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Key Points
• Advanced glycation end products (AGEs) can be produced endogenously or obtained exog-

enously from the diet.
• AGEs have been associated with kidney damage and, thus, progression of chronic kidney 

disease.
• Cooking methods where high heat and low moisture are used increase the formation of 

AGEs.
• Interventions with a low dietary AGE have been shown to reduce circulating AGEs and 

markers of oxidative stress and inflammation.
• Diets low in AGEs should be recommended for patients at high risk of CKD.
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 Introduction

Advanced glycation end products (AGEs) play a major role in diabetic vascular complications, such 
as chronic kidney disease (CKD), by activating pro-oxidant and pro-inflammatory responses [1, 2]. 
Although traditionally AGEs have been associated with uncontrolled hyperglycemia of diabetes mel-
litus, there is increasing evidence that exogenous AGEs from diet have an important contribution to 
these processes [3, 4]. The reduction of dietary AGE intake has been demonstrated to prevent or 
diminish pro-oxidant and pro-inflammatory responses in several clinical trials [5–10]. These trials 
have also demonstrated that dietary AGE restriction is simple, feasible, and safe to apply clinically, 
even in CKD patients. In this chapter, we will summarize the current data on the use of this interven-
tion in clinical practice with particular emphasis on CKD patients.
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 What Are Advanced Glycation End Products (AGEs) and How Do They 
Cause Disease?

AGEs are a very large and heterogeneous group of compounds originating from the spontaneous reac-
tion of reducing sugars with free amino groups in amino acids in the so-called Maillard or browning 
reaction. Although a lot of attention has been devoted to this reaction, we currently know that AGEs 
can be formed through many other reactions, such as oxidation of sugars, lipids, and amino acids that 
creates reactive aldehydes that in turn form AGEs. Carboxymethyllysine (CML), carboxyethyllysine 
(CEL), methylglyoxal-derivatives (MG), and pentosidine are some commonly measured and well- 
described AGEs in biological studies.

AGEs form continuously in the body through a variety of spontaneous reactions, which are mark-
edly increased in conditions of hyperglycemia or elevated oxidative stress, such as in CKD; these are 
the endogenous AGEs. Of note, however, AGEs can also form outside of the body in any system as 
long as the required reagents are available. For example, we know they form spontaneously in food, 
especially when processed and cooked with heat; these are the exogenous AGEs [11, 12]. In a fraction 
of ingested food, AGEs will get absorbed and incorporated into the body AGE pool, where they are 
indistinguishable from their endogenous counterparts, both in structure and function [13].

AGEs, endogenous or exogenous, lead to tissue injury by at least two mechanisms: (1) by causing protein 
cross-linking, inducing direct modifications of protein structure and, therefore, function and (2) by activating 
pro-inflammatory and pro-oxidative cellular signaling pathways through receptor- and non-receptor-mediated 
mechanisms. For example, direct cross-linking of collagen may be responsible for arterial wall stiffness, and 
glycation of specific amino acids in a protein molecule could affect the binding of this protein to receptors.

AGE binding to the receptor of AGEs (RAGE) or Toll-like receptors (TLRs) 2 and 4 initiates intra-
cellular signaling that leads to the activation of several pro-inflammatory and pro-oxidative stress 
responses [14]. In contrast, AGE binding and activation of the AGE receptor 1 (AGER1) initiate AGE 
breakdown and diminish the RAGE-mediated activation of nuclear factor-kappa B (NF-κB) [15].

Increased oxidative stress and inflammation are the underlying mechanisms of many chronic diseases, 
including diabetes, cardiovascular disease, and CKD. The kidneys are the major players in maintaining 
AGE homeostasis. AGE peptides undergo filtration followed by partial tubular reabsorption and possibly 
also secretion after tubular uptake from the peritubular blood flow [16]. AGEs undergo variable degrees 
of catabolism within the renal tubules. Not surprisingly, an elevation of AGEs is characteristic of any 
reduction in kidney function [17] and may play a role in facilitating the progression of any underlying 
kidney condition. Circulating AGE levels are markedly increased in CKD of any etiology, before and after 
the initiation of dialysis [1, 18]. This increase of AGEs in CKD may play a role in the high prevalence of 
endothelial dysfunction and subsequent cardiovascular disease in this population [19].

Conventional hemodialysis (HD) of three times a week for 4 hours each is not very effective at 
removing AGEs [18], while short daily dialysis, hemodiafiltration, and hemofiltration have been 
shown to be more effective [20, 21]. At least in one study, hemodiafiltration significantly lowered 
serum AGE levels as compared to high-flux HD by the end of the treatment period [22]. Circulating 
AGE levels are also increased in peritoneal dialysis (PD) patients, but lower than in HD patients, and 
the amount seems to vary depending on the type of PD solution [18, 23, 24]. Importantly, circulating 
AGE levels fall significantly following a successful kidney transplantation [25].

 Evidence Linking AGEs and Kidney Disease

 In Vitro Studies

AGEs, through their cross-link of proteins in the kidney extracellular matrix, lead to many abnormali-
ties: altered matrix protein structure and function, aberrant cell-matrix interactions that change cel-
lular adhesion, altered cell growth, and loss of the epithelial phenotype [26, 27].
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In vitro  incubation of AGEs with every cell type within the kidneys has been shown to initiate 
potential mechanisms of cell injury [28]. For example, binding of AGEs to mesangial cells increases 
production of matrix proteins while decreasing expression of major metalloproteinases that normally 
would degrade matrix proteins [29]. Incubation of human glomerular endothelial cells with AGEs 
increases expression of vascular endothelial growth factor that attracts inflammatory cells [30]. RAGE 
activation changes the endothelium surface from an anticoagulant to a procoagulant state by reducing 
thrombomodulin activity and increasing tissue factor expression [31]. AGEs also affect podocytes 
inducing podocyte apoptosis and reducing expression of nephrin [32], providing a direct link between 
AGEs and kidney damage.

 Animal Studies

There is strong experimental animal data supporting a role for AGEs causing kidney damage in 
vivo. A classic study showed that intraperitoneal administration of AGEs for 4 weeks into mice 
induced a marked increase in glomerular extracellular matrix α1(IV) collagen, laminin β1, and 
transforming growth factor β (TGFβ) [33]. Moreover, these changes diminished with the coadmin-
istration of aminoguanidine, a known AGE inhibitor [33]. In another study, long-term administra-
tion of intravenous AGE-albumin to normal rats induced albuminuria and morphologic changes of 
diabetic nephropathy, including glomerular hypertrophy, mesangial matrix expansion, and base-
ment membrane thickening [34]. Overexpression of RAGE in diabetic mice increased the signs of 
kidney disease, while blockade of RAGE by a soluble truncated form of RAGE prevented struc-
tural and functional characteristics of nephropathy in db/db mice [35, 36]. Anti-AGE strategies, 
such as the administration of aminoguanidine, benfotiamine, pyridoxamine, OPB-9195, and AGE 
breakers, have all been shown to ameliorate diabetic nephropathy in rats without influencing gly-
cemic control [37, 38].

A direct connection between dietary AGEs and the development of kidney disease was demon-
strated when diabetic nephropathy, highly prevalent in non-obese diabetic mice with type 1 diabetes 
and db/db mice with type 2 diabetes, fed with regular chow (rich in AGEs through pellet formation 
and sterilization), was almost completely abrogated in the same groups of mice randomized to a low- 
AGE diet (which was a purified diet that does not need to be sterilized) [39].

 Human Data

 Effects of Acute Oral AGE Loads

Recently, an interesting study performed in healthy volunteers tested the acute effect of a protein load 
(1 g/kg) either high or low on AGEs on noninvasive parameters of kidney function [40]. The study 
suggests that it is the AGE content, not the total protein load, that is responsible for the observed renal 
hemodynamic modifications (increased renal perfusion and renal oxygen consumption). Extrapolating 
results one may assume that decreasing dietary AGE content may ameliorate glomerular hyperfiltra-
tion and perhaps progressive CKD, but long-term studies are lacking.

In the past, acute oral AGE loads have been shown to have endothelial effects on both healthy sub-
jects and diabetic patients. In one study, a single oral dose of a high-AGE beverage was administered 
to both healthy subjects and patients with diabetes [41]. Within 2 hours, serum AGE levels increased in 
association with transient impairment of flow-mediated vasodilatation, a noninvasive test of endothelial 
function. Pretreatment of the subjects with benfotiamine, an inhibitor of glycation, prevented the endo-
thelial effects [42]. In another study, a single high-AGE solid meal given to patients with diabetes was 
also followed by marked impairment of flow-mediated vasodilatation, as compared with an isocaloric 
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low-AGE meal [43]. All of these results support a mechanistic link between dietary AGEs and cardio-
vascular disease, since endothelial dysfunction is the earliest abnormality in atherosclerosis.

 Observational Studies

There are several studies showing an association between levels of circulating AGEs and progression 
of CKD [44–47]. In a study in American Indians with type 2 diabetes, circulating AGEs (including 
CML and CEL) were inversely associated with glomerular filtration rate [44]. In a prospective cohort 
of individuals with CKD, MG was an independent risk factor for death, cardiovascular events, and/or 
end-stage kidney disease (ESKD) (which were the primary endpoints) [46]. Similarly, Semba et al.
[45] showed that in a cohort of community-dwelling women from the Women’s Health and Aging 
Study, circulating CML and the soluble RAGE were independently associated with lower glomerular 
filtration rate. Finally, circulating levels of soluble RAGE were positively associated with CKD and 
ESKD [47].

 Clinical Trials with Dietary AGE Restriction

 CKD Patients Without Diabetes

Two clinical trials have tested the effects of an AGE-restricted diet in patients with CKD in the absence 
of diabetes. In one of the studies, a group of stage 3 CKD patients was randomly assigned to either a 
regular diet or an isocaloric diet containing 50% lower AGEs for a period of 4 weeks [7]. Patients on 
the low-AGE diet exhibited a significant decrease of extracellular and intracellular markers of inflam-
mation and oxidative stress, including AGEs, tumor necrosis factor (TNFα), vascular cell adhesion 
molecule 1 (VCAM-1), and RAGE compared to the regular diet group [7]. In a second trial, a group 
of patients with ESKD without diabetes on maintenance PD was randomized to follow either a regular 
or a low-AGE diet for 4 weeks [6]. The low-AGE diet group showed a significant decrease in the 
levels of circulating AGEs and high-sensitivity C-reactive protein (hsCRP) [6].

In the above studies, patients with CKD without diabetes were instructed to lower the dietary 
intake of AGEs, while maintaining the same baseline caloric and nutrient content. This was achieved 
by receiving detailed instructions on how to prepare their food at home by a study dietitian who was 
in frequent telephone contact with them.

 Patients with Diabetes without CKD

A few trials on the effect of dietary AGE restriction have been performed in patients with diabetes with-
out overt kidney disease. The first study was published in 2002 [5]. This was a crossover study between 
low and regular AGE diets for a period of 6 weeks. Meals were prepared in the clinical research unit 
metabolic kitchen and patients picked them up twice a week during the duration of the study. Levels of 
circulating AGEs (both CML and MG) as well as markers of endothelial function and inflammation 
such as VCAM-1, hsCRP and TNFα markedly decreased in patients during the low- AGE diet interven-
tion. Circulating AGE levels decreased by as much as 40% during the study despite similar degree of 
diabetic control. Of importance, before this study was published, high serum AGE levels in patients 
with  diabetes were thought to result exclusively from hyperglycemia-induced endogenous 
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overproduction. Therefore, the observed fall of serum AGE levels while maintaining overall unchanged 
glycemic control, probably attributed to the restricted AGE diet, was a novel finding.

In a more recent study, a group of patients with type 2 diabetes were randomized to follow either a 
regular or a low-AGE diet for 4 months [8]. Circulating markers of AGEs, inflammation, and oxida-
tive stress also decreased following the low-AGE diet, but more importantly the AGE-restricted diet 
decreased the homeostatic model assessment index (HOMA), a marker of insulin resistance [8]. This 
reduction of HOMA, which implies improvement of insulin sensitivity, brings up an important 
hypothesis: AGEs seem to have an important role in modifying insulin resistance itself and, therefore, 
diabetes. If this effect of the low-AGE diet is further confirmed, it opens a big opportunity for a safe, 
inexpensive, and effective dietary modulation to prevent or improve diabetes and, therefore, future 
development of CKD.

A low-AGE diet has also been shown to increase AGER1 and sirtuin 1 (SIRT1), two protective 
markers that tend to be suppressed in conditions of high oxidative stress, such as diabetes and CKD 
[48]. The restoration of their levels by the low-AGE diet suggests the previous suppression is due to 
an environmental factor, most likely the high AGE-induced oxidative stress.

A third published clinical trial performed in Mexico also demonstrated that a low-AGE diet 
decreased markers of inflammation and oxidative stress in a group of patients with type 2 diabetes 
[10]. Recently, a randomized controlled trial by Lopez-Moreno et al. [49] tested the effects of a high 
saturated fat diet, high monounsaturated fat diet, and low-fat high-complex carbohydrate diet with or 
without omega-3 fatty acids in individuals with metabolic syndrome. The authors showed that those 
in the high monounsaturated fat diet reduced circulating AGEs and expression of genes associated 
with AGEs in peripheral blood mononuclear cells, such as the receptor for RAGE [49]. Although none 
of the patients with diabetes included in the studies above had CKD, these studies are very pertinent 
to this chapter since diabetes is a major risk factor for CKD in the USA. 

  An Oral AGE Binder in CKD Patients with Diabetes

Two studies from the same group of investigators have been reported on the systemic effects of the 
use of sevelamer carbonate, proposed as an oral AGE binder, in CKD patients with diabetes [50]. 
Sevelamer is a nonselective anion binder, which is traditionally used as a phosphate binder, but 
may also bind other molecules, such as AGEs. The first study was a crossover study of 20 patients 
with diabetes and CKD comparing sevelamer carbonate versus calcium carbonate for 8 weeks, and 
the second study was a larger randomized study comparing sevelamer carbonate with calcium 
carbonate as parallel groups in 117 patients with type 2 diabetes and stages 2–4 CKD [51]. In both 
studies, attention was given to maintain dietary intake unchanged during the intervention period. 
The results in both studies were similar: sevelamer therapy, in contrast to calcium carbonate, 
reproduced all the findings observed with the low dietary AGE intervention described above, 
despite the unchanged dietary intake during the study period [50]. More specifically, the use of 
sevelamer was associated with reduced circulating levels of AGEs, 8-isoprostane, and TNFα, all 
of which were high and increased AGER1 and SIRT1, both of which were low. In vitro tests docu-
mented that sevelamer binds AGEs quite effectively, and presumably this was the explanation for 
the findings [50]. Of interest, in the second study, although the urinary albumin/creatinine ratio did 
not change in the overall group on sevelamer, subgroup analyses showed that the ratio was signifi-
cantly decreased in subjects less than 65 years of age and in non-Caucasians [51]. Another random-
ized study from Japan looked at the effects of sevelamer versus calcium carbonate for 1 year in a 
group of 183 HD patients. Patients on sevelamer experienced decreased serum pentosidine levels and 
coronary artery calcium scores compared to those on calcium carbonate [42].
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 Healthy Subjects and Patients with the Metabolic Syndrome

A few studies done on healthy subjects [3, 7] and in patients with the metabolic syndrome [10, 52–54] 
have confirmed that the initiation of a low-AGE diet decreases circulating markers of AGEs, inflam-
mation, oxidative stress, and more importantly, HOMA-IR index [10, 52–54].

 How Does a Low-AGE Diet Work?

The exact mechanisms how dietary AGEs contribute to cardiovascular disease and CKD have not 
been precisely determined, but they may not just result from direct gastrointestinal absorption raising 
serum AGE levels that in turn induce elevated systemic oxidative stress and inflammation. In fact, 
only about 10% of dietary AGEs are absorbed [16]. However, it is also important to know that the 
amount of AGEs in foods far exceeds the amount of circulating AGEs and, thus, that 10% is a signifi-
cant amount [16]. An action of unabsorbed dietary AGEs in the colon remains possible, including 
AGEs binding to RAGE or Toll-like receptors in the colon cells inducing a local inflammatory 
response with subsequent release of inflammatory mediators into the circulation or AGEs altering the 
microbiome profile in the gut leading to release of toxins into circulation. Yacoub et al. [55] assessed 
the effects of a low-AGE versus high-AGE diet for a month in peritoneal dialysis patients. They found 
that the dietary intervention altered the composition of the gut microbiota. Specifically, those in the 
AGE-restricted group had a reduction in the relative abundance of Prevotella copri and Bifidobacterium 
animalis and an increase in the relative abundance of Alistipes indistinctus, Clostridium citroniae, 
Clostridium hathewayi, and Ruminococcus gauvreauii. Recently, Snelson and Coughlan [13] reviewed 
the potential effects of AGEs on the gastrointestinal microbiome and metabolites produced by the 
microbiota. Interestingly, in experimental studies in rats, the use of heat-treated diets has been shown 
to decrease the cecal concentration of short-chain fatty acids, derived from the bacterial fermentation 
of carbohydrates and traditionally considered beneficial [13]. However, the long-term effects of these 
changes in the fecal microbiota and functional capacity of the microbiome in the context of CKD 
remain to be fully explored.

 How to Implement and Recommend a Low-AGE Diet

Although the formation of AGEs is a complex process, dietary AGE intake is relatively easy to 
decrease. Additionally, a large database with the AGE content of common foods has been published 
and can be used to estimate dietary AGE intake as well as to give advice on how to reduce this 
intake [11, 12]. There are four main characteristics that affect the formation of AGEs in food: tem-
perature, moisture, pH, and substrates for AGE formation (i.e., protein content) [11]. In terms of 
cooking foods, the basic concept of the low-AGE diet is that the same amount of a nutrient can 
provide very different amounts of oxidant substances depending on the cooking method. 
Unfortunately, there is no specific threshold temperature above which AGEs start to generate. 
Therefore, one can only make the general recommendation that the lower the temperature, the less 
the amount of AGEs generated. Cooking methods that use dry heat, such as broiling, searing, and 
frying, have been shown to have the highest content of AGEs [11]. Contrarily, methods that utilize 
a moisture-based heating process, such as poaching, stewing, steaming, and boiling, are lower in 
AGEs [11]. Thus, these methods should be preferred.

A. Biruete and J. Uribarri



559

An acidic pH has also been shown to limit the formation of AGEs, whereas alkaline pH favors the 
Schiff base formation, one of the first reactions for AGE formation. Thus, the use of acidic foods, such 
as citrus foods or vinegars, as condiments can be recommended (i.e., marinade made with vinegar for 
high-protein foods, such as meats, is an easy way to incorporate into cooking). These culinary tech-
niques have long been featured in the Mediterranean, Asian, and other cuisines throughout the world 
to create palatable, easily prepared meals, with an added benefit of limiting AGE formation.

The content of dietary protein is also a determinant of AGE formation, as it is the substrate of the 
amine group. Dietary protein intake is a cornerstone of the medical nutrition therapy in kidney dis-
eases. While a low-protein diet is recommended in moderate-to-late stages of CKD, once patients 
transition into dialysis, dietary protein intake is recommended to increase. Unfortunately, to date, 
there are no studies that have assessed the effect of different amounts of dietary protein in nondialysis 
and dialysis-dependent CKD on circulating AGEs and AGE-mediated effects.

The immediate critique to a dietary intervention that relies on changing culinary technique is that 
patients will not follow it. The argument is often made that stewed chicken would be less tasty than 
fried chicken and, therefore, people will abandon this diet very easily. Based on our studies, however, 
consumers can be educated as to how to use low-AGE-generating cooking methods such as poaching, 
steaming, stewing, and boiling. Additionally, the use of herbs, condiments (free of sodium and potas-
sium), and spices should be encouraged, as some may have intrinsic antiglycation activity. In addition, 
as mentioned above, the use of marinades based on citrus fruits and vinegars may also reduce the 
amount of AGEs formed. These recommendations would make the low-AGE diet appealing and 
flavorful.

Currently, no official recommendations exist which point out the acceptable range or identify the 
upper limit on dietary AGE intake. We have previously proposed that half of the current mean AGE 
intake, or about 7500 kU per day, is a realistic goal [11]. Studies have shown that dietary AGE reduc-
tion of this magnitude is feasible and can significantly alter levels of circulating AGEs, while at the 
same time reducing levels of markers of oxidative stress and inflammation and enhancing insulin 
sensitivity in patients with diabetes [5–9].

We propose a multipronged strategy, which is a food-first approach:

 1. Decrease the intake of foods rich in AGEs (based on existing databases), taking into consideration 
cooking methods, moisture, pH, and protein [11, 18].

 2. Increase the intake of fresh food, naturally high in polyphenols and antioxidants to counter the 
already high oxidative stress and inflammatory states in CKD.

 3. Incorporate the use of herbs, spices, and condiments (with no sodium or potassium added) to 
improve the taste of food and which may also have antiglycation effect (curcumin, cinnamon, 
parsley, thyme, and clove) [56].

 4. Although not a dietary intervention, avoid the use of cigarette as it is high in AGEs [56]. Additionally, 
supplementation with benfotiamine (a derivative of vitamin B1– thiamine) [43] and pyridoxamine 
(a form of vitamin B6) [57] has been shown in experimental and clinical studies to reduce AGE 
formation. We must state clearly, however, that we have tested only the AGE-restricted diet and we 
are assuming that the simultaneous application of points 2 through 4 will have beneficial and syn-
ergistic effects.

 Conclusion

Dietary AGEs, abundantly present in the food commonly consumed in a typical American diet, con-
tribute significantly to the body pool of AGEs, which in turn is at least partly responsible for the ele-
vated oxidative stress and inflammation observed in patients with diabetes and CKD. A final proof of 
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a therapeutic role for the low-AGE diet will require large, prospective, and randomized clinical trials, 
which indeed may never take place. In the meantime, however, we believe that a careful analysis of 
the current data makes it reasonable and prudent to advise the limitation of dietary AGEs in CKD 
patients. This is particularly important since consumption of lower-AGE foods and preparation meth-
ods can easily be integrated into dietary patterns that are consistent with current recommendations 
designed to promote public health and prevent cardiovascular disease, cancer, diabetes, and obesity.
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