
Giorgos Flouris · Dominique Laurent ·
Dimitris Plexousakis · Nicolas Spyratos ·
Yuzuru Tanaka (Eds.)

13th International Workshop, ISIP 2019
Heraklion, Greece, May 9–10, 2019
Revised Selected Papers

Information Search,
Integration,
and Personalization

Communications in Computer and Information Science 1197

Communications
in Computer and Information Science 1197

Commenced Publication in 2007
Founding and Former Series Editors:
Phoebe Chen, Alfredo Cuzzocrea, Xiaoyong Du, Orhun Kara, Ting Liu,
Krishna M. Sivalingam, Dominik Ślęzak, Takashi Washio, Xiaokang Yang,
and Junsong Yuan

Editorial Board Members

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Ashish Ghosh
Indian Statistical Institute, Kolkata, India

Igor Kotenko
St. Petersburg Institute for Informatics and Automation of the Russian
Academy of Sciences, St. Petersburg, Russia

Lizhu Zhou
Tsinghua University, Beijing, China

https://orcid.org/0000-0002-0044-503X
https://orcid.org/0000-0002-5961-6606
https://orcid.org/0000-0001-6859-7120

More information about this series at http://www.springer.com/series/7899

http://www.springer.com/series/7899

Giorgos Flouris • Dominique Laurent •

Dimitris Plexousakis • Nicolas Spyratos •

Yuzuru Tanaka (Eds.)

Information Search,
Integration,
and Personalization
13th International Workshop, ISIP 2019
Heraklion, Greece, May 9–10, 2019
Revised Selected Papers

123

Editors
Giorgos Flouris
Foundation for Research
and Technology Hellas
Heraklion, Greece

Dominique Laurent
University of Cergy-Pontoise
Cergy Pontoise, France

Dimitris Plexousakis
Foundation for Research
and Technology Hellas
Heraklion, Greece

Nicolas Spyratos
University of Paris-Sud
Orsay, France

Yuzuru Tanaka
Hokkaido University
Sapporo, Japan

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-030-44899-8 ISBN 978-3-030-44900-1 (eBook)
https://doi.org/10.1007/978-3-030-44900-1

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-8937-4118
https://orcid.org/0000-0002-7264-9576
https://doi.org/10.1007/978-3-030-44900-1

Preface

This book contains the selected research papers presented at ISIP 2019, the 13th
International Workshop on Information Search, Integration and Personalization, during
May 9–10, 2019, at FORTH Institute of Computer Science, Heraklion, Greece. Two
keynote talks were given during the workshop:

– “Towards diversity-aware, fair and unbiased data management,” by Professor
Evaggelia Pitoura, University of Ioannina, Greece.

– “Visual analytics of multiple media and real world Big Data,” by Professor Masashi
Toyoda, University of Tokyo, Japan.

There were 24 presentations of scientific papers, of which 16 were submitted to the
post-workshop peer review. The International Program Committee selected 11 papers
to be included in the proceedings.

The themes of the presented and/or submitted papers reflected today’s diversity of
research topics as well as the rapid development of interdisciplinary research. With
increasingly sophisticated research in science and technology, there is a growing need
for interdisciplinary and international availability as well as distribution and exchange
of the latest research results in organic forms, including not only research papers and
multimedia documents, but also various tools developed for measurement, analysis,
inference, design, planning, simulation, and production as well as the related large data
sets. Similar needs are also growing for the interdisciplinary and international avail-
ability as well as distribution and exchange of ideas of works among artists, musicians,
designers, architects, directors, and producers. These contents, including multimedia
documents, application tools, and services are being accumulated on the Web, as well
as in local and global databases, in a remarkable speed that we have never experienced
with other kinds of publishing media. Large amounts of content are now already on the
Web, waiting for their advanced personal and/or public reuse. We need new theories
and technologies for the advanced information search, integration through interoper-
ation, and personalization of Web content as well as database content.

The ISIP 2019 workshop was organized to offer a forum for presenting original
work and stimulating discussions and exchanges of ideas around these themes,
focusing on the following topics.

– Data Analytics and Visualization
– Data mining
– Linked/Open Data
– Languages and Query Answering
– Data Integration, Data Warehouses, and Data Lakes
– Gamification and Recommendation
– Machine Learning

The selected papers contained in this book are grouped into four major topics,
namely Linked Data, Data Analytics, Data Integration, and Data Mining Applications;
they span major current topics in Information Management research.

Historical Note

ISIP started as a series of Franco-Japanese workshops in 2003, and its first edition was
placed under the auspices of the French embassy in Tokyo, which provided the
financial support along with JSPS (Japanese Society for the Promotion of Science). Up
until 2012, the workshops have alternated between Japan and France, and attracted
increasing interest from both countries. Then, motivated by the success of the first
editions of the workshop, participants from countries other than France or Japan vol-
unteered to organize it in their home country. The following shows the history of past
ISIP workshops:

– 2003: 1st ISIP in Sapporo (June 30 – July 2, Meme Media Lab, Hokkaido
University, Japan)

– 2005: 2nd ISIP in Lyon (May 9–11, University Lyon 1, France)
– 2007: 3rd ISIP in Sapporo (June 27–30, Meme Media Laboratory, Hokkaido

University, Japan)
– 2008: 4th ISIP in Paris (October 6–8, Tour Montparnasse, Paris, France)
– 2009: 5th ISIP in Sapporo (July 6–8, Meme Media Laboratory, Hokkaido

University, Japan)
– 2010: 6th ISIP in Lyon (October 11–13, University Lyon 1, France)
– 2012: 7th ISIP in Sapporo (October 11–13, Meme Media Laboratory, Hokkaido

University, Japan)
– 2013: 8th ISIP in Bangkok (September 16–18, Centara Grand & Bangkok Con-

vention Centre CentralWorld Bangkok, Thailand)
– 2014: 9th ISIP in Kuala Lumpur (October 9–10, HELP University, Kuala Lumpur,

Malaysia)
– 2015: 10th ISIP in Grand Forks (October 1–2, University of North Dakota, Grand

Forks, North Dakota, USA)
– 2016: 11th ISIP in Lyon (November 3–4, University Lyon 1, France)
– 2018: 12th ISIP in Kyushu (May 14–15, Kyushu University, Fukuoka, Japan)

Originally, the workshops were intended for a Franco-Japanese audience, with the
occasional invitation of researchers from other countries as keynote speakers. The
proceedings of each workshop were published informally, as a technical report of the
hosting institution. One exception was the 2005 workshop, selected papers of which
were published by the Journal of Intelligent Information Systems in its special issue for
ISIP 2005 (Vol. 31, Number 2, October 2008). The original goal of the ISIP workshop
series was to create close synergies between a selected group of researchers from the
two countries; and indeed, several collaborations, joint publications, joint student
supervisions, and research projects originated from participants of the workshop.

vi Preface

After the first six workshops, the organizers concluded that the workshop series had
reached a mature state with an increasing number of researchers participating every
year. As a result, the organizers decided to open up the workshop to a larger audience
by inviting speakers from over ten countries at ISIP 2012, ISIP 2013, ISIP 2014, as
well as at ISIP 2015. The effort to attract an even larger international audience has led
to organizing the workshop in countries other than France and Japan. This will con-
tinue in the years to come. Especially in these past four years, an extensive effort was
made to include in the Program Committee academics coming from around the globe,
giving the workshop an even more international character.

We would like to express our appreciation to all the staff members of the organizing
institution for the help, kindness, and support before, during, and after the work-
shop. Of course we also would like to cordially thank all speakers and participants of
ISIP 2019 for their intensive discussions and exchange of new ideas. This book is an
outcome of those discussions and exchanged ideas. Our thanks also go to the Program
Committee members whose work has been undoubtedly essential for the selection
of the papers contained in this book.

January 2020 Dimitris Plexousakis
Nicolas Spyratos
Yuzuru Tanaka

Preface vii

Organization

Executive Committee

Co-chairs

Dimitris Plexousakis FORTH-ICS, Greece
Nicolas Spyratos Paris-Sud University, France
Yuzuru Tanaka Hokkaido University, Japan

Program Committee Chairs

Giorgos Flouris FORTH-ICS, Greece
Dominique Laurent University of Cergy-Pontoise, France

Local Organization

Haridimos Kondylakis FORTH-ICS, Greece

Publicity Chair

Ioannis Chrysakis FORTH-ICS, Greece

Program Committee

Antonis Bikakis University College London, UK
Yeow Wei Choong HELP University, Malaysia
Ioannis Chrysakis Ghent University, Belgium, and FORTH-ICS, Greece
Giorgos Flouris FORTH-ICS, Greece
Arnaud Giacometti Université François Rabelais de Tours, France
Mirian Halfeld Ferrari Université d’Orléans, France
Tao-Yuan Jen University of Cergy-Pontoise, France
Haridimos Kondilakis FORTH-ICS, Greece
Dimitris Kotzinos University of Cergy-Pontoise, France
Anne Laurent Université Montpellier, France
Dominique Laurent University of Cergy-Pontoise, France
Yoshihbiro Okada Kyushu University, Japan
Laurent d’Orazio Université de Rennes 1, France
George Papastefanatos Institute for the Management of Information Systems,

Greece
Jean-Marc Petit INSA de Lyon, France
Dimitris Plexousakis FORTH-ICS, Greece
Pascal Poncelet Université Montpellier, France
Lakhdar Sais Université d’Artois, France
Domenico Fabio Savo University of Bergamo, Italy

Nicolas Spyratos Paris-Sud University, France
Kostas Stefanidis University of Tempere, Finland
Yannis Tzitzikas University of Crete and FORTH-ICS, Greece
Dan Vodislav University of Cergy-Pontoise, France
Masaharu Yoshioka Hokkaido University, Japan

x Organization

Contents

Linked Data

Enabling Efficient Question Answering over Hundreds of Linked Datasets. . . 3
Eleftherios Dimitrakis, Konstantinos Sgontzos,
Michalis Mountantonakis, and Yannis Tzitzikas

From Publications to Knowledge Graphs . 18
Panos Constantopoulos and Vayianos Pertsas

Data Analytics

Analytics over RDF Graphs . 37
Maria-Evangelia Papadaki, Yannis Tzitzikas, and Nicolas Spyratos

Incremental Evaluation of Continuous Analytic Queries in HIFUN 53
Petros Zervoudakis, Haridimos Kondylakis, Dimitris Plexousakis,
and Nicolas Spyratos

Evolution of a Data Series Index: The iSAX Family of Data Series Indexes:
iSAX, iSAX2.0, iSAX2+, ADS, ADS+, ADS-Full, ParIS, ParIS+, MESSI,
DPiSAX, ULISSE, Coconut-Trie/Tree, Coconut-LSM 68

Themis Palpanas

Data Integration

Proximity-Based Federation of Smart Objects: Its Application Framework
for Complex Secure Federation Scenarios. 87

Yuzuru Tanaka

4-Valued Semantics Under the OWA: A Deductive Database Approach. 101
Dominique Laurent

Query Driven Entity Resolution in Data Lakes . 117
Giorgos Alexiou and George Papastefanatos

Data Mining Applications

A Hybrid Recommender System for Steam Games 133
Jin Gong, Yizhou Ye, and Kostas Stefanidis

Using Twitter Streams for Opinion Mining: A Case Study on Airport Noise . . . 145
Iheb Meddeb, Catherine Lavandier, and Dimitris Kotzinos

A Platform Development for Multilingual Law Collection and
Comparative-Law Support Services: ASEAN Laws as a Case Study 161

Vee Satayamas, Asanee Kawtrakul, and Takahiro Yamakoshi

Author Index . 175

xii Contents

Linked Data

Enabling Efficient Question Answering
over Hundreds of Linked Datasets

Eleftherios Dimitrakis1,2, Konstantinos Sgontzos1,2,
Michalis Mountantonakis1,2(B), and Yannis Tzitzikas1,2

1 Institute of Computer Science, FORTH, Heraklion, Greece
{dimitrakis,sgontzos,mountant,tzitzik}@ics.forth.gr

2 Computer Science Department, University of Crete, Heraklion, Greece

Abstract. In this paper we introduce an approach, called LODQA, for
open domain Question Answering over Linked Open Data. We confine
ourselves to three kinds of questions: factoid, confirmation, and defini-
tion questions. By using LODQA it is feasible to answer questions over 400
millions of entities of any domain without using any training data, since
we exploit simultaneously 400 Linked datasets. In particular, we exploit
the services of LODsyndesis, a suite of services (based on semantics-aware
indexes) which supports cross-dataset reasoning over hundreds of Linked
datasets and 2 billion triples. The proposed Question Answering process
follows an information extraction approach and comprises several steps
including question cleaning, heuristic based question type identification,
entity recognition, linking and disambiguation using Linked Data-based
methods and pure NLP methods (specifically DBpedia Spotlight and
Stanford CoreNLP), WordNet-based question expansion for tackling the
lexical gap (between the input question and the underlying sources),
and triple scoring for producing the final answer. We discuss the benefits
of this approach in terms of answerable questions and answer verifica-
tion, and we investigate, through experimental results, how the afore-
mentioned steps of the process affect the effectiveness and the efficiency
of question answering.

Keywords: Questions Answering · Linked data · Multiple datasets

1 Introduction

Although the first QA (Question Answering) systems were created decades
ago (back in 1960s), the problem is still open since the existing techniques
have several limitations (for more see [24]), therefore QA is subject of contin-
uous research. There is a wide range of techniques for QA ranging from sim-
ple manually-written regular expression-based methods, to methods relying on
deep learning, e.g. see the survey papers [16,21,28], and there are several col-
lections for evaluating QA systems (see [8]). Recently we observe a wide adop-
tion of QA-based personal assistants (including Apple’s Siri, Google Assistant,
Amazon’s Alexa) that are capable of answering a wide range of questions, as
c© Springer Nature Switzerland AG 2020
G. Flouris et al. (Eds.): ISIP 2019, CCIS 1197, pp. 3–17, 2020.
https://doi.org/10.1007/978-3-030-44900-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44900-1_1&domain=pdf
https://doi.org/10.1007/978-3-030-44900-1_1

4 E. Dimitrakis et al.

well as an increasing interest from the database community for natural language
interfaces to databases [2,26]. Indeed natural language interfaces can comple-
ment the existing methods for query formulation by casual users, i.e. faceted
search [27], as evidenced by prototypes supporting spoken dialogue interfaces
for information navigation [20].

Open domain (as opposed to closed domain) Question Answering (QA) is
a challenging task, since it requires to tackle a number of issues: (i) the issue
of data distribution, i.e., several datasets, that are usually distributed in differ-
ent places, should be exploited for being able to support open domain question
answering, (ii) the difficulty of word sense disambiguation, because the asso-
ciated vocabulary is not restricted to a single domain, and (iii) the difficulty
(or inability) to apply computationally expensive techniques, such as deep NLP
analysis, due to the huge size of the underlying sources. In this paper we focus
on Open Domain Question Answering over Linked Data. We introduce LODQA, a
Linked Data-based Question Answering system that exploits LODsyndesis [17], a
recently launched suite of services over hundreds of LOD Datasets (that contains
two billion triples about 400 million entities). We selected to use LODsyndesis,
because if offers two distinctive features for the QA process, which are not sup-
ported by a single source: (a) it is feasible to verify an answer to a given question
from several sources, and (b) the number of questions that can be answered is
highly increased, because datasets usually contain complementary information
for the same topics and entities. Essentially, we try to find the best triple(s)
for answering the incoming question; we do not carry out any other information
integration techniques (like those surveyed in [19]).

Regarding (a), suppose that the given question is “What is the population
of Heraklion?”, and the system retrieves two candidate triples, i.e., {(Heraklion,
population, 140,730), (Heraklion, population, 135,200)}. The two triples contain
a different value for the population of that city, however, suppose that the first
triple can be verified from four datasets (say D1,D2,D3,D4), whereas the second
one only from a single dataset (say D5). In this example, LODQA will return as
correct answer the first triple, because it can be verified from a larger number
of datasets, thereby, we have more evidence about its correctness.

Regarding (b), suppose that LODQA receives the two following questions for
an other domain (say marine domain), “Is Yellowfin Tuna a predator of Atlantic
pomfret?” and “Which is the genus of Yellowfin Tuna?”. These two questions are
addressed to the same entity i.e. “Yellowfin Tuna”, however there is not a single
dataset where we can find the desired information for answering both questions.
Indeed, LODQA is able to answer the first question by using data from Ecoscope
dataset, whereas the second question is answerable by a triple that occurs in
DBpedia knowledge base.

Concerning the Question Answering process followed from LODQA, it is an
information extraction approach, as opposed to the semantic parsing approach,
that consists of multiple steps. In particular, LODQA performs question cleaning
(e.g., removal of stopwords) and it identifies the question type (e.g., factoid)
by exploiting heuristics. Moreover, it recognizes the entities of the question and

Enabling Efficient Question Answering over Hundreds of Linked Datasets 5

it performs linking and disambiguation, by using both pure NLP methods and
Linked Data-based methods, specifically Stanford CoreNLP [9,13] and DBpedia
Spotlight [14]. Furthermore, it uses WordNet [15] for tackling the possible lexical
gap between a given question and the answer which can be found in the under-
lying sources. Finally, it receives the candidate triples from LODsyndesis, and
it scores each candidate triple for producing the final answer. Concerning evalu-
ation, we discuss the benefits of this approach in terms of answerable questions
and answer verification, and we investigate through experimental results, how
the aforementioned steps of the process affect the effectiveness and the efficiency
of question answering.

The rest of this paper is organized as follows: Sect. 2 discusses related work,
Sect. 3 introduces the proposed approach, Sect. 4 reports comparative experimen-
tal results, whereas Sect. 5 describes an application of the proposed approach.
Finally, Sect. 6 concludes the paper and discusses directions for future research
and work.

2 Related Work

Knowledge Base Question Answering (KBQA) systems can be divided in two
different categories: (a) Semantic Parsing (SP) [4,10,23,30,31], and (b) Infor-
mation Extraction (IE) [1,3,7,22,29].

Concerning SP approaches, they focus on question understanding, i.e., they
convert sentences into their semantic representation and they usually generate
a query (e.g., a SPARQL query), for retrieving the answer. Such approaches can
answer compositional questions by using aggregation operators (e.g., argmax,
count), however, they suffer from structure differences between the Knowledge
Base and the input Natural Language question. On the contrary, the objective
of IE approaches is to identify the main entities of the question and to map
the words of the question to the Knowledge base predicates, either by using
pre-defined templates, or automatically generated ones. As a final step, these
approaches exploit the neighborhood (in the knowledge graph) of each matched
entity for producing the final answer. Their disadvantage is that they cannot eas-
ily answer compositional questions, since they cannot represent such operators
[11]. Our work, i.e., LODQA, belongs to IE category.

The most related approaches to LODQA, are predominantly WDAqua [7] and
AMAL [22], and secondarily Aqqu [3,32] and SINA [25]. In contrast to these four
related tools, LODQA exploits the contents of 400 datasets for answering a given
question, whereas the other tools support either a single or a few KBs, therefore,
they cannot verify the answers from several datasets. LODQA follows an informa-
tion extraction approach by exploiting the services and indexes of LODsyndesis,
instead of using a SPARQL translation approach. By using indexes, we can offer
faster question responses comparing to approaches using SPARQL queries, since
their efficiency usually rely on the sources’ servers, whereas SPARQL querying
can be quite expensive for large knowledge bases.

Comparing to WDAqua [7], we take into account both the syntactic form
of the question and the relations of the underlying question words, instead of

6 E. Dimitrakis et al.

exploiting only the semantics of the question words. However, we do not support
multilingual questions. Concerning the differences with AMAL [22], the latter
exploits Wikipedia Disambiguation links and DBpedia lexicons for performing
relation matching, whereas we use services offered by LODsyndesis for taking
into consideration equivalent relationships, and also synonyms through WordNet.
Therefore, we can exploit multiple sources for relation matching task, instead
of using only DBpedia resources. On the contrary, we do not support list and
aggregation questions, which are offered from AMAL [22]. Regarding Aqqu [3],
we exploit two different tools for entity detection, i.e., DBpedia Spotlight and
Stanford CoreNLP, whereas Aqqu [3] uses hand-crafted rules based on POS-tags.
Concerning SINA [25], it performs the data interlinking among the datasets (for a
few number of datasets) at query time (which can be time-consuming), whereas,
we exploit the indexes of LODsyndesis, where the interlinking has already been
done once at indexing time. Finally, comparing to Aqqu [3] and SINA [25], we
do not use any training data for producing the answer.

3 The LODQA Approach

In Sect. 3.1 we present the LODsyndesis services that we exploit, while in
Sect. 3.2, we introduce the proposed QA process.

3.1 LODsyndesis Knowledge Services

We decided to use LODsyndesis, for two tasks: namely Entity Detection and
Answer Extraction, due to the following benefits that cannot be found in a sin-
gle knowledge base: (a) it collects all the available information for millions of
entities from hundreds of datasets, (b) it contains complementary information
from different datasets. Moreover, it is worth mentioning that (c) it can surpass
the problems of non-informative URIs, since it supports cross-dataset reasoning.
The process of indexing of LODsyndesis is illustrated in Fig. 1, i.e., LODsyndesis
uses as input several datasets containing RDF triples (see the lower left side of
Fig. 1), where a triple is a statement of the form subject-predicate-object (s,p,o)
and T is the set of all the triples that exist in the LOD cloud. Moreover, it
uses several equivalence relationships (see the lower right side of Fig. 1), such as
owl:sameAs relationships which denote that two URIs refer to the same entity
(e.g., dbp:Heraklion ≡ test:Heraklion), and owl:equivalentProperty relation-
ships which are used for denoting that two schema elements are equivalent (e.g.,
dbp:population ≡ test:population). LODsyndesis uses as input these equivalence
relationships and computes their transitive and symmetric closure for collecting
all the information for any entity (e.g., see the index for “Heraklion” in the
middle part of Fig. 1).

Concerning benefit (a), it is important for any kind of question to verify
the answer from several sources. Regarding benefit (b), for any type of ques-
tion, two or more datasets can possibly answer different questions, e.g., in Fig. 1,

Enabling Efficient Question Answering over Hundreds of Linked Datasets 7

Fig. 1. The steps of LODsyndesis

one dataset contains a comment about Heraklion, another one about the coun-
try where Heraklion is located in, and so forth. Concerning benefit (c), many
datasets publish non-informative URIs, e.g., in Fig. 1 only Wikidata can answer
the question “Is Knossos located in Heraklion?”, with the corresponding triple
(wdt:Q173527, wdt:P276, wdt:Q160544). LODsyndesis supports cross-dataset
reasoning, i.e., it computes the transitive and symmetric closure of equivalent
relationships (e.g., see the lower right side of Fig. 1) and it stores the equiva-
lent URIs of each URI, thereby, it knows that dbp:Heraklion ≡ wdt:Q160544,
dbp:isLocatedIn ≡ wdt:P276 and wdt:Q173527 ≡ test:Knossos. Therefore, we
can find fast the correct answer, by checking the equivalent URIs of each one.

8 E. Dimitrakis et al.

Fig. 2. Overview of the QA process

LODsyndesis offers several services by exploiting the aforementioned
semantics-aware indexes. Concerning LODQA, it exploits the following three
LODsyndesis services (more information about them can be found in [18]): (a)
the Keyword-to-URI service which returns those URIs whose suffix starts with a
given keyword, (b) the Object Coreference service which provides all the equiv-
alent URIs for a given one, and (c) the Fact Checking service, which can be
used for retrieving all the triples containing a set of given keywords for a single
focused entity.

3.2 The Process of LODQA

The question answering process consists of three main phases: (i) Question
Analysis (QA), (ii) Entities Detection (ED) and (iii) Answer Extraction (AE).
Figure 2 introduces the main phases and steps of LODQA process, where one can
clearly observe the input and the output of each different step. To make these
steps more clear, Fig. 3 shows a running example i.e., the steps for answering the
factoid question “What is the population of Heraklion?”.

Enabling Efficient Question Answering over Hundreds of Linked Datasets 9

Fig. 3. The QA process over the running example

Question Analysis Phase. In this phase, we convert the input question into
a set of tokens and we remove the stopwords of the given question, such as the
words “what” and “is” in the example of Fig. 3. The next step is the question
type identification, by using a set of indicative words and simple heuristics. Con-
cerning factoid and confirmation questions, we check if the question starts with
one of the following words: Wfactoid = {when, who, where, what, which, ...} for
factoid questions, and Wconfirm = {are, did, is, was, does, were, do, ...} for con-
firmation questions. Finally, for the definition questions, we check if the question
contains one of the following words: Wdef = {mean, meaning, definition, ...} in
its middle part. As an example, in Fig. 3 we identified the question as a factoid
one, since is starts with the word “what”.

10 E. Dimitrakis et al.

Entities Detection Phase. The target of the second phase is to identify the
entities occurring in the question and to link them with their corresponding
URIs in the sources which are supported from LODQA. For achieving this goal,
we exploit two widely used tools, i.e., Stanford CoreNLP [9,13] and DBpedia
Spotlight [14]. The Stanford CoreNLP tool, hereafter SCNLP, combines hand-
crafted rules and statistical sequence taggers for identifying the named entities
of a given question, and it returns the recognized entities in natural language,
e.g., for the input question of Fig. 3, it will return as the entity of the question
the word “Heraklion”. However, since LODQA needs also the corresponding URI of
each entity, we use the Keyword-to-URI service of LODsyndesis, which returns a
set of candidate URIs for a given keyword. On the contrary, DBpedia Spotlight
uses a string matching algorithm, a lexicon for retrieving the possible candidates
and a TF*IDF variation for tackling disambiguation issues. As an output, it
produces for each entity a pair containing the entity in natural language and
its corresponding URI in DBpedia knowledge base [12]. Afterwards, we compare
the candidate URIs derived from both tools for the same entity, we compute a
score for each such URI, and we select the most relevant URI for each entity. In
our running example of Fig. 3, we identified that for the entity “Heraklion”, the
most relevant URI is “dbp:Heraklion” (and not “dbp:Heraklion Prefecture).

Answer Extraction Phase. In the third phase, the objective is to retrieve the
candidate RDF triples, and to identify the best matching triple, for returning
the final answer. It is achieved through the exploitation of LODsyndesis, and
of an expanded set of question words by using (i) the SCNLP lemmatizer and
(ii) the WordNet dictionary [15]. Concerning SCNLP lemmatizer, we use it for
extracting the lemmas of the question words, e.g., the lemma of the word “ana-
lyzed” is “analyze”. Regarding WordNet dictionary, we use the API offered by
extJWNL1, for deriving nouns, verbs and synonyms based on the POS tags of
the question words. Therefore, it can produce from the word “populated” the
noun “population”, and from the word “population”, the word “inhabitants”
and the phrase “number of people” which have a similar meaning.

The next step is to exploit the factChecking service of LODsyndesis, which
takes as input a single entity, along with a set of words, i.e., in our running
example, we give as input to that service the parameters “dbp:Heraklion” and
the words “population”, “inhabitants” and “number of people” (e.g., the latter
two phrases derived through WordNet dictionary). Afterwards, a set of candi-
date triples is returned from LODsyndesis, which are analyzed through LODQA
for selecting the most relevant answer for the given question. In our running
example, we received three candidate triples for the input question. However,
it is worth mentioning that without the Question Expansion step, it would be
infeasible to derive candidate triples for the given question (i.e., there was not a
triple containing the word “population” in this example).

Afterwards, LODQA produces the final triple for the input question, by tak-
ing into account its type. Specifically, for factoid questions, it selects the max
scored triple based on the percentage of the question words included in the triple,
1 https://github.com/extjwnl/extjwnl.

https://github.com/extjwnl/extjwnl

Enabling Efficient Question Answering over Hundreds of Linked Datasets 11

and the number of provenance datasets. In our running example, by analyzing
the candidate triples, we identified that the first two triples were more rele-
vant comparing to the third one. However, LODQA selected the first triple (i.e.,
the population of “Heraklion” is “140,730”) as the best matching one, since
it was included in more datasets in comparison to the second triple. Concern-
ing confirmation questions, LODQA returns “Yes” if the candidate triple contains
all the entities of the question and at least one other “useful” word, e.g., sup-
pose that the given question is the following: “Was Nikos Kazantzakis born in
Heraklion?” and the candidate triple is “Nikos Kazantzakis, birthPlace,
Heraklion”, the system would return “Yes”, since the answer contains both
entities and the predicate “birthPlace”, which is a synonym to the predicate
“born in”. Finally, for definition questions, it returns the best matching triple
containing as predicate one of the following: rdfs:comment, dcterms:description,
dbpedia:abstract.

4 Evaluation

Here, in Sects. 4.1–4.4 we report experimental results concerning the effective-
ness and efficiency of Entities Detection and Answer Extraction steps, by using
SimpleQuestions (v2) collection [6]2. Finally, in Sect. 4.5, we show some mea-
surements regrading the impact of using multiple datasets.

4.1 Evaluation Collection

We performed a comparative evaluation over the SimpleQuestions (v2) collec-
tion [6], for evaluating and improving the tasks of Entities Detection and Answer
Extraction. This collection contains 108,442 simple (mainly factoid) questions,
i.e., questions that can be answered by using a single triple from Freebase knowl-
edge base [5]. For each question it includes the corresponding answer, i.e., a
single Freebase triple. It is worth mentioning that LODsyndesis contains infor-
mation from several sources (including DBpedia, Freebase and others), therefore
LODQA can answer a question by exploiting a different dataset (e.g., DBpedia)
and not Freebase. Since this requires a manual check for evaluating whether the
answer is correct, mainly due to missing mappings between these sources (e.g.,
between DBpedia and Freebase), we selected a subset of them for the experi-
ments. Indeed, we selected randomly a set 1,000 factoid questions, where each
question contained on average 7 words. The subset of the collection that was
used in the experiments, is accessible online3.

4.2 Entities Detection Evaluation

Our objective is to understand how the capabilities of the two used different
tools (SCNLP and DBpedia Spotlight) affect the outcome of the whole process.
2 http://research.fb.com/downloads/babi/.
3 http://islcatalog.ics.forth.gr/tr/dataset/simplequestions-v2-1000-questions.

http://research.fb.com/downloads/babi/
http://islcatalog.ics.forth.gr/tr/dataset/simplequestions-v2-1000-questions

12 E. Dimitrakis et al.

Table 1. Evaluation using 1000 questions from SimpleQuestions (v2). Left: Accuracy
of each Named Entity Recognition approach. Right: Accuracy of each Triples Retrieval
approach

NER Method Accuracy

SCNLP-Spotlight 0.626

Spotlight-SCNLP 0.653

Combined 0.737

Model Accuracy Accuracy (Perfect ED)

LODQA 0.487 0.642

LODQA-w/o-L 0.411 0.556

LODQA-w/o-N 0.414 0.558

LODQA-w/o-V 0.429 0.581

LODQA-w/o-LNV 0.407 0.547

For this reason, we report comparative results by using three different
approaches. Specifically, for each approach we measure the accuracy, i.e., the
number of questions where each approach identified the correct entities, divided
by the number of all questions. The approaches which are compared for the
Named Entity (NE) detection and linking follow: (i) SCNLP-Spotlight: we use
SCNLP and in case of failing to recognize any NE, we use DBpedia Spotlight,
(ii) Spotlight-SCNLP: we use DBpedia Spotlight and in case of failure, we use
SCNLP, (iii) Combined: we exploit both tools for identifying the NEs and their
URIs and then, we use some simple heuristics for selecting the best entities.
The evaluation results are shown in Table 1(left). We observe that the combined
method achieves much higher accuracy, i.e. 0.73, compared to any of the other
two approaches, which achieve an accuracy of 0.62 and 0.65, respectively! For
this reason, we will use that method for evaluating the outcome of the whole
process in Sect. 4.3.

4.3 Answer Extraction Evaluation

Regarding the Answer Extraction step, our target is to tackle the possible lex-
ical gap between the question and the underlying datasets. For this reason, we
compare variations of our approach, where we expand the available set of ques-
tions words. Indeed, we perform the expansion by producing the lemmas (from
SCNLP) of the question words. Moreover, based on the POS tag of each word, if
(a) a word is a Verb, we produce all the derived nouns (from WordNet) and (b)
if it is a Noun, we produce all the derived verbs. We evaluate the effectiveness of
our approach (i.e., LODQA) by using all the aforementioned expansion methods
(i.e., lemmas, nouns, verbs), and we compare it with variations of our approach
that do not perform word expansion based on lemmas (LODQA-w/o-L), nouns
(LODQA-w/o-N), and verbs (LODQA-w/o-V). Moreover, we provide also experi-
mental results for an approach that do not perform any word expansion, i.e.,
(LODQA-w/o-LNV). The evaluation results are shown in Table 1(Right), where we
measure the accuracy of each different variation, i.e., the number of questions
answered correctly, divided by the number of all the questions. The proposed
approach (i.e., LODQA) using all the expansion steps achieves the highest accuracy

Enabling Efficient Question Answering over Hundreds of Linked Datasets 13

Table 2. Efficiency results using 500
questions from SimpleQuestions (v2).

Step Average time

Question analysis 0.007 s

Entities detection 1.808 s

Query expansion 0.330 s

Candidate triples
retrieval

3.005 s

Final answer
production

0.134 s

Total time 5.330 s

Table 3. LODsyndesis measurements

Measurement Value

Number of entities in ≥ 2
datasets

25,289,605

Number of entities in ≥ 3
datasets

6,979,109

Verifiable questions from
at least 2 datasets

28,439,760

Average triple per entity
(by using 1 dataset)

17.3

Average triple per entity
(by using all datasets)

29.3

(i.e., 0.49), whereas by taking into account only the questions that passes the
Entities Detection Step (i.e., all the questions that we detected the correct enti-
ties), the accuracy increases (i.e., 0.64). On the contrary, without any question
words expansion, the precision is only 0.4 and 0.54 respectively. Concerning the
different methods for expanding the set of question words, we identified that for
this set of questions, verbs were more important that nouns and lemmas. The
above evaluation results indicate that our approach is KB agnostic, since it can
be applied for any given KB (indexed by LODsyndesis) without requiring any
additional effort and training data.

4.4 Efficiency

For performing the experiments, we used a single machine with 8 GB RAM,
8 cores and 60 GB Disk space, and we measured the efficiency in 500 questions
of SimpleQuestions collection for each different step, as it can be seen in Table 2.
As we can see, LODQA needs on average 5.33 s to answer a question. The most
time consuming steps are to retrieve the candidate triples (57.2% of the required
time) and to detect the entities of the question (30% of the required time).
Furthermore, it is worth noting that the minimum time for answering a question
was 1.6 s and the maximum one was 37.46. Finally, half of the questions (i.e.,
median value) were answered in less than 3.7 s.

4.5 The Benefits of Using Multiple Datasets

Table 3 shows measurements for evaluating the impact of using multiple datasets
(and of performing cross-dataset reasoning). Particularly, LODsyndesis contains
information for 25.2 million entities from at least two datasets, whereas for
6.9 million entities we can retrieve information from at least three datasets.
It is worth noting that there exists 28.4 million of possible questions that can be

14 E. Dimitrakis et al.

verified by more than one dataset, i.e., corresponds to simple questions answer-
able from at least two datasets. Therefore, it is evident that by using multiple
datasets, we increase the probability of answering a given question, whereas the
number of verifiable questions is increased, too. Moreover, for these 25.2 million
entities, if we use only a single dataset (even the dataset containing the most
triples for each entity), the average number of triples per entity is 17.3. On
the contrary, due to the cross-dataset reasoning (i.e., computation of transitive
and symmetric closure of equivalent relationships), LODsyndesis collects all the
available information for each entity from all the datasets. Due to this process,
the average number of triples of each of these entities highly increases (i.e., it
becomes 29.3).

Fig. 4. An example of the LODQA demo

5 Web Demo and Related Links

The LODQA is currently hosted and runs in a single machine of okeanos cloud com-
puting service (https://okeanos.grnet.gr/) with an i5 core, 8 GB main memory
and 60 GB disk space. Although the hosting machine has a low computational
power, the interaction is real time, i.e., few seconds are needed to answer a
question.

https://okeanos.grnet.gr/

Enabling Efficient Question Answering over Hundreds of Linked Datasets 15

In the website https://demos.isl.ics.forth.gr/LODQA/, we offer a list of demo
factoid, confirmation and definition questions, enabling the user to run questions
for each of these categories. Three indicative question-answer pairs, one for each
question type, are in order: (Which was the birth place of Socrates?, Athens),
(Is Nintendo located in Kyoto?, Yes!), (What is Parthenon?, the parthenon, a
temple built in honor of athena...).

As we can see in Fig. 4, for the question “Which is the birth place of Lebron
James?”, LODQA returns the answer (i.e., “Ohio” in this example), and also a
complete analysis for the question (see the right part of Fig. 4). Specifically,
except for the short answer, one can find more information about its provenance,
its type and its confidence score. Moreover, it returns the triple (in RDF format)
where we found the question, whereas one can explore more information for each
entity which is part of the triple. For example, as it is shown in the lower side of
Fig. 4, one can explore for the entity “Lebron James” all its URIs (i.e., 13 URIs
in total), the datasets where this entity occurs (i.e., 14 datasets) and one can
have access to all the facts (i.e., 762 triples) about that person! Finally, a tutorial
video is accessible in https://youtu.be/bSbKLlQBukk, whereas an online demo
that will allow any user to ask questions will be released soon.

6 Conclusion

LODQA is a Question Answering approach that exploits hundreds of Linked Data
sources, instead of using a single or few KBs (such as in [7,22,25,32]). By using
multiple datasets, the number of answerable questions increases, whereas the
validity of any answer can be estimated from several sources, and answers are
shown along with their provenance. We introduced an approach that exploits
hundreds of datasets simultaneously and follows a variety of methods, without
requiring any training data, for answering a question expressed in natural lan-
guage. In particular, it includes methods for question cleaning, heuristic based
question type identification, entity recognition, linking and disambiguation using
Linked Data-based methods and pure NLP methods (specifically DBpedia Spot-
light and Stanford CoreNLP), WordNet-based question expansion for tackling
the lexical gap (between the input question and the underlying sources), and
triple scoring for producing the final answer.

Concerning the evaluation, we used 1,000 questions of SimpleQuestions (v2)
collection [6]. The evaluation show that regarding Entities Detection step, the
combined method that exploits both entity recognition tools achieves the highest
accuracy. This reflects the importance of using both KB-agnostic tools (SCNLP)
and Large-scale KB-based tools (DBpedia Spotlight) for the tasks of entities
recognition, linking and disambiguation. Regarding Answer Extraction, it seems
that by using all the word expansion steps, we achieve the highest accuracy,
while the method which does not perform any question words expansion (does
not consider the lexical gap) achieves the worst results. This evidences the impor-
tance of tackling the lexical gap between the input question and the underlying
sources for retrieving relevant information, i.e., triples. Moreover, we introduced

https://demos.isl.ics.forth.gr/LODQA/
https://youtu.be/bSbKLlQBukk

16 E. Dimitrakis et al.

experiments about the efficiency of our approach (e.g., half of the questions can
be answered in less than 3.7 s) and the benefits of this approach in terms of
answerable questions and answer verification (e.g., 28.4 million questions can
be verified by at least two datasets). As a future work, we plan to improve the
system for making it capable of returning responses to more complex questions,
i.e., list questions or questions that require combining paths of triples.

Acknowledgements. The research work was supported by the Hellenic Foundation
for Research and Innovation (HFRI) and the General Secretariat for Research and
Technology (GSRT), under the HFRI PhD Fellowship grant (GA. No. 166).

References

1. Abujabal, A., Yahya, M., Riedewald, M., Weikum, G.: Automated template gen-
eration for question answering over knowledge graphs. In: Proceedings of the 26th
International Conference on World Wide Web, pp. 1191–1200. International World
Wide Web Conferences Steering Committee (2017)

2. Affolter, K., Stockinger, K., Bernstein, A.: A comparative survey of recent natural
language interfaces for databases. arXiv preprint arXiv:1906.08990 (2019)

3. Bast, H., Haussmann, E.: More accurate question answering on freebase. In: Pro-
ceedings of the 24th ACM International on Conference on Information and Knowl-
edge Management, pp. 1431–1440. ACM (2015)

4. Berant, J., Liang, P.: Imitation learning of agenda-based semantic parsers. Trans.
Assoc. Comput. Linguist. 3, 545–558 (2015)

5. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collabo-
ratively created graph database for structuring human knowledge. In: Proceedings
of the 2008 ACM SIGMOD International Conference on Management of Data, pp.
1247–1250. ACM (2008)

6. Bordes, A., Usunier, N., Chopra, S., Weston, J.: Large-scale simple question
answering with memory networks. CoRR, abs/1506.02075 (2015)

7. Diefenbach, D., Singh, K., Maret, P.: WDAqua-core1: a question answering service
for RDF knowledge bases. In: Companion of the The Web Conference 2018, pp.
1087–1091. International World Wide Web Conferences Steering Committee (2018)

8. Dimitrakis, E., Sgontzos, K., Tzitzikas, Y.: A survey on question answering systems
over linked data and documents. J. Intell. Inf. Syst., 1–27 (2019). https://doi.org/
10.1007/s10844-019-00584-7

9. Finkel, J.R., Grenager, T., Manning, C.: Incorporating non-local information into
information extraction systems by Gibbs sampling. In: Proceedings of the 43rd
Annual Meeting on Association for Computational Linguistics, pp. 363–370. Asso-
ciation for Computational Linguistics (2005)

10. Hakimov, S., Jebbara, S., Cimiano, P.: AMUSE: multilingual semantic parsing for
question answering over linked data. In: d’Amato, C., et al. (eds.) ISWC 2017.
LNCS, vol. 10587, pp. 329–346. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-68288-4 20

11. Höffner, K., Walter, S., Marx, E., Usbeck, R., Lehmann, J., Ngonga Ngomo, A.-C.:
Survey on challenges of question answering in the semantic web. Seman. Web 8(6),
895–920 (2017)

12. Lehmann, J., et al.: DBpedia-a large-scale, multilingual knowledge base extracted
from Wikipedia. Seman. Web 6(2), 167–195 (2015)

http://arxiv.org/abs/1906.08990
https://doi.org/10.1007/s10844-019-00584-7
https://doi.org/10.1007/s10844-019-00584-7
https://doi.org/10.1007/978-3-319-68288-4_20
https://doi.org/10.1007/978-3-319-68288-4_20

Enabling Efficient Question Answering over Hundreds of Linked Datasets 17

13. Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J.R., Bethard, S., McClosky,
D.: The stanford coreNLP natural language processing toolkit. In: ACL (System
Demonstrations), pp. 55–60 (2014)

14. Mendes, P.N., Jakob, M., Garćıa-Silva, A., Bizer, C.: DBpedia spotlight: shedding
light on the web of documents. In: Proceedings of the 7th International Conference
on Semantic Systems, pp. 1–8. ACM (2011)

15. Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38(11),
39–41 (1995)

16. Mishra, A., Jain, S.K.: A survey on question answering systems with classification.
J. King Saud Univ. Comput. Inf. Sci. 28(3), 345–361 (2016)

17. Mountantonakis, M., Tzitzikas, Y.: High performance methods for linked open data
connectivity analytics. Information 9(6), 134 (2018)

18. Mountantonakis, M., Tzitzikas, Y.: LODsyndesis: global scale knowledge services.
Heritage 1(2), 335–348 (2018)

19. Mountantonakis, M., Tzitzikas, Y.: Large scale semantic integration of linked data:
a survey. ACM Comput. Surv. (CSUR) 52(5), 103 (2019)

20. Papangelis, A., Papadakos, P., Stylianou, Y., Tzitzikas, Y.: Spoken dialogue for
information navigation. In: Proceedings of the 19th Annual SIGdial Meeting on
Discourse and Dialogue, pp. 229–234 (2018)

21. Patra, B.: A survey of community question answering. CoRR, abs/1705.04009
(2017)

22. Radoev, N., Tremblay, M., Gagnon, M., Zouaq, A.: Answering natural language
questions on RDF knowledge base in French. In: 7th Open Challenge in Question
Answering over Linked Data (QALD 2017), Portoroz, Slovenia (2017)

23. Reddy, S., et al.: Transforming dependency structures to logical forms for semantic
parsing. Trans. Assoc. Comput. Linguist. 4, 127–140 (2016)

24. Rodrigo, A., Peñas, A.: A study about the future evaluation of question-answering
systems. Knowl. Based Syst. 137, 83–93 (2017)

25. Shekarpour, S., Marx, E., Ngomo, A.-C.N., Auer, S.: SINA: semantic interpretation
of user queries for question answering on interlinked data. Web Seman. Sci. Serv.
Agents World Wide Web 30, 39–51 (2015)

26. Stockinger, K.: The rise of natural language interfaces to databases. In: ACM
SIGMOD Blog (2019)

27. Tzitzikas, Y., Manolis, N., Papadakos, P.: Faceted exploration of RDF/S datasets:
a survey. J. Intell. Inf. Syst. 48, 1–36 (2016)

28. Wang, M.: A survey of answer extraction techniques in factoid question answering.
In: Computational Linguistics, vol. 1, no. 1 (2006)

29. Yao, X., Berant, J., Van Durme, B.: Freebase QA: information extraction or seman-
tic parsing. In: Proceedings of ACL (2014)

30. Yavuz, S., Gur, I., Su, Y., Srivatsa, M., Yan, X.: Improving semantic parsing via
answer type inference. In: Proceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 149–159 (2016)

31. Yih, W.-T., Chang, M.-W., He, X., Gao, J.: Semantic parsing via staged query
graph generation: question answering with knowledge base. In: Proceedings of the
Association for Computational Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing, vol. 1, pp. 1321–1331 (2015)

32. Zhang, Y., He, S., Liu, K., Zhao, J.: A joint model for question answering over
multiple knowledge bases. In: AAAI, pp. 3094–3100 (2016)

From Publications to Knowledge Graphs

Panos Constantopoulos1,2(B) and Vayianos Pertsas1,2

1 Department of Informatics, Athens University of Economics and Business, Athens, Greece
{panosc,vpertsas}@aueb.gr

2 Digital Curation Unit, IMSI-Athena Research Centre, Marousi, Greece

Abstract. We address the task of compiling structured documentation of research
processes in the form of knowledge graphs by automatically extracting informa-
tion from publications and associating it with information from other sources. This
challenge has not been previously addressed at the level described here. We have
developed a process and a system that leverages existing information from DBpe-
dia, retrieves articles from repositories, extracts and interrelates various kinds of
named and non-named entities by exploiting article metadata, the structure of text
as well as syntactic, lexical and semantic constraints, and populates a knowledge
base in the form of RDF triples. An ontology designed to represent scholarly
practices is driving the whole process. Rule -based and machine learning- based
methods that account for the nature of scientific texts and a wide variety of writing
styles have been developed for the task. Evaluation on datasets from three disci-
plines, Digital Humanities, Bioinformatics, and Medicine, shows very promising
performance.

Keywords: Information extraction · Process mining · Knowledge base creation ·
Machine learning · Ontology population

1 Introduction

The explosion of publications in all disciplines makes it increasingly difficult for experts
tomaintain an overview of their domain andmakes it harder to relate ideas from different
domains [1, 2]. This situation could be significantly alleviated by supporting inquiries
such as: find all papers that address a given problem; howwas the problem solved; which
methods are employed by whom in addressing particular tasks; etc. Answering such
queries requires access to information about scholarly activities. Such information could
be compiled interactively or automatically extracted from publications. Widely used
search enginesmostly leverage articlemetadata, while knowledge expressed in the actual
text is only superficially exploited mostly by matching query terms to documents [3].
Understanding and encoding the knowledge contained in research articles is a complex
task posing several challenges. The context of the research reported in an article needs
to be expressed in a schema using information from the metadata of the article so that
other occurrences in the same context can be associated to it. In addition, the text of
the article is processed in order to extract concepts relevant to the documentation of
research processes, which are subsequently associated according to predefined semantic
relations.

© Springer Nature Switzerland AG 2020
G. Flouris et al. (Eds.): ISIP 2019, CCIS 1197, pp. 18–33, 2020.
https://doi.org/10.1007/978-3-030-44900-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44900-1_2&domain=pdf
https://doi.org/10.1007/978-3-030-44900-1_2

From Publications to Knowledge Graphs 19

In this paper we present a process for creating knowledge graphs from publications.
Information concerning scholarly activities or practices and their employed methods is
extracted from the text of the publications. The extracted entities are associated with
contextual information derived from publication metadata or other linked data reposito-
ries (e.g. ORCID or DBpedia) and everything is republished as a linked data knowledge
graph capable of supporting complex queries of the form: ‘who’ does ‘what’, ‘why’
and ‘how’. Such knowledge graphs can promote digitally supported scholarly work, the
integration of digital content, tools and methods, and enable the systematic codification
and organization of work with respect not only to commonalities but also differences
across disciplines, methodological traditions, and communities of researchers.

The conceptual model underlying the process is the domain-neutral Scholarly Ontol-
ogy (SO) [4]. SO is specifically designed to capture different aspects of the scholarly
process with core concepts like ‘Activity’ denoting the research processes, ‘Method’
the employed methods, ‘Actor’ the activity’s participants and ‘Goal’ and ‘Proposition’
the activity’s objectives and results respectively. For the creation of SO-driven knowl-
edge bases we developed Research Spotlight (RS), a modular system that incorporates
workflows for automatic retrieval of research articles from various APIs, distance super-
vision techniques for automatic annotation of training corpora, as well as modules for
linked data generation/integration and entity/relation extraction [11]. For the latter we
have implemented machine learning methods with specially designed feature spaces
for extracting from text research activities, methods employed in those activities, and
sequence relations between activities [22]. Several other relations specified in the ontol-
ogy, such as the participation of actors in activities, the topic of a publication, the subject
of a method, the goal of an activity, etc. are also captured either from the text using
rule-based methods or by leveraging metadata and external sources.

So,RS generates linked, contextualized, structured data describing research activities
and their outcomes, thus addressing the growing need for integrated access to information
scattered in different publications. The performance of RS was evaluated with datasets
from three different disciplines: Digital Humanities, Bioinformatics, and Medicine. We
measured Precision, Recall and F1 scores in token- and entity-based evaluations with
very promising results, indicating the potential for creating reliable research process
knowledge bases. The results also confirmed the contribution of the specially designed
features in achieving that performance.

The rest of this paper proceeds as follows: in Sect. 2 we present related work and
explain how our task is different; in Sect. 3 we outline the ontology; in Sect. 4 we
describe the knowledge base creation process; in Sect. 5 we present the methods used
for extracting entities and relations from text; in Sect. 6 the evaluation experiments are
briefly discussed; and we conclude in Sect. 7.

2 Related Work

To thebest of our knowledge, the taskof extracting researchprocess information fromsci-
entific articles and republishing it as LinkedData, as introduced in [11, 22] and described
in this paper, has not been previously addressed. That said, however, several past efforts
aimed at extracting information from text based on an existing ontology. In [5] RDF

20 P. Constantopoulos and V. Pertsas

triples are extracted fromRSS feeds and published as Linked Open Data usingmappings
to DBpedia entities. The focus is on statistical methods and rules based on lexical form
ignoring syntactic dependencies of tokens in the sentence that could allow better con-
text understanding. The DBpedia project itself [6] is a significant operation to automati-
cally extract knowledge fromWikipedia pages and info-boxes involving variousNLPand
feature-matching extractors that create RDF triples as instances of theDBpedia ontology.
Here predefined rules are based on theDBpedia schema,metadatamappings, statistics of
page links or word counts, and a number of feature extractors that exploit xml/html tags.
However, the lexical, syntactic or structural analysis of raw text is not supported. In [8] a
knowledge base is created with information extracted from French newswires by linking
extracted entities to the instances of an ontology that unifies the models of GeoNames
and Wikipedia and contains entities of type Person, Organization or Location retrieved
from these sources. Common types of named entities are recognized and aligned with
an existing database. In [9], a knowledge base is constructed by semi-automatic extrac-
tion of relations, based on the PRIMA ontology for risk management and a combination
of machine learning techniques and predefined handcrafted rules. Syntactic dependen-
cies that could yield patterns exploiting the deeper syntactic structure of sentences are
not considered. Finally, in [10] an ontology-based information extractor employs hand-
crafted rules in order to extract soccer-related entities from variousWeb sources andmap
them onto soccer-specific semantic structures. The recognition of named entities is based
solely on named entity lists, thus not supporting recognition of entities that are absent
from the lists.

On the other hand, information extraction (IE) from scientific papers has attracted
a lot of interest over the past years, as testified by the recent creation of a challenge on
Scientific Information Extraction (ScienceIE) [3], the ACL RD-TEC Reference Dataset
for Terminology Extraction and Classification [13], or domain-specific competitions
such as BioCreAtIve1. Several recent works deal with extraction of key-phrases denoting
tasks, scientific methods and materials from research documents [14, 15], association of
extracted rhetorical entities, and named entities with linked data [16–18], or recognition
of biomedical entities such as genes [19, 20]. They use features based on surface form,
POS tags, or word embeddings and they employ classifiers such as SVMs, CRFs or
neural networks, to extract key-phrases and named entities from text, as well as binary
lexical semantic relations (synonym-of, hyponym-of). In [21], key-phrases denoting the
“Focus”, “Technique” and “Domain” of the articles are identified on the basis of syntactic
patterns matched via rules to the dependency tree of each sentence in article abstracts.
In [23] sentences from abstracts in the domains of clinical trials and biomedicine are
classified in categories, such as introduction, purpose, method, results and conclusion,
using various bag-of-words or bag-of-n-grams representations. A specialized system for
extracting specific elements from legal contracts [7] uses sliding window classifiers and
handcrafted features combined with word and POS tag embeddings to extract contract
elements such as title, date, signatories’ names, etc. In [26], authors and organizations are
identified in scientific papers via CRFs using features that mainly deal with token surface
form (lower/upper case, presence in gazetteers, font size, etc.) or structural characteristics
(appearance in sections/paragraphs, first word in line, etc.). The extracted entities are

1 http://biocreative.sourceforge.net/index.html.

http://biocreative.sourceforge.net/index.html

From Publications to Knowledge Graphs 21

then interrelated by further extracting the hasAffiliation property. For that, an SVMwith
Gaussian kernel is used with features related to the author affiliation markers and the
distance of extracted strings.

In works related to action sequencing, such as [27], abstractions of action sentences
are created based on a predefined template, which are then clustered together based on a
functional similarity measure. In [28] deep reinforcement learning to extract sequences
of labeled actions from sentences; each action is represented by verb-object predicates
(e.g. cook(rice)) and the sequence relations are selected or eliminated based on their type
(optional, exclusive or essential). In [29] a predefined list of names is used to map action
descriptions and to interpret them as action sequences, or to generate navigational action
descriptions using an encoder-aligner-decoder structure. Unlike the above methods, we
associate actions that are not identified by single words or mapped to a fixed template
or list of names. Instead, in our work actions have complex textual representations of
variable length and cannot be labeled with words from a name-list. Moreover, we are not
confined to deriving sequence relations from single lexical keywords. Instead, sequence
relations are inferred from a combination of the actual textual context of activities along
with structural properties of the text (e.g., relative positions of the entities in the texts).

In all of the approaches reviewed, IE from text uses either rules orMLmethods based
on features that handle mainly the surface form of words disregarding other informa-
tion, such as attributes derived from syntactic dependencies or more complex syntactic
patterns. Those MLmethods perform inadequately in extracting research activities from
text, as suggested by the evaluation of our baseline method that uses similar features.
This behavior can be attributed to the following characteristics of the task at hand:
Research activities are entities denoted only by textual descriptions without specific
surface form and of arbitrary length, observed to exceed 50 tokens and possibly extend-
ing over multiple sentences, unlike the situation in common Named Entity Recognition
(NER) problems. The textual chunks can contain stopwords, such as determiners, prepo-
sitions etc. Although in other NLP tasks (e.g. text classification) stopwords are often
excluded because they just add noise, here they are deemed necessary because they
are often important parts of the extracted entities. Sequence relations between activities
cannot be detected solely from lexical indicators in the text. Other attributes of the activ-
ities, including their relative position in text, actual textual representation, etc., are also
employed in order to improve classification.

In the above context, the contributions of our work are: (1) An end-to-end solution
for understanding “who has done what, how, why and with what results” from the text
of research articles. (2) A domain-independent procedure that automatically creates
annotated corpora for training named entity recognizers, especially useful for entities of
“non-common” type. (3) A system that leverages semantic information, surface form as
well as deep syntactic and structural text analysis in order to extract information using
both machine learning and rule-based modules. (4) The way we address the complexity
of the particular task by including dependency embeddings, special syntactic sequences
of words in addition to the order of appearance in text, as well as specialized features
dealing with lexico-syntactic patterns, as opposed to just word surface form, currently
employed in other works related to extracting knowledge from scientific literature. (5)
Applicability across domains since no domain-specific lexica or training corpora are

22 P. Constantopoulos and V. Pertsas

required. Our methods are demonstrated with test sets from three disciplines, capturing
a variety of writing styles. (6) Higher performance compared to common NER or rule-
based solutions especially considering the fact that the limited datasets we had available
do not allow for more sophisticated ML approaches (such as deep learning methods).

3 Conceptual Framework: The Scholarly Ontology

The conceptual model underlying RS is based on the Scholarly Ontology (SO) [4],
a domain-independent framework for modeling scholarly activities and practices. The
rationale behind SO is to support answering questions of the form “who doeswhat,when,
and how” in and across scholarly domains, so the ontology is built around the central
notion of activity and combines three perspectives: the agency perspective, concerning
actors and their goals; the procedure perspective, concerning the intellectual framework
and organization of work; and the resource perspective, concerning the material and
immaterial objects consumed, used or produced in the course of activities. We here
briefly review a subset of core SO concepts that constitute the RS schema guiding the
extraction as well as the structuring of information (see Fig. 1).

Activity (e.g. an evaluation, a survey, an archeological excavation, a biological exper-
iment, etc.) represents real events that have occurred in the formof intentional acts carried
out by actors. Sequence of activities and composition from sub-activities are represented
by the follows and partOf relations respectively. The instances of the Activity class are
real processes with specific results, as opposed to those of the Method class, which are
specifications, or procedures for carrying out activities to address specific goals. Actor
instances are entities capable of performing intentional acts they can be accounted or
referenced for. Actors can participate in activities, actively or passively, in one or more

Fig. 1. The scholarly ontology core

From Publications to Knowledge Graphs 23

roles. Subclasses of Actor are the classes Person and Group representing individual
persons and collective entities respectively. Further specializations of Group are Orga-
nization and Research Team. Content Item comprises information resources, regardless
of their physical carrier, in human readable form (e.g. images, tables, texts, mathematical
expressions, etc.). Assertion includes all kinds of assertions in the scholarly domain and
captures the intellectual essence of scholarly activity, comprising propositions resulting
from activities; they can be supportedBy evidence provided by content items. Finally,
Topic comprises thematic keywords expressing the subject of methods, the topic of
content items, the research interests of actors, etc.

4 Knowledge Base Creation Process

An overview of the knowledge creation process is given in Fig. 2. The input consists of
published -open access- research articles retrieved from repositories or Web pages in the
preferred html/xml format. The format is exploited in extracting article metadata, such
as authors’ information, references and their mentions in text, legends of figures, tables
etc. Entities, such as activities, methods, goals, propositions, etc., are extracted from
the text of the article. These are associated in the relation extraction step, through var-
ious relations, e.g. follows, hasPart, hasObjective, resultsIn, hasParticipant, hasTopic,
has Affiliation, etc. Encoded as RDF triples, these are published as linked data, using
additional “meta-properties”, such as owl:sameAs, owl:equivalentProperty, rdfs:Label,
skos:altLabel, where appropriate.

Fig. 2. Knowledge base creation. Left to right: input, processes, extracted entities and relations

The entities targeted for extraction can be categorized into: (i) named entities, i.e.
entities that have a proper name, such as instances of the SO classesContentItem, Person,
Organization, Method and Topic; and (ii) nameless, or non-named entities, identified by
their own description but not given a proper name, such as instances of SO classes
Activity, Goal and Assertion.

Different modules handle entities of each category. Figure 3 shows the architecture
of RS implementing the above process. Input is obtained through:

(i) SPARQL endpoints of variousWeb sources for creating Named Entities (NE) lists;
(ii) user search keywords indicating the type of named entity to be recognized; and
(iii) URLs (e.g. journal Web pages that can be scraped) or publishers’ APIs.

24 P. Constantopoulos and V. Pertsas

The main output of the system is the knowledge base published as linked data. The
knowledge base creation process consists of two phases: (1) Preprocessing, for creating
named entities lists and training theNER classifier and (2)Main Processing for the actual
information extraction and publishing.

In Preprocessing, information is retrieved from sources such as DBpedia in order to
build lists of named entities through the NE List Creation module. Specific queries using
these entities are then submitted to the sources via the API Querying module. Retrieved
articles are processed by the Text Cleaning module and the raw text at the output is added
to a training corpus through the Automatic Annotation module that uses the entries of
NE list to spot named entities in the text. The annotated texts are used to train a classifier
to recognize the desired type of named entities.

Main Processing begins with harvesting research articles from Web sources, either
using their APIs or by scraping publication Web sites. The articles are scanned for
metadata which are mapped to SO instances according to a set of rules. In addition,
specific html/xml tags inside the articles indicating images, tables and references are
extracted and associated with appropriate entities according to SO, while the rest of the

Fig. 3. Research spotlight - system architecture

From Publications to Knowledge Graphs 25

unstructured, “raw” text is cleaned and segmented into sentences by the Text Cleaning
& Segmentation module. The unstructured, “raw” text of the article is then input into the
Named Entity Recognitionmodule,where namedentities of specific types are recognized.
The segmented text is also inserted into a dependency parser using the Syntactic Analysis
module. The output consists of annotated text in the form of dependency trees based
on the internal syntax of each sentence, which is further processed by the Non-Named
Entities Extraction module in order to extract text segments that contain other entities
(such asActivities, Goals or Propositions). The output of the above steps (named entities,
non-named entities and metadata) is fed into the Relation Extraction module that uses
four kinds of rules: (i) syntactic patterns based on outputs of the dependency parser;
(ii) surface form of words and POS tagging; (iii) semantic rules derived from SO; (iv)
proximity constraints capturing structural idiosyncrasies of texts. Finally, based on the
information extracted in the previous steps, URIs for the SO namespace are generated,
and linked -when possible- to other strong URIs (such as the DBpedia entities stored
in the named entities lists) in order to be published as linked data through a SPARQL
endpoint.

For a detailed description of the steps of the above process see [11].

5 Extracting Entities and Relations

We initially developed a set of rule-based extraction algorithms that span the entire
set of entities and relations of SO core. We subsequently applied machine learning
methods startingwith a critical subset of the SO core, namely activities and their sequence
relations. To no surprise, the latter can outperform the former, but at the price of large
training sets, hard to obtain. The outcomes of the rule-based methods, which require no
training, can be used in building training sets and driving distance supervision methods,
thus facilitating the bootstrapping of RS operation.

5.1 Rule-Based Extraction

Apart from “named entities” that can be identified using a NER (i.e. instances of Method
class), we also need to extract “non-named” entities of highly variable length.

Textual chunks indicating Activities,Goals andAssertions are detected using syntac-
tic analysis in conjunction with rules that exploit lexico-syntactic patterns derived from
the reasoning frame of SO [4]. A dependency tree containing POS tags and syntactic
dependencies for each word in a sentence is obtained using spaCy2, a Python library
offering industrial-strength Natural Language Processing functions. Each sentence is
further analyzed using the semantic definitions of SO classes, the surface form of words,
their POS tag and their syntactic dependencies.

2 www.spacy.io.

http://www.spacy.io

26 P. Constantopoulos and V. Pertsas

Fig. 4. Parthood and sequence relations

A sentence with verb in past or past/present perfect tense -in active or passive voice-
containing no markers such as ‘if’ or ‘that’, quite likely describes an Activity, assuming
the subject has the correct surface form (‘we’ or ‘I’ depending on the number of authors
for active voice, no personal pronouns or determiners -to exclude vague subjects- for
passive voice). Besides, ‘that’ following a verb can introduce a sub-sentence classified
as Assertion, while a verb with dependent nodes with surface form ‘to’ or ‘in order to’
can introduce a sub-sentence classified as Goal.

The last step of information extraction involves detecting relations between previ-
ously extracted entities. SO semantics are employed for identifying the proper relation
based on its domain and range. The organization of the text in sections and paragraphs
induces proximity constraints enabling the inference of more complex, possibly inter-
sentence, relations such as parthood and sequence of activities. The constraints used
to identify relations are listed in Table 1. Relations marked with * are inherited from
entity super-classes (Image, Table, Bib. Reference, Article from ContentItem; Person
from Actor). The constraints for the partOf and follows relations (marked with **) can
be relaxed in the presence of certain special indicators in the text (see Table 2). Parthood
or sequence relations are assigned between the current and the last extracted activity
either when a parthood or sequence indicator is detected, or by virtue of the relevant
constraint. Figure 4 illustrates the extraction of sequence and parthood relations.

5.2 Extraction by Machine Learning Methods

We engineered several task-specific features exploiting the semantic context, syntac-
tic dependencies of words and structural information, which we used in combination
with word embeddings. The latter are dense vector representations of words that can be

From Publications to Knowledge Graphs 27

Table 1. Types of constraints per relation type

Relation type Semantic constrains (derived from SO) Proximity Constraints – P_C() (from text
structure)

isSupportedBy* Domain: Proposition XML/HTML pointers inside the
Proposition chunkRange: lmage|Table|Bibl. Reference

partOf** Domain: Activity Co-occurrence with parent

Range: Activity Activity in the same paragraph

follows** Domain: Activity Co-occurrence with last Activity in the
same paragraphRange: Activity

contains* Domain: Article Co-occurrence in the same Article

Range: lmage|Table| Bibl. Reference

participatesIn * Domain: Person Co-occurrence in the same Article

Range: Activity

employs Domain: Activity Co-occurrence in the same sentence

Range: Method

resultsIn Domain: Activity Co-occurrence in the same paragraph

Range: Proposition

hasObjective Domain: Activity Co-occurrence in the same sentence

Range: Goal

addresses Domain: Method Co-occurrence in the same sentence

Range: Goal

hasTopic* Domain: Article Co-occurrence in the same Article

Range: Topic

hasSubject Domain: Method Co-occurrence in the same Article

Range: Topic

hasInterest* Domain: Person Co-occurrence in the same Article

Range: Topic

hasGoal* Domain: Person Co-occurrence in the same Article

Range: Goal

isDocumentedIn* Domain: Activity Co-occurrence in the same Article

Range: Article

isReferencedIn* Domain: Method Co-occurrence in the same Article

Range: Article

produced in an unsupervisedmanner fromunlabeled corpora and have proved instrumen-
tal inmanyNLP tasks.Weactually employ three kinds of embeddings:word embeddings,
part-of-speech (POS) tag embeddings, and dependency embeddings, all pre-trained for
the domain of research processes, following the example of [7] where the first two kinds
were combined.

28 P. Constantopoulos and V. Pertsas

We developed and compared several sliding window classifiers, thus exploring the
activity and sequence extraction tasks along three dimensions:

(1) Processing granularity. We tested the effectiveness of classification at three levels
of granularity: token-, sentence- and chunk-based classification.

(2) Feature space. The usual NLP practices were extended with the special features we
developed and we assessed their effectiveness.

(3) Machine learning method.We developed classifiers employing Logistic Regression
(LR) linear Support Vector Machines (SVM), and Random Forests (RF), as well as
a 2-stage pipeline combination.

Table 2. Sequence and Parthood indicators along with their surface forms

Sequence and Parthood
indicators

Surface forms

beginning_of_sequence ‘first’, ‘initially’, ‘starting’

middle_of_sequence ‘second’, ‘third’, ‘forth’, ‘fifth’, ‘sixth’, ‘then’, ‘afterwards’,
‘later’, ‘moreover’, ‘additionally’, ‘next’

end_of_sequence ‘finally’, ‘concluding’, ‘lastly’, ‘last’

parthood_indicators ‘specifically’, ‘first’, ‘concretely’, ‘individually’,
‘characteristically’, ‘explicitly’, ‘indicatively’ ‘analytically’

An unlabeled dataset obtained from 50,000 open-access research papers was used
in order to create embeddings. The dataset consisted of approximately 10,000,000 sen-
tences aftermetadata cleaning and parsing using spaCy, yielding 300,000,000 tokens and
eventually a vocabulary of approx. 1,000,000 unique words. Word, part-of-speech tag
(POS) and dependency (DEP) embeddings were generated from the above. Specifically:
100-dimensional word embeddings were produced using the Gensim implementation
of word2vec3 (skip-gram model); 25-dimensional POS embeddings were produced by
replacing each token by its corresponding POS tag before running word2vec; and 25-
dimensional DEP embeddings were produced by replacing each token by the label of
the (unique) arc linking the token to its head in the dependency tree. Our experiments
with other general-purpose, publicly available embeddings, such as those trained on
the Common Crawl corpus using GloVe4, or those trained on Wikipedia articles with
word2vec, showed inferior performance compared to our domain-specific embeddings.
This can be attributed to the fact that our embeddings are trained exclusively on scholarly
articles, thus capturing the idiosyncrasies of scholarly writing styles.

For training the machine learning methods we used a labeled dataset derived from
research articles randomly selected through publisherAPIs (Springer andElsevier), or by
scraping online journals, e.g. Digital Humanities Quarterly. The training set, comprising

3 https://radimrehurek.com/gensim/.
4 https://nlp.stanford.edu/projects/glove/.

https://radimrehurek.com/gensim/
https://nlp.stanford.edu/projects/glove/

From Publications to Knowledge Graphs 29

texts from50 research articles covering 9 research domains, was annotated by two human
annotators with an agreement of 81% kappa, yielding 1,700 activities comprising about
31,000 tokens, and 1,000 sequence relations. The intention was to create a training set
spanning multiple disciplines in order to provide an adequate “baseline” training set for
our methods. Our validation experiments proved this to be sufficient. On the other hand,
any increase on either the size or the specialization of the dataset (e.g. developing the
same ML method for a single discipline with larger training set) could arguably yield
equal or better results.

Seven sliding window classifiers (SWC) and a 2-stage pipeline classifier were imple-
mented for extracting research activities. They all perform token-based classification by
examining each token t and its surrounding tokens in a fixed-sizewindow, and classifying
t as positive if it is part of a phrase expressing a research activity, or negative otherwise.
The size of the window was set at 30 tokens around t (a total of 61 tokens) following
tuning on the validation set. Zero-padding was used to represent tokens exceeding the
sentence boundary. Each window of tokens is turned into a feature vector representing
the token t being classified. In the above classifiers we tried combinations of three meth-
ods, Logistic Regression, linear Support Vector Machines and Random Forests, with
different feature specifications. In addition to the above classifiers we implemented a
two-stage pipeline. The first classifier, trained on all the sentences of the training set,
detects only the existence of activities in the sentence without identifying their bound-
aries. The second classifier, trained only on sentences containing at least one activity,
determines the boundaries of the chunks representing activities in the sentences clas-
sified as positive by the first classifier. The intuition is that, by splitting the task, each
separate classifier will achieve high enough accuracy for their concatenation to produce
better results, which was proven correct in the evaluation.

Extracting sequence relations requires examining all plausible activity pairs. For
every pair of extracted activities the text chunk bounded by these two entities, [act1, …,
act2], empirically limited to 500 tokens, is considered to contain a candidate sequence
relation. A binary classifier then determines whether the bounding activities of the chunk
satisfy the property follows. We implemented three classifiers for extracting sequence
relations between activities.

For details concerning the design of the classifiers in this section see [22].

6 Evaluation

The Information Extraction Modules of RS were evaluated by comparing their output
with a “gold standard” produced by human annotators. According to established practice
[24, 25], we generated the confusionmatrices by comparing the output of the systemwith
that of the human annotators and, using micro and macro-averaging, we calculated the
precision, recall and F1 scores. We conducted two evaluation experiments: one “strict”
and one “lenient”, in which the confusion matrices were created based on “per-entity”
and “per-token” calculations respectively.

Regarding non-named entities and their relations, our “gold standard” consisted
of corpora produced from 50 articles annotated by two researchers. We drew from 29
different journals from various research areas (Digital Humanities, Geology, Medicine,

30 P. Constantopoulos and V. Pertsas

Bioinformatics, Biology, Computer Science, Sociology and Anthropology) to try our
system with multiple writing styles. The non-named entities extracted belong to the
classes Activity, Goal and Proposition, along with their relations follows(act1, act2),
hasPart(act1, act2), hasObjective(act, goal), resultsIn(act, prop). Regarding named
entities (instances of Method class) and the employs(act, meth) relation, the dataset
was created in the pre-processing phase. For the experiments we used the Stanford NE5

recognizer, trained/evaluated in the above dataset. The micro- and macro-averaged pre-
cision, recall and F1 scores based on confusion matrices from entity and token-based
evaluation experiments, and individual scores for each type of entities and relations, are
displayed in Tables 3, 4 and 5 respectively.

Regarding machine learning – based extraction, we evaluated the performance of all
the classifiers bymeasuring Precision, Recall and F1 scores. After window-size selection
and hyper-parameter tuning using 3-fold cross-validation on the training set, all the
classifiers were trained on the entire training set. We used three different test sets from
Digital Humanities, Bioinformatics and Medicine, presumably representing different
writing styles, as well as their combination (ALLTest Set). Approximate Randomization
Tests (ART) [30] between every classifier and the relevant baseline were carried out
to ensure the statistical significance of the tests. Classifiers were grouped in zones of
statistically similar results (shown by dividing lines in Tables 1 and 3) and ARTs were
run on every combination of methods from different zones in order to ensure that the
difference between any two measurements is statistically significant given our test sets.
Results are shown in Tables 6 and 7. Confirming our intuition, the Pipeline classifier
achieved the highest scores on every test set and criterion.

As a general comment, our more advanced features combined with domain specific
embeddings significantly outperform other relatedmethods (see Sect. 2) on the particular
task at hand, as suggested by the evaluation of our baseline that simulates those by
using similar features. For extensive accounts on the experimental evaluation of all the
extraction methods see [11, 22].

Table 3. Micro & Macro Averaging Scores

Macro-averaging Macro-averaging

Precision Recall F1 Precision Recall F1

Entity-based 0.67 0.68 0.68 0.70 0.74 0.72

Token-based 0.87 0.77 0.81 0.84 0.83 0.83

5 https://nlp.stanford.edu/software/CRF-NER.html.

https://nlp.stanford.edu/software/CRF-NER.html

From Publications to Knowledge Graphs 31

Table 4. Entity Extraction

Entity Type Entity-based Token-based

P R F1 P R F1

Activity 0.70 0.75 0.72 0.79 0.85 0.81

Goal 0.74 0.78 0.76 0.86 0.74 0.80

Proposition 0.76 0.78 0.76 0.82 0.84 0.82

Method 0.80 0.69 0.74 0.75 0.72 0.73

Table 5. Relation Extraction

Relation type P R F1

follows 0.69 0.72 0.71

hasPart 0.57 0.54 0.55

hasObjective 0.79 0.78 0.78

resultIn 0.54 0.58 0.56

employs 0.87 0.92 0.90

Table 6. Token-based Evaluation

DH test set BIOINF test set MED test set ALL test set

P R F1 P R F1 P R Fl P R Fl

Baseline 0.54 0.30 0.38 0.76 0.50 0.60 0.76 0.62 0.69 0.72 0.50 0.59

1 LR.WP.B 0.62 0.44 0.52 0.79 0.59 0.68 0.79 0.66 0.72 0.75 0.58 0.65

2 SVM.WP.B 0.60 0.50 0.54 0.80 0.66 0.72 0.78 0.68 0.73 0.74 0.63 0.68

3 LR.WPD.BS 0.78 0.76 0.77 0.83 0.81 0.82 0.88 0.83 0.85 0.84 0.80 0.82

4 SVM.WPD.BS 0.76 0.80 0.78 0.83 0.83 0.83 0.87 0.85 0.86 0.83 0.83 0.83

5 RF.PD.BS 0.79 0.80 0.80 0.85 0.83 0.84 0.89 0.83 0.86 0.85 0.82 0.83

6 LR.PD.S.BS 0.77 0.79 0.78 0.82 0.83 0.83 0.88 0.88 0.88 0.83 0.84 0.84

7 SVM.PD.S.BS 0.79 0.82 0.80 0.84 0.84 0.84 0.89 0.89 0.89 0.85 0.85 0.85

8 SVM-Pipeline 0.83 0.82 0.82 0.87 0.89 0.88 0.90 0.93 0.92 0.87 0.89 0.88

Table 7. Relation extraction evaluation

DH test set BIOINF test set MED test set ALL test set

P K Fl P R Fl P R Fl P R Fl

Baseline 0.62 0.72 0.67 0.65 0.89 0.76 0.59 0.92 0.72 0.62 0.88 0.72

1 LR(WPD)E-AVG-B 0.87 0.90 0.88 0.85 0.58 0.69 0.94 0.69 0.80 0.87 0.77 0.82

2 SVM(WPD)E-AVG-B 0.80 0.93 0.86 0.83 0.65 0.73 0.91 0.75 0.82 0.84 0.80 0.84

3 RF(PD)1H-SUM-B 0.81 0.93 0.87 0.87 0.85 0.86 0.94 0.90 0.92 0.88 0.89 0.89

7 Conclusion

We have presented a process, implemented in the Research Spotlight system, which
leverages the Scholarly Ontology and deep syntactic analysis to extract information from
articles and populate a knowledge base published as linked data. RS acquires informa-
tion from the Web in several ways. Classifiers are automatically trained to recognize
“non-common” named entities not supported by current serialized models. Using these

32 P. Constantopoulos and V. Pertsas

together with the knowledge captured in the Scholarly Ontology, deep syntactic text
analysis and machine learning methods, the system achieves extracting entities and rela-
tions representing research processes at a level of detail and complexity not addressed
before.

Future work includes extracting further concepts for documenting research pro-
cesses according to the Scholarly Ontology, such as goals, research questions, proposi-
tions, methods, etc., along with their corresponding relations (such as partOf, employs,
hasObjective, etc.) and experimenting with more complex classifiers (e.g. CNNs or
RNNs) when additional larger training datasets become available.

References

1. Bornmann, L., Mutz, R.: Growth rates of modern science: a bibliometric analysis based on
the number of publications. J. Assoc. Inf. Sci. Technol. 66, 2215–2222 (2015)

2. Renear, A.H., Palmer, C.L.: Strategic reading, ontologies, and the future of scientific
publishing. Science 325, 828–832 (2009)

3. Augenstein, I., Das, M., Riedel, S., Vikraman, L., McCallum, A.: SemEval 2017 task 10:
ScienceIE, pp. 546–555 (2017)

4. Pertsas, V., Constantopoulos, P.: Scholarly ontology: modelling scholarly practices. Int. J.
Digit. Libr. 18, 173–190 (2017)

5. Gerber, D., Hellmann, S., Bühmann, L., Soru, T., Usbeck, R., Ngonga Ngomo, A.-C.: Real-
time RDF extraction from unstructured data streams. In: Alani, H., et al. (eds.) ISWC 2013.
LNCS, vol. 8218, pp. 135–150. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-41335-3_9

6. Lehmann, J., et al.: DBpedia - a large-scale, multilingual knowledge base extracted from
Wikipedia. Semant. Web 6, 167–195 (2015). https://doi.org/10.3233/SW-140134

7. Chalkidis, I., Michos, A., Androutsopoulos, I.: Extracting contract elements. In: ICAL,
London, p. 10 (2017)

8. Stern, R., Sagot, B.: Population of a knowledge base for news metadata from unstructured
text and web data. In: AKBC-WEKEX 2012, Montreal, Canada, pp. 35–40 (2012)

9. Makki, J., Alquier, A.-M., Prince, V.: Ontology population via NLP techniques in risk
management. Int. J. Humanit. Soc. Sci. 3, 212–217 (2008)

10. Buitelaar, P., Cimiano, P., Frank, A., Hartung, M., Racioppa, S.: Ontology-based information
extraction and integration from heterogeneous data sources. Int. J. Hum. Comput. Stud. 66,
759–788 (2008). https://doi.org/10.1016/j.ijhcs.2008.07.007

11. Pertsas, V., Constantopoulos, P.: Ontology-driven information extraction from research pub-
lications. In: Méndez, E., Crestani, F., Ribeiro, C., David, G., Lopes, J.C. (eds.) TPDL 2018.
LNCS, vol. 11057, pp. 241–253. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
00066-0_21

12. Goldberg, Y.: A primer on neural network models for natural language processing. J. Artif.
Intell. Res. 57, 345–420 (2015)

13. QasemiZadeh, B., Schumann, A.-K.: The ACL RD-TEC 2.0: a language resource for evalu-
ating term extraction and entity recognition methods. In: Proceedings of the 10th Edition of
the Language Resources and Evaluation Conference, pp. 1862–1868 (2016)

14. Lee, L.-H., Lee, K.-C., Tseng, Y.-H.: The NTNU system at SemEval-2017 task 10: extract-
ing keyphrases and relations from scientific publications using multiple CRFs. In: 11th
International Workshop on Semantic Evaluation (SemEval 2017), pp. 950–954 (2017)

15. Luan,Y.,Ostendorf,M.,Hajishirzi, H.: Scientific information extractionwith semi-supervised
neural tagging, pp. 2631–2641 (2017)

https://doi.org/10.1007/978-3-642-41335-3_9
https://doi.org/10.3233/SW-140134
https://doi.org/10.1016/j.ijhcs.2008.07.007
https://doi.org/10.1007/978-3-030-00066-0_21

From Publications to Knowledge Graphs 33

16. Sateli, B., Witte, R.: What’s in this paper? Combining rhetorical entities with linked open
data for semantic literature querying. In: Proceedings of the 24th International Conference
on World Wide Web, pp. 1023–1028. ACM (2015)

17. Osborne, F., de Ribaupierre, H.,Motta, E.: TechMiner: extracting technologies from academic
publications. In: Blomqvist, E., Ciancarini, P., Poggi, F., Vitali, F. (eds.) EKAW 2016. LNCS
(LNAI), vol. 10024, pp. 463–479. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
49004-5_30

18. Sateli, B., Witte, R.: Semantic representation of scientific literature: bringing claims, con-
tributions and named entities onto the Linked Open Data cloud. PeerJ Comput. Sci. 1, e37
(2015)

19. Song, Y., Yi, E., Kim, E., Lee, G.G., Park, S.J.: POSBIOTM-NER: a machine learning
approach for bio-named entity recognition, Korea, 305–350 (2004)

20. Plake, C., et al.: A support vector classifier for gene name recognition. In: BioCreAtIvE
Workshop, Granada, Spain, pp. 1–5 (2004)

21. Gupta, S., Manning, C.: Analyzing the dynamics of research by extracting key aspects of
scientific papers. In: Proceedings of 5th International Joint Conference on Natural Language
Processing, pp. 1–9 (2011)

22. Pertsas, V., Constantopoulos, P., Androutsopoulos, I.: Ontology driven extraction of research
processes. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11136, pp. 162–178.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00671-6_10

23. Ruch, P., et al.: Using argumentation to extract key sentences from biomedical abstracts. Int.
J. Med. Inf. 76, 195–200 (2007)

24. Manning, C.D., Raghavan, P., Schutze, H.: Introduction to Information Retrieval. Cambridge
University Press, New York (2008)

25. De Sitter, A., Calders, T., Daelemans, W.: A formal framework for evaluation of information
extraction, University of Antwerp (2004)

26. Do, H.H.N., Chandrasekaran, M.K., Cho, P.S., Kan, M.-Y.M.Y.: Extracting and matching
authors and affiliations in scholarly documents. In: Proceedings of the 13th ACM/IEEE-CS
Joint Conference on Digital Libraries, JCDL 2013, p. 219 (2013)

27. Lindsay, A., Read, J., Ferreira, J.F., Hayton, T., Porteous, J., Gregory, P.: Framer: plan-
ning models from natural language action descriptions. In: Proceedings ICAPS, pp. 434–442
(2017)

28. Feng, W., Zhuo, H.H., Kambhampati, S.: Extracting action sequences from texts based on
deep reinforcement learning (2018)

29. Mei, H., Bansal, M., Walter, M.R.: Listen, attend, and walk: neural mapping of navigational
instructions to action sequences (2015)

30. Yeh, A.: More accurate tests for the statistical significance of result differences. In: Coling
2000 (2000)

https://doi.org/10.1007/978-3-319-49004-5_30
https://doi.org/10.1007/978-3-030-00671-6_10

Data Analytics

Analytics over RDF Graphs

Maria-Evangelia Papadaki1,2(B), Yannis Tzitzikas1,2, and Nicolas Spyratos3

1 Institute of Computer Science, FORTH, Heraklion, Greece
{marpap,tzitzik}@ics.forth.gr

2 Computer Science Department, University of Crete, Heraklion, Greece
3 Laboratoire de Recherche en Informatique, Université de Paris-Sud, Orsay, France

spyratos@lri.fr

Abstract. The continuous accumulation of multi-dimensional data and
the development of Semantic Web and Linked Data published in RDF
bring new requirements for data analytics tools. Such tools should take
into account the special features of RDF graphs, exploit the semantics of
RDF and support flexible aggregate queries. In this paper, we present an
approach for applying analytics to RDF data, based on a high-level func-
tional query language called HIFUN. According to that language, each
analytical query is considered as a well-formed expression of a functional
algebra and its definition is independent of the nature and structure of
the data. In this work, we detail the required transformations, as well
as the translation of HIFUN queries to SPARQL and we introduce the
primary implementation of a tool, developed for these purposes.

Keywords: Analytics · RDF · Linked data

1 Introduction

The amount of data available on the Web today is increasing rapidly due to
successful initiatives, such as the Linked Open Data movement1. More and more
data sources are being exported or produced using the Resource Description
Framework (or RDF, for short) standardized by the W3C2. SPARQL3, which
is the standard query language for RDF data, supports complex querying using
regular path expressions, grouping, aggregation, etc., but the application of ana-
lytics to RDF data and especially to large RDF graphs is not so straightforward.
The structure of such graphs tends to be complex, due to several factors: (a)
different resources may have different sets of properties, (b) properties can be
multi-valued (i.e. there can be triples where the subject and predicate are the
same but the objects are different) and (c) resources may or may not have types.
In addition, the analytical tools that have been developed, are not capable of
supporting RDF graph analytics effectively, as they (i) focus on relational data,

1 http://lod-cloud.net/.
2 https://www.w3.org/RDF/.
3 https://www.w3.org/TR/rdf-sparql-query/.

c© Springer Nature Switzerland AG 2020
G. Flouris et al. (Eds.): ISIP 2019, CCIS 1197, pp. 37–52, 2020.
https://doi.org/10.1007/978-3-030-44900-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44900-1_3&domain=pdf
http://lod-cloud.net/
https://www.w3.org/RDF/
https://www.w3.org/TR/rdf-sparql-query/
https://doi.org/10.1007/978-3-030-44900-1_3

38 M.-E. Papadaki et al.

(ii) can only work with a single homogeneous data set, (iii) neither support
multiple central concepts, nor RDF semantics, (iv) demand deep knowledge of
specific query languages, depending on data’s structure and (v) do not offer
flexible choices of dimension, measure, and aggregation.

In view of the above challenges, there is a need for a common formal frame-
work that can be applied to one or more linked data sets and demands no
programming skill. Motivated from this need, we are investigating an approach
based on a high-level query language, called HIFUN [23], for applying analytics
to RDF graphs. We study how that language can be applied to RDF data by
clarifying how the concept of analysis context can be defined, what kind of trans-
formations are required and how HIFUN queries can be translated to SPARQL.
Moreover, we describe the primary implementation of an analytical tool based
on the above.

The remainder of the paper is organized as follows: Sect. 2 describes the
requirements and the related work. Section 3 introduces the related background
knowledge. Section 4 focuses on how HIFUN can be applied to RDF data.
Section 5 describes how HIFUN queries can be translated to SPARQL. Section 6
refers to application issues and describes the current implementation, and finally
Sect. 7 concludes this work and discusses issues for future research.

2 Requirements and Related Work

2.1 Requirements

Today, there are domain-specific semantic warehouses, such as in the marine
domain [26], or the cultural domain [10], as well as general-purpose knowledge
bases, such as DBpedia and WikiData4 (see [18] for a survey). These warehouses
store huge volumes of integrated data from two or more disparate sources and
their data can be analyzed in various ways. For example, the data warehouse
of [26] contains data describing fish species according to several perspectives
including water areas, countries, families, etc. Such data can be analyzed in
order to find the number of different fish species by country or by water area.
General-purpose knowledge bases on the other hand, such as DBpedia, can be
analyzed for various purposes, (e.g. for finding the number of French actors, born
in 1980). Apart from the above, analytics can be useful also for checking the
quality of semantic integration activities, (e.g. for measuring the commonalities
between several data sets as in [14,17]).

So, we need a way for applying analytics to any kind of RDF graph, - not
only to multidimensional data expressed in RDF, but also to domain-specific or
semantic data of general-purpose; a way, that would be applicable to several RDF
data sets, as well as to any data source. We need an analytical tool that allows
the user to select the desired data set(s) or desired parts thereof, formulate an
analytic query without having any programming knowledge and finally get the
results in the form of tables, plots or any other kind of visualization, intuitively.

4 https://www.wikidata.org.

https://www.wikidata.org

Analytics over RDF Graphs 39

2.2 Related Work

There are many cases where it would be useful to publish multi-dimensional data
(such as statistics) on the web in such a way that it can be linked to related data
sets and concepts. The RDF Data Cube vocabulary5 (QB) provides a means to
publish such data on the web using the W3C RDF standard. That vocabulary
consists of three main components: (i) the measures, which are the observed
values of primary interest, (ii) the dimensions, which are the value keys that
identify the measure and (iii) the attributes, which are the metadata. However,
even though this vocabulary can be used for structuring and publishing multi-
dimensional data, it cannot be used for applying analytics over it. In view of this
limitation, several approaches have been proposed.

These approaches could be divided into two major groups: (i) those that
extract Multi-dimensional Data (MD), that is data related to more than two
dimensions from the web and load it into traditional data management systems
for OLAP analysis [11,19], and (ii) those that perform OLAP analysis directly
over the Semantic Web data, representing MD data in RDF [1].

The work in [12] analyzes data expressed in the RDF Data Cube format by
constructing OLAP queries, which are then transformed into SPARQL. However,
the proposed method requires a ROLAP engine to execute the OLAP queries
and analyzes the resulting cubes through classical OLAP operations. On the
other hand, the work in [9] presents a framework for analyzing LOD data. It
differs from our work since the proposed method is not based on the usage of
dedicated OLAP cube vocabularies (e.g. RDF Data Cube Vocabulary). Instead,
it stores the RDF data in property tables (PTs) and transforms linked data to
relational data so that it can be exploited using typical OLAP systems.

The representation of MD data in RDF can further be organized in two
categories: (i) those that are based on specialized RDF vocabularies [5,6] and
(ii) those that implicitly define a data cube over existing RDF graphs6. Our
work follows the first approach since we apply analytics over data that has
been expressed in the RDF Data Cube format (although the objective is to be
applicable to any RDF data set).

The work in [29] defines OLAP operations on analysis cubes over graphs.
However, its approach does not support heterogeneous graphs, and thus it cannot
handle multi-valued attributes (e.g., a person being both “Greek” and “French”),
nor semantics. Additionally, [3] presents a graph model for OLAP directly on
RDF graphs and an extension of SPARQL for OLAP querying. However, accord-
ing to [6], it cannot be guaranteed that the cubes on RDF graphs are multi-
dimensional compliant.

The existing methods can also be classified into (i) those that require pro-
gramming knowledge for analyzing the data and (ii) those that do not deal with
lower-level technicalities. The work in [27] presents a system for analytics over
(large) graphs. It achieves efficient query answering, by dividing the graph into

5 https://www.w3.org/TR/vocab-data-cube/.
6 https://team.inria.fr/oak/projects/warg/.

https://www.w3.org/TR/vocab-data-cube/
https://team.inria.fr/oak/projects/warg/

40 M.-E. Papadaki et al.

partitions. However, in contrast to our work, the user should have some pro-
gramming knowledge, since it is necessary to write a few lines of code to submit
the query. The work in [28] presents a method for applying statistical calcula-
tions on numerical linked data. It stores the data in arrays and performs the
calculations on the arrays’ values. Nevertheless, contrary to our work, it requires
deep knowledge of SPARQL for formulating the queries.

In order to overcome one’s difficulty in background programming knowledge,
high-level languages have been developed for data analysis, too. However, there
has not been much activity in introducing high-level languages, suitable for ana-
lytics on RDF data. While general-purpose languages, such as PIG Latin [20]
and HiveQL [25] can be used, they are not tailored to address the peculiarities
of the RDF data model. Even though, [7,8] present high-level query languages
enabling OLAP querying of an extended format of data cubes [6], they are
only applicable to data already represented and published using a correspond-
ing vocabulary. As a consequence, they fall short in addressing a wide variety
of analytical possibilities in non-statistical RDF data sources. In addition, [20]
proposes a high-level language that supports semantics. However, it is targeted
at processing structured relational data, limiting its use for semi-structured data
such as RDF. Further, it provides only a finite set of primitives that is inadequate
for the efficient expression of complex analytical queries.

Finally, a survey that is worth mentioning is [4], which introduces warehouse-
style RDF analytics. There are similarities with our approach, since each ana-
lytical schema node corresponds to an RDF class, while each edge corresponds
to an RDF property. Nonetheless, since the facts are encoded as unary patterns,
they are limited to vertices instead of arbitrary subgraphs (e.g. paths).

In conclusion, in contrast to the aforementioned works, we focus on devel-
oping a user-friendly interface, where the user will be able to apply analytics
to RDF data without dealing with lower-level technicalities. We envision a sys-
tem, that will not be based on any specialized vocabulary and will be capable
of analyzing one or several linked data sets.

3 Background

3.1 Resource Description Framework (RDF) and Linked Data

The Resource Description Framework (RDF) [2,16] is a graph-based data model
for linked data interchanging on the web. It denotes resources through the use of
Uniform Resource Identifiers (URIs), or anonymous resources (blank nodes) and
constants (Literals). This framework uses triples, which are statements of the
form subject-predicate-object (s, p, o), in order to relate a resource with other
resources or constants.

Definition 1 (RDF Triple, RDF Data set, RDF Graph). A triple is con-
sidered to be any element of T = (U ∪B) × (U) × (U ∪B ∪ L), where U,B and
L denote the sets of URIs, blank nodes and literals, respectively. An RDF graph
(or RDF data set) is any finite subset of T . �

Analytics over RDF Graphs 41

For instance, if “schema” is the URI prefix “https://schema.org/”, then
schema:FinancialProduct is the URI of the class FinancialProduct. If “myStore”
is the URI prefix “https://myStore.com”, then myStore:product1 is the URI of
a particular product. Consequently, the statement (myStore:product1, rdf:type,
schema:FinancialProduct) is a triple, indicating that myStore:product1 is an
instance of the class schema:FinancialProduct. In addition, (myStore:product1,
schema:purchaseDate, “2019-05-09”) is a triple, denoting that the product was
purchased by its owner in “2019-05-09”. The set of URIs could be classified
in three different subsets, (i) entities (e.g. myStore:product1), (ii) properties
(e.g. schema:purchaseDate) and (iii) classes (e.g. schema:FinancialProduct). An
entity can be a subject or object in a triple, a property is always a predicate,
while a class can be found in the object of a triple and corresponds to the type-
/category, in which an entity belongs to.

We shall use the example of Fig. 1 as our running example, throughout the
paper. The representation is in RDF and it shows a delivery invoice, that took
place at “branch3” in “2019-05-09”. The product that was delivered to that
branch in the quantity of “400”, was the “product4” of “Hermes” brand. The
founder of that brand is “Manousos”, who is both Greek and French.

Fig. 1. Running example

3.2 HIFUN - A High Level Functional Query Language for Big
Data Analytics

HIFUN [23] is a high-level functional query language for defining analytic queries
over big data sets, independently of how these queries are evaluated. It can
be applied over a data set that is structured or unstructured, homogeneous or
heterogeneous, centrally stored or distributed.

https://schema.org/

42 M.-E. Papadaki et al.

Data Set Assumptions. To apply that language over a data set D, two assump-
tions should hold. The data set should (i) consist of uniquely identified data items,
and (ii) have a set of attributes, each of which is viewed as a function associating
each data item of D with a value, in some set of values. For example, if the data
set D is a set of all delivery invoices over a year, in a distribution center (e.g.
Walmart) which delivers products of various types in several branches, then the
attribute “product type” (denoted as pt) is seen as a function pt : D → String
such that, for each invoice i, pt(i) is the type of product delivered according to
the invoice i.

Definition 2 (Analysis Context). Let D be a data set and A be the set of all
attributes (a1, ..., ak) of D. An analysis context over D is any set of attributes
from A, and D is considered the origin (or root) of that context. �

Note that an analysis context can consist of more than one roots. While one
root means that data analysis concerns a single data set, the existence of two or
more roots means that data analysis relates to two or more different data sets,
possibly sharing one or more attributes.

A set of attributes could be represented as a directed labeled graph. Figure 2
shows our running example, expressed as such a context. From a syntactic point
of view, the edges of it can be seen as triples of the form (source, label, target).

Fig. 2. Running example expressed as a HIFUN context

Direct & Derived Attributes. The attributes of a context are divided into two
groups, the direct and the derived. The first group contains the attributes with
origin D: these are the attributes whose values are given. The second group
contains the attributes whose origins are different than D and whose values are
computed based on the values of the direct attributes. For example, in Fig. 2 the
attributes d, b, p and q are direct as their values appear on the delivery invoice,
whereas m and y are derived, since their values can be computed from those of
the attribute d (e.g. from the date 26/06/2019 one can derive the month 06 and
the year 2019).

Definition 3 (HIFUN Analytic Query). A query in HIFUN is defined as an
ordered triple Q = (g,m, op) such that g and m are attributes of the data set D,
having a common source (that is the root D) and op is an aggregate operation (or
reduction operation) applicable on m-values. The first component of the triple
is called grouping function, the second measuring function (or the measure) and
the third aggregate operation (or reduction operation). �

Analytics over RDF Graphs 43

The evaluation of such a query Q is done in a three-step process, as follows:
(i) items with the same g-value gi are grouped, (ii) in each group of items created,
the m-value of each item in the group is extracted from D and (iii) the m-values
obtained in each group are aggregated to obtain a single value vi. Actually, the
aggregate value vi is the answer of Q on gi. This means that a query is a triple
of functions and its answer AnsQ is a function, too.

4 Using HIFUN as an Interface to RDF Dataset

4.1 Motivation

There are several ways in which HIFUN can be used, such as for studying rewrit-
ing of analytic queries in the abstract [23] or for defining an approach to data
exploration [24]. In this paper, we use HIFUN as a user-friendly interface for
defining analytic queries over RDF data sets. To understand the proposed app-
roach, consider a data source S with query language L (e.g. S could be a rela-
tional data set and L the SQL language). In order to use HIFUN as a user
interface for S, we need to (a) define an analysis context, that is a subset D of S
to be analyzed and some attributes of D that are relevant for the analysis and
(b) define a mapping of HIFUN queries to queries in L.

Defining a subset D of S can be done using a query of L and defining D to be
its answer (i.e. D is defined as a view of S); and similarly, the attributes that are
relevant to the analysis can be defined based on attributes of D already present
in S. However, defining a mapping of HIFUN queries to queries in L might be
a tedious task. In [24] such mappings have been defined from HIFUN queries to
SQL queries and from HIFUN queries to MapReduce jobs.

The main objective of this paper is to define a user-friendly interface allowing
users to perform analysis of RDF data sets. To this end, we use the HIFUN
language as the interface. In other words, we consider the case, where the data
set S mentioned above is a set of RDF triples and its language L is the SPARQL
language. Our main contributions are: (a) the proposal of tools for defining a
HIFUN context from the RDF data set S and (b) defining a mapping from
HIFUN queries to SPARQL queries. With these tools at hand, a user of the
HIFUN interface can define an analysis context of interest over S and issue
analytic queries using the HIFUN language. Each such query is then translated
by the interface to a SPARQL query, which in turn is evaluated over the RDF
triples of D and the answer is returned to the user.

4.2 Applicability of HIFUN

Recall that two assumptions must be satisfied in order to apply HIFUN (see
Sect. 3.2). The first assumption is satisfied by the RDF data since each resource
in RDF is identified by a distinct URI. Therefore, the data set D in HIFUN can
be any subset of the set of all the available URIs. The second assumption, the
functionality of attributes, is satisfied by the RDF properties, which are defined

44 M.-E. Papadaki et al.

as functional (i.e. owl:FunctionalProperty) or are effectively functional (i.e. even
if they are not declared as functional, they are single-valued for the resources in
the data set D). Consequently, the cases that require special handling, include
the following: (a) properties with no value, since HIFUN assumes that there are
no empty values in the data, in contrast to RDF, where properties with no value
may exist, (b) properties, that are multi-valued, and (c) definition of analysis
contexts that correspond to a transformation of the original data.

These issues are discussed in the following sections.

4.3 How to Specify the Context of Analysis

In order to specify an analysis context, the classes and the properties of inter-
est of an RDF graph should be selected. The user can select as the root of the
analysis context any class of the RDF graph and as attribute any property of
it (whose domain is that class). For example, any of the classes “ex:Invoice”,
“ex:Branch”, “ex:Product”, “ex:Brand”, “ex:Person”, “ex:Nationality” of Fig. 1
can be selected as the root of a context, while any of the properties “ex:hasDate”,
“ex:takesPlaceAt”, “ex:delivers”, “ex:inQuantity”, “ex:brand”, “ex:founder”,
“ex:nationality” as its attributes, since they do have a common root. An analysis
context can also be defined by transforming the original data, and such issues
are discussed in Sect. 6.

5 Translation of HIFUN Queries to SPARQL

In this section, we show how a HIFUN query can be translated to a SPARQL
query. Recall, that a query in HIFUN is defined as an ordered triple Q =
(g,m, op), where g is the grouping function, m the measuring function and op
the aggregate operation. On the other hand, an aggregate query in SPARQL is
defined as:

SELECT ?group (function(?var) AS ?result)

WHERE {
....

}
GROUP BY ?group

Based on the above definitions, a HIFUN query Q can be encoded as a
SPARQL group-by query, as shown in row 1 of Table 1. The grouping function
corresponds to the projections in the SELECT clause as well as to the aggregate
variable(s) in the GROUP BY clause, the reduction (or aggregate operation) to
the aggregate SPARQL function, and the measuring function to the argument of
that function. Note that, we define as target the codomain (or target set) of the
HIFUN attributes. The answer to this query is a binary table with two variables,
target(g) and Res (Res is a user-defined variable that holds the aggregate result).

Analytics over RDF Graphs 45

Definition 4 (Translation of a HIFUN Query to a SPARQL query).
A HIFUN query Q over a context C is translated to SPARQL by grouping
the items with the same projection value gi, extracting the aggregate function’s
argument value mi of each item of the created groups and aggregating the mi

values obtained in each group, in order to obtain a single value vi. �

Table 1. HIFUN to SPARQL

46 M.-E. Papadaki et al.

Example 1. Suppose, that we would like to find the total quantities of products,
delivered to each branch during the year. This query would be expressed in
HIFUN and SPARQL respectively, as it is shown in row 2 of Table 1.

Complex Grouping/Measuring Function. A grouping (as well as a measur-
ing) function in HIFUN can be more complex using the following four operations
on functions, that are defined in [23]: pairing (∧), composition (◦), Cartesian
product projection (×) and restriction (/).

These operations form the so called functional algebra [22] and they are well
known, elementary operations except probably for pairing, which works as a
tuple constructor and is defined as follows:

Pairing: Let f : X → Y and g : X → Z be two functions with common domain
X. The pairing of f and g, denoted f ∧ g is a function from X to Y ×Z defined
by: f ∧ g(x) = (f(x), g(x)), for all x in X [23].

Example 2. Suppose, that we ask for the total quantities delivered by branch
and product. The answer to this query Q is a function, associating each pair
(branch, product) with a total quantity. In other words, Q asks for the total
quantities delivered by branch and product and it would be formulated as it is
shown in row 3 of Table 1.

Example 3. Suppose we want the total quantities of products delivered, grouped
by branch and month. Since the attribute of month is a derived one, it would
have to be expressed using the operator of composition. That operator would be
used to combine the attribute of date with that of month. On the other hand, the
corresponding query in SPARQL would be expressed by “extracting” the value
of month from the date by applying the built-in SPARQL function of month,
which operates on date values. These queries would be defined as it is shown in
row 4 of Table 1.

Restricted Query. A query Q in HIFUN can further be enriched by introducing
functional restrictions either at the level of attributes or at the level of query
answers.

Regarding the case of attribute-restricted queries, the restrictions are applied
at the level of the attributes, filtering the results internally and the queries
are defined as shown in row 5 of Table 1. The HIFUN query is evaluated by
computing the restriction e/E (where E is any subset of the Data set D) and
then, the query (e/E, e′, op) over E. On the other hand, in SPARQL the query
is evaluated by specifying the subset of the data set D the user is interested in
(using the FILTER operator, triples patterns, etc.)

Example 4. Suppose, that we would like to find the total quantities of products,
that received by a specific branch e.g. “branch1”, group by product. Then, the
queries would be expressed as shown in row 6 of Table 1. Alternatively, the
restriction could be performed using a triple pattern, by specifying the particular
branch that a delivery invoice took place. In that case, each branch would have

Analytics over RDF Graphs 47

been represented with a URI, e.g. ex : branchi and the constraint would be
defined using triples of the form ?ex : ID ex : takesP laceAt ex : branchi.

The decision between a triple pattern and filter for expressing a restriction
in the inner results of a SPARQL query depends on the way our data has been
represented. The first case concerns data that has been represented with URIs
and the use of triple patterns is preferred. The second one relates to data that
has been produced using literals and in that case, the operator of filter is
applied. This operator is also used in boolean conditions where any unwanted
results should have to be filtered out.

Regarding the case of result-restricted queries, the final result can be filtered
by setting restrictions on them. The queries, in this case, are defined as it is
shown in row 7 of Table 1. The query in HIFUN is evaluated by first evaluating
the query Q = (e, e′, op) over D and then computing the restriction ansQ/F . The
corresponding SPARQL is evaluated and its result is filtered using the HAV ING
operator.

Example 5. Suppose that we would like to find the number of products received
by branch, but only for those branches that received more than 300 products.
The corresponding queries would be expressed as shown in row 8 of Table 1.

6 Application and Implementation

6.1 Defining an Analysis Context over RDF Data

As discussed in Sect. 4.1, in order to define an analysis context D, the query
language of the data source can be exploited. This is required mainly in general-
purpose knowledge bases (as discussed in Sect. 2). Below, we describe some meth-
ods for defining such a context over RDF data. Here, we consider an analysis
context as a pair (E,F), where E is a set of resources (i.e. a set of URIs), and F
is a set of attributes for the objects in E. Such a pair can be defined, as follows:

• Mplain: If the data set D consists only of a single class (say C) and all the
properties have as domain or range that class, the analyst has just to select the
desired subset of these properties. In this case, E = {u ∈ U | (u, rdf:type, C)},
and F is any non empty subset of Props(C) = {u | (p,rdfs:domain,C)} ∪
{u | (p,rdfs:range,C)}. Note that, this case captures data expressed in the
RDF Data Cube format.

• MQLview: The analyst can use a SPARQL SELECT query for defining a view,
having all the attributes required for the analysis. For instance, if v1, . . . vk is
the set of variables in the SELECT part of the query, then E can be considered
to be the set of bindings of v1, while F the bindings of the set of variables
v2, . . . , vk.

• MQLobjects: The analyst can write a SPARQL query for defining only the
objects of interest, i.e. the set E, not their attributes. Then, a tool could be
used to suggest (or let the analyst select) the applicable properties F based
on the schema and/or data. Also, note that the objects of interest E can be
defined explicitly, i.e. by just providing the list of the desired URIs.

48 M.-E. Papadaki et al.

Special Cases. Regarding the MQLobjects case, note that if all the properties
in F have a value for each E and they are single-valued too, then the context
has already been defined. However, there are cases that may require special
handling: (i) there are properties with no value (such cases can occur in MQLview

if the OPTIONAL keyword is used), (ii) the analyst is interested in a path
of properties, not a single property, and (iii) there are properties, which are
multi-valued. To tackle such cases, some transformations may be required. A few
feature operators that could be used in such cases, are indicated in Table 2. That
table lists the nine most frequent Linked Data-based Feature Creation Operators
(for short FCOs), as defined in [15] and they have been re-grouped according to
our requirements. T denotes a set of triples, P a set of properties and p, p1, p2
denote properties. In detail,

• fco1 suits to the normal case, i.e. to properties that are functional, e.g. the
date that each product was delivered, the branch where each invoice took
place, and its value can be numerical or categorical.

• fco2 and fco3 are related to issues that concern missing and multi-valued
properties.

• fco4 can be used for transforming a multi-valued property to a set of single-
valued features, e.g. one boolean feature for each nationality, that a founder
may have.

• fco5 and fco6 relate to the degree of an entity.
• fco7 to fco9 investigate paths in an RDF graph, e.g. whether at least one

founder of a brand is “French”.

Consequently, the aforementioned cases could be handled by transforming
our data set properly, using the feature operators already described. Specifically,
regarding case (i), i.e. properties with empty values, the transformations 2 and 3
of Table 2 could be applied for turning such properties into integers. Concerning
case (ii), the transformations 7 to 9 could be used for specifying a path (a
sequence of properties p1, p2, ..., pn etc.) and handle it as an individual property
p. Finally, relating the case (iii), the transformations 2 to 4 could be used for
inspecting the existence of any multi-valued properties and the conversion of
them to single-valued.

Application of HIFUN in Special Cases. Some of the denoted special cases
can be handled in HIFUN without having previously transformed our data.

For example, regarding the case (ii), where the user may be interested in a
path P of an RDF graph, the operator of the composition (◦) can be used for
expressing such a path in HIFUN i.e. by combining all the attributes of P .

Example 6. Suppose that we would like to find the quantity of sold products per
month, that belong to brands of French founders. The query in HIFUN would
be defined as, ((m ◦ d)/E, q, SUM), where E = {x|x ∈ D ∧ (n ◦ f ◦ br ◦ p)(x)) =
French}.

Example 7. Suppose now that, we would like to find the sum of total sales of
the month “September” grouped by the nationality of the founders. Such a

Analytics over RDF Graphs 49

Table 2. Feature creation operators

id Operator defining fi Type fi(e)

Plain selection of one property

1 p.value num/categ fi(e) = { v | (e, p, v) ∈ T }
For missing values and multi-valued properties

2 p.exists boolean fi(e) = 1 if (e, p, o) or (o, p, e) ∈ T , otherwise

fi(e) = 0

3 p.count int fi(e) = |{ v | (e, p, v) ∈ T }|
For multi-valued properties

4 p.values.AsFeatures boolean for each v ∈ { v | (e, p, v) ∈ T } we get the feature

fiv(e) = 1 if (e, p, v) or (v, p, e) ∈ T ,

otherwise fiv(e) = 0

General ones

5 degree double fi(e) = |{(s, p, o) ∈ T | s = e or o = e}|
6 average degree double fi(e) =

|triples(C)|
|C| s.t. C = { c | (e, p, c) ∈ T }

and triples(C) = {(s, p, o) ∈ T | s ∈ C or o ∈ C}
Indicative extensions for paths

7 p1.p2.exists boolean fi(e) = 1 if ∃ o2 s.t. {(e, p1, o1), (o1, p2, o2)} ⊆ T
8 p1.p2.count int fi(e) = |{ o2 | (e, p1, o1), (o1, p2, o2) ∈ T }|
9 p1.p2.value.maxFreq num/categ fi(e) = most frequent o2 in

{
o2 | (e, p1, o1),

(o1, p2, o2) ∈ T
}

query would be expressed in HIFUN as, ((n ◦ f ◦ br ◦ p)/E, q, SUM) where
E = {x|x ∈ D ∧ (m ◦ d)(x)) = September}.

As regards case (iii), we could apply HIFUN to multi-valued attributes, if we
used “∈” instead of “=” in the restriction. Note that, a multi-valued attribute
should always correspond to a terminal node of a HIFUN context.

Example 8. Suppose that, the attribute of “nationality” is a multi-valued prop-
erty i.e. a person can have more than one nationalities, as shown in the example
of Fig. 1 and we would like to find the quantity of sold products per month,
that belong to brands of French founders. Then, this query would be defined in
HIFUN as,

((m ◦ d)/E, q, SUM), where E = {x|x ∈ D ∧ (n ◦ f ◦ br ◦ p)(x)) ∈ French}.

6.2 Implementation Issues

As regards the specification of the analysis context, the cases of Mplain and
MQLview (as well as the case of CSV files) can be supported by tools like Face-
tize [13], that also offer cleaning functionality, as well as the ability to organize
the values of some dimensions, hierarchically. The case of MQLobjects can be sup-
ported by tools like LODSyndesisML [15], that reads a list of URIs and enrich

50 M.-E. Papadaki et al.

Fig. 3. A few indicative workflows involving HIFUNRDF .

them with attributes, by exploiting several data sets published as Linked Data.
The output of the above tools can be straightforwardly converted to the RDF
Data Cube format.

In our work, we have currently developed a tool, called HIFUNRDF which
applies the HIFUN query language to RDF data. For the time being, only data
in the RDF Data Cube format is supported. In order to execute a query, the
user should define: (1) the grouping function, (2) the measuring function, (3)
the aggregate operation, and optionally, (4) set restrictions to the grouping,
the measuring functions or to the final results. The inserted values are used to
construct the corresponding HIFUN query, which is subsequently converted to
the respective SPARQL. The latter is executed on the triple store OpenLink
Virtuoso7 (where the input data has been uploaded) and the returned results
are saved in a .csv file, in the form of - var1, var2, ..., vari, TOTALS. Indicative
flows between HIFUNRDF and other tools are illustrated in Fig. 3.

Now, we are in the process of extending our application, to support analytics
over RDF data in general (and not only to data expressed in the RDF Data
Cube format). We are designing an interface, that will let the user specify the
analysis context (as well as the required transformations) and formulate the
HIFUN query, interactively. After that step, we will focus on the visualization of
the results, probably by extending the visualization method presented in [21]8.

7 Concluding Remarks

In this paper, we examined the basics for applying HIFUN over RDF data. We
described methods for defining the context of analysis over an RDF graph and
we showed how HIFUN queries can be translated to SPARQL. Moreover, we
described, in brief, a first implementation of the approach that, for the time
being, can be applied to data expressed in the RDF Data Cube format. In the
future, we plan to investigate, more complex queries and OLAP-style operations
7 https://virtuoso.openlinksw.com/.
8 http://www.ics.forth.gr/isl/3DLod/.

https://virtuoso.openlinksw.com/
http://www.ics.forth.gr/isl/3DLod/

Analytics over RDF Graphs 51

over RDF graphs including the interplay with hierarchies and inference. Besides,
we plan to design a graphical user interface appropriate for applying HIFUN to
RDF data, and to further work on the visualization part of the analytical results.

References

1. Abelló, A., et al.: Fusion cubes: towards self-service business intelligence. Int. J.
Data Warehous. Min. (IJDWM) 9, 66–88 (2013)

2. Antoniou, G., Van Harmelen, F.: A Semantic Web Primer. MIT Press, Cambridge
(2004)

3. Beheshti, S.-M.-R., Benatallah, B., Motahari-Nezhad, H.R.: Scalable graph-based
OLAP analytics over process execution data. Distrib. Parallel Databases 34(3),
379–423 (2014). https://doi.org/10.1007/s10619-014-7171-9

4. Colazzo, D., Goasdoué, F., Manolescu, I., Roatiş, A.: RDF analytics: lenses over
semantic graphs. In: Proceedings of the 23rd International Conference on World
Wide Web (2014)

5. Etcheverry, L., Vaisman, A.A.: Enhancing OLAP analysis with web cubes. In:
Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) ESWC 2012.
LNCS, vol. 7295, pp. 469–483. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-30284-8 38

6. Etcheverry, L., Vaisman, A.A.: QB4OLAP: a new vocabulary for OLAP cubes
on the semantic web. In: Proceedings of the Third International Conference on
Consuming Linked Data (2012)

7. Etcheverry, L., Vaisman, A.A.: Querying semantic web data cubes. In: AMW
(2016)

8. Etcheverry, L., Vaisman, A.A.: Efficient analytical queries on semantic web data
cubes. J. Data Semant. 6(4), 199–219 (2017). https://doi.org/10.1007/s13740-017-
0082-y

9. Inoue, H., Amagasa, T., Kitagawa, H.: An ETL framework for online analytical
processing of linked open data. In: Wang, J., Xiong, H., Ishikawa, Y., Xu, J., Zhou,
J. (eds.) WAIM 2013. LNCS, vol. 7923, pp. 111–117. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38562-9 12

10. Isaac, A., Haslhofer, B.: Europeana linked open data-data. europeana. eu. Semant.
Web 4, 291–297 (2013)

11. Kämpgen, B., Harth, A.: Transforming statistical linked data for use in OLAP
systems. In: Proceedings of the 7th International Conference on Semantic Systems
(2011)

12. Kämpgen, B., O’Riain, S., Harth, A.: Interacting with statistical linked data via
OLAP operations. In: Simperl, E., et al. (eds.) ESWC 2012. LNCS, vol. 7540, pp.
87–101. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46641-4 7

13. Kokolaki, A., Tzitzikas, Y.: Facetize: an interactive tool for cleaning and transform-
ing datasets for facilitating exploratory search. arXiv preprint arXiv:1812.10734
(2018)

14. Mountantonakis, M., Tzitzikas, Y.: On measuring the lattice of commonalities
among several linked datasets. Proc. VLDB Endow. 9, 1101–1112 (2016)

15. Mountantonakis, M., Tzitzikas, Y.: How linked data can aid machine learning-
based tasks. In: Kamps, J., Tsakonas, G., Manolopoulos, Y., Iliadis, L., Karydis, I.
(eds.) TPDL 2017. LNCS, vol. 10450, pp. 155–168. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-67008-9 13

https://doi.org/10.1007/s10619-014-7171-9
https://doi.org/10.1007/978-3-642-30284-8_38
https://doi.org/10.1007/978-3-642-30284-8_38
https://doi.org/10.1007/s13740-017-0082-y
https://doi.org/10.1007/s13740-017-0082-y
https://doi.org/10.1007/978-3-642-38562-9_12
https://doi.org/10.1007/978-3-662-46641-4_7
http://arxiv.org/abs/1812.10734
https://doi.org/10.1007/978-3-319-67008-9_13
https://doi.org/10.1007/978-3-319-67008-9_13

52 M.-E. Papadaki et al.

16. Mountantonakis, M., Tzitzikas, Y.: LODsyndesis: global scale knowledge services.
Heritage 1, 335–348 (2018)

17. Mountantonakis, M., Tzitzikas, Y.: Scalable methods for measuring the connectiv-
ity and quality of large numbers of linked datasets. J. Data Inf. Qual. (JDIQ) 9,
1–49 (2018)

18. Mountantonakis, M., Tzitzikas, Y.: Large scale semantic integration of linked data:
a survey. ACM Comput. Surv. (CSUR) 52, 1–40 (2019)

19. Nebot, V., Berlanga, R.: Building data warehouses with semantic web data. Decis.
Support Syst. 52, 853–868 (2012)

20. Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig Latin: a not-so-
foreign language for data processing. In: Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data (2008)

21. Papadaki, M.-E., Papadakos, P., Mountantonakis, M., Tzitzikas, Y.: An interactive
3D visualization for the LOD cloud. In: EDBT/ICDT Workshops (2018)

22. Spyratos, N.: A functional model for data analysis. In: Larsen, H.L., Pasi, G., Ortiz-
Arroyo, D., Andreasen, T., Christiansen, H. (eds.) FQAS 2006. LNCS (LNAI), vol.
4027, pp. 51–64. Springer, Heidelberg (2006). https://doi.org/10.1007/11766254 5

23. Spyratos, N., Sugibuchi, T.: HIFUN - a high level functional query language for
big data analytics. J. Intell. Inf. Syst. 51(3), 529–555 (2018). https://doi.org/10.
1007/s10844-018-0495-6

24. Spyratos, N., Sugibuchi, T.: Data exploration in the HIFUN language. In:
Cuzzocrea, A., Greco, S., Larsen, H.L., Saccà, D., Andreasen, T., Christiansen,
H. (eds.) FQAS 2019. LNCS (LNAI), vol. 11529, pp. 176–187. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-27629-4 18

25. Thusoo, A., et al.: Hive-a petabyte scale data warehouse using hadoop. In: 2010
IEEE 26th International Conference on Data Engineering (ICDE 2010) (2010)

26. Tzitzikas, Y., et al.: Integrating heterogeneous and distributed information about
marine species through a top level ontology. In: Garoufallou, E., Greenberg, J.
(eds.) MTSR 2013. CCIS, vol. 390, pp. 289–301. Springer, Cham (2013). https://
doi.org/10.1007/978-3-319-03437-9 29

27. Wang, K., Xu, G., Su, Z., Liu, Y.D.: GraphQ: graph query processing with abstrac-
tion refinement-scalable and programmable analytics over very large graphs on a
single {PC}. In: 2015 Annual Technical Conference 2015 (2015)

28. Zapilko, B., Mathiak, B.: Performing statistical methods on linked data. In: Inter-
national Conference on Dublin Core and Metadata Applications (2011)

29. Zhao, P., Li, X., Xin, D., Han, J.: Graph cube: on warehousing and OLAP mul-
tidimensional networks. In: Proceedings of the 2011 ACM SIGMOD International
Conference on Management of Data (2011)

https://doi.org/10.1007/11766254_5
https://doi.org/10.1007/s10844-018-0495-6
https://doi.org/10.1007/s10844-018-0495-6
https://doi.org/10.1007/978-3-030-27629-4_18
https://doi.org/10.1007/978-3-319-03437-9_29
https://doi.org/10.1007/978-3-319-03437-9_29

Incremental Evaluation of Continuous Analytic
Queries in HIFUN

Petros Zervoudakis1(B), Haridimos Kondylakis1, Dimitris Plexousakis1,
and Nicolas Spyratos2

1 Institute of Computer Science, FORTH, Heraklion, Greece
{zervoudak,kondylak,dp}@ics.forth.gr

2 Laboratoire de Recherche en Informatique, UMR8623 of CNRS, Universite Paris-Sud 11,
Orsay, France

Nicolas.Spyratos@lri.fr

Abstract. A huge amount of data is generated each day from various sources.
Analysis of these massive data is difficult, and requires new forms of processing
to enable enhanced decision making, insight discovery and process optimization.
In addition, besides their ever increasing volume, datasets change frequently, and
as such, results to continuous queries have to be updated at short intervals. In
this paper, we address the problem of evaluating continuous queries over big data
streams that are frequently updated, adopting HIFUN, a high-level query language
introduced recently. HIFUNoffers a clear separation between the conceptual layer,
where analytic queries are defined independently of the nature and location of data,
and the physical layer where queries are evaluated, by encoding them as map-
reduce jobs or as SQL group-by queries. Using HIFUN, we devise an algorithm
for incremental processing of continuous queries, processing only the most recent
data partition, and exploiting already computed information, without requiring
evaluating the query over the complete dataset. Subsequently, we translate the
generic algorithm to both SQL and MapReduce using SPARK, exploiting the
query rewriting method provided by HIFUN. The experiments performed show
the advantages of our solution in terms of query answering efficiency.

Keywords: Big data · Data analytics · Incremental processing · Query language

1 Introduction

Data emanating from high-speed streams is progressively prevalent in today’s data
ecosystem. Example data streams, that are rapidly updated, include bank transactions,
network traffic data, IoT data, the Linked Open Cloud [1, 2] and so on. In order to extract
knowledge, find useful patterns, and act on information present in these streams, the data
need to be rapidly analyzed and processed. However, this is a challenge, when new data
arrive continuously at high speed, and efficient data processing algorithms are needed.

The research community has already provided open-source distributed batch pro-
cessing systems like Hadoop [3] and MapReduce [4], that allow query processing over
static and historical datasets, enabling scalable parallel analytics. To this direction, Spark

© Springer Nature Switzerland AG 2020
G. Flouris et al. (Eds.): ISIP 2019, CCIS 1197, pp. 53–67, 2020.
https://doi.org/10.1007/978-3-030-44900-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44900-1_4&domain=pdf
https://doi.org/10.1007/978-3-030-44900-1_4

54 P. Zervoudakis et al.

[5] has emerged on top of Hadoop, and has gained traction, with many advantages such
as fault tolerance and efficient data processing - exploiting main memory storage. How-
ever, even with those technologies, processing and analyzing big volumes of data is not
efficient enough, in scenarios that need rapid response to change over continuous data
streams [6]. Consequently, a large amount of research works focus on stream processing,
developing streaming engines such as Spark Streaming [7], Spark Structured Stream-
ing [8], Storm [9], Flink [10], and Google Data Flow [11]. Processing of continuous
queries is a major challenge in a streaming context. A continuous query is a query which
is evaluated automatically and periodically over a dataset that changes over time [12].
The results of continuous queries are usually fed to dashboards, in large enterprises, to
provide support in the decision-making process.

As new data and updates arrive at a high rate, query re-evaluation from scratch
can incur significant delays. Therefore the problem is how to evaluate the query incre-
mentally, that is, given the answer of the query at time t, on dataset D, how to find
the answer of the query at time t′ on dataset D′, assuming that the answer at time t
has been saved and results become stale and stagnant over time. Incremental process-
ing is an auspicious approach for refreshing mining results as it uses previously saved
results, to avoid the cost of re-computation from scratch. There is an obvious relationship
between continuous queries and materialized views [13], since a materialized view is a
derived database relation whose contents are periodically updated by either a complete
or incremental refresh. Incremental view maintenance methods [14, 15] exploit differ-
ential algorithms to re-evaluate the view expression in order to enable the incremental
update of materialized views.

In our case, we study this problem in the context of HIFUN, a recently proposed high
level functional language of analytic queries [16, 17]. Two distinctive features of HIFUN
are that (a) analytic queries and their answers are defined and studied in the abstract,
independently of the structure and location of the data and (b) each HIFUN query can be
mapped either to a map-reduce job or to an SQL group-by query. Our approach exploits
both the Spark Streaming and the Spark Structured Streaming in the physical level to
implement an incremental evaluation algorithm using HIFUN semantics. More specifi-
cally our contributions in this paper are the following: (a) we use the HIFUN language
to define the continuous query problem in the abstract and give a generic algorithm for
its solution, (b) we translate the generic algorithm to both SQL and MapReduce and (c)
we implement the generic algorithm in SPARK (both, SQL and MapReduce) using the
query rewriting method provided by HIFUN.

The experimental results indicate that, in terms of performance, our implementation
is at least as good as the conventional ones. To the best of our knowledge our approach
is unique in presenting incremental algorithms for both the high-level HIFUN language
and the corresponding low-level mapping of those algorithms to the map-reduce and the
group-by SQLmodels. The remaining of the paper is organized as follows. In Sect. 2, we
present the theoretical framework and the query languagemodel used. Then in Sect. 3,we
describe our algorithms for incremental evaluation of continuous queries at the HIFUN
level and in Sect. 4 the corresponding implementation at the physical level. In Sect. 5, we
evaluate our system and, finally, in Sect. 6 we conclude the paper and discuss possible
directions for future work.

Incremental Evaluation of Continuous Analytic Queries in HIFUN 55

2 The Query Language Model

In this section, we describe briefly the conceptual model of the HIFUN language. The
model offers a clear separation between the conceptual and the physical level, which
means that it can be used to define analytic queries and their evaluation independently
of the specific nature and location of the data sets (structured, unstructured, centrally
stored or distributed). For more details on the HIFUN language the interested reader is
referred to the relevant papers [16, 17].

Analysis Context. The basic notion used in HIFUN is that of attribute of a dataset. In
HIFUN, an attribute is seen as a function from the dataset to some domain of values. For
example, if the dataset D is a set of tweets, then the attribute “character count” (denoted
as cc) is seen as a functions cc:D → Count such that, for each tweet t, cc(t) is the number
of characters in t.

Fig. 1. Analysis context example Fig. 2. A query Q and its answer ansQ

Let us see an example to motivate the definition of a HIFUN query. Consider a
distribution center (e.g. Walmart) which delivers products of various types in a number
of branches and suppose D is the set of all delivery invoices collected over a year. Each
delivery invoice has an identifier (e.g. an integer) and shows the branch in which the
delivery took place, the date of delivery, the type of product delivered (e.g. CocaLight)
and the quantity (i.e. the number of units delivered of that type of product). There
is a separate invoice for each type of product delivered; and the data on all invoices
during the year are stored in a data warehouse for analysis purposes. The information
provided by each invoice wouldmost likely be represented as a record with the following
fields: Invoice number, Branch, Date, Product, Quantity. In the HIFUN approach, this
information is seen as a set of four functions, namely d, b, p and q, as shown in Fig. 1,
where D stands for the set of all invoice numbers and the arrows represent attributes
of D. Following this view, given an invoice number, the function d returns a date, the
function b a branch, the function p a product type and the function q a quantity (i.e.
the number of units of that product type). The attributes d, b, p and q of our running
example are “direct” attributes of D in the sense that their values appear on the delivery
invoices. However, apart from these attributes, analysts might be interested in attributes
that are not direct but can be “derived” from the direct attributes. Figure 1 also shows the
direct attributes with several derived attributes: attribute m can be derived from attribute
d (e.g. from the date 24/10/1992 one can derive the month 10/1992); and attribute c can

56 P. Zervoudakis et al.

be derived from a product master table. The set of all attributes (direct and derived) that
are of interest to a group of analysts is called an analysis context (or simply a context).

Query Definition. A query is defined to be an ordered triple Q = (g, m, op) such that
g and m are attributes of the dataset D, and op is an aggregate operation on m-values.
The attributes g and m are called “grouping attributes” and “measuring attributes”
respectively. Formally, we have the following definition: let D be a finite set of data
items, such that D = {d1, . . . , dn}. An analytic HIFUN query over D is an ordered triple
Q = (g, m, op), where g is a function with domain the set D and range a set A, m is a
function with domain the set D and range a set V, and op is an operation over V taking
its values in a set W. If {a1, . . . , an} is a set containing the values of g over D (clearly
k <= n), then we call grouping of D by g, the partition πg = {

g−1(a1), . . . , g−1(ak)
}

induced by g on D. The reduction of m with respect to op, denoted red(m, op) is a value
of W defined as red(m, op) = op(< m(d1), . . . , m(dn) >). On the basis of the above
definitions, the answer to Q, denoted as ansQ , is a function from the set of values of
g to W defined by ansQ(ai) = red

(
m/g−1(ai), op

)
, i = 1, 2, . . . , k. Figure 2 shows

the relationship between the function ansQ and the functions appearing in the query
Q = (g, m, op).

A query Q = (g, m, op)overD can be enriched by introduction functional restriction
at either of two levels: at the level of attributes or at the level of the query answer. An
attributed-restricted query is defined as Q = (g/E, m, op), whereE is any subset ofD. It
is evaluated by computing the restriction g/E and then evaluating the query (g/E, m, op)

over E. A result-restricted query is defined as Q = (g, m, op)/F , where F is any subset
of the target of the domain of definition of ansQ . It is evaluated by evaluating the query
Q = (g, m, op) over D, to obtain its answer ansQ , and then computing the restriction
ansQ/F .

Fig. 3. An analytic query and its answer

Analysts can express analytic queries within their context by defining triples of
the form (g, m, op), where g and m are attributes of any node of the context. Also,

Incremental Evaluation of Continuous Analytic Queries in HIFUN 57

complex grouping functions can be defined, using the following three functional algebra
operations: composition(◦), pairing (∧), restriction(/) and Cartesian product projection.

Returning to our running example, assume that we want to know the total quantity
delivered to each branch only for month ‘December’. Formally, this query is written as
Q = (b/E, q, sum), where E = {x |x ∈ D∧(m◦d)(x) = ‘December’}. This computa-
tion needs only three functions, namely b, q and m°d among the set of functions that are
defined in context of Fig. 1. Figure 3(a) illustrates an example of the data returned by b,
q and m°d and the computations needed during the query evaluation process. In order
to find the total quantity by branch for month “December”, the following steps should
be executed: (a) Grouping: The grouping based on b/E creates a group for each branch
which is different than the obtained when grouping is based on b. During this step, all
invoices that happened in month ‘December, referring to the same branch are grouped
together; (b) Measuring: In each group computed during the previous step, we find the
quantity corresponding to each invoice by extracting the value using the function q. (c)
Reduction: For each group, we sum up the quantities. Then the relation of each branch
to the corresponding total quantity is the evaluation of query Q, illustrated in Fig. 3(b).

Query Rewriting. The formal model of HIFUN supports also query rewriting. An
incoming query can be rewritten to other queries possibly reducing evaluation cost,
based on the basic idea that a functional expression, when used as a grouping function,
can be equivalently rewritten to other expressions. This observation leads to our basic
rewriting rule for queries that have a common measuring function and operation but
different grouping functions and require that the aggregate operation to be distributive.
To see intuitively how the basic rewriting rule works, consider the following queries
on the context of Fig. 1. The query Q = (p, q, sum) asking the totals by product and
the query Q

′ = (c◦ p, q, sum) asking for the totals by category. Clearly, the query Q′
can be answered directly, following the abstract definition of answer (i.e. by grouping,
measuring and reduction). However, Q′ can also be answered, if we know (a) the totals
by product and (b) which products are in which category. Then all we have to do is to
sum up the totals by product in each category to find the totals by category. Now, the
totals by product are given by the answer to Q, and the association of products with
categories is given by the function c. Therefore, the query Q′ can be answered by the
following query Q′′, which uses the answer of Q as its measure : Q′′ = (

c, ansQ, sum
)
,

asking for the sum of product totals by category. Note that the query Q′′ is well formed
as c and ansQ have Product as their (common) source. Besides the basic rewriting rule,
other such rules are available [17].

Conceptual Query Evaluation Scheme. Using the batch processing approach we first
have to store the available data and then evaluate the query. In detail, the following steps
have to be followed:

a. Query Input Preparation. IN(Q) denotes the set of tuples which contain the infor-
mation for evaluating query Q, independently of whether the dataset is centrally or
distributed stored. In this step k sets of tuples I1, . . . , I k are returned, that form a
partition π I N(Q) of the input I N(Q), where each tuple contains a data item iden-
tifier and the values of its attributes g and m, including the values of any possible
attributes contained in the query restrictions.

58 P. Zervoudakis et al.

b. Attribute Filtering. If there are no attribute restrictions on query definition, this step
is skipped. Elsewhere, filtering is performed on IN(Q) tuples according to the query
attribute restrictions.

c. π g Construction. This step constructs the partition π g = {G1, . . . , Gn}, as it was
previously defined in the query definition. The reduction of π g will produce the
answer to the query.

d. π g Reduction. Once the block G j has been constructed, it can be reduced by the
operation defined in the query definition, to obtain the answer on the value g j of g:
ansQ(gi) = red (m/Gj, op).

e. Result Filtering. If there are no result restrictions on query definition, this step is
skipped. Elsewhere filtering is performed on ansQ according the restriction on the
query results.

In our running example, the query Q = (b/E, q, sum), where E = {x |x ∈
D∧(m◦d)(x) = ‘December’} is mapped to the aforementioned conceptual schema as
illustrated in Fig. 4.

Fig. 4. The conceptual schema steps

3 Incremental Computation

In this section, we show how we can use the HIFUN language to incrementally evaluate
continuous queries. An important common feature of real-life applications is that the
input data continuously grow and old data remain intact. As such, for the rest of this paper
we assume that the dataset being processed can only increase in size between successive
time moments t and t′. In such a scenario, the idea of incremental computation of a
continuous query is to use the results of an already performed computation on old data
and evaluate the query only on the lately appended data, merging eventually new and
previous results.

Figure 5 illustrates our proposed incremental approach for continuous queries – the
same query asked two times. We perceive the problem of incremental evaluation as
follows: given the answer of a query Q at time t, on dataset D, find the answer of the
query at time t′ on data set D′, where D′ = D + ΔD, by evaluating the query only on
ΔD and reusing the answer on D.

Now assume that the function ansQ is the answer on D of Q at time t, including K
groups of answers, and that the function incrQ is the answer on �D = D

′
/D of Q at

Incremental Evaluation of Continuous Analytic Queries in HIFUN 59

Fig. 5. Incremental computation over an append-only data set.

time t′, including the K′ groups of answers. If the reduction operation op is a distributive
operation, the answer ans′ of query Q at time t′, is evaluated as follows:

• op = sum: ans′(i) = ans(i) + incr(i) if i is in K ∩ K′;
ans(i) if i is in K\K′; incr(i) if i is in K′\K

• op = min: ans′(i) = min(ans(i), incr(i)) if i is in K ∩ K′;
ans(i) if i is in K\K′; incr(i) if i is in K′\K

• op = max: ans′(i) = max(ans(i), incr(i)) if i is in K ∩ K′;
ans(i) if i is in K\K′; incr(i) if i is in K′\K

• op = count: ans′(i) = ans(i) + incr(i) if i is in K ∩ K′;
ans(i) if i is in K\K′; incr(i) if i is in K′\K

Aggregate operations operate on a set of values to compute a single value as a result
[18].Distributive aggregate operations are thosewhose computation canbe“distributed”
and be recombined using the distributed aggregates.All the operations that are previously
described are distributive. This means that if the data are distributed into n sets, and
we apply the aforementioned distributive operation to each one of them (resulting in n
aggregate values), the total aggregate operation can be computed for all data by applying
the aggregate operation for each subset and then combining the results. For example:
sum (1, 2, 3, 4, 5) = sum (sum (1, 2), sum (3, 4, 5)).

We also support non-distributive aggregate operations such as the average as: avg
(1, 2, 3, 4, 5) �= avg (avg (1, 2), avg (3, 4, 5)). Non-distributive aggregate operations
can be computed by algebraic functions that are obtained by applying a combination of
distributive aggregate functions. For example, the average can be computed by summing
a group of numbers and then dividing by the count of those numbers. Both, sum and
count are distributive operations. More specifically:

• op = avg: ans′(i) = ans(i) if i is in K\K′; ans′(i) = incr(i) if i is in K′\K

60 P. Zervoudakis et al.

ans′(i) = ansop=sum (i)+incrop=sum (i)
ansop=count (i)+incrop=count (i)

if i is in K ∩ K′

Finally, there are additional aggregate operations, whose computation requires look-
ing at all the data at once, and hence their evaluation cannot be decomposed into smaller
pieces. Common examples of this type of aggregate operations include median and
count-distinct. However, we leave those operations for future work.

Now consider the example illustrated in Fig. 6. We would like to know the total
quantity delivered to each branch during the month December. At time t the query was
evaluated over the dataset D, returning the function ansQ: Branch → T ot Qty, as the
answer of Q. Then, at time t′ the query was again evaluated over only the dataset ΔD,
returning the function incrQ: Branch → T ot Qty, as the answer of Q on ΔD. In this
case, the aggregate operation is the distributive operation sum. As such, we can produce
the ans

′
Q on time t′ merging the functions ansQ and incrQ as follows: The groups that

appear only in K, which are the groups returned by the query Q at time t on D, are
transferred directly to the result of ans

′
Q . The groups that appear only in K′, which are

the groups of the query Q at time t′ on ΔD, are transferred directly to the result of ans
′
Q .

The distributive operation sum is applied when the groups appear in the intersection of
K and K′. For example, the key Br-2 appears in both K and K′, therefore the answer
ans

′
Q for that key resulting as sum (400 + 200) = 600.

Fig. 6. Incremental evaluation on our running example.

As already mentioned, HIFUN offers query rewriting which is possible to reduce
the evaluation cost. Assume for example the context of Fig. 1 and the rewritten query
Q = (c, (p, q, sum), sum). Assume also that the rewritten query Q has already been
evaluated onD at time t and the function ansQ: Category → T otals is the answer ofQ.
Figure 7 shows howwe leverage the basic rewriting rule, to evaluate the queryQ onΔD at
time t′. The rewriting rule requires the evaluation of the base query Qbase = (p, m, sum)

only on ΔD at time t′. The query Qbase. is executed and the answer is returned as
ansQbase : Product → TotQty. Therefore, the query Q can be answered on ΔD at time t′
by evaluating the following query Q′ = (c, ansQbase , sum). The answer of the rewritten
query Q

′
, (the equivalent query of Q on ΔD) is computed by combining the function

incr
′
Q on ΔD at time t′ and the function ansQ on D at time t as previously described.

Incremental Evaluation of Continuous Analytic Queries in HIFUN 61

Fig. 7. Example of rewritten query

4 System Implementation

As already shown, HIFUN queries can be defined at the conceptual level independent
of the nature and the location of the data. These queries can be evaluated by encoding
them either as map-reduce jobs or SQL group-by queries, depending on the nature of
the available data. In this section, we show how to physically evaluate a HIFUN query
processing live data streams. This is implemented using two different physical layer
mechanisms: (1) the Spark Streaming [6] and (2) the Spark Structured Streaming [7].
Both mechanisms support the micro-batching concept - fragmentation of the stream as
a sequence of small batch chunks of data. On small intervals, the incoming stream is
packed to a chunk of data and is delivered to the system to be further processed [18].

4.1 Micro-batch Stream Processing

In themicro-batching approach, as a dataset continuously grows, and as newdata become
available, we process the tuples in discrete batches. The batches are processed sequen-
tially and as a highvolumeof tuples canbeprocessedpermicro batch, the aforementioned
mechanism uses parallelization to speed up data processing. As such, we assume an ini-
tial dataset Di which is followed by a continuous stream of incremental batchesΔDi that
arrive at consecutive time intervals Δt. As we already explained, incremental evaluation
wouldproduce thequery results at time t+Δt by simply combing thequery results at time
t, with the results from processing the incremental batches ΔDi . Two key observations
should be made here. The first is that computations needed are solely performed within
the specific batch, following the evaluation scheme described in the previous section.
Therefore, for every batch interval we calculate a result based on delta subset ΔDi ,
e.g. incri ← e(ΔDi). The second observation is that a state should be kept across all
batches. Stateful processing is able to handle unbounded streams of data. After the eval-
uation of each query is completed for each micro-batch, we need to keep the state across
all batches. The previous state value and the current delta result are merged together and
the system produces a new state incrementally, e.g. state ← u(incri , state). Figure 8,
illustrates this incremental approach.

62 P. Zervoudakis et al.

Fig. 8. State maintenance.

4.2 Continuous HIFUN Query to MapReduce

Our conceptual evaluation scheme is first implemented using theMap-Reduce program-
ming model over the physical layer, exploiting Spark Streaming. Spark Streaming is a
stream processing framework based on the concept of discretized streams and provides
the DStream API which accepts sequences of data arriving over time. The API imple-
ments the micro-batch stream processing approach with periodic checking of internal
state at each batch interval. Internally, each DStream item is a sequence of data called
Resilient Distributed Datasets (RDDs), kept in main memory. The batch interval value
can also be set to specify how often an input RDD is generated. In the following, we
describe in detail themapping of our conceptual schema earlier presented for incremental
computation to the physical layer.

4.3 Conceptual Schema to MapReduce

In this section we elaborate on the generic query evaluation scheme, described in Sect. 2,
presenting details on its implementation over the physical layer:

a. Query Input Preparation. In this step, a set of attributes - which are included in
grouping and measuring part of Q - are used to extract the necessary information
from the unstructured dataset received as input. Then, the IN(Q) set is computed
based on the identified attributes for each record. To this propose, we iterate over all
input records of the DStream and return a new version which contains preprocessed
information for the next evaluation steps.

b. Attributes filtering. If attribute restrictions exist, this step filters out the correspond-
ing DStream tuples. The filter method returns a new DStream containing only the
elements that satisfy those restrictions.

c. πg construction: To construct the grouping part πg , each mapper, receives the tuples
to be used for extracting the key-values pairs from each data item. The result of this
step, is a new PairDStream which contains key-value pairs (K, V). The key K is
the value of the grouping attribute of each data item, or the value of the grouping
attributes, if the domain of ansQ is a cartesian product of two or more grouping
attributes. The value V is the value of the measuring attribute of each data item.

d. πg reduction. In this step, each reducer uses the query operation op to reduce the
set of key-value pairs received. The reduce-by-key method is applied and a new
DStream is returned.

Incremental Evaluation of Continuous Analytic Queries in HIFUN 63

e. Result filtering. If result restrictions exist, this stepfilters out the tuples of theDStream
that don’t conform to the query restrictions. The filter method is applied on DStream
and a new DStream is returned containing only the elements that satisfy the queried
predicates.

Assume now the following HIFUN query Q = (k, u, op), where k and u are the
functions used by the mappers to extract the key-value pairs during the input preparation
step, and op is the operation applied by the reducers. If k = g°f is the composition of
the two functions, then the query Q can be rewritten under the basic rewriting rule as
follows: Q

′ = (g, (f, u, op), op). This implies that the initial query Q can be rewritten
as a sequence of the two other queries. The base query Qbase = (f, u, op) should be
executed first. The resulting query Q

′ = (
g, ansQbase , op

)
should then be executed as

follows: the mapper used to construct the key-values pairs is using the association of f
with g, that is provided by the function g, and then, the reducer applies the reduction by
the operation op on the set of constructed key-pairs.

Independent ofwhetherQ is evaluated as is, or if is rewritten under the basic rewriting
rule, the produced answer is a function from a domain of values to a set of values. The
domain of values is a set of keys, each of those correlated with the key of the query.
The incremental algorithm examines the set of keys independently of whether those
keys occurred after evaluating the original query Q or the rewritten one. In the next
subsection, the details of the incremental evaluation are provided.

4.3.1 Incremental Evaluation
The aforementioned jobs are executed using Spark Streaming for each incoming micro-
batch.When a query is executed, an answer is produced for a micro-batch and a DStream
is created, encapsulating a key-value pair in the form of a DStream [(K, V)], where k
is the key of the continuous query that appears in the current micro-batch and V is the
value of the reduction operation. We have to note that we maintain the state across the
micro-batches (using the mapWithState method), using the key-value pairs produced
from each micro-batch. As such, we are able to execute partial updates for only the
newly arrived keys in the current micro-batch, initiating the computations only for the
records that need to be updated. The state information is stored as a mapWithStateRDD,
thus benefiting from the distribution’s efficiency and effectiveness of Spark.

4.4 Translating Continuous HIFUN Queries to SQL

In this section, we explain how a HIFUN query can be evaluated. We describe how
we map the conceptual evaluation schema to the existing physical level mechanism
using the semantics of the SQL exploiting group-by SQL queries of Spark Structured
Streaming. The basic idea in Structured Streaming is treating continuously arriving data,
as a table, that is being continuously appended. Structured Streaming runs in a micro
batch execution model as well. Spark waits for a time interval and batches together
all events that were received during that interval. The mapping mechanism defines a
query on the input table, as if it was a static table, computing a result table that will be
updated through the data stream. Spark automatically converts this batch-like query to
a streaming execution plan. This is called instrumentalization: Spark figures out what

64 P. Zervoudakis et al.

needs to be maintained to update the result each time a new batch arrives. At each time
interval, Spark checks for new rows in the input table and incrementally updates the
result. As soon as a micro-batch execution is complete, the next batch is collected and
the process is reapplied.

In [13] and [16] is already shown how HIFUN queries can be mapped to SQL
group-by queries. To evaluate the attribute- and result restricted HIFUN query Q =
(gA/E, m B, op)/F , where E = {x in D/gA (x) = ‘ABC’} and F = {yin A/ansQ(y) <

123}, assume that the attributes A and B appears in the same table T. Figure 9 shows the
correspondence between our conceptual evaluation scheme and evaluation by a group-
by sql query. For computing queries on streaming data we apply similar techniques to
batch computation on static data. The Spark SQL engine executes this incrementally and
continuously updates the result as streaming data arrive.

Fig. 9. The group-by SQL query decomposed into steps of our evaluation schema.

For executing the rewritten query Q = (g, (f, u, op), op) using SQL, the base
query Qbase = (f, u, op) should be first executed, using the mapping of the Qbase to
the corresponding SQL group-by query, producing the intermediate table. To evaluate
the result query (g, ansbase, op), the intermediate table is joined with the table that
contains the grouping attribute g, and the aggregation function is applied on the column
that contains the result of the aggregation of the base query.

5 Experimental Results

We expect that implementing an incremental query evaluation mechanism will result in
a significant improvement to the overall query evaluation performance. In the following
experiments, we compare our incremental approach with the batch processing approach
and we present the effectiveness of the query rewritings.

To perform our evaluation we generated a synthetic dataset, using the analysis con-
texts shown in Fig. 10. In the case of theMapReduce execution model, the source dataset
is provided as a single text file, whereas in the case of the SQL execution model, we
transform the dataset into the corresponding relational schema.

In order to evaluate the effectiveness of the incremental evaluation of a query, we
define the following query Q = (g1, m, sum).. We begin our experiments with an
initial dataset of 80M records. That dataset continuously grows over time and in each
batch, 80M new records are added to the existing dataset. Using this dataset, the batch
computation approach looks at the entire dataset each time as new data is available to be
processed. The incremental approach on the other hand, only examines the new incoming

Incremental Evaluation of Continuous Analytic Queries in HIFUN 65

Fig. 10. Analysis context of the unstructured and structured synthetic dataset.

data and incorporates the increment in the result. Figure 11 shows the performance of
the two approaches when the HIFUN query is evaluated using MapReduce jobs or
group-by SQL queries. The results show that using the incremental approach we gain
a great benefit: while the dataset grows over a time, the evaluation cost remains stable
independent of the overall increase in data size. In contrast,when thequeries are evaluated
over the whole batch of data, the evaluation cost increases as the size of the input batch
data increases as well.

Fig. 11. Evaluation of continuous HIFUN query

Now we present another experiment on the unstructured increasing dataset
described by the context of Fig. 10. We define the following set of queries Q ={(

g◦
11g1, m, sum

)
, . . . ,

(
g◦
15g1, m, sum

)}
containing five queries, all of them having the

same distributive operation applicable on the same measuring attribute m. As described
in the previous sections, Q can be equivalently rewritten using the basic rewriting rule as
follows Q′ = {(g11, (g1, m, op), sum), . . . , (g15, (g1, m, op), sum)}. The rewritten set
Q′ consists of five queries and each one uses the answer of (g1, m, op) as its measure.

66 P. Zervoudakis et al.

To investigate the effectiveness of the rewriting rule, we run the experiments for a set Q′
starting initially with one query and adding each time another one, till we reach a total
number of five queries to be executed each time. We notice that using the basic rewriting
rule we have real efficiency benefits, as more queries participate in the rewritten Q′.
Table 1 shows the average evaluation time of the rewritten set Q′ presenting the number
of the queries issued each time. The average evaluation time is the average time to eval-
uate incrementally the set of the continuous queries over our synthetic dataset scenario.
The result shows that although the number of the queries that should be answered each
time increases, the average time for evaluation those queries is stable.

Table 1. Basic rewriting rule evaluation

Num. of queries Avg. Eval. Time

1 38.9 s

2 39.5 s

3 40.1 s

4 40.2 s

5 40.5 s

6 Conclusions and Future Work

In this paper, we leverage the HIFUN language, adding an incremental evaluation mech-
anism using Spark Streaming. We present an approach allowing the incremental update
of continuous query results, preventing the costly re-computation from scratch. We
showed also that query rewriting, enabled by the adoption of the HIFUN language,
can be implemented in the physical layer as well, further benefiting the efficiency of
query answering. We demonstrated experimentally the considerable advantages gained
by using the incremental evaluation, reducing the overall evaluation cost using both the
map-reduce implementation and the SQL one. Future work will exploit more complex
rewritings to the physical layer, further minimizing the evaluation cost sets of queries
– where multiple queries could benefit from intermediate results.

References

1. Agathangelos,G., Troullinou,G.,Kondylakis,H., Stefanidis,K., Plexousakis,D.: Incremental
data partitioning of RDF Data in SPARK. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS,
vol. 11155, pp. 50–54. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98192-
5_10

2. Agathangelos, G., Troullinou, G., Kondylakis, H., et al.: RDF Query answering using apache
spark: review and assessment. In: ICDE Workshops, pp. 54–59 (2018)

3. White, T.: Hadoop: The Definitive Guide. O’Reilly Media, Inc., Sebastopol (2009)

https://doi.org/10.1007/978-3-319-98192-5_10

Incremental Evaluation of Continuous Analytic Queries in HIFUN 67

4. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun.
ACM 51, 107–113 (2004)

5. Zaharia, M.A., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster
computing with working sets. Ann. Emerg. Med. 39(6), 691–692 (2002)

6. Karimov, J., Rabl, T., Katsifodimos,A., Samarev, R., Heiskanen,H.,Markl, V.: Benchmarking
distributed stream data processing systems. In: 2018 IEEE 34th International Conference
on Data Engineering (ICDE), pp. 1507–1518 (2018). Author, F.: Contribution title. In: 9th
International Proceedings on Proceedings, pp. 1–2. Publisher, Location (2010)

7. Zaharia, M.A., Das, T., Li, D.H., Hunter, T., Shenker, S., Stoica, I.: Discretized streams:
fault-tolerant streaming computation at scale. In: SOSP (2013)

8. Armbrust, M., et al.: Structured streaming: a declarative API for real-time applications in
apache spark. In: SIGMOD Conference (2018)

9. Iqbal,M.S., Soomro, T.R.: Big data analysis: apache storm perspective. Int. J. Comput. Trends
Technol. 19, 9–14 (2015)

10. Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi, S., Tzoumas, K.: Apache Flink™:
stream and batch processing in a single engine. IEEE Data Eng. Bull. 38, 28–38 (2015)

11. Akidau, T., et al.: The dataflow model: a practical approach to balancing correctness, latency,
and cost in massive-scale, unbounded, out-of-order data processing. PVLDB 8, 1792–1803
(2015)

12. Babu, S.,Widom, J.: Continuous queries over data streams. ACMSIGMODRec. 30, 109–120
(2001)

13. Gupta, A., Mumick, I.S.: Materialized Views: Techniques, Implementations, and Applica-
tions. MIT Press, Cambridge (1999)

14. Blakeley, J.A., Larson, P., Tompa, F.W.: Efficiently updating materialized views. ACM
SIGMOD Rec. 15, 61–71 (1986)

15. Ahmad, Y., Kennedy, O., Koch, C., Nikolic, M.: DBToaster: higher-order delta processing
for dynamic, frequently fresh views. PVLDB 5, 968–979 (2012)

16. Spyratos, N., Sugibuchi, T.: HIFUN - a high level functional query language for big data
analytics. J. Intell. Inf. Syst. 51, 529–555 (2018). https://doi.org/10.1007/s10844-018-0495-6

17. Spyratos, N., Sugibuchi, T.: A high-level query language for big data analytics (2014)
18. Jesus, P., Baquero, C., Almeida, P.S.: A survey of distributed data aggregation algorithms.

IEEE Commun. Surv. Tutorials 17, 381–404 (2011)

https://doi.org/10.1007/s10844-018-0495-6

Evolution of a Data Series Index
The iSAX Family of Data Series Indexes: iSAX, iSAX2.0,
iSAX2+, ADS, ADS+, ADS-Full, ParIS, ParIS+, MESSI,

DPiSAX, ULISSE, Coconut-Trie/Tree, Coconut-LSM

Themis Palpanas(B)

University of Paris, Paris, France
themis@mi.parisdescartes.fr

Abstract. There is an increasingly pressing need, by several applica-
tions in diverse domains, for developing techniques able to index and
mine very large collections of sequences, or data series. It is not unusual
for these applications to involve numbers of data series in the order of bil-
lions, which are often times not analyzed in their full detail due to their
sheer size. In this work, we describe techniques for indexing and efficient
similarity search in truly massive collections of data series, focusing on
the iSAX family of data series indexes. We present their design char-
acteristics, and describe their evolution to address different needs: bulk
loading, adaptive indexing, parallelism and distribution, variable-length
query answering, and bottom-up indexing. Based on this discussion, we
conclude by presenting promising research directions.

Keywords: Data series · Time series · Sequences · Indexing ·
Analytics

1 Introduction

Data series have gathered the attention of the data management community for
almost three decades [54], and still represent an active and challenging research
direction [7,56,83]. Data series are one of the most common data types, present in
virtually every scientific and social domain [56]: they appear as audio sequences
[34], shape and image data [76], financial [67], environmental monitoring [64],
scientific data [30], and others. It is nowadays not unusual for applications to
involve numbers of sequences in the order of billions [1,2].

A data series, or data sequence, is an ordered sequence of data points1. For-
mally, a data series T = (p1, ... pn) is defined as a sequence of points pi = (vi, ti),
where each point is associated with a value vi and a time ti in which this record-
ing was made, and n is the size (or length) of the series. If the dimension that
imposes the ordering of the sequence is time then we talk about time series,

1 For the rest of this paper, we are going to use the terms data series and sequence
interchangeably.

c© Springer Nature Switzerland AG 2020
G. Flouris et al. (Eds.): ISIP 2019, CCIS 1197, pp. 68–83, 2020.
https://doi.org/10.1007/978-3-030-44900-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44900-1_5&domain=pdf
https://doi.org/10.1007/978-3-030-44900-1_5

Evolution of a Data Series Index 69

though, a series can also be defined over other measures (e.g., angle in radial
profiles in astronomy, mass in mass spectroscopy, position in biology, etc.).

A key observation is that analysts need to process and analyze a sequence (or
subsequence) of values as a single object, rather than the individual points inde-
pendently, which is what makes the management and analysis of data sequences
a hard problem. In this context, Nearest Neighbor (NN) queries are of paramount
importance, since they form the basis of virtually every data mining, or other
complex analysis task involving data series [56]. However, NN queries on a large
collection of data series are challenging, because data series collections grow very
large in practice [13,63]. Thus, methods for answering NN queries rely on two
main techniques: data summarization and indexing. Data series summarization
is used to reduce the dimensionality of the data series [3,16,35,36,43,44,62], and
indexes are built on top of these summarizations [5,62,66,70,72].

In this study, we review the iSAX family of data series indexes, which all
use the iSAX summarization technique to reduce the dimensionality of the orig-
inal sequences. These indexes have attracted lots of attention, and represent the
current state-of-the-art for several variations of the general problem. In partic-
ular, we present the iSAX summarization and discuss how it can be used to
build the basic iSAX index [68,69]. We describe iSAX2.0 [12] and iSAX2+ [13],
the first data series indexes that inherently support bulk loading, allowing us to
index datasets with 1 billion data series. We present the ADS and ADS+ indexes
[78–80], which are the first adaptive data series indexes than can start answering
queries correctly before the entire index has been built, as well as ADS-Full [80],
which based on the same principles leads to an efficient 2-pass index creation
strategy. We discuss ParIS [58] and ParIS+ [60], the first parallel data series
indexes designed for modern hardware, and MESSI [59], a variation optimized
for operation on memory-resident datasets. DPiSAX [42,74,75] is a distributed
index that operates on top of Spark. We present ULISSE [45,46], which is the
first index that can inherently support queries of varying length. Finally, we
describe Coconut [38–40], the first balanced index, which is built in a bottom-up
fashion using a sortable iSAX-based summarization.

It is interesting to note that these indexes can be used not only for similarity
search of data series, but also of general high-dimensional vectors [23,24], leading
to better performance than other high-dimensional techniques (including the
popular LSH-based methods) [24].

By presenting all these indexes together2, we contribute to the better under-
standing of the particular problems that each one solves, the way that their
features could be combined, and the opportunities for future work.

2 Background and Preliminaries

[Data Series Queries]. Analysts need to perform (a) simple Selection-
Projection-Transformation (SPT) queries, and (b) more complex Data-Mining
2 More details on the topics of this paper can be found elsewhere [12,13,19,20,23,27,

28,38–40,42,45,46,48–51,53–56,58–60,74,75,78,79,81–83].

70 T. Palpanas

(DM) queries. Simple SPT queries are those that select sequences and project
points based on thresholds, point positions, or specific sequence properties (e.g.,
“above”, “first 10 points”, “peaks”), or queries that transform sequences using
mathematical formulas (e.g., average). An example SPT query could be one that
returns the first x points of all the sequences that have at least y points above a
threshold. The majority of these queries could be handled (albeit not optimally)
by current data management systems, which nevertheless, lack a domain specific
query language that would support and facilitate such processing. DM queries on
the other hand are more complex: they have to take into consideration the entire
sequence, and treat it as a single object. Examples are: queries by content (range
and similarity queries), clustering, classification, outlier, frequent sub-sequences,
etc. These queries cannot be efficiently supported by current data management
systems, since they require specialized data structures, algorithms, and storage
methods.

Note that the data series datasets and queries may refer to either static, or
streaming data. In the case of streaming data series, we are interested in the sub-
sequences defined by a sliding window. The same is also true for static data series
of very large size (e.g., an electroencephalogram, or a genome sequence), which
we divide into sub-sequences using a sliding (or shifting) window. The length of
these sub-sequences is chosen so that they contain the patterns of interest.

One of the most basic data mining tasks is that of finding similar data series,
or NN in a database [3]. Similarity search is an integral part of most data min-
ing procedures, such as clustering [73], classification and deviation detection
[11,17]. Even though several distance measures have been proposed in the lit-
erature [6,10,18,21,51,71], the Euclidean distance is the most widely used and
one of the most effective for large data series collections [22]. We note that an
additional advantage of Euclidean distance is that in the case of Z-normalized
series (mean = 0, stddev = 1), which are very often used in practice [81,82], it
can be exploited to compute Pearson correlation [61].

[Data Series Summarizations]. A common approach for answering such
queries is to perform a dimensionality reduction, or summarization technique.
Several such summarizations have been proposed, such as the Discrete Fourier
Transform (DFT) [3], the Discrete Wavelet Transform (DWT) [16], the Piece-
wise Aggregate Approximation (PAA) [36,77], the Adaptive Piecewise Constant
Approximation (APCA) [15], or the Symbolic Aggregate approXimation (SAX)
[44]. Note that that on average, there is little difference among these summa-
rizations in terms of fidelity of approximation [22,57] (even though it is the case
that certain representations favor particular data types, e.g., DFT for star-light-
curves, APCA for bursty data, etc.).

These summarizations are usually accompanied by distance bounding func-
tions that relate distances in the summarized space to distances in the original
space through either lower or upper-bounding. With such bounding functions,
we can index data series directly in the summarized space [5,62,66,70,72], and
use these indexes to efficiently answer NN queries on large data series collections.

Evolution of a Data Series Index 71

[Data Series Indexing]. Even though recent studies have shown that in cer-
tain cases sequential scans can be performed very efficiently [63], such tech-
niques are only applicable when the database consists of a single, long data
series, and queries are looking for potential matches in small subsequences of
this long data series. Such approaches, however, do not bring benefit to the gen-
eral case of querying a mixed database of several data series. Therefore, indexing
is required in order to efficiently support data exploration tasks, which involve
ad-hoc queries, i.e., the query workload is not known in advance.

A large set of indexing methods have been proposed for the different
data series summarization methods, including traditional multidimensional
[9,29,37,62] and specialized [5,66,70,72] indexes. Moreover, various distance
measures have been presented that work on top of such indexes, e.g., Discrete
Time Warping (DTW) and Euclidean Distance (ED).

Indexing can significantly reduce the time to answer DM queries. Neverthe-
less, recent studies have observed that the mere process of building the index
can be prohibitively expensive in terms of time cost [12,13,78]: e.g., the process
of creating the index for 1 billion data series takes several days to complete.
This problem can be mitigated by the bulk loading technique. Bulk-loading has
been studied in the context of traditional database indexes, such as B-trees and
R-trees, and other multi-dimensional index structures [4,25,32,33,41,65].

3 The iSAX Family of Indexes

In this section, we describe the iSAX family of indexes, that is, all the indexes
that are designed based on the iSAX summarization, and discuss their evolution
over time. Figure 1 depicts the lineage of these indexes, along with the corre-
sponding timeline. We note that all these indexes support both Z-normalized and
non Z-normalized series, and the same index can answer queries using both the
Euclidean and Dynamic Time Warping (DTW) distances (in the way mentioned
in [59]), for k-NN and ε-range queries [23]. Finally, recent extensions of some of
these indexes demonstrate that they can efficiently support approximate simi-
larity search with quality guarantees (deterministic and probabilistic) [24], and
that they dominate the state-of-the-art in the case of general high-dimensional
vectors, as well [23,24].

3.1 The iSAX Summarization and Basic Index

The Piecewise Aggregate Approximation (PAA) [36,77] is a summarization tech-
nique that segments the data series in equal parts and calculates the average
value for each segment. An example of a PAA representation can be seen in
Fig. 2; in this case the original data series is divided into 4 equal parts. Based on
PAA, Lin et al. [44] introduced the Symbolic Aggregate approXimation (SAX)
representation that partitions the value space in segments of sizes that follow
the normal distribution. Each PAA value can then be represented by a character
(i.e., a small number of bits) that corresponds to the segment that it falls into.

72 T. Palpanas

This leads to a representation with a very small memory footprint, an important
advantage when managing large sequence collections. A segmentation of size 3
can be seen in Fig. 2, where the series is represented by SAX word “10 10 11”.

iSAX [70,69]

iSAX2+ [13]+ Bulk
Loading

2008 2010 2014

+ Adaptive

2015 2017

+ Distributed

+ Multi-Core,
Multi-Socket, SIMD

2018 2019 2020
basic
index

+ Sortable Summarizations,
Streaming Data Series

+ Variable-Length Queries

C

C#, C

C#

Java
(Spark)

C

C

C

timeline

iSAX 2.0 [12]

ADS /
ADS+ [78] ADSFull [80]

DPiSAX [74,75]

ParIS [58] ParIS+ [60] MESSI [59]

Coconut-Trie /
Coconut-Tree [38]

ULISSE [45,47]

Coconut-LSM [40]

iSAX2+ [24] *

ADS+ [24] *

Fig. 1. Lineage of the iSAX family of indexes. Timeline is depicted on the top; imple-
mentation languages are marked on the right. Solid arrows denote inheritance of the
index design; dashed arrows denote inheritance of some of the design features; the
two new versions of iSAX2+ and ADS+ marked with an asterisk support approximate
similarity search with deterministic and probabilistic quality guarantees. Source code
available by following the links in the corresponding papers.

The SAX representation was later extended to indexable SAX (iSAX) [70],
which allows variable cardinality for each character of a SAX representation. An
iSAX representation is composed of a set of characters that form a word, and
each word represents a data series. In the case of a binary alphabet, with a word
size of 3 characters and a maximum cardinality of 2 bits, we could have a set of
data series (two in the following example) represented with the following words:
002102012, 002112012, where each character has a full cardinality of 2 bits and
each word corresponds to one data series. Reducing the cardinality of the second
character in each word, we get for both words the same iSAX representation:
00211012 (11 corresponds to both 10 and 11, since the last bit is trailed when
the cardinality is reduced). Starting with a cardinality of 1 for each character in
the root node and gradually splitting by increasing the cardinality one character
at a time, we can build in a top-down fashion the (non-balanced) iSAX tree
index [69,70]. These algorithms can be efficiently implemented with bit-wise
operations.

The iSAX index supports both approximate and exact similarity search [23]:
approximate does not guarantee that it will always find the correct answers
(though, in most cases it returns high-quality results [24,70]); exact guarantees
that it will always return the correct results. In approximate search, the algo-
rithm uses the iSAX summaries to traverse a single path of the index tree from
the root to the most promising leaf, then computes the raw distances between the

Evolution of a Data Series Index 73

11 0 0

1 0 0

PAA points R3

Intermediate node

Leaf node

d1

00 01

01

00

11

10

00 01

0 1

0

1

0
1

d2

d3

ROOT

10 0 0

0 0 0

11 00 0

11 01 0

00

01

10

11

N
(0

, 1
)

1 1 1

Fig. 2. An example of iSAX and SAX representations [78].

query and each series in the leaf, and return the series with the smallest distance,
i.e., the Best-So-Far distance (BSF). Exact search starts with an approximate
search that returns a BSF, which is then used to prune the rest of the index
leaves; the leaves that cannot be pruned are visited, the raw distances of the
series to the query are computed, and the BSF is updated (if needed). At the
end of this process, we get the exact answer.

3.2 Bulk-Loading: iSAX 2.0 and iSAX2+

Inserting a large collection of data series into the index iteratively is an expensive
operation, involving a high number of disk I/O operations [12,13]. This is because
for each time series, we have to store the raw data series on disk, and insert into
the index the corresponding iSAX representation. In order to speedup the process
of building the index, iSAX 2.0 [12] and iSAX2+ [13] were the first data series
indexes (based on the iSAX index) with a bulk loading strategy.

The key idea is to effectively group the data series that will end up in a
particular subtree of the index, and process them all together. In order to achieve
this goal, we use two main memory buffer layers, namely, the First Buffer Layer
(FBL), and the Leaf Buffer Layer (LBL) [13]. The FBL corresponds to the
children of the root of the index, while the LBL corresponds to the leaf nodes.
The role of the buffers in FBL is to cluster together data series that will end
up in the same subtree of the index, rooted in one of the direct children of the
root. In contrast, the buffers in LBL are used to gather all the data series of leaf
nodes, and flush them to disk.

The algorithm operates in two phases, which alternate until the entire dataset
is processed, as follows (for more details, refer to [13]). During Phase 1, the
algorithm reads data series and inserts them in the corresponding buffer in the
FBL. This phase continues until the main memory is full. Then Phase 2 starts,
where the algorithm proceeds by moving the data series contained in each FBL
buffer to the appropriate LBL buffers. During this phase, the algorithm processes

74 T. Palpanas

the buffers in FBL sequentially. For each FBL buffer, the algorithm creates all the
necessary internal and leaf nodes, in order to index these data series. When all
data series of a specific FBL buffer have been moved down to the corresponding
LBL buffers, the algorithm flushes these LBL buffers to disk.

The difference between iSAX 2.0 [12] and iSAX2+ [13] is that the former
treats the data series raw values (i.e., the detailed sequence of all the values of the
data series) and their summarizations (i.e., the iSAX representations) together,
while the latter uses just the summarizations in order to build the index, and only
processes the raw values in order to insert them to the correct leaf node. In both
cases, the goal is to minimize the random disk I/O, by making sure that the data
series that end up in the same leaf node of the index are (temporarily) stored in
the same (or contiguous) disk pages. The experiments demonstrate that iSAX
2.0 and iSAX2+ significantly outperform previous approaches, reducing the time
required to index 1 billion data series by 72% and 82%, respectively. A recent
extension of iSAX2+ supports approximate answers with quality guarantees [24].

3.3 Adaptive Indexing: ADS, ADS+, ADS-Full

Even though iSAX 2.0 and iSAX2+ can effectively cope with very large data
series collections, users still have to wait for extended periods of time before the
entire index is built and being able to start answering queries.

The Adaptive Data Series (ADS) and ADS+ indexes [78,79] are based on
the iSAX 2.0 index, and address the above problem. They perform only a few
basic steps, mainly creating the basic skeleton of the index tree, which contains
condensed information on the input data series, and are then ready to start
answering queries. As queries arrive, ADS fetches data series from the raw data
and moves only those data series needed to correctly answer the queries inside
the index. Future queries may be completely covered by the contents of the
index, or alternatively ADS adaptively and incrementally fetches any missing
data series directly from the raw data set. When the workload stabilizes, ADS
can quickly serve fully contained queries while as the workload shifts, ADS may
temporarily need to perform some extra work to adapt before stabilizing again.

The additional feature of ADS+ (when compared to ADS) is that it does not
require a fixed leaf size: it dynamically and adaptively adjusts the leaf size in
hot areas of the index. ADS+ uses two different leaf sizes: a big build-time leaf
size for optimal index construction, and a small query-time leaf size for optimal
access costs. Initially, the index tree is built as in plain ADS, with a constant leaf
size, equal to build-time leaf size. In traditional indexes, this leaf size remains
the same across the life-time of the index. In our case, when a query that needs
to search a partial leaf arrives, ADS+ refines its index structure on-the-fly by
recursively splitting the target leaf, until the target sub-leaf becomes smaller or
equal to the query-time leaf size.

ADS and ADS+ support the same query answering mechanisms as iSAX2.0
and iSAX2+, but they also introduced the Scan of In-Memory Summarizations
(SIMS) algorithm for exact query answering. SIMS starts by an approximate
search to compute the BSF, which is then used to compare to the in-memory

Evolution of a Data Series Index 75

iSAX summaries of all the series in the collection, and finally, performs a skip-
sequential scan of the raw series that were not pruned in the previous step.

Experiments with up to 1 billion data series and 105 random approximate
queries show that ADS+ answers all queries in less than 5 h, while iSAX 2.0
needs more than 35 h. In turn, ADS+ and iSAX 2.0 are orders of magnitude
faster in index creation than KD-Tree [8], R-Tree [29], and X-Tree [9].

In settings where a complete index is required, i.e., when there is a completely
random and very large work-load, a full index can also be efficiently constructed
using ADS-Full [80]. In the first step, the ADS structure is built by performing a
full pass over the raw data file, storing only the iSAX representations at each leaf.
In the second step, one more sequential pass over the raw data file is performed,
and data series are moved in the correct pages on disk. The benefit of this process
is that it completely skips costly split operations on raw data series, leading to
a 2x–3x faster creation of the full index, when compared to iSAX 2.0. A recent
extension of ADS+ supports approximate answers with quality guarantees [24].

3.4 Parallel and Distributed: ParIS, ParIS+, MESSI, DPiSAX

The continued increase in the rate and volume of data series production with col-
lections that grow to several terabytes in size [53] renders single-core data series
indexing technologies inadequate. For example, ADS+ [80], requires >4 min to
answer a single exact query on a moderately sized 250 GB sequence collection.

The Parallel Index for Sequences (ParIS) [58], based on ADS+, is the first
data series index that takes advantage of modern hardware parallelization, and
incorporate the state-of-the-art techniques in sequence indexing, in order to
accelerate processing times. ParIS, which is a disk-based index, can effectively
operate on multi-core and multi-socket architectures, in order to distribute and
execute in parallel the computations needed for both index construction and
query answering. Moreover, ParIS exploits the Single Instruction Multiple Data
(SIMD) capabilities of modern CPUs, to further parallelize the execution of indi-
vidual instructions inside each core. Overall, ParIS achieves very good overlap
of the CPU computation with the required disk I/O. ParIS+ [60], an alternative
of ParIS, completely removes the CPU cost during index creation, resulting in
index creation that is purely I/O bounded, and 2.6x faster than ADS+. ParIS+
achieves this by reorganizing the way that the workload is distributed among the
worker threads. ParIS and ParIS+ employ the same algorithmic techniques for
query answering. The experiments also demonstrate their effectiveness in exact
query answering: they are up to 1 order of magnitude faster than ADS+, and up
to 3 orders of magnitude faster than the state-of-the-art optimized serial scan
method, UCR Suite [63]. We also note that ParIS and ParIS+ have the potential
to deliver more benefit as we move to faster storage media.

Still, ParIS+ is designed for disk-resident data and therefore its performance
is dominated by the I/O costs it encounters. For instance, ParIS+ answers a
1-NN exact query on a 100 GB dataset in 15 s, which is above the limit for
keeping the user’s attention (i.e., 10 s), let alone for supporting interactivity
in the analysis process (i.e., 100 ms) [26]. The in-MEmory data SerieS Index

76 T. Palpanas

(MESSI) [59] is based on ParIS+, and is the first parallel index designed for
memory-resident datasets. MESSI effectively uses multi-core and multi-socket
architectures in order to concurrently execute the computations needed for both
index construction and query answering, and it exploits SIMD. Since MESSI
copes with in-memory data series, no CPU cost can be hidden under I/O, and
required more careful design choices and coordination of the parallel workers
when accessing the required data structures, in order to improve its performance.
This led to the development of a more subtle design for the construction of
the index and on the development of new algorithms for answering similarity
search queries on this index. The results show a further ∼4x speedup in index
creation time, in comparison to an in-memory version of ParIS+. Furthermore,
MESSI answers exact 1-NN queries on 100 GB datasets 6-11x faster than ParIS+,
achieving for the first time interactive exact query answering times, at ∼50 ms.

In order to exploit parallelism across compute nodes, the Distributed Par-
titioned iSAX (DPiSAX) [42,74,75] index was developed. DPiSAX is based on
iSAX2+, and was designed to operate on top of Spark. DPiSAX uses a sampling
phase that allows to balance the partitions of data series across the compute
nodes (according to their iSAX representations), which is necessary for efficient
query processing. DPiSAX gracefully scales to billions of time series, and a par-
allel query processing strategy that, given a batch of queries, efficiently exploits
the index. The experiments show that DPiSAX can build its index on 4 billion
data series in less than 5 h (and one order of magnitude faster than iSAX2+).
Also, DPiSAX processes 10 millions 10-NN approximate queries on a 1 billion
data series collection in 140 s.

The DPiSAX solution is complementary to the ParIS+ and MESSI solutions,
and they could be combined in order to exploit both parallelism and distribution.

3.5 Variable-Length: ULISSE

Despite the fact that data series indexes enable fast similarity search, all existing
indexes can only answer queries of a single length (fixed at index construction
time), which is a severe limitation. The ULtra compact Index for variable-length
Similarity SEarch (ULISSE) [45,46] is the first, single data series index structure
designed for answering similarity search queries of variable length. ULISSE intro-
duces a novel envelope representation that effectively and succinctly summarizes
multiple sequences of different lengths. These envelopes are then used to build
a tree index that resembles to iSAX2+. ULISSE supports both approximate
and exact similarity search, combining disk based index visits with in-memory
sequential scans, inspired by ADS+. ULISSE supports non Z-normalized and Z-
normalized sequences, and can be used with no changes with both Euclidean Dis-
tance and Dynamic Time Warping, for answering k-NN and ε-range queries [47].

The experimental results show that ULISSE is several times, and up to orders
of magnitude more efficient in terms of both space and time cost, when compared
to competing approaches (i.e., UCR Suite, MASS, and CMRI) [45,47].

Evolution of a Data Series Index 77

3.6 Sortable Summarizations: Coconut-Trie/Tree/LSM

We observe that a shortcoming of the indexes presented earlier is that their
design is based on summarizations [14,44] (used as keys by the index) that are
unsortable. Thus, sorting based on these summarizations would place together
data series that are similar in terms of their beginning, i.e., the first segment,
yet arbitrarily far in terms of the rest of the segments. Hence, existing summa-
rizations cannot be sorted while keeping similar data series next to each other in
the sorted order. This leads to top-down index building (resulting in many small
random disk I/Os and non-contiguous nodes), and prefix-based node-splitting
(resulting in low fill-factors for leaf nodes), which negatively affect time perfor-
mance and disk space occupancy.

The Compact and Contiguous Sequence Infrastructure (Coconut) index
[38,39] was developed in order to address these problems, by transforming the
iSAX summarization into a sortable summarization. The core idea is interweav-
ing the bits that represent the different segments, such that the more significant
bits across all segments precede all less significant bits. As a result, Coconut is
the first technique for sorting data series based on their summarizations that can
lead to bottom-up creation of balanced indexes: the series are positioned on a
z-order curve [52], in a way that similar data series are close to each other. Index-
ing based on sortable summarizations has the same ability as existing summariza-
tions to prune the search space. Coconut supports bulk-loading techniques and
log-structured updates to enable maintaining a contiguous index. This eliminates
random I/O during construction, updating and querying. Furthermore, Coconut
is able to split data series across nodes by sorting them and using the median
value as a splitting point, leading to data series being packed more densely into
leaf nodes (i.e., at least half full). We studied Coconut-Trie and Coconut-Tree,
which split data series across nodes based on common prefixes and median values,
respectively. Coconut-Trie, which is similar to an ADS+ index in structure, dom-
inates the state-of-the-art in terms of query speed because it creates contiguous
leaves. Coconut-Tree, based on a B+-Tree index, dominates Coconut-Trie and
the state-of-the-art in terms of index construction speed, query (using SIMS)
speed and storage overheads because it creates a contiguous, balanced index
that is also densely populated. Finally, Coconut-LSM [39,40], that is based on
an LSM tree index, supports efficient log-structured updates and variable-size
window queries over different windows of the data based on recency.

Overall, across a wide range of workloads and datasets, Coconut-Tree
improves both construction speed and storage overheads by one order of magni-
tude and query speed by two orders of magnitude relative to DSTree and ADS.
Coconut-LSM supports updates without degrading query throughput, and is
able to narrow the search scope temporally. This improves query throughput by
a further 2–3 orders of magnitudes in our experiments for queries over recent
data, thus, making Coconut-LSM an efficient solution for streaming data series.

78 T. Palpanas

4 Discussion and Open Research Directions

Despite the strong increasing interest in data series management systems [83],
existing approaches (e.g., based on DBMSs, Column Stores, TSMSs, or Array
Databases) do not provide a viable solution, since they have not been designed for
managing and processing sequence data as first class citizens: they do not offer a
suitable storage model, declarative query language, or optimization mechanism.
Moreover, they lack auxiliary data structures (such as indexes), that can support
a variety of sequence query workloads in an efficient manner. For example, they
do not have native support for similarity search [31,53], and therefore, cannot
efficiently support complex analytics on very large data series collections.

Current solutions for processing data series collections, in various domains,
are mostly ad hoc (and hardly scalable), requiring huge investments in time and
effort, and duplication of effort across different teams. For this reason new data
management technologies should be developed; albeit ones that will meet their
requirements for processing and analyzing very large sequence collections.

An interesting and challenging research direction is to design and develop
a general purpose Sequence Management System, able to cope with big data
series (very large and continuously growing collections of data series with diverse
characteristics, which may have uncertainty in their values), by transparently
optimizing query execution, and taking advantage of new management and query
answering techniques, as well as modern hardware [53,55]. Just like databases
abstracted the relational data management problem and offered a black box
solution that is now omnipresent, the proposed system will enable users and
analysts that are not experts in data series management to tap in the goldmine
of the massive and ever-growing data series collections they (already) have.

Our preliminary results, including the first data series similarity search
benchmark [81,82], and indexing algorithms that can be efficiently bulk-loaded
[12,13,38–40], adapt to the query workload [78–80], support similarity queries of
varying length [45,46,48,49], take into account uncertainty [19,20], and exploit
multi-cores [58–60] and distributed platforms (e.g., Apache Spark) [42,74,75],
are promising first steps. Nevertheless, much progress is still needed along the
directions mentioned above. This is especially true for query optimization, since
earlier work has shown that different techniques and algorithms perform better
for different query workloads and data and hardware characteristics [23]. Trying
to further optimize query execution times, techniques that provide approximate
answers, and in particular answers with (deterministic, or probabilistic) guar-
antees on the associated error bounds [23,24], can be very useful. The same is
true for techniques that provide progressive answers [28], which can also lead to
significant speedup, while guaranteeing the desired levels of accuracy.

It would also be interesting to develop an index that combines all (or most
of) the features mentioned earlier, namely, support for progressive exact and
approximate queries of variable length, running on modern hardware in parallel
and distributed environments. Given the way that these index solutions have
been developed, i.e., by building on top of one another, combining the various
features in a single solution seems feasible.

Evolution of a Data Series Index 79

Note that, even though the indexes we presented have been developed for
data series, they are equally applicable to and extremely efficient in the case of
general high-dimensional vectors [23,24]. This opens up several exciting applica-
tion opportunities, including in deep learning analysis pipelines, where we often
need to perform similarity search in high-dimensional vector embeddings.

5 Conclusions

In this work, we discussed the evolution of the iSAX family of indexes, which rep-
resent the current state-of-the-art in several variations of the problem of indexing
for similarity search in very large data series collections. We reviewed the basic
design decisions behind these indexes, and contrasted their strong points. The
presentation (for the first time together) of all these indexes contributes to the
better understanding of which particular problem each one solves, how their
features could be combined, and what the opportunities for future work are.

Acknowledgements. I would like to thank my collaborators (in alphabetical order):
R. Akbarinia, H. Benbrahim, A. Bezerianos, A. Camerra, M. Dallachiesa, N. Dayan,
K. Echihabi, A. Gogolou, P. Fatourou, J. Gehrke, S. Idreos, I. Ilyas, E. Keogh,
B. Kolev, H. Kondylakis, O. Levchenko, M. Linardi, Y. Lou, F. Masseglia, K. Mirylenka,
B. Nushi, B. Peng, T. Rakthanmanon, D. Shasha, J. Shieh, T. Tsandilas, P. Valduriez,
and D.-E. Yagoubi. Special thanks go to K. Zoumpatianos.

References

1. ADHD-200 (2011). http://fcon 1000.projects.nitrc.org/indi/adhd200/
2. Sloan Digital Sky Survey (2015). https://www.sdss3.org/dr10/data access/

volume.php
3. Agrawal, R., Faloutsos, C., Swami, A.: Efficient similarity search in sequence

databases. In: Lomet, D.B. (ed.) FODO 1993. LNCS, vol. 730, pp. 69–84. Springer,
Heidelberg (1993). https://doi.org/10.1007/3-540-57301-1 5

4. An, N., Kothuri, R.K.V., Ravada, S.: Improving performance with bulk-inserts in
Oracle R-trees. In: VLDB, pp. 948–951. VLDB Endowment (2003)

5. Assent, I., Krieger, R., Afschari, F., Seidl, T.: The TS-tree: efficient time series
search and retrieval. In: EDBT (2008)

6. Aßfalg, J., Kriegel, H.-P., Kröger, P., Kunath, P., Pryakhin, A., Renz, M.: Similar-
ity search on time series based on threshold queries. In: Ioannidis, Y., et al. (eds.)
EDBT 2006. LNCS, vol. 3896, pp. 276–294. Springer, Heidelberg (2006). https://
doi.org/10.1007/11687238 19

7. Bagnall, A.J., Cole, R.L., Palpanas, T., Zoumpatianos, K.: Data series management
(Dagstuhl seminar 19282). Dagstuhl Rep. 9(7), 24–39 (2019)

8. Bentley, J.L.: Multidimensional binary search trees used for associative searching.
Commun. ACM 18(9), 509–517 (1975)

9. Berchtold, S., Keim, D.A., Kriegel, H.-P.: The X-tree: an index structure for high-
dimensional data. In: VLDB, pp. 28–39 (1996)

10. Berndt, D.J, Clifford, J.: Using dynamic time warping to find patterns in time
series. In: AAAIWS, pp. 359–370 (1994)

https://www.sdss3.org/dr10/data_access/volume.php
https://www.sdss3.org/dr10/data_access/volume.php
https://doi.org/10.1007/3-540-57301-1_5
https://doi.org/10.1007/11687238_19
https://doi.org/10.1007/11687238_19

80 T. Palpanas

11. Bu, Y., Leung, T.W., Fu, A.W.C., Keogh, E., Pei, J., Meshkin, S.: WAT: finding
top-k discords in time series database. In: SDM, pp. 449–454 (2007)

12. Camerra, A., Palpanas, T., Shieh, J., Keogh, E.: iSAX 2.0: indexing and mining
one billion time series. In: ICDM (2010)

13. Camerra, A., Shieh, J., Palpanas, T., Rakthanmanon, T., Keogh, E.J.: Beyond
one billion time series: indexing and mining very large time series collections with
iSAX2+. KAIS 39(1), 123–151 (2014). https://doi.org/10.1007/s10115-012-0606-6

14. Chakrabarti, K., Keogh, E., Mehrotra, S.: Locally adaptive dimensionality reduc-
tion for indexing large time series databases. ACM Trans. Database Syst. (TODS)
27(2), 188–228 (2002)

15. Chakrabarti, K., Keogh, E., Mehrotra, S., Pazzani, M.: Locally adaptive dimen-
sionality reduction for indexing large time series databases. In: SIGMOD (2002)

16. Chan, K.-P., Fu, A.-C.: Efficient time series matching by wavelets. In: ICDE (1999)
17. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Com-

put. Surv. 41(3), 1–58 (2009)
18. Chen, Y., Nascimento, M.A., Ooi, B.C., Tung, A.K.H.: SpADe: on shape-based

pattern detection in streaming time series. In: ICDE (2007)
19. Dallachiesa, M., Nushi, B., Mirylenka, K., Palpanas, T.: Uncertain time-series sim-

ilarity: return to the basics. PVLDB 5(11), 1662–1673 (2012)
20. Dallachiesa, M., Palpanas, T., Ilyas, I.F.: Top-k nearest neighbor search in uncer-

tain data series. PVLDB 8(1), 13–24 (2014)
21. Das, G., Gunopulos, D., Mannila, H.: Finding similar time series. In: Komorowski,

J., Zytkow, J. (eds.) PKDD 1997. LNCS, vol. 1263, pp. 88–100. Springer,
Heidelberg (1997). https://doi.org/10.1007/3-540-63223-9 109

22. Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., Keogh, E.: Querying and
mining of time series data: experimental comparison of representations and dis-
tance measures. In: PVLDB (2008)

23. Echihabi, K., Zoumpatianos, K., Palpanas, T., Benbrahim, H.: The Lernaean
Hydra of data series similarity search: an experimental evaluation of the state
of the art. PVLDB 12(2), 112–127 (2018)

24. Echihabi, K., Zoumpatianos, K., Palpanas, T., Benbrahim, H.: Return of the Ler-
naean Hydra: experimental evaluation of data series approximate similarity search.
PVLDB 13, 403–420 (2019)

25. Soisalon-Soininen, E., Widmayer, P.: Single and bulk updates in stratified trees:
an amortized andworst-case analysis. In: Klein, R., Six, H.-W., Wegner, L.
(eds.) Computer Science in Perspective. LNCS, vol. 2598, pp. 278–292. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-36477-3 21

26. Fekete, J.-D., Primet, R.: Progressive analytics: a computation paradigm for
exploratory data analysis. CoRR (2016)

27. Gogolou, A., Tsandilas, T., Palpanas, T., Bezerianos, A.: Comparing similarity
perception in time series visualizations. IEEE TVCS 25(1), 523–533 (2019)

28. Gogolou, A., Tsandilas, T., Palpanas, T., Bezerianos, A.: Progressive similarity
search on time series data. In: Workshops of the EDBT/ICDT (2019)

29. Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: SIG-
MOD (1984)

30. Huijse, P., Estévez, P.A., Protopapas, P., Principe, J.C., Zegers, P.: Computa-
tional intelligence challenges and applications on large-scale astronomical time
series databases. IEEE Comput. Int. Mag. 9(3), 27–39 (2014)

31. Jensen, S.K., Pedersen, T.B., Thomsen, C.: Time series management systems: a
survey. IEEE Trans. Knowl. Data Eng. 29(11), 2581–2600 (2017)

https://doi.org/10.1007/s10115-012-0606-6
https://doi.org/10.1007/3-540-63223-9_109
https://doi.org/10.1007/3-540-36477-3_21

Evolution of a Data Series Index 81

32. Seeger, B., Van den Bercken, J.: An evaluation of generic bulk loading techniques.
In: VLDB, pp. 461–470 (2001)

33. Widmayer, P., Van den Bercken, J., Seeger, B.: A generic approach to bulk loading
multidimensional index structures. In: VLDB (1997)

34. Kashino, K., Smith, G., Murase, H.: Time-series active search for quick retrieval
of audio and video. In: ICASSP (1999)

35. Kashyap, S., Karras, P.: Scalable KNN search on vertically stored time series. In:
KDD (2011)

36. Keogh, E., Chakrabarti, K., Pazzani, M., Mehrotra, S.: Dimensionality reduction
for fast similarity search in large time series databases. KAIS 3(3), 263–286 (2000).
https://doi.org/10.1007/PL00011669

37. Keogh, E.J., Palpanas, T., Zordan, V.B., Gunopulos, D., Cardle, M.: Indexing large
human-motion databases. In: VLDB, pp. 780–791 (2004)

38. Kondylakis, H., Dayan, N., Zoumpatianos, K., Palpanas, T.: Coconut: a scalable
bottom-up approach for building data series indexes. In: PVLDB (2018)

39. Kondylakis, H., Dayan, N., Zoumpatianos, K., Palpanas, T.: Coconut palm: static
and streaming data series exploration now in your palm. In: SIGMOD, pp. 1941–
1944 (2019)

40. Kondylakis, H., Dayan, N., Zoumpatianos, K., Palpanas, T.: Coconut: sortable
summarizations for scalable indexes over static and streaming data series. VLDBJ
28, 847–869 (2019). https://doi.org/10.1007/s00778-019-00573-w

41. Arge, L., Hinrichs, K., Vahrenhold, J., et al.: Efficient bulk operations on dynamic
R-trees. Algorithmica 33(1), 104–128 (2002). https://doi.org/10.1007/s00453-001-
0107-6

42. Levchenko, O., et al.: Distributed algorithms to find similar time series. In:
ECML/PKDD (2019)

43. Li, C.-S., Yu, P., Castelli, V.: HierarchyScan: a hierarchical similarity search algo-
rithm for databases of long sequences. In: ICDE (1996)

44. Lin, J., Keogh, E., Lonardi, S., Chiu, B.: A symbolic representation of time series,
with implications for streaming algorithms. In: DMKD (2003)

45. Linardi, M., Palpanas, T.: Scalable, variable-length similarity search in data series:
the ULISSE approach. PVLDB 11(13), 2236–2248 (2018)

46. Linardi, M., Palpanas, T.: ULISSE: ULtra compact index for variable-length sim-
ilarity SEarch in data series. In: ICDE (2018)

47. Linardi, M., Palpanas, T.: Scalable data series subsequence matching with ULISSE.
Technical Report (2020)

48. Linardi, M., Zhu, Y., Palpanas, T., Keogh, E.J.: Matrix profile X: VALMOD -
scalable discovery of variable-length motifs in data series (2018)

49. Linardi, M., Zhu, Y., Palpanas, T., Keogh, E.J.: VALMOD: a suite for easy and
exact detection of variable length motifs in data series. In: SIGMOD (2018)

50. Mirylenka, K., Dallachiesa, M., Palpanas, T.: Correlation-aware distance measures
for data series. In: EDBT, pp. 502–505 (2017)

51. Mirylenka, K., Dallachiesa, M., Palpanas, T.: Data series similarity using
correlation-aware measures. In: SSDBM (2017)

52. Morton, G.M.: A Computer Oriented Geodetic Data Base and a New Technique
in File Sequencing. International Business Machines Company, Ottawa (1966)

53. Palpanas, T.: Data series management: the road to big sequence analytics. SIG-
MOD Rec. 44, 47–52 (2015)

https://doi.org/10.1007/PL00011669
https://doi.org/10.1007/s00778-019-00573-w
https://doi.org/10.1007/s00453-001-0107-6
https://doi.org/10.1007/s00453-001-0107-6

82 T. Palpanas

54. Palpanas, T.: Big sequence management: a glimpse of the past, the present, and the
future. In: Freivalds, R.M., Engels, G., Catania, B. (eds.) SOFSEM 2016. LNCS,
vol. 9587, pp. 63–80. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49192-8 6

55. Palpanas, T.: The parallel and distributed future of data series mining. In: High
Performance Computing & Simulation (HPCS) (2017)

56. Palpanas, T., Beckmann, V.: Report on the first and second interdisciplinary time
series analysis workshop (ITISA). ACM SIGMOD Rec. 48(3), 36–40 (2019)

57. Palpanas, T., Vlachos, M., Keogh, E.J., Gunopulos, D.: Streaming time series
summarization using user-defined amnesic functions. IEEE Trans. Knowl. Data
Eng. 20(7), 992–1006 (2008)

58. Peng, B., Fatourou, P., Palpanas, T.: Paris: the next destination for fast data series
indexing and query answering. In: IEEE BigData, pp. 791–800 (2018)

59. Peng, B., Fatourou, P., Palpanas, T.: MESSI: in-memory data series indexing. In:
ICDE (2020)

60. Peng, B., Fatourou, P., Palpanas, T.: Paris+: data series indexing on multi-core
architectures. In: TKDE (2020)

61. Rafiei, D.: On similarity-based queries for time series data. In: ICDE (1999)
62. Rafiei, D., Mendelzon, A.: Similarity-based queries for time series data. In: SIG-

MOD (1997)
63. Rakthanmanon, T.: Searching and mining trillions of time series subsequences

under dynamic time warping. In: KDD (2012)
64. Raza, U., Camerra, A., Murphy, A.L., Palpanas, T., Picco, G.P.: Practical data

prediction for real-world wireless sensor networks. TKDE 27(8), 2231–2244 (2015)
65. Choubey, R., Chen, L., Rundensteiner, E.A.: GBI: a generalized R-tree bulk-

insertion strategy. In: Güting, R.H., Papadias, D., Lochovsky, F. (eds.) SSD 1999.
LNCS, vol. 1651, pp. 91–108. Springer, Heidelberg (1999). https://doi.org/10.1007/
3-540-48482-5 8

66. Schäfer, P., Högqvist, M.: SFA: a symbolic fourier approximation and index for
similarity search in high dimensional datasets. In: EDBT (2012)

67. Shasha, D.: Tuning time series queries in finance: case studies and recommenda-
tions. IEEE Data Eng. Bull. 22(2), 40–46 (1999)

68. Shieh, J., Keogh, E.: iSAX: indexing and mining terabyte sized time series. In:
SIGKDD, pp. 623–631 (2008)

69. Shieh, J., Keogh, E.: iSAX: disk-aware mining and indexing of massive time series
datasets. DMKD 19(1), 24–57 (2009). https://doi.org/10.1007/s10618-009-0125-6

70. Shieh, J., Keogh, E.J.: iSAX: indexing and mining terabyte sized time series. In:
KDD, pp. 623–631 (2008)

71. Wang, X., Mueen, A., Ding, H., Trajcevski, G., Scheuermann, P., Keogh, E.: Exper-
imental comparison of representation methods and distance measures for time
series data. Data Min. Knowl. Discov. 26(2), 275–309 (2013)

72. Wang, Y., Wang, P., Pei, J., Wang, W., Huang, S.: A data-adaptive and dynamic
segmentation index for whole matching on time series. PVLDB 6(10), 793–804
(2013)

73. Liao, T.W.: Clustering of time series data - a survey. Pattern Recogn. 38(11),
1857–1874 (2005)

74. Yagoubi, D.-E., Akbarinia, R., Masseglia, F., Palpanas, T.: DPiSAX: massively
distributed partitioned iSAX. In: ICDM (2017)

75. Yagoubi, D.-E., Akbarinia, R., Masseglia, F., Palpanas, T.: Massively distributed
time series indexing and querying. TKDE 32(1), 108–120 (2020)

https://doi.org/10.1007/978-3-662-49192-8_6
https://doi.org/10.1007/978-3-662-49192-8_6
https://doi.org/10.1007/3-540-48482-5_8
https://doi.org/10.1007/3-540-48482-5_8
https://doi.org/10.1007/s10618-009-0125-6

Evolution of a Data Series Index 83

76. Ye, L., Keogh, E.J.: Time series shapelets: a new primitive for data mining. In:
KDD (2009)

77. Yi, B., Faloutsos, C.: Fast time sequence indexing for arbitrary Lp norms. In:
VLDB (2000)

78. Zoumpatianos, K., Idreos, S., Palpanas, T.: Indexing for interactive exploration of
big data series. In: SIGMOD (2014)

79. Zoumpatianos, K., Idreos, S., Palpanas, T.: RINSE: interactive data series explo-
ration with ADS+. PVLDB 8(12), 1912–1923 (2015)

80. Zoumpatianos, K., Idreos, S., Palpanas, T.: ADS: the adaptive data series index.
VLDB J. 25, 843–866 (2016). https://doi.org/10.1007/s00778-016-0442-5

81. Zoumpatianos, K., Lou, Y., Ileana, I., Palpanas, T., Gehrke, J.: Generating data
series query workloads. VLDB J. 27(6), 823–846 (2018). https://doi.org/10.1007/
s00778-018-0513-x

82. Zoumpatianos, K., Lou, Y., Palpanas, T., Gehrke, J.: Query workloads for data
series indexes. In: KDD (2015)

83. Zoumpatianos, K., Palpanas, T.: Data series management: fulfilling the need for
big sequence analytics. In: ICDE (2018)

https://doi.org/10.1007/s00778-016-0442-5
https://doi.org/10.1007/s00778-018-0513-x
https://doi.org/10.1007/s00778-018-0513-x

Data Integration

Proximity-Based Federation of Smart Objects:
Its Application Framework for Complex Secure

Federation Scenarios

Yuzuru Tanaka1,2,3(B)

1 Hokkaido University, Sapporo, Japan
tanaka.yzr@ist.hokudai.ac.jp

2 Comprehensive Research Organization for Science and Society (CROSS), Tsukuba, Japan
3 Department of Computing Science, University of Alberta, Edmonton, AB, Canada

Abstract. This paper focuses first on the formal modeling of complex application
scenarios using autonomic proximity-based federation among smart objects with
wireless network connectivity, and then on a new framework for complex secure
federation scenarios. Our modeling consists of three different levels. In the first-
level modeling, each smart object is modeled as a set of ports, each of which
represents an I/O interface for a function of this smart object to interoperate with
some function of another smart object. The federation between a pair of smart
objects having a pair of ports of the same type with opposite polarities is modeled
as the portmatching between these twoports. The second-levelmodeling describes
the dynamic change of the federation structure among smart objects as a graph
rewriting system, where each node and each directed link respectively represent a
smart object and a connection between two smart objects. The third-levelmodeling
uses a binary autocatalytic-reaction network to describe each complex federation
scenario in which more than one federation are involved, and an output federation
of a reaction may work either as an input federation of another reaction and/or
a catalyst to activate another composition or decomposition reaction. Based on
these models previously proposed by the current author, this paper proposes a
new simplified application framework for implementing any complex application
scenario describable as a binary autocatalytic-reactionnetwork as a graph rewriting
system of smart objects, and then proposes a new framework-level solution to the
secure federation of smart objects,which is independent from the encryption-based
technologies for secure communication between two smart objects.

Keywords: Smart object · Proximity-based federation · IoT · Pervasive
computing · Ubiquitous computing · Graph rewriting system · Binary
autocatalytic-reaction network

1 Introduction

In the age of smart phones, IC cards, and IoT, we are surrounded by a huge number of
smart objects, i.e., intelligent devices with wireless communication capabilities ranging
from P2P (peer-to-peer) to cellphone communications. Some of them are wearable or in-
vehicle mobile ones, while the others are stationary ones. However, it is often pointed out

© Springer Nature Switzerland AG 2020
G. Flouris et al. (Eds.): ISIP 2019, CCIS 1197, pp. 87–100, 2020.
https://doi.org/10.1007/978-3-030-44900-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44900-1_6&domain=pdf
https://doi.org/10.1007/978-3-030-44900-1_6

88 Y. Tanaka

both by theoreticians and by practitioners that the lack of a formal computationmodel and
an application framework capable of contextmodeling and complex application-scenario
description to cover the application diversity of smart objects and their federations is
the main reason why most existing applications still remain within the scope of three
stereotyped scenarios [1–3], i.e., (1) the location transparent service continuation, (2)
the location-, and/or situation-aware service provision, and (3) the dynamic federation
among smart objects through the Internet, i.e., their web-based federation. The first one
focuses on the ubiquity of services, while the second focuses on the context-dependent
services. The third one is called IoT.

In his previous papers [3–5], the current author proposed three different levels of
formal modeling for describing complex application scenarios using more than one
dynamic proximity-based federation reactions of smart objects, where “smart objects”
denote computing devices with wireless communication capabilities. “Proximity-based
federation” denotes federation that is autonomously activated by the proximity among
smart objects, while “federation” denotes dynamic composition of smart objects for
their interoperation, and is equivalent to Bill Joy’s concept of service federation between
service-requesting and service-providing smart objects through wireless connection [6].

The first level modeling formally defines a smart object and describes the federa-
tion between one smart object and another within the scope of the former as the port
matching process. The “scope” of a smart object denotes the set of all the smart objects
within its current wireless communication range, i.e., all the accessible smart objects,
or strictly speaking, all the identifiable smart objects. A smart object may not be able to
access another smart object, even if it identifies the other, because of the access request
denial. The second level describes the dynamic change of federation structures as a graph
rewriting system with each node representing a smart object and each directed edge rep-
resenting a channel connection between a pair of smart objects. The third level deals with
complex application scenarios, in each of which more than one smart object federation
are involved. It describes each complex application scenario as a binary autocatalytic-
reaction network. It consists of binary (composition/decomposition) catalytic reactions
each of which does not deal with the quantity of each of its input, output, nor catalyst
compounds, but only with the existence or absence of each of them. Each composition
reaction represents the federation of given input federations to compose an output fed-
eration with or without the help of a catalyst federation. Each decomposition reaction
represents the defederation of an input federation into output federations with the help
of a catalyst federation. We do not consider any decomposition reaction without the help
of a catalyst federation, since it implies that the input federation is too unstable to exist.
A binary autocatalytic-reaction network is a set of composition and/or decomposition
reactions in which the output of some reaction may work as an input and/or a catalyst
of another reaction.

Based on these three levels of formal modeling, the present author proposed a novel
middleware framework for the rapid development of complex application scenarios
using the proximity-based federation of smart objects [3, 5]. His framework uses a
special type of smart objects working as a tag for identifying each different type of
smart objects. These tag objects are called nucleotide smart objects since they work
as nucleotides in the biological RNA (ribonucleic acid) replication process. For each

Proximity-Based Federation of Smart Objects 89

different tag, we can use the same prototype tag-smart-object that allows us to manually
set its type. His framework defined the generic whole set of rewriting rules for this
prototype tag-smart-object to execute.

His previous papers mainly focused on binary catalytic reactions using immobile
catalysts as contexts and showed only one simple example of binary autocatalytic-
reaction networks without using any context. Here, in this paper, we will focus only
on complex binary autocatalytic reaction networks without using any context. Instead
of extracting the generic federation mechanism from each smart object, encapsulating it
into nucleotide smart objects working as tagging objects, and formalizing the federation
reactionmechanism in a genericway as the bio-inspiredRNA replicationmechanism, the
new approach directly implements the federation-reaction mechanism in each involving
smart object as its capability, which can be simply defined as its graph rewriting rules.
This enables us to define the federation capability of each smart object much more easily
for an arbitrarily given complex application scenario.

In addition, this paper newly proposes a framework-level solution to the secure
federationof smart objects,which is independent from the encryption-based technologies
for secure communication between two smart objects and can be used together with them
to increase the federation security.

2 Formal Modeling of Smart Objects

2.1 Smart Objects and Their Port Matching [3, 5]

Each smart object communicates with another one through a peer-to-peer communica-
tion facility, which is either a direct cable connection or a wireless connection. Some
smart objectsmay haveWiFi communication and/or cellular phone communication facil-
ities for their Internet connection. These different types of wireless connections are all
proximity-based connections, i.e., each of them has a distance range of wireless com-
munication. We model this by a function scope(o), which denotes a set of smart objects
that are currently accessible, or more strictly speaking, identifiable by a smart object o.

Each smart object is modeled as a set of ports. Each port consists of a port type and its
polarity, i.e., either a positive polarity ‘+’ or a negative polarity ‘−’. A smart object that
provides a service of type ‘stype’ has a service-providing port +stype. A smart object
has a service-requesting port −stype if it requests a service of type ‘stype’. A service
type ‘stype’ may or may not depend on its providing smart object or its type. Sometimes,
we may consider the object identifier or the object type of a smart object as a service
type. A service-providing port +oid of a smart object with ‘oid’ as its object identifier
denotes that this object publicizes its object identifier so that any other object that knows
this object identifier and exists within its proximity scope(oid) can access this object
through its service requesting port −oid. Similarly, A service-providing port +otype of
a smart object o with ‘otype’ as its object type denotes that this object publicizes its
object type ‘otype’ so that any other object that knows this object type ‘otype’ and exists
within its proximity scope(o) can access this object through its service requesting port
−otype.

An object o1 with a service-requesting port −stype can access a service ‘stype’
provided by another object o2 in scope(o1) as follows. The object o1 first internally

90 Y. Tanaka

sends a message to its port −stype, which delegates this message to the +stype port
of o2 through wireless communication. This service-providing port +stype of o2 then
invokes the service of type ‘stype’ defined in o2 with this message to receive a return
value from it. Then the service-providing port+stype of o2 returns this value to the port
−stype of o1. Finally, the process which initially sent a massage to this −stype port
receives this return value from the service.

Federation of a smart object o with another smart object o’ in its scope scope(o) is
initiated by a program running on o or on some other activating smart object that can
access both of these two objects. The activating object here denotes the smart object that
executes this program. This program detects either a specific user operation on o or on
the activating object, a change of scope(o), or some other event on o or on the activating
object as a trigger to initiate federation. The initiation of federation with o’ by a smart
object o or by some other activating object first checks if o’ exists in scope(o), and, if
yes, it performs the port matching between the ports of o and the ports of o’. As the
result, every port –p in o is connected with a port +p in o’ by a channel identified by
their shared port type p. We assume that ports are not internally matched with each other
to set any channel within a single object.

The same smart object may be involved in more than one different channel. The
maximum number of channels in which the same port can be involved is called the arity
of this port. In our modeling, we assume that each service-requesting port and each
service-providing port may have arbitrary arities unless otherwise specified. In order to
specify that a port ± p has the arity n, we use the notation ± p(n).

2.2 Graph Rewriting System

The second-level formal modeling focuses on the dynamic change of federation struc-
tures among smart objects. It describes a system of smart objects as a directed graph
in which each node represents either a smart object or a port, and each directed edge
represents either a channel or a proximity relationship. A smart object node and a port
node are respectively represented by a bigger (white or gray) circle and a smaller black
circle. A channel and a proximity relationship are represented respectively by a black
arrow and a gray arrow. Each gray arrow denotes that the pointed smart object is in the
scope of the pointing smart object. A port node with an outgoing (or incoming) channel
edge p to (from) an object node o denotes that this object o has a service-providing
(service-requesting) port+p (−p), and that it is not involved in any federation yet. Each
object node has its state and its type. Smart objects of the same type share the same
port set and the same functions. The formalization with graph rewriting rules aims to
describe the dynamic change of the channel connections among smart objects through
the activation of federation rules, and to hide all the details about the execution of service
functions.

Each rewriting rule is specified as a combination of the following four types of
rules, i.e., port activation/deactivation rules, state setting rules, channeling rules, and
path-dependency rules [3, 5]. In this paper, we only need to use channeling rules for
the description of our basic framework, and path-dependency rules in Sect. 4 for the
extension of our framework for secure federation. In each of the following rules, there
always exists only one gray smart object node. This gray smart object node called

Proximity-Based Federation of Smart Objects 91

the rule-activation node indicates that this rule is stored in this smart object node and
executed by this node. Each type of rules is carefully designed to satisfy reasonable
hardware and performance constraints of the smart objects of our concern so that it can
be executed locally without assuming the accessibility to any global information about
the current overall federation structure. The left-hand side of each rule specifies the
condition for this rule to be executed. The rule-activation node should be able to check
all the specification conditions in this condition part such as those on smart object states,
smart object types, port types, port availabilities, channel types, channel connections,
and proximity relations of this activation node itself and of all the other nodes specified
in the condition part. This implies that the rule-activation node should be able to access
all these nodes through channels. The right-hand side of each rule specifies the actions
to be executed by the rule-activation node, which should be able to perform these actions
directly or to instruct other nodes through channels to perform these actions. Each of
the rules defined in each smart object is periodically checked in their definition order if
its condition part holds true. Its action part is immediately executed if its condition is
satisfied. Otherwise its action is neglected. Then the next rule in the definition order is
immediately checked.

For example, Fig. 1 shows the form of channeling rules for setting channels. In each
rule in Fig. 1 (a), the rule-activation smart object node (i.e., the gray node) can activate
or deactivate a specified port of the left smart object node through the channel path σ (,
i.e., a sequence of consecutive channels in the same direction,) to establish or to break
the corresponding channel to its neighboring smart object node that is pointed to by a
gray arrow. The length of σ may be zero. The smart object that can be reached from a
smart object o by a channel path σ is called the σ object of o and denoted by σ(o).

(a) rules with one path reference (b) rules with two path references

Fig. 1. Channeling rules for setting channels.

In Fig. 1 (b), the rule-activation smart object uses –p and +p ports to establish a
channel of type p between the two smart objects. The length of either σ1 or σ2 may be
zero.

92 Y. Tanaka

2.3 Smart Objects and Their Port Matching [3, 5]

A linear federation o1o2…on of n smart objects o1, o2, …, on denotes a sequence of
smart objects in which, for each i = 1, …, n-1, there is an L channel from oi+1 to oi.
For two linear federations or smart objects X and Y, their federation XY denotes a liner
federation in which the first smart object in Y spans an L channel to the last smart object
in X. The type of a linear federation o1o2…on is defined as the concatenation of the
object types of o1, o2, …, on.

Our third level modeling uses a binary catalytic composition reaction and a binary
catalytic decomposition reaction to respectively represent federation and defederation
of linear federations of smart objects [3, 5]. Figure 2 lists up all kinds of composition
reactions and decomposition reactions, where X, Y, and C denote smart object types
or linear federation types, and XY denotes the type of a linear federation of two linear
federations of types X and Y. Any decomposition reaction without any catalyst means
autonomous decomposition, which indicates that its input linear federation is unstable.
Therefore, we do not consider such decomposition reactions, which is shown in gray in
Fig. 2, in our binary autocatalytic-reaction network modeling.

Fig. 2. Composition and decomposition reactions with and without catalysts.

3 Implementing Any Binary Autocatalytic-Reaction Network
with Graph Rewriting Rules

A binary catalytic composition reaction with X, Y, and C as two input federations and
one catalyst federation to compose XY can be implemented by additionally defining the
graph rewriting rules shown in Fig. 3 in this order in the smart object type Cn, i.e., the
type of the rightmost smart object of C. The channel P* denotes a temporary channel
from −P port to +P port. The channel P* is used for the rightmost smart object Cn of
the catalyst C to check the condition of Rule 2. If the condition of Rule 2 does not hold,
then this temporary channel is immediately broken by the Cn type smart object using
Rule 3. Once the rightmost smart object of type Xh in X and the rightmost smart object
of type Yk in Y are both linked from the rightmost smart object of type Cn in the catalyst
C with two P channels, Rule 4 is immediately applied for the smart object of type Cn to

Proximity-Based Federation of Smart Objects 93

span an L channel from the leftmost smart object of Y to the rightmost smart object of
X for composing a federation XY. Then the condition part of Rule 5 becomes satisfied,
and the execution of this rule by the smart object of type Cn immediately breaks the two
P channels between the catalyst C and the federation XY to separate the federation XY
from C.

Fig. 3. Graph rewriting rules for a composition of XY from two federations X and Y with the
help of a catalyst federation C.

A composition reaction without using any catalyst to compose a federation XY from
two input federations X and Y can be implemented by additionally defining the graph
rewriting rules shown in Fig. 4 in this order in the smart object type Yk, i.e., the type of
the rightmost smart object of Y. The role of the temporary channel P* is the same as in
Fig. 3. Once the rightmost smart object of typeXh inX is linked from the rightmost smart
object of typeYk inY through aP channel, Rule 4 in Fig. 4 is immediately executed by the
smart object of type Yk to break the P channel and to span an L channel from the leftmost
smart object of Y to the rightmost smart object of X for composing a federation XY.

A catalytic decomposition with XY and C as the input and the catalyst to produce
X and Y can be implemented by additionally defining the graph rewriting rules shown
in Fig. 5 in this order in the smart object type Cn, i.e., the type of the rightmost smart
object of C.

Using the above-mentioned general rules to implement three different types of cat-
alytic reactions, any complex application scenario defined as a binary autocatalytic-
reaction network can be easily implemented. For example, an application scenario in

94 Y. Tanaka

Fig. 4. Graph rewriting rules for a composition of XY from two federations X and Y without the
help of any catalyst.

Fig. 5. Graph rewriting rules for a decomposition of XY to two federations X and Y with the help
of a catalyst federation C.

Fig. 6 can be implemented by additionally defining rewriting rules in smart object types
B and D as shown in Fig. 7.

Proximity-Based Federation of Smart Objects 95

Fig. 6. An example binary autocatalytic-reaction network.

Fig. 7. Graph rewriting rules defined in B and D to implement the application scenario shown in
Fig. 6.

4 A Framework-Level Solution to the Secure Federation

While one typical way of increasing the security of federation is the encryption of mes-
sages that are exchanged between ports of different smart objects, wewill consider in this
section a framework-level solution as its complementary way to increase the federation
security. A basic idea is the encapsulation of federation so that no one may be able to
see nor to interact with any protected ports of the smart objects involved in the encap-
sulated federation. In order to implement this basic idea, we will introduce membrane
objects and path-dependent ports. A membrane object is a smart object that defines a
capsule or a compartment for encapsulation. Its role is to encapsulate one of the follow-
ing three, i.e., a smart object, a service port, or a channel. Smart object encapsulation
makes all the ports of the target smart object invisible and inaccessible from any other
service-requesting port that is not encapsulated by the same membrane object. Service
encapsulation makes the target service-providing port of some smart object invisible and
inaccessible from any other service-requesting port that is not encapsulated by the same
membrane object. Channel encapsulation makes the target channel invisible from, and
non-interceptable by any other smart object. While both smart object encapsulation and

96 Y. Tanaka

service encapsulation can be used to implement object-oriented and/or capability-based
access control, channel encapsulation can be used to protect message communication
against its interception.

What we need is to define each membrane object as a smart object with some ports.
Through the portmatchingbetween someof these ports of themembrane smart object and
some ports of the target smart object, all the ports of the target smart object or a specified
target service-providing port should be securely protected against any nonauthorized
access. For channel encapsulation, the membrane smart object should be connected
through the port matching with each of the two objects to be connected together with
this channel, and protect this channel against the interception of the channel message by
any malicious smart object.

In order to implement such membrane objects as smart objects, we will introduce the
following two types of guarded ports;± σ:p and ± [σ]p, where p and σ are respectively
a port and a channel path of non-zero length. They are called guarded ports since the
original p ports are guarded respectively by σ: and [σ]. They become active under the
conditions detailed in the following.

A guarded service-requesting port −σ:p of a smart object o spans a σ:p channel
from itself to +σ:p of the smart object σ(o), and keeps it active only while the channel
path σ is active and σ(o) is in the scope of o. Each message passing from −σ:p to +σ:p
needs to check if the channel path σ is active before sending a message. Otherwise, the
message passing is prohibited. A guarded service-providing port+σ:p in a smart object
o is accessible only from a guarded service-requesting port −σ:p only while −σ:p is
active. Figure 8 shows the rewriting rules for the guardian σ:p. These rules are called
path-dependency rules.

Fig. 8. Graph rewriting rules for guarded ports ± σ:p.

A guarded port ± [σ]p in a smart object o becomes active and makes itself work
as ± p only while the channel path σ is active and σ(o) = o. In other words, a guarded
service-requesting port −[σ]p in a smart object o spans a channel p from itself to +p in
another object o’ in the scope of o, and keeps it active only while σ(o) = o. A guarded
service-providing port +[σ]p becomes accessible from −p in another object o’ only
while o is in the scope of o’ and σ(o) = o. Figure 9 shows the rewriting rules for the
guardian [σ]. These rules are called loop-path-dependency rules.

Amembrane object mi is a smart object of a special typewith two ports, i.e., an entry-
service providing port +mei and a ruled-service requesting port −mri. Each membrane
object mi provides an entry service mei for another object o with −mei to request the

Proximity-Based Federation of Smart Objects 97

Fig. 9. Graph rewriting rules for guarded ports ± [σ]p.

registration of o in this entry service mei so that o can securely access any objects ruled
by mi. The membrane object mi, i.e., its entry service mei, may use capability-based
and/or object-oriented access control to accept or to reject this registration request, which
we will not detail in this paper. This registration is performed through the channel mei
from −mei of o to +mei of mi. If the registration request is accepted, then the channel
mei is kept active. Otherwise, this channel is immediately broken.

Eachmembrane object mi can rule another object o that has a ruled-service providing
port +mri by spanning a channel from its −mri.to the port +mri of o. The target object
o may accept or reject this ruled-service request based on its capability-based and/or
object-oriented access control strategy. If the request is accepted, then the channel mri is
kept active. Otherwise, it is immediately broken. If the request is accepted, then the target
object is put under the protection control by the membrane object, i.e., the membrane
object can restrict the access of any service providing port +p of o that are guarded
with mei.mri: as +mei.mri:p. Once a service providing object o is put under the ruling
by a membrane object mi, its service can be accessible only by those objects that are
registered to the same membrane object through an mei channel. An object o is said to
have entered the membrane mi when o has been registered as a service requesting object
into mi or put under the ruling of mi as a service providing object. Figure 10 shows a
membrane object mi which both a service-providing object o1 and a service-requesting

Fig. 10. The leftmost figure shows (1) a ruling request from a membrane object mi to a service-
providing object o1, (2) a registration request from a service-requesting object o2 to the same
membrane object mi, and (3) a secure federation between o1 and o2 using the channel mei.mri:p.
The middle figure schematically shows the moment when two objects enter the membrane object,
while the rightmost figure schematically shows the secure federation between two objects that are
simultaneously encapsulated by the same membrane object.

98 Y. Tanaka

object o2 enter to securely federate with each other using a guarded channel mei.mri:p.
The middle and the rightmost figures in Fig. 10 metaphorically represent the membrane
object as a compartment which the two objects may enter.

Now we consider how membrane objects and guarded ports can be used to encap-
sulate objects, services, and/or channels. For the smart object encapsulation, we will
encapsulate all the ports of the target smart object. When all the ports of a smart object
become invisible, no one can access this object. Figure 11 shows how a smart object o
is encapsulated by a membrane object mi. We assume that the membrane object mi has
a ruled-service requesting port −mri and an entry-service providing port +mei while
the target smart object o has a ruled-service providing port +mri and an entry-service
requesting port −mei, and each of its port ± p is guarded as ± [mei.mri]p. Without a
channel pathmei.mri fromo to itself throughmi, each port± [mei.mri]p in o cannotwork
as an active port, i.e., it stays invisible and inaccessible, and hence o is encapsulated. In
this mechanism, however, o needs to be a priori hard-coded under the assumption that
it will be encapsulated by a specific membrane object mi. This problem can be easily
solved by introducing additional rewriting rules that can make every port of its σ object
guarded with arbitrary guardians. However, this extension may also lower the security
level. Therefore, in this paper, we will focus on the hard-coded membrane mechanism.

Fig. 11. A membrane object to encapsulate a smart object o.

Once the membrane object mi makes each port ± [mei.mri]p of the object o visible
as ± p, this port becomes visible also to any other object while the path mei.mri from o
to itself through mi is kept active. Therefore, the encapsulation of all the ports of a target
smart object by itself cannot securely protect this smart object from malicious accesses.
It can only control the visibility of these ports to other smart objects. In order to solve this
problem, we may restrict the arity of± [mei.mri]p to one as± [mei.mri]p(1) to prohibit
any further connection to or from this port after establishing the desired federation using
this port. This encapsulationmechanismcanbeused to break a securely established active
federation between o1 and o2 from outside, namely by deactivating the encapsulating
membrane object mi. Without mi, no one can reestablish the same federation between
o1 and o2.

This mechanism in Fig. 11 is also used in combination with themechanism in Fig. 10
to strengthen the security protection by the latter. The nested membrane objects use the
mechanism of a membrane object mi in Fig. 11 to control the visibility of all the ports of
another membrane object mj that is used as mi in Fig. 10 to securely protect a federation

Proximity-Based Federation of Smart Objects 99

from o1 to o2. Figure 12 shows this whole mechanism. Without the ruling of mj by mi,
neither of o1 or o2 can enter the membrane mj to establish their federation.

Fig. 12. Nestedmembrane objects: Amembrane objectmi encapsulates anothermembrane object
mj to securely protect a federation from o1 to o2.

The service encapsulation may use the same mechanism as shown in Figs. 10 or 11
only for those service-providing ports of the target smart object o to be encapsulated.

For the channel encapsulation, wemay use the mechanism that was already shown in
Fig. 10, where the guarded channel mei.mri:p is securely encapsulated by a membrane
object mi. For a malicious smart object o’ to intercept the message passing through this
channel, o’ is required to be registered in the membrane object mi beforehand, and its
service-requesting port should be guarded with mei.mri: in hard coding.

It should be noted here that the same service p of a smart object o can be simultane-
ously encapsulated bymore than onemembrane objects, say,mi andmj. For this purpose,
o should be hard-coded to have two different guarded ports+mei.mri:p and+mej.mrj:p
for the service p. Such hard-coding of guarded ports can protect this object o against the
unexpected ruling by a malicious membrane object.

5 Concluding Remarks

Any complex application scenario using the proximity-based federation of a large num-
ber of different types of smart objects with wireless communication capabilities can be
generally modeled as a binary autocatalytic-reaction network, in which each reaction
denotes either federation or defederation of single or composite smart objects. Based
on the formal modeling of smart objects proposed by his previous papers, the present
author has given a simplified generic way of implementing each catalytic reaction in an
arbitrarily given binary autocatalytic-reaction network as a list of additional graph rewrit-
ing rules to be coded in each of the involving smart objects. The framework proposed
here will open a new vista of novel complex application scenarios of proximity-based
federation of smart objects.

The increase of the complexity of application scenarios will necessarily increases
the threats of malicious attacks. Because of the highly dynamic and ad hoc nature

100 Y. Tanaka

of proximity-based federation of smart objects, complex applications of smart objects
may easily become the target of malicious attacks. Secure federation is most important
in such applications. This paper has proposed a new framework-level solution to this
issue. Our solution is independent from the encryption-based technologies for secure
communication between two smart objects, and can be used together with them to
increase the federation security. The proposed framework uses a special type of smart
objects called membrane objects, which can encapsulate desired smart objects, services,
and/or federations.

References

1. Milner, R.: Theories for the global ubiquitous computer. In: Walukiewicz, I. (ed.) FoSSaCS
2004. LNCS, vol. 2987, pp. 5–11. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-24727-2_2

2. Henricksen, K., Indulska, J., Rakotonirainy, A.: Modeling context information in pervasive
computing systems. In: Mattern, F., Naghshineh, M. (eds.) Pervasive 2002. LNCS, vol. 2414,
pp. 167–180. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45866-2_14

3. Tanaka, Y.: Proximity-based federation of smart objects: liberating ubiquitous computing from
stereotyped application scenarios. In: Setchi, R., Jordanov, I., Howlett, R.J., Jain, L.C. (eds.)
KES 2010. LNCS (LNAI), vol. 6276, pp. 14–30. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-15387-7_6

4. Julia, J., Tanaka,Y.: Proximity-based federation of smart objects: its graph-rewriting framework
and correctness. J. Intell. Inf. Syst. 46(1), 147–178 (2016)

5. Tanaka, Y.: Proximity-based federation of smart objects and their application framework. In:
Kyung, C.-M., Yasuura, H., Liu, Y., Lin, Y.-L. (eds.) Smart Sensors and Systems, pp. 411–439.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-33201-7_15

6. Edwards,W.K., Joy,B.,Murphy,B.:Core JINI. PrenticeHall Professional TechnicalReference,
Upper Saddle River (2000)

https://doi.org/10.1007/978-3-540-24727-2_2
https://doi.org/10.1007/3-540-45866-2_14
https://doi.org/10.1007/978-3-642-15387-7_6
https://doi.org/10.1007/978-3-319-33201-7_15

4-Valued Semantics Under the OWA:
A Deductive Database Approach

Dominique Laurent(B)

ETIS Laboratory - ENSEA/UCP/CNRS, Cergy-Pontoise, France
dominique.laurent@u-cergy.fr

Abstract. In this paper, we introduce a novel approach for dealing with
databases containing inconsistent information. Considering four-valued
logics in the context of OWA (Open World Assumption), a database Δ
is a pair (E, R) where E is the extension and R the set of rules. In our
formalism, the set E is a set of pairs of the form 〈ϕ, v〉 where ϕ is a
fact and v is either t, or b, or f (meaning respectively true, inconsistent
or false), given that unknown facts are not stored. Moreover the rules
extend Datalogneg rules allowing their heads to be a negative atom.

We then define the notion of model of such a database, we show how
to compute one particular model called semantics, and we investigate
properties of this model. We also show how our approach applies to data
integration and we review examples from the literature.

Keywords: Open world assumption · Datalog with negation ·
Inconsistent database · Database semantics

1 Introduction

In this paper, we present and discuss our preliminary work on a novel approach
meant to take into account the needs of many current applications, specifically
in the domains of data integration and data warehousing:

1. As for usual Datalog databases [6], in our approach, a database Δ is a pair
(E,R) where E (respectively R) is called the extension (respectively set of
rules) of Δ. Whereas in standard approaches E is a set of ground facts meant
to be true, in our approach E is a set of pairs of the form 〈ϕ, v〉 where ϕ is a
ground fact and v is one of the three truth values t (true), b (contradictory)
or f (false), meaning that a fact can be either true, or contradictory or false,
given that facts not occurring in E are considered unknown.

2. Recalling that a literal is an atom or the negation of an atom, the rules in R
are expressions of the form head ← body where head is a literal and body is a
conjunction (denoted as a list) of literals. We notice that such rules generalize
standard Datalogneg rules since their head may be a negated atom.

3. The database semantics is defined based on the four valued semantics as
defined in [12,16]. These semantics reflect the Open World Assumption

c© Springer Nature Switzerland AG 2020
G. Flouris et al. (Eds.): ISIP 2019, CCIS 1197, pp. 101–116, 2020.
https://doi.org/10.1007/978-3-030-44900-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44900-1_7&domain=pdf
https://doi.org/10.1007/978-3-030-44900-1_7

102 D. Laurent

(OWA), contrary to most database models that assume the Closed World
Assumption (CWA) [14]. As in [4], we argue that considering the OWA instead
of the CWA is relevant in most applications related with data integration on
the Web, for the following intuitive reason: when a fact does not appear in
the answer to a query, this does not mean that this fact is false, but rather
that it has not been searched properly. Therefore, in the absence of any other
information such a fact will be considered unknown, instead of false.

As compared with related work on contradictions in databases, we propose a
radically different approach. Indeed, the purpose of previous work dealing with
contradictions in databases, is either to define and investigate ‘repairs’ so as to
make the database consistent [1,9], and/or to identify a set of queries whose
answer is independent from any contradiction [11]. Instead, we propose an app-
roach in which contradictions can be stored or deduced through rules, and our
purpose is not to eliminate or avoid contradictions. Instead, our semantics allows
for handling contradictory information as such, thus reflecting real world appli-
cations in which true, false, inconsistent and unknown information have to be
dealt with, as is the case when data integration is involved. In this context, the
main contributions of this work are the following:

1. We define semantics for databases containing contradictions in the context
of OWA. To do so, we review the formalism introduced in [3] and further
discussed in the literature [2,7,12,16], in particular regarding implication.

2. We study minimality properties of our semantics with respect to set inclusion
and to the two orderings induced by four-valued logics (truth and knowledge
orderings). We also relate our semantics to standard Datalog semantics [6].

3. We discuss the relevance of our approach in the context of data integration, a
context of interest in more and more current applications. We illustrate this
point by reviewing two well-known examples from the literature.

The paper is organized as follows: In Sect. 2 we recall some background on four-
valued logics and we introduce basic definitions. Section 3 deals with database
semantics and minimality properties. In Sect. 4, we review examples from the
literature in the context of our approach. Section 5 concludes the paper.

2 Background: Four-Valued Logics and Database Context

2.1 Basics on Four-Valued Logics

Four-valued logics was introduced by Belnap in [3], who argued that this for-
malism could be of interest when integrating data from various data sources. To
this end, denoting by t, b, n and f the four truth values, the usual connectives
¬, ∨ and ∧ have been defined as shown in Fig. 1. An important feature of this
four-valued logics is that it allows to compare truth values according to two
partial orderings, known as truth ordering and knowledge ordering, respectively
denoted by �t and �k and defined by:

n �k t �k b, n �k f �k b and f �t n �t t, f �t b �t t.

4-Valued Semantics Under the OWA 103

As in standard two-valued logics, conjunction (respectively disjunction) corre-
sponds to minimum (respectively maximum) truth value, when considering the
truth ordering. It has also been shown in [3,7] that the set {t, b, n, f} equipped
with these two orderings has a distributive bi-lattice structure. In this bi-lattice,
the minimum and maximum with respect to �t are ∧ and ∨, and the minimum
and maximum with respect to �k are respectively denoted by ⊗ and ⊕.

This four-valued logics has motivated many comments and research, because
some basic properties holding in standard logics do not hold in this formalism.
For example, Fig. 1 shows that formulas of the form Φ ∨ ¬Φ are not always true,
independently from the truth value of Φ. More importantly, it has been argued
in [2,12,16] that defining the implication Φ1 ⇒ Φ2 as usual in two-valued logics,
that is by ¬Φ1 ∨ Φ2, is problematic.

To see this, we consider as in [2,3,12,16], that t and b are the two designated
truth values, and a formula Φ is said to be valid if its truth value is designated.
For instance, assuming that the truth value of Φ is n, then Φ ⇒ Φ is not valid
since its truth value is n. Notice in this respect that Fig. 1 shows that Φ → Φ,
Φ ↪→ Φ, Φ

∗→ Φ and Φ
∗

↪→ Φ are valid for any truth assignment regarding Φ.
As argued in [2,12,16], considering ⇒ as an implication does not satisfy the

deduction theorem, because the formula Φ defined by (Φ1 ∧ (Φ1 ⇒ Φ2)) ⇒ Φ2 is
not valid for any assignment v such that v(Φ1) = b and v(Φ2) = f (because in
such case, v(Φ1 ⇒ Φ2) = b and thus, v(Φ) = f).

It can however be considered that Modus Ponens holds, in the sense that
the statement [if v(Φ1) and v(Φ1 ⇒ Φ2) are equal to t then v(Φ2) = t] holds.
However, this same statement enhanced by replacing ‘true’ with ‘designated’
does not hold because for v(Φ1) = b and v(Φ2) = f we have v(Φ1 ⇒ Φ2) = b.
This matter of fact is a severe limitation in our context, which explains why
implication defined by ‘⇒’ is discarded as a possible semantics of our rules.

Other implications have been introduced, among which two in [2,12] denoted
hereafter by → and ∗→, and two in [16] denoted hereafter by ↪→ and

∗
↪→. The

truth tables of these implications are shown in Fig. 1.
We recall from [2] (Corollary 9) that → is defined ‘from scratch’ in the sense

that it cannot be expressed using the other standard connectives ¬, ∨ and ∧.
Moreover, since Φ1 → Φ2 and ¬Φ2 → ¬Φ1 are not equivalent, the implication
Φ1

∗→ Φ2 is introduced in [2,12] as (Φ1 → Φ2) ∧ (¬Φ2 → ¬Φ1). The implication
Φ1 ↪→ Φ2 is defined in [16] by ∼ Φ1 ∨ Φ2, where ∼ is a complement operator
whose truth table is shown in Fig. 1. Again, Φ1 ↪→ Φ2 and ¬Φ2 ↪→ ¬Φ1 are not
equivalent, and so, Φ1

∗
↪→ Φ2 is defined as (Φ1 ↪→ Φ2) ∧ (¬Φ2 ↪→ ¬Φ1).

Since the formula Φ defined by (Φ1 ∧ (Φ1 � Φ2)) � Φ2 is valid for any truth
value assignment when replacing � with one of the implications →, ↪→, ∗→ or

∗
↪→,

Modus Ponens does apply in its standard and enhanced forms for any of these
implications. It is also interesting to see that when merging the truth values
t and b (respectively f and n) into a single truth value, say True (respectively
False), the corresponding truth tables of → and ↪→ are that of the standard
implication, while this is not the case for ⇒, ∗→ and

∗
↪→. This explains why we

104 D. Laurent

ϕ ¬ϕ

t f

b b

n n

f t

ϕ ∼ ϕ

t f

b n

n b

f t

∨ t b n f

t t t t t

b t b t b

n t t n n

f t b n f

∧ t b n f

t t b n f

b b b f f

n n f n f

f f f f f

⇒ t b n f

t t b n f

b t b t b

n t t n n

f t t t t

→ t b n f

t t b n f

b t b n f

n t t t t

f t t t t

↪→ t b n f

t t b n f

b t t n n

n t b t b

f t t t t

∗→ t b n f

t t f n f

b t b n f

n t n t n

f t t t t

∗
↪→ t b n f

t t f f f

b t t f f

n t f t f

f t t t t

Fig. 1. Truth tables of basic connectors and implications

discard these three implications. However, the choice between → and ↪→ is not
easy for the following reasons:

– In [2,12], it is argued that, similarly to two-valued implication, → satisfies the
property that v(Φ1 → Φ2) = v(Φ2) whenever v(Φ1) is designated. However,
→ does not satisfy the properties of ↪→ given below.

– Although ↪→ does not satisfy the above property, it is argued in [16] that,
similarly to two-valued implication, ↪→ satisfies the property that v(Φ1) �t

v(Φ2) if and only if v(Φ1 ↪→ Φ2) = t.

We draw attention on that none of these two implications does satisfy all
intuitively appealing properties that standard two-valued implication satisfies,
among which contraposition is an important example. Since in our approach,
implications are seen as rules, Modus Ponens is the basic ‘logical tool’ to be
used, whereas contraposition is not used as such.

Looking at the truth tables of the two implications → and ↪→ shown in Fig. 1,
when the left hand side is valid in S, it is necessary that the right hand side be
also valid in order to make the implication valid. More precisely, if Φ1 is valid,
the implications Φ1 → Φ2 and Φ1 ↪→ Φ2 are valid in S for any truth assignment
v such that:

– v(Φ1) = t and v(Φ2) = t or v(Φ2) = b,
– v(Φ1) = b and v(Φ2) = t or v(Φ2) = b.

As a consequence, if it happens that Φ1 is valid while Φ2 is not, the implication
can be made valid by changing the truth value of Φ2 in two ways: making it
either true or inconsistent. As will be seen later, we choose to set vS(Φ2) as
equal to vS(Φ1). This choice is motivated by the fact that it is the only one
satisfying v(Φ1) �k v(Φ2) and v(Φ1) �t v(Φ2).

2.2 Four-Valued Logics in the Database Context

As usual when dealing with deductive databases, the considered alphabet is made
of constants, variables and predicate symbols, and ground atoms are called facts.

4-Valued Semantics Under the OWA 105

We thus assume a fixed set of facts, called universe and denoted by U . The set
U is the set of all possible facts that can be built up using the constants and
predicates that occur in the database being modeled. It is therefore important
to notice that, as databases are assumed to be finite, so is U .

While in the two-valued setting under the CWA, the database extension and
the database semantics are sets of facts, meant to be true and the facts not
occurring in the database semantics are set to be false, in our context of four-
valued logics under the OWA, the database extension and the database semantics
may contain facts that are either true, contradictory or false, assuming that non
stored facts are unknown.

To account for this situation, we consider sets of pairs 〈ϕ, v〉 where ϕ is a fact
in U and where v is one of the truth values t, b, n or f, and we assume that facts
whose truth value is n are not stored. Such a set S is said to be consistent if for
all distinct pairs 〈ϕ1, v1〉 and 〈ϕ2, v2〉 in S, ϕ1
= ϕ2. Consequently a consistent
set S is seen as a valuation vS defined for every ϕ in U by:

vS(ϕ) = v, if S contains a pair 〈ϕ, v〉; vS(ϕ) = n, otherwise.

Consistent sets of pairs are called v-sets, standing for valuated sets. It should be
noticed that, in [16], a formal way of expressing the pairs in a v-set is proposed
by defining unary operators. We however do not use this formalism because its
proper definition requires further notation which could be thought unnecessarily
sophisticated in our context.

Given a v-set S and a formula Φ, based on the truth tables given in Fig. 1,
Φ is said to be valid in S if vS(Φ) is designated. For example, a → b is valid
in S1 = {〈a, t〉, 〈b, b〉} because vS1(a → b) = b, but a → b is not valid in
S2 = {〈a, t〉} because vS2(a → b) = n.

The two orderings �k and �t are extended to v-sets over the same universe
U as follows.

Definition 1. For all v-sets S1 and S2 over U , S1 �k S2, respectively S1 �t S2,
holds if for every ϕ in U , vS1(ϕ) �k vS2(ϕ), respectively vS1(ϕ) �t vS2(ϕ), holds.

For example with U = {a, b, c}, S1 = {〈a, t〉} and S2 = {〈a, b〉, 〈b, f〉}, we have
vS1(b) = vS1(c) = vS2(c) = n and so:

– vS1(a) �k vS2(a), vS1(b) �k vS2(b) and vS1(c) �k vS2(c), implying that S1 �k

S2 holds.
– vS2(a) �t vS1(a), vS2(b) �t vS1(b) and vS2(c) �t vS1(c), implying that S2 �t

S1 holds.
– ∅ �k S2, because for every ϕ, v∅(ϕ) = n, the least value with respect to �k.
– ∅ and S2 are not comparable with respect to �t, because v∅(a) = n and

vS2(a) = b are not comparable with respect to �t.

The extension of �k generalizes set inclusion in the sense that if S1 ⊆ S2, then
we have S1 �k S2. Notice that, as the last item above shows, the truth ordering
�t does not satisfy this property, because ∅ ⊆ S2 holds while ∅ �t S2 does not.

106 D. Laurent

3 Database and Database Semantics

As in standard approaches to Datalog databases [5,6], a database consists of an
extension and a set of rules, formally defined as follows.

Definition 2. A database Δ is a pair Δ = (E,R) where E and R are respec-
tively called the extension and the rule set of Δ. If Δ = (E,R), then:

– E is a v-set.
– R is a set of rules of the form ρ : h ← b1, . . . , bn where

1. for i = 1, . . . , n, bi is a literal (positive or negative) and the set of all bi’s
(i = 1, . . . , n) is called the body of ρ, denoted by body(ρ),

2. h is a positive or negative literal, called the head of ρ, denoted by head(ρ),
3. all variables occurring in h also occur in body(ρ), i.e., rules are safe.

It is important to notice that the rules in our approach generalize Datalogneg

rules [5] because negative atoms are allowed not only in the body but also in the
head of the rules. This implies that rules may generate contradictory facts.

As usual, rules are seen as implications, either → or ↪→ that must be valid
in the database semantics. Notice in this respect that Fig. 1 shows that for all
formulas φ1 and φ2, φ1 → φ2 is valid if and only if so is φ1 ↪→ φ2. This explains
why our approach can be said ‘compatible’ with either implication.

Similarly to the standard Datalog approach, a model of a database Δ =
(E,R) could be defined as a v-set M containing E and in which all rules in R
are valid. However, such a definition would raise important problems:

1. A database might have no model. To see this, consider Δ = (E,R) where
R = {b ← a} and where E = {〈a, t〉, 〈b, f〉}. Whatever the chosen implication
(either → or ↪→), in any model M , vM (a → b) = vM (a ↪→ b) = f because M
must contain the two pairs of E. Notice that this cannot happen in standard
Datalog since the storage of false facts is not allowed.

2. A database might have more than one minimal model, with respect to set
inclusion. This case is illustrated above where S′

1 = {〈a, t〉, 〈b, t〉} are S′
2 =

{〈a, t〉, 〈b, b〉} two minimal v-sets containing {〈a, t〉} in which b ← a is valid.
This situation does not happen in standard Datalog because the minimal
model is known to be unique.

Whereas the second issue raised above will be further investigated later, the first
issue is solved in our approach by giving the priority to the database extension
over the rules. To do so, we prevent from applying a rule in R when it leads
to some conflict with a pair in E. In order to implement this policy, given a
database Δ = (E,R) over universe U , we denote by inst(E,R) the set of all
instantiations ρ of rules in R such that head(ρ) does not occur in E. Moreover,
given a rule ρ : h ← b we denote by ρ→, respectively ρ↪→, the formula b → h,
respectively b ↪→ h. The definition of a model of Δ then follows.

Definition 3. Let Δ = (E,R) be a database over universe U . A v-set M is a
model of Δ if the following holds:

4-Valued Semantics Under the OWA 107

1. E ⊆ M , i.e., M must contain the database extension, and
2. every ρ of inst(E,R) is valid in M , i.e., vM (ρ→) and vM (ρ↪→) are designated.

Referring to the previous two items, Definition 3 applies as follows:

– For Δ = (E,R) with E = {〈a, t〉, 〈b, f〉} and R = {b ← a}, E is a model of Δ
since we have inst(E,R) = ∅. Notice that here, E is the only minimal model
with respect to set inclusion.

– For Δ = (E,R) with E = {〈a, t〉} and R = {b ← a}, S′
1 = {〈a, t〉, 〈b, t〉} are

S′
2 = {〈a, t〉, 〈b, b〉} two minimal models of Δ, because inst(E,R) = R and

the two v-sets satisfy Definition 3.

Given a database Δ, a modified version of the membership immediate conse-
quence operator [5,7] is defined below. It will then be seen that this allows for
computing a particular model of Δ, which we call the semantics of Δ.

Definition 4. Let Δ = (E,R) be a database. The semantic consequence opera-
tor associated with Δ, denoted by ΣΔ, is defined for every v-set S by the following
steps:

(1) Define first ΓE
Δ (S) as follows:

ΓE
Δ (S) = E ∪ {〈h, t〉 | (∃ρ ∈ inst(E,R))(h = head(ρ) ∧ vS(body(ρ)) = t)}

∪ {〈h, b〉 | (∃ρ ∈ inst(E,R))(h = head(ρ) ∧ vS(body(ρ)) = b)}
∪ {〈h, f〉 | (∃ρ ∈ inst(E,R))(¬h = head(ρ) ∧ vS(body(ρ)) = t)}
∪ {〈h, b〉 | (∃ρ ∈ inst(E,R))(¬h = head(ρ) ∧ vS(body(ρ)) = b)}

(2) Then, ΣΔ(S) is defined by:

ΣΔ(S) = {〈ϕ, v⊕(ϕ)〉 | ϕ occurs in ΓE
Δ (S)}

where v⊕(ϕ) = maxk{v | 〈ϕ, v〉 ∈ ΓE
Δ (S)}.

The following lemma, whose proof can found in AppendixA, shows basic prop-
erties of the operator ΣΔ.

Lemma 1. For every Δ = (E,R) and all v-sets S, S1 and S2:

1. ΣΔ(S) is a v-set such that E �k ΣΔ(S).
2. If S1 �k S2, then ΣΔ(S1) �k ΣΔ(S2).

As a consequence of Lemma 1, with respect to �k, the sequence defined by

– Σ0 = E
– for every n ≥ 1, Σn = ΣΔ(Σn−1)

is monotonic, that is for every i ≥ 0, Σi �k Σi+1, and since U is finite, this
sequence has a unique limit. We denote this limit as Σ∗

Δ and we call it the
semantics of Δ. Moreover, the valuation vΣ∗

Δ
is more simply denoted by vΔ and

the valid facts in Σ∗
Δ are said to be valid in Δ.

As a consequence of the above properties, it should be clear that Σ∗
Δ is a

v-set such that E ⊆ Σ∗
Δ and E �k Σ∗

Δ. This intuitively means that the semantics
extends the content and the knowledge provided by the database extension E.
The following example illustrates cases of computation of Σ∗

Δ.

108 D. Laurent

Example 1. Consider the database Δ = (E,R) over U = {a, b, c, d, e} where R
is the set of the following three rules

ρ1 : c ← a,¬b; ρ2 : e ← d; ρ3 : c ← e

and where E = {〈a, t〉, 〈b, f〉, 〈e, b〉}. In this case, inst(E,R) = {ρ1, ρ3} and the
computation of Σ∗

Δ′ is as follows:

1. Σ1 = E.
2. Σ1 = ΣΔ′(Σ0). We have Γ∈

Δ′(Σ0) = E ∪ {〈c, t〉, 〈c, b〉}, which is clearly not
an acceptable result since it is not a proper v-set. When computing Σ1, the
first pair is removed, and we obtain that Σ1 = E ∪ {〈c, b〉}.

3. Since Σ2 = Σ1 (no rule applies on Σ1 to produce new pairs), the computation
stops returning that Σ∗

Δ = Σ1 = {〈a, t〉, 〈b, f〉, 〈c, b〉, 〈e, b〉}.

We draw attention on that E and ΣΔ are not comparable with respect to �t

because vE(c) = n and vΔ(c) = b. Hence, E �t ΣΔ does not hold in general,
contrary to E �k ΣΔ. Moreover, Σ∗

Δ is a model of Δ because E ⊆ Σ∗
Δ and:

– ρ→
1 and ρ↪→

1 are valid in Σ∗
Δ because vΔ(ρ→

1) = vΔ(ρ↪→
1) = b, due to the fact

that vΔ(a ∧ ¬b) = t and vΔ(c) = b.
– ρ→

2 and ρ↪→
2 are also valid in Σ∗

Δ. Indeed, as vΔ(d) = n and vΔ(e) = b, we
have vΔ(ρ→

2) = t and vΔ(ρ↪→
2) = b.

– ρ→
3 and ρ↪→

3 are valid in Σ∗
Δ as well. Indeed, as vΔ(e) = vΔ(c) = b, we have

vΔ(ρ→
3) = b and vΔ(ρ↪→

3) = t. ��
The following proposition, whose proof can be found in AppendixB, shows that,
as seen in Example 1, Σ∗

Δ is a minimal model of Δ with respect to set inclusion.

Proposition 1. Given a database Δ = (E,R), Σ∗
Δ is a minimal (with respect

to set inclusion) model of Δ.

However, the following example shows that Σ∗
Δ is not the only minimal model

with respect to set inclusion and that Σ∗
Δ is neither minimal nor maximal with

respect to any of the two orderings �k and �t.

Example 2. Considering, as in Example 1, Δ = (E,R) where E =
{〈a, t〉, 〈b, f〉,

〈e, b〉} and R = {ρ1, ρ2, ρ3}, we recall that Σ∗
Δ = {〈a, t〉, 〈b, f〉, 〈c, b〉, 〈e, b〉}. Let

S and S′ be the following v-sets:

S = {〈a, t〉, 〈b, f〉, 〈c, t〉, 〈e, b〉} and S′ = {〈a, t〉, 〈b, f〉, 〈c, b〉, 〈d, f〉, 〈e, b〉}.

We first show that S and S′ are two models of Δ. Indeed:

– E ⊆ S and E ⊆ S′.
– ρ→

1 and ρ↪→
1 are valid in S and S′ because vS(ρ→

1) = vS(ρ↪→
1) = vS′(ρ→

1) =
vS′(ρ↪→

1) = t, since vS(a ∧ ¬b) = vS′(a ∧ ¬b) = vS(c) = vS′(c) = t.
– ρ→

2 and ρ↪→
2 are not tested since ρ2 is not in inst(E,R).

4-Valued Semantics Under the OWA 109

– ρ→
3 and ρ↪→

3 are valid in S and in S′. Indeed, as vS(e) = b and vS(c) = t, we
have vS(ρ→

3) = vS(ρ↪→
3) = t, and since vS′(e) = b and vS′(c) = b, we have

vS′(ρ→
3) = b and vS′(ρ↪→

3) = t.

It can be seen that ΣΔ is not the unique minimal model of Δ with respect to
set inclusion, because S is also such a minimal model, due to the fact that no
proper subset of S does satisfy Definition 3. Notice also that S′ is not minimal
with respect to set inclusion, because Σ∗

Δ ⊂ S′ holds.
Regarding minimality or maximality of Σ∗

Δ with respect to �t or �k, we
emphasize the following:

– We have S ≺k Σ∗
Δ and Σ∗

Δ ≺t S, because for every ϕ in U different from c,
vS(ϕ) = vΔ(ϕ), vS(c) ≺k vΔ(c), and vΔ(c) ≺t vS(c). Therefore, Σ∗

Δ is not
minimal with respect to ≺k and not maximal with respect to ≺t.

– We have S′ ≺t Σ∗
Δ and Σ∗

Δ ≺k S′, because for every ϕ in U different from
d, vS′(ϕ) = vΔ(ϕ) and vS′(d) = f, vΔ(d) = n, implying that vS′(d) ≺t vΔ(d)
and that vΔ(d) ≺k vS′(d). Therefore, Σ∗

Δ is not minimal with respect to ≺t

and not maximal with respect to ≺k. ��
If Δ = (E,R) is a Datalog database, i.e., all facts are associated with t in
E and all literals in the rules in R are positive, then it is easy to see that
Σ∗

Δ = {〈ϕ, t〉 | ϕ ∈ M2}, where M2 is the unique minimal model of Δ, as
computed in Datalog. Thus, the true facts in Δ are the same as those, when
considering Δ as a Datalog database. Notice however that for any ϕ not in M2,
ϕ is false in the Datalog approach, and ϕ is unknown in our approach.

Considering now the more generic case where the rules are Datalogneg rules
and where false facts are allowed in E, the following proposition, whose proof is
shown in AppendixC, shows that in this case, all minimal models of Δ have the
same valid facts and the same false facts. To this end, given a v-set S, we denote
by V(S), respectively F(S), the set of all facts ϕ that are valid in S (i.e., such
that vS(ϕ) = t or vS(ϕ) = b), respectively false in S (i.e., such that vS(ϕ) = f).

Proposition 2. Let Δ = (E,R) be such that for every rule ρ in R, head(ρ) is
a positive literal. For all minimal models M1 and M2 of Δ, the following holds:
(i) V(M1) = V(M2) and (ii) F(M1) = F(M2).

4 Application to Data Integration

4.1 The Generic Scenario

Data integration is a generic context where our approach can be found useful.
Indeed, assuming that p data sources, i.e., p databases, are to be integrated in
one database, it may happen that two distinct data sources contain contradictory
pieces of information. Formally, the integrated database extension is defined by
a valuation v defined as follows for every fact ϕ:

– v(ϕ) = t if ϕ is true in all sources providing information about ϕ.
– v(ϕ) = b if ϕ is true in some sources and false in some other sources.

110 D. Laurent

– v(ϕ) = f if ϕ is false in all sources providing information about ϕ.
– v(ϕ) = n if no data sources provide information about ϕ.

In other words, assuming that for i = 1, . . . , p, the extension of the ith data
source is defined by a valuation vi, the valuation v defining the integrated
database is defined for every fact ϕ by: v(ϕ) = maxk{vi(ϕ) | i = 1, . . . , p}. Next,
we review two examples from the literature in the framework of this scenario.

4.2 The Case of Nixon Diamond

This example deals with the following: on the one hand, quakers are known to
be doves and republican are known to be hawks, and on the other hand, being
a dove is not compatible with being a hawk. Knowing that Nixon (President of
the USA, in the seventies) was a quaker and a republican, the question is: Was
Nixon a hawk or a dove? The corresponding ‘program’ is as follows:

dove(x) ← quaker(x) ; hawk(x) ← republican(x)
¬dove(x) ← hawk(x) ; ¬hawk(x) ← dove(x)

quaker(Nixon) ; republican(Nixon)

Notice that this can not be seen as a Datalogneg program, because of the third
and fourth rules. In the literature this program has been the subject of many
comments, and one of the most common approaches is known as stable semantics
[8]. According to this approach, two minimal models are found: one asserting that
Nixon is a quaker and thus a dove, and the other one asserting that Nixon is a
republican and thus a hawk.

In our approach, this can be thought of as stemming from two sources
S1 = {〈quaker(Nixon), t〉} and S2 = {〈republican(Nixon), t〉}. According to
the above generic scenario, the integrated database Δ = (E,R) is such that
E = S1 ∪ S2 and R contains the four rules displayed above. It is then easy
to see that ΣΔ contains 〈dove(Nixon), b〉 and 〈hawk(Nixon), b〉, meaning that
dove(Nixon) and hawk(Nixon) are contradictory.

A slightly different scenario of integration is to consider that the sources are
aware of the rules and thus that they are defined by

– S′
1 = {〈quaker(Nixon), t〉, 〈dove(Nixon), t〉, 〈hawk(Nixon), f〉} and

– S′
2 = {〈republican(Nixon), t〉, 〈hawk(Nixon), t〉, 〈dove(Nixon), f〉}.

The integrated database Δ′ = (E′, R) is such that E′ =
{〈quaker(Nixon), t〉,

〈republican(Nixon), t〉, 〈hawk(Nixon), b〉, 〈dove(Nixon), b〉}, which leads as
above to the fact that dove(Nixon) and hawk(Nixon) are contradictory.

As an extension to this example, some authors additionally consider that
hawks and doves are politically motivated, and study the question: Is Nixon
politically motivated? Formally two rules are added to the above program, namely
pm(x) ← dove(x) and pm(x) ← hawk(x), and considering stable semantics, as
pm(Nixon) holds in each minimal model, it is concluded that this fact holds.

In our approach, according to our generic scenario, and assuming that the
sources are not aware of the rules, 〈pm(Nixon), b〉 belongs to the semantics of

4-Valued Semantics Under the OWA 111

the integrated database, because 〈dove(Nixon), b〉 and 〈hawk(Nixon), b〉 are
also in the semantics of this database.

However, if we now assume that the sources are aware of the rules, then they
are defined by S′′

1 = S′
1 ∪ {〈pm(Nixon), t〉} and S′′

2 = S′
2 ∪ {〈pm(Nixon), t〉}.

Then, contrary to the previous case, 〈pm(Nixon), t〉 belongs to the semantics
of the integrated database Δ′′ = (E′′, R), because this pair is in E′′.

This example shows that, when integrating data in a deductive context,
deduction and integration do not commute in general. A generic scenario in this
respect would assume that each data source has its own facts and rules, whereas
the integration site has its own rules. Then, in this context, data integration can
be processed according to the following distinct policies:

1. Data and rules are collected from each source and deductions are computed
in the integration site using the integrated data and all rules obtained from
the data sources.

2. Only data are collected from data sources, assuming that each data source
has applied its own rules beforehand. Then, further deductions are computed
to the integrated data, using the rules available in the integration site.

Although it is likely that these policies give different results, we notice that
the second one is computationally easier for the integration site. It is thus rel-
evant to identify cases where commutativity (or a weak but acceptable form of
commutativity) holds, a basic issue left to future work.

4.3 The Trial Example of [13]

This example is about integrating data coming from two sources meant to repre-
sent respectively a prosecutor and a lawyer. Given a person λ put on trial, both
sources provide information to the judge, the prosecutor trying to convince the
judge that λ is suspect and the lawyer trying to convince the judge that λ is
innocent. The judge then integrates this information and decides on charging or
not λ. A simplified version of this process is expressed in [13] as follows.

suspect(x) ← motive(x) ∨ witness(x)
innocent(x) ← alibi(x, y) ∧ ¬friends(x, y)

friends(x, y) ← friends(y, x) ∨ (friends(x, z) ∧ friends(z, y))
charge(x) ← suspect(x) ⊕ ¬innocent(x)

Here, the syntax for the rules is that of Fitting programs [7] where the connectors
∨, ∧, ⊕ (maximum with respect to �k) and ⊗ (minimum with respect to �k)
appear in the bodies of the rules. This syntax is compatible with our approach
because (i) it is well known that the use of ∨ allows to group all rules with
the same head into one rule, and (ii) allowing the connectors ⊕ and ⊗ in our
approach is a sound extension, that is left to future work.

To clarify the intuitive meaning of the last rule, we explain how the judge
decides on charging a person λ:

– If either suspect(λ) or ¬innocent(λ) is true while the other is neither false
nor contradictory, then λ is charged.

112 D. Laurent

– If suspect(λ) and ¬innocent(λ) are contradictory (one is true and the other is
false, or one is contradictory), then charge(λ) is also contradictory, meaning
that the trial needs to be refined, because one of the sources is lying. . .

– If these two formulas are unknown, then so is also the fact that λ is charged.
In this case more information is needed to reach a conclusion.

As in [13], but in our formalism, assume that the prosecutor and the lawyer
respectively assert that 〈witness(John), f〉 and 〈friends(John, Ted), t〉 hold.
According to our integration scenario, in the integrated database Δ = (E,R),
E contains these two pairs, thus implying that charge(John) is unknown in Δ.

In [13], the authors show how additional knowledge, called hypotheses, can
be checked against such database. For example, it is shown that assuming that
innocent(John) is true and that charge(John) is false constitute such a com-
patible set, and so, that not charging John is consistent.

Although, in our approach, the goal is different, since we look for deriving
information from the given program, independently from any hypothesis, the
work of [13] can be stated by: given Δ = (E,R) and hypotheses H (as a set
of pairs), does Δ have a model containing H? For instance in our case, with
H = {〈innocent(John), t〉, 〈charge(John), f〉}, it can be seen that the answer
is yes, thus leading to the same conclusion as in [13].

On the other hand, as our approach assumes OWA, no false facts can be
derived, unless explicitly stated in the program. We point out in this respect
that assuming CWA is not appropriate in the present context. Indeed, assume
that alibi(John, Ted) is stored as true and that nothing is known about John’s
friends. In this case, CWA allows to state that ¬friends(John, Ted) holds, thus
that innocent(John) holds as well. However, in order to convince the judge that
innocent(John) holds, the lawyer is meant to provide evidence of the fact that
friends(John, Ted) is false, which is not modeled in [13].

5 Conclusion

In this paper we have introduced a novel approach to deductive databases deal-
ing with contradictory information. This work is motivated by the facts that (i)
many contradictions occur in the real world, and (ii) data integration is a field
where such contradictions are common. We thus consider a deductive database
approach based on the four-valued logics introduced in [3]. Our database seman-
tics has been shown to be ‘compatible’ with two popular implications [2,16], and
some basic properties regarding minimality have been investigated.

As this work is preliminary, many issues are still to be investigated: (i) con-
sider extended rules as defined in [7]; (ii) investigate the use of the two-valued
operators introduced in [16] to allow rules expressing sentences such as if ϕ is
unknown then ϕ′ is false; (iii) when rules are Datalogneg rules, compare our
semantics with those of Datalogneg [5]; (iv) integrate standard constraints such
as functional dependencies in our approach; (v) design and study a relational
algebra dealing with tuples in the four-valued logics framework; and (vi) define
a measurement of inconsistency, as in previous work such as [10] or [15].

4-Valued Semantics Under the OWA 113

A Proof of Lemma1

Lemma 1. For every Δ = (E,R) and all v-sets S, S1 and S2:

1. ΣΔ(S) is a v-set such that E �k ΣΔ(S).
2. If S1 �k S2, then ΣΔ(S1) �k ΣΔ(S2).

Proof. 1. ΣΔ(S) is a v-set because v⊕(ϕ) is unique, for a fixed ϕ. Moreover,
every 〈ϕ, v〉 in E also belongs to ΓE

Δ (S), and as no rule can generate another
pair involving ϕ, 〈ϕ, v〉 is the only pair of ΓE

Δ (S) involving ϕ. Hence 〈ϕ, v〉 is
in ΣΔ(S), and so E ⊆ ΣΔ(S) implying that E �k ΣΔ(S).

2. Let v1 and v2 denote respectively the valuations defined by ΣΔ(S1) and
ΣΔ(S2), and let 〈ϕ, v〉 be in ΣΔ(S1). If ϕ occurs in E, then the previous point
shows that 〈ϕ, v〉 also belongs to ΣΔ(S2), and so v1(ϕ) = v2(ϕ). Assuming
now that ϕ does not occur in E implies that rules whose head is ϕ or ¬ϕ
have generated pairs involving ϕ. We consider the following distinct cases:

• Case 1: v1(ϕ) = t or v1(ϕ) = f. Since in S1, v⊕(ϕ) = t (respectively
v⊕(ϕ) = f), ΓE

Δ (S1) contains 〈ϕ, t〉 (respectively 〈ϕ, f〉) and not 〈ϕ, b〉.
Then, by Definition 4(1), inst(E,R) contains a rule ρ such that head(ρ) =
ϕ (respectively head(ρ) = ¬ϕ) and vS1(body(ρ)) = t. Then, for every l in
body(ρ), if l = φ, vS1(φ) = t and if l = ¬φ, vS1(φ) = f. Since S1 �k S2,
for every φ occurring in body(ρ), either vS2(φ) = vS1(φ) or vS2(φ) = b.
Hence, whatever the chosen implication (→ or ↪→), v2(ϕ) = v1(ϕ) or
v2(ϕ) = b and so, v1(ϕ) �k v2(ϕ).

• Case 2: v1(ϕ) = b. Either 〈ϕ, b〉 is in ΓE
Δ (S1) or not.

(i) If 〈ϕ, b〉 is in ΓE
Δ (S1), then inst(E,R) contains ρ such that head(ρ) =

ϕ or head(ρ) = ¬ϕ, and vS1(body(ρ)) = b. Hence, for every l in
body(ρ), if l = φ, vS1(φ) is t or b and if l = ¬φ, vS1(φ) is f or b, and
at least one of these values is b. Since S1 �k S2, vS2(φ) is either t or
b when vS1(φ) is t or b, and vS2(φ) is either f or b when vS1(φ) is f
or b, and at least one of these values is b. Therefore 〈ϕ, b〉 belongs to
ΓE

Δ (S2) and so, in S2, v⊕(ϕ) = b. Thus, v1(ϕ) �k v2(ϕ).
(ii) If 〈ϕ, b〉 is not in ΓE

Δ (S1), then 〈ϕ, t〉 and 〈ϕ, f〉 both belong to
ΓE

Δ (S1), which implies that 〈ϕ, b〉 is in ΣΔ(S1). Hence inst(E,R)
contains one rule whose head is ϕ and one rule whose head is ¬ϕ, and
these rules apply for computing ΓE

Δ (S1) and for (i) above. Thus, in
S2 we have v⊕(ϕ) = b, showing that v1(ϕ) �k v2(ϕ).
We have shown that for every ϕ occurring ΣΔ(S1), v1(ϕ) �k v2(ϕ).
Now, for every ϕ not occurring in ΣΔ(S1), v1(ϕ) = n which is
the lowest truth value. Thus, v1(ϕ) �k v2(ϕ) holds, showing that
ΣΔ(S1) �k ΣΔ(S2) holds as well. Therefore, the proof is complete. ��

B Proof of Proposition 1

Proposition 1. Given a database Δ = (E,R), Σ∗
Δ is a minimal (with respect

to set inclusion) model of Δ.

114 D. Laurent

Proof. If Σ∗
Δ is not a model of Δ, then one rule ρ of inst(E,R) is not valid in

Σ∗
Δ. In this case, head(ρ) is not valid, while the conjunct defined by body(ρ) is

valid. Denoting head(ρ) by ϕ (respectively ¬ϕ), either vΔ(ϕ) = n or vΔ(ϕ) =
f (respectively vΔ(ϕ) = t). If vΔ(ϕ) = n, since body(ρ) is valid in Σ∗

Δ, we
have ΣΔ(Σ∗

Δ)
= Σ∗
Δ, which is not possible. Therefore, either head(ρ) = ϕ and

vΔ(ϕ) = f, or head(ρ) = ¬ϕ and vΔ(ϕ) = t, which is not possible by Definition 4.
Thus, Σ∗

Δ is a model of Δ.
To show that Σ∗

Δ is a minimal model, let σ be a nonempty subset of Σ∗
Δ,

and assume that S = Σ∗
Δ\σ is a model of Δ. Let k be the least integer such

that Σk−1 ∩ σ = ∅ and Σk ∩ σ
= ∅. We notice that k exists such that k > 0
because, since S is a model of Δ, it holds that E ⊆ S and so, since Σ0 = E, we
have Σ0 ∩ σ = ∅. Now, let 〈ϕ, v〉 be in Σk ∩ σ but not in Σk−1. In this case,
vS(ϕ) = n and as above, there exists one rule ρ in inst(E,R) such that head(ρ)
is either ϕ or ¬ϕ and in Σk−1, head(ρ) is not valid, while the conjunct defined
by body(ρ) is valid. Since Σk−1 ⊆ S, body(ρ) is valid in S while head(ρ) is not.
This is a contradiction and so, the proof is complete. ��

C Proof of Proposition 2

Proposition 2. Let Δ = (E,R) be such that for every rule ρ in R, head(ρ) is
a positive literal. For all minimal models M1 and M2 of Δ, the following holds:
(i) V(M1) = V(M2) and (ii) F(M1) = F(M2).

Proof. The proposition is a consequence of Lemma 2 shown next. ��
Lemma 2. Let Δ = (E,R) be such that for every rule ρ in R, head(ρ) is a
positive literal. For every minimal model M of Δ, the following holds:

1. F(Σ∗
Δ) = F(M).

2. V(Σ∗
Δ) = V(M).

Proof. 1. As computing Σ∗
Δ starts from E and generates no other false facts,

F(Σ∗
Δ) = F(E). Since F(E) ⊆ F(M), we obtain F(Σ∗

Δ) ⊆ F(M).
Assuming that F(M)
⊆ F(Σ∗

Δ), let ϕ be in F(M)\F(Σ∗
Δ). Denoting by M ′ the

set M\{〈ϕ, f〉}, we show that M ′ is a model of Δ and thus that we obtain
a contradiction since M is assumed to be minimal. To show that M ′ is a
model of Δ, we first note that E ⊆ M ′ holds because so does E ⊆ M and
〈ϕ, f〉 is not E. Thus, assuming that M ′ is not a model of Δ entails that there
exists ρ in inst(E,R) that is not valid in M ′. Hence, independently from the
chosen implication → or ↪→, body(ρ) is valid in M ′ whereas head(ρ) is not.
However, since body(ρ) is valid in M ′, ϕ does not occur in body(ρ), implying
that body(ρ) is also valid in M . Hence, head(ρ) must be valid in M and so,
head(ρ) = ϕ. This is a contradiction with the fact that ϕ is assumed to be in
F(M).

2. We prove that V(Σ∗
Δ) ⊆ V(M) by induction on k. Indeed, V(Σ0) ⊆ V(M)

holds because E = Σ0. Then, for k > 0, assume that V(Σk−1) ⊆ V(M) and

4-Valued Semantics Under the OWA 115

let ϕ be in V(Σk)\V(M). Since V(E) ⊆ V(M), ϕ is not in V(E), ϕ occurs
in Σk due to a rule ρ. Thus, there exists ρ in inst(E,R) such that body(ρ)
is valid in Σk−1 and head(ρ) = ϕ. Since V(Σk−1) ⊆ V(M), body(ρ) is valid
in M and as ρ must be valid in M , so is ϕ. We thus obtain a contradiction
with the fact that ϕ is assumed not to be in V(M). Hence V(Σk) ⊆ V(M)
and thus, V(Σ∗

Δ) ⊆ V(M).
Now let M ′ = {〈ϕ, v〉 ∈ M | ϕ ∈ V(Σ∗

Δ)} ∪ {〈ϕ, f〉 ∈ M | ϕ ∈ F(Σ∗
Δ)}. We

notice that M ′ ⊆ M , and since V(Σ∗
Δ) ⊆ V(M) and F(Σ∗

Δ) = F(M), we have
V(Σ∗

Δ) = V(M ′) and F(Σ∗
Δ) = F(M ′). We show that M ′ is a model of Δ and

thus that M ′ = M since M is assumed to be minimal. To show that M ′ is a
model of Δ, we first prove that E ⊆ M ′. Indeed, as every 〈ϕ, v〉 in E is also
in Σ∗

Δ and in M , we have the following:
• If v = f then ϕ is in F(E) thus in F(Σ∗

Δ). In this case, 〈ϕ, v〉 is in M ′.
• Otherwise, v = t or v = b, that is ϕ is in V(E). Thus ϕ is in V(Σ∗

Δ) and
as 〈ϕ, v〉 is in M , 〈ϕ, v〉 is also in M ′.

Every rule ρ in inst(E,R) is valid in M ′, because if body(ρ) is valid in M ′

then body(ρ) is also valid in Σ∗
Δ and so, head(ρ) is in V(Σ∗

Δ). Thus head(ρ) is
in V(M ′). Hence, M ′ = M , showing that V(Σ∗

Δ) = V(M). ��

References

1. Afrati, F.N., Kolaitis, P.G.: Repair checking in inconsistent databases: algorithms
and complexity. In: Fagin, R. (ed.) Proceedings of the 12th International Confer-
ence on Database Theory, ICDT 2009, pp. 31–41 (2009)

2. Arieli, O., Avron, A.: The value of the four values. Artif. Intell. 102(1), 97–141
(1998)

3. Belnap, N.D.: A useful four-valued logic. In: Dunn, J.M., Epstein, G. (eds.) Modern
Uses of Multiple-Valued Logic. EPIS, vol. 2, pp. 5–37. Springer, Dordrecht (1977).
https://doi.org/10.1007/978-94-010-1161-7 2

4. Bergman, M.: The open world assumption: elephant in the room. In:
AI3:::Adaptative Information, pp. 1–11 (2009). www.mkbergman.com/852/the-
open-world-assumption-elephant-in-the-room/

5. Bidoit, N.: Negation in rule-based database languages: a survey. Theor. Comput.
Sci. 78(1), 3–83 (1991)

6. Ceri, S., Gottlob, G., Tanca, L.: Logic Programming and Databases. Springer,
Heidelberg (1990). https://doi.org/10.1007/978-3-642-83952-8

7. Fitting, M.C.: Bilattices and the semantics of logic programming. J. Log. Program.
11, 91–116 (1991)

8. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Proceedings of the International Conference and Symposium on Logic Program-
ming, pp. 1070–1080 (1988)

9. Greco, G., Greco, S., Zumpano, E.: A logical framework for querying and repairing
inconsistent databases. IEEE Trans. Knowl. Data Eng. 15(6), 1389–1408 (2003)

10. Grant, J., Hunter, A.: Analysing inconsistent first-order knowledgebases. Artif.
Intell. 172(8–9), 1064–1093 (2008)

11. Greco, S., Molinaro, C., Trubitsyna, I.: Computing approximate query answers over
inconsistent knowledge bases. In: Proceedings of the International Joint Conference
on Artificial Intelligence, IJCAI, pp. 1838–1846 (2018)

https://doi.org/10.1007/978-94-010-1161-7_2
www.mkbergman.com/852/the-open-world-assumption-elephant-in-the-room/
www.mkbergman.com/852/the-open-world-assumption-elephant-in-the-room/
https://doi.org/10.1007/978-3-642-83952-8

116 D. Laurent

12. Hazen, A.P., Pelletier, F.J.: K3, L3, LP, RM3, A3, FDE: how to make many-valued
logics work for you. CoRR, abs/1711.05816 (2017)

13. Loyer, Y., Spyratos, N., Stamate, D.: Hypothesis-based semantics of logic programs
in multivalued logics. ACM Trans. Comput. Log. 5(3), 508–527 (2004)

14. Reiter, R.: On closed world data bases. In: Logic and Data Bases, pp. 55–76 (1977)
15. Thimm, M.: On the expressivity of inconsistency measures (extended abstract). In:

Proceedings of the International Joint Conference on Artificial Intelligence, IJCAI,
pp. 5070–5074 (2017)

16. Tsoukiàs, A.: A first-order, four-valued, weakly paraconsistent logic and its relation
with rough sets semantics. Found. Comput. Decis. Sci. 12, 85–108 (2002)

Query Driven Entity Resolution in Data Lakes

Giorgos Alexiou1,2(B) and George Papastefanatos2(B)

1 School of Electrical and Computer Engineering, National Technical University of Athens,
Athens, Greece

2 Information Management Systems Institute, ATHENA Research Center, Marousi, Greece
{galexiou,gpapas}@athenarc.gr

Abstract. Entity Resolution (ER) constitutes a core task for data integration
which aims at matching different representations of entities coming from vari-
ous sources. Due to its quadratic complexity, it typically scales to large datasets
through approximate, i.e., blocking methods: similar entities are clustered into
blocks and pair-wise comparisons are executed only between co-occurring enti-
ties, at the cost of some missed matches. In traditional settings, it is a part of the
data integration process, i.e., a preprocessing step prior to making “clean” data
available to analysis. With the increasing demand of real-time analytical appli-
cations, recent research has begun to consider new approaches for integrating
Entity Resolution with Query Processing. In this work, we explore the problem of
query driven Entity Resolution and we propose a method for efficiently applying
blocking and meta-blocking techniques during query processing. The aim of our
approach is to effectively and efficiently answer SQL-like queries issued on top of
dirty data. The experimental evaluation of the proposed solution demonstrates its
significant advantages over the other techniques for the given problem settings.

Keywords: Entity Resolution · Entity matching · Data lakes

1 Introduction

Entity Resolution (ER) is well studied problem in the data and web management com-
munities, whose goal is to identify and match different representations of the same
real-world entity. In traditional settings, it is a part of the data integration process, i.e.,
a preprocessing step prior to making “clean” data available to analysis. It is considered
an expensive process as it requires the comparison of all entities from one data source
with all other entities from the other sources. Hence, traditional approaches are often
inexpedient formanymodern query-driven applications that need to analyze only a small
subset of the entire dataset and produce quick results from the data.

With the increasing demand of real-time analysis over heterogenous data sources,
recent research has begun to consider new approaches for integrating Entity Resolution
with Query Processing. A common setting for such scenarios is a data lake, where
multiple heterogenous sources are aggregated and made directly available for analysis,
avoiding the burdensome ETL tasks of a data warehouse. Data lakes usually contain
duplicate entities frommultiple sourceswhichneed to be resolvedbefore enabling further

© Springer Nature Switzerland AG 2020
G. Flouris et al. (Eds.): ISIP 2019, CCIS 1197, pp. 117–130, 2020.
https://doi.org/10.1007/978-3-030-44900-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44900-1_8&domain=pdf
https://doi.org/10.1007/978-3-030-44900-1_8

118 G. Alexiou and G. Papastefanatos

analysis. For example, as shown in Fig. 1 let us consider a user who wishes to perform a
comparative analysis on a data lake with scholarly data (e.g. publications) collected from
three different sources s1, s2 and s3 (for simplicity we assume that all exhibit similar
relational schemas) containing highly overlapping publications. {P1, P2}, {P3, P4, P5}
and {P6, P7} are sets of the matching publications, coming however from different
sources and thus exhibiting slight differences in the description of their attributes, e.g.
authors’ or venue names are abbreviated, some entities have missing years etc. The user
would like to explore the contents of the three sources, and thus requests all papers,
published in a specific conference (e.g., VLDB).

Fig. 1. Example of a query over 3 sources of scholarly data

In traditional settings, the query results will only contain {P1, P6}, which are exact
matches for the condition venue = ‘VLDB’, excluding {P2, P7}, which although pertain
to the same publications, their venue is differently described. To include in the results
more entities, which could be matching with the ones retrieved by the original query,
the user, following a rather naïve approach, will identify all possible alternative venue
descriptions, perform a series of queries in the data lake, compare the results across
the three sources, identify matching entities and finally group them based on a set of
common characteristics (e.g., title, authors and venue). If the condition involves more
attributes, e.g. the user wishes to filter based on the name of an author, the space of
possible queries and follow-up tasks increase. Even in a more ETL-like scenario, the
user would need to perform a preprocessing ER step to match all entities across the three
sources, group them and construct a set of matching entities, in which all attributes are
normalized, cleaned and semantically aligned, prior making it available for querying.

On the other hand, we would like to offer users the ability to perform all these time-
consuming and error-prone operations directly on the raw data, during the same single
query. In the example of Fig. 1, the entities P2 and P7 matching to the ones originally

Query Driven Entity Resolution in Data Lakes 119

retrieved by the query will be also fetched and presented to the user. In this paper, we
consider the problem of efficiently answering SQL queries on top of data lakes. Our goal
is to minimize the effort for preprocessing and construction of a clean set and enable
the user to operate directly on the raw heterogeneous data, i.e. the query is performed
directly on the data lake avoiding the costly preprocessing step. Our main contribution
is the BlockJoin operator, a technique that seamlessly integrates Entity Resolution in
query execution. Our method takes an SQL query and employs blocking and meta-
blocking techniques in order to enrich the query results with candidate matches from
the underlying data lake. These techniques can dramatically reduce the overall number
of the final comparisons (e.g., redundant comparisons), while maintaining the original
number of matching ones; thus, improving the overall performance. The enriched results
are then resolved for duplicates using established entity matching techniques, grouped
and presented to the user. Such operations will enable users to perform more complex
analytics directly on heterogenous sources avoiding the tedious preprocessing steps of
batch Entity Resolution.

Outline. In Sect. 2 we present basic terms for our approach; in Sect. 3 we present the
main concept of our approach for evaluating entity resolution task during the query
evaluation, and in Sect. 4 we present the experimental evaluation of this approach. In
Sect. 5 we provide related work, whereas in Sect. 6 we conclude the paper and provide
insights for future directions.

2 Basic Concepts

In this section, we provide some preliminary concepts related to the entity resolution
process, which are necessary for the presentation and experimentation of our approach
in Sects. 3 and 4 respectively.

Data Lake. A set of heterogeneous entity collections describing overlapping real-world
objects in different structures, formats and quality.

Entity Resolution (ER). ER is the task that identifies and aggregates the different enti-
ties/profiles that actually describe the same real-world object. The basic concept of ER is
the entity e, alternatively called profile. As entity, we consider a set of name-value pairs
that is associated with a unique id and describes a real-world object (i.e. a publication).
A set of entities is called entity collection E. Two entities, ei and ej, considered to be
duplicates, are notated with ei ≡ ej. This task is also called Deduplication [1, 2] in the
context of homogeneous data collections.

Blocking. To scale ER, blocking restricts the executed comparisons to similar entities.
It groups them into clusters, called blocks, based on the similarity of their attributes (e.g.,
tokens, n-grams, etc.) and performs pair-wise comparisons only between the entities of
each block bi. A set of blocks is called block collection B. Its size |B| denotes the number
of blocks it contains, while its cardinality denotes the total number of comparisons it
involves: ||B|| = ∑

bi∈B ||bi ||, where ||bi || is the cardinality, i.e., number of comparisons
in bi.

120 G. Alexiou and G. Papastefanatos

Blocking methods [2–4] are widely used in ER. The main blocking methods for
structured data have been summarized in the recent survey by Christen [2]. In this work,
we incorporate the Standard Blocking technique (StBl) [5], although other techniques
can also be used. It represents every entity by one or more keys and creates blocks on
their equality; i.e., every block corresponds to a specific key and contains all entities
that have it in their representation. For the key selection, we employ schema-agnostic
blocking techniques [5], which are preferred for their increased effectiveness in terms
of recall. A block is formed by each token found in all attributes of publications; this
block contains the publications having this token in any of their attributes.

Blocking methods rely on redundancy; a blocking key places multiple entities in the
same block, which results in many redundant (i.e., non-matching) and superfluous (i.e.,
existing in multiple blocks) comparisons. This way high recall is achieved at the cost
of more comparisons (i.e. lower precision). This effect is partially improved by coarse-
grained meta-blocking techniques that discard entire blocks either a-priori or during the
resolution process.

Meta-blocking. The goal of meta-blocking is to restructure a given block collection B
into a new one that contains significantly fewer redundant and superfluous comparisons,
while maintaining the original number of matching ones [6]. The quality of a block
collection B is measured in terms of two competing criteria: efficiency and effectiveness.
The former is directly related to the total number of comparisons ||B|| contains. The
effectiveness of B depends on the cardinality of the set D(B) of detectable matches (i.e.,
pairs of duplicate entities compared in at least one block). There is a clear trade-off
between the effectiveness and the efficiency of B: the more comparisons are executed
(i.e., higher ||B||), the higher its effectiveness gets (i.e., higher |D(B)|), but the lower
its efficiency is, and vice versa. Successful block collections achieve a good balance
between these two competing objectives. Block processing methods are divided into
two main categories according to the granularity of their functionality [4]:

1. Block-refinement methods, which operate at the coarse level of individual blocks,
and

2. Comparison-refinement methods, which operate at the finer level of individual
comparisons.

In this work we consider only the first ones because while they exhibit limited
accuracy when discarding comparisons, they consume minimal resources, as they typi-
cally involve very low space and time complexity, which especially in the context of a
query-driven ER are very crucial.

Query Entity Blocking. An entity collection in the context of QER is formed by the
entities returned from a select query and is denoted as QE ⊆ E.

In QER, the block bi is formed based on the entities retrieved by the select query
and is denoted as Qbi where Qbi ⊆ QE. The size of Qbi, i.e., the number of entities it
contains, is denoted by |Qbi|. The cardinality of Qbi is denoted by ||Qbi|| and represents
the total number of comparisons it contains: ||Qbi|| = |Qbi|·(|Qbi| − 1)/2.

Query Driven Entity Resolution in Data Lakes 121

Entity Matching. We consider entity matching as an orthogonal task to blocking
[1, 2, 4, 5]. That is, we assume that two duplicates are detected in B as long as
they cooccur in at least one of its blocks. Provided that the vast majority of dupli-
cate entities are co-occurring, the performance of ER depends on the accuracy of the
method used for entity comparison.

2.1 Evaluation Measures

The effectiveness of ER, employed also in our QER problem, is assessed using the
following measures:

Pairs Completeness (PC) estimates the recall of B, i.e., the portion of duplicates
from the input entity collection(s) that cooccur in at least one block. More formally, PC
= |D(B)|/|D(E)|. PC is defined in [0, 1], with higher values showing higher recall.

Pairs Quality (PQ) estimates the precision of B, i.e., the portion of its comparisons
that correspond to duplicate entity profiles. More formally, PQ = |D(B)|/||B||. PQ takes
values in the interval [0, 1], with higher ones indicating higher precision

Reduction Ratio (RR) estimates the portion of comparisons that not executed due
to blocking in relation to the naive, brute force approach. Formally, it is defined as:
RR(B,E)=1− ||B||/||E||,where ||E|| denotes the computational cost of the naive approach,
i.e., ||E|| = |E| · (|E| − 1)/2. RR takes values in the interval [0, 1], with higher values
indicating higher efficiency.

Overhead Time (OTime) is the total time required by the blocking method to
cluster the given entities into blocks, i.e., the time between receiving the original query
entity collection QE and returning a set of blocks as output and also the time for the
meta-blocking methods to reduce the number of the final blocks.

Resolution Time (RTime) is the time required for performing all pair-wise entity’
comparisons with a specific entity matching technique. As such, we consider the Jaro-
Winkler similarity of the tokens in all attribute values of the compared entities.

The goal of QER is tomaximize all measures keeping the timemeasures low. That is,
tomaximize the number of detected duplicates (|D(B)|), whileminimizing the cardinality
of B (||B||). In practice, though, there is a clear trade-off between PC and PQ: the more
comparisons are executed (higher ||B||), the more duplicates are detected (higher |D(B)|),
thus increasing PC; given, though, that ||B|| increases quadratically for a linear increase in
|D(B)|, PQ and RR are reduced [7, 8]. Therefore, our approach should aim for a balance
between precision (PQ) and recall (PC) that minimizes the executed comparisons and
ensures that most matching entities cooccur (i.e., high PC).

3 Query Driven ER Approach

The overview of our approach is shown in Fig. 2.We enrich the traditional query answer-
ing flow with operators which implement ER methods during the query execution. We
assume simple SQL Select-Project queries (SP) which are performed on the underlying
RDBMS. The initial blocking index (BI) is constructed offline from all the entities in our
dataset. The first step (1) selects the entities from the database that satisfy user’s query

122 G. Alexiou and G. Papastefanatos

criteria. Then, we create a query blocking index (QBI) (2) from the retrieved entities. For
example, following Token blocking techniques [2] we consider that a block is formed
by each token found in all attributes of publications; this block contains the publications
having this token in any of their attributes. In (3), we introduce the block-join opera-
tor that performs a join between the initial blocking index (BI) and the query blocking
index (QBI) in order to retrieve all those “dirty” (i.e. containing duplicates) subsets
which approximately (possibly containing false-positives but not the opposite) answer
the user’s initial query. Then, at step (4) we apply meta-blocking techniques for reducing
the final number of blocks, and thus the comparisons to be performed for identifying
the duplicates. Next (5), we perform the matching between the entities in the blocks
and our query entities to resolve the duplicates, and (6) the resolved entities are grouped
in clusters. After this step, the results can be further used by any subsequent operation
(project, join, analytics, etc.) needed to answer the query. The output can also be used
to update the initial blocking index with the resolved ones to allow us to speed-up next
queries by having a “cleaner” initial set. Following, we provide the details of each step.

Fig. 2. ER-enriched Query-Plan

Blocking Index Initialization. The initial step of the proposed approach is to build the
initial blocking index (BI). We follow an offline approach and build the BI only once,
based on the schema – agnostic StBl. BI has a key-value data structure to store blocks.
The keys are the tokens that derive from the StBl method (stop and common words are
excluded) and the values are the IDs of the entities that correspond to the specific keys.
Depending on its size this index can be stored directly in database or can be stored (i.e.
serialized) in a data structure in order to load it directly in-memory (we follow the latter
for efficiency reasons).

Query Block Index Creation. The query blocking index (QBI) is created for every
single query that the user performs. It employs the same blocking technique with the BI
but instead of indexing all the entities of the dataset it only indexes the entities that are
retrieved from the user’s query. The retrieved entities, in most of the cases, correspond
to a small subset of the initial dataset thus the creation of this index is faster than the BI
creation. In Fig. 3, a subset of the blocks in the QBI (query selects p1 and p6 entities)
and in the overall BI is shown at the left side, corresponding to the example of Fig. 1. In

Query Driven Entity Resolution in Data Lakes 123

the QBI, the block bvldb contains p1 and p6, and btowards contains only p1, whereas, in
BI, bvldb again contains p1 and p6, and btowards contains now p1 and p2.

BlockJoin Operator. The BlockJoin operator performs a hash-based join between the
initial blocking index (BI) and the query blocking index (QBI), based on the keys of the
QBI. The result is an enhanced QBI index with the same blocks being enriched with
all the entities from the BI that correspond to these keys. In the output of Fig. 3 (the
enhanced QBI), btowards contains now p1 and p2, bentity contains p3 and p5, etc.

Fig. 3. Input & output of BlockJoin operator

Meta Blocking. In our approach the blocks that are derived from the BlockJoin oper-
ation contain many redundant and superfluous comparisons. Each token (i.e., blocking
key) may be found in the attributes of many entities leading to many redundant com-
parisons. As explained in Sect. 2, we consider only Block-refinement methods, which
operate only on the blocks’ level because they consumeminimal resources. More specif-
ically we employ the Block Purging in conjunction with the Block Filtering methods,
both explained below.

• Block Purging [9]. This method aims at cleaning the block processing list from over-
sized blocks. These are blocks that correspond to tokens of little discriminativeness,
thus entailing a large number of comparisons while being unlikely to contribute non-
redundant matches (i.e., duplicates whose profiles have no other token in common).
Hence, they can be safely excluded from the block processing procedure, enhancing
considerably the efficiency without any significant impact on the effectiveness.

• BlockFiltering [9]: also relies on the idea that the larger a block is, the less likely it is to
contain unique duplicates. Unlike Block Purging, though, it is applied independently
to the blocks of every entity, assuming that each block has a different importance
for every entity it contains. Block Filtering retains every entity in r% of its smallest
blocks, with r typically set to 30–35% when applied after Block Purging.

124 G. Alexiou and G. Papastefanatos

Note that meta-blocking step is omitted in case the number of comparisons in the
block index is small (i.e. below a threshold).

Resolution. The resolution step performs the comparisons between entities inside each
block and resolves the matching ones. For each block in our block collection B, we take
all its entities |Qbi | and we compare them with the entities derived from the user’s select
query |QE|. Thus the number of comparisons for each block will be: ||Qbi|| = |Qbi|·(|Qbi|
− 1)/2 and the total comparisons will be ||QB|| = ∑

Qbi∈B ||Qbi ||. For the comparisons
of the entities we also employ schema-agnostic configuration, meaning that we compare
all the values of the attributes of an entity ei with the corresponding ones of an entity
ej. In this work we use the Jaro-Winker similarity function for the actual comparison
of the values but any distance or similarity function could be used instead. In order
to further improve our performance, at the time of the resolution we create a unique
hashed ID of every comparison (based on the two entity ids plus a random string) to
avoid repeated (i.e. redundant) comparisons. Those hashes are stored in a data-structure
that offers constant-time access and are checked before each comparison (i.e. if the hash
exists the comparison is omitted).

Grouping. Alongwith the step of resolution we employ a disjoint-set data structure (i.e.
Union-Find) in order to store and group the resolved matched entities. By this way we
manage to keep track of the duplicates by partitioning them into a number of disjoint (i.e.
non-overlapping) subsets. We use this kind of data structure because it provides near-
constant-time operations (bounded by the inverse Ackermann function). The disjoint-set
data structure we employ is a forest; each tree corresponds to a set of matching entities,
and each node of the tree corresponds to an entity having an entity ID, a parent entity,
and a rank value. If an entity’s parent element points to no other entity, then that entity
is the root of a tree and is the representative member of its set. A set may consist of only
a single entity (i.e. entity with no duplicates). However, if the entity has a parent, the
entity is part of the tree identified by following the chain of parents upwards until the
representative one is reached at the root of the tree.

The input of the groupingmethod is the two resolved entities belonging to amatching
comparison processed during the resolution phase. The output of this step is a key-value
data structure that has the root entity as key and its duplicates as values.

After this step, the results can be further used by any subsequent operation (project,
join, analytics, etc.) needed to answer the query. The output (i.e. merged entities) can
also be used to update the initial blocking index (BI) or the database with the resolved
ones to allow us to speed-up next queries by having a “cleaner” initial set.

4 Experimental Evaluation

We implemented our approach1 and experiments in Java version 8 and all source data and
blocking index are stored in PostgreSQL version 11. The experiments were performed
on a Mac computer with Intel i7 (2.2 GHz) and 16 GB of RAM DDR4, running on

1 The source code and the queries are available in https://github.com/galexiou/isip2019.

https://github.com/galexiou/isip2019

Query Driven Entity Resolution in Data Lakes 125

macOS 10.14.5. All measurements were repeated 10 times and the average values are
reported.

We have experimented with a real-world homogeneous dataset, employed in litera-
ture [6] for similar ER tasks. The DBLP-Scholar dataset [19] is an established dataset
that has been widely used in literature [19–21]. It contains bibliographic 66879 records
with 5347 matches from DBLP and Google Scholar (ground-truth is provided); the size
of the cartesian product is approximately 2.2B entity pairs. We used a fixed blocking
(StBl) and meta-blocking strategy for all experiments to guaranty equal effectiveness
and efficiency of the workflow steps.

Regarding themeta-blocking techniques,BlockPurging is parameter-free andBlock-
ing Filtering involves a single parameter – the portion r of the retained blocks per entity.
We set to r = 0.30, which retains every entity in around 1/3 of its most important (i.e.,
smallest) blocks. This value has been verified to reduce the total cardinality of blocks
||B||.

To investigate the performance of our approach based on the measures described
in 2.1, we used 10 (select *) SP queries (Q1-Q10) with random sampling based on
the modulo of the entities’ IDs, ranging from 5% to 50% selectivity with 5% step. We
evaluate our results on the meta-blocking output of the final comparisons and compare
them with a naïve approach. The naïve approach is to consider that no blocking\meta-
blocking operations are performed during query time and thus all entities retrieved from
the select query are compared against all entities in the underlying dataset.

4.1 Experimental Results

The outcomes of our experiments with respect to performance are presented in Table 1.
Starting with the number of comparisons of the naïve (||B||) approach per query we
can observe that the number of the returned entities |QE| yields a quadratic number
of comparisons which obviously does not scale in voluminous datasets. On the other
hand, with the application of blocking and meta-blocking techniques we managed to
increase the performance by three orders of magnitude. It is also interesting to estimate
the portion of saved comparisons in relation to the naïve approach (i.e., RR). We can
do so by comparing ||B|| with ||QB||. In our case the RR remains stable as the selectivity
grows and indicates the save of 99% of the possible comparisons.

Another interesting aspect is that our approach scales in a linear fashion to the
increased size of the entities per query. Given that Q10 is almost 10 times larger than
Q1, a linear increase in ||QB|| requires that the blocks |QB| for Q10 involve one order
of magnitude more comparisons than those for Q1. This condition is satisfied in our
experiments.

In Fig. 4 we examine the time requirements of our approach. It shows overhead
time (OTime), resolution time (RTime) and the total number of comparisons performed
by each per query. Starting with OTime, we can observe that it scales in a sub-linear
fashion as the selectivity grows. This is an indication that the fact that we are using a
schema-agnostic approach to create the blocks (i.e. using all the available attributes of
the entities) does not seem to affect our blocking and meta-blocking techniques which
seem to scale nicely. Regarding now the RTime (i.e. e time required for performing the
pairwise comparisons in the resulting blocks), we can also see that it scales in a more

126 G. Alexiou and G. Papastefanatos

Table 1. |QE| stands for the number of entities returned from the query, |D(QE)| for the number of
duplicate pairs in |QE|, |QB| for the number of comparisons after the meta-blocking step, ||QB|| for
the number of comparisons executed, ||B|| for the number of comparisons of the naïve approach,
RR for Reduction Ratio.

Queries |QE| |D(QE)| |QB| ||QB|| ||B|| RR

Q1 3343 502 9824 131764 111754809 0,99

Q2 6687 957 14903 222481 223576497 0,99

Q3 10133 1559 18675 304357 338809014 0,99

Q4 13375 1853 21540 366675 447219873 0,99

Q5 16719 2403 23749 431259 559041561 0,99

Q6 20266 2707 25905 492882 677651467 0,99

Q7 23466 3071 27478 542487 784657867 0,99

Q8 26751 3356 28879 586225 894506625 0,99

Q9 30125 3751 30060 627604 1007331498 0,99

Q10 33439 4034 31046 666703 1118150001 0,99

Fig. 4. QER overhead, resolution time and #Comparisons performed per query selectivity

linear fashion as the selectivity grows. RTime is greatly affected by the OTime as the
blocking and meta-blocking methods save a considerable amount of comparisons which
allow the actual resolution to scale. In our experiments, we attempted to measure the
RTime of the naïve approach; however, for queries over 5% selectivity it was taking
more than six hours. Thus, we can safely conclude that QER scales much better than the
naïve approach and it also seems to be able to scale in voluminous datasets in acceptable
query times.

Query Driven Entity Resolution in Data Lakes 127

Fig. 5. QER recall per query selectivity

The outcomes of our experiments with respect to recall (PC) are presented in Fig. 5.
The chart shows the percentage of the retrieved duplicates (Y axis) (based on the ground-
truth) for each step of the query selectivity (X axis). We observe that QER maintains a
robust recall (PC) that exceeds 97% (up to 98.5%) in all steps of the selectivity. This
means that the initial set, in our case the entities retrieved by the query (QE), have a
high number of recall and maintain it while the selectivity grows. That is to say that the
recall seems to be selectivity independent. The schema-agnostic configuration [5] of our
blocking process contributes a lot to this direction and enables us to achieve high and
robust effectiveness.

5 Related Work

Entity Resolution. Given its importance, Entity Resolution (ER) has been studied thor-
oughly from the database community [10, 11]. Due to their quadratic complexity, exist-
ing ER approaches typically scale to large datasets through blocking methods which
in principal compare only similar entities. Unlike the exhaustive ER techniques, block-
ing offers an approximate solution, sacrificing some recall in order to enhance precision.
Primarily, the existing methods pertain to structured data, which abide by a specific
schemawith known semantics and qualitative characteristics for each attribute (Schema-
based blocking) [2]. However, this approach is not applicable to Web Data, due to their
highly heterogeneity. For that, blocking methods have been extended to function inde-
pendent from the schema (schema-agnostic blocking), where every token from every
value of every entity is treated as blocking key [5]. Although this approach success-
fully tackles the heterogeneity, it creates overlapping blocks resulting in unnecessary
comparisons [5, 6]. Therefore, they must be avoided. This is achieved by block pro-
cessing techniques that are appropriate for Web Data as they successfully tackle the
heterogeneity as well as the great volume of the data. The most important method is
the Meta-blocking [6, 9] which eliminates all the redundant comparisons along with

128 G. Alexiou and G. Papastefanatos

the superfluous ones by examining the block-to-entity relationships. A notable work
that tries to tackle the problem of ER in heterogeneous Web Data (e.g. Data Lake envi-
ronments) is MinoanER [22]. It relies in Schema-agnostic techniques that consider the
content and the neighbors of the entities in a progressive fashion, but it does it in a batch,
offline processing of the entity collections. Instead, our approach operates online during
query processing where the notion of progressive resolution is not applicable because
we are focusing only on a subset of the whole dataset in each execution.

Query Driven Entity Resolution. Over the last years, a few methods for integrat-
ing Entity Resolution with Query Processing have been proposed with the aim to
answer SQL-like queries performed over heterogenous data. Nevertheless, some of the
existing methods are approximate solutions that are not designed for the larger class
of SPJ (Select-Project-Join) queries [12], or even do not consider optimizing for other
types of selection queries such as range queries or queries where the type of the condi-
tion attribute is not a string [13]. Other approaches are only considering the existence of
probabilistic databases [14] in order to perform entity resolution techniques or are only
answering a small class of topK and Iceberg queries [15]. One notable exception is the
recent work presented in [16], which enables SQL query evaluation over dirty data that
have been pre-processed and grouped together in corresponding blocks, based on spe-
cific blocking keys. This approach requires that (i) there exists a universal, well-defined
schema underlying the data, and (ii) the optimal query plan is given by the user to the
query engine. Unfortunately, none of these two requirements are satisfied in the case of
heterogeneous Data Lakes. The proposed approach is designed to be able to scale in such
environments with the use of minimum or none configuration (e.g. schema-alignment)
by the end user.

Similarity Joins. A related approach to this specific problem is the Set Similarity Joins
(SSJ) which compute all pairs of similar sets from two collections of sets. The recent
survey by Fier et al. [17] though, which surveyed ten recent, distributed set similarity join
algorithms had some interesting results: All algorithms in their tests failed to scale for
at least one dataset and were sensitive to long sets, frequent set elements, low similarity
thresholds, or a combination thereof. Moreover, some algorithms even failed to handle
the small datasets that can easily be processed in a non-distributed setting.

6 Conclusions and Future Work

In this paper, we have proposed a Query Driven Entity Resolution approach applicable
in heterogenous data storage settings, like the data lakes, where data is cleaned “on-
the-fly” in the context of a query. We have developed a method to seamlessly integrate
Entity Resolution techniques during query processing over heterogenous data. We have
introduced a novel blockJoin operator to let us enable that kind of integration. Such
operations will enable users to performmore complex analytics directly on heterogenous
sources avoiding the tedious tasks of schema alignment and data deduplication.

This research opens several interesting directions for future investigation. First, our
approach does not only target relational sources but non-relational ones (e.g., JSONfiles,

Query Driven Entity Resolution in Data Lakes 129

RDF stores) as long as they can be queried via an SQL interface; most commercial query
engines offer SQL support over non-relational sources via proper functions. Next, while
selection queries (as studied in this paper) are an important class of queries on their own,
developing techniques for other types of queries (e.g., joins) is an interesting direction
for future work. Another direction is developing a mechanism for efficient updates of the
blocking index state for subsequent querying and finally the application our framework
to distributed environments to enable big data processing. We also plan to incorporate a
persistent merging process [18] in the steps of the current workflow that will also help us
to better clean and update the original dataset and present the final results to the end-user.

Acknowledgements. This research is funded by the project VisualFacts (#1614) - 1st Call of the
HellenicFoundation forResearch and InnovationResearchProjects for the support of post-doctoral
researchers.

References

1. Christen, P.: Data Matching. Data-Centric Systems and Applications. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31164-2

2. Christen, P.: A survey of indexing techniques for scalable record linkage and deduplication.
IEEE Trans. Knowl. Data Eng. 24(9), 1537–1555 (2012)

3. Baxter, R., Christen, P., Churches, T.: A comparison of fast blocking methods for record
linkage. In:WorkshoponDataCleaning,RecordLinkage andObjectConsolidation, pp. 25–27
(2003)

4. Papadakis, G., Ioannou, E., Palpanas, T., Niederee, C., Nejdl, W.: A blocking framework for
entity resolution in highly heterogeneous information spaces. IEEE Trans. Knowl. Data Eng.
25(12), 2665–2682 (2013)

5. Papadakis, G., Alexiou, G., Papastefanatos, G., Koutrika, G.: Schema-agnostic vs schema-
based configurations for blocking methods on homogeneous data. Proc. VLDB Endow. 9(4),
312–323 (2015)

6. Papadakis, G., Koutrika, G., Palpanas, T., Nejdl, W.: Meta-blocking: taking entity resolution
to the next level. IEEE Trans. Knowl. Data Eng. 26(8), 1946–1960 (2013)

7. Getoor, L., Machanavajjhala, A.: Entity resolution: theory, practice & open challenges. Proc.
VLDB Endow. 5(12), 2018–2019 (2012)

8. Getoor, L., Machanavajjhala, A.: Entity resolution for big data. In: KDD, p. 1527 (2013)
9. Papadakis, G., Papastefanatos, G., Palpanas, T., Koubarakis, M.: Scaling entity resolution to

large, heterogeneous data with enhanced meta-blocking. In: EDBT, pp. 221–232 (2016)
10. Ipeirotis, P.G., Verykios, V.S., Elmagarmid, A.K.: Duplicate record detection: a survey. IEEE

Trans. Knowl. Data Eng. 19(1), 1–16 (2007)
11. Lenzerini, M.: Data integration: a theoretical perspective. In: Proceedings of the Twenty-

First ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems,
pp. 233–246. ACM, June 2002

12. Altwaijry, H., Kalashnikov, D.V., Mehrotra, S.: Query-driven approach to entity resolution.
Proc. VLDB Endow. 6(14), 1846–1857 (2013)

13. Bhattacharya, I., Getoor, L.: Query-time entity resolution. J. Artif. Intell. Res. 30, 621–657
(2007)

14. Ioannou, E., Nejdl,W., Niederée, C., Velegrakis, Y.: On-the-fly entity-aware query processing
in the presence of linkage. Proc. VLDB Endow. 3(1–2), 429–438 (2010)

https://doi.org/10.1007/978-3-642-31164-2

130 G. Alexiou and G. Papastefanatos

15. Ioannou, E., Garofalakis, M.: Query analytics over probabilistic databases with unmerged
duplicates. IEEE Trans. Knowl. Data Eng. 27(8), 2245–2260 (2015)

16. Altwaijry, H., Mehrotra, S., Kalashnikov, D.V.: Query: a framework for integrating entity
resolution with query processing. Proc. VLDB Endow. 9(3), 120–131 (2015)

17. Fier, F., Augsten, N., Bouros, P., Leser, U., Freytag, J.C.: Set similarity joins on MapReduce:
an experimental survey. Proc. VLDB Endow. 11(10), 1110–1122 (2018)

18. Alexiou, G., Meimaris, M., Papastefanatos, G.: Enabling persistent identification of groups
of duplicates in data aggregators. In: 2016 IEEE 32nd International Conference on Data
Engineering Workshops (ICDEW). pp. 124–126. IEEE, May 2016

19. Köpcke, H., Thor, A., Rahm, E.: Evaluation of entity resolution approaches on real-world
match problems. Proc. VLDB Endow. 3(1–2), 484–493 (2010)

20. Kopcke, H., Thor, A., Rahm, E.: Learning-based approaches for matching web data entities.
IEEE Internet Comput. 14(4), 23–31 (2010)

21. Thor, A., Rahm, E.: MOMA-a mapping-based object matching system. In: CIDR, pp. 247–
258, January 2007

22. Efthymiou, V., Stefanidis, K., Christophides, V.: Minoan ER: progressive entity resolution in
the web of data. In: EDBT 2016, pp. 670–671 (2016)

Data Mining Applications

A Hybrid Recommender System
for Steam Games

Jin Gong, Yizhou Ye, and Kostas Stefanidis(B)

Tampere University, Tampere, Finland
{jin.gong,yizhou.ye,konstantinos.stefanidis}@tuni.fi

Abstract. A recommender system can be considered as an information
filtering system that seeks to predict the preference a user would have
for a data item. It is commonly utilized in digital stores to recommend
products to their users according to the users’ previous purchases. This
applies to Steam as well, a widely used digital distribution platform for
games. The existing recommender system mainly suggests new games to
a given user by calculating similarities between games they own and those
that they do not. These similarities are based on predefined attributes
(game genres). Additionally, the system is able to recommend games
based on the game preferences of the user’s friends. In this work, we
target at creating an enhanced recommender system for Steam. The goal
is to design a hybrid approach for producing suggestions that will utilize
data, such as playing time, game price and game release date, in addition
to the genres and the preferences of friends.

Keywords: Steam · User profile · Recommendation system ·
Collaborative filtering

1 Introduction

The Steam platform is the largest digital distribution platform for PC gaming
nowadays. On 14 Jan 2019, Steam published its annual report based on the past
12 months, including data on stores, the Steam community, gameplay, Steam-
works, and things behind the scenes. According to the report, Steam users have
experienced explosive growth in 2018 [18]. Among them, the daily active users
of the platform are up to 47 million, the monthly active users are 90 million, the
highest number of online users is 18.5 million, and the monthly growth of users
with valid purchases is 1.6 million. One of the key reasons Steam is growing so
rapidly is the good search-ability in store, which was mentioned in the report
as well. They are working on a new recommendation system driven by machine
learning to find games that match the player’s personal preferences. Although
the algorithm is just part of the search-ability solution, they are also building
more live and appreciation features and continually evaluating the overall design
of the store.

On the other hand, the recommender system sometimes does not work as
well as expected. One reason for this is the Matthew Effect [15], which means
c© Springer Nature Switzerland AG 2020
G. Flouris et al. (Eds.): ISIP 2019, CCIS 1197, pp. 133–144, 2020.
https://doi.org/10.1007/978-3-030-44900-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44900-1_9&domain=pdf
https://doi.org/10.1007/978-3-030-44900-1_9

134 J. Gong et al.

the rich gets richer and the poor gets poorer always appears in the social science
field, can be also applied to the game market. Those games developed by big
game developing companies receive more budget on advertisement so that they
can be very popular. Popular games will appear on the top position on the
store web pages and attract more users to buy including you and your friends.
Meanwhile, games developed by small studios or individual developers are not
that lucky. Those budget games without enough attention would easily disappear
from users. What is even worse, if developers are unable to earn money from
those games, they are very likely to break down which does harm to the whole
game market. This is the reason why people need a recommender system, for
suggesting niche games to users.

Our goal, in this paper, is to create a hybrid approach for producing sugges-
tions that will utilize data, such as playing time, game price and game release
date, in addition to the genres and preferences of friends used already. Our ini-
tial target is to analyze the data, which comes in three parts. The first part
includes the user IDs, the games that they purchased and the hours they had
spent playing the game1. The second part consists of the game titles combined
with their prices and release dates2, while the third part consists of the game
names, game IDs and their genres. This dataset was manually crawled from the
Steam API.

We convert all available data into numerical ratings ranging from 1 to 5.
These ratings will then be used in calculating the Pearson correlation between
the cases to determine the similarities. A rating of 1 equals to total similarity
and −1 means that the entities being compared are total opposites to each other.
For producing recommendations, the final rating of a game to any given user is
the mean of several values, including user preference of this game genre, user
preference of games similar to this game, similar users preference of this game,
user preference of price and user preference of game released in that time zone.
The proposed approach includes no assigned weights to the individual parts
for computing the overall ratings, i.e., each aspect of the data would have an
equal amount of impact on the final rating. Python is used as the programming
language of the system.

We evaluate the accuracy of our results by separating the dataset into a test
set and a training set. Specifically, we attempt to predict the values in the test
set using the training set.

This paper is organized as follows. Section 2 discusses about the recommender
system in use of the Steam platform and the recommender of other platforms.
Section 3 introduces the dataset and analysis method. Section 4 shows the per-
formance of the proposed approach, and Sect. 5 concludes the paper with a
summary of our contributions.

1 https://www.kaggle.com/tamber/steam-video-games/.
2 https://www.kaggle.com/kingburrito666/over-13000-steam-games/.

https://www.kaggle.com/tamber/steam-video-games/
https://www.kaggle.com/ kingburrito666/over-13000-steam-games/

A Hybrid Recommender System for Steam Games 135

2 Related Work

2.1 Recommender System of Steam

Valve Software3 is keeping improve the recommending system of Steam platform
annually. However, Valve has never gave out any detailed information about the
algorithm of its recommender system. The system is like a black box to common
users. Some analysts (e.g., Erik Johnson) have attempted to dive deeply into
the mechanism behind Steam. Erik Johnson stopped using his personal Steam
account and spent two months recording all the games he had played, viewed and
commented since then, as well as the play-time, and he even stored the HTML
pages of those games. During the two months, he viewed all the 672 games
recommended by Steam and started to find the relationships among them.

According to this study, Eric Johnson found that the system could make
better recommendations if it relied less on popularity and recency, and instead
did a better job of surfacing titles based on quality and personal relevance factors.
The challenge here is that popularity and recency are easy to quantify. Quality
and relevance are more elusive. Furthermore, the most surprising omission in all
these systems is the lack of collaborative filtering [10].

2.2 Other Works on Recommender Systems

The recommender system is not a unique feature of the game platform. Since the
popularity of the Internet, various platforms have used their unique recommender
systems to provide customized services to users.

In general, a recommender system aims at providing suggestions to users or
groups of users by estimating their item preferences and recommending those
items featuring the maximal predicted preference. Typically, depending on the
type of the input data, i.e., user behavior, contextual information, item/user
similarity, recommendation approaches are classified as content-based [19], col-
laborative filtering [20], knowledge-based [4], hybrid [2], or even social ones [22].
Nowadays, recommendations have more broad applications, beyond products,
like links (friends) recommendations [28], query recommendations [6], health-
related recommendations [23,24], open source software recommendations [11],
diverse venue recommendations [7], recommendations for groups [14,16,17],
sequential recommendations [3,25] or even recommendations for evolution mea-
sures [21,27].

Next, we take as an example a shopping experience to showcase how recom-
menders work. So, typically, recommender algorithms start by finding a set of
customers who purchased and rated items overlap the user’s purchased and rated
items. The algorithm aggregates items from these similar customers, eliminate
items the user has already purchased or rated, and recommends the remaining
items to the user. In the case of item-to-item collaborative filtering, like in our
work, the focus is on finding similar items, not similar customers. For each of the

3 https://www.valvesoftware.com/en/.

https://www.valvesoftware.com/en/

136 J. Gong et al.

user’s purchased and rated items, the algorithm attempts to find similar items.
It then aggregates similar items and recommends them (e.g., [13]). This is the
method that many companies, like Amazon, are using. However, this method
is more likely to be a have-to choice due to the lack of friends feature, so its
recommendations rely on items and similar users. It would guess which product
you may like according to your wish list, your previous purchase and the goods
you searched for.

There are also shopping websites which allow users to add each other as
friends and take what your friends bought into account. Some people may have
similar experience like: The shop recommends the item I just bought. Here we
are going to introduce a concept that is the cost of making mistakes. A bad
recommendation will have a bad effect, but the question is how big the effect.
The cost is very small in shopping field because when a user opens the website,
he/she knows clearly what he/she needs. If they recommend him/her something,
he/she does not need, this user will even never click on it. The game field is kind
of the opposite. Many users open the game store without a specific game need.
They just select a game for fun, no matter which one. It is very difficult to judge
a game according to its description and several images. For example, based on
the description and images, the user might think that he/she likes it, but after
trying the game, he/she disliked it. During this period, the user needs to pay
both money and time, leading to trust reduction of the user for the system.

This is totally different in another field, like YouTube. The top sector on
YouTube web page is the recommendation of the video. Its algorithm is based
on the channels you subscribed, the videos you previously viewed and videos you
liked. They use two neural networks. The first one is the candidate generation
network, it takes events from the user’s YouTube activity history as input and
retrieves a small subset (hundreds) of videos from a large corpus. The second one,
the banking network, it accomplishes this task by assigning a score to each video
according to the desired objective function, using a rich set of features describing
the video and user. The highest scoring videos are presented to the user, ranked
by their score [5]. For new user without any interactions with the system, the
system will show the most trending videos based on the user’s location. This
mechanism is more like the Steam platform. It will classify users with many
tags. For instance, if you have viewed many technology videos, you may gain a
tag says technology fans and you may get as well other tags like nature fans or
fans of a pop star, if you watch videos of that type. The steam platform is doing
the same thing as well. If you played a lot of free games, they are highly likely
to introduce other free game rather than those very expensive fee-paying ones
to you.

3 The Dataset

To do deep analysis with Steam users’ gameplay, a sufficient amount of data is
needed. For our analysis, 100,000 users will be used. The open-source data com-
pany with educational datasets should be the best choice, namely, Kaggle.com.

https://www.kaggle.com

A Hybrid Recommender System for Steam Games 137

Table 1. Dataset information.

Type Size Description

Users 11350 The number of users

Games 5155 The number of games

Games per user 17.62 The number of games owned by a user in average

Gaming time (in hours) 0.1–11754 The time a user spends on a game

Year of publish 2007–2017 The year the game published in

According to the Terms and Use of Kaggle.com, Steam’s dataset can be down-
loaded for academic use, obeying any ethics issues. We found three different
datasets from Kaggle. The first one [26] includes user IDs, the games that they
purchased and the hours they had spent playing the game. The second dataset
[12] includes the game titles combined with their prices and release dates. The
third one only includes the game titles initially, however, for the hybrid recom-
mendation system that we are aiming to create, we want to add the game genres
into the mix.

A web crawler based on Python language was created to collect game genres
from public game profiles. Steam URLs are of the form ‘/gameID/gameName’,
and we had no access to gameIDs in our data. After realized that using the Steam
webpage would be far too inconvenient due to game name in the URL being in-
consistent with the name provided in the data, the next attempt was made using
a website containing information on all Steam games, SteamDB. Much to our
dismay, only trials and errors are learned because this website actively blocks all
crawling scripts, although we did manage to find the source that this website is
using and ended up using that instead [1]. The gameIDs along with the game
genres would then be added to the third dataset. However, many games (2030
cases) have missing genres due to several reasons: Some of them were old and
thus removed from the current Steam store. Others could not be found because
their names were spelled differently in the sources that we were comparing.

Table 1 shows the basic information about the dataset. If the whole dataset
is changed into a user-game table, the known data (the user-game pair) only fills
0.34% of the whole table. The data itself is very sparse so any analysis based on
the raw data is inefficient and inaccurate. Features should be extracted from the
dataset for more research.

4 The Method

All available datasets are in a csv-format. Python libraries, like Numpy and
Pandas, are used to organize the data. In the first dataset, there was an empty
column that we removed. All the cases with missing genres are excluded.

Next, we transform the initial three datasets into four different tables.

https://www.kaggle.com

138 J. Gong et al.

Table 1: User-Game Table. We will first create the user-game table, which is a
table containing users along with their ratings for the games based on the time
they had spent playing the game. Our rating system is an interval from 1 to 5,
and it was calculated by dividing the playing time into 5 equally parts [29]. For
example, a given user would get a rating of 5 for a given game if the time the
user had spent playing the game belonged in the top-20% out of all the users.

Table 2: User-Genre Table. We will then create the user-genre table by taking
the average of all the ratings for games that belong in the same genre [8]. For
example, let us assume that a user has game1 and game2. Game1 belongs to
genre1 and genre2, game2 belongs to genre2. The rating this user would obtain
for genre1 would be the rating they got for game1. Likewise, the score for genre2
would be the mean of game1 and game2. The formula can be generalized as
follows:

score(user i, genre j) =

∑

g∈Gn

gameg rating

n
(1)

where n equals the number of games that useri has in genrej , and Gn is the set
of n games that useri has in genrej .

Table 3: User-Price Table. We started by defining three price ranges:

– Free to Play games.
– Games that are below 20$, but not free.
– Games that are above or equal to 20$.

First, we calculate the number of games that a user has in each price range.
The rating for that price range would then be the mean of all the ratings for
games in that price range, e.g., if a given user had 4 games, game1 (free), game2
(<20$), game3 (≥20$) and game4 (≥20$), then the rating this user has for free
games would be the rating for game1, the rating for games under 20$ would be
the rating for game2 and the rating for games over 20$ would be the average of
rating game3 and rating game4.

Table 4: User-Release Year Table. It should be noted that the data we had only
had release dates ranging from 2007 to 2017, which may cause some bias in our
results, though Steam does remove older titles from the store regularly. They
remain playable if the user had purchased them but cannot be bought from the
store anymore. We categorized these release dates into three categories:

– Older than 2010.
– Games released between 2010 and 2015.
– Newer than 2015.

In this case, the rating system works exactly like in the previous user-price table,
which is to say, the rating for a certain interval is the mean of all the ratings the
user had given for games that belong in that interval.

A Hybrid Recommender System for Steam Games 139

Overall Aggregation. Pearson correlation is used to measure the similarities
between the users and the similarities between the games. A score of 1 would
equal total similarity and −1 would mean that the entities being compared are
total opposite of each other. The Pearson correlation similarity of two users x,
y is defined as:

simil(x, y) =

∑

i∈Ixy

(rx,i − r̄x)(ry,i − r̄y)

√ ∑

i∈Ixy

(rx,i − r̄x)2
√ ∑

i∈Ixy

(ry,i − r̄y)2
(2)

where Ixy is the set of items rated by both user x and user y, ra,b the rating
assigned to game b by user a, and r̄a the mean of the ratings for user a.

After obtaining the similarity matrices, the system is able to produce rec-
ommendations of similar users for any given user. The same is true for games.
This is accomplished using the prediction formula which is the same as what we
use to calculate the correlation of two users. But the explanation should be the
Pearson correlation similarity of two items x, y is defined as that, and where Ixy
is the set of users give rate to both game x and game y.

Next, let us explain the system with a practical example: Bob does not own
the game Dota2. Dota2 belongs to several genres: Action, Free to Play and
Strategy. As is apparent from the genres, it is free. It was released in 2013. The
final rating that Bob receives for Dota2 is the mean of five different ratings:

– The mean rating for Dota2 given by top-5 most similar users.
– The mean rating is given by Bob for top-5 most similar games.
– The rating Bob gave for games released between 2010 and 2015.
– The mean rating Bob gave for Action, Free to Play and Strategy-games.
– The rating Bob gave for games that are Free to Play.

5 Experiments

We evaluated the accuracy of our results by randomly selecting 10% of the data
as the test set. The remaining 90% of the data would be used as the training set.
We would randomly select one rating from a user and delete it. Subsequently, we
would try to predict the deleted value using the training set. These predictions
were then analyzed through MAE and NMAE [9]:

MAE =

∑

i∈N

|pi − qi|
n

(3)

NMAE =
MAE

Rmax − Rmin
(4)

50 independent tests with random seeds have been done to select the different
testing set and training set. The testing results were transformed into charts for
better understanding (see, Figs. 1 and 2).

140 J. Gong et al.

Fig. 1. MAE scores in 50 iterations.

It can be seen from the charts, the average of MAE is around 6 which stands
for the average of prediction is about 2.45, and the average of NMAE is around
0.33 which means our model has an accuracy around 67% on predicting. Which
means, every time the user is viewing a video game product, this system will
automatically recommend five other video games according to the current game
and the preference of the current user. Among the five recommended games,
more than 2 of them (actually 2.45 out of 5) will meet the interest of the user.
Meanwhile, if the system recommend a game to the user, it is 67% sure that the
user will interested in this game or even purchase.

Another test is about how the accuracy change when user and game col-
laborative filtering, game genre, price and publishing year are considered one
by one (see, Fig. 3). In this test, the system tries to predict the game that the
user likes best or in other words, the games with longest playtime. We randomly
select 10% of the data as the test set as well. The remaining 90% of the data
would be used as the training set. For all the users in testing set, the playtime
information is hidden, we can only know the names of the games they owned,
but we do not know how long they spent on the games. The game which a user
spent the longest time on is defined as his or hers favourite game. The accuracy
is calculated as:

accuracy =
Nc

N
,

where Nc represent the number of users that predicted correctly and N is the
number of users contained in testing set.

If the system recommends games taking into account similarities between
users, which in turn means similarities between the games the users own, we
calculate similarities using the Pearson correlation (see, Sect. 4).

A Hybrid Recommender System for Steam Games 141

Fig. 2. NMAE scores in 50 tests.

Fig. 3. The accuracy changes.

With this mechanism (UserFC), the average accuracy is about 13.5%. The
second step is take both similar users and similar games into concern. For each
game in the library, calculates the sum of the similarities between the game and
all the other games owned by the user. The game with the highest sum score
is seen as the game that should be recommended from GameCF. If the UserCF
and GameCF give out different games to recommend, just choose the one more
popular in all the other users. Then find out the favourite genre, price range
and year range of the user, and recommend a game with highest score satisfying
one feature above, we proceed as follows. The accuracy of the selected game is
just the favourite game of the user going from 13.5% to 22.8%. Among the five
factors, the price contribute the most and the publish year is the least important.

142 J. Gong et al.

The result shows that even though from every aspect a game seems that it suits
the user very well, but if the price is too expensive, the user will not choose the
game.

6 Conclusion

A recommender system can be considered as an information filtering system that
seeks to predict the preference a user would have for a data item. In this paper,
we focus on the Steam, a widely used digital distribution platform for games.
Specifically, we target at producing an enhanced recommender for Steam that
uses data, such as playing time, game price and game release date, genres and
users preferences for making suggestions.

Based on our first experimental results, we investigate that the big sparsity
of our dataset appears to be an important reason for making the results not as
good as expected. This is caused by two reasons. The first reason is the raw data
itself that is too sparse and cannot be modified. The second one is data loss
when different tables are joint together. For instance, a user has 10 games, but
we only have information about 5 out of 10. Then, only those 5 games contribute
to the analysis, which is still related to data sparsity.

Another reason is related to the fact, that on the particular domain, it is
sometimes random if a user owns a suitable game or not. A game might be very
suitable to the taste of one user, no matter what system you use to test, but
the fact is that this user does not own the game. He or she might have already
had this game on another platform or will meet the game in the future and then
own it.

Among the 5 factors listed in the paper, a recommendation based on simi-
lar user and similar games seems more reliable which is so-called collaborative
filtering. Meanwhile, the price of a game is a factor considered by most of the
users tested. The age of the game and the genres seems to be not so important to
many users. As we know, the genres are classified by tags contributed by other
users and not supervised by Steam platform or game publisher. Misclassification
sometimes happens on Steam. It could be a potential reason making genre fac-
tor not influential. To generalize, we opt in our future work to assign different
weights to different factors, depending on their importance, instead of having all
factors that equally effect on the final hybrid rating.

We also tried to generate rules from our results using the IBM’s SPSS soft-
ware tool. Using the Scikit library of Python, we were able to generate some
rules, some even with very high accuracy, but the general issue was their low
coverage (around 0,01% at best). Thus, we discarded these rules due to over-
fitting. We leave this as future work, and we will consider in our next steps,
alternative ways for generating rules.

References

1. Official team fortress wiki. https://wiki.teamfortress.com/wiki/. Accessed 11 Apr
2019

https://wiki.teamfortress.com/wiki/

A Hybrid Recommender System for Steam Games 143

2. Balabanovic, M., Shoham, Y.: Content-based, collaborative recommendation.
Commun. ACM 40(3), 66–72 (1997)

3. Borges, R., Stefanidis, K.: Enhancing long term fairness in recommendations with
variational autoencoders. In: Proceedings of the 11th International Conference on
Management of Digital EcoSystems, MEDES 2019 (2019)

4. Bridge, D.G., Göker, M.H., McGinty, L., Smyth, B.: Case-based recommender
systems. Knowl. Eng. Rev. 20(3), 315–320 (2005)

5. Covington, P., Adams, J., Sargin, E.: Deep neural networks for YouTube recom-
mendations. In: Proceedings of the 10th ACM Conference on Recommender Sys-
tems, pp. 191–198. ACM (2016)

6. Eirinaki, M., Abraham, S., Polyzotis, N., Shaikh, N.: QueRIE: collaborative
database exploration. IEEE Trans. Knowl. Data Eng. 26(7), 1778–1790 (2014)

7. Ge, X., Chrysanthis, P.K., Pelechrinis, K.: MPG: not so random exploration of a
city. In: MDM (2016)

8. Goldberg, D., Nichols, D., Oki, B.M., Terry, D.: Using collaborative filtering to
weave an information tapestry. Commun. ACM 35(12), 61–71 (1992)

9. Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback
datasets. In: 2008 Eighth IEEE International Conference on Data Mining, pp.
263–272. IEEE (2008)

10. Johnson, E.: A deep dive into steam’s discovery queue. https://www.gamasutra.
com/blogs/ErikJohnson/20190404/340061/A Deep Dive Into Steams Discovery
Queue.php. Accessed 7 July 2019

11. Koskela, M., Simola, I., Stefanidis, K.: Open source software recommendations
using github. In: Méndez, E., Crestani, F., Ribeiro, C., David, G., Lopes, J.C. (eds.)
TPDL 2018. LNCS, vol. 11057, pp. 279–285. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-00066-0 24

12. Larson, L.: Over 13,000 steam games. https://www.kaggle.com/kingburrito666/
over-13000-steam-games/. Accessed 11 Apr 2019

13. Linden, G., Smith, B., York, J.: Amazon.com recommendations: item-to-item col-
laborative filtering. IEEE Internet Comput. 7(1), 76–80 (2003)

14. Machado, L., Stefanidis, K.: Fair team recommendations for multidisciplinary
projects. In: 2019 IEEE/WIC/ACM International Conference on Web Intelligence,
WI 2019, Thessaloniki, Greece, 14–17 October 2019, pp. 293–297 (2019)

15. Merton, R.K.: The Matthew effect in science: the reward and communication sys-
tems of science are considered. Science 159(3810), 56–63 (1968)

16. Ntoutsi, E., Stefanidis, K., Nørv̊ag, K., Kriegel, H.-P.: Fast group recommendations
by applying user clustering. In: Atzeni, P., Cheung, D., Ram, S. (eds.) ER 2012.
LNCS, vol. 7532, pp. 126–140. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-34002-4 10

17. Ntoutsi, E., Stefanidis, K., Rausch, K., Kriegel, H.: Strength lies in differences:
diversifying friends for recommendations through subspace clustering. In: CIKM
(2014)

18. O’Neill, M., Vaziripour, E., Wu, J., Zappala, D.: Condensing steam: distilling the
diversity of gamer behavior. In: Proceedings of the 2016 Internet Measurement
Conference, IMC 2016, pp. 81–95. ACM, New York (2016). https://doi.org/10.
1145/2987443.2987489. http://doi.acm.org/10.1145/2987443.2987489

19. Pazzani, M.J., Billsus, D.: Content-based recommendation systems. In:
Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web. LNCS, vol.
4321, pp. 325–341. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-72079-9 10

https://www.gamasutra.com/blogs/ErikJohnson/20190404/340061/A_Deep_Dive_Into_Steams_Discovery_Queue.php
https://www.gamasutra.com/blogs/ErikJohnson/20190404/340061/A_Deep_Dive_Into_Steams_Discovery_Queue.php
https://www.gamasutra.com/blogs/ErikJohnson/20190404/340061/A_Deep_Dive_Into_Steams_Discovery_Queue.php
https://doi.org/10.1007/978-3-030-00066-0_24
https://doi.org/10.1007/978-3-030-00066-0_24
https://www.kaggle.com/kingburrito666/over-13000-steam-games/
https://www.kaggle.com/kingburrito666/over-13000-steam-games/
https://doi.org/10.1007/978-3-642-34002-4_10
https://doi.org/10.1007/978-3-642-34002-4_10
https://doi.org/10.1145/2987443.2987489
https://doi.org/10.1145/2987443.2987489
http://doi.acm.org/10.1145/2987443.2987489
https://doi.org/10.1007/978-3-540-72079-9_10
https://doi.org/10.1007/978-3-540-72079-9_10

144 J. Gong et al.

20. Sandvig, J.J., Mobasher, B., Burke, R.D.: A survey of collaborative recommenda-
tion and the robustness of model-based algorithms. IEEE Data Eng. Bull. 31(2),
3–13 (2008)

21. Stefanidis, K., Kondylakis, H., Troullinou, G.: On recommending evolution mea-
sures: a human-aware approach. In: 33rd IEEE International Conference on Data
Engineering, ICDE 2017, San Diego, CA, USA, 19–22 April 2017, pp. 1579–1581
(2017)

22. Stefanidis, K., Ntoutsi, E., Kondylakis, H., Velegrakis, Y.: Social-based collab-
orative filtering. In: Alhajj, R., Rokne, J. (eds.) Encyclopedia of Social Network
Analysis and Mining, pp. 1–9. Springer, New York (2017). https://doi.org/10.1007/
978-1-4614-7163-9 110171-1

23. Stratigi, M., Kondylakis, H., Stefanidis, K.: Fairness in group recommendations in
the health domain. In: ICDE (2017)

24. Stratigi, M., Kondylakis, H., Stefanidis, K.: FairGRecs: fair group recommen-
dations by exploiting personal health information. In: Hartmann, S., Ma, H.,
Hameurlain, A., Pernul, G., Wagner, R.R. (eds.) DEXA 2018. LNCS, vol. 11030,
pp. 147–155. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98812-
2 11

25. Stratigi, M., Nummenmaa, J., Pitoura, E., Stefanidis, K.: Fair sequential group rec-
ommendations. In: Proceedings of the 35th ACM/SIGAPP Symposium on Applied
Computing, SAC 2020 (2020)

26. Tamber: Steam video games. https://www.kaggle.com/tamber/steam-video-
games/. Accessed 11 Apr 2019

27. Troullinou, G., Kondylakis, H., Stefanidis, K., Plexousakis, D.: Exploring RDFS
KBs using summaries. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol.
11136, pp. 268–284. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
00671-6 16

28. Yin, Z., Gupta, M., Weninger, T., Han, J.: LINKREC: a unified framework for link
recommendation with user attributes and graph structure. In: WWW (2010)

29. Zhang, J., Peng, Q., Sun, S., Liu, C.: Collaborative filtering recommendation algo-
rithm based on user preference derived from item domain features. Phys. A 396,
66–76 (2014)

https://doi.org/10.1007/978-1-4614-7163-9_110171-1
https://doi.org/10.1007/978-1-4614-7163-9_110171-1
https://doi.org/10.1007/978-3-319-98812-2_11
https://doi.org/10.1007/978-3-319-98812-2_11
https://www.kaggle.com/tamber/steam-video-games/
https://www.kaggle.com/tamber/steam-video-games/
https://doi.org/10.1007/978-3-030-00671-6_16
https://doi.org/10.1007/978-3-030-00671-6_16

Using Twitter Streams for Opinion
Mining: A Case Study on Airport Noise

Iheb Meddeb, Catherine Lavandier, and Dimitris Kotzinos(B)

ETIS Lab, UMR 8051, CY Cergy Paris University, ENSEA, CNRS,
2 Avenue A. Chauvin, 95000 Pontoise, France

{Iheb.Meddeb,Catherine.Lavandier,Dimitrios.Kotzinos}@u-cergy.fr

Abstract. This paper proposes a classification model for opinion min-
ing around airport noise based on techniques such as event detection
and sentiment analysis applied on Twitter posts. Tweets are retrieved
using the Twitter API either because of location or content. A dataset
of preprocessed, with NLP techniques, tweets is manually annotated and
then used to train an SVM (Support Vector Machine) classifier in order
to extract the relevant ones from the obtained collections. The extracted
tweets from the SVM classifier are fed to a lexicon-based classifier to
filter out the false relevant and to increase precision. A lexicon-based
sentiment classifier is then applied in order to separate positive, negative
and neutral tweets. The sentiment classifier uses emoticons, polarity of
words with subjective intensity, intensifiers, negation effect with dynamic
scope, contrast effect and SWN to detect the sentiment of tweets in a
hierarchical manner. The information present in the classified tweets is
used for a statistical survey-like study.

Keywords: Twitter · Opinion mining · Natural language processing ·
Machine learning · Sentiment analysis · Text mining

1 Introduction

Microblogging has become a very popular communication intermediary these
last years, such as Twitter [3], Tumblr [2], etc. Offering a social network service
for people, they use it to share daily news and express their opinions or emotions
towards several topics, in a completely free manner. In fact, Twitter has reached
336 million active users in the first quarter of 2018, according to Statista [1],
and sharing around 500 million tweets per day. These numbers indicate the big
amount of information shared and rapidly spread due to Twitter characteristics
that enables 280 maximum characters in a post and introduces hashtags and
usernames tagging. All of this has encouraged research in the field of data mining
and natural language processing (NLP) to exploit microblogging services and
especially Twitter. Different works have taken place in this context but aiming
at different objectives. In our project, we aim to capture tweets shared by users
who live in the area of an airport and discuss about noise problems generated by
c© Springer Nature Switzerland AG 2020
G. Flouris et al. (Eds.): ISIP 2019, CCIS 1197, pp. 145–160, 2020.
https://doi.org/10.1007/978-3-030-44900-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44900-1_10&domain=pdf
https://doi.org/10.1007/978-3-030-44900-1_10

146 I. Meddeb et al.

both air and road traffic and due (or not) to the presence of the airport and to
understand their perception on the quality of life in the area. Heathrow airport
is taken as an example to work with as it is one of the busiest airports and
located in a highly and densely populated area.

The main goal of this project is to build a customizable platform that collects
the stream of relevant tweets generated by users, store them and do the sentiment
analysis. This wealth of expressed opinions though comes with a price: not all
opinions, posts, discussions are relevant to a specific subject so we need first to
be able to extract the relevant posts or discussions. This is not a trivial subject
by itself, since the definition of a subject is not exact and the way people express
themselves varies greatly. Moreover, the case of Twitter and other microblogging
services is more complicated since their limit in the number of characters for
each post forces people to express themselves in unique and sometimes difficult
to decipher ways. So this led us to create ways to collect data automatically
using information retrieval, data mining and machine learning techniques to
extract the relevant posts. Additionally, we used sentiment analysis techniques
in order to analyze the opinions expressed in tweets and extract the sentiment
(positive, negative or neutral) involved. We hope to be able to offer an alternate
method to the traditional surveying methods with an automatic and timely
way. This faces several challenges such as dealing with trivial tweets, incomplete
sentences, misspelling and abbreviation due to strictly short messages. Sentiment
classification is a hard challenge that faces contextual meanings of messages such
as irony and the use of emotional expressions. Our work can be used to survey
opinions on different aspects of people’s everyday lives but the Machine Learning
(ML) algorithms we use, will need to be retrained in order to achieve reasonable
results. So while this is not an out of the box approach, it is a complete effort
to support online surveying on non-trivial subjects.

The rest of this paper is organized as follows. In Sect. 2, a study of the state of
the art and related work is presented. Section 3 describes the proposed approach
and the workflow for extracting sentiments about noise and quality of life from
tweets. Experiments and results are shown in Sect. 4. Section 5 is the conclusion
of this work and discussion of future perspectives.

2 State of the Art

2.1 Machine Learning Approaches for Sentiment Classification

Related works have mostly used emoticons [12], slangs and acronyms [11], words
in text and their respective part-of-speech (POS), which is the grammatical
description of word (e.g. noun, verb, adjective, etc.), intensifiers such as all caps
and characters repetitions (e.g. happpyyy) [14], punctuation marks, n-grams and
negation mark as features of tweets. The sentiment polarity of a tweet is, then,
calculated using machine learning approaches or lexicon-based approaches.

According to [17], there are two classifier models, a 2-way and a 3-way senti-
ment classification. The 2-way model classifies texts into positive or negative and
the 3-way model includes a neutral class with the previous ones. [12] showed that

Using Twitter Streams for Opinion Mining: A Case Study on Airport Noise 147

emoticons have a significant indication on the polarity of texts with a 2-way clas-
sification and emoticon-trained SVM (Support Vector Machine) [8] and Naive
Bayes (NB) [10] classifiers were able to have more than 70% accuracy. However,
this method has a poor performance with a 3-way classification. [17] tested the
impact of n-grams on the classifier performance. They used NB for classification
and showed that using bigrams leads to the best accuracy as it provides a good
trade-off between a word meanings (unigram) and capturing sentiment expres-
sions (trigrams). They also revealed that attaching negation words when using
n-grams has a high accuracy even with a small training set. [14] used collections
of hashtagged tweets and tweets with emoticons to see how useful features are.
They took n-grams as baseline feature, and then tried combinations of it with a
dictionary of subjective lexicon, POS features such as counting of verbs, nouns,
adjectives and microblogging features (e.g. intensifiers, emoticons, slangs and
abbreviations). They showed that applying all features together does not lead to
the best performance but it depends on the type of features. Tree kernel is also
a useful method to represent tweets [4] because polar (positive/negative) and
non-polar (counts) features can be easily extracted. They also detect emoticons,
negation and exclamation marks, stop and non-English words within the tree
kernel. Their study showed that tree kernel combined with sentiment features
(e.g. positive/negative words, count and prior polarity of POS, emoticons, etc.)
outperforms the base line unigram. It is also important to mention that they
took into account the subjective intensity of emoticons (e.g. extremely positive,
positive, negative, etc.) but not those of words. Same as [14], they used combina-
tion of features to get the most effective ones. Their feature analysis showed that
combining the prior polarity words with their POS gives the best performance,
contrarily to [14]. This may be explained by the tagger errors and the use of
POS in [4] (prior polarity of words by POS) and in [14] (count of POS).

[18] has used a context-based convolutional neural network (CNN) to apply
sentiment classification on Twitter corpus with 5 main layers: tweets are rep-
resented by word embedding vectors to be passed, then, to the input layer.
The convolution layer extracts lexical n-grams information and a max, min and
average-pooling layer is used to know how important an n-gram is. They also
used as sub network to extract contextualized words form tweets which were
represented using tf-idf. A hidden layer is used to concatenate the values from
the pooling layers of the main network and the sub network, which leads to
the final output layer to get the polarity of tweets. They tested their model on
tweets extracted from conversations, tweets sorted by author and tweets sorted
by topic. Their study showed that their model gives the best performance on
topic-based tweets.

2.2 Lexicon-Based Approaches for Sentiment Analysis

Besides machine learning approaches for sentiment classification, previous works
have also used lexicon-based approaches that imply the use of dictionary of sub-
jective words. For this purpose, many dictionaries from previous sentiment anal-
ysis already exist and research continues to take advantage of them because the

148 I. Meddeb et al.

creation of lexicon datasets is a time consuming task. Other than lexicon dic-
tionaries, sentiment research works on microblogging messages have also used
sets of positive and negative emoticons to detect sentiment classes, despite the
fact that subjective words can be interpreted differently from one annotator to
another. Moreover, even if the contents of the dictionaries (words) can be the
same, their polarity might differ. To avoid these problems, [20] indicates the
need of having more than one dataset to take into account multiple subjective
perspectives of the word and to modify the existing dictionary, when neces-
sary, to satisfy the topic sentiment characteristics or to create a domain specific
dictionary using lexicon expansion techniques. [5] proposed a lexicon enhanced
sentiment classifier on reviews to improve classification performances. In fact,
they calculated the scores of positive and negative emoticons and words. The
polarity score of a word is calculated using SentiWordNet classifier (SWNC) and
a domain specific classifier (DSC) that takes into account the polarity of domain
specific words both existing or unknown in SWNC. They also take into account
negation (inverting the polarity score of the word next to the negation word)
and modifiers, which are a sort of positive and negative grammatical intensifiers
such as very, slightly, less, extremely, etc. They assign an intensity percentage
to every modifier that represent its effect on the next word. The score of a sen-
tence in a review is the summation of emoticons, modifiers, DSC and SWNC
scores. Then a review is classified as positive, negative or neutral depending on
the summation of sentences sentiment scores. Their study shows that DSC and
modifiers have the best effect on improving performance and that DSC is used to
give a correct classification of the misclassified neutral reviews due to the domain
specific words that are nonexistent in SWNC so given a score of 0 (neutral).

2.3 Hybrid Classification Models

[13] also presented an hybrid sentiment classification framework on Twitter data.
They used three different classifiers: emoticon classifier (EC), improved polarity
classifier (IPC) and SWNC. Contrarily to [5], they detect the polarity of a tweet
using a sequential method: After preprocessing tweets, they are passed to EC,
which has positive and negative sets of emoticons. Depending on the emoticons
in a tweet, EC classifies them into positive or negative. If tweet has a neutral
score (i.e. does not have emoticons), it is passed to IPC which has sets of positive
and negative words build from multiple existing lexicons datasets. Same to EC,
the polarity of a tweet is calculated but this time, depending on words. If it is
still neutral, the tweet is passed to SWNC. This algorithm has showed a good
performance on classifying tweets especially on reducing the number of neutral
tweets. However, they do not take into account the subjective intensity of words,
negation nor modifiers.

3 Workflow for Extracting Sentiments from Tweets

Our proposed approach is presented as a workflow, which is divided into four
main parts. First, queries are sent to Twitter Streaming API to collect tweets.

Using Twitter Streams for Opinion Mining: A Case Study on Airport Noise 149

As the geographic area of our study is known (Heathrow airport). So we are
collecting tweets using a location query to get messages within that area and
also using a keywords query to get messages around Heathrow and aircraft
noise. Then, messages are preprocessed using NLP techniques such as stop
words removal, spelling correction, lemmatization, POS tagging, tokenization,
etc. Afterwards, a machine learning algorithm, trained on an annotated dataset,
is set up to filter out the irrelevant tweets and get the relevant ones. A domain
knowledge classifier, which is lexicon-based, is also used to filter out irrelevant
tweets. Relevant tweets are then preprocessed again because the first preprocess-
ing task is only suited for relevance classification and does not satisfy sentiment
classifier requirements The sentiment classifier uses sets of positive and negative
emoticons, positive and negative lexicon with subjective intensity, and SWN to
calculate the sentiment scores of tweets and to classify them into positive, neg-
ative or neutral. The use of these three classifiers is done in a hierarchical way
by applying weights on their scores to have better performances.

3.1 Gathering Data: Twitter API

Twitter provides an API1 to allow developers and researchers to access the pub-
licly available user posts. They allow getting real time tweet streams with filtering
by keywords, locations, languages, users, etc. the received tweet is represented
as a JavaScript object notation (JSON) object that carries a lot of information
about the tweet such as creation time, text, user description and location.

Retrieving Tweets with Location Query (TWLQ). Firstly, we define the
area around Heathrow airport in which people will be talking about aircraft
noise. We use the airport day, evening and night level (Lden) noise contours [6]
to set the minimum surface of the area. We end up by defining a bounding box of
167 km wide, 73 km long and centered in Heathrow airport. The coordinates of
the bounding box are introduced as a filter to Twitter API that is also configured
to extract only English language tweets.

Retrieving Tweets with Keywords Query (TWKQ). The previous
method gives only tweets having location, which are a small proportion of the
overall accessible tweets (i.e. it misses a large number of relevant tweets that do
not have a location). Moreover, it returns all tweets within that area so we get
tweets talking about everything, which makes it impossible to take a sample with
significant number of relevant ones for training. Therefore, we also use keywords
queries to extract relevant tweets. We use “Heathrow”, “LHR” and “noise” as
keywords in a certain way to get tweets that have the words Heathrow and noise
or LHR2 and noise in the text.

1 https://developer.Twitter.com/en/docs (Accessed on 08/17/2018).
2 Airport code for London Heathrow.

https://developer.Twitter.com/en/docs

150 I. Meddeb et al.

3.2 Preprocessing Tweets (NLP)

Preprocessing tweets is an essential task for relevance classification and senti-
ment analysis. After retrieving tweets, URL links, numbers, emoticons and Twit-
ter special words such as RT (denotes retweet) are removed. We keep usernames
and hashtags as they can be informative features for relevance classification.
Then the text is set to lowercase to ensure homogeneity of the following opera-
tions: Tokenization is applied to form a bag of words. Spelling errors within text
are reduced by correcting intensified words (e.g. “happyyyy” becomes “happy”).
Then, a POS tag is assigned to each word and the stop words are removed.
Finally, lemmatization is applied to get a bag of root words that defines a tweet
along with its usernames and hashtags. The preprocessed tweets will be used for
relevance classification, which extracts relevant texts to be used for sentiment
classification. However, this set of tasks is not very effective for sentiment analy-
sis as they represent more the topic by the root words and so, loses the sentiment
of sentences. Moreover, doing all the preprocessing in one step is not a desirable
solution since the number of relevant tweets is much smaller than the number of
irrelevant tweets. So the relevant tweets are preprocessed again, but differently;
it starts with extracting emoticons and hashtags from text to be used later, fol-
lowed by removing URL, usernames and punctuation marks. The symbol “#” is
also removed from hashtags and we correct those who are composed by multiple
words (e.g. hashtags “#NoisePollution” or “#noise pollution” become “noise
pollution”) because words in hashtags can also be involved in the tweet’s senti-
ment. However, the position of hashtags is not taken into account as we add all
modified hashtags at the end of the tweet. The text is then set to lower case and
tokenized. We use, as in the first step, the same spelling correction on each word
but also detecting intensifiers such as character repetition and all caps. Words
are then POS tagged and negation marks (e.g. not, ’t and no) are detected. In
that case, a negative mark is assigned to each of their following words. It is
important to know where negation effect stops. In our case, the assignment gets
back to normal when a sentence in a tweet ends. In microblogging messages, “,”
and “-” can also be used to end or start sentences besides normal ones such as
points, exclamation and question marks. The negation scope also stops when
conjunctions like “and”, “or”, wh-determiners (e.g. that, which), wh-pronouns
(e.g. what, who), wh-adverbs (e.g. where, when) or contrast (e.g. but, however)
words are found [9]. We also detect contrast in tweets as they have an effect
on determining sentiments. The sets of emoticons, words with their POS and
normal/negative effect and intensifiers are passed to the sentiment classifier.

3.3 Relevance Classification

After the first preprocessing part, tweets are set to be in the form of bag of
root words and hashtags. We take unigrams, bigrams and hashtags as features
and we used tf-idf technique to represent tweets. SVM algorithm is trained on
an annotated sample of tweets, which are taken from the retrieved datasets
TWLQ and TWKQ. The relevant classified tweets from SVM are introduced

Using Twitter Streams for Opinion Mining: A Case Study on Airport Noise 151

to a lexicon-based classifier. This classifier uses datasets of domain knowledge
unigrams, bigrams and related hashtags and usernames, which were created from
manually labeled relevant tweets, to calculate a domain knowledge score of each
tweet. Then, the lexicon-based algorithm classifies a tweet as relevant when its
relevance score is over a threshold ε. Else, the tweet is classified as irrelevant. ε is
user or experimentally defined and is application specific. Figure 1 describes the
flowchart of relevance classification. The threshold ε is set to be low to have a
small impact on missing more tweets that are relevant but an important impact
on reducing the number of false relevant. This method helps to filter out false
relevant tweets and to have more classification precision as relevance results will
affect the results of our sentiment analysis later.

Fig. 1. Relevance classification flowchart

3.4 Sentiment Analysis of Relevant Tweets

After extracting relevant tweets from the stream, the appropriate preprocessing
tasks are applied on relevant tweets. The proposed approach classifies them
by their positive, negative or neutral sentiment using emoticons (Em), lexicon
polarity (LP) of words and SWN. Let RT be the set of relevant tweets rt, W
be the set of words w including the preprocessed hashtags and E be the set of
emoticons e extracted from a tweet such as:

RT = {rt1, rt2, ..., rtj , ..., rtn} (1)

W = {w1, w2, ..., wj , ..., wm} (2)

E = {e1, e2, ..., ej , ..., et} (3)

Therefore, a relevant tweet rt is defined by:

rt = {W,E}, (rt ∈ RT) (4)

Emoticon (Em) Score Calculation. Emoticons are extracted from tweets
using regular expressions. We extract emoticons that are represented by punc-
tuation marks or by Unicode. We created two datasets of positive emoticons
PE and negative emoticons NE stored in files. The datasets have 64 emoticons

152 I. Meddeb et al.

divided into 38 positive and 26 negative. Sentiment scores of emoticons in a
tweet rtj are normalized and scaled between 1 and −1 such as:

scoreEm(rtj) =
∑t

i=1 emscore(ei)
t

, (ei ∈ E) ∧ (E ∈ rtj) (5)

And:

emscore(ei) =

⎧
⎨

⎩

1 if (ei ∈ PE)
−1 if (ei ∈ NE)
0 if (ei �∈ PE) ∧ (ei �∈ NE)

(6)

Lexicon Polarity (LP) Score Calculation. LP score calculation is based
on datasets of positive and negative words. Datasets are created from multi-
ple existing lexicon collections to expand them and to avoid misinterpretation
of sentiment of certain words. Lexicon lists from Liu [15], McDonald [16] and
MPQA [19] are used to create the dataset. Duplicates and words that do not
have the same polarity within all datasets are removed. We have also added,
when missing, some of the domain knowledge subjective words from the work in
[7] such as deafening, awake, unbearable, etc. And we removed the words “noise”
and “noises” because they appear in most of the tweets so they would wrongly
affect the sentiment polarity. Table 1 presents the statistics of positive and neg-
ative words from each resource and those that are used. Let PW denotes the
set of positive words and NW the set of negative words. As subjective intensity
of words is defined in [19], we used this intensity in scoring and we set the sub-
jective intensity of additional words from the other dataset to unknown. So the
dataset has 3 descriptions of subjective intensity of words: strong subjectivity,
weak subjectivity and unknown subjectivity. We also set the domain knowledge
subjective words to have strong subjectivity and changed the polarity of some
related words to be suited for our topic. For example, we set “low” to have neg-
ative polarity as low flying planes cause more noise. Since intensifiers, negation
and contrast words are detected. We use other additional sets for the scores. Let
ACI be the set of all caps intensifier scores aci and CRI be the set of character
repetition intensifier scores cri of each word such as:

ACI = {aci1, aci2, ..., acij , ..., acim} (7)

CRI = {cri1, cri2, ..., crij , ..., crim} (8)

Table 1. Statistics of lexicon datasets

Words Datasets

Bing Liu Bill McDonald MPQA Clashes and duplicates Final dataset

Positive 2006 347 2719 6548 3251

Negative 4780 2306 4919 7278

Using Twitter Streams for Opinion Mining: A Case Study on Airport Noise 153

If one of these intensifier is detected in a word, its following score will be 1.5
and 1 if it is not. For example the sets ACI and CRI of the tweet “plane
noise is LOUD tonight! Respiiiiite #NOIIISE” will be {1, 1, 1, 1.5, 1, 1, 1.5} and
{1, 1, 1, 1, 1, 1.5, 1.5} respectively. Let NEG and CON be the sets of negation and
contrast words respectively. As the algorithm detects the negation, contrast and
negation stop marks from the preprocessing part, normal, negative or inverse
effect is assigned to each word using keywords. The normal sentiment score
swscoreLP of a word wj in a tweet rtj is:

swscoreLP (wj) =

⎧
⎨

⎩

1 × weight × acij × crij if (wi ∈ PW)
(−1) × weight × acij × crij if (wi ∈ NW)
0 if (uri �∈ PW) ∧ (uri �∈ NW)

(9)
where weight is the subjective weight of the word. Its multiplication with acij
and crij indicates the impact of the word on the tweet sentiment score and its
polarity. When a word has a negative effect due to negation words, its score
is multiplied by −1, allowing its opposite effect to be counted rather than its
normal effect. So the sentiment score of the word, in this case, will be:

swscoreLP (wj) = (−1) × swscoreLP (wj) (10)

This score is valid for all the words following the negation mark until a negation
stop word is found or the sentence in a tweet ends. The LP score is calculated
in an iterative manner, initializing it to zero and adding each time the score of
the word such as:

LPscore = LPscore + swscoreLP (wj), (wj ∈ W) ∧ (W ∈ rtj) (11)

When a word has an inverse effect, which means it is a contrast word, the
following part of the sentence often has an opposite meaning of the first part
and it also indicates the overall sentiment toward a subject. So, when a word
such as “but” and “however” is found in a tweet, the polarity of the current
score is inverted:

LPscore = (−1) × LPscore (12)

This allows us to take into account the opposite meaning of sentence before the
contrast word. After inverting the polarity, the algorithm continues to add scores
of words normally. When another contrast word is found in the same tweet, the
polarity will be inverted again. When all the polarity scores of words in a tweet
are calculated and added to LPscore, it is normalized to ensure the sentiment
intensity of a tweet:

scoreLP (rtj) =
LPscore

m
, (rtj ∈ RT) (13)

SentiWordNet (SWN) Score Calculation. SWN dictionary is used for this
purpose. In fact, each word in the dictionary have a positive, a negative and a

154 I. Meddeb et al.

neutral score, with a total score of 1. Its scores also depend on its POS tag and
so, how it is employed in a text. Each word wj in a tweet rtj is introduced, with
its POS tag to SWN to get also its synsets, which are words having the same
meaning of wj in a particular POS, to be counted in the word polarity scoring
such as:

syscoreSWN (syi) = posscoreSWN (syi)−negscoreSWN (syi), (syi ∈ SYwj
) (14)

where SYwj
is the set of synsets of the word wj :

SYwj
= {sy1, sy2, ..., syj , ..., syv} (15)

And posscoreSWN and negscoreSWN are positive and negative scores of a word
in SWN respectively. This enables us to take into account, same as LP scoring,
the sentiment intensity of a word, however, the scores are not related to the
topic. After calculating the score of each synset, we take their average to get the
sentiment score of the word wj such as:

swscoreSWN (wj) =
∑v

i=1 syscoreSWN (syi)
v

, (syi ∈ SYwj
) ∧ (wj ∈ W) (16)

And the sentiment score of a tweet rtj by SWN scoring method is:

scoreSWN (rtj) =
∑m

i=1 swscoreSWN (wi)
m

, (wi ∈ W) ∧ (W ∈ rtj) ∧ (rtj ∈ RT)

(17)

Sentiment Score Calculation and Classification. The sentiment analysis
approach uses the three scoring methods to determine sentiment polarities of
tweets. They are used in a hierarchical way using weightings of scores and priority
steps. Figure 2 shows the flowchart of sentiment classification algorithm. Firstly,
emoticons and LP scoring algorithms are used to identify the sentiment of a
tweet rtj such as:

scoreEm+LP (rtj) = weii × scoreEm(rtj) + wei2 × scoreLP (rtj) (18)

where wei1 and wei2 are the weights assigned to Em and LP respectively. The
classifier detect the sentiment of a tweet on the basis of thresholds. Let θ1 and θ2
be the respective positive and negative thresholds close to zero. If scoreEm+LP

of a tweet rtj is higher than θ1, it is classified as positive and it is classified as
negative if scoreEm+LP is lower than θ2. Otherwise, if the score is between θ1
and θ2, the sentiment class of the tweet is not defined yet and it is fed to SWN
scoring algorithm. Let sclassEm+LP (rtj) be the sentiment class of the tweet on
the basis of Em and LP scores such as:

sclassEm+LP (rtj) =

⎧
⎨

⎩

positive if scoreEm+LP (rtj) > θ1
negative if scoreEm+LP (rtj) < θ2
scoreSWN (rtj) if scoreEm+LP (rtj) ∈ [θ2, θ1]

(19)

Using Twitter Streams for Opinion Mining: A Case Study on Airport Noise 155

This reduces the number of tweets that are misclassified as neutral. Same as
before, the sentiment classification of tweets on the basis of SWN score is done,
using thresholds. Let τ1 and τ2 be thresholds close to zero. The sentiment class
sclassSWN (rtj) of a tweet rtj on the basis of SWN is:

sclassSWN (rtj) =

⎧
⎨

⎩

positive if scoreSWN (rtj) > τ1
negative if scoreSWN (rtj) < τ2
neutral if scoreSWN (rtj) ∈ [τ2, τ1]

(20)

Fig. 2. Sentiment classification flowchart

4 Experimental Results

We have implemented all the workflow described in the previous section in the
python programming environment. The confusion matrix, is used to analyze
data and metrics such as precision, recall and F − measure for each class and
the accuracy are used to evaluate the classifiers performances. The confusion
matrix is defined in Table 2. For example, precision, recall and F − measure of
the positive class are defined as follows:

precisionpos =
Tpos

Tpos + Fpos neg + Fpos neu
(21)

recallpos =
Tpos

Tpos + Fneg pos + Fneu pos
(22)

F − measurepos = 2 × precisionpos × recallpos

precisionpos + recallpos
(23)

And the accuracy is:

accuracy =
Tpos + Tneg + Tneu

All tweets
(24)

156 I. Meddeb et al.

Table 2. Confusion matrix

Confusion matrix Predicted class

Positive Negative Neutral

Known class Positive Tpos Fneg pos Fneu pos

Negative Fpos neg Tneg Fneu neg

Neutral Fpos neu Fneg neu Tneu

Relevant tweets from the datasets TWLQ and TWKQ are taken to create a
new dataset D1. Tweets were labeled as positive, negative and neutral and were
used for testing. Some details of D1 are given in Table 3. As, generally, nobody
likes being affected by aircraft noise and shows happy emotions towards airport
noise, we defined a tweet as positive when the user shows a contrary opinion to
negative tweets (e.g. “I live 10 min away from Heathrow. Noise is not disturbing,
there is no air pollution.”) and a tweet as neutral when it does not show a
sentiment toward the topic or does not refer to airport noise (e.g. “Daytime
aircraft noise was defined as that occurring between 0700 and 2300 h, and that
occurring between 2300 and 0700 h was defined as night-time aircraft noise”).
The numbers of positive and neutral tweets in the corpus, as showed in Table 3,
are very small compared to the number of negative tweets (601 negative and 26
for each positive and neutral). Something expected, as most of the people have
negative sentiments toward airport noise.

4.1 Sentiment Classifiers Comparison

We have studied the performance of the proposed classifier (PC) compared to
emoticon classifier (EmC), LP classifier (LPC) and SWNC. We tuned thresholds
to be suited for each classifier and fed tweets from D1 to be classified. We set
wei1 = 0.7 and wei2 = 0.3 so setting Em to have the priority over LP to
classify tweets, when emoticons are present. We also set the weights of words
that have strong subjectivity to 1, weights of words that have weak and unknown
subjectivity to 0.75. The classifiers’ performance is evaluated by calculating their
respective confusion matrix and metrics. The results are given in Table 4 and
show that our classifier outperforms the other classifiers. In fact, EmC has the
worst results, having only 4.90% accuracy. Since this classifier only relies on
emoticons to detect tweets sentiments, it classifies all the tweets that haven’t
emoticons as neutral. Table 3 shows that only 18 tweets in D1 have emoticons and
not all emoticons are recognized as some of them are neutral and others are not
included in emoticon lists PE and NE. So the rest of tweets are automatically
classified neutral which leads to have a big number of Fneu and consequently,
a weak F − measure and accuracy. However, it’s still a good classifier when
emoticons are present in a tweet because it captures negative tweets and shows
a good precision. It misclassifies some of the negative tweets because of irony.

LPC has better results than EmC, with 62.17% accuracy and a good
recall for negative and neutral classes (63.23% and 61.54% respectively) and

Using Twitter Streams for Opinion Mining: A Case Study on Airport Noise 157

Table 3. Statistics of D1

Positive tweets Negative tweets Neutral tweets Total Tweets with emoticons

D1 26 601 26 653 18

less recallpos. Moreover, it has the best F − measure results of positive and
neutral tweets among all the classifiers. However, the difference between the
numbers of negative tweets and the number of positive and neutral tweets has
an effect on the precision of LPC. In fact, the number of the misclassified nega-
tive tweets (i.e. Fpos neg and Fneu neg) is higher than the total number of positive
and neutral ones, leading to have low precision of positive and neutral classes
with 12.50% and 8.89% respectively. The proportions of positive, negative and
neutral tweets in the corpus depend on the topic, so it is part of the problem
and needs to be taken into account. The 155 misclassified negative tweets as
neutral Fneu neg are, principally, due to the missing sentiment words in the lex-
icon lists PW and NE and so, most of these tweets have a score of 0 and are
within the thresholds interval, consequently, they are classified as neutral. On
the other hand, the misclassified negative tweets as positive are due to multiple
reasons but mainly, the use of contrast in score calculation, which it does not
take into account the sentence level in a tweet. SWNC is better than LPC, with
7.20% more accuracy. However, F −measure of positive and negative classes are
lower than those of LPC resulting to low values of precision and recall for each
one of them. This is due to the decrease of Tpos and Tneu tweets. Additionally,
Fneu neg has decreased and Tneg has increased, compared to LPC, which leads
to the increase of recallneg. PC has the best performance with 77.79% accuracy.

Table 4. Experiments and results of EmC, LPC, SWNC and PC on D1

D1 Confusion matrix Metrics

Positive Negative Neutral precision recall F −
measure

accuracy

EmC Thresholds Positive 0 0 26 0% 0% - 4.90%

θ1 = θ2 = 0 Negative 3 6 592 100% 1% 1.98%

Neutral 0 0 26 4.04% 100% 7.76%

LPC Thresholds Positive 10 7 9 12.50% 38.46% 18.86% 62.17%

θ1 = 0.027 Negative 66 380 155 96.69% 63.23% 76.46%

θ2 = −0.001 Neutral 4 6 16 8.89% 61.54% 15.53%

SWNC Thresholds Positive 4 15 7 4.44% 15.38% 6.90% 69.37%

τ1 = 0.015 Negative 79 443 79 95.05% 73.71% 82.64%

τ2 = 0.005 Neutral 7 13 6 6.52% 23.07% 10.17%

PC Thresholds Positive 12 10 4 12.12% 46.15% 19.20% 77.79%

θ1 = 0.01,

θ2 = −0.001

Negative 80 491 30 95.34% 81.70% 87.99%

τ1 = 0.015,

τ2 = 0

Neutral 7 14 5 12.82% 19.23% 15.38%

158 I. Meddeb et al.

It also has a good precision, recall and F − measure compared to the other
classifiers. The architecture of PC enabled us to decrease, significantly, the num-
ber of tweets classified neutral and so the number of Fneu neg. It firstly, uses LP
and Em scores to have a good precision results on positive and negative classes.
Secondly, Fneu is decreased by classifying all the unclassified tweets with SWN
score algorithm which also leads to increase Tneg and Tpos. This method, how-
ever, increases Fpos neg and decreases Tneu with the worst recallneu of 19.23%
but it still keeps a good F − meausrepos and F − measureneu compared to the
other classifiers with 19.20% and 15.38% respectively.

5 Conclusions

This paper presents the workflow for a solution for detecting tweets relevant to
a specific subject and extract their sentiments. Noise around Heathrow airport
is taken as an example to work with. Tweets are retrieved using Twitter API
with two methods: the first with location filter (area around Heathrow airport)
and the second with keywords filter (“Heathrow”, “LHR” and “noise”). Tweets
are then preprocessed using a combination of NLP techniques which is suited for
relevance classification. Relevant tweets towards airport noise are then extracted
from the stream using SVM and a lexicon-based classifier. Relevant tweets are
then preprocessed again using other combination of NLP techniques to be suited,
this time, for sentiment classification. The sentiment classifier uses emoticons,
lexicon polarities with subjective intensity of words, negation effect with dynamic
scope, intensified words and also contrast words and SentiWordNet scores in
a hierarchical way to detect the sentiments of tweets and classify them into
positive, negative or neutral sentiments.

Experimental results showed that the proposed classifier outperforms the
emoticon classifier, the subjective lexicon-based classifier and SWN classifier.
Moreover, it still has a margin for improvement as it captures significant num-
ber of false positive tweets. As perspectives, we suggest to improve the sentiment
classifier by expanding the subjective lexicon. The spelling correction needs also
to be improved by replacing slang words, correcting different types of misspelling.
The polarity inverting feature due to contrast can also be improved by limiting
the effect at the sentence level or only count the polarity of the sentence follow-
ing the contrast word to avoid misclassifications. Sentiment classes can also be
divided into normal, strong or weak sentiments. Grammatical intensifiers (e.g.
very, more, less, extremely, quite) can also be taken into account in further
works. Finally, we plan to apply the same methodology and validate the method
followed on a number of different topics, so as to demonstrate its wider applica-
bility to the problem of exploiting social media data in order to extract people’s
sentiment for a particular topic of interest.

Using Twitter Streams for Opinion Mining: A Case Study on Airport Noise 159

Acknowledgements. This work has been partially supported by the ANIMA project,
which has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 769627. Website: https://anima-
project.eu/.

References

1. Statista. https://www.statista.com/statistics/282087/number-of-monthly-active-
Twitter-users/. Accessed 13 Aug 2018

2. Tumblr. https://www.tumblr.com/. Accessed 13 Aug 2018
3. Twitter. https://Twitter.com/. Accessed 13 Aug 2018
4. Agarwal, A., Xie, B., Vovsha, I., Rambow, O., Passonneau, R.: Sentiment analysis

of twitter data. In: Proceedings of the Workshop on Languages in Social Media,
LSM 2011, pp. 30–38. Association for Computational Linguistics, Stroudsburg
(2011). http://dl.acm.org/citation.cfm?id=2021109.2021114

5. Asghar, M.Z., Khan, A., Ahmad, S., Qasim, M., Khan, I.A.: Lexicon-enhanced
sentiment analysis framework using rule-based classification scheme. PLoS ONE
12(2), 1–22 (2017). https://doi.org/10.1371/journal.pone.0171649

6. Civil Aviation Authority: Heathrow airport 2016 summer noise contours and noise
action plan. Technical report (2017)

7. Barbot, B., Lavandier, C., Cheminée, P.: Linguistic analysis of field surveys carried
out around two French airports. Technical report (2007)

8. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297
(1995)

9. Farooq, U., Mansoor, H., Nongaillard, A., Ouzrout, Y., Qadir, M.A.: Negation
handling in sentiment analysis at sentence level. JCP 12(5), 470–478 (2017)

10. Harry, Z.: The optimality of Naive Bayes. In: Proceedings of Florida Artificial Intel-
ligence Research Society Conference (FLAIRS), pp. 562–567. AAAI Press (2004)

11. Hutto, C.J., Gilbert, E.: VADER: a parsimonious rule-based model for sentiment
analysis of social media text. In: Proceedings of the Eighth International AAAI
Conference on Weblogs and Social Media. The AAAI Press (2014)

12. Jonathon, R.: Using emoticons to reduce dependency in machine learning tech-
niques for sentiment classification. In: ACL the Association for Computer Linguis-
tics, pp. 43–48 (2005)

13. Khan, F.H., Bashir, S., Qamar, U.: TOM: twitter opinion mining framework using
hybrid classification scheme. Decis. Support Syst. 57, 245–257 (2014)

14. Kouloumpis, E., Wilson, T., Moore, J.D.: Twitter sentiment analysis: the good the
bad and the omg! In: Proceedings of the Fifth International AAAI Conference on
Weblogs and Social Media. The AAAI Press, Barcelona (2011)

15. Liu, B., Hu, M., Cheng, J.: Opinion observer: analyzing and comparing opinions
on the web. In: Proceedings of the 14th International World Wide Web conference
(WWW-2005). ACM, Chiba (2005)

16. Loughran, T., McDonald, B.: When is a liability not a liability? Tex-
tual analysis, dictionaries, and 10-ks. J. Finan. 66(1), 35–65 (2011).
https://EconPapers.repec.org/RePEc:bla:jfinan:v:66:y:2011:i:1:p:35-65

17. Pak, A., Paroubek, P.: Twitter as a corpus for sentiment analysis and opinion
mining. In: Proceedings of the seventh International Conference on Language
Resources and Evaluation (LREC 2010), Valetta, Malta (2010). http://www.lrec-
conf.org/proceedings/lrec2010/pdf/385 Paper.pdf

https://anima-project.eu/
https://anima-project.eu/
https://www.statista.com/statistics/282087/number-of-monthly-active-Twitter-users/
https://www.statista.com/statistics/282087/number-of-monthly-active-Twitter-users/
https://www.tumblr.com/
https://Twitter.com/
http://dl.acm.org/citation.cfm?id=2021109.2021114
https://doi.org/10.1371/journal.pone.0171649
https://EconPapers.repec.org/RePEc:bla:jfinan:v:66:y:2011:i:1:p:35-65
http://www.lrec-conf.org/proceedings/lrec2010/pdf/385_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2010/pdf/385_Paper.pdf

160 I. Meddeb et al.

18. Ren, Y., Zhang, Y., Zhang, M., Ji, D.: Context-sensitive twitter sentiment classi-
fication using neural network. In: Proceedings of the Thirtieth AAAI Conference
on Artificial Intelligence. AAAI Press, Phoenix (2016)

19. Theresa, W., Janyce, W., Paul, H.: Recognizing contextual polarity in phrase-
level sentiment analysis. In: Proceedings of HLT-EMNLP-2005, pp. 347–354. The
Association for Computational Linguistics, Vancouver (2005)

20. Yadollahi, A., Shahraki, A.G., Zäıane, O.R.: Current state of text sentiment analy-
sis from opinion to emotion mining. ACM Comput. Surv. 50(2), 25:1–25:33 (2017)

A Platform Development for Multilingual
Law Collection and Comparative-Law

Support Services: ASEAN Laws
as a Case Study

Vee Satayamas1(B), Asanee Kawtrakul1, and Takahiro Yamakoshi2

1 Kasetsart University, Bangkok, Thailand
vee.sa@ku.th, ak@ku.ac.th

2 Nagoya University, Nagoya, Aichi, Japan
yamakoshi@kl.itc.nagoya-u.ac.jp

Abstract. Lawmakers in the ASEAN countries need to investigate
statutes of neighbor countries to draft consistent, uniform, and reason-
able statutes. Moreover, the non-lawyers, who would like to invest or
work oversea, should understand the statutes of the countries under
consideration and compare the regulation requirements before making
decision which country is good for investment or for working. This work
proposes a platform for collecting and comparing laws. It consists of three
modules: the first one is a Web crawling for gathering the statutes from
ASEAN countries’ law archives, the second module is Document prepro-
cessing for extracting the regulations from each statute of each country
and aligning them across the text, and the last module is a service with a
tool for highlighting the relevant parts of text. This paper proposes to use
existing text processing tools, such as, word/word-group segmentation
and document section parsing, to use Wikidata’s ontological concept for
annotating those entities, and then align them across the text. However,
there are two problems of concept selection, i.e. concept ambiguity and
concept granularity. A near-threshold of maximum distance to the least
common ancestor is computed for selecting a proper concept for entity
alignment. This work did an experiment on Malaysia and Thailand’s
labor law to compare the minimum wages. By testing with a several of
thresholds, the threshold value two gives the most proper concept where
the precision and recall of related entities alignment are 48% and 67%,
respectively.

Keywords: Multilingual legal documents collection · Automatic
translation · Concept annotation · Platform for law comparison ·
Ontology-based entity alignment

1 Introduction

Lawmakers in the ASEAN countries need to investigate statutes of neighbor
countries and treaties among the countries to draft consistent, uniform, and
c© Springer Nature Switzerland AG 2020
G. Flouris et al. (Eds.): ISIP 2019, CCIS 1197, pp. 161–174, 2020.
https://doi.org/10.1007/978-3-030-44900-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44900-1_11&domain=pdf
https://doi.org/10.1007/978-3-030-44900-1_11

162 V. Satayamas et al.

reasonable statutes. To do comparative law, the lawmaker should explore and
compare the law of one country to that of another for a better understanding
of the nature of the law in different countries. The key act in comparison is
looking at one mass of legal data in relation to another and then assessing how
the two portions of legal data are similar and how they are different [18]. In
addition, end-users, who are not lawyers such as investors and migrant workers,
need to understand for complying the statues of the countries under consider-
ation and then to compare the regulation requirements before making decision
which country is good for investment or for working. This paper, then, proposes
a framework and a developed platform for statutes collecting from legal websites
of each country in ASEAN and extracting the portions that related to regula-
tions/rules/conditions from each statute and aligning them across the countries
for making comparison.

To accomplish the law comparison task, there are four main problems, i.e.,
law collection problem, not (yet) machine-readable text problem, related entities
alignment problem, and language barrier problem.

– Law collection problem: At the current stage, statutes are gathering through
the legal websites by using web crawlers. Since different websites are imple-
mented with different standard formats, so it causes difficulty in the crawling
process. For example, Thai statutes data are represented with tree compo-
nents for browsing. In contrast, Malaysian statutes data are represented with
list sorted by id [2,4,5,8,9,11,14,15]. Furthermore, some websites, it requires
mimicking humans interacting with the website for browsing the data, espe-
cially the website that constructed by using Java script.

– Not (yet) machine-readable text problem: Since almost all websites provide
statutes data in PDF format, so most of law documents cannot be further
processed for extracting the text portions and aligning those related content
for making comparison.

– Entity alignment problem: In order to compare statutes of one coun-
try to that of another for consideration, the entities in the text portion
should be annotated with concepts for supporting the alignment of related
clauses/rules/conditions in the statute. This work utilizes the ontology from
Wikidata as a concept for annotating the entities. However, there are still two
sub problems of proper concept selection. For example, Phuket, a name entity
of a province in Thailand, has three possible concepts, hereafter called con-
cept ambiguity, i.e., a province, a city, an island, a film, visual art, or creative
work. Moreover, Phuket can be labeled whether with more specific concept
ancestor or more generic concept ancestor, hereafter called concept granu-
larity, i.e., a province, administrative territorial entity, a human-geographic
territorial entity, an artificial entity, or an entity which is the root of concepts,
respectively.

Platform Development for Multilingual Comparative-Law Services 163

– Language barrier problem: Many statutes of Indonesia [5], Laos [14], Vietnam
[12], and Thailand [4] are not translated into English. Thus, they cannot
be compared directly. Even, there is a law database that was designed for
keeping statutes of all ASEAN countries [1], the number of available statutes
in English is very few.

In order to solve the problems mentioned above, this work proposes a frame-
work and developed a platform for providing a service for both lawmakers and
non-lawyers who would like to review/study/understand the difference of rules
in the statutes. It consists of three modules, i.e.,

– The first module is a Web crawling for gathering the statues from ASEAN
countries’ law archives. The virtual human-interaction is also implemented to
download statutes.

– The second module is Document preprocessing which consists of 7 submod-
ules, starting with converting not (yet) machine-readable content in PDF
format by using Google’s Optical Character Recognition API [10] and con-
verting HTML format to be plain text by using Nokogiri [7]. The rest of
submodules also utilizes the existing tools for parsing, extracting the reg-
ulations/rules/conditions from the parsed text and then aligning the pairs
of related entities by using ontology from Wikidata for further translation
processing and then providing the service in making comparison. The most
challenges in document processing is that: many ASEAN languages still do
not have an accurate part-of-speech tagger or an accurate syntactic parser
for words or phrases segmentation and text translation. In addition, there are
several candidate concepts for annotating the entities before making compar-
isons.

– The last module is to provide a service with a tool for highlighting the parts
of text that the end users would like to pay attention to.

The remainder of this paper is organized as follows. Section 2 describes a
platform for multilingual law collection and comparative-law support services.
Section 3 describes the implementation and results. The conclusion and future
direction is given in the last section.

2 A Platform Design for Multilingual Law Collection
and Comparative-Law Support Services

The designed platform consists of three modules, as shown in Fig. 1: (1) web
crawling, (2) document preprocessing, and (3) comparative law support services
providing, which are described in Sects. 2.1, 2.2, and 2.3, respectively.

164 V. Satayamas et al.

Ci stands for Countryi

C j stands for Country j
law archiveCi law archiveC j

Web crawlingCi Web crawlingCi

StatutesCi and statutesC j

in PDF or HTML

User selects a pair of statutes

Preprocessing

PDF HTML-to-text converting

Document section parsing

Filtering out unneces-
sary parts of document

Word segmentation

Ontology concept annotating

Aligning related entities

Translating from local
to common language

Structured and an-
notated text statutes

Comparing statuteCi and statuteC j

for providing the service

Lawmaker End user

Fig. 1. A platform for multilingual law collection and comparative-law support services

Platform Development for Multilingual Comparative-Law Services 165

2.1 Web Crawler for Harvesting Statutes

This paper reported the survey result of ASEAN countries’ legislative informa-
tion. Table 1 shows the list of surveyed websites of 10 countries, namely Brunei,
Cambodia, Indonesia, Myanmar, Laos, Malaysia, the Philippines, Singapore,
Thailand, and Vietnam. There are no online source of Cambodia and Myan-
mar. For the rest of websites, including Thailand and Malaysia, statutes can be
downloaded manually.

Table 1. Online law archives survey

Country Url Status

Brunei http://www.agc.gov.bn Downloadable

Cambodia Unknown N/A

Indonesia https://www.greengazette.id Downloadable

Myanmar Unknown N/A

Laos http://www.na.gov.la/ Available (Under construction)

Malaysia http://www.agc.gov.my Downloadable

The Philippines https://www.officialgazette.gov.ph Downloadable

Singapore https://sso.agc.gov.sg/ Downloadable

Vietnam http://vietnamlawmagazine.vn Available (Subscription is needed)

Thailand http://www.mratchakitcha.soc.go.th Downloadable

http://www.krisdika.go.th/ Downloadable

In order to collect the statues, automatically, from those accessible websites
mentioned in Table 1, a web crawler has been developed. However, the task of
statutes collection is not easy, since different websites are implemented with dif-
ferent user-interface design, i.e., JavaScript-based tree user interface, JavaScript-
based list user interface, and HTML-based list user interface. Accordingly, the
specific web crawler is needed for mimicking human interaction to those user
interfaces through a script that controls Firefox [22] via SlimerJS [17]. The devel-
oped web crawler also run periodically for obtaining new and updated statutes.

2.2 Document Preprocessing

To use the platform, an end-user has to select a pair of statutes/announcements
as inputs. Then, the system will execute the following seven steps: (1) converting
PDF/HTML to text, (2) parsing the whole text to subsections, (3) filtering
out unnecessary parts such as the introduction part, (4) word segmenting for
concept labeling, (5) annotating by using ontological concepts from Wikidata,
(6) aligning related entities across text through the annotated concepts, and (7)
translating local languages to ASEAN common language, i.e., English.

http://www.agc.gov.bn
https://www.greengazette.id
http://www.na.gov.la/
http://www.agc.gov.my
https://www.officialgazette.gov.ph
https://sso.agc.gov.sg/
http://vietnamlawmagazine.vn
http://www.mratchakitcha.soc.go.th
http://www.krisdika.go.th/

166 V. Satayamas et al.

Algorithm 1. Statute preprocessing
DATABASE SERVICE: Wikidata

INPUT: A pair of statutes (in PDF or HTML)

OUTPUT: A pair of translated statutes with aligned entities

STEP 1 Converting PDF/HTML

statutes_step1 = convert_html_pdf(a pair of statutes)

STEP 2 Parsing document sections

statutes_step2 = parse_doc_sections(statutes_step1)

STEP 3 Filtering parts of a statute

statutes_step3 = filter_document_parts(statutes_step2)

STEP 4 Word segmentation

statutes_step4 = segment_words(statutes_step3)

STEP 5 Ontology concept annotating

statutes_step5 = ontology_concept_annotate(statutes_step4, wikidata)

STEP 6 Aligning related entities based on ontology concepts

statutes_step6 = align_entities(statutes_step5)

STEP 7 Translating local languages to ASEAN common language

statutes_step7 = translate(statutes_step6)

Algorithm 1 mentioned above runs the following steps (1 to 4) by using the
existing tools:

– Use Google’s Optical Character Recognition API [10] to convert statutes in
PDF format to be plain text format,

– Use Nokogiri [7] to convert statutes in HTML format to be plain text format,
– Use clue words, for parsing the whole text to subsections, for examples,

“ ” (in Thai)/“Section” (in English), “ ” (in Thai)/Aricle/Section

(in English), and “ ” (in Thai) /“Orderd at” (in English),
– Use spaCy [3] for English word segmentation and English lemmatization,
– Use Chamkho [13] for Thai word segmentation,

The challenges of this work is how to select the proper concepts from Wikidata
for concept labeling to those segmented words or word groups (hereafter called
“entities”), which are the output from step 4. Two sub-tasks are needed for
annotating the concepts to the entities, i.e., generating candidate entities, and
querying ontology concepts.

In order to use “minimum wage” as a concept, while “Minimum Wages” is
used in an announcement/statute, a candidate set of entities should be generated
as Minimum, Wages, minimum, wage, Minimum Wages, and minimum wage.

Platform Development for Multilingual Comparative-Law Services 167

Algorithm 2. Generating cadidate entities
INPUT: words, language

OUTPUT: entities

entities = []

for w in words:

entities.append(w)

if language == :ENGLISH

for word-bi-gram in generate-bigrams(words):

entities.append(word-bi-gram)

lemmas = [find-lemma(w, language) for w in words]

for lemma-bi-gram in generate-bigrams(lemmas):

entities.append(lemma-bi-gram)

return entities

In order to obtain Wikidata concepts for annotating every entity in the
announcement, the system will generate SPARQL [19] statements by using Algo-
rithm 3 for querying the related concepts from the library, called Mundaneum [6].

Algorithm 3. Wikidata query
(template [:select ?e

:where [:union [[[?e skos:altLabel ˜w@˜lang]]

[[?e rdfs:label ˜w@˜lang]]

:limit 10])))

The generated SPARQL statements for querying the concept of “Minimum
Wages” are shown as the follows:

SELECT ?e WHERE { { ?e rdfs:label "Minimum Wages"@en. }

UNION { ?e skos:altLabel "Minimum Wage"@en } }

SELECT ?e WHERE { { ?e rdfs:label "minimum wage"@en. }

UNION { ?e skos:altLabel "minimum wage"@en } }

By submitting the above queries to the Wikidata SPARQL service, wd:P6794
and wd:Q186228 will be returned. Where wd:P6794 is a property that can
be used for retrieving a pair of values such as Germany and 9.35 EUR, and
wd:Q186228 is an item that can be used for retrieving its properties and related
values such as “subclass of”, and “minimum wage in Quebec”, as shown in Fig. 2.

168 V. Satayamas et al.

Fig. 2. “Minimum wage” property and “minimum wage” item in their context

In step 6, both wd:P6794 and wd:Q186228 will be used as annotated con-
cepts for “Minimum Wages” written in the announcement. Table 2 shows the
other examples of querying concepts from Wikidata for two entities, i.e.,
(Rayong: a name of a province in Thailand), and “Sarawak” (a name of a state
in Malaysia).

Table 2. Wikidata concepts for Rayong and Sarawak

Entity Concepts

(Rayong) Q335221 Rayong (a province)

Sarawak Q170462 Sarawak (a state of Malaysia)

Q1658411 Sarawak (a kingdom on northern Borneo)

In order to align the related entities across the selected statutes, Algo-
rithm 4 was applied. Figure 3 shows the partial results of running the function
find ancestors to retrieve ancestors of all concepts in Table 2. For example, the
ancestors of Q1658411 (Sarawak: a kingdom) are Q417175 (kingdom), Q1250464
(realm), Q7275 (state), Q43229 (organization), Q24229398 (agent), and Q35120
(entity).

However, to align related entities across statutes by using ancestor concepts
still has two problems, namely, concept ambiguity and concept granularity. In
case of annotating “Sarawak”, there are two possible concepts. One is Q170462
(Sarawak: a state). Another one is Q1658411 (Sarawak: a kingdom). But the
proper one is Q170462. Regarding to concept granularity, if too general concepts,
e.g., Q35120 (entity), were used, all entities would be determined to be related
each other. If too specific concepts, e.g., Q335221 (Rayong), Q170462 (Sarawak:
a state), and Q1658411 (Sarawak: a kingdom) would be used instead, no entity
was related. To solve both concept ambiguity and concept granularity, the least
common ancestor of each annotated concept pair should be retrieved by using
the function least common ancestor. Two entities will be aligned if the maximum
distance of least common ancestor between their annotated concepts is not more
than the preferred threshold. As written in Algorithm 4, if distance(lca, concept0)
<= THRESHOLD, and distance(lca, concept1) <= THRESHOLD is true, then
the entity pairs will be selected.

Platform Development for Multilingual Comparative-Law Services 169

Fig. 3. Partial ancestors of Q335221 (Rayong), Q170462 (Sarawak: a state), and
Q1658411 (Sarawak: a kingdom)

Algorithm 4. Aligning entities
INPUT: statute0, statute1, wikidata_ancestors_db

OUTPUT: related_entities

for entity0, concept0 in statute0:

for entity1, concept1 in statute1:

ancestors0 = find_ancestors(concept0, ancestor_db)

ancestors1 = find_ancestors(concept1, ancestor_db)

lca = least_common_ancestor(concept0, concept1, ancestor0, ancestor1)

if distance(lca, concept0) <= THRESHOLD and \

distance(lca, concept1) <= THRESHOLD:

related_entities.append([entity0, entity1])

In step 7, main sections of statutes would be translated from local languages
to ASEAN common language, i.e., English, by using Google Translate, and Moses
SMT [21]. We trained Moses SMT by using 5,726 Thai-English pairs from Thai
law website [4], 2,881,915 Thai-English text unit pairs from Open Subtitle [23],
and 77 Thai-English text unit pairs from GNOME L10N corpus [23].

2.3 Comparative Law Support Service

The output of translated statutes with related entities alignment will be high-
lighted by the system. However, there will be too many highlighted entity pairs.
Therefore, we provide a tool for pruning unnecessary concepts by the end-users.
More details explain in Sect. 3.3.

170 V. Satayamas et al.

3 Implementation and Results

In order to prove the proposed framework and evaluate the platform, Malaysia
and Thailand’s labor law and its announcement are used as a case study.

3.1 Web Crawling Results

In order to gather the statutes/announcements from the Office of the Coun-
cil of the State (Krisdika) website [4], the web crawler is developed to mim-
ick a click for retrieving statutes through a tree-liked user interface. Con-
sequently, all statutes and announcements listed on the website can be col-
lected, i.e. 7,402 Thai statutes/announcements in HTML format, English trans-
lation of 129 Thai statutes/announcements in HTML format, and 423 Thai
statutes/announcements in PDF format.

3.2 The Result of Document Preprocessing

The result of the document preprocessing on Malaysia and Thai minimum wage
announcements preprocessing results are as follows. Google Cloud OCR can
convert PDF into plain text without errors. Parsing text to document sections
can decompose the Thai announcement to the introduction section, main section,
and the ending section. Introduction section and ending sections are correctly
filtered out. Thai and English word segmentations have no error. The system uses
segmented words, word’s lemma, and bigrams of words and lemma, for generating
candidate entities. Ontological concepts are used for annotating every related
entity such as Sarawak annotated with Q170462 (Sarawak: a Malaysian state),
and (Rayong) annotated with Q335221 (Rayong: a province in Thailand).
In order to align related entities with the proper concepts, we conducted an
experiment using different threshold’s values, i.e., 1, 2, and 3. By testing with a
several of threshold values, as shown in Table 3, using the maximum distance to
the least common ancestor value 2, the alignment between related entities yields
a balanced result, i.e., 48% precision and 67% recall.

Table 3. Comparing entities alignment by varying maximum acceptable distance from
the least common ancestor

Threshold Precision Recall

1 60% 33%

2 48% 67%

3 27% 72%

Platform Development for Multilingual Comparative-Law Services 171

Table 4. The results of correctly extracted pairs of related entities using threshold
value 2

Entity from Entity from Least common ancestor

Malaysian announcement Thai announcement

RM)yenom:drowdetalsnarT(Q1368 (money)

Sabah ,irubnohC(Q10864048 (1st-level

a province name) administrative

country subdivision)

Sabah ,tekuhP(Q10864048 (1st-level

a province name) administrative

country subdivision)

...

Table 4 shows the examples of correctly extracted pair of entities when the
threshold value 2 is used. Table 5 shows the cause of low precision even using
threshold value 2. For example, Minimum in the wage/salary context should
be annotated with lower bound concept, but Minimum is mistakenly annotated
with “painting” concept. While (Phuket) in this wage context should be

annotated with province concept. However, (Phuket) is mistakenly anno-
tated as a film. Since “film” and “painting” concepts have a common ancestor
as “visual art”, consequently, Minimum and (Phuket) are inappropriately
aligned. In order to solve concept ambiguity problem, those concepts, which are
not related to the topic, such as a film, should be removed.

Table 6 shows the examples of entity pairs that should be aligned, but they
were not because the maximum distance to the least common ancestor is 3
instead of 2. For example, Peninsular Malaysia and (Chonburi) are not
aligned, even the common concept is administrative territorial entity. Those
unaligned concepts caused the low recall when using threshold value 2, i.e, 67%
shown in Table 3. In the future, multi valued Threshold might be applied for
some groups of entities.

To show the comparison in ASEAN common language, Thai statutes are
translated into English by using Google Translate and Moses SMT. The Moses
SMT was trained by aligned law documents from two open corpora, i.e., GNOME
parallel corpus [23], and Open Subtitle parallel corpus [23]. Google Translate can
translate 16 words of 16 words correctly, while Moses SMT failed to translate 11
words of 16 words. Therefore, Google Translate is preferred to Moses SMT for
integrating with our system.

172 V. Satayamas et al.

Table 5. The examples of incorrectly aligned pairs of entities due to concept ambiguity

Entity from Entity from Least common ancestor

Malaysian announcement Thai announcement

800 fonoitaretilsnarT(one, Q21199 (natural number)

or translated word: day)

900 fonoitaretilsnarT(one, Q21199 (natural number)

or translated word: day)

Federal)emanecnivorpa,tekuhP(Q11424 (film)

Minimum (Translated word: THB) Q17537576 (creative work)

Minimum)emanecnivorpa,tekuhP(Q4502142 (visual art)

RM)ecnivorP:drowdetalsnarT(Q24017414 (first-order

metaclass)

RM)emanecnivorpa,tekuhP(Q2431196 (audiovisual work)

Phuket)

and fonoitaretilsnarT(one, Q82042 (word class)

or translated word: day)

area fonoitaretilsnarT(one, Q151885 (concept)

or translated word: day)

area Q18616576 (Wikidata property)

3.3 Comparative-Law Support Services

To provide a service for the end users, both lawmakers and non-lawyer, the
system will highlight the related entities with different colors. However, there
are too many highlighted entity pairs that are aligned. Therefore, the developed
platform provides a tool for the end users to prune the uninteresting pairs.

Table 6. The examples of unaligned pairs due to maximum distance of least common
ancestor is 3

Entity from Entity from Least common ancestor

Malaysian announcement Thai announcement

Peninsular Malaysia)ecnivorP:drowdetalsnarT(Q56061 (administrative

territorial entity)

Peninsular Malaysia)irubnohC:ecivorpfoytitneemaN(Q56061 (administrative

territorial entity)

Peninsular Malaysia)tekuhP:ecivorpfoytitneemaN(Q56061 (administrative

territorial entity)

Peninsular Malaysia (Name entity of provice: Rayong) Q56061 (administrative

territorial entity)

Platform Development for Multilingual Comparative-Law Services 173

Figure 4 shows the highlights when a user selects only three concepts that they
would like to pay attention for discussing or for considering the parts that they
concern.

Fig. 4. Law comparison service with a tool for highlighting the interesting pairs

4 Conclusion

The most challenge of this work is how to align the regulations across the statutes
of ASEAN countries which almost are written in local language while there are
poor resources for text processing, such as good text parsers and embedded text
translation. Therefore, we study the feasibility of using the simplified tools for
text processing, and annotating ontological concepts of Wikidata. To conduct
the experiment, Malaysia and Thailand’s labor law and its announcements are
selected. With the developed platform, the web crawler that could mimick human
interaction can collect all statutes available on the Office of the Council of the
State (Krisadika). Document preprocessing can work effectively in extracting the
regulations/rules/conditions from statutes among the interesting countries and
in aligning them across the text for making comparison. In order to solve the two
sub-problems, i.e., concept granularity and concept ambiguity, during aligning
related entities, a near-threshold of maximum distance to the least common
ancestor is computed for selecting a proper concept for entity alignment. For
this work, we use the threshold value 2, which gave the precision and recall of
related entity alignment, 48%, and 67%, respectively.

In the future, we plan to enhance the performance of web crawling by driv-
ing and promoting to use a linked data format, such as JSON-LD, RDF as a
standard, for their law archive websites. To improve alignment, we will further
study to find another technique such as word sense disambiguation using word
embeddings [16,20].

174 V. Satayamas et al.

References

1. ASEAN Legal Database (2019). http://asean-law.senate.go.th. Accessed 29 Mar
2019

2. Attorney General’s Chambers (2019). http://www.agc.gov.bn/AGCSitePages/
INDEXTOTHELAWSOFBRUNEI.aspx. Accessed 29 Mar 2019

3. Industrial-Strength Natural Language Processing (2019). https://spacy.io/.
Accessed 29 Mar 2019

4. Krisdika (2019). http://www.krisdika.go.th/. Accessed 29 Mar 2019
5. Lembaran Negara (2019). http://ditjenpp.kemenkumham.go.id/kerja/lnnew.php.

Accessed 10 July 2019
6. Mundaneum (2019). https://github.com/jackrusher/mundaneum. Accessed 22

Sept 2019
7. Nokogiri (2019). https://nokogiri.org/. Accessed 29 Mar 2019
8. Official Gazette (2019). http://vietnamlawmagazine.vn/gazette.html. Accessed 29

Mar 2019
9. Official Portal Attorney General’s Chambers of Malaysia (2019). http://www.agc.

gov.my/agcportal. Accessed 29 Mar 2019
10. Optical Character Recognition (OCR): Tutorial—cloud functions document—

Google cloud (2019). https://cloud.google.com/functions/docs/tutorials/ocr.
Accessed 29 Mar 2019

11. Singapore statutes online (2019). https://sso.agc.gov.sg/. Accessed 29 Mar 2019
12. Socialist Republic of Vietname Government Portal (2019). http://congbao.

chinhphu.vn/cong-bao-nam-2019. Accessed 28 Sept 2019
13. Thai word segmentation library in Rust (2019). https://github.com/veer66/

chamkho. Accessed 29 Mar 2019
14. The national assembly of the Lao people’s democratic republic (2019). http://

www.na.gov.la/. Accessed 29 Mar 2019
15. The official Gazette of the Republic of the Philipines (2019). https://www.

officialgazette.gov.ph. Accessed 29 Mar 2019
16. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with

subword information. Trans. Assoc. Comput. Linguist. 5, 135–146 (2017)
17. Dev, S.: Slimerjs (2019). https://slimerjs.org/. Accessed 12 July 2019
18. Eberle, E.J.: The method and role of comparative law. Wash. Univ. Glob. Stud.

Law Rev. 8, 451 (2009)
19. Harris, S., Seaborne, A., Prud’hommeaux, E.: SPARQL 1.1 query language. W3C

recommendation (2013). Accessed 23 Sept 2019
20. Iacobacci, I., Pilehvar, M.T., Navigli, R.: Embeddings for word sense disambigua-

tion: an evaluation study. In: Proceedings of the 54th Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 1: Long Papers), pp. 897–907 (2016)

21. Koehn, P., et al.: Moses: open source toolkit for statistical machine translation.
In: Proceedings of the 45th Annual Meeting of the Association for Computational
Linguistics Companion Volume Proceedings of the Demo and Poster Sessions, pp.
177–180 (2007)

22. Mozilla: Mozilla Firefox (2019). https://www.mozilla.org/th/. Accessed 12 July
2019

23. Tiedemann, J.: Parallel data, tools and interfaces in OPUS. In: LREC, vol. 2012,
pp. 2214–2218 (2012)

http://asean-law.senate.go.th
http://www.agc.gov.bn/AGC Site Pages/INDEX TO THE LAWS OF BRUNEI.aspx
http://www.agc.gov.bn/AGC Site Pages/INDEX TO THE LAWS OF BRUNEI.aspx
https://spacy.io/
http://www.krisdika.go.th/
http://ditjenpp.kemenkumham.go.id/kerja/lnnew.php
https://github.com/jackrusher/mundaneum
https://nokogiri.org/
http://vietnamlawmagazine.vn/gazette.html
http://www.agc.gov.my/agcportal
http://www.agc.gov.my/agcportal
https://cloud.google.com/functions/docs/tutorials/ocr
https://sso.agc.gov.sg/
http://congbao.chinhphu.vn/cong-bao-nam-2019
http://congbao.chinhphu.vn/cong-bao-nam-2019
https://github.com/veer66/chamkho
https://github.com/veer66/chamkho
http://www.na.gov.la/
http://www.na.gov.la/
https://www.officialgazette.gov.ph
https://www.officialgazette.gov.ph
https://slimerjs.org/
https://www.mozilla.org/th/

Author Index

Alexiou, Giorgos 117

Constantopoulos, Panos 18

Dimitrakis, Eleftherios 3

Gong, Jin 133

Kawtrakul, Asanee 161
Kondylakis, Haridimos 53
Kotzinos, Dimitris 145

Laurent, Dominique 101
Lavandier, Catherine 145

Meddeb, Iheb 145
Mountantonakis, Michalis 3

Palpanas, Themis 68
Papadaki, Maria-Evangelia 37
Papastefanatos, George 117
Pertsas, Vayianos 18
Plexousakis, Dimitris 53

Satayamas, Vee 161
Sgontzos, Konstantinos 3
Spyratos, Nicolas 37, 53
Stefanidis, Kostas 133

Tanaka, Yuzuru 87
Tzitzikas, Yannis 3, 37

Yamakoshi, Takahiro 161
Ye, Yizhou 133

Zervoudakis, Petros 53

	Preface
	Historical Note

	Organization
	Contents
	Linked Data
	Enabling Efficient Question Answering over Hundreds of Linked Datasets
	1 Introduction
	2 Related Work
	3 The LODQA Approach
	3.1 LODsyndesis Knowledge Services
	3.2 The Process of LODQA

	4 Evaluation
	4.1 Evaluation Collection
	4.2 Entities Detection Evaluation
	4.3 Answer Extraction Evaluation
	4.4 Efficiency
	4.5 The Benefits of Using Multiple Datasets

	5 Web Demo and Related Links
	6 Conclusion
	References

	From Publications to Knowledge Graphs
	1 Introduction
	2 Related Work
	3 Conceptual Framework: The Scholarly Ontology
	4 Knowledge Base Creation Process
	5 Extracting Entities and Relations
	5.1 Rule-Based Extraction
	5.2 Extraction by Machine Learning Methods

	6 Evaluation
	7 Conclusion
	References

	Data Analytics
	Analytics over RDF Graphs
	1 Introduction
	2 Requirements and Related Work
	2.1 Requirements
	2.2 Related Work

	3 Background
	3.1 Resource Description Framework (RDF) and Linked Data
	3.2 HIFUN - A High Level Functional Query Language for Big Data Analytics

	4 Using HIFUN as an Interface to RDF Dataset
	4.1 Motivation
	4.2 Applicability of HIFUN
	4.3 How to Specify the Context of Analysis

	5 Translation of HIFUN Queries to SPARQL
	6 Application and Implementation
	6.1 Defining an Analysis Context over RDF Data
	6.2 Implementation Issues

	7 Concluding Remarks
	References

	Incremental Evaluation of Continuous Analytic Queries in HIFUN
	1 Introduction
	2 The Query Language Model
	3 Incremental Computation
	4 System Implementation
	4.1 Micro-batch Stream Processing
	4.2 Continuous HIFUN Query to MapReduce
	4.3 Conceptual Schema to MapReduce
	4.4 Translating Continuous HIFUN Queries to SQL

	5 Experimental Results
	6 Conclusions and Future Work
	References

	Evolution of a Data Series Index
	1 Introduction
	2 Background and Preliminaries
	3 The iSAX Family of Indexes
	3.1 The iSAX Summarization and Basic Index
	3.2 Bulk-Loading: iSAX 2.0 and iSAX2+
	3.3 Adaptive Indexing: ADS, ADS+, ADS-Full
	3.4 Parallel and Distributed: ParIS, ParIS+, MESSI, DPiSAX
	3.5 Variable-Length: ULISSE
	3.6 Sortable Summarizations: Coconut-Trie/Tree/LSM

	4 Discussion and Open Research Directions
	5 Conclusions
	References

	Data Integration
	Proximity-Based Federation of Smart Objects: Its Application Framework for Complex Secure Federation Scenarios
	1 Introduction
	2 Formal Modeling of Smart Objects
	2.1 Smart Objects and Their Port Matching [3, 5]
	2.2 Graph Rewriting System
	2.3 Smart Objects and Their Port Matching [3, 5]

	3 Implementing Any Binary Autocatalytic-Reaction Network with Graph Rewriting Rules
	4 A Framework-Level Solution to the Secure Federation
	5 Concluding Remarks
	References

	4-Valued Semantics Under the OWA: A Deductive Database Approach
	1 Introduction
	2 Background: Four-Valued Logics and Database Context
	2.1 Basics on Four-Valued Logics
	2.2 Four-Valued Logics in the Database Context

	3 Database and Database Semantics
	4 Application to Data Integration
	4.1 The Generic Scenario
	4.2 The Case of Nixon Diamond
	4.3 The Trial Example of ch7LoyerSS04

	5 Conclusion
	A Proof of Lemma1
	B Proof of Proposition1
	C Proof of Proposition2
	References

	Query Driven Entity Resolution in Data Lakes
	1 Introduction
	2 Basic Concepts
	2.1 Evaluation Measures

	3 Query Driven ER Approach
	4 Experimental Evaluation
	4.1 Experimental Results

	5 Related Work
	6 Conclusions and Future Work
	References

	Data Mining Applications
	A Hybrid Recommender System for Steam Games
	1 Introduction
	2 Related Work
	2.1 Recommender System of Steam
	2.2 Other Works on Recommender Systems

	3 The Dataset
	4 The Method
	5 Experiments
	6 Conclusion
	References

	Using Twitter Streams for Opinion Mining: A Case Study on Airport Noise
	1 Introduction
	2 State of the Art
	2.1 Machine Learning Approaches for Sentiment Classification
	2.2 Lexicon-Based Approaches for Sentiment Analysis
	2.3 Hybrid Classification Models

	3 Workflow for Extracting Sentiments from Tweets
	3.1 Gathering Data: Twitter API
	3.2 Preprocessing Tweets (NLP)
	3.3 Relevance Classification
	3.4 Sentiment Analysis of Relevant Tweets

	4 Experimental Results
	4.1 Sentiment Classifiers Comparison

	5 Conclusions
	References

	A Platform Development for Multilingual Law Collection and Comparative-Law Support Services: ASEAN Laws as a Case Study
	1 Introduction
	2 A Platform Design for Multilingual Law Collection and Comparative-Law Support Services
	2.1 Web Crawler for Harvesting Statutes
	2.2 Document Preprocessing
	2.3 Comparative Law Support Service

	3 Implementation and Results
	3.1 Web Crawling Results
	3.2 The Result of Document Preprocessing
	3.3 Comparative-Law Support Services

	4 Conclusion
	References

	Author Index

