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Abstract. One of the most important goals of green logistics is to reduce the
destructive side effects of freight transportation which can lead to several types
of health risks. The pollution routing problem (PRP) is an extension of the
vehicle routing problem (VRP) which considers greenhouse gas emission in
addition to the travel time, cost, and delivery constraints. Another environmental
impact of vehicles, especially in urban areas is noise emission which is ignored
in optimization PRP researches. This form of pollution endangers physical well-
being by causing annoyance, hearing loss, heart disease, mental issues for
children, and sleep disorders. In this paper, using noise emission mathematical
equations, we aim to reduce noise and exhaust gas emission in VRP with a
heterogeneous vehicle fleet and respect to budget, and time window constraints.
Moreover, a new hybrid robust-stochastic optimization approach is developed
which can address interval uncertainty of parameters in each individual uncer-
tainty scenario. This model suggests a range of solutions that can be selected
according to decision maker conservatism level and preferences. To examine the
performance of the model, a real-world data sets from PRPLIB instances are
adopted. The results approve the possibility of finding a sustainable solution for
VRP which takes into account various aspects including fuel consumption, and
noise emission simultaneously.

Keywords: Pollution routing problem � Noise emission � Robust
optimization � Uncertainty � Vehicle routing problem

1 Introduction

The pernicious effects of transportation on the environment and human should not be
ignored under the shadow of ease that it brings to life. The negative effects such as
noise and greenhouse gas emission, resource depletion, acidification, and toxic effects
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on ecosystems are all caused by transportation [1]. Since introducing the Vehicle
Routing Problem (VRP), many kinds of research have been conducted to minimize the
destructive effects of transportation by selecting between different vehicle routes based
on customer demands. In the VRP an attempt is made to minimize the total travelled
distance by all vehicles. More sophisticated models were introduced based on VRP,
taking into account fuel consumption [2].

Germany target to drop down greenhouse gas emissions (GHG) by 40% until 2020,
by 55% by 2030 and up to 95% in 2050 [3]. It shows that green logistic is a vital
research topic to meet this ambitious goal. Green Vehicle Routing Problem was also
used by [4] and led to an improvement called Pollution Routing Problem (PRP) [2] in
which a time window is used for VRP (VRPTW).

Ignoring uncertainty in operations research models may lead to infeasibility in
realization [5]. In other words, a presumed optimal solution can be violated in practice
because of interruptions in the input data. A different source of uncertainty is known in
VRP, including travel time, demand, and customers.

In this paper a new PRP-based model is introduced, in which, for the first time the
effect of noise is taken into account. Considering the deleterious effects of noise pol-
lution on the environment and human mental and physical well-being, it is absolutely
vital to include it to the Pollution Routing Problem. This model is called the Hybrid
Robust-stochastic Noise Pollution Routing Problem (HRNPRP). Including noise
emission factor in optimization process leads to more comprehensive and robust results
under uncertainty which work as a preventive factor improving the health related
quality of life by elimination of the detrimental effects of noise exposure such as
annoyance, hearing loss, cardiovascular disease, sleep disturbance, nervousness, etc.
The main contributions of this paper are as follow:

• A new hybrid Robust-stochastic approach to manage uncertainty in VRP
• Including noise emission in the PRP
• Investment optimization in PRP
• Considering noise-sensitive areas such as hospitals and residential areas to find

optimal routs

2 Literature Review

The existing literature on PRP and noise modeling in transportation are reviewed in this
section. Due to the importance of the problem, many researchers are focused on this
topic and similar such as green logistics. To find out more about operations research
investigations on green logistics and related works, readers are referred to the most
recent review paper on this subject [6].

Green vehicle routing problem is an extension to VRP by taking into account CO2

emission [7]. PRP is based on GVRP which introduced by [2]. PRP is a time windowed
VRP aiming at minimizing fuel consumption, greenhouse gas emission, and cost in a
multi-destination routing service for customers [8]. PRP is a NP-hard problem;
therefor, some studies conducted heuristic, and meta-heuristic to solve this problem in a
reasonable time.
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Very recent works on this topic are presented [9]. In this article a novel energy
model is developed to consider account speed, acceleration, deceleration, load cargo
and gradients. In this heterogeneous model, light to heavy-duty vehicles as well as
electric ones are included.

So far few researches have been conducted with the focus on the uncertainty of
problem. In [8], a robust optimization approach is adopted for a homogenous PRP
model with time-window to tackle the demand uncertainty.

There are many noise emission models which work mostly based on the same
concept; however, they have not included in routing optimization models. Depending
on the model, the impact of various parameters, including frequency, acceleration, and
speed, will be investigated. Moreover, there are some compensation factors depending
on the category of vehicles, road conditions, etc. A comprehensive review of different
noise emission models can be found in [10].

Reviewing related literature, indicates that many researches have been carried out in
PRP field and tremendous improvements have been achieved specially in recent years.
Including the effect of noise pollution as a serious problem improves the model sig-
nificantly. Moreover, just a few papers can be found which address the uncertainty of the
PRP models to find more practical solution in realization and hybrid robust-stochastic
approaches are totally ignored. Finally, budget constraint to select heterogeneous
vehicle fleet is only considered in few papers which considered types of vehicles.

3 Model Formulation

We first describe our suggested hybrid robust-stochastic approach for a better under-
standing of our robust noise and air pollution routing problem (NPRP). Then the
proposed deterministic NPRP model is formulated. After that, corresponding
stochastic, and robust-stochastic according to this hybrid robust-stochastic optimization
method are developed, which includes demand uncertainty in the model.

3.1 Hybrid Robust-Stochastic Optimization Methodology

First of all, to describe our proposed robust approach, the following mathematical
programming model should be considered:

Model (I)

MAX : NXþMYs ð1Þ

Subject to:

AX ¼ B; ð2Þ

CX þDY ¼ F; ð3Þ

Based on two-stage stochastic optimization method [11], we can consider scenario-
based parameters to address the uncertainty of parameters. For this purpose, variables
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are divided to the first and second stage. First stage variables remain unchanged, and
the second may get different values in each scenario. As can be seen in the model (II),
the objective function is expected value of scenarios, Ds is uncertain parameter, prs is
scenario probability, X, and Ys are the first and second stage variables respectively.

Model IIð Þ MAX : E NX þMYs½ � ¼ NXþ P
s prsMYs

Subject to :
ð4Þ

AX �B ð5Þ

CX þDsYs �F 8 s � S ð6Þ

The scenario parameter sometimes does not have deterministic value in each
individual scenario. In fact, Ds �U Ds � diri;Ds þ dirið Þ where ri is standard devia-
tion and di is a coefficient by which an uncertain parameter varies around its scenario
value.

To tackle this kind of uncertainty in each scenario, we suppose to use a robust
optimization approach. This approach is based on [12] which considers uncertainty
model with a linear robust counterpart. The robust counterpart for the two-stage
stochastic model (II) is as the following model (III):

Model IIIð Þ MAX : NXþ P
s prsMYs

Subject to :
ð7Þ

AX �B ð8Þ

CX þDsYs þ ZsCs þP�F 8 s � S ð9Þ

ZsCs þP� bDsYs 8 s � S ð10Þ

Zs;P� 0 8 s � S ð11Þ

where P, and Zs are dual variables related to robust formulation and model convexity,
and bDs is the uncertain part of the parameter. To control conservatism level, parameter
Cs is defined for every constraint i and employed in Model (III). This parameter takes
any value in the interval 0; jsj j½ �, where js represents the set of uncertain parameters
appeared in constraint s. If decision maker choose Cs ¼ 0; accordingly, uncertainty of
the model will be ignored completely while Cs ¼ jsj j represents the hard worst case
solution.

3.2 Formulation of the Base Deterministic Formulation

We now present a deterministic model for a pollution routing problem which takes into
account noise emission equation and aims to minimize GHS emission as well as noise
emission. We name this new extension of PRP as a noise pollution routing problem
(NPRP).
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In this problem, we have a heterogeneous fleet of vehicles with different capacity
and technical features. The model is described as a complete direct graph G ¼ N;Að Þ
with N ¼ 0; 1; 2; . . .; nf g as the set of nodes where node 0 assumed as a depot. dij
denotes distance matrix between nodes i and j; moreover, Di is a non-negative and
uncertain parameter that shows the demand of customers and Qw is equal to the
capacity of each vehicle which cannot exceed m. In this problem, all customers have
their own time window; therefore, the earliest and latest are ai, bi respectively.

Regarding air pollution, the PRP first time introduced by [2], and extended by [13].
They proposed the following formulation for calculating fuel consumption:

F vð Þ ¼ k kNV þwcavþ cafvþ bcv3ð Þd
v

ð10Þ

Where v, d; and w denote vehicle speed, travel distance, and curb weight of an
empty vehicle. Furthermore, the description and typical values of the other parameters
related to road and vehicle specification can be found in [4]. From this formulation, it is
obvious that fuel consumption strongly depends on payload and travel speed.

A noise prediction model called Harmonoise model was developed to be used by
European Union members for noise mapping [14]. The equations for this models are
presented below:

LR fð Þ ¼ aR fð Þþ bR fð Þlog v
vref

� �
;

LP fð Þ ¼ aP fð Þþ bP fð Þ v�vref
vref

� � ð11Þ

In this formulation, LR fð Þ and LP fð Þ are function of frequency that denotes rolling
and propulsion noise emissions respectively. Accordingly, vref is considered 70 km/h,
and aR fð Þ; bR fð Þ; aR fð Þ; and bR fð Þ are compensation factors for frequency. More
information about this model can be found in [15]. In order to take into account the
environmental factors such as road condition, a random parameter namely ðGEijÞ
between 0.5 and 1.2 is considered.

In this model, we aim to reduce over-threshold noise emissions. Moreover, there
are some noise sensitive areas which should be addressed in this model such as hos-
pitals, nursing home, etc. Modeling indices, parameters and decision variables are
defined below.

Sets
I : Set of customers
W : Set of vehicle types
R : Set of speed levels
S : Set of scenarios

Parameters
dij : distance matrix from i to j
GEij : A coefficient to consider road condition on arc i; jð Þ
½ai; bi� : Time window for customer i
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Fw : Fix cost for using vehicle type w
Ds

i : demand of customer i 2 I in scenario s 2 S
vr : Speed level r 2 R:

Variables
VCw : Number of vehicle type w 2 W :
f sij : Total amount of flow in arc (i,j) in scenario s 2 S
zrwij : A binary variable equals 1 if arc (i,j) is crossed by vehicle type w with speed r
xij : A binary Variable equals 1 if arc (i,j) appears in the solution
yi : Starting time of service for customer i

The suggested bi-objective mixed integer linear programming model for NPRP
which tries to minimize fuel consumption ðZfuelÞ, and noise emission simultaneously
Znoise is as follow:

Min Z ¼ Zfuel þxZnoise ð12Þ

Subject to:

E Zfuel
s

� � ¼ PS
s¼1 Prs

Pn
i¼0

Pn
j¼0

PR
r¼1

PW
w¼1

kNVkdijzrwij
vr

�

þ Pn
i¼0

Pn
j¼0 wckaijdijxij þ þ Pn

i¼0

Pn
j¼0 ckaijdijf

s
ij

þ PW
w¼1

PR
r¼1

Pn
i¼0

Pn
j¼0 bckdijz

rw
ij vrð Þ2

ð13Þ

Znoise ¼
Xn

i;j
NRij þ

Xn

i;j
NPij ð14Þ

LRij ¼
P

r;w GEijðawR fð Þþ PR
r¼1 b

w
R fð Þlog vr

vref

� �
zrwij Þ

8 i; jð Þ 2 N
ð15Þ

LPij ¼
P

r;w GEij awp fð Þþ PR
r¼1 a

w
p fð Þ vr�vref

vref

� �
zrwij

� �

8 i; jð Þ 2 N
ð16Þ

LRij � lRij �NRij 8 i; jð Þ 2 N ð17Þ

Lpij � lPij �NPij 8 i; jð Þ 2 N ð18Þ
Xn

i¼0
xij ¼ 1; 8j 2 N ð19Þ

Xn

j¼0
xij ¼ 1; 8i 2 N ð20Þ

Xn

j¼1

XW

w¼1
zrw0j ¼ VCw0 w0 2 W ð21Þ
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XW

w¼1
FwVCw �Budget ð22Þ

Xn

j¼1
x0j �m ð23Þ

Xn

j¼0;j6¼i
fji �

Xn

j¼0;j6¼i
fij ¼ Di; 8i 2 N ð24Þ

Ds
j xij � f sij � Qw � Ds

i

� �X
r;w

zrwij ; 8 i; jð Þ 2 N 8s 2 S: ð25Þ
X

i;r
zrwij �

X
j0;r

zrwjj0 ¼ 0 8j 2 N;w 2 W ð26Þ

yi � yj þ ti þ
P

r2R dijz
rw
ij =v

r �Oij 1� xij
� � 8i 2 N; j 2 N; i 6¼ j; ð27Þ

ai � yi � bi 8i 2 N ð28Þ

yi � sjw þ ti þ
X

r

X
w
dijzrwij =v

r �M 1� xij
� �8i 2 N; j 2 N; i 6¼ j ð29Þ

X
r;w

zrwij ¼ xij 8 i; jð Þ 2 A ð30Þ

xij 2 0; 1f g;NRij;NPij; fij;VCw; yi � 0; zrwij 2 0; 1f g;
8 i; jð Þ 2 N; r 2 R; and w 2 W

ð31Þ

The objective function (12), minimize hazardous noise and total fuel consumption
and formulations (13), (14) express the normalized fuel consumption and over-
threshold noise objective functions respectively. (15) and Constraints (16), give us the
rolling and propulsion noise emissions respectively while noise levels exceeding the
threshold ðlRij ; lPijÞ are calculated in constraints (17) and (18). Constraints (19) and (20),
enforce that each customer should be visited once and constraint (21) states amounts of
hired vehicles which should not be exceeded from m, and Eq. (22) ensures the budget
limitation. Constraints (24) to (26) ensure flow balance in each and constraints (26) to
(28) enforce the time window limitations. Finally, speed level for each arc is deter-
mined in constraint (30).

3.3 Formulation of the Stochastic NPRP

Based on the presented approach in Sect. 3.1, we now intend to include demand
uncertainty as uncertainty scenarios. This may lead to some changes in constraints.
Accordingly, stochastic counterpart of the deterministic model introduced in Sect. 3.2
is as follow:

Min Z ¼ E Zfuel
s

� �þxZnoise ð32Þ

Subject to: (14)–(24), (26)–(31), and
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E Zfuel
s

� � ¼ PS
s¼1 Prs

Pn
i¼0

Pn
j¼0

PR
r¼1

PW
w¼1

kNVkdijzrwij
vr

�

þ Pn
i¼0

Pn
j¼0 wckaijdijxij þ þ Pn

i¼0

Pn
j¼0 ckaijdijf

s
ij

þ PW
w¼1

PR
r¼1

Pn
i¼0

Pn
j¼0 bckdijz

rw
ij vrð Þ2

� ð33Þ

Xn

j¼0;j6¼i
f sji �

Xn

j¼0;j 6¼i
f sij ¼ Ds

i 8i 2 N; 8s 2 S: ð34Þ

Ds
j xij � f sij � Qw � Ds

i

� �X
r;w

zrwij ; 8 i; jð Þ 2 N; 8s 2 S: ð35Þ

As can be seen in this model, parameter Ds
i represents demand uncertainties and

constraints (33)–(35) are the control constraints. Demand uncertainty has influence on
variable f sij which can get different values in different scenarios realization.

3.4 Formulation of the Hybrid Robust-Stochastic NPRP (HRNPRP)

As described in Sect. 3.1, the final step of the suggested hybrid robust-stochastic NPRP
model is shown in this part. Although we defined some scenarios for the uncertain
parameter ðDs

i Þ, exact estimation of its value in each scenario seems to be impossible in
many cases. Therefore, a robust optimization method based on bound uncertainty is
developed to address uncertainty in each individual scenario. The final HRNPRP model
is as follow:

Min Z ¼ E Zfuel
s

� �þxZnoise ð36Þ

Subject to: (14)–(24), (26)–(31), (33), (35), and

Xn

j¼0;j 6¼i
f sji �

Xn

j¼0;j 6¼i
f sij ¼ Ds

i þPs
i þCZs

i ; 8i 2 N; 8s 2 S: ð37Þ

Ps
i þ Zs

i � bDs
i 8i 2 N; 8s 2 S: ð38Þ

Ps
i ; Z

s
i ; f

s
ji � 0 ð39Þ

4 Computational Experiments

In this section, in order to examine the performance of our suggested NPRP model, a
well-known data set (PRPLIB) is used. This data set can be downloaded from the
following website: http://www.apollo.management.soton.ac.uk/prplib. It is worthy to
mention that GEij is generated randomly between 0.5 and 1.2 for each arc and lRij ; and l

P
ij

are considered 52 to 71 dB randomly. In this research, three classes of light trucks are
considered as vehicle categories and the parameters of these trucks extracted from [13].
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Furthermore, optimistic and pessimistic scenarios are defined as 50% and 150% of the
average demand respectively and the uncertainty level in each scenario is 10% ðdiÞ. We
also set 0.2, 0.45, and 0.35 as scenario probabilities ðprsÞ. To solve the bi-objective
model, we adopt a goal programming approach [16], and the proposed HRNPRP model
solved using CPLEX solver embedded in GAMS 26.1 on a laptop with Intel Core i5
82050U CPU and 8 GB RAM.

The performance of the PRP and NPRP approach is depicted in Table 1. As can be
seen in this table, by a 30-L increase in fuel consumption for the whole fleet, the over-
threshold noise emission drops down from 1050 dB to 315 dB. Heavy-duty trucks
have severe noise factors; therefore, it can be concluded that in order to reduce the
amount of over-threshold noise emission, it is better to choose light-duty trucks. As
reported in the solution by the NPRP model, to provide enough capacity to fulfill
customer demand, one more truck is required. Nevertheless, in this solution, three
vehicles out of 7 are heavy-duty (type 3).

In Fig. 1, the performance of the suggested model is examined under four different
data sets with 10 and 15 Nodes. For this purpose, a realistic conservatism level
ðC ¼ 0:5Þ, and five weight values ðx ¼ 0; 0:5; 1; 2; 5Þ for noise objective function are
given. It should be noted that in this model C ¼ 0 is the most optimistic, and C ¼ 1 is
the hard-worst case scenario. As it is evident in this figure, considering the noise
objective function, and interval uncertainty in each scenario, make significant modi-
fication in the results, which consequently lead to robust and sustainable solutions.
Furthermore, it can be concluded that for a realistic DM ðC ¼ 0:5Þ, x ¼ 1 is a rea-
sonable option, because we do not see a significant modification in noise emission but
in fuel consumption.

Table 1. Comparison between PRP and NPRP (21-node instance)

Vehicle PRP NPRP

Type Route Zfuel (L) Znoise (dB) Type Route Zfuel (L) Znoise (dB)

1 3 1-4-5-3-12-1 138 1050 1 1-4-20-1 168 315

2 3 1-9-7-2-18-1 2 1-17-18-1
3 3 1-10-17-1 2 1-11-21-1
4 3 1-11-8-15-13-1 2 1-15-9-5-1

5 3 1-14-20-6-1 3 1-8-6-10-13-1
6 3 1-19-21-16-1 3 1-16-14-7-2-1
7 – – 3 1-12-3-19-1
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5 Conclusions

In this paper, we developed a mixed-integer programing model for robust noise and air
pollution routing problem considering demand uncertainty. We developed a new
robust-stochastic approach to address interval uncertainty of scenario parameters in
each individual. Furthermore, a real-world data sets in order to evaluate the proposed
model and analyze the noise emission effects on vehicle routing problem adopted. Final
results approve that including noise pollution in PRP models is relevant and suggested
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Fig. 1. Noise emission and fuel consumption in a realistic conservatism level ðC ¼ 0:5Þ
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HRNPRP model can reduce noise emission significantly. Moreover, it is worthy to be
mentioned that considering fuel consumption as the only term in the objective function
may result a solution with high noise pollution value. For future researches, solution
algorithms for solving large-scale problems as well as considering vehicle reliability is
recommended.
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