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Abstract Cellular morphodynamics can be used as markers for many physiological
and pathological processes. This protocol provides a step-by-step guide to iden-
tify variations in motility and morphology within (or across) cell populations using
non-invasive live imaging and reproducible image analysis techniques such as seg-
mentation and tracking. Detailed instructions cover all the way from cell culturing
and labelling to automatic image and statistical analyses, including the definition of
multiple descriptors that characterise the shape and movement of cells in a quantita-
tive manner. All methods are available as free open-source software and illustrated
by video tutorials.
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Introduction

Advances in microscopy techniques and fluorescent probes have long being helping
the scientific community determine the importance of cell movement and deforma-
tion in multiple biological processes. However, many studies remain qualitative, i.e.
differences in shape or motility are assessed visually, adding subjectivity to potential
biological conclusions. Conversely, using image analysis to assign numerical val-
ues to both shape and movement does not only guarantee the reproducibility of the
conclusions but also opens the door to statistical analyses that allow classifying cell
populations and phenotyping. Accordingly, we present a step-by-step manual that
shows how to quantify cellular morphodynamics in a non-invasive and reproducible
way using only confocal microscopy and fluorescent markers.

The present protocol details both biological and computational experiments. We
first describe the necessary biological techniques, namely culturing the cells and fluo-
rescently labelling the cytoplasm; next, we comment on how to perform non-invasive
imaging using a confocal microscope; and, finally, we provide a ready-to-use image
analysis workflow that goes all the way from raw images to biological conclusions
in a reproducible manner. More specifically, we present automatic tools for cell seg-
mentation and tracking that are freely accessible as modules in the Icy platform; as
well as multiple descriptors that quantify cell shape andmovement from the resulting
contours and tracks. These descriptors serve as a basis from which to perform statis-
tical tests and assess any possible correlation between morphodynamical variables.
All the key steps of the protocol are available as video tutorials and are exemplified
using a population of Entamoeba histolytica, a highly motile parasite that migrates
through diverse human tissues, including the intestine and the liver.

Results

Wet-Lab Protocol: Culturing Cells and Acquiring Images

To quantify movement and deformation using image analysis (see dry-lab protocol),
it is paramount to image the cells non-invasively (physiological relevance) and in
good spatiotemporal resolution (easier analysis). To meet these two criteria, we label
the cytoplasm with a fluorescent dye and use a spinning-disk confocal microscope.

Cell Culture and Staining

Trophozoites of the Entamoeba histolytica strain HM1: IMSS were grown overnight
at 37 °C in TYI-S-33 medium (Diamond et al. 1978). Medium was then replaced
by incomplete TYI-S-33 medium (serum/vitamines-free) (TYI). Cells were labeled
with Cell Tracker™Red CMTPX, a fluorescent dye that is well suited for monitoring
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cell movement and displacements (Petropolis et al. 2014). The dye has low cytotox-
icity, does not affect cell viability nor proliferation, and its fluorescence was stable
during the entire imaging process, allowing us to track cellular movements with a red
excitation/emission spectra (577/602 nm). In this case, we have used the fluorescent
dye that emits in the red spectra because Entamoeba histolytica autofluoresces at
488 nm. Since the forthcoming image analysis methods are based on accurate cell
segmentation, in this paper we used non-confluent cultures. Other image analysis
tools are required to deal with confluent cell cultures, but they are not the focus of
this paper.

Cells were incubated for 45 min at 37 °C, and then washed with TYI pre-warmed
at 37 °C by reversing the tube and simply discarding the medium. No centrifugation
is required because amoebas are adherent cells and remain attached to the glass
tube during the process. Trophozoites were gently suspended in pre-warmed TYI by
shaking the tube and then seeded on 35 mm glass-bottomed imaging Ibidi dishes,
obtaining an estimate of 5 × 103 cells.

Microscopy Experiment

Images were taken with a spinning disk confocal microscope (25× objective) inside
an incubator at 37 °C to keep the parasites at a physiological temperature where
they are specially motile. Indeed, at these temperature E. histolytica parasites can
move at up to 1µm/s in 2D culture conditions (Dufour et al. 2015). Fortunately, with
the spinning disk microscope, images can be acquired at very high frame rates with
minimal illumination and photo-bleaching of the living samples.

Videos were recorded for four minutes at an imaging rate of one frame per second
(i.e. a total of 240 frames) and at a pixel size of 0.48 µm. The fields of view were
taken to be of around 512 × 512 pixels, corresponding to 246 × 246 µm2, which
typically contained around 2–6 cells. The z position was set at a height of around
2 µm from the glass.

Both pixel size and frame rate are necessary for the posterior image analysis,
for example to obtain the speed in real units, and therefore need to be stored. They
are typically stored automatically in the metadata of the image files by the software
associated with the microscope, but we recommend to double-check that this is
indeed the case. In our case, all images were acquired with the Volocity 3D image
analysis software (Perkin Elmer, USA) and the files and their associated metadata
stored in the mvd2 format.

There are no potential dangers involved in the experiments, neither because of
laser beams nor of parasite pathogenicity. However, a P2-class laboratory is needed
to handle the living trophozoites. The protocol was set up according to the guidelines
provided by the Safety Authorities and the Image Microscopy Facility platform of
Institut Pasteur.
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Dry-Lab Protocol: Analysing Images

The motility of a cell population can be studied quantitatively using image analysis.
In this context, each individual cell in a video sequence is first singled out of the
background in a process called segmentation. Cell segmentation not only allows
to delimit the borders of the cells present in an image, but also to calculate their
centroid and thus to track the displacement of the cells over time. On the one hand,
digitising the contours of the cell opens the door to characterising the cell shape with
descriptors such as roundness; on the other hand, the time tracks contain information
on the movement of the cell such as its speed or the straightness of its trajectory,
which shed light on the reasons behind its migration (random, directed chemotaxis,
etc.). Therefore, these data enable a rich quantification of both cell morphology and
motility that ideally translates into cell phenotyping when complemented with an
extensive statistical and correlation analysis.

The threemain steps (segment, track and statistical assessment) are visited in detail
in respective Sects. “Hierarchical K-Means”, “Active Contours”, “Cell Tracking
with Track Manager” and are automatised by bioimaging softwares such as Icy (de
Chaumont et al. 2012; Wiesmann et al. 2015), which we address immediately in
Sect. 25.2.2. All steps are available as video tutorials.

Bioimage Analysis Software

To quantify cell motility, we present Icy, a free and open-source platform for bioim-
age analysis that provides multiple resources to visualize, annotate and quantify
bioimaging data (http://icy.bioimageanalysis.org).

Icy provides a user-friendly approach to new and classical image analysis tech-
niques alike: filtering, segmentation, tracking….They are all available under different
modules called plug-ins who all share the same graphical interface. Examples of seg-
mentation plug-ins are Thresholding, ActiveContours, Parametric Snakes, Potts Seg-
mentation, Spot Detector (Olivo-Marin 2002) and HK-Means (Dufour et al. 2008);
whereas plug-ins such as Spot Tracking, Track Manager and Kymograph Tracker
provide different approaches to tracking. In this protocol, we will focus on HK-
Means (Sect. “Hierarchical K-Means”), Active Contours (Sect. “Active Contours”),
and Track Manager (Sect. “Cell Tracking with Track Manager”) in order to provide
a step-by-step guide on how to analyse cell shape and motility.

The graphical interface integrates 2D and 3D visualisation resources, as well
as a series of tools to easily crop and cut through time series, z-stacks or multi-
channel sequences. Also intuitive is themanagement of so-called Regions Of Interest
(ROIs), i.e. delimited areas of the image that are of special interest and that might
want to be analysed aside, for example a cell segmented from the image. In the Icy
platform, ROIs are superimposed over the original image and can be manipulated
as independent objects on which common operations such as “copy/paste” (ctrl +
c/v) or “delete” can be applied, allowing to easily combine analyses performed on

http://icy.bioimageanalysis.org
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different channels or sequences. ROIs are deeply integrated into Icy so that any
analysis or quantification from them is automatic and straightforward. For instance,
cell segmentation results are represented as ROIs from which multiple descriptors
such as area, mean fluorescence intensity or roundness can be directly accessed in
the ROI menu and exported into Excel files for further data analysis.

As a last remark, in its most recent version 2.0, Icy has introduced a new image
handling engine that allows working with big video sequences, be it either because
they are long or because they were taken at very high spatial and/or temporal resolu-
tion. The idea behind the new engine is that only a portion of the image sequence is
loaded into the local RAMmemory, while the rest is stored on hard-disk at the price
of longer processing times.

We have used the sequence called 25 × 40 to illustrate this protocol (Movie 1)
over its several steps. The Time Stamp Overlay plugin (Tutorial 1) can be used to
stamp the elapsed time onto the video.

Cell Segmentation with Hierarchical K-Means and Active Contours

Hierarchical K-Means

Hierarchical K-Means (HK-means or HKM here) is a segmentation method based
on a K-Means clustering of the image histogram, i.e. an algorithm that divides the
different intensity values in the image into groups according to a similarity mea-
sure. Ideally, these groups correspond to the different cells and to the background.
However, the K-means algorithm requires the number of groups to be specified in
advance. To tackle this problem, a hierarchical strategy is introduced. In this way, the
algorithm attempts to find the ideal number of groups using a bottom-up approach.
This process can be helped if the user specifies a value for the expected minimum
and maximum size of the cells.

HKM is a fundamental tool in image processing; it is one of the go-to algorithms if
the user wants to segment cells in a quick, ready-to-use and quasi-automatic manner.
And precisely because of its hierarchical clustering approach, it performs better
than classical clustering and thresholding algorithms. However, HKM suffers from
three main drawbacks. First, it has difficulty telling apart cells that are in contact
with each other. Second, big intensity heterogeneities inside the cell might trigger
multiple detections. And third, since the resulting segmentations are groups of pixels
rather than polygonal contours, some accuracy may be lost when computing shape
descriptors.

A step-by-step guide to the HKM plug-in in Icy can be found in Fig. 25.1 and is
accompanied by Tutorial 2.
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Fig. 25.1 Cell segmentation with HK-Means and ROI color selection. HK-Means can be opened
from thedetection tabor from the searchbar. Thefirst step is to choosewhich framesweare interested
in segmenting (herewe select frame 0, but ‘ALL’ is also a possibility).We have to specify the number
of intensity classes (see the text for an explanation on HK-Means) in which the histogram is to be
split. That is the number of different intercellular intensities (e.g. if all cells are the same intensity,
two classes are enough).When in doubt, we recommend choosing higher values, but we also remark
that it comes at a computational price. To aid the segmentation of the image into the different classes
the user can also input an expected minimum and maximum size for the cells so as to eliminate
possible groups that are respectively too small (e.g. debris) or too big to possibly be a cell (e.g. cell
clusters). Notice that these sizes are required in pixels, to have a rough idea of the cell size in pixels
draw a ROI around the cell and check its size (“Interior” descriptor in the ROI tab at the right-hand
side). Finally, applying the Gaussian pre-filter can help improve the segmentation of noisy images.
Since the segmentation output are ROIs, we can obtain any descriptor directly from the ROI tab.
Here we show the perimeter, the area, the mean intensity, the roundness and the homogeneity inside
the ROIs, but many more shape descriptors can be selected using the “gear” button. ROI colors can
be chosen (see Tutorial 2)

Active Contours

Active Contours (Zimmer et al. 2002) (AC) are well adapted to study cell morpho-
dynamics; they provide accurate cell contours and are capable of segmenting cells
that are in close contact, as well as cells with inner heterogeneities. However, in
contrast to the more classical segmentation methods, AC need to be initialised. The
user has to specify an approximative initial contour (ROI) around the cell so that the
algorithm can pick up on it. This initialization can be done manually, by drawing
the ROI over the object of interest, or automatically, using other segmentation tools
(e.g. the above-described HKM). The initial ROI contours are then refined by the AC
method, which slowly deforms the contour. In this way, the contour is progressively
fitted to the cell shape in an attempt not only to separate the image into multiple
intensities, but also to find the edges of the cells in the gradient of the image. When
the segmentation spans a whole video sequence, the ROI resulting from segmenting
a given frame can be used as an initial ROI for the following frame (see ‘track objects
over time’ in the AC plug-in). Therefore, if the image acquisition is relatively fast,
initialising the ROIs at the very first frame is enough to segment the entire sequence.

In summary, whereas HKM is fast and does not need to be initialised, it is most
performant when image quality is good and cells are well separated; otherwise AC
take over at the price of initialisation and speed. In fact, we remark that a good
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Fig. 25.2 Manual drawing of approximative ROIs and automatic cell segmentation with
Active Contours. a The first step before running Active Contours is to draw approximative ROIs
around each of the cells; we do it manually here (green ellipses), but one could use HK-Means to
initialize the method automatically. b Active Contours can be opened from the detection tab or from
the search bar. In order to segment and track all of the time frames make sure to activate “tracks
objects over time”. Perhaps the twomost important parameters of the plug-in are the edge and region
weights, which control the balance between the importance of (1) the big intensity differences that
are expected at the border of the cell and (2) the homogeneous intensity that is expected inside the
cell as opposed to that of the outside. In addition, “contour inflation” might help compensate for a
lack of contrast between cell and background by adding an artificial expansion rate. On the other
hand, the set of evolution parameters are more technical but can help speed up the process and/or
make the final contours more accurate. All parameter settings can be readily stored and loaded using
the save icon on the bottom. The results of the segmentation are also presented as ROIs (see text
and Tutorial 3)

approach is to combine the two; that is to use HKM (only) on the first frame to
automatically set the initial ROIs required by AC. However, in this protocol we have
found it more pedagogic to set the initial contours manually.

A step by step guide to the AC plug-in in Icy can be found in Fig. 25.2 and is
accompanied by Tutorials 2, 3 and 4. Movie 2 shows the segmented cells with Active
Contours.

Cell Tracking with Track Manager

Using either of the segmentation plug-ins on a video sequence results in a time-series
of ROIs that can potentially be linked together to generate the track of a cell, i.e.
to draw the path that the cell followed. At our spatiotemporal resolution, it suffices
to associate a ROI at a given time point with the closest ROI at the following time
point to accurately track cells; more precisely, it is the centroids of the successive
ROIs that are concatenated into a cell track. However, more advanced tracking tools
such as Multiple Hypothesis Tracking (Chenouard et al. 2013) become necessary
for high-speed particle tracking. In either case, the resulting tracks can be analyzed
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with the Track Manager (TM) module in Icy, which is readily invoked from the very
segmentation plug-ins using the ‘send to track manager’ button.

TM displays the resulting tracks directly overlayed on the original sequence. The
tracks can also be analyzed through an accessible interface, for instance to investigate
motility parameters such as cell speed or mean squared displacement (MSD) and
compare them between populations or correlate them with other descriptors, for
example of cell morphology (see below). All these quantifications tasks are done
through so called Track Processors (TPs). Each TP has a specific function: from
filtering unwanted tracks, to quantifying movement, passing by a myriad of display
functionality such as color-coding the tracks (“TP Color”). In this protocol, we have
used several TPs. Briefly, (i) “Motion Profiler” computesmultiplemotion descriptors
such as the average speed or the linearity/persistence of the tracks; (ii) “Instant Speed”
displays the speed of the cell as a time curve; whereas (iii) “ROI Statistics” (ROIS)
displays time curves of several shape descriptors as is described in Sect. “Statistical
Tests with R”.

A step-by-step guide to the TM plug-in in Icy can be found in Figs. 25.3, 25.4
and 25.5 and is accompanied by Tutorial 5. Movie 3 shows the segmented cells with
Active Contours and their centroid tracks.

Fig. 25.3 Cell track analysis with Track Manager and Track Processors. a Track Manager can
be opened from the tabs or directly from most segmentation plug-ins (e.g. HK-Means or Active
Contours, see respective Figs. 25.1, 25.2 and Tutorial 4). The tracks for each of the cells are
automatically overlaid on the video sequence in the corresponding colors. b Each track is a separate
entity and can be filtered or quantified by adding Track Processors. Here we are displaying the
Color and Instant Speed Track Processors, but many others are available (e.g. see Figs. 25.4, 25.5
and 25.6). The red vertical bar displays the current time point, and can be dragged to navigate the
time sequence. Tracks can be saved into an.xml file
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Fig. 25.4 Descriptors and visualisation of cell tracks with the Motion Profiler Track Processor
in Track Manager. a By selecting Motion Profiler from the track processors in Track Manager,
we obtain multiple descriptors of the three tracks. For example, we can see typical minimum,
maximum and average speed values; and we can also quantify how straight the cells are moving
with the measures of linearity and search radius. In addition, the processor can take the metadata
into account to offer the values in real units. All these results can be exported to an Excel file.
b Motion Profiler also provides a graphical representation of all the tracks from a common origin,
from where we can visually assess whether motion is random or directed

Morphological Descriptors and Statistical Tests with ROI Statistics and R

Cell Descriptors with ROI Statistics

Different cell populations might be characterised by different morphologies. Given a
time sequence of already segmented cells in the form of ROIs (e.g. with AC), the ROI
Statistics (ROIS) processor in TM provides a wide range of geometrical properties
that describe the shape of each ROI. Together with a posterior statistical analysis,
these descriptorsmay help tell apart different populations or be used for phenotyping.
Many such descriptors are available in ROIS; in this study, we only consider the fol-
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Fig. 25.5 Time curves of cell speed with the Instant Speed Track Processor in Track Manager.
By selecting Instant Speed from the track processors in Track Manager, we obtain the time curves
of the speed at each time point along each of the cell tracks. These data can be used to explore the
cycles of acceleration and deceleration of the cells for example. The curves can be exported to an
Excel file

lowing: area (µm2), perimeter (µm), roundness (%), mean intensity values (a.u.) and
homogeneity (a.u.). “Perimeter” measures the perimeter of the ROI in micrometers
(here the scaling information is extracted automatically from the metadata). Equiv-
alently, “Area” measures the ROI area in micrometers squared. “Mean intensity”
averages the intensity values inside the ROI, whereas “Homogeneity” highlights the
internal variations of the intensity distribution within the cell. Lastly, “Roundness”
is a measure of how similar to a circle the ROI is. These data are displayed directly
in Icy, but can also be exported to an Excel file (Table 25.1) for further analysis,
for example to perform statistical tests that assess the correlation between each of
the descriptors. For instance, we study the correlations between the temporal mean
of all these parameters and the Speed (µm/s) resulting from TM. Alternative shape
descriptors can be extracted by rewriting the cell shape in different mathematical
basis such as Fourier (2D) or Spherical Harmonics (3D); these work well to separate
populations, but often lack biological interpretability (Ducroz et al. 2012).

A step-by-step guide to the TM plug-in in Icy can be found in Fig. 25.6.

Statistical Tests with R

In order to assess whether any trend or correlation exists between the extracted
descriptors we perform a visual pairwise comparison educated with Spearman’s
rank correlation coefficient. So-called Spearman’s “rho” attempts to quantify the
monotonicity of the relationship between a pair of variables, irrespectively of its
linearity. The coefficient spans the interval [− 1, 1], where the extremes correspond
to perfectlymonotonic functions, respectively decreasing or increasing (i.e. functions
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Table 25.1 Cell shape descriptors and speed for the 42 cells of the experiment. (25 × 40
illustrates the protocol, values are means)

Name Area Homogeneity Intensity Perimeter Roundness Speed

(µm2) (561) (561) (µm) (%) (µm/s)

25 × 54 316.08 0.08 24,203 75.58 40.05 1.16

2407.56 0.12 19,189 196.18 59.33 0.08

25 × 49 2779.13 0.13 24,801 208.46 59.11 0.24

308.78 0.15 15,070 69.42 48.16 1.21

25 × 47 771.28 0.13 16,320 119.90 34.82 0.17

411.95 0.13 21,341 81.62 49.3 0.43

25 × 44 760.11 0.10 25,160 114.79 45.55 0.40

684.88 0.10 25,544 100.88 68.20 0.12

545.58 0.11 21,754 90.64 58.77 0.97

689.35 0.10 23,625 108.82 48.97 0.25

658.80 0.10 23,308 109.13 46.66 0.49

929.79 0.10 23,857 119.42 61.02 0.16

25 × 40 713.25 0.18 42,758 109.02 54.33 0.42

438.46 0.32 46,123 88.07 42.48 0.60

773.17 0.15 17,600 118.27 36.11 0.18

25 × 38 362.51 0.11 18,333 73.27 59.32 1.05

1045.82 0.10 22,956 132.80 37.29 0.10

814.01 0.10 21,460 113.92 54.76 0.33

25 × 36 1093.23 0.10 21,429 135.41 52.52 0.14

525.07 0.08 27,100 92.00 50.12 0.31

2713.55 0.10 36,252 233.99 29.84 0.10

600.94 0.11 18,237 95.02 60.56 0.61

25 × 35 329.77 0.1 22,166 73.21 47.95 1.10

630.77 0.1 24,413 101.25 51.82 1.37

681.54 0.1 21,612 107.25 48.32 0.14

466.57 0.1 33,879 85.38 53.27 0.23

617.05 0.11 19,998 104.93 41.30 0.22

25 × 34 656.30 0.34 49,554 108.70 43.97 0.32

663.35 0.21 10,132 103.12 47.39 0.29

25 × 33 207.05 0.07 24,868 56.05 52.87 0.62

595.10 0.13 16,759 97.52 52.17 0.86

25 × 32 523.20 0.13 16,121 94.08 45.30 0.54

653.94 0.11 19,977 105.08 41.45 0.14

25 × 30 1084.28 0.11 23,447 130.04 30.10 0.15

(continued)
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Table 25.1 (continued)

Name Area Homogeneity Intensity Perimeter Roundness Speed

(µm2) (561) (561) (µm) (%) (µm/s)

887.42 0.09 23,499 128.19 39.44 0.24

738.61 0.12 17,261 107.66 51.55 0.30

791.83 0.08 26,903 115.63 47.52 0.15

515.45 0.10 20,549 85.64 70.17 0.12

25 × 29 430.99 0.09 23,945 90.56 35.33 0.54

532.69 0.12 17,155 93.70 49.06 0.47

437.21 0.12 16,415 85.08 47.43 0.37

799.27 0.10 22,078 118.07 42.83 0.64

Fig. 25.6 Cell shape descriptors with the ROI Statistics Track Processor in Track Manager. By
selecting ROI Statistics from the track processors in TrackManager, we obtain different descriptors
of cell shape (perimeter, roundness, etc.) for each time point along a cell track. Here are presented
the fluorescence average intensity values inside the ROIs. The data can be exported to an Excel file

that always go down, or up,without fluctuations); and 0 indicates a lack of correlation.
Precisely, the p-value associated with the coefficient results from testing whether this
coefficient is significantly different from 0.

Statistical analysis software can directly read the output values exported from Icy.
Here, we use a short R routine that can automatically generate the pairwise graphics
showing possible trends, as well as the correlation values and their corresponding
p-values (Fig. 25.7). This program uses some functionality from the ggplot2 library.
While it is not the aim of the paper to provide in-depth statistical insight, we remark
that it is important to check whether your data satisfies all the assumptions made
during the statistical analysis. For illustrative purposes, in Fig. 25.7 generated by
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Fig. 25.7 Statistical analysis of cell descriptors shows a significant correlation between cell
speed and size. The figure is a matrix quantifying the correlation between pairs of descriptors for
n = 42 cells from 13 different movies. On the upper triangular side, Spearman’s correlation values
resulting from descriptor pairs are displayed accompanied by their significance in the form of stars.
The values are also displayed using a color gradient (red positive, blue negative) to facilitate the
analysis. On the lower triangular side, we plot descriptor pairs on a normalised scale to show any
possible trend. The diagonal contains univariate density plots

the R routine, we display univariate descriptor density plots (diagonal) and pair-
wise descriptor plots (lower diagonal), but directly compute the pairwise correlation
coefficients and their associated tests (upper diagonal) with no prior analysis.

Example to Illustrate the Proposed Protocol for Image Analysis

During the in vitro growth of E. histolytica, it is common to observe diverse pheno-
types regarding the size of the cells, their mobility, the heterogeneity of fluorescence
during labeling, etc. We wondered whether the protocol proposed here could help
us identify any correlations between these phenotypes. After acquisition of video-
microscopies of E. histolytica seeded on glass, the image analysis was performed on
n= 42 cells from 13 different video sequences. The data highlights several relation-
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ships: the obvious correlation between area and perimeter, a less evident correlation
between cell fluorescence intensity and homogeneity (as the image saturates), and
a strong and significant (***) correlation between the size of the cell and its mean
speed (Table 25.1 and Fig. 25.7). For instance, the five smallest cells moved at 62±
14 µm/min, whereas the five largest cells moved at 9 ± 4 µm/min. Therefore, this
experiment allows to conclude that the smaller cells have a higher average speed in
the amoeba population moving on glass. This original observation opens the door
to further studies on the molecular mechanisms sustaining the correlation between
size and speed of E. histolytica when moving on a planar and neutral surface such
as glass.

Conclusion

We expect this protocol to serve as a beginner’s guide for cell biologists that would
like to capture the morphodynamical characteristics of their live cell populations in
a quantitative manner by using image analysis. The results are any potential correla-
tions between multiple morphodynamical descriptors (in the present case, we found
a link between cell size and speed), as well as the possible discovery of criteria that
can tell apart subpopulations of cells.

Materials and Basic Methods

Biological Materials

– Trophozoites of Entamoeba histolytica strain HM1:IMSS growing in TYI-S33
media (Diamond et al. 1978).

– Cell Tracker™ Red CMTPX (ThermoFisher, catalog number C34554, final con-
centration 2.5 µM). Before use, suspend the dessicated dye (50 µg) in 8.33 µl of
DMSO to obtain a 10 mM stock solution. An intermediate dilution (1/200) has to
be prepared to avoid aggregates of DMSO and Cell Tracker in the media.

– 35 mm high glass-bottom Ibidi dish (catalog number 81158, Ibidi, France).

Equipment

– Microbiological safety station with laminar flow to manipulate the cells; wearing
a blouse and gloves is mandatory during the experimental steps.

– Spinning disk confocal microscope (UltraVIEW VoX, Perkin Elmer, USA;
excitation: 561 nm; objective: 25×; temperature control set to 37 °C).
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Softwares

– Volocity (Perkin Elmer, USA) to perform imaging.
– Icy (Institut Pasteur, France) to perform image analysis.

Summary of the Protocol
Procedure—The protocol can be summarised as a general workflow (Fig. 25.8) in
the following steps: culture the cells and label themwith a fluorescent cytoplasm dye;
image the cells with a temporal resolution that is appropriate to the cell movement.
Save the video sequences on the hard-disk; open the Icy software and allocate RAM
according to the expected image size, open the sequence, and double-check the
metadata; draw initial ROIs over the cells and run the Active Contours plug-in; send
the resulting segmentation to the Track Manager, use the different track processors
to analyse cell movement and shape and export them to Excel; perform statistical
and correlation tests on the data, for example using R.

Timing—Cell labelling and preparation takes between one and two hours. Live
imaging only involves setting up the sample on the microscope and taking multiple
video sequences of around 240 frames (i.e. around 4min). Segmentation and tracking
takes a fraction of a second per frame. Statistical analysis takes well under an hour.

Troubleshooting—1. Check that the Java version in your computer is compatible
with Icy. 2. From within the preferences tab in Icy assign RAM memory to the
software according to the potential size of your images. 3. Check that your temporal
resolution is adequate: if there are toomany frames per second compared to the speed
of the cells, remove frames in constant intervals in order to lift some computational
burden. 4.All stages of the quantification can be saved in their corresponding formats.
For example, image sequences can be saved in.tif, whereas ROIs and tracks are saved
in.xml. This guarantees complete reproducibility, as slightly different ROIs can result
in slightly different segmentations.

Data availability—All data presented in this protocol (files as.tif,.xml,.avi,.mov)
and tutorials are available online (Manich 2020) so that any potential user can
reproduce the results by following the protocol.
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Fig. 25.8 Summary of the protocol. See text for a complete description of the protocole
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