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Abstract. With the development of Industry 4.0 and the Internet of
Things, autonomous production control is regarded as a feasible and
promising approach for meeting the increasing challenges of complexity
and flexibility. To implement autonomous production control methods
in practice, a deeper understanding of their characteristics is necessary.
This research provides a comparative perspective on existing methods.
We study selected autonomous production control methods under various
scenarios, and derive insights for the design of such systems in industrial
practice.
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1 Introduction

Confronted with the challenge of high complexity and volatility, manufactur-
ers desire a higher degree of agility and flexibility in production planning to
stay competitive. Autonomous production control appears to be a promising
approach, as it enables logistic objects to process information and to render
and execute decisions on their own [22]. It is able to handle dynamic and com-
plex production circumstances by distributed and flexible coping of complexity.
Through the development of Cyber-Physical Production Systems (CPS), 5G and
Internet of things (IOT), autonomous production control has increasing poten-
tial and practical significance. Several autonomous production control methods
have been introduced in last 20 years. Previous studies have shown that in cer-
tain settings autonomous production control can achieve logistics targets better
than conventional production planning and control approaches [11].

Many open questions regarding the characteristics of autonomous production
methods remain, and knowledge on these can significantly ease their implementa-
tion in practice. In this paper, we review the performance of selected autonomous
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production control methods through simulation, evaluating their performance
characteristics. The remainder of this paper is structured as follows. In the next
section, we provide an overview of selected autonomous production control meth-
ods. Subsequently, we describe the deployed methodology as well as our simu-
lation results. The last section gives a conclusion on our main results as well as
avenues for future research.

2 State of the Art

2.1 Autonomous Production Control

Production planning and control is an essential tool for any manufacturer. It
addresses the allocation of resources to jobs and the subsequent creation of a
schedule. In order to measure the performance of PPC, several indicators are
used such as throughput time (TPT), work in progress (WIP), delay rate and
utilization. Traditionally, a production schedule is created by a central plan-
ning authority. Autonomous production control however is based on a different
approach: Every entity within the system, i.e. machines, resources, products,
is equipped with a certain degree of intelligence. Through addition of com-
putational power and connectivity combined with either a distributed control
approach or a centralized control entity, each entity is able to monitor its envi-
ronment and coordinate with other entities with the manufacturing system. This
approach enables the system to be more agile and react quickly to any distur-
bance at its source. Thus, the system exhibits a high degree of flexibility, and is
able to continuously adapt its schedule on a machine level [2].

2.2 Existing Autonomous Production Control Methods

Windt et al. divided autonomous production control methods into three
approaches: rational, bounded rational, and combined strategies, which were
derived from behavioral economics [20]. Examples of rational methods are QLE
and DLRP. In these methods, objects exchange relevant information and decide
according to future system states anticipation [4]. Biologically methods, such as
Ant, PHE, Bee Foraging and Chemotaxis, belong to rational methods and use
aggregated data from past events [12].

Scholz-Reiter et al. classified autonomous production control methods into
two categories: local information methods and information discovery methods
[12]. Local information methods gather and process only local information, such
as QLE and PHE. Information discovery methods can collect relevant informa-
tion from other objects, but not cover the whole system, such as DLRP.

2.3 Research Gap

There have already been studies on autonomous production control methods,
comparing different approaches. For example, Scholz-Reiter et al. conducted a



Autonomous Production Control Methods 229

simulation study in 2009, but only compared three different autonomous con-
trol methods, namely QLE, DUE and PHE [11]. Windt et al. compared the
performance of autonomous production control methods in two scenarios (with
and without machine failure) by simulation [21]. As far as we know, the lat-
est research in this field was conducted in 2011 by Becker et al. comparing six
methods in 4 simulation scenarios: standard, full flexibility (suspend processing
sequence to increase decision alternatives), increased load (increase processing
time by 10%), both of full flexibility and increased load [2].

Table 1. Autonomous production control methods

Methods c.f Year Key idea

Holonic manufacturing [6] 1996 Machines bid to get jobs and get punished for
delays

Market based [17] 2000 Parts carry a shopping list of work needed to
be done, parts auction for access to the
machines

Ant [3] 2001 Ants choose machines based on pheromone
concentration

Pheromone based
approach (PHE)

[1] 2006 Average throughput time is used as a
pheromone

Due date method [14] 2007 QLE and choose the most urgent due date in
queue

Distributed logistics
routing protocol
(DLRP)

[19] 2007 Machines communicate best routes

Queue length estimator
(QLE)

[13] 2007 Compares estimated waiting time at buffers

Bee foraging [13] 2008 Based on the routes of previous parts

AMS-SCA [9] 2012 Based on a swarm of cognitive and adaptive
agents

Potential field (PF) [8] 2012 The state of potential field depends on the
attractiveness of the resource providing the
service

Pheromone based
coordination (PBC)

[18] 2012 The pheromone quantum of manufacturing cell
is calculated inversely proportional to the cost,
which guarantees a minimal cost to process the
orders

Sudo [16] 2013 A part agent chooses a machine, by the length
of a job list and the conveyance cost

Integrated APC [5] 2017 An integrated method considering order
release, sequencing and capacity control to
meet due date

Direct workload
(DWL)

[4] 2018 Jobs are allocated only to the valid machine
with the lowest workload
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We expand on this by evaluating newly developed methods after 2011 in
different simulation scenarios.

3 Methodology

3.1 Simulation Setup

The main simulation scenario is a make-to-order shop floor with five produc-
tion stages. Within each stage, 6 functional equivalent machines are available as
also reviewed by Schipper et al. [10]. These machines are denoted by 1, . . . , 30.
However, these machines behaviour is not identical: Their processing times vary
slightly, and their production cost is adjusted accordingly. This structure is visu-
alized in Fig. 1.

Fig. 1. Flexible network setup

In order to create a simulation that allows us to compare the aforementioned
methods, we work with the following seven assumptions:

1. Each product needs to be processed in every stage, in ascending order.
2. The arrival of jobs follows a Poisson distribution with parameter λ, and

the processing time of the machines follows an exponential distribution with
parameter μi, i ∈ {1, . . . , 30}.

3. The lot size per arrival is assumed to be one, which equals the capacity of all
the machines. Machines process parts according to the first-come-first-served
principle.

4. No limit on queue length.
5. Besides the machines, other resources are available at all times.
6. Setup times are included in the processing time, and transportation times

between machines are negligible.
7. The cost of each processing process can be expressed as ci, i ∈ {1, . . . , 30}.

The parameters for the six machines within a stage are not equal, μi is set
at the start for all simulation runs by adding a random offset to the base value
for the machines of that stage.

This setup defines our standard scenario. We extend this setup by considering
the possibility of machine breakdown. This results in two scenarios, for which
the selected autonomous production control methods will be compared.
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3.2 Selected Autonomous Production Control Methods

As a baseline for the simulation, we included the classical autonomous production
control method of QLE. Furthermore, four new methods developed after 2010
were chosen: AMSSCA, PF, DWL and PBC, as they have not been reviewed in
the previously mentioned studies. Additionally, they fulfill further criteria such
as feasible implementation and comparability as well as a similar scope. Conse-
quently, we compare the performance of methods for local decision making on
dispatching, similar to most approaches [5]. We do not consider the autonomous
production control method of Grundstein et al. as its scope is much wider in
comparison, including dispatching, queue processing and capacity control [5]. In
the remainder of this section we introduce each chosen method briefly.

The QLE method compares the full queue length of all viable processing
paths, and chooses the shortest one. The queue length of a machine is given by
the estimated total operation time of all parts within the queue of the machine.
As such, this method uses expected information, and tries to minimize the cor-
responding expected waiting time.

The AMS-SCA method chooses the optimal machine based on a pheromone
markers value among the available machines. The pheromone value pi calcula-
tion considers the executing ability, processing time and machining cost of the
corresponding machine i.

pi =
q

αt ∗ Mti/Mt0i + αc ∗ Mci/Mc0i
, q ∈ {0, 1} , αt + αc = 1

q denotes the executing ability of the machine i regarding the requested task. If
a machine does not meet the requirements of the task, q = 0, and the pheromone
is 0. Otherwise, q = 1. Mti and Mci represent the total time and machining cost
of the task t at the machine i, respectively. Mt0i and Mc0i are the minimum
total time and machining cost of the task t respectively in ideal situation. The
factors αt and αc are the weight of the machining time and cost respectively.
The weight can be changed to meet different goals of the company [9].

The key idea of the DWL method is to balance the workload of machines.
The DWL method extends the QLE method. As an important difference, each
machine has a workload limit, and a job is only allocated to a machine if the
resulting workload of this allocation is within this limit. The workload considers
expecting processing time of both jobs in the queue and the jobs being currently
processed at the machine [4].

The PF method chooses the optimal machine by its attractiveness among
the alternative machines. If a machine is broken now, its attractiveness is 0.
Otherwise, its attractiveness equals to ai = 1

(1+WaitingTime)∗Distance , where
WaitingT ime refers to the expected waiting time if the job is assigned to
machine i. Distance refers to the distance between the current position of the
job and the machine i. This method aims to minimizes the throughput time by
reducing both travel and waiting time.

In the PBC method, the pheromone value is calculated inversely proportional
to the cost. This cost consists of processing cost, storage cost and tardiness cost.
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As such, this method takes due dates into consideration. It calculates a tardiness
cost per machine, which is proportional to the length of the resulting due date
delay.

4 Results

An overview of the performance of all methods in the standard scenario is given
in Fig. 2. The mean utilization of all methods, visualised in Fig. 2(a) shows how
close the studied methods are. With an arrival rate parameter of 3, the utilization

(a) mean utilization (b) mean processing time

(c) mean waiting time (d) delay rate

(e) WIP (f) TPT standard deviation

Fig. 2. Performance indicators for the standard scenario
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is above 90% for all methods, decreasing for all methods when more and more
jobs arrive. Notably, this decrease is worse for the DWL method, which can be
explained by this methods tendency not to assign jobs to the slowest machines.
In respect to the mean processing time though, a notable better performance can
be seen for the DWL method. Regarding the remaining performance measures
such as mean waiting time, delay rate, work in progress in throughput time the
methods perform quite similar, with PBC often falling slightly behind. This is
most likely due to the fact that it aims to pursue the lowest cost while remaining
within the due date, hence it prefers the slow machines. This also results in the
biggest WIP and delay rate, c.f. Figs. 2(e) and (d).

Taking the ranking for the studied metrics into a weighted measure of per-
formance, the following method ranking emerges:

DWL > PF > AMS-SCA > SCA > QLE > PBC.

Lastly, Fig. 3 gives a comprehensive overview on the relative performance
characteristics of each method in the standard scenario (Fig. 3(a)) as well as
when introducing machine failure (Fig. 3(b)). For each performance dimension,
the best performings method is used as reference point with a relative perfor-
mance of one. Notably, these methods react differently to the introduction of
machine failure. It highlights the superiority of DWL in time dimensions, the
superiority of PBC regarding costs, as well as the acceptable performance of
AMS-SCA in both areas. Furthermore, the high flexibility of PF in high work-
load scenarios with machines breakdown becomes apparent.

(a) standard scenario: λ = 3.5/ without
breakdown/ fixed process

(b) breakdown: λ = 3.5/ failure
rate=10−5/ fixed process

Fig. 3. Overview on relative performance indicators

5 Conclusion

This paper gives an overview of four recently developed autonomous production
control method. From a comparison of these methods in a job shop scenario
we identify key characteristics and performance capabilities. Subsequently, these
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results can aid in a decision process for the application of autonomous control
methods, depending on desired performance dimensions as well as time and cost
constraints. This simulation however only covers a glimpse of possible applica-
tions for autonomous production control methods. For example, these methods
can be used not only individually on the shop floor, but also coupled with cen-
tral planning [15] or in combination, allowing online-switching with each other
in order to adapt to different situations [7]. Furthermore, the dependence of
autonomous production control performance on the underlying production net-
work remains unclear. Also, the influence of the production networks size (i.e.
number of machines, etc.) entices further research.
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