer Ghasemzadeh et al. 
(2015)

Skimmianine (Aegle 
marmelos)

Liver tumors Mukhija et al. 
(2015)

Solamargine, solasonine 
(Solanum nigrum)

Cancers of the breast, liver, lung, and skin Al Sinani et al. 
(2016)

Thymoquinone (Nigella 
sativa)

Cancers of the colon, breast, prostate, 
pancreas, and uterus, malignant 
lymphoma, ascites, melanoma, and 
leukemia

Fakhoury et al. 
(2016)

Ursolic acid and oleanolic 
acid (Prunella vulgaris)

Cancers of the breast, cervix, lung, oral 
cavity, esophagus, stomach, colon, and 
thyroid, malignant lymphoma, intracranial 
tumors, and leukemia

Wozniak et al. 
(2015)

(continued)
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are basic in nature and/or utilize oxygen-free radicals for anticancer action (Kellen 
1993). In solid tumor, a substantial portion of tumor cells present in dormant state, 
and they do not divide in the early stage of tumor formation (Rockwell and Hughes 
1994). Therefore, chemotherapeutic agents effective against rapidly dividing cells 
could not kill them (Slingerland and Tannock 1998; Gogoi et al. 2017). Under this 
circumstances, the intervention of nanotechnology into the herbal drugs start play-
ing an enhancing factor of its therapeutic efficacy towards the targeted diseases. 
Herbal drug-loaded nanoformulations can be prepared using methods such as high 
pressure homogenization, complex coacervation, co-precipitation, salting out, 
nanoprecipitation or solvent displacement, solvent emulsification–diffusion, super-
critical fluid method and self-assembly method, etc. (Gunasekaran et  al. 2014). 
Some of the common herbal nanodrug delivery systems are liposomes, emulsions, 
solid lipid nanoparticles, micelles, polymeric nanoparticles, dendrimers, carbon 
nanotube, inorganic nanoparticles (silica, ZnO), etc. These nanoparticles deliver 
drug to the cancer site(s) by two strategies, i.e., active and passive targeting.

2.3.1  �Active Targeting

In active targeting, nanocarriers are channeled to tumor sites with the help of target-
ing ligands specific against receptors overexpressed on tumor cells or tumor vascu-
lature, which are not expressed by normal cells. In this process, chemotherapeutic 
agent-loaded nanocarriers are conjugated with targeting ligands or moieties such as 
folic acid, monoclonal antibody, integrin, etc. which can target (i) receptors prefer-
entially expressed on endothelial cells of tumor blood vessels (e.g., integrin-αv β3 
and negatively charged phospholipids) (Li et al. 2004; Nisato et al. 2003); (ii) recep-
tors overexpressed on tumor cells, e.g., HER2 and folate receptor (Chen et al. 2008; 
Pradhan et al. 2010); and (iii) lineage-specific targets that are expressed at the same 

Table 2.1  (continued)

Phytochemical(s) Cancer models suppressed References

Ursolic acid (Oldenlandia 
diffusa)

Cancers of the lung, ovary, uterus, 
stomach, liver, colon, rectum, and brain, 
lymphosarcoma, and leukemia

Al Sinani et al. 
(2016) and Wozniak 
et al. (2015)

Vinblastine, vincristine 
(Catharanthus roseus)

Cancers of the breast, ovary, cervix, lung, 
colon, rectum, and testis, neuroblastoma, 
leukemia, rhabdomyosarcoma, malignant 
lymphoma, and Hodgkin’s disease

Keglevich et al. 
(2012)

Viscumin, digallic acid 
(Viscum album)

Cancers of the breast, cervix, ovary, lung, 
stomach, colon, rectum, kidney, urinary 
bladder, and testis, fibrosarcoma, 
melanoma

Bhouri et al. (2012)

Withaferin A, D (Withania 
somnifera)

Cancers of the breast, cervix, prostate, 
colon, nasopharynx, and larynx and 
malignant melanoma

Lee and Choi 
(2016)
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level on both tumor and normal cells (e.g., CD19) (Cheng and Allen 2008) and kill 
tumor cells. These targeting ligands or moieties tagged effectively internalized by 
the tumor cells through receptor-mediated endocytosis. For effective deployment of 
active targeting strategy, the following issues need to be addressed: (i) liposome 
prepared for active targeting extravasated and bound to the first line of targeted 
tumor cells in the interstitial compartment and reported to obstruct the way for more 
liposomes to accumulate (Barenholz 2001), (ii) immunoliposomes prepared for 
active targeting were found to be cleared rapidly (Koning et  al. 2002), and (iii) 
nanocarriers prepared for active targeting were reported to internalize via endocyto-
sis process and end up with degradation in endosomes/lysosomes. Moreover, drug 
loading methods need to be devised properly so that the encapsulated drug does not 
form aggregate and degrade instantly for effective cancer treatment (Barenholz 
2001). A schematic representation of active and passive targeting strategies of nano-
carriers is demonstrated in Fig. 2.3.

Fig. 2.3  Schematic representation of different mechanisms through which nanocarriers can 
deliver drugs at tumor sites. Polymeric nanoparticles are shown as representative nanocarriers 
(circles). Passive tissue targeting is achieved by extravasation of nanoparticles through enhanced 
permeability and retention (EPR) effect. Active cellular targeting (inset) can be achieved by func-
tionalizing the surface of nanoparticles with ligands/moieties specific to the receptors/biomole-
cules expressed on the surface of the cancer cells (Peer et al. 2007)
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2.3.2  �Passive Targeting: Enhanced Permeability and Retention 
(EPR) Effect

In passive targeting process, nanocarriers/molecules are guided into the tumor inter-
stitium or tissue through leaky tumor vasculature with the help of molecular move-
ment within fluids (i.e., convection) or passive diffusion (Haley and Frenkel 2008). 
Conventional force mostly transports the larger molecules, whereas diffusion helps 
in transportation of low molecular weight compounds. It is well-known that tumor 
vasculatures are highly chaotic and complex structures, and they have the ability of 
extensive angiogenesis or forming hyperbranched defective vasculatures, impaired 
lymphatic drainage systems, and ability to generate number of vasculature perme-
ability factors such as bradykinin, nitric oxide (NO) (Maeda et al. 1988; Matsumura 
et al. 1988; Maeda et al. 1994), and peroxynitrite (ONOO−) (Maeda et al. 2000); and 
hence, tumor vasculatures are highly porous. The pore size in the tumor vasculature 
is in the range of 100–780 nm (Yuan et al. 1995) which is much larger than normal 
tissue junctions, i.e., less than 6 nm (Drummond et al. 1999). So, nanocarriers cir-
culating in the blood selectively enter into the interstitial spaces of tumor tissues and 
get accumulated there due to impaired lymphatic drainage system. This effect is 
called enhanced permeability and retention (EPR) effect. But, the pore size of endo-
thelium tissues of kidney glomerulus is in the range of 40–60 nm size; sinusoidal 
endothelium of liver and spleen have pores of size up to 150 nm (Seymour 1992). 
Nanocarriers like liposomes can avoid accumulation in the kidney due to their big-
ger size, but macrophages present in the liver and spleen can remove them from 
blood circulation. PEG coating onto surface of nanocarriers prevents their clearance 
by macrophages due to steric hindrance offered by PEG coating, increases their 
blood circulation time, and hence helps in selective accumulation of the nanocarri-
ers in tumor through passive diffusion (Andresen et al. 2005).

A large numbers of nanocarriers have been investigated for treatment of cancer 
exploiting the active and passive targeting strategies. Surface functionalization of 
nanoparticles using PEG or similar molecules has been reported to improve the 
bioavailability of drugs at tumor sites in different preclinical animal models. 
However, clinical translation of the nanocarriers from bench to bedside is a huge 
challenge due to stochastic nature of ligand–receptor interactions and difficulties in 
controlling release of drug at diseased sites (Gogoi et al. 2017). In order to improve 
the therapeutic index of drugs, drug release at tumor sites is essential as it prevents 
their rapid metabolization and clearance from the patient’s body. Drug release from 
nanocarriers can be triggered using either exogenous stimuli such as temperature, 
ultrasound, light, and electric fields or endogenous stimuli like change in pH, 
enzyme, redox potential, etc.
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2.3.3  �Herbal Nanostructures for Cancer Treatment

A large number of nanocarriers with herbal compounds have been investigated for 
treatment of various types of cancer. These nanocarriers target cancer cells either by 
active targeting or passive targeting strategy. A lot of herbal compounds are poorly 
soluble in aqueous solubility and resulting in poor bioavailability following oral 
administration (Bansal et al. 2011). Delivery of these poorly aqueous soluble drugs 
through nanocarriers reduces their systemic toxicity, improves pharmacokinetic 
properties, enhances their delivery at tumor sites, and hence improves the therapeu-
tic indices of the drugs (Aqil et al. 2013).The following section discusses the appli-
cation of herbal nanocarriers in treatment of cancer.

�Liposomes and Other Lipid Carriers

Liposomes
Liposomes are spherical vesicles made up of phospholipids which have a hydro-
philic head and a hydrophobic tail. These phospholipids self-assemble under given 
conditions to form a bilayered structure called liposome. These liposomes have the 
ability to carry both hydrophobic and hydrophilic payload together. They have the 
advantages of high biocompatibility, biodegradability, ease of preparation, chemical 
versatility, and the ability to modulate the pharmacokinetic properties by changing 
the chemical composition and the components of the bilayers (Terreno et al. 2008). 
Dhule et al. (2014) investigated the combined antitumor effect of curcumin and C6 
ceramide (C6) against osteosarcoma (OS) cell lines. They prepared three liposomal 
formulations, i.e., curcumin liposomes, C6 liposomes, and C6-curcumin liposomes. 
Curcumin in combination with C6 was found to be effective against MG-63 and 
KHOS OS cell lines, in comparison with curcumin liposomes alone. The therapeu-
tic efficacy of the preparations was tested in  vivo using a human osteosarcoma 
xenograft assay. PEGylated and folate tagged liposomes prepared for targeted deliv-
ery of curcumin and C6 significantly reduce the tumor volume in vivo. Recently, 
Gogoi et al. (2017) investigated the therapeutic efficacy of paclitaxel-loaded mag-
netic liposomes in vitro and in vivo under self-controlled hyperthermic condition. 
Results showed that the combined thermochemotherapy was effective in treating 
cancer in comparison to the drug and heat alone. Similar results were demonstrated 
by Gharib et al. (2015) who treated breast cancer using artemisinin and transferrin-
loaded magnetic liposomes under AC magnetic field. In another study, berberine 
derivatives and doxorubicin-loaded long-circulating liposomes were studied for 
their ability to target mitochondria of drug-resistant cancer cells. Results demon-
strated the superiority of these liposomes over regular doxorubicin-loaded lipo-
somes and free doxorubicin (Tuo et al. 2016).

Solid Lipid Nanoparticles (SLNs)
Solid lipid nanoparticles have generated tremendous attention in last few decades 
due to their good release profile and targeted drug delivery with excellent physical 
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stability. Good deals of studies on SLNs have been done for improvising the deliv-
ery of phytochemicals with anticancer properties in recent decades. Phytochemicals 
like berberine (Xue et al. 2015), resveratrol (Teskac and Kristl 2010), and paclitaxel 
(Pooja et al. 2016) were encapsulated in SLNs and studied their therapeutic proper-
ties. Teskac and Kristl (2010) demonstrated that encapsulation of resveratrol within 
SLNs enhances the bioavailability of drug and hence increases the therapeutic effi-
cacy of the drug.

�Micelles

Polymeric micelles have been drawing attention due to their ability of site-specific 
delivery of therapeutic agents, reducing off-target toxicity, and improving pharma-
cokinetics (Biswas et al. 2016). Tea epigallocatechin gallate and Herceptin loaded 
polymeric micelles were reported to use for cancer therapy. These nanomicelles 
demonstrated better tumor selectivity and growth reduction, as well as longer blood 
half-life, than free Herceptin (Chung et al. 2014). Micelles have been used for deliv-
ery of poorly water-soluble anticancer agent quercetin. Tan et al. (2012) reported 
development of quercetin-loaded micelles for treatment of lung cancer. Nanomicelles 
made from the diblock copolymer and polyethylene glycol (PEG)-derivatized phos-
phatidylethanolamine (PE) were found to enhance peroral anticancer activity and 
no apparent toxicity to the intestinal epithelium.

�Polymeric Nanoparticles

Polymeric nanoparticles are drawing huge attention in cancer drug delivery due to 
their stability, ease of conjugating functional moieties, and ease of surface modifica-
tion. Yallapu et al. (2012b) developed curcumin-loaded cellulose nanoparticles for 
targeting prostate cancer. They investigated and compared cellular uptake and cyto-
toxicity of these curcumin-loaded cellulose nanoparticles with β-cyclodextrin (CD), 
hydroxypropyl methylcellulose (cellulose), poly(lactic-co-glycolic acid) (PLGA), 
magnetic nanoparticles (MNP), and dendrimer-based curcumin nanoformulations 
in prostate cancer cells. Results demonstrated the superiority of curcumin-loaded 
cellulose nanoparticles in comparison to the other nanoformulations in inducing 
apoptosis in cancer cells. Recently, paclitaxel-loaded polymeric nanoparticles com-
bined with chronomodulated chemotherapy were evaluated in lung cancer both 
in vitro and in vivo. Results suggested that these paclitaxel-loaded nanoparticles 
exhibit greater anti-tumor activity against A549 cells, in comparison with pacli-
taxel. The anti-tumor effect at 15 h after light onset (HALO) administration was 
reported to be the best in all groups (Hu et  al. 2017). Curcumin-loaded PLGA 
nanoparticles were reported to enhance the aqueous solubility of curcumin and 
increase the antitumor potential of curcumin (Nair et al. 2012).
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�Nanoemulsions

Nanoemulsions are colloidal nanoparticles known for their stability and high load-
ing efficiency. These carriers are solid spheres, and their surface is amorphous and 
lipophilic with a negative charge. Recently, a good deal of works has been done on 
herbal agent-loaded nanoemulsions for cancer therapy. Anuchapreeda et al. (2012) 
studied therapeutic efficacy of curcumin-loaded nanoemulsion in number of differ-
ent cancer cell lines. Results showed high encapsulation of curcumin, physical sta-
bility of these nanocarriers, and their preserved toxicity. In another study, Pool et al. 
(2013) studied the feasibility of encapsulating hydrophobic quercetin in nanoemul-
sion. In a recent study, camptothecin-loaded polymer stabilized nanoemulsion was 
investigated for the in vitro cytotoxicity as well as their potential to target breast 
cancer in vivo. Results showed the possibility of targeting breast cancer using these 
nanocarriers (Sugumaran et al. 2017) (Fig. 2.4).

�Nanocapsules

Nanocapsules consist of a liquid/solid core in which the drug is placed into a cavity, 
which is surrounded by a distinctive polymer membrane made up of natural or syn-
thetic polymers. They have been drawing huge attention due to the protective coat-
ing which can be tuned to achieve sustain and controlled release of active ingredients 
(Kothamasu et  al. 2012). Artemisinin crystals were encapsulated using nanocap-
sules composed of chitosan, gelatin, and alginate. This investigation showed the 

Fig. 2.4  Phytochemical loaded different types of nanocarriers (Subramanian et al. 2016)
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possibility of achieving prolonged drug release through self-assembly of polyelec-
trolytes on natural drug crystals (Chen et al. 2009). In another study, anticancer drug 
quercetin was encapsulated in nanocapsules prepared for passive and active target-
ing to tumors. The investigators prepared nanocapsules from folic acid conjugated 
to poly(lactide-co-glycolide) (PLGA) polymer to facilitate active targeting to cancer 
cells and PEGylated PLGA for passive targeting. Comparative in vitro studies on the 
cytotoxicity and cellular uptake of the different formulations were carried out using 
MTT assay and confocal laser scanning microscopy, respectively. Results confirmed 
the selective uptake and cytotoxicity of the folic acid targeted nanocapsules to the 
folate enriched cancer cells in a folate-dependent manner. Finally, in vivo experi-
ments were done to evaluate the passive tumor accumulation and the active targeting 
of the nanocapsules to folate-expressing cells in HeLa or IGROV-1 tumor-bearing 
mice. The developed nanocapsules provide a system for targeted delivery of a range 
of hydrophobic anticancer drugs in vivo (El-Gogary et al. 2014). Recently, Boissenot 
et al. (2016) developed a paclitaxel-loaded nanocapsule formulation composed of 
poly(lactide-co-glycolide)-polyethylene glycol shell and perfluorooctyl bromide 
(PFOB) core for cancer theranostic application. PFOB was used as imaging agent. 
This nanocapsule formulation was tested in vitro and in vivo. Results demonstrated 
that the formulation could be applied as a cancer theranostic agent.

�Dendrimers

Dendrimers are hyperbranched polymeric architectures widely investigated these 
days due to their versatility in drug delivery and high functionality. These nano-
structured macromolecules have the abilities to entrap and/or conjugate the high 
molecular weight hydrophilic/hydrophobic entities by host–guest interactions and 
covalent bonding (prodrug approach), respectively. Moreover, due to high ratio of 
surface groups to molecular volume, they are extensively studied for gene delivery 
(Madaan et al. 2014). Fox et al. (2009) prepared a PEGylated poly(l-lysine) (PLL) 
dendrimer formulation by covalently binding polymer conjugates of camptothecin 
to improve solubility, increase blood circulation time, enhance tumor uptake, and 
hence significantly improve efficacy of the drug. The reported formulation was 
found to be effective in treating HT-29 tumor-bearing mice. Therapeutic efficacy of 
hydrophilic paclitaxel-conjugated polyamidoamine (PAMAM) dendrimers was 
studied cancer cells. Combination of ensemble and single microtubule imaging 
techniques were used to determine the mechanism of action of these dendrimers 
in vitro. Results provided mechanistic insights into the cytotoxicity of paclitaxel-
conjugated PAMAM dendrimers and uncovered unexpected risks of using such 
conjugates therapeutically (Cline et al. 2013). Anticancer agent berberine (BBR) 
was attempted to deliver using G4-PAMAM dendrimers by conjugation (BPC) as 
well as encapsulation (BPE) approach. The entrapment efficiency in BPE was found 
to be 29.9%, whereas the percentage conjugation in BPC was found to be 37.49% 
indicating high drug payload in conjugation. In vitro results showed significantly 
higher anticancer activity for the PAMAM-BBR (p  <  0.01) against MCF-7 and 
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MDA-MB-468 breast cancer cells. In vivo results showed that the formulation was 
safer and biocompatible with very least but insignificant (p  >  0.05) effects. The 
study demonstrated that conjugated formulation (BPC) was found to be more prom-
inent than the encapsulated one (BPE) (Gupta et al. 2017).

�Inorganic Nanoparticles

Inorganic nanoparticles including gold, oxides of iron, zinc, silicon, etc. were exten-
sively investigated in both preclinical and clinical setting for delivering different 
anticancer phytochemicals. Poorly water-soluble curcumin was encapsulated in 
PMMA-PEG/ZnO bionanocomposite, and therapeutic potential and cellular uptake 
were studied in gastric cancer cell line (Dhivya et al. 2017). Results showed that 
curcumin-loaded PMMA-PEG/ZnO can induce the apoptosis of cancer cells 
through a cell cycle-mediated apoptosis corridor. In another study, cellular uptake 
and phototoxic potential of curcumin organically modified silica nanoparticle com-
plexes and free curcumin were reported to investigate in multicellular spheroids of 
human oral cancer cells. Results showed accumulation of nanoformulated curcumin 
was higher in cancer cells, and hence cell death in the spheroids was more following 
irradiation of blue light in comparison to free curcumin. Results suggested that 
nanoformulated curcumin was able to improve the phototoxic effects of curcumin in 
spheroids in comparison to free curcumin (Singh et  al. 2015). In another study, 
Janus magnetic mesoporous silica (Fe3O4-mSiO2) nanoparticles consisting of a 
Fe3O4 head for magnetic targeting and a mesoporous SiO2 body was reported to 
develop for berberine delivery. This pH responsive nanoformulation was designed 
for magnetic targeting of berberine to hepatocellular carcinoma. Results suggested 
that Janus nanocarriers driven by the magnetic field might be use for effective and 
safe delivery of berberine to against hepatocellular carcinoma (Wang et al. 2016).

Apart from these studies, a host of nanoparticles with different shape, size, archi-
tecture, materials, and inherent properties were studied for improvising delivery of 
anticancer agent in recent decades. These studies were tried to summarize with the 
help of Table 2.3.

In recent years a wide range of herbal compound-loaded nanocarriers with het-
erogeneous structures are developed and investigated their efficacy in various can-
cer cell lines. These nanocarriers are internalized by the cancer cells via phagocytosis 
or endocytosis processes depending upon their size, shape, and surface treatment 
(Zhang et al. 2015). These bioactive natural compounds inhibit the growth of cancer 
cells by inducing apoptosis or programmed cell death. Initifvtion of cell death indi-
cated by the significant changes in DNA structure (Wei et al. 2009); ROS generation 
(Wei et al. 2009; Das et al. 2013); cytochrome C release (Guo et al. 2010; Mulik 
et al. 2010); activation of caspases 3/7 (Zheng et al. 2011; Guo et al. 2010; Zhang 
et al. 2013a); cell cycle arrest (Kumar et al. 2014); activation of NF-κB (Bisht et al. 
2007); and downregulation of MMP, BaX, Cyclin D, and VEGF (Subramanian et al. 
2016) along with visible morphological changes (Merlina et al. 2012). The different 
targets of bioactive compounds inside the cancer cell are demonstrated in Fig. 2.5.
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Table 2.3  Nanoparticles used to deliver different phytochemicals with anticancer property and the 
statuses of these studies were summarized

Sl. 
no. Nanocarriers Drug Status References

1. Magnetic liposomes Paclitaxel In vitro Gogoi et al. 
(2014) and 
Kulshrestha et al. 
(2012)

2. Magnetic liposomes Paclitaxel In vitro and 
in vivo

Gogoi et al. 
(2017)

3. Solid lipid nanoparticles Paclitaxel In vivo Banerjee et al. 
(2016)

4. Polymeric micelles Paclitaxel Phase II, clinical 
trial

Saif et al. (2010)

5. Nanohydrogel Paclitaxel and cisplatin In vivo Wu et al. (2014)
6. Nanoemusion Paclitaxel In vitro and 

in vivo
Kim and Park 
(2017)

7. Polymeric nanoparticles Paclitaxel In vitro and 
in vivo

Hu et al. (2017)

8. Dendrimers Paclitaxel In vitro Cline et al. 
(2013)

9 Nanocapsules Paclitaxel In vitro and 
in vivo

Boissenot et al. 
(2016)

10. Solid lipid nanoparticles Paclitaxel In vivo Pooja et al. 
(2016)

11. Liposomes Curcumin In vitro and 
in vivo

Chen et al. 
(2012)

12. Polymeric nanoparticles Curcumin In vitro Yallapu et al. 
(2012b)

13. Silica nanoparticles Curcumin In vitro Singh et al. 
(2015)

14. ZnO nanoparticles Curcumin In vitro Dhivya et al. 
(2017)

15. Nanoemulsion Curcumin In vitro Anuchapreeda 
et al. (2012)

16. Nanohydrogel Curcumin In vitro Teong et al. 
(2015)

17. Magnetic nanoparticles Curcumin In vitro Yallapu et al. 
(2012a)

18. Phytosome Curcumin In vivo Maiti et al. 
(2007)

19. Nanospheres Curcumin In vitro Mukerjee and 
Vishwanatha 
(2009)

20. Polymeric nanoparticles Curcumin In vitro Bisht et al. 
(2007)

21. Polymeric nanoparticles Curcumin In vitro Punfa et al. 
(2012)

(continued)
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Table 2.3  (continued)

Sl. 
no. Nanocarriers Drug Status References

22. Polymeric nanoparticles Curcumin In vitro Nair et al. (2012)
23. Protein nanoparticles Curcumin In vivo Kim et al. (2011)
24. Lipid carriers Curcumin and genistein In vitro Aditya et al. 

(2013)
25. Nanocapsule Artemisinin In vitro Chen et al. 

(2009)
26. Magnetic liposomes Artemisinin In vitro and 

in vivo
Gharib et al. 
(2015)

27. Lipid nanoparticles Artemisinin derivatives In vitro Zhang et al.
(2013b) 

28. Solid lipid nanoparticles Artemisinin derivatives 
artemisone

In vitro Dwivedi et al. 
(2015)

29. Polymeric magnetic 
nanoparticles

Artemisinin In vitro Natesan et al. 
(2017)

30. Solid lipid nanoparticles Berberine In vivo Xue et al. (2015)
31. Liposomes Berberine derivatives 

and doxorubicin
In vitro and 
in vivo

Tuo et al. (2016)

32. Hybrid nanoparticle Berberine In vitro and 
in vivo

Yu et al. (2017)

33. Dendrimer Berberine Ex vivo and 
in vivo

Gupta et al. 
(2017)

34. Magnetic mesoporous 
silica nanoparticles

Berberine In vitro Wang et al. 
(2017)

35. Polymeric nanoparticles Camptothecin In vitro and 
in vivo

Min et al. (2008)

36. Magnetic cyclodextrin 
nanovehicles

Camptothecin In vitro Rajan et al. 
(2017)

37. Polymeric nanoparticles Camptothecin In vivo Householder 
et al. (2015)

38. Dendrimer Camptothecin In vivo Fox et al. (2009)
39. Mesoporous silica 

nanoparticles
Camptothecin In vivo Lu et al. (2010)

40. Nanoemulsion Camptothecin In vitro and 
in vivo

Sugumaran et al. 
(2017)

41. Polymer nanoparticles Epigallocatechin gallate In vitro Rocha et al. 
(2011)

42. Polymeric nanoparticles Epigallocatechin-3-
gallate

In vitro and 
in vivo

Siddiqui et al. 
(2009)

43. Polymeric nanoparticles Epigallocatechin 
3-gallate

In vitro Sanna et al. 
(2011)

44. Polymeric nanoparticles Green tea In vivo Khan et al. 
(2013)Polyphenol EGCG

45. Micelle Green tea catechin 
derivatives and protein 
drugs

In vitro and 
in vivo

Chung et al. 
(2014)

(continued)
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Table 2.3  (continued)

Sl. 
no. Nanocarriers Drug Status References

46. Liposomes Epigallocatechin-3-
gallate

In vitro de Pace et al. 
(2013)

47. Polymeric nanoparticles Root extract of 
Phytolacca decandra

In vitro and 
in vivo

Das et al. (2012)

Phytolaccaceae
48. Polymeric NP Ethanolic extract of 

Polygala senega 
Polygalaceae

In vitro Paul et al. (2011)

49. Liposomes Vincristine, vinblastine 
and vinorelbine

In vitro and 
in vivo

Zhigaltsev et al. 
(2005)

50. Liposomes Vincristine In vivo Tokudome et al. 
(1996)

51. Nanoemulsion Quercetin In vitro Pool et al. (2013)
52. Polymeric nanocapsules Quercetin In vitro and 

in vivo
El-Gogary et al. 
(2014)

53. Liposomes Quercetin In vitro Wang et al.
(2012)

54. Micelle Quercetin In vitro and 
in vivo

Tan et al. (2012)

55. Liposomes Resveratrol In vitro and 
in vivo

Wang et al. 
(2011a)

56. Polymeric nanoparticles Resveratrol In vitro and 
in vivo

Karthikeyan 
et al. (2013)

57. Polymeric nanoparticles Resveratrol In vitro Karthikeyan 
et al. (2015)

58. Protein nanoparticles Resveratrol In vivo Guo et al. (2010)
59. Clay nanotube Resveratrol In vitro Vergaro (2012)
60. Polymer nanoparticles Resveratrol In vitro Sanna et al. 

(2013)
61. Liposomes, polymeric 

lipid-core nanocapsules 
and nanospheres and solid 
lipid

E-resveratrol Ex vivo Detoni et al. 
(2012)

Nanoparticles
63. Solid lipid nanoparticles Resveratrol In vitro Teskac and 

Kristl (2010)
64. Liposomes Oleanolic acid In vitro and 

in vivo
Tang et al. 
(2013)

65. Solid lipid nanoparticles Baicalein In vivo Tsai et al. (2012)
66. Self-assembled polymer 

nanoparticles
Baicalein In vitro and 

in vivo
Wang et al. 
(2015)

67. Liposomes Baicalein In vitro and 
in vivo

Li et al. (2016a)

(continued)
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2.4  �Challenges and Future Prospects

Though a large number of nanomedicines are investigated for treatment of different 
types of cancers, only few nanoformulations reached the market today. A nanocar-
rier formulation has to go through a host of evaluation processes before it reaches 
the market. Though most of the nanocarriers are developed based on EPR effect, the 
EPR effect is unlikely to be present and equal in all the tumors nor the sole driver 
for efficacy of nanocarriers. Moreover, the pathological heterogeneity among differ-
ent types of tumors and within the same type of tumor possesses a big challenge in 
the nanomedicine development process (Hare et al. 2017).The success rate of nano-
medicine can be improved by adopting a specific decision-making framework, such 

Table 2.3  (continued)

Sl. 
no. Nanocarriers Drug Status References

68. Magnetic nanoparticles Baicalein In vitro Kavithaa et al. 
(2017)

69. Liposomes Combretastatin A4 In vitro Nallamothu et al. 
(2006)

70. Magnetic polymer 
nanoparticles

Noscapine Synthesis and 
characterization

Abdalla et al. 
(2010)

71. Human serum albumin 
nanoparticles

Noscapine In vitro Sebak et al. 
(2010)

72. Polymeric nanoparticles Noscapine In vitro Madan et al. 
(2011)

73. Liposomes Betulinic acid In vitro and 
in vivo

Mullauera et al. 
(2011)

74. Polymeric nanoparticles Betulinic acid In vitro and 
in vivo

Das et al. (2016)

75. Polymeric nanoparticles Curcumin and 
5-fluorouracil

In vitro Anitha et al. 
(2014)

76. Liposomes Paclitaxel/
epigallocatechin gallate

In vitro Ramadass et al. 
(2015)

77. Nanoemulsion Paclitaxel and curcumin In vitro Ganta and Amiji 
(2009)

78. Liposomes Curcumin and 
resveratrol

In vivo Narayanan et al. 
(2009)

79. Mesoporous silica 
nanoparticles

Combretastatin A4 and 
doxorubicin

In vitro and 
in vivo

Li et al. (2016b) 

80. Nano cell Combretastatin A4 and 
doxorubicin

In vitro and 
in vivo

Sengupta et al. 
(2005)

81. Liposomes Combretastatin A4 and 
doxorubicin

In vitro and 
in vivo

Mitrus et al. 
(2009)

82. Nanocapsule Combretastatin A4 and 
paclitaxel

In vitro Wang and Ho 
(2010)

83. Self-assembled polymeric 
nanoparticles

Betulinic acid and 
hydroxycamptothecin

In vitro and 
in vivo

Dai et al. (2015)

2  Herbal Nanocarriers for Cancer Therapy



64

as AstraZeneca’s 5Rs principle: right target/efficacy, right tissue/exposure, right 
safety, right patient, and right commercial potential. The following points need to be 
addressed for development of cost-effective superior therapies for the patients, i.e., 
(i) should have a clear cut understanding about the heterogeneity of clinical cancers 
and the biological factors influencing the behavior of nanomedicines in patients’ 
tumors; (ii) transition from formulation-driven research to disease-driven develop-
ment; (iii) adaptation of more relevant animal models and testing protocols; and (iv) 
preselection of the patients most likely to respond to nanomedicine therapies.

Nanocarriers offer novel efficient strategies to treat cancer; nanotoxicity is a 
major area of concern as potentially high reactivity arising from the large surface-
to-volume ratio of nanoparticles compared to bulk systems. Besides these, biode-
gradability of nanoparticles, side effects from by-products and bioaccumulation, 
and change in physicochemical characteristics of material at nanoscale are few 
apprehensions related to the nanomedicine. Moreover, distribution of nanocarriers 
in the body following systemic administration; development of mathematical and 
computer models to predict risk and benefits of nanoparticles; safe processes of 
nanoparticle manufacturing; and disposal and detrimental effects of nanoparticles to 
environment are few issues related to the nanomedicine to be addressed. Limited 
work has been done in scaling up laboratory or pilot technologies of nanodrug deliv-
ery for commercialization due to high cost of materials and challenges associated to 
maintain size and composition of nanomaterials at large scale.

Fig. 2.5  Molecular targets of herbal compounds loaded nanocarriers against cancer cell 
(Subramanian et al. 2016)
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2.5  �Conclusions

Cancer has been tormenting the mankind from ancient times. Despite improvement 
in different therapeutic modalities, the number of deaths due to cancer is on rise. 
Therefore, a large number of herbs and their parts or extracts have been used to treat 
cancer. Nowadays, bioactive compounds from herbs have been extracted for effec-
tive treatment of different types of cancer. Due to the side effects of conventional 
therapies, herbal compounds or their derivatives have been loaded in different nano-
carriers and investigated. Herbal compound-loaded nanocarriers have been able to 
effectively deliver drugs to the tumor site(s), reduce the side effects associated with 
the therapy, and kill the tumor cells more effectively. These nanocarriers can target 
tumor either by passive targeting or active targeting strategy. Though a host of nano-
carriers have been investigated for cancer therapy, due to stringent preclinical evalu-
ation and regulatory processes, only few nanoformulations have reached the market. 
The success rate of the nanocarriers in reaching market can be improved by adapt-
ing efficient decision-making strategies like AstraZeneca’s 5Rs framework, imple-
menting new validation method and preselection of patients, etc. Moreover, issues 
like nanotoxicity, prior prediction of nanoparticles distribution in the body, and 
risk–benefit analysis are to be addressed.
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