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Abstract. Material handling is an important logistic process for open-
pit mines. In this process, shovels extract materials and load trucks that
transport these materials to different destinations. To support this pro-
cess, different centralized dispatching solutions have been implemented
based on mathematical programming, heuristic processes or simulation
modelling. Weaknesses in these methods can be observed in addressing
the dynamics of a mine and by not providing a precise dispatching solu-
tion. In this paper, we present a solution based on Multiagent Systems
(MAS) where the equipment items are represented by intelligent agents
that interact with each other to meet the production goals at a minimum
cost. The results obtained by applying the MAS in a simulated open-pit
mine with actual data show more specific solutions than the current cen-
tralized solutions in a practical calculation time frame. In addition, the
MAS decreases the truck costs on average by 18%.

Keywords: Truck dispatching · Open-pit mine · Multiagent systems ·
Scheduling

1 Introduction

Material handling is an important logistic process for open-pit mining since it
can amount to up to 50% of the operational cost [1]. In this process, trucks and
shovels work together to extract and to transport all the material required by the
operational plan at minimum cost. In order to reach this objective, dispatching
trucks efficiently becomes an important task. However, it is a hard task due to
the number of the variables and the dynamics of the environment where the
equipment items operate.
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The current systems that support the dispatching of trucks follow a central-
ized approach that commonly uses an allocation model that assigns trucks to
trips between loading and unloading points [7]. This solution does not provide a
precise operation sequence of the equipment, therefore it cannot secure an effi-
cient use of the equipment. To improve the efficiency of the material handling
process, we developed a multiagent system (MAS).

The paper demonstrates the applicability of the MAS. To do this, first, we
compare the solutions provided by the MAS against a mathematical model and
second, we use actual data from a Chilean open-pit mine to compare the actual
transported material and the material that could have been transported following
the solution proposed by the MAS.

The remainder of this paper is structured as follows: Sect. 2 presents some
background of truck dispatching in open-pit mines. A mixed integer linear pro-
gramming (MILP) scheduling model is described in Sect. 3. Section 4 presents
the distributed approach based on MAS. Section 5 presents the results and dis-
cusses the evaluation of the MAS approach in a case study. Finally, conclusions
and outlook are presented in Sect. 6.

2 Problem Definition

In the open-pit mine material handling process shovels extract materials and load
trucks that transport these materials to different destinations at the mine. If the
extracted material is waste, it is transported to a waste dump, and if it is ore,
it is transported to a crusher or a stockpile. Figure 1 shows all operations that a
truck must perform to transport materials from a loading point to an unloading
point. This is called the truck cycle. This cycle is performed and repeated by
each truck until the shift ends.

Fig. 1. The truck cycle.

At first sight, truck dispatching in open-pit mines seems to be a kind of
vehicle routing problem (VRP). However, although there are some similarities,
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there also are differences: there is no start and end node (depo), the trucks must
go to a pickup node (shovel) and then to a delivery node (crusher or stockpile)
and repeat this sequence during the entire shift. This implies that a truck can
visit a node more than once. The travel times between nodes are short and the
number of nodes is too lower than the number of trucks. This produces waiting
time at nodes. These differences, make difficult to apply a pure VRP model.

Different centralized systems have been implemented to support the dispatch-
ing of trucks based on mathematical programming, heuristic processes or simu-
lation. The strengths of these methods are their maturity and their well-known
implementation. However, the weaknesses can be observed in addressing the
dynamics of a mine [2], by not providing a precise solution [7], the use of esti-
mated information [6], and the time needed to calculate a dispatching solution
when the model is too complex. A common strategy applied in some centralized
systems is based on the multistage approach [1]. This approach uses a guideline
that is computed in the upper stage. Then, this guideline is used by the lower
stage as a reference to make real-time dispatching decisions.

Despite the use of these systems, the trucks and shovels do not operate
efficiently since queues of trucks are built-up in front of shovels and crushers,
as well as idle time of shovels. Therefore the problem is how to improve the
efficiency in the material handling process.

Alternatively, a more specific solution that would allow the equipment items
to operate more efficiently would be to set up schedules for each equipment item
with all the operations that it must perform, pointing out the start times, end
times, etc.

3 Formalization

To address the problem, a mathematical model is formulated based on the work
of Patterson [7], which uses a MILP with the objective of minimizing the energy
consumption of the shovels and trucks taking into account the targets of the
production plan in an open-pit coal mine. The model uses a sequence of loading
‘slots’ per shovel to organize the operations of trucks and shovels.

In our model, trucks can be assigned to any shovel. The shovels are assigned
to one pit and the material extracted by a shovel must be transported to a
destination throughout the shift. Shovels can load one truck at once. At a crusher,
one truck can unload at once, whereas in a waste dump or a stock pile several
trucks can unload simultaneously. The notation of sets, indices, parameters and
decision variables used in the model is shown in Table 1.

The objective function (1) is to minimize the cost (in terms of time) that is
taken by the shovels and the trucks to perform the operations. Restriction (2)
ensures that at most one truck is assigned to each time slot l on each shovel.
Restriction (3) ensures that no more than one truck r is loaded on the shovel at
once. Restriction (4) ensure that at crushers, no more than one truck can unload
at a time. The restriction (5) ensures that an unloading time (μs,l), starts after
the loading starts (λs,l) plus the time it takes to perform the loading Cs and
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Table 1. Formulation notation.

Set Index Description

S s Shovels

R r Trucks

Ls l Slot time of the shovel s

J j Destinations

Parameters

Cs Loading time of shovel s

Cj Unloading time at the destination j

Cs
j Travel time from shovel s to the destination j

Cr
s Travel time of truck r to shovel s (only at the beginning of the shift)

Cj
s′ Travel time from the destination j to next shovel s′

Ar Truck capacity

δs The target of extracted material by shovel s

M Sufficiently large positive number

Decision variables

Xr,s,l 1 if the truck r loads at shovel s in the time slot l, otherwise 0

λs,l Loading start time of shovel s in time slot l

μs,l Unloading start time of material extracted by shovel s in time slot l

λseq
r,s,l,s′l′ 1 if truck r was loaded by shovel s in time slot l before being loaded in

shovel s′ and slot time l′. Otherwise 0

the travel time to the destination Cs
j . The restriction (6) ensures that the next

loading of a truck in l′ must be after the truck ends the unloading in l.

Min
∑

∀s,l
(Cj

s + Cs + Cs
j + Cj) (1)

∑

∀r
Xr,s,l ≤ 1 ∀l, s (2)

λs,l+1 − λs,l ≥ Cs ∀l, s (3)

μs,l+1 − μs,l ≥ Cj ∀s, l (4)

μs,l ≥ λs,l + Cs + Cs
j ∀l, s (5)

λs′,l′ ≥ μs,l + Cj
s′ + Cj − M(2 − λseq

r,s,l,s′l′ − Xr,s,l) ∀r, l, s, s′l′ (6)

Xr,s,l =
∑

s′,l′
λseq
r,s,l,s′l′ ∀r, l, s (7)

Xr,s,l =
∑

s′,l′
λseq
r,s′l′,s,l ∀ r, l, s (8)

∑

r,l

Xr,s,lAr ≥ δs ∀s (9)
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λs,1 ≥ Cr
s − M(1 − λseq

r,0,0,s,1) ∀r, s (10)
∑

s,l

λseq
r,0,0,s,l = 1 ∀r (11)

∑

s,l

λseq
r,s,l,0,0 = 1 ∀r (12)

Restrictions (7) and (8) ensure that the sequence of each truck has one prede-
cessor and a successor. Restriction (9) ensures that the proposed loading targets
in the production plan for each shovel are met. Restriction (10) ensures that a
truck travel time to its first loading point must be considered at the beginning
of the shift. Restriction (11) ensures that all trucks start in a dummy pit. This
pit represents the initial place where a truck is at the beginning of the shift.
Restriction (12) ensures that all trucks also end the shift in a dummy pit.

4 An Alternative Solution Approach: Multiagent System

A Multiagent System (MAS) is a system collection of agents that are intelligent
software programs representing an entity from the real world and/or provide a
certain service [4]. The agents act autonomously and make decisions to reach the
objectives of their represented entities using their specific data, communication
mechanisms and sharing their knowledge. A problem can be divided into smaller
problems that the agents can solve optimally due to the smaller complexity of
the problem.

4.1 Scheduling MAS Architecture

The objective of the implemented MAS is to accomplish the goals of the pro-
duction plan at minimal cost. Applying this approach allows us to model truck
dispatching in a way that is closer to reality and to avoid the weaknesses of
centralized systems. The agents implemented in the MAS include the following
ones:

– Truck agent: This agent represents a truck of the real world. Its objective is
to create a schedule of the operations of the truck at minimal cost. The main
specific data used are capacity, loaded velocity, empty velocity, spotting time
and unloading time. In addition, the agent uses the layout of the mine. The
agent can play the role of a participant in a negotiation process.

– Shovel agent: This agent represents a shovel of the real world. Its objective
is to create a schedule of the operations of the equipment that it represents
considering its target in the production plan. The main specific data are
capacity, dig velocity, load velocity and the destination of extracted material.
The agent can play the role of an initiator in a negotiation process.

– UnloadingPoint agent: This agent represents a crusher, stockpile or waste
dump of the real world. Its objective is to create a schedule of the operations
of the equipment that it represents. The main specific data is the number of
trucks unloading simultaneously.
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4.2 Interaction in the Scheduling MAS

In order to create the schedules, the agents must interact with each other using
the Contract Net Protocol (CNP) [9] which is a well-known negotiation mech-
anism for task sharing with near-optimal solutions. In this context, the CNP
works as follows: a Shovel agent starts a negotiation process sending a call for
proposals (CFP) to the Trucks agents pointing out the time when the shovel is
available to load a truck and the idle time from the last loading.

When a Truck agent receives the CFP it must evaluate it. The agent checks its
schedule and asks the UnloadingPoint agent for information about the prospec-
tive waiting time. With this information, the Truck agent calculates the arrival
time and the cost to perform all the operations and decides to send a proposal or
to refuse the CFP. If it sends a proposal, the Truck agent waits for the answer.
The Shovel agent receives the proposals and after receiving all proposals or if the
deadline is expired, looks for the best proposal. Then, the Shovel agent sends an
acceptance message to the Truck agent that offered the best proposal and sends
a rejection message to the other Truck agents. The Truck agent that receives the
acceptance of its proposal adds a new assignment to its schedule. The Shovel
agent adds it to its schedule. If the Shovel agent does not receive proposals, the
negotiation is finished.

As the agents work in parallel, several CNP negotiations are done concur-
rently. As a consequence, a Truck agent may receive several CFPs. If the Truck
agent sends a proposal answering one of this CFPs, it must wait for the answer
from the Shovel agent, and therefore, the other received CFPs are refused. This
situation can generate that the Truck agent refuses a CFP that is a better option
than the CFP answered previously. This problem is also called “the eager bidder
problem” [8]. To avoid this problem, a confirmation stage was included in the
CNP that works as follows: when the Shovel agent finalizes the evaluation of
the proposals, it sends a confirmation message to the Truck agent with the best
proposal. The Truck agent that receives the confirmation message, could refuse
the confirmation (in the case that it has received a better CFP), otherwise it
can accept the confirmation. If the Truck agent refuses the confirmation of the
Shovel agent, the Shovel agent sends a confirmation message to the next best
proposal received. In this way, the Truck agent could decommit a previous pro-
posal sent. If the Shovel agent receives only rejections from the Truck agents, the
negotiation process is ended. Figure 2 depicts the interaction between the agents
using the CNP with confirmation stage. Table 2 shows a schedule example for a
truck created by the MAS using this protocol.

4.3 Decision Making

The decision making process among agents is one of the most important char-
acteristics of a MAS. A bad design of the decision making could generate bad
results or lets the agents take more time for their decisions affecting the perfor-
mance of the MAS.
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Table 2. Example of schedule created for a truck.

Assignment Destination Trip start

time

Arrival

time

Spotting

start time

Loading or

unloading

start time

Assignment

end time

0 Shovel.01 00:47:01 01:20:23 01:20:23 01:21:36 01:23:12

1 WasteDump.02 01:23:12 01:32:33 01:32:33 01:32:33 01:33:23

2 Shovel.04 02:10:39 02:18:47 02:18:47 02:20:00 02:21:12

3 WasteDump.03 02:21:12 02:26:38 02:26:38 02:26:38 02:27:28

4 Shovel.04 02:27:28 02:31:37 02:31:37 02:32:50 02:34:02

5 WasteDump.03 02:34:02 02:39:28 02:39:55 02:39:55 02:40:45

Fig. 2. The interaction between the agents using the CNP with the confirmation stage.

The Shovel agents receive proposals from the Truck agents. These proposals
mention the time that a truck could start the loading at the shovel, and the time
that it takes to perform all the operations. After receiving all the proposals (or
if the deadline is expired) the Shovel agent evaluates all the proposals using a
utility function. This function promotes those proposals that propose to start
the loading on time and with the least time to perform all operations. In this
way, the Shovel agent selects the proposal that minimizes its idle time and offers
the least truck cost.

The Truck agent must decide, after receiving a CFP, if the offer can be
performed by the truck. It must determine if the loading time offered by the
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shovel fits the schedule of the truck. If there is no time slot, the Truck agent
rejects the CFP. If there is a time slot, the Truck agent must calculate the total
time that it takes the truck to perform all the operations and it determines if
the offer is suitable for the time slot. In this process, the Truck agent applies the
Djikstra algorithm [3] to find the shortest paths (from the last unloading point
to the shovel and from the shovel to the destination of the material extracted
by that shovel) and calculates the travel times. If the offer suits the time slot,
the Truck agent sends a proposal, otherwise rejects the CFP.

Another decision of the Truck agents is on the confirmation stage. After
receiving a confirmation message from the Shovel agent, the Truck agent must
decide to confirm the message or reject it. If it is taking part in another nego-
tiation process with a potential better award (in this case a negotiation with a
lower cost for the truck) the Truck agent will reject the confirmation message of
the Shovel agent, otherwise it will accept it.

If the Shovel agent completes a negotiation process without a winner, it starts
a new negotiation process, but increases the loading time offered by one minute
this time. However, it could happen that the negotiation ends again without a
winner, and the Shovel would start another negotiation process adding another
minute to the offer. This situation would generate idle time in the schedule of the
shovel. To avoid this, the Truck agents consider the shovel idle time from the last
loading. If the shovel idle time from the last loading is less than one minute and
the Truck agent is taking part in another negotiation with a potential better
award, the agent rejects the confirmation message. Nevertheless, if the shovel
idle time is higher or equal to one minute, the Truck agent must confirm it. In
this way, the Truck agents prefer to achieve the goals of the production plan
instead of decreasing their own cost.

5 Results and Discussion

Two experiments were done to validate the approach. The purpose of the first
experiment was to compare the time that takes the MAS to generate schedules
against the time that takes an exact solver with the implementation of the
mathematical model presented in Sect. 3. The purpose of the second experiment
was to compare the truck cost obtained by the MAS against actual data.

The experiments use actual data from an open-pit copper mine in Chile. In
that mine, the equipment items operate in shifts of 12 hours and the material
handling is done with a heterogeneous fleet of trucks and shovels. The specific
data of the agents were taken from the actual real-world data. The actual data
were generated by DISPATCH (TM), which is a centralized system based on
dynamic programming [5]. The implemented MAS was deployed and executed
in PlaSMA [10], which is a simulation platform for MAS. The implementation
of the mathematical model was done in CPLEX.

In the first experiment, several simulations run with different parameters. All
instances use the same data, i.e., the same mine layout, and trucks and shovels
with the same characteristics. The differences are the number of equipment items
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and the length of the shift. Table 3 shows different instances (H: length of the
time horizon of the shift; the number of shovels; the number of trucks) and the
performance results of the MAS and CPLEX in term of calculation time for the
schedules.

Table 3. Times needed for the MAS and CPLEX to generate the schedules.

Instance H Shovels Trucks MAS time (min) CPLEX time (min)

1 1 1 10 0,04 0,06

2 3 3 25 0,43 5,06

3 6 5 40 2,45 >180

4 9 7 60 4,52 –

5 12 9 85 16,74 –

In the case of the bigger instances, the MAS provides the schedules in a
practical time frame of about 16 min on a standard PC. This is due to the
characteristics of the MAS technology, that lends itself to a mainly distributed
organization, parallel processing, and a lower computational power requirement.
The results obtained from the mathematical model implemented in CPLEX
show that is not possible to get solutions for the bigger instances in practical
time. This is because of the increase of variables generates a large number of
combinations that the solver must evaluate.

In the second experiment, 5 real-world shifts were simulated. The MAS gen-
erated schedules for the shovels to extract the same amount of material extracted
in the actual data. Table 4 shows a comparison between the actual transported
material and the material that could have been transported following the sched-
ules proposed by the MAS.

Table 4. Comparison of the production target cost of MAS schedule vs actual data.

Id Shift

(hours)

Shovels Trucks Actual

material

transported

(tons)

Actual

travel time

(hours)

Simulated

material

transported

(tons)

Simulated

travel time

(hours)

Delta

material

transported

Delta

travel

time

1 12 11 99 350.117 821,9 351.659 597,44 +0,44% −27,31%

2 12 12 96 350.005 796,36 351.895 668,37 +0,54% −16,07%

3 12 11 98 404.921 849,97 405.903 713,33 +0,24% −16,08%

4 12 12 94 409.555 813,01 411.345 676,99 +0,44% −16,79%

5 12 12 93 386.973 783,49 389.404 656,58 +0,63% −16,2%

The solution provided by the MAS achieves the targets of the production plan
at, on average, decreased cost by 18% even with marginally bigger production
goals. One of the reasons for these savings is that the MAS travel times of a
truck are smaller than the travel times in the actual data since the agents in the
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MAS use the shortest path for their travels, whereas the truck operators in the
real world decide by themselves which path to follow. Another reason is the use
of specific data to allow for more adapted calculations of the operation times of
every equipment, and in this way, the agents can create more appropriate and
efficient schedules.

6 Conclusions

A Multiagent System for truck dispatching in open-pit mines has been presented.
Experimental results show that the MAS provides more precise solutions than a
centralized system within a practical computation time frame. In addition, the
generated schedules by the MAS are more efficient since they decrease the truck
cost on average by 18% meeting even marginally bigger production goals.

Future investigations will address two aspects: on the one hand, the dynamic
of the material handling process, e.g., dealing with a major change in the mine
such as equipment failures or changes in the mine layout. In this case, the affected
agents will have to react appropriately, interacting with each other to update
their schedules. On the other hand, the MAS will be compared against other
methods that provide solutions in practical frame time such as metaheuristics
algorithms.
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