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Abstract. Emergency service systems provide essential services to people in
need. Most of them have to operate under uncertainty and in complex envi-
ronments. Their locations have to be chosen in a way that all or at least most of
the incoming demand can be covered within a justifiable response time. In this
paper, a hypercube queuing approach is presented that locates a high amount of
emergency units within a large-scale study area. Due to the hypercube restric-
tions, computational times increase with the number of servers that are located.
Therefore, an algorithm for the aggregation of demand areas is presented. To
find an at least appropriate solution, a genetic algorithm is applied. It can be
shown that computational times can be lowered significantly while the solution
error is minimal. Furthermore, average response times for the emergency service
system decrease with the location of additional servers in the study area.
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1 Introduction

Emergency service systems (ESS) are systems that provide immediate help to people in
need. Possible areas of operation include fire-rescue, on-site medical care as well as
emergency services in the case of man-made or natural disasters. Most ESS are subject
to certain requirements regarding their coverage of the respective area and their
response times. Due to the inherent uncertainties and the spatial distributions of
demand in the system, the location decisions are not straightforward and have to be
taken with respect to the underlying study area and the spatial distribution of the
demand. Therefore, locations have to be chosen in a way that, even in remote parts of
the study area, all or at least most of the incoming demand can be covered within a
justifiable response time. A huge body of existing literature deals with the location
optimization problem by using various models and techniques.

In this paper, a model is presented that incorporates methods of the hypercube
queuing model (HQM) into a location problem for large-scale study areas and location
decisions. The model can be used to optimize location decisions of ESS in large-scale
study areas like the location of ambulances or other emergency vehicles in a city area.
In order to deal with the computational efforts that are required for the location of many
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emergency units, an aggregation algorithm (AA) is proposed. The paper is organized as
follows: In Sect. 2, a brief literature review discusses existing contributions to the
location of ESS and the HQM. Section 3 contains the formulation of the model as well
as the AA. The applied metaheuristic, the exemplary study area as well as the com-
putational results are presented in Sect. 4. Section 5 includes the conclusion as well as
future research directions.

2 Literature Review

Facility location models are used by private and public organizations to determine
optimal or near-optimal locations for their entities, like warehouses and, in the case of
ESS, emergency stations or fire departments. Comprehensive reviews of facility
location models for ESS can be found in Brotcorne et al. [1], Caunhye et al. [2] and
more recently in Farahani et al. [3]. In general, facility location models for ESS can be
divided into coverage models as well as p-median models. While the first group intends
to locate facilities (also called servers in the case of ESS) in a way that maximizes the
coverage over a demand area, the second group tries to minimize the distance between
the demand points and the servers.

2.1 Coverage and P-Median Models

The very first contributions to the ESS location problem used static and deterministic
inputs to obtain demand locations while ignoring factors like changing demands or
other inherent dynamics of such systems. Toregas et al. [4] formulated the Location-
Set-Covering-Model that required all demand being fulfilled within a pre-determined
time frame. Church and ReVelle [5] proposed the Maximum-Coverage-Location-
Problem (MCLP) that determines the location of each emergency unit in a way which
maximises the covered space of each part of the study area. Daskin and Stern [6] stated
an extension to the MCLP that maximizes the number of demand areas that is covered
more than once. Hogan and ReVelle [7] formulated models that maximize backup
coverage while Gendreau et al. [8] developed a model that uses two distinct time
constraints. The p-median model was originally stated by Hakimi [9]. Calvo and Marks
[10] used it to locate multi-level health facilities. Carson and Batta [11] determined a
dynamic ambulance positioning strategy with the help of a p-median model.

2.2 Hypercube Queuing Model

The HQM is a markovian finite-state model and was initially stated by Larson [12] as a
combination of queuing theory, facility location and analysis. It was then used to
evaluate the performance of an underlying system. Based on a given set of server
locations, the HQM can be used to derive certain performance measures that can be used
to evaluate the decision-making. Larson [13] later introduced the approximate HQM
that reduced computational difficulties while incorporating the original model. Since
then the HQM has been widely applied and extended. This includes the better estimation
of service rates [14], multiple dispatch of servers [15], modeling of co-located
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servers [16] and customer-dependent service rates [17]. More recent extensions focus on
the incorporation of waiting lines and customer preferences [18, 19].

Since the basic HQM and its extensions are descriptive models, they cannot be used
to obtain optimal locations of facilities or servers [20]. The performance metrics that
can be obtained by solving the basic HQM therefore need to be embedded in an
optimization process [21, 22]. Batta et al. [23] and Saydam and Aytug [24] used the
HQM in combination with the maximum expected coverage location problem
(MEXCLP) to evaluate the performance of the derived locations. Galvão et al. [25]
relax the server independence assumption of the maximum availability location
problem with the help of the HQM. Geroliminis et al. [26] develop the spatial queuing
model (SQM) and introduce server specific service rates as well as the allocation of
demand areas to the responsible servers while minimizing the average response time of
the overall system. Geroliminis et al. [27] develop a method for larger scale systems
and propose a districting algorithm by reducing the steady states. Boyaci and Geroli-
minis [28] present two different models that also reduce the state-space by aggregating
servers. Iannoni et al. [29] state a hypercube approximation algorithm to consider large
numbers of emergency units. Akdogan et al. [30] propose different possible formula-
tions of service rates in a SQM-based emergency service location study.

The use of the HQM can lead to more precise performance measures as well as the
incorporation of server unavailability and backup structures. To the author’s best
knowledge, only [27, 28] and [29] consider large-scale ESS design while using HQM
based methods. The existing body of literature reduces computational efforts mostly by
reducing the state space. In large study areas the computational times do not only solely
depend on the number of servers that are considered, but also on the number of demand
areas. Since server responsibilities have to be checked for each state and demand area,
increasing demand areas in a study area also increases computational times signifi-
cantly. Due to the advances in computational power, larger number of emergency
vehicles can nowadays be analysed without necessarily compromising the steady-state-
space. Some of the required assumptions, like symmetrically located servers, identical
workloads or homogenous demand, can reduce the accuracy of the solutions found by
the model. In this paper, an approach that does not reduce the steady-state-space, but
builds on dynamic formation of super demand areas is presented.

3 Large-Scale SQM

Consider a study area of J individual demand areas (atoms). In order to serve the
incoming demand, several servers N have to be located within the study area. It is
assumed that not every server can be sent to each atom. Therefore, each server has
primary and lower level response areas that are determined with respect to the spatial
distribution of the demand. The servers can only be busy or available and thus have
only two, binary coded, states. If we consider a five-server system, in which the first,
third and fifth server is busy, the corresponding state can be denoted as 10101. This
generates 2N different states for the system that are the vertices of the hypercube and are
named Ba. The probabilities of each state are derived from an equation system that
balances the flows between the separate hypercube states. The underlying equation
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system is constructed by formulating one equation for each state that includes all
upward and downward tranisitions. An upward transition happens for all incoming
demand calls from the relevant demand areas and a downward transition happens
whenever the server that differs between the two states completes its service. The
resulting probabilities of the equation system describe the likelihood of each state of the
hypercube queuing model.

The occurring demand is defined as a call for emergency help and happens solely at
the center of each atom. It is assumed to be independent and not per definition identical
between the atoms while following a time homogenous Poisson distribution. Whenever
a demand (call) enters the system, the available servers are checked for availability and
the closest available server is then dispatched. After completion of service, the dis-
patched server returns to the base location. If no server is available, the incoming call is
lost to the system.

3.1 Model Formulation

The optimization model can then be formulated as follows:

minT¼
XN

n¼1

XJ

j¼1
pnjtnj ð1Þ

Subject to:

XJ

j¼1
fjyj � Ccov ð2Þ

X
i2Wj

xi � yj8 j 2 J ð3Þ
XI

i¼1
xi ¼ N ð4Þ

xi; yj 2 ½0; 1� 8 i 2 I; j 2 J ð5Þ

P Bbf g½P a

Ba 2 CN : d�ab ¼ 1

� � kab þ P
a

Ba 2 CN : dþ
ab ¼ 1

� � lab�

¼ P
a

Ba 2 CN : d�ab ¼ 1

� � P Baf glab þ P
a

Ba 2 CN : dþ
ab ¼ 1

� � P Baf gkab 8 b ¼ 0; 1; . . .; 2N � 1

ð6Þ
X2N�1

a¼0
PfBag ¼ 1 ð7Þ

pnj ¼ fj

P
Ba2Enj

PfBag
1� Pf2N�1g 8 j 2 J, n 2 N ð8Þ

A notation similar to [30] is used. J describes the set of regions, N the number of
servers to be located while I is the set of potential location sites. Wj is the set of
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locations covering atom j. xi, yj are binary variables that show whether location site i is
chosen or atom j is covered. Ccov is a pre-defined coverage value that takes a value
equal or less to 1. k is the system wide demand and fj the demand fraction of atom j. pnj
is the fraction of dispatches server n sends to atom j, tnj is the travel time of server n to
atom j. CN denotes the vertices of the N-dimensional hypercube. kab and lab are the
upward and downward transition rates of the system, e.g. the transition rates that lead to
a change of the system from state a to state b corresponding to the respective vertices
Ba and Bb of the N-dimensional hypercube while PfBag is the associated steady-state-
probability of vertex a. kab is the demand for a service offered by the ESS and lab is the
service rate for the requested service. dþ

ab and d
�
ab are the upward and downward

Hamming distances from state a to state b and describe the difference in notation
between the two states. For example, the difference ðdþ

ab Þ between state 10000 and state
10001 is one. Enj describes the set of states in which server n is the nearest available for
region j. The model is controlled over the decision variables xi and yj with tnj as an
input.

Constraint (2) ensures that a certain pre-defined coverage level ðCcov � 1Þ is met.
Constraint (3) controls the decision variable yj with respect to the coverage of Atom j.
Constraint (4) guarantees that only the pre-defined number of vehicles is located.
Constraint (6) specifies the equation system that is necessary to derive the steady-state-
probability of the HQM. Each equation defines the balance of flows of one hypercube
state. The sum of the probabilities of all hypercube states is equal to one (Constraint
(7)). Since per definition incoming demand calls can be lost due to unavailable servers,
the sum of the fraction of dispatches from all servers to one demand area can be lower
than one. The denominator of (8) normalizes the fraction of dispatches under the
consideration that not all servers are busy (the steady-state Pf2N�1g). Each fraction of
dispatch pnj describes the probability of a dispatch for server n to demand area j. This
probability is then multiplied in (1) with the travel time of server n to demand area j to
derive the expected average response time of the system.

The upward and downward transition rates are key inputs to the HQM and form the
equations of the equation system in (6). Two important characteristics of the SQM as
debuted by [26] are the spatial distribution of the demand as well as the assumption and
calculation of districting levels. The later refers to the degree of coverage of each
demand area that is provided by servers with downstream preferences. Since the model
in this paper considers a large number of servers and demand areas, computational
efforts for a complete backup are prohibitive and only third-level districting is used.
The term d-th level districting refers to the partitioning of the study area in sub-areas
according to the n-th nearest servers. For every d > 1 this means, that whenever the
d − 1 nearest server is unavailable, the d nearest server responds. For every level of
districting, the demand must be covered. The upward transition rate between vertex a
and b of the hypercube can be calculated as follows:

kab ¼ k1kk þ
P

l12N:bl1¼1 k
2
l1k

þ PM
m¼2

P
l1...;lm2N:

Qm�1

i¼1

bli¼1

kml1k \ km�1
l1lm�1

\km�2
l1lm�2

\ . . .\ k2l1l2 ð11Þ
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The equation above denotes that, given the system is in state a, server unit k
responds to any demand in its area of responsibility D1

kk or any other demand area Dm
lk

for server l, as well as the m − 1 nearest responsible servers (denoted by l) are
unavailable. k1kk and k

m
lk describe the demands of the demand area D1

kk or Dm
lk respec-

tively. The upward transition rate from state a to state b therefore consists of all
demands from the demand areas for which server k is the primary server and from the
demand areas for which server k is a lower tier server in the case of the first m − 1
servers of the preference list being unavailable. For a practical example of the parti-
tioning of the study area into the sub areas the reader is referred to Akdogan et al. [30].

For calculating the downward transition rates, i.e. the service rate, there are several
approaches in the literature. Geroliminis et al. [26] initially introduced a server-specific
weighted-average approach that builds on the calculation of the demand rates without
specifically considering the travel times to the atoms. In real life, travel times from the
server to the demand area impact significantly the service rate of the server and the
ESS. Akdogan et al. [30] therefore have stated an approach that is independent of the
demand of the sub areas, but explicitly considers travel times from the server location
to the location of the occurring demand. State a and state b differ at exactly one position
of their state spaces. The location of the deployed server is then denoted by rk with wkj

being the travel time from location rk to demand area j. ;rk is the incident handling rate
and T is the given time period. The incident handling rate per sub area then can be
expressed as the number of possible deployments per hour with the denominator of
(12) consisting of the incident handling time plus two times the mean travel times. The
downward transition rate then is the sum of the incident handling rates of all sub areas
ðj 2 LjkÞ that can cause a transition from state a to state b:

lab ¼
X

j2Ljk

T
T
;rk

þ 2 � wkj

ð12Þ

3.2 Aggregation Algorithm

The HQM sets up a linear equation system with 2N equations. The computational
efforts and the solving time increase significantly with N. [27] tackle this problem with
postulating a districting approach that reduces the number of equations to N. This is
done by the assumption of symmetrical server locations as well as homogeneous
demand and hence identical workloads of the servers. The states with the same number
of busy servers are then summarized into one “super-state”. The approach presented in
this paper does not compromise the expressiveness of the steady states but aggregates
the demand areas dynamically with respect to the server locations as well as the
demand areas. Since the exploratory study area considers a large number of demand
areas, the computation time for generating the upward and downward transition rates
increases significantly with the number of servers. Because the calculations have to be
done for each proposed solution, the AA has to adapt dynamically to the server
locations and the allocation of the demand areas to the servers. The AA is done in the
following steps:
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1. Determination of the D-nearest servers for each demand area (D = maximum level
of districting)

2. Formation of new super demand areas for demand areas with the same server
allocation for i = 1, …, D

3. Aggregation of demand of the original demand areas into demand of the super
demand areas

Since the preferences of the individual demand areas do not change during the
aggregation into super demand areas, the calculation of upward transition rates remains
the same. The aggregation of the demand areas requires the calculation of new travel
times. Equation (13) builds on (12) and uses a weighted demand approach to calculate
the new travel times wkj. The fraction of demand from demand region j of the super
demand area As is used to weigh the original travel time from server k to demand area j.
The downward transition rate is then calculated as a sum of all demand areas that
belong to the respective super demand area.

l0ab ¼
X

j2As2Ljk

T
T
;rk

þ 2 �Pj2As

kjP
j2As kj

wkj

ð13Þ

4 Solution Technique, Study Area and Results

The objective function in (1) has no closed-form expression. Therefore, an algorithm is
needed to solve the proposed model. In this paper, a genetic algorithm (GA) as in [27]
and [30] is applied. The GA tries to mimic evolutionary processes and to find optimal
or near-optimal solutions by eliminating bad proposed solutions through survival of the
fittest. In order to avoid local minima, mutation techniques are used.

4.1 Study Area

For the design of the exploratory study area, a 500 � 500 grid with 500 demand areas
is considered. ESS often operate in urban environments, but also have responsibilities
for more rural areas. Therefore, the demand areas are evenly spread over the study area
and one urban agglomeration is considered. About a third of the demand points are
located within the area of the urban agglomeration. Due to the combination of less and
higher populated parts of the study area, the servers have to be located in a way that
minimizes the mean response time for both groups of demand areas. The reference time
period is one hour. The demand of the demand areas follows a time homogeneous
Poisson distribution with the mean of 2 in the urban agglomeration area and 1 in the
rural parts of the study area. ;rk is set to 1.

4.2 Results

The model, as well as the corresponding algorithm, were coded in C++ and run on a
Intel Core i7 processor. The genetic algorithm was run 125 generations with a popu-
lation size of 20 individuals in each.
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The computation time increases significantly with the number of servers, especially
in the nine and ten server case. The use of the proposed AA lowers the computation
time to about one fourth in the 5 to 8 server-case and about one third in the 9 and 10
server-case. The number of super atoms rises with the servers that are considered due to
the higher number of possible districting combinations that arise with more servers.
This mitigates the performance advantage of the AA only to a rather small degree, as
seen by the shallower course of the AA graph in Fig. 1.

The mean average response time of the system decreases significantly with the
consideration of additional servers. With two (five) additional servers the mean
response time of the system decreases by about 11(21)% due to the shorter travel times
from the server locations to the demand areas. It can be shown that the marginal benefit
of additional servers diminishes. The locations found in the optimization process with
the AA are then used to compute the travel time when using the full model. The
deviation percentage is not significant and under 2% in all cases (Figs. 2 and 3).

0

25000

50000

75000

5 6 7 8 9 10

Number of servers

without AA with AA

Fig. 1. Computation time in seconds.
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Fig. 2. Mean average response time in minutes for the 5, 7 and 10 server case.
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5 Conclusion

In this paper, an approach to incorporate larger study areas and larger number of
servers into a hypercube queuing location model was presented. It could be shown that
computation times can be reduced significantly while the steady state space as well as
the quality of the solutions found is not compromised. Additional servers can also help
to reduce the response time of ESS. It could be further shown that the quality of the
solutions found is within 2% of the exact model. The proposed AA allows decision
makers to include a larger number of servers or location sites into their analysis and
decision process. Since the computational error is proven to be marginal, the use of
proposed AA within HQM location models allows for a more accurate analysis and
more realism, especially in the analysis of large study areas, like metropolitan areas.

Future research in this area could include the inclusion of dedicated waiting lines
for incoming demand calls, the consideration of different day times as well as the
comparison of different dispatch policies. The use of real data from ESS that have
responsibilities for both rural and urban areas could add a further benefit.
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