
Evolution of a Data Series Index
The iSAX Family of Data Series Indexes: iSAX, iSAX2.0,
iSAX2+, ADS, ADS+, ADS-Full, ParIS, ParIS+, MESSI,

DPiSAX, ULISSE, Coconut-Trie/Tree, Coconut-LSM

Themis Palpanas(B)

University of Paris, Paris, France
themis@mi.parisdescartes.fr

Abstract. There is an increasingly pressing need, by several applica-
tions in diverse domains, for developing techniques able to index and
mine very large collections of sequences, or data series. It is not unusual
for these applications to involve numbers of data series in the order of bil-
lions, which are often times not analyzed in their full detail due to their
sheer size. In this work, we describe techniques for indexing and efficient
similarity search in truly massive collections of data series, focusing on
the iSAX family of data series indexes. We present their design char-
acteristics, and describe their evolution to address different needs: bulk
loading, adaptive indexing, parallelism and distribution, variable-length
query answering, and bottom-up indexing. Based on this discussion, we
conclude by presenting promising research directions.

Keywords: Data series · Time series · Sequences · Indexing ·
Analytics

1 Introduction

Data series have gathered the attention of the data management community for
almost three decades [54], and still represent an active and challenging research
direction [7,56,83]. Data series are one of the most common data types, present in
virtually every scientific and social domain [56]: they appear as audio sequences
[34], shape and image data [76], financial [67], environmental monitoring [64],
scientific data [30], and others. It is nowadays not unusual for applications to
involve numbers of sequences in the order of billions [1,2].

A data series, or data sequence, is an ordered sequence of data points1. For-
mally, a data series T = (p1, ... pn) is defined as a sequence of points pi = (vi, ti),
where each point is associated with a value vi and a time ti in which this record-
ing was made, and n is the size (or length) of the series. If the dimension that
imposes the ordering of the sequence is time then we talk about time series,

1 For the rest of this paper, we are going to use the terms data series and sequence
interchangeably.

c© Springer Nature Switzerland AG 2020
G. Flouris et al. (Eds.): ISIP 2019, CCIS 1197, pp. 68–83, 2020.
https://doi.org/10.1007/978-3-030-44900-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44900-1_5&domain=pdf
https://doi.org/10.1007/978-3-030-44900-1_5

Evolution of a Data Series Index 69

though, a series can also be defined over other measures (e.g., angle in radial
profiles in astronomy, mass in mass spectroscopy, position in biology, etc.).

A key observation is that analysts need to process and analyze a sequence (or
subsequence) of values as a single object, rather than the individual points inde-
pendently, which is what makes the management and analysis of data sequences
a hard problem. In this context, Nearest Neighbor (NN) queries are of paramount
importance, since they form the basis of virtually every data mining, or other
complex analysis task involving data series [56]. However, NN queries on a large
collection of data series are challenging, because data series collections grow very
large in practice [13,63]. Thus, methods for answering NN queries rely on two
main techniques: data summarization and indexing. Data series summarization
is used to reduce the dimensionality of the data series [3,16,35,36,43,44,62], and
indexes are built on top of these summarizations [5,62,66,70,72].

In this study, we review the iSAX family of data series indexes, which all
use the iSAX summarization technique to reduce the dimensionality of the orig-
inal sequences. These indexes have attracted lots of attention, and represent the
current state-of-the-art for several variations of the general problem. In partic-
ular, we present the iSAX summarization and discuss how it can be used to
build the basic iSAX index [68,69]. We describe iSAX2.0 [12] and iSAX2+ [13],
the first data series indexes that inherently support bulk loading, allowing us to
index datasets with 1 billion data series. We present the ADS and ADS+ indexes
[78–80], which are the first adaptive data series indexes than can start answering
queries correctly before the entire index has been built, as well as ADS-Full [80],
which based on the same principles leads to an efficient 2-pass index creation
strategy. We discuss ParIS [58] and ParIS+ [60], the first parallel data series
indexes designed for modern hardware, and MESSI [59], a variation optimized
for operation on memory-resident datasets. DPiSAX [42,74,75] is a distributed
index that operates on top of Spark. We present ULISSE [45,46], which is the
first index that can inherently support queries of varying length. Finally, we
describe Coconut [38–40], the first balanced index, which is built in a bottom-up
fashion using a sortable iSAX-based summarization.

It is interesting to note that these indexes can be used not only for similarity
search of data series, but also of general high-dimensional vectors [23,24], leading
to better performance than other high-dimensional techniques (including the
popular LSH-based methods) [24].

By presenting all these indexes together2, we contribute to the better under-
standing of the particular problems that each one solves, the way that their
features could be combined, and the opportunities for future work.

2 Background and Preliminaries

[Data Series Queries]. Analysts need to perform (a) simple Selection-
Projection-Transformation (SPT) queries, and (b) more complex Data-Mining
2 More details on the topics of this paper can be found elsewhere [12,13,19,20,23,27,

28,38–40,42,45,46,48–51,53–56,58–60,74,75,78,79,81–83].

70 T. Palpanas

(DM) queries. Simple SPT queries are those that select sequences and project
points based on thresholds, point positions, or specific sequence properties (e.g.,
“above”, “first 10 points”, “peaks”), or queries that transform sequences using
mathematical formulas (e.g., average). An example SPT query could be one that
returns the first x points of all the sequences that have at least y points above a
threshold. The majority of these queries could be handled (albeit not optimally)
by current data management systems, which nevertheless, lack a domain specific
query language that would support and facilitate such processing. DM queries on
the other hand are more complex: they have to take into consideration the entire
sequence, and treat it as a single object. Examples are: queries by content (range
and similarity queries), clustering, classification, outlier, frequent sub-sequences,
etc. These queries cannot be efficiently supported by current data management
systems, since they require specialized data structures, algorithms, and storage
methods.

Note that the data series datasets and queries may refer to either static, or
streaming data. In the case of streaming data series, we are interested in the sub-
sequences defined by a sliding window. The same is also true for static data series
of very large size (e.g., an electroencephalogram, or a genome sequence), which
we divide into sub-sequences using a sliding (or shifting) window. The length of
these sub-sequences is chosen so that they contain the patterns of interest.

One of the most basic data mining tasks is that of finding similar data series,
or NN in a database [3]. Similarity search is an integral part of most data min-
ing procedures, such as clustering [73], classification and deviation detection
[11,17]. Even though several distance measures have been proposed in the lit-
erature [6,10,18,21,51,71], the Euclidean distance is the most widely used and
one of the most effective for large data series collections [22]. We note that an
additional advantage of Euclidean distance is that in the case of Z-normalized
series (mean = 0, stddev = 1), which are very often used in practice [81,82], it
can be exploited to compute Pearson correlation [61].

[Data Series Summarizations]. A common approach for answering such
queries is to perform a dimensionality reduction, or summarization technique.
Several such summarizations have been proposed, such as the Discrete Fourier
Transform (DFT) [3], the Discrete Wavelet Transform (DWT) [16], the Piece-
wise Aggregate Approximation (PAA) [36,77], the Adaptive Piecewise Constant
Approximation (APCA) [15], or the Symbolic Aggregate approXimation (SAX)
[44]. Note that that on average, there is little difference among these summa-
rizations in terms of fidelity of approximation [22,57] (even though it is the case
that certain representations favor particular data types, e.g., DFT for star-light-
curves, APCA for bursty data, etc.).

These summarizations are usually accompanied by distance bounding func-
tions that relate distances in the summarized space to distances in the original
space through either lower or upper-bounding. With such bounding functions,
we can index data series directly in the summarized space [5,62,66,70,72], and
use these indexes to efficiently answer NN queries on large data series collections.

Evolution of a Data Series Index 71

[Data Series Indexing]. Even though recent studies have shown that in cer-
tain cases sequential scans can be performed very efficiently [63], such tech-
niques are only applicable when the database consists of a single, long data
series, and queries are looking for potential matches in small subsequences of
this long data series. Such approaches, however, do not bring benefit to the gen-
eral case of querying a mixed database of several data series. Therefore, indexing
is required in order to efficiently support data exploration tasks, which involve
ad-hoc queries, i.e., the query workload is not known in advance.

A large set of indexing methods have been proposed for the different
data series summarization methods, including traditional multidimensional
[9,29,37,62] and specialized [5,66,70,72] indexes. Moreover, various distance
measures have been presented that work on top of such indexes, e.g., Discrete
Time Warping (DTW) and Euclidean Distance (ED).

Indexing can significantly reduce the time to answer DM queries. Neverthe-
less, recent studies have observed that the mere process of building the index
can be prohibitively expensive in terms of time cost [12,13,78]: e.g., the process
of creating the index for 1 billion data series takes several days to complete.
This problem can be mitigated by the bulk loading technique. Bulk-loading has
been studied in the context of traditional database indexes, such as B-trees and
R-trees, and other multi-dimensional index structures [4,25,32,33,41,65].

3 The iSAX Family of Indexes

In this section, we describe the iSAX family of indexes, that is, all the indexes
that are designed based on the iSAX summarization, and discuss their evolution
over time. Figure 1 depicts the lineage of these indexes, along with the corre-
sponding timeline. We note that all these indexes support both Z-normalized and
non Z-normalized series, and the same index can answer queries using both the
Euclidean and Dynamic Time Warping (DTW) distances (in the way mentioned
in [59]), for k-NN and ε-range queries [23]. Finally, recent extensions of some of
these indexes demonstrate that they can efficiently support approximate simi-
larity search with quality guarantees (deterministic and probabilistic) [24], and
that they dominate the state-of-the-art in the case of general high-dimensional
vectors, as well [23,24].

3.1 The iSAX Summarization and Basic Index

The Piecewise Aggregate Approximation (PAA) [36,77] is a summarization tech-
nique that segments the data series in equal parts and calculates the average
value for each segment. An example of a PAA representation can be seen in
Fig. 2; in this case the original data series is divided into 4 equal parts. Based on
PAA, Lin et al. [44] introduced the Symbolic Aggregate approXimation (SAX)
representation that partitions the value space in segments of sizes that follow
the normal distribution. Each PAA value can then be represented by a character
(i.e., a small number of bits) that corresponds to the segment that it falls into.

72 T. Palpanas

This leads to a representation with a very small memory footprint, an important
advantage when managing large sequence collections. A segmentation of size 3
can be seen in Fig. 2, where the series is represented by SAX word “10 10 11”.

iSAX [70,69]

iSAX2+ [13]+ Bulk
Loading

2008 2010 2014

+ Adaptive

2015 2017

+ Distributed

+ Multi-Core,
Multi-Socket, SIMD

2018 2019 2020
basic
index

+ Sortable Summarizations,
Streaming Data Series

+ Variable-Length Queries

C

C#, C

C#

Java
(Spark)

C

C

C

timeline

iSAX 2.0 [12]

ADS /
ADS+ [78] ADSFull [80]

DPiSAX [74,75]

ParIS [58] ParIS+ [60] MESSI [59]

Coconut-Trie /
Coconut-Tree [38]

ULISSE [45,47]

Coconut-LSM [40]

iSAX2+ [24] *

ADS+ [24] *

Fig. 1. Lineage of the iSAX family of indexes. Timeline is depicted on the top; imple-
mentation languages are marked on the right. Solid arrows denote inheritance of the
index design; dashed arrows denote inheritance of some of the design features; the
two new versions of iSAX2+ and ADS+ marked with an asterisk support approximate
similarity search with deterministic and probabilistic quality guarantees. Source code
available by following the links in the corresponding papers.

The SAX representation was later extended to indexable SAX (iSAX) [70],
which allows variable cardinality for each character of a SAX representation. An
iSAX representation is composed of a set of characters that form a word, and
each word represents a data series. In the case of a binary alphabet, with a word
size of 3 characters and a maximum cardinality of 2 bits, we could have a set of
data series (two in the following example) represented with the following words:
002102012, 002112012, where each character has a full cardinality of 2 bits and
each word corresponds to one data series. Reducing the cardinality of the second
character in each word, we get for both words the same iSAX representation:
00211012 (11 corresponds to both 10 and 11, since the last bit is trailed when
the cardinality is reduced). Starting with a cardinality of 1 for each character in
the root node and gradually splitting by increasing the cardinality one character
at a time, we can build in a top-down fashion the (non-balanced) iSAX tree
index [69,70]. These algorithms can be efficiently implemented with bit-wise
operations.

The iSAX index supports both approximate and exact similarity search [23]:
approximate does not guarantee that it will always find the correct answers
(though, in most cases it returns high-quality results [24,70]); exact guarantees
that it will always return the correct results. In approximate search, the algo-
rithm uses the iSAX summaries to traverse a single path of the index tree from
the root to the most promising leaf, then computes the raw distances between the

Evolution of a Data Series Index 73

11 0 0

1 0 0

PAA points R3

Intermediate node

Leaf node

d1

00 01

01

00

11

10

00 01

0 1

0

1

0
1

d2

d3

ROOT

10 0 0

0 0 0

11 00 0

11 01 0

00

01

10

11

N
(0

, 1
)

1 1 1

Fig. 2. An example of iSAX and SAX representations [78].

query and each series in the leaf, and return the series with the smallest distance,
i.e., the Best-So-Far distance (BSF). Exact search starts with an approximate
search that returns a BSF, which is then used to prune the rest of the index
leaves; the leaves that cannot be pruned are visited, the raw distances of the
series to the query are computed, and the BSF is updated (if needed). At the
end of this process, we get the exact answer.

3.2 Bulk-Loading: iSAX 2.0 and iSAX2+

Inserting a large collection of data series into the index iteratively is an expensive
operation, involving a high number of disk I/O operations [12,13]. This is because
for each time series, we have to store the raw data series on disk, and insert into
the index the corresponding iSAX representation. In order to speedup the process
of building the index, iSAX 2.0 [12] and iSAX2+ [13] were the first data series
indexes (based on the iSAX index) with a bulk loading strategy.

The key idea is to effectively group the data series that will end up in a
particular subtree of the index, and process them all together. In order to achieve
this goal, we use two main memory buffer layers, namely, the First Buffer Layer
(FBL), and the Leaf Buffer Layer (LBL) [13]. The FBL corresponds to the
children of the root of the index, while the LBL corresponds to the leaf nodes.
The role of the buffers in FBL is to cluster together data series that will end
up in the same subtree of the index, rooted in one of the direct children of the
root. In contrast, the buffers in LBL are used to gather all the data series of leaf
nodes, and flush them to disk.

The algorithm operates in two phases, which alternate until the entire dataset
is processed, as follows (for more details, refer to [13]). During Phase 1, the
algorithm reads data series and inserts them in the corresponding buffer in the
FBL. This phase continues until the main memory is full. Then Phase 2 starts,
where the algorithm proceeds by moving the data series contained in each FBL
buffer to the appropriate LBL buffers. During this phase, the algorithm processes

74 T. Palpanas

the buffers in FBL sequentially. For each FBL buffer, the algorithm creates all the
necessary internal and leaf nodes, in order to index these data series. When all
data series of a specific FBL buffer have been moved down to the corresponding
LBL buffers, the algorithm flushes these LBL buffers to disk.

The difference between iSAX 2.0 [12] and iSAX2+ [13] is that the former
treats the data series raw values (i.e., the detailed sequence of all the values of the
data series) and their summarizations (i.e., the iSAX representations) together,
while the latter uses just the summarizations in order to build the index, and only
processes the raw values in order to insert them to the correct leaf node. In both
cases, the goal is to minimize the random disk I/O, by making sure that the data
series that end up in the same leaf node of the index are (temporarily) stored in
the same (or contiguous) disk pages. The experiments demonstrate that iSAX
2.0 and iSAX2+ significantly outperform previous approaches, reducing the time
required to index 1 billion data series by 72% and 82%, respectively. A recent
extension of iSAX2+ supports approximate answers with quality guarantees [24].

3.3 Adaptive Indexing: ADS, ADS+, ADS-Full

Even though iSAX 2.0 and iSAX2+ can effectively cope with very large data
series collections, users still have to wait for extended periods of time before the
entire index is built and being able to start answering queries.

The Adaptive Data Series (ADS) and ADS+ indexes [78,79] are based on
the iSAX 2.0 index, and address the above problem. They perform only a few
basic steps, mainly creating the basic skeleton of the index tree, which contains
condensed information on the input data series, and are then ready to start
answering queries. As queries arrive, ADS fetches data series from the raw data
and moves only those data series needed to correctly answer the queries inside
the index. Future queries may be completely covered by the contents of the
index, or alternatively ADS adaptively and incrementally fetches any missing
data series directly from the raw data set. When the workload stabilizes, ADS
can quickly serve fully contained queries while as the workload shifts, ADS may
temporarily need to perform some extra work to adapt before stabilizing again.

The additional feature of ADS+ (when compared to ADS) is that it does not
require a fixed leaf size: it dynamically and adaptively adjusts the leaf size in
hot areas of the index. ADS+ uses two different leaf sizes: a big build-time leaf
size for optimal index construction, and a small query-time leaf size for optimal
access costs. Initially, the index tree is built as in plain ADS, with a constant leaf
size, equal to build-time leaf size. In traditional indexes, this leaf size remains
the same across the life-time of the index. In our case, when a query that needs
to search a partial leaf arrives, ADS+ refines its index structure on-the-fly by
recursively splitting the target leaf, until the target sub-leaf becomes smaller or
equal to the query-time leaf size.

ADS and ADS+ support the same query answering mechanisms as iSAX2.0
and iSAX2+, but they also introduced the Scan of In-Memory Summarizations
(SIMS) algorithm for exact query answering. SIMS starts by an approximate
search to compute the BSF, which is then used to compare to the in-memory

Evolution of a Data Series Index 75

iSAX summaries of all the series in the collection, and finally, performs a skip-
sequential scan of the raw series that were not pruned in the previous step.

Experiments with up to 1 billion data series and 105 random approximate
queries show that ADS+ answers all queries in less than 5 h, while iSAX 2.0
needs more than 35 h. In turn, ADS+ and iSAX 2.0 are orders of magnitude
faster in index creation than KD-Tree [8], R-Tree [29], and X-Tree [9].

In settings where a complete index is required, i.e., when there is a completely
random and very large work-load, a full index can also be efficiently constructed
using ADS-Full [80]. In the first step, the ADS structure is built by performing a
full pass over the raw data file, storing only the iSAX representations at each leaf.
In the second step, one more sequential pass over the raw data file is performed,
and data series are moved in the correct pages on disk. The benefit of this process
is that it completely skips costly split operations on raw data series, leading to
a 2x–3x faster creation of the full index, when compared to iSAX 2.0. A recent
extension of ADS+ supports approximate answers with quality guarantees [24].

3.4 Parallel and Distributed: ParIS, ParIS+, MESSI, DPiSAX

The continued increase in the rate and volume of data series production with col-
lections that grow to several terabytes in size [53] renders single-core data series
indexing technologies inadequate. For example, ADS+ [80], requires >4 min to
answer a single exact query on a moderately sized 250 GB sequence collection.

The Parallel Index for Sequences (ParIS) [58], based on ADS+, is the first
data series index that takes advantage of modern hardware parallelization, and
incorporate the state-of-the-art techniques in sequence indexing, in order to
accelerate processing times. ParIS, which is a disk-based index, can effectively
operate on multi-core and multi-socket architectures, in order to distribute and
execute in parallel the computations needed for both index construction and
query answering. Moreover, ParIS exploits the Single Instruction Multiple Data
(SIMD) capabilities of modern CPUs, to further parallelize the execution of indi-
vidual instructions inside each core. Overall, ParIS achieves very good overlap
of the CPU computation with the required disk I/O. ParIS+ [60], an alternative
of ParIS, completely removes the CPU cost during index creation, resulting in
index creation that is purely I/O bounded, and 2.6x faster than ADS+. ParIS+
achieves this by reorganizing the way that the workload is distributed among the
worker threads. ParIS and ParIS+ employ the same algorithmic techniques for
query answering. The experiments also demonstrate their effectiveness in exact
query answering: they are up to 1 order of magnitude faster than ADS+, and up
to 3 orders of magnitude faster than the state-of-the-art optimized serial scan
method, UCR Suite [63]. We also note that ParIS and ParIS+ have the potential
to deliver more benefit as we move to faster storage media.

Still, ParIS+ is designed for disk-resident data and therefore its performance
is dominated by the I/O costs it encounters. For instance, ParIS+ answers a
1-NN exact query on a 100 GB dataset in 15 s, which is above the limit for
keeping the user’s attention (i.e., 10 s), let alone for supporting interactivity
in the analysis process (i.e., 100 ms) [26]. The in-MEmory data SerieS Index

76 T. Palpanas

(MESSI) [59] is based on ParIS+, and is the first parallel index designed for
memory-resident datasets. MESSI effectively uses multi-core and multi-socket
architectures in order to concurrently execute the computations needed for both
index construction and query answering, and it exploits SIMD. Since MESSI
copes with in-memory data series, no CPU cost can be hidden under I/O, and
required more careful design choices and coordination of the parallel workers
when accessing the required data structures, in order to improve its performance.
This led to the development of a more subtle design for the construction of
the index and on the development of new algorithms for answering similarity
search queries on this index. The results show a further ∼4x speedup in index
creation time, in comparison to an in-memory version of ParIS+. Furthermore,
MESSI answers exact 1-NN queries on 100 GB datasets 6-11x faster than ParIS+,
achieving for the first time interactive exact query answering times, at ∼50 ms.

In order to exploit parallelism across compute nodes, the Distributed Par-
titioned iSAX (DPiSAX) [42,74,75] index was developed. DPiSAX is based on
iSAX2+, and was designed to operate on top of Spark. DPiSAX uses a sampling
phase that allows to balance the partitions of data series across the compute
nodes (according to their iSAX representations), which is necessary for efficient
query processing. DPiSAX gracefully scales to billions of time series, and a par-
allel query processing strategy that, given a batch of queries, efficiently exploits
the index. The experiments show that DPiSAX can build its index on 4 billion
data series in less than 5 h (and one order of magnitude faster than iSAX2+).
Also, DPiSAX processes 10 millions 10-NN approximate queries on a 1 billion
data series collection in 140 s.

The DPiSAX solution is complementary to the ParIS+ and MESSI solutions,
and they could be combined in order to exploit both parallelism and distribution.

3.5 Variable-Length: ULISSE

Despite the fact that data series indexes enable fast similarity search, all existing
indexes can only answer queries of a single length (fixed at index construction
time), which is a severe limitation. The ULtra compact Index for variable-length
Similarity SEarch (ULISSE) [45,46] is the first, single data series index structure
designed for answering similarity search queries of variable length. ULISSE intro-
duces a novel envelope representation that effectively and succinctly summarizes
multiple sequences of different lengths. These envelopes are then used to build
a tree index that resembles to iSAX2+. ULISSE supports both approximate
and exact similarity search, combining disk based index visits with in-memory
sequential scans, inspired by ADS+. ULISSE supports non Z-normalized and Z-
normalized sequences, and can be used with no changes with both Euclidean Dis-
tance and Dynamic Time Warping, for answering k-NN and ε-range queries [47].

The experimental results show that ULISSE is several times, and up to orders
of magnitude more efficient in terms of both space and time cost, when compared
to competing approaches (i.e., UCR Suite, MASS, and CMRI) [45,47].

Evolution of a Data Series Index 77

3.6 Sortable Summarizations: Coconut-Trie/Tree/LSM

We observe that a shortcoming of the indexes presented earlier is that their
design is based on summarizations [14,44] (used as keys by the index) that are
unsortable. Thus, sorting based on these summarizations would place together
data series that are similar in terms of their beginning, i.e., the first segment,
yet arbitrarily far in terms of the rest of the segments. Hence, existing summa-
rizations cannot be sorted while keeping similar data series next to each other in
the sorted order. This leads to top-down index building (resulting in many small
random disk I/Os and non-contiguous nodes), and prefix-based node-splitting
(resulting in low fill-factors for leaf nodes), which negatively affect time perfor-
mance and disk space occupancy.

The Compact and Contiguous Sequence Infrastructure (Coconut) index
[38,39] was developed in order to address these problems, by transforming the
iSAX summarization into a sortable summarization. The core idea is interweav-
ing the bits that represent the different segments, such that the more significant
bits across all segments precede all less significant bits. As a result, Coconut is
the first technique for sorting data series based on their summarizations that can
lead to bottom-up creation of balanced indexes: the series are positioned on a
z-order curve [52], in a way that similar data series are close to each other. Index-
ing based on sortable summarizations has the same ability as existing summariza-
tions to prune the search space. Coconut supports bulk-loading techniques and
log-structured updates to enable maintaining a contiguous index. This eliminates
random I/O during construction, updating and querying. Furthermore, Coconut
is able to split data series across nodes by sorting them and using the median
value as a splitting point, leading to data series being packed more densely into
leaf nodes (i.e., at least half full). We studied Coconut-Trie and Coconut-Tree,
which split data series across nodes based on common prefixes and median values,
respectively. Coconut-Trie, which is similar to an ADS+ index in structure, dom-
inates the state-of-the-art in terms of query speed because it creates contiguous
leaves. Coconut-Tree, based on a B+-Tree index, dominates Coconut-Trie and
the state-of-the-art in terms of index construction speed, query (using SIMS)
speed and storage overheads because it creates a contiguous, balanced index
that is also densely populated. Finally, Coconut-LSM [39,40], that is based on
an LSM tree index, supports efficient log-structured updates and variable-size
window queries over different windows of the data based on recency.

Overall, across a wide range of workloads and datasets, Coconut-Tree
improves both construction speed and storage overheads by one order of magni-
tude and query speed by two orders of magnitude relative to DSTree and ADS.
Coconut-LSM supports updates without degrading query throughput, and is
able to narrow the search scope temporally. This improves query throughput by
a further 2–3 orders of magnitudes in our experiments for queries over recent
data, thus, making Coconut-LSM an efficient solution for streaming data series.

78 T. Palpanas

4 Discussion and Open Research Directions

Despite the strong increasing interest in data series management systems [83],
existing approaches (e.g., based on DBMSs, Column Stores, TSMSs, or Array
Databases) do not provide a viable solution, since they have not been designed for
managing and processing sequence data as first class citizens: they do not offer a
suitable storage model, declarative query language, or optimization mechanism.
Moreover, they lack auxiliary data structures (such as indexes), that can support
a variety of sequence query workloads in an efficient manner. For example, they
do not have native support for similarity search [31,53], and therefore, cannot
efficiently support complex analytics on very large data series collections.

Current solutions for processing data series collections, in various domains,
are mostly ad hoc (and hardly scalable), requiring huge investments in time and
effort, and duplication of effort across different teams. For this reason new data
management technologies should be developed; albeit ones that will meet their
requirements for processing and analyzing very large sequence collections.

An interesting and challenging research direction is to design and develop
a general purpose Sequence Management System, able to cope with big data
series (very large and continuously growing collections of data series with diverse
characteristics, which may have uncertainty in their values), by transparently
optimizing query execution, and taking advantage of new management and query
answering techniques, as well as modern hardware [53,55]. Just like databases
abstracted the relational data management problem and offered a black box
solution that is now omnipresent, the proposed system will enable users and
analysts that are not experts in data series management to tap in the goldmine
of the massive and ever-growing data series collections they (already) have.

Our preliminary results, including the first data series similarity search
benchmark [81,82], and indexing algorithms that can be efficiently bulk-loaded
[12,13,38–40], adapt to the query workload [78–80], support similarity queries of
varying length [45,46,48,49], take into account uncertainty [19,20], and exploit
multi-cores [58–60] and distributed platforms (e.g., Apache Spark) [42,74,75],
are promising first steps. Nevertheless, much progress is still needed along the
directions mentioned above. This is especially true for query optimization, since
earlier work has shown that different techniques and algorithms perform better
for different query workloads and data and hardware characteristics [23]. Trying
to further optimize query execution times, techniques that provide approximate
answers, and in particular answers with (deterministic, or probabilistic) guar-
antees on the associated error bounds [23,24], can be very useful. The same is
true for techniques that provide progressive answers [28], which can also lead to
significant speedup, while guaranteeing the desired levels of accuracy.

It would also be interesting to develop an index that combines all (or most
of) the features mentioned earlier, namely, support for progressive exact and
approximate queries of variable length, running on modern hardware in parallel
and distributed environments. Given the way that these index solutions have
been developed, i.e., by building on top of one another, combining the various
features in a single solution seems feasible.

Evolution of a Data Series Index 79

Note that, even though the indexes we presented have been developed for
data series, they are equally applicable to and extremely efficient in the case of
general high-dimensional vectors [23,24]. This opens up several exciting applica-
tion opportunities, including in deep learning analysis pipelines, where we often
need to perform similarity search in high-dimensional vector embeddings.

5 Conclusions

In this work, we discussed the evolution of the iSAX family of indexes, which rep-
resent the current state-of-the-art in several variations of the problem of indexing
for similarity search in very large data series collections. We reviewed the basic
design decisions behind these indexes, and contrasted their strong points. The
presentation (for the first time together) of all these indexes contributes to the
better understanding of which particular problem each one solves, how their
features could be combined, and what the opportunities for future work are.

Acknowledgements. I would like to thank my collaborators (in alphabetical order):
R. Akbarinia, H. Benbrahim, A. Bezerianos, A. Camerra, M. Dallachiesa, N. Dayan,
K. Echihabi, A. Gogolou, P. Fatourou, J. Gehrke, S. Idreos, I. Ilyas, E. Keogh,
B. Kolev, H. Kondylakis, O. Levchenko, M. Linardi, Y. Lou, F. Masseglia, K. Mirylenka,
B. Nushi, B. Peng, T. Rakthanmanon, D. Shasha, J. Shieh, T. Tsandilas, P. Valduriez,
and D.-E. Yagoubi. Special thanks go to K. Zoumpatianos.

References

1. ADHD-200 (2011). http://fcon 1000.projects.nitrc.org/indi/adhd200/
2. Sloan Digital Sky Survey (2015). https://www.sdss3.org/dr10/data access/

volume.php
3. Agrawal, R., Faloutsos, C., Swami, A.: Efficient similarity search in sequence

databases. In: Lomet, D.B. (ed.) FODO 1993. LNCS, vol. 730, pp. 69–84. Springer,
Heidelberg (1993). https://doi.org/10.1007/3-540-57301-1 5

4. An, N., Kothuri, R.K.V., Ravada, S.: Improving performance with bulk-inserts in
Oracle R-trees. In: VLDB, pp. 948–951. VLDB Endowment (2003)

5. Assent, I., Krieger, R., Afschari, F., Seidl, T.: The TS-tree: efficient time series
search and retrieval. In: EDBT (2008)

6. Aßfalg, J., Kriegel, H.-P., Kröger, P., Kunath, P., Pryakhin, A., Renz, M.: Similar-
ity search on time series based on threshold queries. In: Ioannidis, Y., et al. (eds.)
EDBT 2006. LNCS, vol. 3896, pp. 276–294. Springer, Heidelberg (2006). https://
doi.org/10.1007/11687238 19

7. Bagnall, A.J., Cole, R.L., Palpanas, T., Zoumpatianos, K.: Data series management
(Dagstuhl seminar 19282). Dagstuhl Rep. 9(7), 24–39 (2019)

8. Bentley, J.L.: Multidimensional binary search trees used for associative searching.
Commun. ACM 18(9), 509–517 (1975)

9. Berchtold, S., Keim, D.A., Kriegel, H.-P.: The X-tree: an index structure for high-
dimensional data. In: VLDB, pp. 28–39 (1996)

10. Berndt, D.J, Clifford, J.: Using dynamic time warping to find patterns in time
series. In: AAAIWS, pp. 359–370 (1994)

https://www.sdss3.org/dr10/data_access/volume.php
https://www.sdss3.org/dr10/data_access/volume.php
https://doi.org/10.1007/3-540-57301-1_5
https://doi.org/10.1007/11687238_19
https://doi.org/10.1007/11687238_19

80 T. Palpanas

11. Bu, Y., Leung, T.W., Fu, A.W.C., Keogh, E., Pei, J., Meshkin, S.: WAT: finding
top-k discords in time series database. In: SDM, pp. 449–454 (2007)

12. Camerra, A., Palpanas, T., Shieh, J., Keogh, E.: iSAX 2.0: indexing and mining
one billion time series. In: ICDM (2010)

13. Camerra, A., Shieh, J., Palpanas, T., Rakthanmanon, T., Keogh, E.J.: Beyond
one billion time series: indexing and mining very large time series collections with
iSAX2+. KAIS 39(1), 123–151 (2014). https://doi.org/10.1007/s10115-012-0606-6

14. Chakrabarti, K., Keogh, E., Mehrotra, S.: Locally adaptive dimensionality reduc-
tion for indexing large time series databases. ACM Trans. Database Syst. (TODS)
27(2), 188–228 (2002)

15. Chakrabarti, K., Keogh, E., Mehrotra, S., Pazzani, M.: Locally adaptive dimen-
sionality reduction for indexing large time series databases. In: SIGMOD (2002)

16. Chan, K.-P., Fu, A.-C.: Efficient time series matching by wavelets. In: ICDE (1999)
17. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Com-

put. Surv. 41(3), 1–58 (2009)
18. Chen, Y., Nascimento, M.A., Ooi, B.C., Tung, A.K.H.: SpADe: on shape-based

pattern detection in streaming time series. In: ICDE (2007)
19. Dallachiesa, M., Nushi, B., Mirylenka, K., Palpanas, T.: Uncertain time-series sim-

ilarity: return to the basics. PVLDB 5(11), 1662–1673 (2012)
20. Dallachiesa, M., Palpanas, T., Ilyas, I.F.: Top-k nearest neighbor search in uncer-

tain data series. PVLDB 8(1), 13–24 (2014)
21. Das, G., Gunopulos, D., Mannila, H.: Finding similar time series. In: Komorowski,

J., Zytkow, J. (eds.) PKDD 1997. LNCS, vol. 1263, pp. 88–100. Springer,
Heidelberg (1997). https://doi.org/10.1007/3-540-63223-9 109

22. Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., Keogh, E.: Querying and
mining of time series data: experimental comparison of representations and dis-
tance measures. In: PVLDB (2008)

23. Echihabi, K., Zoumpatianos, K., Palpanas, T., Benbrahim, H.: The Lernaean
Hydra of data series similarity search: an experimental evaluation of the state
of the art. PVLDB 12(2), 112–127 (2018)

24. Echihabi, K., Zoumpatianos, K., Palpanas, T., Benbrahim, H.: Return of the Ler-
naean Hydra: experimental evaluation of data series approximate similarity search.
PVLDB 13, 403–420 (2019)

25. Soisalon-Soininen, E., Widmayer, P.: Single and bulk updates in stratified trees:
an amortized andworst-case analysis. In: Klein, R., Six, H.-W., Wegner, L.
(eds.) Computer Science in Perspective. LNCS, vol. 2598, pp. 278–292. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-36477-3 21

26. Fekete, J.-D., Primet, R.: Progressive analytics: a computation paradigm for
exploratory data analysis. CoRR (2016)

27. Gogolou, A., Tsandilas, T., Palpanas, T., Bezerianos, A.: Comparing similarity
perception in time series visualizations. IEEE TVCS 25(1), 523–533 (2019)

28. Gogolou, A., Tsandilas, T., Palpanas, T., Bezerianos, A.: Progressive similarity
search on time series data. In: Workshops of the EDBT/ICDT (2019)

29. Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: SIG-
MOD (1984)

30. Huijse, P., Estévez, P.A., Protopapas, P., Principe, J.C., Zegers, P.: Computa-
tional intelligence challenges and applications on large-scale astronomical time
series databases. IEEE Comput. Int. Mag. 9(3), 27–39 (2014)

31. Jensen, S.K., Pedersen, T.B., Thomsen, C.: Time series management systems: a
survey. IEEE Trans. Knowl. Data Eng. 29(11), 2581–2600 (2017)

https://doi.org/10.1007/s10115-012-0606-6
https://doi.org/10.1007/3-540-63223-9_109
https://doi.org/10.1007/3-540-36477-3_21

Evolution of a Data Series Index 81

32. Seeger, B., Van den Bercken, J.: An evaluation of generic bulk loading techniques.
In: VLDB, pp. 461–470 (2001)

33. Widmayer, P., Van den Bercken, J., Seeger, B.: A generic approach to bulk loading
multidimensional index structures. In: VLDB (1997)

34. Kashino, K., Smith, G., Murase, H.: Time-series active search for quick retrieval
of audio and video. In: ICASSP (1999)

35. Kashyap, S., Karras, P.: Scalable KNN search on vertically stored time series. In:
KDD (2011)

36. Keogh, E., Chakrabarti, K., Pazzani, M., Mehrotra, S.: Dimensionality reduction
for fast similarity search in large time series databases. KAIS 3(3), 263–286 (2000).
https://doi.org/10.1007/PL00011669

37. Keogh, E.J., Palpanas, T., Zordan, V.B., Gunopulos, D., Cardle, M.: Indexing large
human-motion databases. In: VLDB, pp. 780–791 (2004)

38. Kondylakis, H., Dayan, N., Zoumpatianos, K., Palpanas, T.: Coconut: a scalable
bottom-up approach for building data series indexes. In: PVLDB (2018)

39. Kondylakis, H., Dayan, N., Zoumpatianos, K., Palpanas, T.: Coconut palm: static
and streaming data series exploration now in your palm. In: SIGMOD, pp. 1941–
1944 (2019)

40. Kondylakis, H., Dayan, N., Zoumpatianos, K., Palpanas, T.: Coconut: sortable
summarizations for scalable indexes over static and streaming data series. VLDBJ
28, 847–869 (2019). https://doi.org/10.1007/s00778-019-00573-w

41. Arge, L., Hinrichs, K., Vahrenhold, J., et al.: Efficient bulk operations on dynamic
R-trees. Algorithmica 33(1), 104–128 (2002). https://doi.org/10.1007/s00453-001-
0107-6

42. Levchenko, O., et al.: Distributed algorithms to find similar time series. In:
ECML/PKDD (2019)

43. Li, C.-S., Yu, P., Castelli, V.: HierarchyScan: a hierarchical similarity search algo-
rithm for databases of long sequences. In: ICDE (1996)

44. Lin, J., Keogh, E., Lonardi, S., Chiu, B.: A symbolic representation of time series,
with implications for streaming algorithms. In: DMKD (2003)

45. Linardi, M., Palpanas, T.: Scalable, variable-length similarity search in data series:
the ULISSE approach. PVLDB 11(13), 2236–2248 (2018)

46. Linardi, M., Palpanas, T.: ULISSE: ULtra compact index for variable-length sim-
ilarity SEarch in data series. In: ICDE (2018)

47. Linardi, M., Palpanas, T.: Scalable data series subsequence matching with ULISSE.
Technical Report (2020)

48. Linardi, M., Zhu, Y., Palpanas, T., Keogh, E.J.: Matrix profile X: VALMOD -
scalable discovery of variable-length motifs in data series (2018)

49. Linardi, M., Zhu, Y., Palpanas, T., Keogh, E.J.: VALMOD: a suite for easy and
exact detection of variable length motifs in data series. In: SIGMOD (2018)

50. Mirylenka, K., Dallachiesa, M., Palpanas, T.: Correlation-aware distance measures
for data series. In: EDBT, pp. 502–505 (2017)

51. Mirylenka, K., Dallachiesa, M., Palpanas, T.: Data series similarity using
correlation-aware measures. In: SSDBM (2017)

52. Morton, G.M.: A Computer Oriented Geodetic Data Base and a New Technique
in File Sequencing. International Business Machines Company, Ottawa (1966)

53. Palpanas, T.: Data series management: the road to big sequence analytics. SIG-
MOD Rec. 44, 47–52 (2015)

https://doi.org/10.1007/PL00011669
https://doi.org/10.1007/s00778-019-00573-w
https://doi.org/10.1007/s00453-001-0107-6
https://doi.org/10.1007/s00453-001-0107-6

82 T. Palpanas

54. Palpanas, T.: Big sequence management: a glimpse of the past, the present, and the
future. In: Freivalds, R.M., Engels, G., Catania, B. (eds.) SOFSEM 2016. LNCS,
vol. 9587, pp. 63–80. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49192-8 6

55. Palpanas, T.: The parallel and distributed future of data series mining. In: High
Performance Computing & Simulation (HPCS) (2017)

56. Palpanas, T., Beckmann, V.: Report on the first and second interdisciplinary time
series analysis workshop (ITISA). ACM SIGMOD Rec. 48(3), 36–40 (2019)

57. Palpanas, T., Vlachos, M., Keogh, E.J., Gunopulos, D.: Streaming time series
summarization using user-defined amnesic functions. IEEE Trans. Knowl. Data
Eng. 20(7), 992–1006 (2008)

58. Peng, B., Fatourou, P., Palpanas, T.: Paris: the next destination for fast data series
indexing and query answering. In: IEEE BigData, pp. 791–800 (2018)

59. Peng, B., Fatourou, P., Palpanas, T.: MESSI: in-memory data series indexing. In:
ICDE (2020)

60. Peng, B., Fatourou, P., Palpanas, T.: Paris+: data series indexing on multi-core
architectures. In: TKDE (2020)

61. Rafiei, D.: On similarity-based queries for time series data. In: ICDE (1999)
62. Rafiei, D., Mendelzon, A.: Similarity-based queries for time series data. In: SIG-

MOD (1997)
63. Rakthanmanon, T.: Searching and mining trillions of time series subsequences

under dynamic time warping. In: KDD (2012)
64. Raza, U., Camerra, A., Murphy, A.L., Palpanas, T., Picco, G.P.: Practical data

prediction for real-world wireless sensor networks. TKDE 27(8), 2231–2244 (2015)
65. Choubey, R., Chen, L., Rundensteiner, E.A.: GBI: a generalized R-tree bulk-

insertion strategy. In: Güting, R.H., Papadias, D., Lochovsky, F. (eds.) SSD 1999.
LNCS, vol. 1651, pp. 91–108. Springer, Heidelberg (1999). https://doi.org/10.1007/
3-540-48482-5 8

66. Schäfer, P., Högqvist, M.: SFA: a symbolic fourier approximation and index for
similarity search in high dimensional datasets. In: EDBT (2012)

67. Shasha, D.: Tuning time series queries in finance: case studies and recommenda-
tions. IEEE Data Eng. Bull. 22(2), 40–46 (1999)

68. Shieh, J., Keogh, E.: iSAX: indexing and mining terabyte sized time series. In:
SIGKDD, pp. 623–631 (2008)

69. Shieh, J., Keogh, E.: iSAX: disk-aware mining and indexing of massive time series
datasets. DMKD 19(1), 24–57 (2009). https://doi.org/10.1007/s10618-009-0125-6

70. Shieh, J., Keogh, E.J.: iSAX: indexing and mining terabyte sized time series. In:
KDD, pp. 623–631 (2008)

71. Wang, X., Mueen, A., Ding, H., Trajcevski, G., Scheuermann, P., Keogh, E.: Exper-
imental comparison of representation methods and distance measures for time
series data. Data Min. Knowl. Discov. 26(2), 275–309 (2013)

72. Wang, Y., Wang, P., Pei, J., Wang, W., Huang, S.: A data-adaptive and dynamic
segmentation index for whole matching on time series. PVLDB 6(10), 793–804
(2013)

73. Liao, T.W.: Clustering of time series data - a survey. Pattern Recogn. 38(11),
1857–1874 (2005)

74. Yagoubi, D.-E., Akbarinia, R., Masseglia, F., Palpanas, T.: DPiSAX: massively
distributed partitioned iSAX. In: ICDM (2017)

75. Yagoubi, D.-E., Akbarinia, R., Masseglia, F., Palpanas, T.: Massively distributed
time series indexing and querying. TKDE 32(1), 108–120 (2020)

https://doi.org/10.1007/978-3-662-49192-8_6
https://doi.org/10.1007/978-3-662-49192-8_6
https://doi.org/10.1007/3-540-48482-5_8
https://doi.org/10.1007/3-540-48482-5_8
https://doi.org/10.1007/s10618-009-0125-6

Evolution of a Data Series Index 83

76. Ye, L., Keogh, E.J.: Time series shapelets: a new primitive for data mining. In:
KDD (2009)

77. Yi, B., Faloutsos, C.: Fast time sequence indexing for arbitrary Lp norms. In:
VLDB (2000)

78. Zoumpatianos, K., Idreos, S., Palpanas, T.: Indexing for interactive exploration of
big data series. In: SIGMOD (2014)

79. Zoumpatianos, K., Idreos, S., Palpanas, T.: RINSE: interactive data series explo-
ration with ADS+. PVLDB 8(12), 1912–1923 (2015)

80. Zoumpatianos, K., Idreos, S., Palpanas, T.: ADS: the adaptive data series index.
VLDB J. 25, 843–866 (2016). https://doi.org/10.1007/s00778-016-0442-5

81. Zoumpatianos, K., Lou, Y., Ileana, I., Palpanas, T., Gehrke, J.: Generating data
series query workloads. VLDB J. 27(6), 823–846 (2018). https://doi.org/10.1007/
s00778-018-0513-x

82. Zoumpatianos, K., Lou, Y., Palpanas, T., Gehrke, J.: Query workloads for data
series indexes. In: KDD (2015)

83. Zoumpatianos, K., Palpanas, T.: Data series management: fulfilling the need for
big sequence analytics. In: ICDE (2018)

https://doi.org/10.1007/s00778-016-0442-5
https://doi.org/10.1007/s00778-018-0513-x
https://doi.org/10.1007/s00778-018-0513-x

	Evolution of a Data Series Index
	1 Introduction
	2 Background and Preliminaries
	3 The iSAX Family of Indexes
	3.1 The iSAX Summarization and Basic Index
	3.2 Bulk-Loading: iSAX 2.0 and iSAX2+
	3.3 Adaptive Indexing: ADS, ADS+, ADS-Full
	3.4 Parallel and Distributed: ParIS, ParIS+, MESSI, DPiSAX
	3.5 Variable-Length: ULISSE
	3.6 Sortable Summarizations: Coconut-Trie/Tree/LSM

	4 Discussion and Open Research Directions
	5 Conclusions
	References

