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Preface to the Second Volume

The past decade has witnessed tremendous progress in the research of nanopharma-
ceuticals. While the first volume of the book covered the basic principles and some 
applications of the nanopharmaceuticals, the second volume covers topics on drug 
delivery and toxicity of the nanopharmaceuticals, primarily focusing on environment-
friendly herbal and natural nanopharmaceuticals for health and environmental 
applications. We hope that this updated version of the volume will continue to 
be useful.

Chapter 1 describes the systemic toxicity and environmental effects of nanocar-
riers used in nanopharmaceuticals, focusing on in vivo biodistribution of nanophar-
maceuticals which could help to understand the toxicity of conventional nanocarriers 
like metal nanoparticles and carbon nanoparticles. It also discusses future guide-
lines for the development of nanopharmaceuticals.

Chapter 2 consists of two parts: the first part deals with the phytochemicals and 
their targeting strategies for the treatment of various types of cancers, while the 
second part describes the applications of different types of herbal nanostructures for 
cancer treatment. This chapter provides recent research in herbal nanocarriers in 
cancer therapy which could be helpful in developing risk-free cancer treatment.

Chapter 3 is a worthy compilation of nanopharmaceuticals in drug delivery and 
targeting. It deals with the passive and active targeting of nanopharmaceuticals and 
focuses on principles and applications of current research on topical nanopharma-
ceuticals like carbon nanotubes, quantum dots, nano-shells, etc. This chapter dis-
cusses Food and Drug Administration (FDA)-approved nanopharmaceuticals.

Chapter 4 is a comprehensive summary of therapeutic natural products and their 
encapsulation in nanocarriers which are synthesized from natural products like chi-
tosan, alginate, gelatin, etc. It presents a brief introduction about the different types 
of nanocarriers and a detailed note on natural products like paclitaxel, doxorubicin 
,curcumin, etc. and explores the current research on natural products as drugs as 
well as drug carriers.

Chapter 5 deals with transdermal delivery of therapeutic agents by vesicular car-
riers and discusses brief introduction to skin anatomy and physiology which is help-
ful in understanding and developing novel carrier systems for skin delivery. It 
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thoroughly discusses methods, mechanisms, and applications of different types of 
vesicular nanocarriers.

Chapter 6 is an inclusive review on nano-delivery platforms for phytochemicals 
and applications of nano-phytochemicals. It lucidly explains the applications of 
nano-phytochemicals as anti-inflammatory and anticancer agents and covers a brief 
section on nanocosmeceuticals.

Chapter 7 describes the emerging applications of nanopharmaceuticals in drug 
delivery, cell imaging, and treatment of diseases like cancer and AIDS.  It also 
focuses on potential health and environmental risks of nanopharmaceuticals. It con-
cludes with a discussion on future research direction.

Chapter 8 reviews the mode of action and ecotoxicity of the nanopharmaceuti-
cals in aquatic environment. It covers the topic on production of nanopharmaceuti-
cals by using biotechnology methods and also describes the environmental risk 
assessment of nanopharmaceuticals.

Chapter 9 is a valuable summary on recent advances in nanopharmaceuticals for 
drug delivery. The first part of this chapter covers the types, composition, structure, 
and methods of preparation, while the second part covers the recent applications 
with challenges associated with the use of nanomaterials in pharmaceutical 
formulations.

Karnal, India� Vinod Kumar Yata
Johannesburg, South Africa� Shivendu Ranjan
Lucknow, Uttar Pradesh, India� Nandita Dasgupta
Aix-en-Provence, France� Eric Lichtfouse
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Abstract  Over the last couple of years, several studies have been communicated to 
endorse the tremendous potential of nanopharmaceuticals for the welfare of human 
beings and other living organisms. However, very limited concepts have been real-
ized in the form of final products. There are various factors which are responsible 
for the inadequate development of nanopharmaceuticals such as inherent faults of 
nanocarrier; implausible absorption, distribution, metabolism, excretion/elimina-
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tion, and toxicity (ADMET); and other associated toxicity and confined biocompat-
ibility. Here we review various nanocarriers used in nanopharmaceuticals with 
respect to their environmental and toxicological implications, including their detec-
tion and contamination routes. In addition, we have put forward various concerns 
and guidelines for the future development of nanopharmaceuticals.

Keywords  Nanopharmaceuticals · Nanocarriers · Bioaccumulation · ADMET 
studies · Ecotoxicity

1.1  �Introduction

Over the past few years, pharmaceutical industries have grown with a tremendous 
potential as a huge investment has been done on the research and development of 
novel, safe, effective, and efficient pharmaceutical formulations. The development 
of novel pharmaceutical formulations is overstimulated and propelled due to the 
perpetual emergence of various disease outbreaks and human-/poultry-based apoca-
lypses such as malaria, dengue, cholera, chikungunya, Zika, and Ebola virus infec-
tions, hepatitis, plague, yellow fever and many more. Besides this, cancer, diabetes, 
and cardiac disease based medications are the leading pharmaceutical revenue gen-
erator due to the widely affected population. The high demand of cancer, diabetes, 
and cardiac disease based medications results in huge and sustainable development 
in the advancement of respective medicaments to make them more efficacious with 
minimal side effects. During the advancement of respective medicaments, the exist-
ing nanotechnologies and their features have been materialized and consolidated in 
the last few years (Bawa et al. 2016; Cornier et al. 2017; Müller 2017).

The nanopharmaceuticals have various advantages over common medicaments 
such as an exceptional targeting ability with significant accuracy, followed by better 
stability and sustainability at the targeted sites (De Villiers et al. 2008; Jain 2008; 
Nagarajan 2012; Liang 2013; Ge et al. 2014). Hence, in the recent years, the field of 
nanopharmaceuticals or nanomedicaments or nanomedicines or nanodrugs has 
grown rapidly, mainly in the direction of nano-support-based drug delivery systems 
for the treatment as well as diagnostic applications (Kumar 2007; Peer et al. 2007; 
Claire du Toit et al. 2007; Bawarski et al. 2008; Weissig et al. 2014; Bassyouni et al. 
2015; Bawa et  al. 2016; Berkner et  al. 2016). Integration of nanotechnology and 
pharmaceuticals provides some extraordinary features such as vast surface area and 
improved penetrability in comparison to their larger counterparts (Varadan 
et al. 2008).

Nanopharmaceuticals have quite peculiar physical, chemical, and biological 
properties due to their unique structures and functionalities (Kumar 2007; Mozafari 
2007). These properties are closely related to the pharmacokinetics/pharmacody-
namics that influence the biocompatibility and the ADMET (absorption, distribu-
tion, metabolism, excretion/elimination, and toxicity) behavior of nanodrug 
formulations inside the living body (Houdy et  al. 2011). Basically, conventional 
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drug formulations show a huge variation and instability inside the living body due 
to their differential size and shape, chemical composition, solubility, surface charge, 
and other surface modifications. The combination of nanotechnology and pharma-
ceuticals provides improved biological adhesion, rapid or controlled dissolution, 
lower settling, and higher saturation solubility inside the living body. These features 
of nanopharmaceuticals established them as relatively more effective and proactive 
medicaments.

As per the current scenario, the nanopharmaceuticals cover a broad range of 
medicines and medical treatment related products for humans as well as animals. 
The major classes of those medicines and products are as follows:

•	 Medicines for diseases, in both solid and aqueous forms
•	 Vaccines
•	 Chemotherapeutic agents
•	 Anticancer or antitumor or antineoplastic drugs
•	 Lipid lowering agents
•	 Cardiac, pulmonary, and neuro medicines
•	 Ocular health products and instruments
•	 Dental care products
•	 Osteoporosis medicaments and bone implants
•	 Wound and burn healing drugs
•	 Medical diagnostics such as molecular diagnostics and diagnostic test cards
•	 Medical or surgical tools and devices
•	 Multivitamins, amino acids, proteins, and other nutritional products
•	 Medicinal personal care products such as soaps, shampoos, and hygiene products
•	 Over-the-counter and generic medicines

In the last few years, numerous studies have been dedicated for the exploration 
of nanocarrier-based medicaments that involves carbon nanotubes, nanofiber, 
nanoparticles, nanoshells, liposomes, dendrimers, quantum dots, nanoclay, and 
many other nanosized entities with exclusive shape, size, composition, surface 
chemistry, and targeting ligands (Claire du Toit et al. 2007; Narducci 2007; Gaur 
and Bhatia 2008; Menaa 2013; Hassanzadeh 2014; Chavda 2016; Loretz et  al. 
2016), as shown in Fig. 1.1. Nanocarrier-based medicaments are potentially being 
used for efficient drug delivery, amino acids or peptides delivery, chemotherapy, 
neurotherapy, diabetes and many other treatments (De Villiers et  al. 2008; Jain 
2008; Nagarajan 2012; Liang 2013). The nanocarrier-based hybrid medicaments are 
usually given by injection into the blood vessels or through the oral administration. 
Here, typically 50–200 nm-sized nanocarriers are incapable to cross the endothelial 
barrier except spleen and liver due to the availability of gaps (Juliano 2013).

In addition, the nanocarriers have regular tendencies to interact with each other 
and form agglomerates that also increase nanocarriers’ effective size. Hence, the 
restricted biodistribution and increased bioaccumulation of nanopharmaceuticals 
imply various therapeutic limitations too. Therefore, the drawbacks of nanopharma-
ceutical technologies are also needed to be reviewed and scrutinized for the safer 
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and eco-friendly benefits of nanopharmaceuticals. However, the major limitations 
of the potential nanopharmaceuticals are the unavailability of sufficient number of 
ideal studies and data confirming the environmental and toxicological implications 
of nanomedicaments. In addition, the localized detection of nanocarriers inside the 
living body is quite difficult due to the nanosized characteristics. Hence, with the 
longer treatment duration, nanopharmaceuticals may start accumulating in the spe-
cific body regions (Buzea et al. 2007; Ray et al. 2009; Maurer-Jones et al. 2013). 
Long-term accumulation of nanopharmaceuticals inside the human body may lead 
to more disastrous health situations or hazards such as a cyst or tumor formation, 
activation of autoimmune system, and suppression of nearby blood vessels and 
nerve cell growth (Buzea et al. 2007; Ray et al. 2009; Maurer-Jones et al. 2013).

Furthermore, there are various ethical, scientific, and regulatory guidelines fol-
lowed by social concerns and implications that are also posing a great restriction on 
the smooth evolution of nanopharmaceuticals (Koopaei and Abdollahi 2016). The 
major issues and health risks associated with nanomedicaments are environmental 
complications, cytotoxicity, translocation to undesired or nontargeted tissues or 
cells, unknown or unpredictable and undetermined safety norms, and bioaccumula-
tion and non-biocompatibility inside the living body. However, in ethical 

Fig. 1.1  Designing of nanocarrier-based drug delivery system: multifunctional nanocarrier medi-
cament could be produced from the combination of various suitable materials with their specific 
composition and functional properties that can be further utilized for the therapeutic and/or diag-
nostic applications (Seleci et al. 2016; Hua et al. 2018)

P. Verma and J. K. Ratan



5

perspective, nanomedicaments may alter the genetic sequence of coding or noncod-
ing genes that may result in an abnormal behavior of cellular system which may or 
may not be persistent in nature depending on the duration of exposure or treatment 
(Manickam et  al. 2017; Sardoiwala et  al. 2017). Consequently, a very few 
nanocarrier-based medicaments used to be approved by the Food and Drug 
Administration and reached in the open pharmaceutical market. The examples of 
such nanocarriers are liposome, nanopolymer-protein conjugate, nanopolymer-drug 
conjugate, and nanoparticle-monoclonal antibody complex-based medical formula-
tions (Bawarski et al. 2008; Weissig et al. 2014; Berkner et al. 2016; Panda et al. 
2017). Nevertheless, to extract the more potential benefits of nanomedicaments, it is 
very essential to work on the genuine guidelines and developments in the all aspects 
of nanopharmaceuticals under a proper coordination between various industrial, 
governmental, and academic research and development bodies.

Overall, there are various emerging issues related to ethical, social, and regula-
tory aspects of nanopharmaceuticals that affect the environment as well as public 
and/or animal health. In this regard, Maurer-Jones et  al. (2013) summarized the 
toxicity of engineered nanoparticles with respect to various trophic levels such as 
bacteria, plants, and multicellular organisms including aquatic organisms. Maurer-
Jones et al. (2013) also highlighted the important challenges within the field of eco-
nanotoxicity and the kind of challenges that are being faced during engineered 
nanoparticles’ analytical assessments.

Buzea et al. (2007) acknowledged that humans had been exposed to nanoparti-
cles from very ancient eras via natural or anthropogenic sources. Buzea et al. (2007) 
heightened some concerns related to the development of nanotechnology due to the 
negative impacts of nanosubstances on the public health. For example, engineered 
nanosubstances could be a potential source of nanoparticle pollution if they are not 
safely manufactured, handled, and disposed of or recycled. Since, some nanoparti-
cles are able to enter into the living bodies and rapidly migrate to the organs and 
tissues via the body’s circulatory and lymphatic systems. The toxic effects of 
nanoparticles used to be more intensive in the cases of various pre-existing diseases 
such as asthma, diabetes, and allergies. Riehemann et al. (2009) discussed the bio-
compatibility and toxicity-related safety issues of nanomedicines that contain 
nanoparticles as carrier or active substance. Moreover, there are some associated 
risks with the nanocarrier coupled pharmaceutical compounds too that may also 
affect the human body and ecological health (Boxall et al. 2012). In this regard, 
Koopaei and Abdollahi (2016) recommended to perform well-established toxicol-
ogy profiling through in vivo tests, since the in vitro tests mostly evaluate samples’ 
toxicity in cell lines with different physiological properties rather than the realistic 
conditions of a host body.

Sardoiwala et al. (2017) reviewed cytotoxicity, genotoxicity, and immunogenicity-
based aspects of various metal and metal oxide nanoparticles. These nanoparticles 
are widely being used as the nanocarrier for pharmaceutical drugs. Berkner et al. 
(2016) enlisted a variety of nanocarriers that fall under the European Medicines 
Agency’s nanopharmaceutical definition. These nanocarriers basically include lipo-
somes, polymer/copolymer particles or micelles, dendrimers, coated metal or metal 
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oxide particles, nonmetal particles, and biological macromolecules such as proteins, 
peptides, and oligonucleotides (Fan et al. 2014).

As a whole, the aforementioned concerns may limit or restrict nanopharmaceuti-
cals’ future evolution, if they are not properly studied, reported, treated, or acknowl-
edged in the literature. The associated hazards of nanopharmaceuticals may cause a 
negative impression and loss of faith on nanopharmaceuticals in the nonscientific 
communities, which represent a large section of end users for this oversold and 
overwhelming technology, although there are various well-characterized and devel-
oped nanomaterials, which are precisely studied and already being used as an effec-
tive and efficient carrier for medicaments (Cho et al. 2008; Mai and Meng 2013; 
Sachan and Gupta 2015; Seleci et al. 2016; Subramanian et al. 2016), as shown in 
Figs. 1.1, 1.2, and 1.3. However, in this review, a few selected ones with respect to 
their recognized and potential environmental cum toxicological implications have 
been addressed. For example, phytochemicals have been proven to be more soluble 
when delivered through the nanocarriers as they exhibit a notable absorption in 
cancerous cells in comparison to that with the direct phytochemical administered 
dose. Nevertheless, the half-maximal dose of phytochemicals is greatly reduced due 
to the nanocarrier-mediated delivery of phytochemicals (Subramanian et al. 2016). 
Therefore, Subramanian et al. (2016) termed nanocarriers as a crusader in advanced 
cancer chemotherapy attributed to their minimal side effects and site-specific deliv-
ery of drug molecules.

Fig. 1.2  (a) The schematic showing versatile conventional nanocarriers such as quantum dots 
(QD), carbon nanotubes, liposomes, micelles, dendrimers, metallic and polymeric nanocarriers 
primarily studied for the drug delivery applications with respect to the drug development stages 
(Mai and Meng 2013); (b) Schematic of a multifunctional nanocarrier (Cho et al. 2008)
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1.2  �Conventional Nanocarriers Used 
in Nanopharmaceuticals

1.2.1  �Pure Metal-Based Nanocarriers such as Silver, Gold, 
Iron, and Copper

Metallic nanoparticles are submicrometer (1–100 nm) particles of specific metals 
such as iron (Fe), gold (Au), copper (Cu), and silver (Ag). They are highly reactive 
due to their nanosized characteristics such as the large surface area to volume ratio, 
high surface energies, quantum confinement, and plasmon excitation and contain a 
large number of “dangling bonds” that provide exceptional chemical properties and 
additional electron storage capabilities. In addition, few metallic nanoparticles such 
as Cu and Ag have antimicrobial properties too. Hence, metallic nanoparticles have 
been widely used and studied for various pharmaceutical applications such as  
metallic nanoparticle-based biosensors and nanocarriers for disease diagnosis and 

Fig. 1.3  Various leading nanocarriers as an efficient transporter of drug molecules for their better 
effectiveness on the targeted tissues and cells (He et al. 2016; Subramanian et al. 2016; Zhang 
et al. 2017a)
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therapeutic implementation. However, in recent years, the metallic nanoparticle-
based environmental and toxicological studies have been reported that suggest their 
negative aspects. Inevitably, the expeditious development and production of metal-
lic nanoparticle-based pharmaceuticals have equal contribution in the implications 
that arise due to the metallic nanoparticle contamination. However, in open litera-
ture, it has also been reported that most of the environmental or toxicological impli-
cations are primarily because of hazardous chemicals (such as reagents, precursors, 
and capping agents) and the complex fabrication steps used in the production of 
metallic nanoparticles for various pharmaceutical-based applications. Furthermore, 
a few of metallic nanoparticles have shown toxic effects after chemical transition. 
For example, Ag nanoparticles show dissolution behavior by releasing silver ions 
which reportedly induce a potential toxic effect in cells (Pandiarajan and Krishnan 
2017). However, this concluding remark is still open for intensive research and 
debate between the concerned researchers and observer field experts. Since, a large 
number of studies are in favor of the both silver nanoparticles and silver ion-induced 
cytotoxicity. The combined mechanism of Ag nanoparticle-based cytotoxicity fol-
lows a Trojan-horse type mechanism of action (Park et al. 2010). In this mechanism, 
Ag nanoparticle is supposed to facilitate the release of nontoxic Ag species followed 
by the entrance of these species into the cell matrices where they get ionized and 
become toxic in nature and ultimately kill the host cell.

Moreover, exposure to metallic nanoparticles has also been associated with other 
negative effects such as inflammation, oxidative stress, and genotoxic behavior. In 
addition, these metallic nanoparticles may accumulate in the living body parts, 
especially in the liver and/or spleen due to their noncompetitive endothelial barrier. 
However, metallic nanoparticles may also bioaccumulate in the specific sensitive 
organ tissues such as brain, spinal cord, and heart. In vitro and in vivo for both con-
ditions, metallic nanoparticles may lead to the formation of reactive oxygen species 
(ROS) such as superoxide anions (O2

•−) and hydroxyl (OH•) free radicals, which are 
potential health hazard substance due to their rapid protein and cell destruction 
activity (Brohi et al. 2017; Jahan et al. 2017). In general, the oxidative stress in the 
affected tissues or cells may lead to the DNA, protein, and membrane damages fol-
lowed by inflammation that ultimately results in the cell death, i.e., apoptosis or 
necrosis. To minimize the reactive oxygen species-mediated side effects, various 
antioxidants such as ascorbic acid, citric acid, quercetin, α-tocopherol, and lyco-
pene are used in combination with the surface modification of nanocarriers (Khanna 
et al. 2015; Wang et al. 2016; Brohi et al. 2017).

Furthermore, metallic nanoparticles are also associated with the hypersensitivity 
of living organism that may result in the allergic and/or autoimmune response. 
There are reported studies in the existing literature that ascertained the role of metal-
lic nanoparticles in allergic reactions (Dobrovolskaia and McNeil 2007; Syed et al. 
2013; Yoshioka et  al. 2017). In addition, a pictorial representation has also been 
shown for better comprehension on the mode/pathway of allergic reaction stimu-
lated through the exposure of metallic nanoparticles or nanocarriers (Fig. 1.4). In an 
allergic response, cells of the immune system are activated. Here, the immune cells 
such as mast cell recognize the foreign substance and trigger the inflammatory 
response. This response also involves the secretion of cytokines or signaling 
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molecules that attract more cells to destroy the foreign substance. In general, the 
immune cell recognizes nanoparticles by their surface properties and core composi-
tion and accordingly produces an inflammatory response. Therefore, Dobrovolskaia 
and McNeil (2007) recommended a systematic examination of different classes of 
engineered nanomaterials with their wide range of sizes and surface charges. It may 
deduce how the change in nanoparticle size and surface charge influence the immune 
response. In addition to this, the trace impurities present within the nanomaterial-
based formulations may also potentially induce the immune response. For example, 
purified gold and iron oxide nanoparticles do not induce cytokine secretion 
(Dobrovolskaia and McNeil 2007). It confirms that the purity of metallic nanopar-
ticles may also affect their toxicity. In general, metallic nanoparticles such as Zn, 
Au, Al, Ag, carbon-coated silver, and carbon black may lead to inflammation 
through the activation of tumor necrosis factor alpha (TNF-α). These metallic 
nanoparticles may also increase the levels of interleukin 6 (IL-6), tumor necrosis 
factor alpha (TNF-α), and nuclear translocation of nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-κB). The different metallic nanoparticles stimu-
late inflammation through nuclear factor kappa-light-chain-enhancer of activated B 
cells (NF-κB) regulation followed by the release of pro-inflammatory cytokines 
(Syed et al. 2013). However, the penetration of metallic nanocarriers to the human 
skin varies from individual to individual. Here, after getting physical contact with 
the healthy skin, nanocarriers use to penetrate to the stratum corneum or epidermis. 
In case of damaged skin, nanocarriers may penetrate into the epidermis and dermis 

Fig. 1.4  Induction mechanism of metallic nanocarrier-associated allergic reactions in human 
body. It involves the penetration of human skin, followed by metallic nanocarriers’ distribution to 
the nearby organs and tissues through the blood and lymph vessels. In vivo, these metallic nanocar-
riers activate the immune response by interacting with the antigen presenting cells that ultimately 
results in the release of signaling cytokines and histamines
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layer too (Yoshioka et al. 2017). Therefore, in case of healthy skin, it is quite diffi-
cult to predict whether the topical use of nanomedicament may result in negative 
allergic immune response or not. Since, most of the nanocarriers are incompetent to 
penetrate the healthy skin.

1.2.2  �Carbon-Based Nanocarriers

�Fullerenes or C60

Fullerenes are closed hollow shells of carbon atoms or giant carbon molecules con-
sisting of perfect hexagons and pentagon defects. Fullerenes have been reported for 
their therapeutic actions, among them the major ones are antioxidant activity, anti-
viral and antimicrobial behavior, neuroprotective activity, enzyme inhibition, gene 
delivery, and so on (Jensen et al. 1996; Piotrovski 2006; Sheka 2011). In addition, 
fullerenes also act as an oxidative agent under the influence of photoexcitation in the 
presence of molecular oxygen. Hence, it is also used in the photodynamic therapy, 
where triplet oxygen (3O2) to highly active singlet oxygen (1O2) transformation 
occurs (Mroz et al. 2008; Sheka 2011). The overall scheme of fullerene-based pho-
todynamic therapy is given below:
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However, the in vivo delivery of fullerene-based drugs may present some serious 
implications. Therefore, various specific routes and modifications are being fol-
lowed for effective administration of fullerene-based drugs, such as suspension of 
micron-sized fullerenes, use of stable colloidal fullerenes, solubilization of fuller-
enes, immobilization of fullerenes, and so on. Additionally, the incorporation of 
nano-sized silica to the fullerene-based drugs has greatly enhanced the therapeutic 
values and offers a synergistic behavior. This advancement is mainly due to the 
improved hydrophobicity of the nano-drug conjugates and increased sorption of 
receptor proteins followed by the enhancement of drug action (Sheka 2011). Apart 
from this, a few studies have also raised the safety concerns of fullerenes and its 
derivatives with respect to their possible cytotoxic effects (Gelderman et al. 2008; 
Kepley 2012), although the concluding remarks of similar studies are also believed 
to be conflicting, ambiguous, and critically debatable. Therefore, only those studies 
that represent a well-characterized single species as a lead candidate of fullerene-
based pharmaceutical formulation should be recommended as a suitable reference 
for further argumentation. The characterization studies should include the informa-
tion about the surface area, size distribution, purity, crystallinity, surface reactivity 
or affinity, surface coating, solubility, morphology or shape, and aggregation behav-
ior of the nanostructures. This will provide more meaningful information regarding 
the potential environmental and toxicological characteristics of respective 
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formulations. Furthermore, fullerenes show stability in aqueous medium due to 
their net negative charge produced by the networks of charge polarization interac-
tion in large aggregates (Choi et al. 2015). Therefore, aggregation of water-dispersed 
fullerenes is quite obvious and causes the larger particle formation that consequently 
reduces the effective surface area of fullerenes too.

�Graphene and Graphene Oxide-Based Nanostructures

Graphene is one of the most studied allotropes of carbon. Graphene is a 2D material 
and consists of a single layer of hexagonically arranged carbon atoms. Graphene 
has various unique properties such as excellent heat and electric conductivity and 
good transparency and great strength that makes graphene a wonder material of the 
twenty-first century. The versatile intrinsic qualities make graphene ideal for utiliza-
tion in various combinations with improved thermostable, mechanical, and biocom-
patible properties (Ioniţă et al. 2017). Pure graphene structure used to be hydrophobic 
in nature that’s why it requires to be oxidized to improve its dispersibility in aque-
ous medium. The oxidized graphene-based formulations have been broadly explored 
for various biomedical applications such as bioimaging and sensing applications, 
drug and gene delivery, photothermal therapy, tissue engineering, stem cell technol-
ogy, and so on, whereas the use of graphene is limited to sensing or diagnostic 
applications only (Lalwani et al. 2016; Ioniţă et al. 2017).

However, similar to other engineered nanocarriers, the graphene and graphene 
oxide-based nanocarriers also have the toxicological and environmental implica-
tions. For example the inhalation of graphene and graphene oxide may induce lower 
pulmonary toxicity. However, the bolus airway exposure to graphene and graphene 
oxide-based nanomaterials may cause acute and subacute pulmonary toxicity. More 
often, it has been observed that in comparison to small-sized graphene oxide materi-
als, the large-sized ones are more toxic in nature. Moreover, the accumulation of 
administered graphene oxide in the liver, lungs, and spleen has also been reported in 
the open literature (Ema et al. 2017). However, the studies showing the negative 
sides of graphene or graphene oxide-based engineered nanocarriers are very limited 
in number. Besides this, a few studies show oxidative stress and inflammation as a 
prominent factor behind the toxicity of pure and oxidized graphene-based nano-
pharmaceutical formulations (Fahmi et al. 2017). In addition, it is also believed that 
the surface reactivity, size, and dispersion level of graphene or graphene oxide-
based formulations are very crucial factors in the induction of toxicity and unde-
sired biodistribution inside the living body.

Zhao et al. (2014) have reviewed the behavior of graphene-based nanomaterials 
in the aquatic environment with respect to the adsorption, dispersion, transforma-
tion, and toxicity. Notably, graphene or reduced graphene oxides adsorb hydropho-
bic and aromatic molecules, whereas the graphene oxides adsorb metal ions and 
positively charged organic molecules, preferably. Since, the studies based on the 
environmental behavior of graphene are still in the lag phase and confine the under-
standing of environmental exposure, fate, and risk of graphene-based 
nanopharmaceuticals.

1  Environmental and Toxicological Implications of Nanopharmaceuticals: An Overview



12

�Carbon Nanotubes

Carbon nanotubes (CNTs) are cylindrical nanostructure usually formed by rolling a 
single layer or multiple layers of graphene sheet and termed as single-walled carbon 
nanotubes or multi-walled carbon nanotubes, respectively. The cylindrical carbon 
nanostructures used to have dimensions in the ratio of up to 1:132000000 (diameter/
length). Carbon nanotubes have various extraordinary features such as high conductiv-
ity, exceptional stiffness, excellent tensile strength, high surface area, good adsorption 
properties, and so on. These notable properties are mainly responsible for the emer-
gence and development of carbon nanotube-based drug nanocarriers. Here, the hollow 
monolithic structure of carbon nanotubes is very advantageous for the incorporation of 
drug molecules that offers a controlled and targeted delivery of medicaments. In addi-
tion, the outer surface of both single-walled and multi-walled carbon nanotubes could 
also be functionalized through the addition of various specific functional groups that 
may enhance the biocompatibility and biodegradability of nanoformulations.

However, a few toxicological studies also indicated the carbon nanotubes’ nega-
tive outcomes after the oral administration (Araújo et al. 2015). Interestingly, the 
reported toxicological studies are quite contradictory to each other as few of them 
report genotoxicity or toxicity with carbon nanotubes (Muller et al. 2005; Bottini 
et al. 2006; Smith et al. 2007; Folkmann et al. 2008; Jos et al. 2009; Cicchetti et al. 
2011), whereas a few of them affirm no toxic effect with the application of carbon 
nanotubes (Kolosnjaj-Tabi et al. 2010; Naya et al. 2011; Simonin and Richaume 
2015). Furthermore, carbon nanotubes are also believed to be capable of induction 
of immune responses. It further clarified that the immune responses are stimulated 
from the metallic impurities and contaminants inherently present in the carbon 
nanotubes (Pulskamp et al. 2007). In addition, the insoluble characteristics of car-
bon nanotubes induce their bioaccumulation that may cause health and environment-
related complications.

Jackson et al. (2013) have identified carbon nanotubes as very hazardous sub-
stance for aquatic life, where single-walled carbon nanotube used to be more toxic 
than multi-walled carbon nanotube. In the same study, the invertebrates were report-
edly found to be more sensitive than vertebrates. Since most of the observations are 
based on the higher exposure concentrations of carbon nanotubes than their routine 
possible availability in the ecosystem, therefore the negative inferences of carbon 
nanotubes are quite uncertain and have low impact. Therefore, more rigorous stud-
ies considering the production volume and actual contamination level of carbon 
nanotubes are needed for their better estimation and understanding over the thera-
peutic and environmental implications.

�Carbon Dots

Carbon dots are one of the carbon element-based nanoparticles with the size of less 
than 10 nm. Carbon dots are water soluble or perfectly dispersible, biocompatible, 
and cheaper to produce. In addition, carbon dots might also have specific 
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fluorescence nature and photostability (Lim et al. 2015; Singh et al. 2017). In gen-
eral, carbon dots used to be a prime choice as a suitable nanocarrier due to their 
nontoxic nature. Carbon dots have shown a tremendous biocompatibility with blood 
at lower concentrations (Li et al. 2015a). Carbon dots are widely being used and 
studied for their potential application in drug and gene delivery, primarily as a pho-
tosensitizer and for other sensing applications (Hu et al. 2014; Lim et al. 2015). 
Here, the functional groups attached on the surface of carbon dots are primarily 
responsible for their water solubility and suitable conjugation with the chemical 
entities such as polymers and inorganic compounds including DNA for carbon dots 
wider theranostic applications (Hu et  al. 2014; Hassan et  al. 2017; Singh et  al. 
2017). Moreover, carbon dots also provide a significant flexibility over the surface 
functionality that could be wisely utilized or selected to hold a desired medicament 
through various surface interactions. This modification results in an improved con-
trol over the release of the conjugated drug molecules. Therefore, carbon dots are 
widely being used as a potential carrier for pharmaceutical compounds.

Besides this, intrinsically, carbon is not considered as a toxic element; however 
the specific material morphologies or structures of carbon dots have shown few 
potential hazards related to human health and to the environment (Wang et al. 2013). 
Havrdova et al. (2016) suggested that neutral carbon dots have most promising bio-
logical applicability as neutral carbon does not induce any impairment in the cell 
morphology, intracellular transportation, and cell cycle, up to a certain level, 
whereas negatively charged carbon dots may seize the G2/M phase of the cell cycle 
and may also increase the oxidative stress. Moreover, negatively charged carbon 
dots are incapable of cell nucleus penetration. Interestingly, positively charged car-
bon dots are found to be more cytotoxic in nature, due to their nucleus penetration 
capability that induce a significant change in G0/G1 phase of cell cycle, even at very 
low concentration. However, Li et al. (2015b) shown that pristine carbon dots have 
very low cytotoxicity and recommended their application in the pharmaceuticals, 
especially for the processing and formulation of insulin due to carbon dots inhibi-
tory effect on human insulin fibrillation.

Furthermore, Xiao et al. (2016) have investigated the toxic effects of carbon dots 
on different developmental stages of rare minnow’s embryo. That study reported a 
significant developmental toxicity on rare minnow embryos or larvae that may 
result due to the induced oxidative stress followed by abnormal development-related 
gene expression led by the carbon dots exposure. Therefore, it is also very essential 
to re-investigate and ascertain the suitability of carbon dots as a potential nanocar-
rier for various medical applications.

1.2.3  �Quantum Dots

Quantum dots are ultrafine nanoparticles, usually of less than 10 nm, composed of 
pure elements such as Au, Ag, and C and semiconductor materials such as ZnS, 
ZnSe, CdS, CdSe, CdTe, and InP.  In comparison to nanoparticles, quantum dots’ 
short size causes a shift in the electronic excitation, i.e., towards higher energy, and 
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concentrates oscillations to a few transitions that results in a unique electronic and 
photonic behavior of respective quantum dots. Due to the size tunable properties, 
quantum dots are widely being used to obtain a broad adsorption profile, narrow 
size, and symmetric photoluminescence spectra depending on the material composi-
tion of quantum dots. Quantum dots have also shown a tremendous stability or resis-
tance towards photo and/or chemical degradation followed by their higher quantum 
yield (Conde et  al. 2014). However, in nanopharmaceuticals, quantum dots are 
widely being used for protein or drug-based sensing applications including the role 
as drug carrier to cross versatile cell barriers due to quantum dots characteristic 
smaller size. Very recently, Ranjbar-Navazi et al. (2017) have reported the possible 
application of doxorubicin-conjugated d-glucosamine- and folate- bi-functionalized 
InP/ZnS quantum dots for cancer cell imaging and therapy, where this nanocarrier 
complex is acting as theranostics for simultaneous imaging and cancer treatment. 
Lai et al. (2017) have synthesized Ag and Mn co-doped In2S3/ZnS quantum dots 
conjugated to hyaluronic acid for selective and efficient internalization in CD44-
expressing tumor cells. The study confirms that the resultant quantum dots could be 
used as dual-mode imaging probes for more accurate and rapid diagnosis.

Since quantum dots exhibit unique luminescence and electronic properties like 
broad and continuous absorption spectra, narrow emission spectra, and high light 
stability (Valizadeh et al. 2012), they are highly used for tracking studies of nano-
pharmaceuticals and quantum dots biodistribution. Hardman (2006) revealed that 
the assessment of quantum dots exposure routes and related toxicity of the same are 
not very straightforward, because all the quantum dots are not similar and their 
toxicity depends on multiple physicochemical and environmental factors. Tsoi et al. 
(2013) stated that the in vitro and in vivo quantum dot studies have improved our 
knowledge regarding quantum dots cellular transport kinetics, mechanisms of tox-
icity, and biodistribution. The cell culture-based experiments have shown that quan-
tum dots encounter design-dependent intracellular localization and cause 
cytotoxicity, probably by releasing free metals into the matrix and also by generat-
ing reactive oxygen species (ROS), whereas in case of tissues and organs the quan-
tum dots primarily enter the liver and spleen. However, there are some apparent 
discrepancies in the in vitro and in vivo toxicity of quantum dots, since the available 
dose of quantum dots may vary significantly and quite uncertain in case of in vivo 
model studies due to their absorption, distribution, metabolism, and excretion-/
elimination-based mechanisms. Consequently, the organ-/tissue-specific dose of 
quantum dots could not be sufficient to induce a perceptible toxic effect, although 
quantum dots may retain within the tissues or organs and are also susceptible to 
induce a long-term toxic effect due to their progressive bioaccumulation. Hence, the 
quantum dot-induced toxicity studies need to be more standardized and system-
atized to overcome the existing difficulties. Tsoi et al. (2013) also recommended 
some steps to obtain a consistent and comparable toxicology data, which are as fol-
lows: (1) standardize dose metrics; (2) characterize quantum dot uptake concentra-
tion; (3) identify in vitro models that replicate cells and quantum dots interactions 
similar to in vivo; and (4) use multiple assays to determine sublethal dose and bio-
compatibility of quantum dots.
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1.2.4  �Metal Oxide-Based Nanocarriers

Metal oxides such as titanium dioxide (TiO2), zinc oxide (ZnO), aluminum oxide, 
cerium oxide, and silicon dioxide (SiO2) are comparatively more stable than pure 
metal-based nanocarriers and are less prone to dissolution and/or ionization. The 
metal oxide-based nanocarriers have gained significant interest as an effective and 
targeted transporter of pharmaceutical compounds. It is mainly due to their unique 
characteristics like unusual shape, size, and other morphological and structural 
properties (Jahan et  al. 2017; Huang et  al. 2017). Vinardell and Mitjans (2015) 
reviewed the role of various metal oxide-based nanocarriers for antitumor activity. 
The reported studies have shown that metal oxide nanocarrier-drug conjugates can 
selectively kill the cancerous cell without any negative impact on the normal cells.

However, metal oxide-based nanocarriers have also shown substantial toxicity 
towards the human body and the environment as well (Chen et al. 2008; Vega-Villa 
et al. 2008). It is primarily due to the bio-persistence and nondegradable nature of 
metal oxide-based nanocarriers that make them a potential source of sustainable 
chronic hazards, although a few of them are often reported as less toxic than many 
others, which is quite insignificant to judge the comparative toxicity of metal oxide-
based nanocarriers. Since, the protocol, condition, and host used for the toxicity 
assessment of respective materials are very different from each other (Jahan et al. 
2017). Therefore, in spite of the large number of studies related to the assessment of 
metal oxide-based nanocarriers’ toxicity, a limited information is available about 
the toxicity expressiveness, evaluation routes, influencing factors, accurate reasons, 
and mode of actions (Ding et al. 2015; Simonin and Richaume 2015). Therefore, it 
is an incessant necessity to acquire a better understanding of metal oxide-based 
nanocarriers for their safe and effective utilization in therapeutic and diagnostic 
applications.

1.2.5  �Nanoclays

Clay is a natural material composed of different minerals such as phyllosilicate 
mineral that show polymeric behavior and have specific water activity. It has tetra-
hedral and octahedral structural symmetries. There are various classes of clay; how-
ever the major ones are kaolinite, montmorillonite, illite, and chlorite. The difference 
between the nanoclay and normal clay is that nanoclays have high aspect ratios with 
at least one dimension of nanometer range (Nazir et al. 2016). Nanoclays have bet-
ter surface integrity with comprehensible thermal and mechanical characteristics. 
Nanoclay has a great potential as compared to carbon nanotubes and polymers for 
controlled release of drug compounds (Ward et al. 2012). Conventional immediate 
release of the drug compounds causes a sudden raise or imbalance in the plasmatic 
level of the human body that may induce a negative impact or side effect too. 
Therefore, the use of nanocarriers like nanoclay is quite significant that can 
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supervise the release of drug compounds, help in the reduction of the undesirable 
plasmatic level, and reduce the therapeutic side effects with improved performance 
and treatment outcomes (Jafarbeglou et al. 2016; Jayrajsinh et al. 2017). In clay-
based nanomedicaments, the drug molecules are encapsulated in clay minerals to 
modify the drug release rate or time and also to target the selected site of drug 
release. Here, clay minerals not only are used as inert fillers but also offer the func-
tionalities of targeted release, prevention or reduction of side effects, and increase 
in the formulations’ shelf life (Lazzara et al. 2017; Zhang et al. 2016, 2017b). The 
affinity of drug molecules on nanoclay is governed by the functional groups present 
in the drug molecules, which can generate different interactions such as hydrogen 
bonding, hydrophilic/hydrophobic interaction, and ion exchange (Lazzara et  al. 
2017). There are reported studies that concern with the application of various clay 
minerals such as montmorillonite, sepiolite, and halloysite nanotubes as the suitable 
nanocarrier for medical applications (Lee et al. 2005; Saha et al. 2014; Lvov et al. 
2016; Jafarbeglou et al. 2016; Jayrajsinh et al. 2017; Zhang et al. 2016, 2017b).

Similar to the other nanocarriers, the clay-based nanocarriers also have therapeu-
tic and environmental implications that have been reported in the existing literature 
(Lee et al. 2005; Ellenbecker and Tsai 2011; Lordan et al. 2011; Verma et al. 2012; 
Isoda et al. 2017 and many more). The referred studies have indicated about the 
probable cytotoxic, hepatotoxic, and nephrotoxic nature of nanoclay-based nano-
carriers. Therefore, it is necessarily required to fully elucidate the toxicological pro-
files of nanoclay-based pharmaceutical compounds for their safer applications.

1.2.6  �Dendrimers

Due to the inherent limitation of monofunctional nanocarriers, the need of various 
multifunctional nanocarriers such as dendrimers has been significantly increased 
(Bai et  al. 2006; Menjoge et  al. 2010). Dendrimers are basically multibranched 
macromolecules that have a specific molecular architecture which makes them 
more advantageous for being used as a multifunctional nanocarrier (Hsu et  al. 
2017). Dendrimers have precise control over their size, shape, number of branches, 
and attached functional groups or drug conjugates. Therefore, dendrimers offer 
exceptional potential in terms of enhanced solubility, stability, stimuli responsive-
ness, targeted biodistribution, parallel monitoring, and many other characteristics. 
Hence, dendrimer-based multifunctional nanocarriers present an unmatched capa-
bility for various applications in the continuously expanding nanopharmaceutical 
field. In this way, it may also reduce the possible therapeutic and toxicological 
implications in human as well as in animals (Sharma and Kakkar 2015). Very 
recently, Nierengarten (2017) has reported the use of hexa-substituted fullerene-
based scaffolds for the faster and bigger construction of globular dendrimers. He 
has used this method to prepare giant glycoclusters with the medicinal values of 
antiviral activity and multivalent glycosidase inhibition properties. This example is 
basically a combination of two different categories of nanocarriers where one 
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nanocarrier such as fullerene is acting as a support for another nanocarrier like den-
drimer. Similarly, different combinations could also be prepared and studied for 
dendrimers’ safer and effective implementation in nanocarrier-based drug delivery 
and sensing applications.

Despite the substantial lab-scale applicability of dendrimers in nanopharmaceu-
ticals, the full-scale application of dendrimers is quite limited due to the inherent 
toxicity of associated submolecules or building blocks (Duncan and Izzo 2005; Jain 
et  al. 2010). The toxicity is mainly attributed to the interaction of the positively 
charged branch of dendrimers with the negatively charged biological membranes 
in vivo. These interactions may result in the membrane disruption via nano-hole 
formation, membrane thinning, and erosion (Jain et al. 2010). Dendrimer-based tox-
icity could be defined as hemolytic toxicity, cytotoxicity, and hematological toxic-
ity, depending on the mode of action. Designing of biocompatible dendrimers and 
masking of their peripheral charge are the major ways to reduce their toxicity; for 
example, acetylation, PEGylation, carbohydrate and peptide conjugation, and intro-
duction of negative charge or charge neutralization could be used (Jain et al. 2010).

1.2.7  �Polymeric Nanocarriers

In the last few years, polymeric nanocarriers such as micelles, capsules, vesicles, 
polymersomes, hydro- or nanogels, nanospheres, nanofibers, and polyplexes have 
gained tremendous attention in the field of nanopharmaceuticals (Park et al. 2008; 
Ding et  al. 2016). Development of advanced and smart polymeric nanocarriers 
could offer personalized and on-demand treatment possibilities. In general, polymer-
based nanopharmaceuticals represent a very heterogeneous form of nanosized drugs 
where polymer core provides biodegradable and biocompatible features and poly-
mer shell or surface used to have hydrophilic nature (Kadajji and Betageri 2011). 
Basically, the pharmaceutically active compounds are incorporated or attached to 
the polymer-based nanosized substances. These modifications offer a significant 
change in pharmacokinetics, in passive or active targeting via enhanced permeabil-
ity and retention followed by sustained release of drug compounds (Weissig et al. 
2014). The availability of a wide variety of monomers for assembly of polymeric 
nanocarriers offers a large versatility due to the variation in the structural and phys-
iochemical properties of monomers. As a result, there are significant examples of 
application of synthetic polymers such as polyethylene glycol (PEG), polylactide–
co-glycolide) and polylactide (Shroff and Vidyasagar 2013). The conventional 
examples of polymers used as gene carrier are polyethyleneimine (PEI), poly(L-
lysine) (PLL), synthetic biodegradable polycations, polyacrylamide, chitosan, and 
cyclodextrins. The examples of poorly water-soluble and amphiphilic drug-based 
polymeric carriers are PEG–poly(amino acid), PEG–polyester, PEG–lipid, and 
polysaccharides.
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Unlike the other nanocarriers, the polymeric or lipid-based nanocarriers are quite 
safe and less toxic in nature due to polymers organic composition. However, any 
associated toxicity of polymeric nanocarriers might be attributed to the polymers’ 
inherent toxic nature, such that monomer of polyacrylamide has neurotoxic behav-
ior. On the other context, Voigt et al. (2014) reported that polybutylcyanoacrylate-
based polymeric nanocarrier could be used as a potential drug delivery candidate for 
the central nervous system. Polybutylcyanoacrylate-based polymeric nanocarriers 
can cross the blood–brain barrier and are nontoxic in nature with reference to the 
reported in vivo and in vitro studies (Voigt et al. 2014).

1.3  �Quantitative Techniques for Nanopharmaceuticals

Transportation and delivery of xenobiotics, peptides, antibodies, and gene-based 
medicament by the means of nanocarriers have tremendous potential to reduce drug 
resistance and ineffectiveness during their therapeutic application. Hence, to com-
pare the performance of transported drugs, the in vitro and in vivo quantification of 
nanocarriers are very essential. There are various techniques which are widely being 
used for the similar objective. The most conventional techniques for the quantifica-
tion of nanocarriers are ICP-MS (inductively coupled plasma mass spectrometry) 
and ICP-AES (inductively coupled plasma atomic emission spectroscopy) that can 
quantify the nanocarriers’ uptake with respect to their elemental composition. These 
techniques have the advantage of very low concentration-based detection with a 
great precision and accuracy.

Paya-Perez et al. (1993) compared the performances of ICP-AES and ICP-MS 
for the analysis of trace elements present in soil extracts such as Cr, Ni, Cu, Zn, Cd, 
and Pb. Overall, Paya-Perez et al. (1993) found that the reproducibility of ICP-AES 
measurements were relatively better than ICP-MS measurements, possibly due to 
the less involvement of various reagents. However, for Pb and Ni, the ICP-AES 
sensitivity was not reportedly up to the mark. Hence, ICP-MS was recommended 
for the samples with very less concentration of some elements. Altogether, the 
ICP-MS provides a fast estimation of the concentration of various trace metals with 
good precision and higher sensitivity.

Recently, Legat et  al. (2017) reported a capillary electrophoresis-combined 
ICP-MS technique to study the behavior of different gold nanoparticles during the 
interaction with the serum proteins and their mixtures. This technique reportedly 
provided a somewhat real-time measurement of bare nanoparticles and different 
protein conjugates, followed by their conversion into the protein-attached forms 
with respect to their reaction time. The capillary electrophoresis-combined ICP-MS 
technique looks quite suitable for bioanalysis of metallic nanoparticles under more 
realistic physiological conditions.

It should also be noted that the ICP-MS (inductively coupled plasma mass spec-
trometry) and ICP-AES (inductively coupled plasma atomic emission spectros-
copy) are limited to quantify element-based nanocarriers such as pure metal, metal 
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oxide, or carbon-based nanostructures only. Moreover, there are other targeted tech-
niques too, such as “mass barcoding” in which specific nanoparticles are tagged 
with specific functional group and their transportation is monitored by LDI-MS 
(laser desorption/ionization mass spectrometry) (Shi and Deng 2016). Unfortunately, 
LDI-MS (laser desorption/ionization mass spectrometry) technique is not widely 
adopted due to its inherent complexities, uncertainties, and time-intensive behavior.

Furthermore, a new technique was also reported by Lin et al. (2010) that employs 
cell mass spectrometry (CMS) for the quantitative measurement of micro- and/or 
nanocarriers uptake in cells. It has a unique ability to rapidly detect the elements 
from different nanomaterials, simultaneously. This technique exclusively helps in 
the evaluation of drug targeting efficiency of nanocarriers and their cellular uptake 
and associated cytotoxicity emerging due to the differential size and surface proper-
ties. Therefore, it is believed that the cell mass spectrometry (CMS)-based technol-
ogy could be efficiently utilized for the rapid and accurate tracking of therapeutic 
nanocarriers. More interestingly, cell mass spectrometry (CMS) could be used to 
determine the exact number of nanocarrier uptake in each cell, whereas ICP-MS 
(inductively coupled plasma mass spectrometry) can only provide an average uptake 
of nanocarriers for all cells. In addition, cell mass spectrometry (CMS)-based tech-
nique could also be used to measure the cellular uptake of nonmetal-based nano-
therapeutic agents (Peng et al. 2010).

Moore et al. (2013) reviewed noninvasive measurement-based techniques for the 
assessment of the release of nanomedicine. Mostly, the pharmaceutical nanoparti-
cles have been studied in laboratory scale for noninvasive measurement of in situ 
drug release. However, there are various approaches such as optical upconversion, 
fluorescence, luminescence, radioluminescence, and magnetic resonance imaging-
based techniques that could be utilized for nanopharmaceuticals noninvasive mea-
surements in full scale. These approaches involve the complementation of 
pharmaceutical nanocarriers with some probes like MRI (magnetic resonance imag-
ing) contrast agents and optically or thermally active species. Besides this, there are 
some obstacles in the development of noninvasive techniques too, such as the physi-
cal limitations of optical techniques, imaging sensitivity and resolution-based limi-
tations, and toxicity of complemented species. In addition to this, for further details 
about the available techniques that could be effectively utilized for the physico-
chemical characterization of nanopharmaceuticals, it is suggested to go through the 
referred literature (Lin et al. 2014; Moore et al. 2013).

Moreover, Summers et al. (2013) shown a promising route to assess the dose of 
nanocarriers in the form of nanoparticle–cell interactions that used to be very diffi-
cult due to the complex multiplicity of possible mechanisms and metrics controlling 
nanocarriers’ uptake. Here, the dose basically signifies the number of nanocarriers 
internalized per cell. Through the use of limited cell sampling using high-resolution 
electron microscopy, a calibration can be made relating large population and cyto-
metric measurements of fluorescence to the exact nanocarrier dose taken through 
the endocytosis. Then, through a probabilistic approach, one can easily quantify the 
level of nanocarriers per cell.
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In addition, there are various characterization techniques which are widely being 
used to study the qualitative and quantitative properties of versatile nanocarriers 
used in nanopharmaceuticals, both in discrete and conjugate forms. A detailed chart 
of those suitable and advanced techniques has also been represented in Fig. 1.5. 
Moreover, the quantification of nanocarriers used in nanopharmaceuticals has also 
become quite essential for the environmental risk assessment. This quantification 
gives information about the environmental availability of nanocarriers and also 
helps in the estimation of minimum concentration or limit that may induce any toxic 
or unfavorable effect. This information could be further used for the estimation of 
the environmental risk quotient (ERQ). To estimate the environmental risk quotient 
(ERQ), we need to have the information about the following two parameters:

•	 Environmental concentration of nanocarriers (X)
•	 Nanocarriers’ minimal dose for negative outcomes (Y)

Fig. 1.5  Different techniques used for the qualitative and quantitative characterization of 
nanopharmaceuticals
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Environmental risk quotient (ERQ) could be easily calculated from Eq. 1.1.

Environmental

risk quotient ERQ
Environmental concentrationo

( ) =
ff nanocarriers

Nanocarriers minimal dose for negative outcom

X( )
’ ees Y( ) (1.1)

If the value of the environmental risk quotient (ERQ) is less than one, then it is non-
hazardous for the environment. However, if the obtained value is greater than or 
equal to one, then it is considered to be hazardous for the open environment; and the 
extent of hazards could be assessed by its magnitude.

1.4  �Absorption, Distribution, Metabolism, Excretion/
Elimination, and Toxicity-Based Studies 
of Nanopharmaceuticals

Nanocarriers used to have a prominent control over the nanodrugs’ pharmacokinetics 
and pharmacodynamics. The pharmacokinetics and pharmacodynamics of nanodrugs 
are significantly different from the bare or pure drug molecules (Moss and Siccardi 
2014; Griffin et al. 2016; Li et al. 2017). Thus, the better understanding and estimation 
of the physiological pharmacokinetic parameters of nanopharmaceuticals are very cru-
cial for their development and pharmacodynamic cum biodistribution-based studies.

Therefore, a thorough study of nanocarrier-mediated absorption, distribution, 
metabolism, excretion/elimination, and toxicity (ADMET) routes, as represented in 
Fig.  1.6, is always recommended for nanomedicaments to ascertain their 

Fig. 1.6  Absorption, distribution, metabolism, excretion/elimination, and toxicity routes of 
nanomedicaments
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effectiveness, biodistribution, and toxicity in a living organism. It will greatly 
improve the commercial applicability of nanopharmaceuticals, specifically in terms 
of their enhanced delivery, facilitated targeting, and reduced immunogenicity or 
nanotoxicity followed by low bioaccumulation.

In general, the environmental safety and toxicological data of nanocarriers used 
to be considered as a prime requirement for any associated risks or benefit assess-
ment. In the available literature, there is a significant lack of thorough and systemati-
cally defined nanocarrier-based environmental and toxicological studies. Hence, the 
absorption, distribution, metabolism, excretion/elimination, and toxicity (ADMET) 
studies are highly desirable to ascertain the suitability or efficacy of nanopharma-
ceuticals. Moreover, it has been also observed that the impact of nanocarriers’ toxic-
ity from different administration routes is greatly influenced by some specific factors 
such as size, shape, composition, surface chemistry, and presence of the targeting 
ligands (Moss and Siccardi 2014; Griffin et al. 2016; Brohi et al. 2017; Li et al. 2017).

Almeida et al. (2011) summerized the in vivo biodistribution of various nanopar-
ticles such as iron oxide nanoparticles, gold nanoparticles and quantum dots, and 
their associated immune response. Here, small nanoparticles with less than 50 nm 
size show enhanced distribution to the lymph nodes and also have long circulation 
time, whereas large nanoparticles are preferably captured by the liver and spleen 
and exhibit short circulation time. Since the metallic nanoparticles have tendency to 
be quickly removed from the bloodstreams by the reticuloendothelial system and 
they may remain in the liver and spleen for a longer duration, raised various biodis-
tribution and toxicity related concerns. Although the renal excretion based removal 
of nanocarriers is also feasible and highly size dependent, the need of the additional 
coatings and surface modifications of the nanosubstances has reduced their renal 
excretion. Besides this, gold nanoparticles have shown both inflammatory and anti-
inflammatory behavior in vitro studies. The in vivo studies have ascertained that the 
nanocarriers could induce the activation of macrophages and engagement of leuko-
cytes that may result in immunogenic toxicity. However, there is a further scope of 
understanding of in vivo immunotoxicity.

Furthermore, due to the inherent variations in the biodistribution, biocompatibility, 
and biodegradability of nanocarriers, the toxicity of nanocarriers may also vary from 
micro- to macro-sized carriers made up of similar materials. Therefore, it is always 
recommended to improve the existing toxicological methods through the employ-
ment of novel and accurate bio-relevant tools. The follow-up of the recommendation 
may provide a more comprehensive information about the risk of nanopharmaceutical-
based toxicity. However, the frequent changes in absorption, distribution, metabo-
lism, and excretion/elimination profiles of nanomedicines are due to their complex 
nature and presence of various excipients and need new or revised regulatory frame-
works to assess the quality, safety, and efficacy of complex nanodrug formulations.

Figure 1.7 illustrates various rate constants (k) influencing the absorption, distri-
bution, metabolism, and excretion of nanomedicaments administered through oral 
intravenous (IV) or intramuscular (IM) or subcutaneous (SC) or intradermal (ID) or 
inhalation routes. Table 1.1 summarizes the salient features of versatile nanocarriers 
affecting the rate constants of ADMET stages and the intensity of the impact on 
pharmacokinetics rate constants in terms of less, moderate, and high order.
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The detailed summary of the specific nanopharmaceuticals with respect to their 
absorption, distribution, metabolism, excretion/elimination, and toxicity (ADMET)-
based studies have not been discussed here to maintain the brevity of this review 
article. However, the interested ones are requested to go through the referred scien-
tific literature (van de Waterbeemd and Gifford 2003; Li et al. 2010, 2013, 2017; 
Hamidi et al. 2013; Moss and Siccardi 2014; Griffin et al. 2016).

1.5  �Environmental Contamination of Nanopharmaceuticals

Due to a rapid and sustainable development, production, and commercialization of 
nanopharmaceuticals or nanoparticle-based drug carriers in the current era (Buzea 
et  al. 2007; Wagner et  al. 2014), the ecosystem has become a major victim of 
nanocarrier-induced pollution or toxicity, especially the aquatic environment (Klaine 
et al. 2008; Navarro et al. 2008; Brar et al. 2010; Gottschalk et al. 2011; Miralles 
et al. 2012; Maurer-Jones et al. 2013; Wang et al. 2016; Brohi et al. 2017; Jahan 
et  al. 2017). The nanopharmaceuticals are coming into the environment through 

Fig. 1.7  Kinetic factors affecting or controlling the activity of nanomedicines inside the human 
body (Griffin et al. 2016)

Table 1.1  Impact of nanocarriers’ characteristics on pharmacokinetics rate constants

Factors (rate constant)
Salient features of nanocarriers used in pharmaceuticals
Size and shape Composition Surface chemistry Targeting ligands

Absorption (kA) ∗∗∗ ∗∗∗ ∗∗∗ ∗
Distribution (kD) ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗
Metabolism (kM) ∗∗∗ ∗∗ ∗∗ ∗∗∗
Excretion (kE) ∗∗ ∗ ∗∗ ∗∗
Toxicity (kT) ∗ ∗∗∗ ∗∗∗ ∗∗∗
∗Less impact; ∗∗Moderate impact; ∗∗∗High impact
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different exposure routes starting from the initial manufacturing and production of 
nanopharmaceuticals to their consumption and use followed by their excretion and 
repudiation. A flowchart of major contamination routes of nanopharmaceuticals is 
also presented in Fig. 1.8 that indicates soil, ground water, and surface water as the 
end sufferer of nanopharmaceutical-based contamination. The exposure of the nano-
carriers which are substantially used in nanopharmaceuticals to the human body 
through contaminated soil, ground water, and surface water or through the direct 
administration as a medicament may induce related diseases depending on the 
regions of human body that get affected (see Table 1.2). Besides this, it should also 
be noted that the environmental contamination of nanoparticles is also proliferating 
due to the extended usage of various nanoparticles in the wastewater treatment-
related applications such as photocatalysis, adsorption, and advanced oxidation pro-
cesses (Ghasemzadeh et al. 2014; Ma et al. 2016; Verma and Samanta 2017, 2018a, 
b, c). Metal oxides such as TiO2, ZnO, and carbon nanomaterials including graphene 
and graphene oxide-based nanostructures and quantum dots are the very established 
and overused candidates for the water and wastewater treatment-based applications 
(Ghasemzadeh et al. 2014; Lu et al. 2016; Verma and Samanta 2017, 2018b).

Parthasarathi (2011) and Dev et  al. (2017) reviewed the effect of various 
nanosubstance-based toxicity in the plants and food crops which are also widely being 
used as the nanocarrier for the pharmaceutical compounds. They included latest studies 
based on phytotoxicity of different nanosubstances such as TiO2, ZnO, CeO2, NiO, 
CuO, Ag, Au, SiO2, nano zerovalent iron, fullerenes, graphene, graphene oxide, carbon 
dots, and carbon nanotubes and elaborated individual nanoparticle-based toxic effects 
observed in plants. The studies show a clear negative impact on the plant growth, root 
and shoot lengths, biomass accumulation, and seed germination. In addition to this, the 
oxidative stress and cytotoxic and genotoxic effects of nanoparticles have also been 
observed in plants (Sardoiwala et  al. 2017). Hence, nanopharmaceuticals-mediated 
phytotoxicity in plants could also be emerged as a major concern for the environment.

Fig. 1.8  Environmental contamination routes of nanopharmaceuticals
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Jahan et al. (2017) reviewed the silver, graphene oxide, zinc oxide, titanium diox-
ide nanoparticles, and single-walled or multi-walled carbon nanotube-induced toxic-
ity in aquatic plant and microbial and vertebrate models. They have also enlightened 
the double-edged sword nature of versatile nanocarriers due to the nanoparticles toxic 
effects on aquatic ecosystem. They also summarized that both the physicochemical 
properties such as shape, size, and surface charge and environmental factors such as 
pH, temperature, type of irradiation, dissolved natural organic matter, ionic strength or 
presence of electrolytes, and other contaminants primarily control the transportation, 

Table 1.2  Various human diseases related to the exposure of nanocarriers (Buzea et  al. 2007; 
Manickam et al. 2017; Sardoiwala et al. 2017)

Route of 
administration

Primarily affected 
body part(s) Associated diseases

Ingestion or oral 
administration

Gastrointestinal 
system

Crohn’s disease
Colon cancer
Ulcer

Inhalation Brain Neurological diseases:
Alzheimer
Parkinson

Lungs Asthma
Bronchitis
Emphysema
Tumor
Cancer

Injection (IV/IM/
SC)

Circulatory system Atherosclerosis
Vasoconstriction
Thrombus
High blood pressure

Lymphatic system Podoconiosis
Kaposi’s sarcoma

Heart Arrhythmia
Heart failure

Other organs Unknown impairments of kidneys, liver, and spleen
Topical application Skin Allergy

Autoimmune diseases
Dermatitis

Orthopedic implant 
residues

Around implant 
region

Autoimmune diseases
Dermatitis
Urticaria
Vasculitis

Cellular absorption Cells and tissues Bioaccumulation of nanocarriers in cell organelles 
such as mitochondrion, vacuoles, nucleolus, cell 
membrane, and cytosol
Apoptosis
Necrosis
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transformation, and toxicological behavior of respective nanoparticles. Since the 
nanoparticles also have the preeminent potential to cause oxidative response, cellular 
toxicity, and inflammatory responses, they have become an impetuous source of dam-
age to the aquatic ecosystem. Therefore, it is always essential to know about the physi-
cochemical properties of nanopharmaceuticals followed by their effective concentration 
prediction in the open environment to calculate the environmental risk quotient (ERQ), 
nanocarrier transportation, and transformational nature. Subsequently, the evaluation 
of benefits and risks associated with the use of nanopharmaceuticals has been always 
crucial and required to be discussed in a specific manner. Hence, more detailed case-
by-case toxicity analyses of versatile nanopharmaceuticals are recommended to obtain 
a more trustworthy predictive model that could estimate and quantify the possible 
short-term and long-term outcomes of nanopharmaceuticals in the open environment.

Furthermore, with the similar opinion of Jahan et al. (2017), it is recommended that 
the toxicity, fate, and behavior of engineered nanomaterials or nanopharmaceuticals 
from a large-scale synthesis to industrial application and disposal should be the prime 
focus of concern and necessary steps should be taken in the direction of the following: 
(1) nanocarriers’ synthesis and modification parameters; (2) determination of nanocar-
riers’ source, point of entry, and end point; and (3) safety regulations, which are highly 
essential in case of nanopharmaceuticals. Hence, ecotoxicological tests for nanophar-
maceuticals are always required and recommended with the suitable or desired adapta-
tions depending on nanopharmaceutical usage and applications. The potential risks of 
nanocarriers used in nanopharmaceuticals have been tabulated in Table 1.3, where 
oxidative stress, cytotoxicity, phytotoxicity, genotoxicity, and immunogenicity are the 
ultimate toxic response emerging from the biological interaction of these 
nanosubstances.

Table 1.3  Various associated potential risks of nanocarriers used in nanopharmaceuticals (Ray 
et al. 2009; Sardoiwala et al. 2017)

S. 
no. Nanocarriers Potential risks

1. Carbon nanomaterials and silica 
nanoparticles

May induce pulmonary inflammation, 
granulomas, and fibrosis

2. Silver and gold nanoparticles Widespread biodistribution to different organs 
and possible passage through the blood–brain 
barrier

3. Iron oxide nanoparticles Significant distribution in reticuloendothelial 
system based organs

4. Quantum dots, carbon dots, and 
titanium dioxide nanoparticles

Skin penetration followed by immunogenic 
responses

5. Manganese dioxide, titanium dioxide, 
and carbon nanoparticles

May enter in the brain through the nasal 
olfactory epithelium

6. Titanium dioxide, aluminum oxide, 
carbon black, cobalt, and nickel 
nanoparticles

Usually more toxic than micron-sized particles

Note: Oxidative stress, cytotoxicity, phytotoxicity, genotoxicity, and immunogenicity are the ulti-
mate toxic effects associated with these nanosubstances
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A summarized mechanism of alteration or evolution in the ecotoxicity of nano-
carriers which are potentially being used in nanopharmaceuticals is shown in 
Fig. 1.9. Here, the discarded or runoff nano-contaminants are exposed to the natural 
aquatic system containing various types of natural organic materials such as humic 
acid and sulfides in the presence of solar irradiation. These conditions cause an 
unpredicted change or transformation in the bare nanocarriers that may result in 
either a positive or negative way depending on the characteristics of transforming or 
modified nanocarriers (Wang et al. 2016; Jahan et al. 2017). In addition, these nano-
carriers may also enter into the food chain due to their bioaccumulating behavior 
and may cause various diseases in the consuming human as mentioned in Table 1.2. 
Therefore, it is very essential to study and obtain the data of aquatic life exposure 
test of versatile nanopharmaceuticals. It should also include the tests with and with-
out drug molecules using nanocarrier–drug conjugates and bare nanocarriers, 
respectively. Here, activated sludge microbes, algae, daphnia, fishes, earthworms, 
and various sediment organisms should be considered as the test microorganism for 
the evaluation of respective nanopharmaceutical-mediated toxicity in aquatic life. 
In addition, aquatic plants should also be considered for the estimation of bioaccu-
mulation of nanopharmaceuticals or associated nanocarriers using suitable qualita-
tive and quantitative measurement techniques as presented in Fig. 1.5.

Fig. 1.9  Mechanism of alteration or evolution in the ecotoxicity of nanocarriers discarded or 
exposed to the natural aquatic system containing natural organic matters, under the influence of 
solar irradiation (ROS reactive oxygen species)
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There are various categories of tests which are widely being used for the assess-
ment of nanopharmaceuticals. The examples of such major categories have been 
presented in Table 1.4 with respect to their specific objectives and limitations that 

Table 1.4  The categories of tests with their objectives and limitations that are commonly used for 
the toxicity evaluation of nanomaterials

S. 
no. Test Objectives Limitations References

1. Cytotoxicity Study of nanosubstance-
induced cytotoxicity including 
cellular metabolic activity, 
oxidative stress, apoptosis or 
necrosis, cell membrane 
damage, and impedance-based 
analysis

These tests are very 
time-consuming, 
labor-intensive, 
complex in nature

Parthasarathi 
(2011), 
Sardoiwala et al. 
(2017) and 
Accomasso et al. 
(2018)

Most often, they are 
unreliable and 
non-reproducible 
owing to the 
nanomaterial and 
environmental 
interferences

2. Phytotoxicity Study of change or inhibition 
in the seed germination, root, 
and shoot growth. Change in 
biomass of whole plant or 
specific parts

These tests are highly 
time-consuming

Lin and Xing 
(2007), 
Parthasarathi 
(2011) and Dev 
et al. (2017)

Used to be very 
inconsistent in nature. 
Generally not 
recommended for 
comparisons with 
separately reported or 
conducted studies

3. Genotoxicity Rapid measurement of DNA 
and/or chromosomal damage

Various other factors 
may substantially 
influence the assay 
results such as 
variation in the same 
material properties 
and environmental 
conditions

Parthasarathi 
(2011), 
Manickam et al. 
(2017), 
Sardoiwala et al. 
(2017) and 
Accomasso et al. 
(2018)

Detection of unregulated DNA 
damage signaling pathways

4. Band gap 
analysis

Prediction of toxicity level via 
conduction band energy level 
of metal oxide or 
semiconductor-based 
nanocarriers

Suitable for metal/
metal oxide or 
semiconductor-based 
nanocarriers

Accomasso et al. 
(2018)

Study of in vitro toxic effects 
related to energy of conduction 
band and metal dissolution

5. Quantitative 
structure 
activity 
relationships 
(QSAR)

Prediction of nanocarriers or 
nanopharmaceuticals 
exposure-dose-response that 
includes data assembling, 
structure characterization, 
model construction, model 
evaluation, interpretation, and 
review of mechanisms

Availability of small 
number of data sets

Accomasso et al. 
(2018)
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are commonly used for the toxicity evaluation of engineered nanomaterials. In con-
trast, Berkner et al. (2016) enlisted various protocols concerning about the physico-
chemical properties, fate, and ecotoxicity behavior of nanopharmaceuticals that 
could be further used for the environmental risk assessment (see Table 1.5). In this 
regard, Maurer-Jones et al. (2013) enlisted various bacterial monoculture models 
which are reportedly used for the toxicity assessment of various nanoparticles. In 
addition, Wang et al. (2016) exclusively reviewed about the alteration of various 
metallic nanocarriers’ toxicity in the presence of natural organic matters with the 
possible mechanisms. Reviewed studies include bacteria, algae, plant, vertebrates, 
and invertebrates as the test organism. Overall, the assessment of the fate of an 
active pharmaceutical ingredient in the open ecosystem as conducted for small drug 
molecules and bare nanoparticles is mostly found to be missing or not suitable for 
nanopharmaceuticals. Therefore, for nanopharmaceuticals and nano-bio drug con-
jugates, the biodegradability test is also recommended for more informative and 

Table 1.5  Type of studies related to the physical and chemical properties, fate, and ecotoxicological 
effects of nanopharmaceuticals which are primarily recommended for the environmental risk 
assessment (European Medicines Agency 2006; Berkner et al. 2016)

S. 
no. Study type

Recommended 
protocols

1. Water solubility OECD 105
2. Dissociation constants in water OECD 112
3. Vapor pressure OECD 104
4. n-Octanol–water partition coefficient OECD 107/123
5. Adsorption–desorption using a batch equilibrium method: a study 

using two types of sludge and three types of soil is preferred
OECD 106

6. Ready biodegradability OECD 301
7. Aerobic and anaerobic transformation in aquatic sediment systems OECD 308
8. Freshwater alga and cyanobacteria, growth inhibition test OECD 201
9. Daphnia magna reproduction test OECD 211
10. Fish, early life stage toxicity test OECD 210
11. Fish full life cycle test ENV/JM/

MONO(2008)22a

12. Activated sludge, respiration inhibition test OECD 209
13. Bioaccumulation in fish: aqueous and dietary exposure OECD 305
14. Sediment–water Chironomid toxicity test using spiked sediment OECD 219
15. Sediment–water Lumbriculus toxicity test using spiked sediment OECD 225
16. Aerobic and anaerobic transformation in soil OECD 307
17. Soil microorganisms: nitrogen transformation test OECD 216
18. Terrestrial plants, growth test OECD 208
19. Earthworm, acute toxicity tests OECD 207
20. Collembola, reproduction test OECD 232

OECD Organisation for Economic Co-operation and Development
aOECD Series on testing and assessment: Number 95
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factual details. Moreover, a few ideal study protocols should also require to be 
developed to characterize the transformation and alteration in the nanopharmaceu-
ticals inside the human and/or animal body or in other suitable media during the 
metabolism.

1.6  �Future Research Directions

In the last few decades, nanotechnology has evolved in different directions, such as 
catalysis, electronics, sensing, biomedical applications, and many others. However, 
various human-, animal-, and plant-related concerns have hindered the comprehensive 
utilization of this promising technology due to the associated environmental and toxi-
cological implications. Interestingly, humans are routinely exposed to airborne nano-
sized dust particles from a very early age; however the exposure to such particles has 
dramatically increased in the last few years due to various human activities in the field 
of nanotechnology and related applications (Doong et al. 2013; Brohi et al. 2017). 
Therefore, the large-scale application of nanomaterials in industries, food products, 
and medicines has alarmed major concerns about the humans as well as animals and 
plants (Navarro et al. 2008; Houdy et al. 2011; Miralles et al. 2012; Dev et al. 2017; 
Kaphle et al. 2017; Manickam et al. 2017; Sardoiwala et al. 2017). It is mainly due to 
the significant number of reported and validated studies claiming the potential toxic 
hazards of various nanomaterials. The reported hazards are primarily associated with 
nanocarriers’ composition, concentration, administration routes, modification, and the 
exposed species. Therefore, a proper understanding of the impacts of nanocarriers on 
human, animal, or plant growth and reproductive system is very essential, so that the 
minimization of adverse effects of various nanocarriers could also be planned and 
implemented on the vulnerable population of humans, animals, and plants.

For the same objective, some novel study protocols are needed to be developed 
and standardized to study the contamination level, bioaccumulation limit, environ-
mental risk quotient (ERQ) measurement, chemical and physical transformation in 
nanocarriers, and resulting alteration in the toxicity of associated nanopharmaceuti-
cals. Inevitably, the more comprehensive absorption, distribution, metabolism, 
excretion/elimination, and toxicity (ADMET) studies in addition to the routine 
pharmacokinetics and pharmacodynamics are recommended for the newly devel-
oped nanocarriers which are being planned to be utilized in the nanopharmaceuti-
cals for effective transportation and targeting of medicaments. Moreover, the 
inherent modification in the nanocarriers such as surface modification, coating, and 
co-doping of other nontoxic or toxicity retardants are also recommended for safer 
application of nanopharmaceuticals.

Furthermore, the researchers need to consider and scrutinize at least few promi-
nent concerns before going for any conclusive solid remarks related to the usage and 
development of nanopharmaceuticals. The concerns were mainly proposed by 
Boxall et al. (2012) for pharmaceuticals and personal care products (PPCPs) pres-
ence in the open environment; and the most important concerns were selected 
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through the experts voting at an international expert workshop. However, the similar 
and most important concerns with more than 30% votes are rephrased here with 
respect to the nanopharmaceuticals. These prominent concerns are as follows: (1) 
importance of nanopharmaceuticals relative to other chemicals and non-chemical 
stressors in terms of biological impacts in the natural environment; (2) approaches 
to prioritize nanopharmaceuticals for research on the environmental and human 
health exposure-based effects; (3) environmental exposure to the nanopharmaceuti-
cal residues that results in the selection of antimicrobial-resistant microorganisms 
and affects human health outcomes; (4) observation of ecotoxicological responses 
such as histological and molecular-level responses for nanopharmaceuticals, and 
their translation into traditional cum ecologically important end points such as sur-
vival, growth, and reproduction of a species; (5) usage of pharmaceuticals preclini-
cal and clinical information to assess the potential of adverse environmental impacts 
of nanopharmaceuticals; (6) evolutionary conservation of nanopharmaceutical tar-
gets across species and life stages in the context of potential adverse outcomes and 
effects; and (7) effects from long-term exposure to low concentrations of nanophar-
maceuticals mixtures on the nontargeted organisms.

On the similar note, Ågerstrand et  al. (2015) recommended ten directions for 
improving the European Medicines Agency’s guideline on environmental risk 
assessment of human pharmaceutical products. The recommendations were based 
on the up-to-date available scientific information in combination to the experiences 
from other chemical endorsement entities. Those recommendations are as follows: 
“(1) Expanding the scope of the current guideline; (2) Requirements to assess the 
risk for development of antibiotic resistance; (3) Jointly performed assessments; (4) 
Refinement of the test proposal; (5) Mixture toxicity assessments on active pharma-
ceutical ingredients with similar modes of action; (6) Use of all available ecotoxic-
ity studies; (7) Mandatory reviews; (8) Increased transparency; (9) Inclusion of 
emission data from production; and (10) A risk management option”. The imple-
mentation of the aforementioned recommendations with respect to nanopharmaceu-
ticals is equally rational and crucial for the protection of the environment, human, 
and other living organisms.

1.7  �Conclusions

Overall, nanopharmaceuticals have a tremendous potential to have a significant 
impact on the human beings and other living organisms. However, the proper risk 
evaluation either related to the environment or related to the health of the living 
organism is still a major challenge in the development of nanopharmaceuticals. The 
concerns related to the nanopharmaceuticals and their associated nanocarriers are 
quite indispensable for the ethical and legal acceptance of nanomedicaments. Here, 
the presented study is a sincere attempt to emphasize the environmental and toxico-
logical implications of nanocarriers used in various nanopharmaceuticals. The dis-
cussion includes the key issues related to the nanopharmaceutical types, exposure, 
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effects, quantification, absorption, distribution, metabolism, excretion/elimination, 
and toxicity (ADMET) behavior and potential hazards of nanopharmaceuticals.

The inferences made in this review article suggested that the understanding of 
the in vivo biodistribution of nanocarriers is significant but still inadequate for the 
critical evaluation of the efficacy and safety related to the nanopharmaceuticals. 
Hence, for the development of nanopharmaceuticals with improved efficacy and 
safety, various nanocarriers’ assessment techniques and toxicity measurement pro-
tocols have been pointed out for the long-term safety and sustainability of nano-
pharmaceuticals. Moreover, there are various experts’ recommendations and 
concerns too that have been positively put forward for the further development of 
nanopharmaceuticals. More precisely, the factors and processes affecting nanophar-
maceuticals and their associated nanocarriers’ biodistribution, such as physico-
chemical properties of nanosubstances, interaction with membranes and proteins, 
extravasation or transportation to the tissues and specific cells via lymph and blood 
vessels, uptake by the reticuloendothelial system, and clearance through the liver 
and kidneys, need to be scrutinized very carefully. Hence, more advanced and sys-
tematic in  vitro and in  vivo approaches are needed to be developed and recom-
mended for the better correlation of nanopharmaceuticals properties with their 
biological effects.
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Abstract  Cancer is a group of around 100 diseases that has been tormenting man-
kind since ancient time. Due to cancer, estimated 8.2 million people died globally in 
2012, and the toll is expected to reach 13 million in 2030. Despite the improvement 
of conventional therapeutic modalities, the outcome of cancer patients has not 
improved significantly. So, alternative therapeutic modalities and new effective 
anticancer drugs are highly sought for. Different parts of plants and their extracts 
have been used to cure many diseases and relive from physical agony since ancient 
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times. In the traditional system of medicine, herbal products have been used for 
treating different types of diseases and alignments globally. Active compounds from 
herbal medicine, such as curcumin, are found to be effective against cancer. Despite 
their excellent therapeutic ability, the potential of these herbal compounds or phyto-
chemicals is limited due to their low water solubility and poor bioavailability.

Advances in nanomedicines are revolutionizing the healthcare sector. Significant 
progresses have been  made in development of nanocarriers in recent decades. 
Therapeutic efficacies of conventional drugs are reported to enhance by many folds 
using these novel nanocarriers through the intervention of nanotechnology. 
Application of nanotechnology may be effective in overcoming limitations of herbal 
drugs such as low water solubility, poor bioavailability, toxicity, and poor therapeu-
tic efficacy of the drugs. It greatly helps in achieving higher efficiency of the drugs 
compared to its molecular form. Development of herbal-based nanocarriers like 
polymeric nanoparticles, dendrimers, liposomes, and micelles is reported to be 
more effective in treatment and managements of cancer. Loading of herbal com-
pounds within these nanodrug delivery systems changes their pharmacokinetics 
profile and increases their bioavailability and therapeutic efficacy.

In this review, a comprehensive effort has been made on discovery of herbal 
drugs, herbal nanocarriers, and their application for cancer therapy. The coverage of 
this review will also extend to its current status and future prospects with elaborative 
and graphical examples.

Keywords  Cancer · Chemotherapy · Herbal compounds · Nanocarriers · 
Nanomedicine

2.1  �Introduction

2.1.1  �Cancer Overview

Cancer represents a diverse group of life-threatening diseases that causes abnormal 
and uncontrolled growth of malignant cells. These malignant cells are highly unor-
ganized, irregular in shape and size, and capable of invading neighboring healthy 
tissues and organs. The characteristics of cancer cells are: ability of tissue invasion 
and metastasis, sustain angiogenesis, self-sufficiency in growth signals, limitless 
replicative potential, evasion of apoptosis, and insensitivity to anti-growth signals 
(Hanahan and Weinberg 2000; Gogoi et al. 2016). Cancer has been affecting man-
kind since ancient times. There are more than 100 types of cancers reported till date, 
and their subtypes are found within specific organs (Gogoi et al. 2016). With time, 
the tumor cells disintegrate from the primary tumor and migrate through the blood 
vessels and lymphatic streams to form their colonies at different sites of the patient’s 
body. This process is called metastasis and it leads to the death of the host.

The exact causes and the ways of initiation and spreading of cancer are still not 
well understood, but both external factors (e.g., tobacco smoking, infections, expo-
sure to retroviruses, chemicals, and radiations) and internal factors (e.g., inherited 
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metabolism mutations, hormones, and immune conditions) are believed to be the 
reasons for cancer formation and growth (Feng and Chien 2003). These factors may 
act together or in sequential manners to initiate and promote cancer. Till date, no 
complete curing procedure for cancer is available, only remission or palliation is 
possible with the current treatment procedures. A cancer is said to be in remission 
state when all clinical evidence of cancer has been disappeared and the microscopic 
foci of cancer cells may still remain (Feng and Chien 2003).

2.1.2  �Limitation of Conventional Therapeutic Modalities

The most common and effective cancer treatment modalities are surgery, radiother-
apy, chemotherapy, hormone therapy, and immunotherapy. All these modalities have 
their own advantages as well as disadvantages and usually combination of two or 
more modalities gives the best result (Feng and Chien 2003). Surgery is one of major 
treatment procedures for treating tumor; but, erroneous or inadequately margined 
resection of tumor cells may lead to faster metastasis (Feng and Chien 2003; Gogoi 
et al. 2017). Moreover, tumors at metastasis cannot be treated with either surgery or 
radiotherapy. Radiotherapy is not selective to cancer cells, and it kills both malig-
nant and healthy cells. Success of chemotherapeutic agents in treating cancer is 
limited by their severe side effects and development of multidrug resistance by the 
cancer cells. A schematic representation of how chemotherapy kills cancer cells is 
shown in Fig. 2.1. Chemotherapeutic drugs which are effective against rapidly divid-
ing cells cannot kill large portion of dormant tumor cells. Thus the chemotherapy is 
compromised (Gogoi et al. 2017; Paszek et al. 2005; Tannock 2001). Hormone ther-
apy is applicable to only hormone-sensitive cancers like breast cancer, prostate can-
cer, ovarian cancer, etc. Hormone therapy inhibits the growth of cancer cell by 
blocking the action of hormones such as estrogen receptor-α responsible for the 
tumor growth (Hayashi and Kimura 2015). But, almost all patients with metastatic 
breast and prostate cancer that initially respond to hormone therapy develop resis-
tance to hormone therapy, and it leads to progression of the disease (Abraham and 
Staffurth 2016). Despite having number of therapeutic options, cancer is posing as a 
big menace to mankind. In 2008, 7.6  million people died of cancer, and toll is 

Fig. 2.1  Outline of chemotherapy (Subramanian et al. 2016)
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expected to reach 13.2 million by 2030 (Global cancer facts and figures, 2015, 2nd 
ed.). So, search for new effective and developed therapy is still going on.

2.1.3  �Importance of Nanomedicine

Application of nanotechnology especially nanomedicines opens up a window of 
opportunities to enhance the efficacy of anticancer drugs. According to the National 
Institute of Health, nanomedicine is referred as application of nanotechnology for 
treatment diagnosis, monitoring, and control of biological systems. Research into 
nanodrug delivery systems and diagnostic agents come within the preview of nano-
medicine (Moghimi et al. 2005). The size of nanocarriers is generally in the range 
of 1 to 100 nm (Subramanian et al. 2016). But, for the purposes of this chapter, we 
are considering all the drug delivery systems below size 1000  nm as “nanodrug 
delivery systems” or “nanocarriers.” Nowadays a lot of herbal nanocarrier-based 
nanomedicines are being investigated globally and showing promising results for 
the holistic treatment of cancer disease. Herbal compound-loaded nanocarriers can 
overcome the problems like aqueous solubility and permeability through biological 
membrane due to their size and modified surface properties as faced by herbal bio-
active compounds. Encapsulation of herbal drugs in nanocarriers improves the 
pharmacological activity and biodistribution of drugs, ensures their solubility and 
stability, and helps in maintaining sustained delivery (Jain et al. 2011). Moreover, 
application of nanodrug delivery systems may help in (i) achieving enhanced and 
targeted delivery of phytochemicals; (ii) crossing the tight epithelial and endothelial 
barriers and delivering large molecules to intracellular sites of action; and (iii) co-
delivering of two or more phytomedicines or therapeutic modalities for combined 
therapy and imaging the site of drug action (Lambert 2010; Liong et  al. 2008; 
Gunasekaran et al. 2014). Targeted delivery herbal bioactive molecules to the tumor 
site(s) reduces the side effects caused by off targeted delivery and increases the 
therapeutic efficacy of the nanoformulations.

Herein, we are reviewing the different types of herb-based nanocomposite exist-
ing in the literatures along with illustrative figures and explanation, which have 
been specially applied for the cancer treatment. The current development and future 
prospects in this direction have also been discussed.

2.2  �Bioactive Herbal Compounds: History 
and Discovery Strategies

Historically, plants and their products have been playing an important role in curing 
many diseases and reliving from different physical agonies. Plants are important 
sources of traditional medicines (Bhattacharjya and Borah 2008; Newman et  al. 
2000; Buss et  al. 2003). Herbal medicines were reported to use in different 
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civilizations around the world since ancient times. In Mesopotamia, approximately 
1000 plant-derived substances were reported to use as medicine in around 
2600 BCE. Egyptians had been using herbal medicines since 2900 BCE; but, the 
Ebers Papyrus only properly reported use of over 700 drugs of mostly plant origin 
in 1550 BCE. The Indian Ayurvedic system is dated prior to 1000 BCE. Charaka 
Samhita and Sushruta Samhita documented use of 341 and 516 drugs, respectively 
(Kapoor 1990; Dev 1999).The Chinese materia medica also documented use of 
large number of herbal medicine for treating different diseases. The Greco–Roman 
knowledge on their traditional herbal medicine was dated back to the first century 
AD, and large amount of this knowledge bases were preserved by the Arabs during 
the dark and middle ages during the fifth to twelfth centuries (Cragg and Newman 
2013). Much later, numbers of German books on herbal medicines were compiled 
during the period of the fourteenth to seventeenth century (Atanasov et al. 2015).

During all those periods, herbal medicines were used to treat different diseases 
or alignments without the in-depth knowledge of pharmacological activity or active 
components of the herbs (Atanasov et al. 2015). But, rational clinical investigation 
on medicinal herbs was laid down in the eighteenth century, when Anton von Störck 
had studied the properties of poisonous herbs like aconite and colchicum and 
William Withering had studied foxglove for the treatment of edema (Sneader 2005).

At the beginning of the nineteenth century, rational drug discovery from plants 
started when the German apothecary assistant Friedrich Sertürner had successfully 
isolated analgesic and sleep-inducing agent from opium named morphium (mor-
phine). Later numbers of papers were published based on this discovery. This led to 
successful isolation and study of numerous natural drugs from herbs and followed 
by chemical synthesis of these drugs (Kaiser 2008). As per the world health organi-
zation (WHO) report, 80% of rural people of world’s population especially in devel-
oping countries depend on the herbal medicine (World Health Organization 
Guideline 2001). Till today, substantial portion of therapeutic agents are comprised 
of natural products and their derivatives; e.g., 61% of anticancer compounds and 
49% anti-infectives approved during the period of 1981 to 2010 are derived from 
nature (Newman and Cragg 2012). However, the pharmaceutical companies have 
been avoiding investigation on natural product discovery processes since 1990, due 
to difficulties in supply, screening, characterization, and increase in rate of rediscov-
ering the known compounds (Li and Vederas 2009). Still, research on fast, inexpen-
sive next-generation genome sequence technology  and the discovery of natural 
product is flourishing at academic level (Luo et al. 2014).

The natural product discovery processes are broadly classified into two catego-
ries, namely, top-down and bottom-up approaches (Fig.  2.2). In top-down 
approaches, system level information are utilized to generate the new natural prod-
ucts without having prior knowledge of genes and enzymes involved in the biosyn-
thesis. These approaches don’t require complicated genome sequencing and 
sophisticated genetic manipulation.

In these approaches, biological samples are collected from diverse environments 
either for extraction or laboratory cultivation. The extracts are then screened for a 
desired bioactivity, and the “hits” are isolated for structural characterization. New 
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innovation in sampling and screening has mitigated the risk of rediscovering new 
chemical entities and allowing this approach to remain a viable means of natural 
product discovery (Luo et al. 2014). On the other hand, in the bottom-up approaches, 
the gene cluster of interest is identified, manipulated using transcription and transla-
tion processes, and then the corresponding natural product is synthesized (Luo et al. 
2014). Plant-derived natural products are generally nontoxic to the normal cells and 
well tolerated by our body (Singh et al. 2016).

The plant-derived marketed anticancer compounds can be divided into four 
important classes, the vinca alkaloids (vinblastine, vincristine, and vindesine), the 
epipodophyllotoxins (etoposide and teniposide), the taxanes (paclitaxel and 
docetaxel), and the camptothecin derivatives (camptothecin and irinotecan) (Desai 
et  al. 2008). Apart from these, the plants have tremendous potential to provide 
newer drugs, and search for new medicinal plants with potential anticancer com-
pounds is going on.

Vinca alkaloids are herbal compounds extracted from Madagascar periwinkle 
plant, Catharanthus roseus G. Don., and they have the potential to treat diabetes and 
cancer (Moudi et al. 2013). Vinca alkaloids inhibit microtubule assembly and hence 
disrupt the cellular division process of tumor cells (Duflos et al. 2002). Moreover, 
disruption of microtubules function affects the cellular functions like intracellular 
organelle transport, cell migration, cell signaling, and mitosis (Perez 2009). Herbal 
compounds derived from vinca alkaloid are used to treat breast cancer, Hodgkin’s 
lymphoma and Kaposi’s sarcoma, severe lymphoblastic leukemia, non-Hodgkin 
leukemia, William’s tumor, and non-small cell lung cancer (Safarzadeh et al. 2014).

Epipodophyllotoxins or podophyllotoxins are extracted from the root of the 
Indian podophyllum plant (Podophyllum peltatum). Etoposide and teniposide are 

Fig. 2.2  Overview of the recent strategies applied for the discovery of natural products (Luo 
et al. 2014)
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two active and semisynthetic compounds belonging to this family. These com-
pounds arrest the proliferation of tumor cells by inhibiting topoisomerase II, which 
causes breakdown of DNA double strands (Damayanthi and Lown 1998; Safarzadeh 
et al. 2014).

Taxanes such as paclitaxel, docetaxel, and other taxane homologs are considered 
as the most effective antitumor agents and effective against wide range of cancers 
such as breast, ovary, lung, and other metastatic cancers. Paclitaxel is derived from 
Pacific yew bark (Taxus brevifolia). These taxanes inhibit the polymerization of 
microtubules and thereby prevent proliferation of tumor cells (Hagiwara and 
Sunada 2004).

Camptothecins are natural cytotoxic drugs isolated from Camptotheca accumi-
nata of the Nyssaceae family. These are strong inhibitor of nucleic acid in mam-
malian cells and induce strand breaks in chromosomal DNA topoisomerase I 
(Hsiang et al. 1985).

Apart from these four groups of drugs, a large number of herbal drugs have been 
tried/investigated for their anticancer properties. These drugs from herbs or spices 
reveal their anticancer properties either by direct cytotoxic effects or modulating the 
immune system (Kitagishi et al. 2012). There are at least 2,50,000 species of plants 
out of which more than 1000 plants have been found to possess significant antican-
cer properties (Mukherjee et al. 2001). Active phytochemicals and their derivatives 
are found in leaf, root, flower, stem, and bark, and they perform number of pharma-
cological activities in human body (Singh et al. 2016). The search of novel bioactive 
compounds from natural sources continues with botanists, marine biologists, and 
microbiologists teaming up with chemists, pharmacologists, toxicologists, and cli-
nicians. A comprehensive list of phytochemicals investigated for treatment of dif-
ferent cancers is shown in Table 2.1.

2.2.1  �Structures of Important Herbal Compounds

Though a large number of plant-derived chemicals are investigated for their antican-
cer activity, only a few chemical entities were able to get approved for clinical 
applications due to stringent evaluation processes of pharmaceutical agents. The 
plant-derived anticancer agents approved for therapeutic use in the last 30 years 
(1984–2014) are summarized in Table 2.2.

2.3  �Cancer Targeting Strategies and Herbal Nanostructures

Despite discovery of large numbers of plant-derived drugs, success in treating solid 
tumor is limited due to the severe side effects of chemotherapeutic agents and the 
development of multidrug resistance. Moreover, highly acidic and oxygen-deprived 
hypoxic environments within the tumor mass reduce the effectiveness of drugs that 
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Table 2.1  Phytochemicals found to be effective in different types of cancers (Singh et al. 2016)

Phytochemical(s) Cancer models suppressed References

Alexin B, Emodin (Aloe 
vera)

Leukemia, stomach cancer, 
neuroectodermal tumors

Elshamy et al. 
(2010)

Allylmercaptocysteine, 
allicin (Allium sativum)

Colon cancer, bladder carcinoma Ranjani and Ayya 
(2012)

Amooranin (Aphanamixis 
polystachya)

Breast, cervical, and pancreatic cancer Chan et al. (2011)

Andrographolide 
(Andrographis paniculata)

Cancers of the breast, ovary, stomach, 
prostate, and kidney, nasopharynx 
malignant melanoma, leukemia

Geethangili et al. 
(2008)

Ashwagandhanolide 
(Withania somnifera)

Cancers of the breast, stomach, colon, 
lung, and central nervous system

Yadav et al. (2010)

Bavachinin, corylfolinin, 
psoralen (Psoralea 
corylifolia)

Cancers of the lung and liver, 
osteosarcoma, malignant ascites, 
fibrosarcoma, and leukemia

Wang et al. (2011b)

Berberine, cannabisin-G 
(Berberis vulgaris)

Cancers of the breast, prostate, liver, and 
leukemia

Elisa et al. (2015)

Betulinic acid (Betula utilis) Melanomas Król et al. (2015)
Boswellic acid (Boswellia 
serrata)

Prostate cancer Garg and Deep 
(2015)

Costunolide, Cynaropicrine, 
Mokkolactone (Saussurea 
lappa)

Intestinal cancer, malignant lymphoma, 
and leukemia

Lin et al. (2015)

Curcumin (Curcuma longa) Cancers of the breast, lung, esophagus, 
liver, colon, prostate, skin, and stomach

Perrone et al. 
(2015)

Daidzein and genistein 
(Glycine max)

Cancers of the breast, uterus, cervix, lung, 
stomach, colon, pancreas, liver, kidney, 
urinary bladder, prostate, testis, oral cavity, 
larynx, and thyroid

Li et al. (2012)

Damnacanthal (Morinda 
citrifolia)

Lung cancer, sarcomas Aziz et al. (2014)

β-Dimethyl acryl shikonin, 
arnebin (Arnebia nobilis)

Rat walker carcinosarcoma Thangapazham 
et al. (2016)

Emblicanin A & B (Emblica 
officinalis)

Cancers of breast, uterus, pancreas, 
stomach, liver, and malignant ascites

Dasaroju and 
Gottumukkala 
(2014)

Eugenol, orientin, vicenin 
(Ocimum sanctum)

Cancers of the breast and liver and 
fibrosarcoma

Preethi and Padma 
(2016)

Galangin, pinocembrine, 
acetoxychavicol acetate 
(Alpinia galangal)

Cancers of lung, breast, digestive systems, 
and prostate and leukemia

Sulaiman (2016)

Gingerol (Zingiber officinale) Cancers of ovary, cervix, colon, rectum, 
liver, urinary bladder, oral cavity, 
neuroblastoma, and leukemia

Rastogi et al. 
(2015)

Ginkgetin, ginkgolide A & B 
(Ginkgo biloba)

Glioblastoma multiforme, ovary, colon, 
hepatocarcinoma, prostate, and liver

Xiong et al. (2016)

(continued)
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Table 2.1  (continued)

Phytochemical(s) Cancer models suppressed References

Glycyrrhizin (Glycyrrhiza 
glabra)

Lung cancer, fibrosarcomas Huang et al. (2014)

Gossypol (Gossypium 
hirsutum)

Cancers of the breast, esophagus, stomach, 
liver, colon, pancreas, adrenal gland, 
prostate, and urinary bladder, malignant 
lymphoma and myeloma, brain tumor, and 
leukemia

Zhan et al. (2009)

Kaempferol galactoside 
(Bauhinia variegata)

Cancers of the breast, lung, liver, oral 
cavity, and larynx and malignant ascites

Tu et al. (2016)

Licochalcone A, 
licoagrochalcone 
(Glycyrrhiza glabra)

Cancers of the prostate, breast, lung, 
stomach, colon, liver, and kidney and 
leukemia

Zhang et al. (2016)

Lupeol (Aegle marmelos) Breast cancer, lymphoma, melanoma, and 
leukemia

Wal et al. (2015)

Nimbolide (Azadirachta 
indica)

Colon cancer, lymphoma, melanoma, 
leukemia, and prostate cancer

Wang et al. (2016)

Panaxadiol, panaxatriol 
(Panax ginseng)

Cancers of the breast, ovary, lung, prostate, 
and colon, renal cell carcinoma, leukemia, 
malignant lymphoma, and melanoma

Du et al. (2013)

Plumbagin (Plumbago 
zeylanica)

Cancers of the breast and liver, 
fibrosarcoma, leukemia, and malignant 
ascites

Yan et al. (2015)

Podophyllin and 
podophyllotoxin 
(Podophyllum hexandrum)

Cancers of the breast, ovary, lung, liver, 
urinary bladder, testis, and brain, 
neuroblastoma, and Hodgkin’s disease

Liu et al. (2015)

Psoralidin (Psoralea 
corylifolia)

Stomach and prostate cancer Pahari et al. (2016)

Sesquiterpenes and 
diterpenes (Tinospora 
cordifolia)

Lung, cervix, throat, and malignant ascites Gach et al. (2015)

6-Shogaol (Zingiber 
officinale)

Ovary cancer Ghasemzadeh et al. 
(2015)

Skimmianine (Aegle 
marmelos)

Liver tumors Mukhija et al. 
(2015)

Solamargine, solasonine 
(Solanum nigrum)

Cancers of the breast, liver, lung, and skin Al Sinani et al. 
(2016)

Thymoquinone (Nigella 
sativa)

Cancers of the colon, breast, prostate, 
pancreas, and uterus, malignant 
lymphoma, ascites, melanoma, and 
leukemia

Fakhoury et al. 
(2016)

Ursolic acid and oleanolic 
acid (Prunella vulgaris)

Cancers of the breast, cervix, lung, oral 
cavity, esophagus, stomach, colon, and 
thyroid, malignant lymphoma, intracranial 
tumors, and leukemia

Wozniak et al. 
(2015)

(continued)
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are basic in nature and/or utilize oxygen-free radicals for anticancer action (Kellen 
1993). In solid tumor, a substantial portion of tumor cells present in dormant state, 
and they do not divide in the early stage of tumor formation (Rockwell and Hughes 
1994). Therefore, chemotherapeutic agents effective against rapidly dividing cells 
could not kill them (Slingerland and Tannock 1998; Gogoi et al. 2017). Under this 
circumstances, the intervention of nanotechnology into the herbal drugs start play-
ing an enhancing factor of its therapeutic efficacy towards the targeted diseases. 
Herbal drug-loaded nanoformulations can be prepared using methods such as high 
pressure homogenization, complex coacervation, co-precipitation, salting out, 
nanoprecipitation or solvent displacement, solvent emulsification–diffusion, super-
critical fluid method and self-assembly method, etc. (Gunasekaran et  al. 2014). 
Some of the common herbal nanodrug delivery systems are liposomes, emulsions, 
solid lipid nanoparticles, micelles, polymeric nanoparticles, dendrimers, carbon 
nanotube, inorganic nanoparticles (silica, ZnO), etc. These nanoparticles deliver 
drug to the cancer site(s) by two strategies, i.e., active and passive targeting.

2.3.1  �Active Targeting

In active targeting, nanocarriers are channeled to tumor sites with the help of target-
ing ligands specific against receptors overexpressed on tumor cells or tumor vascu-
lature, which are not expressed by normal cells. In this process, chemotherapeutic 
agent-loaded nanocarriers are conjugated with targeting ligands or moieties such as 
folic acid, monoclonal antibody, integrin, etc. which can target (i) receptors prefer-
entially expressed on endothelial cells of tumor blood vessels (e.g., integrin-αv β3 
and negatively charged phospholipids) (Li et al. 2004; Nisato et al. 2003); (ii) recep-
tors overexpressed on tumor cells, e.g., HER2 and folate receptor (Chen et al. 2008; 
Pradhan et al. 2010); and (iii) lineage-specific targets that are expressed at the same 

Table 2.1  (continued)

Phytochemical(s) Cancer models suppressed References

Ursolic acid (Oldenlandia 
diffusa)

Cancers of the lung, ovary, uterus, 
stomach, liver, colon, rectum, and brain, 
lymphosarcoma, and leukemia

Al Sinani et al. 
(2016) and Wozniak 
et al. (2015)

Vinblastine, vincristine 
(Catharanthus roseus)

Cancers of the breast, ovary, cervix, lung, 
colon, rectum, and testis, neuroblastoma, 
leukemia, rhabdomyosarcoma, malignant 
lymphoma, and Hodgkin’s disease

Keglevich et al. 
(2012)

Viscumin, digallic acid 
(Viscum album)

Cancers of the breast, cervix, ovary, lung, 
stomach, colon, rectum, kidney, urinary 
bladder, and testis, fibrosarcoma, 
melanoma

Bhouri et al. (2012)

Withaferin A, D (Withania 
somnifera)

Cancers of the breast, cervix, prostate, 
colon, nasopharynx, and larynx and 
malignant melanoma

Lee and Choi 
(2016)

M. Mahato et al.
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level on both tumor and normal cells (e.g., CD19) (Cheng and Allen 2008) and kill 
tumor cells. These targeting ligands or moieties tagged effectively internalized by 
the tumor cells through receptor-mediated endocytosis. For effective deployment of 
active targeting strategy, the following issues need to be addressed: (i) liposome 
prepared for active targeting extravasated and bound to the first line of targeted 
tumor cells in the interstitial compartment and reported to obstruct the way for more 
liposomes to accumulate (Barenholz 2001), (ii) immunoliposomes prepared for 
active targeting were found to be cleared rapidly (Koning et  al. 2002), and (iii) 
nanocarriers prepared for active targeting were reported to internalize via endocyto-
sis process and end up with degradation in endosomes/lysosomes. Moreover, drug 
loading methods need to be devised properly so that the encapsulated drug does not 
form aggregate and degrade instantly for effective cancer treatment (Barenholz 
2001). A schematic representation of active and passive targeting strategies of nano-
carriers is demonstrated in Fig. 2.3.

Fig. 2.3  Schematic representation of different mechanisms through which nanocarriers can 
deliver drugs at tumor sites. Polymeric nanoparticles are shown as representative nanocarriers 
(circles). Passive tissue targeting is achieved by extravasation of nanoparticles through enhanced 
permeability and retention (EPR) effect. Active cellular targeting (inset) can be achieved by func-
tionalizing the surface of nanoparticles with ligands/moieties specific to the receptors/biomole-
cules expressed on the surface of the cancer cells (Peer et al. 2007)

2  Herbal Nanocarriers for Cancer Therapy
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2.3.2  �Passive Targeting: Enhanced Permeability and Retention 
(EPR) Effect

In passive targeting process, nanocarriers/molecules are guided into the tumor inter-
stitium or tissue through leaky tumor vasculature with the help of molecular move-
ment within fluids (i.e., convection) or passive diffusion (Haley and Frenkel 2008). 
Conventional force mostly transports the larger molecules, whereas diffusion helps 
in transportation of low molecular weight compounds. It is well-known that tumor 
vasculatures are highly chaotic and complex structures, and they have the ability of 
extensive angiogenesis or forming hyperbranched defective vasculatures, impaired 
lymphatic drainage systems, and ability to generate number of vasculature perme-
ability factors such as bradykinin, nitric oxide (NO) (Maeda et al. 1988; Matsumura 
et al. 1988; Maeda et al. 1994), and peroxynitrite (ONOO−) (Maeda et al. 2000); and 
hence, tumor vasculatures are highly porous. The pore size in the tumor vasculature 
is in the range of 100–780 nm (Yuan et al. 1995) which is much larger than normal 
tissue junctions, i.e., less than 6 nm (Drummond et al. 1999). So, nanocarriers cir-
culating in the blood selectively enter into the interstitial spaces of tumor tissues and 
get accumulated there due to impaired lymphatic drainage system. This effect is 
called enhanced permeability and retention (EPR) effect. But, the pore size of endo-
thelium tissues of kidney glomerulus is in the range of 40–60 nm size; sinusoidal 
endothelium of liver and spleen have pores of size up to 150 nm (Seymour 1992). 
Nanocarriers like liposomes can avoid accumulation in the kidney due to their big-
ger size, but macrophages present in the liver and spleen can remove them from 
blood circulation. PEG coating onto surface of nanocarriers prevents their clearance 
by macrophages due to steric hindrance offered by PEG coating, increases their 
blood circulation time, and hence helps in selective accumulation of the nanocarri-
ers in tumor through passive diffusion (Andresen et al. 2005).

A large numbers of nanocarriers have been investigated for treatment of cancer 
exploiting the active and passive targeting strategies. Surface functionalization of 
nanoparticles using PEG or similar molecules has been reported to improve the 
bioavailability of drugs at tumor sites in different preclinical animal models. 
However, clinical translation of the nanocarriers from bench to bedside is a huge 
challenge due to stochastic nature of ligand–receptor interactions and difficulties in 
controlling release of drug at diseased sites (Gogoi et al. 2017). In order to improve 
the therapeutic index of drugs, drug release at tumor sites is essential as it prevents 
their rapid metabolization and clearance from the patient’s body. Drug release from 
nanocarriers can be triggered using either exogenous stimuli such as temperature, 
ultrasound, light, and electric fields or endogenous stimuli like change in pH, 
enzyme, redox potential, etc.

M. Mahato et al.



55

2.3.3  �Herbal Nanostructures for Cancer Treatment

A large number of nanocarriers with herbal compounds have been investigated for 
treatment of various types of cancer. These nanocarriers target cancer cells either by 
active targeting or passive targeting strategy. A lot of herbal compounds are poorly 
soluble in aqueous solubility and resulting in poor bioavailability following oral 
administration (Bansal et al. 2011). Delivery of these poorly aqueous soluble drugs 
through nanocarriers reduces their systemic toxicity, improves pharmacokinetic 
properties, enhances their delivery at tumor sites, and hence improves the therapeu-
tic indices of the drugs (Aqil et al. 2013).The following section discusses the appli-
cation of herbal nanocarriers in treatment of cancer.

�Liposomes and Other Lipid Carriers

Liposomes
Liposomes are spherical vesicles made up of phospholipids which have a hydro-
philic head and a hydrophobic tail. These phospholipids self-assemble under given 
conditions to form a bilayered structure called liposome. These liposomes have the 
ability to carry both hydrophobic and hydrophilic payload together. They have the 
advantages of high biocompatibility, biodegradability, ease of preparation, chemical 
versatility, and the ability to modulate the pharmacokinetic properties by changing 
the chemical composition and the components of the bilayers (Terreno et al. 2008). 
Dhule et al. (2014) investigated the combined antitumor effect of curcumin and C6 
ceramide (C6) against osteosarcoma (OS) cell lines. They prepared three liposomal 
formulations, i.e., curcumin liposomes, C6 liposomes, and C6-curcumin liposomes. 
Curcumin in combination with C6 was found to be effective against MG-63 and 
KHOS OS cell lines, in comparison with curcumin liposomes alone. The therapeu-
tic efficacy of the preparations was tested in  vivo using a human osteosarcoma 
xenograft assay. PEGylated and folate tagged liposomes prepared for targeted deliv-
ery of curcumin and C6 significantly reduce the tumor volume in vivo. Recently, 
Gogoi et al. (2017) investigated the therapeutic efficacy of paclitaxel-loaded mag-
netic liposomes in vitro and in vivo under self-controlled hyperthermic condition. 
Results showed that the combined thermochemotherapy was effective in treating 
cancer in comparison to the drug and heat alone. Similar results were demonstrated 
by Gharib et al. (2015) who treated breast cancer using artemisinin and transferrin-
loaded magnetic liposomes under AC magnetic field. In another study, berberine 
derivatives and doxorubicin-loaded long-circulating liposomes were studied for 
their ability to target mitochondria of drug-resistant cancer cells. Results demon-
strated the superiority of these liposomes over regular doxorubicin-loaded lipo-
somes and free doxorubicin (Tuo et al. 2016).

Solid Lipid Nanoparticles (SLNs)
Solid lipid nanoparticles have generated tremendous attention in last few decades 
due to their good release profile and targeted drug delivery with excellent physical 
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stability. Good deals of studies on SLNs have been done for improvising the deliv-
ery of phytochemicals with anticancer properties in recent decades. Phytochemicals 
like berberine (Xue et al. 2015), resveratrol (Teskac and Kristl 2010), and paclitaxel 
(Pooja et al. 2016) were encapsulated in SLNs and studied their therapeutic proper-
ties. Teskac and Kristl (2010) demonstrated that encapsulation of resveratrol within 
SLNs enhances the bioavailability of drug and hence increases the therapeutic effi-
cacy of the drug.

�Micelles

Polymeric micelles have been drawing attention due to their ability of site-specific 
delivery of therapeutic agents, reducing off-target toxicity, and improving pharma-
cokinetics (Biswas et al. 2016). Tea epigallocatechin gallate and Herceptin loaded 
polymeric micelles were reported to use for cancer therapy. These nanomicelles 
demonstrated better tumor selectivity and growth reduction, as well as longer blood 
half-life, than free Herceptin (Chung et al. 2014). Micelles have been used for deliv-
ery of poorly water-soluble anticancer agent quercetin. Tan et al. (2012) reported 
development of quercetin-loaded micelles for treatment of lung cancer. Nanomicelles 
made from the diblock copolymer and polyethylene glycol (PEG)-derivatized phos-
phatidylethanolamine (PE) were found to enhance peroral anticancer activity and 
no apparent toxicity to the intestinal epithelium.

�Polymeric Nanoparticles

Polymeric nanoparticles are drawing huge attention in cancer drug delivery due to 
their stability, ease of conjugating functional moieties, and ease of surface modifica-
tion. Yallapu et al. (2012b) developed curcumin-loaded cellulose nanoparticles for 
targeting prostate cancer. They investigated and compared cellular uptake and cyto-
toxicity of these curcumin-loaded cellulose nanoparticles with β-cyclodextrin (CD), 
hydroxypropyl methylcellulose (cellulose), poly(lactic-co-glycolic acid) (PLGA), 
magnetic nanoparticles (MNP), and dendrimer-based curcumin nanoformulations 
in prostate cancer cells. Results demonstrated the superiority of curcumin-loaded 
cellulose nanoparticles in comparison to the other nanoformulations in inducing 
apoptosis in cancer cells. Recently, paclitaxel-loaded polymeric nanoparticles com-
bined with chronomodulated chemotherapy were evaluated in lung cancer both 
in vitro and in vivo. Results suggested that these paclitaxel-loaded nanoparticles 
exhibit greater anti-tumor activity against A549 cells, in comparison with pacli-
taxel. The anti-tumor effect at 15 h after light onset (HALO) administration was 
reported to be the best in all groups (Hu et  al. 2017). Curcumin-loaded PLGA 
nanoparticles were reported to enhance the aqueous solubility of curcumin and 
increase the antitumor potential of curcumin (Nair et al. 2012).
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�Nanoemulsions

Nanoemulsions are colloidal nanoparticles known for their stability and high load-
ing efficiency. These carriers are solid spheres, and their surface is amorphous and 
lipophilic with a negative charge. Recently, a good deal of works has been done on 
herbal agent-loaded nanoemulsions for cancer therapy. Anuchapreeda et al. (2012) 
studied therapeutic efficacy of curcumin-loaded nanoemulsion in number of differ-
ent cancer cell lines. Results showed high encapsulation of curcumin, physical sta-
bility of these nanocarriers, and their preserved toxicity. In another study, Pool et al. 
(2013) studied the feasibility of encapsulating hydrophobic quercetin in nanoemul-
sion. In a recent study, camptothecin-loaded polymer stabilized nanoemulsion was 
investigated for the in vitro cytotoxicity as well as their potential to target breast 
cancer in vivo. Results showed the possibility of targeting breast cancer using these 
nanocarriers (Sugumaran et al. 2017) (Fig. 2.4).

�Nanocapsules

Nanocapsules consist of a liquid/solid core in which the drug is placed into a cavity, 
which is surrounded by a distinctive polymer membrane made up of natural or syn-
thetic polymers. They have been drawing huge attention due to the protective coat-
ing which can be tuned to achieve sustain and controlled release of active ingredients 
(Kothamasu et  al. 2012). Artemisinin crystals were encapsulated using nanocap-
sules composed of chitosan, gelatin, and alginate. This investigation showed the 

Fig. 2.4  Phytochemical loaded different types of nanocarriers (Subramanian et al. 2016)
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possibility of achieving prolonged drug release through self-assembly of polyelec-
trolytes on natural drug crystals (Chen et al. 2009). In another study, anticancer drug 
quercetin was encapsulated in nanocapsules prepared for passive and active target-
ing to tumors. The investigators prepared nanocapsules from folic acid conjugated 
to poly(lactide-co-glycolide) (PLGA) polymer to facilitate active targeting to cancer 
cells and PEGylated PLGA for passive targeting. Comparative in vitro studies on the 
cytotoxicity and cellular uptake of the different formulations were carried out using 
MTT assay and confocal laser scanning microscopy, respectively. Results confirmed 
the selective uptake and cytotoxicity of the folic acid targeted nanocapsules to the 
folate enriched cancer cells in a folate-dependent manner. Finally, in vivo experi-
ments were done to evaluate the passive tumor accumulation and the active targeting 
of the nanocapsules to folate-expressing cells in HeLa or IGROV-1 tumor-bearing 
mice. The developed nanocapsules provide a system for targeted delivery of a range 
of hydrophobic anticancer drugs in vivo (El-Gogary et al. 2014). Recently, Boissenot 
et al. (2016) developed a paclitaxel-loaded nanocapsule formulation composed of 
poly(lactide-co-glycolide)-polyethylene glycol shell and perfluorooctyl bromide 
(PFOB) core for cancer theranostic application. PFOB was used as imaging agent. 
This nanocapsule formulation was tested in vitro and in vivo. Results demonstrated 
that the formulation could be applied as a cancer theranostic agent.

�Dendrimers

Dendrimers are hyperbranched polymeric architectures widely investigated these 
days due to their versatility in drug delivery and high functionality. These nano-
structured macromolecules have the abilities to entrap and/or conjugate the high 
molecular weight hydrophilic/hydrophobic entities by host–guest interactions and 
covalent bonding (prodrug approach), respectively. Moreover, due to high ratio of 
surface groups to molecular volume, they are extensively studied for gene delivery 
(Madaan et al. 2014). Fox et al. (2009) prepared a PEGylated poly(l-lysine) (PLL) 
dendrimer formulation by covalently binding polymer conjugates of camptothecin 
to improve solubility, increase blood circulation time, enhance tumor uptake, and 
hence significantly improve efficacy of the drug. The reported formulation was 
found to be effective in treating HT-29 tumor-bearing mice. Therapeutic efficacy of 
hydrophilic paclitaxel-conjugated polyamidoamine (PAMAM) dendrimers was 
studied cancer cells. Combination of ensemble and single microtubule imaging 
techniques were used to determine the mechanism of action of these dendrimers 
in vitro. Results provided mechanistic insights into the cytotoxicity of paclitaxel-
conjugated PAMAM dendrimers and uncovered unexpected risks of using such 
conjugates therapeutically (Cline et al. 2013). Anticancer agent berberine (BBR) 
was attempted to deliver using G4-PAMAM dendrimers by conjugation (BPC) as 
well as encapsulation (BPE) approach. The entrapment efficiency in BPE was found 
to be 29.9%, whereas the percentage conjugation in BPC was found to be 37.49% 
indicating high drug payload in conjugation. In vitro results showed significantly 
higher anticancer activity for the PAMAM-BBR (p  <  0.01) against MCF-7 and 
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MDA-MB-468 breast cancer cells. In vivo results showed that the formulation was 
safer and biocompatible with very least but insignificant (p  >  0.05) effects. The 
study demonstrated that conjugated formulation (BPC) was found to be more prom-
inent than the encapsulated one (BPE) (Gupta et al. 2017).

�Inorganic Nanoparticles

Inorganic nanoparticles including gold, oxides of iron, zinc, silicon, etc. were exten-
sively investigated in both preclinical and clinical setting for delivering different 
anticancer phytochemicals. Poorly water-soluble curcumin was encapsulated in 
PMMA-PEG/ZnO bionanocomposite, and therapeutic potential and cellular uptake 
were studied in gastric cancer cell line (Dhivya et al. 2017). Results showed that 
curcumin-loaded PMMA-PEG/ZnO can induce the apoptosis of cancer cells 
through a cell cycle-mediated apoptosis corridor. In another study, cellular uptake 
and phototoxic potential of curcumin organically modified silica nanoparticle com-
plexes and free curcumin were reported to investigate in multicellular spheroids of 
human oral cancer cells. Results showed accumulation of nanoformulated curcumin 
was higher in cancer cells, and hence cell death in the spheroids was more following 
irradiation of blue light in comparison to free curcumin. Results suggested that 
nanoformulated curcumin was able to improve the phototoxic effects of curcumin in 
spheroids in comparison to free curcumin (Singh et  al. 2015). In another study, 
Janus magnetic mesoporous silica (Fe3O4-mSiO2) nanoparticles consisting of a 
Fe3O4 head for magnetic targeting and a mesoporous SiO2 body was reported to 
develop for berberine delivery. This pH responsive nanoformulation was designed 
for magnetic targeting of berberine to hepatocellular carcinoma. Results suggested 
that Janus nanocarriers driven by the magnetic field might be use for effective and 
safe delivery of berberine to against hepatocellular carcinoma (Wang et al. 2016).

Apart from these studies, a host of nanoparticles with different shape, size, archi-
tecture, materials, and inherent properties were studied for improvising delivery of 
anticancer agent in recent decades. These studies were tried to summarize with the 
help of Table 2.3.

In recent years a wide range of herbal compound-loaded nanocarriers with het-
erogeneous structures are developed and investigated their efficacy in various can-
cer cell lines. These nanocarriers are internalized by the cancer cells via phagocytosis 
or endocytosis processes depending upon their size, shape, and surface treatment 
(Zhang et al. 2015). These bioactive natural compounds inhibit the growth of cancer 
cells by inducing apoptosis or programmed cell death. Initifvtion of cell death indi-
cated by the significant changes in DNA structure (Wei et al. 2009); ROS generation 
(Wei et al. 2009; Das et al. 2013); cytochrome C release (Guo et al. 2010; Mulik 
et al. 2010); activation of caspases 3/7 (Zheng et al. 2011; Guo et al. 2010; Zhang 
et al. 2013a); cell cycle arrest (Kumar et al. 2014); activation of NF-κB (Bisht et al. 
2007); and downregulation of MMP, BaX, Cyclin D, and VEGF (Subramanian et al. 
2016) along with visible morphological changes (Merlina et al. 2012). The different 
targets of bioactive compounds inside the cancer cell are demonstrated in Fig. 2.5.
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Table 2.3  Nanoparticles used to deliver different phytochemicals with anticancer property and the 
statuses of these studies were summarized

Sl. 
no. Nanocarriers Drug Status References

1. Magnetic liposomes Paclitaxel In vitro Gogoi et al. 
(2014) and 
Kulshrestha et al. 
(2012)

2. Magnetic liposomes Paclitaxel In vitro and 
in vivo

Gogoi et al. 
(2017)

3. Solid lipid nanoparticles Paclitaxel In vivo Banerjee et al. 
(2016)

4. Polymeric micelles Paclitaxel Phase II, clinical 
trial

Saif et al. (2010)

5. Nanohydrogel Paclitaxel and cisplatin In vivo Wu et al. (2014)
6. Nanoemusion Paclitaxel In vitro and 

in vivo
Kim and Park 
(2017)

7. Polymeric nanoparticles Paclitaxel In vitro and 
in vivo

Hu et al. (2017)

8. Dendrimers Paclitaxel In vitro Cline et al. 
(2013)

9 Nanocapsules Paclitaxel In vitro and 
in vivo

Boissenot et al. 
(2016)

10. Solid lipid nanoparticles Paclitaxel In vivo Pooja et al. 
(2016)

11. Liposomes Curcumin In vitro and 
in vivo

Chen et al. 
(2012)

12. Polymeric nanoparticles Curcumin In vitro Yallapu et al. 
(2012b)

13. Silica nanoparticles Curcumin In vitro Singh et al. 
(2015)

14. ZnO nanoparticles Curcumin In vitro Dhivya et al. 
(2017)

15. Nanoemulsion Curcumin In vitro Anuchapreeda 
et al. (2012)

16. Nanohydrogel Curcumin In vitro Teong et al. 
(2015)

17. Magnetic nanoparticles Curcumin In vitro Yallapu et al. 
(2012a)

18. Phytosome Curcumin In vivo Maiti et al. 
(2007)

19. Nanospheres Curcumin In vitro Mukerjee and 
Vishwanatha 
(2009)

20. Polymeric nanoparticles Curcumin In vitro Bisht et al. 
(2007)

21. Polymeric nanoparticles Curcumin In vitro Punfa et al. 
(2012)

(continued)
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Table 2.3  (continued)

Sl. 
no. Nanocarriers Drug Status References

22. Polymeric nanoparticles Curcumin In vitro Nair et al. (2012)
23. Protein nanoparticles Curcumin In vivo Kim et al. (2011)
24. Lipid carriers Curcumin and genistein In vitro Aditya et al. 

(2013)
25. Nanocapsule Artemisinin In vitro Chen et al. 

(2009)
26. Magnetic liposomes Artemisinin In vitro and 

in vivo
Gharib et al. 
(2015)

27. Lipid nanoparticles Artemisinin derivatives In vitro Zhang et al.
(2013b) 

28. Solid lipid nanoparticles Artemisinin derivatives 
artemisone

In vitro Dwivedi et al. 
(2015)

29. Polymeric magnetic 
nanoparticles

Artemisinin In vitro Natesan et al. 
(2017)

30. Solid lipid nanoparticles Berberine In vivo Xue et al. (2015)
31. Liposomes Berberine derivatives 

and doxorubicin
In vitro and 
in vivo

Tuo et al. (2016)

32. Hybrid nanoparticle Berberine In vitro and 
in vivo

Yu et al. (2017)

33. Dendrimer Berberine Ex vivo and 
in vivo

Gupta et al. 
(2017)

34. Magnetic mesoporous 
silica nanoparticles

Berberine In vitro Wang et al. 
(2017)

35. Polymeric nanoparticles Camptothecin In vitro and 
in vivo

Min et al. (2008)

36. Magnetic cyclodextrin 
nanovehicles

Camptothecin In vitro Rajan et al. 
(2017)

37. Polymeric nanoparticles Camptothecin In vivo Householder 
et al. (2015)

38. Dendrimer Camptothecin In vivo Fox et al. (2009)
39. Mesoporous silica 

nanoparticles
Camptothecin In vivo Lu et al. (2010)

40. Nanoemulsion Camptothecin In vitro and 
in vivo

Sugumaran et al. 
(2017)

41. Polymer nanoparticles Epigallocatechin gallate In vitro Rocha et al. 
(2011)

42. Polymeric nanoparticles Epigallocatechin-3-
gallate

In vitro and 
in vivo

Siddiqui et al. 
(2009)

43. Polymeric nanoparticles Epigallocatechin 
3-gallate

In vitro Sanna et al. 
(2011)

44. Polymeric nanoparticles Green tea In vivo Khan et al. 
(2013)Polyphenol EGCG

45. Micelle Green tea catechin 
derivatives and protein 
drugs

In vitro and 
in vivo

Chung et al. 
(2014)

(continued)
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Table 2.3  (continued)

Sl. 
no. Nanocarriers Drug Status References

46. Liposomes Epigallocatechin-3-
gallate

In vitro de Pace et al. 
(2013)

47. Polymeric nanoparticles Root extract of 
Phytolacca decandra

In vitro and 
in vivo

Das et al. (2012)

Phytolaccaceae
48. Polymeric NP Ethanolic extract of 

Polygala senega 
Polygalaceae

In vitro Paul et al. (2011)

49. Liposomes Vincristine, vinblastine 
and vinorelbine

In vitro and 
in vivo

Zhigaltsev et al. 
(2005)

50. Liposomes Vincristine In vivo Tokudome et al. 
(1996)

51. Nanoemulsion Quercetin In vitro Pool et al. (2013)
52. Polymeric nanocapsules Quercetin In vitro and 

in vivo
El-Gogary et al. 
(2014)

53. Liposomes Quercetin In vitro Wang et al.
(2012)

54. Micelle Quercetin In vitro and 
in vivo

Tan et al. (2012)

55. Liposomes Resveratrol In vitro and 
in vivo

Wang et al. 
(2011a)

56. Polymeric nanoparticles Resveratrol In vitro and 
in vivo

Karthikeyan 
et al. (2013)

57. Polymeric nanoparticles Resveratrol In vitro Karthikeyan 
et al. (2015)

58. Protein nanoparticles Resveratrol In vivo Guo et al. (2010)
59. Clay nanotube Resveratrol In vitro Vergaro (2012)
60. Polymer nanoparticles Resveratrol In vitro Sanna et al. 

(2013)
61. Liposomes, polymeric 

lipid-core nanocapsules 
and nanospheres and solid 
lipid

E-resveratrol Ex vivo Detoni et al. 
(2012)

Nanoparticles
63. Solid lipid nanoparticles Resveratrol In vitro Teskac and 

Kristl (2010)
64. Liposomes Oleanolic acid In vitro and 

in vivo
Tang et al. 
(2013)

65. Solid lipid nanoparticles Baicalein In vivo Tsai et al. (2012)
66. Self-assembled polymer 

nanoparticles
Baicalein In vitro and 

in vivo
Wang et al. 
(2015)

67. Liposomes Baicalein In vitro and 
in vivo

Li et al. (2016a)

(continued)
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2.4  �Challenges and Future Prospects

Though a large number of nanomedicines are investigated for treatment of different 
types of cancers, only few nanoformulations reached the market today. A nanocar-
rier formulation has to go through a host of evaluation processes before it reaches 
the market. Though most of the nanocarriers are developed based on EPR effect, the 
EPR effect is unlikely to be present and equal in all the tumors nor the sole driver 
for efficacy of nanocarriers. Moreover, the pathological heterogeneity among differ-
ent types of tumors and within the same type of tumor possesses a big challenge in 
the nanomedicine development process (Hare et al. 2017).The success rate of nano-
medicine can be improved by adopting a specific decision-making framework, such 

Table 2.3  (continued)

Sl. 
no. Nanocarriers Drug Status References

68. Magnetic nanoparticles Baicalein In vitro Kavithaa et al. 
(2017)

69. Liposomes Combretastatin A4 In vitro Nallamothu et al. 
(2006)

70. Magnetic polymer 
nanoparticles

Noscapine Synthesis and 
characterization

Abdalla et al. 
(2010)

71. Human serum albumin 
nanoparticles

Noscapine In vitro Sebak et al. 
(2010)

72. Polymeric nanoparticles Noscapine In vitro Madan et al. 
(2011)

73. Liposomes Betulinic acid In vitro and 
in vivo

Mullauera et al. 
(2011)

74. Polymeric nanoparticles Betulinic acid In vitro and 
in vivo

Das et al. (2016)

75. Polymeric nanoparticles Curcumin and 
5-fluorouracil

In vitro Anitha et al. 
(2014)

76. Liposomes Paclitaxel/
epigallocatechin gallate

In vitro Ramadass et al. 
(2015)

77. Nanoemulsion Paclitaxel and curcumin In vitro Ganta and Amiji 
(2009)

78. Liposomes Curcumin and 
resveratrol

In vivo Narayanan et al. 
(2009)

79. Mesoporous silica 
nanoparticles

Combretastatin A4 and 
doxorubicin

In vitro and 
in vivo

Li et al. (2016b) 

80. Nano cell Combretastatin A4 and 
doxorubicin

In vitro and 
in vivo

Sengupta et al. 
(2005)

81. Liposomes Combretastatin A4 and 
doxorubicin

In vitro and 
in vivo

Mitrus et al. 
(2009)

82. Nanocapsule Combretastatin A4 and 
paclitaxel

In vitro Wang and Ho 
(2010)

83. Self-assembled polymeric 
nanoparticles

Betulinic acid and 
hydroxycamptothecin

In vitro and 
in vivo

Dai et al. (2015)
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as AstraZeneca’s 5Rs principle: right target/efficacy, right tissue/exposure, right 
safety, right patient, and right commercial potential. The following points need to be 
addressed for development of cost-effective superior therapies for the patients, i.e., 
(i) should have a clear cut understanding about the heterogeneity of clinical cancers 
and the biological factors influencing the behavior of nanomedicines in patients’ 
tumors; (ii) transition from formulation-driven research to disease-driven develop-
ment; (iii) adaptation of more relevant animal models and testing protocols; and (iv) 
preselection of the patients most likely to respond to nanomedicine therapies.

Nanocarriers offer novel efficient strategies to treat cancer; nanotoxicity is a 
major area of concern as potentially high reactivity arising from the large surface-
to-volume ratio of nanoparticles compared to bulk systems. Besides these, biode-
gradability of nanoparticles, side effects from by-products and bioaccumulation, 
and change in physicochemical characteristics of material at nanoscale are few 
apprehensions related to the nanomedicine. Moreover, distribution of nanocarriers 
in the body following systemic administration; development of mathematical and 
computer models to predict risk and benefits of nanoparticles; safe processes of 
nanoparticle manufacturing; and disposal and detrimental effects of nanoparticles to 
environment are few issues related to the nanomedicine to be addressed. Limited 
work has been done in scaling up laboratory or pilot technologies of nanodrug deliv-
ery for commercialization due to high cost of materials and challenges associated to 
maintain size and composition of nanomaterials at large scale.

Fig. 2.5  Molecular targets of herbal compounds loaded nanocarriers against cancer cell 
(Subramanian et al. 2016)

M. Mahato et al.



65

2.5  �Conclusions

Cancer has been tormenting the mankind from ancient times. Despite improvement 
in different therapeutic modalities, the number of deaths due to cancer is on rise. 
Therefore, a large number of herbs and their parts or extracts have been used to treat 
cancer. Nowadays, bioactive compounds from herbs have been extracted for effec-
tive treatment of different types of cancer. Due to the side effects of conventional 
therapies, herbal compounds or their derivatives have been loaded in different nano-
carriers and investigated. Herbal compound-loaded nanocarriers have been able to 
effectively deliver drugs to the tumor site(s), reduce the side effects associated with 
the therapy, and kill the tumor cells more effectively. These nanocarriers can target 
tumor either by passive targeting or active targeting strategy. Though a host of nano-
carriers have been investigated for cancer therapy, due to stringent preclinical evalu-
ation and regulatory processes, only few nanoformulations have reached the market. 
The success rate of the nanocarriers in reaching market can be improved by adapt-
ing efficient decision-making strategies like AstraZeneca’s 5Rs framework, imple-
menting new validation method and preselection of patients, etc. Moreover, issues 
like nanotoxicity, prior prediction of nanoparticles distribution in the body, and 
risk–benefit analysis are to be addressed.
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Abstract  A budding concern in nanopharmaceuticals has generated a number of 
advancements throughout recent years with a focus on commercialization and engi-
neering novel products. The integration of nanotechnology into medical field has 
given birth to some new interdisciplinary areas of nanomedicine including nano-
pharmaceuticals. This is relatively a new class of therapeutic-containing nanomate-
rials that often have unique nanoproperties including small particle size, high 
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surface-to-volume ratio, ability to improve solubility, multi-functionality, and the 
possibility of modulating their properties. Nanopharmaceuticals in delivery systems 
provide new opportunities for solving issues associated with problematic drugs; 
those were previously unsuitable for conventional oral or injectable formulations 
could now be formulated and designed to interact with the body at subcellular (i.e., 
molecular) scales with a high degree of specificity. Due to superior pharmacokinet-
ics/pharmacodynamics and/or active intracellular delivery with reduced toxicity 
and enhanced bioavailability, this created great expectations in the field of drug 
delivery. With these advantages, nanopharmaceuticals have the ability to extend the 
economic life of proprietary drugs, thereby creating additional revenue streams. 
This chapter focuses on the potential application of nanopharmaceuticals including 
carbon nanotubes, quantum dots, dendrimers, nanoshells, niosomes, magnetic 
nanoparticles, polymeric NPs, and lipid NPs in drug delivery and drug targeting. 
This chapter also includes some of the FDA-approved nanopharmaceuticals meant 
for various routes of administration.

Keywords  Nanopharmaceuticals · Nanomedicine · Nanoparticulate · Drug 
delivery · Drug targeting · Carbon nanotubes · Dendrimers · Quantum dots

3.1  �Introduction

Nanotechnology can be defined as the science and engineering that involves the 
design, creation, synthesis, manipulation, and application of functional materials, 
devices, and systems through control of matter at the nanometer scale (Emerich and 
Thanos 2003; Sahoo and Labhasetwar 2003). Nanotechnology involves utilization 
of man-made products not larger than 1000 nm. In the past few years, nanotechnol-
ogy has grown by leaps and bounds, and this multidisciplinary scientific field is 
undergoing explosive development in the field of molecular biology, chemistry, 
genomics, physics, material science, and medicine (Cheng et al. 2006; Chan 2006). 
It can prove to be a boon for human healthcare, because nanoscience and nanotech-
nologies have a huge potential to bring benefits in areas as diverse as drug develop-
ment, water decontamination, information and communication technologies, and 
the production of stronger, lighter materials. Human healthcare nanotechnology 
research can definitely result in immense health benefits. The genesis of nanotech-
nology can be traced to the promise of revolutionary advances across medicine, 
communications, genomics, and robotics. A complete list of the potential applica-
tions of nanotechnology is too vast and diverse to discuss in detail, but without 
doubt, one of the greatest values of nanotechnology will be in the development of 
new and effective medical treatments (Shaffer 2005; Emerich 2005).

A detailed evaluation of each formulation is essential to expand our current 
nanopharmaceutical repertoire. Nanopharmaceuticals have received a lot of atten-
tion due to their potential to revolutionize drug delivery systems. It has the potential 
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to revolutionize medical treatment by permitting the design of more potent, less 
toxic smart therapeutics. It has been extensively described in numerous literatures, 
which have discussed the rationales, challenges, efficacy, safety, and regulatory 
issues related to the development of nanoscale drug delivery systems (Desai 2012; 
Duncan and Gaspar 2011; Riehemann et al. 2009).

Nanopharmaceuticals cum nanotechnology are nowadays broadly regarded as 
the enabling technology of the present century where the sizes of the drug particle 
or delivery system work at the nano level may be utilized to detect diseases at con-
siderable earlier stages. Successful design of delivery system to provide the right 
dose of particular drug to specific site of disease still remains challenging for the 
industry. In this situation, nanopharmaceuticals have huge potential to tackle this 
disappointment of old-style therapeutics which deals site-specific targeting of drugs. 
Nanomaterials that bring unique shapes and functionalities and nanodevices show a 
strategic role in pharmaceutical nanotechnology and have enormous promise for 
healthcare (Torchilin 2006; Otsuka et al. 2003). Nanopharmaceuticals have the abil-
ity to improve the pharmacokinetics and increase biodistribution of therapeutic 
agents to target organs, which will result in improved efficacy (Fetterly and 
Straubinger 2003; Hoarau et al. 2004). Second, drug toxicity is reduced as a conse-
quence of preferential accumulation at target sites and lower concentration in 
healthy tissues. Therefore, pharmaceutical corporations are focusing their vision 
towards nanotechnology-based pharmaceuticals to augment the formulation and 
drug target discovery.

Besides larger surface area and nanoscale properties, they have distinctive physi-
cal, chemical, and biological properties as compared to their large counterparts, 
therefore used as a hopeful tool for drug and gene delivery advancement. Properties 
of nanopharmaceuticals such as charge, chemical composition, peculiar size and 
shape, surface structure, and solubility can impressively influence their interactions 
with biological molecules and cells. Furthermore, nanopharmaceuticals are resis-
tant to settling and may possess higher saturation solubility, fast dissolution, and 
improved adhesion to biological surfaces. These features render them therapeuti-
cally effective and more bioavailable.

Nanopharmaceuticals have wide scope that includes smart materials for tissue 
engineering, intelligent tools for drug delivery, diagnostics, theranostics, and many 
more (Davis 2006; Pene et al. 2009). Existing claims of nanotechnology in pharma-
ceutical field are development of advanced diagnostic, bioactive surfaces, bio-
marker, biosensor, image enhancement device, implant technology, nanocarrier, 
nanomedicine, nanorobots, tissue engineering, etc. An enormous number of nano-
systems that have been explored in pharmacy to date are nanocrystals and nano-
structures like carbon nanotubes, quantum dots, dendrimers, nanoshells, niosomes, 
magnetic nanoparticles, polymeric NPs, lipid NPs, etc. (Fig. 3.1).

Many drugs exhibit such a low solubility that micronization does not lead suffi-
ciently to high bioavailability and so the next step was taken to move from microni-
zation to nanocrystals. Drug nanocrystals are nanoparticles composed of 100% drug 
without any matrix material that act as its own carrier, in contrast to that nanostruc-
tures composed of matrix system incorporated with drug. Nanopharmaceutical 
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applications are growing exponentially and are presently used in various applica-
tions including drug delivery, proteins and peptide delivery, cancer treatment, treat-
ment of neurodegenerative disorders, etc. (Panyam and Labhasetwar 2003; Calvo 
et al. 1997).

The ideal features of nanopharmaceuticals include enhancing drug accumulation 
in the target site, providing protection of drugs against potential enzymatic or hydro-
lytic degradation in the body, providing biocompatibility and biodegradability, 
offering a high drug-loading capacity, extended circulation or residence time, con-
trolled drug release profiles, providing long-term physical and chemical stability, 
and the ability to efficiently carry poorly soluble pharmaceuticals (Torchilin 2005). 
These features can be engineered into the delivery system along with effective 
delivery to target sites; hence, this area is gaining attraction (Marcato and 
Duran 2008).

The size and surface properties of nanopharmaceuticals (including the presence 
of targeting moieties) largely dictate their in vivo behavior. Specifically, these prop-
erties permit systemic circulation and determine their biodistribution within the 
human body. Therefore, an understanding of these properties can aid in designing 
nanopharmaceuticals that can be localized to specific tissue/body sites. The small 
size of nanopharmaceuticals imparts them with unique properties in contrast to 
larger particles; it is this small size that allows them access to places in the human 
body where larger particles cannot reach. It is generally accepted that for systemic 
applications, the diameter of nanopharmaceuticals should be in the range of 

Nanopharmaceuticals

Nanostructured

Nanoparticles

Carbon nanotubes Metallic NPs Silica NPs Quantum dots

Non-polymer based

Drug conjugatesMicellesDendrimer

Polymer based

Nanocrystalline

Fig. 3.1  Schematic diagram of various types of pharmaceuticals
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10–100  nm, with minimum surface charge (Davis 2006). Nanopharmaceuticals 
have a high surface-to-volume ratio when compared to their larger counterparts. 
Therefore, their surface properties are critical to their in vivo performance. In fact, 
their interaction with the local environment (which, again, is the end result of a 
combination of size and surface properties) determines if they will be lost to unde-
sired locations within the body. A large number of approaches focus on minimizing 
nonspecific binding of nanopharmaceuticals to undesired tissue surfaces as well as 
reducing interactions with each other. The endothelial surfaces, as well as cell mem-
branes, are typically negatively charged, which repel negatively charged nanophar-
maceuticals. Also, as the surface charge on the nanopharmaceuticals becomes larger 
(either positive or negative), a greater clearance by the macrophage-mediated RES 
is generally observed. In this context, synthesis of sterically stabilized nanopharma-
ceuticals is the subject of active R&D. For example, incorporation of polyethylene 
glycol (PEG) polymers on the surface of nanopharmaceuticals (i.e., PEGylation) 
provides a means to increase solubility, reduce immunogenicity, prolong half-life, 
and prevent a rapid renal clearance via the RES (due to larger particle size resulting 
from PEGylation) (Harris and Chess 2003).

In addition to this, it may also be necessary to design nanopharmaceuticals that 
can undergo efficient intracellular uptake and arrival at specific organelles (Breunig 
et al. 2008). Nanopharmaceuticals are better suited than their microparticle counter-
parts for intravenous (IV) delivery because the tiniest capillaries are in the 5–6 
micron range, a size that impedes most microparticles (or aggregations thereof) 
from distributing into the bloodstream.

The blood–brain barrier (BBB) and the blood–retinal barrier (BRB) protect the 
brain and eyes, respectively, due to their unique anatomical features, including the 
presence of tight junctions that seal adjacent cells. The BBB has strict size and sur-
face property limitations for entrance. For gene delivery, both viral vectors and non-
viral vectors have been generally unsuccessful; the former are unable to penetrate 
the BBB or the BRB, while the latter lack sufficient efficiency. On the other hand, 
nanopharmaceuticals have been shown to cross biological barriers and may be able 
to cross both the intact BBB (Tosi et al. 2008) as well as the BRB (Zhang et al. 
2003). Often, nanopharmaceuticals can be delivered directly to the nervous system 
(NS) without prior need for drug modification or functionalization. Moreover, both 
hydrophilic and hydrophobic therapeutics can be delivered without first opening the 
BBB. However, in this context systemic delivery for non-NS diseases is of general 
concern because these agents may cross the BBB and cause brain damage or psy-
choactive effects. Nanopharmaceuticals can also permeate the tight epithelial junc-
tions of the skin that normally impede delivery of active agents to the desired target 
(Emerich and Thanos 2006). Topical emulsion systems incorporating nanoparticles 
are being developed which rapidly permeate tissue to delivery actives or remove 
lethal toxins from the bloodstream. Nanopharmaceuticals of specific size (generally 
greater than 10 nm) can be designed that are able to penetrate tumors due to the 
“leaky” nature of their microvasculature. This classic effect, referred to as the 
“enhanced permeability and retention (EPR) effect,” results in prolonged circula-
tion and accumulation within the tumor (Matsumura and Maeda 1986). It is 
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generally accepted that nanoparticles in the 10–100 nm size range and with a slightly 
positive or slightly negative surface charge should be able to disseminate within 
tumors when delivered to the circulatory system.

By controlling the particle size and architecture of nanopharmaceuticals, a par-
ticular pharmacokinetic release profile of the drug may be generated. Often, a near 
zero-order kinetic drug release profile is desired since it maintains a steadier thera-
peutic concentration at the site of delivery. Such a profile is more likely to be 
achieved by nanopharmaceuticals where a drug has been functionalized onto or 
encapsulated within a polymeric carrier matrix. For oral applications, 

research has focused on lymphatic uptake of nanopharmaceuticals by the Peyer’s 
patches of the gut-associated lymphoid tissue (GALT). It has been shown that dur-
ing oral delivery, nanopharmaceuticals are disseminated systemically, while their 
microparticle counterparts remain in the Peyer’s patches (Blanco and Alonso 1997).

The objective of the chapter is to focus on the potential application of nanophar-
maceuticals in drug delivery and a short snap on some of the FDA-approved nano-
pharmaceutical products developed for various routes of administration.

However, many other products such as product that have multifunctional prop-
erty are still in pipeline due to their safety, efficacy, and product development issues. 
This chapter will provide a thorough discussion of the major nanopharmaceutical 
formulations as well as the impact of nanotechnology into the future.

3.2  �Nanopharmaceuticals in Drug Delivery and Targeting

One of the most important long-standing issues in the pharmaceutical industry is the 
proper distribution of drugs and other therapeutic agents to a specific disease site 
within the patient’s body (Jain 2003; Labhasetwar 2005). Since this is generally 
unachievable, active agents have to be administered in excessively high doses, 
thereby increasing the odds of toxic side effects. The concept of site-specific deliv-
ery of a therapeutic arises from this classic drawback of traditional therapeutics. 
Nanopharmaceuticals have enormous potential in addressing this failure of tradi-
tional therapeutics – they offer site-specific targeting of active agents (Moghimi and 
Szebeni 2003).

Nanoparticles, because of their small size, can extravasate through the endothe-
lium in inflammatory sites, epithelium (e.g., intestinal tract and liver), tumors, or 
penetrate microcapillaries. In general, the nanosize of these particles allows for effi-
cient uptake by a variety of cell types and selective drug accumulation at target sites. 
Such precision targeting via nanopharmaceuticals will reduce toxic systemic side 
effects, resulting in better patient compliance. This can be achieved either through 
passive targeting of drugs to the site of action or by active targeting of the drug 
(Fig. 3.2). As a result, nanopharmaceuticals present novel opportunities for refor-
mulation of active agents whose previous versions were unsuitable for traditional 
delivery.
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3.2.1  �Passive Targeting

Passive targeting occurs due to extravasation of the nanoparticles at the diseased site 
where the microvasculature is leaky. Examples of such diseases where passive tar-
geting of nanocarriers can be achieved are tumor and inflamed tissues. Tumor vas-
cular leakiness is the result of increased angiogenesis and the presence of cytokines 
and other vasoactive factors that enhance permeability. Tumor angiogenesis is char-
acterized by vessels with irregular diameters and branching, and tumors lacking 
defining structures of vasculature such as arterioles, capillaries, or venules (Oeffinger 
and Wheatley 2004). Vascular endothelial growth factor (VEGF) and the angiopoi-
etins are critical in regulating the balance between the leakiness associated with the 
defective endothelial linings of tumor vessels and vascular growth, maturation, and 
regression (Holash et al. 1999; Brown et al. 1997). Elevated levels of bradykinin 
result in vasodilatation and enhance the extravasation of large molecules and their 
retention in tumors (Matsumura et al. 1988). The increase in vascular permeability 
by VEGF and bradykinin is mediated by nitric oxide generation (Wu et al. 1998). 
The majority of solid tumors exhibit a vascular pore cutoff size between 380 and 
780 nm (Hobbs et al. 1998), although tumor vasculature organization may differ 
depending on the tumor type, its growth rate, and microenvironment (Jain 1998).

Therefore, particles need to be of a size much smaller than the cutoff pore diam-
eter to reach to the target tumor sites. By contrast, normal vasculature is imperme-
able to drug-associated carriers larger than 2–4 nm compared to free, unassociated 
drug molecules (Fu et al. 1998; Firth 2002). This nanosize window offers the oppor-
tunity to increase drug accumulation and local concentration in target sites such as 
tumor or inflamed sites by extravasation and significantly to reduce drug distribu-
tion and toxicity to normal tissues. For passive targeting to be successful, the nano-
carriers need to circulate in the blood for extended times so that there will be 

Fig. 3.2  Schematic representation of different drug-targeting approaches
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multiple possibilities for the nanocarriers to pass by the target site. Nanoparticulates 
usually have short circulation half-lives due to natural defense mechanisms of the 
body to eliminate them after opsonization by the mononuclear phagocytic system 
(MPS, also known as reticuloendothelial system). Therefore, the particle surfaces 
need to be modified to be invisible Q to opsonization. A hydrophilic polymer such 
as polyethylene glycol (PEG) is commonly used for this purpose because it has 
desirable attributes such as low degree of immunogenicity and antigenicity, chemi-
cal inertness of the polymer backbone, and availability of the terminal primary 
hydroxyl groups for derivatization (Moghimi et al. 2001). PEG-grafted liposomes, 
in the size range of 70–200 nm, containing 3–7 mol% methoxy-PEG-2000 grafted 
to distearoyl phosphatidylethanolamine (DSPE) or dipalmitoyl phosphatidyletha-
nolamine, showed extended circulation half-lives of 15–24 h in rodents and up to 
45 h in humans (Klibanov et al. 1990; Allen et al. 1990; Woodle 1993), whereas 
non-PEGylated liposomes had half-lives of 2 h (Allen and Everest 1983).

3.2.2  �Active Targeting

Localized diseases such as cancer or inflammation not only have leaky vasculature 
but also overexpressed some epitopes or receptors that can be used as targets. 
Therefore, nanomedicines can also be actively targeted to these sites. Ligands that 
specifically bind to surface epitopes or receptors, preferentially overexpressed at 
target sites, have been coupled to the surface of long-circulating nanocarriers 
(Medina et al. 2005; Mitra et al. 2005; Missailidis et al. 2005). Ligand-mediated 
active binding to sites and cellular uptake are particularly valuable to therapeutics 
that are not taken up easily by cells and require facilitation by fusion, endocytosis, 
or other processes to access their cellular active sites (Willis and Forssen 1998).

Passive targeting facilitates the efficient localization of nanoparticles in the 
tumor interstitium but cannot further promote their uptake by cancer cells (Sapra 
and Allen 2003). This second step in uptake can be achieved by actively targeting 
nanoparticles to receptors or other surface membrane proteins overexpressed on 
target cells. The addition of targeting ligands allows the delivery of drug-encapsulated 
nanoparticles to uniquely identifiable cells or even subcellular sites, thereby reduc-
ing the unwanted systemic exposure of cytotoxic drug. Specific interactions between 
the ligands on the surface of nanocarriers and receptors expressed on the tumor cells 
may facilitate nanoparticle internalization by triggering receptor-mediated endocy-
tosis. Furthermore, active targeting of nanocarriers with small molecule therapeutic 
cargo has shown the potential to suppress multidrug resistance (MDR) via bypass-
ing of P-glycoprotein-mediated drug efflux (Yu et al. 2010a; Talekar et al. 2011). 
Recognizing that receptor-based active targeting of nanoparticles has the potential 
to be the optimal delivery strategy, there has been tremendous interest in developing 
novel-targeted nanoparticles for diagnostic and therapeutic applications (Wang 
et  al. 2008). Numerous targeting ligands have been employed to actively target 
nanoparticles including antibodies, antibody fragments, aptamers, peptides and 
whole proteins (e.g., transferrin), and different receptor ligands (e.g., folic acid).
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An important consideration when selecting the type of targeting ligand is its 
immunogenicity. For example, whole antibodies that expose their constant regions 
on the liposomal surface are more susceptible to Fc-receptor-mediated phagocytosis 
by the MPS (Harding et al. 1997; Metselaar et al. 2002). Various methods have been 
employed to couple ligands to the surface of the nanocarriers with reactive groups. 
These can be divided into covalent and noncovalent couplings. Common covalent 
coupling methods involve formation of a disulfide bond, cross-linking between 2 
primary amines, reaction between a carboxylic acid and primary amine, reaction 
between maleimide and thiol, reaction between hydrazide and aldehyde, and reac-
tion between a primary amine and free aldehyde (Nobs et al. 2004). Noncovalent 
binding by physical association of targeting ligands to the nanocarrier surface has 
the advantage of eliminating the use of rigorous, destructive reaction agents. 
However, there are potential problems, such as low and weak binding and poor 
control of the reactions, and the ligands may not be in the desired orientation after 
binding.

Active targeting nanocarriers have a number of advantages over targeting ligand–
drug conjugates. First, high concentrations of drug within the carrier can be deliv-
ered to the target cell when a ligand interacts with its receptor and large payloads of 
therapeutic agent relative to number of ligand binding sites can be achieved. This is 
especially advantageous in increasing tumor to background ratio in imaging. 
Second, the ligand is associated with the carrier, and the drug is not modified with 
the coupling of ligands. Drug activity may be compromised as the ligand–drug con-
jugate or inactivated by the potentially aggressive coupling reaction. Third, numer-
ous ligand molecules can be attached to the nanocarrier to increase probability of 
binding to target cells, particularly for those of lower binding affinities. Fourth, 
active targeting enables more efficient distribution of the carriers in the tumor inter-
stitium and reduces return of drug back to the circulation due to high intratumoral 
pressure. Last, but also a very important point, is that when ligand is only attached 
to the carrier due to the small size of the conjugate, it can only extravasate at the 
disease site but not normal vasculature; therefore, the ligand cannot interact with the 
target epitopes of normal tissues and show side effects.

3.3  �Nanopharmaceutical Types

Various types of nanopharmaceuticals in relevance to drug delivery and targeting 
potential are given below.

3.3.1  �Carbon-Based Nanotubes

Carbon nanotubes (CNTs) are cylindrical tubular structures that were discovered in 
1991 (Iijima 1991). These structures are set in mode like a graphite sheet rolled up 
into a cylinder and capped at one or both ends by a bucky ball. These are hexagonal 
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networks of carbon atoms having diameter of 1 nm and length from 1 to 100 nm. 
These carbon networks are arranged layer of graphite rolled up into a cylinder. 
There are two carbon-based designs that have received much interest recently: 
single-walled nanotubes (SWNTs) and multi-walled nanotubes (MWNTs). In addi-
tion to these types, C60 fullerenes are also a part of common configurations. As far 
as their structural design is concerned fullerenes and carbon nanotubes are classi-
cally fabricated using laser ablation, chemical vapor deposition, electric arc dis-
charge, or combustion processes. Characterization of these concentric forms is 
based on their strength and stability so that they can be used as stable drug carriers. 
Cellular entry of nanotubes may be mediated by endocytosis or by inclusion through 
the cell membrane. Fullerenes have also shown drug targeting capability. Tissue-
selective targeting and intracellular targeting of mitochondria have been shown with 
use of fullerene structures. Furthermore, experiments with fullerenes have also 
shown that they exhibit antioxidant and antimicrobial behavior.

The search for new and effective drug delivery systems is a fundamental issue of 
continuous interest (Allen and Cullis 2004). A drug delivery system is generally 
designed to improve the pharmacological and therapeutic profile of a drug molecule 
(Kostarelos 2003). Carbon nanotubes have been used for developing next-generation 
drug delivery system, which enable the delivery of drugs and biomolecules with a 
very high efficiency due to their large surface area, unique structural properties, and 
well-defined physicochemical properties using functionalized carbon nanotubes 
(f-CNTs).

The ability of f-CNTs to penetrate into the cells offers the potential of using 
f-CNTs as vehicles for the delivery of small drug molecules (Shi Kam et al. 2004). 
However, the use of f-CNTs for the delivery of anticancer, antibacterial, or antiviral 
agents has not yet been fully ascertained. The development of delivery systems able 
to carry one or more therapeutic agents with recognition capacity, optical signals for 
imaging, and/or specific targeting is of fundamental advantage, for example, in the 
treatment of cancer and different types of infectious diseases (Ferrari 2005). In a 
study, fluorescent probe for tracking the cellular uptake of the material and an anti-
biotic moiety as the active molecule were covalently linked to CNTs. MWNTs were 
functionalized with amphotericin B and fluorescein. The antibiotic linked to the 
nanotubes was easily internalized into mammalian cells without toxic effects in 
comparison with the antibiotic incubated alone. In addition, amphotericin B bound 
to CNTs preserved its high antifungal activity against a broad range of pathogens, 
including Candida albicans, Cryptococcus neoformans, and Candida parapsilosis.

In an alternative approach by a different group, SWNTs have been functionalized 
with substituted carborane cages to develop a new delivery system for an efficient 
boron neutron capture therapy (Yinghuai et al. 2005). These types of water-soluble 
CNTs were aimed at the treatment of cancer cells. Indeed, the studies showed that 
some specific tissues contained carborane following intravenous administration of 
the CNTs conjugate and, more interestingly, that carborane was concentrated mainly 
at the tumor site. Another class of carbon nanomaterials similar to CNTs has also 
been used for drug delivery (Murakami et al. 2004). Single-walled carbon nano-
horns are nanostructured spherical aggregates of graphitic tubes. Murakami et al. 

Md. A. Rahman et al.



87

loaded these tubes with dexamethasone and studied the binding and release of the 
drug. They found that dexamethasone could be adsorbed in large amounts onto 
oxidized nanohorns and maintains its biological integrity after being liberated. This 
was confirmed by activation of glucocorticoid response in mouse bone marrow cells 
and induction of alkaline phosphatase in mouse osteoblast.

In view of these results, f-CNTs represent a new, emerging class of delivery sys-
tems for the transport and translocation of drug molecules into different types of 
mammalian cells. Although these CNTs conjugates displayed no cytotoxicity 
in vitro, for further development, it will be important to assess their metabolism, 
biodistribution, and clearance from the body. Some of the lead examples of carbon 
nanotubes and their respective applications are highlighted in Table 3.1.

3.3.2  �Quantum Dots (QDs)

The integration concern of light with nanotechnology and biological sciences has 
given rise to exciting new developments in nanobiophotonics (Yinghuai et al. 2005; 
Iga et al. 2007). Nanoscale fluorescent materials are particularly important in nano-
biophotonics as they produce intense and stable responses to incident light, provid-
ing unique tools such as optical emission, charge/electron transfer, and in situ heat 
generation for diverse photomediated bioapplications (Iga et  al. 2007). Quantum 
dots (QDs) are nanocrystals made of semiconducting materials overlaid with a coat-
ing of ZnS to improve optical properties and can be made to fluorescence when 

Table 3.1  Carbon nanotubes and their respective applications

Drug 
specimen

Modification/
functionalization

Type of 
CNTs Advantage

Doxorubicin PEG conjugation SWCNT Reduced toxicity (Allen and Cullis 2004)
Doxorubicin Conjugated with 

folate
MWCNT Active targeting (Allen and Cullis 2004; 

Kostarelos 2003)
Mitoxantrone PEG conjugation SWCNT Reduced toxicity (Shi Kam et al. 2004)
Methotrexate PEG conjugation MWCNT Controlled toxicity (Ferrari 2005)
Paclitaxel PEG conjugation SWCNT Increased circulation period (Yinghuai 

et al. 2005)
Paclitaxel Folate conjugate MWCNT Increased circulation period(Yinghuai et al. 

2005)
Cisplatin Nonfunctionalized SWCNT Decreased toxicity (Allen and Cullis 2004; 

Kostarelos 2003; Shi Kam et al. 2004; 
Ferrari 2005)

Carboplatin Nonfunctionalized SWCNT Decreased toxicity (Kostarelos 2003; Shi 
Kam et al. 2004; Ferrari 2005)

Quercetin PEG conjugation SWCNT Reduced side effect (Yinghuai et al. 2005)
Folic acid – MWCNT Active targeting, longer circulation period 

(Murakami et al. 2004)

3  Nanopharmaceuticals: In Relevance to Drug Delivery and Targeting



88

stimulated by light. Quantum dots bear a cap which enables them in improving their 
solubility in aqueous buffers. They are neither atomic nor bulk semiconductors. 
Core of the quantum dots determines the color emitted, and outer aqueous shell is 
available for conjugation with biomolecules. Biomolecular conjugation of the quan-
tum dots can be modified according to target various biomarkers (Iga et al. 2007). 
Their properties originate from their physical size, which ranges from 2 to 10 nm in 
radius (smaller than its exciton Bohr radius can luminesce when the quantum con-
finement effects dominate). Owing to their narrow emission, bright fluorescence, 
high photostability, and broad UV excitation QDs have been adopted for tracking of 
intracellular process for longer time, for in vitro bioimaging, and for real-time mon-
itoring. Within a carbon QD, the heterogeneous size distribution of sp2 π-conjugated 
islands in an sp3 non-conjugated matrix creates distinct energy levels, leading to the 
observation of radically different optical, electrical, and chemical properties com-
pared to other nanoparticles.

In recent years, scientists have developed several types of luminescent nanoma-
terials, including semiconductor quantum dots (QDs), dye-doped nanoparticles, up-
converting lanthanide-doped nanoparticles, polymer dots, QDs derived from 2D 
materials, and carbon nanodots (Iga et al. 2007; Jayagopal et al. 2007). The colloi-
dal synthesis of QDs creates more biocompatible products and lends itself best to 
translational biomedical applications. PEG coating enhances biocompatibility of 
QDs and enables vascular targeting through ligand-functionalized PEG (Jayagopal 
et al. 2007). In addition to PEG, amphiphilic polymers, proteins, and polyethylenei-
mine have been used to coat QDs in order to improve biocompatibility and convert 
the immiscible, hydrophobic surface of QDs to hydrophilic particles without affect-
ing the fluorescence quantum yield (Smith et al. 2006).

QDs cover medical areas as a diagnostic as well as therapeutic tool for in vitro 
and in vivo detection and analysis of biomolecules, immunoassays, DNA hybridiza-
tion, diagnostic tools (magnetic resonance imaging, MRI), time-graded fluores-
cence imaging of tissue, development of nonviral vectors for gene therapy, and 
labeling of cells as therapeutic tools for cancer treatment and transport vehicles for 
DNA, protein, drugs, or cells (Bailey et  al. 2004). In addition they can be also 
tagged with biomolecules and used as highly sensitive probes. Quantum dots and 
their therapeutic applications are highlighted in Table 3.2.

3.3.3  �Dendrimers

Honorable Prof. Donald A. Tomalia coined the term “dendrimer” an integration of 
two Greek words δέντρο (dendro), which translates to “tree,” and μέρος (meros), 
which translates to “part,” and synthesized the famous PAMAM (PolyAMidoAMine) 
dendrimers (Moghimi et  al. 2005). Therefore, dendrimers are a unique class of 
polymers; are hyperbranched, tree-like structures, whose size and shape can be pre-
cisely controlled and have compartmentalized chemical polymer (Bai et al. 2007). 
Dendrimers are fabricated from monomers using either convergent or divergent step 
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growth polymerization. Size of these regular branching polymeric nanostructures is 
dependent on the number of branching which can be controlled. These nanostruc-
tures arise several branches from the core in shape of a spherical structure by means 
of polymerization, resulting in formation of cavities within the dendrimer molecule 
which can be used for drug transport. Free ends of dendrimer can be utilized for 
conjugation or attachment to other molecule. These end groups can be tailored 
according to requirements. Such interconnecting networks transport the attached 
molecules at desirable site and give dendrimers various functional applications 
(Bailey et al. 2004; Moghimi et al. 2005). Nanoparticles that are polycation–nucleic 
acid composites or normal cationic liposomes generally are unstable in biological 
fluids (Bai et al. 2007). These well-defined nanostructures are equipped with sur-
face functionalization capability, monodispersity of size, and stability properties 
that make them attractive drug carrier candidates. Incorporation of drug molecule 
can be easily achieved via either complexation or encapsulation. As far as the con-
struction is concerned, it contains three different basic regions: core, branches, and 
surface. Branches or end groups can be tailored or modified into biocompatible 
compounds with low cytotoxicity and high biopermeability. Such branches or net-
works assist in delivery of bioactive ranging from vaccines, drugs, genes, and metal 
to desired sites. Hollow networks present in dendrimers presents space to incorpo-
rate drugs and other bioactive physically or by various interactions to act as drug 
delivery vehicles. Dendrimers covers distinct applications mainly; solubilization, 
gene therapy, immunoassay and as MRI contrast agent. The poly(ethylene glycol)-
block-poly (D,L-lactic acid) (PEG-PLA) block copolymer is a widely used and reli-
able biodegradable polymer that has been approved by the Food and Drug 
Administration (FDA) for multiple drug delivery and biomedical device applica-
tions (Cheng 2008). Dendrimers have been reported for pulmonary drug delivery of 
Enoxaparin. G2 and G3 generation positively charged PAMAM dendrimers were 
reported to increase the relative bioavailability of Enoxaparin by 40%. The posi-
tively charged dendrimer forms complex with enoxaparin, which was effective in 
deep vein thrombosis after pulmonary administration (Bai et al. 2007).

Table 3.2  Quantum dots and their therapeutic applications

Drug 
specimen

Target cells/
diseases Type of QDs Advantage

5-Fluorouracil Breast cancer ZnS QDs Targeting and controlled drug delivery to 
cancer cells (Iga et al. 2007)

Daunorubicin Leukemia CdTe QDs Enhanced drug uptake (Jayagopal et al. 
2007)

Daunorubicin Leukemia 
K562 cells

CdS QDs Inhibit multidrug resistance (Jayagopal 
et al. 2007)

Doxorubicin Ovarian cancer Mucin1-aptamer 
QD

Higher accumulation on target (Jayagopal 
et al. 2007; Smith et al. 2006)

Saquinavir HIV-1 Carboxyl-
terminated QDs

High site-specificity and can cross BBB 
(Bailey et al. 2004)
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Dendrimers has also been found to improve solubility and plasma circulation 
time via transdermal formulations and to deliver drugs efficiently. PAMAM den-
drimer complex with NSAIDs (e.g., ketoprofen, diflunisal) have been reported to 
improve the drug permeation through the skin as penetration enhancers. Ketoprofen 
and diflunisal were conjugated with G5 PAMAM dendrimer and showed 3.4 and 3.2 
times higher permeation. Enhanced bioavailability of PAMAM dendrimers by using 
indomethacin as the model drug in transdermal drug application was reported to be 
effective (Cheng 2008; Chauhan and Jain 2003; Jevprasesphant et al. 2003).

Oral drug delivery studies using the human colon adenocarcinoma cell line, 
Caco2, have indicated that low-generation PAMAM dendrimers cross cell mem-
branes, presumably through a combination of two processes, i.e., paracellular trans-
port and adsorptive endocytosis. Remarkably, the P-glycoprotein efflux transporter 
does not appear to affect dendrimers; therefore drug dendrimer complexes are able 
to bypass the efflux transporter. PAMAM dendrimers conjugated with the folic acid 
and fluorescein isothiocyanate for targeting the tumor cells and imaging, respec-
tively. DNA-assembled dendrimer conjugates may allow the combination of differ-
ent drugs with different targeting and imaging agents (Barbara and Maria 2001). 
Dendrimers are especially ideal for synthesizing hydrogel cross-linked networks 
that increase in volume in aqueous solution and are more similar to living tissue 
than any other synthetic compound. By adding polyethylene glycol or PEG groups 
to the dendrimers, these hydrogels have applications including cartilage tissue pro-
duction and for sealing ophthalmic injuries. Hydrogel composed of PEGylated den-
drimers that contain ocular drug molecules attached to the dendrimers efficiently 
deliver the drugs to the eye (Yang and Kao 2006).

The anticancer drugs Adriamycin and methotrexate were encapsulated into 
PAMAM dendrimers (i.e., G = 3 and 4) which had been modified with PEG mono-
methyl ether chains (i.e., 550 and 2000 Da, respectively) attached to their surfaces. 
A similar construct involving PEG chains and PAMAM dendrimers was used to 
deliver the anticancer drug 5-fluorouracil. Encapsulation of 5-fluorouracil into G4 
increases in the cytotoxicity and permeation of dendrimers. The earlier discussed 
dendrimer drug interaction techniques are used to control the drug delivery. A third-
generation dendritic unimolecular micelle with indomethacin entrapped as model 
drug gives slow and sustained in vitro release, as compared to cellulose membrane 
control. Controlled release of the flurbiprofen could be achieved by formation of 
complex with amine-terminated generation 4 (G4) PAMAM dendrimers (Chen 
et al. 2004; Malik et al. 2012; Liu et al. 2000; Liu et al. 1999).

Dendrimers have ideal properties which are brought in application in targeted 
drug delivery system. One of the most effective cell-specific targeting agents deliv-
ered by dendrimers is folic acid PAMAM dendrimers modified with carboxymethyl 
PEG5000 surface chains possessed reasonable drug loading, a reduced release rate 
and reduced hemolytic toxicity compared with the non-PEGylated dendrimer 
(Kolhe et al. 2003; Mohammad and Antony 2006; Hawker 2006). The star polymers 
were reported to give the most promising results regarding cytotoxicity and sys-
temic circulatory half-life (72 h). In addition to improving drug properties such as 
solubility and plasma circulation time, polymeric carriers can also facilitate the 
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passive targeting of drugs to solid tumors. Combined these factors lead to the selec-
tive accumulation of macromolecules in tumor tissue, a phenomenon termed the 
“enhanced permeability and retention” (EPR) effect. Therefore, the anticancer drug 
doxorubicin was reported to be covalently bound to this carrier via an acid-labile 
hydrazone linkage. The cytotoxicity of doxorubicin was significantly reduced 
(80–98%), and the drug was successfully taken up by several cancer cell lines 
(Medina and Mohamed 2009; Bharali et al. 2009; Sonke and Tomalia 2005).

However, negatively charged dendrimers (phosphorhydrazone dendrimers) are 
classically obtained by grafting carboxylic acids as terminal functions, from which 
sodium salts are easily obtained (Hawker 2006; Bharali et al. 2009). However, the 
negatively charged phosphorus dendrimer possessing the most important biological 
properties up to now has no carboxylates but AzaBisPhosphonate (ABP) salts as 
terminal functions. Indeed, with strictly identical terminal functions, the dendrimers 
containing heteroatoms (P or Si) in their structure have anti-inflammatory proper-
ties, whereas the “organic” dendrimers do not.

A list of the various drugs that can be delivered through dendrimers is high-
lighted in Table 3.3.

3.3.4  �Nanoshells

Multimodal therapeutic agents based on novel nanomaterials for delivery impact 
have attracted increasing attention in the field of pharmaceutical sciences. Nanoshells 
are the new modified forms of targeted therapy, having core of silica and a metallic 
outer layer (West and Halas 2000). These thin-coated core particles of different 
materials have gained considerable attention now days. The properties of nanoshells 
can be altered by simply tuning the core to shell ratio. With the recent advancement 
in new techniques, it is now possible to synthesize these nanostructures in desired 
shape, size, and morphology (Shetty et al. 2008). The integration of multiple com-
ponents into a nanocomposite with each material exhibiting its pharmacological 
activity in a coordinated way provides interesting and creative possibilities (Sershen 
et  al. 2002). Nanoshells are synthesized to create novel structures with different 
morphologies, since not possible to synthesize all the materials in desired mor-
phologies. For obtaining desirable morphology, core particles of different morphol-
ogies such as rods, wires, tubes, rings, cubes, etc. can be coated with thin shell in 
core shell structures. These shells are inexpensive as precious materials can be 
deposited on inexpensive cores. Therefore, while synthesizing nanoshells, expen-
sive material is required in lesser amount than usual. Targeting of nanoshells can be 
achieved by using immunological methods. Nanoshells occupies variety of applica-
tions in diverse areas such as providing chemical stability to colloids, enhancing 
luminescence properties, and engineering band structures, biosensors, drug deliv-
ery, etc. Nanoshells have long shown promise for increasing drug delivery to tumors. 
Shetty et al. have demonstrated enhanced tumor perfusion in mice with xenografted 
prostate tumors, the perfusion being increased by nanoshell-mediated heating 
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(Shetty et al. 2008; Sershen et al. 2002). Mice were injected with nanoshells at 24 h 
before laser treatment, and perfusion was monitored using MRI. Whereas heating 
with low (0.8 W cm−2) and high (4 W cm−2) laser intensities decreased contrast 
uptake, heating with an intensity of 2 W cm−2 almost doubled the uptake, thus high-
lighting the potential of nanoshells for improving drug delivery.

Nanoshells have also been demonstrated to modulate drug delivery. For example, 
Sershen et al. incorporated nanoshells with an 832 nm resonance into a thermally 
responsive polymer, N- isopropylacrylamide-co-acrylamide (NIPAAm), to create a 
photomediated drug delivery hydrogel composite (Sershen et  al. 2002; Sershen 
et  al. 2001). Hydrogels based on NIPAAm exhibit a lower critical solution 

Table 3.3  List of the various drugs that can be delivered through dendrimers

Drug specimen

Target cells/
indications/
functions

Type of dendrimers/
conjugates Advantages/features

Boron Neuron capture 
Technology

EGF-carrying
PAMAM dendrimers

Intratumoral injection (Bai 
et al. 2007)

Efavirenz HIV Tuftsin-conjugated
PPE dendrimers

Targeted delivery to 
macrophages (Cheng 2008)

EGFR siRNA Knockdown 
EGFR 
Expression

Dendriworms IV or CED (Chauhan and 
Jain 2003)

Lamivudine HIV Mannose-capped
PPE dendrimers

Increased cellular uptake 
(Jevprasesphant et al. 
2003), reduced toxicity 
(Barbara and Maria 2001)

siRNA Lymphocytes Amino-terminated 
carbosilane dendrimers

Reduced HIV infection 
(Yang and Kao 2006; Chen 
et al. 2004; Malik et al. 
2012)

Doxorubicin Colon 
carcinoma cells 
of Rat

2,2 Bis(hydroxymethyl)
propanoic acid-based
dendrimers

Dendrimer product
Less toxic (Chen et al. 
2004)

Galactosylceramide 
analogues

HIV-1 Multivalent phosphorus 
containing cationic 
dendrimers

Antiviral property, lower 
toxicity (Liu et al. 2000; 
Liu et al. 1999)

Plasmid pEGFP-N2 Encode green 
fluorescence 
protein

Angiopep-carrying
PEGylated PAMAM
dendrimer G5.0

IV (Kolhe et al. 2003)

SN38 Hepatic 
colorectal 
cancer cells

G3.5 PAMAM
Dendrimers

Increase oral bioavailability 
and decrease GI toxicity 
(Mohammad and Antony 
2006; Hawker 2006)

Sulfated 
oligosaccharides

HIV Polylysine
Dendrimers

Higher activity due to 
dendrimer product (Medina 
and Mohamed 2009; 
Bharali et al. 2009)

PAMAM poly(amido amine), PPE poly(propyleneimine)
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temperature above which the hydrogel undergoes a reversible volume phase change 
transition. The nanoshells used in the experiment were engineered to have a core 
radius of 50 nm and shell thickness of 7 nm, in order to maximize absorption. When 
the composite is illuminated with a diode laser at 832 nm, the nanoshells convert 
light into heat, inducing a reversible and repeatable light-driven collapse of the 
composite hydrogel matrix. After 40 min of irradiation at 1.8 W cm−2, the hydrogel 
composite had shrunk to 10% of its initial weight.

Recently, Bikram et al. demonstrated the potential value of nanoshell composites 
as drug delivery vehicles in specific applications (Bikram et al. 2007). In this case, 
hydrogels containing 109 nanoshells ml−1 were swollen in solutions containing 
10 mg ml−1 insulin, lysozyme, and methylene blue, which were used as a model 
drug. When the release of each compound was monitored before and after laser 
irradiation, the release profiles of the embedded drugs upon irradiation were found 
to depend on their molecular weights. The release of methylene blue (14.1 mg g−1 
polymer) and insulin (12.9 mg g−1) occurred spontaneously, but the release of lyso-
zyme occurred only upon laser irradiation. Moreover, the amounts of insulin and 
methylene blue released were approximately doubled on irradiation. Nanoshells are 
currently studied for micro metastasis of tumors and also for treatment of diabetes 
(Kherlopian et  al. 2008). Taken together, these results indicate that nanoshell-
composite hydrogels have great potential for future drug delivery applications.

Nanoshells may represent a rapid means of treating lacerations in an emergency 
room setting. As an example, Gobin et al. have used nanoshells as an exogenous 
NIR absorber for welding deep tissue wounds (Gobin et al. 2005). In this study, a 
nanoshell-based solder (nanoshells + bovine serum albumin (BSA)) was applied to 
full-thickness incisions made on rats, after which the incisions were irradiated with 
NIR laser light for several minutes to initiate tissue welding. Notably, the healing 
results were similar to the suture-treat control group until day 5, after which healing 
was shown to be better in the suture group.

Because of their unique features and vast potential for a variety of biomedical 
applications, nanoshells represent a major achievement in nanotechnology. The 
synergy of ideal chemical, physical, and optical properties in a single particle is a 
resounding affirmation of the promise of nanotechnology in general. Gold nanoshells 
have opened new frontiers in medicine. Because they are biocompatible, optically 
tunable, and strongly photoluminescent and bind to antibodies, nanoshells are 
highly suitable for in  vivo imaging studies. Likewise, because they accumulate 
within tumors due to passive and active mechanisms, they hold great promise for 
revolutionizing cancer detection. Their success in multiple animal studies has con-
firmed a great potential as agents for photothermal cancer therapy, with the added 
benefit of serving as contrast agents for cancer detection. Clinical trials, which are 
currently under way, will most likely establish their efficacy for the treatment of 
human forms of cancer. The feasibility of novel metals is presented in Table 3.4, 
towards synthesis of the metallic nanoparticle and their concomitant delivery.
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3.3.5  �Niosome

Many drug nanocarriers have emerged to achieve controlled delivery of drugs, 
genes, or gene expression-modifying compounds, or vaccine antigens to a specific 
target site. Lipid-based systems including niosomes are non-toxic self-assembly 
vesicles with a unilamellar or multilamellar structure, which can encapsulate hydro-
phobic/hydrophilic therapeutic agents (Hood et  al. 2007). Niosome is a class of 
molecular cluster formed by self-association of non-ionic surfactants in an aqueous 
phase. The unique structure of niosome presents an effective novel drug delivery 
system (NDDS) with ability of loading both hydrophilic and lipophilic drugs (Hood 
et  al. 2007; Kong et  al. 2013). Niosomes are vesicles composed of non-ionic 

Table 3.4  Feasibility of novel metals in the synthesis of metallic nanoparticle and their 
concomitant delivery

Metal specimen
Redox 
potential (V) Reducing agent Condition

Cu2+, Ru3+, Re3+ < 0.7 and > 0 NaBH4, Ambient (Fast) (Bai et al. 
2007)Hydrazine, hydrogen

Aldehydes, sugars
Polyols < 70 °C (Moderate)

70–100 °C (Slow)
> 120 °C (Slow)

Rh3+, Pd2+, Ag+ , Ir3+, 
Pt4+, Au3+, Hg2+

> 0.7 Hydrazine, H2SO4, H3BO3, 
NaBH4, boranes

Ambient (Very fast) (Bai 
et al. 2007)

Aldehydes, sugars
Polyols Ambient (Fast)
Organic acids, alcohols <50 °C (Moderate)

> 70 °C (Slow)
Cr3+, Mn2+, Re3+ < 0.7 and > 0 NaBH4, Ambient (Fast) (Bai et al. 

2007)Hydrazine, hydrogen
Aldehydes, sugars
Polyols < 70 °C (Moderate)

70–100 °C (Slow)
> 120 °C (Slow)

Cu2+, Ru3+, Re3+ < −0.6 Hydrated e−, radical Ambient (Fast) (Bai et al. 
2007)NaBH4, boranes
Temperature & Pressure 
(Slow) (Bai et al. 2007)

Fe2+, Co2+, Ni2+, Mo3+

Cd2+, In3+, Sn2+, W6+

< 0 and > 
0–0.5

Hydrated e−, radical Ambient (Very fast) (Bai 
et al. 2007)NaBH4, Boranes

Hydrazine, hydroxylamine
Polyols Ambient (Fast)

70–100 °C (Slow)
> 180 °C (Slow)

Md. A. Rahman et al.



95

surfactants, which are biodegradable, relatively nontoxic, more stable, and inexpen-
sive, an alternative to liposomes (Kong et al. 2013). Characteristics such as loading 
capacity, drug release rate, stability (physical and chemical), and vesicle size are 
highly reliant on experimental situation and type of material and method at the time 
of manufacturing (Hood et al. 2007; Widder et al. 1979). Niosomes behave in vivo 
like liposomes, prolonging the circulation of entrapped drug and altering its organ 
distribution and metabolic stability. As with liposomes, the properties of niosomes 
depend on the composition of the bilayer as well as method of their production. It is 
reported that the intercalation of cholesterol in the bilayer decreases the entrapment 
volume during formulation and thus entrapment efficiency. However, differences in 
characteristics exist between liposomes and niosomes, especially since niosomes 
are prepared from uncharged single-chain surfactant and cholesterol, whereas lipo-
somes are prepared from double-chain phospholipids (neutral or charged) (Tavano 
et al. 2013). The concentration of cholesterol in liposomes is much more than that 
in niosomes. As a result, drug entrapment efficiency of liposomes becomes lesser 
than niosomes. Besides, liposomes are expensive, and its ingredients, such as phos-
pholipids, are chemically unstable because of their predisposition to oxidative deg-
radation; moreover, these require special storage and handling, and purity of natural 
phospholipids is variable. Current opinions for the utilization of niosomes in the 
delivery of biomolecules can be unsubstantiated with a wide scope in encapsulating 
toxic drugs such as anti-AIDS drugs, anticancer drugs, and antiviral drugs (Widder 
et al. 1979; Tavano et al. 2013). Niosomes offers a promising carrier system in com-
parison with ionic drug carriers, which are relatively toxic and unsuitable. However, 
the technology utilized in niosomes is still in pipeline. Therefore researches are 
going on to develop a suitable technology for large production because it is a prom-
ising targeted drug delivery system.

Niosomes have been applied in various fields such as medicine, diagnostics, and 
cosmetics; it seems that drug delivery application is the best well-studied area. 
Niosomes can be used in a wide range of pharmaceutical applications due to their 
inherent advantages.

Niosomes can be conjugated to antibodies on their surface to form immune-
niosomes. Conjugation of the monoclonal IgG antibodies to the vesicle surfaces 
was carried out through incorporation of a cyanuric chloride derivatized Tween 
61  in the niosome formulation formed using thin film hydration techniques fol-
lowed by sonication (Hood et al. 2007; Widder et al. 1979). The presence of cyanu-
ric chloride in the structure of Tween 61 provides the linkage of IgG antibody to 
vesicle surface. Conjugation of the monoclonal antibody to the specific cell recep-
tors (CD44) was demonstrated using cultured fixed synovial lining cells expressing 
CD44 and showed the capability of immune-niosome binding to target antigens 
which might provide an effective method for targeted drug delivery (Kong et al. 
2013; Tavano et al. 2013).

Niosomes show potential in combination of drug delivery and magnetic targeting 
in various applications particularly in cancer therapy (Kong et  al. 2013; Widder 
et al. 1979; Tavano et al. 2013). The basic concept of using magnetic materials in 
cancer therapy is to direct drug-loaded magneto-niosomes to specific organ or tissue 
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in the body by applying extracorporeal magnets (Widder et al. 1979). Formulation 
of niosome in magnetically controlled drug targeting of doxorubicin is a good 
example to prove this ability of niosomal systems. Doxorubicin-loaded magneto-
niosomal formulations were developed by encapsulating both antitumoral model 
drug and magnetic material (EMG 707 ferrofluid) into the niosome aqueous core. In 
addition, these formulations exhibited a controlled drug release without any addi-
tional toxicity due to incorporation of magnetic material into the niosomes (Tavano 
et al. 2013).

Although niosomes have been used in pharmaceutics since the 1980s, to date a 
few studies have focused on the application of niosomes for gene delivery. Since 
niosomes are biodegradable, biocompatible, and nontoxic, they have potential to be 
safely used in gene therapy (Huang et al. 2008). Niosomes have been used as cuta-
neous gene delivery system especially for the treatment of a variety of skin diseases 
(Geusens et al. 2011). Huang et al. reported an effective delivery of antisense oligo-
nucleotides (OND) via cationic niosomes of spans in a COS-7 cell line with positive 
results on cellular uptake of OND (Huang et al. 2005). Further studies by incorpora-
tion of polyethylene glycol into OND/niosome complexes showed a higher effi-
ciency of OND cellular uptake in serum which demonstrates positive results for 
gene delivery through niosomal formulations (Huang et al. 2005).

Niosomes showed great potential in the targeted delivery of some anticancer 
drugs. Niosomes composed of a non-ionic surfactant, cholesterol, and dicetyl phos-
phate encapsulating methotrexate (MTX) showed improvement in absorption of the 
drug from the gastrointestinal tract following oral ingestion and a higher uptake of 
MTX into the liver following the intravenously administration of the niosomes as 
compared to methotrexate solution, administered either orally or intravenously 
(Azmin et al. 1985). Jain and Vyas (Jain and Vyas 1995) reported that high levels of 
MTX were found in the thoracic lymph following niosomal administration by this 
route as compared to administration through the intravenous route and the adminis-
tration of the free drug via the peritoneal route. Doxorubicin niosomes composed of 
span 60 showed improvement in the doxorubicin pharmacokinetics and tumoricidal 
activity after a single intravenous dose in the mouse adenocarcinoma as compare to 
the drug in solution. Improvement in anticancer activity or reduced toxicity of nio-
somal formulations of other anticancer agents such as vincristine (Parthasarathi 
et al. 1994), bleomycin (Raja et al. 1996), and paclitaxel (Bayindir and Yuksel 2010) 
showed that niosomes can be used as efficient drug carriers for anticancer drugs. 
Some of the applications of niosomes are detailed in Table 3.5.

3.3.6  �Magnetic Nanoparticles

Magnetic drug targeting is conceptualized with an objective to target magnetic drug 
carrier particles at a specific site in the body using an externally applied magnetic 
field. Magnetic nanoparticles (MNPs) are a class of particulate materials of less than 
100 nm size that can be manipulated under the magnetic field (Cuenca et al. 2006). 
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These particles are composed of magnetic elements such as cobalt, nickel, iron, and 
their respective oxides such as magnetite, cobalt ferrite, and chromium dioxide. The 
classification of these particles is based on their magnetic susceptibility which is 
defined as ratio of induced magnetization to the applied field. Paramagnetic 
nanoparticles have a greater magnetic susceptibility than conventional contrast agents. 

Table 3.5  Drug delivery through niosomes

Drug specimen Biological activity Applications
Route of 
administration

Gentamicin sulfate Antibiotic Prolongation of drug release In vivo (Hood et al. 
2007)

Hemoglobin Stabilizing and protection of 
structure behaviors of Hb

In vitro (Kong et al. 
2013)

Ampicillin Antimicrobial Increase antimicrobial 
activity

In vivo (Hood et al. 
2007)

Colchicine-5-
fluorouracil

Treat rheumatic 
complaints

Prolonged release profile In vitro (Kong et al. 
2013)

Treatment of cancer
Indomethacin Antiplatelet activity Enhanced inhibition of 

platelet aggregation
In vitro (Widder 
et al. 1979)

Hyaluronic acid Tumor therapy Improve endocytosis In vitro/in vivo 
(Widder et al. 1979)

Silymarin Treat liver and 
gallbladder disorders

Increase drug bioavailability In vivo (Tavano 
et al. 2013)

Zidovudine Treat AIDS Enhance entrapment and 
sustainability of release

In vivo (Huang et al. 
2008)

Beclomethasone 
dipropionate

Treatment of 
inflammatory lung 
diseases

Improve inflammatory 
activity

In vivo (Huang et al. 
2008)

Ammonium 
glycyrrhizinate

Treatment of various 
inflammatory based 
diseases

Improve the drug anti-
inflammatory activity

In vivo/in vivo 
(Geusens et al. 
2011)

Miconazole Treatment of candida 
infections, fungal 
infections

Increase residence time of 
drug in the stratum corneum

In vivo (Huang et al. 
2005)

Acyclovir Treatment of herpes 
simplex virus

Prolonged activity improve 
the oral bioavailability

In vivo (Azmin et al. 
1985)

Insulin Blood glucose 
lowering agent

Sustained release and 
increase absorption

In vivo (Jain and 
Vyas 1995)

Tyloxapol Anti-tuberculosis Improve the drug 
bioavailability

In vivo 
(Parthasarathi et al. 
1994)

Nimesulide Anti-inflammatory 
activity

Prolongation of drug release In vivo (Raja et al. 
1996)

Acetazolamide Treatment of 
glaucoma

Improve the low corneal 
penetration and 
bioavailability promote 
absorption

In vivo/in vivo 
(Bayindir and Yuksel 
2010)
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They are investigated for both diagnostic and therapeutic purposes. For diagnostic 
purpose, paramagnetic iron oxide nanoparticles are used as contrast agents in mag-
netic resonance imaging. Targeting with paramagnetic nanoparticles enables identi-
fication of specific organs and tissues (Cuenca et al. 2006).

The primary shortcoming of most chemotherapeutic agents is their relative non-
specificity and thus potential side effects to healthy tissues. To overcome this prob-
lem, magnetic drug targeting (MDT) utilizes the attraction of MNP carriers to an 
external magnetic field to increase site-specific delivery of therapeutic agents 
(Pankhurst et al. 2003; Dobson 2006). In general, this process involves the attach-
ment of a cytotoxic drug to a biocompatible MNP carrier (a.k.a. magnetic targeted 
carrier or MTC), intravenous injection of these MTCs in the form of a colloidal 
suspension, application of a magnetic field gradient to direct the MTC to the patho-
logical site, and release of the therapeutic agent from the MTC. Although seemingly 
straightforward, there are many variables that complicate the execution of this tech-
nique. Parameters such as the physicochemical properties of the drug-loaded MNP, 
field strength and geometry, depth of the target tissue, rate of blood flow, and vascu-
lar supply all play a role in determining the effectiveness of this method of drug 
delivery (Neuberger et al. 2005).

Early clinical trials of colloidal iron oxide MTCs loaded with epirubicin and 
directed towards solid tumors have demonstrated successful accumulation in the 
target site in about half the patients in this study (Lubbe et al. 2001). These MTCs 
were also shown to be well tolerated by patients. Unfortunately, several problems 
have been identified with this technique including the possibility of embolization of 
the blood vessels, difficulty in scaling up from animal models due to limited field 
penetration of commercial magnets, control of drug diffusion after release from the 
MTC, and toxic responses to the MTCs. To address some of these issues and develop 
a theoretical basis for this technique, Grief and Richardson created a mathematical 
model incorporating the effects of hydrodynamics within blood vessels, particle 
volumes, magnetic field strength, and even the effects of cells within the plasma 
(Grief and Richardson 2005). In this study it has been concluded that MDT could 
only be used effectively for targets close to the surface of the body.

Given this limitation, Alexiou et al. recently demonstrated the successful in vivo 
delivery of MCT composed of starch-coated USPIO loaded with mitoxantrone into 
VX2-squamous cell carcinomas on the hind limbs of New Zealand White Rabbits 
(Alexiou et al. 2006). The group demonstrated the effectiveness of these MCTs to 
completely eliminate tumors after approximately 35 days of treatment.

The attachment of targeting agents to MNPs can be used to increase the specific 
accumulation of nanoparticles within diseased tissue. By integrating therapeutic 
agents, these multifunctional MNPs can serve strictly as a vehicle for drug delivery 
(Kohler et al. 2006). One advantage of these MNPs, as well as other nanoparticle 
carriers, is their high surface area-to-volume ratios allowing for a large number of 
therapeutic molecules to be attached to individual nanoparticles. Additionally, while 
utilizing an active targeting strategy for specific delivery, the magnetic properties of 
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the nanoparticle may be used to provide imaging modality for monitoring of drug 
delivery through MRI (Kohler et  al. 2006) or an alternative source of treatment 
through magnetic fluid hyperthermia (MFH) therapy (Mornet et al. 2004). MNPs 
have been evaluated as drug carries for a variety of chemotherapeutic agents. 
Traditional drugs such as etoposide, doxorubicin, and methotrexate have been 
attached or encapsulated in MNPs for potential treatment of diseases ranging from 
rheumatoid arthritis to highly malignant prostate and breast tumors (Schulze et al. 
2005; Jain et al. 2005). With the wide variety of nanostructures described in the 
previous sections, carriers can be designed with specific characteristics to enhance 
the efficacy of these therapeutic agents over that achieved by typical systemic deliv-
ery. Characteristics such as loading capacities and drug release profiles can now be 
tailored by controlling structural features and chemical bonding within the MNP 
conjugate.

Yang et al. investigated the synthesis and release characteristics of poly(ethyl-2-
cyanoacrylate) (PECA)-coated magnetite nanoparticles containing anticancer 
agents cisplatin and gemcitabine (Yang et  al. 2006). In this study, cisplatin was 
shown to exhibit a sustained release behavior due to its hydrophobicity in compari-
son to the more rapid release of the hydrophilic gemcitabine. Kohler et al., demon-
strated a sustained release of methotrexate (MTX) in breast and brain tumor cells 
delivered by iron oxide nanoparticles. In this study, the authors covalently attached 
MTX to amine functionalized nanoparticles through amide bonds to ensure stability 
of the drug conjugate under intravenous conditions. Cleavage of the MTX from the 
MNPs was evaluated over a range of pH values and in the presence of lysozymes to 
mimic conditions present in the lysosomal compartments. Through the use the 
covalent linkage, the group demonstrated the controlled release of MTX to the cel-
lular cytosol and the subsequent cytotoxicity to these cancer cells (Yang et al. 2006). 
Different particles are designed as drug delivery vehicles, and a summary of these 
particles is given in Table 3.6.

3.3.7  �Polymeric Nanoparticle

Most polymeric nanoparticles (PNPs) are biodegradable and biocompatible, and 
over the past few decades, researchers have had considerable interest in developing 
biodegradable NPs as a drug-delivery system (Panyam and Labhasetwar 2003). 
Moreover, they also exhibit a good potential for surface modification and function-
alization with different ligands, provide excellent pharmacokinetic control, and are 
suitable to encapsulate and deliver a plethora of therapeutic agents. Depending on 
the process used for their preparation, these can be NPs, nanospheres, or nanocap-
sules. Nanospheres have a matrix-like structure, where active compounds can be 
firmly adsorbed at their surface and entrapped or dissolved in the matrix. 
Nanocapsules have a polymeric shell and an inner core. In that case, an active 
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Table 3.6  Different magnetic particles are designed as vehicles for the drug delivery

Drug 
specimen

Type of 
MNPs Coating agent Design matrix

Cefradine Fe3O4 Chitosan/PAA multilayer Drug molecules were entrapped inside 
the hollow spheres through diffusion 
process (Cuenca et al. 2006)

Cefradine Fe3O4 Chitosan Cross-linking the particles with 
glutaraldehyde and the drug is 
embedded in the polymer matrix 
(Cuenca et al. 2006)

Insulin Fe3O4 Alginate/chitosan Insulin encapsulation in alginate/
chitosan beads prepared in triplicate by 
extrusion method (Pankhurst et al. 
2003)

Doxorubicin Fe3O4 Multi-walled carbon 
nanotubes (MWCNTs)

MWNT-hybrid nanocomposites 
provided an efficient way for the 
extraction and enrichment of 
doxorubicin via π–π stacking DOX 
molecules onto the polyaromatic 
surface of MWNTs (Dobson 2006)

Methylene 
blue

𝑦-Fe2O3 CNT Monodisperse, inherently open ended, 
multi-walled CNTs loaded with 
magnetic iron-based nanoparticles that 
are encapsulated within the tube 
graphitic walls (Neuberger et al. 2005)

Gemcitabine Fe3O4 MWCNTs and magnetic 
activated carbon 
particles

Fe3O4 nanoparticles are on the outer 
surface of the PAA functionalized 
MWNTs and the drug is adsorbed on 
the surface (Lubbe et al. 2001)

Doxorubicin CoFe2O4

Nanoparticles
MWCNT/cobalt ferrite 
(CoFe2O4) hybrids

Cobalt ferrite is on the outer surface of 
the MWCNT (Dobson 2006)

Fluorescein 𝑦-Fe203 DNA ssDNA was immobilized onto the 
silica network, and the magnetic 
particles are loaded onto the network. 
Complementary DNA sequence was 
then attached to MNPs (Grief and 
Richardson 2005)

Doxorubicin Fe3O4 PEG-functionalized 
porous silica shell

DOX conjugated magnetite particles 
are coated with silica to obtain core/
shell nanoparticles, and the whole 
composite is coated with PEG 
(Alexiou et al. 2006)

Curcumin Fe3O4 β-Cyclodextrin and 
pluronic polymer 
(F-127)

Multilayer polymer coating around the 
magnetic particle and the drug is 
encapsulated via diffusion into 
polymer matrix (Kohler et al. 2006)

Ketoprofen Fe3O4 2-Hydroxypropyl 
cyclodextrin (HCD)-
Gum arabic modified 
MPs (GAMNPs)

Drug molecules are rapidly released 
from HCD-GAMNPs, whereas some 
remains associated with degradation of 
HCD-GAMNPs (Mornet et al. 2004)

(continued)
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substance is usually dissolved in the core but can also be adsorbed at their surface 
(Sahoo and Labhasetwar 2003). The main advantage of using NPs for drug-delivery 
applications is their small size when taken up by cells, which could allow efficient 
drug accumulation at the target sites (Panyam et al. 2003). Biodegradable materials 
used for the formulation of NPs allow sustained drug release within the target site 
over a period of days or even weeks. Biodegradable NPs formulated from poly D,L-
lactide co-glycolide (PLGA) and polylactide (PLA) have been investigated for sus-
tained drug delivery (Panyam et al. 2002). The main interest of researchers is to 
study their intracellular trafficking and to determine the parameters that are critical 
to their efficient cellular uptake and retention. Recently, studies have demonstrated 
rapid escape of NPs from the endolysosomal compartment to the cytoplasmic com-
partment (Panyam et al. 2002). Greater and sustained antiproliferative activity of 
paclitaxel-loaded PLGA NPs in HeLa cells was observed by the research group of 
Yang et al. Enhanced apoptosis of HeLa cells was observed, which may be due to 
the sustained release of paclitaxel from the PLGA NPs, which in turn showed that 
PLGA NP-encapsulated paclitaxel is promising as a controlled drug-delivery sys-
tem in future clinic application (Yang et al. 2009). Recently, NPs formulated from 
PLGA were investigated as a drug-delivery system to enhance tissue uptake and 
permeation and targeting of zinc (II) phthalocyanine (ZnPc) for photodynamic ther-
apy. Tumor-bearing mice injected with ZnPc NPs exhibited significantly smaller 
mean tumor volume, increased tumor growth delay, and longer survival in compari-
son with the control group and the group injected with free ZnPc during the time 
course of the experiment. Histopathological examination of tumor from animals 
treated with PLGA ZnPc showed regression of tumor cells, in contrast to those 
obtained from animals treated with free ZnPc. The results indicate that ZnPc encap-
sulated in PLGA NPs is a successful delivery system to improve photodynamic 
activity in the target tissue (Fadel et al. 2010).

Table 3.6  (continued)

Drug 
specimen

Type of 
MNPs Coating agent Design matrix

Doxorubicin 𝑦-Fe203 PNIPAM MNP cluster is coated with PNIPAM, 
and the nanoparticle is dehydrated. 
Core shell morphology is achieved 
with dispersion free-radical 
polymerization (Schulze et al. 2005)

Doxorubicin Fe3O4 PNIPAM Core shell morphology by dispersion 
polymerization where drug-loaded 
PNIPAM shell contains magnetite 
clusters (Jain et al. 2005)

Doxorubicin 𝑦-Fe203 Carbon Drug is released from the surface of 
on-coated or partially coated magnetic 
particles (Yang et al. 2006)
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Multidrug resistance (MDR) is one of the major causes of treatment failure in 
cancer therapy, which may be attributed to the decreased accumulation of drug in 
the tumor site in addition to the possibility of membrane glycoprotein (P-gp)-
dependent accelerated drug efflux (Brigger et  al. 2002; Vauthier et  al. 2003). To 
overcome the problem of efflux action of P-gp and to sustain drug effect, various 
drug-delivery systems have been developed. PLGA NP formulations capable of 
delivering a cytotoxic drug, vincristine, a chemosensitizer, verapamil, or their com-
bination were prepared by the research group of Song et al. The results showed that 
PLGA NPs simultaneously loaded with anticancer drug and chemosensitizer might 
be the one of the potential formulations in the treatment of drug-resistant cancers 
in  vivo as the simultaneous administration of vincristine and verapamil could 
achieve the highest reversal efficacy on MCF-7/ADR cells resistant to vincristine 
(Song et al. 2009). In other studies, Wang et al. developed an efficient and targeted 
delivery of antisense oligodeoxynucleotides (asODNs), using folic acid (FA)-
conjugated hydroxypropyl-chitosan (HPCS) NPs to reduce production of P-gp to 
overcome tumor drug resistance. The FAHPCS-asODNs NPs demonstrated signifi-
cant inhibition of the MDR 1 gene levels and P-gp levels in vitro and in vivo, respec-
tively, in comparison with asODNs and HPCS-asODNs alone. Thus, these results 
suggest that the use of targeted, antisense agent NPs would be a potential approach 
to overcome tumor drug resistance (Wang et al. 2010).

Another characteristic function of NPs is their ability to deliver drugs to the tar-
get sites across biological barriers such as the blood–brain barrier (BBB) (Fisher 
and Ho 2002; Lockman et al. 2002). The brain delivery of a wide variety of drugs, 
such as antineoplastic and anti-HIV drugs, is markedly hindered because they have 
great difficulty in crossing the BBB (Sun et al. 2003). Thus, by using the nanotech-
nological approaches, researchers have tried to improve the pharmacokinetics of 
drugs for the treatment of central nervous system (CNS) diseases. The application 
of NPs to brain delivery is a promising way to overcome this barrier. Kreuter and 
colleagues demonstrated that poly-(butylcyanoacrylate) NPs coated with polysor-
bate-80 are effective in carrying different drugs to the brain (Kreuter et al. 2003). 
Although not fully elucidated, the most likely transport mechanism for these parti-
cles is via endocytosis across the endothelial cell lining of the BBB. Moreover, by 
packaging therapeutic molecules inside a liposome and decorating the surface of the 
liposome using molecular “Trojan horse” technology, researchers have obtained 
promising results.

Recently many surface-modified NPs are being used to treat various diseases. 
Surface modification of PLGA NPs with polyethyleneimine (PEI) utilizing a cetyl 
derivative was used to improve surface functionalization and aid siRNA delivery. 
Specific reduction in the anti-apoptotic oncogene BCL-w in U2OS cells was 
achieved with particles containing cetylated-PEI with no apparent cellular toxicity. 
In addition, particles containing cetylated-PEI achieved 64% silencing of TNF 
alpha in J774.1 cells (Andersen et al. 2010).

Md. A. Rahman et al.



103

3.3.8  �Solid Lipid Nanoparticle

Solid lipid NPs (SLNs) were developed at the beginning of the 1990s as an alterna-
tive carrier system to emulsions, liposomes, and polymeric NPs as a colloidal car-
rier system for controlled drug delivery (Kayser et al. 2005). These particles are 
made from solid lipids (i.e., lipids that are solid at room temperature and also at 
body temperature) and stabilized by surfactant(s). SLN can be formulated by  
using highly purified triglycerides, complex glyceride mixtures, or even waxes.  
In comparison with other particulate carriers, SLN has many advantages for drug 
delivery, such as good tolerability, biodegradability (Sahoo et al. 2007), a high bio-
availability by ocular administration (Sahoo and Labhasetwar 2003), and a targeting 
effect on the brain (Yang et al. 1999). In recent years, the study of SLN has mark-
edly increased, especially with the method of high pressure homogenization. SLN 
have been developed and investigated for parenteral, pulmonary, and dermal appli-
cation routes (Wissing et al. 2004).

Because of their small size, SLN may be injected intravenously and used to tar-
get drugs to particular organs. The particles together with all intravenously injected 
and colloidal particulates are cleared from the circulation by the liver and spleen. In 
tumor tissues, drugs can be targeted by PEG-coated polymeric NPs (known as 
stealth property) that help in escaping from reticuloendothelial system (RES) (Uner 
et  al. 2004). This may be achieved using block polyoxyethylene polypropylene 
copolymers like Pluronic F188 in which the hydrophobic portion of the molecule 
forms the NP matrix, while the water-soluble polyoxyethylene block forms a hydro-
philic coating on the particle. Stealth SLN increases the tumor accumulation and 
antibacterial activity of antiparasitic and antifungal drugs and allows brain delivery 
of anticancer drugs not capable of crossing the BBB (Zara et al. 2002). Recently 
SLNs have also been used for the targeted delivery of therapeutics to the alveolar 
macrophages by Yu et  al. In their study, a mannan-based PE-grafted ligand was 
synthesized and used for the surface modification of DNA-loaded cationic SLN to 
prepare Man-SLN-DNA.  Their results showed that in comparison with non-
modified SLN-DNA and Lipofectamine 2000-DNA, Man-SLN-DNA produced the 
highest gene expressions, especially in vivo. Thus, these modified SLNs may have 
great potential for targeted gene delivery (Yu et al. 2010b).

3.4  �FDA-Approved Nanopharmaceuticals

Many nanopharmaceutical products got approval from the Food and Drug 
Administration (FDA). It has been noted that more than 1000 nanopharmaceutical-
based patents is issued by the US Patent and Trademark Office (US PTO) during the 
last decade (Qadir et al. 2016). There are a number of FDA-approved, marketed 
nanopharmaceuticals for the intravenous administration route as well as the non-
intravenous route (Table 3.7). However, numerous nanopharmaceuticals are still at 
the development or clinical trial phase due to the extremely complex nature of 
human medicinal applications.
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Table 3.7  FDA-approved and commercial nanoproducts (Faiyazuddin et al. 2013)

Drug specimen Nanotechnology Brand Company

1. Route of administration: intravenous
Doxorubicin PEGylated liposomes Doxil® (US) OrthoBiotech

Caelyx 
(others)

Schering-Plough

Doxorubicin Liposomes Myocet® Zeneus Pharma
Paclitaxel Albumin-bound 

nanoparticles
Abraxane® Abraxis

BioScience
AstraZeneca

Paclitaxel Polymeric micelles Genesol-PM® Samyang
Amphotericin B Liposomes AmBisome® NeXstar

Pharmaceuticals 
Inc.

Amphotericin B Phospholipid Complex Abelcet® Enzon
Propofol Lipid emulsion Diprivan® AstraZeneca
Cytarabine Liposomes DepoCyt® SkyePharma

Enzon
Daunorubicin citrate Liposomes DaunoXome® Gilead Sciences
Adenosine deaminase PEGylation Adagen® Enzon
Iron oxide Iron oxide nanoparticles Feridex I.V.® AMAG

Pharmaceuticals, 
Inc.

2. Route of administration: oral
Sirolimus NanoCrystal® Rapamune® Wyeth, Elan
Fenofibrate NanoCrystal® TriCor® Abbott
Fenofibrate NanoCrystal® Triglide® SkyePharma
Aprepitant NanoCrystal® Emend® Merck, Elan
Megestrol acetate NanoCrystal® Megace ES Par Pharma, Elan
Morphine sulfate NanoCrystal® Avinza® King Pharma, 

Elan
Dexmethylphenidate HCl NanoCrystal® Focalin® XR Novartis, Elan
Methylphenidate HCl NanoCrystal® Ritalin® LA Novartis, Elan
Tizanidine HCl NanoCrystal® Zanaflex® Acorda Inc., Elan
Cyclosporine A Self-microemulsifying 

drug delivery systems 
(SMEDDS)

Neoral® Novartis

Saquinavir SMEDDS Forovase® Roche
Ritonavir SMEDDS Norvir® Abbott 

laboratories
3. Route of administration: pulmonary
Artificial lung surfactant 
replacement

Synthetic recombinant
Polypeptide liposomal 
lung surfactant

Surfaxin® Drug discovery
Lab

(continued)
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3.5  �Futuristic Scenario of Nanopharmaceuticals

Due to the rapid increase in the applications of nanotechnology in different spheres 
of our life especially in biomedicine, the conventional therapies face a large number 
of challenges including poor bioavailability and intrinsic toxicity. These have seri-
ously compromised the therapeutic efficacy of many otherwise beneficial drugs. 
The market for nanopharmaceuticals has made a rapid tread from $406 million in 
2004 to $3 billion in 2009 and $16.6 billion in 2015 (Wissing et al. 2004). Currently, 
nanopharmaceuticals have become prerequisite to sustain the growth of the pharma-
ceutical industry. According to the latest report published by Visiongain forecasts, 
the world market for nanopharmaceuticals will reach $130 billion in 2017. There is 

Table 3.7  (continued)

Drug specimen Nanotechnology Brand Company

Artificial lung surfactant 
replacement

Natural bovine lung 
extract

Survanta® Abbott labs

Artificial lung surfactant 
replacement

Synthetic lung surfactant 
(protein-free)

Exosurf® GlaxoSmithKline

Artificial lung surfactant 
replacement

Natural porcine lung 
extract

Curosurf® Dey

Artificial lung surfactant 
replacement

Natural bovine lung 
extract

Alveofact® Boehringer
Ingelheim

Route of administration: subcutaneous
Interferon alfa-2a PEGylation Pegasys® Nektar 

Hoffmann-La
Roche

hGH (human growth hormone) PEGylation Somavert® Nektar
Pfizer

Recombinant methionyl human 
G-CSF (granulocyte colony 
stimulating factor)

PEGylation Neulasta® Amgen

Glatiramer acetate Copolymer of L-glutamic 
acid, L-alanine, L-lysine, 
and L-tyrosine

Copaxone® Teva

Amphotericin B Lipid colloidal dispersion Amphotec® Sequus
Interferon alfa-2b PEGylation PEGIntron® Enzon

Schering-Plough
Asparaginase PEGylation Oncaspar® Enzon
Route of administration: transdermal
Estradiol Micellar nanoparticles Estrasorb® Novavax
Estradiol Estradiol gel (0.06%) 

incorporating calcium 
phosphate nanoparticles

Elestrin® BioSante

Lidocaine Liposomes LMX®-4 Ferndale 
laboratories

Cyclosporine A Lipid emulsion Restasis® Allergan
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ongoing vigorous research and increasing demand of nanopharmaceuticals result-
ing in better positions in the pharmaceutical and other healthcare industries (Wissing 
et al. 2004; Qadir et al. 2016; Ahmad et al. 2015a). Henceforth, nanopharmaceuti-
cals will greatly influence medical practice and healthcare because of their ability, 
in many cases, to shorten the time market for active agents, extend the economic life 
of proprietary drugs, and create additional revenue streams.

3.6  �Conclusion

Drug molecules that failed previously because of unacceptable toxicity profiles, 
poor bioavailability, solubility issues, or the inability to be delivered via conven-
tional forms/routes may be reformulated as nanopharmaceuticals. From a business 
point-of view, nanopharmaceuticals offer the ability to extend the economic life of 
proprietary drugs and create additional revenue streams, thereby significantly affect-
ing the drug commercialization landscape (Qadir et  al. 2016; Faiyazuddin et  al. 
2013; Ahmad et al. 2015a).

Nanopharmaceuticals often go hand-in-hand with novel drug delivery methods 
and technologies. This in turn may result in more efficacious treatments that gener-
ate new niche markets to provide greater patent protection to already existing drug 
formulations (Ahmad et al. 2015a; Ahmad et al. 2015b). As discussed earlier, nano-
pharmaceuticals will provide faster drug absorption, controlled dosage releases, and 
effective shielding from the body’s immune system enhancing the effectiveness of 
pre-existing drugs (Faiyazuddin et al. 2013; Ahmad et al. 2015a; Ahmad et al. 2015b).

As nanopharmaceuticals move out of the laboratory and into the clinic, federal 
agencies like the FDA and the PTO will continue to struggle to encourage their 
development while imposing some sort of order. At present, both these critical agen-
cies are in flux, and their credibility has sunk to an all-time low. It is hoped that 
desperately needed reforms to overhaul the PTO and the decades-old US patent 
system along with clearer regulatory/safety guidelines from the FDA regarding 
nanopharmaceuticals will be forthcoming. As nanotechnology begins to appear in a 
wide variety of products, safety and effectiveness of these nanoscale products will 
warrant a careful review because size changes within the nanoscale are likely to add 
additional complexity to the FDA product review process (Faiyazuddin et al. 2010).

In future, novel “multifunctional” nanopharmaceuticals will be designed and 
delivered to the human body via a variety of routes (Ahmad et al. 2015a; Faiyazuddin 
et al. 2010). It will be imperative that each of these be evaluated and characterized 
on a case-by-case basis in an effort to correlate nanopharmaceuticals physiochemi-
cal property with in  vivo biological behavior and therapeutic outcome. In this 
regard, any research strategy must involve adsorption, distribution, metabolism, and 
excretion (ADME) testing, toxicology tests, and physiochemical characterization 
(Faiyazuddin et al. 2012). Eventually, all these undertakings will certainly expand 
the burgeoning field of nanopharmaceuticals. Big pharma and biotech will further 
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embrace nanopharmaceuticals, and this pace of adoption will enhance as they offer 
novel properties that address unmet medical needs with low development costs 
and risks.
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Abstract  Drug discovery has faced many challenges, and the diversity of natural 
products offers a huge number of opportunities for new drug findings. Most of the 
potential candidates result from plants since plants have several and interesting bio-
logical activities. However, the in vivo efficacy of such candidates is frequently 
limited due to their low absorption. Thus, enhancing the bioavailability of natural 
products through the improvement of their pharmacokinetic and biodistribution fea-
tures, as well as their targeting efficacy, is a crucial step in the development of new 
therapeutic strategies.

Here, we reviewed nanotechnology as a rising approach for drug delivery, pre-
senting smart nanocarriers that can selectively deliver appropriate levels of a thera-
peutic agent. Moreover, in order to deliver the therapeutic agent to target cells, 
nanocarriers can also be efficient targeting systems. Another benefit here discussed 
in the use of nanocarriers to deliver natural products is the controlled drug release.

This review describes many types of nanocarriers with structural and functional 
differences between them which can be chosen accordingly to the encapsulated 
drug characteristics, to the specific target, or even to the desired release rate. With 
regard to natural products, we highlight several natural products that are already 
being commercialized or in clinical study phase with impressive therapeutic 
improvements using these nanocarriers. On the other hand, there are also a large 
number of natural products that are being used as encapsulant material in pioneer-
ing nanocarriers. This review aims to summarize the development in several key 
areas relevant to natural products in nanopharmaceuticals. Besides the potential 
beneficial use, also attention is drawn to the question how we should proceed with 
the safety and efficacy evaluation of the nanopharmaceuticals for natural product 
delivery. Nonetheless, research into sophisticated, science-driven solutions is still 
continuing; expectations related to therapeutic efficacy are high to meet clinical 
needs, but the progress made has been noticeable.
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4.1  �Introduction

The pharmacological and biological activities of some natural compounds have pro-
vided therapeutic benefits in human disease treatment (Watkins et al. 2015). The 
diversity of products from plants, animals, and minerals offers a huge number of 
opportunities for new drug discoveries due to the incomparable availability of 
chemical range (Fig. 4.1). It is known that more than 50% of all drugs in clinical use 
came from natural products (Bilia et al. 2017; Madhuri and Pandey 2009; Sasidharan 
et al. 2011). In the past decades, regulatory agencies have approved ~61% of the 
developed natural products to treat cancer and 49% of them to treat infections 
(Watkins et al. 2015). Moreover, according to the World Health Organization, more 
than 80% of people in developing countries use traditional medicine for their pri-
mary health essentials (Madhuri and Pandey 2009). Currently, the global market of 
natural products is mainly derived from the plant origin (Bilia et al. 2017). Herbal 
medicines have been universally accepted, over the past decade, and they have a 
huge impact on world health as in international trade (Madhuri and Pandey 2009).

Drug discovery has undergone many challenges, and the innumerous phyto-
chemicals from plants, with apparently no direct contribution to their growth and 
development, namely, secondary metabolites, were found to be safe and broadly 

Fig. 4.1  It is possible to obtain natural products from raw materials, such as animals, plants, and 
minerals. Through them, their derivatives are extracted, which can be used not only as encapsulat-
ing material but also to be encapsulated so that they can achieve greater targeting and therapeu-
tic effect
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effective alternatives with less adverse effects. Those secondary metabolites have 
shown to have several biological activities such as anticancer, antimicrobial, anti-
oxidant, analgesic, and wound-healing (Bilia et al. 2017; Sasidharan et al. 2011; 
Watkins et al. 2015). The use of plants in cancer treatment has a long history, and 
over the last 70 years, 49% of small-molecule anticancer agents are either natural 
products or directly derived from these (Bahmani et al. 2016; Burmistrova et al. 
2013, 2015). Thus, natural products can modulate multiple targets activating vari-
ous signaling or functional pathways (Asadi-Samani et al. 2015; Bilia et al. 2017).
Although almost all have promising therapeutic potentials, the in vivo efficacy of 
the natural products is frequently limited because of their low absorption; they are 
unable to cross lipid membranes due to their hydrophilicity, intrinsic dissolution 
rate and physical/chemical instability, resulting in loss of bioavailability and effi-
cacy. In addition, they can have limited biodistribution, extensive first-pass metabo-
lism, poor penetration and accumulation in the non-target organs, and insignificant 
targeting efficacy (Bilia et al. 2017; Bonifácio et al. 2014).

Some isolated compounds are highly sensitive to the acidic pH of the stomach 
which promotes their degradation (Ansari et al. 2012; Bonifácio et al. 2014). The 
susceptibility to liver metabolism can also lead to low blood levels and, conse-
quently, to less or no therapeutic result. Some isolated compounds and extracts are 
not used clinically because of those obstacles (Ansari et al. 2012; Bonifácio et al. 
2014; Goyal et al. 2011). Therefore, they commonly need repeated administrations 
or higher doses. Enhancing the bioavailability of natural products, such as improv-
ing their pharmacokinetic and biodistribution features, and improving their target-
ing efficacy are crucial steps in the development of new therapeutic strategies 
(Sannaa et al. 2012).

The effectiveness of natural products depends on their transportation to a specific 
site to deliver them in a controlled manner, increasing patient compliance, and avoid 
repeated administration. New systems should deliver the active compound in a ther-
apeutic concentration during the entire treatment period and direct it towards the 
desired targets (Ansari et al. 2012; Bonifácio et al. 2014; Goyal et al. 2011). Here, 
nanotechnology is a rising approach for drug delivery, presenting smart nanodrug 
delivery systems that can selectively deliver appropriate levels of a therapeutic 
agent, such as natural products, in a specific region. Therefore, nanotechnology-
based solutions can be a breakthrough in solving natural product efficacy problems 
(Rebelo et al. 2017).

This review aims to summarize recent progress in several key areas relevant to 
natural products in nanoparticle delivery systems for medical applications.

4.2  �Nanopharmaceuticals

Nanopharmaceuticals are increasingly becoming attractive to researchers due to its 
numerous benefits in the treatment of several diseases, particularly in oncological 
pathologies (Pinto Reis et  al. 2013). Those systems strongly increase drug 
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bioavailability due to the high relative surface area of nanoparticles (Van Eerdenbrugh 
et al. 2008). In the nanoengineering of nanopharmaceuticals, there are main princi-
ples that should be respected, such as the nanomaterial used must be indispensable 
to the therapeutic activity, or it should add supplementary and unique properties to 
the active substance (Rivera Gil et al. 2010). Particle size is also a keystone; a study 
demonstrated that the liposomes around 150–200 nm diameter remain longer in the 
bloodstream, comparing with liposomes which diameter is larger than 300 nm or 
smaller than 70  nm, once they accumulate in the spleen and liver, respectively 
(Litzinger et al. 1994).

On the other hand, systems based on nanotechnology, such as liposomes, solid 
lipid nanoparticles, polymeric nanoparticles, metallic nanoparticles, nanocrystals, 
and nanoemulsions, among others, allow that compounds with different properties 
can be used in the same formulation. Systems based on nanotechnology can com-
bine active substances with different degrees of hydrophilicity or lipophilicity and 
even manage to change these same properties, such as the behavior of these sub-
stances in a biological environment, especially targeting a tissue or organ, allowing 
a specific site effect (Chen et al. 2009; Gasco et al. 1989; Pestana et al. 2008; Sintov 
and Shapiro 2004). These new drug delivery systems have the ability to increase the 
effectiveness of active substances and, in addition, the ability to increase selectivity, 
reducing the side effects and controlling the release of the active substances (Chorilli 
et al. 2007; Mainardes et al. 2006).

4.2.1  �Bioavailability

Nanoparticles can improve the effectiveness of natural products in the treatment and 
prevention of diseases through increasing their bioavailability (Watkins et al. 2015; 
Yu and Huang 2010). This parameter is closely related to low water solubility of 
drugs which can be classified through the Biopharmaceutics Classification System 
in class II and class IV or limited permeability like classes III and IV drugs (Liu and 
Feng 2015). For example, tannins and terpenoids are highly hydrophilic and have 
low bioavailability because of their inability to cross biological membranes. 
Incorporating them into nanoparticles can improve the bioavailability and lower the 
dose needed to obtain the therapeutic effect (Watkins et al. 2015). In the case of 
Biopharmaceutics Classification System class II drugs (high permeability and low 
solubility), nanoparticles can enhance transport through biological membranes due 
to increased solubility and improved permeation via transcellular and paracellular 
routes, as well as carrier-mediated route, when compared with the free drug (Liu 
and Feng 2015).

A large number of known natural compounds, such as curcumin, resveratrol, or 
epigallocatechin-3-gallate, are highly lipophilic, and low water solubility induces 
low bioavailability. In addition, higher doses must be administered in order to 
achieve the desired therapeutic effects. However, higher doses can induce toxicity 
and low patient compliance. Encapsulating these products, their water solubility 

4  Natural Products and Nanopharmaceuticals



118

and efficiency can be improved, as well as their bioavailability (Kumar and Gupta 
2015; Watkins et al. 2015).

4.2.2  �Targeting

The main obstacle of the current treatments is the inefficient drug delivery to target 
cells, which can lead to nonspecific interactions that can cause many adverse side 
effects in patients. Therefore, this gap must be filled, for example, with the use of 
nanoparticles, since one of the major advantages of those systems is, indeed, the 
target delivery (Havel et al. 2016; Kuen et al. 2017). This advantage can be used in 
drug delivery of natural products to target specific tissues or organs (Kumar and 
Gupta 2015; Namdari et al. 2017; Watkins et al. 2015).

In this way, we can define two types of targeting approaches: active and passive; 
the active targeting involves a ligand attachment to the nanoparticle’s surface. Many 
different molecules can be attached on the surface to specifically target different 
cells. As example, the targets are usually overexpressed receptors on tumor or endo-
thelial cells. Thus, nanoparticle system with the targeting agent may deliver the drug 
specifically into the tumor to further decrease drug systemic toxicity. Some studies 
also show that active targeting can enhance nanoparticle internalization into the 
tumor (Wang et al. 2016; Watkins et al. 2015). In passive targeting, nanoparticles 
reach the targeted area without specific chemical interactions, depending upon 
physical transport due to size, shape, and surface charge. Using tumor cells as an 
example again, it is due to its fast and uncontrolled growing nature that there is a 
different lymphatic drainage system and the space or fenestration between the endo-
thelial cells that line the blood vessel wall of the tumor vasculature is much larger 
than usual. This phenomenon, called the enhanced permeability and retention effect 
of the tumor vasculature, is the basis for passive targeting. Nanoparticles of approxi-
mately 20–150 nm can cross the blood vessel walls and preferentially accumulate in 
the interstitial space of the tumor. On the other hand, chemotherapeutic drugs are 
usually small molecules with less than 10 nm and can cross the blood vessels of 
both tumor and normal tissues, leading to systemic toxicity. Many nanoparticle sys-
tems have been developed to encapsulate anticancer drugs with demonstrated capa-
bility of reducing the systemic toxicity of chemotherapy, including both organic 
nanoparticle systems (e.g., liposome and polymeric nanoparticles) and inorganic 
nanoparticle systems (e.g., silica and gold nanoparticles) (Kumar and Gupta 2015; 
Nakamura et al. 2015; Wang et al. 2016; Watkins et al. 2015).

Target delivery of natural compounds using nanoparticles with small molecules 
is still in development. Thus, more research is required to improve those methods in 
order to take advantages of what has already been found about this type of product 
potential (Havel et al. 2016; Watkins et al. 2015).
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4.2.3  �Sustained Release

Another benefit of using nanoparticles to deliver natural products is that the drug 
release can be controlled. The drug amount and rate at which it is released from a 
nanoparticle depends on many factors such as size, amount of the active compound 
used, and the microenvironment (Havel et al. 2016; Kumar and Gupta 2015). The 
type and nature of the nanoparticle used is the major factor to consider. In case of 
polymeric nanoparticles, for example, the polymers used to produce the nanoparti-
cles can also be adjusted to optimize the drug release. The polymer must be as more 
biocompatible as possible, so that the nanoparticles can stay longer in the body 
without being excreted or early detected by the immune system. One strategy that 
can be applied is the use of polyethylene glycol (PEG) as second coating, improving 
the nanoparticles’ circulation time (Watkins et al. 2015).

4.2.4  �Types of Nanocarriers

�Liposomes

Liposomes can be described as spherical vesicles composed of amphoteric phos-
pholipids and cholesterol, and these are combined in bilayers to encapsulate an 
aqueous medium. This bilayer of phospholipids has the shape of a sphere, protect-
ing their hydrophobic groups from the aqueous phase and allowing their hydrophilic 
heads to contact with the aqueous environment (Fig. 4.2). Liposomes are used as 
drug delivery systems, and the drugs can be encapsulated in liposomes in different 
locations in the phospholipid bilayer, depending on the lipophilicity of the drug in 
the aqueous core (hydrophilic drugs) or at the bilayer interface (lipophilic drugs) 
(Bawarski et al. 2008; Islan et al. 2017; Jurj et al. 2017; Mota et al. 2017; Watkins 
et al. 2015; Weissig et al. 2014). Liposomes can be classified in different categories, 

Fig. 4.2  Liposome with a 
spherical shape, composed 
of amphoteric 
phospholipids combined in 
a bilayer, protecting their 
hydrophobic groups from 
the aqueous phase, 
allowing a hydrophilic 
core. (Modified after 
(Honda et al. 2013))

4  Natural Products and Nanopharmaceuticals



120

depending on the number of bilayers, surface charge (neutral, cationic, or anionic), 
size, and preparation method. The size can be greatly diversified, 25 and 1000 nm; 
however, the typical size ranges between 50 and 200 nm (Bawarski et  al. 2008; 
Bonifácio et al. 2014; Mota et al. 2017; Weissig et al. 2014). Liposome technology 
was discovered in the decade of 1960, and there has been a progress since then in 
terms of modulating their composition, size, and charge of the vesicle. It is also pos-
sible to functionalize liposomes with molecules, like sialic acid, PEG, or glycolip-
ids, promoting targeting to particular cells or receptors (Gregoriadis 2016; Islan 
et al. 2017; Watkins et al. 2015).

The method of producing liposomes is generally very simple, since they sponta-
neously form after hydration of the dry phospholipids. However, this process of 
phospholipid aggregation into bilayer membranes may take a long period of 
time and the size distribution can be very diverse (Mota et al. 2017; Weissig et al. 
2014). The preparation methods include thin film evaporation, freezing-thawing, 
diethyl ether injection, ethanol injection, and reverse phase evaporation. All meth-
ods have specific preparations, but all include solubilization of the lipids in an 
organic solvent, drying of the lipids, hydration of the lipids, and purification of the 
resultant liposomes (Mota et al. 2017).

One potential disadvantage of liposome as a carrier is that after an intravenous 
injection, it is rapidly intercepted by the fixed macrophages of the liver and spleen. 
However, the basis of the mechanism of action of several of the licensed liposome-
based products is precisely the involvement of the reticular endothelial system in 
vesicle uptake, extending liposomes’ potential uses to cancer and antimicrobial 
therapy (Gregoriadis 2016). Liposomes were the first colloidal drug carriers used in 
gene therapy, and these have already been used for drug-targeted delivery of natural 
or synthetic chemotherapeutics (Jurj et al. 2017).

These types of nanocarriers have several advantages, namely, their biodegrad-
ability, the variety of drugs or active substances that can be encapsulated, their bio-
compatibility, their low toxicity, the passive targeting to the cells of the immune 
system, the sustained release system, and the ease of surface manipulation. Due to 
all of these advantages, liposomes have been approved for multiple clinical trials 
(Bawarski et al. 2008; Jurj et al. 2017; Mota et al. 2017; Wu et al. 2017). However, 
they have some  disadvantages associated with poor storage stability and in vivo 
stability, mainly due to oxidation of phospholipids. Additionally, liposomes have 
shown short release time and, in some cases, low encapsulation efficiency when 
compared with polymeric carriers (Bawarski et al. 2008; Jurj et al. 2017; Mota et al. 
2017; Pelaz et al. 2017; Weissig et al. 2014).

Yang et al. prepared ginsenoside compound K (GCK)-loaded liposomes modi-
fied with tocopheryl polyethylene glycol succinate (GCKT-liposomes) to enhance 
solubility and targeting capability. The in vitro release studies had demonstrated that 
the dissolution of GCK was highly improved through its encapsulation into lipo-
somes. In addition, GCKT-liposomes exhibited a great hypersensitizing effect on 
A549 cells, and the cellular uptake was enhanced. Compared with free GCK, the 
half maximal inhibitory concentration (IC50) of GCKT-liposomes was significantly 
reduced. In vivo antitumor assay also indicated that GCKT-liposomes achieved 
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higher antitumor efficacy. These GCKT-liposomes significantly improved the anti-
tumor efficacy of GCK (Yang et al. 2016).

Another example is related to the pomaces from red grapes that are used as a 
source of phenolic antioxidants. This extract was encapsulated in polymer-associated 
liposomes, and the results showed that the encapsulation prevented its degradation 
in the gastric environment and played a key role in improving its performance. The 
polymer-associated liposomes were biocompatible and protected Caco-2 cells 
against oxidative stress. The achieved results suggest a potential application of the 
polymer-associated liposomes loaded with the grape pomace extract in the nutra-
ceutical field (Manconi et al. 2016).

�Solid Lipid Nanoparticles

Solid lipid nanoparticles are colloidal carrier systems, in size range of 50–1000 nm, 
prepared from a lipid matrix that is solid at room temperature, stabilized through 
suitable emulsifiers, and combine the advantages of other colloidal systems for drug 
delivery, such as emulsions, liposomes, and polymeric nanoparticles (Bonifácio 
et al. 2014; Islan et al. 2017; Sutaria et al. 2012). Thus, these nanoparticles are a 
good choice for hydrophobic drugs (Watkins et al. 2015).

Depending on the composition of these particles and on their production condi-
tions, the drug can either be homogeneously dispersed in lipid matrix of solid lipid 
nanoparticles, incorporated into the shell surrounding the lipid core, namely, drug-
enriched shell model (Fig. 4.3), or incorporated into the core surrounded by a lipid 
shell, namely, drug-enriched core model (Din et al. 2017).

Once the matrix of the lipid particle is solid, it can protect drug molecules against 
chemical degradation. However, when the system is produced, crystallization 
occurs, resulting in low encapsulation efficiency and drug release (Bonifácio 
et al. 2014).

Fig. 4.3  Drug-enriched 
shell model – the drug is 
dispersed homogeneously 
in lipid matrix, 
incorporated into the shell 
surrounding the lipid core. 
(Modified after (Din 
et al. 2017))
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On the other hand, Islan et  al. showed that in vitro tolerability of solid lipid 
nanoparticles appears to be much higher than polymeric nanoparticles (Islan et al. 
2017). There are substantial evidences that solid lipid nanoparticles can carry most 
of the drugs through the lymphatic system and in part through the general blood 
circulation, avoiding first-pass metabolism, which allows the administration of 
lower doses with less chances of toxic side effects (Grandhi et  al. 2014; Sutaria 
et al. 2012).

Flavonoid extract from Dracocephalum moldavica L. (Lamiaceae) was encapsu-
lated in solid lipid nanoparticles, and the drug release result in vitro exhibited that 
these nanoparticles had a 60% quicker release in the first 2 hours, which ensured a 
higher drug concentration for a long time. The amount of released drug was signifi-
cantly higher than the free flavonoid extract and reached 95% after 48 h, which 
suggested an improvement  of in vitro drug release. Compared to the flavonoid 
extract alone, solid lipid nanoparticles had a much better myocardial protective 
effect, which suggested that they can be used as safe and effective nanocarriers for 
the oral delivery of Dracocephalum moldavica’s flavonoid extract (Tan et al. 2017).

Marslin et  al. studied the cytotoxicity of free albendazole and albendazole-
loaded solid lipid nanoparticles in human glioma astrocytoma cell line, U-87 MG. In 
vitro cell line studies have shown that albendazole in the form of solid lipid nanopar-
ticles was more cytotoxic (IC50 = 4.90 μg/mL) to U-87 MG cells compared to the 
free form (IC50 = 13.30 μg/mL) due to the efficient uptake of the solid lipid nanopar-
ticles by these cells (Marslin et al. 2017).

�Polymeric Nanoparticles

Polymeric nanoparticles are solid colloidal systems, usually with a size ranging 
between 100 and 500 nm, in which the therapeutic agent is dissolved, entrapped, 
encapsulated, or adsorbed onto the constituent polymer matrix (Lu et  al. 2011; 
Prabhu et al. 2015). As Fig. 4.4 illustrates, polymeric nanoparticle platforms include 
not only solid polymeric nanoparticles but also polymeric micelles, dendrimers, 
polymer conjugates, polymersomes, polyplexes, and polymer hybrid systems, and 
they have unique physicochemical structures (Prabhu et al. 2015). The structure of 
these nanocarriers generally varies from nanospheres to nanocapsules, according to 
the methodology used for its formation. Nanospheres are matrix systems in which 
the drug is dispersed throughout the particles, while nanocapsules are vesicular sys-
tems, acting as a reservoir, where the entrapped substances are confined to a cavity 
composed of a liquid core, either oil or water, surrounded by a single polymeric 
membrane (Lu et  al. 2011; Pinto Reis et  al. 2006; Prabhu et  al. 2015; Rao and 
Geckeler 2011).

The choosing of the appropriate synthesis method for preparation of these 
nanoparticles is based on a number of factors, such as application, size, material 
option, specificity, and morphology (Banik et  al. 2016). Polymeric nanoparticles 
can be conveniently prepared from either dispersion of preformed polymers or clas-
sical polymerization, using direct polymerization of monomers (Banik et al. 2016; 
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Lu et al. 2011; Pinto Reis et al. 2006; Rao and Geckeler 2011). Another preparation 
procedure to be considered is Particle Replication in Nonwetting Templates 
(PRINT®), which has shown to have higher control over size and shape (Banik et al. 
2016; Rolland et al. 2005).

Regarding the dispersion of preformed polymers, several methods have been 
proposed, namely, solvent evaporation method, in which the polymer is dissolved in 
an organic solvent and the drug dissolved in this solution. Then, they are emulsified 
using an emulsifier agent and under continuous stirring, and, eventually, an increase 
of temperature is needed to promote solvent evaporation. Emulsification-solvent 
diffusion method is a type of method in which the polymer is first dissolved in a 
water-soluble solvent saturated with water and then the solvent of the dispersed 
phase is diluted with an excess of water or with another organic solvent, leading 
lately to a solvent diffusion to the external phase and the formation of nanospheres 
or nanocapsules. The solvent displacement method, or nanoprecipitation, consists 
of an interfacial deposition of the polymer through an addition of an organic solvent 
or salts. A rapid diffusion of the solvent into a non-solvent phase results in a decrease 
of the interfacial tension between the two phases that can increase the surface area 
and lead to the formation of nanoparticles. The salting-out method differs from the 
emulsion process since it avoids emulsifiers  and chlorinated solvents: a polymer 
solution normally totally miscible with water is used, and an emulsification is 
achieved, dissolving high concentration of salt or sucrose. In case of dialysis, the 
polymer is dissolved in an organic solvent and placed inside a dialysis tube with 
proper molecular weight cutoff. Another method to produce polymeric nanoparti-
cles is based on supercritical fluid technology, avoiding the use of organic solvents. 
This last method produces polymeric nanoparticles with high purity (Lu et al. 2011; 
Rao and Geckeler 2011).

Fig. 4.4  Types of polymeric nanoparticle platforms: solid polymeric nanoparticles (a), polymeric 
micelles (b), dendrimers (c), polymer conjugates (d), polymersomes (e), polyplexes (f), and poly-
mer hybrid systems (g). (Modified after (Prabhu et al. 2015))
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On the other hand, the polymerization of monomers allows the achievement of 
desired properties for a particular application, designing suitable polymeric nanopar-
ticles. In the monomer polymerization method, a mixture of water with a monomer 
of low water solubility, a water-soluble initiator, and an emulsifier are stirred, at a 
certain temperature, for an extended period to proceed with the polymerization. 
Then, at the end of the reaction, polymeric nanoparticles are formed, with a particle 
size ranging between 10 nm and 150 nm and generally with some emulsifier agent 
trapped in the polymeric particles. The emulsifier agent removal is a hard and time-
consuming process that increases the cost of production. Another strategy is interfa-
cial polymerization that involves the polymerization of two reactive monomers or 
agents. The reaction takes place at the interface of the two liquids, with the elimina-
tion of the purification step. Usually, a high drug encapsulation efficiency is achieved 
(Lu et al. 2011; Rao and Geckeler 2011).

PRINT® is a top-down approach for preparation of nanomaterials that allows 
control over size, shape, composition, surface structure, and charge of synthesized 
particles (Rolland et al. 2005). Rolland et al., in 2005, have developed the PRINT® 
process that improves the soft lithographic techniques, creating isolated particles 
instead of embossed films. These researchers and others demonstrated the utility of 
this method, producing particles of poly(ethylene glycol) diacrylate, triacrylate 
resin, poly(lactic acid), and poly(pyrrole) in different shapes and sizes with a range 
of drug agents, such as oligonucleotides and proteins.

The advantages of polymeric nanoparticles as drug delivery systems include 
their high drug encapsulation efficiency, higher intracellular uptake than other par-
ticulate drug delivery systems, and biocompatibility with tissue and cells. They are 
able to protect drugs from their rapid metabolism during systemic circulation and 
clearance by the liver, kidney, and reticuloendothelial system, which lead to 
improvements of the drug stability and its specificity. Even more, polymeric 
nanoparticles can be designed to effectively deliver the drug to a target site and, 
thus, increase therapeutic results, minimizing the adverse side effects (Lu et  al. 
2011; Prabhu et al. 2015).

Silva et al. have incorporated topical glucocorticosteroids into nanoparticles for-
mulated with poly-Ɛ-caprolactone as the polymeric core to overcome side effects of 
conventional formulations and to achieve maximum skin deposition. They have 
proved that nanoparticles increase drug permeation into lipid membranes in vitro. 
Preliminary safety and permeation studies conducted on rats showed corticosteroids 
in serum after 48 h application of a gel containing nanoparticles with no skin reac-
tions observed (Silva et al. 2015).

Dendrimers

Dendrimers are repeatedly branched polymeric macromolecules that have numer-
ous extensions from central core, resulting in a nearly perfect three-dimensional 
structure (Bawarski et al. 2008; Prabhu et al. 2015). These particles usually have 
10–100 nm of diameter with multiple functional groups on their surface, making 
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them ideal carriers for targeted drug delivery but being also a good choice for imag-
ing (Bawarski et al. 2008; Prabhu et al. 2015). Dendrimers can be synthesized via 
divergent or convergent synthesis through a series of controlled polymerization 
reactions (Bawarski et al. 2008; Prabhu et al. 2015). In the different methods, den-
drimer grows outward from a multifunctional core molecule. The core molecule 
reacts with monomer molecules, giving the first-generation dendrimer. Then, the 
new periphery of the molecule is activated for reactions with more monomers 
(Abbasi et  al. 2014). With more than five generations, dendrimers are similar to 
spheres with countless cavities within their branches to contain therapeutic and 
diagnostic agents (Bawarski et al. 2008).

Khandare et al. prepared a poly(amidoamine) dendrimer-succinic acid-paclitaxel 
conjugate that showed a cytotoxicity ten times higher than the free unconjugated 
drug in A2780 human ovarian carcinoma cells. The conjugate was prepared through 
the condensation method, with paclitaxel covalently conjugated (Khandare et  al. 
2006). Furthermore, Majoros and his colleagues engineered a multifunctional 
poly(amidoamine) dendrimer that could also conjugate functional molecules like 
fluorescein isothiocyanate and folic acid, since the targets overexpressed folate 
receptors on specific cancer cells, acting both as targeted chemotherapeutic and 
imaging agents to cancer cells in vitro (Majoros et al. 2006). However, dendrimers 
may be toxic because of their ability to disrupt cell membranes, mainly due to the 
positive charge on their surface (Bawarski et al. 2008).

Polymeric Micelles

Polymeric micelles are spherical colloidal particles with a hydrophobic core and a 
hydrophilic shell in aqueous media that are regularly soluble in water and have an 
individual size lower than 50 nm. The copolymer hydrophobic fraction allows the 
encapsulation or the covalent linking of the drug or contrast agent, whereas the 
hydrophilic portion provides stealth property to the micellar system. This property 
prevents its uptake by reticuloendothelial system, and thereby, it enhances its circu-
lation time in bloodstream and facilitates in vivo imaging (Banik et  al. 2016; 
Bawarski et al. 2008; Prabhu et al. 2015).

For the formation of micelles, amphiphilic molecules must have both hydropho-
bic and hydrophilic segments. Hence, in the aqueous media, the core of the micelles 
can solubilize water-poor or non-soluble drugs, while the surface can adsorb polar 
molecules. Drugs with intermediate polarity can be distributed in intermediate posi-
tions. Therefore, polymeric micelles provide an alternative for parenteral adminis-
tration of poorly water-soluble drugs (Bawarski et al. 2008). These nanoparticles 
can be modified using ligand molecules for targeted delivery to specific cells, for 
example, a pH-sensitive drug-binding linkers. Moreover, multifunctional polymeric 
micelles can be designed to facilitate simultaneous drug delivery and imaging, plus 
the possibility to encapsulate two or more drugs in one step (Banik et  al. 2016; 
Bawarski et al. 2008). Polymeric micelles have been used for drug delivery applica-
tions due to their unique properties, namely, the increase of the solubility and 
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stability of anticancer agents, flexibility to choose from several hydrophobic regions, 
and nanoscale size (Banik et al. 2016).

Genexol® is an example of an anticancer drug delivery system using these 
nanoparticles to the treatment of metastatic breast and pancreatic cancer, and will be 
better discussed later on section Natural Products Encapsulated in 
Nanopharmaceuticals. Song and his collaborators, in 2011, reported the use of 
micelles of amphiphilic methoxy poly(ethylene glycol)-b-poly(Ɛ-caprolactone-co-
p-dioxanone) loaded with curcumin. These micelles were prepared through a solid 
dispersion method and presented higher water solubility and faster hydrolytic deg-
radation compared to mPEG–PCL micelles. They had a small size, around 30 nm, 
with a narrow size distribution, an entrapment efficiency higher than 95%, and a 
loading capacity of 12%. Moreover, the curcumin-loaded micelles were effective in 
inhibiting the growth of PC-3 human prostate cancer cells, appearing to be an attrac-
tive parenteral formulation for curcumin delivery (Song et al. 2011).

On the other hand, polymeric micelles can also be used on diagnosis as “smart 
imaging” approaches. Huang et al. developed a smart pH-activated 19F-probe con-
sisting in micelles composed of fluorinated polymers with tertiary amines at differ-
ent pKa values, which allowed the detection of specific and narrow pH transitions 
in biological systems. The protonation of such amines at pH lower than their pKa 
results in micelle disassembly and 19F-MRI/nuclear magnetic resonance spectros-
copy signal activation (Huang et al. 2013; Pelaz et al. 2017).

�Metallic Nanoparticles

Metallic nanoparticles include metal and metalloid elements, and they are a cluster 
of metal atoms that play an important role due to their unique optoelectronic and 
physicochemical properties, which depend strongly on their size, shape, crystallin-
ity, and structure (Fig. 4.5) (Edmundson et al. 2014; Islan et al. 2017). Different 
physical and chemical methods have been used for the synthesis of metallic nanopar-
ticles. Physical synthesis has a low production rate and a high consumption of 

Fig. 4.5  Metal nanoparticle – metal and metalloid elements in a cluster of metal atoms with their 
optoelectronic and physicochemical properties (strongly dependent on size, shape, crystallinity, 
and structure). (Modified after (Marques Neto et al. 2017))
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energy to maintain the high pressure and temperature, and, ultimately, it is very 
expensive. It includes methods such as attrition, where macro- or microscale parti-
cles are ground by a size-reducing mechanism, and pyrolysis method, which 
requires an organic precursor, either a liquid or a gas, that is forced through an ori-
fice at high pressure and burned (Thakkar et al. 2010). On the other hand, chemical 
methods, like wet-chemical procedures, are low cost for high volume; however, they 
are associated with some contamination from chemical precursors and use of toxic 
solvents. A typical procedure involves producing nanoparticles in a liquid medium 
containing several reactants, in particular reducing agents, and a stabilizing agent to 
prevent the agglomeration of metallic nanoparticles (Thakkar et al. 2010).

The use of biological organisms in the synthesis and assembly of nanoparticles 
has received increasing attention due to the fact that they are clean, cost-effective, 
and efficient synthesis techniques, being some available biological resources like 
plants and plant products, algae, fungi, yeast, bacteria, and virus (Islan et al. 2017; 
Thakkar et al. 2010). Both unicellular and multicellular organisms have been known 
to produce intracellular or extracellular inorganic materials, and they are able to 
lower the toxicity of metal ions reducing them to elemental or less toxic or soluble 
forms (Edmundson et  al. 2014; Thakkar et  al. 2010). A eukaryotic nanoparticle 
producer is, for example, the fungus Phoma that is used to produce silver nanopar-
ticles as antibacterial agents or Magnetospirillum gryphiswaldense that is used to 
produce magnetic nanoparticles. However, prokaryotes are the logical choice for 
developing nanoparticles due to their faster growth rates and easy manipulation 
(Edmundson et al. 2014).

Through the years, nanoparticles like magnetic, gold, and silver nanoparticles, 
nanoshells, and nanocages have been continuously used and modified to enable 
their use as diagnostic and therapeutic agents (Islan et al. 2017; Mody et al. 2010). 
Due to their ultra-small size, magnetic properties, and biocompatibility, superpara-
magnetic iron oxide nanoparticles have arisen as promising candidates for several 
biomedical applications, such as enhanced resolution contrast agents for MRI, tar-
geted drug delivery and imaging, gene therapy, stem cell tracking, magnetic separa-
tion technologies (e.g., rapid DNA sequencing), and early detection of inflammatory 
diseases, cancer, diabetes, and atherosclerosis (Mody et al. 2010; Pelaz et al. 2017).

Gold nanoparticles due to their high atomic number and electron density have 
higher attenuation coefficients than the typical X-ray contrast agent. They can be 
used as contrast agents for X-ray imaging, computed tomography, and microcom-
puted tomography, but also in the immune gold labeling of samples to be observed 
using transmission electron microscopy (Edmundson et al. 2014; Pelaz et al. 2017). 
Moreover, gold nanoparticles are being used as drug delivery systems, and some 
nanoparticles have intrinsic healing properties (Edmundson et al. 2014; Pelaz et al. 
2017). Mukherjee et al. reported in 2005, for the first time, anti-angiogenic proper-
ties of gold nanoparticles, making them a promising approach for tumor therapy, 
since intensive angiogenesis, i.e., the formation process of new blood vessels in 
organs or tissues, is considered one of the main tumor growth factors. These 
researchers showed through in vitro and in vivo tests that gold nanoparticles bind to 
heparin-binding growth factors, like VEGF165 and bFGF, inhibiting their activity. 
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It does not inhibit the activity of non-heparin-binding growth factors, like VEGF121 
and endothelial growth factor (Dykman and Khlebtsov 2011; Mukherjee et  al. 
2005). Silva et al. have prepared gold nanoparticles encapsulating an aqueous plant 
extract, with gold as the reducing and capping agent, maximized in the near-infrared 
absorption (650–900  nm). Resultant nanoparticles were easily activated through 
controlled temperature with an ultrasonic water bath and application of a pulsed 
laser. Thus, the authors believe that those particles can be used in the future with 
adequate controlled optical properties for laser phototherapy of tumors and targeted 
drug delivery (Silva et al. 2016b). Wilson et al. have studied a dual-modality inter-
ventional magnetic resonance imaging/conventional angiography system for 
catheter-directed intra-arterial delivery of magnetic nanoparticles to target doxoru-
bicin, a natural compound used as a chemotherapy agent, in the treatment of inoper-
able hepatocellular carcinoma. Their results have shown to be a promising method 
for targeting tumor therapies magnetically (Wilson et al. 2004).

Silver nanoparticles are being studied as new antimicrobial agents because of 
their significant activity against many types of pathogens, including multidrug-
resistant organisms. Some anti-inflammatory properties have been attributed to 
these nanoparticles (Edmundson et al. 2014; Islan et al. 2017). The exact mecha-
nism through which silver nanoparticles induce antimicrobial effect is not yet 
clearly known; however, there are some theories that try to explain it. One is due to 
their ability to anchor to the bacteria cell wall and thereafter penetrate it, causing 
structural changes, like enhancing permeability leading to cell death; another theory 
is the formation of free radicals which may cause damage in the cell membrane 
leading, ultimately, to cell death; the release of silver ions can also be an explana-
tion, since these ions can interact with the thiol groups of many vital enzymes and 
inactivate them (Prabhu and Poulose 2012).

�Nanocrystals

Nanocrystals are carrier-free colloidal delivery systems composed of 100% water-
insoluble drug (Islan et al. 2017; Junghanns and Müller 2008; Weissig et al. 2014). 
Nanocrystals are characterized by a unique phenomenon, an increased dissolution 
pressure that can be associated with their nanometer size and that can be translated 
into the improvement of clinical efficacy (Weissig et  al. 2014). Many different 
methods can be applied on the production of nanocrystals, such as disintegration 
processes, that include milling and high-pressure homogenization, precipitation, 
and combined methods (Gao et al. 2015; Islan et al. 2017; Junghanns and Müller 
2008; Khan et al. 2013b). Depending on the chosen methodology, the process of 
drug microcrystals to drug nanoparticles can lead either to a crystalline or to an 
amorphous product, especially when precipitation is applied (Junghanns and 
Müller 2008).

On the milling process, the milling media, the dispersion medium, the stabilizer, 
and the drug are generally charged into the milling chamber, where shear impact 
forces contribute to particle size reduction; however, the erosion from the milling 
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material during the process is usually a disadvantage in this technology (Gao et al. 
2015; Junghanns and Müller 2008). This method can work either with the stirring of 
the milling medium, or the complete container can move in a complex movement, 
leading consequently to the movement of the milling media (Junghanns and 
Müller 2008).

Homogenization methods consist of three important technologies, namely, 
Microfluidizer technology, which generates small particles due to a frontal collision 
of two fluid streams under pressures up to 1700 bars; piston gap homogenization in 
water and in water mixtures, where the drug powder is dispersed in an aqueous 
emulsifier solution and, subsequently, forced by a piston through the tiny homoge-
nization gap; and nonaqueous media, which uses a dispersion media with low vapor 
pressure and optionally homogenization at low temperatures. In piston gap homog-
enization, particles become smaller due to the high shear forces, the turbulent flow, 
and the enormous power of shockwaves (Junghanns and Müller 2008).

Precipitation methods can reduce the mechanical energy input associated with 
milling and homogenization methodologies. In a classical precipitation process 
known as “via humida paratum”, the drug is dissolved in a solvent, and then a non-
solvent is added, leading to the precipitation of finely dispersed drug nanocrystals. 
The major limitations of this method are considered to be uncontrolled particle 
growth, requiring stabilization in order not to grow to the micrometer scale and the 
need of a soluble drug in at least one solvent, which can be a problem for newly 
developed drugs that are insoluble in both aqueous and organic media (Junghanns 
and Müller 2008; Khan et al. 2013b).

One advantage from nanocrystals is their capability to provide smaller dose 
administration and, consequently, reduce the adverse side effects (Islan et al. 2017). 
Furthermore, those particles can be administrated through different routes, such as 
oral, parenteral, ocular, pulmonary, and dermal delivery. An effort to overcome the 
regulatory obstacles and to create high-quality standards must be applied (Islan et al. 
2017; Müller and Junghanns 2006). The first nanocrystal-based product was approved 
by the FDA in 2000 under the name Rapamune®. Rapamune® from Wyeth 
Pharmaceuticals has in its composition sirolimus, a natural macrocyclic lactone pro-
duced by Streptomyces hygroscopicus, which acts as an immunosuppressive drug. 
Oral suspensions and nanocrystal tablets produced through pearl mill technology are 
the two existing formulations where tablets have shown an increased bioavailability 
(21%) compared to the oral solution (Junghanns and Müller 2008; Müller and 
Junghanns 2006).

Sahoo et al. studied the possibility to enhance the dissolution rate of the poorly 
water-soluble drug, quercetin, through nanocrystals. Using high-pressure homoge-
nization method, they have obtained a size of about 483  nm after 20  cycles of 
homogenization at 1500  bar. These researchers found that the dissolution of the 
drug in nanocrystals was much higher when compared to the non-processed drug, 
as well as the antioxidant activity (Sahoo et al. 2011).
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�Nanoemulsions

Nanoemulsions are colloidal particulate systems, with sizes around 100 nm. They 
usually are amorphous and lipophilic solid spheres with a negative charge on their 
surface (Gupta et al. 2016; Jaiswal et al. 2015; Singh et al. 2017). A typical nano-
emulsion system contains oil, water, and an emulsifier and can form an oil-in-water 
nanoemulsion, a water-in-oil nanoemulsion, or a bi-continuous nanoemulsion. This 
last one is a thermodynamically unstable system that can be stabilized through the 
addition of an emulsifier (Gupta et al. 2016; Jaiswal et al. 2015). Due to their ability 
to dissolve large amounts of hydrophobic compounds along with their mutual com-
patibility and ability to protect the drugs from hydrolysis and enzymatic degrada-
tion, nanoemulsions may act as ideal carriers for parenteral delivery (Islan et al. 
2017). Moreover, as they enhance therapeutic efficacy of drug and minimize adverse 
side effects and toxic reactions, those particles are used in the treatment of infec-
tions, enzyme replacement therapy in the liver, treatment of cancer, and vaccination 
(Jaiswal et al. 2015).

Methodologies for nanoemulsion production can be divided into high-energy or 
low-energy emulsification or a combination of both (Gupta et al. 2016; Jaiswal et al. 
2015; Koroleva and Yurtov 2012; Singh et al. 2017). High-energy emulsification 
methods require mechanical devices that allow the creation of powerful disruptive 
forces for size reduction and include high-energy stirring, ultrasonic emulsification, 
high-pressure homogenization, microfluidization, and membrane emulsification 
method (Jaiswal et al. 2015; Singh et al. 2017). Disadvantages associated with these 
methods are the high costs and generation of high operational temperatures, which 
are not applied to thermolabile drugs (Singh et al. 2017). On the other hand, in low-
energy methods, droplets are formed when the system shows a phase inversion in 
response to changes in composition or temperature and goes through a state of low 
interfacial tension, taking advantages of the energy stored in the system to produce 
ultrafine droplets (Gupta et al. 2016; Singh et al. 2017). Phase inversion tempera-
ture, emulsion inversion point, and spontaneous emulsification method are the most 
common methods (Gupta et al. 2016; Jaiswal et al. 2015). A combined method that 
comprises the high-energy and low-energy emulsification is also possible in the 
preparation of a reverse nanoemulsion in a highly viscous system (Jaiswal et  al. 
2015; Koroleva and Yurtov 2012).

Camptothecin is an effective anticancer agent against a broad range of cancers. It 
is obtained from Camptotheca acuminata D. (Cornaceae), and its therapeutic use is 
hindered due to poor aqueous solubility and high lipophilicity. Thus, Natesan et al. 
formulated a camptothecin nanoemulsion stabilized by chitosan (CHI-CPT-NEs) to 
improve the cancer targeting efficiency of camptothecin. The new nanoemulsion 
showed uniform droplet size distribution, extended drug release (61.7% in 24 h), 
tolerable hemolytic potential, high cytotoxicity (178 ± 4.3 ng/mL) against MCF-7 
cancer cells, and low DNA damage to lymphocytes. Moreover, it was seen an 
increase in targeting breast cancer by CHI-CPT-NEs when compared to the non-
stabilized nanoemulsion in in vivo studies in four T1 breast tumor xenograft BALB/c 
mice (Natesan et al. 2017).
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�Phytosomes

Phytosome is also known as phyto-phospholipidic nanoparticles, planterosomes, 
and herbosomes (Khan et al. 2013a; Matias et al. 2016; Semalty et al. 2010). The 
name derived from the conjugation of the Greek words phyto, which means “from 
plant,” and “some,” which means “cell-like.” A phytosome is an amphiphilic sub-
stance where individual components of an herbal extract are bound to phospholipids 
(Semalty et  al. 2010). These type of nanoparticles can be considered to have as 
major advantages its high solubility and absorption rate, leading to the decrease in 
the drug dosage needed and, subsequent, they become safer to human organism 
(Khan et al. 2013a).

Briefly, for its preparation, the chosen proportions of phospholipids and phyto-
components must be dissolved in a suitable medium and react at an optimized tem-
perature for the adequate time. Then, the complex must be obtained as dry powder 
or converted into a phytosomal suspension (Matias et al. 2016). There are essen-
tially three methods applied to the preparation of phytosomes, namely, solvent 
evaporation, anti-solvent precipitation, and supercritical fluid technology. In the 
solvent evaporation method, a proportion of a natural product and phospholipids are 
mixed in a reaction vessel containing a suitable solvent system, such as tetrahydro-
furan or ethanol, and the reaction is allowed to be carried for 2–6 h at room tempera-
ture or with moderate heating to get the maximum possible yield and drug entrapment 
(Khan et  al. 2013a; Matias et  al. 2016). Then, the solvent is evaporated, under 
reduced pressure in case of volatile solvents or using freeze-drying or spray-drying 
for non-volatile solvents, leading to the production of the dry complexes (Matias 
et al. 2016). When non-volatile solvents are used, the addition of a carbohydrate 
may be necessary regarding their cryoprotectant properties on the complex during 
the freeze-drying process. This recovery method can be an advantage since it does 
not require an additional drying step and it is a lower-temperature procedure being 
very useful for natural products (Matias et al. 2016).

The anti-solvent precipitation technique is similar to the solvent evaporation 
method but incorporates a polar solvent as the anti-solvent to stop the reaction and 
precipitate the drug–phospholipid complex from the organic solvent (Khan et al. 
2013a; Matias et al. 2016). The phyto-phospholipidic complex is recovered after 
precipitation and eventual centrifugation, followed by solvent removal (Matias et al. 
2016). It is suggested from some authors that due to the very weak interactions dur-
ing the complex formation and/or the ability of the anti-solvent to dissolve the phos-
pholipids leaving the crystalline drug precipitated, lower efficacy can be obtained 
with this technique (Matias et al. 2016). On the other hand, supercritical fluid tech-
nology uses mild temperatures and requires minimal solvent quantity (Matias et al. 
2016). Different supercritical fluid techniques have been applied to improve solubil-
ity profiles of poorly soluble drugs, including compressed anti-solvent process or 
supercritical anti-solvent method, rapid expansion of supercritical solutions, 
solution-enhanced dispersion due to supercritical fluids, and gas anti-solvent tech-
nique (Khan et al. 2013a; Matias et al. 2016). In supercritical fluids, the equipment 
includes two concentric tubes leading supercritical carbon dioxide (SC-CO2) and 
the solution of phytocomponents and phospholipids to a small premixing chamber 
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and then to a nozzle. After the entrance in the collection vessel, evaporation of the 
CO2 occurs, leading to the removal of most of the remaining solvent, originating the 
precipitation of a solid powder which contains the phytosomes. On the other hand, 
gas anti-solvent technique uses a similar equipment but dispensing the inlet for the 
solution containing natural drug and phospholipids, being those components added 
into the vessel instead (Matias et al. 2016).

Mitomycin C is an antiproliferative and anticancer drug extensively used in clini-
cal chemotherapy for the treatment of a variety of cancers including stomach, breast, 
pancreas, colon, and bladder cancer. This drug is rapidly absorbed into systemic cir-
culation, increasing toxicity risk in systemic administration. Hou and his coworkers 
produced mitomycin C − soybean phosphatidylcholine complex through a solvent 
evaporation method combined with a nanoprecipitation technique. The mitomycin 
C-loaded phytosomes not only are able to reduce the drug degradation while encap-
sulated, but also have exhibited remarkably high cytotoxicity as well as higher inhibi-
tion effect compared to free mitomycin C. However, it does not demonstrated high 
selectivity for the tumor site (Hou et al. 2013; Matias et al. 2016). Matias et al. have 
developed an antibacterial phytosome formulation for topical application containing 
a bioactive extract of Plectranthus madagascariensis B. (Lamiaceae). The phyto-
somes were further encapsulated into chitosan microparticles with an average size of 
1 μm and positive surface charge and presented a sustained release at physiologic pH, 
maintaining the antibacterial activity of the extract, making them a promising alter-
native to current topic antibacterial treatments (Matias et al. 2015).

4.3  �Natural Products Encapsulated in Nanopharmaceuticals

The use of nanotechnology has shown major success in the field of drug delivery 
and brings multiple advantages to the delivery of natural products (Padmavathi 
2013). The incorporation of these natural products in nanoparticles can increase 
their bioavailability (Alexander et al. 2016; Bonifácio et al. 2014; Borel and Sabliov 
2014; Kumar and Gupta 2015; Watkins et al. 2015). These incorporation can also 
increase solubility and stability, protecting healthy cells from toxicity, enhancing 
pharmacological activity, allowing sustained delivery with protection from physical 
and chemical degradation, and consequently minimizing adverse side effects 
(Alexander et al. 2016; Ansari et al. 2012; Bonifácio et al. 2014; Goyal et al. 2011; 
Namdari et al. 2017; Watkins et al. 2015).
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4.3.1  �Examples of Natural Products Encapsulated 
into Nanocarriers

�Paclitaxel

Paclitaxel, also named Taxol, is a natural compound isolated from Taxus brevifolia 
B. (Taxaceae), a slow-growing evergreen shrub or small tree (Bernabeu et al. 2017). 
It has proved to have anticancer properties, motivating an intense research effort 
over the years. Nowadays, it represents a first-line treatment of many types of solid 
cancers, and it is among the first clinically and US FDA-approved chemotherapy 
natural drugs (Bilia et al. 2017). This product is usually administered intravenously, 
but due to its low water solubility and toxicity, new formulations were developed. 
Many studies reported several investigations of different nanoformulations, from 
which some are now available in the market. There are mainly polymeric nanopar-
ticles, lipid formulations, polymer conjugates, inorganic nanoparticles, nanocrys-
tals, and cyclodextrin-based nanoformulations. As an example, albumin 
nanoparticles have increased the bioavailability of paclitaxel and led to higher intra-
tumor concentrations of the drug (Bilia et al. 2017; Sannaa et al. 2012).

Genexol® has been approved by Korean regulatory agency as first-line treatment 
for ovarian cancer in combination with other chemotherapeutics agents in 2011. It 
is also administrated for metastatic breast cancer and pancreatic cancer. Genexol® 
consists of 20–50  nm micelles composed of block copolymer PEG-poly (D, 
L-lactide) loaded with placlitaxel (Ragelle et al. 2017). Preclinical studies in animal 
models showed enhanced efficacy and reduced toxicity (Bernabeu et  al. 2017; 
Ragelle et al. 2017; Weissig et al. 2014). Another commercialized nanopharmaceu-
tical to deliver paclitaxel is Opaxio®, a macromolecular polymer-drug conjugate of 
paclitaxel with α-poly(L-glutamic acid), that was developed in order to improve the 
safety profile of taxol (Bernabeu et al. 2017). Approved by the FDA in 2012 for 
glioblastoma, this nanopharmaceutical contains paclitaxel covalently linked to solid 
nanoparticles composed of polyglutamate in where the drug is released inside the 
solid tumor via enzymatic hydrolysis of polyglutamate (Bernabeu et  al. 2017; 
Weissig et al. 2014).

�Doxorubicin

Doxorubicin is one of the most potent and commonly used chemotherapeutic agents 
for the treatment of several types of cancer (Cagel et al. 2017; Shafei et al. 2017). It 
was isolated from Streptomyces peucetius var. caesius through mutagenic treatment 
of S. peucetius (Cagel et al. 2017). From the clinical point of view, doxorubicin is 
considered as one of the most effective chemotherapeutic agents against many types 
of cancers (Cagel et al. 2017). The mechanism for doxorubicin anticancer effect 
was recently discussed (Shafei et al. 2017). In 1995, the Oncologic Drugs Advisory 
Committee recommended FDA approval of Doxil® (Fig. 4.6), and 1 year later, it 
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was first commercialized in the USA as Doxil® and in the European Union as 
Caelyx® (Cagel et al. 2017). It consists in a doxorubicin-loaded PEGylated liposo-
mal bilayer with sizes ranging 80–90 nm, comprising hydrogenated soy phosphati-
dylcholine, cholesterol, and methyl-distearoyl phospho-ethanolamine PEG 2000 
Q5 sodium salt (Cagel et al. 2017). Doxil® had shown higher clinical performance, 
compared to the free form of doxorubicin in a variety of neoplastic conditions, due 
to its unique pharmacokinetics and biodistribution, which reduces side effects when 
it comes to cardiac toxicity and improves overall patient compliance and quality of 
life (Barenholz 2012). Another example of doxorubicin nanoformulation is related 
to oleyl chitosan nanoparticles (Shafei et al. 2017). It was observed that stability 
increases with the increase of the hydrophobic chains and hydrophobic groups, 
which leads to higher drug protection (Barenholz 2012). These nanoparticles had 
demonstrated dual effect, inhibiting the promoter oncogene in breast cancer and 
increasing chemotherapeutic effectiveness. It was also demostrated that in pH of 
3.8, doxorubicin was rapidly and completely released from the nanoparticles, 
whereas the pH 7.4 showed sustained release followed by burst release. Oleic acid 
and chitosan nanoparticles were also more efficient than free doxorubicin in terms 
of growth inhibitory rates and showed better inhibition of cancer cells, maintaining 
the pharmacological activity of doxorubicin (Tana et al. 2009).

Another nanoformulation with doxorubicin is the superparamagnetic iron oxide 
nanoparticles. These nanoparticles are guided by an external magnetic field to its 
target, and they are capable of targeting cancer cells while sparing healthy cells, 
which leads to a possible dose reduction (Shafei et  al. 2017). Also, PEGylated 
superparamagnetic iron oxide nanoparticle complexes have also been synthesized, 
being firstly loaded with doxorubicin-Fe2+.

Fig. 4.6  Schematic representation of “stealth” liposome (Doxil®) (Barenholz 2012)
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�Curcumin

Curcumin is the major bioactive compound of the rhizome of Curcuma longa 
L. (Zingiberaceae), an Indian herbal medicine. This compound has a high clinical 
interest mainly due to its properties that can be used in cancer treatment, inflamma-
tion, infection, angiogenesis, and amyloidosis, among others (Bilia et  al. 2017; 
Mutoh et al. 2016; Watkins et al. 2015). Since curcumin is a lipophilic molecule, its 
characteristics limit its clinical use (Namdari et al. 2017). In the last decade, many 
strategies have been used to enhance curcumin efficiency, and recent formulations 
involve targeting strategies mediated by antibodies, peptides, and aptamers (Yu and 
Huang 2010).

Many studies led to new interesting findings, for example, curcumin-loaded lipid 
nanoparticles were shown to inhibit cellular proliferation, migration, and invasion 
along with a higher percentage of cell cycle inhibition (Bilia et al. 2017; Yu and 
Huang 2010). This fact led to a high apoptosis level when compared to free cur-
cumin. Other study has demonstrated the increase of curcumin bioavailability using 
glyceryl monooleate nanoparticles, compared to free curcumin (Bilia et al. 2017). 
Also, Kakkar et al. have studied solid lipid nanoparticles which exhibit prolonged 
in vitro drug release of curcumin (Kakkar et al. 2011).

Besides anticancer properties, another application of curcumin is related to the 
antimicrobial activity of curcumin, which was enhanced using nanoparticles (Bilia 
et al. 2017). Moreover, a recent review reported the therapeutic application of dif-
ferent natural products in rheumatoid arthritis therapy, mainly polyphenols as cur-
cumin (Bilia et al. 2017; Sannaa et al. 2012; Watkins et al. 2015).

�Resveratrol

Resveratrol is a natural polyphenolic compound found in Vitis vinífera L. (Vitaceae). 
This compound has emerged as one of the most promising therapeutic agents in 
coronary disease prevention, as well as in neurodegenerative pathologies and in the 
inhibition of several types of cancer (Sannaa et  al. 2012; Watkins et  al. 2015). 
Nevertheless, resveratrol (as a free form) has some particular limitations. As a poly-
phenol, it possesses a rapid and extensive metabolism. In addition, the instability of 
resveratrol is also factor that affects its bioavailability.

Many nanoformulations have been tested and have proved to improve those men-
tioned characteristics (Watkins et al. 2015). As an example, a higher rate of glioma 
cell death was obtained with mPEG poly(ε-caprolactone)-based nanoparticles 
(Watkins et al. 2015). Also, solid lipid nanoparticles also showed to decrease cell 
proliferation in skin cancer using resveratrol as main therapeutic agent (Watkins 
et al. 2015). Besides the skin cancer, Sannaa et al. have shown an example of suc-
cess when using nanoparticles as well as mitochondrial targeting liposomes that 
induced apoptosis in prostate cancer (Sannaa et al. 2012). Furthermore, previous 
studies showed that resveratrol stability was also improved through 
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nanoencapsulation, preventing structural degradation and enhancing its therapeutic 
effect (Sannaa et al. 2012; Watkins et al. 2015).

�Silibinin

Silibinin is a major active constituent obtained from the seeds of Silybum maria-
num L. (Asteraceae), a polyphenolic flavonolignan with hepatoprotective and anti-
oxidant activities (Kuen et al. 2017). It has been suggested to be a natural compound 
with therapeutic effect in diabetes and cancer (Ganesan et  al. 2017; Kuen et  al. 
2017). Nonetheless, and similarly to all natural products already mentioned above, 
silibinin has low bioavailability mainly due to the low solubility in water. In order 
to overcome this disadvantage, several strategies such as solid lipid nanoparticles 
were developed (Kuen et al. 2017). Stearic acid was used with success to incorpo-
rate silibinin into the nanoparticles, but the rapid in vivo clearance through the retic-
uloendothelial system decreases the circulation time of silibinin (Kuen et al. 2017). 
Another example of success includes modified chitosan nanoparticles which proved 
to enhance the therapeutic efficacy of silibinin in lung cancer cells. Also, Ganesan 
et  al. have produced PLGA nanoparticles loaded with silibinin for antidiabetic 
activities in streptozotocin-induced diabetes rat model (Ganesan et al. 2017). These 
silibinin-loaded nanoparticles with about 230 nm improved bioavailability of such 
compounds in the systemic circulation along with a higher restoration of the pancre-
atic cells (Ganesan et al. 2017).

�Parvifloron D

Naturally occurring abietane diterpene, Parvifloron D is the main phytochemical 
constituent of Plectranthus ecklonii Benth.  (Lamiaceae)  (Gaspar-Marques et  al. 
2008). Abietane diterpenes have attracted much attention since they display a wide 
range of biological activities, including antitumor activities (Burmistrova et  al. 
2015). Parvifloron D has shown to have antioxidant, antibacterial, and antitumor 
activities. However, cytotoxicity towards human tumor cells is not selective 
(Burmistrova et al. 2015; Rosa et al. 2015; Simões et al. 2010). To develop a tar-
geted anti-melanoma drug delivery system for Parvifloron D, Silva et al. have pre-
pared hybrid nanoparticles with biopolymers and functionalized with 
α-melanocyte-stimulating hormone. Parvifloron D-loaded nanoparticles showed to 
be a promising approach for long-term drug release, presenting the desired structure 
and a robust performance for targeted anticancer therapy (Silva et al. 2016a).

�Quercetin

Quercetin is a polyphenolic compound widely distributed in many plants, such as 
capers, lovage, dill, apple, and tea. Previous works stated that quercetin could sup-
press the growth of cancer cells through inducing apoptosis in several cancer cell 
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lines (Aras et  al. 2014). Thus, many quercetin-loaded nanoparticles have been 
developed to increase the bioavailability of quercetin (Chuan et al. 2015). Quercetin-
loaded liposomes have shown remarkable anticancer activity, and it was dose-
dependent effect (Aras et al. 2014). Another report showed that quercetin-loaded 
liposomes also enhanced the cytotoxic effects on C6 glioma cells (Chuan et  al. 
2015). Besides liposomes, PLGA, polylactic acid-hyperbranched polyglycerol 
(HPG-PLA), and PEG (660)-12-hydroxystearate (PEG 660-stearate) are other 
examples of encapsulant material in which loaded quercetin has its activity 
improved. Here, quercetin encapsulated in PLGA has shown to strongly induce 
apoptosis in breast cancer cells, and nanoparticles prepared from HPG-PLA have 
proved to be new efficient carriers for quercetin, as well as PEG 660-stearate that 
has also revealed a considerable improvement in quercetin solubilization of up to 
five times (Aras et al. 2014).

�Epigallocatechin Gallate

Epigallocatechin gallate is a potent phytochemical compound extracted from green 
tea. It is reported to be involved in regulation of apoptosis and carcinogenesis. 
However, its low bioavailability considerably reduces its biological effects in vivo. 
Thus, different approaches have been used to improve the bioavailability of epigal-
locatechin gallate such as chitosan-based nanocarriers (Tyagi et al. 2017). Those 
nanocarriers have become the ideal choice, due to the availability of amino groups 
for further functionalization, as well as a possible interaction with the mucus layer 
(Tyagi et al. 2017). In addition to chitosan, self-assembled 6-O-(3-hexadecyloxy-2-
hydroxypropyl)-hyaluronic acid (HDHA) nanoparticles have recently been tested in 
swiss albino mice grafted with Ehrlich’s ascites carcinoma cells. The results con-
firmed that epigallocatechin gallate-loaded HDHA nanoparticles were more effec-
tive in targeted drug delivery (Aras et al. 2014).

�Vincristine

Vincristine is derived from the periwinkle plant Vinca rosea L. (Apocynaceae) with 
activity against many of the lymphoid malignancies, including aggressive non-
Hodgkin’s lymphoma (Boehlke and Winter 2006; Davis and Farag 2013). It is a cell 
cycle-specific agent that binds to tubulin, causing microtubule depolymerization, 
metaphase arrest, and apoptotic cell death of cells in mitosis (Boehlke and Winter 
2006). The limitations of vincristine include low solubility in aqueous solutions at 
physiologic pH in vitro and rapid plasma clearance (Boehlke and Winter 2006; 
Davis and Farag 2013). These properties have led to the use of liposomes to deliver 
vincristine with an increased half-life while decreasing its toxicity in non-target tis-
sues (Davis and Farag 2013; Douer 2016).

In addition, pharmacokinetic data from patients enrolled on a Phase I trial of 
vincristine-loaded liposomes have shown a significant increase of vincristine plasma 
levels over several hours. Liposomes protected vincristine from rapid elimination 

4  Natural Products and Nanopharmaceuticals



138

observed in vincristine free form, and the systemic exposure of vincristine was sig-
nificantly lower (Boehlke and Winter 2006).

Marqibo® is a sphingomyelin- and cholesterol-based liposome, with particle size 
around 100 nm, loaded with vincristine, designed to overcome the dosing and phar-
macokinetic limitations of this compound (Silverman and Deitcher 2013). It was 
approved by the FDA in 2012 for acute lymphoid leukemia, either Philadelphia 
chromosome-negative, relapsed, or progressed (Weissig et al. 2014). The liposomal 
carrier was specifically designed to facilitate the loading and retention of vincris-
tine, to prolong its circulation time, to increase extravasations into tumors, and to 
slowly release the drug in the tumor interstitium (Silverman and Deitcher 2013). 
Those characteristics resulted in high levels of encapsulated drug in target tissues 
and a long exposure duration of tumor cells to therapeutic drug concentrations as 
the drug was slowly released from the liposomes, leading to an enhanced activity 
(Silverman and Deitcher 2013).

4.4  �Nanopharmaceuticals Based on Natural Products 
as Encapsulant Material

Polysaccharides, proteins, and glycosaminoglycans are the most used natural poly-
mers not only in the biomedical sector but also in the industrial and food fields 
(Frantz et al. 2010). The use of these natural polymers is generally due to its com-
pletely biodegradability, safety, and non-immunogenic properties. Thus, they are 
preferred above synthetic, also because of their wide acceptance, their abundance, 
and especially their cost-effectiveness relation (Anwunobi and Emeje 2011).

4.4.1  �Polysaccharides as Encapsulating Material

�Chitosan

Chitosan is a polysaccharide obtained through partial deacetylation from chitin that 
is found in crustacean’s shells, and it contains glucosamine and N-acetyl glucos-
amine subunits linked through β-(1–4) glycosidic bonds. Currently, these amino 
sugars are widely used for the synthesis of nanoparticles (Nair et al. 2009; Reis et al. 
2008b). The presence of amine functional group in chitosan molecule plays a fun-
damental role in its use in nanoparticle preparation once it gives a positive charge 
and enables the interaction of negative polyelectrolytes, promoting the formation of 
a spontaneous nanocomplex. The most common techniques used in the production 
of chitosan nanoparticles are the cross-linking, the desolvation with cationic salts, 
and the complexation of polyelectrolytes/ionic gelation (Chen et al. 2003). Chitosan 
nanoparticles can also be produced with other polymers, and one of many examples 
are the poly(lactic acid)/chitosan nanoparticles, which were synthesized by Dev and 
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his coworkers, through the emulsion method for loading anti-HIV drugs (Dev et al. 
2010). Also, chitosan–dextran sulfate nanoparticles, produced through the coacer-
vation method, which were designed to study the encapsulation of an anti-angiogenic 
peptide, arginine-rich hexapeptide, are one of the examples of the application of 
chitosan in nanotechnology (Chen et al. 2007).

Zhi et al. have formulated chitosan nanoparticles with magnetic properties to 
potentially use as drug delivery carrier with a new method to in situ prepare mag-
netic chitosan/Fe3O4 composite nanoparticles. The resultant nanoparticles have 
shown high stability (Zhi et al. 2006). Other example is chitosan-PEC or N-acyl or 
N-alkyl derivatives that demonstrated to have improved solubility in water (Hawary 
et al. 2011; Wu et al. 2014). Several types of chitosan modified systems have been 
studied so far, among them are N-trimethyl chitosan nanoparticles, which have 
shown good results in brain target of anti-Alzheimer’s drugs, as well as in the deliv-
ery of neuroprotective drugs (Sarvaiya and Agrawal 2015).

Some chitosan derivatives were synthesized by Ho et  al., aiming an efficient 
delivery of the basic fibroblast growth factor. Among all the tests made, only chito-
san–sulfate nanoparticles, modified with thiol groups, had shown a greater efficacy 
due to its high affinity to basic fibroblast growth factor (Ho et al. 2010). Similarly, 
monophosphate conjugate nanoparticles of chitosan-O-isopropyl-5-O-d4T were 
synthesized in combination with tripolyphosphate through the ionotropic complex-
ation method to in vitro deliver an anti-HIV drug. In this study, Yang et al. con-
cluded that the reticulated conjugated nanoparticles can provide a controlled release 
of the drug (Yang et al. 2010).

�Alginate

Alginate is a natural polymer with several biomedical applications and more 
recently a promising candidate in tissue engineering. Alginate is linearly disposed 
with β-D-mannuronic acid and α-L-guluronic acid residues, linked through bonds 
1–4′. It can be extracted from several Phaeophyceae species, including Laminaria 
japonica J.E., Laminaria digitata H., Laminaria hyperborea G. (Laminariaceae), 
Ascophyllum nodosum  L. (Fucaceae) and Macrocystis pyrifera 
L. (Laminariaceae) (Venkatesan et al. 2015).

The alginate has been widely used as a carrier for controlled and sustained deliv-
ery of drugs, small bioactive molecules, proteins, and cells (Raveendran et al. 2017). 
One example of alginate application in nanotechnology is the combination with 
calcium (Sinha and Kumria 2001). Reis et al. have studied nanoparticles composed 
of natural and biodegradable polymers to orally deliver insulin in the treatment of 
diabetes mellitus (Reis et al. 2008a, b, c). They have used a nanoparticulate system 
based on alginate–dextran sulfate core, complexed with a chitosan–polyethylene 
glycol-albumin shell. In this study, it was shown that those nanospheres preserved 
insulin’s activity and demonstrated an antidiabetic effect after oral administration. 
These results were explained through a protective effect against proteolytic enzymes 
due to the albumin coating, but also through the mucoadhesive properties of chito-
san–polyethylene glycol, and the possibility of chitosan reversibly altering tight 
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junctions, leading to an improved absorption of insulin. This formulation had 
revealed to be an interesting and promising approach in the treatment of diabetes 
with oral insulin (Reis et al. 2008c).

�Starch

Starch is the major responsible for the polysaccharide storage in plants. It consists 
of two distinct polymers, amylose and amylopectin, and both of them involve 
repeated and linked D-glucose monomers units. Due to its physicochemical and 
biological features, this polysaccharide is used in the production of synthetic poly-
mers such as polypropylene carbonate, in manufacturing of gels and granules, and 
in nanotechnology, among others (Cyprych et al. 2014).

Starch nanoparticles can be produced using several methods, such as precipita-
tion, solvent evaporation, and spray-drying (Raveendran et  al. 2017). Starch has 
also been widely used to produce metallic nanoparticles, reducing the stability of 
metallic oxides (Vigneshwaran et al. 2006). Vigneshwaran et al. have synthesized 
stable silver nanoparticles using soluble starch as a reducing and stabilizing agent. 
Iodometric titration confirmed the entrapment of silver nanoparticles inside the heli-
cal amylose chain. Also, the use of soluble starch offers innumerous benefits of 
eco-friendly and compatibility for pharmaceutical and biomedical environmental 
applications (Vigneshwaran et al. 2006).

A novel type of reduction-sensitive starch nanoparticles was prepared by J. Yang 
et al. (2014). The results have shown that the disulfide cross-linked starch nanopar-
ticles exhibited an accelerated drug release behavior in the presence of dithiothrei-
tol. In vitro methyl thiazolyl tetrazolium assays indicated that these nanoparticles 
had a good biocompatibility when co-cultured with human HeLa cancer cells. 
Another study showed that an in situ hydrogel preparation through the Schiff reac-
tion and using cross-linked nanoparticles of starch and polyvinylamine was able to 
encapsulate doxorubicin (Li et al. 2014).

�Pectin

At the structural level, pectin is one of the major compounds in plant cell walls. 
Although there are many plant tissues that contain pectin in their composition, cit-
rus and apple peel are the main sources of this polysaccharide (Urias-Orona et al. 
2010). The main structure of pectin is polygalacturonic acid which is composed of 
galacturonic acid residues linked linearly to each other through α(1 → 4) bonds, and 
carboxyl groups thereof can be methyl esterified, amidated, or acetylated acid units 
(Urias-Orona et al. 2010). The pectin structure also contains galactose and arabi-
nose. This polymer is not water soluble under suitable gelation conditions to other 
gel bases, and conditions of temperature, pectin concentration, pH, soluble solid 
content, and specific calcium ion concentration are required to a gel formation. 
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However, it is used as the gel base for oral gelatin prepared at the time of use 
(Kakino et al. 2017).

The application of pectin to nanotechnology is very common, mainly because of 
its biodegradability and nontoxicity. In the 1980s, pectin hydrogels were used in 
tablet formulations as binding agents. More recently, high-methoxyl pectins, with 
more than 50% of the carboxyl groups esterified, have been investigated due to their 
controlled release potential (Lofgren and Hermansson 2007).

Zhang et al. have prepared pectin nanoparticles for delivering the hydrophobic 
drug, honokiol, to HepG2 cells. Those particles demonstrated a specific active tar-
geting ability to asialoglycoprotein receptor-positive HepG2 cells and could be used 
as a potential drug carrier for liver-related tumor treatment (Zhang et  al. 2015). 
Moreover, zein and pectin composite gels can release a combination of several 
drugs for a given segment of the gastrointestinal tract at a specific period of time 
(Muruci de Paula and Lopez da Silva 2016). In addition to core material, pectin can 
act as coating material. Nguyen et al. investigated the surface coating of charged 
liposomes through three different types of pectin: low methoxy, high methoxy, and 
amidated pectin. The results have shown that pectin has been found to be mucoad-
hesive, improving therapeutic effect of drug-loaded liposomes (Muruci de Paula 
and Lopez da Silva 2016; Nguyen et al. 2011).

4.4.2  �Glycosaminoglycans

�Heparin

Despite the use of natural polymers mostly aiming to enhance drug bioavailability, 
there are some natural polymers that have by itself therapeutic activity, such as 
heparin. Heparin is a polymer categorized as a glycosaminoglycans, which is a class 
of compounds composed of long chains of branched polysaccharides with repeated 
disaccharide units. Heparin has a repetition of disaccharide units of D-glucuronic 
acid bound to (1,4)-D-glucuronic acid or L-iduronic acid and glucosamine residues 
(Nurunnabi et al. 2012). It is a highly sulfated polymer and, in addition to the sulfate 
group, heparin also contains a carboxylic group.

The most common clinical use of heparin is as an anticoagulant (Raveendran 
et al. 2013). Heparin sulfate has very promising biological properties, such as cell 
adhesion, cell growth, cell proliferation, inhibition of angiogenesis, and cancer 
growth, as well as viral infections, tumor invasion, and metastasis (Nurunnabi et al. 
2012). For all these reasons, heparin and its derivatives are strong candidates for 
nanotechnological applications, such as for the delivery of several compounds, 
namely, small molecules, peptides, proteins, and siRNA. Particularly, it has been 
used for the synthesis of polymeric nanoparticles, nanogels, as well as in the stabi-
lization or coating of nanocrystals and inorganic nanoparticles (Raveendran et al. 
2017). In alternative, using heparin as a surface coating on nanoparticles, it can 
suppress the uptake via immune system and thus remain longer in the bloodstream 
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(Passirani et al. 1998). However, the type of heparin used is something to be consid-
ered; the low molecular weight is preferable to the non-fractionated, because the 
non-fractionated may cause hemorrhage or thrombocytopenia (Debergh et al. 2010). 
Hou et al. have tested paclitaxel–heparin nanoparticles in the treatment of cancer, 
and the results have demonstrated that some functions or modifications of heparin 
with specific ligands may increase cellular uptake in the target tissue (L. Hou et al. 
2012; Park et al. 2010).

Dendrimers are also promising in nanotechnology due to their monodisperse 
size, water solubility, multivalence, and surface functionalization properties (She 
et  al. 2013). She et  al. have prepared and characterized a dendronized heparin–
doxorubicin conjugate as pH-sensitive drug delivery vehicle through the combina-
tion of the features of dendrimer and heparin. These nanoparticles resulted in a 
strong antitumor activity and high anti-angiogenesis effects. Nanoparticles induced 
apoptosis on the 4T1 breast tumor model, with no significant toxicity to healthy 
organs of both tumor-bearing and healthy mice. The dendronized heparin–doxoru-
bicin conjugate-based nanoparticles with high antitumor activity and low side 
effects may be a potential nanoscale drug delivery vehicle for breast cancer therapy 
(She et al. 2013).

�Albumin

Albumin is an abundant protein in human plasma. It is biocompatible, biodegrad-
able, nontoxic, and non-immunogenic. Its unique structure makes it easily conju-
gated to hydrophobic and hydrophilic compounds. This protein can also prolong 
circulation time, obtain a prolonged drug release, and accumulate at tumor sites, 
thereby maximizing therapeutic effects and minimizing toxicity (Kratz 2008).

Therefore, it is being increasingly studied in the field of nanotechnology for the 
treatment of oncological diseases, allowing the delivery of cytotoxic drugs only in 
the target tumor tissues, avoiding healthy tissues (Elzoghby et al. 2012; Xinzhe Yu 
et al. 2017; Xinzhe Yu and Jin 2016). Comparing conventional drug delivery sys-
tems, albumin-based nanoparticles offer several advantages, especially in relation to 
anticancer drugs (Li et  al. 2013). Also, albumin is retained in the target tissue, 
thereby increasing the effectiveness of the treatment (Schnitzer 1992). Due to the 
large number of drug-binding sites present in the albumin molecule, it can encapsu-
late significant amounts of drug into nanoparticle matrix. Due to the functional car-
boxylic and amino groups on albumin surface, it also provides multiple prospects 
for surface functionalization. The conjugation between a highly compatible and 
specific ligand at the surface of albumin nanoparticles is essential for active target-
ing, allowing a selective bound to a particular receptor type on the target cells 
(Rebelo et al. 2017). Additionally, patients with advanced solid tumors usually pres-
ent hypoalbuminemia. Thus, they may benefit if the delivery system of the antineo-
plastic drug is an albumin-based system (Schnitzerlt et al. 1992).

Regarding its application in nanotechnology, several studies have reported that 
doxorubicin-loaded albumin-based nanoparticles have demonstrated a strengthened 
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anticancer effect for mammary tumor cells (Abbasi et al. 2012). X. Yu et al. have 
studied gemcitabine-loaded albumin nanoparticles in pancreatic tumor cell lines 
(Yu et al. 2015). Data confirmed that the prepared nanoparticles could efficiently 
inhibit tumor growth in a pancreatic cancer cell line. However, further studies must 
be performed to optimize this therapy for clinical use.

In 2005, FDA approved Abraxane® for metastatic breast cancer, non-small cell 
lung cancer and recently for pancreatic ductal adenocarcinoma. Abraxane® consists 
of nanoparticles, with particle size around 130 nm, composed of albumin with con-
jugated paclitaxel. Dissociation into individual drug-bound albumin molecules may 
mediate endothelial transcytosis of paclitaxel via albumin receptor-mediated path-
way (Ragelle et  al. 2017; Weissig et  al. 2014). This paclitaxel-protein-bound 
nanoparticle formulation was developed to reduce the toxicities associated with the 
emulsifier Cremophor EL® in the commercialized paclitaxel formulation, increas-
ing the maximum tolerated dose in 50%. In addition, Abraxane® modifies the phar-
macokinetic profile of the drug, resulting in faster clearance, increased distribution 
volume, and higher intratumoral concentrations (Ragelle et al. 2017). The enhanced 
tumor accumulation can be explained through the combination of an increased dos-
age due to better tolerability of the delivery system, enhanced permeability and 
retention effect, and receptor-ligand targeting via active albumin transport path-
ways. It is difficult to interpret the exact impact of each of these factors on the thera-
peutic performance of Abraxane®, but it is more likely that the clinical benefits 
explain both through the increased amount of drug available and the reduced toxic-
ity of the delivery system (Ragelle et al. 2017).

�Gelatin

Gelatin is a protein derived from collagen as a result of partial hydrolysis, which is 
extracted from animal by-products, mainly from the connective tissues. During the 
collagen hydrolysis process, the inter- and intramolecular covalent bonds are bro-
ken, leaving axes to give a more simplified form called tropocollagen. A later dena-
turation through the breakdown of hydrogen and hydrophobic bonds leads to a 
heterogeneous protein material, gelatin (Jahanshahi and Babaei 2008). There are 
several methods of collagen hydrolysis, especially the acid and alkaline treatment 
which is applied essentially in the commercial production of gelatin. Nevertheless, 
there are also enzymatic and thermal degradation methods. There are two types of 
gelatin available: type A and type B. However, since it is a very heterogeneous mol-
ecule, it is difficult to prepare a highly homogeneous polymer. The presence of an 
amine and carboxylic group makes this protein very amphoteric and easily soluble 
in hot water. The viscosity of gelatin is affected by its type, concentration, and tem-
perature. Gelatin is widely used in the food and pharmaceutical industry, and it has 
been increasingly used in nanotechnology (Djagny et al. 2001). Several techniques 
have been used in the preparation of gelatin nanoparticles, namely, emulsification, 
solvent extraction, and nanoprecipitation (Elzoghby 2013).
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Han et  al. have used amphiphilic copolymer nanoparticles based on gelatin, 
poly(lactide), and 1,2- dipalmitoyl-sn-glycero-3-phosphoethanolamine. An antican-
cer drug model, doxorubicin hydrochloride salt, was incorporated into polymeric 
nanoparticles through nanoprecipitation method. These nanoparticles showed a 
comparable anticancer efficacy with the free drug in  vitro and in vivo (Han 
et al. 2013).

Gelatin-based nanospheres have been developed for controlled and sustained 
release of drugs, peptides, and proteins. Mimi et al. have presented a novel type of 
polyethyleneimine-based nanogels, as Fig. 4.7 shows, with a biodegradable gelatin 
core. The gelatin–polyethyleneimine nanogels were able to completely condense 
small interfering ribonucleic acid (siRNA) and effectively protected siRNA against 
enzymatic degradation. Additionally, the nanogels were four times less toxic than 
native polyethyleneimine. Also, the nanogels were able to effectively deliver siRNA 
into HeLa cells. The results demonstrate that gelatin–polyethyleneimine core-shell 
nanogels have promising potential to act as an effective siRNA.

4.5  �Challenges Involved in the Development 
of Nanopharmaceuticals

A growing number of nanopharmaceutical product submissions are being received 
by the drug approval authorities. There is an urgent need to establish specific regula-
tory guidelines to nanopharmaceuticals; however, an appropriate testing criteria 
needs to be established, and additional data need to be collected.

In the development of nanotherapeutics, the characterization of new nanomateri-
als in terms of safety and toxicity is considered a significant challenge. It is difficult 
to make a generalized statement about the safety of these systems. Regarding the 
natural products, this process is even more complicated since the therapeutic value 
of these products has been under evaluated (Alexander et  al. 2016; Ansari et  al. 
2012; Bonifácio et al. 2014; Borel and Sabliov 2014; Goyal et al. 2011; Kumar and 
Gupta 2015; Namdari et al. 2017; Watkins et al. 2015). Thus, a sense of urgency for 
reforming current regulations is created, since the application of nanotechnology to 
medicine and to natural products may exacerbate some concerns about risk minimi-
zation (Ventola 2012).

Fig. 4.7  Gelatin-
polyethyleneimine (PEI) 
core-shell nanogel. 
(Modified after (Mimi 
et al. 2012))
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Financial issues are still a barrier in the development of these systems. Despite 
the success, it is not easy to demonstrate their efficacy and safety in order to be 
granted regulatory approval. The majority of currently approved nanopharmaceuti-
cals are based on conventional drugs which have existing approval by the drug 
approval authorities and on a simple “reformulation.” Concerning the large amount 
of nanopharmaceutics using natural products that are being studied, some of them 
which are in the early stages of development will hopefully receive regulatory 
approval. Table 4.1 describes the most representative examples (not all) of nano-
pharmaceutics which have been already approved, and they are already in the market.

4.6  �Conclusion

Natural products have been widely used in medicine, and many top-selling in 
pharma are natural compound-based products or their derivatives. However, their 
success in clinical trials has been less impressive, partly due to the low water solu-
bility and thus their low bioavailability. Nanoencapsulation of these natural prod-
ucts into nanocarriers would be a major advance in the efforts to increase their 
therapeutic effects.

Many of the described nanocarrier types in this review were found to have differ-
ent properties, which make each one of them a unique delivery system with 

Table 4.1  Nano-based products with natural active compounds or based on natural materials 
already approved by drug authorities. This table highlight the most representative (not all) 
commercialized nano-based systems, the year of their approval, and their therapeutic indication

Product 
name

Year of 
approval

Active 
compound/
based on

Nano system 
type Indication

Genexol® 2011 Paclitaxel Polymeric 
micelles

Metastatic breast and pancreatic 
cancer

Rapamune® 2000 Sirolimus Nanocrystals Immunosuppressive agent for the 
prophylaxis of organ rejection in 
renal transplants

Opaxio® 2012 Paclitaxel Polymeric 
nanoparticles

Glioblastoma multiforme 
and malignant brain cancer

Doxil® 1995 Doxorubicin Liposomes Ovarian cancer, AIDS-related 
Kaposi’s sarcoma and multiple 
myeloma

Caelyx® 1996 Doxorubicin Liposomes Ovarian cancer, AIDS-related 
Kaposi’s sarcoma, multiple 
myeloma and breast neoplasms

Marqibo® 2012 Vincristine Liposomes Acute lymphoid leukemia
Abraxane® 2005 Paclitaxel/

albumin
Polymeric 
nanoparticles

Metastatic breast cancer, non-small 
cell lung cancer and pancreatic 
ductal adenocarcinoma

4  Natural Products and Nanopharmaceuticals



146

remarkable results. However, even though these systems may provide unique solu-
tions for clinical needs and significantly alter clinical practice, nanopharmaceutical 
development still faces many challenges. This is in part due to the difficulty in 
reproducing method of production of nanoparticles on a scale needed for commer-
cialization (industrial scale-up), specific guidelines to evaluate their potential toxic-
ity, lack of understanding regarding how nanocarriers will interact with cells, lack 
of technological platforms necessary to screen large quantities of nanoparticles, and 
insufficient knowledge about the metabolic and elimination mechanisms of the 
nanoparticles.

During the past three decades, conceptual and practical advancements have been 
made in the design and implementation of several nanopharmaceuticals. Progress 
has been noticeable and expectations related to therapeutic efficacy of natural prod-
ucts have really increased. Research is still increasingly focused on the development 
of new therapies to meet clinical expectations. Thus, many studies are required in 
the near future in order to improve the use of the complex relation between all  
the different types and characteristics either from natural products or 
nanopharmaceuticals.
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Abstract  The skin as a route of drug administration may offer numerous advan-
tages despite its barrier nature which hinders most drugs to penetrate into and per-
meate across it. The main obstacle for drug permeation through the skin is the 
stratum corneum, the outermost layer of the skin. During the past decades, there has 
been a great interest in vesicular carriers as a tool to improve dermal and transder-
mal delivery of drugs. Vesicular carriers include liposomes, ultradeformable lipo-
somes, ethosomes, and niosomes. These carrier systems are able to augment the 
skin drug permeation by enhancing drug solubilization in the formulation, control-
ling active drug release, improving drug partitioning into the skin, and fluidizing 
skin lipids. A wide variety of materials can be utilized to prepare vesicles, which are 
commonly composed of phospholipids (liposomes) or non-ionic surfactants (nio-
somes). Vesicle composition and method of preparation influence their physico-
chemical properties (size, charge, deformability) and therefore their efficacy as drug 
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delivery systems. This chapter gives an overview of different vesicular carrier sys-
tems, with particular emphasis on the development of these delivery systems in light 
of comprehensive understanding of physicochemical properties of drug and deliv-
ery carriers, process and formulation variables, mechanism of skin delivery, recent 
technological improvements, and specific limitations.

Keywords  Skin · Transdermal drug delivery · Penetration enhancement · 
Vesicular carriers · Liposomes · Transfersomes · Ethosomes · Niosomes

Abbreviations

CCPP	 Cationic cell-penetrating peptide
CPP	 Critical packing parameter
DDD	 Dermal drug delivery
HLB	 Hydrophilic–lipophilic balance
TDD	 Transdermal drug delivery

5.1  �Introduction

The largest organ in the human body is the skin, which offers large surface area for 
the application of drugs (El Maghraby and Williams 2009). The skin represents the 
organism’s barrier from the environment, which protects against pathogen invasion, 
physical and chemical attacks in addition to the uncontrolled excretion of solutes 
and water (Sinico and Fadda 2009). Anatomically, it consists of a number of distinc-
tive layers, namely, the stratum corneum, the viable epidermis, the dermis, and the 
subcutaneous “fat” layer. The majority of therapeutic agents fail to penetrate through 
or into the skin due to their impermeability, which is considered one of the major 
sites for noninvasive delivery of drugs (Foldvari 2000).

Skin delivery offers a promising substitute to oral drug delivery (Jain et al. 2017). 
Skin delivery may be generally distinguished into dermal (topical) and transdermal 
drug delivery (TDD). Dermal drug delivery (DDD) is the administration of thera-
peutic agent directly at the target organ (skin surface) where the action is required, 
leading to greater localized concentration of drug with minimized drug exposure to 
systemic circulation (Paudel et al. 2010). Conversely, TDD transfers the therapeutic 
agent through skin surface to the systemic circulation for attaining therapeutic lev-
els. Both dermal and transdermal applications have effectively delivered various 
therapeutic agents (Basha et al. 2015; Kassem et al. 2017). The growing occurrence 
of chronic skin diseases, need for site-specific and patient-compliant delivery, 
extremely competitive oral drug delivery market, and increasing attention of 
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pharmaceutical companies in management plans of life cycle are the major driving 
force for the growing interest in skin drug delivery (Paudel et  al. 2010; Jain 
et al. 2015).

TDD is a competent means for efficient delivery of various therapeutic agents. 
But the skin barrier represents a main difficulty towards fabrication of TDD systems 
where this natural transport barrier should be initially resolved (Singh et al. 2015). 
Highly organized crystalline lipid lamellae play a very significant role in the barrier 
characteristics of the stratum corneum (Prasanthi and Lakshmi 2012b). In order to 
weaken or break down the highly organized structure of intercellular lipids, various 
techniques have been adopted to improve drug permeation through the unbroken 
skin or to augment the delivery power for the penetration of therapeutic agents 
through this skin barrier (Singh et al. 2015). The initial main technique to circum-
vent the skin barrier is the utilization of chemical enhancers, e.g., glycols, azones, 
terpenes, ethanol, etc. (Jain et al. 2015; Pyatski et al. 2016). They aid drug transfer 
by partly fluidizing skin lipids and increasing drug partitioning. A second technique 
is to utilize physical enhancement methods, e.g., electroporation, sonophoresis 
(ultrasound), microneedles, magnetophoresis, thermal ablation, iontophoresis, and 
microdermabrasion (Barry 2002; Patel et al. 2015, 2016a, b; Kim et al. 2016). This 
technique circumvents the stratum corneum and transports the therapeutic agent 
directly to the desired skin layer. Both of the abovementioned techniques have 
revealed promoted delivery for various therapeutic agents (Kim et al. 2016; Mujica 
Ascencio et al. 2016). Nevertheless, physical techniques are frequently painful and 
costly, and lack patient compliance, whereas chemical permeation enhancers may 
result in skin irritation and lasting skin destruction (Jain et al. 2015). Lastly, the 
third technique is the utilization of drug delivery systems such as microparticles, 
nanoparticles, and vesicular delivery systems. These systems may improve skin per-
meation by enhancing drug solubilization in the formulation, drug partitioning into 
the skin, and fluidizing the skin lipids (Jain et al. 2015). Among the numerous inves-
tigated drug delivery systems, vesicular systems have revealed an increasing poten-
tial for both DDD and TDD, particularly in the previous few decades (Elsayed et al. 
2007b). The initial commercial product employing vesicular delivery system was 
introduced in the market in 1988 for the antifungal agent econazole (Naeff 1996). 
After that, numerous research works were published demonstrating the potential of 
these delivery systems (Kitagawa and Kasamaki 2006; Elsayed et  al. 2007b; 
Gershkovich et al. 2008; Hua 2015; Jain et al. 2015; Singla and Sachdeva 2015).

Vesicular carriers include liposomes, ultradeformable liposomes, and ethosomes, 
in addition to other specialized new vesicular carriers. The majority of the new stud-
ies are mainly concentrated on elastic liposomes such as ultradeformable liposomes 
and ethosomes as well as polymeric liposomes because of the inadequate achieve-
ment of conventional liposomes in skin delivery (Jain et al. 2017). Vesicular systems 
may be customized to target a variety of skin diseases/conditions relying on the 
chosen delivery system, manufacturing processes, formulation composition, and 
process variables. Nevertheless, development of vesicular systems needs under-
standing of formulation and process variables, knowledge of physicochemical 
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properties, mechanism of skin delivery, recent technological advancement, and spe-
cific limitations.

The present chapter provides a focused overview on vesicular delivery systems 
as a promising approach to circumvent the natural skin barrier for delivering thera-
peutic agents with emphasis on advancements, recent research, and challenges.

5.2  �Skin Anatomy and Physiology

The skin represents the largest organ of the human body (Jain et al. 2017). The total 
surface area of the skin of an average male adult is about 2 m2 (Chandrashekar and 
Shobha Rani 2008; Sala et al. 2018), which corresponds to 15% of the total body 
weight (Alexander et al. 2012). Anatomically, the skin is composed of three main 
distinguishable layers, namely, epidermis, dermis, and subcutaneous “fat” tissues 
(Erdő et al. 2016).

5.2.1  �Epidermis

The epidermis is divided into two regions: the nonviable epidermis (the stratum 
corneum) and the viable epidermis. It consists of 70% water and keratinizing epi-
thelial cells responsible for formation of the stratum corneum (Walters 2002). The 
epidermis lacks any blood vessels, and therefore molecules infusing through the 
epidermis must cross the dermal–epidermal layer to enter the systemic circulation 
of the body (Jain et al. 2017). The stratum corneum is the skin’s outermost layer and 
is involved in skin protective and homeostatic functions. The stratum corneum is the 
end product of epidermal proliferation with about 10–20 μm thickness and is con-
sidered metabolically inactive (Walters 2002). It is comprised of 10–25 layers of 
elongated, dead, fully keratinized corneocytes, which are embedded in a matrix of 
the lipid bilayers. The viable epidermis is localized underneath the stratum cor-
neum  with thickness of around 50–100 μm (Feingold 2007). It differs from the 
stratum corneum because it physiologically resembles the other alive cellular tis-
sues and comprises numerous metabolizing enzymes. The viable epidermis is con-
cerned in the synthesis of stratum corneum and metabolism of foreign substances. 
Because of the presence of Langerhan cells, it is also concerned in the immune 
response of the skin (Klareskog et al. 1977). The viable epidermis is a superposition 
of a number of layers which are from outside to inside: the stratum granulosum, the 
stratum spinosum, and the stratum basale. The viable epidermis is fundamentally 
comprised of keratinocytes that represent approximately 95% of the epidermal cells 
and is in a steady cell self-renewal (Sala et al. 2018). Considering the complex com-
position of the stratum corneum, it is obvious to imagine that the cutaneous perme-
ation of drugs across this layer is the limiting factor (Sala et al. 2018).
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5.2.2  �Dermis

The dermis represents the deeper and the thicker layer (1–4 mm) of the skin (Sala 
et al. 2018). The dermis protects the epidermis being compressible, supportive, and 
elastic connective tissue (Jain et al. 2017). It consists of fibrous proteins (elastin and 
collagen) and an interfibrillar gel of glycosaminoglycans, salts, and water. It also 
comprises lymphatic and blood vessels, hair follicles, nerve endings, sweat glands, 
and sebaceous glands. Widespread vascular network in the dermis is potentially 
responsible for skin repair, nutrition, thermal regulation, and immune responses 
(Walters 2002). The sweat ducts and hair follicles directly connect the dermis with 
the upper skin surface, crossing stratum corneum and hereafter offering appenda-
geal route for skin penetration (Otberg et al. 2004).

5.2.3  �Subcutaneous Tissue

The subcutaneous “fat” tissue is found underneath the dermis and consists of fat-
rich cells, making the cytoplasm lipophilic in nature (Walters 2002). The collagen 
present between the fat cells affords the link of the epidermis and the dermis with 
the underlying structures of the skin. The chief function of subcutaneous tissue is to 
operate as a shock absorber and heat insulator (Jain et al. 2017).

5.2.4  �Human Skin Functions

The human skin exhibits three major functions; each plays a role to the human 
body’s homeostasis: temperature control, barrier function, and repair function (Sala 
et al. 2018). The skin is the body’s first line of defense; it prevents the loss of body 
fluids and counteracts the passage of xenobiotics such as toxic compounds and 
microorganisms (Randhawa et  al. 2015; Levy et  al. 2016; Nawaz et  al. 2016). 
Moreover, due to its great elasticity, the skin represents a protective barrier against 
the stress of mechanical forces. The skin is a crucial organ in the regulation of body 
temperature by means of two mechanisms: the blood flow and sweat (Hayden et al. 
2005). The protective utility of the skin is because of both physical characteristics 
(desquamation, pH) and metabolic enzymes found in the interstitial spaces of the 
viable epidermis and in regions of dermal hair follicles (Guy et  al. 1987; Oesch 
et  al. 2007). This generates a harsh environment towards external agents. The 
defense means of the skin relies on the presence of immunocompetent cells 
(Dendritic cells, Langerhans cells), natural characteristics of the skin (peeling resi-
dent microflora, low pH), hair follicles and sebaceous glands (production of fatty 
acid and lysozyme), and melanocytes (protection against UV) (Sala et al. 2018).
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5.2.5  �Pathways for Skin Penetration

The process of percutaneous absorption may happen through two different routes: 
transepidermal (intracellular and intercellular) and transappendageal (sweat ducts, 
sebaceous glands, and hair follicles) pathways (Fig. 5.1) (Erdő et al. 2016; Jain et al. 
2017). The stratum corneum represents the major physical barrier of the skin layer 
defending against foreign substances to penetrate the skin. The stratum corneum is 
considered as the rate-limiting step for the delivery of drugs through the skin. In 
fact, corneocyte differentiation, migration, and desquamation counteract drug pas-
sage across the skin. Noteworthy, a full renewal of the skin barrier takes place every 
14 days in healthy individuals (Sala et al. 2018).

�Transepidermal Pathway

Transepidermal pathway is comprised of intracellular and intercellular pathways 
(Jain et al. 2017). Intercellular pathway includes diffusion of solute across the inter-
cellular lipid phases through winding pathway (through cornified cells of the stra-
tum corneum, the viable epidermis, and the dermis) (Scheuplein and Blank 1971). 
Tracer studies have provided evidences that intercellular lipids, and not the corneo-
cyte proteins, are the major epidermal permeability barrier (Elias and Friend 1975). 
Intercellular pathway was firstly revoked as a main skin permeation mechanism 
because of its small volume tenancy (Scheuplein and Blank 1971). However, after-
wards the intercellular volume part was found to be much larger than originally 
anticipated (Berenson and Burch 1951; Nemanic and Elias 1980). These studies 
suggest that intercellular pathway provided a main resistance for skin permeation.

Sebaceous 
gland

Intercellular routeIntracellular route

Intercellular lipid 
matrix

Sweat glandHair follicle

Sweat duct

Transappendageal route

Epidermis

Dermis

Subcutaneous 
layer

Corneocytes

Fig. 5.1  The pathways for percutaneous absorption
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However, it has been shown that polar molecules could barely permeate across 
the intercellular route, while nonpolar molecules possessing molecular weight 
<500  Da and Log P 1–4 could easily permeate (Cronin et  al. 1999; Kang et  al. 
2007). It is notable to state that intercellular space width is likely to be 19 nm by van 
der Merwe et al. (2006) and 75 nm by Baroli et al. (2007) which hinders the diffu-
sion of large molecules. In brief, drug molecular weight, solubility, and the ability 
to form hydrogen bonds are the physicochemical characteristics that influence the 
intercellular permeation across the skin (Potts and Guy 1995).

Intracellular (transcellular) pathway includes permeation across the corneocytes 
and the intercellular lipids, in the same order (Jain et al. 2017). Molecules diffusing 
by this route use the imperfections in the corneocytes that form gaps which con-
sisted of water. This route is consequently believed to favor hydrophilic molecules 
for delivery. It is remarkable to note that the intracellular pathway needs partitioning 
not only into and permeation across corneocytes but into and through the intercel-
lular lipids as well (El Maghraby et al. 2008).

�Transappendageal Pathway

In transappendageal pathway, the penetrating compound crosses the stratum cor-
neum through a “shunt” pathway afforded by sweat glands or hair follicles (Jain 
et al. 2017). Particularly, hair follicles play a main provider for this pathway because 
of higher follicular allocation. Although the accessible surface area for the follicular 
route is supposed to be restricted to about 0.1% of whole skin surface area, it has 
lately been proposed that follicular opening diameter, number, and follicular vol-
ume are significant considerations to identify the extent of delivery (Scheuplein 
1965; Otberg et al. 2004). In addition, hair follicles expand deep into the dermis 
with potential increase in the real surface area accessible for permeation. Numerous 
research works have shown the significance of this pathway in skin penetration 
(Lademann et al. 2001; Essa et al. 2002; Otberg et al. 2008).

5.3  �Dermal and Transdermal Drug Delivery

The skin is considered as a site for therapeutic agent application to treat various 
dermatological conditions/diseases and has been utilized for this purpose since 
Babylon and ancient Egypt (Perumal et al. 2013). For thousands of years, humans 
have applied compounds topically for pharmacological effects, and currently, vari-
ous topical products have been developed to treat local dermatological conditions 
(Prausnitz and Langer 2008). Nevertheless, the dermal route was not recognized as 
an effective way for systemic drug delivery until the last years of the twentieth cen-
tury. In 1924, Rein research works started to help the foundations of modern TDD 
to recognize the characteristics of the skin barrier (Perumal et al. 2013). The skin 
has been extensively employed for systemic drug delivery together with the 
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appearance of transdermal patches since the 1970s (Roy et al. 1996). The modern 
era of TDD started in 1979 with the marketing of transdermal scopolamine for 
motion sickness. Since then the industry has matured and grown, with various trans-
dermal medications currently accessible for numerous indications (Giannos 2015).

DDD and TDD, normally illustrated as skin drug delivery, are a promising 
approach for the management of various dermatological conditions/diseases (Sala 
et al. 2018). DDD is the topical application of therapeutic agents to the skin in the 
management of dermatological diseases/conditions. This approach is advantageous 
for localizing high drug concentrations at the site of action, decreasing the systemic 
levels of drug and consequently decreasing the systemic adverse effects as well 
(Honeywell-Nguyen and Bouwstra 2005). Otherwise, TDD utilizes the skin as 
another route for the delivery of systemically acting therapeutic agents (Honeywell-
Nguyen and Bouwstra 2005).

Nowadays, 74% of therapeutic agents which are administered by the oral route 
fail to show the desired efficacy. Aiming to enhance the efficacy, TDD has been 
introduced (Marwah et al. 2016). Topical application of drugs exhibits high poten-
tial in treatment of diseases due to the large surface area of the skin (Prausnitz et al. 
2004). TDD system is an attractive option to avoid and reduce the side effects or 
limitations associated with parenteral and oral routes of drug administration 
(Alexander et al. 2012).

Initially, it avoids the gastrointestinal motility, pH, and food intake that might 
influence gastrointestinal absorption (Honeywell-Nguyen and Bouwstra 2005). 
TDD may allow therapeutic agents to avoid the first-pass metabolism, minimize 
adverse effects, and acquire a more effective and predictable pharmacological effect 
by circumventing fluctuations of the blood concentration and intra- and inter-patient 
variations (Sala et  al. 2018). “Peak and valley” effect of oral injectable therapy 
might be avoided by TDD systems which delivers a steady drug flow into the circu-
lation for a longer period of time (Singh et al. 2015). Furthermore, TDD enables 
controlled release of therapeutic agents across skin layers, due to its simple applica-
tion and practical handling (Thomas and Finnin 2004). TDD is advantageous as 
well compared to hypodermic injections, which are painful, produce hazardous 
medical waste, and pose the danger of disease transmission by needle reuse, particu-
larly in developing countries (Michaels et al. 1975). TDD is ideal for special people, 
e.g., children, elderly, and convalescent patients (Giannos 2015). In addition to 
these characteristics, the effortlessness of drug application and termination of treat-
ment aid to augment patient compliance. Accordingly, transdermal route has a lot to 
praise (Perumal et al. 2013).

The aspects limiting the success of TDD approach comprise skin irritation at site 
of application and other side effects allied with definite therapeutic agents and for-
mulations, restriction on the drug dose which might be delivered transdermally, a 
lag time related to the drug delivery through the skin which results in a delay in 
onset of action due to absorption rate variation depending on application site, skin 
condition (absorption might be delayed, particularly for water-soluble compounds), 
and diverse adhesive efficacy in different persons (Tanner and Marks 2008).
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Maybe the biggest challenge facing the TDD is that only a small number of 
therapeutic agents are applicable by this route of administration (Prausnitz and 
Langer 2008). When designing TDD systems, the physicochemical properties of the 
therapeutic agents are of great significance and require to be considered in formula-
tion of transdermal systems (Watkinson et al. 2016). Skin anatomy is the main bar-
rier governing the limitations of TDD (Prausnitz et al. 2004). This is mostly ascribed 
to the substantial efficiency of the skin barrier (mainly its uppermost layer, the stra-
tum corneum) in hindering drug permeation (Jepps et al. 2013). Guessing the per-
meability of a specified drug molecule across the skin is generally relatively hard, 
because of the extremely complex nature of the mechanisms and structures that 
comprise the delivery pathway (Jepps et al. 2013).

5.3.1  �Strategies to Overcome the Skin Barrier

In order to circumvent the previously mentioned challenges for TDD, researchers 
started to investigate improvement approaches to increase the utilization of TDD for 
skin-impermeable drug molecules (Giannos 2015). Therefore, several methods 
have been employed to circumvent the skin barrier and may be classified into pen-
etration enhancement by modifying stratum corneum and penetration enhancement 
via optimizing of drug and vehicle characteristics.

�Penetration Enhancement by Modifying Stratum Corneum

Hydration

Using water is the safest and the most extensively employed technique to enhance 
skin permeation of both hydrophilic (Behl et  al. 1980) and lipophilic penetrants 
(McKenzie and Stoughton 1962). Excess water inside the stratum corneum can 
modify penetrant solubility and thus alter partitioning from the vehicle into the 
membrane. Additionally, augmented hydration of skin can promote swelling and 
opening the stratum corneum structure which leads to an enhancement of perme-
ation, even though this has yet to be confirmed experimentally (Benson 2005).

Chemical Penetration Enhancers

Penetration enhancers are defined as agents capable of modifying the barrier func-
tion acquired by the skin (Finnin and Morgan 1999). Preferably, these agents should 
be nontoxic, pharmacologically inert, nonallergenic, nonirritating, compatible with 
the therapeutic agent and excipients, tasteless, odorless, colorless, cheap and pos-
sess good solvent characteristics. The penetration enhancer shouldn’t direct to the 
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loss of electrolytes, body fluids, or other endogenous compounds, and after its 
removal, skin should regain its barrier functions right away (Sinha and Kaur 2000).

There are a diversity of mechanisms for penetration enhancement by the penetra-
tion enhancers (Kalbitz et al. 1996). One option is the interaction of the penetration 
enhancers with the polar head groups of the lipophilic structure of the stratum cor-
neum. Thus, the lipid–lipid head group interactions and the packing order of the 
lipids are disturbed. Consequently, the diffusion of hydrophilic therapeutic agents is 
facilitated (Walker and Smith 1996). Besides their influence on stratum corneum 
lipids, chemicals, e.g., dimethyl sulfoxide, surfactants, and urea, interact with kera-
tin in the corneocytes as well (Walters et al. 1988). It has been proposed that entrance 
of a surfactant into the intracellular matrix of the stratum corneum, after interacting 
and binding with the keratin filaments, can result in disrupting the order inside the 
corneocyte (Benson 2005).

The enhancement of drug solubility as well as its partition coefficient (skin/vehi-
cle) is an additional mechanism demonstrating the action of penetration enhancers 
(Hadgraft 2001). Numerous solvents (e.g., propylene glycol, ethanol, N-methyl pyr-
rolidone, and Transcutol) increase penetrant solubility and partitioning into the stra-
tum corneum (Benson 2005).

Physical Penetration Enhancement

This approach comprises the application of different energy forms (such as sound, 
heat, light, magnetic, electrical, etc.), or weakening, reducing, or breaching the stra-
tum corneum barrier by mechanical methods (Grice et al. 2012). Several techniques 
have been employed for physical enhancement of skin penetration (Table 5.1). For 
example, microneedles are synthesized by reactive ion-etching methods so as to 
produce microscopic arrays of needles (Giannos 2015). Following the insertion of 
these needles into the skin, they pierce the stratum corneum and generate micro-
pores for drug transport through the stratum corneum (Giannos 2014). Another 
promising approach is iontophoresis which involves the assisted movement of ions 
through a membrane governed by a small externally applied electrical potential dif-
ference (0.5 mA/cm2 or less) (Green 1996). The mechanisms of transdermal ionto-
phoresis comprise electroporation (increasing the porosity of skin due to electric 

Table 5.1  Physical penetration enhancement techniques

Technique Description

1 Microneedles Reactive ion etching
2 Iontophoresis Electrical potential assisted movement of ions
3 Phonophoresis or sonophoresis Ultrasound assisted skin penetration enhancement
4 Microdermabrasion Penetration enhancement via selective removal of the 

stratum corneum
5 Thermal ablation Penetration enhancement via selective removal of the 

stratum corneum following focused heat application
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field), electrophoresis (electric field–charge interaction), and electroosmosis (elec-
tric field-induced solvent flow) (Yan et al. 2005). On the other hand, phonophoresis 
(or sonophoresis) enhances the skin penetration of drugs via ultrasound energy 
(Mitragotri 2005). The ultrasound improves drug diffusion by temporary cavitation 
(Oberli et al. 2014). Selective removal of the stratum corneum, known as micro-
dermabrasion, is also introduced as a way to enhance skin penetration of drugs. The 
deepness of cut relies on patient’s condition. This method is beneficial to large 
molecular weight therapeutic agents such as peptides, insulin, and vaccines (Marwah 
et al. 2016). Thermal ablation is an analogous method in which micro-channels are 
formed by selectively removing the stratum corneum following focused heat appli-
cation (Arora et al. 2008). This may be attained, for instance, with a microarray of 
heating elements (Badkar et al. 2007) or radiofrequency sources (Sintov et al. 2003) 
to produce temporary elevations in temperature above 100 °C.

�Penetration Enhancement Through Optimization of Drug 
and Vehicle Properties

Optimization of Drug Properties

Drug permeation across the skin is mainly considered to be by diffusion: the “ran-
dom walk” of therapeutic agents across the different layers of the skin. This walk 
can be mediated by active transport (whereby protein transporters facilitate drug 
transport in certain environments) and convective transport (whereby molecules are 
driven by local currents in the lymphatic or vascular systems or interstitial spaces). 
Uptake into the vascular or lymphatic systems impacts upon drug distribution, as 
well as facilitating drug clearance. Aside from clearance, drug can be efficiently 
removed through metabolism in the skin as well (Jepps et al. 2013).

At this time, drugs marketed as TDD products exhibit three common properties 
comprising low–moderate lipophilicity (log P 1–3), molecular weight (<500 Da), 
and good potency (typically, <10 mg/day) (Perumal et al. 2013). If a therapeutic 
agent acquires these ideal properties (such as nitroglycerin and nicotine), TDD is 
possible. Nevertheless, manipulation of the therapeutic agent or vehicle to improve 
permeation becomes essential if it does not exhibit ideal physicochemical character-
istics (Benson 2005). Transdermal route is difficult to utilize for the delivery of 
hydrophilic drugs (Prausnitz and Langer 2008) and has posed particular challenges 
for macromolecules and peptides comprising new genetic engineering using DNA 
or small-interfering RNA (Foldvari et al. 2006). For instance, methods utilized to 
manipulate the therapeutic agent for improved permeation encompass techniques as 
prodrug, supersaturation, ion pairing, and eutectic mixtures.

Transdermal delivery of therapeutic agents that possess unfavorable solubility or 
partition coefficient might be enhanced by prodrug approach (Sloan and Wasdo 
2003). A pro-moiety is principally incorporated to improve the permeation of thera-
peutic agent through the stratum corneum. Afterwards, parent drug is released by 
hydrolysis in the viable epidermis (Barry 2001).
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Supersaturation is another reliable approach to improve drug penetration across 
the skin layers. This takes place by raising the concentration of the dissolved drug 
that doesn’t harm the stratum corneum integrity at all (Alexander et al. 2012). At 
this point exists a correlation between drug concentration and drug permeation 
potential that eventually leads to an augmented drug flux with improved thermody-
namic drug activity (Latsch et al. 2003). Elevation of drug flux of five- to tenfold has 
been revealed from supersaturated solutions of several therapeutic agents (Kemken 
et al. 1992; Pellett et al. 1994, 1997; Iervolino et al. 2001; Moser et al. 2001a, b; 
Dias et al. 2003). These systems are intrinsically unstable and need the addition of 
anti-nucleating agents to increase stability (Benson 2005).

Ion pairing can be employed in case of charged therapeutic agents which don’t 
easily permeate across or partition into the human skin (Benson 2005). The ion pair 
subsequently detach in the aqueous viable epidermis releasing the parent charged 
therapeutic agents that can permeate inside the epidermal and dermal tissues 
(Megwa et al. 2000a, b; Valenta et al. 2000).

Melting point of a therapeutic agent is inversely proportional to its solubility and 
lipophilicity. Consequently, reducing the melting point acquires enhanced transder-
mal delivery (Alexander et al. 2012). For this approach, eutectic mixtures are fea-
sible (a mixture of two components which, at a certain ratio, its crystalline phase is 
inhibited) so that melting point of two components is less than the single component 
(Fiala et al. 2010).

Optimization of Vehicle Properties

Numerous methods aimed to interrupt intercellular lipids in a challenge to improve 
drug permeation through the healthy skin. One of the most suitable techniques is the 
employment of vesicular carriers as TDD systems (Marwah et al. 2016). Employing 
vesicular carrier systems in DDD and TDD could offer many advantages. First of 
all, they act as drug carriers into or through the skin (Garg and Goyal 2014). They 
also function as penetration enhancers for the permeation by changing the intercel-
lular lipids in the skin layer (Garg et al. 2012b). Moreover, vesicular carriers serve 
as a depot for sustained release (Garg et al. 2012a). Additionally, they serve as a 
rate-limiting membrane barrier for the modulation of systemic absorption, thus 
affording a controlled TDD (Garg et al. 2011).

5.4  �Vesicular Carriers

Vesicles can be defined as water-filled colloidal particles with walls consisting of 
amphiphilic molecules arranged in a bilayered structure (Honeywell-Nguyen and 
Bouwstra 2005). In the presence of excess water, these amphiphilic molecules have 
the ability to form one (unilamellar) or more (multilamellar) concentric bilayers 
(Gregoriadis and Florence 1993). The internal aqueous compartment can entrap 
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hydrophilic drugs, while amphiphilic, lipophilic, and charged hydrophilic drugs can 
be associated with the vesicle bilayer by hydrophobic and/or electrostatic interac-
tions (Martin and Lloyd 1992).

Various types of lipids employed in the fabrication of lipid-based vesicular carri-
ers possess structural similarities with those comprising epidermis and especially 
the stratum corneum (Sala et  al. 2018). They exhibit good biocompatibility, and 
assist in enhancing skin permeation through different mechanisms as proposed by 
Zhai and Zhai. (Zhai and Zhai 2014) (Fig. 5.1). Subsequent to sticking to the skin 
surface, lipid-based vesicular carriers are able to disturb the stratum corneum via 
different mechanisms, e.g., looseness of the structure or lipid exchanges, stratum 
corneum fluidization, and polarity alteration after an increased hydration (Zhai and 
Zhai 2014).

A broad range of lipids and surfactants can be utilized for vesicle preparation. 
Most frequently, the vesicles are made of phospholipids or non-ionic surfactants 
(Bouwstra and Hofland 1994; Crommelin and Schreier 1994). Accordingly, vesicu-
lar carriers can be divided into two major classes: liposomes, which are made up of 
phospholipids, discovered by Bangham in 1960 (Bangham 1995), and niosomes, 
non-ionic surfactant vesicles (discovered by L’Oreal in the 1970s) (Vanlerberghe 
and Handjani-Vila 1975).

5.4.1  �Vesicular Carriers for Skin Delivery

Vesicular carriers have usually been used for dermal and transdermal delivery of 
drugs. They are typically composed of biocompatible lipids besides an aqueous 
phase which may be water, a buffer solution, or a cosolvent. Vesicles, due to their 
lipophilic nature, can theoretically partition into the skin layers and transport the 
entrapped drug across stratum corneum (Jain et al. 2017).

A variety of vesicular carriers with unique structural and functional characteris-
tics have been introduced and modified in the last four decades in order to increase 
skin permeation potential. The first-generation lipid-based vesicular carrier (lipo-
somes) was first reported in the field of skin delivery by Mezei and Gulasekharam 
in 1980 (Mezei and Gulasekharam 1980, 1982). However, the success of liposomal 
delivery was restricted by its vesicle size, ranging from 200 to 800 nm, and rigidity, 
which can hinder skin permeation (Verma et al. 2003; Jain et al. 2015). In 1992, 
Cevc and Blume introduced the second-generation vesicular carrier named ultrade-
formable liposomes or transfersomes®, characterized by higher elasticity (5–8 times 
more elastic than conventional liposomes) and smaller vesicle size (<300 nm) (Cevc 
and Blume 1992; Song et al. 2012). Because vesicles are mainly in nanosize range, 
they can further boost skin delivery of their drug load. In general, it is suggested that 
vesicles larger than 600 nm are unable to penetrate the deeper skin layers and stay 
in or on the stratum corneum. On the other hand, vesicles smaller than 300 nm can 
penetrate more deeply, while vesicles ≤70 nm can reach both epidermal and dermal 
layers (Verma et  al. 2003). A third-generation vesicular carrier called ethosomes 
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(ethanol-based elastic lipid vesicles) was developed in 2000 by Touitou et  al. 
(2000a). The unique physicochemical properties of ethosomes responsible for 
improved skin permeation are smaller vesicle size (<300 nm) and higher elasticity 
(10–30 times higher than conventional liposomes) besides the permeation enhance-
ment effect of ethanol (Song et al. 2012; Jain et al. 2015).

More recently, various modifications of these vesicular carriers are also explored 
to provide specific structural or functional attribute for skin delivery. Each of these 
vesicles has its specific features, mechanism of drug delivery, advantages, and chal-
lenges. The following section discusses the vesicular carriers in detail.

�Conventional Liposomes

Conventional liposomes are typically composed of synthetic or natural phospholip-
ids which are the major component of most biological membranes (Sala et al. 2018). 
Phospholipids have the ability of spontaneous self-assembly in aqueous media and 
to form one or several bilayers (Fig. 5.2). They are widely used as drug carriers for 
hydrophilic and lipophilic molecules (Yoshida et al. 2010). Both natural and syn-
thetic phospholipids are used for liposome preparation, but naturally occurring 
phosphatidylcholines (e.g., from soy or egg) are most commonly used due to toxi-
cological considerations and relatively low cost (Kulkarni et al. 1995).

Cholesterol is often included to improve bilayer stability in the presence of bio-
logical fluids. Hence, cholesterol reduces permeability and prevents leakage of the 
entrapped drug (Sala et al. 2018) by increasing the gel (stable) to liquid crystalline 
(metastable) state transition temperature of the lipid bilayer (Bennett et al. 2009; 
Jain et  al. 2017). Neutral pH buffers and antioxidants such as sodium ascorbate 
could also be incorporated to limit oxidation of the phospholipids (Yatvin and 
Lelkes 1982). Liposomes could be classified based on their size and lamellarity into 
multilamellar vesicles having a size >0.5 μm, small unilamellar vesicles with a size 
range of 20–100 nm, and large unilamellar vesicles with a size >100 nm (Sherry 
et al. 2013).

Methods of Liposome Preparation

The most frequently used conventional techniques for liposome preparation include 
thin-film hydration (Jain et  al. 2015), reverse-phase evaporation (Parnami et  al. 
2014), and solvent injection techniques (Jaafar-Maalej et al. 2010). Thin-film hydra-
tion is most frequently used in studies involving skin delivery. In this method, lipids 
are dissolved in the organic solvent which is then removed by means of evaporation 
(using a rotary evaporator under reduced pressure) leaving behind a dry, thin lipid 
film on the wall of the flask. Finally, the dry lipid film is hydrated by aqueous phase 
(while vortexing the content) to obtain liposomes. Processing parameters such as 
hydration time, hydration temperature, and vortexing speed may affect vesicle size 
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and entrapment efficiency of the produced vesicles and change its skin permeation 
(Patel 2013).

The reverse-phase evaporation technique is comprised of two steps. Firstly, a 
water-in-oil emulsion of phospholipids and buffer in excess organic phase is pre-
pared. This is followed by removal of the organic phase under reduced pressure. The 
two phases (phospholipids and water) are usually emulsified by mechanical meth-
ods or by sonication. Removal of the organic solvent under vacuum causes the 
phospholipid-coated water droplets to get together leading to the formation of a 
gel-like matrix (Vemuri and Rhodes 1995). Further removal of organic solvent will 
cause the gel-like matrix to form into a paste of smooth consistency. This paste is a 
suspension of large unilamellar vesicles (Szoka and Papahadjopoulos 1980).

The solvent injection methods involve the dissolution of the lipid into an organic 
phase (ethanol or ether), followed by the injection of the lipid solution into aqueous 
media, forming liposomes (Laouini et  al. 2012). In ether injection method, a 
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Fig. 5.2  Schematic illustration of conventional liposomes, transfersomes, and ethosomes and 
their main permeation mechanisms through the stratum corneum
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solution of lipids (usually dissolved in diethyl ether or in ether–methanol mixture) 
is slowly injected to an aqueous solution of the drug at 55–65 °C under reduced 
pressure. The resulting removal of ether under vacuum leads to the vesicle forma-
tion (Akbarzadeh et al. 2013). The ethanol injection method was first described by 
Batzri and Korn (1973). In this method, the lipids dissolved in ethanol are rapidly 
injected into an excess amount of aqueous media resulting in a spontaneous forma-
tion of liposomal vesicles (Vemuri and Rhodes 1995).

Most of conventional technologies have major drawbacks. Besides problems of 
scale-up, thin-film hydration technique utilizes organic solvent and renders larger 
vesicle size liposomes (Jain et al. 2015). The main drawback of the reverse-phase 
evaporation technique is the contact of the materials to be encapsulated to organic 
solvents and to periods of sonication (Akbarzadeh et al. 2013). The ether injection 
technique has the main disadvantages of producing a heterogeneous vesicle popula-
tion and the exposure of the drugs to be encapsulated to organic solvents at high 
temperature (Deamer and Bangham 1976; Schieren et al. 1978). The ethanol injec-
tion method results in a very dilute liposomal dispersion with heterogeneous popu-
lation (Akbarzadeh et  al. 2013). Also, it is difficult to remove all of the ethanol 
which may affect various biologically active macromolecules that tend to inactivate 
in the presence of even low amounts of ethanol (Batzri and Korn 1973). Recently, 
more sophisticated techniques have been employed in liposome preparation for skin 
delivery application. Examples include supercritical fluid (Xia et al. 2012; Xu et al. 
2015), dual asymmetric centrifugation (Hirsch et al. 2009), and microfluidic chan-
nels (Hood et al. 2014; Zhou et al. 2014).

Supercritical fluid technology provides a green, nontoxic, cheap, and scalable 
substitute to conventional liposome preparation methods (Lesoin et al. 2011a). In 
this technique, phospholipids and cholesterol are dissolved in supercritical CO2 and 
then allowed to precipitate in the form of ultrafine lipid particles. The aqueous 
medium is then added to consequently form liposomal vesicles. Several researchers 
have reported promising results using supercritical fluid technology (Otake et al. 
2006; Lesoin et al. 2011b).

Dual asymmetric centrifugation is another novel technology for liposome prepa-
ration (Massing et al. 2008). In this unique advanced centrifugation technique, con-
ventional centrifugation rotational force moves the sample outward, while additional 
rotational force is provided to move the sample towards the center of the centrifuge. 
This exceptional combination of two contrarotational movements causes shearing 
of the sample, thus resulting in liposome formation (Massing et al. 2008).

In microfluidic channels, a recent widely employed technique, liposomes are 
formed when a stream of the lipid alcoholic solution is passed through two aqueous 
streams in a microfluidic channel (Jahn et al. 2007; Sugiura et al. 2008; van Swaay 
and deMello 2013; Hood et al. 2014). The laminar flow in the channels makes pos-
sible to control the size and size distribution of the prepared liposomes. It was dem-
onstrated that liposome vesicle size could be modified from 50 to 150  nm by 
adjusting alcohol-to-aqueous volumetric flow rate (Jahn et al. 2007).
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Effect of Formulation Variables on Skin Penetration

Various studies have focused on the effect of formulation variables (e.g., lipid com-
position, type of lipid, drug–lipid ratio, concentration and type of surface charge 
imparting compound, etc.) on the physicochemical properties and skin permeation 
behavior of liposomes (Bhatia et al. 2004; Puglia et al. 2010; Ruozi et al. 2010). Jain 
et al. investigated the effect of lipid composition on entrapment efficiency, vesicle 
size, elasticity, and skin permeation of diclofenac-loaded liposomes (Jain et  al. 
2015). It was found that the change in phosphatidylcholine/cholesterol ratio from 
1:1 to 9:1 (w/w) led to a decrease in vesicle size, whereas entrapment efficiency, 
vesicle elasticity, and drug permeation increased. Cholesterol is embedded in the 
lipid bilayered structure leading to a reduction in free volume available for drug 
entrapment, a reduction in motion of the lipid tails which decreases elasticity, and 
consequently, drug permeation through skin is decreased.

The type of lipid selected for liposome preparation also needs to be carefully 
evaluated. For instance, better oxidative stability is obtained in case of soy-based 
phosphatidylcholine compared to egg-based phosphatidylcholine (which is more 
saturated) (Li et al. 2015a). In another study, skin permeation behavior of natural 
lipid (soy phosphatidylcholine and egg phosphatidylcholine) and synthetic lipid 
(hydrogenated soy phosphatidylcholine) was compared in curcumin-loaded lipo-
somes (Chen et al. 2012). It was found that although vesicle size and drug entrap-
ment were similar, natural lipid-based liposomal formulations exhibited 1.5 times 
higher skin permeation and 1.7 times higher skin retention compared to synthetic 
lipid-based formulations. This observation was attributed to the low phase transition 
temperature of the natural lipids which causes an increase in liposomal fluidity and 
consequently enhances skin permeation (Jain et al. 2017).

Another important factor that should be considered is the vesicle surface charge. 
Compared to neutral and negatively charged liposomes, positively charged lipo-
somes have shown enhanced skin permeation apparently due to interaction with 
negatively charged skin membrane (Katahira et al. 1999; Kitagawa and Kasamaki 
2006; Hasanovic et al. 2010). More recently, drug-loaded liposomes are conjugated 
with cationic cell-penetrating peptide (CCPP) to improve skin membrane penetra-
tion of the liposomes (Kwon et al. 2015). In a study, the extract of Polygonum avicu-
lare L., having antioxidative and cellular membrane protective activity, was loaded 
into CCPP-conjugated liposomes for transdermal delivery. In vivo studies showed 
more efficacy of CCPP-conjugated liposomes in depigmentation and anti-wrinkle 
potential than conventional liposomes. These results were attributed to the ability of 
cationic peptide-conjugated liposomes to effectively interact with the intercellular 
lipid lamellae of the stratum corneum (Kwon et  al. 2015). Similar results were 
observed in case of CCPP-conjugated polymeric liposomes intended for topical 
delivery of lidocaine (Wang et al. 2013).
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Mechanisms of Skin Penetration

Conventional liposomes may interact with the stratum corneum at the surface and 
with deeper layers under different assumptions described in the literature (Sinico 
et  al. 2005) (Fig. 5.2). The assumption that vesicles could penetrate the skin and 
reach the dermis while maintaining their integrity was suggested by Foldvari et al. 
(1990). Yet, observed differences in size and structure of liposomes, before and after 
skin penetration, made this hypothesized passage of liposomes in their intact form 
doubtful (du Plessis et al. 1994; Korting et al. 1995; Zellmer et al. 1995). Presence of 
liposomes in the dermis was rather attributed to a passage via the follicular pathway 
(Betz et al. 2001). Another theory is that the vesicular structure would break at the 
stratum corneum surface which will enable penetration of the phospholipids within 
the stratum corneum, thus promoting skin permeation of the active drug. Phospholipids 
are well recognized as promoters for skin passage; this action takes place through 
disturbing the lipid matrix in the stratum corneum (Kato et  al. 1987). Several 
researchers have verified this phospholipid property (Zellmer et al. 1995; Yokomizo 
and Sagitani 1996a, b); however, it was found to be strongly dependent on phospho-
lipid type with a direct impact on the stiffness or the elasticity of the liposomes 
(Kirjavainen et al. 1996). A third hypothesis is that the vesicles get adsorbed on the 
surface of the skin followed by fusion with lipid matrix in the stratum corneum, thus 
allowing the active molecule to diffuse through skin layers. This “adsorption–fusion” 
interaction with the stratum corneum leads to the formation of intercellular lipid 
lamellae and increasing mobility of lipophilic drugs in the stratum corneum 
(Bouwstra et  al. 1992). This was also suggested by Keith and Snipes (Keith and 
Snipes 1982) who described the melting of the vesicles with the stratum corneum 
lipids as a kind of extension of the lipid matrix which allows lipophilic active mole-
cules “to flow” more easily. This was also confirmed in studies on tretinoin-loaded 
liposomes by Sinico et al. (Sinico et al. 2005). The authors have reported the forma-
tion of a liposomal lipid film on the skin surface. This proximity allowed exchange 
of vesicular material with the stratum corneum lipid matrix leading to a change in the 
phase transition of the new matrix. Furthermore, the aqueous content of the liposo-
mal vesicles led to hydration of the stratum corneum as well as swelling of the fibrous 
proteins and the intercellular lipids. All of these changes caused destabilization of the 
stratum corneum structure, leading to increased permeability (Sala et al. 2018).

The last two theories, which are now more widely acceptable, put a limitation on 
the potential of liposomes as a suitable carrier for drug delivery through deep skin 
layers. Based on recent studies, it is generally acknowledged that conventional lipo-
somes are not efficient for TDD (Sala et al. 2018). They do not exhibit an efficient 
permeation into deep skin layers and are mostly confined to upper layers of the 
epidermis in the intercellular pathways where vesicle rupture takes place due to lack 
of deformability. Such conduct was expressed by a relatively low percutaneous flux 
along with high skin retention of the loaded drug compared to flexible vesicles and 
other lipid-based carriers (Raza et al. 2013). Nevertheless, nanoliposomes with ves-
icle sizes ranging from 31 to 41 nm showed significant penetration enhancement. 
Imaging techniques revealed that smaller liposomes pass quickly through the 
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stratum corneum without vesicle rupture (Hood et  al. 2014). This indicates that 
vesicle size may have the most critical role in liposomal drug delivery through the 
skin. In addition to vesicle size, several factors could change the skin permeation, 
such as zeta potential (Gillet et al. 2011a), lipid composition (Gillet et al. 2011a, b), 
entrapment efficiency of the drug as well as the type of skin disorders (Raza et al. 
2013), occlusion condition, and integrity of skin barrier (Trauer et al. 2014).

In summary, studies on skin passage demonstrate the poor benefits of conven-
tional liposomes in the treatment of skin diseases. Nevertheless, it is essential to 
take into account that these studies seldom considered the pathophysiological 
aspects when conducting in vitro/in vivo experiments. It has been suggested that 
liposomes have the ability to penetrate the skin if the skin barrier is impaired like in 
skin cancers or psoriasis (Korting et al. 1995; Fresta and Puglisi 1996). Yet, studies 
on the application of conventional liposomes on damaged human skin are still lim-
ited. Korting et al. conducted a randomized, double-blind trial comparing the effi-
cacy of a betamethasone liposomal formulation compared to simple gel in patients 
with atopic dermatitis or psoriasis vulgaris (Korting et  al. 1990). Their results 
revealed that betamethasone-loaded liposomes showed higher efficacy in atopic 
dermatitis than in psoriasis. The authors attributed this behavior to diseases patho-
physiological differences. Hyperkeratosis is a characteristic of psoriasis vulgaris 
that would slow the passage of liposomes, whereas in atopic dermatitis, the stratum 
corneum becomes impaired and would enhance their passage (Melnik et al. 1988). 
Based on this study, conventional liposomes could have a potential in the topical 
treatment of atopic dermatitis.

Generally, liposomes are now considered to have a low potential as carriers for 
TDD as they are unable, at normal conditions, to penetrate deep skin layers. Most 
recent work on liposomes for TDD is essentially for means of comparison with 
newer vesicular carriers. However, liposomes may still have benefit in treatment of 
local skin conditions where deeper penetration could be expected in case of dam-
aged or diseased skin.

�Transfersomes

Thorough research took place over the last 20 years because conventional liposomes 
lacked the ability to deliver drugs across the skin. This resulted in the introduction 
and development of new classes of lipid vesicles (Sinico and Fadda 2009). Thus, a 
new category of ultraflexible, i.e., highly deformable, liposomes was developed and 
launched (Elsayed et al. 2007b). In the early 1990s, transfersomes, the first genera-
tion of elastic vesicles, were first introduced by Cevc and Blume (Cevc and Blume 
1992). The name is derived from the Latin word “transferre” meaning “to carry 
across” and the Greek word “soma” means “body.” Conclusively it means “carrying 
body” (Singh et al. 2015).

The structure and method of preparation of these new elastic liposomes are simi-
lar to conventional liposomes; however, functionally they are adequately deformed 
to go through pores much smaller than their own size (i.e., skin pores). Additionally, 
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unlike conventional liposomes, ultradeformable liposomes are made up of phospho-
lipids and aqueous medium, in addition to edge activators (Jain et al. 2017).

An edge activator is typically a single-chain surfactant, characterized by a high 
radius of curvature which causes destabilization in lipid bilayers and increases ves-
icle deformability (Cevc 1996; Cevc et al. 1996; Honeywell-Nguyen and Bouwstra 
2005). These surfactant chains are not distributed randomly within the bilayers; they 
tend to gather at the high pressure points when vesicles are subjected to anisotropic 
stresses. The vesicle structure (Fig. 5.2) is made less stiff because of the discontinui-
ties generated by the incorporation of the edge activator in the phospholipid bilayer 
(Kumar et al. 2012). The edge activator has affinities to special regions of phospho-
lipids based on its physicochemical properties, thus leading to the formation of a 
destabilized bilayer (Sala et al. 2017).

Formulation Considerations

In transfersome-based drug delivery systems, phospholipid is an essential formula-
tion ingredient (Kumar et al. 2012). The most commonly edge activators employed 
in transfersomes are Spans (Span 60, Span 65, and Span 80), Tweens (Tween 20, 
Tween 60, and Tween 80), and cholates (sodium cholate and sodium deoxycholate), 
in addition to dipotassium glycyrrhizinate (Cevc et  al. 1998; El Maghraby et  al. 
1999, 2000a, b; Trotta et al. 2004; Garg et al. 2006; Oh et al. 2006). In a study to 
evaluate the effect of edge activator type on physicochemical properties of ultrade-
formable liposomes, sodium cholate and sodium deoxycholate were found to pro-
duce vesicle with more positive zeta potential and smaller vesicle size compared to 
Tween 80 (Lee et  al. 2005). Ultradeformable liposomes prepared with 95%:5% 
(w/w) (phosphatidylcholine/edge activator) ratio showed entrapment efficiency in 
the following order: Span 85 > Span 80 > Na cholate > Na deoxycholate > Tween 
80. The authors attributed these results to the hydrophilic–lipophilic balance (HLB) 
values of the respective edge activators (El Zaafarany et al. 2010).

The edge activator effect is generally produced with an edge activator/phospho-
lipid ratio not exceeding 25% (Jain et al. 2003; El Zaafarany et al. 2010). The con-
centration of edge activator also plays a critical role in vesicle formation and 
properties. Ultradeformable liposomes prepared at different molar fractions of 
sodium cholate revealed that increasing sodium cholate content above the molar 
fraction of 0.2 may cause formation of aggregates of sodium cholate and phospho-
lipid (e.g., mixed vesicles, mixed micelles, opened vesicles, and rodlike mixed 
micelles). This can therefore lead to a decrease in the drug’s entrapment efficiency 
(Paolino et al. 2012). In another study concerning diclofenac-loaded ultradeform-
able liposomes, an increase in concentration of Span 80 from 2% to 5% resulted in 
an increase in the entrapment efficiency from 50.73% to 55.19%, respectively 
(Honeywell-Nguyen and Bouwstra 2005). However, with further increase in edge 
activator concentration up to 25%, a decrease in entrapment efficiency was observed. 
This decrease in entrapment efficiency at higher concentration of edge activators 
was attributed to the formation of micelle aggregates (El Zaafarany et al. 2010).
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Mechanism of Skin Penetration

Depending on the structure of transfersomes and the hydrophilicity of the entrapped 
drug, recent studies show that the transport of transfersomes across the skin involves 
the combination of two key factors (Pirvu et al. 2010). These factors are the pres-
ence of an osmotic gradient across the skin and high elasticity of the transfersomal 
bilayers (Rai et al. 2017).

Cevc et al. suggested that the vesicles enter the stratum corneum intact, carrying 
drug molecules into the skin (Cevc and Blume 1992). The driving force for vesicles 
to enter the skin was thought to be xerophobia (i.e., the tendency to avoid dry sur-
roundings) (Cevc and Blume 1992). Owing to their deformable nature, these vesi-
cles are thought to be able to squeeze through the stratum corneum and into the 
deeper skin layers intact, under the influence of transcutaneous hydration gradient 
which is naturally present (Jain et al. 2017). Upon application of the elastic vesicles 
on the skin surface that is partially dehydrated, they move towards the deeper skin 
layers (e.g., viable epidermis and dermis) that are relatively hydrated. The deform-
able character of the vesicles acts to alleviate the stress induced during movement to 
deeper skin layers (Jain et al. 2017).

This ability of transfersomes to pass through skin is highly dependent on their 
membrane flexibility, which can be achieved using an appropriate ratio of edge 
activators. In this process, components of the transfersomes responsible for its 
deformability accumulate at the site of stress, whereas the less flexible components 
undergo dilution. This leads to a significant reduction of the active rate of membrane 
deformation and allows the highly flexible particles to pass through the pores 
(Kumar et al. 2012). Accordingly, transfersomes can deform and easily pass through 
the intercellular spaces of the stratum corneum. In fact, it is observed that the pen-
etration of transfersomes was diminished in case of disturbance of osmotic gradient 
due to skin wetting (Morrow et al. 2007).

Merits of Transfersomes

Transfersomes have been employed as carriers for various therapeutic agents and 
have been confirmed to greatly enhance drug permeation through the skin (Cevc 
and Blume 1992). Examples of recent research involving transfersomes for skin 
delivery are presented in Table 5.2. On the other hand, difficulty of loading lipo-
philic drugs into the vesicles without negatively affecting their deformability and 
elastic properties is considered a major drawback of transfersomes (Chen et  al. 
2013). Transfersomes can be easily applied to the skin. They require no sophisti-
cated procedure, and they can be applied by a non-occluded method, where hydra-
tion or osmotic force within the skin causes them to pass through the multilayered 
lipid matrix of the stratum corneum (Cevc 1996).

On the other hand, special care should be given to the amount of edge activator 
incorporated in transfersomes to avoid aggregation or micelle formation. Another 
shortcoming of transfersomes is that they are not suitable for use in occlusive 

5  Vesicular Nanocarriers: A Potential Platform for Dermal and Transdermal Drug…



176

conditions. This is because non-occlusive conditions are crucial for the creation of 
a transepidermal osmotic gradient, which is the main force driving the transport of 
these elastic vesicles through the skin.

�Ethosomes

Ethosomes are a new generation of elastic lipid carriers that have exhibited enhanced 
delivery for both hydrophilic and lipophilic drugs through the skin (Jain et al. 2017). 
Although the concept of ethosomes is rather sophisticated, these carriers are suit-
able for skin delivery due to their improved efficacy and safety along with the sim-
plicity of their preparation (Godin and Touitou 2003). Ethosomes are lipid vesicles 
composed of phospholipids and a large amount of ethanol (Sala et al. 2017). They 
have been described for the first time by Touitou et al. (Touitou et al. 2000a). Their 
name was selected to stress the presence of high concentrations of ethanol (usually 
ranging from 20% to 45%) (Sinico and Fadda 2009). It was generally considered 
that high amounts of ethanol have a detrimental effect on structure of liposomes, 
owing to the interdigitation effect of alcohol on the lipid bilayers (Fig. 5.2). However, 
the existence of vesicles as well as the ethosome structure was proven by several 
techniques such as phosphorus nuclear magnetic resonance and transmission and 
scanning electron microscopy (Müller et al. 2004). Foldvari et al. described liposo-
mal formulations that contained up to 10% ethanol and up to 15% propylene glycol 
(Foldvari et al. 1993). However, Touitou et al. were the first to report the use of high 
concentration of ethanol (Touitou et al. 2000a).

Ethosomes are considered a modification of conventional liposomes that consist 
of phospholipids, water, and a high concentration of ethanol (Abdulbaqi et al. 2016). 
The superiority of ethosomes over conventional liposomes for TDD was reported as 

Table 5.2  Recent studies considering transfersomes as skin delivery system

Drug Indication References

1 Apigenin Treatment of skin cancer Jangdey et al. (2017)
2 Asenapine maleate Antipsychotic Shreya et al. (2016)
3 Clindamycin phosphate Antibacterial Abdellatif and Tawfeek 

(2016)
4 Epigallocatechin-3-gallate /

hyaluronic acid
Antioxidant/antiaging Avadhani et al. (2017)

5 Eprosartan mesylate Antihypertensive Ahad et al. (2017)
6 Paclitaxel Anticancer Pathak et al. (2016)
7 Paeonol Antiallergic/

antiinflammatory
Chen et al. (2017)

8 Pentoxifylline Peripheral artery disease Al Shuwaili et al. (2016)
9 Piroxicam Antiinflammatory Garg et al. (2017)
10 Sildenafil Erectile dysfunction Ahmed (2015)
11 Sinomenine hydrochloride Antirheumatic Wang et al. (2017)
12 Timolol maleate Antihypertensive Morsi et al. (2016)
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they were smaller and having higher entrapment efficiency and negative zeta poten-
tial. Moreover, compared to conventional liposomes, ethosomes showed better skin 
permeation and stability profiles (Touitou et  al. 2000a; Sarwa et  al. 2014; Jain 
et al. 2015).

Formulation Considerations

Ethosomal systems are given their unique identity due to the vital role played by 
alcohol (Pandey et al. 2015). Ethanol is an efficient penetration enhancer (Finnin 
and Morgan 1999). Alcohol provides the ethosomal vesicles with distinct attributes 
concerning their entrapment efficiency, vesicle size, zeta potential, stability, and 
enhanced skin permeability (Abdulbaqi et al. 2016). Ethosomal systems having an 
amount of alcohol ranging from 10% to 50% have been reported (Touitou 1996; 
Puri and Jain 2012). It is fairly important to optimize the amount of ethanol in the 
system as it affects the entrapment efficiency, vesicle size, stability, and safety of the 
produced vesicles (Pandey et  al. 2015). Ethanol concentration in the range of 
30–40% was reported by several investigators as the optimal choice for the success-
ful production of stable ethosomal vesicles (Limsuwan and Amnuaikit 2012; Chiu 
et al. 2013; Zhao et al. 2013).

Ethanol has a considerable effect on the capacity of ethosomal system to encap-
sulate drugs; generally an increase in entrapment efficiency is observed with 
increasing ethanol concentration (Jain et al. 2004). This effect is applicable in case 
of drugs with varying lipophilicities, where the increase in drug loading is attributed 
to increased solubility of lipophilic and amphiphilic drugs in the presence of etha-
nol. This behavior was found to be linear in case of ethanol amounts ranging from 
20% to 40% (Prasanthi and Lakshmi 2012a). However, entrapment efficiency 
is decreased with further increase in ethanol concentration, probably due to exces-
sive vesicular fluidization causing leakage of the drug (Dubey et al. 2010; Jain et al. 
2015). Though ethanol is the alcohol usually incorporated in ethosomes, isopropyl 
alcohol has been shown to cause better entrapment efficiency than ethanol (Touitou 
et al. 2000a).

Ethanol also has a governing role on the size of the ethosomal vesicles through 
giving the vesicular surface a net negative charge, leading to a decrease in vesicle 
size (Pandey et al. 2015). A shift in the vesicular charge from positive to negative is 
reported with high concentrations of ethanol (Touitou et al. 2000a; Rao et al. 2008). 
Considering empty ethosomes, negative charge was found to increase by the 
increase in ethanol concentration as reported by Dayan and Touitou (Dayan and 
Touitou 2000). Similar findings were also reported by other researchers (Touitou 
et al. 2000a; Lopez-Pinto et al. 2005; Zhaowu et al. 2009; Liu et al. 2011; Li et al. 
2012; Patel et al. 2012; Rakesh and Anoop 2012; Ahad et al. 2013). However, an 
increase in the amount of ethanol beyond the optimum level might lead to a minor 
increment in vesicle size and cause the bilayer to be leaky, and by further increasing 
in ethanol concentration, it would solubilize the vesicles (Abdulbaqi et al. 2016).
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Mechanism of Skin Penetration

The suggested means of permeation enhancement by ethosomes are based on the 
dual effect of ethanol on lipid bilayers in the stratum corneum and in the vesicles 
(Touitou et al. 2000a, b; Godin et al. 2005; Touitou and Godin 2005; Ainbinder et al. 
2010). This effect has been suggested as follows (Touitou et al. 2000a): ethanol, 
being a well-known penetration enhancer, disturbs the organization of stratum cor-
neum lipids by both enhancing the lipid fluidity and decreasing the density of the 
intercellular lipid domains. The ethanol-containing vesicles would alter the intercel-
lular lipid lamella, hence creating their own pathways across the disturbed stratum 
corneum to deeper skin layers. Ethanol acts to increase the vesicle fluidity and flex-
ibility by increasing the mobility of polar lipid heads of lipid molecules. Such 
increased elasticity facilitates vesicle crossing in the disturbed intercellular narrow 
pathways.

In conclusion, presence of ethanol in ethosomal vesicle composition leads to 
fluidization of the vesicular bilayers along with changes in the arrangement of stra-
tum corneum lipids. Ethosomes are then able to penetrate the altered stratum cor-
neum barrier, releasing the drug in deeper skin layers (Ainbinder et al. 2016). This 
theory is supported by the fact that a great enhancement of permeation was observed 
from ethosomes when compared to conventional liposomes or any of the individual 
system components (Sala et al. 2017).

Merits of Ethosomes

When prepared employing normal preparation methods, ethosomes tend to have 
vesicle sizes smaller than other vesicular systems (when size reduction steps are 
excluded). The acquired negative charge to the system causes the size of vesicles to 
decrease, eventually enhancing bioavailability of drugs (Lopez-Pinto et al. 2005; 
Elsayed et al. 2007a, b). Ethosomes have the ability to efficiently entrap molecules 
with a wide range of physicochemical characteristics, including lipophilic, hydro-
philic, and high molecular weight entities (Touitou et al. 2000a; Godin and Touitou 
2003, 2004). They have the ability to enhance skin delivery of drugs both under 
occlusive (Dayan and Touitou 2000; Ainbinder and Touitou 2005; Lopez-Pinto 
et al. 2005; Paolino et al. 2005) and non-occlusive conditions (Dayan and Touitou 
2000; Elsayed et  al. 2007a), in contrast to deformable liposomes. Examples of 
recent research concerning ethosomes for skin delivery are found in Table 5.3. 

Ethosomal system bears no outsized scale drug development risk since the toxi-
cological profiling of ethosome components is finely acknowledged in scientific 
literature (Touitou et al. 2001).
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�Niosomes

Niosomes are vesicles comprised essentially of non-ionic surfactants subjected to 
hydration. Cholesterol or its derivatives could also be incorporated. Niosome could 
be described as non-ionic surfactant-based liposome (Singh et al. 2015). The unique 
structure of niosomes makes them able of entrapping hydrophilic as well as lipo-
philic materials. Hydrophilic therapeutic agents could be entrapped in aqueous core 
or adsorbed on the bilayer surfaces, whereas lipophilic ones could be partitioned 
inside the bilayer’s lipophilic domain (Moghassemi and Hadjizadeh 2014). After 
the formation of a thin film, hydration takes place and the liquid crystalline bilayers 
transform to fluid and swell, and hence niosomes are formed. Mechanical agitation 
attempts the detachment of the hydrated sheets and the self-assembly to form vesi-
cles as well as avoids the interaction of hydrocarbon core of the bilayer with water 
at the edges (Pardakhty and Moazeni 2013). The first production line of niosomes 
was initiated from cosmetic industry; afterwards, the approach of niosomes in the 
field of drug delivery was investigated (Pardakhty and Moazeni 2013).

Since then, niosomes have been one of the most prominent vesicular systems and 
have recently been the center of great interest for their potential as drug delivery 
systems for different routes of administration. Examples of recent research involv-
ing niosomes for skin delivery are presented in Table 5.4. Niosomes avoid many of 
the shortcomings of other vesicular carriers which makes them a promising drug 

Table 5.3  Recent studies considering ethosomes as skin delivery system

Drug Indication References

1 5-Fluorouracil Treatment of skin cancer Khan and Wong (2016)
2 Crocin Antioxidant Esposito et al. (2016)
3 Cryptotanshinone Treatment of acne Yu et al. (2016)
4 Finestride Treatment of androgenic 

alopecia
Wilson et al. (2017)

5 Glimepiride Antidiabetic Ahmed et al. (2016)
6 Griseofulvin Antifungal Marto et al. (2016)
7 Lidocaine Local anesthetic Babaie et al. (2015)
8 Lornoxicam Analgesic/Antiinflammatory Li et al. (2017)
9 Methoxsalen Treatment of vitiligo Garg et al. (2016)
10 Mitoxantrone Anti-melanoma Yu et al. (2015)
11 Phenylethyl resorcinol Lightening agent in skin care 

products
Limsuwan et al. (2017)

12 Sertaconazole Antifungal Abdellatif et al. (2017)
13 Terbinafine 

hydrochloride
Antifungal Iizhar et al. (2016)

14 Tropisetron 
hydrochloride

Antiemetic Abdel Messih et al. 
(2017)

15 Vancomycin 
hydrochloride

Antibacterial Mohammed et al. (2016)

16 Voriconazole Antifungal Faisal et al. (2016)
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delivery system with numerous applications. They also are capable of entrapping a 
variety of drugs, genes, proteins, and vaccines (Moghassemi and Hadjizadeh 2014).

According to niosome size, they may be divided into three categories depending 
on their method of preparation (Moghassemi and Hadjizadeh 2014; Singh et  al. 
2015), small unilamellar vesicles (10–100  nm), large unilamellar vesicles 
(100–3000 nm), and multilamellar vesicles where more than one bilayer is present 
(Kaur et  al. 2004). The most common methods of preparation include thin-film 
hydration technique, ether injection method, bubble method, and reverse-phase 
evaporation technique (Mujoriya and Bodla 2011).

Effect of Formulation Variables

Niosome properties are potentially affected by several formulation variables. 
Generally, niosomes are formulated by suitable available raw components. Non-
ionic surfactants are the basic components of niosomes (Moghassemi and 
Hadjizadeh 2014).

Non-ionic Surfactants

Surfactants are considered a distinctive class of materials characterized by being 
amphiphilic in nature. A surfactant molecule has two distinctive regions: a hydro-
philic, water-soluble part and a lipophilic, organic-soluble part. The hydrophilic 
head group involves functionalities such as sulfonates, phosphonates, carboxylates, 
and ammonium derivatives. On the other hand, the lipophilic region usually consists 
of chains made up of fluorocarbons, alkanes, aromatic, or other nonpolar groups. 

Table 5.4  Recent studies considering niosomes as skin delivery system

Drug Indication References

1 5-aminolevulinic acid Treatment of skin 
malignancies

Bragagni et al. (2015)

2 8-methoxypsoralen Treatment of psoriasis Kassem et al. (2017)
3 Acyclovir Antiviral Jacob et al. (2017)
4 Caffeine Anticellulite Teaima et al. (2018)
5 Diclofenac Antiinflammatory Ioele et al. (2015)
6 Lacidipine Antihypertensive Qumbar et al. (2017)
7 Lornoxicam Analgesic/antiinflammatory El-Ridy et al. (2017)
8 Luteolin Antiarthritic Abidin et al. (2016)
9 Methotrexate Treatment of psoriasis Zidan et al. (2017)
10 Methotrexate Treatment of psoriasis Abdelbary and AbouGhaly (2015)
11 Pregabalin Antiepileptic Arafa and Ayoub (2017)
12 Salidroside Antidepressant Zhang et al. (2015)
13 Simvastatin Antihyperlipidemic Zidan et al. (2016)
14 Ursolic acid Antiarthritic Jamal et al. (2015)
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Surfactants can be classified according to their hydrophilic head group into anionic 
(e.g., sulfonate head group), cationic (e.g., quaternary ammonium salt head group), 
amphoteric (e.g., zwitterionic butane head group), and non-ionic (e.g., fatty acid 
head group) (Steed et al. 2007).

Non-ionic surfactants are characterized by having no charged groups in their 
hydrophilic heads. In solutions, they self-assemble to a characteristic structure in 
which hydrophilic heads are facing the aqueous solutions and hydrophilic tails are 
facing organic solutions. Due to this characteristic behavior, niosomes are formed 
by the self-assembly of non-ionic surfactants in aqueous dispersions (Moghassemi 
and Hadjizadeh 2014). The usually employed non-ionic amphiphiles, which are 
used in niosome preparation, have four categories: alkyl amides, alkyl esters, alkyl 
ethers, and ethers of fatty acids (Kumar and Rajeshwarrao 2011). The selection of 
surfactant relies on the HLB and critical packing parameter (CPP) values which are 
elucidated below.

Hydrophilic–Lipophilic Balance (HLB)

HLB is a dimensionless parameter which saves time and guides for proper selection 
of surfactants. For non-ionic surfactants, the HLB range is from 0 to 20 where a low 
HLB refers to a lipophilic surfactant, whereas a hydrophilic surfactant will have a 
high HLB value.

In niosomal vesicles, the surfactant HLB value plays an important role in con-
trolling drug entrapment efficiency (Kumar and Rajeshwarrao 2011). Many non-
ionic surfactants with a variety of HLB values have been employed for preparation 
of niosomes. Examples include glucosyl dialkyl ethers, polyglycerol alkyl ethers, 
crown ethers, polyoxyethylene ethers, and esters such as series of Brijs, Tweens, 
and Spans (Biswal et al. 2008; Shilpa et al. 2011).

Surfactants with an HLB value ranging from 3 to 8 are favorable for preparing 
bilayer structures and are considered water-in-oil (W/O) emulsifiers. In addition, 
oil-in-water (O/W) emulsifiers possess HLB numbers between 8 and 18 (Abdallah 
et al. 2013).

Critical Packing Parameter (CPP)

Besides the HLB value, chemical structure and a range of other factors play a sig-
nificant role in the prediction of surfactant vesicle forming ability. CPP is consid-
ered another dimensionless scale of surfactants and is described as follows (Uchegbu 
and Vyas 1998):

CPP = V/lca0

where V, hydrophobic group volume; lc, critical hydrophobic group length; and a0, 
area of the hydrophilic head group (Fig. 5.3).

Understanding the CPP value of the selected surfactant may predict the vesicle 
type. CPP points to the surfactant’s capability to form spherical micelles (CPP < 1/3), 
non-spherical micelles (0.33 < CPP < 0.5), bilayer vesicles (0.5 < CPP < 1), or 
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inverted micelles (CPP ≥ 1) (Bouwstra and Hofland 1994; Pardakhty et al. 2007; 
Kumar and Rajeshwarrao 2011).

Additive Compounds

Besides the surfactant type, encapsulated drug characteristics, and preparation 
method, the incorporation of additives may play an effective role on the self-
assembly of surfactants to form niosomes (Uchegbu and Vyas 1998). A range of 
additives has been utilized for niosome preparation along with cholesterol being the 
most important and commonly used of these compounds (Moghassemi and 
Hadjizadeh 2014).

Cholesterol concentration potentially affects vesicle characteristics, e.g., storage 
time, entrapment efficiency, stability, and release (Biswal et al. 2008; Shilpa et al. 
2011). Considering surfactants exhibiting HLB > 6, cholesterol is an essential addi-
tive for bilayer vesicle formation. It has been observed that the incorporation of 
cholesterol allows more hydrophobic surfactants to form vesicles, reducing the pro-
pensity of the surfactant to form aggregations (Kumar and Rajeshwarrao 2011). 
Cholesterol acts to improve vesicle stability in case of surfactants with lower HLB 
values. The increased stability of the surfactant bilayer when cholesterol is added is 
attributed to abolishing the gel to liquid transition temperature of the niosomal ves-
icle (Kumar and Rajeshwarrao 2011).

Also, cholesterol content could affect drug loading capacity (Shilpa et al. 2011). 
Consequently, cholesterol concentration ought to be optimized for improved char-
acteristics. It has been revealed (Fang et al. 2001a) that increasing cholesterol con-
centration enhances the stability of enoxacin, which results in higher entrapment 
efficiency (Agarwal et al. 2004; Verma et al. 2010). Guinedi et al. observed that 
varying Span to cholesterol molar ratio affects the release rate of acetazolamide 
from niosomal vesicles (Guinedi et al. 2005).

Dicetyl phosphate is another widespread additive used for niosomes. It stabilizes 
their bilayers by imparting a negative charge on the niosomal vesicle surface or 
achieves an electrophoretic motion resembling that of erythrocytes as in the case of 
encapsulated hemoglobins. Nevertheless, an unnecessary increase in the amount of 
dicetyl phosphate will prevent the niosomal formation (Waddad et al. 2013).

v

lc

a0

Hydrophobic tail            Polar headFig. 5.3  Schematic 
structure for detection 
parameters of CPP 
formulation
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Niosome Advantages

Compared to liposomes, niosomes provide various advantages (Moghassemi and 
Hadjizadeh 2014). Niosomes are osmotically active, are more chemically stable, 
and have longer storage time than liposomes. For example, Manconi et al. showed 
that higher tretinoin stability was obtained when it was incorporated in niosomes 
rather than in liposomes (Manconi et al. 2006). Functional groups on their hydro-
philic heads permit easy surface formation and modification. Being non-ionic in 
nature gives them higher compatibility with biological systems and low toxicity; 
they are also biodegradable and non-immunogenic. They are able to promote the 
therapeutic efficiency of drugs by protecting them from biological environment, 
leading to better availability. Access to raw materials used in niosomal vesicles is 
convenient, with no special precautions and conditions for handling. Characteristics 
of the niosomes can be easily controlled by modifying type of surfactant, prepara-
tion method, cholesterol concentration, surface charge, and size.

Both a permeation enhancer effect (due to the presence of the non-ionic surfac-
tant) and direct vesicle fusion with the stratum corneum may contribute to the 
enhanced skin permeation of drugs loaded in niosomes (Marianecci et al. 2014). For 
example, Fang et al. showed that enhancing effect for skin permeation of enoxacin 
for niosomes was greater than that of liposomes composed of dimyristoyl phospha-
tidylcholine (Fang et al. 2001a). It could be concluded that niosomes are favored 
over liposomes in terms of higher stability and accessibility of raw materials used in 
their preparation as well as in improved drug permeation through skin layers.

Similar to liposomes, a number of trials have been made to modify the structure 
of niosomal vesicles to achieve better skin penetration. Recently, pH-sensitive non-
ionic surfactant vesicles obtained with Tween 20 or Span 60 mixed with cholesterol 
and cholesteryl hemisuccinate, a derivative of cholesterol as a pH-sensitive mole-
cule, were proposed for topical delivery of ibuprofen. Only niosomes with Span 60 
and cholesteryl hemisuccinate showed a significant increase of in vitro skin perme-
ation of the drug (Carafa et al. 2009).

Another promising approach being investigated is the formulation of novel 
surfactant-based elastic nanovesicles. These vesicles are composed of a non-ionic 
surfactant along with an edge activator in nano-sized ranges (Kakkar and Kaur 
2011); they have been used potentially in topical drug delivery due to enhanced 
drug penetration, targeting both hydrophilic and lipophilic drugs in a controlled 
manner over a prolonged period of time, thus enhancing the therapeutic activity, 
achieving better patient compliance and reducing side effects (Mahale et al. 2012).

These elastic nanovesicles are more advantageous than conventional niosomes as 
they have a greater ability not only to overcome the stratum corneum barrier but also 
efficiently penetrate into deep subcutaneous target tissues by squeezing through 
pores much smaller than their own size and retain their structure (Cevc et al. 2008). 
Their elasticity allows them to pass through channels that are less than one-tenth of 
their own diameter (Kumar and Rajeshwarrao 2011). The elasticity of these novel 
vesicles may be attributed to the edge activators which destabilizes the vesicles and 
consequently fluidizes the vesicular bilayer by lowering the interfacial tension, thus 
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promoting better drug penetration (Kakkar and Kaur 2011). Several research works 
reported elastic niosomes for enhancing the skin permeability (Manosroi et al. 2008, 
2011, 2013; Al-Mahallawi et al. 2015; Arslan Azizoglu et al. 2017; Farghaly et al. 
2017; Ammar et al. 2018; Aziz et al. 2018; Fahmy et al. 2018).

In summary, niosomes have the ability to provide a better alternative to lipo-
somes as potential transdermal delivery carriers owing to their better stability and 
the penetration enhancement provided by the surfactants in their structure. Possible 
modifications in their structure, in a way similar to liposomes, have been investi-
gated in recent years so as to increase vesicle elasticity. Such advancements would 
pave the way to newer generations of surfactant-based carriers with promoted skin 
permeation.

�Provesicular Technology

One approach to reduce water content in liposomal and niosomal preparations is the 
formation of a vesicle “preconcentrate” (which is called proliposomes or pronio-
somes) (Abdelkader et  al. 2014). These provesicular concentrates consist of the 
usual vesicular ingredients in addition to ethanol and merely a trace amount of 
water. These gel-like systems are assumed to generate vesicles when applied to the 
skin (i.e., in situ) (El Maghraby and Williams 2009; Ammar et al. 2011). In addition, 
dry granular provesicular concentrates are prepared using a water-soluble porous 
powder (e.g., maltodextrin or sorbitol) as coating material (Azeem et  al. 2009). 
Owing to their ease of preparation and scale up, besides the ability to adjust skin 
delivery of drugs, such provesicular systems have the potential of being a suitable 
dosage form for TDD (El Maghraby and Williams 2009; Ammar et al. 2011).

Proniosomes

The utilization of provesicular technology for preparation of niosomes was intro-
duced about 20 years ago (Moghassemi and Hadjizadeh 2014). Proniosome is a 
novel drug carrier preparation method, and it has been used as stable precursors for 
preparation of niosomal carrier systems (Mokhtar et al. 2008). Several studies have 
employed the proniosome technology for many therapeutic agents such as 
17β-estradiol (Fang et al. 2001b), benzocaine (Abd El-Alim et al. 2014), tenoxicam 
(Ammar et al. 2011), valsartan (Gurrapu et al. 2012), and vinpocetine (El-Laithy 
et al. 2011).

Upon storage, niosomes exhibit good chemical stability. However, problems 
could arise due to physical instability in niosomal dispersions (Azeem et al. 2009). 
Similar to liposomes, aqueous suspensions of niosomes have a limited shelf life as 
they could exhibit aggregation, fusion, or leaching. Also hydrolysis of the encapsu-
lated drug could take place (Hu and Rhodes 2000; Mokhtar et al. 2008). Methods of 
formulation of niosomes such as ether injection and reverse-phase evaporation 
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methods have the drawbacks of requiring harsh conditions such as use of organic 
solvents, sonication, and prolonged exposure to elevated temperatures (Weiner 1994).

To overcome such limitations, provesicular approach, which involves the formu-
lation of a dry, non-hydrated product, was developed. These “provesicles” could be 
hydrated instantly before administration. The idea behind this technology is that 
vesicle formation is stopped in such a manner that allows the system to “vesiculate” 
in the location and at the desired manner. Proniosomes can be classified into dry 
granular proniosomes and liquid crystalline proniosomes (Azeem et  al. 2009) 
(Fig. 5.4).

Preparation of dry granular proniosomes takes place through coating of a water-
soluble carrier (e.g., maltodextrin or sorbitol) with surfactant. Thus, a dry formula-
tion is obtained in which water-soluble particles are covered with a thin surfactant 
film. Proniosomes are reconstituted, at a temperature greater than the transition tem-
perature of the surfactant used in preparation, through addition of aqueous phase 
(Azeem et al. 2009).

A method for preparing dry proniosomes by “spray coating” was introduced by 
Hu and Rhodes where sorbitol was used as the inert carrier (Hu and Rhodes 2000). 
The produced dry product could be hydrated prior to use in order to yield aqueous 
niosomal dispersion. This gives these “dry niosomes” a great potential for industrial 
application. Proniosome-derived niosomes were found to be as good as 

Surfactant/Phospholipid

Drug

+

Coating material +

Alcohol

Membrane stabilizer

Slurry method Co-acervation phase 
separation method

Provesicular gelProvesicular powder

Store in a well closed container

Spray coating method

Fig. 5.4  Materials and methods used for the preparation of provesicular systems
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conventional niosomes concerning their structure, vesicle size, and drug release 
behavior (Azeem et al. 2009).

The “slurry method” is another technique employed to prepare maltodextrin-
based proniosomes (Blazek-Welsh and Rhodes 2001). Briefly, maltodextrin powder 
is added to a round-bottom flask, and whole surfactant solution is added directly. 
The mixture is rotated under vacuum till a free flowing dry powder is obtained 
(Azeem et al. 2009).

Preparation of liquid crystalline proniosomes involves the technique of “coacer-
vation phase separation.” This method involves mixing the drug, the non-ionic sur-
factant, cholesterol, and lecithin (as a membrane stabilizer) with alcohol in a wide 
mouth glass tube. The glass tube is tightly covered and warmed on a water bath at 
around 60–65 °C for a period of 5 min. The aqueous phase is then added, and the 
mixture is further warmed for a few minutes before being allowed to cool down at 
room temperature, thus converting the dispersion to a proniosomal gel (Vora et al. 
1998; Azeem et al. 2008).

The produced proniosomal structure could be described as “liquid crystalline-
compact niosomes hybrid” that, upon hydration, can be convUfasomesUfaso-
meserted into niosomes straight away (Fang et  al. 2001b; Varshosaz et  al. 2005; 
Gupta et al. 2007). Proniosomes, thus, provided the advantages of easy and immedi-
ate preparation of niosomes (Azeem et al. 2009).

Proliposomes

Proliposomes are free-flowing particles that have the ability of instant formation of 
a liposomal system upon hydration (Payne et al. 1986a, b). Proliposomes are com-
posed of phospholipids, the drug, and a water-soluble porous powder. They have the 
advantage of easy storage and sterilization in dry state. A narrow size range of the 
reconstituted liposomes could be obtained through controlling the size of the porous 
powder. Owing to these attributes, proliposomes seem to be a promising substitute 
to conventional liposomes in formulation of liposome-based dosage forms. 
Proliposomes offer a versatile model for liposomal systems that can be used with a 
wide range of therapeutic entities (Choi and Maibach 2005).

Upon application to mucosal membranes and hydration by mucosal fluids, proli-
posomes are expected to form liposomes. Microscopic observation revealed that 
proliposomes are converted to liposomes almost entirely after contact with water 
within few minutes. Upon administration under occlusive conditions in vivo, proli-
posomes have the ability to form liposomes as they are hydrated by sweat (Ahn 
et al. 1995). Sustained drug absorption is expected from proliposomes in case of 
TDD without using complicated measurements since proliposomes themselves may 
control the release rate of the drug.

In vitro skin permeation of nicotine from proliposomes was reported by Hwang 
et al. (1997). The flux of nicotine from proliposomes was firstly retarded in contrast 
to that of nicotine powder. The initial flux of nicotine from the powder was more 
than twice than that of proliposome preparations. These results denote the 
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possibility of sustained transdermal delivery of nicotine upon applying proliposome 
formulations under occlusive condition (Choi and Maibach 2005).

In conclusion, the provesicular technology aims mainly to improve physical and 
chemical stability of the vesicles and improve their storage condition as the vesicles 
are actually reconstituted before use. Yet, this novel technology has provided no 
additional benefit towards improving the shortcomings of the vesicles regarding 
poor ability to penetrate deep skin layers.

�Other Novel Vesicular Carriers

In recent years, several new types of vesicular carriers were introduced which vary 
in their properties and potential for different applications according to the ingredi-
ents used in their preparation. The following section discusses some of these novel 
vesicular carriers that are considered as promising TDD systems. It is noteworthy to 
mention that, compared to the vesicular carriers discussed earlier in this chapter, 
such novel vesicles still require much more research in order to fully study their 
characteristics and compare them to the older vesicular systems. Examples of recent 
studies utilizing these novel carriers for drug delivery through the skin could be 
viewed in Table 5.5.

Ufasomes

Ufasomes or “unsaturated fatty acid vesicles” could be described as suspensions of 
closed lipid bilayers from employing fatty acids and their ionized species (soaps). 
Accordingly, these vesicles contain two types of amphiphiles, i.e., the neutral, non-
ionized form and the negatively charged, ionized form (Patel et al. 2011). Gebicki 
and Hicks were the first to report the formation of fatty acid vesicles in the 1970s. 
The new vesicles were originally named “ufasomes” denoting unsaturated fatty acid 
liposomes (Gebicki and Hicks 1973; Morigaki and Walde 2007).

Based on information obtained from pressure area measurements on fatty acid 
surface films and analysis of natural membrane phospholipids, it is suggested that 

Table 5.5  Recent studies considering novel vesicular carriers as skin delivery systems

Drug Indication Carrier References

1 Capsaicin Topical analgesic Cubosomes Peng et al. (2015)
2 Dexamethasone Antiinflammatory Ufasomes Mittal et al. (2013)
3 Etodolac Antirheumatic Cubosomes Salah et al. (2017)
4 Fluconazole Antifungal Cubosomes Prajapati et al. (2014)
5 Methotrexate Antirheumatic Ufasomes Sharma and Arora (2012)
6 Paeonol Antiallergic/

antiinflammatory
Cubosomes Li et al. (2015b)

7 Silver sulfadiazine Treatment of burns Cubosomes Morsi et al. (2014)
8 Tetanus toxoid Immunization Vesosomes Mishra et al. (2006)
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C-12 to C-22 fatty acids would be appropriate for preparation of stable ufasomes. 
As a matter of fact, the majority of the studies were confined to the C-18 acids 
which proved to be of the highest potential in early studies. Only oleic acid and 
linoleic acid formed membranes that enabled the ufasomes to accomplish these cri-
teria (Patel et al. 2011).

The ratio of non-ionized neutral form and the ionized form is vital for stability of 
ufasomes. Consequently, the formation of ufasomes is limited to a somewhat nar-
row pH range (7–9) where roughly half of the carboxylic groups are non-ionized. At 
higher pH values, fatty acids become too soluble while at lower range unstructured 
fatty acid precipitates are formed (Patel et al. 2011).

It is well-recognized information that free fatty acids act as penetration enhanc-
ers for drugs through the stratum corneum (Naik et al. 1995). However, their use is 
limited because they can cause skin irritation. Nevertheless, such drawback could 
be overcome through the use of fatty acid vesicles as drug carriers. It has been 
revealed that bilayer membrane possesses a fusogenic tendency due to its ability to 
lower the phase transition temperature of lipids in biological membrane (Mittal 
et al. 2013). The membrane of the vesicles fuses with skin lipids, leading to release 
of vesicle contents. Thus, it is assumed that fatty acid vesicles will act as a suitable 
carrier to enhance drug penetration through the stratum corneum leading to reduced 
toxicity. Furthermore, fatty acid vesicles have the advantage of ease of formulation 
and low cost of ingredients (Kanikkannan et  al. 2000). Ufasomes have superior 
entrapment efficiency for both hydrophilic and hydrophobic drugs compared to 
liposomes. They are also cheaper and more stable than liposomes (Jain et al. 2014).

Polymersomes

Polymersomes are a category of synthetic vesicles made from synthetic amphiphilic 
block copolymers (Antonietti and Förster 2003; Du and O’Reilly 2009; Massignani 
et al. 2010; Brinkhuis et al. 2011; Meng and Zhong 2011). Usually, polymersomes 
consist of void spheres where the core contains an aqueous solution enclosed by a 
bilayered membrane composed of hydrated hydrophilic coronas at the inside as well 
as the outside of the lipophilic center of the membrane protecting the fluid core from 
external environment (Lee and Feijen 2012).

Utilizing polymer chemistry permits the formation of vesicles with a broad range 
of properties depending on the type of block copolymer utilized. These polymeric 
chains can be made from two or more covalently bound homopolymer units. They 
can also be synthesized into diblock, triblock, or multiblock, random, star, and graft 
units. Upon exposure to water, polymer chains self-assemble into vesicles due to 
their amphiphilic nature. Such arrangement takes place in order to reduce the inter-
action between hydrophilic and hydrophobic domains. Polymersomes generally dif-
fer from liposomes in that polymer chains have much higher molecular weight. 
Accordingly, their membrane structures are highly intertwined. This enables the 
vesicles to bear very high stresses without breaking due to better mechanical prop-
erties which make them ideal for transdermal applications (Pegoraro et al. 2012).
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Based on chemical and physical properties of the polymers used, polymersomes 
can be tailored to be more or less deformable and reach the deeper skin layers with 
different diffusion rates. The high entanglement level of polymer chain means that 
exceptionally high energy would be needed to rupture the vesicles (Pegoraro et al. 
2012). Permeation studies carried out on polymersomes having a diameter ranging 
from 200 to 400 nm across 50 nm pores revealed that they can transport large mac-
romolecules (molecular weight > 10 kDa) and cross the pores without fragmenting 
(Pegoraro et al. 2011). When applied ex vivo to the human skin, this polymersome 
formulation led to a tenfold increase in permeation of fluorescently labeled dextran 
compared to passive diffusion (Pegoraro et al. 2012).

Vesosomes

Alteration of the composition of the unilamellar liposome while preserving the lipid 
membrane as the fundamental structural unit is a suitable choice for optimizing the 
bilayer chemistry and physics (Kisak et  al. 2004). Vesosomes are liposome-type 
carriers that have the ability to encapsulate one or more smaller liposomes in their 
aqueous core (Singla and Sachdeva 2015). This leads to the creation of a multi-
compartment system composed of the external lipid bilayer of the vesosome and an 
inner layer entrapping small liposomes. Vesosomes have the advantage of easy and 
independent optimization of the interior compartments and increase in drug reten-
tion (Paleos et al. 2013). A marked increase in encapsulation of both hydrophobic 
and hydrophilic small molecular weight molecules could be obtained by these 
“nested” bilayers. Each additional bilayer provides an extra barrier to degradation 
by lipolytic enzymes as well as to drug permeation (Kisak et al. 2004).

An advantage of vesosomes is that various drugs can be compartmentalized in 
different liposomes giving these vesicles the ability to deliver several drugs at the 
same time (Singla and Sachdeva 2015). The vesosome structure could be used to a 
fixed ratio of a combination of antibiotics or antimicrobials to desired sites; such 
drug combinations have been shown to exert synergistic effect when delivered in a 
single liposome (Schiffelers et al. 2002). Avoiding development of drug-resistant 
pathogens could be achieved through using such multidrug formulations instead of 
a single drug (Kisak et  al. 2004). Vesosomes have been investigated and proved 
great promise for transcutaneous immunization (Mishra et al. 2006). Although the 
prospect of using vesosomes in TDD has not been realized as much as for other drug 
delivery systems, they hold a great potential owing to their unique structure (Singla 
and Sachdeva 2015).

Sphingosomes

Sphingosomes could be defined as concentric vesicles with lipid bilayer mainly 
consisting of natural or synthetic sphingolipid enclosing an aqueous content (Singh 
et al. 2015). In other words, they are liposomes composed of sphingolipids. The 
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main constituents of sphingosomes are sphingolipid (sphingomyelin) and choles-
terol varying in the range of 75/25 mol% (Jain et al. 2014). The most important 
sphingolipids that have been employed in sphingosomes formulation include sphin-
ganines, hexadecasphinganine, lysosphingomyelins, lysoglycosphingolipids, 
N-acylsphingosines, and gangliosides (Jain et al. 2014).

Sphingosomes are characterized by being much more stable to acid hydrolysis 
than liposomes. They also possess superior drug retention characteristics. 
Sphingosomes are administered through many routes including the parenteral route 
(Saraf et al. 2011) and also could be administered orally or transdermally (Webb 
et al. 1996).

Sphingosomes are built up by only amide and ether linkage which are more resis-
tant to hydrolysis than ester linkage of lecithin; hence they are more stable than 
liposomes. They also contain less double bonds than lecithin and thus are less sub-
jected to rancidity (Saraf et al. 2011). On the other hand, sphingosomes usually have 
poor entrapment efficiency and are not economic due to the high cost of sphingolip-
ids (Jain et al. 2014).

Sphingosomes are also employed in the cosmetic industry and TDD. Topically 
administered sphingolipids have high compatibility with the skin because they 
belong to the same class of chemical compound as epidermal lipid, giving sphingo-
somes penetration-enhancing characteristics (Saraf et al. 2011).

Cubosomes

Cubosomes are discrete, submicron, nanostructured particles of bicontinuous cubic 
liquid crystalline phase (Jain et al. 2017). The term “cubosomes” was given as a 
reflection of their similarity to liposomes and cubic molecular crystallography.

In presence of polar solvents, the hydrophobic region of amphiphilic molecules 
self-assembles into an array of thermodynamically stable liquid crystalline phases 
possessing an adequate level of structural symmetry and molecular orientation in 
the nanometer range (Jain et al. 2014). Cubosomes contain three dimensional curved 
bicontinuous lipid bilayer organization resembling honeycombs. These structures 
are divided into two internal aqueous channels that can be employed to carry vari-
ous bioactives, such as chemical drugs, peptides, and proteins (Karami and 
Hamidi 2016).

Glyceryl monooleate (usually called monoolein) is the most commonly used 
amphiphilic lipid in cubosome preparation (Montis et al. 2015; Murgia et al. 2015). 
Glyceryl monooleate is a synthetic compound which consists of mixture of glycer-
ides of oleic acid and other fatty acids, consisting mainly of monooleate. This class 
of amphiphilic lipids has the capacity to form a variety of lyotropic liquid crystals 
(Lutton 1965; Kulkarni et al. 2011). One of the major and exceptional characteris-
tics of cubosomes is their bioadhesive nature through which they can suitably be 
applied in topical and mucosal drug delivery (Karami and Hamidi 2016).
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5.5  �Conclusion

Skin delivery (dermal and transdermal) offers a potential substitute to oral route, 
particularly for skin diseases or conditions which need site-specific delivery. The 
chief restriction for skin delivery is the impermeable stratum corneum, which hin-
ders the passage of drugs across the skin. Nevertheless, in the last 40 years, techno-
logical and scientific advances have resulted in the development of a variety of 
vesicular carrier systems for skin delivery. Liposomes, ultradeformable liposomes, 
ethosomes, and niosomes have revealed successful delivery for various drug mole-
cules. These vesicular carriers are able to overcome the limitations of the penetra-
tion of drugs and bioactives especially large molecules like peptides, hormones and 
antibiotics, other bioactives with poor permeation because of unfavorable physico-
chemical properties, drugs for immediate and targeted action, etc. Improved deliv-
ery of drug molecules across the skin via vesicular carriers opens new opportunities 
and challenges for the development of new enhanced therapies. In spite of the 
achievement of vesicular delivery systems, stability issues, scaling-up of manufac-
turing process, regulatory challenges, and cost are some of the problems which need 
special consideration in order for these novel carriers to reach their full potential.
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Abstract  Recently dietary and plant-derived phytochemicals are rising into lime-
light as many people developed a propensity towards opting nature-dependent 
healthy lifestyle. Scientific advancements highlight the effectiveness of 
phytochemicals in the treatment of many diseases and for various lifestyle benefits. 
Traditionally used in medicines, food supplements, and cosmeceutical products, 
phytochemical compounds are now conjoined with modern science to produce 
significant health benefits to humans as they possess fiddling risks compared to 
synthetic chemical entities. Phytochemicals are implemented in different forms and 
for different purposes such as phyto-, aroma-, and gemmotherapy for their potential 
health benefits. But the formulation of these phytochemicals for various applications 
is a major concern primarily owing to their low bioavailability, solubility, and the 
need to be taken in combination or as whole food. Hence, efficient delivery systems 
such as nano-engineered formulations are imperative to potentially yield the 
complete benefits from these phytochemicals. Besides enhancing the solubility and 
stability of phytochemicals, the nano-delivery systems can also prolong their 
average blood circulation time. Consequently, the high differential uptake efficiency, 
enhanced permeation, and retention characteristics in target tissues could prevent 
phytochemicals from premature interaction with the biological environment, thus 
resulting in decreased toxicity and favorable dose optimization possibilities. These 
advanced delivery systems also aid in the targeted delivery approaches. This chapter 
depicts the major natural products employed for the human benefits, their limitations, 
and nanotechnological solutions to triumph these limitations.

Keywords  Nanomaterials · Phytochemicals · Supplements · Formulations · 
Bioavailability · Delivery · Inflammation · Cancer · Additive agents · 
Cosmeceuticals

6.1  �Introduction

Phytochemicals are compounds which are derived from the plants and are generally 
non-nutritive to them. But these phytochemicals provide typical flavor and color to 
the fruits, vegetables, nuts, spices, grains, beverages, and other dietary plant-derived 
products (Chuan et al. 2017; Upadhyay and Dixit 2015). Despite providing color, 
odor, and flavor, they mainly protect the plants from diseases and environmental 
hazards such as pollution, stress, drought, UV exposure, and pathogenic attacks 
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(Saxena et al. n.d.). Traditional knowledge and current screening studies confirm 
similar protective effects in humans under diverse conditions and thus created a 
huge possibility for significant pharmaceutical applications that could benefit 
mankind in a more efficacious way than other synthetic medicines.

Phyto-applications have its own advantages like the existence of vast biodiver-
sity of phyto-remediation system, easy availability, and cost and preference among 
population. Although many phytochemicals show significant promises in nutrient 
supplementation and in therapy, their hydrophobic nature, poor stability, poor 
absorption and bioavailability, rapid metabolism, elimination, and low target 
specificity make them difficult while administering at the therapeutic doses, an issue 
which can be possibly overcome using nanotechnology (Aqil et al. 2013).

Several phytochemicals have been well recognized for their role as (a) antioxi-
dants (e.g., allyl sulfides from onions, leeks, and garlic, carotenoids from fruits and 
carrots, flavonoids of fruits and vegetables, polyphenols from tea and grapes), (b) 
hormones (e.g., isoflavones of soy), (c) enzyme regulatory agents (protease inhibi-
tors from soy and bean, indoles found in cabbages), (d) DNA replication modulators 
(saponins found in beans, capsaicin from hot peppers), and (e) antibacterial agents 
(proanthocyanidins from cranberries). These properties provide diverse opportuni-
ties in therapeutic, nutraceutical, industrial, and cosmetic applications.

In case of therapeutic application against cancer, phytochemicals can be poten-
tially used to stimulate the weaker immune system; prevent carcinogenic activation; 
behave as anti-inflammatory, antioxidative principles; induce mutated cells to com-
mit apoptosis; and regulate the hormonal and cellular mitogenic controls. Thus phy-
tochemicals like carotenoids (such as beta-carotene, lycopene, lutein, zeaxanthin), 
flavonoids (such as anthocyanins and quercetin), indoles and glucosinolates (sul-
foraphane), inositol (phytic acid), isoflavones (daidzein and genistein), isothiocya-
nates, polyphenols (such as ellagic acid and resveratrol), and terpenes (such as 
perillyl alcohol, limonene, carnosol) are attracting serious scientific attention for 
use in cancer therapy nowadays (Hosseini 2015).

However with the shortage of available lead pharmacological compounds, along 
with the onset of side effects and resistance to the existing drug molecules, more 
extensive research is carried out for the implication of phytochemicals in the health 
industry. Globally, the development of potent plant-based drugs is given more 
importance hoping to find cures for disorders such as liver damage or pancreatitis 
for which there are hardly any reliable drugs for treatment (Leema and Tamizhselvi 
2018).Thousands of phytochemicals have already been screened, and few potent 
ones were studied in detail for their favorable pharmacokinetic and pharmacodynamic 
properties (Table 6.1).

Interestingly several phytochemicals were also reported to have deleterious side 
effects which prevents them from regular applications. For instance, soybean-based 
trypsin inhibitors compromise the trypsin function which in turn leads to the release 
of cholecystokinin and excessive trypsin synthesis by pancreases, amylase inhibitors 
producing unwanted hypoglycemic effects, saponins interacting with cholesterol in 
the erythrocyte membrane and lysing the erythrocytes, association of dietary 
phytoestrogens with infertility and liver disease, and lignans having estrogenic and 
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Table 6.1  Partial list of active phytochemical molecules used in therapy and biological applications 
and their source of origin (Conte et al. 2017)

Sources Active ingredients Biological activity

Turmeric Curcuminoids Anticancer and 
antioxidant

Glycyrrhiza Glycyrrhizin acid

HO

HO
HO

HOOC

HOOC

COOH

HO
OH

O

O

O

O

O

H

H

H

Anti-inflammatory 
and antihypertensive

Psoralea corylifolia Flavonoids and lignans Hepatoprotective and 
antioxidant effects

Pacific yew tree bark

European yew

Taxel

Paclitaxel

Docetaxel
HO

NH

OH

H

OH

OH

H

O

O

O

O

O

O
O

O

O
O

Anticancer

(continued)
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Table 6.1  (continued)

Sources Active ingredients Biological activity

Artemisia annua Artemisinin
CH3

H3C

CH3

H

H

H

O

O

O

O

Anticancer

Camptotheca Camptothecin

Topotecan

Irinotecan

Anticancer

Berberis Berberine Anticancer

Broccoli Quercetin Antioxidant and 
anti-inflammatory 
properties

(continued)
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Table 6.1  (continued)

Sources Active ingredients Biological activity

Red grapes Resveratrol Anti-inflammatory 
properties

Pomegranate Ellagic acid Anti-inflammatory 
properties

Cannabis Phytocannabinoids: cannabin Anti-inflammatory 
properties

Avocado Phytosterols Anti-inflammatory, 
anticancerous, and 
anti-atherogenic 
activities

Oregano

Cinnamon
CH3

OH

OH

H3C H3CCH3 CH3

CH3

Carvacrol and thymol

Cinnamaldehyde

Anti-inflammatory, 
antioxidant, and 
antimicrobial activity
Anti-inflammatory 
properties

(continued)
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Table 6.1  (continued)

Sources Active ingredients Biological activity

Nigella sativa (black seed) Thymoquinone Antimicrobial, 
anti-inflammatory, 
antioxidant, anti-
diabetic, anticancer, 
hepatoprotective, and 
renal protective 
activities

Green tea EGCG (epigallocatechin-3-gallate) Anticancer activity

Apple Quercetin Anticancer activity

Soybean Genistein Anticancer activity

Himalayan mayapple Etoposide Anticancer activity

Saffron Safranal Increased 
moisturizing effect 
and anti-UV activity

(continued)

6  Nanotechnology in Delivery and Targeting of Phytochemicals



218

Table 6.1  (continued)

Sources Active ingredients Biological activity

Coconut oil Lauric acid Antimicrobial activity

Catharanthus roseus Vincristine

CH
3

H
3
C

CH
3

CH
3

CH
3

H
2
SO

4

CH
3

OH

O

O

N

N

N
H

H

O

OO

O
O

O

H

H

OH

N

H

Vinblastine

Vinorelbine

Vindesine

Hypoglycemic and 
cytotoxic anticancer 
effects
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antifertility effects. Likewise sugar-binding lectins and hemagglutinin may bind and 
agglutinate red blood cells (Hagerman et al. 1997).

Though they possess some threats, manipulating and modifying phytochemicals 
can be done to elicit more benefits and undermine harmful effects. Also, the 
reluctance among individuals to use phytocompounds is primarily because of 
treatment time, effectiveness, and nature of application. Thus, there is need for this 
type of therapy to be updated for the modern trends using technological advancements 
like nanotechnology. Nanotechnology has the potential in resolving the difficulties 
associated with phytochemicals with respect to access and delivery, overcoming the 
complexities of natural product chemistry, and quickening the inherent slow phase 
of action associated with working of natural products.

6.2  �Nanotechnological Applications 
in Phytochemical Delivery

Although phytotherapy is followed for thousands of years, the mechanism-based 
phyto-applications are very limited today except with few serendipity-based drugs. 
In this regard, study on nanoparticles for targeted delivery or enhancing the efficacy 
of phytochemicals has gained much more importance. Nanotechnology is the 
emerging science that deals with particles in the range of 10 to 200 nm which serves 
as the effective vehicle for the drug delivery systems (Xie et al. 2016).

Existing phytochemical formulations face major issues mainly due to their unfa-
vorable pharmacokinetic and pharmacodynamic properties. However when they are 
doped with nanoparticles, not only the solubility of the drug increases but also the 
efficiency of phytochemical is enhanced (Siddiqui et al. 2014). There are changes in 
biodistribution patterns of phytochemicals which, by interfering the therapeutic 
index of the phytochemicals, greatly enhance the drug efficacy and reduce the toxic-
ity to the normal tissues (Fig. 6.1). The therapeutic index is the ratio of amount 
causing effective therapeutic activity to the amount causing toxic effect (Granja 
et al. 2016; Thangapazham et al. 2008).

The phytochemical agents could be loaded into nanomaterials or nanocarriers 
through encapsulation, conjugation, or adsorption to improve their therapeutic 
index and pharmacokinetic profiles (Brigger et  al. 2002). These formulations 
enhance their absorption, stability, bioavailability, and prolonged systemic 
circulation and protect them from enzymatic degradation. Therefore, sustained and 
controlled release with increased uptake efficiency can be achieved. As a matter of 
fact, by conjugating through target-specific ligands, potential targeting of cancer 
cells could be achieved (Fig. 6.2). Already few nanotechnological formulations are 
approved as cancer therapeutic products in recent times (Siddiqui et al. 2014; Granja 
et al. 2016; Singh et al. 2014; Creixell and Peppas 2012).

Also it has to be noted that nanotechnologically modified phytochemicals them-
selves may exhibit some adverse pharmacokinetic profiles and exert negative 
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influence on the therapeutic index or toxicity. However in these cases also, surface 
modifications of nanocarriers can avoid such toxicity issues and enhance cellular 
phytochemical delivery through changing biophysical interactions between nano-
carriers and cell membrane (Alkilany and Murphy 2010).

Fig. 6.2  Nanoparticles as targeted drug delivery systems. Drug-loaded, ligand-guided nanocarrier 
interacts precisely with the target cell receptors/surface molecules, providing specificity for therapy

Fig. 6.1  Enhancement of phytochemical delivery using nanocarriers. Compared to the free, con-
ventional form of delivery, nanocarrier-mediated delivery systems enrich the phytochemicals at the 
target site enhancing the kinetics and dynamics of the drug

V. Manickam et al.
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The nanoparticles are made of variety of materials, and the individual composi-
tion depends on the purpose and characteristics such as the ability for eventual deg-
radation. Based on the type of material used, nanoparticles can be classified into 
synthetic biocompatible polymeric nanoparticles and natural degradable biopoly-
mers. Examples for synthetic polymers include poly(lactic-co-glycolic acid) 
(PLGA) and polylactic acid (PLA) nanoparticles. On the other hand, gelatin-, albu-
min-, cellulose-, or chitosan-based nanoparticles come under natural, degradable 
biopolymers (Brigger et al. 2002). So far a variety of nano-applications have been 
studied, and some proposed nanotechnologically modified phyto-additives and sup-
plements are listed in Table 6.2.

Likewise the few modified phytochemicals available in market as reviewed 
recently (Bradley et al. 2011; Mamillapalli et al. 2016; Safhi et al. 2016) are:

	1.	 Nanoparticles of Cuscuta chinensis: flavonoids and lignans are applied for their 
hepatoprotective and antioxidative role in the form of oral nano-suspension.

	2.	 Artemisinin nanocapsule: artemisinin molecules are used for anticancer applica-
tions using self-assembled nanocapsulation procedure.

	3.	 Radix salvia miltiorrhiza nanocapsule: used against heart disorders which 
applies spray-drying technique for synthesizing the phyto-nanocapsules.

	4.	 Taxel-loaded nanoparticles: anticancer drug paclitaxel is loaded in nanoparticles 
for enhanced and sustained availability.

	5.	 Berberine-loaded nanoparticles: berberine-loaded nanoparticles are prepared 
through ionic gelation method for sustained anticancer activities.

	6.	 Nano-herbal cosmetic formulations: St. herb Nano Breast Cream and red blood 
cell Life Science’s “Nanoceuticals Citrus Mint Shampoo” and conditioner.

Various nanostructured herbal formulations have been made as the combina-
tional therapy. As reviewed earlier (Gopi and Amalraj 2016), curcumin, for instance, 
can be applied in different nano-combinational formulations. Curcumin–diclofenac 
diethylamine nanocarrier and curcumin–celecoxib-loaded nanoparticles for anti-
inflammatory and antioxidative activities, curcumin–hydroxypropyl methylcellu-
lose (HPMC) and polyvinylpyrrolidone (PVP)-loaded nanoparticles for antimalarial 

Table 6.2  Nano-based applications and the food additive compounds commonly applied in the 
food industry

Purpose Example

For improving the food qualities to (1) 
enhance dispersibility in food products; (2) 
improve food tastes; (3) enable hygienic food 
storage, (4) reduce the use of fat, salt, sugar, 
and preservatives; and (5) improveme the 
uptake and bioavailability of nutrients and 
supplements

Food additives: synthetic form of the tomato 
carotenoid lycopene, benzoic acid, citric acid, 
ascorbic acid, and supplements such as 
vitamins A and E, isoflavones, ß-carotene, 
lutein, omega-3 fatty acids, coenzyme-Q10
Inorganic nanomaterials: transition metals 
and metal oxides (e.g., silver, iron, titanium 
dioxide), alkaline earth metals (e.g., calcium, 
magnesium), and non-metals (e.g., selenium, 
silicates)
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activity, and curcumin–temozolomide-loaded magnetic nanoparticles for antitumor 
activity are some selected curcumin-based combinational nano-approaches.

In food industries various nutraceuticals are formulated as nanoforms for making 
the functional food components. Potential phyto-applications in this regard include 
nanoformulations of hydrophobins and vitamin D3, folic acid–whey protein and 
starch, DL-α-tocopheryl acetate and β-carotene, vitamin D3 entrapped whey protein 
and calcium, folic acid and calcium, carotenoids and lipids, long chain fatty acids 
and CoQ10, omega-3-fatty acids and oil soluble vitamins, clove oil and Eugenol, 
dextran and isoflavone genistein (Gopi and Amalraj 2016).

6.2.1  �Advantages of Nanotechnology-Based Interventions

The major benefits of nanotechnological applications during phytotherapy include 
reducing the toxicity, enhancing the drug release, improving the solubility cum 
bioavailability, and eventually providing better formulation opportunities and 
efficacy for drugs (Alkilany and Murphy 2010; Fukumori and Ichikawa n.d.).

Interestingly the enhanced permeability and retention (EPR) effect is the key 
mechanism for targeting tumors specifically by nanovehicles. The prolonged 
circulatory presence of drug provides the adequate time required for delivery via the 
EPR effect (Brigger et al. 2002; Acharya and Sahoo 2011). In order to achieve the 
target-specific drug delivery in the solid tumors, the structural and architecture 
abnormalities in the circulatory and lymphatic vasculature of the tumor are exploited 
in this EPR approach (Maeda et  al. 2000). Nevertheless, here the size of the 
nanoparticle needs to be customized for efficient targeted drug delivery, as anticancer 
drugs nanoformulated for intravenous administration could possibly escape the 
renal clearance. Also fine-tuning the physiological characteristics and 
functionalization through surface modifications and drug conjugations make them 
resistant to macrophage-based removal. These measures thus reduce the dose 
requirement through improved stability and circulation time. Moreover, the 
enhanced permeability and retention (EPR) effect allows the macromolecular 
compound and its nanocarriers to escape and leak favorably into the neighboring 
tumor tissue (Torchilin 2011). Further the defective lymphatic drainage in the 
tumors leads to drug enrichment in the cancer cell surroundings, whereas in normal 
tissues, this effect cannot be seen (Fig.  6.3) (Yin et  al. 2014). The size of the 
nanoparticles and its biocompatibility are the most crucial parameters for the EPR 
effect. The minimum molecular size of 40 kDa for macromolecules and particle size 
of 5  nm for nanocarriers usually have the active EPR effect (Gopi and Amalraj 
2016; Hu and Huang 2013). Thus nanotechnology-derived EPR advantage provides 
the crucial support while designing the phytochemical-based clinical applications.

Though phytochemicals are easily extracted using methanol, chloroform, and 
acetone, there are no suitable delivery systems available for effective delivery. Also 
for effective phytochemical activity, in most of the cases, they have to be given in 
very high dosages. However dose minimization is preferred for patient compliance 
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which can be easily favored through nanoformulations (Ansari et al. 2012). Thus 
herbal compounds and phytochemicals are the right candidates to be delivered 
through nano-delivery system (Amol and Pratibha 2014; Ajazuddin and Saraf 
2010). Mainly available current phyto-based therapeutic formulations do not have 
target specificity. However when nano-delivery systems are considered in such 
cases, they significantly enhance the delivery of phytocompounds at targeted site.

6.3  �Nano-delivery Platforms for Phytochemicals

The phytochemicals are vast and diverse in nature, and their customization with 
respect to various physical and chemical properties is crucial to ensure efficient 
delivery into the desired system. The major limitations associated with the phyto-
chemicals and herbal medicinal combinations are poor solubility in aqueous media, 
poor bioavailability, poor stability, and toxicity (Ansari et al. 2012). Using nanoen-
capsulation and nanoformulation techniques, particles can be designed to have dif-
ferent shapes, sizes, and compositions. These nanoformulations can be functionalized 

Fig. 6.3  Enhanced permeability and retention (EPR) effect in nanocarrier-mediated drug formula-
tions. Improved stability, circulation time, defective lymphatic drainage, and leaky vasculature of 
the tumor provide the targeted drug delivery at the tumor sites (Yin et al. 2014)
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and modified to have the unique physicochemical properties, thereby improving the 
delivery characteristics of bioactive molecule.

Both organic biocompatible and biodegradable nanoparticles such as nanolipo-
somes, nanoemulsions, lipid nanocarriers, phytosomes, micelles, and poly(lactic-
co-glycolic acid) (PLGA) nanoparticles and inorganic nanoparticles, e.g., gold, 
silver, zinc, copper oxide, aluminum oxide, iron oxide, ceramics, and carbon 
nanoparticles are used in phytochemical studies (Sarker and Nahar 2017). Some 
prominent forms of nano-delivery approaches attempted recently for phytochemical 
delivery are discussed below (Fig. 6.4).

6.3.1  �Liposomes

Liposomes are nanocarriers of size 20 to 1200 nm diameter and have an aqueous 
core internally and phospholipid bilayer on the external surface. Liposomes are 
highly advantageous because of their optimization capabilities by altering the 
surface charge and functionality in addition to the targeted delivery option of 
anticancer drugs to tumor tissues (Hofheinz et al. 2005).

Already targeted delivery of curcumin is attempted through cyclodextrin-
encapsulated curcumin-loaded liposomes (Dhule et al. 2012). Similarly Marqibo®, 

Fig. 6.4  Diagrammatic representation of different drug delivery platforms
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a liposomal formulation of vincristine made of sphingomyelin and cholesterol 
(Silverman and Deitcher 2013; Chang and Yeh 2012), has already been approved by 
the Food and Drug Administration (FDA), whereas Lipusu®, a liposomal 
formulation of paclitaxel, has been approved by the Food and Drug Administration 
in China (Xu et  al. 2013; Ye et  al. 2013). It is proven that a novel liposomal 
formulation of doxorubicin has reduced the undesirable delivery of doxorubicin at 
off-target heart or renal system, increasing the concentration only in the tumor 
tissues due to EPR effect (Creixell and Peppas 2012; Muggia et al. 1997; Gabizon 
and Martin 1997).

Likewise, berberine-loaded liposomes are developed as the controlled delivery 
platform for prolonging the drug release (Sailor et al. 2015; Ai et al. 2014). Also to 
synergize the therapeutic potential, 5-fluorouracil and resveratrol were incorporated 
and positively tested using PEGylated liposome (Mohan et al. 2014).

6.3.2  �Micelle

Micelles range from 10 to 400 nm in size and are basically smaller in size in com-
parison with other nanocarriers. Micelles are one of the popular drug delivery carri-
ers for phytochemicals.

Interestingly thymoquinone-based nanoparticles were tested against breast can-
cer cell growth for their antioxidant and anticancer activities (Ganea et al. 2010). In 
a targeted approach, the folate-conjugated doxorubicin-loaded micelles were inter-
nalized by the cancer cells using receptor-mediated endocytosis (Yang et al. 2010). 
Similarly copolymeric, biodegradable, and biocompatible encapsulated paclitaxel 
were specifically targeted using this approach (Liu et  al. 2011a; Bamrungsap 
et al. 2012).

6.3.3  �Nanocrystals or Nanoparticles

Nanocrystallite particles ranging from 10 to 100 nm in size with drugs embedded on 
to the surface are used to deliver less water-soluble drugs with poor dissolution rate. 
After formulation the surface area of the drug increases and results in enhanced 
solubility and improved dissolution rate. As a consequence, plasma concentration of 
the drug is maximized, thus leading to dose minimization of loaded chemicals 
(Domínguez-Villegas et al. 2014). On the other hand, drug itself can be reduced in 
size and formulated as nanosized drug which has the ability to act as self-carrier. 
After nanosizing, these drugs can be administered in different routes for use as oral, 
nasal, and injectable formulations (Ajazuddin and Saraf 2010; Ramalingam et al. 
2016). This formulation could specifically aid in delivering the polyphenols and 
other phytochemicals, as they suffer from low stability and unfavorable 
pharmacokinetics. Using this approach, green tea polyphenols are encapsulated in 

6  Nanotechnology in Delivery and Targeting of Phytochemicals



226

chitosan-based delivery system, improving the stability of tea polyphenols and pre-
venting their oxidative loss or degradation in the gastrointestinal tract (Liang 
et al. 2017).

6.3.4  �Polymeric Nanoparticles

Polymeric nanoparticles are colloidal in nature with the size ranging from 10 to 
100 nm. They are formulated as spheres, branched structures, or core–shell structures 
using natural collagen, albumin, alginate, gelatin, and chitosan molecules. Also it 
can be fabricated using synthetic yet biodegradable polymers like poly lactide-poly 
glycolides, poly caprolactones, and poly acrylates (Bhatia 2016). It was reported 
that the biodegradable polymeric formulation containing Syzygium cumini was 
found to retain the antioxidant activity of plant extract in rat model study (Bitencourt 
et  al. 2016). Similarly green-synthesized AgNPs using extracts of Vitex negundo 
L. retained cell viability inhibition in human colon cancer cell lines (Prabhu et al. 
2013). Moreover it is possible to make “smart polymers” which are sensitive to 
stimuli and can alter its physiochemical properties in response to the surrounding 
environment. The triggering responses include physical stimuli (temperature, 
ultrasound, light, electricity, and mechanical stress), chemical niche (pH and ionic 
strength), or biological signals (enzymes and biomolecules) (Fig. 6.5). Also, it is 

Fig. 6.5  Stimulus-sensitive delivery: various environmental stimuli at the diseased or induced site 
can alter the chemical properties of nanocarriers, thus releasing the cargo drug in response to the 
environmental stimuli
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possible to tune up drug release in response to the stimulus within a narrow range, 
thus resulting in more accurate and programmable drug delivery. Currently linear 
polymers made using covalent chemistry, polymeric micelles from amphiphilic 
block copolymers, and hydrogels of water-filled depot for hydrophilic drug encap-
sulation are more common (Kale and Torchilin 2007; Fleige et al. 2012).

6.3.5  �Prodrugs

The prodrugs are the polymeric nanocarriers having covalent conjugation of the 
drug with the linear arm of the polymers. Conjugation of drug with macromolecular 
polymeric compounds gives more blood circulation time. In addition to peptides or 
protein drugs, many anticancer drugs of small molecular size are also PEGylated for 
improved pharmacokinetics. For example, PEG–camptothecin also known as 
PROTHECAN® entered into clinical trials for the cancer therapy (Joralemon et al. 
2010). Table 6.3 lists out the free and various nanoformulations of camptothecin and 
its derivatives from Camptotheca species which are in different process of clinical 
development (Lerchen 2002). Similarly in CRLX101, camptothecin molecules are 
conjugated to cyclodextrin–poly(ethylene glycol) copolymers (Fig. 6.6) (Ganesan 
and Choi 2016; Moody et al. 2015). With this approach there are some limitations 
like increase in production cost, requirement of additional purification steps, and 
regulatory issues with approval agencies (Lerchen et al. 2001). Thus there are only 
a limited numbers of drugs and polymers which have been used to develop polymer–
drug conjugates (Table 6.4).

Table 6.3  List of free and various formulations of camptothecin which are in different processes 
of clinical development (Lerchen 2002)

Drug Name Delivery System Source Status

Irinotecan HCI (CPT-11) Water soluble Pharmacia/Aventis Launched
Topotecan HCI Water soluble GlaxoSmithKline Launched
Rubitecan (9-NC) Lipophilic Supergen Phase III
Exatecan mesylate (DX·8951-f) Water soluble Daiichi Phase III
Lurtotecan (OSI-211) Liposomal formulation OSI Pharm. Phase II
CKD-602 Water soluble Chong Kun Dang Phase II
Diflomotecan (BN80915) Homocamptothecin Beaufour lpsen Phase II
Afeletecan HCI (Bay38-3441) Water-soluble prodrug Bayer Phase II
PROTHECAN® PEG conjugate Enzon Phase II
BNP-1350 (karenitecin) Lipophilic BioNumeric Phase I
Gimatecan (ST-1481) Lipophilic Sigma Tau Phase I
DE-310 Polymeric conjugate Daiichi Phase I
Camptothecin polyglutamate Polymeric conjugate Cell therapeutics Phase I

6  Nanotechnology in Delivery and Targeting of Phytochemicals



228

Table 6.4  Commonly used polymers and the corresponding drugs for nano-conjugate preparations

Polymer drug conjugates Drug
 � Doxorubicin
 � Camptothecin
 � PTX
 � Platinate
Polymer
 � N-[2-hydroxylpropyl]methacrylamide [HPMA] copolymer
 � Poly-L-glutamic acid [PGA]
 � PEG
 � Dextran

Fig. 6.6  Schematic diagram of CRLX101, a copolymeric nanoparticle formulation, where the 
phyto-derivative cancer drug camptothecin is conjugated to the linear, cyclodextrin–poly(ethylene 
glycol) (CD-PEG) (Ganesan and Choi 2016; Moody et al. 2015)

6.3.6  �Hydrogel Nanoparticles

Hydrogels are cross-linked networks of hydrophilic polymers that can absorb and 
retain more water and at the same time maintain the distinct three-dimensional 
structural network (Bhatia 2016).

Hydrogels are mainly useful for the slow release of drug molecules into the bio-
logical system. It was demonstrated that the implantation of hydrogel nanoparticle 
caused high drug concentration and retention of the drug at the target tissue. 
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Furthermore the hydrogel could be combined with the magnetic nanoparticles to 
develop a hybrid hydrogel, which can be transported to the target site by applying 
magnetic field externally (Bamrungsap et  al. 2012; Bhatia 2016; Hamidi et  al. 
2008). Although nanoparticulate, hydrogel-based drug delivery systems are not 
commercially applied, owing to their highly biocompatible and efficient drug-
loading properties, they have high possibility to be further developed for drug deliv-
ery systems in the future.

6.3.7  �Dendrimers

Dendrimers are the uniformly branched, macromolecular structures synthesized in 
a stepwise manner so that they are developed into the size of 1–10 nm particles. This 
treelike structure is distinct from other linear polymers that the molecular weight 
and the chemical composition can be precisely controlled. The dendrimers possess 
internal cavity-like structures where the drugs are encapsulated and which helps for 
slower, controlled release from the inner core. The dendrimers also allow the 
embedding of the drugs onto the outer surface using covalent or ionic interactions 
(Bhatia 2016; Avti and Kakkar 2013).

Dendrimers are synthesized using divergent or convergent techniques. The diver-
gent technique allows synthesis of the inner core, and it is further built into other 
layers. In the convergent approach, the dendrimer synthesis starts from the outer 
periphery and ends in the inner core. Dendrimers are good anticancer drug delivery 
system due to their increased drug solubility, permeability, and intracellular targeted 
drug delivery (Fig. 6.7) (Fleige et al. 2012; Joralemon et al. 2010; Hamidi et al. 

Fig. 6.7  Divergent synthesis (A), where the nanomaterial develops from inner core to other layers, 
though in convergent approaches (B), the development starts from periphery to inner core for the 
synthesis of dendrimer as explained thematically in the review (Fleige et al. 2012; Joralemon et al. 
2010; Hamidi et al. 2008)
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2008) . It was reported that the bioavailability of quercetin could be improved by 
incorporating it in polyamidoamine (PAMAM) dendrimers (Madaan et al. 2016).

6.3.8  �Inorganic Platforms

The gold (Au) nanoparticles are emerging as a more promising drug delivery sys-
tem due to their advantages like low toxicity from their inertness, ease to synthesize, 
increased surface area, and tuneable stability. Gold (Au) nanoparticles can be 
synthesized using biological method via bioreduction of Piper guineense aqueous 
leaf extract, and the drug formulation has highest release efficiency when compared 
to the drug-alone application (Shittu et al. 2017). It is possible to target the gold 
nanoparticles into the tumor and destroy the tumor by hyperthermic reactions. Also 
the gold nanoparticles can be monitored by contrast-based imaging during 
theragnostic applications. Still the key issue that needs to be addressed with gold 
nanoparticles is the engineering of the particle surface for optimized properties, 
such as bioavailability, biocompatibility, and non-immunogenicity (Kuo et al. 2010).

6.3.9  �Superparamagnetic Nanoparticles

Recently magnetic nanoparticles are designed with the motive of drug carriers for 
targeted delivery. Magnetic nanoparticles are embedded in polyelectrolyte capsules 
and delivered for sustained release of drugs by applying external magnetic field. For 
example, iron (II) oxide particles are used to deliver microcapsulated drugs by apply-
ing magnetic field (Lu et al. 2002). Also after internalization, the magnetic nanopar-
ticles can be induced to produce heat and cause hyperthermic effect. For example, a 
grafted thermosensitive polymeric system was developed using poly(N-
isopropylacrylamide)-based hydrogels in which FePt nanoparticles were embedded. 
Using these nanoparticles, sustained release of loaded drug was attained by increas-
ing the temperature based on the magnetic thermal heating event (Bamrungsap et al. 
2012; Pankhurst et al. 2009). Magnetic nanoparticles also could influence the micro-
capsule permeability by oscillation using external magnetic fields. The major benefits 
of the magnetic nanoparticles in comparison to conventional cancer treatments are its 
less invasive nature, accessibility even of hidden tumor, and the reduced side effects.

6.3.10  �Carbon-Based Nanomaterials

Recently, carbon-based nanomaterials are gaining popularity in drug delivery since 
it has the advantage of surface functionalization for grafting of nucleic acids, 
peptides, and proteins. However the major limitation of the carbon-based 
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nanocarriers is their cytotoxicity. There are varieties of carbon-based nanomaterials 
available, such as carbon nanotubes (CNTs), fullerenes, and nanodiamonds. Among 
these carbon-based nanocarriers, carbon nanotubes are shown to inhibit cell 
proliferation and cause apoptosis in cells. Also, the toxicity is high in carbon 
nanotubes because of the presence of the functional groups such as carbonyl, 
carboxyl, or hydroxyl groups on the surface of the carbon nanotubes (Kang et al. 
2007; Liu et al. 2011b).

Betulinic acid (3β-hydroxyl-lup-20(29)-en-28-oic acid) of birch tree effectively 
induces caspase activation, mitochondrial membrane alterations, activation of 
reactive oxygen species (ROS), and DNA fragmentation and hence triggers the 
death of cancer cells. Carbon nanotubes (CNTs) are widely explored to deliver 
betulinic acid, and a poorly water-soluble drug was formulated using oxidized 
carbon nanotubes with diameter of 20–30 nm and length of 0.5–2.0 μm by chemical 
vapor deposition process. Studies confirmed that the CNT-formulated betulinic acid 
has increased efficiency than the free drug when studied using human lung cancer 
cells (A549) and human liver cancer cells (HepG2) (Tan 2014).

6.3.11  �Integrated Nanocomposite Materials

Combining different nanocarriers helps in improvement of already existing nano-
drug delivery platforms. Liposomes when combined with polymeric nanoparticles 
tend to have the benefits of both the systems. Also, liposomes can be frequently 
coated with PEG in order to prolong the in vivo plasma circulation time (Gabizon 
and Martin 1997; Yu et al. 2008; Allen and Cullis 2013). Similarly, liposomes for-
mulated with dendrimers have slow and sustained drug-releasing abilities with 
improved drug loading capacity. “LipoMag” is the formulation where the inner core 
is made of magnetic nanocrystal coated with oleic acid, and the outer shell is made 
of cationic lipid molecules (Fig. 6.8) (Pankhurst et al. 2009; Xie et al. 2010; Namiki 
et al. 2009).

The bio-efficacy of phytochemicals, especially polyphenols, is improved by edi-
ble nanoencapsulation vehicles (ENVs). Efficacy enhancement is through 

Fig. 6.8  “LipoMag” formulation of oleic acid-coated magnetic nanocrystal core and a cationic 
lipid shell. These nanoparticles could be magnetically guided to deliver at the specific targeted 
sites (Pankhurst et al. 2009; Xie et al. 2010; Namiki et al. 2009).
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influencing phytochemical dispersion and gastrointestinal stability, rate of release, 
transportation efficiency across the endothelial layer, systemic circulation and bio-
distribution, and regulation by gut microflora. Furthermore, the rational design of 
the size, surface property, matrix materials, and compartment structure of ENVs 
also influence the bio-efficacy of the ENVs (Xiao et al. 2017).

6.3.12  �Traditional and Green Synthesis of Nanoparticles

The production of nanoparticles basically involves two major approaches, namely, 
the top-down technique and the bottom-up approach of the components. The top-
down techniques comprise milling, grinding, and applying laser to shred and break 
the larger particles into smaller-sized nanoparticles. The bottom-up technique 
allows the creation and engineering of nanoparticles based on an atom scale 
arrangement controlled by thermodynamic regulations (Manickam et  al. 2017). 
With the aim of sustainable, pollution-free, nano-chemical synthetic approaches, 
the development of efficient green chemistry methods has drawn the interest of 
many researchers in recent years. Basically the aim of green biosynthesis of 
nanoparticles is to have cost-effective and environmentally friendly alternative 
approaches compared to the chemical and physical methods. Among the green 
alternatives, plants and phytoextracts are considered to be the best candidates of 
choice for the biosynthesis of nanoparticles. The advantages of using plant and plant 
extracts for the synthesis of nanoparticles include cost-efficiency, prolonged 
stability, and faster and large-scale synthesis (Sharma et al. 2009).

6.4  �Nano-phytochemical Applications Against Inflammation

Inflammation is the process which characterizes the physiological reaction of the 
body to tissue damage (e.g., stress, irritants, and radiations), infections (microbial 
and viral), or genetic changes. It is a defensive response which involves immune 
cells, blood vessel, and different types of mediators (Surh 2003). Many biological 
processes associated during the inflammatory events include local vasodilatation, 
increased capillary permeability, accumulation of fluid and blood proteins into the 
interstitial spaces, recruitment of neutrophils out of the capillaries, and release of 
inflammatory mediators (Tabas and Glass 2013; Baum and Arpey 2005; Gurtner 
et al. 2008; Karin and Clevers 2016).

But if the tissue injury is not fixed during the acute inflammatory phase and pro-
longed, it leads to chronic inflammation which causes various immunopathological 
changes in the biological system (Baum and Arpey 2005; Hench 2005; Ryan and 
Majno 1977; Golia et al. 2014). Many diseases and their pathological progression 
are associated with inflammation which includes diabetes, cancer, cardiovascular 
disease, neurodegenerative diseases, obesity, asthma, and inflammatory disease like 
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acute pancreatitis and arthritis (Ryan and Majno 1977; Golia et al. 2014; Montecucco 
et al. 2017; Amor et al. 2014; Velusamy and Tamizhselvi 2018; Chen et al. 2016; 
Perretti et al. 2017; Lambrecht and Hammad 2015; Zhong et al. 2017; Crusz and 
Balkwill 2015; Bhatia et al. 2005).

Many synthetic compounds currently used against these disorders are associated 
with side effects like liver failure, skin problems, asthma, headache, nausea, ulcer, 
and gastric problems. To overcome these side effects, the focus is turned on towards 
a range of natural phytoconstituents including phenolics, alkaloids, and terpenoids 
for the regulation of inflammatory processes (García-Lafuente et al. 2009). Partial 
list of some phytochemicals used for anti-inflammatory approaches and the formu-
lations used for effective delivery as reviewed in recently are listed below (Table 6.5) 
(Conte et al. 2017).

The ability of phytochemicals in inhibiting iNOS activity, reducing iNOS expres-
sion, or regulating cyclooxygenase-2 (COX-2) function has been proven in various 
studies. Also, phytochemicals suppress Akt, protein kinase-C, and mitogen-acti-
vated protein kinase (MAPK) signaling pathways by modifying the DNA-binding 
abilities of transcription factors such as nuclear factor kappa-B (NF-κB) (Fig. 6.9) 
(Montecucco et al. 2017). During the allergic reactions, by inhibiting the release of 
histamine, phytochemicals can be used as anti-inflammatory drugs.

In spite of the high potential of raw plant extracts for controlling inflammations, 
poor solubility, poor stability, short biological half-life, and rapid elimination ham-
per their clinical use. Likewise, absorption is adversely affected by the massive 
molecular size and altered pharmacokinetics due to high acidic gastric pH (Milbury 
et al. 2010).

To overcome these ill effects, nanosized carriers are applied while delivering the 
anti-inflammatory phytochemicals to the respective delivery site. Various phyto-
chemical-conjugated nanotechnological formulations are applied in enhancing the 
anti-inflammatory properties and some of which are discussed here.

6.4.1  �Polyphenolic Compounds

Polyphenols are most active towards chronic disease by boosting the response of the 
immune system. Polyphenolic compounds are prominently involved in anti-
inflammatory activity. These anti-inflammatory principles are structurally arising 
due to their primary aromatic ring, oxidation status, and associated functional 
groups and functionally because of their potent-free radical scavenging properties 
and interactive abilities with proteins, enzymes, and membrane receptors activity 
(González et al. 2011). Hence the polyphenolic quercetin, resveratrol, and tannins 
are acknowledged as painkillers (Etheridge et  al. 2013). However, clinical 
applications of polyphenolic compounds are limited due to both intrinsic (chemical 
structure, molecular weight, and low hydrosolubility) and extrinsic issues (poor 
stability in the gastrointestinal environment). Polyphenolic compounds were able to 
maintain the structural and functional integrity when delivered through the nano-
delivery systems (Li et al. 2009).
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Table 6.5  Some of the common phytochemicals used for anti-inflammatory, anticancerous, and 
other therapeutic approaches as reviewed in (Conte et al. 2017)

Phytocompounds Reported mode of delivery system

Quercetin (polyphenol) Solid lipid nanoparticles made up of soya lecithin, Tween 80, and 
PEG
Poly(lactic-co-glycolic acid) (PLGA) nanoparticles loaded with 
quercetin
Quercetin-loaded Eudragit-polyvinyl alcohol nanoparticles
Lipid-coated nanocapsules
Quercetin-loaded poly(lactic-co-glycolic acid) (PLGA) NC

Resveratrol (polyphenol) Encapsulated in PLGA nanoparticles
Resveratrol in Eudragit RL 100 nanoparticles
Carboxymethyl chitosan nanoparticles
Loaded in solid lipid nanoparticles with controlled releasing 
profile
Resveratrol loaded in solid lipid nanoparticles
Cyclodextrin-based nano-sponges

Ellagic acid (phenolic class 
of tannins)

Ellagic acid loaded in PLGA nanoparticles
Poly(lactic-co-glycolic acid) (PLGA)–polycaprolactone (PCL) 
nanoparticles

Curcumin (polyphenol) Encapsulated in hydrogel-/glass-based nanoparticles
Oil in water nanoemulsion containing curcumin in oil phase
Encapsulation of curcumin in liposomes (lipid nanoparticles)

D-9-Tetrahydrocannabinol 
(phyto-cannabinoid)

Encapsulated in nanostructured lipid carriers
Loaded in lipid nanoparticles containing lecithin
Poly(lactic-co-glycolic acid) (PLGA) nanoparticles containing 
surface-modifying agents such as chitosan, Eudragit RS, lecithin, 
and vitamin E
Cannabidiol-loaded PCL particles
D9-THC-loaded poly(lactic-co-glycolic acid) (PLGA) 
nanoparticles

Phytosterol Nanodispersion produced by emulsification–evaporation using 
hexane
Phytosterols colloidal particles using anti-solvent precipitation
Nanodispersion obtained by suspensions of submicron particles 
of phytosterol

Oregano and cassia essential 
oil

Encapsulated in corn zein nanocapsules via phase separation 
techniques

Thymol and carvacrol 
essential oil

Nanoencapsulation in corn zein nanoparticles via liquid–liquid 
dispersion method

Thymol and 
cinnamaldehyde essential oil

Inclusion in cyclodextrin

Lippia sidoides essential oil 
(50%–70% thymol)

Encapsulated aliginate/cashew gum (biopolymer blend) 
nanoparticles via spray-drying

Cumin and basil essential oil Polyamide capsules, release cargo oil under UV-light radiation
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6.4.2  �Quercetin

Quercetin is semi-lipophilic flavonol present in the plant of tomatoes, leafy green 
vegetables, and berries. For encapsulation-based delivery of quercetin, solid lipid 
nanoparticles made of soya lecithin, Tween-80, and polyethylene glycol (PEG) 
were used, and here 91% encapsulation effectiveness was achieved. Using this 
approach, there was a 5.7-fold enhancement in the absorption of poorly water-
soluble quercetin during the oral delivery (Barras et al. 2009).

Quercetin formulated using lipid-coated nanocapsular approach enhanced the 
solubility by hundred times compared with the free form of quercetin. Also here the 
stability was improved by more than 10 weeks without any drastic degradation (Wu 
et al. 2008). Activity-wise, enhanced antioxidant properties like DPPH scavenging, 
superoxide anion scavenging, and anti-lipid peroxidation were strengthened, and 
more efficiency was reached with quercetin-loaded nanoparticles than pure 
quercetin. Release of quercetin from carriers was increased by 74-fold than the free 
form, when nanoprecipitation was used with Eudragit E® and polyvinyl alcohol 
(PVA) during synthesis of quercetin-loaded nanoparticles.

Poly(lactic-co-glycolic acid) (PLGA)-based nanofabrication has been developed 
for encapsulation and controlled release of phytocompounds. Pool et al. synthesized 
quercetin-loaded poly(lactic-co-glycolic acid) (PLGA) nanocapsules aimed at prevent-
ing oxidative stress in human body against peroxyl radical-induced lipid peroxidation, 

Fig. 6.9  Many phytochemicals target various mitogenic signaling pathways like Akt, protein 
kinase C (PKC), mitogen-activated protein kinases (MAPKs), MMPs, transcription factors like 
nuclear factor kappa B (NF-κB) (Montecucco et al. 2017)
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thus ensuring more potent applications in anti-inflammatory therapy (Chakraborty 
et al. 2012; Pool et al. 2012). Even in a rat model, the effectiveness of orally adminis-
tered quercetin–PLGA nanoparticles was confirmed (Singh and Pai 2014a).

6.4.3  �Tannins

Ellagitannins (ETs) and ellagic acid (EA) belong to the family of bioactive polyphe-
nolic class of tannins (Heber 2011) and are abundantly present in pomegranates 
(Sonaje et al. 2007). To enhance the bioavailability, ellagic acid was loaded with 
poly(lactide-co-glycolide) (PLGA) and polycaprolactone (PCL) using PEG 400 
with DMAB or PVA as the stabilizers. Significantly enhanced intestinal uptake of 
DMAB-stabilized nanoparticles was observed than carboxymethyl cellulose sus-
pension or when compared with the PVA-stabilized ellagitannins in rats. Evidentially 
from biochemical and histopathological studies of kidney, it was shown that ellagic 
acid nanoparticles were capable to check the induced nephrotoxicity in rat models 
(Chainani-Wu 2003).

6.4.4  �Curcuminoids

Curcuminoids are chemicals present in turmeric and show therapeutic potential 
against different pathological conditions. This group includes mainly curcumin 
(diferuloyl methane), demethoxycurcumin, and bisdemethoxycurcumin. Curcumin 
was shown to have anti-inflammatory actions by inhibiting the key molecules medi-
ating inflammation (Zhang et al. 2016). Different attempts were made to increase the 
efficacy of these molecules. For example, topical application of curcumin captured 
in hydrogel-/glass-based nanoparticles protects the chondroprotective activity of 
curcumin and increases its bioavailability in osteoarthritic mouse model (Li et al. 
2005). Also liposomes are used as nano-vectors for encapsulating and release of 
curcumins, and Takahashi et al. developed encapsulation of curcumin in liposomes 
by using commercially accessible lecithin (Takahashi et al. 2009). These nano-deliv-
ery procedures demonstrated that encapsulation enhances the bioavailability and 
increases the pharmacokinetics of drug.

6.4.5  �Phytocannabinoids

Cannabis, commonly known as marijuana, is a product of the Cannabis sativa plant, 
and the active compounds are collectively referred to as phytocannabinoids, and to 
date around 70 phytocannabinoids are reported (Hill et al. 2012). Cannabinoids are 
anti-inflammatory in nature and mediate their effects through different mechanisms 
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which include induction of apoptosis, inhibition of cell proliferation, suppression of 
cytokine production, and induction of T-regulatory cells (Nagarkatti et al. 2009).

Cannabinoids in different experimental models such as multiple sclerosis, rheu-
matoid arthritis, colitis, and hepatitis have reported to guard the host from the patho-
genesis through stimulation of multiple anti-inflammatory pathways (Henson 2003; 
George et al. 2008; Esposito et al. 2016).

To avoid any potential psychotropic drug exploitation and precisely to target the 
active principle, encapsulated phytocannabinoids have been prepared using nano-
lipid carriers by ultrasonication. Similarly, a lipid nanoparticle-based cannabinoid 
formulation was developed against chronic pain (Durán-Lobato et al. 2016).

Also the surface-modified poly(lactic-co-glycolic acid) nanoparticle (PLGANP) 
was developed using modifying agents like chitosan, Eudragit RS, lecithin, and 
vitamin E to increase the release rates of the particles (Martín-Banderas et al. 2015). 
Hernán Pérez de la Ossa et al. used oil in water emulsion–solvent method to prepare 
suitable dosage form of cannabidiol-loaded PCL particles (Hernan Perez De La 
Ossa et al. 2012).

From multiple studies it is clear that these nanocarriers maintained the original 
physicochemical properties and long-term stability and improved the 
pharmacokinetics of these phytochemicals.

6.4.6  �Phytosterols

Phytosterols, the natural components of human diets which involve plant sterols and 
stanols, and phytosteroids are found mostly in vegetable oils, cereals, fruits, and 
vegetables.

Experimental (Medeiros et al. 2007; Vitor et al. 2009; Holanda Pinto et al. 2008; 
De Jong et al. 2008) and clinical (Hallikainen et al. 2008; Aldini et al. 2014) studies 
have confirmed the anti-inflammatory properties of plant sterols in addition to 
anticancerous and anti-atherogenic activities (Hu et al. 2017). Recently phytosterol 
supplementation has shown no significant effect on growth but could extraordinarily 
decrease diarrhea rate and develop resistance and anti-inflammatory action in 
animal models like weaned piglets (Leong et al. 2011).

Conversely the absorption rate of phytosterols is less than 2%, and to increase the 
phytosterol pharmacokinetics, the formulation and characterization of phytosterol 
nanodispersions are done by using emulsification–evaporation process. These 
formulations with food application are highly water soluble and characterized by 
significantly enhanced absorption (Rossi et al. 2010).

Similarly, stable colloidal dispersions having hydroxyl groups on the particle sur-
face and non-ionic stabilizer-based sterically stable formulations were prepared. Turk 
et al. used the technique which involves a rapid expansion of a supercritical solution 
using four different surfactants to produce stable suspensions of submicron particles 
of phytosterol. Most cases bimodal particle size of about 500 nm were obtained and 
long-term stability was observed (Mancini et al. 2014; Türk and Lietzow 2004).
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6.4.7  �Essential Oils

Essential oils (EOs) are hydrophobic liquid rich with volatile aroma compounds, 
extracted from aromatic plants as secondary metabolite, and have a significant role 
in the traditional pharmacopeia. Due to its biological activity and medicinal 
properties, essential oils are used for antimicrobial, anti-inflammatory, and other 
pharmaceutical applications (Ajazuddin and Saraf 2010; Elshafie et  al. 2015). 
Additionally essential oils have been applied in various industries while preparing 
perfumery, cosmetics, feed, food, and beverage-based products. With essential oils, 
encapsulation techniques are applied for upgrading the bioavailability, 
pharmacological activities, solubility, targeted delivery, and reduction by 
biodegradation (Parris et al. 2008). Recently 100% pure essential oil of oregano, red 
thyme, and cassia have been encapsulated through phase separation into zein 
nanospheres (Parris et al. 2008; Wu et al. 2012). Similarly, liquid–liquid dispersion 
method used to encapsulate thymol and carvacrol in the nanoparticles of zein was 
applied which has improved antioxidant as well as antimicrobial activity (Pinho 
et al. 2014; Zhou et al. 2018).

Like zein, cyclodextrins have also been used to improve the solubilization and 
stabilization of natural active product. Cyclodextrin formulations are used to load 
molecules which are less polar than water (Pinho et al. 2014; Loftsson and Brewster 
1996). Alternatively alginate/cashew gum nanoparticles were developed into a 
biopolymer blend for encapsulation of essential oil using spray-drying method 
(Fleige et al. 2012; de Oliveira and Paula 2014).

Recent innovative approaches include controlled and triggered release of phyto-
compounds using stimuli-responsive materials during the encapsulation methods. 
In this regard, Bizzarro et al. prepared cumin and basil oil-loaded polyamide cap-
sules, which have the capability of delivering their cargo oil under UV-light irradia-
tion (Bizzarro et al. 2016).

Though many phyto-modifications were proposed using nano-approaches for 
anti-inflammatory functions, currently they are only in laboratory level for 
developmental purpose and not been entered into any clinical applications.

6.5  �Anticancerous Approaches Using Phyto-nanotechnology

Evidences from the in vitro, in vivo, clinical trial data reveal that the plant-based 
diet can help to fight many chronic disorders including cancer. Phytochemical 
compounds control cancer by regulating the crucial pathogenic transformation 
process like mediating apoptotic cell death, inhibiting angiogenesis, blocking 
metastasis, and others (Fig. 6.10). Recently, a lot has been studied about the poten-
tial role of medicinal plants in anticancer therapy, and it is proven that phytochemi-
cal agents are associated with better efficacy and lesser side effects. Evidentially, 
around 47% of FDA-approved anticancer drugs are derived from plants (Carter 
et al. 2003). Phytochemicals could be used as a single chemotherapeutic agent or in 
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combination as adjuvants with standard chemotherapeutic drugs to increase their 
effectiveness while decreasing their side effects.

Some of the promising phytochemicals or its derivatives already marketed for 
cancer treatment include paclitaxel, vinblastine, and topotecan, and the nanotechno-
logical approaches in formulation and enhancing their efficiency are discussed below.

6.5.1  �Nanotechnological Approaches in FDA-Approved 
Phyto-derivatives for Cancer Therapy

�Paclitaxel

Paclitaxel (PX) is a mitotic inhibitor isolated from the bark of Pacific yew (Taxus 
brevifolia). It is considered to be one of the important and most effective 
chemotherapeutic drugs ever developed, and it exerts its cytotoxic effects against a 

Fig. 6.10  Phytochemical compounds control cancer by regulating the crucial pathogenic events. 
Phytochemicals combat cancer by the inducing apoptosis, by inhibiting cell proliferation, by cell 
cycle arrest, by modulating many signaling pathways, by hormonal regulation, by diverting the 
neoplastic cells for differentiation, by interfering with the expression of oncogenes, by overex-
pressing tumor suppressor genes, by reverting the drug resistance, by inhibiting angiogenesis and 
metastasis, and by exerting its antioxidant effects
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broad range of cancers such as lung, ovarian, and breast cancers. It belongs to the 
class of plant alkaloids. The underlying mechanism of action of paclitaxel for attain-
ing its cytotoxicity is by promoting and stabilizing microtubules and inhibiting late 
G2 or M phases of cell cycle. It is highly hydrophobic, and due to this reason it is 
formulated in a mixture of Cremophor EL and dehydrated ethanol (50:50, v/v), a 
combination known as Taxol. Due to the presence of surfactants like Cremophor 
EL® (BASF Corp.) for paclitaxel, and Tween-80® (ICI Americas, Inc.) for 
docetaxel, Taxol has severe side effects. Therefore, there was an ultimate need for 
the development of alternative Taxol formulations (Lines and Studies 2015). 
Researchers developed nano-particular albumin-bound paclitaxel (Abraxane®) 
which has been approved by the FDA and marketed by Celgene for the treatment of 
metastatic breast cancer and non-small-cell lung cancer (NSCLC).

Abraxane® nanoparticles are 130 nm in diameter and are made of human serum 
albumin. The albumin-based nanoparticle is formulated to bind to the drug paclitaxel 
non-covalently and is reversible. This formulation also increases the drug-carrying 
capacity of the nanocarrier as it can carry about extra 10% of the drug paclitaxel 
(Green et al. 2006; Miele et al. 2009).

In addition, there are plenty of novel paclitaxel nanoparticle formulations which 
are in different stages of clinical trials. For instance, paclitaxel-loaded PLA–PEG 
nanoparticles were synthesized and characterized for their cytotoxic activity on 
breast (MCF7, MDA-MB-231, and BT-474) and ovarian cancer cell (SK-OV-3) 
lines, which showed sustainable nontoxic drug-releasing properties. Further in 
tumor xenograft models, distribution of these nanoparticles was visualized for 
efficient delivery (Hou et al. 2015). Paclitaxel-loaded poly(lactic-co-glycolic acid) 
(PLGA) particles were tested for the viability of human hepatocellular carcinoma 
(HepG2) cells, and this nanoparticle formulation effectively inhibited the 
proliferation and induces the apoptosis in HepG2 cells. Using this cost-effective 
nanoformulation approach, sustained release of paclitaxel was achieved (Moudi 
et al. 2017).

�Vinca Alkaloids

Vinca alkaloids are a subset of drugs obtained from the Madagascar periwinkle 
plant (Catharanthus roseus) which are antimitotic and anti-microtubule targeting 
alkaloids. They possess hypoglycemic as well as cytotoxic effects. Four major vinca 
alkaloids are in clinical use for cancer: vinblastine, vinorelbine, vincristine, and 
vindesine. These vinca alkaloids halt the division of cells and cause cell death. 
During cell division, they bind to the tubulin molecules and disrupt its microtubule 
function and directly cause metaphase arrest (Lee et  al. 2015). Tubulin protein 
normally works in cells to create “spindle fibers” (also called as microtubules). 
These microtubules provide cells with both the structure and flexibility they need to 
divide and replicate. Without microtubules, cells cannot divide. Vinca alkaloids are 
highly neurotoxic. Moreover vinca alkaloids are susceptible to multidrug resistance 
in the earlier phase of treatment which limits severely the clinical usage of vinca 

V. Manickam et al.



241

alkaloids. To minimize these problems and enhance the therapeutic efficiency of 
vinca alkaloids, many researchers have developed nanotechnological strategies 
such as using liposome-entrapped drugs, chemical or peptide-modified drugs, 
polymeric packaging drugs, and chemotherapy drug combinations. Because of the 
resistance developed from decreased uptake and increased drug efflux, Wang et.al 
encapsulated vincristine into folic acid-conjugated PEGylated liposomes to improve 
the anti-tumor efficacy on multidrug resistant cancers (Wang et  al. 2012). These 
nanoparticles inhibited tumor growth effectively both in vitro on KBv200 cells and 
on in vivo KBv200 xenograft models.

�Etoposide

Etoposide (ETP) belongs to a class of plant alkaloids. It is a semisynthetic derivative 
of podophyllotoxin, an inhibitor of topoisomerase II, which interfere with structural 
arrangement of DNA which is necessary during replication.

Etoposide has a significant activity against malignant lymphoma, small-cell lung 
cancer, stomach cancer, and ovarian cancer. However, because of its low solubility, 
the short biological half-life (1.5 h), poor bioavailability, and severe side effects 
(cardiotoxicity and myelosuppression), etoposide (ETP) has limited clinical 
applications. To overcome these problems, there is a need for finding the new 
systems of efficient and targeted drug delivery which could deliver anticancer agents 
precisely to the target cancerous cells. Henceforth etoposide-loaded nanostructured 
lipid carriers (ETP-NLCs) were synthesized and evaluated for their antitumor 
activity in vitro and in vivo. ETP-NLCs significantly enhanced the cytotoxic effects 
in  vitro and in  vivo antitumor effect against SGC7901 cells and gastric cancer 
animal model compared to the free drug (Zhang et al. 2017).

Folate (FA)-decorated and etoposide-loaded NLCs (FA-ETP-NLCs) were pre-
pared and analyzed for anticancerous activities both in vitro and in vivo. In vitro 
cytotoxic effects were on three cell lines CT26, SGC7901, and NCI-H209, and 
nanostructured carriers were found to increase cytotoxicity compared to the EPT 
solution form. The in vivo studies on BALB/c nude mice for gastric cancer models 
illustrated that FA-ETP-NLCs had the best biodistribution in tumor tissue and the 
highest antitumor activity than free form (Pimple and Manjappa 2012).

For testing the synergistic effect of etoposide and quercetin on lung cancer cell 
lines, PLGA nanoparticles separately loaded with etoposide (ETP) and quercetin 
dihydrate (QDN) were designed by using solvent diffusion (nanoprecipitation) 
technique. In the encapsulated form, the drug-loaded PLGA nanoparticles showed 
sustained release of drugs as compared to faster clearance of free form. The in vitro 
cytotoxicity assays on A549 (human lung adenocarcinoma epithelial cell line) 
revealed significant increase in cytotoxicity with nanoparticle formulations than the 
free drug form. The comparison was also made with respect to cytotoxic activity of 
individual drug against combination drugs in the form of free drugs as well as 
nanoparticles. The combination treatment in the form of nanoparticles is found to 
produce significant cytotoxic effects (Ma and Mumper 2013).
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6.5.2  �Other Phytochemicals in Cancer Therapy

In addition to the approved and marketed phyto-derivatives, other promising phyto-
chemicals and their nanotechnical formulations were reported for cancer therapies, 
and some of which are discussed below.

�Resveratrol

Resveratrol (3,5,4′-trihydroxy-trans-stilbene) is a phytoalexin produced in plants in 
response to injury or upon pathogen attack like fungus and bacteria. It is abundantly 
found in many plant species like the skin of grapes, berries, etc. It is considered to 
be a major active polyphenol of red wine and exerts numerous health benefits 
including improved metabolism, cardiac protection, and cancer chemoprevention 
(Lee et al. 2012; Karthikeyan et al. 2013).

Many in vitro and in vivo studies explained the promising anticancer properties 
of resveratrol, even though it has many drawbacks when considered for clinical 
applications. For instance, its bioavailability is highly limited because of various 
reasons including poor stability, lesser absorption, poor water solubility, and shorter 
biological half-life. Thus it is very difficult to maintain the therapeutically relevant 
doses in the bloodstream (Karthikeyan et al. 2013; Singh et al. 2016). To address 
these limitations, researchers found a way to increase its anticancer properties by 
developing many biocompatible nanoparticles.

Resveratrol-loaded gelatin nanoparticles were studied for their anticancer prop-
erties on lung cancer cell line, NCI-H460, and showed promising anticancer effects 
than free resveratrol. This increase in anticancer activity is due to enhanced reactive 
oxygen species and by increase in DNA damage. Also the bioavailability of resve-
ratrol was increased when it is loaded into the gelatin nanoparticles than when 
applied in its free form (Karthikeyan et al. 2013).

Bu et al. (2013) developed trans-resveratrol-loaded chitosan nanoparticles which 
are conjugated with two ligands biotin and avidin on the surface. This approach is 
to target the resveratrol selectively to the hepatic carcinoma, instead of directing 
towards whole liver. The biotin-bound polymers tend to accumulate in malignant 
tissue than normal tissues, and avidin-bound polymers are rapidly eliminated from 
blood circulation and accumulate in the liver. In this study they have concluded that 
the resveratrol bioavailability dramatically increased when it is loaded into the 
biotin-coated chitosan nanoparticles (B-CS-NP) and avidin–biotin-coated chitosan 
nanoparticles (A-B-CS-NP). They have also succeeded in increasing accumulation 
of trans-resveratrol-loaded chitosan nanoparticles in liver by conjugating either 
biotin or avidin. In another study resveratrol-loaded poly(ethylene glycol)–
poly(lactic-co-glycolic acid) polymeric nanoparticles are studied for their cytotoxic 
and metabolic effects on CT26 cancer cells by comparing to that of the free 
compound. Increasing the stability and circulation time of resveratrol (RSV) by 
loading into nanoparticles allows significant metabolic and antitumor effects in 
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tumors of live mice models. Convincingly the results provide an encouraging 
outlook on the potential of PEG–PLA polymeric nanoparticles as an effective 
method to deliver resveratrol in vivo for cancer therapy (Bu et al. 2013).

With respect to nanocapsules, Carletto et al. (Carletto et al. 2016) has developed 
resveratrol-loaded nanocapsules with high drug-loading efficiencies and high 
in  vitro cytotoxicity in B16F10 skin cancer cells. In in  vivo studies, these 
nanocapsules loaded with resveratrol significantly reduced the tumor size of 
B16F10-bearing tumor mice models (Carletto et al. 2016).

In addition to its application in cancer therapy, resveratrol is having anti-
inflammatory activities during human applications, and efforts are on to enhance its 
efficacy through nano-modification procedures during nutrient supplementation for 
various other disorders. Thus resveratrol turned more efficient when encapsulated 
as nanoparticulate form than the free one. Orally administered PLGA nanoparticles 
of resveratrol with particle size of about 170 nm have been reported to be more 
efficient by 78% than the free form. Furthermore, it was demonstrated that there is 
significant increase in rate and extent of oral bioavailability of Eudragit-RL-100 
formulated trans-resveratrol. It was proven that biodistribution of it in liver and 
spleen has been significantly affected by Eudragit RL 100 composition (Singh and 
Pai 2014b). Also carboxymethyl chitosan-encapsulated resveratrol enhanced the 
solubility and thus enhanced the antioxidative property of resveratrol (Zu et al. 2014).

In an in vitro approach, nanosomes like spherical cyclodextrin have been reported 
to enhance the solubility and stability of resveratrol with better encapsulation 
efficiency, however without compromising the biological activity of pure form 
(Ansari et al. 2011). Similarly Pandita et al. prepared resveratrol-loaded solid lipid 
nanoparticles with drug integration efficiency of 89%, having improved plasma 
availability compared to the freely delivered drug (Pandita et al. 2014).

�Thymoquinone

Thymoquinone (TQ) (2-methyl-5-isopropyl-1,4-benzoquinone) is a phytochemical 
compound and is a major active component present in the plant Nigella sativa (black 
seed) with long history of traditional medical applications. The thymoquinone is 
said to have many therapeutic properties including antimicrobial, anti-inflammatory, 
antioxidant, antidiabetic, anticancer, hepatoprotective, and renal protective 
activities. Although it possesses many health benefits, it has major limitations in its 
clinical properties due to its poor solubility. Its hydrophobic nature causes decreased 
bioavailability and reduces its formulation characteristics and poor membrane 
penetration capabilities. The lack of bioavailability and unfavorable pharmacokinetic 
parameters prevented the use of thymoquinone in clinical settings. To improve the 
bioavailability and cytotoxicity, thymoquinone-loaded nanostructured lipid carrier 
(TQ-NLC) was developed and tested using breast cancer cells (MDA-MB-231 and 
MCF-7) and cervical cancer cell lines (HeLa and SiHa). The TQ-NLC has shown 
high cytotoxic effects in MDA-MB-231 cells compared to the other cell lines 
(Fakhoury et al. 2016).
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In another study, thymoquinone nanoparticles (TQ-NP) were formulated in 
poly(styrene-b-ethylene oxide) (PS-PEO) for theranostic approach, i.e., simultaneous 
imaging and cytotoxicity induction in breast cancer cell lines (MDA-MB-231, 
MCF-7). By comparing with non-tumorigenic cell line MCF-10A, the authors 
confirmed the stability, increased cellular uptake, and improved entry into nucleus, 
and as a consequence cytotoxic potential of thymoquinone was greatly enhanced in 
cancer cells (Soni et al. 2015).

In a synergistic approach, polymeric biodegradable poly(lactic-co-glycolic acid) 
(PLGA) nanoparticles encapsulated with thymoquinone and paclitaxel have shown 
to exert enhanced anticancer potential than the free drugs on MCF-7 breast cancer 
cells (Ng et  al. 2015). In an in  vivo setup, thymoquinone encapsulated in 
biodegradable polymeric nanoparticles was studied for any improvement in 
bioavailability. When tested on colorectal tumors of murine model, this 
nanoformulation of thymoquinone showed significant increase in the therapeutic 
activity by decreasing the tumor volumes and increasing the survival rate of the 
cancerous animals (Odeh et al. 2017).

Delivery of drug molecules using liposomes is considered to be a promising 
strategy to increase the therapeutic efficiency of targeted compound and to reduce 
the drastic side effects exerted by them. Liposomes loaded with thymoquinone were 
developed to increase the solubility of thymoquinone while reducing its side effects 
and to check their anticancer potential on breast cancer cells (Odeh et al. 2017).

�Curcumin

Curcumin is a potential dietary component of turmeric (Curcuma longa), which 
belongs to the family Zingiberaceae. It is a natural phenolic compound which is 
responsible for the yellow color of the turmeric. Chemically it is referred to as 
diarylheptanoid belonging to the group of curcuminoids. Studies have indicated that 
curcumin shows potential anticancer effects by killing cancer cells and preventing 
the cells from growing. It has the best anticancer effects on breast cancer, bowel 
cancer, stomach cancer, cervical cancer, liver cancer, colon cancer, skin cancer 
cells, etc.

Curcumin is a hydrophobic polyphenol with very low toxicity even at very high 
doses. Though curcumin is considered to have potential anticancer activities, its low 
bioavailability makes its less useful for its therapeutic applications. Subsequently, 
different nanotechnological measures were attempted to enhance the bioavailability 
and some of which are discussed here. For instance, the curcumin-loaded poly(lactic-
co-glycolic) nanoparticles (PLGA-CUR-NPs) were shown to have effective 
therapeutic potential on prostate cancer cells by inhibiting the cell proliferation in 
androgen-dependent and androgen-independent prostate cancer cell lines. The 
inhibitory role is achieved in both in vitro and in vivo models by inhibiting cell 
proliferation, inducing apoptosis, by interfering β-catenin, AKT, and STAT3 
signaling pathways. Moreover the PLGA-CUR-NPs show to downregulate the 
oncogenic miRNA miR21 and upregulate the beneficial miR-205 (Saeed et al. 2017).
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In a recent study, PLGA (poly(lactic-co-glycolic acid)) nanospheres encapsu-
lated with curcumin (NCur) were tested on PC3 prostate cancer cell lines for their 
cytotoxic effects. In these cells, NCur has shown increased cell death, which is 
mediated mechanistically by both apoptosis and autophagy compared to the free 
curcumin (Wang 2017).

Nanostructured lipid carriers (NLCs) are the second-generation solid lipid 
nanoparticles.

These nanocarriers possess many important properties which make them as a 
preferred drug carrier. It is considered to increase the stability and improve the 
releasing properties of the loaded drug. NLC can be administrated through oral, 
pulmonary, intravenous, and percutaneous routes. NLC loaded with curcumin was 
studied in vitro for their anticancer properties on A549 lung cancer cell lines, and its 
pharmacokinetic effects were studied in rat models injected with curcumin-loaded 
NLCs (Cur-NLCs). This study has revealed that the intraperitoneally injected Cur-
NLC showed very good in  vivo tissue distribution characteristics of curcumin. 
Evidently the in vitro results proved the promising antiproliferative effect of Cur-
NLC on A549 cell line by inhibiting the cell proliferation and directing the cells to 
apoptosis. Like in  vivo results, with in  vitro model also, the cellular uptake of 
curcumin has increased significantly when delivered through NLC than free 
curcumin (Yin et al. 2013).

In a study using different types of curcumin-loaded nanoparticles, which when 
tested against the lung cancer cells, it was proven to have potent anticancer activities. 
Three types of curcumin-loaded nanoparticles (mPEG4k PCL20k, mPEG2k PCL4k, 
mPEG10k PCL30k) were prepared as amphilic methoxypoly(ethylene glycol) 
(mPEG)–polycaprolactone (PCL) copolymers and were tested on A549 lung cancer 
cell lines for their anticancer potentials. Among them, mPEG10k PCL30k has 
shown highest drug-loading efficiency and sustained release pattern. The curcumin-
loaded nanoparticles have exerted their anticancer activity through apoptosis, which 
is better when compared to the free form of curcumin (Li et al. 2005).

�Epigallocatechin-3-gallate

EGCG (epigallocatechin-3-gallate) is a biologically active and most abundant cat-
echin found in green tea (Camellia sinensis). Its chemotherapeutic role was studied 
extensively using in vitro and in vivo studies. It exerts its anticancer activity by 
inhibiting the proliferation of cancer cells, inducing apoptosis through Bcl-2 and 
BCl-xL proteins, by inhibiting epidermal growth factor receptor (EGFR) (Masuda 
et  al. 2003) and human epidermal growth factor receptor-2 (HER2) (Fang et  al. 
2003), by blocking the DNA methyltransferase to interfere at DNA hyper 
methylation (Li et  al. 2013), by regulating cell cycle, and by suppressing the 
angiogenesis by downregulating VEGF through HIF-1α (Hsieh et  al. 2011) 
(Fig. 6.11). Intake of high amounts of green tea polyphenols can exert toxic effects 
against cancer cells. Despite its potential anticancerous properties, its use is still 
limited due to its excessive toxicity, less bioavailability, and ineffective systemic 
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delivery. To improve its pharmacokinetic, pharmacodynamics properties and deliver 
as the optimized therapeutic agent, nanotechnological aspects can be implemented.

Gold nanoparticles (AuNPs) are gaining more interest as they offer many advan-
tages. They are very much biocompatible and nontoxic, and these nanoparticles 
possess unique optical and biochemical properties. Hence gold nanoparticles are 
not only used for drug delivery, but it exerts its applications in diagnosis also. In a 
study using gold nanoparticles, EGCG was conjugated to the surface of the gold 
nanoparticles (EGCG-pNG) and tested for its anticancer potential on bladder cancer. 
It was found to kill effectively the bladder cancer cells (MBT-2) by intrinsic pathway 
of apoptosis, however without showing any toxic effects to the normal cells. 
Compared to free EGCG, it also effectively reduced the tumor size in C3H/HeN 
mice cancer model induced by MBT-2 cells (Hsieh et al. 2011).

Fig. 6.11  Chemotherapeutic principle of epigallocatechin-3-gallate (EGCG) is mediated through 
negative interference of various molecules in different cell signaling processes. EGCG exerts its 
anticancer activity by inducing apoptosis by inhibiting survival-related genes like BCL2 and BCl 
XL, by inhibiting the activation of receptors like epidermal growth factor receptor (EGFR) and 
human epidermal growth factor receptor-2 (HER2), by blocking the DNA methyltransferase 
(DNMT) to inhibit the DNA hypermethylation, by regulating cell cycle, and by suppressing the 
angiogenesis by downregulating VEGF through HIF-1α,. and it prevents metastasis by inhibiting 
matrix metalloproteinases (MMPS), by inhibiting signaling molecules like PI3K and AKT, and by 
preventing nuclear translocation of transcription factor NF-κB
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Also EGCG nanocarriers were developed using chitosan specifically for the oral 
administration. This nano-EGCG when checked using melanoma cell-based 
xenograft model was found to have many advantages than the native EGCG. In 
vitro studies of EGCG on Mel 928 cells showed the cytotoxic effects even at eight 
fold lower doses than the native EGCG by inducing apoptosis and cell cycle 
inhibition. In in vivo setup also, it inhibited the growth of Mel 928 tumor xenograft 
implanted in nude mice even at tenfold lower dose than the native agent. It was 
reported that nano-EGCG inhibited the expression of proliferative marker proteins 
like PCNA and ki-67 (Siddiqui et al. 2014).

�Quercetin

Quercetin (3,3′,4′,5,7-pentahydroxyflavone) is a polyphenol which is present exces-
sively in fruits, seeds, vegetables, tea, coffee, bracken fern, and natural dyes. It is 
considered to have very strong antioxidative and anti-inflammatory properties. 
However quercetin is highly hydrophobic, and delivery is limited by its poor 
percutaneous permeation and skin deposition. Quercetin significantly inhibits the 
growth of cancerous cells like leukemia and breast, hepatic, ovarian, colorectal, 
gastric, and endometrial cancers. Several studies have shown that quercetin controls 
the growth of cancer cells by inducing apoptosis, regulating specific signaling 
pathways, decreasing oncogene expression, and inhibiting angiogenesis (Kumar 
et al. 2014). Though discussed in the previous section with respect to enhancing the 
anti-inflammatory roles, various attempts were also made using nanoformulation 
procedures for enhancing the pharmacological applications of quercetin 
against cancer.

Magnetic Fe3O4 nanoparticles were conjugated with quercetin was tested for 
their in  vitro anticancer properties on MCF-7 breast cancer cell line. A simple 
precipitation method was used to conjugate quercetin on the surface of dextran-
coated Fe3O4 via carboxylic/amine group using nanoprecipitation method. The 
cytotoxicity of quercetin-conjugated Fe3O4 nanoparticles increased significantly in 
comparison with pure quercetin, and this was supposedly due to the increased bio-
availability of the compound (Guan et al. 2016).

In a study, quercetin-loaded poly(lactic-co-glycolic acid)-d-α-tocopheryl poly-
ethylene glycol succinate nanoparticles (QPTN) were prepared for targeted treat-
ment of liver cancer. These nanoparticles were prepared by ultrasonic 
emulsification–solvent evaporation technique, and for these study three different 
nanoformulations, QT-loaded PLGA-TPGS NPs (QPTN), QT-loaded PLGA NPs 
(QPN), and QT/coumarin-6-loaded PLGA-TPGS NPs (QCPTN) were prepared. In 
vitro studies on HepG2 and HCa-F/T cells showed efficient uptake and internalization 
of the fluorescently labeled QPTN nanoparticles. In case of cell viability studies, 
QPTN showed higher cytotoxicity than QPN. They both induced apoptosis in liver 
cancer cells in a dose-dependent manner. However in the in vivo studies, QCPTN 
nanoparticles were highly targeted towards liver than QPN (Sarkar et  al. 2016). 
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Hence these nanoformulations can be effectively used both for diagnosis and 
treatment.

Folic acid (FA) armed mesoporous silica nanoparticles (MSN-FA-Q) loaded 
with quercetin nanoparticles were tested on breast cancer cells (MDA-MB-231 and 
MCF-7) for their anticancer properties. In this nanoformulation, the bioavailability 
of quercetin was increased by reducing its hydrophobicity. These nanoparticles 
caused apoptosis by increasing BAX proteins and downregulating phospho-
AKT.  Additionally these nanoparticles restricted the migration of breast cancer 
cells (Tian et al. 2013). Thus nanoformulative measures provide us the opportunity 
in unraveling and utilizing the complete antioxidative and anti-inflammatory and 
anticancerous properties of quercetin.

�Genistein

Genistein is a major isoflavone constitute present in soybean and considered to be a 
most important phytochemical in cancer therapy. It is a natural angiogenesis 
inhibitor and also a phytoestrogen as its structure is similar to the 17β-estradiol. The 
anticancer properties of genistein were demonstrated in many in vitro and in vivo 
studies. It shows its anticancer effect in different cancer cell types including breast, 
prostate, colon, gastric, non-small-cell lung cancers, as well as in leukemia. Many 
recent reports demonstrated that genistein could act as potent agent which can be 
used as chemopreventive agent either individually or in combination with 
conventional cancer drugs. Interestingly in Asian populations, the lower incidence 
of breast and prostate cancer is due to the regular dietary intake of soy products 
which is rich in genistein. Genistein is poorly soluble in water which limits its 
clinical applications, and so the nano-technical modifications were proposed. In this 
regard, genistein-loaded biodegradable TPGS-b-PCL (d-α-tocopheryl polyethylene 
glycol 1000 succinate-b-poly(ε-caprolactone-ran-glycolide)) nanoparticles were 
tested on cervical cancer cells. Genistein-loaded TPGS-b-PCL NPs were more 
effective in suppressing cancer in both in vitro and in vivo than the native form of 
genistein. These nanoparticles increased the bioavailability of genistein and helped 
in increasing its therapeutic potential (Yang et al. 2015).

6.6  �Nano-cosmeceuticals

In addition to their pharmaceutical and nutritive applications, the bioactive compo-
nents derived from the plant and plant extracts have increased beautifying cosmetic 
effect in human beings. The cosmeceutical industry is a rapidly blooming industry 
which has been using several phytochemicals as active component since ancient 
times. Phytochemicals are applied to treat variety of skin and other diseases includ-
ing aging, hair loss, inflammation, psoriasis, and protection from ultraviolet (UV) 
radiations (Kapoor 2005).
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Variety of plant-derived compounds used in synthesis of beauty and healthcare 
products includes catechins, epicatechins, gallic acids, quercetin, ascorbic acids, 
curcumin, luteolin, alpha- and beta-carotene, complex polysaccharides, and 
hydroxyl benzoic, cinnamic, and other fatty acids (Ganesan and Choi 2016).

Still there are significant challenges with respect to particle size and solubility 
resulting in low-quality cosmeceuticals, reduced skin penetration, and prolonged 
non-beneficial effects. These challenges lead to the quest for finding more novel and 
efficient technologies to synthesize more enhanced cosmetics and associated 
products. Nanotechnological applications attempt to solve the abovementioned 
challenges like enhancing the efficiency of the phyto-derived cosmeceutical 
products. In order to increase the activity of the nano-cosmeceutical products, 
different nano-delivery systems and methods are attempted (Hu and Huang 2013). 
These include nanoemulsions, dendrimers, hydrogels, and lipid nanoparticles 
(Bhatia 2016). Some of the phyto-derived cosmeceutical products and the application 
of nanotechnology as reviewed in (Ganesan and Choi 2016) are listed in Table 6.6.

Evidentially the use of nano-based phytochemicals is eventually increasing in 
sunscreens and other skin protectants. At present, a variety of natural and synthetic 
cosmetics having nanoformulations are marketed with multiple effects like skin 

Table 6.6  Nanotechnology in phyto-derived cosmeceutical products (Ganesan and Choi 2016)

Phytocompounds Nano-delivery methods Size (nm) Applications

Rice bran oil Nanoemulsion 69 Moisturizer
Antiaging
Skin care

Rice bran and raspberry 
seed oil

Lipid nanocarriers Sunscreens

Lavender extracts Polymeric poly(lactic-co-
glycolic)acid [PLGA] 
nanoparticle

301–303 Antiaging, 
antioxidant

Rosemary extracts Solid lipid nanocarriers
Nanostructured lipid carriers

57
68

Antioxidant(skin)
Antioxidant

Aloe vera extract Nano-liposome 200 Skin care
Safflower extracts Nanostructured lipid carriers 100 Hair care
Lutein Nanostructured lipid carriers 

and nanoemulsion
150–350 Skin care

Quercetin Nanostructured lipid carriers 215 Skin care
Ganoderma triterpenoids Nanostructured lipid carriers gel 179 Skin enhancement
Hinokitiol Poly(epsilon-caprolacton) 

nanocapsules
223 Hair care

Hinokital Bilayer vesicles Hair growth
Curcumin Nanoencapsulation 190 and 

276
Skin care

Tocopherol Nanostructured lipid carriers 
and nanoemulsion

67 and 576 Skin care

Resveratrol Solid lipid nanocarriers versus 
nanostructured lipid carriers

287.2 and 
110.5

Skin care
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whitening, UV protectant, and moisturizing capabilities. Recently, polymeric 
nanoparticles of sizes 70 nm, 156 nm, and 202 nm were tested to build a nanoemul-
sion system of flavanones obtained from Eysenhardtia platycarpa leaves to increase 
the efficiency of antiaging activity (Domínguez-Villegas et al. 2014). Besides, co-
encapsulating the phytochemicals such as curcumin and resveratrol showed high 
antioxidant and antiaging activity due to the enhanced delivery measures 
(Ramalingam and Ko 2016; Siddiqui et al. 2015).

6.6.1  �Moisturizers and Skin Enhancers

The skin at adverse conditions loses its moisture content leading to dryness and skin 
damage. The moisturizer on the other hand forms a thin layer or film on the outer 
surface of skin in order to retain the skin moisture content and acts as a protectant. 
Plant-derived natural compounds are gaining more significance in cosmetic prod-
ucts and formulations since they have the ability to protect the skin from both 
endogenous and exogenous damaging agents. The nanocarriers like emulsions, 
liposomes, and solid lipid carriers are used in moisturizing formulations with phyto-
bioactive compounds to restore skin hydration and increase the efficiency of the 
beauty products (Mota et al. 2017). Moreover the solid lipid nanoparticle carriers 
with reduced viscosity and greasiness provide more efficient moisturizing and skin 
hydrating effects (Wissing and Müller 2003) (Fig. 6.12).

Plant-based moisturizing nano-delivery systems are now in the early stages of its 
development. One such product is safranal, a terpenic phytochemical obtained from 
saffron, constructed using solid lipid nanoparticles of 100 nm diameter. It provides 
an increased moisturizing effect and anti-UV activity (Golmohammadzadeh et al. 
2011). Similar to safranal, the nanoemulsions from rice bran oil is also developed to 
subsidize the effect of many skin diseases like psoriasis and dermatitis (Bernardi 
et al. 2011; Rigo et al. 2014; Wu et al. 2013). Besides these products, the nanoemul-
sions from the extract of Opuntia ficus-indica (L.) and variety of vegetable oils are 
developed with varying particle size to study their potential moisturizing effect 
(Ostrosky et al. 2015; Klang et al. 2010).

6.6.2  �Skin Cleansing Agents

Skin cleanser is an important skin care product in maintaining the skin health. Skin 
cleansing plays an active role in reduction of skin odor by directly eliminating the 
bacteria inhabiting the outer surface of the skin. Phytochemical ingredient found in 
the cleansing formula helps in opening of pores and oil content of the skin promot-
ing the cleansing activity.

Further, the usage of phytochemicals in treatment of skin problems like acne is 
very well studied. In case of lauric acid, when constructed as nanosized liposomes 
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of 113 nm showed increase in the antimicrobial activity against the acne (Ganesan 
and Choi 2016; Garg 2016). Recently niosomes are discussed for their applications 
as drug carriers in cosmeceuticals. Niosomes are nanocarriers formed by associa-
tion of non-ionic surfactants and cholesterol as bilayer in an aqueous phase 
(Fig.  6.13). Non-ionic surfactants possess no charged groups in the hydrophilic 
heads which renders them non-immunogenic and readily biodegradable 
(Hamishehkar et al. 2013). They also have a prolonged shelf life and high stability 
and show good target specificity. Also lauric acid and curcumin, when combined 
and rendered using niosomes, enhance the antimicrobial activity to prevent the skin 
infections from acne (Amol and Pratibha 2014).

6.6.3  �Sun Protective Agents

Sunscreens and protective agents are available commercially as lotions and vanish-
ing creams that contain compounds protecting against harmful radiation from the 
sun. Sunscreens block the penetration of UV and other harmful irradiations, thus 

Fig. 6.12  Liposomes and other lipid carriers loaded with the phyto-active compounds are used to 
restore skin hydration, enhance the moisturizing effect, and increase the efficiency of the beauty 
products (Wang 2017; Yin et al. 2013)
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preventing from irritation and other skin problems. However, the plant bioactive 
compound-based sunscreens are more advantageous over the conventional synthetic 
ones. Synthetic sunscreens form a chalky layer and create greasiness over the skin 
and are also toxic. Some of these disadvantages are avoided with natural sun protec-
tants containing phyto-based active ingredients. Bulla et al. have recently studied 
the use of plant-based bioactive compounds in sunscreens using the extracts of 
Schinus terebinthifolius Raddi and Brazilian Lippia species and showed that they 
have enhanced antioxidant and photo-protective activities (Bulla et al. 2015; Vivina 
et al. 2007).

Although phyto-based natural active ingredients in sunscreens show enhanced 
photo-protective effects, the use of nano-delivery systems in creams and lotions 
play an active role in providing stability and skin protective effects. Recently, saf-
ranal in the nano-range of 103 to 233  nm built with solid lipid nanoparticles 
increased the sun protective activity (Antunes et al. 2017; Khameneh et al. n.d.). 
Similarly, rice bran oil, pomegranate seed oil, and raspberry oil with lipid nanocar-
rier enhance the sunscreen activities with higher antioxidant and UV protection 
(Badea et al. 2015).

6.7  �Conclusion

Today we are innovating ourselves into personalized diets and therapy using infor-
matics and artificial intelligence (AI)-based approaches to solve food and pharma 
problems. Traditionally plant and plant-derived compounds are used for food sup-
plementation and cosmeceutical and medical applications. Taking the cue from con-
ventional knowledge of nontoxic nature and cost-effectiveness of phyto-materials, 

Fig. 6.13  Nano-phyto-carriers like niosomes are made of non-ionic surfactants and cholesterol as 
bilayer in an aqueous phase. They are non-immunogenic, are readily biodegradable, prolong the 
shelf life, have high stability, and show very good specificity (Amol and Pratibha 2014; 
Hamishehkar et al. 2013)
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and with the deliberations of issues such as high cost, time taken for new drug 
development, and high drug attrition rate associated with synthetic drug discovery 
process, herbal or natural sources for the development of lead compound are evolv-
ing to be the global trend in the pharmaceutical industry (Pan et al. 2013).

However in most of the cases, phytochemicals work effectively only when deliv-
ered in a mixed combination. Therefore by applying the formulative nanotechno-
logical knowledge in surface science, organic chemistry, molecular biology, 
delivery, and molecular engineering, the scope of phytochemical applications can 
be inflated. Using nanotechnology, it is possible to increase the solubility and stabil-
ity of phytochemicals, enhance their absorption, enhance permeation and retention 
in target tissues, increase bioavailability, protect them from premature degradation 
in the body, exhibit high differential uptake efficiency in the target cells, and pro-
long their circulation time (Sarker and Nahar 2017). Nanotechnology provides us 
with the fertile ground for future research, development, and application with 
respect to sustainable use of plant materials, biomass waste, and by-products 
(Griffin et al. 2017).

Nanotechnology has already made a huge impact in the field of synthetic drug 
delivery and is now influencing the phytochemical research and drug delivery 
process. Enhanced bioavailability and net effectiveness of phytomolecules includ-
ing quercetin, genistein, naringin, sinomenine, piperine, glycyrrhizin, and nitrile 
glycoside have been demonstrated using various nanotechnological formulations. 
Currently approved nanomaterials in pharma industry are based on relatively simple 
and established nanoparticles like PEGlyated liposomes. However the future 
prospects for nanotechnology are claimed to be with actively targeting the delivery 
chemicals, multifunctional materials, and more complicated materials.

It has to be noted that observed properties of nanomaterials differ entirely from 
those of their constituent atoms and molecules and from those of the bulk material. 
Nano-engineered substances can have substantially altered bioavailability and thus 
come with new safety issues from their non-engineered counterparts. Human use of 
existing nano-enabled phytocompounds has not yet been thoroughly investigated, 
and further research is needed with regard to safety and effectiveness. Specifically 
knowledge on conjugated phytochemicals, the unique nanoformulation-specific 
signaling pathways, toxicological profile, and the complete disposal machineries 
are deficient. There exist a hiatus in information about safety, effectiveness, 
environmental impact, and regulatory status of the developed nano-products mainly 
because of weak, insufficient regulatory mechanisms.

Regarding the toxicological and regulatory side, there exists a huge void in the 
dosing, reproducible toxicological evaluation, and standardized reporting of newly 
engineered nano-products. As there is nanomaterial originated interference in 
colorimetric cytotoxicity assays, standardization has to be performed using 
nanoparticle noninterfering techniques like flow cytometry (Kumar et al. 2015).

In case of safety-related screening studies, it is perfunctory to obtain knowledge 
mainly from in  vitro/ex vivo systems which usually is incomplete for 
nanoformulations, and therefore obtaining knowledge on systemic toxicity using 
in  vivo models should be given priority. Other than the beneficial effects, the 
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clearance system from body after the indented action and environmental impact 
have to be analyzed in detail. These testing and approval have to be coordinated 
among different institutions, regulatory agencies, and approval committees, so that 
fast decision can be reached during discovery and developmental cycle.

Moreover a repository of toxicological data can be established where toxicity 
response of available novel delivery systems can be listed. This database can be 
predictively used during new product development using the clues of past success 
and failures. Also big data or informatics-based predictive platforms have to be 
established exclusively for the nano-conjugated lead phytocompounds. This could 
save the time, and also the prediction-derived alternative strategies could be 
implemented at the designing stage itself. Naturally existing nano-mechanisms 
could be closely evaluated for designing safe nanoformulation-based products.
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Abstract  The prospects of nanotechnology in enhancing the quality of healthcare 
delivery cannot be overemphasized. Indeed, the advancement in nanotechnology is 
now a motivation for the increasing and wider acceptance of nanotechnology for 
applications in healthcare improvement particularly for diagnostic and therapeutic 
purposes. The use of nanotechnology to enhance the quality of pharmaceutical 
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delivery forms the bulk of the emerging field referred to as the nanopharmaceuti-
cals. This has created an interdisciplinary approach which has the potential of 
improving pharmaceutical delivery which is among the most promising and excit-
ing innovations in healthcare strategy. As revealed in this chapter, nanopharmaceu-
ticals offers remarkable prospects for improved healthcare delivery by reason of 
their additional potentials including increased surface area, enhanced solubility, 
increased oral bioavailability, dosage reduction and ease of attachment to functional 
groups amongst others. These unique features of nanopharmaceuticals are part of 
the merits which are conspicuously nonexistent with the conventional/traditional 
pharmaceuticals. Thus, this chapter discusses the nanopharmaceuticals vis-a-vis the 
applications and safety evaluations.

Keywords  Drug delivery and targeting · Nanomedicine · Nanomaterials · 
Nanotoxicology · Safety assessment

7.1  �Introduction

The pharmaceutical industry (PI) discovers, develops, produces, and markets drugs 
or pharmaceutical drugs for use as medications. Pharmaceutical companies may 
deal in generic or brand medications and medical devices. Pharmaceuticals are a 
vital part of human and/or animal survival, and its value has been associated with 
the balance between its effectiveness and side effects (Chan et  al. 2013). 
Pharmaceuticals contribute significantly to the health and well-being of both 
humans and animals. Consequently, the PI has a responsibility in ensuring balance 
in their efficacy, side effects, and cost value (Ding et al. 2013a). As a result, the PI 
is encumbered with research and development (R&D), productivity, and invest-
ments (Ding et al. 2013b). It is noteworthy that the PI is more highly regulated than 
any other industry so as to afford the maximal service and support to healthcare 
while also providing investor value.

Over the years, the PI has had a continuous growth of 4–7% per year, and it cur-
rently approaches a market scope of 1 trillion USD (Ding et  al. 2013a). The PI 
sustains itself by spending heavily on producing new prescription drugs through 
patents that make firms sponsor its expenses and also prevent competitions (Kappe 
2013). As at 2000, 802 million USD was the average requirement to develop a drug, 
and the financial requirement for R&D in 2008 was 50 billion USD, rising to 160 
billion USD in 2016 (DiMasi et al. 2003; Statista 2017). The increase in the cost of 
pharmaceutical R&D has been attributed to the need to cover the loss due to patent 
expiry, because this gives opportunities to generic drugs to compete (Paul et  al. 
2010; Kappe 2013). In the meantime, statistical studies suggest that the number of 
generic drugs in the market have increased from 18.6% of unit sales in 1984 to 78% 
in 2010 (Kappe 2013). Another reason for the increased cost in R&D is the continu-
ous increase in the amount needed to acquire a regulatory approval for new drugs 
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(DiMasi and Grabowski 2007). Further, the demand by healthcare practitioners and 
sponsors for new, improved, and cheaper drugs with extensive clinical reports on its 
properties has placed pressure and strain on the PI (Betz et al. 2013). In summary, 
comparative analysis of reports on the current status of the PI reveals that the indus-
try is plagued by concerns on its reliability and transparency in reference to drugs’ 
efficacy and safety, issues pertaining to patent expirations, increased regulatory 
demands, lower inflow of funds for R&D, lack of innovation, and technological and 
societal/environmental problems (Khanna 2012; Ding et  al. 2013a, b; Paul et  al. 
2010; Kappe 2013). Taken together, the PI needs to be more innovative in order to 
outgrow most of the limitations that threaten its survival. Perhaps the limitations 
bedeviling the PI have forced it to identify and pursue new ways of sustenance while 
being able to also add value to healthcare delivery at reasonable costs. Among the 
new strategies is the deployment of nanotechnological advancements for pharma-
ceutical purposes and this has birthed the emerging field of research currently 
termed nanopharmaceuticals (Pepic et al. 2014). A large number of innovations in 
health sector have been exploiting nanotechnology (Berkner et  al. 2016). 
Applications of nanotechnology for pharmaceutical purposes include the develop-
ment of efficient and intelligent drug delivery systems which possess the enhanced 
ability to bypass biological barriers and interact directly with target tissues. The use 
of nanotechnology for pharmaceutical development also enhances drug bioavail-
ability, stability, and action, thereby reducing the dosing frequency (Thakur and 
Agrawal 2015). Other areas of benefits include applications in vitro rapid and por-
table diagnostics (Pautler and Brenner 2010), in  vivo imaging, and as active 
implants.

7.2  �Nanopharmaceuticals

The development of various pharmaceutical dosage forms in the range of 
10–1000 nm using nanotechnological tools is referred to as naonopharmaceuticals 
or nanopharmaceutical dosage forms. Nanopharmaceuticals also comprise colloidal 
drug delivery carriers not exceeding 1000 nm in size (Bawa 2008; Gaur and Bhatia 
2008). A recent definition describes nanopharmaceuticals as pharmaceuticals in 
which the nanomaterial plays the pivotal therapeutic role or adds additional func-
tionality to the previous compound (Rivera et al. 2010). In a recent review, Weissig 
et al. (2014) proposed that prospective nanopharmaceuticals must satisfy the dual 
conditions of being manufactured via a nanoengineering process and an inherent 
therapeutic activity of the nanomaterial.

There are two types of nanopharmaceuticals: [i] those where the therapeutic mol-
ecules are themselves the drug (i.e., the therapeutic compound itself also functions 
as its own carrier) and [ii] those where the therapeutic molecules are directly cou-
pled (functionalized, entrapped, or coated) to a nanoparticle carrier. As there is no 
universal nomenclature system for the classification of nanopharmaceuticals, differ-
ent nanoscale structures of different shapes are often classified as 
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nanopharmaceuticals. In fact, some of the common shapes of nanopharmaceuticals 
include spheres (hollow or solid), tubules, particles (solid or porous), and tree-like 
branched macromolecules (Bawa 2008, 2009).

7.2.1  �Applications of Nanopharmaceuticals

Materials in sizes ranging from about one nanometer up to several hundred nanome-
ters exhibit interesting physical properties that are different from bulkier scales and, 
hence, present prospects for novel applications in medicine. Indeed, nanotechnol-
ogy has played key role in the new lift and approach used in Science globally. It has 
brought scientific innovations at the intersection of engineering, medicine, and bio-
technology (Bawa 2011). In recent times, the nanopharmaceuticals have been 
receiving attention due to their potential to reform drug delivery systems (Park 
2007; 2017). Researchers have implicated nanopharmaceuticals for drug delivery 
and therapeutics (Adeyemi and Sulaiman 2015; Bawarski et al. 2008; Peer et al. 
2007; Wagner et al. 2006), as well as for the enhancement of drug solubility and 
increase in drug half-life, among others (Pepic et al. 2014). Further, nanostructures 
like solid nanoparticles, polymeric micelles, quantum dots, and dendrimers have 
been explored for therapeutic and/or diagnostic purposes in conditions like infec-
tious diseases, cancer, and pain (Bawarski et al. 2008; Pepic et al. 2014).

A recurring dilemma of pharmaceutical delivery is the accurate targeting of the 
pharmaceutical to the cells or tissues of choice. Since this is generally unachievable, 
active agents have to be administered in excessively high doses, thereby increasing 
the likelihood of toxicity. Nanopharmaceuticals have enormous potential in address-
ing this failure of traditional therapeutics. This precision targeting reduces toxic 
systemic side effects, resulting in better patient compliance. Also, a great number of 
drugs are unable to transverse the tight epithelial junctions of skin and taut endothe-
lial interface of blood-brain barrier. However, with the advent of nanopharmaceuti-
cal delivery systems, drugs can be targeted to every part of the body (Ali et  al. 
2013). Compared to traditional pharmaceuticals, nanopharmaceuticals possess the 
following advantages (Bawa 2008):

	(a)	 Increased surface area
	(b)	 Enhanced solubility
	(c)	 Increased oral bioavailability
	(d)	 Dosage reduction
	(e)	 Ease of attachment to functional groups

Moreover, nanotechnology has been implicated for prospects in the integration of 
diagnostics with therapeutics and the facilitation of the development of specific 
therapeutics best suited for an individual (Jain 2008).
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7.2.2  �Drug Delivery

Recently, use of nanopharmaceuticals has been reported as potentially circumvent-
ing the inability of conventional drugs to deliver effective drug dose at target sites 
during diseases treatment or control (Namdari et al. 2017). Rapoport (2007) reported 
the use of polymeric micelles for anticancer drug delivery. The author described 
polymeric micelles as spherically shaped core-shell structure with a hydrophobic 
core and hydrophilic shell as shown in Fig. 7.1. They are unique for their core-shell 
structure and can be conjugated with other functional groups. In drug delivery con-
cept, the most commonly used hydrophilic group in polymeric micelle is the 
poly(ethylene oxide) which has the ability of reducing residence time by way of 
preventing micelle opsonization. This has great advantage in targeting tumor cells 
as it promotes permeability and retention effect (Rapoport 2007). Since most known 
anticancer agents have low aqueous solubility, polymeric micelles deployed as 
nanopharmaceuticals are used as solubilizing agents to increase the solubility of 
these anticancer agents. This is one of the most important applications of nanophar-
maceuticals. Presently, this has given room to the encapsulation of hydrophobic 
drugs in micelle cores for proper targeting of disease sites.

Foldvari and Bagonluri (2008) also reported the use of carbon nanotubes (CNTs) 
in drug delivery. CNTs have the ability to perform controlled and targeted drug 
delivery which can be achieved via interaction with pharmaceutical agents in three 
ways. Firstly, the interaction can be viewed as a porous absorbent to entrap active 
pharmaceutical agents within CNTs mesh or CNTs bundle (Fig. 7.2a); secondly, it 
could be via functional attachment of active pharmaceutical agents to the exterior 

Fig. 7.1  Schematic 
representation of block 
copolymer micelle; 
lipophilic drug (red color) 
is encapsulated in the 
micelle core. The 
core-shell structure can be 
conjugated with other 
functional groups 
(Rapoport 2007)
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walls of CNTs (Fig. 7.2b); and, thirdly, this can be achieved using CNTs channels 
as nanocatheters (Fig. 7.2c). As nanopharmaceuticals, CNTs can be applied more 
specifically by controlling the conjugation of active pharmaceutical agents on it 
rather than making use of the bulk property of CNTs. Such conjugation can be car-
ried out either exohedrally or endohedrally. In exohedral conjugation, the active 
pharmaceutical agents are bonded to the exterior of the CNTs for delivery into the 
cells but when endohedral, the active agents are encapsulated and transported 
through the inner cavities of the CNTs to the target site of delivery.

7.2.3  �Cell Imaging Agents

Cellular imaging, defined as the use of a system/technology capable of visualizing 
a cell population, single cell or subcellular structures, applied in combination with 
image-analysis tools, is emerging as a crucial tool enabling the integration of bio-
logical complexity into drug discovery. Detection systems include microscopes, 
fluorescence macro-confocal detectors and fluorometric imaging plate readers 
(FLIPR) used with charge-coupled device (CCD) cameras. These systems generate 
a two-dimensional pixel array of information (a digital image) extracted from a 
particular biological event or tissue type. Various image-analysis tools have been 
developed to process the information in the digital image into meaningful parame-
ters (Lang et al. 2006). Presence of nanopharmaceuticals in living organisms has 
revealed the involvement of nanopharmaceuticals in the differentiation of cells, 
cell–cell and host–pathogen interactions, immune response, etc. (Corfield and Berry 
2015; Jones 2015; Pinho and Reis 2015). Studies have also revealed that the occur-
rence of specific structure of nanopharmaceutical agent correlates with disease inva-
sion and the capacity to metastasize target organs at specific site which is an 
indication that nanopharmaceuticals can be used as disease biomarkers to screen, 
predict, monitor, and/or diagnose diseases most especially at early stage (Christiansen 

Fig. 7.2  Schematic representation of (a) a bundle of CNTs as a porous matrix encapsulating drug 
molecules between the grooves of individual CNTs, (b) moieties attached to the exterior of a CNT 
either by covalent bonding to the CNT wall or by hydrophobic interaction of moieties with the 
CNT walls, and (c) the encapsulation of moieties within the internal nanochannel of a CNT 
(Foldvari and Bagonluri 2008)
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et al. 2014; Dosekova et al. 2017). The principle of operation during cell imaging is 
based on selective delivery which makes use of binding receptors. Theranostic con-
cept has been used overtime. For practical and clinical applications, Webster et al. 
(2015) suggested that theranostic nanomaterials should effectively combine thera-
peutic agents, targeting moieties, and imaging agents. However, there are situations 
where the nanopharmaceutical agent is self-imaging. In this case, the nanopharma-
ceutical agent does not require the presence of a binding receptor due to its ability 
to fluorescence (An et al. 2015; Dosekova et al. 2017). This has brought a major 
enhancement to the use of NMRi (nuclear magnetic resonance imaging) and com-
puted tomography imaging of tissue or single cell. Theranostic medicines can pro-
vide insights into the availability of a molecular target in the tissue, the vascular 
permeability and retention of the molecule, the drug release from the particle, and 
the response of the target tissue (Kiessling et al. 2014). A recent study provided 
insight on the application of magnetic targeting and pH-responsive lipophilic anti-
cancer drug delivery. A theranostic nanocage system, formed from biogenically 
synthesized Fe3O4 nanoparticles and decorated with an anticancer drug and a 
saponin-based biosurfactant, was developed for the targeted delivery of two anti-
cancer agents: camptothecin and luotonin A.  These theranostic nanocomposites 
showed better chemotherapeutic efficacy when examined in MCF-7 and HeLa can-
cer cell lines with a specific targeting capacity (Kesavan et al. 2018). Additionally, 
a prostate-specific membrane antigen targeted gold nanoparticle for theranostics of 
prostate cancer has been synthesized. The theranostic agent, AuNP-5kPEG-
PSMA-1-Pc4, loaded with a fluorescent photodynamic therapy drug, Pc4, is envi-
sioned to provide surgical guidance for prostate tumor resection and therapeutic 
intervention when surgery is insufficient (Mangadlao et al. 2018).

Targeted magnetic nanoparticles (MNPs) have also found use in noninvasive 
molecular imaging and therapy. They can be used as target-specific agents, to selec-
tively enhance the contrast in molecular level, if functionalized, for instance, by incor-
porating them with antibodies. Targeted compounds improve the lesion detectability of 
certain pathologies and more importantly provide the localized therapy as drug deliv-
ery systems (Amiri et al. 2013). Targeted MNPs have been used to detect Aβ plaques 
of Alzheimer’s disease (AD). For instance, Poduslo et al. (2002) targeted amyloid-β 
plaques of AD using a putrescine-gadolinium-amyloid-beta peptide probe detectable 
by magnetic resonance imaging. According to their study, the plaque-to-background 
tissue contrast-to-noise ratio, which was precisely correlated with histologically 
stained plaques, was enhanced more than ninefold in regions of cortex and hippocam-
pus following intravenous administration of this probe in AD transgenic mice.

7.2.4  �Cancer Treatment

Cancer is a leading cause of death worldwide in countries of all income levels. To 
add to the existing burden, the number of cancer cases and deaths is expected to 
grow rapidly as populations grow, age, and adopt lifestyle behaviors that increase 
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cancer risk (Torre et al. 2016). Cancer, which is characterized by uncontrolled pro-
liferation of cells and dysregulation of the apoptotic mechanism, requires very com-
plex process of treatment. Because of complexity in genetic and phenotypic levels, 
it shows clinical diversity and therapeutic resistance. A variety of approaches, 
including surgical removal, chemotherapy, radiation, and hormone therapy, are cur-
rently deployed in cancer treatment. Unfortunately, each of them has some signifi-
cant limitations and side effects. Chemotherapy, for example, which involves the 
delivering of anticancer drugs systemically to patients, suffers from nonspecific 
targeting and poor delivery of these agents (Jabir et al. 2012; Zhao and Rodriguez 
2013). Nanopharmaceuticals, through passive and active targeting, have been 
designed to overcome lack of selectivity and aqueous solubility deficiencies of con-
ventional cancer chemotherapy. Selected delivery systems used to achieve passive 
targeting are liposomes, polymeric nanoparticles, nanocrystals, inorganic nanopar-
ticles, micelles, dendrimers, etc. Active targeting involves conjugation of targeting 
molecules (like antibodies, ligands, peptides, nucleic acids, etc.) on the surface of 
nanoparticles with receptors overexpressed on a tumor cell surface (Van Vlerken 
et  al. 2007; Lammers et  al. 2008; Gullotti and Yeo 2009). When conventional 
nanoparticles are used as carriers in chemotherapy, the cytostatic drug is usually 
delivered to the mononuclear phagocytes system by endocytosis/phagocytosis of 
their tissue localized macrophages (Moghimi et al. 2005). Moreover, enhanced che-
motherapy with nanopharmaceutical formulations has been shown when treating 
cancers, such as breast (Goldman et al. 2017; Park 2017), ovarian, (McQuarrie et al. 
2004) and lung (Das et al. 2016). The underlying mechanism is that nanopharma-
ceuticals trapped by organs of the mononuclear phagocyte system are able to work 
as a pool and release anticancer agents to cancerous cells. Apart from nontargeted 
drug delivery, tumor drug resistance is another key concern in conventional chemo-
therapy. In many cancer types, nearly 40–50% of the patients diagnosed with cancer 
has P-glycoprotein overexpression in the malignant tissues. A defining strategy used 
to overcome P-glycoprotein-mediated multidrug resistance is to encapsulate antitu-
mor drugs with various drug delivery systems, including N-(2-hydroxypropyl) 
methacrylamide drug conjugates, micelles, hybrid lipid nanoparticles, lipid-based 
nanocapsules and nanoparticles, liposomes, and cyanoacrylate-type nanoparticles. 
Reported mechanisms included enhancement of cellular uptake of drug via endocy-
tosis and ion-pair formation, ATP depletion, influence of function and expression of 
P-glycoprotein, and change of P-glycoprotein downstream signaling pathways 
(Dong and Mumper 2010).

Among a wide variety of proposed nanopharmaceuticals, only a handful has 
been approved for use in the treatment of cancer. Doxil, with the brand name 
Caelyx®, was obtained by encapsulating doxorubicin within liposomes. This nano-
formulation boosted pharmacokinetic indices such as longer circulation half-life 
and maximal drug accumulation in target tissues. Clinical validation of the use of 
doxil in the treatment of metastatic breast cancer, ovarian cancer, and multiple 
myeloma has been reported. The non-PEGylated liposomal doxorubicin formula-
tions, Myocet and DaunoXome, have also been used for the treatment of metastatic 
breast cancer and Kaposi sarcoma, respectively. Abraxane, a co-condensate of 
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albumin and paclitaxel, is another nanopharmaceutical which has demonstrated sig-
nificantly higher tumor response rates and longer times to tumor progression in 
patients with metastatic breast cancer (Huynh et al. 2009; Gradishar et al. 2005; 
Montana et  al. 2011). Several strategies have also been adopted to enhance the 
effects of anticancer agents. Previous works reported potential therapeutic agents 
with high electron density which allowed the deposit of large amounts of energy 
within living cells due to ionization (Weissig and Guzman-Villanueva 2015; Marill 
et al. 2014). When activated by a radiation source, these potential therapeutic agents 
generate high amounts of reactive oxygen species when they find their way into 
tumor resulting in cellular damage (Weissig and Guzman-Villanueva 2015; Marill 
et al. 2014), this is illustrated in Fig. 7.3. Surface modified promising therapeutic 
agents are currently being screened as radio-enhancer for treatment of tumors, this 
ongoing research has shown high prospect with the hope of a better healthy living. 
Presently, there are ongoing trial studies on metal-based therapeutic agents for 
biopsy. Antigen-specific ligands have been employed in surface modification of 
nanomaterials as nanopharmaceutical agents in active targeting approach. Several 
studies have revealed the prospect of nanopharmaceuticals as agents for biopsy, 
most of the studies have shown promising results (Adolphi et  al. 2010; Jaetao 
et al. 2009).

Fig. 7.3  Schematic representation of the radio enhancement mechanism of NBTXR3 nanoparti-
cles in cancer cells after an intratumoral injection. When activated by a radiation source, these 
potential therapeutic agents generate high amounts of reactive oxygen species when they find their 
way into tumor resulting in cellular damage. (Weissig and Guzman-Villanueva 2015)
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7.2.5  �HIV/AIDS Treatment

Despite concerted efforts at mitigating the acquired immune deficiency syndrome 
(AIDS) menace, millions of individuals worldwide are still HIV-1-infected and rate 
of new infections remain unabated. Antiretroviral therapy (ART) effectively con-
trols viremia in virtually all HIV patients and partially restores the primary host cell 
(CD4+ T cells) but fails to eliminate HIV-1 from latently infected T cells (Gandhi 
et al. 2010). In latently infected CD4+ T cells, integrated proviral DNA copies per-
sist in a dormant state but can be reactivated to produce replication-competent virus 
when T cells are activated, resulting in rapid viral rebound upon interruption of 
antiretroviral treatment. Therefore, most HIV-infected individuals, even those who 
respond very well to ART, must maintain lifelong ART due to the ability of virus to 
establish anatomical or cellular reservoirs which escape the action of antiviral drugs 
(Kaminski et al. 2016).

These reservoirs include the following (Clarke et al. 2000):

	(a)	 Extracellular virions trapped on the surface of follicular dendritic cells within 
the lymphoid tissue

	(b)	 Latently infected and resting CD4+ T cells
	(c)	 Microglial cells of the brain, pulmonary alveolar macrophages of the lung, and 

macrophages within the spleen and lymph nodes
	(d)	 Brain tissues, such as the brain

Many antiviral drugs present problems that reduce their efficacy, such as limited 
solubility, a short half-life or slow, incomplete or highly variable absorption. 
Consequently, high doses and frequent administration are required that, in turn, can 
negatively affect patient compliance, causing severe side effects. Besides solubility 
and permeability, other factors that affect the oral bioavailability of an antiviral 
include the action of intestinal metabolizing enzymes, efflux transporters, and food. 
The oral administration of an antiviral with a low or variable bioavailability thus 
requires the use of higher doses and prolonged treatment durations in order to eradi-
cate the virus. Another problem of antiviral agents is that the chronic treatment with 
such drugs can produce moderate levels of drug toxicity, which might lead to seri-
ous complications in the patient. Moreover, prolonged antiviral therapy increases 
the likelihood of drug-resistant virus strains emerging (Emery 2001; Sharma and 
Garg 2010; Williams and Sinko 1999).

To improve the therapeutic activity of currently available antivirals, it is possible 
to change the conventional dosage forms, either by modification of their formula-
tions or by the design of novel nanopharmaceuticals. As with conventional drugs, a 
major concern of deploying nanopharmaceuticals in treatment and prevention of 
disease is the ability to reach target site(s) in their active form. This challenge may 
be overcome by optimizing the physicochemical properties of the nanopharmaceu-
tical or by modifying its surface by attachment of ligands or agents that prevent 
opsonization, in order to facilitate transport across membranes or enable targeting 
(Alexis et al. 2008).
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Dou and coworkers (2007) showed that effective delivery to various tissues could 
be achieved with a nanosuspension of the drug indinavir, stabilized by a Lipoid 80 
surfactant system. The indinavir nanosuspensions were loaded into macrophages, 
and their uptake was investigated in mice. Results showed high distribution of the 
drug in the lungs, liver, and spleen. More significantly, the intravenous administra-
tion of a single dose of the nanoparticle-loaded macrophages in a rodent mouse 
model of HIV brain infection resulted in significant antiviral activity in the brain 
and produced measureable drug levels in the blood up to 14  days posttreatment 
(Dou et al. 2009). Furthermore, macrophages, which are the major HIV reservoir 
cells, have various receptors on their surface such as formyl peptide, mannose, 
galactose, and Fc receptors, which could be utilized for receptor-mediated internal-
ization. The drug stavudine was encapsulated using various liposomes (120–200 nm) 
conjugated with mannose and galactose, resulting in increased cellular uptake com-
pared with free drug or plain liposomes and generating significant level of the drug 
in the liver, spleen, and lungs. The drug zidovudine, with half-life of 1 h and low 
solubility, was also encapsulated in a mannose-targeted liposome made from stea-
rylamine, showing increased localization in lymph node and spleen. In another 
study, the drug efavirenz was delivered to monocytes and macrophages in  vitro 
using a mannose-targeted poly(propyleneimine) dendrimer nanocarrier. The tar-
geted nanocarrier resulted in 12-fold increase in cellular uptake compared with free 
drug. A similar system was used to deliver the drug lamivudine in vitro, resulting in 
significantly higher anti-HIV activity for the targeted and nontargeted dendrimer 
systems compared with free drugs (Dutta and Jain 2007; Dutta et al. 2007; Kaur 
et al. 2008). Hopefully, these nanopharmaceuticals would present the needed plat-
forms for improving targeted delivery of antiretroviral drugs to the cellular and 
anatomical reservoirs of HIV.

7.2.6  �Intravaginal Microbicides

Intravaginal application of drugs has long been of interest to researchers, who had 
explored it for the local delivery of therapeutic agents such antimicrobials (Vanić 
and Škalko-Basnet 2013). Intravaginal route of drug administration bypasses the 
gastrointestinal tract and delivers directly into the vagina. This avoids loss of active 
compound through incomplete absorption or degradation in the acidic environment 
of the stomach and duodenum or bacterial flora in the gut. More importantly, the 
first-pass effect in the liver, which could have resulted in structural modifications of 
the nanopharmaceutical, is circumvented. The vagina could also provide a platform 
for systemic treatment if drug is resorbed through the vaginal venous plexus into the 
body. The vaginal venous plexus empties into the iliac or hemorrhoidal veins that do 
not pass the liver circulation, thus avoiding the first-pass effect. But vaginal route of 
administration is not a straightforward approach. Drug formulations for vaginal 
application must be retained at the site for the sufficient period, in spite of the nor-
mal vaginal clearance and discharge. To achieve an optimal retention, 
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mucoadhesive and muco-penetrative delivery systems have been explored. However, 
the presence of cross-linked mucin fibers limits drug penetration across the vaginal 
tract. In order to penetrate the mucus, delivery vehicles must be small enough to 
overcome significant physical hindrance by the dense mucin fiber mesh (Ensign 
et al. 2014; Katz et al. 2011). Nanopharmaceuticals offer an opportunity to achieve 
uniform epithelial delivery to the vagina. The choice of optimal nanocarrier will be 
dependent on the characteristics of the particular drug and expected dosage regimen 
of the therapy. Since majority of the drugs of interest for vaginal administration 
have limited solubility, nanocarriers that can solubilize these drugs enhance their 
bioavailability. In addition, nanopharmaceutical formulations could increase the 
retention time of the drugs at the vaginal site if composed of substances capable of 
promoting mucoadhesion (Caramella et al. 2015; Wong et al. 2014). Additionally, 
the small size of nano-agents facilitates their cellular internalization and release of 
the drug directly to the cytosol.

Furthermore, the small size of nanoparticles means that some of these particles 
can interact with viral agents and thus may offer protection against STDs such as 
HIV (Notario et al. 2017). For example, studies have demonstrated in vitro viral 
adhesion with silver nanoparticles, while silver-coated PVP nanoparticles have 
demonstrated antiviral activity ex vivo at nontoxic concentrations (Lara et al. 2010). 
Their large surface area improves the dissolution and absorption of slightly soluble 
drugs and also allows optimization of these nanoparticles according to their func-
tionalization; they can bind to specific targets by multivalent conjugations and 
attach at the drug release site. These nanosystems can either exhibit HIV inhibitory 
activity by themselves or serve as a vehicle for drug delivery. Recent research has 
focused on the possibility of developing microbicides based on nanoparticles for 
HIV prevention (Notario et al. 2017). These nanoparticles consist of cross-linked 
polymer chains formed thanks to crosslinking agents, creating a structure within 
which to load the drug. Nanoparticles have been loaded with antiretroviral microbi-
cides such as dapivirine (DPV) and tenofovir (TFV) in order to improve cellular 
internalization of the microbicides (Yang et al. 2013). PLGA nanoparticles loaded 
with the antiretroviral drug saquinavir have been conjugated to the anti-CD4 anti-
body. The nanoparticles thus bind to the CD4+ immune cells, and the drug is specifi-
cally released inside them. Nanoparticles of PLGA and methacrylic acid copolymer 
(Eudragit® S-100) have been loaded with TFV and are capable of releasing the drug 
in a pH-dependent manner in the presence of seminal fluid (Zhang et  al. 2011). 
Another example of release in response to stimuli is the nanoparticles of hyaluronic 
acid loaded with TFV, which release the drug in the presence of semen due to the 
degradation of hyaluronic acid in the presence of the enzyme hyaluronidase 
(Agrahari et  al. 2014). An alternative option is to include the nanoparticles in a 
stimuli-sensitive dosage form, such as temperature-sensitive gels that are liquid at 
room temperature, convenient to apply and gain consistency at body temperature, 
thus avoiding vaginal seepage after application and maintaining the nanoparticles in 
contact with the mucosa for longer. Formulations with PLGA nanoparticles loaded 
with TFV or with rilpivirine (Destache et al. 2016) have been developed using these 
gels. For all these reasons, despite the current scarcity of microbicides based on 
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nanosystems for the prevention of HIV, coming years will see a boom in research in 
this field, since nanoparticles provide a delivery strategy for targeted and controlled 
delivery of drugs to the vagina (Notario et al. 2017).

7.2.7  �Enhancement of Anticancer Agents

Previous works reported potential therapeutic agents with high electron density 
which allowed the deposit of large amounts of energy within living cells due to 
ionization (Weissig and Guzman-Villanueva 2015; Marill et al. 2014). When acti-
vated by a radiation source, these potential therapeutic agents generate high amounts 
of reactive oxygen species when they find their way into tumor resulting in cellular 
damage (Weissig and Guzman-Villanueva 2015; Marill et al. 2014), this is illus-
trated in Fig. 7.3. Surface modified promising therapeutic agents are currently being 
screened as radio-enhancer for treatment of tumors, this ongoing research has 
shown high prospect with the hope of a better healthy living. Presently, there are 
ongoing trial studies on metal-based therapeutic agents for biopsy. Antigen-specific 
ligands have been employed in surface modification of nanomaterials as nanophar-
maceutical agents in active targeting approach. Several studies have revealed the 
prospect of nanopharmaceuticals as agents for biopsy; most of the studies have 
shown promising results (Adolphi et al. 2010; Jaetao et al. 2009).

7.3  �Safety Evaluations

It is undeniable that nanotechnology has the potential to appreciably lower drug 
production costs, while providing prospects for success in areas where the tradi-
tional pharmaceuticals have failed (Moghimi et al. 2011). Thus the emerging field 
of nanopharmaceuticals is increasingly being accepted globally. However, there are 
still safety concerns as well as potential of the unknown complications that may 
arise as a result of long-term exposure to nanoformulations (Cao and Sim 2007; 
Bawarski et al. 2008; Pepic et al. 2014). Though the safety concerns associated with 
the use of nanopharmaceuticals may be overshadowed by the benefits and prospects 
that the nanopharmaceuticals offer, nevertheless, these concerns are real and, there-
fore, necessitate consideration.

The physical and chemical properties of materials tend to become very different 
from those of their parent compounds when they become highly reduced in size 
(Ray et al. 2009). Exposure to nanomaterials may proceed through inhalation (respi-
ratory tract), topical application (skin contact), intravitreal, transscleral, supracho-
roidal, subretinal, oral administration (ingestion), and injection (blood circulation) 
routes (Oberdorster et al. 2005; Kompella et al. 2013). Due to their extremely small 
dimensions and large surface-to-volume ratio, nanomaterials may gain assess into 
both the circulatory and lymphatic systems and induce irreversible injuries through 
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promotion of oxidative stress (Fu et al. 2014). Therefore, in a bid to maximize the 
benefits and minimize the potential harms that could be caused by exposure to nano-
materials, it becomes expedient to consider the safety impacts of nanopharmaceuti-
cals through the lens of public health (Pautler and Brenner 2010). For the safe 
development of nanotechnology and the safe use of commercial nanomaterials, 
investigations regarding the toxicity and safety profiling of nanomaterials are 
needed (Fu et al. 2014).

7.3.1  �Potential Health Risk

At the cellular level, nanomaterials could interact with vital cell components such as 
the nucleus, mitochondria, and membrane and thus exert adverse effects such as 
damage to organelles or DNA, apoptosis, oxidative stress, mutagenesis, and protein 
up-/downregulation (Pan et al. 2009). The toxicity profiling of nanomaterials has 
been investigated in vitro by studying the effects of the nanomaterials on cell culture 
over a given period of time, e.g., 24–48 h. Effects such as cell proliferation and 
survival, membrane permeability, inflammatory cytokine levels, and ATP produc-
tion have been reported (Mo et al. 2007). However, considering the complexity of a 
whole organism as compared to that of a single cell, the safety evaluation of nano-
pharmaceuticals in vivo is more dependable and should be sought for. The evalua-
tion in the whole animal should include investigation of general health indicators 
such as weight loss, mortality percentage, average life span, and behavioral abnor-
mality (Alkilany and Murphy 2010). As with the conventional pharmaceuticals, the 
absorption, biodistribution, metabolism, and excretion of nanopharmaceuticals 
must be explored and put into consideration prior to acceptance by regulatory bod-
ies (Alkilany and Murphy 2010). Important pharmacokinetic parameters such as the 
volume of distribution (Vd), maximum plasma concentration (Cmax), half time in the 
blood (t½), and total body clearance (Cl) are also necessary, and these can also be 
obtained by the application of classical pharmacokinetic models (Cho et al. 2009).

Currently, the most sought-after emerging therapeutics in biomedical applica-
tions include the biocompatible and biodegradable nanomaterials. It is wisdom that 
carrier materials for pharmaceutics should ideally be easily metabolized to safe 
products in order to afford ease of clearance from the system, or if the material is 
intended to remain in the body, it should be inert, biocompatible, with no adverse 
effects even after a long-time exposure. Organic materials such as carbohydrates, 
lipids, and proteins are being used in the preparation of nanomedicines, as well as 
inorganic compounds such as gold and porous silica. However, toxicity concern 
arises with the use of inorganic materials as they persist without breaking down 
unlike the organic materials. The key physicochemical properties influencing the 
biocompatibility of nanomaterials include the composition, shape, size, surface 
charge, surface modifications, and lipophilicity (McNeil 2005). Also, the route of 
administration, dose, dose frequency, and patient idiosyncrasies should be put into 
consideration in order to minimize potential toxicity.

O. S. Adeyemi et al.



279

For example, the mechanism of the clearance of a nanomaterial, following peri-
ocular administration, was recently investigated in live and dead animals (Amrite 
and Kompella 2005; Amrite et al. 2008). According to their reports, at 6-h post-
administration of nanomaterials in both living and dead animals, only 45% of the 
nanomaterial was retained at the periocular site in living animals, while 77% was 
retained in the dead animals. The percent retained in dead animals was however 
close to the observed retention immediately after dosing. Their results further 
revealed a possible breakdown of some of the transport barriers in the dead animals 
as the tissue level of the nanomaterials in the sclera-choroid were 19-fold higher in 
the dead animals than the live animals. Again, the particles were found in the retina 
and vitreous of the dead animals but absent in the live animals (Amrite et al. 2008). 
Perhaps, the role played by the reticuloendothelial system (RES) in the clearance of 
intravenous injection of particulate systems cannot be over emphasized (Gèze et al. 
2007; Schipper et al. 2009). In separate studies with fluorescent latex particles (size 
200 nm) where particles were instilled into the conjunctival cul-de-sac, the conjunc-
tival follicle-associated epithelium in rabbits was able to bind to and translocate 
particles. The visualization of the translocated particles in the cervical lymph nodes 
after being translocated from the conjunctival epithelium was an indication of the 
role of the lymphatic circulation in the clearance of these particles (Liu et al. 2005). 
The presence of inflammatory cells as observed in the histological sections of peri-
ocular tissue 60 days following the administration of 200 and 2000 nm particles 
suggests the possibility of the inflammatory cells playing a role in the clearance of 
the particle after administration (Amrite and Kompella 2005). Taken together, the 
potential risks posed by nanomaterials seem to be dependent on the route of deliv-
ery, the nanoparticle composition, and target tissue. These risks include immune 
stimulation, immunosuppression, inflammation (Zolnik et  al. 2010), aggregation, 
membrane disruption, accumulation in nontarget tissues (Panessa-Warren et  al. 
2009), hemolysis, generation of oxidative stress (Medina et al. 2007), and adsorp-
tion of plasma proteins onto the surface. A summary of the health risk of nanophar-
maceuticals is presented in Table 7.1.

7.3.2  �Environmental Risks

Understanding the implications of the process of syntheses, products, and byprod-
ucts of nanotechnology on the environment and human health is crucial to its 
acceptable utilization. With over 1000 nano-enabled consumer products in the mar-
ket, knowledge gaps still exist regarding their fate and transportation within humans, 
the environment, and ecosystems (The Project on Emerging Nanotechnologies 
Consumer Products 2010). Some nanoparticles appear to persist more in the envi-
ronment than others, hence, the need to explore and obtain more information as 
touching risk assessment and management (Kahru and Dubourguier 2010). Further, 
many topical creams which are intended for direct application, for example, sun-
screens, contain nanoparticles (The Project on Emerging Nanotechnologies Health 
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and fitness 2010). Some of these materials could be absorbed through the epidermis, 
while, some, while being washed off, enter into the public waste water systems. 
Also, nanomaterial utilized for medical interventions have multiple entry points into 
the environment; while some nano-enabled drug products are excreted into waste 

Table 7.1  Summary of in vitro and in vivo nanoparticle toxicity

Nanoparticle Side effect

Experimental 
model/organ/
tissue References

AgNP; 1, 10, and 
100 μg/ml; incubated at 
1, 4, and 24 h

No hemolysis observed for 1 and 
10 μg/ml washed red blood cell, 
hemolysis observed for 100 μg/
ml washed red blood cell 
incubated at 24 h

In vitro red blood 
cell

Laloy et al. 
(2014)

AgNP Chromosome instability In vitro normal 
human lung 
fibroblast

AshaRani 
et al. 2009

AgNP Mitotic arrest (although normal 
human fibroblast eventually 
recovered while cancer cells did 
not recover)

In vitro normal 
human lung 
fibroblast

AshaRani 
et al. 2009

AgNP Alterations in cell morphology In vitro normal 
human lung 
fibroblast

AshaRani 
et al. 2009

AgNP Oxidative stress and apoptosis Rat liver cell Hussain et al. 
(2005)

AuNP; 4, 12 & 18 nm; 
spherical; 0.001–
0.25 μM; 72 h 
incubation period

Nontoxic K562 human 
leukemia cell line

Connor et al. 
(2005)

AuNP Nontoxic Dendritic cells Villiers et al. 
(2009)

AuNP; 2 nm, spherical, 
quaternary ammonium, 
carboxylic acid. 
0.38–3 μM dose; 
incubation time 1–24 h

Cationic nanoparticles were toxic 
while anionic were not

COS-1 
mammalian cells, 
red blood cells, E. 
coli

Goodman 
et al. (2004)

AuNP; 10, 50, 100, 
250 nm; spherical; 
intravenously 
administered; 
77–108 μg/rat

No side effect. Most 
nanoparticles were found in 
spleen and the liver; the 10 nm 
particles were also found in the 
brain, heart, kidney, testis, and 
thymus

Rat liver, spleen, 
brain, and heart

De Jong et al. 
(2008)

AuNP; spherical; 
0–4 mM dose, 24–144 h 
incubation time

Decreased cell proliferation rate, 
adhesion and motility

Human dermal 
fibroblast

Pernodet et al. 
(2006)

AuNP; 15–20 nm; 
spherical; intravenous 
0.8–1.88 mg/gold/kg

AuNP accumulated. No 
hematological or renal side 
effects

Pig liver, lung, 
kidney, and blood

Kattumuri 
et al. (2007)
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water, some novel imaging agents and medical devices are disposed at the end of 
their life cycle into a landfill. The Food and Drug Administration (FDA) and 
Environmental Protection Agency (EPA) currently provides guidelines on how to 
dispose of unused medications to the public as this and other byproducts could 
cause harmful effect to the environment (U.S. Environmental Protection Agency 
2010; U.S. Food and Drug Administration 2010). The ability of bionanomaterials to 
accumulate in the environment, food chain, and work force represents a direct pro-
portional rise in the risk of environmental damage (Nel et al. 2006). More so, certain 
toxins have been found to enter the food chain by bioaccumulating in organisms. 
Hence, the ecological fate of nanomaterials needs to be considered and the environ-
ment monitored for potential threats (Patil et al. 2015).

For example, researchers studied the fate of CTAB-coated gold nanorods (65 nm 
length 9 15  nm width) in replicate estuarine mesocosms which was modeled to 
mimic a high tidal marsh creek (Ferry et al. 2009). The mesocosms consisted of 
seawater, sediment, fish, snails, microbial biofilms, clams, and shrimps. The authors 
of the study found out that the nanomaterials were differently partitioned into most 
of the organisms to varying extents, with a low concentration remaining in water. 
The largest accumulations of nanomaterials were the microbial biofilms and clam 
(filter feeders). Nevertheless, no death was reported at the dosage used (Ferry et al. 
2009). In a separate report by Bar-Ilan et al. (2009), the toxicity of different sizes (3, 
10, 50 and 100 nm) of gold and silver nanoparticles were assessed using zebrafish 
embryo. The study demonstrated that the gold nanoparticles unlike the silver 
nanoparticles of comparable sizes were not toxic to zebrafish. The silver nanopar-
ticles were highly toxic, inducing 100% death after 120-h postfertilization. In addi-
tion, other environmental fates of nanoparticles particularly in the marine ecosystem 
include its ability to sink very slowly to the ocean floor, where it may pose a risk to 
pelagic species, deposition in sediments where it may pose a risk to benthic species 
and accumulation in the surface microlayers of the oceans (Wurl and Obbard 2004). 
Furthermore, crops may uptake nanomaterials if exposed to nanopesticides and the 
uptake varies, depending on the plant species, the source of growth media, nanoma-
terials, and mode of application. For example, exposing lettuces and cilantro to 
nanopesticides via soil resulted in the uptake of nCu, nCuO, and the two nCu(OH)2 
nanopesticides leading to the accumulation of Cu mostly in the roots, with little 
translocation to the stems (Hong et al. 2014; Zuverza-Mena et al. 2015). Also, when 
the mode of application of the nanopesticides was foliar, a much larger fraction of 
the Cu taken up by the plant remains in the leaves or fruits.

7.4  �Conclusion

At present, use of nanopharmaceuticals is cogent in sustaining the future growth of 
the pharmaceutical industry (PI) in both developed and developing nations of the 
world. Research efforts are being made to advance the applications of nanopharma-
ceuticals that will better benefit the healthcare industries. However, as 
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nanotechnology emerges as promising tool in the field of medicine and particularly 
for the healthcare industry, the environmental exposure will continue to rise. 
Therefore, investigations aimed at profiling the safety and environmental fate of 
these particles become highly essential. Further, the general public needs to be edu-
cated on the safe disposal of byproducts of nanomaterials in order to ensure safe 
community health while the government needs to put in place policies to monitor 
and adequately regulate the synthesis and utilization of nanomaterials for biomedi-
cal and for pharmaceutical applications.
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Abstract  Nanopharmaceuticals are an emerging innovative domain of research 
that integrates nanotechnology and biotechnology applications. This technological 
development will permit producing unique nanopharmaceutical compounds used in 
the medical field, particularly in drug delivery. This book chapter focuses on organic 
(polymeric and lipid nanoparticles, dendrimers) and inorganic (magnetic nanopar-
ticles and quantum dots) materials used to produce nanopharmaceuticals with dif-
ferent characteristics such as size, structure, chemical composition, and behavior 
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enabling their use in different fields, one of which the drug delivery systems. Within 
drug delivery systems, special emphasis is given to vesicular (liposomes) and 
nanoparticulate carriers as they are the most explored at the market level. The bio-
technological development, main features, and examples of applications of some 
types of nanostructures are discussed. Moreover, data available on sources, path-
ways, and effects of nanopharmaceuticals in the aquatic environment are discussed, 
with special emphasis on the environmental impact of these nanopharmaceuticals to 
the aquatic environment. Results indicate that there is no standard protocol for eco-
toxicological testing and limited information exists on environmental impact assess-
ment of nanopharmaceuticals. Thus, human and environmental safety guidelines 
are urgently needed to protect both the human health and the environment.

Keywords  Aquatic organisms · Biomarkers · Drug delivery · Ecotoxicity · 
Environmental risk assessment · Nanopharmaceuticals · Nanotoxicology · 
Public health

8.1  �Introduction

Nanotechnology applications have revolutionized different activities, among them, 
industry and medicine. Within the medical field, this technology, known as nano-
medicine, includes a broad range of nanomaterials that can detect at molecular and 
cellular level and, at much earlier stages, diseases that affect organs and tissues and 
help to preserve and restore human health and well-being (Bawarski et al. 2008.). 
Therefore, nanopharmaceuticals are an emerging domain that integrates nanotech-
nology, biotechnology, and pharmaceuticals (Jain 2008) and were defined by Rivera 
Gil et al. (2010) as “pharmaceuticals where nanomaterials play the pivotal therapeu-
tic role or add additional functionality to the previous compound” (Rivera Gil 
et al. 2010).

Nanomaterials by definition have a size range in the sub-100  nm scale (ISO 
2015), different shapes, large surface area, and great reactivity. At this size scale, 
quantum effects may alter the specific physicochemical properties of the bulk mate-
rial, which allow them to cross biological barriers and be used in drug delivery, 
therapy, in vivo imaging, in vitro diagnostics, biomaterials, active implants, and 
regenerative medicine (Wagner et al. 2006). Due to this wide range of applications, 
the size of the individual particles tested for drug delivery and imaging may range 
from 2 nm to 1000 nm. This led the European Medicines Agency to adopt, in 2010, 
a broader definition, considering the application of nanomaterials in nanomedicine, 
in the size range of 1 nm to 1000 nm – even including compounds surpassing these 
limits – if they are manufactured on purpose of drug delivery (Berkner et al. 2016; 
Souza and Amaral 2017). A wide range of nanomaterials were created with several 
therapeutic applications and include particulate and vesicular systems, dendrimers 
and drug-polymer conjugates, colloidal gold, iron oxide crystals, quantum dots, and 
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solid nanostructures (fullerenes and carbon nanotubes) (Bawarski et al. 2008). They 
can be classified in two categories: “hard” and “soft” nanomaterials. “Hard” nano-
materials are formed by ionic or covalent bonds, such as metal and metal oxide 
nanoparticles, while the “soft” ones are formed via weak interactions, such as lipo-
somes, dendrimers, and micelles (Mahapatra et al. 2013). The main features and 
examples of application of some types of nanostructures, such as polymeric 
nanoparticles, magnetic nanoparticles, and liposomes, will be presented in this 
chapter.

The materials used to produce nanopharmaceuticals have different chemical 
composition and behavior when present in the aquatic environment. A successful 
example of a nanopharmaceutical is Abraxane® (Abraxis, Los Angeles, California), 
an albumin-bound nanoparticle formulation of paclitaxel with application in meta-
static breast cancer, which allowed to overcome the limitations associated with drug 
hydrophobicity while avoiding the need to use toxic organic solvents (Bawarski 
et al. 2008). Therefore, not only the produced nanopharmaceuticals will be unique, 
but also their interactions with drug molecules will be distinctive. The impact of 
their discharge to the aquatic environment will produce interactions with abiotic and 
biotic components of the aquatic ecosystems that in some cases can be toxic. For 
example, colloidal gold, iron oxide nanoparticles, and quantum dots generally used 
in nanomedicine are known to be toxic (Nogueira 2014; Rocha et al. 2015a, 2017; 
Lefevre et al. 2015; Valdiglesias et al. 2016). Therefore, human and environmental 
safety guidelines are urgently needed.

Nanopharmaceutical research has focused on drug formulation to improve bio-
distribution, bioavailability, and pharmacokinetics and on the specific delivery of 
existing drugs, especially in mammal species (Chen and Guan 2011). After being 
administered they are excreted from the human body, introduced in hospital waste 
water sewage or present in industrial effluents, ending up in waste water treatment 
plants where their elimination is reduced. Clearly, the nanopharmaceutical formula-
tions or their metabolites will be in contact with several other organisms during the 
elimination process until they reach the aquatic environment. Available data on the 
behavior and effects of nanoparticles in the aquatic environment, such as aggrega-
tion, evidence the need for models that allow predictions, inclusive of their concen-
trations and potential ecotoxicity. Ecotoxicity effects of nanoparticles in aquatic 
organisms include oxidative stress, genotoxicity, neurotoxicity, behavior changes 
and immunotoxicity (Rocha et al. 2017). However, ecotoxicological studies about 
the behavior, fate, and impact of nanopharmaceuticals in nontarget species remain 
scarce (Yegin et al. 2017). Given the wide range of applications, nanopharmaceuti-
cals evolved and grew in recent years, but safety issues were not taken into account 
and possible undesirable effects on humans were not studied properly. In addition, 
little attention was paid to the potential nefarious effects caused by the starting 
materials that result in the nanomaterials. As such, the environmental impact assess-
ment of the fabrication process and the problematic effects that may arise from the 
environmental release of these compounds were also disregarded (Linkov et  al. 
2008; Berkner et al. 2016). Therefore, the main objective of this book chapter is to 
highlight the potential effects of nanopharmaceuticals in the aquatic environment as 
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a result of their applications in drug delivery systems, with special emphasis on 
liposomes and nanoparticles, as these are the most explored, even at the market level.

8.2  �Types and Uses of Nanopharmaceuticals

The pharmaceutical area is, at present, the focus of great innovation. Along with 
new molecules being discovered and others undergoing chemical modifications to 
meet specific requirements, several molecules already in clinical practice are being 
studied in different formulation strategies that include the use of the so-called drug 
delivery systems (Wu et al. 2017; Tarhini et al. 2017). These systems are gaining 
increased interest and are developed to fit specific needs that cover a wide range of 
possibilities. Usually, the delivery systems act as carriers for the molecule of inter-
est and its formulation provides improved stability and protection towards degrada-
tion (Zhang et al. 2013; Petros and DeSimone 2010). Additionally, in many cases, 
the delivery of drugs to a site of interest or the modification of the kinetic profile is 
envisaged (Almeida and Grenha 2014; Sarwar et al. 2017). Overall, the use of drug 
delivery systems is also expected to allow the reduction of side effects and potenti-
ate the efficacy of the drug (Zhang et al. 2013; Petros and DeSimone 2010). There 
are many drug delivery systems, differing in characteristics such as the structure, 
composition, and size. Nanoscaled carriers are currently gathering much attention, 
because of several advantages comparing with micron-sized counterparts. These 
advantages include higher control over drug release (Lopes et al. 2016), increased 
drug absorption (Csaba et al. 2006), and great ability for surface functionalization 
(Singh Jr. and Lillard 2009), among others, that make nanocarriers viable therapeu-
tic alternatives.

As of this day, there are several nanopharmaceuticals already approved by the 
Food and Drug Administration (Weissig et al. 2014) that will be briefly discussed 
later. Figure 8.1 shows a chronology in which the discovery of different carriers is 
highlighted, showing some marketed formulations of relevance.

8.2.1  �Vesicular Drug Delivery Systems

Vesicular drug delivery systems correspond to liposomes, which were first described 
by Bangham in 1965 (Bangham et al. 1965) and used in clinic since 1997, when the 
first products were approved by the Food and Drug Administration (Weissig et al. 
2014). Liposomes are vesicles comprised of a lipid bilayer, usually obtained using 
phospholipids (Lasic 1988). Their amphiphilic structure allows the encapsulation of 
hydrophilic drugs inside the formed cavity or hydrophobic molecules within the 
membrane (Gulati et al. 1998). This flexibility is one of the key features of these 
systems, along with the reported biodegradability and biocompatibility, chemical 
flexibility, and stability provided to drug molecules, namely, by preventing or 
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delaying their degradation. All these characteristics have fostered their use as drug 
carriers. Furthermore, liposomes also provide protection to organisms receiving the 
drugs, as described for amphotericin B. This antifungal drug causes severe toxicity 
and its liposomal formulation (AmBisome®) soon revealed to be the solution for 
problems of therapeutic incompliance (Akbarzadeh et al. 2013). Regrettably, lipo-
somes present low solubility and short shelf-life. Furthermore, due to their compo-
sition, the possibility of oxidation and hydrolysis of phospholipids needs to be 
considered, as these compromise liposome usefulness, leading to vesicle disintegra-
tion with consequent drug leakage (Akbarzadeh et  al. 2013). Fortunately, these 
problems can be addressed by a process of freeze-drying, which ensures the removal 
of almost all the water of the formulation, improving liposome’s shelf-life and 
greatly inhibiting oxidation and drug leakage (Miyajima 1997).

Liposomes are mainly composed of phospholipids, being phosphatidylcholine 
and phosphatidylethanolamine the most commonly used materials for their produc-
tion (Laouini et al. 2012). Nevertheless, it is very frequent to include other mole-
cules in liposome formulations to confer specific characteristics. Depending on the 
length and saturation of the lipid chain of the phospholipids, rigid or fluid liposomes 
may be formed (Akbarzadeh et al. 2013). Cholesterol is included very often, as it 
makes the liposomal membrane more rigid and less flexible, allowing a better con-
trol over the release of the drugs (Tardi et al. 2016). The amount of cholesterol plays 
a relevant role in this regard (Briuglia et al. 2015). Additionally, it is suggested that 
cholesterol helps increasing the vesicle’s circulation time (Kirby et  al. 1980). 
Polyethylene glycol is also used frequently in liposomal formulations, as it hampers 
the process of opsonization and, consequently, the detection of the vesicles by the 
immune system. This delays the elimination of the liposome (Milla et  al. 2012; 
Immordino and Cattel 2006) and, thus, potentiates the drug effect.

Fig. 8.1  Chronological order of development of several drug nanocarriers and approval of 
nanopharmaceuticals
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Lipid film hydration and the solvent injection methods are two of the most used 
techniques to produce liposomes. These techniques share two common steps: (1) 
the dispersion of lipids in organic solvent and (2) the addition of an aqueous solu-
tion to form the vesicles (Akbarzadeh et al. 2013; Meure et al. 2008). More recent 
approaches include the methods of microfluidic channel and of supercritical fluid 
injection and decompression, but this requires expensive equipment to effectively 
produce the vesicles (Meure et al. 2008). The lipid film hydration involves solubili-
zation of phospholipids using organic solvents, solvent evaporation to form the lipid 
film, and subsequent addition of an aqueous solution, either with or without the drug 
to be encapsulated (Brandelli 2012). Liposomes are formed instantaneously in this 
case. After their production, further processing is usual to tailor sizes to the desired 
outcome. A technique of extrusion is frequently applied for this end, as well as soni-
cation (Schroeder et al. 2009). The literature displays a comprehensive review on 
the methodologies to produce liposomes (Meure et al. 2008) and on techniques to 
optimize the produced vesicles (Mozafari 2010). In fact, size and zeta potential are 
two of the most relevant characteristics of nanocarriers. Zeta potential indicates the 
surface charge of the vesicle and is naturally dependent on its composition. Along 
with size, it plays an important role on the interaction with involving environment, 
including epithelial surfaces and proteins in the blood, among others (Manaia 
et al. 2017).

After production and further refinement, liposomes are classified according to 
three categories, as shown in Fig. 8.2.

Different types of liposomes can be obtained: small unilamellar vesicles (SUVs), 
large unilamellar vesicles (LUVs), and multilamellar vesicles (MLVs). Small unila-
mellar vesicles (SUVs) are formed by a single phospholipid bilayer and can present 
100 nm or smaller size; large unilamellar vesicles (LUVs) also have a single bilayer, 
but range between 200 and 800 nm; finally, multilamellar vesicles (MLVs) are com-
prised of many concentric bilayers, reaching sizes up to 5000 nm (Torchilin 2008). 
Fortunately, the myriad of production processes and refinement methods allow the 
production of vesicles of different sizes and structures that are studied and used 
depending on the given purpose.

Liposomes are thus efficient drug delivery systems that are strongly used in clin-
ics and are still subject of intense study, as will be addressed in Sect. 8.2.3.

8.2.2  �Nanoparticulate Drug Delivery Systems

Nanoparticulate drug delivery systems, along with the vesicular systems revolution-
ized therapeutics and the field of drug delivery. A great part of research is conducted 
with several delivery routes being tested, as well as encapsulation strategies that 
enable and improve the efficiency of certain drugs (Mallipeddi and Rohan 2010; 
Pachuau 2015).

As for liposomes, size and zeta potential are two of the most relevant character-
istics. The International Organization for Standardization (ISO) defines 
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nanoparticles as particles having at least one dimension less than 100  nm (ISO 
2015). However, carriers with sizes up to 1000 nm are also considered nanoparticles 
by most of the scientific community (Wilczewska et  al. 2012), including the 
European Medicines Agency (Berkner et al. 2016). The broader definition is the one 
considered in this chapter.

Nanoparticulate carriers can have different composition, either organic (poly-
mers or lipids) or inorganic (metals or silica). This chapter will focus on organic 
nanoparticulate drug delivery systems (polymeric and lipid nanoparticles, and den-
drimers), and on magnetic nanoparticles and quantum, which will be detailed below.

�Organic Systems

Organic nanoparticulate drug delivery systems enclose two sub-categories: poly-
meric particles, produced with either synthetic or natural polymers, or lipid parti-
cles. These carriers are typically divided in the categories of nanocapsules and 
nanospheres. Nanocapsules are nano-reservoirs comprised by a shell structure and 
a core that can be either aqueous or oily and liquid or semi-solid. The core or cavity 
is the place where the drug of interest is mostly encapsulated/associated. On the 
other hand, nanospheres are matrix nanoparticles, meaning particles that are solid, 
having the drug of interest distributed virtually anywhere (Vauthier and 
Bouchemal 2009).

Fig. 8.2  Depiction of the different types of liposomes that can be obtained: small unilamellar 
vesicles (SUVs), large unilamellar vesicles (LUVs), and multilamellar vesicles (MLVs). Liposomes 
are vesicular drug delivery systems, mainly composed of phospholipids organized in bilayers. 
These are represented by the black bold line. Depending on the size, and on the refinement tech-
niques, liposomes can have only one bilayer (the case of SUV and LUV) or more than one concen-
tric bilayer (the case of MLV)
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In the category of polymeric systems, polyesters and, more particularly 
poly(lactide-co-glycolide) acid (PLGA), are the most used synthetic materials, 
while polysaccharides and proteins are used as natural ones. PLGA evidences abil-
ity to control drug release, along with low toxicity and high biocompatibility, which 
enable its inclusion in several formulations already in the market for several bio-
medical applications (Sharma et al. 2016). Chitosan, alginate, and hyaluronic acid 
are some examples of polysaccharides that are being studied for application in for-
mulations of therapeutic relevance (Huh et  al. 2017). Chitosan has been widely 
studied over the recent decades and is the most explored polysaccharide. This is 
justified by its unique cationic character, which brings very relevant characteristics 
such as strong mucoadhesivity. Additionally, it is also reported as biocompatible in 
many routes of administration and useful in various studies of clinical relevance, as 
in colon cancer (You et al. 2016), detection of tumors via image diagnosis (Hong 
et al. 2017), and for the delivery of antibiotics (Madureira et al. 2015), among oth-
ers. Polymeric nanoparticles have a slight immunomodulatory activity. Thus, when 
used to carry immunomodulatory vaccines or peptides, they may potentiate the 
activity of the carried molecules (Amaral et al. 2010; Ribeiro et al. 2015). Despite 
the exhaustive study of the referred polysaccharides and the demonstration of favor-
able characteristics such as biocompatibility, low toxicity, and biodegradability 
(Martínez et al. 2012), there is no nanopharmaceutical formulation approved with 
these materials. In turn, albumin is one of the most studied proteins as matrix com-
ponent of drug delivery systems and has one formulation approved (Abraxane®) for 
the treatment of breast cancer and non-small-cell lung cancer (Bernabeu et al. 2017).

Dendrimers are also an emerging class of polymer-based carriers. These are 
spherical structures with high surface area derived from the highly branched poly-
mers used in their preparation. Because of this, they present huge internal space to 
incorporate bioactive molecules (Rimondino et  al. 2017). Features such as the 
spherical shape and symmetrical architecture, coupled with specific physicochemi-
cal properties, make these structures fascinating for drug delivery applications. 
Dendrimers are typically composed of a central component (called core), by several 
internal cavities created according to the branched polymer used and by a surface 
that can be formed by different functional groups (Srinageshwar et al. 2017). These 
groups on the surface promote delivery of dendrimers to different cell types and 
even simplify their penetration into tissues or cells. Dendrimers are classified 
according to the number of layers, where each layer is called generation (G): a four-
layer dendrimer is called “dendrimer generation 4 (G4).” Most likely because of 
their small size, usually around 10 nm, and surface charge, dendrimers are able to 
penetrate diverse tissues of the body (Albertazzi et al. 2010). Upon injection into the 
carotids of mice, dendrimers with a slight cationic surface were able to cross the 
blood-brain barrier (Srinageshwar et al. 2017). Dendrimers surface charge strongly 
correlates with the cell penetration ability, as neutral or negatively charged den-
drimers show reduced internalization (Perumal et al. 2008). This attribute can be 
improved by coupling molecules such as peptides to their surface (Jiang et al. 2016).

Lipid-based nanoparticulate carriers are another category of organic-based sys-
tems. Within this category, solid lipid nanoparticles and nanostructured lipid 
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carriers are those gathering the highest attention. Solid lipid nanoparticles are com-
prised of a matrix of solid lipids only and were first reported in the early 1990s to 
avoid some limitations shown by liposomes and polymeric nanoparticles (Nunes 
et al. 2017). As for the nanostructured lipid carriers, they appeared in the late 1990s 
as an improvement of solid lipid nanoparticles. A mixture of both solid and liquid 
lipids is required to prepare nanostructured lipid carriers, which display increased 
stability provided by the liquid lipids present in the matrix (Li et al. 2017), when 
compared with solid lipid nanoparticles. The methods of production of solid lipid 
nanoparticles and nanostructured lipid carriers are described in Lin et al. (2017) and 
Tamjidi et al. (2013).

Polymeric nanocarriers can be obtained by the polymerization of a monomer or 
from preformed polymers, the latter being the most used of the approaches. In this 
context, methodologies involving emulsification such as emulsification/solvent 
evaporation, emulsification/solvent diffusion, solvent displacement and interfacial 
deposition, among others, are very frequent and allow the production of both nano-
capsules and matrix nanoparticles. Matrix nanoparticles also frequently produced in 
processes mediated by electrostatic interactions or involving desolvation. The latter 
consists in adding a desolvating agent, a salt or a non-solvent of the polymer that is 
miscible with water, to the polymeric solution. Macromolecular aggregation or par-
ticle formation is brought about by the partial desolvation of fully solvated polymer 
molecules (Vila and Lastres 2001). Methods such as polyelectrolyte complexation 
and ionic gelation are those involving electrostatic interactions, in which nanopar-
ticles form upon interaction between oppositely charged molecules. Several com-
prehensive reviews exist on the methodologies to produce polymeric nanocarriers, 
featuring their advantages and disadvantages (Pinto Reis et al. 2006; Vauthier and 
Bouchemal 2009). To produce solid lipid nanoparticles and nanostructured lipid 
carriers, the method most commonly applied is of high pressure homogenization. In 
this method, the solid lipid components are melted and mixed afterwards with the 
liquid lipids (when applicable) and drugs (if the production of drug-loaded carriers 
is envisaged). This mixture is then added to a hot aqueous solution containing sur-
factants, being stirred by a high-shear mixing device, to form an emulsion. 
Homogenization is repeated until nanodroplets are obtained.

�Inorganic Systems

Inorganic systems comprise those nanoparticles that are composed by inorganic 
materials. Magnetic nanoparticles are one of the most used, with structures with 
about 7 nm. When close to a magnetic field, they can suffer alterations that influence 
their behavior (Loebinger et al. 2009; Issa et al. 2013). Metals used to prepare mag-
netic nanoparticles should be carefully chosen to avoid toxicity. Cobalt, nickel, and 
neodymium-iron-boron are used. However, they may suffer oxidation during in vivo 
applications (Dias et al. 2011). Iron oxide materials such as maghemite and magne-
tite are safer and, thus, often used to produce these nanoparticles (Dias et al. 2011). 
Their interest relies on multifunctional characteristics, such as small size, 
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supermagnetism, and low toxicity to mammals, easiness of synthesis and function-
alization (Wu et  al. 2009; Dias et  al. 2011). However, from the two materials, 
maghemite presents iron in the oxidized state, further reducing its toxicity (McBain 
et al. 2008).

To improve the stability of these structures and to prevent them from clumping, 
they are functionalized by surface-binding to organic substances, thus forming the 
magnetic fluids. In this way, the components connected to or incorporated in them 
will also be influenced by the magnetic field (Shi et al. 2012). Another property of 
these functional groups is to reduce the toxicity of certain metals and increase their 
biocompatibility (Lin et al. 2010; Kolhatkar et al. 2013). Gallo et al. (2013) pre-
sented an extensive review in which several types of materials used for the coating 
of magnetic nanoparticles are mentioned, including dextran and bovine serum albu-
min. According to the nature of the functional groups incorporated in magnetic 
nanoparticles, they can carry drugs and nucleic acids, as well as substances for 
contrast in magnetic resonance examinations (Loebinger et  al. 2009). They may 
also be associated with other nanostructures such as liposomes, and, thus, by 
responding to an external magnetic field, they can be manipulated to be target-
directed. Currently, several applications are being focused on these magnetic 
nanoparticles, but the main applications are in treatment and detection of tumors.

Quantum dots are another group of inorganic systems being strongly explored. 
They are a class of engineered nanoparticles formed by fluorescent semiconductor 
nanocrystals with nanometer diameters ranging from 1–10 nm. These nanoparticles 
are classified in two categories: cadmium-based quantum dots and cadmium-free 
quantum dots. The quantum dots core can be made of a variety of metal complexes, 
such as group II–IV series (CdSe, CdTe, CdSeS, ZnS, ZnSe, and PbSe) or group 
III–V series (InP, InAs, GaAs, and GaN). This core determines their color, while the 
inorganic shell or ligand(s) can enhance stability, brightness, water solubility, and 
conjugation capacity (Michalet et al. 2005; Nguyen et al. 2013). The most common 
quantum dots core used for biological and medical applications are CdSe and CdTe, 
which can be coated with a shell and additional capping layer or ligands (Michalet 
et al. 2005; Smith et al. 2008; Rocha et al. 2017).

The quantum dots’ shell consists mainly of a second semiconductor material 
(e.g., ZnS) and protects the core from oxidation and degradation. Surface ligands 
can be hydrophilic, hydrophobic, or amphiphilic polymers, such as mercaptoacetic 
acid (MAA), mercaptosuccinic acid (MAS), thioglycolic acid (TGA), dihydrolipoic 
acid (DHLA), and amphiphyllic polymers like modified polyacrylic acid (PAA). 
These ligands increase the quantum dots’ water solubility and compatibility for 
applications in biological systems (Maysinger et al. 2007). Furthermore, quantum 
dots can also be conjugated with biomolecules (e.g., peptides and oligonucleotides), 
antibodies, and/or drugs for identification and action in specific biological targets 
(Smith et al. 2008; Rizvi et al. 2010).

Due to their physicochemical properties and biological interactions, quantum 
dots are applied in many fields. These include electronics (i.e., light-emitting diode 
(LED), organic light-emitting diode (OLED), photovoltaic, and lasers), solar pan-
els, photo-chemistry (i.e., photoelectrodes), analytical chemistry, pharmacy, 
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molecular and cell biology (i.e., live cell imaging, co-localization of genes/proteins, 
multicolor staining, and flow cytometry), and nanomedicine (i.e., molecular profil-
ing of cancer, antimicrobial agents, in vivo tumour imaging, photodynamic therapy, 
diagnosis, and development of disease- and patient-specific therapies) (Michalet 
et al. 2005; Deerinck 2008; Rizvi et al. 2010).

Nanoparticulate drug delivery systems comprise a wide topic in the pharmaceuti-
cal field. Although their market presence is limited so far, they are considered the 
future alternative in therapeutics, thus looking for new options on how drugs will be 
delivered to the human body. The most remarkable achievements will be addressed 
in the following section.

8.2.3  �Nanopharmaceuticals as a Viable Therapy

Many different materials can be used to prepare various carriers that are intended to 
encapsulate a variety of drug molecules. Vesicular and nanoparticulate drug deliv-
ery systems are two of the most studied approaches. As shown in Fig. 8.1, the dis-
covery of liposomes occurred before 1980s. Afterwards, when it was possible to 
alter the outer membrane of the liposomes by adding specific molecules, the 
PEGylated liposomes appeared, bringing uncountable advantages regarding drug 
half-life. From this point on, important liposome-based formulations appeared in 
the market: Doxil®, DaunoXome®, Ambisome® and Myocet®. Apart from 
Ambisome®, all the other products encapsulate anticancer drugs, and cancer is, 
indeed, one of the greatest fields of application of liposomal formulations. Naturally, 
pharmaceutical formulations comprising advanced technologies result in more 
expensive products, which find application more easily in diseases permitting higher 
investment. Ambisome® encapsulates a potent antifungal drug (amphotericin B), 
enabling the decrease of the strong side effects caused by the administration of the 
drug per se (Stone et al. 2016). In an interesting approach, thermosensitive lipo-
somes were recently proposed to provide external targeting of drugs to solid tumors, 
in combination with local hyperthermia or high-intensity focused ultrasounds (Al 
Sabbagh et al. 2015; Novell et al. 2015).

Another important event in the timeline shown in Fig.  8.1 is the approval of 
Abraxane® in 2005, the only marketed formulation comprised of nanoparticles. This 
formulation is composed by albumin conjugated with paclitaxel, currently having 
an application in metastatic breast cancer and non-small-cell lung cancer. Weissig 
and Guzman-Villanueva provide a comprehensive review on these products, along 
with many others that are not subject of this chapter (Weissig et al. 2014).

Nanopharmaceuticals are an alternative approach to conventional therapeutic 
strategies, also having a role in the field of diagnostics. They can have important 
roles on smoothing severe adverse effects or on mediating active targeting of the 
encapsulated molecules to specific cells/tissues. There are several formulations that 
are currently on clinical trials for a possible approval soon. One example is 
CRLX101, a cyclodextrin-PEG nanoparticle encapsulating camptothecin, another 
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anticancer drug. It is an intravenous formulation, and it has finished phase II clinical 
trials, being proposed for the treatment of rectal, ovarian tubal, and peritoneal can-
cer (Svenson et al. 2011; Ragelle et al. 2017). Another example included in Fig. 8.1 
is the anti-EGFR immune-liposomes, which recently completed phase I clinical 
trials. This strategy is based on the encapsulation of doxorubicin, to be potentially 
used in solid tumors (Mamot et al. 2012). Furthermore, several metal-based delivery 
systems are currently in phase I clinical trials for potential use in radiotherapy and 
the treatment of prostate cancer by application of a magnetic field (Ragelle et al. 
2017). A recent review addresses the market prospects of these nanopharmaceuti-
cals, further referring to many other formulations undergoing clinical trials (Ragelle 
et al. 2017). Interestingly, it also describes three products currently in phase III: one 
for hepatocellular carcinoma, another for respiratory syncytial virus infection, and 
the last one for metastatic breast cancer. The results of these clinical trials will dic-
tate the possibility to obtain marketing authorization. Other strategies, more specific 
for the cancer therapy area, are described in a novel review by Li et al. (2017), prov-
ing that the versatility of this strategy is being taken into consideration for the next 
generation of therapeutics.

Dendrimers and magnetic nanoparticles are not so advanced in their positioning 
to market. Nevertheless, there are very interesting applications being reported. 
Dendrimers formed by polyamidoamine polymer (PAMAM) have a high density of 
amine groups with empty inner cavities and functional groups that promote high 
solubility and reactivity (Jiang et al. 2016). Because of this, they are widely used to 
deliver anticancer drugs, such as doxorubicin. Although toxic, in animal model 
experiments, doxorubicin was better tolerated by animals when dosed twice the 
tolerable limit to cause toxicity (Kaminskas et al. 2012). Gene therapy applications 
have also been reported (Nam et al. 2015; Hemmati et al. 2016). Dendrimers were 
successfully used to carry siRNA, evidencing ability for incorporation into their 
internal cavities and to promote cell internalization (Liu and Peng 2016). Highly 
branched dendrimers comprised of glutamic acid-modified hyperbranched poly-
amidoamine (HPAMAM) also evidenced efficient gene transfection, with decreased 
toxicity (Hemmati et al. 2016).

Regarding magnetic nanoparticles, superparamagnetic iron oxide nanoparticles 
(SPIONs) have been used in magnetic resonance imaging (Pour and Shaterian 2017; 
Xiong et al. 2017), benefiting from the attachment of specific receptors to SPIONs 
surface, which allow greater affinity and precision in detecting tumors. 
Magnetohyperthermia is also an innovative approach gathering attention, consisting 
in the generation of heat at different intensities by the application of a magnetic field 
over magnetic nanoparticles. This technique is applied to destroy tumor cells, which 
are more sensitive to heat changes (Miranda-Vilela et al. 2014), but it can also be 
used to promote release of the bioactive compound from magnetic nanoparticles 
(Tang et al. 2017).

The potential of the systems has been demonstrated in many cases, but regula-
tions have generally tightened up regarding the approval of new drug formulations, 
with restrictions gaining emphasis for nanopharmaceuticals. For these formula-
tions, it has become even more important to correctly and exhaustively assess the 
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biological implications of their delivery to and permanence within the human body. 
In this regard, Kipen and Laskin have stated that nanotechnology yields nanotoxi-
cology (Kipen and Lasking 2005). While this is not necessarily true, it reveals the 
lack of knowledge and information on toxicological effects of engineered nano-
medicines. These effects are not restricted to those felt by the organism receiving 
the formulations but also encompass the effects imposed to the environment. It must 
be reminded that, after delivery to humans, the formulations or their metabolites end 
up reaching the environment via debris. The next sections of this chapter address the 
impact of nanopharmaceuticals on the aquatic environment. In fact, the toxicologi-
cal effects of engineered nanomedicines are one incredibly important feature in the 
approval process of a nanopharmaceutical.

8.3  �Biotechnology and Production of Nanopharmaceuticals

Nowadays, there are various nanostructured formulations for drug delivery in clini-
cal use. Applications of these nanostructured formulations involve treating various 
diseases, such as cancer and fungal infections. In Table 8.1 a few examples of drugs 
at nanoscale currently in clinical use are listed.

The delivery of bioactive molecules, such as drugs, peptides, and nucleic acids, 
can be performed through different materials, in accordance with their nanoproper-
ties (Amaral and Felipe 2013). When these bioactive molecules are incorporated 
within nanostructures, they present better stability, improving its therapeutic effi-
cacy (Kaminskas et al. 2012). Drug delivery systems at nanoscale can be prepared 
by different methods and types of materials, but it is essential to consider the nature 
of the molecule to be encapsulated and its destination when used for biological 
purposes.

Table 8.1  Examples of approved clinical nanomedicines and their clinical indications

Medicine Drug Composition Clinical indication References

Abraxane® Paclitaxel Albumin-bound Breast, lung and 
pancreatic cancer

Vallo et al. 
(2017)

Ambisome® Amphotericin B Liposome Fungal and protozoan 
infections

Stone et al. 
(2016)

Doxil® Doxorubicin Liposome Ovarian cancer and 
Kaposi’s sarcoma

Kakar et al. 
(2016)

Epaxal® Inactivated Hepatitis 
A virus

Virosome Hepatitis A infection Bovier (2008)

Gemzar® Gemcitabine Liposome Several types of solid 
tumors

Federico et al. 
(2012)

Inflexal® Influenza particles Virosome Influenza vaccine Herzog et al. 
(2009)

Opaxio® Paclitaxel Polymer 
conjugates

Several types of tumors Galic et al. 
(2011)
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The modern biotechnological techniques to manipulate nucleic acids have 
allowed the development of drugs with improved pharmacological properties, such 
as peptides and DNA vaccines (Amaral et  al. 2012; Amaral and Felipe 2013). 
However, because of the physicochemical nature of these molecules, which need to 
keep their original conformation to preserve the activity, they are easily degraded 
when in contact with the physiological environment by the action of enzymes. 
When incorporated into these nanostructures, many drugs may have their concen-
tration increased where the therapeutic activity is needed and thus reducing toxicity 
(Kaminskas et al. 2012).

In vivo experiments proved to improve peptides and DNA vaccines’ bioavail-
ability when incorporated within nanoparticles (Amaral et al. 2010; Ribeiro et al. 
2015). Using the murine model of fungal infection Paracoccidioidomycosis, it was 
possible to increase the immunomodulatory activity of a peptide of 10 amino acid 
residues, called P10, when incorporated into polymeric nanoparticles (Amaral et al. 
2010). Similar results were remarked for the same experimental model when a DNA 
therapeutic vaccine is delivered within polymeric nanoparticles or liposomes 
(Ribeiro et al. 2015). Both formulations were able to enhance in four times the anti-
fungal activity of the vaccine compared with the DNA vaccine administered in the 
free form.

8.4  �Sources of Nanopharmaceuticals Release into 
the Aquatic Environment

The sewage effluent is the major source of nanopharmaceuticals in the aquatic envi-
ronment. Human nanopharmaceuticals are released into the sewage system as a 
mixture of the unchanged, metabolized or conjugated compounds. The elimination 
of nanopharmaceuticals by patients occurs via excretory or hepatobiliary system 
followed by fecal or biliary excretion. In addition, nanopharmaceuticals applied to 
veterinary medicine are also a potential source of pollution, while the sludge from 
waste water treatment plants is an additional source of soil and aquatic pollution. 
The direct or indirect release of nanopharmaceuticals in effluents of wastewater 
treatment plants from hospital, communities, and industrial facilities will result in 
the exposure of aquatic organisms to nanopharmaceuticals. Although the concentra-
tion of nanopharmaceuticals in the aquatic environment is unknown, the environ-
mental levels of pharmaceuticals is increasing due to an ageing, increase on life 
expectancy and growing of human population, as well as the increase production 
and use of new products, indicating that nanopharmaceuticals may follow the same 
environmental fate of pharmaceutical compounds. Mahapatra et al. (2013) indicated 
that the release form and environmental fate and exposure of nano-enabled medical 
products have not been investigated and little or no data exists in the literature, con-
firming the urgent need to investigate the potential hazards and risks associated to 
nano-enabled medical products, such as the nanopharmaceuticals.
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After its release in the aquatic systems, different processes may influence the 
environmental behavior and fate of nanopharmaceuticals and their metabolites, as 
reported for other engineered nanoparticles: physicochemical transformation, 
aggregation/agglomeration, macromolecular interactions, and biologically medi-
ated reactions (Dwivedi et al. 2015; Rocha et al. 2017). However, these processes 
have not yet been investigated for freshwater, estuarine, and marine environment.

8.5  �Effects of Nanopharmaceuticals 
in the Aquatic Environment

The potential pathways for ecotoxicological research of nanopharmaceuticals in the 
aquatic environment are summarized in Fig. 8.3. Nanopharmaceuticals exhibiting 
novel and multifunctional properties, such as high surface area and saturation solu-
bility, resistant to settling, fast dissolution, and improved adhesion to biological 
surfaces, may give rise to potentially new ecotoxicological effects and environmen-
tal risks.

Fig. 8.3  Potential pathways for ecotoxicological research of nanopharmaceuticals
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In studies about the mode of action and toxicity of nanopharmaceuticals, a com-
prehensive knowledge of how these nanomaterials interact with biological systems 
is fundamental (Fig. 8.3). The interaction between nanomaterials applied to person-
alized medicine and biological systems is mediated by protein-binding, ligand-
mediated interactions and interactions during intracellular processing (Zhang et al. 
2012). Furthermore, upon contact with biological fluids (e.g., hemolymph, blood, 
interstitial fluid, or mucosal secretions), nanomaterials are coated with proteins and/
or other molecules, forming the protein corona (bio), which may change their nano-
specific properties, such as surface charge (zeta potential) and hydrodynamic diam-
eter. According to Canesi and Corsi (2016) and Canesi et al. (2017), the interaction 
of nanomaterials with plasma proteins in non-mammal species also induces the for-
mation of the protein corona, changing its uptake and toxicity in target cells. On the 
other hand, the interaction of nanomaterials with the external environment (i.e., 
natural organic matter and clays) forms the eco-corona, which changes its environ-
mental behavior and fate in distinct compartments of the ecosystems (aqueous 
phase, sediments, biota) (Rocha et al. 2015a, 2017; Canesi and Corsi 2016).

The interaction and bioaccumulation of nanomaterials in aquatic organisms are 
directly related to their mode of action and toxicity (Fig. 8.3). Recently, Yegin et al. 
(2017) showed that paclitaxel-loaded nanoparticles (84 ± 4 nm; 0.2–16.2 μg ml−1) 
were adsorbed on cell surfaces of the freshwater algae Raphidocelis subcapitata 
and Chlamydomonas reinhardtii and decreased the algal growth rate (72 h IC50 of 
1.6 ± 0.1 μg paclitaxel ml−1 for R. subcapitata and 120 h IC50 of 1.1 ± 0.1 μg pacli-
taxel ml−1 for C. reinhardtii), as well as inhibited the photosynthesis efficiency more 
than molecular (free) paclitaxel after 5 days of exposure. Furthermore, the polymer 
poly(ethylene oxide)-block-poly(ε-caprolactone) (PEO-b-PCL) used in the forma-
tion of nanocarriers was nontoxic to both algae species. In this sense, Yegin et al. 
(2017) indicated that the nanotechnology can increase the ecotoxicity effects of 
insoluble (lipophilic) drug molecules and that paclitaxel-loaded nanoparticles have 
algaecide properties. In this sense, the algal community that form the basis of 
aquatic food web represents an important target for biological interaction and eco-
toxicity effects of nanopharmaceuticals. On the other hand, the tissue and subcel-
lular distribution, metabolism and toxicokinetics of nanopharmaceuticals on aquatic 
organisms deserve further studies.

Fish are considered a suitable model for ecotoxicity assessment of magnetic 
nanoparticles in the aquatic environment (Table 8.2). The zebrafish Danio rerio and 
Oryzias latipes are the main fish species used to assess the environmental impact of 
magnetic nanoparticles. However, there is limited data for other economically 
important fish species, such as Oreochromis niloticus (Ates et al. 2016) and Poecilia 
reticulata (Qualhato et al. 2017) (Table 8.2).

Li et al. (2009) described oxidative stress and hypoxia in Oryzias latipes after 
exposure to nZVI nanoparticles and nFe-oxide nanoparticles (49 nm; 1–100 mg L−1) 
for 14 days and revealed that the mortality observed was dependent on the nanopar-
ticle composition [Fe(II)  >  CMC-nZVI  >  nFe-oxides]. Recently, Qualhato et  al. 
(2017) showed that ecotoxicity of iron oxide nanoparticles in fish species is expo-
sure time and concentration dependent. In general, data indicate that oxidative stress 
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associated to changes in activities of antioxidant enzymes and oxidative damage 
(i.e., lipid peroxidation and DNA damage) is one of the main modes of action of 
toxicity of magnetic nanoparticles in fish species (Table  8.2). Anguilla anguilla 
exposed to SiO2 and dithiocarbamate (DTC)-coated Fe3O4 nanoparticles (100 nm; 
2.5 mg L−1; 72 h) showed changes in the activity of glutathione reductase, glutathi-
one peroxidases and lipid peroxidation, as well as a synergistic response after co-
exposure to Hg (Srikanth et al. 2014). Genotoxic (DNA damage) and mutagenic 
effects (nuclear abnormalities) were observed in peripheral erythrocytes of the 
guppy Poecilia reticulata exposed to citrate-coated Fe2O3 nanoparticles (3.97 nm; 
0.3 mg L−1; 3–21 days) (Qualhato et al. 2017) and in the zebrafish D. rerio exposed 
to meso-2, 3-di-mercaptosuccinic acid (DMSA)-coated γ-Fe2O3 nanoparticles 
(5.7 nm; 4.7–74.4 mg L−1; 96 h) (Villacis et al. 2017), indicating that the comet 
assay associated to micronucleus test and erythrocyte nuclear abnormalities assess-
ment are a suitable approach to detect the clastogenic and aneugenic effects in fish 
species after exposure to magnetic nanoparticles (Table 8.2).

Similar to magnetic nanoparticles, the most used fish species in ecotoxicological 
research to assess the effects of quantum dots is D. rerio. The biological effects 
were assessed in different life stages, such as embryos, adults, and in vitro (Rocha 
et al. 2017). Reactive oxygen species production, lipid peroxidation, and changes in 
gene expression and in antioxidant enzymes activities in fish species exposed to dif-
ferent types of quantum dots were identified. In addition, mollusc bivalve species, 
namely Mytilus galloprovincialis and Mytilus edulis, were indicated as a target 
group for quantum dots ecotoxicity (Canesi and Corsi 2016; Rocha et al. 2015a, 
2017). As filter feeders, the mussels take up quantum dots aggregates/agglomerates 
from seawater, specially by endocytosis and/or phagocytosis in the digestive sys-
tem, following tissue distribution and metabolism, wherein the digestive gland is 
the main organ for storage, metabolism, and elimination of quantum dots (Rocha 
et al. 2015a, b, 2017). Similar mode of action and toxicity of quantum dots in fish 
were identified in bivalve species, while the mechanism of genotoxicity for both 
species remains unknown. In addition, it was demonstrated that hard nanomaterials 
such as quantum dots and iron oxides nanoparticles are toxic at different trophic 
levels (Rocha et al. 2015a, 2017; Nogueira 2014; Lefevre et al. 2015; Valdiglesias 
et al. 2016).

Among the important aspects in NanoEcoSafety, the development of nanomate-
rial safety standards is a priority. In this context, chitosan (polymer derived from 
chitin by deacetylation) effectively protected the freshwater crustaceans 
Ceriodaphnia cornuta and Moina micrura by enhancing the survival rate and repair 
of lost parts (Vijayakumar et al. 2016). ZnO nanoparticles (40.9 nm; 160 μg L−1) 
induce 100 and 76% mortality in C. cornuta and M. micrura neonates, while the 
co-exposure to chitosan at 100 μg ml−1 significantly reduced the mortality of C. cor-
nuta (36%) and M. micrura (14%) after 24 h of exposure (Vijayakumar et al. 2016), 
indicating that chitosan decreases the toxicity of metal-based nanoparticles.

The knowledge of the biological effects of nanopharmaceuticals and of the mode 
of action in aquatic organisms is limited and no standard protocol for ecotoxicologi-
cal tests exists. In this sense, bioassays or biomarker assessment should focus on 
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specific mechanisms of nanopharmaceuticals action on nontarget species. The 
revised data indicate that there is an urgent need to develop guidelines for ecotoxi-
cological test using aquatic species at different trophic levels, as well as the devel-
opment of new biomarkers by OMICs technologies (e.g., proteomics, transcriptomics, 
and metabolomics) to assess the impact of nanopharmaceuticals in aquatic 
organisms.

8.6  �Environmental Risk Assessment of Nanopharmaceuticals

Environmental Risk Assessment (ERA) includes four components: hazard identifi-
cation, toxicity assessment, exposure assessment, and risk characterization. In the 
European Union, ERA for medicinal products follows the Guideline of the ERA of 
Medicinal Products for Human Use (EMA 2011) but is only foreseen for medicinal 
products within the marketing authorization procedure, not including the confor-
mity assessment for medical devices (EU 2001). The assessment is conducted only 
taking into account the active ingredient (API) but not excipients. Metabolites and 
transformation products are covered by the “total residue approach” that assumes 
the same effects for parent compounds, metabolites, and transformation products 
(EMA 2011). This still leaves excipients, medical devices, and disposal of the 
medicinal products out of the current ERA.

ERA consists of a 2-tiered approach. In phase I, the environmental concentration 
of the API present in the water is measured (MEC) or predicted (PEC). To define 
PEC it is assumed that APIs are taken up by patients, excreted, and end up in urban 
sewage, which is then un-treated, partially treated or treated in waste water treat-
ment plants and then introduced in the aquatic environment. For the ERA, it is cru-
cial to determine the amount the patient excretes and in which form, because these 
nanosized compounds form aggregates/agglomerates in water, particularly in sea-
water (Berkner et al. 2016). Persistent Bioaccumulation and Toxic (PBT) data must 
be collected to identify the potential toxicity of these compounds. For this purpose, 
the octanol/water partitioning coefficient (log KOW) has been used as an indicator of 
possible toxicity. If log KOW is equal to or above 4.5, within an environmental rele-
vant pH range, information on their fate in aquatic and sediment systems and on 
bioaccumulation and long-term ecotoxicity are required. Nanopharmaceuticals are 
formed by a core and a coating. Therefore, information based on partitioning coef-
ficient cannot be used to predict the bioaccumulation potential because it may 
induce an over estimation (OECD 2014). The assessment of the persistence of the 
compound can be carried out using the criteria as defined under European Regulation 
on Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) 
(ECA 2008).

Within ERA, it is assumed that a certain percentage of the population consumes 
the maximum daily dose of the API.  The fraction of inhabitants taking 
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nanopharmaceutical compounds is either estimated by default (value of 0.01) or 
based on epidemiological data. The amount of API taken daily is divided by the 
amount of waste generated (water/inhabitant/day) taking also into account a dilu-
tion factor. The obtained PEC is compared with action limit below 10  ng  L−1, 
according to EMA, or to 1 μg L−1 according to FDA. If the PEC is below the action 
limit, there is no risk. However, if PEC is equal or above the established limits, the 
assessment has to proceed to phase II. Phase II comprises the knowledge of the 
physicochemical properties of API based on pharmacokinetics (EMA 2011), its fate 
in the environment, as well as its ecotoxicity in water and sewage sludge. As a 
result, a non-observed effect concentration (NOEC) is established along with a pre-
dicted no-effect concentration (PNEC). To assess if the nanopharmaceutical com-
pound poses a risk to the environment, a risk quotient is calculated based on the 
ratio between PEC and PNEC. If this ratio is higher than one the compound poses a 
risk to the aquatic environment and other measures need to be taken to minimize 
the risk.

Although to date there is no information available on how to conduct an ERA for 
nanopharmaceuticals, the EMA stated that before marketing a new product, toxicol-
ogy, and ecotoxicology for a specific nanopharmaceutical need to be assessed (EMA 
2006, 2011). For that purpose, the more appropriate methods to assess the fate and 
toxicology of nanopharmaceuticals need to be established (Berkner et al. 2016). As 
a prerequisite for a nanopharmaceutical ERA, besides its physicochemical compo-
sition, information on size, shape, distribution, morphology, and surface properties 
(e.g., chemistry, reactivity, surface area) but also aggregation/agglomeration and 
dissolution behavior need to be taken into account, because normal size ranges are 
not adapted for nanosized molecules (Gondikas et al. 2012; Tejamaya et al. 2012; 
Ottofuelling et al. 2011; Misra et al. 2012, Sant’Anna et al. 2013; Rocha et al. 2017). 
When dissolution of ions occurs, the nano-character of the particles is lost. However, 
there is a lack of data and some scientific uncertainty (Sant’Anna et al. 2013) regard-
ing all these aspects, namely, what are the particle characteristics that affect toxicity 
and transport in the different compartments of the environment, their routes of 
exposure, and the best metric to measure their exposure.

Linkov et al. (2008) proposed that environmental information should be incorpo-
rated into engineering nanomaterials and nanomedicine development. In order to 
avoid the increase on the complexity of the decision, he proposed that this could be 
achieved combining toxicology, potential health risks, risk assessment modelling, 
and tools developed in the field of a multi-criteria decision analysis (MCDA). This 
tool should be used for regulatory decision on nanomaterials and could be used to 
support the weight-of-evidence approach for evaluating possible health or environ-
mental risks of nanomaterials.

There is a wide variety of nanopharmaceutical compounds, and there is a need to 
establish guidelines to assess their impact on the marine environment. Therefore, 
there might be a need to diversify solutions for the correct establishment of an ERA 
of these compounds.
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8.7  �Conclusions

There is no doubt that nanostructured systems, more specifically those aimed at 
health applications for both diagnosis and treatment, represent an important techno-
logical advance, bringing many benefits and positive impacts to improve the popu-
lation quality of life and well-being. However, because these so tiny “entities” are 
not naturally found in the environment, it is crucial to assess their environmental 
safety and impact in order to ensure that these nanopharmaceutical compounds do 
not pose undesirable effects on humans and the environment in the future. For this 
reason, there is an urgent need to establish appropriate ecotoxicological assays 
essential for regulatory purposes and environmental and human safety guidelines to 
protect human health and the environment for the safe use of nanopharmaceutical 
compounds.
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Abstract  Nanomedicine has become a hot field of research, as it has the potential 
for developing several innovations in healthcare and, in particular, new pharmaceu-
tical formulations. The need of innovative ways for drug transportation and delivery 
has accelerated the advances in the field of nanomaterials for pharmaceutical appli-
cations. The ultimate purpose of designing nanomaterials for drug delivery must be 
to ensure that the drug to be released exerts its pharmacological effect at the lowest 
possible dose, with the least number of side effects and equal benefits to a high dose. 
These so-called “nanopharmaceuticals” may possess distinctive features useful to 
improve the stability of the drugs, extend their systemic half-lives, enhance effi-
ciency, increase bioavailability, and delay clearance. There is no doubt that nano-
pharmaceuticals are a promising strategy to overcome traditional pharmacokinetic 
limitations. Researchers around the world have been making important efforts to 
design and test novel nanoformulations, especially in in vitro and in vivo model 
studies. Virtually, all routes of drug administration have been investigated at this 
level. Compared to the high number of nanoformulations that are currently in the 
discovery and preclinical stages of the development pipeline, there are still very few 
nanopharmaceuticals in clinical trials and even less already in the market. This cur-
rent scenario points to the need to accelerate nanomedicine endeavors in order to 
spur these formulations through the drug discovery pipeline.

In this chapter, we will present some of the several opportunities for the design 
and use of nanomaterials (nanoliposomes, micelles, carbon nanostructures, den-
drimers, polymeric, and inorganic nanoparticles) for pharmaceutical formulations. 
The experimental challenges, associated with moving from bench to bedside, will 
be addressed, as well as concerns about the precise control of drug release, their 
biodistribution or fate, and their toxicity, especially when they do not biodegrade. 
The need to validate and standardize protocols for early detection of toxicity, as well 
as an in depth understanding of the interaction among nanoparticles and tissues, 
organs, cells, and biomolecules, will be stated. Finally, the importance of develop-
ing a close interaction between scientists, regulators, institutions, and industry in 
order to help accelerate the efforts in the field will be indicated. The application of 
several innovative approaches to the design of new nanopharmaceuticals may allow 
achieving innovation and disruptive advances, providing safe, convenient, and cost-
effective drug formulations to patients.

Keywords  Nanomaterials · Dendrimers · Polymeric nanoparticles · Inorganic 
nanoparticles · Micelles · Nanoliposomes · Graphene · Graphene oxide · Carbon 
nanotubes · Drug delivery · Controlled release · Theranostics · Pharmaceutical 
formulation · Nanotoxicity
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9.1  �Introduction

Nanomaterials have dimensional features in the range from 1 to 100  nm 
(1 nm = 1 × 10−9 m). Their sizes are smaller or comparable to those of common 
biologically relevant cells, bacteria, or virus or even of their molecular components 
such as proteins, nucleic acids, antibodies, and other important biomolecules. That 
characteristic may allow them to cross most physical or biological barriers (Fig. 9.1) 
or to generate different kinds of specific interactions. For example, once a nanoma-
terial comes in contact with a biological fluid, a nanoparticle-protein complex is 
formed (the process is known as “protein corona” formation). This complex will 
determine the fate of the nanomaterial, its systemic circulation, biodistribution, bio-
availability, and even its toxicity. Nanomaterials, on the other hand, can be designed 
to be able to selectively recognize certain cell types or tissues by chemical modifica-
tion of their surfaces. By selecting the type of nanomaterial and the specific chemi-
cal modification of their surfaces, different applications such as new tools for 
biomedical diagnosis or treatments, fortified foods, water pollution treatment, or 
advanced materials for textiles or construction can be achieved. In that way, the 
chemical and physical interactions of a nanomaterial can be finely tuned, selectively 
controlling how this affects their unique new properties and uses.

Nanotechnology exploits the physical properties of materials in the nanoscale. At 
that scale, optical, mechanical, magnetic, electronic, and chemical properties suffer 
drastic changes, making these properties highly attractive to be exploited in innova-
tive technological applications (Halappanavar et al. 2018; Mostafalou et al. 2013). 
The great interest risen by use of nanomaterials in biomedical applications has 
originated a new multidisciplinary field called nanomedicine, where pharmaceutical 
nanotechnology is a very recent and attractive branch (Juillerat et al. 2015; Khan 

Fig. 9.1  Relative size comparison among common nanomaterials and biologically relevant 
structures
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2012; Chekman 2010). In terms of economic impact, it is expected that nanomedi-
cine will grow in value by about 9% annually; it is a market with a value of nearly 
112 billion dollars, as estimated in 2016, and it is predicted to reach nearly 261 bil-
lion dollars by 2023 (Grand View Research 2017). In particular, advanced drug 
delivery systems account for nearly 12 billion dollars (11% of the total), with half 
of that market consisting of systems for controlled release, liposomal drug delivery, 
gene therapy, and polymer-based systems, among others. The development of nano-
structured materials for pharmaceutical applications (“nanopharmaceuticals”) such 
as controlled drug delivery and release carriers, agents for imaging and diagnosis, 
as well as innovative therapeutic vehicles, both as active pharmaceutical ingredients 
(API) and components of the pharmaceutical formulation, is currently a very active 
field of research (Beyer et al. 2016). Nanopharmaceuticals are a relatively recent 
class of therapeutic agents containing nanomaterials with unique physical and 
chemical properties because of their small size. They present new opportunities for 
the transport and stabilization of poorly soluble or unstable APIs (synthetic drugs, 
phytochemicals, proteins, nucleic acids, genes, etc.), as well as targeting them 
towards a specific site of the organism. However, the idea of nanopharmaceuticals 
must be handled carefully, as there is no consensus in the field. For the purposes of 
this chapter, a nanopharmaceutical will be considered as a complex system where 
an API is associated with an excipient (usually, the nanomaterial), as previously 
indicated. Due to their characteristics, these nanopharmaceuticals may be multi-
functional, having better biological tissue distribution and becoming useful to mobi-
lize drugs more easily through different biological barriers. They are interesting, 
versatile, and potent vehicles for the therapeutic treatment of different diseases 
(Mendez-Rojas et al. 2014; Sasaki and Akiyoshi 2010). Several of the actual chal-
lenges that current pharmaceutical formulations present may be overcome by the 
use of nanomaterials. So far, several advances and studies have been made with 
respect to the use of nanotechnology for the treatment and improvement of pharma-
ceutical formulations that may be useful against several diseases, rising very high 
expectations concerning positive results and benefits for society. Nanomaterials of 
different composition (organic, inorganic and composites) such as polymer-based, 
liposomes, quantum dots, iron oxide nanoparticles, or gold nanoparticles have been 
developed to provide fast and sensitive detection of disease-related molecular 
indicators.

We can safely consider that, in the near future, nanomaterials will be found more 
frequently in novel pharmaceutical formulations as they can bring solutions to the 
current challenges and limitations found in drug delivery and release systems, offer-
ing advantages and opportunities that will finally benefit both patients and the phar-
maceutical industry. In order to reach a point where nanotechnology and all the 
applications mentioned above can be effective and applicable, joint efforts are 
needed between scientists, clinicians, the pharmaceutical industry, and legislative 
bodies to successfully implement the design and application of nanosystems in the 
treatment of several diseases that are currently challenging our health systems 
worldwide (Luque-Michel et al. 2017).
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9.2  �Current Approaches to Optimize Drug Deliverability

There are several important challenges in drug delivery and release in today’s phar-
maceutical industry (Onoue et al. 2014; Chekman 2010). Nanotechnology offers a 
novel approach for solving these problems, advancing the industry from the model 
of high sales volume of popular, financially profitable drugs to a more “personalized 
medicine” model, where attention is given to the individual and not to a general, 
faceless, complex market. The pharmaceutical industry faces several challenges in 
order to develop new pharmaceutical formulations. Drug solubility in physiological 
conditions needs to be improved, while drug release has to be finely controlled. 
Biocompatibility and safety of the formulation has to be increased by avoiding drug 
clearance and increasing the plasmatic life of the drug in order to avoid the use of 
higher therapeutic doses. Drug transport to specific organs, tissues, or systems needs 
to become specific to avoid secondary effects, optimizing the drug pharmacokinet-
ics and developing the co-delivery of multiple therapeutic drugs against different 
targets. Finally, real-time monitoring of drug delivery and distribution, as well as 
effective post-therapy assessment outcomes, to facilitate a faster development of 
improved APIs with minimal safety concerns has to be considered (Onoue et al. 
2014; Chekman 2010).

Nanomaterials may help to solve most of these challenges since efficacy, safety, 
patient convenience, and compliance are demanding tasks that encourage to seek 
continuous optimization of drug delivery systems. Today there are very promising 
and highly complex high-tech APIs (e.g., biotech drugs), for which it would be very 
disappointing if deficiencies in their formulation and release systems would limit 
their bioavailability, their arrival at the target site, and their in vivo performance in 
general. Efficient dosage forms depend on a deep understanding of the pathways of 
the physiologic disposition of a drug since many physicochemical, biopharmaceu-
tic, and pharmacokinetic factors can result in incomplete bioavailability and in the 
need of using a high amount of the drug thus incrementing costs and side effects.

A drug delivery system can be defined as a formulation or a device that enables 
the introduction of a pharmaceutical compound in the body and improves its effi-
cacy and safety by controlling the rate, time, and place of its release (Bruschi 2015). 
Therefore, the route of administration is intimately related to the concept of drug 
delivery. Based on drug solubility and toxicity, drug delivery systems aim to pro-
long residence of a drug in biological fluids, to enhance solubility for improving its 
bioavailability and to ensure targeted action (Demina and Skatkov 2013).

The solubility of an API is relevant to select the right formulation approach and 
manufacturability and, as mentioned before, is one of the factors governing bio-
availability. Thus, in 1995 the US Food and Drug Administration agency initiated 
the Biopharmaceutics Classification System (BCS) to support the waiving of bio-
equivalence studies of certain orally administered generic dosage products. The 
BCS classifies APIs in four classes according to their solubility in aqueous medium 
and their intestinal permeability properties (WHO 2016). BCS class I drugs (highly 
soluble, highly permeable) are readily eligible for biowaivers and class IV (poorly 
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soluble, poorly permeable) are not. Class II drugs (poorly soluble, highly perme-
able) and class III drugs (highly soluble, poorly permeable) are eligible for biowaiv-
ers if they dissolve very rapidly either at pH values typical of the small intestine or 
under all physiological pH conditions, respectively (Chavda et  al. 2010) (See 
Table 9.1).

The BCS can be usefully applied as a prognostic tool for designing or selecting 
drug delivery technologies (See Table 9.2). Drug release can be modulated using 
controlled release technology for class I drugs or increasing dissolution rate for 
class II drugs. Class III drugs technologies include manipulating the site or rate of 
exposure or incorporating functional agents into the dosage form to modify the 
metabolic activity of the enzyme systems. Class IV compounds are generally not 
suitable for oral drug delivery and are rarely developed to reach the market because 
of their erratic and poor absorption as well as their inter- and intra-subject variabil-
ity (Chavda et al. 2010). Certainly, most of the class IV drugs are substrates for 
P-glycoprotein (resulting in low permeability) and substrates for cytochrome P450 
3A4 (prompting to extensive pre-systemic metabolism) which further potentiates 
the problem of poor therapeutic potential of these drugs (Ghadi and Dand 2017).

The BCS is still evolving since there may be a risk of misclassification of some 
drugs because it is based on highest dose and on rigid definitions of solubility and 
permeability (Chavda et al. 2010). Moreover, Daousani and Macheras (2016) cor-
related the heterogeneous aspects of oral drug absorption with the biopharmaceutic 
classification of drugs. They found that for class I drugs no time dependency is 
expected for both absorption and non-absorption processes, while due to the bio-
pharmaceutical properties of class II, III, and IV drugs, these drugs travel through-
out the GI tract, and therefore, both absorption and non-absorption processes will 
exhibit time dependency. Therefore, the BCS is a very useful guiding tool primarily 
for the development of oral drug delivery formulations and technologies.

Table 9.1  Examples of drugs 
of each BCS class

Class I Class II
Enalapril Carbamazepine
Fluvastatin Ketoprofen
Metoprolol Levodopa
Valacyclovir Verapamil
Class III Class IV
Atenolol Acyclovir
Cimetidine Several cephalosporins
Losartan Furosemide
Ranitidine Hydrochlorothiazide

Source: Drug Delivery Foundation. 
Biopharmaceutics Classification System 
(BCS) database. Copyright 2015-2019. 
The Drug Delivery Foundation. http://
www.ddfint.org/bcs-about. Accessed 
April 18, 2020
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Recently, the Biopharmaceutics Drug Disposition Classification System 
(BDDCS) was proposed (Benet 2013). After classifying the drugs of 500 bioequiva-
lence studies according to BCS and BDDCS, Cristofoletti et al. (2013) found that 
the final outcome of a bioequivalence study is strongly influenced by the solubility 
of the drug, but not by its intestinal permeability or extent of metabolism. Thus, 
solubility outweighs any effect of the extent of drug absorption and determines the 
need for particular drug delivery and release approaches.

Table 9.2  Methods for enhancing deliverability according to BCS classa

BCS Class I systems BCS Class II systems
Multiporous oral drug absorption system Prodrug approach
Single composition osmotic tablet system pH adjustment
Constant surface area drug delivery shuttle Use of salts, solvates, and hydrates
Diffusion controlled matrix system Use of selected polymorphic 

forms
Delayed pulsatile hydrogel system Micronization
Dual release drug absorption system Lyophilized fast-melt systems
Granulated modulating hydrogel system Surfactants
Intestinal protective drug absorption system Emulsion or microemulsion 

systems,
Microparticle drug delivery technology Solid dispersion
Pelletized pulsatile delivery system Complexing agent such as 

cyclodextrins
Bioerodible enhanced oral drug absorption system Softgel (soft gelatin capsule 

formulation
Programmable oral drug absorption system Zer-Os tablet technology (osmotic 

system)
Spheroidal oral drug absorption system Triglas and nanosized carriers

Such as nanoemulsion, 
nanosuspension, and nanocrystals

Solubility modulating hydrogel system BCS Class IV systems
Stabilized pellet delivery system Lipid-based delivery systems
BCS Class III systems Self microemulsifying drug 

delivery systems (e.g., Cremophor, 
Labrafil)

Use of permeation enhancers (e.g., synthetic surfactants, 
bile salts, fatty acids, and derivatives, chelators, 
cyclodextrins, and derivatives, mucoadhesive polymers)

Polymer-based nanocarriers

Oral vaccine system Crystal engineering (nanocrystals 
and co-crystals)

Gastric retention system Liquisolid technology
High-frequency capsule Self-emulsifying solid dispersions
Telemetric capsule Miscellaneous techniques 

addressing the P-gp efflux
Self-nanoemulsifying drug 
delivery systems

aWith information from Chavda et al. (2010), Sachan et al. (2009) and Ghadi and Dand (2017)
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As for therapeutic peptides and proteins, their biophysical stability, low bioavail-
ability, and metabolic liability comprise the main challenges to overcome and suc-
ceed in oral formulation development and final bioperformance. Particularly, their 
oral bioavailability is limited by chemical and enzymatic degradation in the gastro-
intestinal tract, efflux pumps, first-pass gut, and hepatic metabolism, as well as their 
inability to cross the epithelial barrier of the gastrointestinal tract (Bak et al. 2015). 
Therapeutic peptides and proteins are usually classified as class III or class IV drugs 
by the BCS system (e.g., cyclosporine A, an immunosuppressant peptide, as a class 
IV compound), which means that low permeability is their main biopharmaceutical 
challenge together with the aforementioned limitations concerning oral drug prod-
uct development. Considering that, excipients play a pivotal role in formulation 
development. Peptide stabilizers, pH modifiers, antioxidants, or metal chelators to 
minimize degradation, peptidase inhibitors, surfactants to better solubilize peptides, 
and biocompatible mucoadhesive polymers to promote peptide absorption are care-
fully chosen together with enteric coating approaches and appropriate packaging to 
preserve the integrity of the molecules and to overstep the oral delivery barriers 
(Bak et al. 2015).

In some cases, direct structural modifications of therapeutic peptides and pro-
teins are needed. The example of success is represented by cyclosporine A, for 
which cyclization and therefore its decreased flexibility may confer to this drug a 
superior absorption after oral administration (Bruno et al. 2013). In addition, the 
covalent conjugation of polyethylene glycol to therapeutic peptides and proteins, 
called “pegylation,” improves drug delivery by increasing water solubility, enhanc-
ing stability, and half-life, reducing immunogenicity and limiting antigenic reac-
tions (Milla et al. 2012). Moreover, the introduction on nonnatural amino acids as in 
the case of the Hybridtide® technology grants therapeutic peptides and proteins of 
proteolytic stability and dramatically enhanced half-life, facilitating oral delivery 
and overall improving pharmacokinetics (Horne et al. 2009). Protein lipidization, 
vitamin B12 conjugation, prodrug synthesis, and locking the conformation of thera-
peutic peptides and proteins by linking some residues to a synthetic hydrocarbon 
backbone are other effective strategies to improve stability and oral absorption 
(Bruno et al. 2013).

Likewise, carrier systems are rapidly evolving in very interesting ways to advance 
oral deliverability. Some interesting examples are the bilosomes, which are bile salt 
stabilized delivery nanovesicles that act as very stable penetration enhancers to pro-
mote oral bioavailability of large molecular weight proteins and peptides (Ahmad 
et al. 2017). Orally administered bilosome-based vaccine formulations (e.g., influ-
enza, tetanus, and hepatitis B) represent a major step forward in vaccine technology 
by preventing antigen degradation and enhancing mucosal penetration (Chilkwar 
et al. 2015).

IgG antibodies as nanoscale proteins may also act as drug carriers in the so-
called antibody-directed enzyme prodrug therapy and antibody-targeted drug con-
jugates, allowing for targeted drug delivery. Ibritumomab-tiuxetan-90Yttrium, a 
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B-lymphocyte antigen CD20-directed radiotherapeutic IgG1k (mouse monoclonal 
aldolase C antibody) indicated for relapsed or refractory, low-grade or follicular 
B-cell non-Hodgkin lymphoma, is a leading example of this kind of systems 
(Tridente 2014).

Drug delivery has also been evolving to stimuli-responsive systems that improve 
bioavailability, reduce the cost of production, and increase patient compliance by 
allowing pH, temperature, light, ultrasound energy, magnetic or electric fields, 
swelling processes, or specific chemical agents or enzymes to regulate drug release 
(Halappanavar et  al. 2018; Bajpai et  al. 2010). Moreover, according to intended 
therapy, drug delivery and release is also classified in the following scenarios: rapid 
therapeutic onset (e.g., for drugs for acute pain or insomnia treatment), multiphasic 
or fixed-dose combination delivery (e.g., for antihistaminics or antimigraine drugs), 
delayed or chronotherapeutic onset (e.g., for oral antidiabetics, proton pump inhibi-
tors, or antihypertensive drugs), and maintenance of target exposure (e.g., for some 
antibiotics or Alzheimer’s disease drugs) (Selen et  al. 2014). This is known as 
therapy-driven drug delivery and is also extremely relevant to design and selection 
of excipients and drug delivery systems. Ultimately, linear, pulsed, or delayed 
release profiles enabled by the previously mentioned systems and others face always 
the challenge of being predictable and reproducible as well as allowing for mini-
mum fluctuation in plasma drug levels.

The ultimate purpose of drug delivery strategies must be to ensure that the drug 
to be released exerts its pharmacological effect and, if possible, that it does so at the 
lowest possible dose and causing the least amount of adverse effects. Furthermore, 
patient compliance and treatment cost are also of the utmost importance because if 
the patient does not adhere to treatment or does not have access to it, all the research 
behind a medication will be wasted.

9.3  �Routes of Administration for Nanopharmaceuticals

Along with the physical-chemical properties of a drug and the dosage form in which 
that drug is given, the route of administration plays an important role on the rate and 
extent of systemic drug absorption. Nanoformulations currently available for clini-
cal use are typically administered orally or parenterally by the intravenous, subcu-
taneous, and intramuscular routes (Table  9.3). Some other administration routes 
have been meagerly explored by approved nanodrugs, either because of their com-
plexity or because there are few active substances that, based on their pharmacody-
namics and indication, require delivery to a very specific site of action. However, 
among the nanopharmaceuticals that are currently under investigation, many other 
administration routes are now being examined such as the transdermal, vaginal, 
pulmonary, and ophthalmic routes.
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9.3.1  �Oral Administration

The oral route is widely recognized as the most convenient, noninvasive, safe, con-
ventional, cost-effective, and traditional way to administer drugs. However, it offers 
many disadvantages that nanocarrier-based formulations may help to solve. Targeted 
drug delivery is a big challenge when drugs are administered orally; this route 

Table 9.3  Selected commercially available nanopharmaceuticals and their routes of administration 
(Ventola 2017)

Generic name
Trade 
name Nanoformulation features Route of administration

Morphine sulfate Avinza Nanocrystals, provide greater 
bioavailability

Oral (extended release 
capsules)

Aprepitant Emend Nanocrystals, increased aqueous 
solubility of the active substance

Oral (capsules)

Megestrol acetate Megace ES Nanocrystals, lower dosing needed Oral (suspension)
Liposomal 
amphotericin B lipid 
complex

Abelcet Liposome nanoparticles, 
decreased toxicity

Intravenous (infusion)

Liposomal irinotecan Onivyde Liposome nanoparticles, protect 
irinotecan from early conversion 
to its toxic metabolite

Intravenous

Liposomal 
verteporfin

Visudyne Liposome nanoparticles, increased 
delivery to site of action

Intravenous (plus 
photodynamic therapy 
activation)

Glatiramer acetate Copaxone Polymer nanoparticles, controlled 
clearance

Subcutaneous

Leuprolide acetate 
and polymer

Eligard Polymer nanoparticles, continuous 
release, longer circulation time

Subcutaneous

Pegvisomant Somavert Polymer nanoparticles, greater 
stability

Subcutaneous

Iron dextran Infed Inorganic nanoparticles, increased 
dose

Intramuscular

Paliperidone 
palmitate

Invega 
Sustenna

Nanocrystals, slow release of 
low-solubility drug

Intramuscular

Micellar estradiol 
emulsion

Estrasorb Micelle nanoparticles, controlled 
delivery

Topical (on dry skin of 
both legs)

Triamcinolone 
acetonide

Zilretta Polymer nanoparticles, extended 
release

Intra-articular

Pegaptanib Macugen Polymer nanoparticles, greater 
stability

Intravitreal

Liposomal morphine 
sulfate

DepoDur Liposome nanoparticles, extended 
release

Lumbar epidural

Liposomal 
cytarabine

DepoCyt Liposome nanoparticles, increased 
delivery to tumor site, decreased 
toxicity

Intrathecal

Poractant alfa Curosurf Liposome nanoparticles, increased 
delivery, decreased toxicity

Intratracheal
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usually requires formulating high amounts of the active substance increasing the 
production costs. As revised in the previous section, poor water solubility plays a 
crucial role when trying to improve the oral bioavailability of an API. The oral route 
is also challenging for APIs labile to gastrointestinal pH, bacteria, and enzymes.

To date, an important amount of knowledge has been gathered regarding the 
performance of different types of oral nanosystems for drug delivery. It has been 
reported that positively charged particles are absorbed more efficiently through the 
gastrointestinal tract as well as small nanoparticles (50–100 nm) which are absorbed 
in greater proportion than larger ones (500 nm) and distribute better to the kidneys, 
liver, spleen, lungs, and even brain. It is also known that particulate carrier systems 
administered orally could also undergo paracellular uptake from the digestive tract 
into blood circulation as well as the lymphatic system. On the other hand, it has 
been described that biodegradable (e.g., poly lactic acid) and lipid-based nanopar-
ticles could suffer a significant degradation in gastric and intestinal fluids due to its 
surface composition (Hamidi et al. 2013). Much of this data has been applied to 
optimize oral drug delivery.

For example, by reducing the particle size to less than one micron using wet-
milling techniques, the NanoCrystal® technology has overcome the solubility prob-
lem and allowed for various oral nanomedicines to be prepared and marketed, e.g., 
fenofibrate tablets (TRICOR®) and megestrol acetate oral suspension (MEGACE® 
ES) (Agarwal et al. 2018).

As far as lipid-based nanosystems are concerned, they are known to mimic food, 
improve gut solubilization and mucosal permeation, inhibit intestinal metabolism 
and/or P-glycoprotein efflux, and improve lymphatic uptake resulting in oral bio-
availability augmentation (Borišev et al. 2018). A great challenge is represented by 
the hydrophilic low-permeability anticancer drug doxorubicin, which exhibits low 
oral bioavailability due to active efflux from intestinal P-glycoprotein. Thus, its oral 
administration remains a problem and no oral formulation for doxorubicin is mar-
keted, till date (Ahmad et al. 2018). Attempts to tackle these obstacles were reported 
by Daeihamed et al. whose doxorubicin-loaded non-PEGylated, 120-nm-sized posi-
tively charged rigid liposomes attained a fourfold increase in oral bioavailability in 
a preclinical study (Daeihamed et al. 2017). Previously, another study in rats dem-
onstrated a 384% enhancement in oral bioavailability compared to solution of a 
doxorubicin hydrochloride loaded lipid-based nanocarrier (LIPOMER) (Benival 
and Devarajan 2012).

9.3.2  �Parenteral Administration (Intravenous, 
Intramuscular Subcutaneous)

Low bioavailability can be completely overcome by administering drugs intrave-
nously and to some extent by using the intramuscular or the subcutaneous routes. 
Invasiveness, safety, and toxicity issues of injections together with pain and patient 
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compliance concerns reduce as a whole the therapeutic value of parenterally admin-
istered drugs for long-term management of certain diseases. Yet, most nanopharma-
ceuticals already on the market are designed for parenteral administration.

Intravenous administration of nanoparticles allows for intracapillary passage fol-
lowed by an efficient cellular uptake, also for macrophage endocytosis and for pas-
sive drug delivery to inflammatory sites with leaky vasculature (Gelperina et  al. 
2005). Thus, depending on the desired site of action and the nature of the nanofor-
mulation, this route offers clear advantages.

The antimalarial drug artemisinin, for example, has no intravenous formulation 
available due to its poor aqueous solubility. Ibrahim et al. reported the preparation 
of a promising nanoformulation based on biodegradable albumin-bound artemisinin 
suitable for intravenous injection which enabled direct contact of artemisinin with 
infected erythrocytes. In in vitro experiments as well as in Plasmodium falciparum-
infected “humanized” mice, the nanoparticles proved to be highly effective (Ibrahim 
et al. 2015).

In the case of solubility problems of drugs such as paclitaxel, an interesting 
approach to surpass this limiting factor was its binding with albumin, a natural car-
rier of endogenous and exogenous molecules. The high-solubility 130 nm albumin-
bound particle form of paclitaxel contained in Abraxane® increased drug penetration 
into the tumor cells after intravenous administration. Unfortunately, P-glycoprotein 
mediated resistance affecting the antitumoral activity of paclitaxel could not be 
overcome by the nanoparticle formulation (Zhao et al. 2015).

Intramuscular injection offers the advantages of sustained release and long 
action; and compared to the intravenous route, it allows relative avoidance of the 
reticuloendothelial system (RES), the natural particle-removal system of the body 
(Hamidi et al. 2013). Increased bioavailability, bypassing the intestinal metabolism, 
and reduced toxic effects are some of the benefits of the intramuscular route that 
make it very popular. Moreover, intramuscular long-acting formulations provide 
great opportunities for chronic patients who benefit from once monthly administra-
tion or even less frequently by improving adherence, variability in drug exposure 
and treatment costs.

Recently, Zhou et al. improved the delivery, biodistribution, and viral clearance 
profiles of the antiretroviral drug cabotegravir by creating its myristoylated prodrug 
and formulating it into nanoparticles of stable size and shape. The particles exhib-
ited enhanced monocyte-macrophage entry, retention, and RES depot behavior 
demonstrated in vitro as well as in animal models by means of viral restriction 
evaluations. The nanoformulated prodrug also showed the possibility of extended 
dosing intervals towards maximizing patient convenience (Zhou et al. 2018).

The subcutaneous route allows good absorption especially for drugs with a low 
oral bioavailability. Long-acting and targeted drug delivery are favorable outcomes 
from subcutaneous administration. Depending on size and composition, particles 
reach the circulation via the lymphatic system. Size plays also an important role 
when sustained release is the major objective since large nanoparticles persist lon-
ger at the injection site (Hamidi et al. 2013). The keratinous subcutaneous layer is 
the major barrier the nanoparticles encounter upon administration. It is a 
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hydrophobic and rigid structure, which is difficult for particles to cross unless pen-
etration enhancers (e.g., monoolein) are used to promote drug diffusion and solubil-
ity within this layer. Besides, the presence of an immunological barrier made of 
Langerhans and dendritic cells below the subcutaneous layer requires the use of 
nanocarrier coating (e.g., with polyethylene glycol) in order to prevent macrophage 
elimination (Bose et  al. 2014). When the drug finally reaches the well-irrigated 
dermis layer of skin, it can diffuse into the systemic circulation.

An illustrative example of this administration route comes from the application 
of nanocarriers in traditional herbal medicine. Indeed, the nanonization of phyto-
ceuticals seeks to advance phytotherapeutics by improving their pharmacokinetic 
and pharmacodynamic profile. Curcumin, a very promising natural anticancer 
agent, has very poor aqueous solubility and a very limited systemic bioavailability. 
Thus, Ranjan et al. formulated a prolonged subcutaneous delivery nanosystem that 
showed improved effectiveness on a non-small cell lung cancer xenograft model 
(Ranjan et al. 2016).

9.3.3  �Transdermal Administration

Unlike topical formulations, transdermal medications are intended to exert clinical 
effects at distant or deeper tissue sites. Transdermal is a route of administration 
wherein active ingredients are delivered across the skin in order to reach the dermal 
layer by means of transcellular, intercellular, or hair follicles pathways for becom-
ing available for systemic absorption via the dermal microcirculation.

The transdermal route requires sufficient lipophilicity of the active substance to 
be administered even when penetration enhancers or fasteners such as limonene 
may be added to the formulation to ease the permeation of drugs through the skin 
barrier. Transdermal delivery systems are useful to achieve controlled release of the 
drug over long periods while avoiding gastrointestinal effects or first-pass metabo-
lism in the liver for certain drugs if they were administered orally. Moreover, they 
are noninvasive systems that have better patient compliance and can be easily 
removed by the patient when necessary (Gönüllü and Şaki 2017).

Skin penetration of large and hydrophilic drugs, or even macromolecules, is lim-
ited but nanocarriers have been successful crossing this barrier and even more so 
when the skin is disrupted, e.g., in diseases like psoriasis and atopic dermatitis. 
Regarding these two skin diseases in particular, in recent years several murine mod-
els have been used to develop and optimize transdermal nanocarrier formulations 
loaded with drugs like tretinoin, methotrexate, tacrolimus, cyclosporin A, and keto-
profen showing very promising results (Palmer and DeLouise 2016). Also, the treat-
ment of psychiatric disorders can use nanosystems for transdermal administration; 
Iqbal et  al. produced a solid lipid nanoparticle-based formulation for delivery of 
olanzapine whose favorable performance will allow its inclusion in and production 
of transdermal patches (Iqbal et al. 2017).
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9.3.4  �Pulmonary Administration

Pulmonary delivery implies a noninvasive route capable of granting a rapid onset of 
action of which most important advantages are its large absorptive surface area, its 
large absorptive mucosal membrane, and its high vascularity. To achieve a sustained 
therapeutic effect from the pulmonary route of administration, a nanodrug needs to 
avoid the pulmonary clearance processes mediated by the mucociliary apparatus 
and the alveolar macrophages. Enzyme degradation is also an obstacle, but metabo-
lizing enzyme activities are limited compared to the gastrointestinal tract and liver. 
In cases of infections, the delivery systems should resist entrapment and inactiva-
tion of drugs by bacterial biofilms. Moreover, if the pharmacological action is meant 
to take place locally, sufficient lung-tissue retention needs to be guaranteed and 
systemic absorption minimized in order to avoid rapid elimination of the drug and 
undesirable systemic effects (El-Sherbiny et al. 2015; Lee et al. 2015).

Particle size, shape, and orientation allow for deposition at the targeted site in the 
respiratory system and influence avoidance of clearance mechanisms. By attaching 
or coating the drug with a stealth material, e.g., hyaluronic acid or polyethylene 
glycol, it is also possible to evade the pulmonary clearance features. Regarding the 
most promising type of nanosystems, the liposomal-based aerosol formulations 
have shown to prolong the retention half-life as well as solid lipid nanoparticles, 
polymeric micelles, and cyclodextrins (El-Sherbiny et al. 2015).

Due to their particle size, inhalable pharmaceutical forms using nanocarriers 
pose the risk of being exhaled during breathing. Thus, several strategies can help to 
solve this limitation: nebulization of nanocarriers as a colloidal suspension; mixing 
nanocarriers along with inert carriers, e.g., lactose and mannitol; or embedding the 
nanosized system into microparticles (Moreno-Sastre et al. 2015). One example is 
the suspension consisting of amikacin sulfate encapsulated in liposomes for inhala-
tion (Arikayce™) which maximizes delivery to the lungs due to particle size as well 
as the antimicrobial efficacy, due to the ability to penetrate and diffuse through 
sputum into the bacterial biofilm. This formulation also decreases the potential for 
systemic toxicity. Presently it is undergoing clinical trials and FDA scrutiny 
(ClinicalTrials.gov 2018a). Also, in the final stretch for approval remains the 
cisplatin-based formulation named SLIT cisplatin. This formulation was planned 
for inhalation by patients with relapsed/progressive osteosarcoma metastatic to the 
lung. The acronym SLIT comes from “sustained release lipid inhalation targeting” 
and consists of aerosolized cisplatin loaded into lipid vesicles. The goal of this 
delivery system is to achieve drug accumulation in lungs while reducing exposure 
to other organs and thus the risk of hemotoxicity, nephrotoxicity, ototoxicity, and 
neurotoxicity (ClinicalTrials.gov 2018b; Lee et al. 2015).

Certainly, one major disadvantage of nanosystems is their potential toxicity. 
Most of the nanoparticles for drug delivery are usually made with well-tolerated 
materials, “generally recognized as safe” (GRAS), aimed to avoid toxic effects 
(Moreno-Sastre et al. 2015). Nevertheless, it has been reported that nanoparticles 
get absorbed from the olfactory mucosa into the central nervous system through the 
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olfactory nerve, which can be considered a good approach to crossing the blood–
brain barrier and delivering nanoparticles to the brain but at the same time this could 
act as a toxic outcome pathway (Hamidi et al. 2013).

9.3.5  �Vaginal Administration

The vaginal route offers a high contact surface and a rich blood supply for drug 
absorption to obtain local (i.e., intravaginally delivery), uterine, or systemic effects 
(i.e., transvaginally delivery). The vagina is an effective drug administration route 
for local delivery of microbicide, contraceptive, and anticancer agents. When it 
comes to systemic active compounds, it represents a noninvasive route that allows 
for controlled transmucosal delivery. The vaginal route avoids the gastrointestinal 
environment and the hepatic first-pass metabolism, but the cervicovaginal mucus, 
the menstrual cycle, the vaginal pH, and its fluids (Leyva-Gómez et al. 2018) chal-
lenge the biodistribution and retention of a formulation. Thus, in order to extend 
their cervicovaginal residence time, nanosystems aimed to deliver drugs via vaginal 
mucosa must possess surface properties capable of interacting with O-glycosylated 
macromolecules, the main component of the mucus responsible for mucoadhesion. 
Polymer-based nanoparticles have the greatest potential for bioadhesion propensity 
and increased penetration capacity. For example, solid lipid nanoparticles based on 
polyoxyethylene (40) stearate containing the antifungal drugs ketoconazole and 
clotrimazole showed, under pH conditions simulating the pathologic environment, 
potential utility against vaginal infections caused by Candida albicans (Cassano 
et al. 2016). More recently, clotrimazole loaded into poly (d,l-lactide-co-glycolide) 
nanoparticles with chitosan-modified surface showed enhanced antifungal activity 
and mucoadhesive properties also for treating vaginal candidiasis (Martínez-Pérez 
et al. 2018).

9.3.6  �Ophthalmic Administration

Nanoparticles have also shown great potential for ophthalmic formulations. The 
eyes have very poor retention of dosage forms and many anatomical and physiologi-
cal barriers that cannot be penetrated easily. Low bioavailability, limited dose and 
volume capacity, and the presence of ocular tissue enzymes and efflux proteins are 
also concerns when designing ophthalmic products. Improving corneal residence 
time is one of the main objectives of pharmaceutical nanoformulations since tears, 
blinking and solution drainage result in loss of therapeutic drug levels on the pre-
corneal surface. For treating some ocular diseases, intravitreal, subretinal, or sub-
conjunctival injections could deliver adequate amounts of drug to the posterior 
segments of the eye, but this method causes pain and carries bleeding, toxicity, or 
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infection risks. Thus, topical instillation remains a more convenient alternative 
(Tahara et al. 2017; Xu et al. 2013).

Liposomes are considered the ideal drug delivery systems because of their bio-
compatibility and their capacity of enclosing both hydrophilic and hydrophobic 
drugs. In addition, several studies have proved the efficacy of nanosuspensions for 
improving the bioavailability of corticosteroids such as dexamethasone and predni-
sone (Wang et  al. 2016). Tahara et  al. (2017) developed submicron-sized PLGA 
nanoparticles loaded with coumarin-6 as a model drug and marker and which sur-
face was modified by chitosan, glycol chitosan, or polysorbate 80. The nanosystem 
improved the drug delivery efficiency to the retina after administration as topical 
eye drops to mice. Drug eluting contact lenses are also a good alternative for sus-
tained delivery. A preclinical study with dogs showed that silicone hydrogel vitamin 
E-loaded contact lenses prolonged the release of the drug timolol and increased its 
bioavailability with only one-third of the loaded drug compared to eye drops (Xu 
et al. 2013). Lastly, a research group from the University Eye Hospital Tübingen 
(Germany) launched a nanocarrier system based on lipid-modified DNA strands 
that self-assemble into micelles with a hydrophobic core and a hydrophilic corona. 
The so-called “nano-I-drops” technology can be equipped with different drugs by 
hybridization with an aptamer. This DNA nanoparticles show excellent adherence 
to the corneal surface for extended periods reducing the need for frequent applica-
tion and thereby minimizing side effects (Willem de Vries et al. 2018).

There is no doubt that nanopharmaceuticals are a promising strategy to over-
come traditional pharmacokinetic limitations. Researchers around the world have 
been making countless efforts to design and test novel nanoformulations, especially 
in in vitro and in animal model studies. Virtually, all routes of drug administration 
have been investigated at this level. However, compared to the high number of nano-
formulations that are currently in the discovery and preclinical stages of the devel-
opment pipeline, there are still very few nanopharmaceuticals in clinical trials and 
even less already marketed.

9.4  �Nanocarriers: Composition, Structure, and Properties 
of Selected Recent Systems

Pharmaceutical technology allows us to select among several materials for design-
ing the most appropriate pharmaceutical form to prepare a medicine, according with 
their physical and chemical characteristics and use. Nanocarriers, nanosuspensions, 
and nanogels are considered as some of the most common systems for the formula-
tion of potentially useful nanopharmaceuticals. Nanosuspensions and nanogels 
chemical and physical characteristics have been reviewed and discussed previously 
in the scientific literature (Dhanapal and Ratna 2012; Asadian-Birjand et al. 2012) 
and won’t be further discussed here. Nanocarriers, in the other hand, are colloidal 
systems with sizes in the range in between 10 and 100 nm; they have been widely 
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used for diagnostics, treatment, and tracking of biomarkers. There are several types 
of nanocarriers, most of them designed to contain APIs encapsulated into their 
structures. Nanocarriers for controlled delivery are usually designed to avoid unin-
tended exposure of the individual to the API, protecting simultaneously from being 
detected by the host’s immune and clearance system. Additionally, surface function-
alization of nanocarriers is used to achieve delivery of the drug contents with great 
specificity (Halappanavar et al. 2018). Direct delivery of drugs into the site of action 
helps to reduce side effects. This approach is limited to skin, ocular, or mucosal 
pathologies using drops, creams, lotions, or emulsions. However, tissue or organ 
selectivity can be achieved with surface modified nanopharmaceuticals (Fig. 9.2).

During the last 5 years, more than 2000 papers were published containing the 
keywords “nanocarrier,” “drug delivery,” and “release.” The majority (90%) are 
devoted to micelles, nanoliposomes, niosomes, polymeric nanoparticles, and den-
drimers, while the remaining 10% explore the use of single-walled carbon nano-
tubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs), lipid-core 
nanoparticles, and inorganic nanoparticles. Tekade et al. (2016) presented the state-
of-the-art on the interface of nanotechnology and combination chemotherapy, which 
has shown a remarkable promise in the therapy of resistant tumors. Anticancer 
drugs in combination with small interfering RNAs (siRNAs), such as VEGF, XLAP, 
PGP, MRP-1, BCL-2, and cMyc, are some examples that are mentioned in their 
article. The siRNAs have shown an immense promise of eliminating drug resistance 
genes, as well as recovering the sensitivity of tumors resistant to cancer therapy. 
Following this same line, Jeetah et  al. (2014) mentioned different classes of 

Fig. 9.2  Surface modification of nanocarriers for targeted drug delivery. (a) Traditional pharma-
ceuticals without surface modification. (b) Nanopharmaceuticals with surface modification. Diana 
cells can be targeted with the drug nanocarrier using ligand and receptor interactions like antibody-
antigen interaction, allowing a specific drug release
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phytochemicals and some of their members that have been encapsulated in nanove-
hicle systems for chemotherapeutic or chemopreventive properties. They focused 
mainly on block copolymer nanomicelles, nanoparticles, polymer-drug conjugates, 
liposomes, and solid lipid nanocarriers. Nearly 20 different phytochemicals were 
reviewed and the advantages of trapping in nanocarriers were evaluated. Petrenko 
et al. (2014), also mention that the nanoencapsulation of anticancer drugs improves 
their therapeutic indexes by virtue of the improved retention and permeation effect, 
which achieves passive targeting of nanoparticles in tumors. Derived from the 
aforementioned, we realize that, indeed, the research and use of nanotechnology for 
the treatment of cancer is taking a primordial focus at present. The controlled release 
of drugs is another crucial point in the use of nanotechnology in medicine. A drug 
carrier should ideally be able to deliver drug molecules to the site of action and to 
interact specifically with target cells. In 2016, Pastorino’s research group reviewed 
different studies where different organic and inorganic nanosystems have been pro-
posed and tested. An interesting technique is the layer-by-layer self-assembly of the 
nanoengineering shells onto sacrificial templates. Attention has been focused on the 
possibility of synthesizing calcium carbonate nanoparticles in a very controlled 
manner, which has opened new perspectives for this type of carrier systems. One 
issue related with drug delivery is the transfollicular drug delivery. Hansen et al. 
(2014), reported improved needle-free transcutaneous immunization by means of a 
more efficient drug supply making use of nanotechnology. Nanotechnology can 
facilitate transfollicular delivery because the nanoparticles penetrate deeper and to 
a higher extent into hair follicles than solutions. In addition, nanoencapsulation can 
stabilize antigens and increase their antigenicity. Therefore, the development of 
more efficient adjuvant-coupled nanocarriers with high antigen payload is a solu-
tion to improve the supply of drugs. Naumenko et al. (2014) described the recent 
advances in the manufacture and utilization of nanoparticle-labeled cells, showing 
that one of the most promising techniques is the layer-by-layer polyelectrolyte 
assembly on cells and intracellular and extracellular labelling with magnetic 
nanoparticles. Among the applications that stand out include the tissue engineering 
and tumor therapy, showing that nanotechnology not only has application in trans-
port of drugs but also in different medical therapies.

Pescina et  al. (2015) reviewed the literature on the most recent advances on 
blindness and visual impairment treatment using nanopharmaceuticals. They men-
tion that the nanoencapsulation of peptides and proteins presents a series of advan-
tages for their ocular delivery, since it can protect the drug from metabolic activity, 
control, and maintain the release and increase the bioavailability of the drug after 
topical or intravitreal administration. The nanoparticulate formulations contribute 
to improvements in ocular treatments, it is possible to overcome the ocular barriers, 
the residence time in the eye is improved, and the local level of the drug is increased. 
In this case, proteins are also used for the preparation of nanovehicles for ophthal-
mic administration, so that they have a function as therapeutic agents and in turn as 
carriers.

It is worth highlighting the current interest regarding DNA research. DNA is also 
emerging as intelligent material to construct nanovehicles for targeted drug 
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delivery. Okholm et al. (2016) mention that although the applications of DNA nano-
structures are still in the early stages of research, there are great expectations to 
offer solutions for targeted therapy. With the use of these DNA nanostructures, the 
selection and crossing of biological barriers will be facilitated. These nanostructures 
functionalized with molecules such as polymers, proteins, peptides, small mole-
cules, nucleic acids, or lipids have found applications in the study of subdiffraction 
resolution fluorescence imaging, membrane channeling, enzyme cascades, molecu-
lar walkers, plasmonic chirality, and molecular electronics. In addition, the DNA 
nano vehicles can be designed to function autonomously in the body. With more 
specific knowledge of the molecular characteristics of diseases and the behavior of 
nanoparticles in vivo, it would be expected that nanoparticles could be customized 
in the future to provide safe and efficient individualized treatment for patients.

Some recent advances on some of the most common nanostructured materials 
used as nanocarriers for drug transport and release, such as micelles, nanolipo-
somes, carbon-based nanostructures (nanotubes, graphene, and graphene oxide), 
dendrimers, polymeric nanoparticles, and inorganic nanoparticles are discussed in 
the following paragraphs in order to better understand their potential impact on the 
development of nanopharmaceuticals.

9.4.1  �Polymeric Nanoparticles

Polymeric nanoparticles are spherically shaped particles with a large surface to vol-
ume ratio; due to their size, they can biodistribute easily in the organism, making 
them of interest for biomedical applications as imaging, therapeutic, or diagnostics 
agents. Drug transport and release can be improved when nanoparticles are used as 
carriers, as they can cross through biological barriers without problems, decreasing 
the needed dose for pharmacological action and potential toxicity. Oncological 
applications are among the most promising fields for lipid nanoparticles (Mostafalou 
et  al. 2013). Usually, polymeric nanoparticles are biocompatible, biodegradable, 
and nontoxic. Synthetic or natural polymers, shaped as nanocapsules (empty core) 
or nanospheres (porous structures), have been explored. In nanocapsules, the poly-
meric membrane surrounds a central cavity where the API is confined, while in 
nanospheres the drug is dispersed in the polymeric matrix (Fig. 9.3). Some common 
materials used to prepare them are albumin, chitosan, alginate, poly(lactide-co-
glycolide), polylactide, and polyethylene glycol, among several others. Their sur-
faces can be easily modified and functionalized.

Cancer is one of the health problems that have attracted a larger number of 
research groups to find potential solutions. Luque-Michel et al. (2017) have recently 
reviewed the use of polymer-based nanocarriers for cancer therapy. Polymer-based 
nanocarriers have been used to maximize the effectiveness of cancer treatment and 
minimize the adverse effects of standard therapy. As chemotherapy may induce 
undesirable side effects, the development of novel therapeutic formulations that are 
able to reduce or avoid them is desirable. For example, BH3-mimetic ABT-737 is a 

9  Recent Advances on Nanostructured Materials for Drug Delivery and Release



338

chemotherapeutic agent for cancer treatment that induces thrombocytopenia. 
Schmid et al. (2014) found that this side effect could be reduced through the encap-
sulation of BH3-mimetic ABT-737  in PEGylated poly(lactide-co-glycolide) 
nanoparticles. Side effects of camptothecin, another anticancer compound that can 
cause leukopenia and gastrointestinal toxicity, were decreased when encapsulated 
in the same system, in contrast with the administration of free camptothecin. When 
both anticancer compounds, BH3-mimetic ABT-737 and camptothecin, were co-
encapsulated in a single polymeric nanoparticle, synergistic induction of apoptosis 
in both in vitro and in vivo colorectal cancer models was found, decreasing substan-
tially the undesired effects in the animal model. This successful strategy to decrease 
toxicity and secondary effects, enhancing the clinical efficacy of synergistic drug 
combinations may be explored in future nanopharmaceutical formulations in order 
to tackle that specific challenge. Another challenge where PNPs may find useful 
application is as stabilizing agent of sensitive, easily degradable, biomolecules with 
therapeutic action, such as proteins, genes, and nucleic acids. For example, tenfib-
gen, the carboxy-terminal fibrinogen globe domain of tenascin-C, nanocapsules 
with sizes under 50 nm were used as nanocarriers to protect DNA/RNA chimeric 
oligomers for tumor-directed delivery targeting casein kinase 2 (CK2) α-α′ xeno-
graft tumors in mice. Systemic delivery of s50-TGB-RNAi-CK2 specifically targets 
malignant cells, including tumor cells in the bone, while low doses reduce size and 
CK2-related signals in orthopedic primary and metastatic xenograft prostate cancer 
tumors (Trembley et al. 2014; Ahmed et al. 2016). This approach may be used one 
day for the design of effective and affordable gene therapy.

Several biocompatible and biodegradable biopolymers such as polysaccharides 
(chitosan, carboxymethylcellulose, starch), poly(lactide-co-glycolide), polycapro-
lactone, and others have also been explored as building blocks for the design of 
polymeric nanoparticles. Some of those biopolymers can be pH- or thermally sensi-
tive, allowing activation of drug releasing under specific chemical or physical envi-
ronments, improving their performance as controlled transport systems and 

Fig. 9.3  Schematic representation of a drug loaded (left) and surface modified (right) polymeric 
nanoparticle
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protecting, at the same time, sensitive molecules with pharmaceutical activity. 
Bahreini et al. (2014) prepared chitosan-tripolyphosphate nanoparticles loaded with 
the lyophilized enzyme L-asparaginase II by an ionotropic gelation method; the 
immobilized enzyme showed an increased in vitro half-life and good thermal and 
pH stability, in comparison to the free enzyme. Loading efficiency was tuned by 
changing the chitosan and tripolyphosphate concentrations. In other  
approach, poly(lactide-co-glycolide) or polycaprolactone nanoparticles loaded  
with a novel antiplatelet N-substituted-phenylamino-5-methyl-1H-1,2,3-triazole-4-
carbohydrazide derivative were prepared as a potential promising therapy for the 
treatment of thrombotic disorders. As current commercial antiplatelet treatments 
produce undesirable side effects, the use of biocompatible nanocarriers was consid-
ered for the design of better therapeutic agents. Their controlled release profile and 
their in vitro and in vivo evaluation in a thromboembolism pulmonary animal model 
was analyzed over 21 days, showing promising activity and low toxicity (Sathler 
et al. 2014).

Other promising area using polymeric nanoparticles is focused in the treatment 
of obesity and overweight. Obesity affects, along with overweight, a third of the 
global population. In recent years, Leptin (Lep), an adipocyte-secreted hormone to 
control appetite and thermogenesis, has been evaluated combinated with a copoly-
mer Pluronic p85 (Lep@NP85). This conjugate, administered intranasally using the 
nose-to-brain (INB) route, has shown higher affinity upon binding with the leptin 
receptor. Many cases of obesity are associated to a leptin resistance. The Lep@
Np85 improve not only the accumulation of the leptin as a part of the conjugate in 
the animal brain, also is observed a significant weight loose. This modified form of 
leptin show the same activity of the alone hormone after intranasal administration. 
The LepNP85 with optimized conjugation chemistry is a promising candidate for 
treatment of obesity (Yuan et al. 2017).

9.4.2  �Micelles, Nanoliposomes, and Lipid-Core Nanocapsules

Micelles are spherical structures with sizes usually under 20–50 nm (liposomes are 
regularly range from 100 nm to 3 μm). They are composed by amphiphilic chains self-
assembled in solution as a closed-cage because of polar/nonpolar interactions 
(Fig. 9.4a, b). Usually, the internal cavity (core) is hydrophobic while the exterior 
(shell) is hydrophilic (direct micelle), but they can also have a hydrophilic core and a 
hydrophobic shell (inverse micelle). This duality allows micelles to be applied on the 
selective solubilization of polar and nonpolar drugs, depending on the administration 
route. At the internal cavity of direct micelles, small molecules, poorly soluble in 
water, can be stored, protected, and stabilized by the external layer (Fadeel et al. 2012). 
These versatile systems can be used for transportation and release of water-insoluble 
drugs and imaging agents. They are highly stable in physiological conditions, being 
able to circulate during prolonged times and accumulate in specific target sites when 
functionalized with appropriate ligands in their surfaces. Nanoliposomes, on the other 
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hand, are nanometric versions of liposomes. Spherical in shape, they can be produced 
from natural phospholipids, cholesterol, and their derivatives (Fig. 9.4c). Most used 
systems for encapsulation of APIs and for the design of controlled release systems can 
be classified, according to the number and size of bilayers as multilamellar and large 
or small unilamellar vesicles. Size, as well as lipid composition, determines properties 
such as fluidity, permeability, stability, and structure. There are five types of nanolipo-
somes, in terms of their composition and intracellular internalization mechanism: con-
ventional, pH-sensitive, cationic, long circulating, and immunoliposomes. When a 
vesicle is formed from non-ionic surfactants, it is called noisome; although their prop-
erties are close to those of a liposome, they have larger chemical stability but higher 
production costs (Chekman 2010). Nanoliposomes have been successfully tested in 
Food and Drug Administration clinical tests, and some of them have received authori-
zation for developing cosmetics and therapeutic agents as Daunoxome® and 
Ambisome® for cancer treatment. Several amphiphilic molecules have been used for 
the formation of stable micelles and nanoliposomes for nanopharmaceutical formula-
tions: polyethylene glycol lipids, pluronic, poly(amino acid)-b-polyethylene glycol 
(amino acid = glutamic, aspartic), polycaprolactone-b-methoxy-polyethylene glycol, 
methoxy poly(ethylene glycol)-b-poly(d, l-lactide), chitosan grafted with palmitoyl, 
and poly(N-isopropylacrylamide)-poly(vinylpyrrolidone)-poly(acrylic acid), among 
several others (Fig. 9.5).

The fact that micelles and nanoliposomes improve solubility of poorly soluble 
molecules, as well as protecting encapsulated substances from degradation and 

Fig. 9.4  Schematic representation of a: (a) direct micelle; (b) inverse micelle; (c) nanoliposome; 
(d) lipid-core nanocapsule
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clearance, among other properties, makes them attractive for their use as nanocarri-
ers in drug delivery. They have also been explored as efficient vehicles for improv-
ing the drug’s pharmacokinetics, biodistribution, and cellular uptake, decreasing 
biodegradation, inadequate tissue distribution, and toxicity. Recently, Haratifar 
et al. (2014) prepared casein micelles to encapsulate epigallocatechin gallate, the 
major catechin found in green tea. Epigallocatechin gallate has antiproliferative 
activity on colon cancer cells, and it was shown that epigallocatechin gallate con-
taining micelles decreased the proliferation of HT-29 cancer cells in vitro. These 
results indicate that protecting epigallocatechin gallate or other sensitive therapeuti-
cal molecules in a polymeric matrix may be of utility for the stabilization of sensi-
tive APIs and biomolecules, improving their biodistribution and therapeutic 
efficiency. For example, the transport and release of antioxidants has an ample mar-
ket of applications, both for pharmaceutical use as well as for food fortification. 

Fig. 9.5  Selected polymers used for micelle formation (PEG polyethylene glycol)
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Several potent antioxidants, as well as other useful natural molecules with benefic 
therapeutic effects, have poor solubility or are unstable at physiological conditions, 
many of them being prone to enzymatic biodegradation. Nanocarriers may become 
an alternative to improve both their solubility and stability. Resveratrol and cur-
cumin, two polyphenols well known by their antioxidant properties, were encapsu-
lated in poly(lactide-co-glycolide) lipid-core nanocapsules (Fig. 9.3d). The in vitro 
antioxidant activity against hydroxyl radicals, as well as their antioxidant release 
profile improved after nanoencapsulation. Co-encapsulation of both antioxidants 
was also explored, and it is a promising strategy to enhance performance when 
treating diseases associated with oxidative stress (Coradini et  al. 2014, 2015). 
Docosahexanoic acid, an omega-3 polyunsaturated fatty acid known for its health 
benefits in the development of infants, has also protective effects against H. pylori 
gastric infection. Docosahexanoic acid was encapsulated in a lipid-core nanocap-
sule (average size of 302 nm) produced by hot homogenization and ultrasonication 
using a mixture of commercial surfactants (Precirol ATO5®, Miglyol-812® and 
Tween 60) and showed inhibition of H. pylori growth in vitro (Seabra et al. 2017). 
Rice bran oil, a natural extract obtained from the hard outer brown layer of rice (rice 
husk) traditionally used to protect skin from UVB radiation damage as well as for 
deep-frying cooking. UVB radiation may induce skin damage and cancer, so protec-
tion against it may help to prevent these problems. The extract was encapsulated in 
lipid-core nanocapsules (medium size ~200 nm) and its ability to prevent ear edema 
induced by UVB irradiation showed a 61% efficiency, reducing at the same time 
oxidative stress and carcinogenesis response (Rigo et al. 2015). In a similar work, 
Badea et al. (2015) developed an integrative approach against basal cellular carci-
noma. They encapsulated two anticancer drugs (5-fluorouracil, a hydrophilic che-
motherapeutic drug and ethylhexyl salicylate, a lipophilic UVB sunscreen agent) in 
nanostructured lipid carriers made of bioactive squalene (50.8% w/w) obtained 
from amaranth seed oil, as a chemoprotective agent. The co-loaded nanocapsules 
(100 nm in diameter) were able to block UVB light efficiently, as well as to scav-
enge free radicals (70%);in vitro drug release showed sustained release of 
5-fluorouracil, suggesting this system may become an effective preventive agent 
against photoaging, skin cancer, and skin damage. Finally, N,O-carboxymethyl chi-
tosan nanoparticles were loaded with 5-fluorouracil and curcumin, and their in vivo 
pharmacokinetics was evaluated. The loaded nanocarriers were blood compatible, 
releasing the drug over a period of 4 days in a pH range from 4.5 to 7.4 and showing 
good anticancer effects against colon cancer cells (HT-29) (Anitha et al. 2014).

9.4.3  �Carbon Based Nanomaterials

Carbon-based nanomaterials for drug delivery are a rapidly growing field. There are 
several types of carbon-based nanomaterials. Figure 9.6 shows some of the most 
representative systems, such as fullerenes, graphene, carbon sponges, nanocones, 
single-walled carbon nanotubes, and multi-walled carbon nanotubes, among others. 
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Carbon nanotubes are usually formed by hexagonal open or closed networks of 
carbon atoms, sometimes presenting different kinds of defects (substitutional or 
geometrical) and may have diameters from 1 nm (single-walled carbon nanotubes) 
to several hundreds of nanometers (multi-walled carbon nanotubes) and lengths 
from 1 nm to several micrometers. Carbon nanotubes have been extensively studied 
for clinical use, as they are able to penetrate easily the cell membrane, carrying 
APIs. Due to their high aspect ratio, they have a large capacity for storage inside 
several small molecules, and their surfaces can be easily modified to improve their 
specificity, biodistribution, and biocompatibility. Their low solubility in aqueous 
systems is a problem, being prone to agglomeration. Multi-walled carbon nanotubes 
are potentially toxic after modifying their solubility, as they become more bioavail-
able (Hilder and Hill 2007).

The use of graphene-based nanocarriers for drug delivery applications has been 
recently reviewed and discussed (Liu et al. 2013). The easiness for chemical modi-
fication of their surfaces to tune their biocompatibility and toxicity or controlling 
releasing mechanisms (pH-sensitive, thermal, photo- and magnetic induction) opens 
numerous possibilities for the development of efficient therapeutic and diagnostic 
systems. For example, dopamine conjugated graphene oxide nanoparticles were 
recently prepared and used as nanocarriers for cellular delivery of the anticancer 
drug methotrexate. The loaded nanocarriers were tested in a human breast adeno-
carcinoma cell line showing significant antitumor activity and improving drug 

Fig. 9.6  Some selected common nanostructured carbon allotropes: (a) fullerene, C60; (b) two lay-
ers of graphene; (c) carbon sponge; (d) nanocone; (e) single-walled carbon nanotube (SWCNT); 
(f) multi-walled carbon nanotube (MWCNT)
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delivery. The design of novel nanocarrier conjugates is then a promising field of 
research for the development of useful therapeutical agents (Masoudipour et  al. 
2017). In other work, a conjugated graphene oxide-gallic acid drug-delivering sys-
tem was recently developed by Dorniani et al. (2016) and characterized by several 
analytical techniques (X-ray diffraction, Fourier transform infrared spectroscopy, 
high-resolution transmission electron microscopy, Raman and Ultraviolet/Visible 
spectroscopy). The nano-conjugate was able to release gallic acid in phosphate buf-
fer system at pH 7.4 in a sustainable way; in vitro evaluation against normal fibro-
blast (3 T3) and liver cancer cells (HepG2) showed good inhibitory effect on cancer 
cells without affecting normal cell growth.

Carbon nanotubes have emerged as an exciting alternative for transporting thera-
peutical molecules. Functionalization of carbon nanotubes decreases toxicity and 
immunogenic response, displaying a promising potential to become platforms for 
drug delivery of peptides, proteins, nucleic acids, and drugs. They can be used as 
components in multifunctional composites for use as theranostic agents. For exam-
ple, a composite of multi-walled carbon nanotubes and cobalt ferrite nanoparticles 
has been designed for use as a MRI contrast agent. Coating the multi-walled carbon 
nanotube@CoFe2O4 nanocomposite with mesoporous silica resulted in increased 
biocompatibility and loading efficiency. When loaded with doxorubicin, the nano-
composite showed good pH-responsive drug release within 48 h (Fan et al. 2017). 
Molecules with low solubility such as curcumin, a potent antioxidant that protects 
against oxidative stress-related injuries and anticancer activity, have been also 
loaded in carbon nanocarriers. Multi-walled carbon nanotubes functionalized with 
polyvinyl alcohol and loaded with curcumin were evaluated in vitro showing good 
release performance at physiological pH (7.4–5.5); at low pH values, release 
increased (25–30%) than at higher pH values (Zawawi et al. 2017).

9.4.4  �Inorganic Nanoparticles

Numerous nanomaterials with different chemical compositions (magnetite, Fe3O4; 
silica, SiO2; zinc oxide, ZnO; zerovalent metals such as Ag, Au, Pt; CdS and ZnSe 
quantum dots), which may present an ample variety of shapes (rods, wires, tubes, 
particles, sheets) and structures (core-shell, multilayered, organically/inorganically 
coated, hollow o porous, among others), have been explored as drug delivery sys-
tems (Fig. 9.7). Coupling of APIs on the surface of inorganic nanoparticles (surface 
functionalization) changes the stability of the nanomaterial, as well as its biocom-
patibility. Inorganic nanomaterials can be easily chemically modified on their sur-
faces, in order to achieve more stable systems, with increased half-life, to be 
exploited as drug delivery and controlled release systems (Vargas-Gonzalez et al. 
2016). They are easy to modify in their surfaces and have been explored for drug 
delivery, imaging, diagnosis, etc.

Metallic and metal oxide nanoparticles can act as drug nanocarriers or also as 
antimicrobial agents themselves. Aside from their microbicide activity, inorganic 
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nanoparticles may possess interesting physical properties such as magnetism, cata-
lytic activity, redox active behavior, and fluorescence, among others. These proper-
ties make them useful for the design of multifunctional nanocarriers, with great 
potential for theranostic applications. The use of metal-based nanomaterials as anti-
microbials, as well as the mechanisms of action, has been discussed by Raghunath 
and Perumal (2017). In particular, the toxicity of silver nanoparticles in biological 
systems has been explored by several research groups, and it is a very active field; 
the antimicrobial activity of silver nanoparticles and its potential use for the design 
of novel nano-antibiotics has been recently reviewed (Vazquez-Muñoz et al. 2017). 
For example, Marslin et al. (2015) used extracts of Withania somnifera to reduce 
AgNO3 and prepare a cream formulation containing silver nanoparticles with anti-
microbial activity; the cream was reported to be effective against S. aureus, P. aeru-
ginosa, P. vulgaris, E. coli, and C. albicans. This formulation may be an alternative 
to the use of conventional antibiotics or for the treatment of antibiotic-resistant 
pathogens (Marslin et al. 2015). Other metal oxides have been used as support for 

Fig. 9.7  TEM images of (a) mesoporous Au@SiO2 nanoparticles, (b) magnetic hollow nanopar-
ticles, (c) Fe3O4 superparamagnetic nanoparticles, (d) SiO2 spherical nanoparticles (Source: 
author’s laboratory)
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silver nanoparticles immobilization. Recently, hollow TiO2-coated CeO2 nanocarri-
ers were prepared and loaded with silver nanoparticles and their Ag+ ion releasing 
performance evaluated. These systems showed excellent antibacterial activity 
against E. coli, although they were also cytotoxic against a model epithelial barrier 
cell type (A549 cells) (Gagnon et al. 2016). Further research on the use of silver 
nanoparticles is necessary in order to avoid toxicological effects that may affect 
their antibacterial performance.

Mesoporous materials, such as hollow nanoparticles, have been explored as 
alternatives to carry different kind of biologically active molecules in their inner 
space, becoming great choices for drug transport and delivery. Further modification 
of the surface of nanomaterials, both to enhance molecular recognition of specific 
targets or to attach pro-drugs that can be carried until the right conditions (pH, enzy-
matic activity) break the bond, releasing the active principle, is an active field of 
research. Recently, the antitumor performance of ZnO hollow nanocarriers contain-
ing the anticancer drug PTX, against breast cancer in an animal model was reported 
(Puvvada et al. 2015). The surface of the hollow ZnO nanoparticles was modified 
with folate groups, improving their uptake by breast malignant cells; a drug release 
efficiency of 75% within 6 h in the characteristic low, acidic, pH of the tumor micro-
environment was determined. Fluorescence of the nanocarrier increased because of 
drug release, becoming thus a useful way to evaluate the nanocarrier’s performance. 
This dual, pH-sensitive, and fluorescent nanocarrier may be useful for improving 
chemotherapy tolerance and anticancer efficiency and to develop flexible theranos-
tic tools for both diagnostics and anticancer therapy. The development of multifunc-
tional inorganic-organic, hybrid, nanocarriers is a very exciting field. 
Landarani-Isfahani et al. (2017) reported the development of magnetic nanoparti-
cles conjugated with G2 triazine dendrimers (Fe3O4@SiO2/G2), loaded with metho-
trexate, that are pH-responsive; the chemotherapeutic hybrid nanocarrier was tested 
against in vitro using MCF-7, HeLa, and Caov-4 cell lines, showing good cytotoxic-
ity. These nanocomposites were biocompatible and degradable as indicated by 
blood safety analyses and could be used as effective drug carriers for anticancer 
applications. In other work where dendrimers and inorganic nanoparticles were 
mixed, a system consisting of polyamidoamine dendrimers conjugated with mag-
netic nanoparticles was prepared and characterized; the nanocomposite perfor-
mance as a stimuli-responsive drug carrier for thermally activated chemotherapy of 
cancer was evaluated (Nigam and Bahadur 2017). When alternating current mag-
netic fields were applied to the doxorubicin-loaded formulation, a synergistic effect 
on the inhibition of cervical cancer cell growth was found. These novel hybrid sys-
tems may be of interest for the development of innovative combinatorial therapeu-
tic agents.

Finally, innovative ideas on the design of inorganic nanocarriers conjugated with 
bioactive molecules, such as enzymes or proteins with antiviral or anticancer activ-
ity, have been explored. First, a tyrosine kinase conjugate with gold nanorods was 
prepared by Liu et al. (2017) and evaluated as potential platforms for targeted drug 
delivery and photothermal tumor ablation. In the absence of laser irradiation, mod-
erate necrosis of human metastatic renal carcinoma cells in a nude mice model was 
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observed; however, under irradiation, both with or without gold nanorods, tumor 
necrosis improved, although irradiation in the presence of gold nanorods showed a 
synergistic complete tumor necrosis. Finally, momodicas anti-HIV protein, a 
30  kDa single-stranded, type-I ribosome inactivating protein with antitumor and 
anti-HIV activities was encapsulated in zirconium egg- and soy-phosphatidylcho-
lines nanoparticles; the nanocarriers were characterized by transmission electron 
microscopy and X-ray diffraction. The obtained nanoformulation showed positive 
results in antimicrobial and anti-HIV assays, with low toxicity and good first order 
releasing kinetics (Caizhen et al. 2015).

9.4.5  �Dendrimers

Dendrimers are hyperbranched, tree-like structured polymers, of large size and 
complexity, but with a well-defined chemical structure (Fig. 9.8). Dendrimers grow 
branches from a central core. Their usual size does not exceed 15 nm, having a rela-
tively dense surface with an almost empty core, having also very low polydispersity 
index, high bio-permeability and biocompatibility. These large molecules present 
numerous internal voids and channels that can be used to trap host molecules 
(Onoue et al. 2014). They can be used to improve solubility of APIs and have been 
explored in the formulation of several controlled release systems. Dendrimers can 

Fig. 9.8  Schematic representation of a dendrimeric structure. Inset shows a representative molec-
ular fragment with typical chemical groups
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be designed for multiple drug target-specific controlled release, but there are several 
concerns related to their toxicity profile. According to the nature of their chemical 
components, there are several types of dendrimers: polyamidoamine, poly(glycerol), 
melamine, triazine, polyethylene glycol, carbohydrate, or citric acid derivatives, 
among several others.

Sundry reviews on the use of dendrimers as drug carriers have been published 
recently (Elkin et  al. 2017; Viswanath and Santhakumar 2017; Sheikhpour et  al. 
2017). Dendrimers containing terminal amine groups are pH-stimuli-responsive, 
becoming useful for controlled release of drugs. There are several examples of these 
nanosized highly branched fractal-like macromolecules, both as pure dendrimers or 
as in combination with other nanomaterials. As dendrimers can be designed to over-
come limitations that most common drugs present such as low solubility, stability, 
biodistribution, or specificity, they can be tuned to be able to reach specific targets, 
to avoid immune clearance, and to present reduced toxicity. Dendrimers can enter 
into the cells through phagocytosis or endocytosis, improving the therapeutic effi-
ciency. The use of dendrimers containing biomolecules, such as amino acids, pep-
tides, or antibodies is an active field of research as these derivatives may be highly 
effective to recognize specific targets. For example, Kim et al. (2017) prepared a 
four-branched arginine-glycine-aspartic acid tripeptide (RGD) dendrimer, bound to 
polyethylenimine-grafted chitosan containing a targeted gene for alpha-beta-
integrin. The dendrimer was capable to inhibit the growth of a solid tumor in vivo in 
a mouse xenograft model. When mixed with other nanomaterials, multifunctional 
dendrimer-containing nanocarriers can be obtained. A multifunctional dendrimer 
conjugated to gold nanoparticles and loaded with doxorubicin was designed as a 
novel nano-platform for pH triggered doxorubicin intracellular delivery. Exploiting 
the luminescent properties of gold nanoparticles, cell internalization, and doxorubi-
cin release was monitored using confocal laser scanning microscopy, and in vitro 
studies showed increased cytotoxic effect. This development could lead to the 
design of a promising nanocarrier for imaging the intracellular transport of several 
anticancer drugs (Khutale and Casey 2017). In other similar work, the utility of 
multifunctional dendrimers to serve as molecular theranostic agents was explored 
where an anionic linear globular dendrimer G2 was conjugated with an AS1411 
aptamer to target human breast cancer cells (MCF-7) and deliver iohexol. The nano-
conjugated toxicity on nucleolin-positive MCF-7 cells and nucleolin-negative 
HEK-293 cells was assessed by the 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-
2H-tetrazolium-5-carboxanilide cell viability and apoptosis/necrosis assays, and in 
vivo computerized tomography imaging, showing promising effects after reducing 
the number of cancer cells (Mohammadzadeh et al. 2017).

The good transfection efficiency and low toxicity of dendrimers make them 
promising for gene therapy and as nuclei acids carriers. Askarian et  al. (2017) 
reported the preparation and characterization of polyamidoamine-pullulan conju-
gate nanoparticles with sizes in the range from 118 to 194  nm. These systems 
showed good efficiency as transfection agents in HepG2 (receptor-positive) and 
N2A (receptor-negative) cell lines, improving delivery of nucleic acids into the liver 
cells expressing asialoglycoprotein receptor with minimal transfection in 
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nontargeted cells. In another work, Lee et  al. (2017) recently reported a similar 
system, based on a G4-polyamidoamine dendrimer containing the cathepsin 
B-enzyme-sensitive sequence (glycine-phenylalanine-leucineglycine, GFLG), 
which presented excellent transfection efficiency and low cytotoxicity in HeLa 
cells. These dendrimer nanocarriers, with controllable sizes and architectures, low 
toxicity, and improved targeting properties, may become one day an efficient nano-
carrier for gene therapy, among other applications.

Table 9.4 summarizes some of the selected examples of nanocarriers recently 
reported.

In summary, there are several opportunities on the design and use of nanostruc-
tured materials for drug delivery and release. These nanomaterials may help to over-
come several of the already identified challenges associated with traditional 
pharmaceutical formulations such as specificity, controlled release under specific 
conditions or external stimuli, stabilization of unstable drugs or biomolecules, and 
theranostic multifunctionality (e.g., imaging + diagnosis + drug transport), among 
several others. Polymeric nanoparticles rise as some of the most studied systems, 
but others such as dendrimers, carbon-based, and inorganic nanoparticles are also 
becoming prominent and their unique physical properties make them very promising.

9.5  �Challenges Associated with the Use of Nanomaterials 
in Pharmaceutical Formulations

As previously discussed, the unique physical characteristics of nanostructured 
materials make them very attractive for use as components in the development of 
new pharmaceutical formulations. However, practical and commercial applications 
should consider that chemical composition, including purity, crystallinity, and phys-
ical properties of the components, as well as their reduced dimensions that affect 
directly the effective surface area, may affect not only their solubility but also their 
chemical reactivity. Furthermore, the role of the surfactant agents (organic, inor-
ganic, or composite) as well as that of the chemical functions present on the nano-
material’s surface may play a decisive role not only in their stability in solution but 
also in the biocompatibility and biodistribution (Fig.  9.9). Chemical or physical 
interactions among nanostructured carriers and the physiological media compo-
nents (proteins, sugars, ions) will also affect the stability of the nanopharmaceutical, 
as well as its drug delivery/release kinetics. In biological systems, these properties 
have a big impact on pharmacokinetics and toxicity, as they affect directly the nano-
carriers’ biodistribution and effective internalization in cells and tissues 
(Halappanavar et al. 2018; Juillerat et al. 2015; Gracssian 2008).

Chemical modification of the nanocarriers’ surface may be used as a way to 
increase stability, solubility, or biocompatibility, decreasing the probability of clear-
ing by the reticuloendothelial system. However, physical and chemical degradation 
of the surfactants may generate reactive oxygen species or yield other toxic 
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Table 9.4  Selected examples of recently developed nanocarriers

Nanocarrier Challenge Solution References

Polymeric 
nanoparticles

To reduce induced 
thrombocytopenia, 
leukopenia and 
gastrointestinal 
toxicity in the 
pharmaceutical 
formulation

Small molecule B-cell 
lymphoma 2 (Bcl-2) 
homology 3 (BH3-mimetic 
ABT-737) and 
camptothecin, with 
potential pro-apoptotic and 
antineoplastic activities. 
Co-encapsulated in 
PEGylated poly(lactide-co-
glycolide) nanocapsules

Schmid et al. 
(2014)

Polymeric 
nanocapsules

Protection of DNA/
RNA oligomers from 
degradation

Tenfibgen nanocapsules 
with sizes under 50 nm for 
direct delivering to CK2 
a-a’-xenograft tumors in 
mice

Trembley et al. 
(2014) and Ahmed 
et al. (2016)

Polymeric 
nanoparticles

Controlled release of 
an API for a long 
period

Poly(lactide-co-glycolide) 
or polycaprolactone 
nanoparticles loaded with a 
antiplatelet N-substituted-
phenylamino-5-methyl-1H-
1,2,3-triazole-4-
carbohydrazide derivative

Sathler et al. 
(2014)

Polymeric 
nanoparticles

Thermal and pH 
stabilization of 
enzymes for 
pharmacological use

Chitosan-tripolyphosphate 
nanoparticles containing 
L-asparaginase II

Bahreini et al. 
(2014)

Micelles Improve solubility of 
poorly soluble 
molecules and protect 
from degradation and 
clearance

Casein micelles loaded with 
epigallocatechin gallate, a 
compound with 
antiproliferative activity 
against colon cancer cells

Haratifar et al. 
(2014)

Lipid-core 
Nanocapsules

Stabilization of 
antioxidants for food 
fortification, 
improving drug 
release

Poly(lactide-co-glycolide) 
nanocapsules containing 
resveratrol and curcumin

Coradini et al. 
(2014, 2015)

Lipid-core 
Nanocapsules

Protection and 
stabilization of drugs 
in acidic environments 
(gastric infections)

Nanocapsules of Precirol 
ATO5®, Miglyol-812® and 
Tween 60 loaded with 
docosahexaenoic acid for 
H. pylori growth inhibition

Seabra et al. 
(2017)

Lipid-core 
Nanocapsules

Encapsulation and 
stabilization of UVB 
radiation protective 
agents

Polycaprolactone and 
sorbitan monostearate as 
solid lipid-core 
nanocapsules loaded with 
rice bran oil

Rigo et al. (2015)

(continued)
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Table 9.4  (continued)

Nanocarrier Challenge Solution References

Lipid-core 
Nanocapsules

Controlled release of 
lipophilic 
chemotherapeutic 
drugs and UVB 
protective agents

Squalene nanocapsules 
loaded with 5-fluoroacyl 
and ethylhexyl salicylate

Anitha et al. 
(2014)

Graphene oxide Drug transport and 
release of anticancer 
drugs

Graphene oxide-dopamine 
conjugate loaded with MTX 
to treat adenocarcinoma 
tumors; graphene oxide-
gallic acid delivering 
system for growth inhibition 
of liver cancer cells 
(HepG2) cells.

Masoudipour et al. 
(2017) and 
Dorniani et al. 
(2016)

Multi-walled carbon 
nanotube

pH-responsive drug 
delivery and imaging 
agent

Multi-walled carbon 
nanotube/CoFe2O4@SiO2 
nanocomposite loaded with 
DOX

Fan et al. (2017)

Multi-walled carbon 
nanotube

Transport of poorly 
soluble free radical 
protective drugs and 
pH controlled release

Multi-walled carbon 
nanotubes functionalized 
with polyvinyl alcohol 
loaded with curcumin

Zawawi et al. 
(2017)

Silver nanoparticles Alternatives to 
conventional 
antibiotics against 
antibiotic-resistant 
strains

Cream formulation 
containing silver 
nanoparticles; TiO2-coated 
CeO2 nanoparticles loaded 
with silver nanoparticles

Marslin et al. 
(2015) and Gagnon 
et al. (2016)

ZnO Targeted delivering, 
imaging and 
controlled release of 
anticancer drugs

Hollow, fluorescent, 
nanoparticles loaded with 
paclitaxel

Puvvada et al. 
(2015)

Au nanorods Targeted drug 
delivering, and 
photothermal tumor 
ablation

Gold nanorods conjugated 
with tyrosine kinase

Liu et al. (2017)

Zirconium 
phosphatidylcholine

Protection of anti-HIV 
protein from 
degradation and 
lowering of toxicity

Nanocapsules loaded with 
momodicas anti-HIV 
protein with antimicrobial 
and anti-HIV activity.

Caizhen et al. 
(2015)

Fe3O4@SiO2/
dendrimer

pH-responsive drug 
delivery and imaging 
system

G2 triazine dendrimer 
modified with 
biocompatible magnetic 
nanoparticles loaded with 
methotrexate

Nigam and 
Bahadur (2017)

(continued)
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derivatives that may negatively affect the organism. Furthermore, the interaction of 
the nanomaterials with biomolecules present in the physiological medium may 
result in the formation of a biological corona on its surfaces that may drastically 
affect their properties; these properties may be completely different to those of the 
original nanomaterial, changing their bioavailability, toxicity, or reactivity 
(Halappanavar et al. 2018; Mahmoudi et al. 2011).

Undesirable adverse reactions to some components of nanopharmaceuticals 
could become a potential problem, limiting their functionality. Moreover, the large 

Table 9.4  (continued)

Nanocarrier Challenge Solution References

Dendrimer Targeted drug 
delivering for cancer 
treatment

Four-branched arginine-
glycine-aspartic acid 
tripeptide (RGD) dendrimer 
functionalized with 
polyethylenimine-grafted 
chitosan loaded with 
α−β-integrin

Kim et al. (2017)

Dendrimer pH-responsive drug 
delivery and imaging 
system

Au nanoparticle dendrimer 
(Au-polyethyelene 
glycol-polyamidoamine) 
loaded with doxorubicin

Khutale and Casey 
(2017)

Dendrimer Computerized 
tomography imaging 
and anticancer 
targeted drug-
delivering system

G2 linear globular 
dendrimer conjugated with 
an AS1411 aptamer loaded 
with iohexol

Mohammadzadeh 
et al. (2017)

Dendrimer Gene and nucleic 
acids carriers for gene 
therapy with low 
toxicity

Polyamidoamine-pullulan 
conjugates loaded with 
DNA and G4-PAMAM 
dendrimer-containing 
cathepsin B-enzyme-
sensitive sequence 
(Gly-Phen-Leu-Gly)

Askarian et al. 
(2017) and Lee 
et al. (2017)

Fig. 9.9  Physical and 
chemical factors that affect 
the stability, 
biocompatibility, and 
toxicology of nanocarriers 
used in pharmaceutical 
formulations

L. I. Castro-Pastrana et al.
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reactivity derived from the aspect ratio, may be responsible of some observed 
adverse responses. However, as nanopharmaceuticals can be administered in low 
doses, these adverse reactions may also decrease. A new discipline called nano-
pharmacovigilance must be aware of these potential hazards in order to be able to 
assess the risk of nanotechnology applied to drug development and thus to design 
proper risk minimization plans for nanomedicines to intervene in a timely manner 
(Salas-Rojas et al. 2017).

Some recent reports on cytotoxicity, DNA damage, inflammatory responses, and 
generation of reactive oxygen species, among other adverse reactions have been 
observed (Holden et  al. 2013; Fadeel et  al. 2012). The toxicity of nanomaterials 
(also known recently as nanotoxicity) is an active research field that deals with the 
possible toxic effects on health of nanomaterials, when they are in contact with 
human or other living organisms (Halappanavar et  al. 2018; Oberdörster et  al. 
2005). Although currently there is no consensus on the safety or toxicity of several 
commonly used nanomaterials, it is probable that their unique surface properties 
derived of their small size may result in adverse effects. However, more research in 
this field is required in order to better understand the risks and impacts of the use of 
nanomaterials in pharmaceutical formulations (Saiyed et al. 2011).

To date, very few nanopharmaceuticals are reaching the final phases of develop-
ment of new medicines and approval for commercialization. Researchers agree that 
in order to move from the bench to the bedside, several experimental challenges 
need to be addressed. There is still concern about the precise control of drug release 
of nanoformulations, about their biodistribution or their fate, especially when they 
do not biodegrade, and, of course, their toxicity. Thus, there is consensus regarding 
the need of validated and standardized protocols for early detection of toxicity and 
for nanoparticle characterization using in vitro assays and appropriate animal mod-
els of disease (Mendez-Rojas et al. 2016). In vivo studies need to go in depth into 
the understanding of how nanoparticles interact with target organs, tissues, cells, 
and intracellular molecules, to what extent they remain stable and what is their 
potential to accumulate (Hua et al. 2018; Ventola 2017; Min et al. 2015).

A close interaction between regulators, academic institutions, research centers, 
and the industry can help accelerate the translation of nanomedicine efforts. In addi-
tion, through the application of the “quality by design” approach, sound science and 
quality risk management can merge to achieve innovative and even disruptive 
breakthroughs in new nanopharmaceuticals development and at the same time to 
provide of safe, convenient, and cost-effective drugs to patients.

9.6  �Conclusions

The promises and impacts of nanotechnology are expected to be bigger than the 
dimensional scale where it is usually defined. Without any doubt, nanomaterials 
will allow the development of novel products that overcome the different obstacles 
and challenges currently found in the pharmaceutical industry for targeted drug 
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delivery such as limited bioavailability, low stability, limited permeability across 
biological barriers, immune surveillance, and target specificity. The development of 
intelligent, implantable, and biocompatible devices that can be used for the auto-
matic administration of nanopharmaceuticals directly in the organism is an advance 
that may be useful for cancer therapy, vaccination, and gene therapy or for the treat-
ment of neurodegenerative diseases. In addition, the exploration of alternative 
administration routes such as pulmonary drug delivery or transdermal application of 
drugs will expand the therapeutic choices for the treatment of different diseases. 
The use of multifunctional materials with unique magnetic, optical, thermal, or 
mechanical properties widen the possibilities for the design of theranostic systems 
capable of not only carrying and delivering drugs but also to help with imaging, 
diagnostics, and even therapeutic uses. However, the large-scale production of safe, 
biocompatible, and economical nanomaterials suitable for pharmaceutical use is 
still a limitation that needs to be solved in order to have real applications in human 
health. A clear understanding of the interactions between nanoformulations and cell 
components is necessary for the success of such applications. In this sense, combin-
ing computational models, bioinformatics tools, and quantitative molecular tech-
niques might allow a deeper understanding of the interaction of nanoformulations 
with the cell dynamic and the biological systems. This comprehensive understand-
ing is critical, particularly with respect to potential toxicological effects.

There are still several questions and challenges in the field that need to be solved 
in order to understand not only the toxicological effects of nanoformulations in liv-
ing organisms but also the environmental effects of them and the opportunities for 
regulatory approval and commercialization. Nanopharmaceuticals are on the rise, 
and their impact on the development of a more personalized medicine, with impor-
tant benefits for patients and physicians, is still beyond our imagination.
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